


C++ STANDARD LIBRARY

PRACTICAL TIPS



LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

THE CD-ROM THAT ACCOMPANIES THE BOOK MAY BE USED ON A SINGLE PC
ONLY. THE LICENSE DOES NOT PERMIT THE USE ON A NETWORK (OF ANY
KIND). YOU FURTHER AGREE THAT THIS LICENSE GRANTS PERMISSION TO USE
THE PRODUCTS CONTAINED HEREIN, BUT DOES NOT GIVE YOU RIGHT OF
OWNERSHIP TO ANY OF THE CONTENT OR PRODUCT CONTAINED ON THIS
CD-ROM. USE OF THIRD-PARTY SOFTWARE CONTAINED ON THIS CD-ROM 
IS LIMITED TO AND SUBJECT TO LICENSING TERMS FOR THE RESPECTIVE
PRODUCTS.

CHARLES RIVER MEDIA, INC. (“CRM”) AND/OR ANYONE WHO HAS BEEN 
INVOLVED IN THE WRITING, CREATION, OR PRODUCTION OF THE ACCOMPA-
NYING CODE (“THE SOFTWARE”) OR THE THIRD-PARTY PRODUCTS CON-
TAINED ON THE CD-ROM OR TEXTUAL MATERIAL IN THE BOOK, CANNOT AND
DO NOT WARRANT THE PERFORMANCE OR RESULTS THAT MAY BE OBTAINED
BY USING THE SOFTWARE OR CONTENTS OF THE BOOK. THE AUTHOR AND
PUBLISHER HAVE USED THEIR BEST EFFORTS TO ENSURE THE ACCURACY AND
FUNCTIONALITY OF THE TEXTUAL MATERIAL AND PROGRAMS CONTAINED
HEREIN. WE HOWEVER, MAKE NO WARRANTY OF ANY KIND, EXPRESS OR 
IMPLIED, REGARDING THE PERFORMANCE OF THESE PROGRAMS OR CON-
TENTS. THE SOFTWARE IS SOLD “AS IS” WITHOUT WARRANTY (EXCEPT FOR 
DEFECTIVE MATERIALS USED IN MANUFACTURING THE DISK OR DUE TO
FAULTY WORKMANSHIP).

THE AUTHOR, THE PUBLISHER, DEVELOPERS OF THIRD-PARTY SOFTWARE,
AND ANYONE INVOLVED IN THE PRODUCTION AND MANUFACTURING OF
THIS WORK SHALL NOT BE LIABLE FOR DAMAGES OF ANY KIND ARISING OUT
OF THE USE OF (OR THE INABILITY TO USE) THE PROGRAMS, SOURCE CODE, OR
TEXTUAL MATERIAL CONTAINED IN THIS PUBLICATION. THIS INCLUDES, BUT
IS NOT LIMITED TO, LOSS OF REVENUE OR PROFIT, OR OTHER INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THE PRODUCT.

THE SOLE REMEDY IN THE EVENT OF A CLAIM OF ANY KIND IS EXPRESSLY 
LIMITED TO REPLACEMENT OF THE BOOK AND/OR CD-ROM, AND ONLY AT
THE DISCRETION OF CRM.

THE USE OF “IMPLIED WARRANTY” AND CERTAIN “EXCLUSIONS” VARIES FROM
STATE TO STATE, AND MAY NOT APPLY TO THE PURCHASER OF THIS PRODUCT. 



C++ STANDARD LIBRARY

PRACTICAL TIPS

GREG REESE

CHARLES RIVER MEDIA, INC.
Hingham, Massachusetts



Copyright 2006 by THOMSON/DELMAR LEARNING. Published by CHARLES RIVER MEDIA, INC.
All rights reserved.

No part of this publication may be reproduced in any way, stored in a retrieval system of any
type, or transmitted by any means or media, electronic or mechanical, including, but not limited
to, photocopy, recording, or scanning, without prior permission in writing from the publisher.

Acquisitions Editor: James Walsh
Cover Design: Tyler Creative

CHARLES RIVER MEDIA, INC.
10 Downer Avenue
Hingham, Massachusetts 02043
781-740-0400
781-740-8816 (FAX)
info@charlesriver.com
www.charlesriver.com

This book is printed on acid-free paper.

Greg Reese. C++ Standard Library Practical Tips.

ISBN: 1-58450-400-5

All brand names and product names mentioned in this book are trademarks or service marks of
their respective companies. Any omission or misuse (of any kind) of service marks or trademarks
should not be regarded as intent to infringe on the property of others. The publisher recognizes
and respects all marks used by companies, manufacturers, and developers as a means to distin-
guish their products.

Library of Congress Cataloging-in-Publication Data
Reese, Greg, 1959-

C++ standard library practical tips / Greg Reese.
p. cm.

Includes bibliographical references and index.
ISBN 1-58450-400-5 (pbk. with cd-rom : alk. paper)
1.  C++ (Computer program language)  I. Title.
QA76.73.C153R44 2005
005.13'3--dc22

2005015845

Printed in the United States of America
05 7 6 5 4 3 2 First Edition

Charles River Media titles are available for site license or bulk purchase by institutions, user
groups, corporations, etc. For additional information, please contact the Special Sales Depart-
ment at 781-740-0400.

Requests for replacement of a defective CD-ROM must be accompanied by the original disc, your
mailing address, telephone number, date of purchase, and purchase price.  Please state the nature of
the problem, and send the information to CHARLES RIVER MEDIA, INC., 10 Downer Avenue, Hing-
ham, Massachusetts 02043. CRM’s sole obligation to the purchaser is to replace the disc, based on
defective materials or faulty workmanship, but not on the operation or functionality of the product.

eISBN: 1-58450-635-0

www.charlesriver.com


To Katie,

who gave me the time to write this book



This page intentionally left blank 



Acknowledgments xv
Preface xvii

Chapter 1  The C++ Standard Library 1

Introduction and History 1

Overview 3

Language Support 5

Diagnostics 6

General Utilities 7

Strings 7

Locales 8

Containers 9

Iterators 9

Algorithms 10

Numerics 10

Input / Output 11

Error Handling 12

Exception Handling 13

Exception Handling in the Standard Library 18

Namespaces 21

Chapter 2  Review of the Standard Template Library 27

History 29

Iterators 30

Iterator Categories 30

Ranges 36

Contents

vii



Iterator Adaptors 38

Reverse Iterators 38

Insert Iterators 44

Stream Iterators 47

Containers 49

Sequence Containers 49

Associative Containers 53

Container Adaptors 56

Miscellaneous Containers 58

Functors 60

Predefined Function Objects 63

Algorithms 70

Nonmodifying Algorithms 72

Modifying Algorithms 73

Mutating Algorithms 73

Partitioning and Sorting Algorithms 74

Sorted Range Algorithms 75

Heap Algorithms 76

Numeric Algorithms 76

Binary Algorithms 77

Error Handling 77

Endnotes 80

Chapter 3  Tips on Containers in General 81

Tip 0 Sample Tip—Display the Elements of a Container 82

Tip 1 Use the Right Container 85

Tip 2 Requirements on Container Elements 87

Tip 3 C-Style Arrays Have Beginning and End Iterators 90

Tip 4 Construct a Container Filled with the Same Value 93

Tip 5 Construct a Container Filled with Specified Values 94

Tip 6 Construct One Container from Another 96

viii Contents



Tip 7 Construct a Container from Standard Input 98

Tip 8 Store Specified Values in an Existing Container 100

Tip 9 Store Contents of One Container in Another 102

Tip 10 Append One Container to Another 104

Tip 11 Exchange Containers 106

Tip 12 Get a Container’s Size and Maximum Size 109

Tip 13 Is One Container Greater Than Another? 111

Tip 14 Are Two Containers Equal? 114

Tip 15 Access a Container in Reverse 116

Tip 16 Display a Container on Standard Output 120

Chapter 4  Tips on Vectors 123

Tip 17 Reserve Space for Elements 123

Tip 18 Remove Excess Memory 125

Tip 19 Use an Index 128

Tip 20 Convert Between Iterators and Indexes 131

Tip 21 Be Careful of Invalidated Iterators 134

Tip 22 Classes Should Have Constructors, Destructors, and an 
Assignment Operator 136

Tip 23 Fast Access at the Back 140

Tip 24 Checked and Unchecked Access 144

Tip 25 Get a C-Style Array from a Vector 147

Tip 26 Use a Vector of Booleans to Manipulate Bits 149

Chapter 5  Tips on Deques 153

Tip 27 Operations at Front 153

Tip 28 Alternative to a Vector of Booleans 156

Chapter 6  Tips on Lists 161

Tip 29 Use the Front and Back 161

Tip 30 Sort 164

Contents ix



Tip 31 Splice 169

Tip 32 Merge 176

Tip 33 Remove Duplicates 182

Chapter 7  Tips on Associative Containers 187

Tip 34 Initialize with Specified Values 189

Tip 35 Use a Map or Multimap as a Dictionary 193

Tip 36 Search in Sets and Multisets 197

Tip 37 Search in Maps and Multimaps 207

Tip 38 Modify or Remove Elements in a Set or Multiset 218

Tip 39 Modify or Remove Elements in a Map or Multimap 222

Tip 40 Use the Sorted Range Algorithms with Sets and Multisets 233

Chapter 8  Tips on Other Containers 241

Tip 41 Using a Stack Data Structure 241

Tip 42 A First-In, First-Out Data Structure and Buffering 244

Tip 43 Buffering with Priority Removal 248

Tip 44 Using a Fixed-Size Collection of Bits 252

Tip 45 Using a Pair of the Same or Different Data Types 256

Chapter 9  Tips on Algorithms 261

Tip 46 Use the Most Specific Algorithm 261

Tip 47 Use a Function in Algorithms 264

Tip 48 Use a Class Member Function in an Algorithm 271

Tip 49 Use a Pointer to a Class Member Function in an Algorithm 276

Tip 50 Freeze an Argument to a Function Object 283

Tip 51 Find and Erase the First or Last Matching Element 287

Tip 52 Remove All Matching Elements 294

Tip 53 Really Remove All Matching Elements 297

Tip 54 Sort Before Performing Set Operations 302

Tip 55 Sort on One of Many Fields 310

x Contents



Tip 56 Sort with Multiple Criteria 314

Tip 57 Sort Without Copying 322

Tip 58 Copy if a Condition Is Met 327

Tip 59 Operate on Each Element of a Container 330

Chapter 10  Tips on Text Processing 339

Tip 60 Copy Strings and Substrings 341

Tip 61 Concatenate Strings and Substrings 343

Tip 62 Search Strings 345

Tip 63 Replace Characters by a Given Character 349

Tip 64 Reverse Strings and Get Their Length 351

Tip 65 Compare Strings with Case-Sensitivity 353

Tip 66 Compare Substrings with Case-Sensitivity 355

Tip 67 Compare Strings without Case-Sensitivity 359

Tip 68 Compare Substrings without Case-Sensitivity 364

Tip 69 Read Formatted Strings 370

Tip 70 Write Formatted Strings 373

Tip 71 Get a C String from a C++ string 376

Tip 72 Strip Whitespace 378

Tip 73 Convert to Upper or Lower Case 382

Tip 74 Extract Words Delimited by Whitespace 384

Tip 75 Extract Tokens That Are Between Delimiters 386

Chapter 11  Tips on Numerical Processing 391

Tip 76 Perform Arithmetic on Containers 391

Tip 77 Complex Numbers 394

Tip 78 Differences Between a Container’s Elements 398

Tip 79 Make Consecutive, Evenly Spaced Numbers 402

Tip 80 Make a Sequence of Random Numbers 405

Tip 81 Evaluate a Mathematical Function 407

Tip 82 Compute the Dot Product 411

Contents xi



Tip 83 Find the Minimum and Maximum in a Container 415

Tip 84 Minimum and Maximum of Two Values Using 
Custom Criterion 417

Tip 85 Minimum and Maximum of Data Types 419

Tip 86 Compute the Mean 423

Tip 87 Compute the Median 424

Tip 88 Compute the Mode 427

Tip 89 Compute the Percentile 430

Tip 90 Compute Statistics of Data 434

Tip 91 Input and Output in Binary Format 437

Tip 92 Input and Output in Octal Format 440

Tip 93 Input and Output in Hexadecimal Format 442

Tip 94 Display Leading Zeros of Integers 444

Tip 95 Display Precision of Floating-Point Numbers 446

Tip 96 Display a Thousands’ Separator 449

Tip 97 Access Data in a File 452

Chapter 12  Final Tips 457

Tip 98 Get a Free, Portable STL 457

Tip 99 Get Free, High-Quality STL Code 458

Tip 100 Share the Wealth—Contribute Your Favorite Tip 460

Chapter 13  Image Processing 461

Image Class 463

Image Creation 472

Block 473

Vertical Bars 474

Image Magnification 477

Shrinking 477

Expanding 480

Image Arithmetic 483

xii Contents



Subtraction 487

Image Enhancement 488

Clipping 489

Look-Up Tables 495

Convolution 500

Appendix A  More Information on STL Algorithms 513

Appendix B  About the CD-ROM 523

Contents 523

System Requirements 524

Installation 524

References 527

Bibliography 529

Books 529

The C++ Standard Library and the STL 529

General C++ 529

Magazine Articles 530

Web Sites 531

Internet Usenet Groups 532

Index 533

Contents xiii



This page intentionally left blank 



T
hanks to all the reviewers, who took the time out of their busy lives to read
and critique the manuscript. They are Ian Long, Ronald van Loon, Jan
Christiaan van Winkel, and Steve Vinoski, who reviewed an early version of

the manuscript; Andrew Sterian, who read the half manuscript; and Randi Stern
and Dietmar Kuhel, who made it through the entire manuscript. I am especially 
indebted to Dietmar, who went far and beyond the call of a reviewer’s duty. This
book, and especially Chapter 2, are much better for his thorough and knowledge-
able comments.

Jim Walsh, my editor at Charles River Media, has been professional and cour-
teous throughout this project, especially when under a barrage of my naïve ques-
tions on publishing. I would also like to thank the following people: Mike Uchic, for
letting me use one of his material micrographs; Mark Cannon, for his picture of the
Russian-style church in Alaska; Patty Jackson, Registered Dental Hygienist, for the
X-ray of the tooth in the model jaw; and Chris Woodward, for the list of his many
publications. Finally, I would like to thank all the authors of C++ books and all the
C++ programmers from whose works I have learned so much.

Acknowledgments

xv



This page intentionally left blank 



Preface

xvii

F
or the last 10 or so years, I’ve been programming in C++. I really enjoy the
language for its power, brevity, and accommodation of three major pro-
gramming styles—structured programming, object-oriented programming,

and generic programming. In addition, C++ has a powerful and concise library that
comes with every compiler that conforms to the language standard. Unfortunately,
the library is not the easiest thing in the world to learn and use. And, although there
are many good C++ textbooks and some very good C++ Standard Library refer-
ence books (my copy of Nicolai Josuttis’s excellent The C++ Standard Library is
falling apart from use), I haven’t found any works that provide quick, concise,
Standard Library solutions to practical programming problems. So, necessity being
the mother of invention, I wrote this book to fill that gap.

The book’s primary audience is new and intermediate C++ Standard Library
programmers. They can be in any application area that uses C++, such as graphics
programming, multimedia development, scientific computation, or financial soft-
ware. They often have titles like Programmer, Software Engineer, Software Devel-
oper, or Applications Developer. People in this target audience should have a
moderate amount of experience programming C++. This might include a course in
the language, studying any of the plethora of C++ textbooks or tutorials, and per-
haps even a year or two of actual programming experience. These programmers
should also have some experience, even if it is minimal, using the Standard Li-
brary. For example, they should be able to call the Standard Library functions and
understand the rudiments of templates and Standard Library containers. However,
they do not need to know what parts of the Standard Library they should use to
solve their programming problems. After all, that’s the point of this book!

The book is organized in a way that lets you quickly find the answer to your
programming problem. The heart of the book is the 100 tips on using the C++
Standard Library. They’re all short—about two to four pages each. Just look at the



xviii Preface

tip titles in the table of contents and flip to one you’re interested in. You’ll notice
that each tip starts with a short solution. This is a very concise answer to the pro-
gramming problem. If you’re an experienced Standard Library user or you just
need to jog your memory, this short paragraph or two will satisfy you. 

Following the bare-bones answer is a detailed solution. This is useful if you’ve
never used the tip’s technique or if the short solution is just too concise. The de-
tailed answer has a complete C++ program that illustrates the method in the tip.
The text discusses the code and gives a thorough explanation of its key points. A few
of the programs may seem longer than what is necessary solely to demonstrate a
technique. I’ve done this on purpose, though. One of the things that bothers me
about many technical books is that the examples are too simplistic to be of much
help. Because object-oriented programming is so important to C++, quite a few of
the programs use classes, and this causes the code to be longer. However, I find this
makes the examples more realistic, helpful, and valuable. Deciding between brevity
and practicality is subjective, however, and someone is certainly bound to be dis-
appointed by my choice.

Nonetheless, you don’t have to worry about having to slog through endless
pages of pontification—the programs are only about a page or two long, and the
explanations just slightly longer. You can quickly get a good understanding of your
problem’s solution and then get back to the fun stuff—writing code.

If you’d like to explore a tip in more detail, you have several options. First, each
tip has references to other relevant tips. These tips may contain alternate tech-
niques, related methods, or supplementary material. Second, the tips are grouped
according to topic. Thus, for example, if you’re about to start working with vectors
and would like some background first, you can leaf through Chapter 4, “Tips on
Vectors.” It will give you some tips on the power and pitfalls of this container.
Third, Chapter 13 has an application that uses some of the tips in a realistic setting.
If the technique you’re interested in is in this chapter, you get to see it in action. Fi-
nally,  Chapters 1 and 2 contain an overview and review of the Standard Library and
its main component, the Standard Template Library. This information helps you
see how the tip fits into the general scheme of things and serves as a good review of
some basic Standard Library concepts.



1

The C++ Standard Library1

INTRODUCTION AND HISTORY

The power of modern computer languages lies not as much in the languages them-
selves as in their accompanying libraries. A library is a collection of software com-
ponents used to make other pieces of software. Often you use it to make a whole
program, but you can also use it to build other components such as functions or
classes. Libraries have various advantages over custom code:

They may deal with a specialized field such as finance or arcane subjects like
non-uniform rational B-splines. Creating these libraries can require subject
matter expertise or special programming techniques not available to the typi-
cal programmer.
They can provide low-level access to the operating system, such as file attributes
or the system time and date.
They can provide high-level access to the operating system, for example, the 
encapsulation of detailed GUI (graphical user interface) calls into a more 
usable GUI framework.
They can provide commonly used software. This helps prevent masses of pro-
grammers from creating their own versions of the code and thus continually
reinventing the wheel. 
They allow more functionality to be added to a language without changing the
core of the language itself.

The standard library of a language is a library that comes with the official 
version of the language. Besides the previously mentioned advantages of libraries,
using a standard library can benefit programmers and organizations in the follow-
ing ways:



2 C++ Standard Library Practical Tips

They will develop programs more quickly. A standard library usually contains
a large amount of functionality that is commonly used in programming. This
means that software developers won’t have to take time to create this code.
They will write programs that are more reliable because standard libraries tend
to be extensively tested and used.
They will write software that is more portable because a standard library is
available on a wide variety of computers and operating systems—after all, it’s
the standard.
They will have shorter development times because standard libraries are widely
used and recognized. Programmers starting on a project with standard library
code will not have to spend time learning that part of the software.
They will have lower maintenance costs because a standard library is familiar to
many programmers and this avoids costly learning time.

The C++ Standard Library provides many of these benefits. It has code that
deals with specialized applications (complex numbers, numeric computations),
low level file information, common functionality (searching, sorting, replacing,
counting, etc.), and popular data structures (vector, list, deque, map, set). It also al-
lows the language to change while keeping the core part of C++ the same. For ex-
ample, many of the modifications currently being proposed to standard C++, such
as tuples, special mathematical functions, regular expressions, and an extendable
random number facility are purely additions to the Standard Library and not
changes in the basic language itself.

Just as C++ evolved from C, the C++ Standard Library came from the Stan-
dard C Library. The latest version of the C++ Standard Library took ten years to de-
velop and became part of the official, worldwide C++ language standard in 1998.
One important design consideration was to specify and standardize the relationship
between C++ and the Standard C Library, which was used ubiquitously in the C
programming world. The result was that the Standard C Library, with minor
changes, actually became part of its C++ counterpart. However, the library also has
other goals [Stroustrup94]:

It should be affordable and essential to all programmers.
It should be efficient enough so that a programmer is not tempted to write his
own version because he believes it will be faster.
It should be reasonably convenient and safe.
Any functionality it has should be reasonably complete. That is, if the library
provides services in an area, you should be able to complete basic programs in
that field without having to replace the library’s code or create additional core
software. Note, however, that the library does not cover some major areas of
programming, such as GUI and Internet.



The C++ Standard Library 3

It should be type safe, support common programming styles, and work well
with user defined types.

Unfortunately, clarity, consistency, and ease of use were not design goals. The
library’s style is not consistent because it evolved over time and different people de-
signed different parts. For example, C++ text strings have extensive error checking
whereas the Standard Template Library, the major component of the Standard Li-
brary, has virtually none. In addition, although the library is very powerful, it can
also be cryptic. It’s often not obvious how to accomplish even a routine task. The
tips in this book are meant to fix that situation and let you use the C++ Standard
Library to its fullest potential.

OVERVIEW

The components of the C++ Standard Library fit into a number of general 
categories, as Figure 1.1 shows. They are as follows: language support, diagnostics,
general utilities, strings, locales, containers, iterators, algorithms, numerics, and
input/output (I/O). Algorithms, containers, iterators, and numerics are, for histor-
ical reasons, often grouped together and referred to as the Standard Template 
Library (STL). The Standard C Library is also, with minor modifications, part of the
C++ Standard Library. The C++ standard incorporates the C library by reference
(see Figure 1.1) and doesn’t discuss its details. This book will do the same.

FIGURE 1.1 Components of the C++ Standard Library.



4 C++ Standard Library Practical Tips

Briefly put, the categories provide the following:

Language support: Capabilities, such as memory allocation and exception pro-
cessing, required by some parts of the core language

Diagnostics: A framework for reporting errors in C++ programs

General utilities: Components called by users and other parts of the Standard
Library

Strings: Specialized classes for working with small amounts of text

Locales: Support for internationalization of text processing

Containers: Classic data structures, such as the list, vector, and map

Algorithms: Functions for basic processing such as searching, sorting, and 
replacing

Iterators: Generalized pointers that connect containers to algorithms

Numerics: Algorithms (functions) useful primarily in numerical computations

Input/Output: The primary C++ mechanism for input and output

Standard C library: The C-language standard library

All elements of the C++ Standard Library are declared or defined in a header.
The compiler inserts this code into a translation unit, typically a file. To specify a
header, use the preprocessing directive

#include <header_name>

where header_name is the name of the header that you need. To find what header or
headers you need for a particular Standard Library component, check for that com-
ponent’s description in your compiler documentation or in a reference book. Table
1.1 lists the 32 headers that contain all of the Standard Library component declara-
tions or definitions.

<algorithm> <bitset> <complex> <deque> exception>

<fstream> <functional> <iomanip> <ios> <iosfwd>

<iostream> <istream> <iterator> <limits> <list>

<locale> <map> <memory> <new> <numeric>

<ostream> <queue> <set> <sstream> <stack> 

<stdexcept> <streambuf> <string> <typeinfo> <utility>

<valarray> <vector>

TABLE 1.1 The C++ Standard Library Headers



The parts of the Standard C Library that C++ uses are in 18 headers. Table 1.2
shows their C++ names. These are the same as the C names except the “.h” is
dropped and a “c” prefix is added, for example, <assert.h> becomes <cassert>,
<stdio.h> becomes <cstdio>; The chief difference between the two is that the C++
headers put all C library elements except macros into the std namespace, whereas
the C headers (which can also be used in C++) place their elements in the global
namespace. Because of this, unless your program needs strict C-compatibility, you
should use the C++ headers. (For more information on namespaces, see “Name-
spaces” at the end of this chapter.)

Language Support

The language support section of the library contains headers that let you work with
dynamic memory, exception handling, type identification, and some miscellaneous
things. Table 1.3 shows how the Standard Library groups the headers. Table 1.4 lists
the headers in Table 1.3 alphabetically and briefly describes their contents.

The C++ Standard Library 5

<cassert> <cctype> <cerrno> <cfloat> <ciso646> <climits> 

<clocale> <cmath> <csetjmp> <csignal> <cstdio> <cstdlib> 

<cstdarg> <cstddef> <cstring> <ctime> <cwchar> <cwctype>

TABLE 1.2 C++ Header Names for C Headers

Category Headers

Dynamic memory management <new>

Exception handling <exception>

Implementation properties <limits>, <climits>, <cfloat>

Other runtime support <csetjmp>, <csignal>, 

<cstdarg>,<cstdlib>, <ctime>

Start and termination <cstdlib>

Type identification <typeinfo>

Types <cstddef>

TABLE 1.3 Categories of Language Support Header



The header <limits> expands on and replaces <climits> and <cfloat>. It 
contains a class template that provides information for all built-in data types that
can represent numbers. It’s better to use <limits> rather than the two older head-
ers because it has the following advantages:

Offers more type safety
Lets you write templates that can evaluate these limits
Contains more information
Avoids the use of macros
Allows you to easily write limits for your own data types

Diagnostics

The diagnostics section of the Standard Library describes library components used
for detecting and reporting errors. Table 1.5 lists the headers and briefly describes

6 C++ Standard Library Practical Tips

TABLE 1.4 Language Support Headers

Header Functionality

<cfloat> Information about floating point data types, such as their 
minimum, maximum, number of digits in their exponent and 
mantissa, and so forth. Use <limits> instead

<climits> Minimum and maximum values of all basic data types. Use 
<limits> instead

<csetjmp> Nonlocal jumps. Use <exception> instead

<csignal> Signal handling

<cstdarg> Variable arguments

<cstddef> NULL, offsetof, ptrdiff_t, and size_t

<cstdlib> Exit routines and macros, runtime environment information

<ctime> System time and date functions, such as clock and time

<exception> exception class, bad_exception exception, exception handlers

<limits> Information about properties of basic data types, such as their 
minimum and maximum, and the maximum amount of numerals 
in their representation

<new> Operators new and delete, exceptions for dynamic memory 
allocation

<typeinfo> Class to hold runtime information about an object’s data type, 
exceptions for this class



their contents. “Error Handling” later in this chapter has an extensive discussion of
error detection and reporting.

General Utilities

This section of the Standard Library contains utility components used by other
parts of the library. C++ programs may use them also. Table 1.6 lists the headers
and briefly describes their contents.

Strings

The Strings section of the library contains headers that let you work with C-style
strings (null-terminated character arrays) and the new C++ text strings. The latter
are far superior, so you should use them if you can. Chapter 10 explains their 
advantages and shows you the C++ equivalents for the common C-string func-
tions, such as strlen and toupper. Table 1.7 shows how the Standard groups the
headers. Table 1.8 lists the headers in Table 1.7 alphabetically and briefly describes
their contents.

The C++ Standard Library 7

Header Functionality

<cassert> assert macro

<cerrno> Global error-number variable, numbers for common
errors

<stdexcept> Predefined exceptions for common errors

TABLE 1.5 Diagnostics Headers

Header Functionality

<ctime> System time and date functions, such as clock and time

<functional> Function objects (see “Functors” in Chapter 2)

<memory> Allocators, raw memory, and autopointers

<utility> Generic relational operators, pair data structure

TABLE 1.6 General Utilities Headers



Locales

The locales section of the Standard Library has components that encapsulate cul-
tural information and so make it easier to create international versions of C++
programs. Facilities include support for character classification and string collation
of different languages; formatting and parsing of numbers, monetary amounts, and
dates and times; and message retrieval. Table 1.9 lists the headers and briefly 
describes their contents.

8 C++ Standard Library Practical Tips

Category Headers

C-string utilities <cctype>, <cstdlib>, <cstring>, <cwchar>, <cwctype>

Character traits <string>

String classes <string>

TABLE 1.7 Categories of String Headers

Header Functionality

<cctype> Test characteristics of single characters, convert C-string 
characters to upper or lower case

<cstdlib> Conversion between numbers and C-strings

<cstring> Functions to work on C-strings (null-terminated strings)

<cwchar> Functions for working with multibyte characters

<cwctype> Similar to <cctype> but operates on multibyte characters

<string> Character traits and requirements, C++ string classes and 
functions

TABLE 1.8 String Headers

Header Functionality

<clocale> Formatting of times, dates, monetary amounts, and numbers 
using the Standard C Library facilities

<locale> Formatting of times, dates, monetary amounts, numbers, single 
characters, and message catalogs

TABLE 1.9 Locales Headers



Containers

This part of the library provides you with containers, that is, objects that hold other
objects. The containers include a number of classic data structures such as the 
vector, list, and stack. Table 1.10 shows how the Standard Library groups the head-
ers. Table 1.11 lists the headers in Table 1.10 alphabetically and briefly describes
their contents. Containers are part of the STL and are intimately linked to algo-
rithms and iterators. “Containers” in Chapter 2 reviews these objects. Chapters 3
through 8 have many tips on using containers.

Iterators

Iterators let you move among the elements of containers. They serve as the interface
between containers and STL algorithms. The building blocks of iterators are in the
header <iterator>. Table 1.12 lists the specific components that the header defines.
You don’t have to explicitly include <iterator> as often as you would think because

The C++ Standard Library 9

Category Headers

Associative containers <map>, <set>

Bitset <bitset>

Sequence containers <deque>, <list>, <queue>, <stack>, <vector>

TABLE 1.10 Categories of Container Headers

Header Functionality

<bitset> Fixed size container of Booleans

<deque> Double-ended queue

<list> Doubly linked list

<map> Map and multimap

<queue> Queue and priority queue

<set> Set and multiset

<stack> Stack

<vector> Vector

TABLE 1.11 Container Headers



10 C++ Standard Library Practical Tips

container and algorithm headers include it. “Iterators” in Chapter 2 discusses these
objects.

Algorithms

The Standard Library algorithms are function templates that do common types of
processing such as sorting, searching, copying, and removing. Although all algo-
rithms are in the header <algorithm>, the Standard Library divides them into three
groups, as Table 1.13 shows. (The Standard Library also includes the functions
bsearch and qsort in the header <cstdlib> from the Standard C Library, but these
aren’t used very much in C++.) Algorithms are part of the STL and typically oper-
ate on containers via iterators. For a review of algorithms, see “Algorithms” in
Chapter 2. Chapter 9 is filled with tips on using algorithms.

Numerics

This part of the library has components that are specially designed for numerical
work. Table 1.14 shows how the Standard Library groups the headers. Table 1.15
lists the headers in Table 1.14 alphabetically and briefly describes their contents. Be
careful about using valarrays. They are not well designed or tested and may be re-

Header Functionality

<iterator> Iterator tags, traits, operations (advance and distance), and base 
class, predefined iterators, reverse iterators, insert iterators, 
stream, and stream buffer iterators

TABLE 1.12 Iterator Headers

Category Operations

Mutating Copying, exchanging, replacing, removing, filling, 
removing duplicates, reversing, rotating, shuffling

Nonmodifying Finding first, last, adjacent match, and first 
mismatch. Testing for equality, reading each 
element of a container

Sorting and searching Partial, stable, and copy sorting, binary searches, 
merging, set and heap operations, finding minimum 
and maximum, permuting

TABLE 1.13 Categories of Algorithms



placed by better methods. This book does not discuss them any further. Chapter 11,
however, does provide several examples of using the numeric algorithms.

Input/Output

This part of the library provides the fundamental I/O system for the language, such
as the standard input and output streams cin and cout. Because the stream system
is so well designed, virtually identical code produces formatted input and output
regardless of the source and destination of a stream. In other words, you read and
write the same way with the standard output, a file, a memory stream, or a user-
defined stream.

Table 1.16 shows how the Standard Library groups the headers. Table 1.17 lists
the headers in Table 1.16 alphabetically and briefly describes their contents. Chapter
11 has a number of tips on I/O.

The C++ Standard Library 11

Category Headers

C library <cmath>, <cstdlib>

Complex numbers <complex>

Numeric arrays <valarray>

Numeric operations <numeric>

TABLE 1.14 Categories of Numerics Headers

Header Functionality

<cmath> Common mathematical functions (trigonometric, exponential, 
power, rounding, etc.), common numerical constants

<complex> Floating-point complex numbers

<cstdlib> Random number generator, conversion between numbers and 
C-strings

<numeric> Inner product, sum of elements, running sum, adjacent 
difference

<valarray> Arrays of numerical values

TABLE 1.15 Numerics Headers



12 C++ Standard Library Practical Tips

ERROR HANDLING

Real-life programs are, or should be, composed of modules. In such programs, es-
pecially when different people write the modules, it’s good to think of error han-
dling as being divided into two major actions. One action is to report errors that
cannot be handled locally to other parts of the program. The other action is to deal

Category Headers

File streams <fstream>, <cstdio>, <cwchar>

Formatting and manipulators <istream>, <ostream>, <iomanip>

Forward declarations <iosfwd>

Iostreams base classes <ios>

Standard iostream objects <iostream>

Stream buffers <streambuf>

String streams <sstream>, <cstdlib>

TABLE 1.16 Categories of I/O Headers

Header Functionality

<cstdio> C-style I/O

<cstdlib> Conversion between numbers and C-strings

<cwchar> Multibyte character functions

<fstream> File streams

<iomanip> Manipulators with arguments

<ios> I/O stream base classes, manipulators with no
arguments, format flags, failure bits, open modes

<iosfwd> Forward declarations for all stream classes

<iostream> Standard I/O stream objects, such as cin, cout

<istream> Basic input stream, input formatting

<ostream> Basic output stream, output formatting

<sstream> String based streams

<streambuf> Stream buffers

TABLE 1.17 I/O Headers



with those errors, that is, for a module to handle errors that occurred in other
modules. For example, if you write a function that is to be used by others, your
function can detect errors while it is running, but it wouldn’t know what to do
about them. This is because it doesn’t know how, or in what context, it is being
used. On the other hand, the calling code may know how to handle errors, but it
can’t reach down into your function to detect them.

In C and simple uses of C++, programmers typically report errors by returning
an error object. This object can be a struct or a class, perhaps with detailed infor-
mation on the error. However, it often is just an integer. The integer can simply
relay binary information; for example, zero means failure and nonzero means suc-
cess. Alternatively, the integer can represent success or types of failure. For exam-
ple, zero may mean success and each number greater than zero represents a
different kind of error. There can be even more information packed in the integer,
such as groups of bits that represent the level of failure or success or a bit that indi-
cates whether the returned error is from the operating system or the user.

There are a number of problems with this system of handling errors:

Interfaces get cluttered because they have to report the error, either as a return
value or as a reference. 
There is no standard representation of the error. It can be an integer with lots
of different interpretations, a struct, or a class. These last two can of course
have widely varying formats. 
The code must check every function call for errors. This can easily make the
program much bigger. 
The most important deficiency of handling errors by returning error codes is
that nothing forces the calling code to do something about a returned error.
Too often, the caller doesn’t process the returned value or, worse, doesn’t even
accept it. Unfortunately, in these cases, the program can often continue limp-
ing along, slowly deteriorating or suddenly crashing. It’s very hard to debug
problems like this because the symptoms occur much later than the cause.

Exception Handling

C++ provides an alternate method for dealing with errors called the exception handling
system. It is a facility for transferring information and flow of control from the
point where an error occurs to a place in the program that can respond to it. When
using the exception handling system, you should restrict the errors you manipulate
with it to those that are truly exceptional (hence, the name of the system). Often
things that go wrong can be expected to go wrong and so should be handled locally.
For example, your application might try to open a nonexistent file because the user

The C++ Standard Library 13



may have misspelled the file name or entered the path incorrectly. If this is likely to
happen, it would not be an exceptional event if it occurred, so using the exception
handling system would not be appropriate in this case.

Exception handling returns errors in a separate path from the normal program
execution flow. Its advantages are that it does the following:

Provides a framework for using consistent error types
Is used almost everywhere by the Standard Library
Allows constructors (which can’t return values) to signal an error
Makes programs crash if the errors aren’t handled

Although this last action may sound draconian, it’s a clear and insistent 
reminder during development that errors should not be ignored.

In the C++ exception handling system, when a piece of code encounters a
problem, the code reports it by throwing an exception. It does that by using the
throw keyword followed by an object, for example, integer, literal constant, class,
struct, and so on. Throwing an exception transfers control to an exception handler
(described later). 

As an example of throwing an exception, suppose you have a class called Port
that lets you work with an I/O port. It has a constructor that accepts a port num-
ber. It also has the member function ready that tells whether the port can be used.
The function 

void activate_minicam_port()

{

const int minicam_port_number = 54;

Port minicam_port( minicam_port_number );

//...

if( !minicam_port.ready() )

throw string( "Timeout on minicam port" );

//...

}

attempts to activate a particular port, say one connected to a miniature camera
(minicam). It makes a Port instance, does some processing (perhaps waiting a set
amount of time to ensure that the port is active) and tests the port to see if it’s
ready. If it’s not, the function throws an exception. In this case, the data type of the
exception is a C++ text string.

The thrown exception starts a process called stack unwinding. First, C++ calls
all the destructors of class instances that are in the same scope as the throw state-
ment. Then, until the exception is handled (as described shortly),  C++ calls all the

14 C++ Standard Library Practical Tips



destructors in the surrounding scope, then in the scope surrounding that, and so
on. When the exception gets to the function (if any) that called the code with the
throw statement, C++ executes all its destructors. C++ keeps the chain of calling
functions on a call stack—hence, the term “unwinding the stack.” Note that stack
unwinding is separate and different from the normal execution of nested func-
tions.

If the program has not handled the exception by the time the stack unwinding
is through with the main program (function main), C++ shuts the program down
by calling the predefined function terminate. This function then calls another built-
in function, abort, which ends the program

Robust programs will not let an exception go far enough to crash the program.
They will try to respond to all exceptions. To handle a thrown exception, the re-
ceiving code must first wrap the sending code in a try block. This is the keyword try
followed by a pair of braces with the sending code in it. For example, suppose the
function take_pictures calls activate_minicam_port. The coder knows that acti-
vate_minicam_port can throw an exception, so it puts the call of that function in a
try block, that is,

void take_pictures( int frame_rate )

{

try

{

activate_minicam_port();

}

//...

}

Immediately following the try block, you must put at least one catch block, also
called an exception handler. (The only intervening lines must be comments or all
whitespace.) The catch block is the keyword catch followed by a pair of parenthe-
ses with an argument and then followed by a pair of braces with statements. The ar-
gument specifies the data type that the exception handler can catch and optionally
provides the name of a variable to which the thrown object is assigned. If there are
no catch blocks that can accept the object thrown, C++ continues unwinding the
stack until it gets to an enclosing catch block that can accept the exception’s data
type or it reaches main.

The only way for a program to enter a catch block is if the code in the immedi-
ately preceding try block throws an exception that the catch block can accept. If the
catch block can’t receive the exception, C++ continues unwinding the stack. If the
try block doesn’t throw an exception, the execution flow skips all immediately fol-
lowing catch blocks and continues at the code after them.

The C++ Standard Library 15



The statements in a catch block are the code that deals with the exception. For
example,

void take_pictures( int frame_rate )

{

try

{

activate_minicam_port();

}

catch( const string& error )

{

cycle_minicam_power();

}

}

In this case, the code cycles the minicam’s power, that is, turns it off and back on.
Sometimes an exception handler may do something with an exception 

(perhaps write it to an error log) but needs to pass it on to other code to actually 
resolve it. In other words, the catch block only partially handles the exception. To
forward a caught exception, use a throw statement with no argument. For example, 

void take_pictures(int frame_rate)

{

try

{

activate_minicam_port();

}

catch( const string& error )

{

cerr << "Error \"" << error << "\" from activate_minicam_port\n”;

throw;

}

}

cerr is the standard error stream, which is often directed to a console or a file.
Here are some other things to be aware of when using the exception handling

system:

16 C++ Standard Library Practical Tips



You can follow a try block with more than one catch block. Each catch block
should handle a different exception. (If any of the items caught are derived
classes, see the next item in this list.)
Suppose you want to catch a class and its derived classes but handle some of the
derived classes differently. If you’re doing so by pointer or reference you must
put exception handlers for the derived classes you want to treat differently first.
After those, put an exception handler to the base class. This will catch the base
class and any derived classes that you didn’t catch separately. If you put the
handler for the base class first, the handler will catch all exceptions of the base
class and derived classes and your individual catch blocks will never be acti-
vated.
If your catch block will be receiving classes, you should make the argument to
the block be a reference or pointer to the class. This will prevent slicing, the re-
moval of derived-class material when a derived-class object is assigned to a
base-class object.
To make an exception handler catch any exception, use three periods (...) as its
argument, for example, catch(...){ //code }.

To document and enforce the types of exceptions that a global or member
function can throw, attach an exception specification to its declaration and defini-
tion. Right before the terminating semicolon, put the keyword throw with the data
types in parentheses. This indicates that the function can throw only those excep-
tions. The exception specification is not part of a function’s signature. Thus, for ex-
ample, if two functions have the same signatures but different exception
specifications, the compiler will still consider the functions to be ambiguous and
produce a compiler error.

The following code snippet illustrates various exception specifications: 

void f( int a, int a_squared ) throw( int, const char* );

class Mailbox

{

public:

Mailbox( int zipcode ) throw( double );

void deposit_letters( int num_letters );

int capacity() const throw();

};

The global function f can only throw an integer or a pointer to constant char-
acters. The Mailbox constructor can only throw a double. If a function doesn’t have

The C++ Standard Library 17



any exception specification (such as deposit_letters), it can throw any exception.
If a function has an exception specification in which throw has no arguments, such
as capacity, that function cannot throw exceptions at all. 

If a function has an exception specification and throws an exception other than
one listed, a series of events occurs. First, C++ changes the throw into a call to the
Standard Library function unexpected. By default, unexpected calls another prede-
fined function, terminate. This calls the built-in function abort, which shuts down
the program. You can change these default actions. See a good C++ book, for 
example, The C++ Programming Language [Stroustrup97], for details.

Table 1.18 shows the exceptions used by the core language, that is, the part of
C++ not in the Standard Library. (The library also uses them.) All these exceptions
are derived from the base class exception. It and bad_exception are available
through the header <exception>, bad_alloc is in <new>, and bad_cast and
bad_typeid are in <typeinfo>. You rarely need to explicitly include these files 
directly because the major headers include them. However, the C++ standard does
not mandate which headers a header needs to include. If you’re planning to port
your code, it’s best to explicitly include all the headers that you need.

The class exception contains a constructor, copy constructor, destructor, and
assignment operator. It also has the virtual member function what that returns a
pointer to constant characters. This user-defined C-style text string describes the
error.

Exception Handling in the Standard Library

The Standard Library is made up of software that comes from different sources, has
different designs, and was developed at different times. The error and exception
handling reflects this diversity. Some of the library, such as strings, has thorough
error handling. Other parts, such as the STL, hardly check for errors at all. When a

18 C++ Standard Library Practical Tips

Exception Use

bad_alloc Can’t allocate memory, that is, operator new fails

bad_cast Type conversion on a reference type fails, that is, dynamic_cast
fails

bad_exception Function throws an exception not in its exception specification

bad_typeid Zero or null pointer passed to operator typeid, that is, typeid
fails

TABLE 1.18 Exceptions Used by Core Language



The C++ Standard Library 19

member of the Standard Library does throw an exception, though, it is always one
derived from the base class exception.

The Standard Library can throw exceptions from the parts of the core language
that it uses. (Table 1.18 lists these core language exceptions.) However, the library
also throws other exceptions that are more closely related to it. The exceptions deal
with two general categories of errors. Incorrect programming, such as indexes that
are out of range, causes logic errors. They are in theory preventable. The program’s
environment causes runtime errors, and they are typically beyond the scope of the
program’s control, for example, a low-memory condition. In addition, they are
often hard to predict.

All logic errors are derived from the exception class logic_error, which in turn
is derived from exception. All runtime errors are derived from runtime_error,
which also comes from exception. The header <stdexcept> defines all of these ex-
ception classes. Figure 1.2 shows the inheritance hierarchy and Table 1.19 lists the
exceptions. The Standard Library itself can throw these exceptions and additional
ones.  This is because application code that is called or used in the Library may
throw other exceptions. One exception from the STL that may appear in realistic
programs is bad_alloc, which indicates a failure in allocating memory.

FIGURE 1.2 Hierarchy of exceptions in the Standard Library.



20 C++ Standard Library Practical Tips

You can make your own exception classes by deriving directly from exception
or the classes in Table 1.18, which are also derived from exception. Just override the
virtual member function what to return the message you want.

You can also use the exception classes in the Standard Library to deliver custom
error messages. One way to work with them is to derive your own classes from
them, as explained in the preceding text. As a base class, you can use logic_error,
runtime_error, or any of the standard exceptions derived from them. However, if
you only need to change the message and not the exception class, you can use a
standard exception. That’s because logic_error, runtime_error, and all their child
classes have a constructor that accepts a text string or, through a conversion, a C-
style text string. To throw such an error in your own code, use a throw statement
with the exception class and a string or string literal as its argument, for example,

throw range_error( "Exceeded maximum path length in compute_path()" );

Although it’s convenient to use these predefined exception classes, be aware
that catch blocks can’t distinguish between a built-in error that your code throws
and the same error thrown by the Standard Library. If this confusion is likely to
happen, you may want to derive your own exception class from logic_error or run-
time_error and catch it instead. As long as you provide it a constructor that accepts
a string, as its parent class does, it will be as easy to use as the two built-in base
classes for logic and runtime errors.

Exception Use

domain_error Value not in domain of a mathematical operation

invalid_argument Argument to a function not in valid range

length_error Attempt to create an object larger than the maximum 
allowable size

logic_error Generic logic error

out_of_range An argument out of the allowable range

overflow_error Arithmetic overflow

range_error Range error in internal computation

runtime_error Generic runtime error

underflow_error Arithmetic underflow

TABLE 1.19 Standard Library Exceptions



NAMESPACES

Suppose you’re part of a group that is working on a large software project with
other groups. You’re careful about checking and reporting runtime errors and have
written the function

void display_error( int error_number )

to display the error message associated with the passed error number. All goes well
until you try to use another group’s code with yours. You discover that they’re also
careful about reporting errors and have written a function with the same name and
signature as display_error. When the linker tries to link all the modules, it sees two
different functions with the same name and signature. The linker doesn’t know
which one to use, so it produces an error. A duplicate identifier like this is called a
name collision or name clash.

C++ provides a method of preventing name collisions or name clashes—
namespaces. A namespace is a scope that contains logically related objects. You can
put functions, classes, and variables in a namespace. To do this, use the keyword
namespace followed by the namespace’s name and then insert all declarations en-
closed in a pair of braces, such as 

namespace G5

{

void display_error( int error_number );

class GUI_element

{

//...

};

void log_error( int error_number );

}

You can define classes and functions inside a namespace, but to separate the in-
terface from the implementation, it’s better to define such objects outside. 

There are three ways to get access to an entity in a namespace. The first is to
prefix the identifier with the name of the namespace followed by the scope opera-
tor (::). (A namespace member written this way is said to be qualified.) For exam-
ple, to define the function display_error you would write

void G5::display_error( int error_number )

{

// put code here

}

The C++ Standard Library 21



If you were to omit the namespace when defining the function, you would get
a compiler error. Other sources of compiler errors are spelling the function differ-
ently in the declaration than in the definition and having different signatures in
those places.

When calling a namespace member, make sure it is qualified, for example,

void compute()

{

int result = do_compute();

if( result != 0 )

G5::display_error( result );

}

For convenience, you don’t have to qualify nonmember functions in a name-
space when calling them if an argument is in the same namespace. If the compiler
can’t find the function, it will look for it in the namespaces of the function’s para-
meters. For example, in the code

namespace Megacorp

{

class Transaction

{

// ...

};

void add_to_queue( const Transaction& t );

}

int main( )

{

Megacorp::Transaction transaction;

add_to_queue( transaction );

// ...

Even though the program doesn’t qualify add_to_queue with the namespace
Megacorp when it calls the function, the compiler figures this out because the argu-
ment is in that namespace. (This rule is often called argument-dependent lookup or
Koenig lookup.)

If you declare a name outside all named namespaces, blocks, and classes, C++
places it in a default namespace called the global namespace. You can access objects
in this namespace by prefixing their names with just the scope operator (::), such
as ::var or ::adjust( 5 ). For example, the output of 

22 C++ Standard Library Practical Tips



namespace K

{

int k = 9;

}

int k = 7;

int main( )

{

int k = 5;

cout << "k = " << k << "  ::k = " << ::k << "  K::k = " << K::k;

// ...

is

It can get tedious to type in the namespace and the double colon frequently. It cer-
tainly makes the code more cluttered. To make things easier you can use the second
way of accessing a member of a namespace, which is to write a using-declaration.
This tells the compiler to assume that a particular name is in a given namespace if
the code doesn’t explicitly specify a namespace. Make a using-declaration by writ-
ing the keyword using followed by the object’s namespace, the scope operator, and
name, for example,

using G5::display_error;

The usual scoping rules apply to a using-declaration. Anytime the declared
name appears after the using-declaration and in its scope, the compiler assumes the
name is in the specified namespace. For example, the code

using G5::display_error;

void compute()

{

int result = do_compute();

if( result != 0 )

display_error( result );

}

The C++ Standard Library 23

k = 5  ::k = 7  K::k = 9



compiles fine even though it does not explicitly specify the namespace G5 in the call
of display_error. You have to be careful doing this because if there were another
function with the same name and signature, the compiler wouldn’t be able to dis-
tinguish the two and you’d be back to the original name-collision problem.

The third namespace access method is even more powerful and more haz-
ardous. It is the using-directive. This is the statement using namespace followed by
a namespace name, for example, 

using namespace G5;

This makes all the names in the namespace G5 available. It’s equivalent to writ-
ing a using-declaration for each member of the G5 namespace. The advantage of the
directive is that it reduces the clutter in the code by letting you avoid specifically
writing the namespace and scope operator for many objects. The disadvantage is
that there are now many more objects that could cause a name collision.

Organizations usually have coding style guides that specify how and when
using-declarations and using-directives should appear. Some groups may prohibit
their use completely. Others may allow only a few specific names to be used in these
declarations or directives, such as cin, cout, and endl, which are in the namespace
std (see the text later in this section). In any case, you should never put using-
declarations or using-directives at a global scope in a header. This will cause global-
namespace pollution, that is, the addition of many new identifiers to the global
namespace.

There’s a lot more to namespaces than what is shown here. You can do the 
following:

Nest namespaces, that is, have one inside another
Have unnamed namespaces
Make a namespace alias, for example, replace a long namespace name with a
shorter one
Compose a namespace from other namespaces
Make a namespace from only some of the names in another namespace
Add to an existing namespace

Stroustrup has a good discussion of all of these aspects of namespaces 
[Stroustrup97].

All entities in the C++ Standard Library, except for macros and the operators
new and delete, are in the namespace std (standard) or a namespace nested in std.
In addition, the Standard C Library is part of the C++ Standard Library. To use the
Standard C Library headers with the entries in the namespace std, drop the “.h”
from the file name and prepend a “c”, for example, change <stdlib.h> to <cstdlib>,

24 C++ Standard Library Practical Tips



change <math.h> to <cmath>. The C headers work in C++, but they put all their con-
tents into the global namespace. Unless you’re trying to get strict C compatibility
with your program, it’s better to use the C++ versions of the headers. 

A program is allowed to redefine the various versions of operators new and
delete. However, except in a few circumstances, if a program adds things to the std
namespace or a namespace in it, the resulting behavior is undefined. Even though
application programmers shouldn’t change std, compiler and library writers some-
times do add to it. This brings about another detriment to having a using namespace
std; statement in your code. If your code compiles fine but a library writer adds
some entities to std, when you recompile you could get a name clash even if you
haven’t changed anything in your code.

All code in this book, both full programs and snippets, assumes that there is a
using namespace std using-directive placed (but not shown) so that none of the
calls to Standard Library components must be qualified. Though this is not good
style in real-life programming, it makes the code in this book more legible.

The C++ Standard Library 25



This page intentionally left blank 



27

Review of the Standard
Template Library

2

C
++ supports three general styles of programming—structured, object-
oriented, and generic. The Standard Template Library (STL) is an excellent
example of generic programming. The library’s name is actually quite de-

scriptive. It’s standard because it’s officially part of the C++ language. The most
commonly used components are templates, and it’s a library, that is, a collection of
components with which to make software and not an application in its own right.

One definition of generic programming is writing code in which the data type is
a parameter. For example, you might write a function that copies a sequence of
numbers from one array to another. The algorithm to do this is the same, regard-
less of the data type. Instead of writing a group of overloaded routines (one for each
data type, such as char, int, float, or double), you write one template function.
When a programmer passes an input and output array to your function, the 
compiler examines the data type of the arrays and creates the correct version of the
function for you. This means you have much less code to write.

Another definition comes from Alexander Stepanov, the prime creator of the
STL. He defines generic programming as finding the most abstract representations
of efficient algorithms, that is, finding the most general set of requirements on an
algorithm that still let it perform efficiently.

Three types of components form the heart of the STL—iterators, containers,
and algorithms. Containers are structures that hold objects. The STL comes with
seven containers that meet certain requirements and are commonly used. They are
the vector, list, deque, set, multiset, map, and multimap. Algorithms are functions
that operate principally on containers. They include sorting, copying, searching,
replacing, and programmer-specified operations on each element. Iterators are a
generalization of pointers. They allow movement through containers and access to
the elements. They also form the interface between containers and algorithms, that
is, the algorithms operate on a sequence of elements specified by two iterators. In
general, the iterators can come from any container and, because the algorithms are
templates, they can operate on any data type. This keeps the STL small and easier
to use. For example, one STL algorithm (copy) can copy any data type from any



28 C++ Standard Library Practical Tips

part of any container to any part of any other container. (There are some restric-
tions on the data types, but they are very mild.)

The STL also has some other components:

Functors: Small, function-like objects that can be passed to algorithms to spec-
ify their functionality; for example, passing the functor plus to the transform
algorithm causes it to add corresponding elements in a container.

Adaptors: Pieces of software that allow other STL components to operate more
generally, for example, a stream adaptor makes iterators for a stream so that the
stream can be used in algorithms. There are also container adaptors that spe-
cialize the standard containers to produce other useful containers such as the
queue, priority queue, and stack.

Allocators: Generalized memory models.

Miscellaneous: pair (a data structure that holds two elements that may have
different data types), convenient definitions of comparison operators, such as
<, >=, and so on.

Figure 2.1 illustrates the basic parts of the STL and their relationship. Iterators
serve as a link between containers and algorithms. The algorithms typically accept
input via iterators from a container and send the output, again through iterators, to
another container. However, there are variations on this theme that Figure 2.1
highlights by placing in dashed ovals. For example, some algorithms use functors to
determine what operations to perform. Adaptors can modify the functors. In addi-
tion, adaptors can modify sources or destinations other than containers, for exam-
ple, file or I/O streams, by making iterators for them so they can serve as inputs or
outputs to algorithms.

FIGURE 2.1 Basic components of the STL.



Review of the Standard Template Library 29

Before going on, you should be aware that—precisely speaking—the Standard
Template Library doesn’t exist anymore. It was merged into the C++ Standard as
part of the C++ Standard Library. Actually, nowhere does the C++ Standard men-
tion “STL” or “Standard Template Library.” However, the term is still very much
in common use, and this book will continue that tradition too.

HISTORY

Even though the STL is now part of the Standard Library, it has a different and 
interesting history. Alexander Stepanov created the STL. He was born in Moscow,
Russia, and studied mathematics. It was too abstract for his taste, so he went into
programming. One of his early jobs was working on a team that developed a mini-
computer to control hydroelectric power stations. This gave him an eye-opening
experience in software reliability (power stations are difficult to reboot) and soft-
ware efficiency (water falls quickly). In 1976, Stepanov got a bad case of food 
poisoning from eating raw fish. While in the hospital and delirious, he realized that
it’s possible to add numbers in parallel only because addition is associative. He
generalized this idea and put it in mathematical terms by stating that a parallel 
reduction algorithm is associated with a semigroup type. He developed the concept
further to come up with a fundamental principle—algorithms are defined on alge-
braic structures. It took another couple of years to extend this tenet by adding com-
plexity requirements. Then it took him 15 more years to make the theory work in
practice.

Stepanov eventually went to the United States and worked at various industrial
research laboratories and universities. He and Dave Musser developed the Ada
Generic Library, a precursor of the STL. After working briefly at Bell Labs and de-
veloping a library of algorithms in C++, he moved to HP Labs in Palo Alto, Cali-
fornia. This is where, in 1993, he returned to his research on generic programming,
which resulted in the STL. In 1995, he moved to Silicon Graphics and, with Matt
Austern and Hans Boehm, did further work on the Standard Template Library.

Other people also contributed to the STL. Andrew Koenig explained topics in
the C programming language to Stepanov. Koenig and Bjarne Stroustrup (the in-
ventor of C++) pushed hard to get the STL into the C++ Standard. Meng Lee put
a tremendous amount of time and effort into coding the STL and documenting it.
Starting in 1994, all these people shepherded the STL through the standardization
process until it finally became part of the official language.

The STL fits in well with Stepanov’s long-term vision for new directions in pro-
gramming. He, and many other people, would like to change software development
from a craft to a field of engineering. Stepanov believes that a collection of software
components  that are generic, efficient, and have documented complexities should



30 C++ Standard Library Practical Tips

be available to everyone. This will free programmers from having to continually
reinvent the wheel. That is, they will no longer have to write a binary search algo-
rithm, a sorting routine, and so forth. They can take the standardized components,
use them in their programs, and get on with their work.

For more information on the history of the STL, see [LoRusso97] and
[Stevens95]. Most of the historical information in this section comes from those
two articles.

ITERATORS

An important concept that came out of the development of the STL is the use of it-
erators. “To iterate” means to do something repeatedly. In the STL, an iterator is an
object that can move from one element in a sequence to another and another. Iter-
ators are important for traversing a sequence and serving as bridges between con-
tainers (data structures that hold objects) and the STL algorithms (functions that
operate on sequences). Having the algorithms operate only on iterators rather than
the containers themselves enables the algorithms to be independent of the details of
traversing any particular container’s elements. Iterators also enable algorithms to
work on other sources of elements such as I/O and file streams.

Iterator Categories

Besides being able to come from different sources, iterators themselves come in dif-
ferent categories. One convenient way to understand iterators is to think of them as
generalized pointers. A pointer can move back and forth among elements in an
array and read and write to them. An iterator is an object that can move among el-
ements in a sequence. (A sequence is a collection of elements that can be traversed
from beginning to end by using an operation that moves from one element to the
next.) There are, however, important differences between a pointer and an iterator:

There is no such thing as a NULL iterator.
There are different categories of iterators. Most do not have all the abilities of
a pointer, such as moving backward, having values added or subtracted to
them, or overwriting an element.
Iterators can be used with objects other than containers or arrays of elements.
For example, they can operate on text strings or file and I/O streams.
Although all pointers are iterators, not all iterators are pointers. Many are ac-
tually classes that move through memory by complicated routes.
The objects that iterators point to do not have to be contiguous in memory.



The last point is of practical importance because many containers such as lists,
sets, and maps do not store their elements contiguously or even in the order you
put them into the container. 

However, each container defines an iterator that can move through its 
elements. Sometimes the elements are contiguous (e.g., a vector) and sometimes
not (e.g., a list). Sometimes the next element is the element that was inserted into
the container after the current one, for example, in a vector. Sometimes the order
of insertion is irrelevant and the next element is the one with the next highest value,
as in a set. What’s important is that the interface is always the same, that is, you
move to the next element in a sequence by incrementing (++) an iterator.

Figures 2.2 and Figure 2.3 illustrate these ideas. Figure 2.2 shows that concep-
tually the iterator’s increment operator always moves it forward (to the right in the
figure) by one element. Figure 2.3 shows what the actual path of the iterator
through memory might look like for a doubly linked list container. Notice that un-
like a pointer being incremented in an array, incrementing an iterator might make
it go between noncontiguous blocks of memory and even do so backward.

A better view of an iterator is that it is a concept that defines certain require-
ments and behaviors. Any software component that satisfies these requirements
and behaviors is, by definition, an iterator. Simply put, if it acts like an iterator, it is
an iterator. The principal requirements of an iterator are that it be able to perform
the following operations:

Review of the Standard Template Library 31

FIGURE 2.2 Moving through elements of a sequence by incrementing (++) an iterator.

FIGURE 2.3 Iteration through elements of a list in memory.



32 C++ Standard Library Practical Tips

Read and/or write to the element it is pointing to by using the dereferencing
operators * or ->
Go to the next element by using the increment operator ++
See if it is equal to another iterator by using the operator ==

If you can access (dereference) an iterator, that iterator is dereferenceable. You
can always increment an iterator once past the last element in a container. How-
ever, you can’t dereference the iterator there.

There are actually five categories of iterators, as Figure 2.4 shows. Each category
has all the abilities of the ones preceding it. You can also create your own iterator type
that will work with the rest of the STL as long as it defines the appropriate operators.

Regardless of what category an iterator is in, it can be const or non-const. A
constant iterator (const_iterator in containers) is like a constant pointer—you can
read the dereferenced value but you can’t change it. However, the type of object the
iterator points to is what ultimately determines the access; for example, even if you
have a non-const iterator, it can’t write to a const element.

Tables 2.1 through 2.5 list the requirements for the five categories of iterators.
Algorithms are often implemented only through iterators, and to do so it’s neces-

FIGURE 2.4 Iterator categories.



sary to determine the value and difference type that correspond to an iterator type.
The Standard Library defines iterator traits and tags to handle these and other re-
quirements, but the tables that follow do not show them.

Table 2.1 lists the capabilities of input iterators. Their main function is to let
you move forward through a sequence and read the elements. You can use any class
or built-in data type that satisfies the requirements in Table 2.1 as an input iterator.

An input iterator has the strange property such that if you read it and move on
(increment), you can’t read the old position again. More specifically, if you read the
old position again, there’s no guarantee that the two values you read will be the
same. Thus, any algorithm that uses input iterators should never access any itera-
tor location more than once. In other words, it should be a single-pass algorithm.
Another implication of only being able to read elements once is that if you make a
copy of an input iterator and increment both it and the original, the two resulting
iterators may point to different values. 

Output iterators are the complement of input iterators, that is, you can only
write with them. However, like input iterators, they are just able to move forward.
Table 2.2 lists their capabilities. Their main function is to let you move forward
through a sequence and write to the elements. You can use any class or built-in data
type that satisfies the requirements in Table 2.2 as an output iterator.

Review of the Standard Template Library 33

Operation Name Action

*i Dereferencing Read access to the element.

i->member Dereferencing Read access to a member of element (if any 
exist).

i1 == i2 Equality Test if two iterators are equal. Return value
convertible to bool.

i1 != i2 Inequality Test if two iterators are not equal. Return 
value convertible to bool.

++i Preincrement Step forward one element. Return new 
position.

i++ Postincrement Step forward one element. Return old 
position.

I i1( i2 ) Copy constructor Make a new iterator that is a copy of the old 
one.

i1 = i2 Assignment Make one existing iterator be the same as 
another.

TABLE 2.1 Capabilities of Input Iterators. i, i1, i2 Are Iterators, I Is Iterator Type



34 C++ Standard Library Practical Tips

You can only write one time to an element that an output iterator points to.
More specifically, if you write to the same iterator position twice, there is no guar-
antee that the second value will overwrite the first. This implies that output 
iterators should only be used in single-pass algorithms.

Table 2.3 lists the capabilities of forward iterators. These iterators are very use-
ful because they let you move forward through a sequence and read from or write
to its elements. You can use any class or built-in data type that satisfies the 
requirements in Table 2.3 as a forward iterator.

Operation Name Action

*o Dereferencing Write access to the element (left side of 
assignment statement only).

++o Preincrement Step forward one element. Return new 
position.

o++ Postincrement Step forward one element. Return old position.

O o1( o2 ) Copy constructors Make a new iterator that is a copy of the old 
O o1 = o2 one.

TABLE 2.2 Capabilities of Output Iterators. o, o1, o2 Are Iterators, O Is Iterator Type

Operation Name Action

Any in Table 2.1 Actions for an input iterator.

Any in Table 2.2 Actions for an output iterator.

I i Declaration Declare a forward iterator.

I() Default constructor Make a forward iterator with default 
values.

i1 == i2 Equality Test if two iterators are equal. Return 
value convertible to bool.

i1 != i2 Inequality Test if two iterators are not equal. 
Return value convertible to bool.

++i Preincrement Step forward one element. Return 
new position.

i++ Postincrement Step forward one element. Return old 
position.

I i1( i2 ) Copy constructor Make a new iterator that is a copy of 
the old one.

i1 = i2 Assignment Make one existing iterator be the 
same as another.

TABLE 2.3 Capabilities of Forward Iterators. i, i1, i2 Are Iterators, I Is Iterator Type



A forward iterator is a combination of an input and output iterator and has all
the capabilities of an input iterator and almost all of an output iterator. (The dif-
ference between the output capabilities of a forward iterator and that of the output
iterator is that you can always write to an output iterator. To write to a forward it-
erator, you must make sure that the iterator is dereferenceable and that it doesn’t
refer to a constant element.) 

You can access elements of a forward iterator more than once. Forward itera-
tors are good for use with multipass algorithms, that is, algorithms that use iterators
to pass through a sequence more than one time. You can use a forward iterator any-
where that requires an input or output iterator.

Table 2.4 lists the capabilities of bidirectional iterators. These iterators let you
move forward or backward through a sequence and read from or write to its 
elements. You can use any class or built-in data type that satisfies the requirements
in Table 2.4 as a bidirectional iterator. You can substitute a bidirectional iterator 
wherever a forward iterator is required.

Table 2.5 lists the capabilities of random access iterators. These are the most
powerful iterators. In addition to having all the capabilities of bidirectional itera-
tors, random access iterators let you immediately access any element in a sequence
by indexing. You can use any class or built-in data type that satisfies the require-
ments in Table 2.5 as a random access iterator. By design, pointers satisfy these 
requirements, that is, pointers are random access iterators. You can substitute a
random access iterator wherever a bidirectional one is required.

Review of the Standard Template Library 35

Operation Name Action

Any in Table 2.3 Actions for a forward iterator. 

--i Predecrement Step backward one element. Return new 
position.

i-- Postdecrement Step backward one element. Return old 
position.

TABLE 2.4 Capabilities of Bidirectional Iterators. i, i1, i2 Are Iterators, I Is Iterator Type



36 C++ Standard Library Practical Tips

Ranges

One of the most important uses of iterators is specifying a range of elements. A range
is a pair of iterators that marks the beginning and end of a sequence. This is one of the
most ubiquitous concepts in the STL because almost all the algorithms accept a range
to specify the elements to work on. The STL always uses half-open ranges, denoted by
[i,j). A half-open range includes the first iterator and goes up to the last iterator but
does not include it, as Figure 2.5 shows. An empty range is one in which both iterators
are the same, for example, [i,i). Empty ranges are legal and convenient. If an algo-
rithm receives an empty range, it doesn’t do any processing on the sequence.

One advantage of half-open ranges is that loops that use them have a simple
termination criterion, namely, to stop when the loop iterator is equal to the end of
the range. For example, Listing 2.1 shows a simple template function that doubles
every number in a range. You can see how clear the loop is. You can also see an-
other advantage of using half-open ranges—there’s no need for additional code

Operation Name Action

Any in Table 2.4 Actions for a bidirectional iterator.

i += n Self-increment Move forward or backward (n negative)
n elements.

i + n Increment addition Add or subtract (n negative) iterator 
n + i and offset. 

i -= n Self-decrement Move backward or forward (n negative)
n elements.

i - n Increment subtraction Subtract or add (n negative) iterator 
n - i and offset.

i[n] Indexing Get value of nth element.

i1 -- i2 Distance Number of steps (++ or --) to get from 
i1 to i2.

i1 < i2 Less than Decide if i1 comes before i2.

i1 > i2 Greater than Decide if i1 comes after i2.

i1 <= i2 Less than or equal Decide if i1 does not come after i2.

i1 >= i2 Greater than or equal Decide if i1 does not come before i2.

TABLE 2.5 Capabilities of Random Access Iterators. i, i1, i2 Are Iterators, I Is Iterator
Type, n Is Difference Type



that can handle an empty range. If the user passes an empty range (so that the two
iterators are equal), the loop never executes.

LISTING 2.1 A Template Function That Doubles Numbers

template< class ForwardIterator >

void doubler( ForwardIterator start, ForwardIterator stop )

{

while( start != stop )

*start++ *= 2;

}

The STL doesn’t check ranges to see if they’re legitimate, so you have to. You
must make sure that every range you use is valid. This means that for the range
[i,j), j must be reachable from i, that is, you can get to j by incrementing i (++i)
a finite number of times. If j is not reachable from i that means that i and j are not
in the same range or that j is behind i, that is, j is closer to the start of the range
than i is. If you use an invalid range in an STL algorithm, what happens is not de-
fined, but it’s likely to cause bad problems.

All standard containers have member functions that provide access to the be-
ginning (begin) and end (end) of their element range. The containers also provide
iterators for traversing their elements. To declare an iterator that points into a con-
tainer, specify the container type, the data type in angle brackets, the scope opera-
tor (::), and the word “iterator” (or “const_iterator” for constant containers), for
example, vector<int>::iterator i; . The following code snippet illustrates some
common ways that container iterators are used and misused:

vector<double> volume;

// ... put some numbers in the vector

// use an STL algorithm to sort the elements. The container provides the

// range

sort( volume.begin(), volume.end() );

Review of the Standard Template Library 37

FIGURE 2.5 Beginning and end iterators of a range.



// for efficiency in next loop, store end iterator

vector<double>::iterator volume_end = volume.end();

// multiply each element by 10 and add a random number between 0 and 50

for( vector<double>::iterator i = volume.begin(); i != volume_end; 

++i )

*i = *i * 10 + rand() % 51;

// try to sort

sort( volume.end(), volume.begin() ); // BAD – 1st iterator is past 2nd

vector<double> area;

// ... put in some numbers

// try to sort

sort( volume.begin(), area.end() ); // BAD – iterators from different

// containers

sort( volume.begin(), volume.end() ); // GOOD

Notice also that before the for-loop, the code stores the end iterator of the vec-
tor. Making a local copy of a container’s end iterator for use in a loop is helpful. Oth-
erwise, the loop would call the container’s member function end at each iteration,
resulting in the construction and destruction of an iterator on every pass. You have
to be sure that the end iterator won’t change during the loop’s execution. It’s also
a good idea to avoid mixing iterators and constant iterators. Thus, even though it
would be safer for volume_end to be a const_iterator, the code declares it to be a
regular iterator because it is compared to the iterator i, which can’t be constant.

ITERATOR ADAPTORS

The most common source of iterators is containers. Iterator adaptors let you use
STL algorithms with inputs and outputs other than containers. Iterator adaptors are
special versions of iterators that let STL algorithms operate in reverse, or insert in-
stead of overwrite (assign), or function with streams. The adaptors are easy to use,
operating in almost the same way as regular iterators. To access any of the iterator
adaptors, you must include the header <iterator>.

Reverse Iterators

One kind of iterator adaptor is the reverse iterator, which lets you traverse a range
in reverse by defining the increment operator (++) to move backward and the

38 C++ Standard Library Practical Tips



decrement operator (--) to move forward. This may sound confusing, but fortu-
nately that’s an implementation detail and doesn’t change how easy it is to use a 
reverse iterator. 

All standard containers let you use reverse iterators on their elements. They
have two member functions that specify the range of a reverse iteration. The first,
rbegin, accesses the beginning of the reverse iteration range. The second, rend, ac-
cesses the end. Each standard container also provides a reverse iterator and a con-
stant reverse iterator. The latter is like a constant pointer—you can read the
dereferenced value, but you can’t change it. To use reverse iterators, you don’t need
to include a header other than that for the container.

You use reverse iterators pretty much the same way as regular iterators. For ex-
ample, suppose you have a vector of integers v, and you want to find the first ele-
ment that is equal to five. You can do this with the STL algorithm find, for example, 

vector<int>::iterator i = find( v.begin(), v.end(), 5 );

if( i != v.end() )

cout << "Found the first five\n";

else

cout << "Couldn't find a five\n";

There’s no need for a different algorithm to locate the last five in the vector.
You simply search in reverse, and the first value of five you come to is really the last
one in the vector, for example, 

vector<int>::reverse_iterator i = find( v.rbegin(), v.rend(), 5 );

if( i != v.rend() )

cout << "Found the last five\n";

else

cout << "Couldn't find a five\n";

The code is identical except for using the reverse versions of begin, end, and 
iterator, that is, rbegin, rend and reverse_iterator. Be careful not to mix the reg-
ular versions with the reverse ones because they don’t work together. In particular,
remember after the call to find to test against rend, not end.

The program in Listing 2.2 loads a vector with the numbers one through six,
gets an iterator that points to the first element whose value is five, constructs a re-
verse iterator from the regular one, and displays the values of both. 

LISTING 2.2 Iterator and Reverse Iterator Values

#include <algorithm>

#include <iostream>

#include <vector>

Review of the Standard Template Library 39



using namespace std;

int main( )

{

vector<int> v( 6 );

for( int i = 1; i <= 6; ++i )

v[i-1] = i;

vector<int>::iterator j = find( v.begin(), v.end(), 5 );

vector<int>::reverse_iterator j_reverse( j );

cout << "*j = " << *j << "\n*j_reverse = " << *j_reverse << endl;

}

The surprising output of the code is

Here’s what’s going on. Figure 2.6 shows what you might initially believe are
the reverse beginning and end iterators. You can see that the reverse end iterator is
one element past the start of the sequence. The problem with this is that containers
aren’t required to define an iterator that points to a location before their elements,
even if that iterator is never dereferenced. However, the container iterators must be
valid for one increment past the last element, although you can’t dereference them
there. These requirements on an iterator that points immediately before or after a
container come from C, where pointers to arrays have the same restrictions.

Figure 2.7 shows the STL designers’ clever solution to the problem. They made
the location of the reverse beginning iterator be one past the end of the sequence,
and they made the location of the reverse end iterator be the first element in the 

40 C++ Standard Library Practical Tips

FIGURE 2.6 Desired (but incorrect) positions of 
the beginning and end reverse iterators.

*j = 5

*j_reverse = 4



Review of the Standard Template Library 41

sequence. Then they overloaded the dereferencing operators (* and ->) to return
the value of the preceding element. You can see from Figure 2.7 that this works very
nicely. The reverse beginning iterator is located one element past the sequence,
which is legal. However, when it’s dereferenced, it actually returns the last element.
The reverse end iterator is at the first element, so its location certainly exists. If it
were to be dereferenced, it would have to provide the value of an element preced-
ing the sequence, which doesn’t exist. However, as with regular iterators, you’re not
allowed to dereference the end iterator, and this avoids accessing a nonexistent 
element.

These definitions of reverse iterators allow them to work properly in the STL al-
gorithms. Put another way, reverse iterators let the STL provide functionality that
operates in the reverse direction, such as finding or replacing the last element, with-
out adding any new algorithms.

You can get a reverse iterator from any bidirectional or random access iterator
by passing the regular iterator to the reverse iterator’s constructor, as Listing 2.2
shows. There’s a problem with this—should the reverse iterator have the same po-
sition as the iterator or produce the same value? The STL designers chose the first
course, which Figure 2.8 shows. The location stays the same, but the values are dif-
ferent because the reverse iterator returns the value of the preceding element. This
explains the output of the program in Listing 2.2. Figure 2.8 also implies that if
you’re converting a single iterator to a reverse iterator and want the two to have the
same value, you should increment (++) the reverse iterator once.

There’s a big advantage to making the reverse iterator keep the same position
as the regular iterator. If you make a pair of reverse iterators from a pair of forward
iterators, you don’t have to do anything more to the reverse pair when you use
them as a range. That is, they will produce the same result as the regular pair but in
reverse order. Listing 2.3 is an example of making a pair of reverse iterators from
regular iterators.

FIGURE 2.7 Correct positions of the beginning 
and end reverse iterators.



42 C++ Standard Library Practical Tips

LISTING 2.3 Going from Regular Iterators to Reverse Iterators

#include <algorithm>

#include <iostream>

#include <iterator>

#include <vector>

using namespace std;

int main( )

{

vector<int> v( 5 );

for( int i = 0; i < 5; ++i )

v[i] = i + 1;

vector<int>::iterator regular1 = v.begin() + 1;

vector<int>::iterator regular2 = v.end() - 1;

vector<int>::reverse_iterator reverse1( regular1 );

vector<int>::reverse_iterator reverse2( regular2 );

cout << "Regular range: ";

copy( regular1, regular2, ostream_iterator<int>( cout, " " ) );

cout << "\nReverse range: ";

copy( reverse2, reverse1, ostream_iterator<int>( cout, " " ) );

}

The output of the program in Listing 2.3 is

FIGURE 2.8 An iterator and its corresponding 
reverse iterator.



Review of the Standard Template Library 43

Figure 2.9 illustrates the code in Listing 2.3. The program displays all members
of a vector except for the first and last one. Then it gets a reverse range from the reg-
ular range and makes the same display except in reverse. The code produces both
displays with the STL algorithm copy and the iterator adaptor ostream_iterator,
explained later in “Stream Iterators.” For more details on this easy way of using
copy to display a range on the standard output stream, see Tip 16.

If you have a reverse iterator and want to get an iterator from it, use the reverse
iterator’s base member function. If you get a pair of iterators from a pair of reverse
iterators that make a reverse range, you can use the regular pair without modifica-
tion as a normal range in STL algorithms. If you want to use a single iterator that
comes from a reverse iterator, you’ll have to decrement (--) once what base returns
so the two iterators can refer to the same value. The code in Listing 2.4 provides ex-
amples of these ideas.

LISTING 2.4 Going from Reverse Iterators to Regular Iterators

int main( )

{

vector<int> v( 5 );

for( int i = 0; i < 5; ++i )

v[i] = i + 1;

vector<int>::reverse_iterator reverse1 =

find( v.rbegin(), v.rend(), 4 );

vector<int>::reverse_iterator reverse2 =

Regular range: 2 3 4

Reverse range: 4 3 2

FIGURE 2.9 A regular range and its reverse equivalent.



find( v.rbegin(), v.rend(), 2 );

cout << "Reverse range: ";

copy( reverse1, reverse2, ostream_iterator<int>( cout, " " ) );

cout << "\nRegular range: ";

copy( reverse2.base(), reverse1.base(),

ostream_iterator<int>( cout, " " ) );

vector<int>::iterator regular2 = reverse2.base();

cout << "\n*reverse2 = " << *reverse2

<< "   *regular2 = " << *regular2;

--regular2;

cout << "   *--regular2 = " << *regular2 << endl;

}

The output is

The output shows that when you use the base member functions of a pair of 
reverse iterators to get a pair of regular iterators you don’t have to modify the
latter to use them as a range in STL algorithms. However, if you get a regular 
iterator from a single reverse iterator via the base member function you must 
decrement the regular iterator in order to make the values obtained by dereferencing
the iterators be the same. See Tip 39, Tip 51, and Tip 72 for examples of obtaining
an iterator from a reverse iterator.

Insert Iterators

Reverse iterators are not the only kind of iterator adaptors. Another type of itera-
tor adaptor is an insert iterator, also called an inserter. All insert iterators are in the
output iterator category. You can only write to them—you can’t read from them. 

Normally, an iterator in an output range overwrites an element it is operating
on by assigning the current iterator value to the output element. An insert iterator
makes an iterator insert into a sequence instead of overwriting in it. In other words,
an assignment to the value of the iterator becomes an insertion instead. Inserters
are commonly used with algorithms to work with output ranges that may not be
large enough. An algorithm just overwrites (assigns) old elements with new ones, so

44 C++ Standard Library Practical Tips

Reverse range: 4 3

Regular range: 3 4

*reverse2 = 2   *regular2 = 3   *--regular2 = 2



an output container must always have enough elements to accommodate those
that the algorithm produces. For example, in the code snippet

vector<int> in;

// store some numbers in the vector...

vector<int> out( in.size() );

replace_copy( in.begin(), in.end(), out.begin(), 5, 10 );

the algorithm replace_copy replaces all values of five with ten as it’s copying the
input to the output. The output will end up receiving exactly the same number of
elements that are in the input, so the code can set the size of the output vector ahead
of time by passing the size of the input vector to the output vector’s constructor. On
the other hand, the code

vector<int> in;

// store some numbers in the vector...

vector<int> out;

remove_copy( in.begin(), in.end(), back_inserter( out ), 5 );

calls a different algorithm, remove_copy. As the algorithm is copying the input ele-
ments to the output, it removes all outgoing values of five. The program doesn’t
know in advance how many will be removed, so it can’t determine the length of the
output vector. The program could make that vector the same length as the input
vector because there couldn’t be more elements copied than are in the input. That,
however, could be a big waste of space if the input range were large and many ele-
ments were removed. It would also necessitate calling the default constructor for all
the elements, even those that are not eventually used by the algorithm.

A better solution is to use a back inserter, which appends elements to the back
of a container. Thus, instead of assigning each element that is not equal to five to an
output element, the algorithm now calls the output container’s push_back member
function to do the appending. This means that a back inserter can only accept con-
tainers that have a push_back member function. The standard containers that do are
the vector, deque, and list. You can also use a back inserter with a string.

The second insert iterator is the front inserter, appropriately called front_
inserter. It prepends elements, that is, adds them to the front of the output range.
front_inserter is commonly used in algorithms for the same reason that the back
inserter is used, namely, to handle cases in which you don’t know how big the out-
put container should be. You call it the same way as the back inserter, but it only
works with containers that have a push_front member function. The standard con-
tainers that meet this requirement are the deque and list.

Review of the Standard Template Library 45



The third insert iterator is the general inserter, called inserter, which allows you
to insert elements at a specified position in the output range. This iterator calls the
insert member function, and you can use it with all standard containers and the
string because they all have insert. Note, however, that for associative containers,
the specified position is only a hint. An associative container orders its elements by
value, so the inserted element may not end up at the desired location. The code in
Listing 2.5 has an example of each of the three kinds of inserters. Tip 34 provides an
additional example of a general inserter.

LISTING 2.5 Front, Back, and General Inserters

list<int> l( 3, 1 );

tips::print( l, "Original" );

list<int>::iterator middle = ++l.begin();

fill_n( front_inserter( l ), 3, 5 );   // prepend 3 5s

tips::print( l, "After front inserter" );

fill_n( inserter( l, middle ), 2, 7 );   // insert 2 7s in the middle

of original

tips::print( l, "After inserter" );

fill_n( back_inserter( l ), 1, 9 ); // append 1 9

tips::print( l, "After back inserter" );

The output is

The code in Listing 2.5 starts by declaring a list container with three ones in it.
tips::print, a custom function that prints a text string and all elements in a con-
tainer (see Tip 0) displays the container’s initial state, as the first line of the output
shows. To prepend copies of the same number to the list, you can use the STL al-
gorithm fill_n and a front inserter as shown. To put the copies into the middle of
the list, make an iterator as shown that points to the element in front of which you
want to insert the numbers. Then call the general inserter as the code illustrates. Fi-
nally, to append numbers, call fill_n with a back inserter as the code in Listing 2.5
demonstrates.

46 C++ Standard Library Practical Tips

Original: 1 1 1

After front inserter: 5 5 5 1 1 1

After inserter: 5 5 5 1 7 7 1 1

After back inserter: 5 5 5 1 7 7 1 1 9



Review of the Standard Template Library 47

Stream Iterators

In addition to reverse iterators and insert iterators, there’s another kind of iterator
adaptor—the stream iterator. The stream iterator lets you use an input or output
stream in an algorithm. Just as an insert iterator changes an assignment to an in-
sertion, a stream iterator changes an assignment to an output operation using op-
erator<<. It also changes an input iterator to a read from an input stream using
operator>>. To use stream iterators, include the <iterator> header.

An output stream iterator converts an assignment into a write to an output
stream. Its constructor is

ostream_iterator<T> os( out_stream, const char* delimiter = 0 )

T is the data type of the input range in the algorithm, out_stream is an output
stream (such as cout), and delimiter is an optional text string that gets written after
each element that is sent to the output stream iterator. An example of using an out-
put stream iterator is

vector<int> v( 3 );

v[0] = 1;

v[1] = 2;

v[2] = 3;

copy( v.begin(), v.end(), ostream_iterator<int>( cout, " " ) );

cout << endl;

copy( v.begin(), v.end(), ostream_iterator<int>( cout, "\n" ) );

The call to the STL algorithm copy would typically copy elements from an input
range to an output range. In the preceding code, though, the output stream itera-
tor makes the destination of the data be the standard output stream. What is 
displayed is

In the first use of ostream_iterator, the delimiter is the space, so all the vector
elements appear on one row with a space between them. In the second use, the de-
limiter is the newline character, so the three elements appear in a column.

1 2 3

1

2

3



48 C++ Standard Library Practical Tips

One thing you might find peculiar in the code is the expression ostream_iter-
ator<int>( cout, " " ). This is an unnamed, temporary variable. In C++, you can
make a class object (instance) by calling the class name followed by the signature of
a constructor but no variable name. For example, if you have a class called Message,
and it has the constructor Message( const char* text ), you can create an instance
and push it on a list with the statements:

list<Message> l;

Message m1( "Fire!" );

l.push_back( m1 );

You can also do it with an unnamed, temporary variable like this:

list<Message> l;

l.push_back( Message( "Fire!" ) );

Many STL coders prefer the second way because it saves a line of typing and
avoids creating a variable that is only used twice. Whether you want to use un-
named, temporary variables or not, it’s a common idiom, so it’s good to be able to
recognize it.

The complement of an output stream iterator is an input stream iterator. This
iterator adaptor lets algorithms read from an input stream by using iterators. It con-
verts the iterator’s reading of an element to reading a stream by using operator>>. You
can read from the standard input stream (Tip 7) or an input file stream (Tip 97).

The constructor for an input stream iterator is istream_iterator<T>( instream ),
where T is the data type of the input range and instream is an input stream. There
is also the default constructor istream_iterator<T>(), which interestingly enough
acts as an end-of-stream iterator. If the stream is a file stream, this is equivalent to
an end-of-file marker. Having the end-of-stream iterator allows you to read in a
loop until you reach the end of the stream. It also provides the ending iterator for
the input range in an algorithm. For example, suppose you have a text file with one
column of integers. Once you’ve opened the file, you can read all the data and 
display it with one statement:

ifstream in( "numbers.txt" );

if( !in )

{

cout << "Couldn't open numbers.txt\n";

return 0;

}



copy( istream_iterator<int>( in ), istream_iterator<int>(),

ostream_iterator<int>( cout, "\n" ) );

The STL algorithm copy takes an input range and the start of an output range.
Here, the start of the input range is an input stream iterator made from the file
input stream, the end of the input range is the input stream iterator’s default con-
structor, and the start of the output range is an output iterator made from the stan-
dard output stream.

CONTAINERS

The main function of iterators is to connect containers to algorithms. Containers
are data structures that store objects. The STL comes with seven standard containers,
which are containers that meet certain requirements in the C++ standard. One of
the mandated items is the specification (through typedefs) of the data types of the
following: elements, references to elements, iterators, and the size of the container
(the number of elements it has). Another item is the constructors, destructors, and
assignment operators that are necessary. There are also mandatory comparison op-
erators and member functions that provide information about the number of ele-
ments. Finally, every standard container has member functions that mark the
beginning and end of the range of elements inside it, appropriately called begin and
end. To have an algorithm process all elements in a container, simply pass the algo-
rithm begin and end.

Each functional requirement comes with a complexity requirement that de-
scribes the number of operations or the amount of time that the functionality can
take to run. Typically, these are stated in terms of the number of elements in the con-
tainer. For example, inserting an element in the middle of a list (or anywhere, for
that matter) takes the same amount of time regardless of how many elements there
are. However, inserting an element into the middle of a vector takes an amount of
time proportional to the number of elements that come after the one inserted.

All the standard containers are homogeneous. This means that all the elements
must have the same data type. The standard containers are also divided into two
groups—sequence containers and associative containers.

Sequence Containers

The first of the two general types of containers is a sequence container. This con-
tainer maintains its elements in linear order. The order depends on the time and
place the elements are inserted into the container rather than on the elements’ val-

Review of the Standard Template Library 49



ues. For example, if you insert three elements onto the back of a sequence con-
tainer, they will stay in that order, even if the first element has a higher value than
the third. The elements are not necessarily stored in order in memory. Actually, the
elements in a list container are usually not even contiguous in memory. What is
true, though, is that when traversing the container, the elements will appear in
order regardless of where they are in memory.

There are three standard sequence containers. They each have advantages and
disadvantages. Some are good for random access and others are not. Some are great
for inserting and deleting, but their performance depends on where you insert or
delete. Tip 1 provides a chart that can help you choose the right container to use 
for your application.

One standard sequence container is a vector. A vector is a one-dimensional dy-
namic array. To use a vector, you must include the header <vector>. A vector is like
a C-style array in that you can access its elements by indexing ([]), and such access
is fast. However, its big advantage is that it automatically increases its size if it needs
to. The vector is the workhorse of the standard containers. It performs well in many
situations and is a good choice if you have no reason to prefer another container.

Figure 2.10 shows the arrangement of a vector’s elements in memory. The ele-
ments, marked A, B, C, and D in the figure, are contiguous in memory.

1
In addi-

tion, a vector often allocates a bigger block of memory than it needs for holding the
elements it currently has. (Figure 2.10 shows these as shaded blocks.) From this
arrangement, you can infer a number of things:

Random access is fast because to get to any element, the vector takes the prod-
uct of the element’s size (in bytes) and its index and moves forward that
amount in memory from the location of the first element.
Inserting an element at the end is fast if the vector contains unused memory.
Inserting an element anywhere but at the end is slow. The vector must keep the
elements contiguous in memory. To do this, it moves in memory all 
elements that follow the point of insertion (to the right in Figure 2.10) to make
room for the newcomer. This movement takes time.
Similarly, deleting an element anywhere but at the end is slow, as inserting an
element is.
All iterators, pointers, and references to elements after a point of insertion or
deletion are invalidated because those elements have been moved in memory.
If the vector does not have enough unused room to put inserted elements, it
must reallocate memory. It has to allocate new memory, call copy constructors
to make the new elements from the old ones, call the destructors of the old el-
ements, and deallocate the old memory. This takes a lot of time. Fortunately, it
shouldn’t happen that often, and sometimes there are things you can do (see
Tip 17) to make reallocation unnecessary.

50 C++ Standard Library Practical Tips



In sum, the vector is a good, general-purpose container that is especially useful
for random access and when insertions and deletions only occur at the end.

A vector of bools has a special implementation that permits memory to be
saved. However, it is actually not a standard container, so you shouldn’t try to use
it as such, for example in STL algorithms. Tip 26 explains why a vector of Booleans is
convenient for manipulating bits and when to use it.

Another standard sequence container is the list. The list is a doubly linked list
data structure. To use a list, you must include the header <list>. The list is made
up of nodes, each of which contains an element, a pointer to the next node, and a
pointer to the previous node. The big advantage of a list is that insertions and dele-
tions anywhere take a constant amount of time. Its disadvantage is that it has no
random access—to get to a particular element, you have to start at the beginning of
the list and step to each element until you reach the one you’re interested in.

Figure 2.11 shows an arrangement of a list’s nodes in memory. The nodes,
marked A, B, and C in the figure, are not contiguous in memory. The central part of
each node represents an element. The shaded bar on the left part of the node con-
tains the forward link (the pointer to the next node), which the figure shows as a
solid arrow. The shaded bar on the right side of a node contains the backward link,
shown as a dashed arrow. From the diagram, you can deduce a number of things:

Lists take up more memory per element than vectors because they have to store
two links with each element.
Random access is slow because the list can’t compute the location of an ele-
ment. The list has to begin at the source node and step through the nodes one
at a time until it gets to the destination node.
Deleting an element anywhere is fast because all the list has to do is redirect two
pointers and call a node’s destructor. For example, to delete node B in Figure
2.11, the list makes the forward link from node A point to node C and the back-
ward link from node C point to node A.
Inserting an element anywhere is fast for a similar reason.

Review of the Standard Template Library 51

FIGURE 2.10 Arrangement of a vector in memory.



52 C++ Standard Library Practical Tips

When you delete an element, none of the other nodes change in memory. Thus,
all iterators, pointers, and references to the other elements remain valid. This
is also true if you insert an element.

Because a list’s iterators are bidirectional, rather than random access, you can’t
use them with some STL algorithms, such as sort and nth_element. However, Table
9.2 shows that the list has member functions that are alternatives to some of these
algorithms.

The third standard sequence container is the deque (which rhymes with
“check”). A deque is a double-ended queue. To use a deque, you must include the
header <deque>. In functionality, the deque is between a list and a vector. The deque
has random access that is almost as efficient as a vector’s. Inserting or deleting the
first element is efficient, like it is for the list. However, insertions or deletions in the
middle still perform poorly.

Figure 2.12 shows the logical structure of a deque. (This is not how it is stored
in memory, though.) The deque is a dynamic array like the vector except that it is
open at both ends. The practical effect of this is that it is easy to add or delete 
elements from either end of a deque. (The index of the first element in a deque is
always zero.) Like the vector, the deque also has random access iterators and the
subscript operator ([]). A deque does not have the vector’s ability to reserve 
memory and check capacity (see Tip 17), but it does provide member functions
(push_front and pop_front) to insert and delete elements from the front of the 
container.

FIGURE 2.11 Arrangement of a list in memory.

FIGURE 2.12 Logical structure of a deque.



Associative Containers

Vectors, deques, and lists make up the standard sequence containers. The other cat-
egory of standard container is the associative container. An associative container is
one that holds its elements in sorted order. The position of the element depends on
its value, rather than on the time and place of insertion. Figure 2.13 illustrates this
by showing values in a set (one type of associative container) entering out of order
but being organized internally in numerical order. (Usually the elements are stored
in memory using a balanced binary tree or red-black tree data structure.)

By default, associative containers sort their elements into ascending order. If
you iterate through the container, the first element is the smallest, the second is the
second smallest, and so forth. Actually, when you insert an element and specify its
position, the associative containers only take that position as a hint. They use it as
a starting point to search for the right place to put the element. 

Associative containers are designed for fast searching. They have very efficient
member functions that perform searches and related actions such as counting the
number of particular elements in the container and finding the first specified ele-
ment. The four standard associative containers—set, multiset, map, and mul-
timap—do have different interfaces and capabilities, though. The set searches for
elements by their value and the elements must be unique. The multiset does the
same but can store duplicate values. Maps and multimaps have elements that are
pairs. The first member of the pair is the key, and the second is the value. Examples
of key-value pairs are a country name and its national statistics, a person’s national
identification number and his address, and an engine’s model number and its tech-
nical specifications. Maps can have any data type as a key, search by keys quickly,
do not allow duplicate keys, and have a subscript operator ([]) that can take any
data type that matches the key’s type, not just an integer. Multimaps also search by
key but do not have a subscript operator, nor do they prohibit duplicate keys.

Review of the Standard Template Library 53

FIGURE 2.13 Associative containers order by value, not position.



54 C++ Standard Library Practical Tips

A set is an associative container that stores its elements in order by value. Figure
2.13 is a good illustration of this property. Other properties of the set are as follows:

It does not allow duplicate values.
It automatically sorts the elements when the set is constructed or elements are
inserted or deleted.
You can use the default sorting criterion (less-than) or provide a criterion at
compile time or at run time.
A set’s iterators are const, that is, you can read their values, but you can’t
change them.

You can find out how many of a particular element there are in a set by calling
its member function count. The set can’t have duplicates, so it will return either
zero or one. You can also find that element by calling the member function find,
which returns an iterator that marks the position of the found element. If the set
can’t find the element, the returned iterator is equal to the set’s end iterator.

Multisets have the same characteristics except that they can have duplicate ele-
ments, as Figure 2.14 shows. They have the same count member function as the set,
but multisets are more useful because they can have duplicate items. The member
function find works the same way as for a set, returning the position of the first
found element.

Multisets also have three member functions that let you find the range of 
elements equal to a specified one. The first, lower_bound, returns the position of the
first element that is greater than or equal to the given value. The second,
upper_bound, produces the location of the first element that is greater than that
specified. The third, equal_range, returns the first two in a pair data structure. The
set also has these member functions. Although the first two can be useful,
equal_range isn’t because the set can’t have duplicate elements.

FIGURE 2.14 Inserting elements into a multiset.



A map is an associative container that stores its elements in order by key. Each
key has a value associated with it. Figure 2.15 shows some key-value pairs. The map
is excellent for fast searches by key, though searches by value are slow. Other prop-
erties of the map are as follows:

It does not allow duplicate keys.
It automatically sorts the elements by key when the map is constructed or 
elements are inserted or deleted.
You can use the default sorting criterion (less-than) or provide one at compile
time or at run time.
A map’s iterator points to a pair data structure, which the next section of this
chapter describes. You can change the second member of the pair (the value)
but not the first, that is, the key is const.

Multimaps have the same characteristics except that they can have duplicate
keys, as Figure 2.16 shows. Both types of containers have the five member functions
find, count, lower_bound, upper_bound, and equal_range as sets and multisets do, but
they work on keys, rather than values. For example, count gives you the number of
elements that have the specified key. equal_range and count are not very useful for
maps because they can’t have duplicate keys.

Review of the Standard Template Library 55

FIGURE 2.15 Inserting elements into a map.



Container Adaptors

(Multi)sets and (multi)maps make up the standard associative containers. The vec-
tor, list, and deque make up the standard sequence containers. They can’t be built
from each other (in the sense of one container being a wrapper for the other) with-
out a substantial loss of efficiency. Some other classical data structures can, how-
ever, be feasibly constructed from the standard sequence containers. The STL gives
you three of these structures—the stack, queue, and priority queue. They are not
standard containers because they don’t meet the requirements for those structures.
Especially important is their lack of iterators. The three containers are actually 
container adaptors—wrappers around a standard container that provide a special-
ized interface.

The stack, which Figure 2.17 illustrates, is a data structure in which the last item
added is the first one removed. That is, the stack keeps its elements in last-in, first-
out (LIFO) order. A good example is a stack of cafeteria trays. Trays that have just
been washed are placed on top of those already there and push them down. Only
one tray is available for the taking—the one on top. Once it’s removed, the next
tray, and only that tray, can be taken.

To use a stack, you must include the header <stack>. By default, the stack is
made out of the deque standard container, but you can use any sequence container
that has the member functions back, push_back, and pop_back. The stack contains
the deque as a class member and is not inherited from it. The stack hides almost all
its container’s members and gives the few it exposes names commonly associated
with the stack. Thus, back becomes top, push_back becomes push, and pop_back be-
comes pop.

56 C++ Standard Library Practical Tips

FIGURE 2.16 Inserting elements into a multimap.



Another container adaptor is the queue. The queue is a first-in, first-out data
structure, as Figure 2.18 shows. You insert elements only at the back of the queue
and remove them only from the front. Usually, the elements come in faster than
they are removed, so the queue functions as a buffer, that is, it temporarily stores el-
ements until they are removed. 

To use a queue, you must include the header <queue>. By default, the queue is
made out of the deque standard container, but you can use any sequence container
that has the member functions back, front, push_back, and pop_front. The queue
contains the deque as a class member and is not inherited from it. The queue hides
almost all its container’s members and renames some of the others with more com-
mon terms. The member functions back and front keep their names but push_back
becomes push and pop_front becomes pop.

The third container adaptor is the priority queue, shown in Figure 2.19. It’s 
almost the same as a queue except that elements come off the priority queue in
order of importance. In other words, the priority queue holds ranked elements and
the highest ranked ones are removed first. A good use of priority queues is in a sit-
uation where data or messages must be buffered and then processed in order of 
importance.

Review of the Standard Template Library 57

FIGURE 2.17 Stack.

FIGURE 2.18 Queue.



58 C++ Standard Library Practical Tips

To use a priority queue, you must include the header <queue>. By default, the
priority queue is made from the vector, but you can use any sequence container
that has the member functions front, push_back, and pop_back and random access.
You can also specify a comparison function that determines the priority of the ele-
ments. If you don’t, the priority queue uses the element’s less-than operator, which
the element must define. The priority queue hides almost all its container’s mem-
bers and renames front to top.

Miscellaneous Containers

The stack, queue, and priority queue are the STL’s container adaptors. Two other
containers come with the STL. The first, bitset, allows you to easily manipulate a
collection of bits and is available by including the header <bitset>. The bitset is nei-
ther a container adaptor nor a standard container. As Figure 2.20 illustrates, it can’t
hold different data types, only bits. Some properties of a bitset are the following:

It can hold any number of bits, but you must specify the number at compile
time and you can’t change it after that.
The bits are indexed, and you can access them with the subscript operator ([]).
There are common bit operations for combining two bitsets—& (AND), |

(OR), and ^ (XOR).
Its bits can be shifted left or right by any amount.
It can read and write itself from and to a stream.

FIGURE 2.19 Priority queue.



It has a limited (but useful) ability to provide a text string version of the bits.
You can set, reset (clear), or flip (toggle) any or all bits.
You can find out how many bits are set, if a particular bit is set, if any bits are
set, or if no bits are set.

The other container, pair, is technically not even a container. The Standard Li-
brary includes it in the utilities section because several of the STL algorithms and
standard containers use it. However, pair does hold two elements (as Figure 2.21
shows), so it is listed here as a miscellaneous container. The elements have public
access and are called first and second. Some of the pair’s properties are as follows:

The two members can have different data types. (The pair is the only container
that is like this, that is heterogeneous.)
An element of a pair can also be a pair, which in turn can contain a pair, and so
on. This rapidly becomes clumsy, though, and it’s good to avoid too much of
this nesting. Use a struct instead. (In the future, C++ may have a generaliza-
tion of a pair called a tuple that will hold more than two elements [Jarvi02].)
You can test two pairs for equality. They are equal if the two first members are
equal and the two second members are also equal.
One pair can be less than another. A pair x is less than a pair y if

x.first<y.first || ( !( y.first<x.first ) && x.second<y.second ) 

There’s also a convenient utility function that creates a pair by deducing the 
argument data types, thus saving you a little typing. The function, make_pair, has
the declaration

template< class T1, class T2 >

pair<T1,T2> make_pair( const T1& x, const T2& y );

make_pair and pair are available through the header <utility>.

To illustrate make_pair’s use, consider the multimap standard container, which
stores its elements as pairs. To insert an element in a multimap m that expects a pair
made out of an integer and a floating-point number, you could use either the code 

Review of the Standard Template Library 59

FIGURE 2.20 A bitset.



60 C++ Standard Library Practical Tips

m.insert( pair<int,float>( 44, 2.178 ) )

or the code

m.insert( make_pair( 44, 2.178 ) ).

The latter is a tiny bit shorter but quite a bit clearer.

FUNCTORS

The container adaptors and miscellaneous containers can’t operate in STL algo-
rithms. The standard containers, which are much more frequently used, work very
nicely with the algorithms. However, before demonstrating how you can process
containers with the algorithms, it is important to learn how to control their actions
and specify the kind of processing they do.

C++ is an example of an extensible language, a language in which the user can
add his versions of built-in operators. It’s common to see arithmetic operators
overloaded, either as class members or as global functions. For example, if you
write a class that represents rational numbers (numbers that can be written as the
ratio of two integers), you can define +, -, x, and / for the class. Actually, if you want
to do arithmetic with rational numbers using those four symbols, you have to define
those operators or your program won’t even compile. You can always write func-
tions such as add, subtract, multiply, and divide to do the operations, but your code
will be much clearer and your classes easier to use if you overload the operators.

Interestingly enough, a pair of parentheses used to pass arguments is an oper-
ator. Its name is the call operator, and it is written as operator(). Unlike most other
overloaded operators, it must be a member function, that is, it can’t be a global

FIGURE 2.21 Members of a pair can have different data types.



Review of the Standard Template Library 61

function. You call it by writing the name of an instance of the class followed by the
arguments within parentheses. You can have versions of operator() with different
signatures. When the operator is used (called), the compiler chooses the overloaded
version to use and follows the normal rules of function argument evaluation.

For example, suppose v and webster are instances of a class that has the call op-
erator defined. Then int x= v( 3 ) and if( !webster( "frolic", "sangfroid" ) ) are
uses of the call operator. The first call operator would likely have the signature int
operator()( int a ) and the second would probably be declared as bool operator()(
const string& s1, const string& s2 ).

To illustrate the call operator, suppose you have a class that counts how many
integers of a sequence lie in a given range of values, as in Listing 2.6.

LISTING 2.6 A Class with a Call Operator

class Range

{

public:

Range( int a, int b ) : a_( a ), b_( b ), count_( 0 ) {}

// a <= b

void operator()( int n ) { if( n >= a_ && n <= b_ ) ++count_; }

// increments the count if  a_ <= n <= b

int count() const { return count_; }

private:

int a_, b_, count_;

};

int main( )

{

vector<int> v( 100, 5 );

Range r = for_each( v.begin(), v.end(), Range( 5, 10 ) );

cout << "Count = " << r.count() << endl;

// ...

The constructor accepts the inclusive bounds, stores them, and sets the element
count to zero. A member function returns the count. The call operator accepts a
number, and if the number falls within the bounds, increments the counter. The
main function demonstrates a use of operator(). The program declares a vector
with 100 elements, each equal to five. Next, it passes the beginning and end of the
vector’s range to for_each, an STL algorithm. The algorithm goes through the 



sequence and makes each element be a parameter for its third argument, the func-
tion object. That results in the application of Range’s call operator to each element. 

The expression Range( 5, 10 ) is an unnamed, temporary variable. “Stream It-
erators” in Chapter 2 explains this construct in more detail. Call operators and un-
named, temporary variables become clearer when you see an implementation of
for_each, as in Listing 2.7.

LISTING 2.7 An Implementation of for_each

template< class ForwardIterator, class Functor >

Functor for_each( ForwardIterator start, ForwardIterator stop, 

Functor f )

{

for( ; start != stop; ++start )

f( *start );

return f;

}

The loop in Listing 2.7 shows how the code dereferences the iterator and passes
that value to the call operator of the function argument f. for_each also returns a
copy of f, its third argument. This is the only STL algorithm that returns such a
copy. You can also see how general the algorithm is. It can move through a range
of any data type that arises from any container and apply a call operator that does
anything. There are some restraints on all this freedom, but the limitations are
pretty minimal.

You can also pass a global function (template or not) to for_each. Listing 2.8
shows how to use both types of functions to square or cube all elements in a sequence.

LISTING 2.8 Using a Function in an Algorithm

inline

template< class T >

void square( T& n )

{ n *= n; }

inline

void cube( double& n )

{ n *= n * n; }

int main( )

{

vector<int> v( 10, 5 );

62 C++ Standard Library Practical Tips



list<double> d( 10, 5.0 );

for_each( v.begin(), v.end(), square<int> );

for_each( d.begin(), d.end(), cube );

// ...

A function-like object, function object, or functor is an object that has a call 
operator, that is, operator(). A function argument is a functor or function that is
passed to another function, for example, the third argument of for_each. Many of
the STL algorithms use functors. It’s certainly more work to write a class that has a
call operator instead of just writing a function, so why bother with operator()?
Well, a function object has three advantages over a function. The first is that a
functor can have a state. It can have member functions and attributes, which makes
it very powerful. You can also initialize a functor at runtime. In fact, a functor can
have internal variables whose values are different for different instantiations of the
functor. For example, in Listing 2.6 you could have Range( 5, 10 ) and Range( 50,

100 ) existing at the same time in the program. This isn’t possible with functions.
The second advantage is that each functor has its own type. When you pass a

functor to a template, it helps determine the signature. This lets you produce 
special behavior of the template for any or all functors. The last advantage is that
function objects are usually faster than function pointers. This is because functors
are passed by value and often have call operators written inline. On the other hand,
functions are always passed by pointer, and on current computer architectures,
jumps to function pointers are slow.

Predefined Function Objects

Although you certainly can write your own function objects, you often won’t need
to do that. The Standard Library contains a number of predefined function objects
that make it easier to work with the STL algorithms. To use the functors, you must
include the header <functional>. The predefined functors can be grouped accord-
ing to similar functionality. 

Table 2.6 lists the arithmetic functors. They cover all the arithmetic operations
in the C++ language itself. To use the arithmetic functors, a custom data type must
define any operator its objects are called on. For example, suppose you have a class
called Color and want to call the functor plus on two color objects c1 and c2, that
is, plus<Color>( c1, c2 ). To do this, the Color class must define operator+, for 
example,

Color Color::operator+( const Color& rhs )

or a global function operator+ must add two Color instances together, such as

Review of the Standard Template Library 63



Color operator+( const Color& left_color, const Color& right_color ).

As an illustration of using an arithmetic functor, consider the case of adding
two vectors and storing them in a third, that is, the first element of the output vec-
tor is the sum of the first element of each input, the second element is the sum of
the second element of each input vector, and so on. Assuming all vectors are the
same size, a single statement with the STL algorithm transform does the job, as the
final line in Listing 2.9 shows.

LISTING 2.9 Example of Adding Corresponding Elements of a Sequence

vector<float> a, b;

// fill a and b with numbers...

vector<float> c( a.size() );

transform( a.begin(), a.end(), b.begin(), c.begin(), plus<float>() );

transform starts at the beginning of vectors a and b, adds each pair of elements
and puts the sum in the corresponding element of c.

Table 2.7 shows the built-in functors that compare two objects or numbers.
Any class that has objects passed to a comparison function object must define the
appropriate operation, for example, ==, <, >=, etc. The code in Listing 2.10 demon-
strates the use of a comparison functor. The snippet examines two lists containing
people’s incomes. For each corresponding pair of elements, it calculates whether
the first income is greater than the second by using transform, which starts at the
beginning of the two lists, compares each pair of elements, and puts the resulting
Boolean in the deque. It seems that the first choice of the container to store the re-
sults should be a vector of Booleans, but Tip 28 explains why this won’t work.

64 C++ Standard Library Practical Tips

Function Object Operation

plus parameter1 + parameter2

minus parameter1 — parameter2

multiplies parameter1 * parameter2

divides parameter1 / parameter2

modulus parameter1 % parameter2

negate —parameter1

TABLE 2.6 Predefined Arithmetic Function Objects



Review of the Standard Template Library 65

LISTING 2.10 Example of Using a Comparison Function Object

list<int> income1, income2;

// enter numbers into income1 and income2...

deque<bool> income1_greater( income1.size() );

transform( income1.begin(), income1.end(), income2.begin(),

income1_greater.begin(), greater<int>() );

The STL also has three functors (see Table 2.8) that perform logical opera-
tions. Classes passed to these functors must define the appropriate operation, that
is, &&, ||, or !. To illustrate their use, assume called_by_Bob and called_by_Fred are
deques of Booleans. Each element specifies whether that salesman has called a cor-
responding customer. If result is also a deque of Booleans, the statement

transform( called_by_Bob.begin(), called_by_Bob.end(),

called_by_Fred.begin(), result.begin(), logical_and<bool>() );

computes all the customers whom both Bob and Fred have called. Likewise, the
statement

transform( called_by_Bob.begin(), called_by_Bob.end(),

called_by_Fred.begin(), result.begin(), logical_or<bool>() );

calculates all the customers that either Bob or Fred (or both) have called.

Function Object Operation

equal_to parameter1 == parameter2

not_equal_to parameter1 != parameter2

greater parameter1 > parameter2

less parameter1 < parameter2

greater_equal parameter1 >= parameter2

less_equal parameter1 <= parameter2

TABLE 2.7 Predefined Comparison Function Objects



66 C++ Standard Library Practical Tips

Binders (see Table 2.9) take a function object of two parameters and convert it
to a functor that just accepts one argument. They do this by “freezing” one of the
two arguments, that is, always passing the same value to that argument. bind1st
binds the first argument and bind2nd the second one. Binders are particularly use-
ful with arithmetic and comparison functors. The signature of both binders is
const Operation& op, const T& x. The first argument is a function object that spec-
ifies the operation, and the second argument is the constant value to be fed to the
operation. For example,

find_if( v.begin(), v.end(), bind2nd( greater<int>(), 5 ) )

finds the first element in the sequence that is greater than five. The call operator of
greater<int>() takes two arguments and determines if the first is greater than the
second. The second argument is bound to five, so the first argument comes from
the sequence. In essence then, find_if computes e > 5 for every element e in the sequence
until it finds one that is greater than five or until it reaches the end of the sequence.

bind1st works the same way except that it freezes the first argument of a binary
functor. One good use of this binder is in taking the inverse of a number.

transform( data.begin(), data.end(), inverted.begin(), 

bind1st( divides<double>(), 1.0 ) );

Function Object Operation

bind1st Hold first argument of a functor constant

bind2nd Hold second argument of a functor constant

not1 Complement (logical negation) of unary predicate

not2 Complement (logical negation) of binary predicate

TABLE 2.9 Predefined Binder and Negator Function Objects

Function Object Operation

logical_and parameter1 && parameter2

logical_or parameter1 || parameter2

logical_not !parameter1

TABLE 2.8 Predefined Logical Function Objects



Review of the Standard Template Library 67

The statement takes every element from the container called data, divides one by
the element, and puts the result in a container that holds these inverted numbers.

A negator is an adaptor that returns the complement (also called the logical in-
verse or NOT) of its argument. The STL has two negators—not1 and not2. The for-
mer operates on functors that take one argument and the latter on functors that
take two. 

The arguments to negators are predicates. A predicate is a function object that
returns a Boolean, or a value that can be converted to a Boolean. In addition, a
predicate must always return the same value for the same inputs. Thus,

bool check1( int a )

{ return a > 10; }

is a predicate but

bool check2( int b )

{

static int count = 0;

return ( b + count++ ) % 2 == 0; // even numbers

}

is not.
Suppose you have a predicate function valid1 and you want to replace all num-

bers in a sequence s that are not valid by 100. The statement

replace_if( s.begin(), s.end(), not1( ptr_fun( valid1 ) ), 100 );

does the trick. (Table 2.10 and Tip 47 provide more information on ptr_fun.) If
you have a binary predicate valid2 and want to find what pairs of numbers are not
valid, you can do it this way:

vector<int> v1;

vector<int> v2;

// put numbers in the vectors...

deque<bool> invalid( v1.size() );

transform( v1.begin(), v1.end(), v2.begin(), invalid.begin(),

not2( ptr_fun( valid2 ) ) );

The STL comes with three functors that let you adapt functions for use with
function objects. Table 2.10 lists these functors and describes their use. The first,
ptr_fun, allows ordinary (also called global) functions to work in adaptors. For 



68 C++ Standard Library Practical Tips

example, suppose you have an ordinary function bool is_valid( int ) that returns
true if its argument is valid and false otherwise. To find the first element in a list
l of numbers that is valid, you can use the expression

find_if( l.begin(), l.end(), is_valid )

However, if you want to find the first element that is not valid and try to use the code

find_if( l.begin(), l.end(), not1( is_valid ) )

you’ll get a compiler error because not1 expects a function object and is_valid is
just a plain function. To fix this, wrap is_valid in a call to ptr_fun:

find_if( l.begin(), l.end(), not1( ptr_fun( is_valid ) ) )

Remember that when you pass the name of a function as an argument, you’re ac-
tually passing a pointer to the function. This is how ptr_fun gets its name.

ptr_fun also works with functions that take two arguments. Suppose you write
a function with signature

double distance2d( pair<int,int> p1, pair<int,int> p2 )

that calculates the distance between two  two-dimensional points. To compute the
distance between corresponding points in two vectors, you can use the code

vector< pair<int,int> > points1;

vector< pair<int,int> > points2;

// load values into points1 and points2...

vector<double> d( points1.size() );

Function Object Operation

ptr_fun Allows a pointer to an ordinary function to be used as a 
functor

mem_fun Allows a member function of a pointer to a class object to be 
used as a functor

mem_fun_ref Allows a member function of a class object to be used as a 
functor

TABLE 2.10 Predefined Function Objects for Adapting Functions



transform( points1.begin(), points1.end(), points2.begin(),

d.begin(), distance2d );

To compute the distance of each point from the origin, that is, from the point
(0,0), you can use the code

transform( points1.begin(), points1.end(), d.begin(), 

bind2nd( ptr_fun(distance2d), make_pair(0,0) ) );

Another adaptor for functions is mem_fun_ref, which provides the same capa-
bility as ptr_fun but for class member functions. To use this adaptor, wrap it
around text consisting of the address operator (&), followed by the class name, fol-
lowed by the scope operator (::), and the member function name, for example,
mem_fun_ref( &X::draw ). This adaptor allows you to call a member function of
each class object in a range. For example, suppose you have a class called Cow with
a member function moo that makes the appropriate noise. To make the entire herd
sound off, you can use code like this:

vector<Cow> herd;

// load cows into the herd...

for_each( herd.begin(), herd.end(), mem_fun_ref( &Cow::moo ) );

for_each, an STL algorithm, traverses the vector from start to finish and 
invokes the passed functor on every element. In this case, for_each calls the mem-
ber function moo of each element. If you omitted mem_fun_ref, the code wouldn’t
compile. You can also call a member function that takes just one argument. If the
Cow class has a member function

void Cow::print( string owner ) const

you can call it with a bound argument this way to show that Farmer John owns the
whole herd:

for_each( herd.begin(), herd.end(),

bind2nd( mem_fun_ref( &Cow::print ), "Farmer John" ) );

There are two caveats to be aware of, though. The first is that when you apply
a binder to a member function that is wrapped in mem_fun_ref, the member func-
tion must be declared const, for example,

class Cow

Review of the Standard Template Library 69



{

public:

void moo();

void print( string owner ) const;

};

(If you’re not using a binder, the member function doesn’t have to be const, as
moo demonstrates.) The second caveat is that the argument must be passed by value,
not reference. The member function print shows that although the string would
typically be passed by (constant) reference, it’s passed in the example by value so
that the function can be used in a binder.

A final note on function objects: if you’re interested in writing your own func-
tion objects, the Standard Library provides two base objects, unary_function and
binary_function, to make life easier for you. You can derive function objects from
them that will work with adaptors.

ALGORITHMS

Function objects aren’t useful in and of themselves. They exist to specify the be-
havior of STL algorithms. This is important because containers and algorithms are
the heart of the STL. You can think of an algorithm, in the STL sense, as a template
function that processes a range or ranges of elements. All algorithms are indepen-
dent of the internal implementation of the containers they work on. They do this
by having their inputs specified as iterator ranges. As long as the passed iterators are
the type required by the algorithm, it doesn’t matter what the iterators point to. For
example, the copy algorithm copies elements from an input range to an output
range. Both ranges commonly come from containers. However, the input range can
also come from a file, a string, or even the standard input stream. Likewise, the out-
put range can be part of a file, a memory stream, or the standard output stream.

Some algorithms have both in-place and copying versions. The former uses one
range as both the input and output. In the latter, the algorithm has both input and
output ranges. If an algorithm zzz has a copying version, that version is called
zzz_copy. For example, the algorithm unique removes all consecutive duplicates of
an element. unique_copy removes all consecutive duplicates as it’s copying the input
range to the output range. In other words, it only copies unique elements.

Another suffix on algorithm names is _if. If an algorithm has two forms that
have the same number of parameters, one of which can be a value or a predicate,
the algorithm has two names. The one without the suffix _if accepts a value and the
one with the suffix accepts the function object. For example, the algorithm find lo-
cates the first element in a range that is equal to a specified value. By using find_if,

70 C++ Standard Library Practical Tips



you can specify a different test, for example, the first element less than ten. 
Algorithms that take predicates have defaults that can be used in many cases. Typ-
ically, the defaults are less-than (<) and equals (==).

Finally, if an algorithm zzz has a copying version with an argument that takes
a predicate or a function object, the predicate version is called zzz_copy_if. The
only two such algorithms are remove_copy_if and replace_copy_if.

The algorithms in the Standard Library can be divided into five main groups,
as Table 2.11 shows. Nonmodifying algorithms change neither the value nor the
order of elements in the range they work on. They only use input and forward iter-
ators, so you can use them on all standard containers. Modifying algorithms change
the value but not the order of elements. Some modifying algorithms are in-place
and others aren’t. Mutating algorithms change the order but not the value of ele-
ments in a sequence. Again, some algorithms in this group are in-place but others
aren’t. Sorting algorithms sort their inputs. Although they are mutating algorithms,
they are in a separate group because they are more complicated and take more
time to run than the other mutating algorithms. Numeric algorithms are principally
used in numerical computations. In fact, they are listed in a separate chapter of the
C++ Standard. Finally, the Standard C Library is actually part of the C++ Standard
Library. Although the tips in this book use some C functions occasionally, there
won’t be any substantial discussion of them.

The remainder of this section provides brief descriptions of all the STL algo-
rithms. Unless otherwise stated, all elements operate on ranges. Appendix A has a
more detailed explanation of the algorithms that this book uses. However, for even
more information consult the C++ Standard [ISO98] or an STL reference book
such as [Austern00], [Josuttis99], or [Musser01].

Review of the Standard Template Library 71

Group Header

Modifying and Nonmodifying Algorithms <algorithm>

Mutating Algorithms <algorithm>

Sorting Algorithms <algorithm>

Numeric Algorithms <numeric>

C Library <cstdlib>

TABLE 2.11 Five Main Groups of Algorithms



Nonmodifying Algorithms

The first group of STL algorithms are the modifying and nonmodifying algorithms.
Table 2.12 shows part of this group—the nonmodifying algorithms. Most of them
are used to locate an element or elements in a range. Note that search finds the first
matching subsequence, but unfortunately the algorithm that finds the last match-
ing subsequence, find_end, does not have an analogous name.

72 C++ Standard Library Practical Tips

TABLE 2.12 Nonmodifying Algorithms

Algorithm Description

adjacent_find Find the first pair of consecutive elements that are 
equal or that satisfy a predicate.

count Find the number of elements that are equal to a
count_if given one or that satisfy a predicate.

equal Return true if all corresponding elements in two 
ranges are equal or satisfy a predicate.

find Find the first element equal to a passed one or 
find_if that satisfies a predicate.

find_end Find the last subrange that equals or satisfies a 
predicate with a specified subrange.

find_first_of Find the first element that equals or satisfies a 
predicate with any element of a specified group.

for_each Apply to each element a function argument that 
only reads.

lexicographical_compare Determine if the first range is lexicographically less 
than the second. You can provide a predicate.

max_element Find the largest element. You can provide a 
predicate.

min_element Find the smallest element. You can provide a 
predicate.

mismatch Find the first pair of corresponding elements in 
two ranges that are not equal or that do not satisfy 
a predicate.

search Find the first subrange that equals a specified 
subrange or satisfies a predicate with it.

search_n Find the first consecutive n elements that equal a 
given value or satisfy a predicate.



Review of the Standard Template Library 73

Modifying Algorithms

The counterparts to the nonmodifying STL algorithms are, naturally enough, the
modifying algorithms. Table 2.13 provides brief descriptions of each. for_each and
transform are both general and similar. for_each only accepts one range, returns a
copy of its function object, and is slightly faster because it passes the elements by
reference. transform can take one or two input ranges, has an output range, does
not return its function argument, and assigns the results of the function object to
the elements. The output range can be one of the input ranges so transform can in
effect modify the input range, as for_each does.

Mutating Algorithms

The modifying and nonmodifying algorithms make up the first group of STL algo-
rithms. The second group, shown in Table 2.14, contains the mutating algorithms.
They just change the order of the elements. Some are simple changes, such as ro-

Algorithm Description

copy Copy the input elements to the output.

fill Set elements to a specified value.

fill_n Set n elements to a specified value.

for_each Apply a function argument that can modify a passed value 
to each element.

generate For each element call a function object and store its 
returned value.

generate_n For n elements call a function object and store its returned 
value.

remove Remove all elements equal to a passed one or that satisfy a 
remove_if predicate.

remove_copy Copy to an output range all elements except for those that 
remove_copy_if equal the specified one or that satisfy a predicate.

replace Replace all elements equal to a passed one or that satisfy a 
replace_if predicate.

replace_copy Copy elements to an output while replacing all that are
replace_copy_if equal to a specified one or that satisfy a predicate.

transform General modification from one or two inputs to an output.

TABLE 2.13 Modifying Algorithms



tating and reversing. Some are incremental re-orderings, such as the permutation
algorithms. And some are quite complicated, such as random shuffling.

Partitioning and Sorting Algorithms

After the mutating algorithms comes another group—the partitioning and sorting
algorithms shown in Table 2.15. To partition a range is to break it up into two sub-
ranges such that one contains all the elements that are equal to a specified value (or
satisfy a given predicate) and the other holds the rest of the elements. Partitioning
is a simple case of sorting. 

Some of the algorithms have a version with the prefix stable. These functions
take longer to run but preserve the relative ordering of equal elements. For exam-
ple, if elements A and B are equal and A comes before B in the input range, A will
also come before B in the output.

74 C++ Standard Library Practical Tips

Algorithm Description

next_permutation Get the next permutation of the elements.

prev_permutation Get the previous permutation of the elements.

random_shuffle Shuffle the elements.

reverse Reverse the order of the elements.

reverse_copy Reverse the order of the elements being copied to an 
output.

rotate Rotate the order of the elements.

rotate_copy Rotate the order of the elements being copied to an 
output.

FIGURE 2.14 Mutating Algorithms

TABLE 2.15 Partitioning and Sorting Algorithms

Algorithm Description

nth_element Get the first n sorted elements of a range, in ascending
or specified order. 

partial_sort Sort part of the input range into ascending or specified
order.

partial_sort_copy Copy the input to the output, sorting the first part of it
into ascending or specified order.



Sorted Range Algorithms

Once you’ve sorted the elements in a container, you can do a lot with them by using
another group of STL algorithms—the sorted range algorithms that Table 2.16
lists. They all assume that the input range is sorted. Moreover, it has to be sorted
with the same criterion that you use in the algorithm. If the input isn’t sorted, the
algorithms will run but won’t produce correct answers.

Review of the Standard Template Library 75

partition Split the input into two parts—one that satisfies a
predicate and one that doesn’t. Equal elements may not
retain their original, relative order.

sort Sort the input range in ascending or specified order.

stable_partion Split the input into two parts—one that satisfies a
predicate and one that doesn’t. Equal elements retain
their original, relative order.

stable_sort Sort the input range in ascending or specified order.
Equal elements retain their original, relative order.

TABLE 2.16 Sorted Range Algorithms

Algorithm Description

binary_search Search for a particular element.

equal_range Find the first and last positions at which a 
specified element can be inserted.

includes Determine if the first range is a subset of the 
second.

inplace_merge Merge two sorted parts of a range into one.

lower_bound Find the first position at which a specified 
element can be inserted.

merge Merge two sorted input ranges into one sorted 
output range.

set_difference Find the elements that are in the first range but 
not in the second.

set_intersection Find the intersection of two input ranges.

set_symmetric_difference Find the exclusive-or of two input ranges, that 
is, those elements that are in one but not both 
input ranges.



Heap Algorithms

In addition to the sorted range algorithms in Table 2.16, a quartet of related algo-
rithms lets you work with heaps. A heap is a special organization of elements in a
range between two random access iterators. Its two principal properties are that the
first element is the largest and that an element can be added or removed in time
proportional to the logarithm of the number of elements in the heap. Heaps are
useful for making priority queues. Table 2.17 lists the heap algorithms.

Numeric Algorithms

The sorting and sorted range algorithms are useful in a wide variety of applications.
However, members of the fourth group of STL algorithms appear chiefly in 
numerical software. Table 2.18 describes these algorithms, but because of their 
specialized nature, they may not be familiar to you.

76 C++ Standard Library Practical Tips

set_union Find the union of two input ranges.

unique Retain only one element from each group of 
consecutive elements.

unique_copy Copy only the first element from each group of 
consecutive elements that equal or satisfy a 
predicate.

unique_if Remove all but one element from each group 
of consecutive elements that equal or satisfy a 
predicate.

upper_bound Find the last position at which a specified 
element can be inserted.

Algorithm Description

make_heap Convert a range to a heap.

pop_heap Remove the first element of the heap.

push_heap Add an element to the heap.

sort_heap Convert a heap to a sorted range.

TABLE 2.17 Heap Algorithms



Binary Algorithms

The numeric algorithms, and in fact almost all of the STL algorithms, operate on
ranges. A few useful algorithms, however, just operate on pairs of elements. Table
2.19 briefly describes each. Some of the other STL algorithms use them, but you can
call them from your own code, too.

ERROR HANDLING

The STL algorithms are very powerful, but they’re still software, and software al-
most always has errors in it. To understand how the STL handles errors, you have

Review of the Standard Template Library 77

Algorithm Description

accumulate Sum the elements or apply a binary operator to
all of them in turn.

adjacent_difference Make each output element be the difference of
the corresponding input element and the
previous input element. You can also apply a
binary operator other than subtraction.

inner_product Compute the inner product (the sum of the
product of corresponding elements in two
ranges) or a generalized inner product.

partial_sum Make each output element be the sum of the
corresponding input element and all previous
input elements. You can also apply a binary
operator other than addition.

TABLE 2.18 Numeric Algorithms

Algorithm Description

iter_swap Exchange the values pointed to by two iterators.

max Find the larger of two values. You can use a custom comparison.

min Find the smaller of two values. You can use a custom 
comparison.

swap Exchange two values.

TABLE 2.19 Binary Algorithms



to look at its design philosophy. The STL was built for speed, not safety. Checking
for errors takes time, so the STL basically avoids these precautions. It does virtually
no checking of parameters—that’s all up to you. The people who adopted the STL
into the Standard Library chose this path for two reasons. The first was, as men-
tioned before, to avoid slowing down the STL. The second was that if a user prefers
safety over speed, he can either make wrappers for the STL that provide error
checking or can get a more protected version, for example, “safe STL” by Cay
Horstmann [Horstmann04] or STLport at [STLport04]. However, it wouldn’t be
possible to go from a slow, safe library to a fast, unchecked one.

Program errors can be broken into two general categories. Logic errors are er-
rors caused by incorrect programming, such as indexes that are out of range. They
are in theory preventable. The only time the STL checks for a logical error is in the
vector or deque’s member function at. It’s the same as the subscript operator ([])
except that it throws an error if the index is out of bounds. Runtime errors are
caused by the program’s environment and are typically beyond the scope of the
program, for example, a low-memory condition. They are often hard to predict.

The C++ Standard Library (not just the STL) gives this basic guarantee for ex-
ception safety: the library will not leak resources or violate container invariants (pre-
scribed states) if an exception occurs. There is also a stronger guarantee that an
operation has no effect if an exception is thrown. In database programming, this is
known as a commit-or-rollback or transaction safe action. In particular,

Any failure to construct a node in the node-based containers (list, set multiset,
map, multimap) leaves the container as it was. This applies to the initial con-
struction and to the insert member function.
Removing a node cannot fail.
A single-element insertion in an associative container is transaction safe.
All erase operations of both either one element or multiple elements always
succeed.

All of these guarantees assume that the element’s destructor doesn’t throw an
error. This is good programming practice anyway, but it’s even more important to
observe it in order to make the Standard Library function well in the face of errors.

In general, for safety in the presence of exceptions, associative containers are
better than deques or vectors, and lists are the safest of all. Many of the container
member functions have specific exception guarantees. See the Standard or a Stan-
dard Library reference book, for example, Table 6.35 of [Josuttis99].

Here are some tips that can help you avoid STL errors:

78 C++ Standard Library Practical Tips



Make sure the output container has enough room to hold the results of an 
algorithm or use an inserter.
Don’t use an iterator from one container in a different container, for example, 

vector<float> x, y;

vector<float>::iterator x_iterator = x.begin();

y.erase( x_iterator );   // BAD – iterator for x used in y

Don’t mix regular beginning and end iterators with their reverse iterator coun-
terparts, such as begin and rend.
Don’t let the iterators in a range come from different containers, for example,

count( a.begin(), b.end(), 100 )   // BAD – mixing iterators from 

// a and b

Don’t forget, especially in search algorithms, to check that the returned itera-
tor is not the end iterator before attempting to reference it, for example, 

list<int>::iterator i = find_if( a.begin(), a.end(), 

bind2nd( greater<int>(), 500 ) );

if( i != a.end() )  // GOOD – check if equal to end iterator

cout << "First number greater than 500 is " << *i << endl;

else

cout << "Couldn't find a number greater than 500\n";

Don’t dereference unitialized iterators, for example,

deque<Animal>::iterator pet;

cout << *pet;   // BAD – pet is not initialized

Don’t use iterators that point to deallocated elements (see Tip 21).
Watch out for iterators that point to erased elements, for example,

list<Car>::iterator best = a.begin();

a.pop_front();

best->print();   // BAD – element "best" pointed to doesn't exist

Make sure all ranges are valid, that is, both iterators refer to the same container
and the first iterator does not come after the second.
If you use an algorithm that has two input ranges, make sure the second one
has at least as many elements as the first.

Review of the Standard Template Library 79



ENDNOTES

1. Actually, the requirement for the elements to be contiguous is not in the 
C++ Standard. It was mistakenly omitted and a correction has been sub-
mitted to the standards committee. However, everyone assumes that the el-
ements are contiguous, and a vector is always implemented that way.

80 C++ Standard Library Practical Tips



81

Tips on Containers in
General

3

T
his chapter starts the heart of the book—a collection of practical tips to help
you use the C++ Standard Library. Although the remaining chapters each
focus on a specific type of container (list, vector, etc.) or a particular appli-

cation of the Standard Library (text processing, numeric processing), this chapter
gives you tips that apply to a variety of containers. Some tips are for all standard
containers, and some are for just the standard sequence containers (vector, list and
deque). You’ll find that you’ll use many of these tips quite often in your own work.
In addition, the tips in the remaining chapters refer to them frequently, too. 

Feel free to test the source code on your compiler. All the tip programs are on
the CD-ROM in the TIPS folder. The first line of each program in the book tells the
file’s name.

Here’s what you’ll get from this chapter:

How to pick the right container to use
What kind of elements can be in a container
How to initialize a container with data or with the contents of another 
container
How to store, append, or exchange the contents of one container with another
How to tell if a container is empty
How to get a container’s current size or maximum size
How to tell if containers are equal or if one is less than the other
How to access a container from back to front
How to fill a container with values from the standard input 
How to display a container’s contents on the standard output

All tips in the book have the same format. First, the title describes the tip and
gives the tip number. Next, a line tells what part of the Standard Library the tip ap-
plies to. This is usually an STL container or algorithm. After that, an optional line
lists the tips that are related to the one you’re reading. 

ON THE CD



82 C++ Standard Library Practical Tips

Each tip presents its material in two ways. The first way, labeled “Quick Solu-
tion,” is a very concise answer to the problem posed in the tip. It’s useful if you al-
ready know what the solution is but don’t quite remember the code. If you’re an
advanced programmer and just want a terse answer, this solution is for you. Be
aware, though, that the code is meant to be short and because of this does not nec-
essarily show good coding techniques. For example, these snippets don’t parame-
terize constants and seldom check for runtime errors.

Because many of the tips involve containers, the programs use a custom-writ-
ten template function to display the contents of a container. The function is called
tips::print and is always qualified by the namespace tips so that you can easily tell
that it is an auxiliary piece of code and not part of the Standard Library. The sam-
ple tip that follows (Tip 0) simultaneously explains this function and illustrates the
format of the tips.

SAMPLE TIP—DISPLAY THE ELEMENTS OF A CONTAINER

Applies to: Standard containers
See also: Tip 5, Tip 16, Tip 21

Quick Solution

template <class T>

void tips::print( const T& container, const char* text=0,

const char* element_separator = " " );

// ... <-- indicates intervening, irrelevant code

deque<double> d;

// ... <-- indicates that the container is filled and perhaps processed

tips::print( d );

Detailed Solution

Many tips in this book involve containers. It’s useful to be able to display the con-
tents of a container, both to understand intermediate processing and to view the re-
sult. The custom written function tips::print does just that by sending each
element in a container to the standard output stream. It displays all elements on
one line. They are separated by a space, although you can change this to a different
character or characters. The function can also display some text to the left of the
container elements if you want. Because tips::print is a template function, it is in

TIP 0



a header file and must be inserted in the code with #include. The file is called
tips.hpp and looks like this:

// tips.hpp

#ifndef TIPS_HPP

#define TIPS_HPP

#include <iostream>

namespace tips

{

// Display on one line of cout each element of a container

// text - optional text to display before the elements

//    (if there is text it will be followed by a colon and a space)

// element_separator - character(s) to put between the elements

//    (default is a space)

template <class T>

void print( const T& container, const char* text=0,

const char* element_separator = " " )

{

const char* text_separator = ": ";

// if there's text, display it and some separator characters

if( text != 0 )

std::cout << text << text_separator;

// store the end iterator, which doesn't change

typename T::const_iterator container_end = container.end();

// display each element followed by the element separator

for( typename T::const_iterator i = container.begin();

i != container_end; ++i )

std::cout << *i << element_separator;

std::cout << std::endl;

}

}  // end namespace

#endif

Tips on Containers in General 83



84 C++ Standard Library Practical Tips

The beginning of the file has the typical #define statement sentinels to avoid
duplicate inclusion of the header file. The #include statement brings in the iostream
header file that the code uses to get the standard output stream and end-of-line
marker. The namespace tips enables you to distinguish the function print from a
program function or one in the standard library.

The first argument to tips::print is a container. It can be any standard con-
tainer and can have any element that can be inserted into an output stream. The
second argument is a pointer to some optional text. By default, the pointer is set to
zero, which signifies that there is no text to print. The third argument is again a
pointer, but this time to text containing separator character(s). The function will
display these characters between each element that it prints. The default element
separator is a single space. Sometimes multiple spaces look better, especially if the
container has words in it. You can change the element separator by explicitly pass-
ing the third argument.

The function starts by defining a text separator, which is a group of characters
that it displays after the initial text string, if the string exists. The first two exe-
cutable lines of code show how the function does this. Next, the software declares
a constant iterator to store the end iterator returned by the container. This is a good
optimization to do when using the end iterator of a container in a hand-coded loop
because the loop calls the member function end at each iteration. You have to be
sure that the end iterator won’t change during the loop’s execution. In this case, the
container is passed by constant reference so there’s no problem. However, Tip 21
explains how iterators can sometimes subtly become invalid. 

The function then declares an iterator that it uses to cycle through the con-
tainer’s elements with a standard for-loop. It inserts each container element and the
element separator into the standard output stream. The code finishes by writing an
end-of-line character. 

As an example, if the container were a vector called original that held the
numbers 1, 1, 2, 3, and 5, the line

tips::print( original, "Original data" );

would produce the output

Although many of the tips use tips::print, Tip 5 is a particularly good demon-
stration because it makes tips::print display a list container of double precision
floating-point numbers and a vector of strings. Tip 16 shows an alternate way of

Original data: 1 1 2 3 5



Tips on Containers in General 85

displaying a container. That technique is a clever use of the STL algorithm copy that
prints with only one line of code.

And now, here are the real tips for using the C++ Standard Library in your own
code.

USE THE RIGHT CONTAINER

Applies to: Standard containers

Quick Solution

Vector: Fast access to elements and rapid insertion/deletion at back

Deque: Fast access to elements and rapid insertion/deletion at front and back

List: Fast, safe insertion/deletion anywhere

Set: Fast search by value

Multiset: Fast search by value, duplicates allowed

Map: Fast search by key

Multimap: Fast search by key, duplicates allowed

Detailed Solution

The STL has seven different standard containers to choose from. Vectors and 
deques, sets and multisets, and maps and multimaps are pairs of containers whose
purposes are related. However, these pairs and the list container are not similar to
each other. Actually, their interfaces are different enough that it’s hard to write sub-
stantial amounts of code using only member functions that are common to all con-
tainers. Because of this, it’s best to decide ahead of time which container to use, and
that leads to the question that this tip answers—“How do I pick a container?”

To help you decide, here are some questions to think about:

Do you need random access to the container’s elements? That is, will you be
reading and writing elements nonsequentially?
Will you be inserting or deleting in the middle of the container? At the front?
At the back?
Do you need the elements to stay in the order that they were inserted into the
container?
Will you be using iterators, pointers, or references to container elements? If so,
Table 3.1 shows which containers are least likely to invalidate these objects.

TIP 1



Would you like to use indexes for the locations of elements, instead of iterators?
Does the container need to be compatible with a C-style array?
Should the container free the memory it uses when it deletes an element?
Must container operations be transaction-safe? This characteristic, also called
commit-or-rollback behavior, means that if an element throws an exception dur-
ing an operation (such as insert or delete), the operation doesn’t succeed and
the container stays in the state it was before the operation started.
Do you need fast searching based on an element’s value? Will there be multiple
elements of the same value?
Similarly, do you need fast searching based on a key? Will there be more than
one element with the same key?

Table 3.1 will help you decide which container to use based on the preceding ques-
tions. Find the properties that are most important in your application, or the ones that
you will use most frequently, and then see what container the table recommends.

86 C++ Standard Library Practical Tips

Vector Deque List Set Multiset Map Multimap

Fast access to any 
element location X X

Fast insertion/deletion
at front X X

Fast insertion/deletion
in middle X

Fast insertion/deletion 
at end X X

Keep in order of 
insertion X X X

Maintain iterators, 
pointers, or references 
to elements X X X X X

Use indexes for 
element locations X X

Compatible with 
C-style array X

Memory of deleted 
elements freed X

a
X X X X X

TABLE 3.1 General Considerations for Choosing a Container



Tips on Containers in General 87

REQUIREMENTS ON CONTAINER ELEMENTS

Applies to: Standard containers

Quick Solution

All elements must be copyable, assignable, and destroyable.

Detailed Solution

Even though standard containers are templates, there are some requirements 
regarding the types of data they can hold. Fortunately, these are mild restrictions.
The requirements are the following:

1. All elements must be copyable. This means that an element must have a
copy constructor and the copy that is made must be equivalent to the orig-
inal. (This does not happen, for example, with auto-pointers.) Containers
make copies of their elements very frequently, so it’s good to make sure
that the copy constructor is efficient.

2. All elements must be assignable by the assignment operator (=). Contain-
ers and algorithms use assignment to overwrite elements, sometimes in
unexpected situations.

TIP 2

Vector Deque List Set Multiset Map Multimap

Operations are trans-
action safe X

b
X

b
X

b
X

b
X

b

Quick search based on 
value (without 
duplicates) X

Quick search based on 
value (with duplicates) X

Quick search based on 
key (without duplicates) X

Quick search based on 
key (with duplicates) X
a Deques are not required to free memory when their elements are deleted, but often do.
b Lists are safe except for sorting and assignment. The associative containers are safe except for multiple-element insertion.
There are also different degrees of safety in the member functions, for example, succeeding or having no effect; guaranteeing
not to throw an error, and so forth. For details, see an STL reference book such as [Josuttis99].



88 C++ Standard Library Practical Tips

3. All elements must be destroyable by a destructor. Containers delete their 
elements by calling the elements’ destructors.

All built-in data types are copyable, assignable, and destroyable. In addition,
C++ provides default copy constructors, destructors, and assignment operators for
classes, making them automatically suitable for use in containers. Your class might
have its own versions of these functions, especially if the class needs to allocate and
deallocate resources such as memory. Actually, if a class has a custom version of any
of these three member functions (copy constructor, destructor, and assignment op-
erator), it should have custom versions of all of them. The C++ FAQ calls this “The
Law of the Big Three” [Cline99].

Elements used in sequence containers might also have to meet other require-
ments, namely:

1. Elements might need default constructors (constructors that take no argu-
ments). For example, all sequence containers have a constructor with one
argument—the size to make the container being constructed. The elements
in the container are created by calling their default constructors. Another
example is the sequence container member function resize, which might
also call the elements’ default constructors.

2. Elements might need the equality operator (==). It is used when searching
for elements or testing to see if containers are equal.

3. Elements might need the less-than operator (<), for example, in the list
member function sort, or when checking if one container is less than 
another.

Finally, elements in associative containers must have a sorting criterion, which
by default is operator<.

Listing 3.1 has a program that clearly shows elements in a container being 
created, assigned, and destroyed.

LISTING 3.1 Elements Being Created, Assigned, and Destroyed

// general_requirements.cpp

#include <iostream>

#include <vector>

using namespace std;

class Element

{



Tips on Containers in General 89

public:

Element();

Element( const Element& );

~Element();

Element& operator=( const Element& );

};

inline

Element::Element()

{ cout << "\nIn default constructor"; }

inline

Element::Element( const Element& )

{ cout << "\nIn copy constructor"; }

inline

Element::~Element()

{ cout << "\nIn destructor"; }

inline

Element& Element::operator=( const Element& )

{

cout << "\nIn assignment operator";

return *this;

}

int main( )

{

cout << "CONSTRUCTING VECTOR WITH THREE ELEMENTS";

vector<Element> d( 3 );

cout << "\n\nDELETING FIRST ELEMENT";

d.erase( d.begin() );

cout << "\n\nDELETING ALL ELEMENTS";

d.clear();

}

The output is



90 C++ Standard Library Practical Tips

The program starts with a simple class called Element that has a custom default
constructor, copy constructor, destructor, and assignment operator. All that these
member functions do is print out what function they are. When the code makes a
container with Elements in it, these functions produce a trace of the activity going
on inside the container.

The program starts by creating a vector with three Elements. To construct them,
the vector makes a temporary copy using Element’s default constructor, creates the
three copies to be stored in the vector by using Element’s copy constructor, and then
destroys the temporary copy by calling its destructor. The output shows this se-
quence of events.

Next, the program deletes the first element in the vector by calling the member
function erase. Interestingly enough, erase does not call the destructor of the first
element. Instead, it overwrites the first element with the second one, the second one
with the third one, and then calls the destructor of the third element. (Your version
of erase might operate differently.) 

Finally, the program deletes all elements in the container by calling the mem-
ber function clear. The output shows the two remaining destructors being called.

C-STYLE ARRAYS HAVE BEGINNING AND END ITERATORS

Applies to: Standard containers, many algorithms
See also: Tip 5, Tip 8, Tip 16, Listing 13.13

CONSTRUCTING VECTOR WITH THREE ELEMENTS

In default constructor

In copy constructor

In copy constructor

In copy constructor

In destructor

DELETING FIRST ELEMENT

In assignment operator

In assignment operator

In destructor

DELETING ALL ELEMENTS

In destructor

In destructor

TIP 3



Quick Solution
const float cost[4] = { 4.78, 6.97, 8.81, 9.02 };

copy( cost, cost + 4, v.begin() );

Detailed Solution

The STL was designed so that pointers can act as iterators and C-style arrays can be
used in many algorithms. In particular, many STL algorithms take an iterator
range, as do a number of the member functions of  STL containers. This tip shows
how to get a beginning and end iterator for C-style arrays. 

In C++, the name of an array is a constant pointer to the start of the memory
holding that array’s elements. You can access each element by adding the element
index to the array name. Because the elements are numbered starting at zero,
adding the number of elements in the array to the array name produces a pointer
that is one element immediately past the end of the array. That may sound familiar
because the end iterator of a range is also one element past the last member of the
sequence. So to specify the beginning iterator of a C-style array, use the array name.
To specify the end iterator, use the array name plus the number of elements.

There are different ways of stating the number of elements. The code in Listing
3.2 illustrates three of them. They are all correct, so you can use any of them. The
text that accompanies the code explains the pros and cons of the different styles.

LISTING 3.2 Beginning and Ending Iterators of C-Style Arrays

// general_array_iterators.cpp

#include <algorithm>

#include <iostream>

#include <iterator>

using namespace std;

int main( )

{

// one way of declaring an array size

const int num_costs = 4;

const float cost[num_costs] = { 4.78, 6.97, 8.81, 9.02 };

cout << "Costs: ";

copy( cost, cost + num_costs,

ostream_iterator<float>( cout, "  " ) );

// another way of declaring an array size

const char* fruit[] = { "Strawberry", "Apple", "Peach" };

Tips on Containers in General 91



cout << "\nFruits: ";

copy( fruit, fruit + sizeof( fruit ) / sizeof( fruit[0] ),

ostream_iterator<const char*>( cout, "  " ) );

// a third way of declaring an array size

int year[] = { 1959, 1958, 1993, 1991, 1989 };

const int num_years = sizeof( year ) / sizeof( year[0] );

cout << "\nOriginal years: ";

copy( year, year + num_years,

ostream_iterator<int>( cout, "  " ) );

// sort and display the years

sort( year, year + num_years );

cout << "\nSorted years: ";

copy( year, year + num_years,

ostream_iterator<int>( cout, "  " ) );

// reverse the sorted years and display them

reverse( year, year + num_years );

cout << "\nSorted and reversed years: ";

copy( year, year + num_years,

ostream_iterator<int>( cout, "  " ) );

}

The output is

The first section of code shows one method of declaring and initializing a C-
style array. In this style, you explicitly state the number of elements in the array de-
claration. The advantage of doing this is that it provides some safety from putting
in the wrong number of values in the initializer list. If you put in too many values,
the compiler produces an error. If you don’t put in enough, the compiler sets the
missing elements to zero. Although this isn’t as useful as a compiler error, it may
make it easier to track down the error during debugging because zero might be an
illegitimate or unusual number in your data set. The disadvantage of this method
is that if the number of array elements changes, you have to change both the ini-
tializer list and the constant that specifies the array size.

92 C++ Standard Library Practical Tips

Costs: 4.78  6.97  8.81  9.02

Fruits: Strawberry  Apple  Peach

Original years: 1959  1958  1993  1991  1989

Sorted years: 1958  1959  1989  1991  1993

Sorted and reversed years: 1993  1991  1989  1959  1958



After declaring and initializing the array, the program uses the copy algorithm
to print the values in the array (see Tip 16). The first two arguments are the itera-
tor range, which for the C-array are the array name and the name plus the number
of elements, as described earlier.

The next group of lines demonstrates a second method of specifying the array
size. The array declaration does not explicitly state the number of elements in the
array. Rather, the compiler infers it from the number of values in the initializer list.
You can compute the number of elements by using the sizeof operator. If the ar-
gument to sizeof is an array name, the result is the number of bytes in the entire
array. If the argument is an array element, the result is the number of bytes in that
element. The quotient of these two gives the number of elements in the array. This
value is used to compute the end iterator passed to copy.

The advantage of this method of specifying the array size is that if the number
of elements in the array changes you only need to change one thing—the initializer
list. The disadvantage is that if the number of values in the initializer list is incor-
rect, there’s no indication of a problem. In addition, if you have to use the expres-
sion for the number of array elements more than once (perhaps in calls to multiple
algorithms), it is inconvenient to retype the quotient. The next technique solves this
minor problem.

The third method of specifying the array size creates a constant integer whose
value is the quotient described previously. Using this constant produces clearer
code and requires less typing. It has the same advantage and disadvantage as the
second method.

For some important examples of using iterator ranges of a C-style array, see Tip
5 and Tip 8. 

CONSTRUCT A CONTAINER FILLED WITH THE SAME 
VALUE

Applies to: Sequence containers, string
See also: Tip 5, Listing 13.14

Quick Solution
vector<float> v( 5, 3.14f ); // five elements of 3.14

Detailed Solution

Sometimes it may be useful to construct a container with a certain number of ele-
ments that are all the same and all equal to a specified value. For example, if you’re
going to be adding numbers to the elements, you probably want them all initialized
to zero. If you’re going to be multiplying numbers into the elements, they should

Tips on Containers in General 93

TIP 4



94 C++ Standard Library Practical Tips

be set to 1. Listing 3.3 shows how to initialize a standard sequence container with
any number of copies of a specified value.

LISTING 3.3 Constructing a Container That Has Identical Elements

// general_initialize_single.cpp

#include <vector>

#include "tips.hpp"

using namespace std;

int main( )

{

const int num_elements = 5;

const float value = 3.14f;

// construct a vector filled with copies of one value

vector<float> v( num_elements, value );

tips::print( v, "Initialized vector" );

}

The output is

The line in which the vector is declared shows that the constructor takes two ar-
guments. The first is the number of elements to be constructed, and the second is
the value that each element is set to. (The second element is passed by constant ref-
erence for the sequence containers and by value for the string.) Either argument can
be a constant (as shown) or a variable.

The output shows that the vector does indeed have five elements, each of which is
3.14. If you’re interested in creating a container with different values in it, see Tip 5.

CONSTRUCT A CONTAINER FILLED WITH SPECIFIED 
VALUES

Applies to: Sequence containers, string
See also: Tip 3, Tip 4, Tip 8, Tip 34

Initialized vector: 3.14 3.14 3.14 3.14 3.14 

TIP 5



Quick Solution
const double data[4] = { 4.78, 6.97, 8.81, 9.02 };

list<double> l( data, data + 4 );

Detailed Solution

It’s often important to create a container with different specific values in it. Unfor-
tunately, there aren’t constructors that let you do this directly. However, it is easy
to do by declaring a C-style array with an initializer list and then constructing the
container from the array. You can always do this because all standard containers
and the standard string have a constructor that takes the beginning and end 
iterators of a range as its arguments. 

Tip 3 shows that for a C-style array you can use the name of the array as the 
beginning iterator and the name plus the number of elements as the end iterator.
(The tip also explains different ways of declaring a C-style array.) The program in
Listing 3.4 shows two examples of initializing sequence containers with specified
data. See Tip 34 if you want to do the same with associative containers.

LISTING 3.4 Constructing a Container That Has Specified Values

// general_initialize_many.cpp

#include <list>

#include <vector>

#include "tips.hpp"

using namespace std;

int main( )

{

const int num_elements = 4;

const double data[num_elements] = { 4.78, 6.97, 8.81, 9.02 };

list<double> l( data, data + num_elements );

const char* flavors[] = { "Strawberry", "Vanilla", "Chocolate" };

vector<string> v( flavors,

flavors + sizeof( flavors ) / sizeof( flavors[0] ) );

// display containers

tips::print( l, "List" );

tips::print( v, "Vector", "  " );

}

Tips on Containers in General 95



96 C++ Standard Library Practical Tips

The output is

The container, in this case a list, is initialized by a constructor that takes the be-
ginning and end of the C-style array as its arguments. (See Tip 3 for more infor-
mation about the range of a C-style array.) The input data type can be any that is
convertible to the data type of the container, though here both the array and the list
have doubles.

The next group of lines demonstrates the initialization of a vector of strings. It
also illustrates a different method of stating the number of elements in the array.
Again, Tip 3 explains this method. The output shows that the two containers have
been properly initialized.

If the container you want to fill already exists, Tip 8 explains how to put values
of your choosing in it. If you want your new container to contain copies of a single
value, see Tip 4.

CONSTRUCT ONE CONTAINER FROM ANOTHER

Applies to: Standard containers
See also: Tip 1, Tip 5

Quick Solution
list<int> original;

// ...

// make a vector from a list

vector<int> vector_copy( original.begin(), original.end() );

// make a list from a list

list<int> list_copy( original );

Detailed Solution

You can create a container that has the same contents as another container. Actu-
ally, you can do this regardless of whether the two are the same kind of container
or not. Moreover, although the data types in the two containers are usually the
same, this technique will work with different data types as long as the source type
is convertible to the destination type.

List: 4.78 6.97 8.81 9.02 

Vector: Strawberry  Vanilla  Chocolate

TIP 6



One good reason to change container types is if you are going to be accessing
the data in the containers differently. For example, suppose you initially gather a
large amount of data, perhaps stored in the container elements as instances of a
class. You know that you will be examining and discarding most of the raw data and
keeping only the best pieces of information. Because you will be deleting many con-
tainer elements, Tip 1 suggests that you use a list, which is optimized for deletions.
After you have culled the data, you know that you will seldom delete container el-
ements, but will often access them nonsequentially. For this, Tip 1 recommends
that you use a vector, so you should transfer the contents of the list to a vector.

The code in Listing 3.5 shows how to construct one container from another.

LISTING 3.5 Constructing One Container from Another

// general_construct.cpp

#include <iomanip>

#include <iostream>

#include <list>

#include <vector>

#include "tips.hpp"

using namespace std;

int main( )

{

const int data[] = { 1, 1, 2, 3, 5 };

list<int> original( data,

data + sizeof( data ) / sizeof( data[0] ) );

// make a vector from a list

vector<int> vector_copy( original.begin(), original.end() );

// make a list from a list

list<int> list_copy( original );

// make a list of floats from a list of ints

list<float> list_float( original.begin(), original.end() );

// show results

tips::print( original, "Original list" );

tips::print( vector_copy, "Vector copy" );

tips::print( list_copy, "List copy" );

Tips on Containers in General 97



98 C++ Standard Library Practical Tips

cout << fixed << setprecision( 1 );

tips::print( list_float, "List copy as floats" );

}

The output is

The code starts by declaring a list and storing five integers in it to simulate the
raw data described in the preceding text. (Tip 5 describes the technique for creat-
ing a container from an array.) Next, the code makes a vector with the same con-
tents as the list by using the constructor that takes an iterator range. All standard
containers have a constructor of this form, so you can always make any container
from any other one, as long as the input data type is convertible to the data type in
the container being created.

If both containers are the same kind and have exactly the same data type, you
can make a new one from the old one by using a copy constructor, as the next line
of code demonstrates. This is always possible because all standard containers have
a copy constructor. Although you could also use the constructor that has an itera-
tor range, the copy constructor is more convenient. The output shows that all three
containers have the same contents.

If the container types are the same but the data types aren’t—they’re different
but convertible—you have to use the iterator range form of the constructor. The
program constructs a list of floating-point numbers from a list of integers to illus-
trate this. The last line of output demonstrates that the contents are indeed copies
but are stored in different data types. 

CONSTRUCT A CONTAINER FROM STANDARD INPUT

Applies to: Sequence containers, string
See also: Tip 5, Tip 6, Tip 78, Tip 97

Quick Solution
deque<float> data( (istream_iterator<float>( cin )),

istream_iterator<float>() );

Original list: 1 1 2 3 5 

Vector copy: 1 1 2 3 5 

List copy: 1 1 2 3 5 

List copy as floats: 1.0 1.0 2.0 3.0 5.0 

TIP 7



Detailed Solution

You can construct and initialize a container with values taken directly from the
standard input stream. This is useful in quick-and-dirty programs. Moreover, Tip
78 and Tip 97 show that you can use the same technique with streams other than
the standard input. The program in Listing 3.6 demonstrates how to create a con-
tainer and fill it with values from the input stream.

LISTING 3.6 Constructing a Container with Values from the Standard Input

// general_initialize_cin.cpp

#include <deque>

#include <iostream>

#include <iterator>

#include "tips.hpp"

using namespace std;

int main( )

{

// load values from standard input stream

deque<float> data( (istream_iterator<float>( cin )),

istream_iterator<float>() );

/***** If your compiler won't work on the above, try this

istream_iterator<float> data_start( cin );

istream_iterator<float> data_end;

deque<float> data( data_start, data_end );

*****/

tips::print( data, "Values from cin" );

}

The program illustrates the technique by initializing a deque as an example.
The container constructor has two iterators as arguments that specify an iterator
range. (See Tip 5 and Tip 6 for other examples of this constructor.) The first itera-
tor is a stream iterator made from the standard input cin. The second iterator is
made by the default constructor for stream iterators. This serves as an end-of-
stream marker, as “Stream Iterators” in Chapter 2 explains. You must have the
extra set of parentheses around the first argument of the expression involving data

Tips on Containers in General 99



or the compiler will interpret the expression very differently than what you intend.
(It turns out to be a declaration of a function that returns a deque and has some
strange arguments. See Item 6 of Scott Meyers’ excellent book for details 
[Meyers01].)

When the program starts running, it immediately waits for user input. Type
some numbers and press the Enter or Return key after each. When you’ve finished,
press the end-of-file key. This is Ctrl-D on Unix and many other systems and Ctrl-
Z on Windows. (Ctrl-X means to simultaneously press down both the Control key
and the X key.)

If your input is the three numbers 3.14, 2.78 and 5.55, the output is

Not all compilers can handle the code shown in the program. If yours won’t
compile, try the equivalent technique shown in the code comments. It’s clearer but
longer. The only runtime difference is that you’ll have to enter the first number
when the program constructs the beginning iterator data_start.

STORE SPECIFIED VALUES IN AN EXISTING CONTAINER

Applies to: Sequence containers, strings
See also: Tip 5

Quick Solution
const int data[3] = { 14, 17, 220 };

vector<int> v;

// ...

v.assign( data, data + 3 );

Detailed Solution

Just as you can construct a container with specific values, you can store specific 
values in an existing container. The number of elements that you put in the 
container can be different than what it already has. The data type that you store
does not have to be the same as the container’s data type, but it does have to be 
convertible to that type. The program in Listing 3.7 demonstrates storing specified
values in an existing container. 

100 C++ Standard Library Practical Tips

TIP 8

Values from cin: 3.14 2.78 5.55



LISTING 3.7 Storing Specific Values in an Existing Container

// general_assign_specific.cpp

#include <string>

#include <vector>

#include "tips.hpp"

using namespace std;

int main( )

{

const char* student_answers[] =

{ "Berlin", "London", "Paris", "Madrid", "Don't know" };

// create a vector and initialize it with the above strings

vector<string> answers( student_answers, student_answers

+ sizeof( student_answers ) / sizeof( student_answers[0] ) );

tips::print( answers, "Student answers", "  " );

// reuse the vector by storing the correct answers in it

const char* correct_answers[] = { "Berlin", "Paris", "London",

"Madrid", "Vienna", "Oslo" };

answers.assign( correct_answers, correct_answers

+ sizeof( correct_answers ) / sizeof( correct_answers[0] ) );

tips::print( answers, "Correct answers", "  " );

}

The output is

The program simulates a geography quiz by first creating a vector of strings
containing the student’s answers and printing them. (Tip 5 explains how to con-
struct a container with specific data.) Then it stores the correct answers in the same
vector by using that container’s assign member function. 

The assign member function takes an iterator range as input. It replaces the en-
tire contents of the container with the new sequence. The number of elements to be
stored can be different than what the container originally had. The data type can be
different too, as long as the type in the input sequence can be converted to the data

Tips on Containers in General 101

Student answers: Berlin  London  Paris  Madrid  Don't know

Correct answers: Berlin  Paris  London  Madrid  Vienna  Oslo



102 C++ Standard Library Practical Tips

type of the container. The output shows that the contents of the vector were indeed
changed.

STORE CONTENTS OF ONE CONTAINER IN ANOTHER

Applies to: Sequence containers
See also: Tip 4, Tip 5, Tip 6

Quick Solution
list<int> l;

vector<int> v1, v2;

// ...

v1 = v2; // same container and data type

l.assign( v1.begin(), v1.end() ); // different container, same data 

// type

Detailed Solution

If you already have a container, you can replace its contents with that of another
container. (Tip 6 gives a realistic situation for which you might want to do this.)
The two container types can be the same or different, and the data types can even
differ as long as the source type is convertible to the destination type. The code in
Listing 3.8 demonstrates assigning one container to another.

LISTING 3.8 Storing Contents of One Container in Another

// general_assign.cpp

#include <list>

#include <vector>

#include "tips.hpp"

using namespace std;

int main( )

{

const double data[] = { 3.14, 2.78, 1.51, 7.66, 9.65 };

list<double> original( data,

data + sizeof( data ) / sizeof( data[0] ) );

// make a vector and list with data different from above

vector<double> vector_data( 3, 3.33 );

TIP 9



list<double> list_data( 4, 4.44 );

// show results

tips::print( original, "Original data" );

tips::print( vector_data, "Original vector" );

tips::print( list_data, "Original list" );

// assign a list to a list

list_data = original;

// assign a list to a vector

vector_data.assign( original.begin(), original.end() );

// create an empty vector of int's and assign

// a list of doubles to it

vector<int> v;

v.assign( original.begin(), original.end() );

// show results

tips::print( list_data, "\nList   after assignment" );

tips::print( vector_data, "Vector after assignment" );

tips::print( v, "Vector of int from list of double" );

}

The output is

The code starts by declaring a list of doubles and storing five floating-point
numbers in it. (Tip 5 describes the technique for creating a container from an
array.) Then it creates a list and vector with different sets of floating-point numbers
(see Tip 4) and displays all three containers. Next, the program makes one list be-
come the same as another by using the assignment operator. This operator is avail-
able to all the standard containers, but the two containers it uses have to be the
same kind and have the same data type.

Tips on Containers in General 103

Original data: 3.14 2.78 1.51 7.66 9.65 

Original vector: 3.33 3.33 3.33 

Original list: 4.44 4.44 4.44 4.44 

List   after assignment: 3.14 2.78 1.51 7.66 9.65 

Vector after assignment: 3.14 2.78 1.51 7.66 9.65 

Vector of int from list of double: 3 2 1 7 9



104 C++ Standard Library Practical Tips

The program continues by showing how to make one container have the con-
tents of a different container. It does this by using the version of the assign mem-
ber function that takes an iterator range. All standard sequence containers have this
function. The data types of the source and destination can be different as long as the
former can be converted to the latter. The end of the program demonstrates this by
assigning a list of double precision values to a vector of integers. 

The first part of the output shows that initially the three containers have dif-
ferent contents and sizes. After assigning the first container to the other two, they
contain the same numbers. Finally, the last line illustrates the conversion of data
types described previously.

APPEND ONE CONTAINER TO ANOTHER

Applies to: Sequence containers, string
See also: Tip 5, Tip 61

Quick Solution
list<int> l;

vector<int> v;

// ...

l.insert( l.end(), v.begin(), v.end() ); // append v to l

Detailed Solution

It’s common to want to append one container to another. For example, data may
be stored in various containers because it arises at different times or different
places. These containers may then need to be “pasted together” so that all the data
can be processed as a single collection. Another example is when the same data is
copied into different containers for different processing and these containers are
then reunited. Finally, appending can occur when different containers are to be
processed in order. If the computations are the same for all containers, it may be
convenient to put them into one container in the desired order (by appending
them to each other) and then process the big container.

The way to append one container to another is to use the member function in-
sert, which all standard sequence containers and the string have. (Actually, the as-
sociative containers have this member function too, but because they don’t order
by location, this tip doesn’t apply to them.) The signature of insert is

insert( iterator position, InputIterator start, InputIterator stop )

TIP 10



The first argument is the position at which the following range should be in-
serted. For appending, this is the end iterator of the container into which elements
are being inserted. The last two arguments are the beginning and end iterators of
the container being inserted. The code in Listing 3.9 illustrates the call to insert.

By the way, although you may often see appending done by using the copy al-
gorithm with a back inserter, insert can be more efficient. If you want to put ele-
ments into a container and are not appending them, definitely use insert instead
of copy. It is likely to be much more efficient.

You can use the technique with insert to append characters to a string. How-
ever, for strings it is much more natural to use the “+=” operator, as Tip 61 shows.
The program in Listing 3.9 demonstrates the method on a sequence container.

LISTING 3.9 Appending Containers

// general_append.cpp

#include <algorithm>

#include <vector>

#include "tips.hpp"

using namespace std;

int main( )

{

const char* names1[] = { "Smith", "Jones", "Bradbury" };

const char* names2[] = { "Kelvin", "Ostrowski", "Lane", "Lord" };

// create and initialize vectors with the above names

vector<string> squad1( names1,

names1 + sizeof( names1 ) / sizeof( names1[0] ) );

vector<string> squad2( names2,

names2 + sizeof( names2 ) / sizeof( names2[0] ) );

// sort and print the separate squads

sort( squad1.begin(), squad1.end() );

tips::print( squad1, "Squad 1" );

sort( squad2.begin(), squad2.end() );

tips::print( squad2, "Squad 2" );

// append the second squad to the first and print

squad1.insert( squad1.end(), squad2.begin(), squad2.end() );

tips::print( squad1, "Both squads" );

Tips on Containers in General 105



// sort and print the merged squads

sort( squad1.begin(), squad1.end() );

tips::print( squad1, "Both squads sorted" );

}

The output is

The program starts by creating two vectors of strings initialized with names of
squad members (see Tip 5). It processes each vector by sorting it. The first two lines
of the output show the result. Next, the code appends the second vector to the first
and prints the large vector. Then it sorts the vector to get an alphabetical listing of
all squad members. 

EXCHANGE CONTAINERS

Applies to: Standard containers, string, swap, swap_ranges
See also: Tip 1, Tip 6, Tip 9, Tip 79, Tip 81

Quick Solution
list<float> l;

vector<float> v1, v2;

// ...

v1.swap( v2 ); // swap contents – same container and data type

// swap contents – different container, same data type

swap_ranges( l.begin(), l.end(), v1.begin() );

Detailed Solution

Tip 9 shows you how to put the contents of one container into another. However,
there’s a much faster way of doing this as long as (1) the two containers are the
same kind, (2) their data types are the same, and (3) you don’t mind the source
container being changed. If this is your situation, you can swap (exchange) the
containers’ contents. Swapping is more efficient than using the assignment opera-

106 C++ Standard Library Practical Tips

Squad 1: Bradbury Jones Smith 

Squad 2: Kelvin Lane Lord Ostrowski 

Both squads: Bradbury Jones Smith Kelvin Lane Lord Ostrowski 

Both squads sorted: Bradbury Jones Kelvin Lane Lord Ostrowski Smith

TIP 11



tor or the assign member function because swapping just resets some pointers in-
side the container and doesn’t move or copy elements. 

To swap containers that are the same kind and have the same data type, use the
swap member function. Alternatively, you can pass both containers to the swap
global function. Both ways are equivalent and both ways are very safe. The only
time they can throw an exception is if associative containers are involved and copy-
ing or assigning the comparison criterion throws an exception.

Because swapping the same kind of container is so safe, a good use of swap is to
work on a temporary copy of a container and if the processing completes success-
fully, swap the temporary and original containers. If the processing fails, the origi-
nal container is untouched. This avoids the often-arduous task of trying to recreate
the elements in a container that only made it partway through a computation.

To swap elements that have the same data type but reside in different contain-
ers, use the STL algorithm swap_ranges. This might occur if data has to undergo dif-
ferent kinds of processing and is stored in different containers to optimize the
computations. For example, half the data might be in a list and half in a vector. The
list processing might have numerous insertions and deletions and the vector pro-
cessing might need nonsequential data access. After each half is processed, the data
could be swapped and the remaining processing performed. swap_ranges is not fast
like swap, but it does let you exchange the contents of different types of containers.

The program in Listing 3.10 demonstrates swapping between the same or dif-
ferent type of container.

LISTING 3.10 Swapping Containers

// general_swap.cpp

#include <algorithm>

#include <functional>

#include <iomanip>

#include <list>

#include <numeric>

#include <vector>

#include "tips.hpp"

using namespace std;

int main( )

{

// make a vector with the sequence 1.5, 3.0, 4.5 ...

vector<float> v( 7, 1.5 );

Tips on Containers in General 107



partial_sum( v.begin(), v.end(), v.begin() );

cout << fixed << setprecision( 2 );

tips::print( v, "Original   data" );

list<float> l( v.begin(), v.end() );

try

{

// find the inverses

vector<float> temp( v );

transform( temp.begin(), temp.end(), temp.begin(),

bind1st( divides<float>(), 1.0 ) );

v.swap( temp );

tips::print( v, "Inverse of data" );

}

catch( ... )

{

cout << "Failed to compute inverses\n";

return 1;

}

// swap vector and list

swap_ranges( v.begin(), v.end(), l.begin() );

// delete two smallest numbers

l.sort();

l.pop_front();

l.pop_front();

tips::print( l, "\nList data" );

}

The output is

The program starts by creating a vector with a sequence of numbers (see Tip
79). The first line of the output shows the numbers. The code then stores the data
in a list for later use. Next, it creates a temporary vector with the same contents as
the original vector by using the technique that Tip 6 explains. The program

108 C++ Standard Library Practical Tips

Original   data: 1.50 3.00 4.50 6.00 7.50 9.00 10.50 

Inverse of data: 0.67 0.33 0.22 0.17 0.13 0.11 0.10 

List data: 0.13 0.17 0.22 0.33 0.67 



processes the data by using the STL algorithm transform to calculate the inverse.
(Tip 81 has more on computations with transform.) Because the vector construc-
tion and transform are both in a try block, if either fails (and so throws an excep-
tion) execution immediately passes to the catch block. There, the program simply
prints an error and exits. If the construction and computation both succeed, the
code swaps the original and temporary vectors to put the altered data set into the
original vector. After the code prints the data, it leaves the try block and the tem-
porary vector vanishes because it goes out of scope. The second line of the output
shows the result of computing the inverse of the numbers.

Next, the program exchanges the contents of the vector and the list. It must do
this with the STL algorithm swap_ranges instead of swap because the containers are
different. The program then concludes by performing work better suited for a list
than a vector—in this case, deleting two elements from the front of the container (see
Tip 1). The last line of the output shows the sorted and shortened set of numbers.

GET A CONTAINER’S SIZE AND MAXIMUM SIZE

Applies to: Standard containers, strings
See also: Tip 4, Tip 17, Tip 64

Quick Solution
vector<double> v;

// ...

cout << "Vector empty? " << boolalpha << v.empty()

<< "\nElements in vector: " << v.size()

<< "\nMaximum elements vector can hold: " << v.max_size();

Detailed Solution

All standard containers and the string have member functions that provide three
pieces of information about the container’s size (the number of elements it has).
The first, empty, returns true if the container has no elements and false if it does
have some. The second, size, tells the number of elements currently in the con-
tainer. (The string’s member function length does the same thing as size, as Tip 64
demonstrates.) The third, max_size, provides the maximum number of elements
that the container can ever hold. This number depends on the size of  the element
and on the size of data types used in a particular operating system. 

The maximum size may be smaller for vectors than other containers. This is be-
cause vectors store their values in one contiguous stretch of memory whose length
may be limited by the operating system. If you’re interested in vectors, Tip 17

Tips on Containers in General 109

TIP 12



shows that they have some additional capabilities related to their size and number
of elements.

You might wonder why there’s a member function that checks if a container is
empty and a member function that can tell you if the container has 0 elements. The
reason empty is available is that it may run faster. This is especially true for lists. So
if you only want to know whether or not there are any elements and not how many
there are, it’s best to use empty.

The code in Listing 3.11 demonstrates getting all three pieces of size informa-
tion.

LISTING 3.11 Finding Size Information of a Container

// general_size.cpp

#include <iostream>

#include <list>

#include <vector>

using namespace std;

int main( )

{

vector<double> v( 3, 10.0 );

list<double> l( 3, 10.0 );

cout << "Vector empty? " << boolalpha << v.empty()

<< "\nElements in vector: " << v.size()

<< "\nMaximum elements vector can hold: " << v.max_size()

<< "\n\nList empty? " << l.empty()

<< "\nElements in list: " << l.size()

<< "\nMaximum elements list can hold: " << l.max_size();

}

The output is

110 C++ Standard Library Practical Tips

Vector empty? false

Elements in vector: 3

Maximum elements vector can hold: 536870911

List empty? false

Elements in list: 3

Maximum elements list can hold: 4294967295



Using the technique in Tip 4, the program makes a vector and list, each with
the same data type and number of elements. Then it prints whether the container
is empty or not and displays each container’s size and maximum size. The manip-
ulator boolalpha causes the Boolean returned by empty to be displayed as a word
(“true” or “false”) rather than as a numeral (0 or 1).

The output shows the results. The numbers you get for the maximum number
of elements may differ.

IS ONE CONTAINER GREATER THAN ANOTHER?

Applies to: Standard containers, lexicographical_compare
See also: Tip 5

Quick Solution
vector<double> v1, v2;

list<double> l;

// ...

if( v1 > v2 )

cout << "v1 is greater than v2";

if( lexicographical_compare( v1.begin(), v1.end(), l.begin(), l.end() )

)

cout << "v1 is greater than l";

Detailed Solution

Let’s say you have two groups of people who owe you money, and you can only col-
lect debts from one group at a time. Which group should you work on first? One
answer is to find which person has the highest debt and start with that group. If the
person with the most debt in each group owes the same amount of money, com-
pare the second highest debts in the two groups. If they’re the same, keep going
until you find a pair that isn’t the same. If all the values in the smaller group match
the corresponding ones in the larger group, then just work on the larger one.

This procedure is called lexicographical comparison, and it’s easy to do with
the Standard Library. Specifically, in lexicographical comparison, the library starts at
the beginning of the two sequences and compares corresponding elements until it
finds one of the following results:

The elements are not equal. The result of comparing the sequences is the result
of comparing the unequal elements.
One sequence runs out of elements. This sequence is less than the other.

Tips on Containers in General 111

TIP 13



Both sequences run out of elements. The two sequences are equal.

All standard containers define the operators less-than (<), less-than-or-equal-
to (<=), greater-than (>), and greater-than-or-equal-to (>=). They carry out lexico-
graphical comparisons on containers of the same kind and same data type. To
compare different kinds of containers (but still with the same data type), use the
lexicographical_compare STL algorithm. The program in Listing 3.12 illustrates
both these techniques.

LISTING 3.12 Checking if One Container Is Less Than or Greater Than Another

// general_greater_than.cpp

#include <algorithm>

#include <deque>

#include <vector>

#include "tips.hpp"

using namespace std;

int main( )

{

const int data1[] = { 200, 250, 250, 100, 500, 500, 400 };

const int data2[] = { 200, 200, 300, 500, 400, 400 };

// create and initialize vectors to hold the debts

vector<int> debts1( data1,

data1 + sizeof( data1 ) / sizeof( data1[0] ) );

vector<int> debts2( data2,

data2 + sizeof( data2 ) / sizeof( data2[0] ) );

// sort into descending order

sort( debts1.begin(), debts1.end(), greater<int>() );

sort( debts2.begin(), debts2.end(), greater<int>() );

// display debts

tips::print( debts1, "Group 1 debts" );

tips::print( debts2, "Group 2 debts" );

// compare debts

if( debts1 > debts2 )

cout << "\nCollect from Group 1 first";

else

112 C++ Standard Library Practical Tips



Tips on Containers in General 113

cout << "\nCollect from Group 2 first";

// store one group of debts in a different container

deque<int> debts2_deque( debts2.begin(), debts2.end() );

// compare the vector to the deque

if( lexicographical_compare( debts2_deque.begin(),

debts2_deque.end(), debts1.begin(), debts1.end() ) )

cout << "\nCollect from Group 1 in vector first";

else

cout << "\nCollect from Group 2 in deque first";

}

The output is

The code starts by constructing and initializing two vectors to hold the debts of
the two groups. (Tip 5 provides the details on initializing a container with specific
data.) The code then sorts the two containers into descending order so that the
comparisons that follow will start with the highest debts. The first two arguments
to sort are the iterator range. The optional third argument provides a comparison
function. By default, this function is the less-than operator, so the code explicitly
passes the Standard Library’s greater-than functor to make the algorithm sort in de-
scending order.

The program prints the two containers and then compares them in one line by
using the greater-than operator. The output shows that although the first elements
of the two vectors are the same, the second element (500) of the first vector is
greater than the corresponding element (400) of the other vector. That makes the
first vector greater, and those debts should be collected first, as the third line of the
output reports.

Finally, to illustrate comparing different containers, the code stores the con-
tents of the second vector in a deque. It calls lexicographical_compare with the first
range from the deque and the second from the vector. The algorithm returns true
if the first range is less than the second, which in this case is the same as the first
group of debts being greater than the second. The output shows the corresponding
message from the program.

Group 1 debts: 500 500 400 250 250 200 100 

Group 2 debts: 500 400 400 300 200 200 

Collect from Group 1 first

Collect from Group 1 in vector first



114 C++ Standard Library Practical Tips

ARE TWO CONTAINERS EQUAL?

Applies to: Standard containers, equal
See also: Tip 5, Tip 6

Quick Solution
vector<int> v1, v2;

list<int> l;

// ...

if( v1 == v2 )

cout << "v1 is equal to v2";

if( v1.size() == l.size() && equal( v1.begin(), v1.end(), l.begin() ) )

cout << "\nThe vector and list are equal";

Detailed Solution

Suppose you have a class with lots of attributes. You’ve chosen to store them in a
class member that’s a container and they’re always stored in the same order. How
can you tell if two instances of the class are equal? A reasonable definition is that
they’re equal if all their attributes are equal. This boils down to testing whether or
not the containers with the attributes are equal. Fortunately, this is easy to do.

By definition, two containers are equal if they have the same data type, they
have the same number of elements, and all the corresponding elements are equal.
This implies that the values in the two containers must be the same, and they must
be in the same order. As the code in Listing 3.13 shows, there are two ways to test
equality, depending on whether the containers are the same kind.

LISTING 3.13 Checking If Two Containers Are Equal

// general_equal.cpp

#include <algorithm>

#include <iostream>

#include <list>

#include <vector>

using namespace std;

int main( )

{

const short attributes[] = { 3, 7, -4, 6, 6, 98 };

TIP 14



// create and initialize vector with above data

vector<short> v1( attributes,

attributes + sizeof( attributes ) / sizeof( attributes[0] ) );

// make a copy of the vector

vector<short> v2( v1 );

// see if the vectors are equal

if( v1 == v2 )

cout << "The vectors are equal";

else

cout << "The vectors are not equal";

// see if the vector and a reversed copy are equal

reverse( v2.begin(), v2.end() );

if( v1 == v2 )

cout << "\nThe vector and reversed vector are equal";

else

cout << "\nThe vector and reversed vector are not equal";

// make a list from a vector and see if they're equal

list<short> l( v1.begin(), v1.end() );

if( v1.size() == l.size()

&& equal( v1.begin(), v1.end(), l.begin() ) )

cout << "\nThe vector and list are equal";

else

cout << "\nThe vector and list are not equal";

}

The output is

The code begins by creating a vector and initializing it with some numbers
using the technique described in Tip 5. It then makes a copy of the vector (using
that container’s copy constructor) and tests whether the two vectors are equal by
using the overloaded equals operator (==). This operator is defined for all contain-
ers, but the two containers must be the same kind and hold the same type of data.
The first line of the output shows that the vectors are indeed equal.

Tips on Containers in General 115

The vectors are equal

The vector and reversed vector are not equal

The vector and list are equal



116 C++ Standard Library Practical Tips

Next, the code reverses the elements in one of the vectors and tests them for
equality again. The second line of the output shows that the vectors are not equal,
thus confirming that even if two containers are the same size and have the same el-
ements, the elements must be in the same order.

Finally, the code creates a list with the same contents as the vector by using the
technique described in Tip 6. The containers are different, so you can’t use the ==
operator. What you can use is the STL equal algorithm.

equal verifies that two ranges are the same, that is, all the corresponding ele-
ments are equal. The first two arguments provide the first range, and the third ar-
gument is the start of the second range. As usual, the second range must be at least
as long as the first. Because it could be longer, the code first verifies that the two
containers have the same number of elements (are the same size) before it calls
equal to actually compare the elements. In addition, failing to test the size can have
serious effects if the second range is shorter than the first.

You can also test if two containers are not equal. If the containers are the same
kind, use the inequality operator !=, which all containers have. If the containers are
different, check that their sizes are different or that the output of equal is false.

ACCESS A CONTAINER IN REVERSE

Applies to: Standard containers, string
See also: Tip 30, Tip 49, Tip 59, Tip 72

Quick Solution
vector<int> v1, v2;

// ...

// copy v1 in reverse order to v2

copy( v1.rbegin(), v1.rend(), v2.begin() );

Detailed Solution

Sometimes it’s handy to access a container in reverse. The first thought about how
to do this is to simply reverse the elements in the container and then access them in
the normal order. Actually, you can reverse a container’s elements in a number of
ways. There’s the STL algorithm reverse. Another option is to use reverse_copy to
reverse the order while copying to another container. And if your sequence is
sorted, you can resort it in the reverse order. These methods all take time, though.
A faster way works in many situations—using reverse iterators. They let you access
the container’s elements in reverse order without having to actually change the
order by moving them around.

TIP 15



All standard containers have member functions that return reverse iterators,
namely rbegin and rend. The former gives the start of the elements when accessed
in reverse order, and the latter is one past their end. You can use the pair rbegin and
rend in algorithms just as you use forward iterators. However, if you want to use ei-
ther by itself, see “Reverse Iterators” in Chapter 2 first.

The program in Listing 3.14 is a simple example that displays a hand of cards.
It demonstrates what to do if some players want their cards shown from lowest to
highest and other players prefer them in the opposite order.

LISTING 3.14 Accessing a Container’s Elements in Reverse

// general_reverse.cpp

#include <algorithm>

#include <fstream>

#include <functional>

#include <iostream>

#include <iterator>

#include <list>

using namespace std;

class Card

{

public:

enum Suit { spades, clubs, hearts, diamonds };

Card( int value = 1, Suit suit = spades );

// value - 1 = Ace, 2-10, 11 = Jack, 12 = Queen, 13 = King

bool operator<( const Card& rhs ) const;

// return true if value on left less than value on right, else false

void print() const;

// display info on card

int suit() const;

int value() const;

private:

int value_;

Suit suit_;

};

Tips on Containers in General 117



inline

Card::Card( int value, Suit suit )

: value_( value ), suit_( suit )

{} // empty

inline

bool Card::operator<( const Card& rhs ) const

{ return value() < rhs.value(); }

void Card::print() const

{

if( value() >= 2 && value() <= 10 )

cout << value();

else

switch( value() )

{

case  1: cout << "Ace"; break;

case 11: cout << "Jack"; break;

case 12: cout << "Queen"; break;

case 13: cout << "King"; break;

};

cout << " of ";

switch( suit() )

{

case spades: cout << "spades"; break;

case clubs: cout << "clubs"; break;

case diamonds: cout << "diamonds"; break;

case hearts: cout << "hearts"; break;

default: cout << "unknown suit"; break;

}

cout << endl;

}

inline

int Card::suit() const

{ return suit_; }

inline

int Card::value() const

{ return value_; }

int main( )

{

118 C++ Standard Library Practical Tips



Tips on Containers in General 119

list<Card> hand;  // empty hand

// simulate dealing a poker hand

hand.push_back( Card( 12, Card::hearts ) );

hand.push_back( Card( 6, Card::clubs ) );

hand.push_back( Card( 12, Card::diamonds ) );

hand.push_back( Card( 1, Card::spades ) );

hand.push_back( Card( 11, Card::clubs ) );

// sort the hand in ascending order and display it

cout << "HAND IN ASCENDING ORDER\n";

hand.sort();

for_each( hand.begin(), hand.end(), mem_fun_ref( &Card::print ) );

// display in descending order

cout << "\nHAND IN DESCENDING ORDER\n";

for_each( hand.rbegin(), hand.rend(), mem_fun_ref( &Card::print ) );

}

The output is

The program starts by declaring a simple class to represent a playing card. The
constructor accepts the card value and suit. (In a standard American card deck, the
values are 1 (Ace), 2–10, 11 (Jack), 12 (Queen), and 13 (King). The four suits are
spades, clubs, hearts, and diamonds.) The class has two accessors, a print member
function, and the less-than operator. It compares two cards by comparing their values.

The function main starts by creating an empty hand from a list. (A list would be
a good choice if the programmer expects to delete each played card.) It adds five

HAND IN ASCENDING ORDER

Ace of spades

6 of clubs

Jack of clubs

Queen of hearts

Queen of diamonds

HAND IN DESCENDING ORDER

Queen of diamonds

Queen of hearts

Jack of clubs

6 of clubs

Ace of spades



120 C++ Standard Library Practical Tips

cards to the hand, simulating the dealing of a poker hand. Next, it calls the list’s
sort member function (see Tip 30), which uses the card’s less-than operator to sort
into the default order of lowest to highest. It then displays the sorted hand by using
for_each to call the print member function of each element (see Tip 49 and Tip
59). The first set of lines in the output shows the result.

To show the cards from highest to lowest, the code uses the same call to
for_each but with the beginning reverse iterator rbegin instead of begin and the
ending reverse iterator rend instead of end. It’s very easy, fast, and clean. The second
set of lines in the output shows what the program printed when using the reverse
iterators. For another example of using them, see Tip 72.

DISPLAY A CONTAINER ON STANDARD OUTPUT

Applies to: Standard container, string, copy, ostream_iterator
See also: Tip 4, Tip 97, Listing 13.5

Quick Solution

vector<int> v;
// ...

copy( v.begin(), v.end(), ostream_iterator<int>( cout, " " ) );

Detailed Solution

It’s very handy to print the contents of a container or, more specifically, to send
them to the standard output stream cout. You can use the output for debugging or
for the actual data display. The program in Listing 3.15 shows how to do it.

LISTING 3.15 Displaying a Container’s Elements on the Standard Output
// general_output.cpp

#include <algorithm>

#include <iostream>

#include <iterator>

#include <string>

#include <vector>

using namespace std;

int main( )

{

// create and display a vector in one row

TIP 16



vector<int> v( 5, 9 );

cout << "Output in a row: ";

copy( v.begin(), v.end(), ostream_iterator<int>( cout, " " ) );

// display the vector in one column

cout << "\n\nOutput in a column\n";

copy( v.begin(), v.end(), ostream_iterator<int>( cout, "\n" ) );

// create and display a string

string s( "phlegm" );

cout << "\n\"" << s << "\" is spelled ";

copy( s.begin(), s.end(), ostream_iterator<char>( cout, " " ) );

}

The output is

The first line of the program uses the technique of Tip 4 to create a vector with
five identical elements. The code then displays the container’s contents on one row
by using the copy algorithm. The first two arguments to copy are the beginning and
end of the container. The third argument is an iterator made from cout. You get
this iterator by creating an output stream iterator ostream_iterator as shown. Its
template argument must be the same as the container’s data type or be a data type
that can be converted to the container’s data type. The first argument of its con-
structor is an output stream, which in this case is cout. (If you had an output stream
open to a file, you could use that stream with this code to write the containers to the
file—this is what Tip 97 is about.) The second argument is a character string to
write after each container element. The program makes the output appear on one
line by simply writing a space after each element. The first line of the output shows
the result.

Tips on Containers in General 121

Output in a row: 9 9 9 9 9 

Output in a column

9

9

9

9

9

"phlegm" is spelled p h l e g m



To display the container elements in a column, use the newline character as the
second argument in the ostream_iterator constructor. The output shows that the
values are indeed printed in one column. The last sections of the code and output
demonstrate that the technique works on strings too. If you’re interested in stream
iterators, “Stream Iterators” in Chapter 2 provides a lot more detail.

122 C++ Standard Library Practical Tips



123

Tips on Vectors4

T
he vector is the workhorse of the STL containers. It performs well in many
cases and really excels in others. It’s an excellent replacement for the C-style
array and has the big advantage of being able to resize itself. This means that

when you insert an element into a vector, if there’s not enough memory to hold it,
the vector allocates additional space for the element. This happens automatically
and invisibly and is quite a leap up from a C-style array.

Vectors are great if you want fast access to any element. You can also get to the
elements via subscripts, which make vectors compatible with older code that uses
arrays. Tip 25 shows you how to work with a vector’s data as if it were a C-style
array.

The news isn’t all rosy, however. The vector’s Achilles heel is insertions and
deletions—more specifically, those occurring anywhere but at the end. If you plan
on inserting and deleting frequently, try a list.

This chapter on vectors will tell you the following:

How to make the vector more efficient by setting aside the correct amount of
internal memory
How to use indexes and iterators with a vector
How to work with the last element of the vector
How to make the vector check if an index is valid
How to use a vector as a C-style array
How to use a vector to manipulate bits

RESERVE SPACE FOR ELEMENTS

Applies to: Vector
See also: Tip 21

TIP 17



124 C++ Standard Library Practical Tips

Quick Solution
vector<int> v; // has zero elements

v.reserve( 100000 ); // still has zero elements but can accept 

// 100000 without reallocating

Detailed Solution

The vector is a vast improvement over the standard C-style array. One of its chief
advantages is that it automatically increases its size if it needs to. (Another major
benefit is that it automatically calls the destructors of its elements.) When you add
one or more elements, if the vector doesn’t have enough space to hold the new el-
ement, it creates some. To do this, the vector first allocates enough memory to con-
tain the old data and new data. Then it copies both the old elements and the new
ones to the new memory, calls the destructors of the old elements, and deletes the
old memory. This copying can take quite a bit of time, especially if the elements of
the vector have nontrivial copy constructors. Moreover, if you add data one ele-
ment at a time (perhaps in a loop with the push_back member function), the vector
may have to do its memory allocation and copying procedure more than once.
Thus, one disadvantage of automatic resizing is that it can waste time. In addition,
Tip 21 explains that another drawback of reallocation is that it invalidates all refer-
ences, pointers, and iterators to the vector’s elements.

You can mitigate these problems if you know ahead of time how many ele-
ments your vector will have to hold. The fix is to use the vector’s reserve member
function to allocate the necessary amount of space. The C++ Standard guarantees
that the vector will not reallocate memory as long as the number of elements you
put into the vector doesn’t exceed what you reserved. Note that reserve doesn’t
change the number of elements that vector is holding—it just sets aside enough
space so that it can hold the specified number of elements without having to real-
locate and copy. The program in Listing 4.1 provides an example.

LISTING 4.1 Reserving Space in a Vector

// vector_reserve.cpp

#include <vector>

using namespace std;

int main( )

{

// fill a vector with one million numbers the slow way

vector<int> v1;

for( int i = 0; i < 1000000; ++i )



v1.push_back( i );

// fill a vector with one million numbers the fast way

vector<int> v2;        // has zero elements

v2.reserve( 1000000 ); // still has zero elements

for( int i = 0; i < 1000000; ++i )

v2.push_back( i );

}

The program starts by creating a vector with no elements in it. The code then
inserts numerous elements into the vector. This will probably cause a substantial
number of reallocations and, thus, will be a slow process. The second section of
code shows a better way of doing the same thing. The code uses reserve to set aside
enough memory for the numbers that will be stored in it. This is the first and only
allocation of memory (other than any that may be allocated by the constructor).
When the program then puts the numbers into the vector, this happens quickly be-
cause there is never any need to reallocate memory.

Because reserve allocates memory and such an allocation can fail, reserve
could throw a bad_alloc exception. For this reason, if you’re setting aside a lot of
space, it’s a good idea to put the reserve call in a try-catch block.

Note that because the vector allocates its memory exponentially—that is, dou-
bling the amount of memory with each allocation—multiple allocations happen
less frequently and deteriorate performance less than might be expected. If you
happen to know the maximum size that your vector will have to be, go ahead and
call reserve. However, because multiple allocations probably won’t happen much,
it’s not worth jumping through several hoops to compute or predict the amount of
memory to set aside.

REMOVE EXCESS MEMORY

Applies to: Vector

Quick Solution
vector<double> v;

// ...

vector<double>().swap( v );

Detailed Solution

Suppose you’ve stored a number of elements in a vector. After using it for a while
you find that you’ve reduced the number of elements a lot or that you don’t need

Tips on Vectors 125

TIP 18



126 C++ Standard Library Practical Tips

the vector at all anymore. Unfortunately, deleting elements from a vector, resizing
it to a smaller length, or even removing all elements doesn’t free up memory. So
how can you minimize the amount of memory your vector has allocated? You have
to do it indirectly, as the next paragraph explains.

When you create a vector, it allocates at least enough memory to store the ele-
ments specified in the constructor. Some implementations allocate exactly that
amount, but some allocate more. In any case, this is the smallest amount of mem-
ory that a vector of that size can have. The trick, then, is to create a vector with the
same elements as yours and swap your vector with the temporary one. Swapping
exchanges the elements and the memory allocated. After the swap, you must make
sure that the vector you constructed is deleted, or you’ll be wasting more memory
than before. You can delete the vector by having it go out of scope or by making it be
a temporary variable. The code in Listing 4.2 demonstrates both of these methods.

LISTING 4.2 Removing Memory from a Vector

// vector_shrink.cpp

#include <algorithm>

#include <iostream>

#include <vector>

using namespace std;

int main( )

{

// make a big vector and then deallocate all its memory

const int big_size = 10000;

vector<double> v( big_size );

cout << "Before clearing, the capacity of the vector is "

<< v.capacity() << " and its size is " << v.size();

v.clear();

cout << "\nAfter clearing, the capacity of the vector is "

<< v.capacity() << " and its size is " << v.size();

vector<double>().swap( v );

/* if the above line doesn't compile use this code

{

vector<double> temporary;

temporary.swap( v );

} */

cout << "\nAfter swapping, the capacity of the vector is "



<< v.capacity() << " and its size is " << v.size();

// make a big vector and then minimize its memory

v.assign( big_size, 3.33 );

cout << "\n\nBefore resizing, the capacity of the vector is "

<< v.capacity() << " and its size is " << v.size();

v.resize( 1 );

cout << "\nAfter resizing, the capacity of the vector is "

<< v.capacity() << " and its size is " << v.size();

vector<double>( v ).swap( v );

/* if the above line doesn't compile use this code

{

vector<double> temporary( v );

temporary.swap( v );

} */

cout << "\nAfter swapping, the capacity of the vector is "

<< v.capacity() << " and its size is " << v.size();

}

The output is

The program starts by demonstrating how to remove as much memory from a
vector as possible. It begins by creating a large vector and displaying its capacity and
size. (If you run this program, the capacities you get may be different than those
shown. However, they will always be at least as great as the size.) The code then
clears the vector to remove all the elements. The output shows that the size is now
0, but the capacity hasn’t changed. In other words, the memory is still allocated.
The program then swaps vectors, and the output shows that the capacity has been
reduced, in this case to 0.

Tips on Vectors 127

Before clearing, the capacity of the vector is 10000 and its size is

10000

After clearing, the capacity of the vector is 10000 and its size is 0

After swapping, the capacity of the vector is 0 and its size is 0

Before resizing, the capacity of the vector is 10000 and its size is

10000

After resizing, the capacity of the vector is 10000 and its size is 1

After swapping, the capacity of the vector is 1 and its size is 1



One line of code does the swapping:

vector<double>().swap( v );

vector<double>() creates an unnamed, temporary variable using the default
constructor. (See “Predefined Function Objects” in Chapter 2 for more informa-
tion on temporary, unnamed variables.) This makes an empty vector, which has the
minimum possible capacity. (It may not be 0, though—that depends on the imple-
mentation.) swap(v) is a call of the swap member function of the temporary vari-
able. It exchanges the empty contents and any allocated memory of the temporary
variable with the contents and memory of v. After that, the expression ends, the
temporary variable disappears (that’s what temporary variables do) and v is left as
an empty vector with the minimum amount of memory.

Be careful not to try to use the code

v.swap( vector<double>() );

which is similar to the line that does work. This does not work and shouldn’t even
compile because swap is accepting a nonconstant reference to a temporary variable
and this is not allowed.

Although the code 

vector<double>().swap( v );

is legal, some compilers may not accept it. If this happens, use the code that is com-
mented out in the example. It does the same thing and is clearer. The braces around
the two lines are necessary—they force the temporary vector to go out of scope and,
thus, have its memory deleted.

The last half of the program is similar but shows how to minimize memory of
a vector while keeping some of its elements. The code fills the empty vector used in
the first half with many numbers and resizes the vector to contain only one 
element. The output shows that resizing doesn’t change the capacity. Finally, the
program constructs an unnamed, temporary variable but with the copy construc-
tor instead of the default constructor. This makes the temporary variable have the
same contents but with the minimum amount of memory. As before, the
workaround is in comments in the code.

USE AN INDEX

Applies to: Vector, deque
See Also: Tip 4, Tip 5, Tip 20, Tip 21, Tip 83

128 C++ Standard Library Practical Tips

TIP 19



Quick Solution
vector<double> v( 100 );

for( vector<double>::size_type i = 0; i < 100; ++i )

v[i] = 2 * i + 1;

Detailed Solution

The vector is the Standard Library’s replacement of the C-style array. Like the array,
you can access its elements by an index. However, because the STL algorithms 
always use a vector’s iterators and never an index, it’s possible to forget about a 
vector’s indexing capabilities. Here are some situations in which indexing may be
helpful:

Reallocation invalidates all iterators, references, and pointers to vector 
elements (see Tip 21), but it doesn’t affect indexes.
Mathematical algorithms might be coded more naturally as indexes than as 
iterators.
An index can denote an element in one array that corresponds to an element in
another array that is specified by an iterator.
Code written for C-style arrays might be more easily converted to vectors if 
indexes are used.

The program in Listing 4.3 demonstrates several uses of indexes.

LISTING 4.3 Using an Index in a Vector

// vector_index.cpp

#include <algorithm>

#include <iostream>

#include <vector>

using namespace std;

int main( )

{

vector<int> v( 10, 66 );

v[1] = 100;

// get an iterator that points to the maximum

vector<int>::iterator before_itr =

max_element( v.begin(), v.end() );

Tips on Vectors 129



cout << "The maximum before resizing is " << *before_itr;

// make the index of the maximum

vector<int>::difference_type max_index = before_itr - v.begin();

// force the vector to reallocate

v.resize( v.capacity() + 1 );

// get a new iterator that points to the maximum

vector<int>::iterator after_itr = max_element( v.begin(), v.end() );

// the old iterator should no longer be valid

if( before_itr == after_itr )

cout << "\nThe first iterator is still valid";

else

cout << "\nThe first iterator is no longer valid";

// the index is still valid

cout << "\nThe maximum after resizing is " << v[max_index];

const char* breed_array[] =

{ "Bulldogs", "Terriers", "Poodles", "St. Bernards" };

const int weight_array[] = { 65, 34, 8, 175 };

const int dogs

= sizeof( weight_array ) / sizeof( weight_array[0] );

// make vectors with breeds and weights

vector<string> breeds( breed_array, breed_array+dogs );

vector<int> weights( weight_array, weight_array+dogs );

// find the heaviest breed weight

vector<int>::iterator weight_itr =

max_element( weights.begin(), weights.end() );

// use an index to get the corresponding name

cout << endl << endl << breeds[weight_itr-weights.begin()]

<< " are the heaviest breed";

}

The output is

130 C++ Standard Library Practical Tips



Tips on Vectors 131

The program creates a vector of integers (see Tip 4) and finds the largest number
with max_element (see Tip 83). This algorithm returns an iterator that points to the
maximum. If there is more than one maximum, the iterator points to the first one.

The next line of code gets the equivalent index for the iterator by using the
technique of Tip 20. The code stores the difference between the two iterators in the
data type specified by vector’s difference_type. The code then resizes the vector to
one larger than the current capacity, which, depending on the implementation of
the vector, can force a reallocation. This doesn’t change the values of the elements,
so the subsequent call to max_element finds the same value as before. However, be-
cause of the reallocation, the iterator pointing to the value is different than the it-
erator before the resizing. This is reflected in the output. Actually, the old iterator
is invalid (as Tip 21 explains) and shouldn’t even be compared with the new one.
(On some systems, this may cause a crash.) However, the index computed before
reallocation is still good, as the output shows.

The second half of the program illustrates another use of indexes. It starts by
making two vectors with predefined values (see Tip 5). The names of dog breeds
are in one vector, and the average weights are in the corresponding elements of the
other vector. Again, max_element finds the largest value in the vector of weights, but
the iterator it returns is not usable in the other vector. However, a simple compu-
tation of the index, as before, enables the program to find the breed name corre-
sponding to the biggest weight.

CONVERT BETWEEN ITERATORS AND INDEXES

Applies to: Vector, deque, string
See also: Tip 5, Tip 83, Listing 13.1

Quick Solution
vector<int> v1, v2;

// ...

vector<int>::iterator v1_min = min_element( v1.begin(), v1.end() );

The maximum before resizing is 100

The first iterator is no longer valid

The maximum after resizing is 100

St. Bernards are the heaviest breed

TIP 20



// convert iterator to index

vector<int>::size_type index = v1_min – v1.begin();

cout << "Minimum of v1 is " << *v1_min

<< "  Corresponding value of v2 is " << v2[index];

// convert index to iterator

vector<int>::iterator v2_iterator = v2.begin() + index;

Detailed Solution

A vector has random access iterators. One of the benefits of these iterators is that
you can add and subtract integers and other random iterators from them. This is
particularly useful with the indexing (subscripting) capability of vectors because it
lets you convert from iterators to indexes and vice versa. For example, some vector
member functions such as insert and erase require iterators, so you must convert
indexes to use them. On the other hand, if you have an iterator from one vector and
want to find the corresponding element in another vector, you can do this most
easily by finding the index in the second vector.

To convert a vector’s iterator to an index, subtract the beginning iterator (from
the begin member function) from the iterator. To go in the opposite direction, add
the index to the beginning iterator. Deques and strings also have random access it-
erators, so this technique applies to them, too.

The code in Listing 4.4 illustrates conversions between iterators and indexes.

LISTING 4.4 Converting Between Iterators and Indexes in a Vector

// vector_iterator_index.cpp

#include <algorithm>

#include <string>

#include <vector>

#include "tips.hpp"

using namespace std;

int main( )

{

const char* name_array[] = { "John", "Harry", "Mark", "Abe" };

const int age_array[] = { 89, 34, 12, 20 };

const int people = sizeof( age_array ) / sizeof( age_array[0] );

// make vectors with names and ages

vector<string> names( name_array, name_array+people );

132 C++ Standard Library Practical Tips



vector<int> ages( age_array, age_array+people );

// find the youngest age

vector<int>::iterator age_itr =

min_element( ages.begin(), ages.end() );

// convert from iterator to index

cout << names[age_itr-ages.begin()]

<< ", the youngest person, is " << *age_itr << " years old\n";

// convert from index to iterator

tips::print( names, "Before erasing" );

names.erase( names.begin()+1 );  // erase the second element

tips::print( names, "After erasing" );

}

The output is

The code starts by constructing a vector of strings and a vector of integers filled
with predefined values. (See Tip 5 for the details of this technique.) It then finds the
smallest number by using the STL algorithm min_element, which, as Tip 83 ex-
plains, returns an iterator pointing to the desired value. Next, the code prints the
name and age of the youngest person, as the first line of the output shows. To get
the name corresponding to the age, the code subtracts the beginning iterator of the
age vector from the iterator for the youngest age and uses this difference as an
index in the name vector.

Finally, the program demonstrates converting from an index to an iterator. To
illustrate this it assumes that you want to delete the second name, which has index
1 in the vector of names. The erase member function deletes the element, but it
only accepts iterators, not indexes. However, getting the iterator is simple—just add
the index (one) to the iterator for the start of the vector, as the code shows. The last
two lines of the output are the result.

Tips on Vectors 133

Mark, the youngest person, is 12 years old

Before erasing: John Harry Mark Abe 

After erasing: John Mark Abe



134 C++ Standard Library Practical Tips

BE CAREFUL OF INVALIDATED ITERATORS

Applies to: Vector
See also: Tip 4, Tip 6, Tip 11, Tip 17, Tip 19, Tip 23, Tip 83

Quick Solution

If a vector reallocates, all iterators pointing to its elements become invalid.

Detailed Solution

Iterators, pointers, and references to elements in vectors can easily become invali-
dated. This can occur under a number of circumstances:

Inserting elements invalidates all iterators, pointers, and references to elements
after those inserted. If the insertion causes reallocation, it invalidates all itera-
tors, pointers, and references.
Deleting elements invalidates all iterators, pointers, and references to the ele-
ments after those deleted, but does not invalidate iterators, pointers, and refer-
ences to elements before.
Destruction of the vector invalidates all iterators, pointers, and references to 
elements.
Reallocation invalidates all iterators, pointers, and references to elements.

This last item can be particularly pernicious because reallocation happens au-
tomatically. It may be implicitly triggered by a number of different member func-
tions—assign, resize, reserve, insert, and push_back. Tip 6, Tip 17, and Tip 23
provide more information on these functions.

It’s a good idea to set iterators, pointers, and references to vector elements after
you have finished using the previously mentioned member functions. A safer al-
ternative is to use an index, as Tip 19 demonstrates. Another possibility is a deque,
which is a little bit less susceptible to invalidation. If you’re really going to refer to
elements frequently, you should probably switch to a list because insertions and
deletions never invalidate iterators, pointers, or references to its elements.

Finally, note that when swapping two vectors (via the swap member function or
the equivalent global function swap, as Tip 11 explains), iterators, pointers, and ref-
erences to elements remain valid, but they now refer to elements in a different con-
tainer.

The program in Listing 4.5 demonstrates how push_back can invalidate an iterator.

TIP 21



LISTING 4.5 Being Aware of Invalidated Iterators in Vectors

// vector_invalidate.cpp

#include <algorithm>

#include <iostream>

#include <vector>

using namespace std;

int main( )

{

vector<double> v( 5, 2.78 );

v[2] = 0.0;

// make the vector as large as possible without reallocating

v.resize( v.capacity(), 2.78 );

// find the smallest number

vector<double>::iterator before_itr =

min_element( v.begin(), v.end() );

// append one more element. This causes reallocation

v.push_back( 2.78 );

// find the smallest number. (Its value is the same as before.)

vector<double>::iterator after_itr =

min_element( v.begin(), v.end() );

// See if minimum is still in the same spot of memory

if( before_itr == after_itr )

cout << "The iterators are the same";

else

cout << "The iterators are not the same";

}

The output is

The program starts by creating a vector with five identical values (see Tip 4)
and sets the middle element to a smaller number. Next, it resizes the vector (see Tip
17), using the member function capacity to make the vector as large as possible

Tips on Vectors 135

The iterators are not the same



136 C++ Standard Library Practical Tips

without causing reallocation. The code then uses the STL algorithm min_element to get
an iterator that points to the smallest number in the vector, as explained in Tip 83.

After calling the algorithm, the code uses push_back to add one more element
and so force reallocation. (The value added is the same as those in the original vec-
tor, so the minimum value in the vector doesn’t change.) Then the program gets
another iterator with the location of the minimum and compares the new and the
old iterators. Note that even though the minimum hasn’t changed, the iterators are
not pointing to the same location in memory. This is because the reallocation in-
validated the first iterator. If you were to use it, your program might not work
properly.

CLASSES SHOULD HAVE CONSTRUCTORS, DESTRUCTORS, 
AND AN ASSIGNMENT OPERATOR

Applies to: Vector
See also: Tip 2

Quick Solution

Vectors almost always use the default constructors, destructors, and assignment op-
erators of their elements. Elements that are classes should have correct and efficient
versions of these functions.

Detailed Solution

One of a vector’s most useful capabilities is its ability to automatically resize itself
when necessary. However, resizing and other uses of vector member functions im-
plicitly and extensively copy, assign, and destroy the vector’s elements. For this rea-
son, it’s important that classes used in vectors have a copy constructor, a destructor,
and an assignment operator. The class may also need a default constructor because
the vector may call that if the user has not specified an object to copy. These func-
tions should work correctly. They should also be efficient because they are likely to
be called frequently.

The program in Listing 4.6 demonstrates some simple manipulations of a vec-
tor. The vector’s data element is a class that prints a message whenever its default
constructor, copy constructor, destructor, or assignment operator is called. This al-
lows you to see when and how often the vector uses these member functions of its
data element. Because implementations of the vector may differ, your output may
not be the same as the one shown. It should be close enough for you to get the idea,
though.

TIP 22



LISTING 4.6 Requirements for Classes Used in Vectors

// vector_default_constructor.cpp

#include <iostream>

#include <vector>

using namespace std;

class Element

{

public:

Element();

~Element();

Element( const Element& );

Element& operator=( const Element& );

private:

static int default_constructor_calls_;

static int assignment_calls_;

static int copy_constructor_calls_;

static int destructor_calls_;

};

inline

Element::Element()

{  cout << "\nCall " << ++default_constructor_calls_

<< " of default constructor";

}

inline

Element::Element( const Element& )

{

cout << "\nCall " << ++copy_constructor_calls_

<< " of copy constructor";

}

inline

Element::~Element()

{  cout << "\nCall " << ++destructor_calls_ << " of destructor"; }

inline

Element& Element::operator=( const Element& )

Tips on Vectors 137



138 C++ Standard Library Practical Tips

{

cout << "\nCall " << ++assignment_calls_

<< " of assignment operator";

return *this;

}

int Element::default_constructor_calls_ = 0;

int Element::assignment_calls_ = 0;

int Element::copy_constructor_calls_ = 0;

int Element::destructor_calls_ = 0;

int main( )

{

cout << "CONSTRUCTING VECTOR WITH TWO ELEMENTS";

vector<Element> d( 2 );

cout << "\n\nRESIZING TO CAPACITY";

d.resize( d.capacity() );

cout << "\n\nADDING ONE MORE ELEMENT";

d.push_back( Element() );

cout << "\n\nDELETING FIRST ELEMENT";

d.erase( d.begin() );

}

The output is

CONSTRUCTING VECTOR WITH TWO ELEMENTS

Call 1 of default constructor

Call 1 of copy constructor

Call 2 of copy constructor

Call 1 of destructor

RESIZING TO CAPACITY

Call 2 of default constructor

Call 2 of destructor

ADDING ONE MORE ELEMENT

Call 3 of default constructor

Call 3 of copy constructor

Call 4 of copy constructor



The program starts by constructing a vector with two elements. The form of the
vector constructor that the code uses accepts the number of elements to put in the
vector as the first argument and an instance of the element as the optional second
argument. If this argument exists, the vector will fill itself with copies of the in-
stance. However, as in the code of Listing 4.6, if you omit that argument, the vec-
tor fills itself with copies made from the default constructor. Thus, the first section
of the output starts with one call to the element’s default constructor. This is the
vector making a temporary instance of its data element. The vector then calls the
copy constructor twice, making two copies of the temporary variable and storing
them as the two elements. Finally, the first section of the output shows a call to the
temporary instance’s destructor.

In the next section of the program, the vector resizes itself to its capacity, which
is the largest number of elements it can hold without reallocating memory. The 
resize member function takes the new size as its first argument and, optionally, an
instance of the element as its second argument. If the latter is not passed, as in the
sample program, resize creates a temporary instance. This produces the calls
shown in the output to the default constructor and to the destructor. The vector is
already at capacity in this implementation, so it takes no further action.

Next, the program forces reallocation by creating a temporary, unnamed vari-
able and adding it to the end of the vector via the member function push_back. The
creation of this variable produces the third call to the default constructor, as the
output shows. The vector then copies the two old elements and the passed element
into the newly allocated memory. The output shows the resulting three calls to the
copy constructor. Finally, there are three calls to the element’s destructor—two for
the old elements and one for the temporary, unnamed variable.

The last thing the program does is to delete the first element in the vector. Sur-
prisingly, there is no call to the first element’s destructor. This is because the vector
cleverly removes that element by overwriting it with the second element, producing

Tips on Vectors 139

Call 5 of copy constructor

Call 3 of destructor

Call 4 of destructor

Call 5 of destructor

DELETING FIRST ELEMENT

Call 1 of assignment operator

Call 2 of assignment operator

Call 6 of destructor

Call 7 of destructor

Call 8 of destructor



an unexpected call to the assignment operator. Similarly, the vector overwrites the
second element with the third, then calls the third element’s destructor. The vector
now has just two elements. It goes out of scope as the program ends, and this pro-
duces the last two calls to the destructor shown in the output.

This simple program illustrates the importance of having correct and efficient
default and copy constructors, destructors, and assignment operators in classes
that are to be stored in vectors. Again, although your STL implementation may not
produce exactly the same output, the difference is just a matter of degree. 

Tip 2 explains general restrictions on the elements in a standard container.
These also apply to the vector.

FAST ACCESS AT THE BACK

Applies to: Vector, deque
See also: Tip 41

Quick Solution
vector<int> v;

// ...

if( !v.empty() ) // only access last element if it exists

{

cout << v.back(); // access last element

v.pop_back(); // remove last element

}

v.push_back( 13 ); // can append element even if vector is empty

Detailed Solution

It’s common to think of accessing a vector by indexes or iterators. What is less well
known is that the vector also provides efficient manipulation of its last element.
This makes it ideal for some applications, for example, the LIFO (last-in, first-out)
data structure known as a stack.

A vector has three member functions specifically designed to work with its last
element. The first, back, returns a reference or constant reference to the last element.
This makes it convenient to read or write the last element. Make sure not to use back
on an empty vector because the result is undefined and probably pernicious.

The second relevant member function is pop_back, which removes the last ele-
ment. However, because pop-back doesn’t return the element, you’ll often use back
in tandem with pop_back to read the last element and then delete it. Again, calling
pop_back on an empty vector results in an undefined action.

140 C++ Standard Library Practical Tips

TIP 23



Finally, push_back appends an element to the vector and works even if the vec-
tor is empty. It is quick except on the occasional times when adding an element
makes the vector reallocate memory. push_back and the other two functions de-
scribed are also members of the deque.

The program in Listing 4.7 demonstrates how to work with the last element of
a vector. It displays the last card played in a card game by examining the card on the
top of the discard pile.

LISTING 4.7 Accessing the Back of a Vector

// vector_back.cpp

#include <iostream>

#include <list>

#include <vector>

using namespace std;

class Card

{

public:

enum Suit { spades, clubs, hearts, diamonds };

Card( int value = 1, Suit suit = spades );

// value - 1 = Ace, 2-10, 11 = Jack, 12 = Queen, 13 = King

int suit() const;

int value() const;

private:

int value_;

Suit suit_;

};

inline

Card::Card( int value, Suit suit )

: value_( value ), suit_( suit )

{} // empty

inline

int Card::suit() const

{ return suit_; }

inline

Tips on Vectors 141



int Card::value() const

{ return value_; }

// global function

ostream& operator<<( ostream& out, const Card& card )

{

if( card.value() >= 2 && card.value() <= 10 )

out << card.value();

else

switch( card.value() )

{

case  1: out << "Ace"; break;

case 11: out << "Jack"; break;

case 12: out << "Queen"; break;

case 13: out << "King"; break;

default: out << "Unknown value"; break;

};

out << " of ";

switch( card.suit() )

{

case Card::spades: out << "spades"; break;

case Card::clubs: out << "clubs"; break;

case Card::diamonds: out << "diamonds"; break;

case Card::hearts: out << "hearts"; break;

default: out << "unknown suit"; break;

}

return out;

}

int main( )

{

const int num_players = 2;

vector< list<Card> > hands( num_players );

// deal first player a hand

hands[0].push_front( Card( 12, Card::hearts ) );

hands[0].push_front( Card( 1,  Card::spades ) );

hands[0].push_front( Card( 4,  Card::spades ) );

// deal second player a hand

hands[1].push_front( Card( 13, Card::diamonds ) );

hands[1].push_front( Card( 12, Card::clubs ) );

hands[1].push_front( Card( 2,  Card::hearts ) );

142 C++ Standard Library Practical Tips



Tips on Vectors 143

const int num_plays = 3;

bool discard[num_players][num_plays] = { { true, true, false },

{ true, false, false } };

vector<Card> discard_pile;

// simulate card play

for( int i = 0; i < num_plays; ++i )

for( int j = 0; j < num_players; ++j )

// if discard and hand not empty...

if( discard[j][i] && !hands[j].empty() )

{

discard_pile.push_back( hands[j].front() );

hands[j].pop_front();

cout << "Player " << (j+1) << " discarded a "

<< discard_pile.back() << endl;

}

// if pick up and discard pile not empty...

else if( !discard[j][i] && !discard_pile.empty() )

{

hands[j].push_back( discard_pile.back() );

cout << "Player " << (j+1) << " picked up a "

<< discard_pile.back() << endl;

discard_pile.pop_back();

}

}

The output is

The program starts by declaring a simple class to represent a playing card. The
constructor accepts the card value and suit. (In a standard American card deck, the
values are 1 (Ace), 2–10, 11 (Jack), 12 (Queen), and 13 (King). The four suits are

Player 1 discarded a 4 of spades

Player 2 discarded a 2 of hearts

Player 1 discarded a Ace of spades

Player 2 picked up a Ace of spades

Player 1 picked up a 2 of hearts

Player 2 picked up a 4 of spades



144 C++ Standard Library Practical Tips

spades, clubs, hearts, and diamonds.) The class has two accessors, and a global stream
insertion operator lets the class write information about itself to an output stream.

The function main simulates a game of cards between two players. It starts by
creating a vector containing the two empty hands that are represented by lists. (A
list is a good choice if you expect to delete cards at various positions in the hand.)
The code simulates dealing by giving each player three cards and adding each card
to the front of a list with the list’s push_front member function (see Tip 29). The
last preparatory step the program takes is to create a discard pile from a vector of Cards.

The heart of the program is a nested loop that simulates card play. The first part
of the if-statement in the loop checks whether the current player is supposed to dis-
card this round. If he is and if his hand is not empty, he discards one card, which
comes from the front of the list for simplicity. The program puts the card onto the
top of the discard pile by using the vector’s push_back member function and re-
moves the card from the front of the list.

If the player is not supposed to discard, he must pick up a card from the discard
pile. After verifying that the pile is not empty, the program gets the top card from
the pile by using the vector’s back member function. After the code adds the card
to the player’s hand, it removes the card from the discard pile by calling the vector’s
pop_back member function. The output shows the result.

If you’re just going to use the vector as a stack data structure and you don’t
need to use any STL algorithms on it, you’d be better off just using the STL stack
container. It’s a little bit easier to use, as Tip 41 demonstrates.

CHECKED AND UNCHECKED ACCESS

Applies to: Vector
See also: Tip 5

Quick Solution
vector<int> v;

// ...

cout << v[5] // doesn't check for valid index

<< "   " << v.at( 5 ); // checks for valid index

Detailed Solution

Valid indexes for a vector are zero up to the size of the vector minus one, inclusive.
Calling the subscript operator [] with an invalid index produces undefined behav-
ior—the bête noire of debugging. Although the STL rarely checks for logic errors,
vector indexes are one situation where the STL does provide a modest safety net.
This comes in the form of the at member function of vectors. The input to at has

TIP 24



the same legal values as those for the subscript operator. The output is also the
same. However, if the input is illegal, at throws an out_of_range exception (see “Ex-
ception Handling in the Standard Library” in Chapter 1). This is much better than
doing something undefined, which may include accessing forbidden regions of
memory and other disastrous actions. However, the downside of using at is that it
is slower than access via subscripts.

One nice compromise is to use at during debugging and the subscript opera-
tor in the release version of the code. You can easily do this by conditional compi-
lation. If the program is compiled without debugging code, the C++ compiler often
defines the macro NDEBUG. If there is debugging code, the compiler does not define
the macro. (There are also compilers that do the opposite, i.e., they define DEBUG
when debugging and don’t define it when not debugging.) Check your compiler’s
documentation to see if it will set one of these macros for you or if you have to do
it yourself. You can easily set a macro, such as NDEBUG, manually by putting the line
#define NDEBUG in your code as the program in Listing 4.8 shows. Comment the line
out when you want to debug.

By using the #ifdef NDEBUG preprocessor directive, you can access vectors dur-
ing debugging with at and in final versions with subscripts. The program in Listing
4.8 illustrates this technique.

LISTING 4.8 Checked and Unchecked Access of a Vector

// vector_checked.cpp

#include <iostream>

#include <vector>

using namespace std;

// comment next line out when debugging

#define NDEBUG

class Ship

{

public:

Ship( const float cargo_weight[], int length );

float operator[]( int index ) const;

// REQUIRE: 0 <= index < cargo_loads()

// RETURN: weight of load with specified index

int cargo_loads() const;

Tips on Vectors 145



private:

vector<float> weight_;

};

inline

Ship::Ship( const float weight[], int length )

: weight_( weight, weight+length )

{} // empty

inline

float Ship::operator[]( int index ) const

{

#ifdef NDEBUG

return weight_[index]; // don't check range when not debugging

#else

return weight_.at( index ); // check range when debugging

#endif

}

inline

int Ship::cargo_loads() const

{ return static_cast<int>( weight_.size() ); }

int main( )

{

const int num_loads = 3;

const float weights[num_loads] = { 40.8f, 35.2f, 22.1f };

// make a ship and load it with cargo

Ship ship( weights, num_loads );

// BAD LOOP - off-by-one error

for( int i = 1; i <= ship.cargo_loads(); ++i )

cout << "Cargo load " << i << " weighs "

<< ship[i] << " metric tons\n";

}

The output when NDEBUG is not defined is

146 C++ Standard Library Practical Tips

Cargo load 1 weighs 35.2 metric tons

Cargo load 2 weighs 22.1 metric tons



Then the program throws the out_of_range exception.
The code starts by declaring a little class that represents a cargo ship. Its con-

structor accepts an array of cargo weights and stores them internally in a vector.
The member function cargo_loads returns the number of loads of cargo, which is
the size of the internal vector. The class defines the subscript operator to accept an
index and return the weight of that load. Note that the comment in the class decla-
ration beneath the operator documents the legal range of the index.

The code for the member functions comes next. Using the technique in Tip 5,
the constructor initializes the vector of cargo weights with the passed array.
cargo_loads returns the size of the vector of weights and operator[] shows the con-
ditional vector access described previously.

The main program starts by constructing a ship with three loads of cargo. It
then has a simple loop that attempts to print the index and weight of each load.
However, this loop illustrates a common error by using 1, 2, and 3 as indexes 
instead of 0, 1, and 2. It produces the output shown earlier about the second and
third cargo loads. (If your program doesn’t produce output, it may be that cout is
being buffered and not flushed at the exception. Try setting the unitbuf flag on
cout. This forces output after each call to cout.)

What happens when the loop tries to use an index of three depends on whether
NDEBUG is defined or not. If it isn’t defined when the program runs, the vector will
throw an out-of-range error and stop. If there is no debugging code (NDEBUG is de-
fined), the outcome depends on the system. The program may crash, it may pro-
duce strange output, or it may do something else. The behavior at this point is, after
all, undefined.

GET A C-STYLE ARRAY FROM A VECTOR

Applies to: Vector
See also: Tip 79, Listing 13.14

Quick Solution
void f( int a[], int length );

vector<int> v;

// ...

// pass vector as a C-array

if( !v.empty() )

f( &v[0], static_cast<int>( v.size() ) );

Tips on Vectors 147

TIP 25



Detailed Solution

Vectors are much better than C-style arrays. However, sometimes you may have to
go back to the bad old ways, especially if you’re working with legacy code. Fortu-
nately, it’s easy to get a C-style array, or, more specifically, a pointer to a C-style
array, from a vector. All you have to do is use the address operator (&) on element
0 of the vector. For example, if the vector is v, the address of the C-style array con-
taining the vector’s data is &v[0].

There are a few caveats. First, if the vector is empty, the address of the first ele-
ment might not even exist. So before using the address, have your code verify that
the vector is not empty. Second, don’t use the beginning iterator (from a vector’s
begin member function) as the address of the array. It might work because a vec-
tor’s iterator is often just a plain pointer. However, it might also not work because
there are cases when the iterator is not a pointer but, rather, a class, such as in a de-
bugging implementation of vector. Finally, note that this technique applies to a
vector but not to a deque.

The code in Listing 4.9 is an example of using a vector as a C-style array.

LISTING 4.9 Getting a C-Style Array from a Vector

// vector_array.cpp

#include <numeric>

#include <vector>

#include "tips.hpp"

void doubler( int a[], int length );

// doubles each value in the array

using namespace std;

int main( )

{

// make a vector of consecutive integers

vector<int> data( 5, 1 );

partial_sum( data.begin(), data.end(), data.begin() );

tips::print( data, "Vector before use as array" );

// pass vector as a C-array

if( !data.empty() )

{

doubler( &data[0], static_cast<int>( data.size() ) );

tips::print( data, "Vector after  use as array" );

148 C++ Standard Library Practical Tips



}

}

void doubler( int a[], int length )

{

for( int i = 0; i < length; ++i )

a[i] *= 2;

}

The output is

The program creates a vector of consecutive integers by using the partial-sum
STL algorithm as described in Tip 79. Then, after checking that the vector isn’t
empty, the program passes the values as a C-style array to the function doubler,
which simulates legacy C code. Such code would need the length of the array, which
you can easily get from the size member function of the vector. The earlier output,
produced by printing the vector before and after the call to doubler, shows that op-
erating on the C-style array does indeed change the values in the C++ vector.

USE A VECTOR OF BOOLEANS TO MANIPULATE BITS

Applies to: Vector of Booleans
See also: Tip 4, Tip 28, Tip 44

Quick Solution
vector<bool> v;

//...

v[1] = true; // set a particular bit

v[4].flip(); // toggle a particular bit

v.flip(); // toggle all bits

vector<bool> can’t be used in STL algorithms

Detailed Solution

If you need to work with a collection of Boolean values such as bits or flags, 
vector<bool> may be what you’re after. This template specialization of the vector

Tips on Vectors 149

Vector before use as array: 1 2 3 4 5 

Vector after  use as array: 2 4 6 8 10

TIP 26



class is designed to minimize the amount of space occupied by the flags, so it is es-
pecially useful for large collections of bit values. Actually, it often takes up only one-
eighth of the memory that an unoptimized version would. (There are, however,
implementations in which a bool and an int both take up four bytes.)

You can change the size of a vector of Booleans after you have created it. You
can also access a single bit with the subscript operator ([]). Specifically, you can do
the following:

Assign a Boolean value to a specific bit, such as v[3] = true. (If the right side is
not true or false, it is converted to those values using the normal C++ rules.)
Assign the value of one bit to another, for example, v[2] = v[0].

Complement (negate) a specific bit by using the flip member function on an
indexed value, for example, v[10].flip().

Complement all bits by using flip on the vector, for example, v.flip().

vector<bool> does have its drawbacks. Access to the bits may be slower because
they have to be packed and unpacked. More importantly, vector<bool> is not a true
container and thus can’t be used in the STL algorithms. If you do need to use algo-
rithms on a collection of flags, Tip 28 explains how a deque of Booleans is an alter-
native. If you don’t need to use algorithms and you don’t need to change the size of
the collection, use a bitset instead of a vector of Booleans. As Tip 44 shows, a bitset
has much more bit-tweaking power. Table 8.1 summarizes the pros and cons of
these three containers.

The program in Listing 4.10 is an example of using vector<bool>.

LISTING 4.10 Using a Vector of Booleans

// vector_boolean.cpp

#include <vector>

#include "tips.hpp"

using namespace std;

int main( )

{

vector<bool> shots( 5 ); // true if pet has shot

tips::print( shots, "Initial pets with shots" );

// give shots to two pets

shots[1] = true;

150 C++ Standard Library Practical Tips



shots[4].flip();

tips::print( shots, "Subsequent pets with shots" );

// delete the first element because that pet was adopted

shots.erase( shots.begin() );

tips::print( shots, "After adoption, pets with shots" );

// flip bits to show pets needing shots

shots.flip();

tips::print( shots, "Pets needing shots" );

}

The output is

The program starts by declaring a vector of Booleans that represents whether or
not an animal at a pound has had its shots. The vector has five elements that are ini-
tialized to their default value (see Tip 4). For bool, this is false, as the first line of
output shows. 

Next, two pets are given shots, so the corresponding bits in the vector must be
set to true. The code demonstrates two ways of doing this. The first is to assign true
to a specific bit by using an index and the subscript operator to denote that bit. The
second method is to complement that particular bit by using the flip member
function. (You have to know that the bit is false before you can set it to true by
flipping.) The second line of output shows that two bits have been turned on.

The program simulates the adoption of a pet by deleting that pet’s record of
whether or not it has had a shot. The third line of output shows that after deleting
the first pet, there are only four pets, thus demonstrating that vector<bool> can
change size after it is created. Finally, to print the pets that still need shots instead
of the pets that already have them, the program uses the flip member function on
the entire container. The last line of the output shows the result.

Tips on Vectors 151

Initial pets with shots: 0 0 0 0 0 

Subsequent pets with shots: 0 1 0 0 1 

After adoption, pets with shots: 1 0 0 1 

Pets needing shots: 0 1 1 0



This page intentionally left blank 



153

Tips on Deques5

T
he double-ended queue, or deque, is a container that’s partway between a
vector and a list. Like a vector, it allows indexing of its elements and has ran-
dom access iterators. In general, though, accessing elements is a little slower

than in a vector. Like a list, the deque has efficient access to elements at the front
and back. Inserting or removing from the front or back does not move elements
unless there is a reallocation. Unlike a list, inserting elements to or deleting them
from the middle is not fast. Thus, the ideal application of a deque is one that re-
quires fast access, insertion to and deletion from the front or back, and quick access
to any of the elements. This chapter demonstrates how to

Work with the front of a deque
Use the deque as an alternative to a vector of Booleans

OPERATIONS AT FRONT

Applies to: Deque
See also: Tip 23, Tip 42

Quick Solution
deque<float> d;

// ...

cout << d.front(); // first element

d.pop_front(); // remove first element

d.push_front( 3.14 ); // prepend element

Detailed Solution

In many ways, a deque is similar to a vector. One handy difference is that it gives
you quick access to the front of the container. You can get a reference to the first el-

TIP 27



154 C++ Standard Library Practical Tips

ement with the deque member function front, you can insert an element in the
front with push_front, and remove the first element with pop_front. And, like a vec-
tor (see Tip 23), a deque has the analogous member functions back, push_back, and
pop_back to manipulate the last element.

The efficient access to both ends of the container makes the deque well-suited
for use as a queue, though not surprisingly, the STL queue container (Tip 42) is
even better. You can also use the deque to good advantage if your container ele-
ments can be split into two parts. For example, suppose you have a group of items
to be sold at an auction. To maintain interest, you’d like to alternate selling cheap
ones with those that are expensive. A nice way to do this is to load all the inexpen-
sive items at the front of a deque, load all the costly ones at the back, and then sell
the goods by alternately popping items off the front and the back. Listing 5.1 has
code to do this.

LISTING 5.1 Using the Front of a Deque

// deque_front.cpp

#include <deque>

#include <iostream>

#include <string>

#include <vector>

using namespace std;

class Auction_item

{

public:

Auction_item( const string& name = "nothing",

int minimum_bid = 0 );

int minimum_bid() const;

string name() const;

private:

int minimum_bid_;

string name_;

};

inline

Auction_item::Auction_item( const string& name, int minimum_bid )

: name_( name ), minimum_bid_( minimum_bid )

{} // empty



inline

int Auction_item::minimum_bid() const

{  return minimum_bid_; }

inline

string Auction_item::name() const

{  return name_; }

int main( )

{

vector<Auction_item> v( 5 );

v[0] = Auction_item( "dinner for two", 150 );

v[1] = Auction_item( "1000 piece jigsaw puzzle", 10 );

v[2] = Auction_item( "25-year old bottle of wine", 75 );

v[3] = Auction_item( "night of babysitting", 20 );

v[4] = Auction_item( "limousine ride", 100 );

deque<Auction_item> items;

// load auction items with cheap ones in front, expensive at back

const int min_expensive_item = 50;

for( vector<Auction_item>::iterator i = v.begin();

i != v.end(); ++i )

if( i->minimum_bid() >= min_expensive_item )

items.push_back( *i );

else

items.push_front( *i );

// sell the items

bool sell_cheap = true;

while( !items.empty() )

{

if( sell_cheap )

{

cout << "Now selling: a " << items.front().name()

<< " for a minimum bid of "

<< items.front().minimum_bid() << endl;

items.pop_front();

}

else

{

cout << "Now selling: a " << items.back().name()

<< " for a minimum bid of "

<< items.back().minimum_bid() << endl;

Tips on Deques 155



156 C++ Standard Library Practical Tips

TIP 28

items.pop_back();

}

// Alternate selling cheap and expensive

sell_cheap = !sell_cheap;

}

}

The output is

The top of the code shows a simple class that stores the name and minimum
bid of an auction item. The program starts by storing some items in a vector, sim-
ulating an auction database. Next, the code declares a deque and loads the expen-
sive items at the back of the deque and the cheap ones up front. It does this by
comparing the item’s minimum bid to a threshold and then using push_back or
push_front. Note that this doesn’t sort the items by cost—rather, it separates them
into two groups, with all the cheap items together at the front of the deque and all
the expensive goodies at the back. Finally, the code carries out the auction by alter-
nately selling the front and back elements in the deck. The deque’s front and back

member functions return references, so you can chain them to easily access those
elements’ members, for example, items.front().minimum_bid().

The threshold for expensive items is 50, and the output shows the offerings al-
ternating between inexpensive and costly. The last two are expensive because there
are more of those items than of the cheap ones.

ALTERNATIVE TO A VECTOR OF BOOLEANS

Applies to: Deque
See also: Tip 5, Tip 26, Tip 44

Quick Solution
deque<bool> d1, d2;

// ...

Now selling: a night of babysitting for a minimum bid of 20

Now selling: a limousine ride for a minimum bid of 100

Now selling: a 1000 piece jigsaw puzzle for a minimum bid of 10

Now selling: a 25-year old bottle of wine for a minimum bid of 75

Now selling: a dinner for two for a minimum bid of 150



deque<bool> d3( d1.size() );

transform( d1.begin(), d1.end(), d2.begin(), d3.begin(),

logical_and<bool>() );

Use deque<bool> for bit manipulation if you also want to use STL algorithms.

Detailed Solution

The Standard Library has two containers optimized for working with bits, namely,
bitset (Tip 44) and vector<bool> (Tip 26). Both of these may use less memory to
store a bit or a Boolean than a typical bool variable does. Unfortunately, neither of
these are standard containers, which means that you can’t use them with the STL
algorithms.

An alternative is to use a deque of Booleans, which is a standard container. You
don’t get any special memory savings, but you do get to use the power of the STL
algorithms. Table 8.1 summarizes the pros and cons of these three containers.

Listing 5.2 provides an example of using a deque of Booleans.

LISTING 5.2 Using a Deque Instead of a Vector of Booleans

// deque_bool.cpp

#include <algorithm>

#include <deque>

#include <iostream>

using namespace std;

bool logical_xor( bool a, bool b );

// return true only if exactly one argument is true

void print_result( const char* names[], const deque<bool>& print,

const char* text );

// display the elements in names for which the corresponding elements

// in print are true

int main( )

{

const char* contacts[] ={ "Alex Pendrod", "Joseph deSilva",

"Sally Weh", "Donald O'Brien", "Julia Rosenstein" };

const bool salesman1_data[] = { true, true, false, false, true };

const bool salesman2_data[] = { false, false, true, true, true };

Tips on Deques 157



const int num_customers = sizeof( salesman1_data )

/ sizeof( salesman1_data[0] );

// create deques and initialize with above data

deque<bool> salesman1( salesman1_data,

salesman1_data+num_customers );

deque<bool> salesman2( salesman2_data,

salesman2_data+num_customers );

deque<bool> result( num_customers );

print_result( contacts, salesman1,

"has been called by Salesman 1" );

print_result( contacts, salesman2,

"has been called by Salesman 2" );

// customers called by both salesmen

transform( salesman1.begin(), salesman1.end(), salesman2.begin(),

result.begin(), logical_and<bool>() );

print_result( contacts, result,

"has been called by both salesmen" );

// customers called by at least one salesman

transform( salesman1.begin(), salesman1.end(), salesman2.begin(),

result.begin(), logical_or<bool>() );

print_result( contacts, result,

"has been called by at least one salesman" );

// customers called by only one salesman

transform( salesman1.begin(), salesman1.end(), salesman2.begin(),

result.begin(), logical_xor );

print_result( contacts, result,

"has been called by only one salesman" );

// customers not called by Salesman 1

transform( salesman1.begin(), salesman1.end(),

result.begin(), logical_not<bool>() );

print_result( contacts, result,

"has not been called by Salesman 1" );

}

inline

bool logical_xor( bool a, bool b )

{  return a ? !b : b;  }

158 C++ Standard Library Practical Tips



void print_result( const char* names[], const deque<bool>& which,

const char* text )

{

for( deque<bool>::size_type i = 0; i < which.size(); ++i )

if( which[i] )

cout << names[i] << " " << text << endl;

cout << endl;

}

The output is

The program has some names of customers and records of whether each of two
salesmen has called those customers. The program starts by loading the data from
the arrays into the deques by using the technique of Tip 5. Each element of the de-
ques salesman1 and salesman2 tells whether that salesman has called the person in
the corresponding element of the names array. The custom function print_result
produces the output. It receives the names and a deque of Booleans but only 

Tips on Deques 159

Alex Pendrod has been called by Salesman 1

Joseph deSilva has been called by Salesman 1

Julia Rosenstein has been called by Salesman 1

Sally Weh has been called by Salesman 2

Donald O'Brien has been called by Salesman 2

Julia Rosenstein has been called by Salesman 2

Julia Rosenstein has been called by both salesmen

Alex Pendrod has been called by at least one salesman

Joseph deSilva has been called by at least one salesman

Sally Weh has been called by at least one salesman

Donald O'Brien has been called by at least one salesman

Julia Rosenstein has been called by at least one salesman

Alex Pendrod has been called by only one salesman

Joseph deSilva has been called by only one salesman

Sally Weh has been called by only one salesman

Donald O'Brien has been called by only one salesman

Sally Weh has not been called by Salesman 1

Donald O'Brien has not been called by Salesman 1



displays the names corresponding to elements in the deque that are true. The first
two sections of the output show which customer each salesman has called.

The first calculation is to find which customers have been called by both sales-
men. This is simply the logical AND of the elements in the two deques. The STL 
algorithm transform accomplishes this easily with the use of the functor logical_
and that is part of the Standard Library. transform stores the result in a third deque.
The third section of the output shows the result.

Next, the program decides which customers have been called by at least one
salesman. It uses transform as before, but this time with the predefined functor 
logical_or. The fourth part of  the output shows the result. Similarly, the code also
computes which customers have only been called by one salesman. The exclusive-or
logical operation provides this information, but the STL doesn’t have a functor for
this. However, it’s easy to write one, as the one-line function at the end of the pro-
gram shows.

The last section of the program shows transform operating on only one input
deque. It uses the built-in functor logical_not to store the opposite of each input
element in the output deque. This produces a list of the customers who have not
been called by the first salesmen. The last part of the output displays these people’s
names.

160 C++ Standard Library Practical Tips



161

Tips on Lists6

T
he STL list container is a doubly linked list. It’s the antithesis, or perhaps the
complement, of a vector. Whereas the vector has very fast random 
access, the list has slow access to an element in general. On the other hand,

inserting or deleting an element in a vector anywhere but at its end takes a lot of
time. The list can do this very quickly, so if you’re going to be inserting and delet-
ing at various spots in a container, use a list. It really does make a difference.

The list has a number of member functions that allow you to do a special kind
of inserting called splicing. It also has member functions that do the same thing as
some of the STL algorithms. The list has its own versions, either because the algo-
rithm won’t work at all on a list or because the list can provide a more efficient 
version. This chapter has tips about all these things and more. You’ll find out the
following:

How to easily work with the front and back of the list
How to splice and merge lists
How to sort lists
How to remove duplicate values from a list

USE THE FRONT AND BACK

Applies to: List
See also: Tip 27, Tip 45

Quick Solution

list<float> l;

// ...

cout << l.front(); // first element

l.pop_front(); // remove first element

l.push_front( 3.14 ); // prepend element

TIP 29



162 C++ Standard Library Practical Tips

cout << l.back(); // last element

l.pop_back(); // remove last element

l.push_back( 2.718 ); // append element

Detailed Solution

If you’re planning on inserting or deleting in the middle of a container, you’ve
probably decided to use a list because that’s what it’s really good at. However, don’t
forget that it also provides efficient access to its front and back. It has six member
functions that make it convenient to work at these positions. front and back return
references to the elements at those sites, pop_front and pop_back erase those ele-
ments, and push_front and push_back add an element to the appropriate end of the
list. Here are a few tips on using these handy member functions:

The behavior of front, back, pop_front, and pop_back is undefined if the list
has no elements. You should check that the list is not empty before calling
these member functions. push_front and push_back have no such restriction.
pop_front and pop_back remove an element but do not return it. If you need to
do something with an element, access it before you pop it off the list.
front and back return references (or constant references) to an element. This
lets you chain calls to it with calls to a function or data member. The program
in this tip gives an example of chaining.

Because of this easy manipulation of elements at the front and back of a list,
you may find that container useful if your data is divided into two parts. When cre-
ating a list, you can put elements from one part at the front and the other elements
at the back. They won’t be sorted, but that’s an easy way to partition them during
creation. The program in Listing 6.1 is an example.

LISTING 6.1 Accessing the Front and Back of a List

// list_front_back.cpp

#include <algorithm>

#include <iostream>

#include <list>

using namespace std;

int main( )

{

const char* name_data[] = { "Cindy Winkelman", "Ann Smith",



"Joe Johnston", "Edward Koppelman", "Janice Weitz",

"Gail Hickford", "Candy Kauffman" };

const bool girl_data[] = { true, true, false, false, true,

true, true };

const int num_graduates = sizeof( girl_data )

/ sizeof( girl_data[0] );

list< pair< string, bool > > graduate;

// first - person's name     second - true if girl, false if boy

// list of graduates - girls in front, boys in back

for( int i = 0; i < num_graduates; ++i )

if( girl_data[i] )

graduate.push_front(

make_pair( name_data[i], girl_data[i] ) );

else

graduate.push_back(

make_pair( name_data[i], girl_data[i] ) );

// march in the graduates in boy-girl pairs

cout << "LADIES AND GENTLEMEN, THE GRADUATES ARE\n";

while( !graduate.empty() )

{

cout << graduate.front().first;

graduate.pop_front();

if( !graduate.empty() )

{

cout << " and " << graduate.back().first;

graduate.pop_back();

}

cout << endl;

}

}

The output is

Tips on Lists 163

LADIES AND GENTLEMEN, THE GRADUATES ARE

Candy Kauffman and Edward Koppelman

Gail Hickford and Joe Johnston

Janice Weitz and Cindy Winkelman

Ann Smith



The program simulates a printout or announcement of graduating students.
It’s traditional for the students to march into the ceremony in boy-girl pairs. The
start of the program has some kids’ names and their sexes. The code creates a list
containing the STL utility data structure pair (see Tip 45). The first element is a
string with the kid’s name and the second is a Boolean that’s true if the child is a girl
and false if it’s a boy.

As the program creates the list, it puts the girls on the front and the boys at the
back. Later, when the program shows the graduating pairs, it can simply pull one
person from the front and one from the back, which will automatically produce
boy-girl pairs. To put the data in the list, the code loops through the stored names
and sexes and uses the predefined auxiliary function make_pair, also described in
Tip 45. The function returns a pair that the program pushes on the front or back of
the list, depending on whether the child is a male or a female.

The second half of the code displays the names of the graduating children. The
program keeps working on the list as long as it’s not empty. The loop prints the
name of the first child in a graduating couple. You can see that it gets the name by
calling the front member function of the list and then appending a call to the first
data member in the pair, appropriately called first. This technique is known as
chaining. After printing the name, the loop gets rid of that element by calling
pop_front. It then checks if the list is empty, which could happen if there were an
odd number of students. If the list is empty, there’s nothing to do. If it’s not empty,
the code prints the name of the last student in the list and removes that element.
Pretty simple and clean.

The output shows the boy-girl pairs. The last two lines illustrate that the code
automatically handles situations in which there are more girls than boys (or vice
versa) or in which there are an odd number of students. In this case, all the students
march in pairs except for the one loner at the end.

If you need this kind of quick access to the front and end of a container, but you
don’t have to insert or delete from the middle a lot, check out the deque. This con-
tainer has the same six member functions, is efficient at those operations, and gives
you random access to boot. Tip 27 has the details.

SORT

Applies to: List
See also: Tip 49, Tip 59

Quick Solution
list<float> l;

// ...

164 C++ Standard Library Practical Tips

TIP 30



l.sort(); // default sort is ascending

l.sort( greater<float>() ); // descending sort

Detailed Solution

Sorting is a fundamental procedure in programming. However, if you call the STL
algorithm sort on a list, you’ll get a nasty surprise—your program won’t even com-
pile. This is because sort requires random-access iterators, and a list doesn’t have
any. Not to worry, though—list has a member function to do sorting. It’s called
sort (appropriately) and comes in two versions. The first takes no parameters and
sorts by the less-than operator. The second accepts a comparison function that de-
fines the sort order. The code in Listing 6.2 is an example that demonstrates both
of these member functions.

LISTING 6.2 Sorting Lists

// list_sort.cpp

#include <algorithm>

#include <functional>

#include <iomanip>

#include <iostream>

#include <list>

using namespace std;

class Player

{

public:

Player( const string& first_name = "John",

const string& last_name = "Doe", int height = 60,

float field_goal_percentage = 10 ); // height in inches

bool operator<( const Player& rhs ) const;

float field_goal_percentage() const;

string first_name() const;

int height() const;  // in inches

void height( int& feet, int& inches ) const;

string last_name() const;

void print() const;

private:

float field_goal_percentage_;

Tips on Lists 165



string first_name_;

int height_;   // in inches

string last_name_;

};

inline

Player::Player( const string& first_name, const string& last_name,

int height, float field_goal_percentage )

: field_goal_percentage_( field_goal_percentage ),

first_name_( first_name ), height_( height ),

last_name_( last_name )

{} // empty

inline

float Player::field_goal_percentage() const

{  return field_goal_percentage_; }

inline

string Player::first_name() const

{  return first_name_; }

inline

int Player::height() const  // in inches

{  return height_; }

inline

void Player::height( int& feet, int& inches ) const

{

feet = height() / 12;

inches = height() % 12;

}

inline

string Player::last_name() const

{  return last_name_; }

void Player::print() const

{

int feet, inches;

height( feet, inches );

string name( first_name() );

name += " ";

name += last_name();

cout << setw( 20 ) << left << name << feet << " feet " << inches

166 C++ Standard Library Practical Tips



<< " inches   Field goal percentage: "

<< field_goal_percentage() << endl;

}

inline

bool Player::operator<( const Player& rhs ) const

{ return last_name() < rhs.last_name(); }

inline

bool greater_height( const Player& lhs, const Player& rhs )

{ return lhs.height() > rhs.height(); }

inline

bool greater_field_goal_percentage( const Player& lhs,

const Player& rhs )

{ return lhs.field_goal_percentage()

> rhs.field_goal_percentage(); }

int main( )

{

list<Player> players;

// statistics for 2003-2004 season

players.push_back( Player( "Kobe", "Bryant", 78, 0.422 ) );

players.push_back( Player( "Allen", "Iverson", 72, 0.392 ) );

players.push_back( Player( "Shaquille", "O'Neal", 85, 0.555 ) );

players.push_back( Player( "Yao", "Ming", 90, 0.531 ) );

players.push_back( Player( "Tim", "Duncan", 84, 0.502) );

// sort by name

cout << "PLAYERS BY LAST NAME\n";

players.sort();

for_each( players.begin(), players.end(),

mem_fun_ref( &Player::print ) );

// descending sort by height

cout << "\nPLAYERS BY HEIGHT\n";

players.sort( greater_height );

for_each( players.begin(), players.end(),

mem_fun_ref( &Player::print ) );

// descending sort by field goal percentage

cout << "\nPLAYERS BY FIELD GOAL PERCENTAGE\n";

players.sort( greater_field_goal_percentage );

Tips on Lists 167



168 C++ Standard Library Practical Tips

for_each( players.begin(), players.end(),

mem_fun_ref( &Player::print ) );

}

The output of the program is

The top of the source code contains the definition of a simple class that repre-
sents a basketball player. The class holds the player’s first and last names, his height,
and the percentage of field goals (shots other than free throws) that he made. After
the class, two nonmember functions compare aspects of one player with those of
another. For example, greater_height returns true if the first player passed to it is
taller than the second and false otherwise. These functions will be the arguments
to the list’s sort function.

The program starts by making a list containing five players from the National
Basketball Association (NBA), the professional basketball league in the United
States [Basketball04]. It puts them into alphabetical order by calling the list’s sort
member function with no arguments. This makes the list sort itself with the less-
than operator, which is defined in the Player class and which in turn sorts by last
name. The program then prints the list members by using the STL algorithm

PLAYERS BY LAST NAME

Kobe Bryant         6 feet 6 inches   Field goal percentage: 0.422

Tim Duncan          7 feet 0 inches   Field goal percentage: 0.502

Allen Iverson       6 feet 0 inches   Field goal percentage: 0.392

Yao Ming            7 feet 6 inches   Field goal percentage: 0.531

Shaquille O'Neal    7 feet 1 inches   Field goal percentage: 0.555

PLAYERS BY HEIGHT

Yao Ming            7 feet 6 inches   Field goal percentage: 0.531

Shaquille O'Neal    7 feet 1 inches   Field goal percentage: 0.555

Tim Duncan          7 feet 0 inches   Field goal percentage: 0.502

Kobe Bryant         6 feet 6 inches   Field goal percentage: 0.422

Allen Iverson       6 feet 0 inches   Field goal percentage: 0.392

PLAYERS BY FIELD GOAL PERCENTAGE

Shaquille O'Neal    7 feet 1 inches   Field goal percentage: 0.555

Yao Ming            7 feet 6 inches   Field goal percentage: 0.531

Tim Duncan          7 feet 0 inches   Field goal percentage: 0.502

Kobe Bryant         6 feet 6 inches   Field goal percentage: 0.422

Allen Iverson       6 feet 0 inches   Field goal percentage: 0.392



for_each to call each element’s print member function (see Tip 49 and Tip 59).
The first section of the output shows that the players are indeed in alphabetical
order.

Next, the code resorts the players, this time into descending order of height. Be-
cause the sort member function without arguments arranges the elements into as-
cending order by last name, you need to customize the sorting. Do this by passing
a comparison function, in this case greater_height. The output now shows the
same five players sorted by height. Finally, the program sorts in descending order
of field goal percentage. The last section of the output shows the result.

SPLICE

Applies to: List
See also: Tip 29, Tip 30, Tip 48

Quick Solution

There are three different variations of the splice member function.

list<float> list1, list2, list3, list4;

list<float>::iterator i;

// ... fill lists and make iterator point to element in list1

// splice all list2 elements into list1 at i. list2 is empty after 

// splice

list1.splice( i, list2 ); 

list<float>::iterator i3;

// ... make iterator point to element in list3

// splice element at i3 into list1 at i. Element is not in list3 after

// splice

list1.splice( i, list3, i3 ); 

list<float>::iterator i4a, i4b;

// ... make iterators point to elements in list4

// splice elements in range [i4a, i4b) into list1 at position i

// elements in range are not in list4 anymore after splice

list1.splice( i, list4, i4a, i4b ); 

Tips on Lists 169

TIP 31



Detailed Solution

“To splice” originally meant “to unite two ropes by intertwining their strands.” It
now is more general, applying to other materials (such as magnetic tape) or refer-
ring to the removal of material from one source and its insertion in another loca-
tion. For example, in molecular biology a section of DNA can be removed from one
strand of DNA and spliced (inserted) into another.

In lists, splicing is the moving of elements from one list to another. After the
move, the elements are no longer in the source. The big difference between splic-
ing and other kinds of element movement, such as insertion, assignment, and copy-
ing, is that in the former, the elements are never duplicated, but in the latter, they
are. Lists accomplish splicing by adjusting internal pointers to the list nodes. This
doesn’t involve creating, copying, assigning, or destroying elements, so it can be
much faster than insertion, especially if the elements are classes. It’s also very safe—
splicing never throws errors.

Splicing is helpful and efficient when you need to process sections of a list sep-
arately but still keep the original list. You can splice a part of one list into another,
do your computations on that list and then splice the results back into the original
list. (The sample program in Listing 6.3 demonstrates this.) 

There are three overloaded list member functions called splice that let you
splice. The first is

void splice(iterator position, list<T,Allocator>& x)

This member function removes all the elements from the list x and puts them into
the calling list in front of the element specified by position. The source and desti-
nation lists must be different. If you want to splice an element within a list, use

void splice(iterator position, list<T,Allocator>& x, iterator i)

This version of splice moves the element in x at i in front of the element in the call-
ing list specified by position. (If position is the same as i or the element after i
(++i), nothing happens.) Here, the source list can (but need not) be the same as the
destination list. The third version of splice is

void splice(iterator position, list<T,Allocator>& x, iterator first,

iterator last)

It moves a range from list x and puts it in front of position in the calling list. x and
the calling list can be the same but position can’t be in the range.

The program in Listing 6.3 uses all three versions of splice and demonstrates
how to process parts of a list separately.

170 C++ Standard Library Practical Tips



LISTING 6.3 Splicing Lists

// list_splice.cpp

#include <algorithm>

#include <functional>

#include <iostream>

#include <list>

using namespace std;

class Judge

{

public:

Judge( int id = 1, int panel = 1, int score = 1,

bool award = false );

// id >= 1, ID number of judge

// 1 <= panel <= 3

// 1 <= score <= 10

// award - if true, judge gives a special award

bool operator>( const Judge& rhs ) const;

// compare scores

bool is_award() const;

int panel() const;

void print() const;

// display info about judge

private:

bool award_;

int id_;

int panel_;

int score_;

};

inline

Judge::Judge( int id, int panel, int score, bool award )

: award_( award ), id_( id ), panel_( panel ), score_( score )

{} // empty

inline

Tips on Lists 171



bool Judge::operator>( const Judge& rhs ) const

{ return score_ > rhs.score_; }

inline

bool Judge::is_award() const

{ return award_; }

inline

int Judge::panel() const

{ return panel_; }

inline

void Judge::print() const

{

cout << "Judge " << id_ << " of Panel " << panel()

<< " gives a score of " << score_;

if( is_award() )

cout << " and a SPECIAL AWARD";

cout << endl;

}

bool is_panel( const Judge judge, int panel_number );

// returns true if panel number of judge is equal to passed number,

// false otherwise

bool less_panel( const Judge& lhs, const Judge& rhs );

// returns true if panel number of first judge is less than

// panel number of second judge, false otherwise

int main( )

{

const int id[]     =  { 1, 5, 2, 4, 2, 3, 6, 2, 1, 4, 3, 3 };

const int panel[]  =  { 1, 1, 3, 1, 2, 1, 2, 1, 3, 2, 2, 3 };

const int score[]  =  { 7, 7, 1, 6, 6, 4, 6, 5, 4, 3, 4, 5 };

const bool award[] =  { false, false, false, false, false,

false, true, true, true, false, false, false,  };

list<Judge> judge;

for( int i = 0; i < sizeof( id ) / sizeof( id[0] ); ++i )

judge.push_back( Judge( id[i], panel[i], score[i], award[i] ) );

cout << "ORIGINAL LIST\n";

for_each( judge.begin(), judge.end(),

mem_fun_ref( &Judge::print ) );

172 C++ Standard Library Practical Tips



// sort by panel number and display

judge.sort( less_panel );

cout << "\nLIST SORTED BY PANEL\n";

for_each( judge.begin(), judge.end(),

mem_fun_ref( &Judge::print ) );

const int num_panels = 3;

for( int i = 1; i <= num_panels; ++i )

{

// find the first judge from the current panel

list<Judge>::iterator start =

find_if( judge.begin(), judge.end(),

bind2nd( ptr_fun( is_panel ), i ) );

// find the first judge from the next panel

list<Judge>::iterator stop =

find_if( judge.begin(), judge.end(),

bind2nd( ptr_fun( is_panel ), i+1 ) );

// splice all the current panel judges into a temporary list

list<Judge> work;

work.splice( work.begin(), judge, start, stop );

// sort judges by score in descending order

work.sort( greater<Judge>() );

// remove the highest and lowest

work.pop_front();

work.pop_back();

// move any special award to the front of the original list

list<Judge>::iterator j = find_if( work.begin(), work.end(),

mem_fun_ref( &Judge::is_award ) );

if( j != work.end() )

judge.splice( judge.begin(), work, j );

// put the sorted, remaining judges back into original list

judge.splice( stop, work );

}

cout <<

"\nLIST SORTED BY PANEL AND SCORE, SPECIAL AWARDS FIRST\n";

for_each( judge.begin(), judge.end(),

mem_fun_ref( &Judge::print ) );

Tips on Lists 173



174 C++ Standard Library Practical Tips

}

inline

bool less_panel( const Judge& lhs, const Judge& rhs )

{ return lhs.panel() < rhs.panel(); }

inline

bool is_panel( const Judge judge, int panel_number )

{ return judge.panel() == panel_number; }

The output is

ORIGINAL LIST

Judge 1 of Panel 1 gives a score of 7

Judge 5 of Panel 1 gives a score of 7

Judge 2 of Panel 3 gives a score of 1

Judge 4 of Panel 1 gives a score of 6

Judge 2 of Panel 2 gives a score of 6

Judge 3 of Panel 1 gives a score of 4

Judge 6 of Panel 2 gives a score of 6 and a SPECIAL AWARD

Judge 2 of Panel 1 gives a score of 5 and a SPECIAL AWARD

Judge 1 of Panel 3 gives a score of 4 and a SPECIAL AWARD

Judge 4 of Panel 2 gives a score of 3

Judge 3 of Panel 2 gives a score of 4

Judge 3 of Panel 3 gives a score of 5

LIST SORTED BY PANEL

Judge 1 of Panel 1 gives a score of 7

Judge 5 of Panel 1 gives a score of 7

Judge 4 of Panel 1 gives a score of 6

Judge 3 of Panel 1 gives a score of 4

Judge 2 of Panel 1 gives a score of 5 and a SPECIAL AWARD

Judge 2 of Panel 2 gives a score of 6

Judge 6 of Panel 2 gives a score of 6 and a SPECIAL AWARD

Judge 4 of Panel 2 gives a score of 3

Judge 3 of Panel 2 gives a score of 4

Judge 2 of Panel 3 gives a score of 1

Judge 1 of Panel 3 gives a score of 4 and a SPECIAL AWARD

Judge 3 of Panel 3 gives a score of 5



Suppose there’s a contest with three panels of judges. After each contestant per-
forms, the judges are given a certain amount of time to record their scores. You re-
ceive the scores in a list container, and you know the following: 

The scores can be in any order because the judges can make their decisions in
any order.
There are exactly three panels.
Because the scores aren’t sent to you until three judges per panel have voted,
there will always be scores from at least three judges from each panel. 
A judge can only vote once per contestant.
Only one judge per panel can grant a special award, though a panel need not
give the award.

Your job is to write software to rearrange the list so that (1) the judges’ deci-
sions are sorted in ascending order of panel number, (2) within a panel, the deci-
sions are in descending order of score, (3) the highest and lowest scores from each
panel have been eliminated (as in Olympic ice skating judging), and (4) any judges
who have given a special award and who have not been eliminated are placed at the
front of the list.

The code starts by declaring a class to hold information about the judge. It con-
tains his identification number, panel number, score, and whether or not he has
granted a special award. There are member functions to display the information in
the class, to tell if the judge has made an award, and to rank the judges in descend-
ing order of score (the greater-than operator). There are also two global functions.
One decides whether a passed judge is a member of a particular panel, and the other
tells whether one judge’s panel number is less than another’s.

The main part of the program starts by loading a bunch of judges’ votes onto a
list by pushing them onto the back of the list (see Tip 29). It then displays the votes
by calling the print member function of each element in the list, using the tech-
nique of Tip 48. The first section of the output shows the votes in their original
order. You can see that the panel numbers are mixed up.

Tips on Lists 175

LIST SORTED BY PANEL AND SCORE, SPECIAL AWARDS FIRST

Judge 1 of Panel 3 gives a score of 4 and a SPECIAL AWARD

Judge 6 of Panel 2 gives a score of 6 and a SPECIAL AWARD

Judge 2 of Panel 1 gives a score of 5 and a SPECIAL AWARD

Judge 5 of Panel 1 gives a score of 7

Judge 4 of Panel 1 gives a score of 6

Judge 3 of Panel 2 gives a score of 4



The code then sorts the list by panel number. The code uses the sort member
function (see Tip 30) with the custom global function less_panel as an argument.
(The class could define a less-than operator instead to compare votes by score.
However, this would be confusing because the greater-than operator compares
votes by panel number.) The second section of the output shows the judges’ deci-
sions sorted by panel number.

The next part of the program is a loop that does the bulk of the work. It
processes the three panels but is parameterized so that it will work with other num-
bers of panels. The loop starts by using the STL algorithm find_if to look for the
first judge who’s a member of the current panel. (The loop counter is, in fact, the
panel number.) Similarly, the loop also finds the first judge from the next panel.
These two iterators define the range of judges in the current panel. (Remember that
as with all STL ranges, the last iterator, which in this case points to the next panel’s
first judge, is one past the last element of interest. Note also that if find_if doesn’t
find a member of the next panel (and this happens on the final loop iteration be-
cause there is no next panel), it returns the ending iterator of the container. That it-
erator works just fine in the code that follows the call to find_if.

Once the loop has the range of the judges in the current panel, it declares a tem-
porary list and splices those elements into it. Then the loop sorts those judges into
descending order of score using the greater-than predefined functor. Removing
the judges with the highest and lowest scores is easy with the use of pop_front and
pop_back (see Tip 29). Finally, the code uses find_if again to search for a judge who
has given out the special award. There can be at most one such judge in the panel,
so the program only calls find_if once. However, there might not be any judges
who gave awards, so the code verifies that the algorithm didn’t return the ending it-
erator before it splices the element onto the front of the original list. 

The last thing the loop does is to splice any remaining elements in the working
list back into the original, at the same spot from which they were taken. The last
section of the output shows the result. All special awards are at the head of the list,
the highest and lowest score from each panel has been eliminated, and the remain-
ing judges are sorted by panel and within panel by score.

MERGE

Applies to: List
See also: Tip 30, Tip 48

Quick Solution
list<int> list1, list2;

// ...

176 C++ Standard Library Practical Tips

TIP 32



Tips on Lists 177

list1.sort();

list2.sort();

// after call, list2 is empty, list1 has both lists sorted

list1.merge( list2 );

Detailed Solution

Sometimes you need to merge two sorted lists together, that is, combine them into
one sorted list. For example, suppose at the start of the day, you have just one list
of items available. You sort the list and then work with it. As the day progresses, you
get more lists that you process the same way. At the end of the day, you need to put
all the lists together, sort the composite list, and do your computations on it. In-
stead of re-sorting the master list, you can merge all the lists together. This produces
a sorted list, and more quickly, too.

Although the STL has the algorithm merge, lists have a member function with
the same name. It is more efficient because it just splices nodes rather than create
new ones. merge has two signatures. The first takes no arguments and sorts using
the less-than operator. The second takes one argument—a binary predicate that de-
termines the sorting order. Here are some other things to keep in mind:

Sort all lists that you merge the same way, that is, with the sorting criterion.
merge will run on unsorted lists, but the result is not very useful.
The list member function merge removes all elements from the source list and
puts them into the destination list. The algorithm version doesn’t modify either
source list.

The program in Listing 6.4 has some examples of sorting and merging lists.

LISTING 6.4 Merging Lists

// list_merge.cpp

#include <algorithm>

#include <functional>

#include <iostream>

#include <iterator>

#include <list>

using namespace std;

class Salesperson

{



public:

Salesperson( const string& name = "", int sales = 0,

int district = 0 );

// name - salesperson's last name

// sales - >= 0, last year's sales in dollars

// district - district number

bool operator>( const Salesperson& rhs ) const;

// true is sales of *this is > than rhs.sales(), else false

void print() const;

// print info on salesperson

private:

int district_;

string name_;

int sales_;

};

inline

Salesperson::Salesperson( const string& name, int sales,

int district )

: district_( district ), name_( name ), sales_( sales )

{} // empty

inline

bool Salesperson::operator>( const Salesperson& rhs ) const

{ return sales_ > rhs.sales_; }

inline

void Salesperson::print() const

{ cout << name_ << " from District " << district_

<< " has sales of $" << sales_ << endl;

}

int main( )

{

list<Salesperson> list1;

list1.push_back( Salesperson( "Gutierrez", 37000, 1 ) );

list1.push_back( Salesperson( "Gonzalez", 49000, 1 ) );

list1.push_back( Salesperson( "Ochoa", 48500, 1 ) );

// sort District 1 salespeople in descending order and display

list1.sort( greater<Salesperson>() );

178 C++ Standard Library Practical Tips



cout << "Top three salespeople for District 1\n";

for_each( list1.begin(), list1.end(),

mem_fun_ref( &Salesperson::print ) );

list<Salesperson> list2;

list2.push_back( Salesperson( "Yashimoto", 65000, 2 ) );

list2.push_back( Salesperson( "de la Cruz", 33000, 2 ) );

list2.push_back( Salesperson( "Duke", 47000, 2 ) );

// sort District 2 salespeople in descending order and display

list2.sort( greater<Salesperson>() );

cout << "\nTop three salespeople for District 2\n";

for_each( list2.begin(), list2.end(),

mem_fun_ref( &Salesperson::print ) );

list<Salesperson> list3;

list3.push_back( Salesperson( "White", 30000, 3 ) );

list3.push_back( Salesperson( "Kline", 44000, 3 ) );

list3.push_back( Salesperson( "Bradley", 42500, 3 ) );

// sort District 3 salespeople in descending order and display

list3.sort( greater<Salesperson>() );

cout << "\nTop three salespeople for District 3\n";

for_each( list3.begin(), list3.end(),

mem_fun_ref( &Salesperson::print ) );

list<Salesperson> list4;

list4.push_back( Salesperson( "Smith", 51000, 4 ) );

list4.push_back( Salesperson( "Kleinenberg", 33000, 4 ) );

list4.push_back( Salesperson( "Schwartz", 44000, 4 ) );

// sort District 4 salespeople in descending order and display

list4.sort( greater<Salesperson>() );

cout << "\nTop three salespeople for District 4\n";

for_each( list4.begin(), list4.end(),

mem_fun_ref( &Salesperson::print ) );

// merge Districts 1 and 2 into Western Region

list1.merge( list2, greater<Salesperson>() );

// keep only the top 3 salespeople

const int top_positions = 3;

list<Salesperson>::iterator position = list1.begin();

advance( position, top_positions );

Tips on Lists 179



list1.erase( position, list1.end() );

cout << "\nTop three salespeople for Western Region "

<< "(Districts 1 and 2 )\n";

for_each( list1.begin(), list1.end(),

mem_fun_ref( &Salesperson::print ) );

// merge Districts 3 and 4 into Eastern Region

list3.merge( list4, greater<Salesperson>() );

// keep only the top 3 salespeople

position = list3.begin();

advance( position, top_positions );

list3.erase( position, list3.end() );

cout << "\nTop three salespeople for Eastern Region "

<< "(Districts 3 and 4)\n";

for_each( list3.begin(), list3.end(),

mem_fun_ref( &Salesperson::print ) );

// merge two regions into whole country

list1.merge( list3, greater<Salesperson>() );

// keep only the top 3 salespeople

position = list1.begin();

advance( position, top_positions );

list1.erase( position, list1.end() );

cout << "\nTop three salespeople in the country\n";

for_each( list1.begin(), list1.end(),

mem_fun_ref( &Salesperson::print ) );

}

The output is

180 C++ Standard Library Practical Tips

Top three salespeople for District 1

Gonzalez from District 1 has sales of $49000

Ochoa from District 1 has sales of $48500

Gutierrez from District 1 has sales of $37000

Top three salespeople for District 2

Yashimoto from District 2 has sales of $65000

Duke from District 2 has sales of $47000

de la Cruz from District 2 has sales of $33000



Tips on Lists 181

The sample program illustrates the use of merge to make a hierarchy of com-
parisons. First, the program sorts salespeople within one district. Next, it does the
same thing for regions, with each region being made up of several districts. Finally,
the program combines the top sellers for the regions into a list for the whole coun-
try and finds the champions in that list.

The program starts by declaring a little class to hold the name, yearly sales
total, and district number of a salesperson. It also has the greater-than operator,
which ranks the class by sales. The main part of the code declares a list for District
1 and puts three salespeople in it. It puts them into descending order of sales by
calling the list’s sort member function (see Tip 30) with the greater-than prede-
fined functor as the sorting criterion. Then it displays the sorted salespeople by
using the STL algorithm for_each to call every element’s print member function, as
Tip 48 explains. The first section of the output shows the three salespeople in de-
scending order of amount sold. The code creates, sorts, and displays lists for the
other three districts. The output shows these sorted salespeople.

Top three salespeople for District 3

Kline from District 3 has sales of $44000

Bradley from District 3 has sales of $42500

White from District 3 has sales of $30000

Top three salespeople for District 4

Smith from District 4 has sales of $51000

Schwartz from District 4 has sales of $44000

Kleinenberg from District 4 has sales of $33000

Top three salespeople for Western Region (Districts 1 and 2 )

Yashimoto from District 2 has sales of $65000

Gonzalez from District 1 has sales of $49000

Ochoa from District 1 has sales of $48500

Top three salespeople for Eastern Region (Districts 3 and 4)

Smith from District 4 has sales of $51000

Kline from District 3 has sales of $44000

Schwartz from District 4 has sales of $44000

Top three salespeople in the country

Yashimoto from District 2 has sales of $65000

Smith from District 4 has sales of $51000

Gonzalez from District 1 has sales of $49000



After seeing the top three sellers for each of the four districts, the company’s
management says it wants to see the top sellers for each region. Districts 1 and 2
make up the western region, and the other two districts constitute the eastern re-
gion. Because all the lists are sorted, it’s more efficient to merge two lists than to
combine them and re-sort. The program merges the second list into the first. It
passes the greater-than functor because that’s how the original lists were sorted. (If
it didn’t pass, a sorting criterion sort would use less-than. This would cause prob-
lems when used on lists sorted with greater-than.) 

The program could just print the top three from the longer list, but because it’s
going to merge that list later on, it deletes all but the top three now. To do this, the
program first creates a list iterator and sets it to the start of the list. Then it calls the
utility function advance (available in the <iterator> header) to advance the iterator
by three. (You can’t just add three to the iterator because that only works with ran-
dom access iterators. A list iterator is bidirectional, not random access.) Finally, the
program calls the list member function erase to remove all elements from the
fourth to the end. The output shows the result. Notice that salespeople from both
districts are in the output.

The code does the same thing for the other two districts to get the top three sell-
ers for the eastern region. In its final use of merge, it combines the two regions into
a list for the whole country and gets the best three salespeople all around. The out-
put shows the winning salespeople for the regions and the country.

REMOVE DUPLICATES

Applies to: List
See also: Tip 29, Tip 30, Tip 45, Tip 59

Quick Solution
list<int> l;

// ...

l.sort();

l.unique(); // remove all duplicates

Detailed Solution

There are times when you need to remove all but one copy of items stored in a list.
In other words, you need to get rid of all duplicates. For example, your list might
contain the hits from a Web search, which is likely to have duplicates. You might
have a list with all the scores on a test, but you’re just interested in the different
numbers that occurred, regardless of how many students got a particular score. 

182 C++ Standard Library Practical Tips

TIP 33



Tips on Lists 183

Finally, you might have a list of all the cars at an auto dealer. The customers might
want to look at the different cars available. If the dealer has several cars that are the
same, the customers wouldn’t want to look at the duplicates.

The STL algorithm unique removes consecutive duplicates in a range. Lists have
a member function with the same name that is optimized for the list, so use it in-
stead of the algorithm. The function has two versions—one that compares by
equality and one that accepts a binary predicate. In the former case, unique elimi-
nates the current element if it is equal to the previous element. (This means that
classes in the list must define an equality operator.) The latter case operates the
same way except that unique deletes the current element if the predicate returns
true.

It’s important to remember that unique only eliminates consecutive duplicates.
Sorting will make all duplicates of an item fall consecutively in the list, so it’s often
done before calling unique. However, there may be times when you only want to
eliminate consecutive duplicates from the original list ordering. The program in
Listing 6.5 illustrates both situations.

LISTING 6.5 Removing Duplicates from Lists

// list_unique.cpp

#include <algorithm>

#include <iostream>

#include <list>

#include <string>

#include <utility>

using namespace std;

void print_message( const pair<int,string>& message );

int main( )

{

list< pair< int, string > > message;

message.push_back( make_pair( 40449, "Shift key down" ) );

message.push_back( make_pair( 40443, "Mouse key down" ) );

message.push_back( make_pair( 40443, "Mouse key down" ) );

message.push_back( make_pair( 40444, "Mouse key up" ) );

message.push_back( make_pair( 40448, "Mouse move" ) );

message.push_back( make_pair( 40443, "Mouse key down" ) );

cout << "ORIGINAL MESSAGES" << endl;

for_each( message.begin(), message.end(), print_message );



184 C++ Standard Library Practical Tips

message.unique();

cout << "\nSEQUENTIAL DUPLICATES REMOVED" << endl;

for_each( message.begin(), message.end(), print_message );

message.sort();

message.unique();

cout << "\nALL DUPLICATES REMOVED" << endl;

for_each( message.begin(), message.end(), print_message );

}

void print_message( const pair<int,string>& message )

{

cout << message.first << " - " << message.second << endl;

}

The output is

Most modern graphical user interfaces (GUIs) are message based. This means
that each interface action has information about it stored in a data packet (a mes-
sage), and this message is passed to the appropriate piece of software to be handled.

ORIGINAL MESSAGES

40449 - Shift key down

40443 - Mouse key down

40443 - Mouse key down

40444 - Mouse key up

40448 - Mouse move

40443 - Mouse key down

SEQUENTIAL DUPLICATES REMOVED

40449 - Shift key down

40443 - Mouse key down

40444 - Mouse key up

40448 - Mouse move

40443 - Mouse key down

ALL DUPLICATES REMOVED

40443 - Mouse key down

40444 - Mouse key up

40448 - Mouse move

40449 - Shift key down



Messages usually have the time the action occurred and an identification number.
Keystrokes will also have the key that was hit. Mouse actions may have the button
that was pushed and the mouse location. Occasionally, because of quirks or bugs in
the GUI, some messages are duplicated. If you’re working with the messages, you
need to eliminate those duplicates.

The sample program simulates a message by an STL pair data structure con-
taining an identification number and explanatory text. The program makes a list to
hold the messages, creates a number of messages with the STL utility make_pair (see
Tip 45), and adds them to the list by using the member function push_back (see Tip
29). The program then prints the message by using the STL algorithm for_each (see
Tip 59) to call a custom function. This function, at the bottom of the source code,
just has one statement that sends the identification number and text to the standard
output stream. The first section of the output shows the result.

To eliminate any consecutive duplicates, the code calls the list member func-
tion unique. The second part of the output shows the messages that are left. Note
that there are still two duplicate messages—number 40443. This is because there
were three originally, but only two occurred consecutively. unique only eliminated
the duplicate of the consecutive pair.

Suppose it’s also of interest (for example, for debugging) to show only the
unique messages, that is, to eliminate all duplicates regardless of where in the list
they occur. The program shows that the code is the same as before except that it
sorts the list first (see Tip 30). The last section of the output shows that this time the
messages are unique throughout the whole list. Sorting and calling unique got rid of
one of the duo of duplicates. If there had been three or more duplications, unique
would have still done its job. However, instead of just eliminating one of the du-
plicated elements, unique would have eliminated as many as necessary so that only
one remained.

Tips on Lists 185



This page intentionally left blank 



187

Tips on Associative
Containers

7

A
sequence container holds its elements in linear order. The location of an 
element depends on when and where it was inserted, but is independent of
the value of the element. Associative containers are quite different. They

hold sorted collections of objects. The position in the container depends on the ob-
ject’s value rather than on whether it was inserted before or after another object.

When you insert elements into an associative container, it automatically sorts
them. This doesn’t mean that associative containers are designed for sorting per se
because you can also sort sequence containers. The big advantage of associative
containers comes in searching for a value. The search is always logarithmic, which
for large sequences is much faster than a search on an unsorted sequence container.
Nevertheless, there are some situations in which alternative containers or search
methods may be better:

Hash maps, under the name “unordered associative containers” are available
from Boost (see Tip 99) and perform substantially better in some applications.
If the collection of elements is fixed, sorting a vector and using a binary search,
such as the STL algorithm lower_bound, performs better and takes up signifi-
cantly less memory.
Storing small collections in a sequence container and using the STL algorithms
find or find_if normally gives superior performance.

The STL has two general types of associative containers—sets/multisets and
maps/multimaps. Sets order their elements by value and don’t permit duplicates.
Multisets order the same way but do permit duplicates. Maps store elements in
pairs. One member of the pair is the key and the other is the value. Maps order their
elements by key and the keys must be unique. Multimaps do the same but permit
duplicate keys.

Maps have indexing, that is, access to an element’s value by passing the key to
the subscript operator ([]). The interesting and powerful feature of this capability
is that the index can be any data type, not just an integer. For example, the index



188 C++ Standard Library Practical Tips

can be a text string. The clear application of that is a dictionary in which the key is
a word and the value is the word’s definition. Because of this use, maps are some-
times called dictionaries. A container that permits indexing by any data type is
known as associative memory, and that is where the name for the four containers in
this chapter comes from.

The obvious use of a set is as a model of a mathematical set. A map can be used
as a dictionary. Here are some other applications of associative containers:

Sometimes, especially with large objects, inserting them into a multiset so that
they are automatically sorted is faster than putting them into a sequence con-
tainer and sorting them with the STL sort algorithm or the container’s sort
member function.
If an application uses only a few of a large number of possible integer indexes,
a map can take up much less memory than a vector. This is because the map
only needs room for the elements that are present but a vector must allocate
space for all possible indexes.
Maps are useful in scientific calculations involving sparse matrices. (A matrix
is a rectangular array of numbers, and a sparse matrix is a matrix that has only
a few nonzero values.) The map stores the location and value only of the
nonzero elements.

Associative containers store their elements in order. By default, the containers
compare two elements with the less-than operator, though you can specify some-
thing else. If you want to see whether one element is the same as another, for ex-
ample, when using a container’s find member function to search for an element, a
subtle issue arises—what does “same” mean? The most obvious answer is that two
elements are the same if they make the equals operator (==) return true. However,
the STL does not use this definition.

To understand what the STL does, first consider ordering two numbers, x and
y. There are only three possibilities—x is less than y, y is less than x, or x is equal to
y. Intuition says that x and y are the same if they are equal. The simplest way to test
this is just to see if x equals y. A more complicated way to see if the two are equal is
to verify that x is not less than y and that y is not less than x. The only possibility that
remains is that x must be equal to y. For example, 2 + 3 is equal to 5 because 2 + 3
is not less than 5 and 5 is not less than 2 + 3.

In the STL, two objects x and y are equal if they satisfy the equals operator, that
is, if operator==( x, y ) returns true. Two objects are equivalent if the first is not
less than the second and the second is not less than the first, that is, if !( x < y )

&& !( y < x ) is true. Another way of defining equivalence, which is logically the
same as the first definition, is that two objects are equivalent if it’s not true that the
first is less than the second or the second is less than the first, that is, !( x < y || y



< x ) is true. This expression is a little better because there is only one “not” (!) to
evaluate. By analogy, if you provide a custom comparison function (say compare)
to put objects in order, the two objects are equivalent if !( compare( x, y ) || com-
pare( y, x ) ) is true.

Associative containers always use equivalence to see if elements are the same.
Using equivalence instead of equality in associative containers has some advan-
tages. First, since the container must have the less-than operator anyway to order
the elements, classes in the container don’t need to also define an equality operator.
Second, the containers’ constructors accept an optional argument that specifies the
sorting criterion. If the containers used equality, you would have to specify two ar-
guments, one for comparison and one for equality. Finally, by using equivalence,
you can make a class that defines an equality operator (==) that is independent of
its less-than operator. Be careful with this, though, because you want results to be
consistent. For example, suppose you put the elements into a multiset and search
for a particular one with the container’s find member function. You probably want
the one found to be the same as if you put the elements into a vector and searched
with the STL algorithm find, which uses equality to compare two elements.

A word of caution—be careful when reading about associative containers. Au-
thors often say that two elements are equal even though they mean equivalent. In
this book, comparisons of elements in associative containers are always done by
equivalence, so phrases such as “the same” and “equal” mean “equivalent” in this
context.

Here’s what this chapter has in store for you:

How to initialize associative containers with specified values
How to use a map or multimap as a dictionary
How to search, modify or remove elements
How to use sorted range algorithms with sets and multisets

INITIALIZE WITH SPECIFIED VALUES

Applies to: Associative containers
See also: Tip 3, Tip 5, Tip 45, Tip 47, Tip 54, Tip 81

Quick Solution
const int n[3] = { 4, 2, 6 };

const char* text[3] = { "Four", "Two", "Six" };

Tips on Associative Containers 189

TIP 34



190 C++ Standard Library Practical Tips

set<int> s( n, n + 3 );

multiset<int> ms( n, n + 3 );

map<int,string> m;

transform( n, n+n_size, text, inserter( m, m.end() ), 

make_pair<int,string> );

multimap<int,string> mm;

transform( n, n+n_size, text, inserter( mm, mm.end() ), 

make_pair<int,string> );

Detailed Solution

You may want to construct an associative container with given data in it. Unlike C-
style arrays, which let you do exactly this with initializer lists, associative contain-
ers don’t have constructors that can do the job. However, you can combine arrays
and associative container constructors to easily create sets and multisets with spec-
ified values. Doing the same for maps and multimaps takes just one line more. The
technique is very similar to that for initializing standard sequence containers (see
Tip 5), but there are a couple of twists.

To initialize sets or multisets, make a C-style array with the data specified in an
initializer list and pass the beginning and end iterators of the array to the set/mul-
tisets constructor. (Tip 3 shows that for a C-style array, you use the name of the
array as the beginning iterator and the name plus the number of elements as the
end iterator.) For multisets, you’ll have all your numbers sorted by key. A set will
sort the numbers, too, but will also eliminate any duplicates, because no elements
in a set can be the same. Notice that by constructing a set from an array as de-
scribed, in just one line of code you’re sorting a group of numbers and getting rid
of all duplicates.

Initializing maps and multimaps takes a little bit more code. The problem is
that those containers accept and store values in the pair data structure (see Tip
45), so you first have to move the data from the C-style arrays into pairs and then
pass the pairs to the containers. After that, multimaps will contain all the data in
sorted order. Maps will also be that way, but without duplicate keys. Listing 7.1
demonstrates the initialization of all four kinds of associative containers.

LISTING 7.1 Initializing Associative Containers

// associative_initialize.cpp

#include <algorithm>

#include <functional>



#include <iostream>

#include <map>

#include <set>

#include <utility>

#include "tips.hpp"

using namespace std;

int main( )

{

const int num_cars = 6;

const int year[num_cars] = { 1998, 1970, 1966, 2004, 1998, 1930 };

const char* name[num_cars] = { "Toyota Sienna", "Dodge Dart",

"Chevrolet Corvette", "BMW 645Ci", "Toyota Sienna",

"Ford Model A" };

// initialize set and multiset with given data

set<int> unique_years( year, year + num_cars );

multiset<int> all_years( year, year + num_cars );

tips::print( unique_years, "Unique model years" );

tips::print( all_years,    "All    model years" );

// initialize map with given data

typedef map<string,int> Car_map;

Car_map unique_cars;

transform( name, name+num_cars, year,

inserter( unique_cars, unique_cars.end() ),

make_pair<string,int> );

cout << "\nUNIQUE CARS\n";

Car_map::const_iterator unique_cars_end = unique_cars.end();

for( Car_map::const_iterator i = unique_cars.begin();

i != unique_cars_end; ++i )

cout << i->second << " " << i->first << endl;

// initialize multimap with given data

typedef multimap<string,int> Car_multimap;

Car_multimap all_cars;

transform( name, name+num_cars, year,

inserter( all_cars, all_cars.end() ),

make_pair<string,int> );

cout << "\nALL CARS\n";

Tips on Associative Containers 191



Car_multimap::const_iterator all_cars_end = all_cars.end();

for( Car_multimap::const_iterator i = all_cars.begin();

i != all_cars_end; ++i )

cout << i->second << " " << i->first << endl;

}

The output is

The program starts by storing the names and model years of some cars in C-
style arrays. Then it creates and initializes a set and multiset by passing the array of
dates to the constructors using the method of Tip 5. The first two lines of output
show what’s in the two containers. You can see that the numbers are now sorted.
The set has one less item because it did not accept the duplicate value of 1998.

Before creating a map, the program uses a typedef statement to make a syn-
onym for the map. (This is common shorthand when working with maps and mul-
timaps because the container and iterator specifications tend to get pretty long.)
The code constructs an empty map that uses strings as keys and integers as values.
It can’t pass them to the constructor because they are stored in two separate arrays.
Instead, the code uses the STL algorithm transform to make key/value pairs out of
the text and numbers and pass them to the map. Tip 47 and Tip 81 describe the use
of this algorithm. Here, the first two arguments to transform specify the range of
the first input array. (Tip 3 explains how to get the range of a C-style array.) The
third argument is the start of the second input range and the fourth argument is the
start of the output range, that is, the map. Typically, this argument would be a back

192 C++ Standard Library Practical Tips

Unique model years: 1930 1966 1970 1998 2004 

All    model years: 1930 1966 1970 1998 1998 2004 

UNIQUE CARS

2004 BMW 645Ci

1966 Chevrolet Corvette

1970 Dodge Dart

1930 Ford Model A

1998 Toyota Sienna

ALL CARS

2004 BMW 645Ci

1966 Chevrolet Corvette

1970 Dodge Dart

1930 Ford Model A

1998 Toyota Sienna

1998 Toyota Sienna



inserter (see, for example, Tip 47 and Tip 54.) Unfortunately, you can’t use back in-
serters with associative containers. However, you can get the same effect by calling
a general inserter and specifying the position as the end of the container. The fifth
and last argument is the binary function that accepts a value from each input range
and makes a value that goes into the output range. The function, make_pair, is a
predefined template function available in the <utility> header (see Tip 45).
make_pair makes a pair out of its two arguments and returns it. The template pa-
rameter specification (<string,int>) in the code ensures that the first element in
the pair is a string, rather than a pointer to a char. The second section of the out-
put shows the result. The map has sorted its entries in alphabetical order, but it
stored only five of the six cars. The map eliminated the sixth vehicle (the Toyota Si-
enna) because it’s a duplicate and map keys must be unique.

Finally, the program creates and initializes a multimap using the same tech-
nique as for the map. Note that in both cases the program stored a local copy of the
map or multimap’s end iterator. This speeds up the execution of the subsequent
loop because refers-to-loop doesn’t have to call the container’s end member func-
tion at each loop iteration.

The last section of the output shows the result. This time the container has all
six cars because multimaps can contain duplicate keys.

USE A MAP OR MULTIMAP AS A DICTIONARY

Applies to: Map, multimap
See also: Tip 6, Tip 34, Tip 45

Quick Solution

const char* key[3] = { "one", "two", "three" };

const char* value[3] = { "uno", "dos", "tres" };

map<string,string> dictionary;

transform( key, key+3, value, 

inserter( dictionary, dictionary.end() ), 

make_pair<string,string> );

cout << "English: two   Spanish: " << dictionary["two"] << endl;

dictionary["four"] = "cuatro";

Tips on Associative Containers 193

TIP 35



Detailed Solution

Maps and multimaps store data in pairs. One member of the pair is the key and the
other is the value associated with that key. The containers sort their elements by key
and are able to quickly look for and retrieve elements with a specified key. Another
neat thing is that the key can be any data type (subject to some very mild restric-
tions), not just an integer. Actually, it’s common for the key to be a text string. For
example, you can retrieve information about a person by entering his name, or sta-
tistics on a sports team by using its name, and so on. In addition, the map provides
an elegant interface for retrieving values by key—you pass the key via the subscript
operator. This is just like using an array or vector except the argument is not nec-
essarily an integer. A container with non-integer subscripting is often called asso-
ciative memory. If both the key and value are text strings, the container may be
called a dictionary.

Multimaps don’t have this subscript capability because they can have multiple
elements with the same key, so which element a key refers to would be ambiguous.
However, they can have more than one value per key, and so, because most words
have several definitions, they are more practical for dictionaries. Listing 7.2 shows
how to use either a map or multimap as a dictionary.

LISTING 7.2 Using Maps and Multimaps as Dictionaries

// associative_dictionary.cpp

#include <algorithm>

#include <iostream>

#include <map>

#include <utility>

using namespace std;

int main( )

{

const char* word[] = { "POPS", "TAT", "ESPOO", "HABITFORMING",

"ADAM" };

const char* clue[] = { "Sodas", "Not solace, sew-lace?",

"Second largest Finnish city", "Making nuns' clothes?",

"Alpha male?" };

// make a dictionary out of a map

map<string,string> dictionary1;

transform( word, word+sizeof(word)/sizeof(word[0]), clue,

inserter( dictionary1, dictionary1.end() ),

make_pair<string,string> );

194 C++ Standard Library Practical Tips



cout << "There are " << dictionary1.size()

<< " words in the dictionary\n\n";

// use subscript operator to read value

cout << "The clue for POPS is \"" << dictionary1["POPS"] << "\"\n"

<< "The clue for TAT is \"" << dictionary1["TAT"] << "\"\n"

<< "The clue for ESPO0 is \"" << dictionary1["ESPO0"] << "\"\n";

cout << "\nThere are " << dictionary1.size()

<< " words in the dictionary\n\n";

// use subscript operator to write value

dictionary1["ESPO0"] = "Typo in name";

cout << "The clue for ESPO0 is \"" << dictionary1["ESPO0"] << "\"";

// get rid of mis-spelling

dictionary1.erase( "ESPO0" );

// make a dictionary out of a multimap

typedef multimap<string,string> Dictionary;

Dictionary dictionary2( dictionary1.begin(),

dictionary1.end() );

dictionary2.insert( make_pair( "POPS", "Bursts" ) );

dictionary2.insert( make_pair( "POPS", "Fathers" ) );

dictionary2.insert( make_pair( "ADAM", "Madam I'm ____" ) );

// display all clues for one word

cout << "\n\nALL CLUES FOR \"POPS\"";

pair<Dictionary::iterator,Dictionary::iterator> range =

dictionary2.equal_range( "POPS" );

for( Dictionary::iterator i = range.first; i != range.second; ++i )

cout << "\nPOPS - " << i->second;

cout << "\n\nALL WORDS IN THE DICTIONARY\n";

for( Dictionary::iterator i = dictionary2.begin();

i != dictionary2.end(); ++i )

cout << i->first << " - " << i->second << endl;

}

The output is

Tips on Associative Containers 195



196 C++ Standard Library Practical Tips

The program in Listing 7.2 is an example of making a crossword puzzle dictio-
nary. The key is a single puzzle word, though it may actually contain more than one
word. The value is a clue that the player uses to guess the word. The code starts by
initializing a map with some values using the technique of Tip 34. The map key is
a text string and the value is also text. The first line of the output shows that there
are five words in the dictionary. 

The next statement in the code demonstrates the use of the subscript operator
([]) to get the value associated with a key. An important difference between map
subscripting and that of a vector or C-style array is that a map index can’t be wrong.
If the indexed key doesn’t exist, the map adds a new element with that key. The map
makes the value associated with the key by calling the value’s default constructor,
so if you’re using a class as a key, make sure it has this kind of constructor. (For
numbers, this is 0.) 

There are several implications of this automatic addition of keys. One is that
the subscript operator is not available for constant maps because you can’t write to
them. Another implication is that although having indexing that always works lets

There are 5 words in the dictionary

The clue for POPS is "Sodas"

The clue for TAT is "Not solace, sew-lace?"

The clue for ESPO0 is ""

There are 6 words in the dictionary

The clue for ESPO0 is "Typo in name"

ALL CLUES FOR "POPS"

POPS - Sodas

POPS - Bursts

POPS - Fathers

ALL WORDS IN THE DICTIONARY

ADAM - Alpha male?

ADAM - Madam I'm ____

ESPOO - Second largest Finnish city

HABITFORMING - Making nuns' clothes?

POPS - Sodas

POPS - Bursts

POPS - Fathers

TAT - Not solace, sew-lace?



you write some code more cleanly, it also can lead to accidental insertions into the
map, especially when there are misspellings. For example, the program gets the
values associated with three keys by using the keys as indexes, but the third key has
a common error—the numeral 0 instead of the letter “O.” The output shows that
the clue for that word is the blank string (there’s nothing between the quotation
marks). That value arises because when the map can’t find the misspelled key, it
turns the key into a new key with a value given by a string’s default constructor,
namely, the empty string. The next line of the output confirms that the map has one
more element than it had before.

Because the subscript operator returns a reference to the key’s value, you can
use this operator on the left side of an assignment to change the value. The code
demonstrates this by replacing the empty string with some text, as the output
shows. Then the program deletes that key before using the map in the next step.

Words in crossword puzzles have many different clues. Part of the fun of mak-
ing puzzles is thinking of funny or clever clues. A map can’t accept multiple clues
for a single word because the word is a key and keys must be unique. However, a
multimap doesn’t have to have distinct keys, so it’s perfect for storing words with
multiple clues. 

The program makes a multimap by using the form of its constructor that ac-
cepts an input range, as Tip 6 explains. The program then inserts some entries with
duplicate keys into the multimap. There are various ways of putting a key and value
together into a pair data structure, but using the STL utility function make_pair as
shown is the easiest. (Tip 45 provides details on pair and make_pair.)

To confirm that a multimap can hold duplicate keys, the program displays all
the clues for one of the words. A multimap holds all keys in one contiguous stretch
of its iterator range. To get this range, use the member function equal_range, which
returns the position of the first element with the given key and one past the 
position of the last element with that key. If equal_range can’t find any elements
with the key, both returned values are the same and equal to the end iterator of the
multimap. This prevents the subsequent loop in the code from executing. In this
application, the loop does run and the output shows all of the clues for one word.
Finally, to display the whole dictionary, the program loops over the entire range of
the container. Again, the output demonstrates that multimaps can hold elements
with the same key.

SEARCH IN SETS AND MULTISETS

Applies to: Set, multiset, find, find_if
See also: Tip 34, Tip 45, Tip 47, Tip 48, Tip 50, Tip 59

Tips on Associative Containers 197

TIP 36



198 C++ Standard Library Practical Tips

Quick Solution
set<int> s;

// ...

set<int>::iterator site = s.find( 45 );

if( site != s.end() )

cout << value << " in set";

else

cout << value << " not in set";

See detailed solution for finding entries by variables other than value and
searching in multisets.

Detailed Solution

The raison d’être of sets and multisets is quick searching and retrieval. You can
search for a particular value in these associative containers tremendously faster
than in the standard sequential containers, but to get this great performance, you
need to use the find member function of the set and multiset. If you use the find
or find_if STL algorithm, they’ll work, but you’ll be reduced to sluggish searching
and miss the chief benefit of sets and multisets.

Sometimes, however, you need to search in a set or multiset for something
other than the container’s data type. For example, if the container holds a class, you
might be looking for instances with a data member that has a particular value. You
can do that kind of searching, but you won’t be able to use the power of the asso-
ciative container’s find member function. 

The program in Listing 7.3 shows how to find the first and last matching ele-
ments in a set and multiset and how to find all such elements. The searches can be
by value (data type) or not by value.

LISTING 7.3 Searching in Sets and Multisets

// associative_search_set.cpp

#include <algorithm>

#include <functional>

#include <iostream>

#include <set>

#include <string>

#include <utility>

#include <vector>

using namespace std;



class Dog

{

public:

Dog( string name = "Unknown", string breed = "Poodle",

int year = 2000 );

bool operator<( const Dog& rhs ) const;

// return true if name is less than passed name, false otherwise

string breed() const;

string name() const;

void print() const;

// display info on the dog

int year() const;

private:

string breed_;

string name_;

int year_;

};

inline

Dog::Dog( string name, string breed, int year )

: breed_( breed ), name_( name ), year_( year )

{} // empty

inline

bool Dog::operator<( const Dog& rhs ) const

{ return name() < rhs.name(); }

inline

string Dog::breed() const

{ return breed_; }

inline

string Dog::name() const

{ return name_; }

inline

void Dog::print() const

{

cout << name() << ", a " << breed() << ", won in " << year()

<< endl;

Tips on Associative Containers 199



}

inline

int Dog::year() const

{ return year_; }

bool equal_breed( const Dog winner, string breed );

// return true if Dog is the passed breed, false otherwise

int main( )

{

// winners of the Westminster Kennel Club championship for 1971-1975

const char* breed[] = { "Spaniel (English Springer)",

"Spaniel (English Springer)", "Poodle (Standard)",

"Pointer (German Shorthaired)", "Old English Sheepdog" };

const char* name[] = { "Chinoe's Adamant James",

"Chinoe's Adamant James", "Acadia Command Performance",

"Gretchenhof Columbia River", "Sir Lancelot of Barvan" };

const int year[] = { 1971, 1972, 1973, 1974, 1975 };

const int num_dogs = sizeof( breed ) / sizeof( breed[0] );

// create and store breeds for use below

vector<Dog> v;

for( int i = 0; i < num_dogs; ++i )

v.push_back( Dog( name[i], breed[i], year[i] ) );

// dog to inquire about

const Dog query( "Chinoe's Adamant James" );

cout << "*** SET ***\nDID " << query.name()

<< " EVER WIN BEST-IN-SHOW?\n";

// make a set. The values are instances of the Dog class

set<Dog> winner_set( v.begin(), v.end() );

set<Dog>::const_iterator winner_set_end = winner_set.end();

// search in the set by value

set<Dog>::const_iterator spot = winner_set.find( query );

if( spot != winner_set_end )

spot->print();

else

cout << query.name() << " never won best-in-show\n";

const string query_breed( "Spaniel (English Springer)" );

200 C++ Standard Library Practical Tips



// first occurrence in set, not by value

cout << "\nFIRST ENTRY FOR A " << query_breed << endl;

for( spot = winner_set.begin(); spot != winner_set_end; ++spot )

if( spot->breed() == query_breed )

break;

if( spot != winner_set_end )

spot->print();

else

cout << "A " << query_breed << " didn't win in 1971-1975\n";

// last occurrence in set, not by value

cout << "\nLAST ENTRY FOR A " << query_breed << endl;

set<Dog>::const_reverse_iterator last1;

set<Dog>::const_reverse_iterator winner_set_rend

= winner_set.rend();

for( last1 = winner_set.rbegin(); last1 != winner_set_rend;

++last1 )

if( last1->breed() == query_breed )

break;

if( last1 != winner_set_rend )

last1->print();

else

cout << "A " << query_breed << " didn't win in 1971-1975\n";

// all occurrences in a set, not by value

cout << "\nALL ENTRIES FOR A " << query_breed << endl;

bool found = false;

for( spot = winner_set.begin(); spot != winner_set_end; ++spot )

if( spot->breed() == query_breed )

{

found = true;

spot->print();

}

if( !found )

cout << "A " << query_breed << " didn't win in 1971-1975\n";

// now work with a multiset

multiset<Dog> winner_multiset( v.begin(), v.end() );

// find first occurrence in multiset, by value

cout << "\n*** MULTISET ***\nFIRST ENTRY FOR " << query.name()

<< endl;

Tips on Associative Containers 201



multiset<Dog>::const_iterator site = winner_multiset.find( query );

if( site != winner_multiset.end() )

site->print();

else

cout << query.name() << " never won in 1971-1975\n";

// search for all occurrences by value

pair<multiset<Dog>::iterator,multiset<Dog>::iterator>

range = winner_multiset.equal_range( query );

// find last occurrence in multiset, by value

cout << "\nLAST ENTRY FOR " << query.name() << endl;

if( range.first != range.second )

{

site = range.second;

(--site)->print();

}

else

cout << query.name() << " never won in 1971-1975\n";

// find all occurrences in multiset, by value

cout << "\nEVERY WIN BY " << query.name() << endl;

if( range.first != range.second )

for_each( range.first, range.second,

mem_fun_ref( &Dog::print ) );

else

cout << query.name() << " never won in 1971-1975\n";

// first occurrence in multiset, not by value

cout << "\nFIRST ENTRY FOR A " << query_breed << endl;

site = find_if( winner_multiset.begin(), winner_multiset.end(),

bind2nd( ptr_fun( equal_breed ), query_breed ) );

if( site != winner_multiset.end() )

site->print();

else

cout << "A " << query_breed << " didn't win in 1971-1975\n";

// last occurrence in multiset, not by value

cout << "\nLAST ENTRY FOR A " << query_breed << endl;

multiset<Dog>::reverse_iterator last2 =

find_if( winner_multiset.rbegin(), winner_multiset.rend(),

bind2nd( ptr_fun( equal_breed ), query_breed ) );

if( last2 != winner_multiset.rend() )

last2->print();

202 C++ Standard Library Practical Tips



Tips on Associative Containers 203

else

cout << "A " << query_breed << " didn't win in 1971-1975\n";

// all occurrences in a multiset, not by value

cout << "\nALL ENTRIES FOR A " << query_breed << endl;

multiset<Dog>::const_iterator winner_multiset_end

= winner_multiset.end();

found = false;

for( site = winner_multiset.begin(); site != winner_multiset_end;

++site )

if( equal_breed( *site, query_breed ) )

{  found = true;

site->print();

}

if( !found )

cout << "A " << query_breed << " didn't win in 1971-1975\n";

}

inline

bool equal_breed( const Dog winner, string breed )

{ return winner.breed() == breed; }

The output is

*** SET ***

DID Chinoe's Adamant James EVER WIN BEST-IN-SHOW?

Chinoe's Adamant James, a Spaniel (English Springer), won in 1971

FIRST ENTRY FOR A Spaniel (English Springer)

Chinoe's Adamant James, a Spaniel (English Springer), won in 1971

LAST ENTRY FOR A Spaniel (English Springer)

Chinoe's Adamant James, a Spaniel (English Springer), won in 1971

ALL ENTRIES FOR A Spaniel (English Springer)

Chinoe's Adamant James, a Spaniel (English Springer), won in 1971

*** MULTISET ***

FIRST ENTRY FOR Chinoe's Adamant James

Chinoe's Adamant James, a Spaniel (English Springer), won in 1971

LAST ENTRY FOR Chinoe's Adamant James

Chinoe's Adamant James, a Spaniel (English Springer), won in 1972 



The program illustrates searching in sets and multisets by using them to hold
information about winners of a dog show. The code starts by declaring a class that
holds the dog’s name, breed, and the year the dog won the show. The code declares
the less-than operator, which is necessary because it’s used as the default sorting cri-
terion in the associative containers. In this code, the operator sorts by the dog’s
name. The class also has accessors to retrieve the information and a member func-
tion to display its data.

The main part of the program starts by creating and storing instances of the
class in a vector. In fact, the code uses the best-in-show winners from 1971 to 1975
at the Westminster Kennel Club competition. This is the oldest and most presti-
gious dog show in the United States [Dog04].

To search the values in a set, you need to pass its find member function the
same data type that the set has. find uses the element’s less-than operator to find an
equivalent to the value passed, but the dog class’s less-than operator only uses one
of the three data members—the dog’s name. Thus, the program creates an instance
of the dog class with the name of the dog to be looked for as a parameter to the con-
structor. Because the other two parameters are irrelevant to the search, the code
uses the constructor’s default values. 

Next, the program creates a set from the vector by passing the begin and end
vector iterators to the set’s constructor. This technique is similar to the one in Tip
34. The program then searches the set for the particular dog by using the set’s find
member function, which returns an iterator that marks the desired element. If one
isn’t found, the code sets the iterator equal to the set’s end iterator. The output
shows that there is a winner with the given name. In fact, that dog won twice, but
the set’s constructor ignored the second win because a set can’t hold duplicate ele-
ments. Only having unique elements also means that there is no need for special

204 C++ Standard Library Practical Tips

EVERY WIN BY Chinoe's Adamant James

Chinoe's Adamant James, a Spaniel (English Springer), won in 1971

Chinoe's Adamant James, a Spaniel (English Springer), won in 1972

FIRST ENTRY FOR A Spaniel (English Springer)

Chinoe's Adamant James, a Spaniel (English Springer), won in 1971

LAST ENTRY FOR A Spaniel (English Springer)

Chinoe's Adamant James, a Spaniel (English Springer), won in 1972

ALL ENTRIES FOR A Spaniel (English Springer)

Chinoe's Adamant James, a Spaniel (English Springer), won in 1971

Chinoe's Adamant James, a Spaniel (English Springer), won in 1972



techniques to find the last matching element or all matching elements because
those are the same as the first matching element.

You might want to find out if a particular breed has won the show. The less-
than operator doesn’t use the dog’s breed, so the program can’t use the find mem-
ber function to look at the winner’s breeds. There are a couple of solutions to this
problem, though. One is to write a loop that marches through the set’s elements
until it finds a dog of the right breed. Another is to use the STL algorithm find_if.
Each method has its pros and cons, but both ways are much slower than searching
with the set’s find member function.

The code first illustrates using a loop by looking for the first dog of a specified
breed. As soon as it finds one, the program makes the element display its internal
information and breaks out of the loop. If there isn’t a match, the loop iterator is
equal to the set’s end iterator. The code tests for this after the loop and displays a
message saying that it couldn’t find that particular breed. Note that the program
stores a local copy of the set’s (and later the multiset’s) end iterator. This speeds up
the execution of the subsequent loop because it doesn’t have to call the container’s
end member function at each loop iteration.

To find the last winner with the specified breed, the software uses an identical
loop, but with reverse iterators instead of the normal, forward iterators. The ad-
vantage of using loops to find the first and last matching elements is that you don’t
have to write a functor or a global function as you do to use find_if. The disad-
vantage is that you have more code to write in the main body.

To find all dogs of the particular breed, the code uses a loop that is similar to
the previous ones. In this case, though, the loop must examine every element, so the
last value of the loop iterator is always equal to the set’s end iterator. Because the
code can’t determine from the loop iterator if the search was successful or not, the
loop sets a Boolean variable to true whenever the loop finds a match. The code then
tests this variable after the loop finishes. The output shows the results of searching
for the first, last, and all dogs of the indicated breed.

The second half of the program does the same searches, but on a multiset. To
find the first matching value, the program uses the multiset’s find member func-
tion as before. To find the last and all matching values, the program uses another
member function, equal_range. This function returns two iterators in a pair data
structure (see Tip 45). The first member of the pair, first, points to the first ele-
ment in the multiset that is not less than the value passed to find. The second
member of the pair, second, points to the first element that is greater than the
passed value. In other words, this is the range (in the standard STL sense) of the
matching values. If the two iterators in the pair are the same, there were no
matches.

If find did locate something, the code makes a copy of the second iterator and
decrements it to get the last matching element. The program can decrement the it-

Tips on Associative Containers 205



erator because a multiset’s iterators are bidirectional. The program needs to decre-
ment the iterator because it is the last one in the range and, thus, is actually one past
the last matching element. 

The principal use of the two iterators is to define the range of all matching val-
ues, not just the last one. Once you have the range, you can do many things with the
elements. The code gives an example by having each of the elements in the range
display its information. (Tip 48 and Tip 59 explain this technique.) The output
shows the results of searching for the first, last, and all matching values. A multiset
can contain duplicate entries, so both wins of the dog now appear. Note, too, that
all these searches are fast because the code performs them with the multiset’s find
member function.

As with a set, sometimes it may be necessary to search a multiset containing a
class, not for matching values (elements), but for matching data members. The first
half of the program shows how to do that using loops. The code for the multiset il-
lustrates an alternative. To look for the first dog of a specified breed the program
uses the STL algorithm find_if. The first two arguments are the range of the mul-
tiset and the last argument is the match criterion. find_if applies the criterion to
each element in turn and stops when the criterion is true or when it reaches the end
of the range. The criterion is a custom global function that accepts two argu-
ments—an instance of the dog class and a string with the desired dog breed. The
function returns true if the dog’s breed is the desired one and false otherwise. The
predefined functor bind2nd makes the second argument to the function be constant
during the execution of find_if (see Tip 50). To use the binder on the global func-
tion, Tip 47 explains that you must wrap the function in a call to ptr_fun, another
predefined functor. find_if returns an iterator that marks the first element that
makes the criterion be true. If the iterator is equal to the end of the range, the algo-
rithm can’t find a suitable element. To find the last value with the specified breed,
the code uses the same technique, but with reverse iterators. The output shows the
results of both searches. 

Even though the program uses an STL algorithm, the searches are much slower
than those performed by the multiset’s find member function. The advantage of
using the algorithm over a loop (as the search of the set demonstrates) is that there
is less code to write. The disadvantage is that you have to create a functor or a global
function to pass to find_if. If you can use the function at least a few times, it’s bet-
ter to go the STL route than to code the loops.

The last thing the program does is to find all dogs of the specified breed. Al-
though you can do this with find_if, it’s cleaner to just write a loop as shown. The
loop is the same as that used to search the set except that it calls the global function
to test the breed instead of doing the comparison explicitly. Using a function in-
stead of an explicit test is better style because it reuses software (the function) and

206 C++ Standard Library Practical Tips



increases modularity by encapsulating the test for the breed inside that function.
The output shows that two of the wins were by dogs of the specified breed.

The real power of sets and multisets is their extremely fast searches for match-
ing values. If you find yourself searching a lot for things other than the values, such
as data members in classes, you’re missing the benefit of these containers. You may
want to change your sorting criterion or perhaps switch to a different container.

SEARCH IN MAPS AND MULTIMAPS

Applies to: Map, multimap, find, find_if
See also: Tip 34, Tip 45, Tip 47, Tip 50

Quick Solution
map<string,Employee> m;

// ...

map<string,Employee>::iterator site = m.find( "492-87-7844" );

if( site != m.end() )

cout << key << "in map";

else

cout << key << " not in map";

See detailed solution for finding entries by value and searching in multimaps.

Detailed Solution

Maps and multimaps store indexed data. Each element of these containers has a key
and a value. A map or multimap gives you extremely fast searching of and access to
elements by key. To get this benefit, though, you must use the containers’ find
member function. The find or find_if STL algorithms will work, but they’ll be
much slower. Occasionally, however, you might need to search in a map or multimap
for a value, not a key. In this case, the two STL  algorithms can be quite helpful. 

The program in Listing 7.4 demonstrates finding the first and last matching el-
ements in a map and multimap, shows how to find all such elements, and shows
how to search for them by key or value.

LISTING 7.4 Searching in Maps and Multimaps

// associative_search_map.cpp

#include <algorithm>

#include <functional>

Tips on Associative Containers 207

TIP 37



#include <iomanip>

#include <iostream>

#include <map>

#include <string>

#include <utility>

#include <vector>

using namespace std;

class Appliance

{

public:

enum Appliance_type { washer, dryer, refrigerator, freezer };

Appliance( Appliance_type appliance = washer, int model = 220,

int serial = 0 );

bool operator<( const Appliance& rhs ) const;

// order by ascending appliance number and within appliance number

// by ascending model number

Appliance_type appliance() const;

int model() const;

string name() const;

void print() const;

// display information about the appliance

int serial() const;

private:

Appliance_type appliance_;

int model_;

int serial_;

};

inline

Appliance::Appliance( Appliance::Appliance_type appliance, int model,

int serial )

: appliance_( appliance ), model_( model ), serial_( serial )

{} // empty

inline

208 C++ Standard Library Practical Tips



bool Appliance::operator<( const Appliance& rhs ) const

{ return appliance() < rhs.appliance() ||

( appliance() == rhs.appliance() && model() < rhs.model() );

}

inline

Appliance::Appliance_type Appliance::appliance() const

{ return appliance_; }

inline

int Appliance::model() const

{ return model_; }

string Appliance::name() const

{

string what;

switch( appliance() )

{

case washer:         what = "Washer";              break;

case dryer:          what = "Dryer";               break;

case refrigerator:   what = "Refrigerator";        break;

case freezer:        what = "Freezer";             break;

default:             what = "Unknown appliance";   break;

}

return what;

}

inline

void Appliance::print() const

{

char oldfill = cout.fill();

cout << setw( 12 ) << setfill( ' ' ) << name() << " - Model "

<< setw( 3 ) << model() << ", Serial number " << setw( 8 )

<< setfill( '0' ) << serial() << setfill( oldfill ) << endl;

}

inline

int Appliance::serial() const

{ return serial_; }

bool greater_model( const pair<Appliance::Appliance_type,Appliance> p,

int min_model );

// return true if the model in p.second is >= min_model,

// otherwise returns false

Tips on Associative Containers 209



int main( )

{

const Appliance::Appliance_type kind[] = { Appliance::refrigerator,

Appliance::refrigerator, Appliance::washer, Appliance::dryer,

Appliance::dryer, Appliance::dryer };

const int model[] = { 220, 221, 19, 250, 350, 350 };

const int serial[] = { 457792, 549970, 33447, 2298764, 2302971,

2298765 };

const int num_appliances = sizeof( kind ) / sizeof( kind[0] );

// create and store appliances for use below

vector<Appliance> v;

for( int i = 0; i < num_appliances; ++i )

v.push_back( Appliance( kind[i], model[i], serial[i] ) );

// map key is serial number, value is Appliance

map<int,Appliance> sold;

// load the appliances into the map and display them

transform( serial, serial+num_appliances, v.begin(),

inserter( sold, sold.end() ),

make_pair<int,Appliance> );

map<int,Appliance>::const_iterator sold_end = sold.end();

// first work with a map

cout << "*** MAP ***\nAPPLIANCES BY SERIAL NUMBER\n";

map<int,Appliance>::const_iterator site;

for( site = sold.begin(); site != sold_end; ++site )

site->second.print();

// search by key

const int desired_serial = 33447;

cout << "\nINFORMATION AVAILABLE FOR SERIAL NUMBER "

<< desired_serial << "?\n";

site = sold.find( desired_serial );

if( site != sold_end )

site->second.print();

else

cout << "There is no appliance with serial number "

<< desired_serial << endl;

const Appliance::Appliance_type desired_type

= Appliance::refrigerator;

cout << "\nANY REFRIGERATORS SOLD?\n";

210 C++ Standard Library Practical Tips



// find the first element by value

cout << "\nFIRST REFRIGERATOR SOLD\n";

for( site = sold.begin(); site != sold_end; ++site )

if( site->second.appliance() == desired_type )

break;

if( site != sold_end )

site->second.print();

else

cout << "No refrigerators sold\n";

// find the last element by value

cout << "\nLAST REFRIGERATOR SOLD\n";

map<int,Appliance>::const_reverse_iterator reverse_site;

map<int,Appliance>::const_reverse_iterator sold_rend

= sold.rend();

for( reverse_site = sold.rbegin(); reverse_site != sold_rend;

++reverse_site )

if( reverse_site->second.appliance() == desired_type )

break;

if( reverse_site != sold_rend )

reverse_site->second.print();

else

cout << "No refrigerators sold\n";

// find all elements by value

cout << "\nALL REFRIGERATORS SOLD\n";

bool found = false;

for( site = sold.begin(); site != sold_end; ++site )

if( site->second.appliance() == desired_type )

{

found = true;

site->second.print();

}

if( !found )

cout << "No refrigerators sold\n";

// work with a multimap. key is appliance type, value is Appliance

typedef multimap<Appliance::Appliance_type,Appliance>

Appliance_multimap_type;

Appliance_multimap_type stock;

Tips on Associative Containers 211



// appliance that customer desires

const Appliance desired( Appliance::dryer );

cout << "\n\nCUSTOMER WOULD LIKE A " << desired.name()

<< endl << endl;

// load the appliances into the multimap

transform( kind, kind+num_appliances, v.begin(),

inserter( stock, stock.end() ),

make_pair<Appliance::Appliance_type,Appliance> );

Appliance_multimap_type::const_iterator stock_end = stock.end();

// search for first occurrence of key

Appliance_multimap_type::const_iterator spot

= stock.find( desired.appliance() );

cout << "FIRST " << desired.name() << " IN STOCK\n";

if( spot != stock_end )

spot->second.print();

else

cout << "Don't have a " << desired.name() << " in stock\n";

// search for all occurrences of key

pair<Appliance_multimap_type::iterator,

Appliance_multimap_type::iterator>

range = stock.equal_range( desired.appliance() );

// last occurrence of key

cout << "\nLAST " << desired.name() << " IN STOCK\n";

if( range.first != range.second )

{

spot = range.second;

--spot;

spot->second.print();

}

else

cout << "Don't have a " << desired.name() << " in stock\n";

// all occurrences of key

cout << "\nEVERY " << desired.name() << " IN STOCK\n";

if( range.first != range.second )

for( spot = range.first; spot != range.second; ++spot )

spot->second.print();

else

cout << "Don't have a " << desired.name() << " in stock\n";

212 C++ Standard Library Practical Tips



// search for first occurrence of value

const int min_model = 221;

spot = find_if( stock.begin(), stock.end(),

bind2nd( ptr_fun( greater_model ), min_model ) );

cout << "\nFIRST APPLIANCE WITH MODEL AT LEAST " << min_model

<< endl;

if( spot != stock_end )

spot->second.print();

else

cout << "No appliance with model at least than " << min_model

<< endl;

// search for last occurrence of value

multimap<Appliance::Appliance_type,Appliance>::reverse_iterator j =

find_if( stock.rbegin(), stock.rend(),

bind2nd( ptr_fun( greater_model ), min_model ) );

cout << "\nLAST APPLIANCE WITH MODEL AT LEAST " << min_model

<< endl;

if( j != stock.rend() )

j->second.print();

else

cout << "No appliance with model number at least "

<< min_model << endl;

// search for all occurrences of value

cout << "\nALL APPLIANCES WITH MODEL AT LEAST " << min_model

<< endl;

found = false;

for( spot = stock.begin(); spot != stock_end; ++spot )

if( greater_model( *spot, min_model ) )

{

found = true;

spot->second.print();

}

if( !found )

cout << "No appliance with model number at least "

<< min_model << endl;

}

inline

bool greater_model( const pair<Appliance::Appliance_type,Appliance> p,

int min_model )

Tips on Associative Containers 213



214 C++ Standard Library Practical Tips

{ return p.second.model() >= min_model; }

The output is

*** MAP ***

APPLIANCES BY SERIAL NUMBER

Washer - Model  19, Serial number 00033447

Refrigerator - Model 220, Serial number 00457792

Refrigerator - Model 221, Serial number 00549970

Dryer - Model 250, Serial number 02298764

Dryer - Model 350, Serial number 02298765

Dryer - Model 350, Serial number 02302971

INFORMATION AVAILABLE FOR SERIAL NUMBER 33447?

Washer - Model  19, Serial number 00033447

ANY REFRIGERATORS SOLD?

FIRST REFRIGERATOR SOLD

Refrigerator - Model 220, Serial number 00457792

LAST REFRIGERATOR SOLD

Refrigerator - Model 221, Serial number 00549970

ALL REFRIGERATORS SOLD

Refrigerator - Model 220, Serial number 00457792

Refrigerator - Model 221, Serial number 00549970

CUSTOMER WOULD LIKE A Dryer

FIRST Dryer IN STOCK

Dryer - Model 250, Serial number 02298764

LAST Dryer IN STOCK

Dryer - Model 350, Serial number 02298765

EVERY Dryer IN STOCK

Dryer - Model 250, Serial number 02298764

Dryer - Model 350, Serial number 02302971

Dryer - Model 350, Serial number 02298765

FIRST APPLIANCE WITH MODEL AT LEAST 221

Dryer - Model 250, Serial number 02298764



Tips on Associative Containers 215

The program illustrates searching in maps and multimaps by using them to
hold information about appliances. This might be used, for example, at an appli-
ance store or warehouse to monitor the stock or to look up information about a
particular machine that was sold. The code starts by declaring a class that holds the
kind of appliance and the model and serial numbers. The code declares the less-
than operator, which is necessary because it’s used as the default sorting criterion
in associative containers. In the class in the program, the operator returns true if
the appliance type on the left is less than that on the right (the types are numbered
in the class by an enum statement) or if the types are the same and the model num-
ber on the left is less than that on the right. In all other cases, the operator returns
false. In effect, this sorts the appliances by type and within type by model. The class
also has accessors to retrieve the information and a member function to display its
data.

The main part of the program starts by creating and storing instances of the
class in a vector, then uses the technique of Tip 34 to initialize the map. The map
key is the serial number, and the map values are instances of the appliance class.
The program then displays all the elements in the map, as the output shows. Al-
though a map can’t have duplicate keys, all the machines that have been sold are
present because they (presumably) have unique serial numbers.

The first search is by key, which is the typical way to look for something in a
map. In this case, the code looks for a machine with a particular serial number, per-
haps because a customer has reported a problem with it. The map’s find member
function does the work and passes back an iterator that marks the desired element.
If find can’t locate the key, it sets the iterator equal to the map’s end iterator. The
element that the iterator actually points to is a pair data structure (see Tip 45)
whose second member (second)  is the value associated with the specified key. Thus,
to get to the element’s value from the iterator, you first have to go to the pair’s sec-
ond member and then access the display member function from there. These op-
erations can be chained, as the code illustrates. The output shows that a washer has
the given serial number. Note that because all keys in a map are unique, you don’t

LAST APPLIANCE WITH MODEL AT LEAST 221

Refrigerator - Model 221, Serial number 00549970

ALL APPLIANCES WITH MODEL AT LEAST 221

Dryer - Model 250, Serial number 02298764

Dryer - Model 350, Serial number 02302971

Dryer - Model 350, Serial number 02298765

Refrigerator - Model 221, Serial number 00549970



need any special techniques to find the last matching key or all matching keys—
they’re the same as the first matching key.

You might want to find out if the store has sold a particular kind of appliance,
and if so, to see the information about that machine. The appliance type is not the
key, so you can’t use the map’s find member function. There are a couple of alter-
natives, though. One is to write a loop that goes through the map’s elements until
it finds an element value that has the right kind of appliance. Another alternative is
to use the STL algorithm find_if. Each method has its pros and cons, but both ways
are much slower than is searching by key.

The code first illustrates using a loop by looking for the first appliance sold that
is a refrigerator. As soon as the loop finds an element with such an appliance, the
program makes the element display information about the appliance and breaks
out of the loop. If there isn’t a match, the loop iterator is equal to the map’s end it-
erator. The code tests for this after the loop and displays a message saying that it
couldn’t find a refrigerator. Throughout the program, the code stores a local copy
of the map or multimap’s end iterator. This speeds up the execution of the subse-
quent loop because it doesn’t have to call the container’s end member function at
each loop iteration.

To find the last refrigerator, the software uses an identical loop but with reverse
iterators instead of the forward iterators. The advantage of using loops to find the
first and last matching elements is that you don’t have to write a functor or a global
function as you do to use find_if. The disadvantage is that you have more code to
write in the main body.

To find all refrigerators sold, the code uses a loop that is similar to the previous
ones. In this case, though, the program must examine every element, so the last
value of the loop iterator is always equal to the map’s end iterator. Because the code
can’t determine from the loop iterator if the search was successful or not, the loop
sets a Boolean variable to true whenever it finds a match. The code then tests this
variable after the loop finishes. The output shows the results of searching for the
first, last, and all refrigerators that the store has sold.

The second half of the program illustrates a situation in which the software
should keep track of the appliances in stock. A customer is likely to be looking for
one particular kind of appliance, so the key to use is the appliance type. Many ma-
chines of this kind could be in stock, so the data structure must be able to hold du-
plicate keys, that is, it must be a multimap, not a map. 

To find the first matching key, the code uses the multimap’s find member
function. To find the last or all matching keys, the code uses another member func-
tion, equal_range. This function returns two iterators in a pair data structure (see
Tip 45). The first member of the pair, first, points to the first element in the mul-
timap whose key is not less than that passed to find. The second member of the
pair, second, points to the first element whose key is greater than the passed key. In

216 C++ Standard Library Practical Tips



other words, this is the range of the matching keys. If the two iterators in the pair
are the same, there were no matches.

If find does locate something, the code makes a copy of the second iterator and
decrements it to get the last matching element. The program can decrement the it-
erator because a multimap’s iterators are bidirectional. The program has to decre-
ment the iterator because it is the last one in the range, that is, it’s actually one past
the last matching element. 

The main use of the two iterators is to define the range of all matching values,
not just the last one. Once you have the range, you can do several things with the
elements, for example, have each display its information. The output shows the re-
sults of searching for the first, last, and all matching dryers. All these searches are
fast because the code performs them with the multimap’s find member function.

Sometimes it may be necessary to search a multimap for matching values rather
than for matching keys. The first half of the program shows how to do that using
loops. The code for the multimap illustrates an alternative. To look for the first ap-
pliance whose model number has a specified minimum value, the program uses the
STL algorithm find_if. (This search might occur if higher model numbers imply
newer models and the customer requests an appliance made within the last so many
years.) The first two arguments of find_if are the range of the multimap and the
last argument is the match criterion. find_if applies the criterion to each element
in turn and stops when the criterion is true or when it reaches the end of the range.
The criterion is a custom global function that accepts two arguments—a pair data
structure with a key and value and an integer with the minimum model number.
The function returns true if the model number of the appliance in the value is at
least as great as the minimum one and false otherwise. The predefined functor
bind2nd makes the second argument to the function be constant during the execu-
tion of find_if (see Tip 50). To use the binder on the global function, Tip 47 ex-
plains that you must wrap the function in a call to ptr_fun, another predefined
functor. find_if returns an iterator that marks the first element that makes the cri-
terion be true. If the iterator is equal to the end of the range, the algorithm can’t
find a suitable element. To find the last value with the specified breed, the code uses
the same technique, but with reverse iterators. The output shows the results of both
searches.

Even though the program uses an STL algorithm, the searches are much slower
than those performed by the multimap’s find member function. The advantage of
using the algorithm over a loop is that there is less to write, as the code for search-
ing the map demonstrates. The disadvantage is that you have to create a global
function to pass to find_if. However, if you can reuse the function, do so and
avoid writing loops by hand.

The last thing the program does is to find all appliances whose model number
is at least some minimum value. Although you can do this with find_if, it’s cleaner

Tips on Associative Containers 217



218 C++ Standard Library Practical Tips

to just write a loop as shown. The loop is very similar to that used for searching the
map except that it calls the global function to test the model number instead of
doing the comparison explicitly. This is better style because it reuses software (the
function) and increases modularity by encapsulating the test for the model number
inside that function. The output shows that there are four appliances in stock
whose model number is at least 221.

The real power of maps and multimaps is their extremely fast searches for keys.
If you find yourself searching frequently for values, you’re missing the benefit of
these containers. You may want to change your key or perhaps switch to a different
container.

MODIFY OR REMOVE ELEMENTS IN A SET OR MULTISET

Applies to: Set, multiset
See also: Tip 4, Tip 36, Tip 45

Quick Solution
set<int> s;

// ...

s.erase( 45 ); // remove value

// modify by replacing old with new

if( s.erase( 77 ) == 1 ) // did remove one entry

if( s.insert( 80 ).second )

cout << "Inserted new value";

else

cout << "New value already exists";

See detailed solution for removing and modifying in multisets.

Detailed Solution

Once you’ve created your set or multiset and filled it with data, you’re ready to start
using its speedy search and retrieval capabilities. It’s perfectly reasonable to occa-
sionally want to change or delete some values. This tip shows you how to modify or
remove a value in a set and how to do the same for a single value or all values in a
multiset. As the program in Listing 7.5 shows, to modify a value you have to erase
it and insert a new one. Be aware that each time you do either of these actions, the
container takes the time to re-sort itself. This isn’t very lengthy, though—it’s ap-
proximately the time to search the container.

TIP 38 



Although the program in Listing 7.5 is a little longer than usual, it shows you
quite a bit, namely, how to insert, delete, or modify elements in either a set or 
multiset.

LISTING 7.5 Modify or Remove a Value in a Set or Multiset

// associative_modify_set.cpp

#include <iostream>

#include <set>

#include <vector>

#include "tips.hpp"

using namespace std;

int main( )

{

const int num_grades = 11;

const int grade[num_grades] = { 2, 5, 3, 8, 9, 9, 6, 3, 5, 9, 10 };

set<int> unique( grade, grade+num_grades );

multiset<int> all( grade, grade+num_grades );

tips::print( unique, "Unique grades" );

tips::print( all,    "All    grades" );

const int wrong_grade = 9;

const int right_grade = 10;

cout << "\nGRADING ERROR - CHANGE ALL " << wrong_grade << "'S TO "

<< right_grade << "'S\n";

// modify wrong grade in a set by removing it and inserting the

// right one in its place

if( unique.erase( wrong_grade ) == 1 )

{

if( unique.insert( right_grade ).second )

cout << "Added new, unique grade of " << right_grade << endl;

else

cout << "Already have unique grade of " << right_grade

<< endl;

}

else

cout << "No unique grade of " << wrong_grade << endl;

Tips on Associative Containers 219



// modify wrong grades by removing them and inserting the right ones

// in their place

multiset<int>::size_type num_wrong = all.erase( wrong_grade );

if( num_wrong > 0 )

{

vector<int> right( num_wrong, right_grade );

all.insert( right.begin(), right.end() );

unique.erase( wrong_grade );

unique.insert( right_grade );

cout << "Changed " << num_wrong << " grades of "

<< wrong_grade << " to " << right_grade << endl;

}

else

cout << "No wrong grades of " << wrong_grade << endl;

// one student drops class. Remove just his grade

const int drop_grade = 5;

cout << "\nDROP ONE GRADE OF " << drop_grade << endl;

multiset<int>::iterator spot = all.find( drop_grade );

if( spot != all.end() )

{

all.erase( spot );

// if no more of that grade left, drop it from the unique grades

if( all.count( drop_grade ) == 0 )

unique.erase( drop_grade );

}

else

cout << "Couldn't find a grade of " << drop_grade << endl;

tips::print( unique, "Final unique grades" );

tips::print( all,    "All    final grades" );

}

The output is

220 C++ Standard Library Practical Tips

Unique grades: 2 3 5 6 8 9 10 

All    grades: 2 3 3 5 5 6 8 9 9 9 10 

GRADING ERROR - CHANGE ALL 9'S TO 10'S

Already have unique grade of 10

Changed 3 grades of 9 to 10



Tips on Associative Containers 221

The program starts by storing some quiz grades in a set and multiset and dis-
playing them. Although the original grades are unordered and contain duplicates,
the output shows that the grades stored in the set are unique and in ascending
order. Thus, the set is good for showing the different grades made in the class, but
not the grade for each student. The multiset, which can contain duplicates, keeps all
the grades and orders them.

Suppose the teacher discovers he’s made a grading error on all students who re-
ceived a 9 and needs to change all those grades to a 10. For the set, the code would
need to change the single value 9 (if it exists) to 10. Unfortunately, the set doesn’t
have a modify command. You have to change a value indirectly by first deleting it
and then adding the new one. To delete a particular value in a set, use the member
function erase. It returns the number of values erased, which for a set can only be
0 or 1. To add a value to a set, use its overloaded insert member function. The sig-
nature of this version of insert is

pair<iterator,bool> insert( value )

which inserts a value into the set if the value is not already there. insert returns a
pair data structure (see Tip 45). The first member points to the value in the set, ei-
ther the one that was already there or the newly inserted one. The second member
is a Boolean that indicates whether the function inserted the new value. The code
checks the second member, appropriately called second, using chained access and
displays a message telling whether or not the program inserted a new value into the
set. Doing this check isn’t necessary because if the value to be inserted already ex-
ists, insert doesn’t do anything.

Multisets operate very much as sets do. To modify all copies of a value in a mul-
tiset, remove all of the old copies and insert the same number of new values. The
program does this by first calling the member function erase with the old value.
The function returns the number of elements actually removed. If it did erase some,
the code creates a vector with the same number of copies of the new value (see Tip
4) and puts them into the multiset using its insert member function. The code also
erases the old grade and inserts the new one into the set in order to keep it syn-
chronized with the multiset.

Now suppose one student drops the class. You can’t pass his grade to the mul-
tiset’s erase member function because that will get rid of all such values in the con-
tainer. To remove just one copy of the value, you can get an iterator that points to

DROP ONE GRADE OF 5

Final unique grades: 2 3 5 6 8 10 

All final grades: 2 3 3 5 6 8 10 10 10 10



222 C++ Standard Library Practical Tips

the first copy and then delete only that. Tip 36 explains that you can locate the first
occurrence of an element by using the find member function of the multiset, as the
program does. If the function can’t find the value, it returns an iterator equal to the
container’s end iterator. The program verifies that this isn’t true and passes the 
iterator to the multiset’s erase member function, which deletes only the value
marked by that iterator. Again, to make the set reflect what is in the multiset, the
code erases the grade from the former if there are no more copies of the grade left
in the latter. The code learns this by calling the count member function, which 
returns the number of copies of the passed value that are in the multiset.

MODIFY OR REMOVE ELEMENTS IN A MAP OR 
MULTIMAP

Applies to: Map, multimaps
See also: Tip 34, Tip 35, Tip 37, Tip 79

Quick Solution
map<string,int> m;

// ...

m["Waikiki"] = 2; // modify value, assuming key is present

// modify key by adding new key, storing old value, and deleting old 

// key

m["St. John's"] = m["Waikiki"];

m.erase( "Waikiki" );

See detailed solution for modifying and removing in multimaps.

Detailed Solution

Maps and multimaps are handy containers that let you quickly access data based on
a key. A map permits only unique keys but has an elegant interface to them—in-
dexing via the subscript operator. A multimap allows duplicate keys, but doesn’t
have indexing. Both allow you to conveniently change the value associated with a
key. However, you may want to do other things, such as changing the key itself, re-
moving a key, and so on. This tip demonstrates many of these operations, includ-
ing the following:

Change a map key’s associated value
Change or remove a map key

TIP 39



Change the first, last, or all copies of a multimap key’s associated values
Change the first, last, or all copies of a value in a multimap
Remove the first, last, or all copies of a multimap key
Remove the first, last, or all copies of a multimap value

Keep in mind that the power of the map and multimap comes from accessing
their elements by key, not by value. Despite this, sometimes you do have to search
through the container by value, as Listing 7.6 shows.

LISTING 7.6 Modify or Remove a Value in a Map or Multimap

// associative_modify_map.cpp

#include <algorithm>

#include <iomanip>

#include <iostream>

#include <numeric>

#include <map>

#include <utility>

#include <vector>

using namespace std;

typedef multimap< string, pair<int,int> > city_multimap;

// key = city name, value = <rank,decade>

void print_city( const city_multimap& city );

// display names and ranks of all cities

int main( )

{

const char* country1950[] = { "China", "India", "United States",

"Russia", "Japan", "Indonesia" };

const int num_countries = sizeof( country1950 )

/ sizeof( country1950[0] );

// make rank contain 1, 2, 3, ... , num_countries

vector<int> rank( num_countries, 1 );

partial_sum( rank.begin(), rank.end(), rank.begin() );

// put country and population rank together and store in map

map<string,int> country;

transform( country1950, country1950+num_countries, rank.begin(),

Tips on Associative Containers 223



inserter( country, country.end() ), make_pair<string,int> );

cout << "MOST POPULOUS " << country.size()

<< " COUNTRIES IN 1950\n";

for( map<string,int>::iterator i = country.begin();

i != country.end(); ++i )

cout << i->first << " ranks " << i->second << endl;

// 50 years later, in the year 2000, things have changed

// modify value of specified key

country["Indonesia"] = 4;

country["Russia"] = 6;

// modify key

country["Brazil"] = country["Japan"]; // Brazil now has Japan's rank

country.erase( "Japan" ); // Japan no longer in top 6

cout << "\nMOST POPULOUS " << country.size()

<< " COUNTRIES IN 2000\n";

for( map<string,int>::iterator i = country.begin();

i != country.end(); ++i )

cout << i->first << " ranks " << i->second << endl;

// most populous 5 cities (agglomerations) at start of each decade

const int num_top_cities = 5;

const char* top_city[] =

{ "Tokyo", "New York", "Shanghai", "Osaka", // 1970

"Mexico City",

"Tokyo", "New York", "Mexico City", "Sao Paulo", // 1980

"Shanghai",

"Tokyo", "New York", "Mexico City", "Sao Paulo", // 1990

"Shanghai",

"Tokyo", "Mexico City", "Sao Paulo", "New York", // 2000

"Bombay" };

const int num_cities = sizeof( top_city ) / sizeof( top_city[0] );

city_multimap city;

int decade = 1970;

vector< pair<int,int> > city_info( num_cities );

for( int i = 0; i < num_cities; ++i )

{

224 C++ Standard Library Practical Tips



city_info[i] = make_pair( i%num_top_cities + 1, decade );

if( ( i + 1 ) % num_top_cities == 0 )

decade += 10;

}

// put city and rank together and store in multimap

transform( top_city, top_city + num_cities, city_info.begin(),

inserter( city, city.end() ),

make_pair< string, pair<int,int> > );

cout << "\n\nMOST POPULOUS " << num_top_cities

<< " CITIES IN EACH DECADE OF 1970-2000";

print_city( city );

// modify value of first element that has given key

const char modify_city[] = "New York";

const int modify_rank1 = 8;

city_multimap::iterator site = city.find( modify_city );

if( site != city.end() )

site->second.first = modify_rank1;

else

cout << "\nNo elements with key \"" << modify_city << "\"";

// find range of elements with given key

pair<city_multimap::iterator,city_multimap::iterator> range =

city.equal_range( modify_city );

// modify value of last element with passed key

if( range.first != range.second )

{

site = range.second;

--site;

site->second.first = modify_rank1;

}

else

cout << "\nNo elements with key \"" << modify_city << "\"";

// modify values of all elements with passed key

if( range.first != range.second )

for( site = range.first; site != range.second; ++site )

site->second.first = modify_rank1;

else

cout << "\nNo elements with key \"" << modify_city << "\"";

Tips on Associative Containers 225



cout << "\n\nPREVIOUS CITIES WITH RANK OF " << modify_city

<< " CHANGED";

print_city( city );

// modify value of first element with specified value

const int modify_rank2 = modify_rank1 + 1;

for( site = city.begin(); site != city.end(); ++site )

if( site->second.first == modify_rank1 )

break;

if( site != city.end() )

site->second.first = modify_rank2;

else

cout << "\nNo elements with value " << modify_rank1;

// modify value of last element with specified value

city_multimap::reverse_iterator reverse_site = city.rbegin();

for( ; reverse_site != city.rend(); ++reverse_site )

if( reverse_site->second.first == modify_rank1 )

break;

if( reverse_site != city.rend() )

reverse_site->second.first = modify_rank2;

else

cout << "\nNo elements with value " << modify_rank1;

// modify value of all elements with specified value

bool found = false;

for( site = city.begin(); site != city.end(); ++site )

if( site->second.first == modify_rank1 )

{

site->second.first = modify_rank2;

found = true;

}

if( !found )

cout << "\nNo elements with value " << modify_rank1;

cout << "\n\nPREVIOUS CITIES WITH RANK OF " << modify_city

<< " CHANGED AGAIN";

print_city( city );

// remove first element with specified key

site = city.find( modify_city );

if( site != city.end() )

226 C++ Standard Library Practical Tips



city.erase( site );

else

cout << "\nNo elements with key \"" << modify_city << "\"";

// remove last element with specified key

range = city.equal_range( modify_city );

if( range.first != range.second )

city.erase( --range.second );

else

cout << "\nNo elements with key \"" << modify_city << "\"";

// remove all elements with specified key

city.erase( modify_city );

cout << "\n\nPREVIOUS CITIES WITHOUT " << modify_city;

print_city( city );

// remove first element with value higher than that given

const int max_rank = 3;

for( site = city.begin(); site != city.end(); ++site )

if( site->second.first > max_rank )

break;

if( site != city.end() )

city.erase( site );

else

cout << "\nNo elements with rank greater than " << max_rank;

// remove last element with value higher than that given

for( reverse_site = city.rbegin(); reverse_site != city.rend();

++reverse_site )

if( reverse_site->second.first > max_rank )

break;

if( reverse_site != city.rend() )

city.erase( --reverse_site.base() );

else

cout << "\nNo elements with rank greater than " << max_rank;

// remove all elements with value higher than that given

found = false;

for( site = city.begin(); site != city.end(); )

if( site->second.first > max_rank )

{

Tips on Associative Containers 227



city.erase( site++ );

found = true;

}

else

++site;

if( !found )

cout << "\nNo elements with rank greater than " << max_rank;

cout << "\n\nPREVIOUS CITIES THAT RANK IN TOP " << max_rank;

print_city( city );

}

void print_city( const city_multimap& city )

{

if( city.empty() )

return;

string city_name;

for( city_multimap::const_iterator i = city.begin();

i != city.end(); ++i )

{

// if city name not printed, do so

if( i->first != city_name )

{

cout << endl << setw( 11 ) << right << i->first << " ranked: "

<< left;

city_name = i->first;

}

// print rank and decade

cout << i->second.first << " in " << setw( 7 )

<< i->second.second;

}

}

The output is

228 C++ Standard Library Practical Tips



Tips on Associative Containers 229

MOST POPULOUS 6 COUNTRIES IN 1950

China ranks 1

India ranks 2

Indonesia ranks 6

Japan ranks 5

Russia ranks 4

United States ranks 3

MOST POPULOUS 6 COUNTRIES IN 2000

Brazil ranks 5

China ranks 1

India ranks 2

Indonesia ranks 4

Russia ranks 6

United States ranks 3

MOST POPULOUS 5 CITIES IN EACH DECADE OF 1970-2000

Bombay ranked: 5 in 2000

Mexico City ranked: 5 in 1970   3 in 1980   3 in 1990   2 in 2000

New York ranked: 2 in 1970   2 in 1980   2 in 1990   4 in 2000

Osaka ranked: 4 in 1970

Sao Paulo ranked: 4 in 1980   4 in 1990   3 in 2000

Shanghai ranked: 5 in 1990   5 in 1980   3 in 1970

Tokyo ranked: 1 in 1990   1 in 1970   1 in 1980   1 in 2000

PREVIOUS CITIES WITH RANK OF New York CHANGED

Bombay ranked: 5 in 2000

Mexico City ranked: 5 in 1970   3 in 1980   3 in 1990   2 in 2000

New York ranked: 8 in 1970   8 in 1980   8 in 1990   8 in 2000

Osaka ranked: 4 in 1970

Sao Paulo ranked: 4 in 1980   4 in 1990   3 in 2000

Shanghai ranked: 5 in 1990   5 in 1980   3 in 1970

Tokyo ranked: 1 in 1990   1 in 1970   1 in 1980   1 in 2000

PREVIOUS CITIES WITH RANK OF New York CHANGED AGAIN

Bombay ranked: 5 in 2000

Mexico City ranked: 5 in 1970   3 in 1980   3 in 1990   2 in 2000

New York ranked: 9 in 1970   9 in 1980   9 in 1990   9 in 2000

Osaka ranked: 4 in 1970

Sao Paulo ranked: 4 in 1980   4 in 1990   3 in 2000

Shanghai ranked: 5 in 1990   5 in 1980   3 in 1970

Tokyo ranked: 1 in 1990   1 in 1970   1 in 1980   1 in 2000



The program demonstrates modifying and removing elements in maps and
multimaps by working with population data. The program starts with a C-style
array containing the names of the six most populous countries in 1950 [Coun-
tries04]. The code also makes a vector with the numbers one through six, using the
technique of Tip 79. Then the software declares a map that uses the country name
as a key and its population rank as a value and loads the data into the map using the
STL algorithm transform, a method that Tip 34 explains. The output shows the re-
sult. The countries are listed alphabetically because the key is a text string and the
map sorts by key.

A half century later, in the year 2000, Brazil has replaced Japan as the fifth most
populous country, and Indonesia and Russia have traded places in the listing. The
first thing the program demonstrates is how to change the value associated with a
map key. Just assign the new value to the indexed map name, as the code shows.
The indexing occurs through the subscript operator, which returns a reference to
the key’s value. You can use this reference on the left side of an assignment, as the
program does. 

To replace Japan with Brazil as the fifth most populous country, the program
needs to change a key, the country name. You can’t do this directly. You can’t even
do it through an iterator by changing the value of the first member of the pair that
the iterator points to, which is the key. The reason is that iterators that point at 
elements in maps, and multimaps, even if the containers are not declared const,
behave as if they were pointing to a pair whose first element is const. This prevents
you from accidentally changing the key, which would disturb the internal organi-
zation of the container’s elements.

Instead, to modify a key, you have to insert a new key that has the old key’s 
associated value and then remove the old key. The program does this in the two lines

230 C++ Standard Library Practical Tips

PREVIOUS CITIES WITHOUT New York

Bombay ranked: 5 in 2000

Mexico City ranked: 5 in 1970   3 in 1980   3 in 1990   2 in 2000

Osaka ranked: 4 in 1970

Sao Paulo ranked: 4 in 1980   4 in 1990   3 in 2000

Shanghai ranked: 5 in 1990   5 in 1980   3 in 1970

Tokyo ranked: 1 in 1990   1 in 1970   1 in 1980   1 in 2000

PREVIOUS CITIES THAT RANK IN TOP 3

Mexico City ranked: 3 in 1980   3 in 1990   2 in 2000

Sao Paulo ranked: 3 in 2000

Shanghai ranked: 3 in 1970

Tokyo ranked: 1 in 1990   1 in 1970   1 in 1980   1 in 2000



country["Brazil"] = country["Japan"]; // Brazil now has Japan's rank

country.erase( "Japan" ); // Japan no longer in top 6

On the right side of the first line, the code country["Japan"] returns the value
of that element, that is, Japan’s rank. On the left side, country["Brazil"] returns a
reference to the value associated with the key “Brazil,” which the assignment oper-
ator (=) sets equal to Japan’s rank. What’s interesting is that this works even though
the map doesn’t have the key “Brazil” in it. That’s because, as Tip 35 explains, if you
access an element that doesn’t exist with the map’s subscript operator ([]), it cre-
ates the element. In this case, the operator creates an element with the key “Brazil”
and initial value of 0, and then the rest of the line sets the value to 5, Japan’s rank.
Once the program has inserted an element with the new key and old value, the code
deletes the original element by passing its key to the member function erase, as
shown. The net effect of these actions is to change an element’s key while keeping
its value the same. The output shows the six countries with the highest populations
in 2000.

The advantage of using a multimap rather than a map is that a multimap can
have duplicate indexes. To demonstrate working with the multimap, the program
uses data for the five most populated cities in 1970, 1980, 1990, and 2000 [Cities04].
(These are actually figures for agglomerations, that is, cities with their surrounding
urban areas.) The key in the multimap is a string with the city’s name. The value is
a pair data structure with two integers. The first integer is the city’s population
rank, and the second integer is the decade. 

To create the multimap, the program first makes a vector with the rank-decade
pairs. Then the code puts the city names and rank-decade pairs together and inserts
them into the multimap by using transform, as before. Finally, the software displays
the data using print_city, a custom function that prints each city’s rank and the
decade when it achieved that rank.

The first example of working with a multimap is to modify the value of the first
element that has a given key. Tip 37 explains that you can locate this element by
using the container’s find member function. If the iterator that find returned is not
equal to the multimap’s end iterator, the returned iterator points to the first ele-
ment with the desired key. The element is a pair data structure with another pair
structure as the second member. The first member of this second pair is the rank,
so the code simply sets that value to the new number.

Tip 37 also explains how to find the last element and all elements with a given
key. The program next calls the member function equal_range, which returns a pair
of iterators that denote the range of elements with the specified key. If the iterators
are equal, the function didn’t find any matching elements. Otherwise, the code
makes a copy of the second iterator (the end of the range) and decrements it. (The
program has to decrement the iterator once because it is the end of an STL range,

Tips on Associative Containers 231



and, thus, actually points to one past the elements of interest.) After that, the code
simply sets the rank in that element to the new rank. 

Modifying all members with the given key is almost easier—just loop over the
range and set the first member of each element’s pair to the new value. The pro-
gram illustrates all three of these value-modification techniques by supposing that
there was an error in New York’s ranking and changing all of those numbers to
eight. The output shows the result.

Sometimes it may be necessary to modify the first element that has a given
value, not a given key. Tip 37 provides two ways of finding this element. The pro-
gram in Listing 7.6 uses one of those methods. The code simply loops through the
entire range and checks each element for the desired value. As soon as the program
finds a desired value, it changes the value as before and breaks out of the loop. If the
code never finds such a value, the loop variable is equal to the multimap’s end iter-
ator. The program checks this and reports that it didn’t find a desired element. 

Modifying the last element with a given value works the same way but with re-
verse iterators. Finally, to change the values of all elements that have the specified
value, the program loops through the entire range, checks each element’s value
and changes it if necessary. (If you need more details on searching for the last
matching element and for all elements of a given value, see Tip 37.) The output
shows the result. All of New York’s rankings have been changed from 8 to 9.

The last part of the program demonstrates removing elements from a mul-
timap. To get rid of the first element with a particular key, the code searches with
the find member function for an element with that key. If the code finds one, the
software passes the iterator that points to the element to the multimap’s erase
member function, which deletes the element. To remove the last element with a
specified key, the code finds that element with the equal_range member function as
before, decrements the second member of the range, and passes that iterator to the
erase member function. To remove all elements with a particular key, just pass the key
to the erase member function. The output shows the list of cities without New York.

Instead of removing elements with a certain key, you can get rid of elements
whose values meet a criterion. For example, suppose you only want to consider the
three most populous cities. To delete the first element whose value (rank) is more
than three, the code marches through the multimap’s range with a loop. If the pro-
gram finds an element with the correct value, the code deletes the element as before
and exits the loop.

To remove the last element that meets the criterion, the code searches back-
ward using reverse iterators. If the program finds such an element, the code deletes
the element with the member function erase and exits the loop. There’s a little twist
in the code, though, because erase doesn’t accept reverse iterators. To convert one
to a regular iterator, the program uses the reverse iterator’s base member function
and decrements by one. See “Reverse Iterators” in Chapter 2 for an explanation.

232 C++ Standard Library Practical Tips



The last thing the program does is to delete all elements whose values match the
criterion. The code uses a for-loop to do this. However, the code increments the
counter within the body of the loop instead of in the normal place, that is, in the
for-statement itself. That’s because the standard loop form leads to a subtle error.
For example, suppose the code were written in the usual way:

found = false;

for( site = city.begin(); site != city.end(); ++site )

if( site->second > max_rank )

{

city.erase( site );

found = true;

}

The problem is that as soon as erase deletes the element that site points to, the
value in site becomes invalid. Attempting to increment that value (++site in the
for-statement) produces a runtime error. Another possible solution might be to
store the value returned by the erase member function, which presumably would
be the location after the element just deleted. Unfortunately, erase doesn’t return
anything at all, so this won’t work either. 

The code in Listing 7.6 has the statement city.erase( site++ ). The way the
statement executes is as follows: (1) the increment operator saves the current value
of site, (2) the operator then increments the value in site, and (3) the operator re-
turns the saved value, which is passed to erase. It doesn’t matter, then, that erase
invalidates the value of site that erase receives because the code has stored the cor-
rect, incremented value before the iterator becomes bad.

As a final note, remember that although many of the modify and remove op-
erations illustrated in this tip can be done without using the find member function,
such searches are not efficient. Maps and multimaps are optimized for searching by
key, and searches by value or searches that don’t use the member function find are
comparatively slow.

USE THE SORTED RANGE ALGORITHMS WITH SETS AND 
MULTISETS

Applies to: Set, multiset, merge, set_difference, set_intersection, set_
symmetric_difference, set_union, unique

See also: Tip 34, Tip 53

Tips on Associative Containers 233

TIP 40



234 C++ Standard Library Practical Tips

Quick Solution
set<int> s1, s2;

// ...

vector<int> v( s1.size() + s2.size() );

vector<int>::iterator logical_end;

// elements in s1 and not in s2

logical_end =

set_difference( s1.begin(), s1.end(), s2.begin(), s2.end(),

v.begin() );

// elements in s1 or s2 but not in both

logical_end =

set_symmetric_difference( s1.begin(), s1.end(), s2.begin(), s2.end(),

v.begin() );

// elements in s1 and s2

logical_end =

set_intersection( s1.begin(), s1.end(), s2.begin(), s2.end(),

v.begin() );

// elements in s1 or s2 or both

logical_end =

set_union( s1.begin(), s1.end(), s2.begin(), s2.end(), v.begin() );

// elements in both sets put in order

logical_end =

merge( s1.begin(), s1.end(), s2.begin(), s2.end(), v.begin() );

Detailed Solution

The handy thing about sets and multisets is that they automatically keep their 
elements sorted. When working with these containers, you fill them with values or
search them for particular elements. You might also insert or delete some values
from time to time. However, you can do a lot more with them. The STL comes with
some powerful algorithms that let you combine sorted ranges, and because sets and
multisets are always sorted, they make perfect inputs to these algorithms.

The names of the algorithms are often taken from analogous operations on
mathematical sets, for example, set_union, set_intersection. Table 9.3 in Chapter
9 lists the algorithms and their functionality. The text by that table gives some sug-
gestions on using the algorithms. The program in Listing 7.7 demonstrates the use
of multisets with the sorted range algorithms.



LISTING 7.7 Using Multisets with the Sorted Range Algorithms

// associative_set_algorithms.cpp

#include <algorithm>

#include <iostream>

#include <set>

#include <string>

#include <vector>

using namespace std;

#include "tips.hpp"

int main( )

{

// 1991-95 Belmont, Preakness, and Kentucky Derby winners

const int num_years = 5;

const char* belmont_winner[num_years] = { "Hansel", "A. P. Indy",

"Colonial Affair", "Tabasco Cat", "Thunder Gulch" };

const char* preakness_winner[num_years] = { "Hansel", "Pine Bluff",

"Prairie Bayou", "Tabasco Cat", "Timber Country" };

const char* kentucky_winner[num_years] = { "Strike the Gold",

"Lil. E. Tee", "Sea Hero",  "Go for Gin", "Thunder Gulch" };

multiset<string> belmont( belmont_winner,

belmont_winner+num_years );

multiset<string> preakness( preakness_winner,

preakness_winner+num_years );

multiset<string> kentucky( kentucky_winner,

kentucky_winner+num_years );

cout << "BELMONT WINNERS\n";

tips::print( belmont, 0, "  " );

cout << "\nPREAKNESS WINNERS\n";

tips::print( preakness, 0, "  " );

cout << "\nKENTUCKY WINNERS\n";

tips::print( kentucky, 0, "  " );

// find winners of Belmont but not Preakness

vector<string> winner;

set_difference( belmont.begin(), belmont.end(), preakness.begin(),

preakness.end(), back_inserter( winner ) );

cout << "\nWINNERS OF BELMONT BUT NOT PREAKNESS\n";

Tips on Associative Containers 235



if( !winner.empty() )

{

tips::print( winner, 0, "  " );

}

else

cout << "No horse won Belmont but not Preakness\n";

// find winners of Belmont or Preakness but not both

winner.clear();

set_symmetric_difference( belmont.begin(), belmont.end(),

preakness.begin(), preakness.end(), back_inserter( winner ) );

cout << "\nWINNERS OF BELMONT OR PREAKNESS BUT NOT BOTH\n";

if( !winner.empty() )

{

tips::print( winner, 0, "  " );

}

else

cout << "No horse won Belmont or Preakness but not both\n";

// find winners of both Belmont and Preakness

winner.clear();

set_intersection( belmont.begin(), belmont.end(),

preakness.begin(), preakness.end(), back_inserter( winner ) );

cout << "\nWINNERS OF BOTH BELMONT AND PREAKNESS\n";

if( !winner.empty() )

{

tips::print( winner, 0, "  " );

}

else

cout << "No horse won both Belmont and Preakness\n";

// find winners of all three

vector<string> triple_winner;

set_intersection( winner.begin(), winner.end(), kentucky.begin(),

kentucky.end(), back_inserter( triple_winner ) );

cout << "\nTRIPLE WINNERS\n";

if( !triple_winner.empty() )

{

tips::print( triple_winner, 0, "  " );

}

else

cout << "No horse won all three races in 1991-1995\n";

236 C++ Standard Library Practical Tips



// display all winners in alphabetical order

winner.clear();

merge( belmont.begin(), belmont.end(),

preakness.begin(), preakness.end(), back_inserter( winner ) );

vector<string> all_winner;

merge( winner.begin(), winner.end(),

kentucky.begin(), kentucky.end(), back_inserter( all_winner ) );

cout << "\nALL 15 WINNERS\n";

for( vector<string>::size_type i = 0; i < all_winner.size(); ++i )

{

cout << all_winner[i] << "  ";

if( (i+1) % 5 == 0 )

cout << endl;

}

// find different horses that have won

all_winner.erase( unique( all_winner.begin(), all_winner.end() ),

all_winner.end() );

cout << endl << all_winner.size() << " UNIQUE WINNERS\n";

for( vector<string>::size_type i = 0; i < all_winner.size(); ++i )

{

cout << all_winner[i] << "  ";

if( (i+1) % 5 == 0 )

cout << endl;

}

}

The output is

Tips on Associative Containers 237

BELMONT WINNERS

A. P. Indy  Colonial Affair  Hansel  Tabasco Cat  Thunder Gulch

PREAKNESS WINNERS

Hansel  Pine Bluff  Prairie Bayou  Tabasco Cat  Timber Country

KENTUCKY WINNERS

Go for Gin  Lil. E. Tee  Sea Hero  Strike the Gold  Thunder Gulch

WINNERS OF BELMONT BUT NOT PREAKNESS

A. P. Indy  Colonial Affair  Thunder Gulch

WINNERS OF BELMONT OR PREAKNESS BUT NOT BOTH

A. P. Indy  Colonial Affair  Pine Bluff  Prairie Bayou

Thunder Gulch  Timber Country



238 C++ Standard Library Practical Tips

The program in Listing 7.7 uses multisets and the winners of some American
horse races to demonstrate the sorted range algorithms. In the United States, the
three most important horse races are the Belmont Stakes, the Preakness Stakes, and
the Kentucky Derby. Any horse that triumphs in all three in one year is called a
Triple Crown winner. 

The program starts by loading the winners of the three races during 1991 to
1995 [Horse04] into multisets by using the technique of Tip 34. Multisets can hold
duplicate entries and should be used instead of sets because it’s possible for a horse
to win the same race more than once. The first three sections of the output show the
Belmont, Preakness, and Kentucky Derby winners.

To find values that are in one container but not another, use set_difference.
The code illustrates this by finding the horses that won Belmont but not Preakness.
Because the number of output elements is unknown, the program puts the output
into a vector with a back inserter. The output shows the result and demonstrates
that the elements in the output range are sorted. This is true for all of the sorted
range algorithms.

Another operation on sorted ranges is determining what values are in exactly
one of two ranges, that is, in one or the other range but not in both. The algorithm
that computes this is set_symmetric_difference. Call this algorithm the same way
that you call set_difference. The output shows the result of using set_symmetric_
difference to find the winners of the Belmont or Preakness Stakes but not both. If
you do want to find values that are in both ranges, use set_intersection. The out-
put shows that during 1991 to 1995, two horses won both the Belmont and 
Preakness.

WINNERS OF BOTH BELMONT AND PREAKNESS

Hansel  Tabasco Cat

TRIPLE WINNERS

No horse won all three races in 1991-1995

ALL 15 WINNERS

A. P. Indy  Colonial Affair  Go for Gin  Hansel  Hansel

Lil. E. Tee  Pine Bluff  Prairie Bayou  Sea Hero  Strike the Gold

Tabasco Cat  Tabasco Cat  Thunder Gulch  Thunder Gulch  Timber Coun-

try

12 UNIQUE WINNERS

A. P. Indy  Colonial Affair  Go for Gin  Hansel  Lil. E. Tee

Pine Bluff  Prairie Bayou  Sea Hero  Strike the Gold  Tabasco Cat

Thunder Gulch  Timber Country



You can also use the sorted range algorithms on more than two ranges, but not
directly. You have to first call an algorithm on two ranges, store the result, and then
repeatedly call the function on the result and a new range. As a small example, the
program uses set_intersection to determine which horses won all three races in
1991 to 1995. (Note that these are not necessarily Triple Crown winners because
they might not have won the races in the same year.) The program takes the vector
that has the winners of both the Belmont and Preakness Stakes and finds the inter-
section of that with the horses that won the Kentucky Derby. The result goes into a
new vector, rather than one of the source vectors, because source and destination
ranges shouldn’t overlap. The output shows that no horse won all three races dur-
ing the period in question.

To combine sorted ranges into a sorted result, use merge. The number of desti-
nation elements is the sum of the number of source elements. The output shows the
15 horses (three race winners per year for five years) in alphabetical order.

Finally, the program computes a list of the different horses that have won, that
is, a list with no duplicate names. The program does this by calling the STL algo-
rithm unique, which eliminates any consecutive, duplicate elements so that only
one copy on any element remains. The program doesn’t actually delete the ele-
ments from the container. Instead, the program returns an iterator that points to
the logical end of the container’s range, that is, to one past the last element that is
in the range of unique elements. This iterator is the first argument to the vector’s
erase member function. The last argument is the end of the vector’s range, so over-
all the call to erase deletes all elements that are not unique in the vector. The tech-
nique of putting unique in the call to erase is the same as the remove-erase idiom
that Tip 53 describes.

Tips on Associative Containers 239



This page intentionally left blank 



241

Tips on Other Containers8

T
his chapter describes the other containers that come in the STL, the ones that
aren’t standard containers. Three of them are container adaptors, which are
containers made from other containers. The container adaptor provides a

much smaller and more specialized interface than its constituent container. This
makes it very convenient to use the adaptor in the restricted setting for which it is
intended. Note that container adaptors aren’t standard containers because they
don’t meet the requirements for that type of container. Their principal missing
feature is iterators. This precludes using them in STL algorithms. The three con-
tainer adaptors described in this chapter are the following:

Stack: The last element entered is the first one that can be taken out.

Queue: The elements can only be extracted in the order they were entered.

Priority queue: The elements are taken out by priority.

The fourth container in this chapter is the bitset, which holds and manipulates
a collection of bits whose number is fixed on compile time. The fifth container, the
pair, is more like a data structure than a container. The pair holds two elements,
which can be of different types. The pair is used in a number of places in the STL
but is also handy in its own right. For more information on all five of these con-
tainers, see “Container Adaptors” and “Miscellaneous Containers” in Chapter 2.

USING A STACK DATA STRUCTURE

Applies to: Stack
See also: Tip 45

Quick Solution
stack<int> s;

s.push( 1 );

TIP 41



242 C++ Standard Library Practical Tips

s.push( 2 );

s.push( 3 );

cout << s.top() << endl; // 3

s.pop();

cout << s.top() << endl; // 2

s.pop();

cout << s.top() << endl; // 1

s.pop();

Detailed Solution

The stack is a handy data structure in which the last item added is the first one 
removed. That is, the stack keeps its elements in last-in, first-out (LIFO) order. A
good example of a stack is, naturally, a stack of cafeteria trays. Trays that have just
been washed are placed on top of the ones already there and push them down in the
stack. Only one tray is available for the taking—the one that is on top. Once that
tray is removed, the next tray—and only that tray—can be taken.

Stacks are common in computer science. Most computer programs have a run-
time stack. Whenever a function is called, information such as its parameters, local
variables, and the caller are placed (pushed) onto the stack. When a function 
finishes executing, it is removed from (popped off) the stack and the function 
underneath executes.

The stack is a good model for some real-world situations. One of the author’s
summer jobs was loading palettes of records onto a semi-trailer truck for shipping
throughout the country. The only way to get cargo in and out of a semi is at the
back, so the palettes to be delivered last must be loaded first so they don’t block the
door. Those that are to be dropped off first must be loaded last so that they can be
reached right away.

The program in Listing 8.1 simulates loading and unloading a semi-trailer. The
truck is loaded in California, which is on the West Coast of the United States, and
travels east. The records for the easternmost city (Houston) are loaded first and
those for the westernmost (Los Angeles) are loaded last.

LISTING 8.1 Using a Stack

// adaptor_stack.cpp

#include <iostream>

#include <stack>

#include <string>

#include <utility>

using namespace std;



int main( )

{

const int num_loads = 5;

const int palettes[num_loads] = { 7, 6, 2, 5, 10 };

const char* destinations[num_loads] = { "Houston", "Dallas",

"Albuquerque", "Phoenix", "Los Angeles" };

// load up the truck

stack< pair<int,string> > truck;

cout << "LOADING TRUCK";

for( int i = 0; i < num_loads; ++i )

{

truck.push( make_pair( palettes[i], destinations[i] ) );

cout << "\nLoaded " << truck.top().first << " palettes for "

<< truck.top().second;

}

// make the trip

cout << "\n\nTRUCK EN ROUTE";

while( !truck.empty() )

{

cout << "\nDelivered " << truck.top().first << " palettes to "

<< truck.top().second;

truck.pop();

}

}

The output is

Tips on Other Containers 243

LOADING TRUCK

Loaded 7 palettes for Houston

Loaded 6 palettes for Dallas

Loaded 2 palettes for Albuquerque

Loaded 5 palettes for Phoenix

Loaded 10 palettes for Los Angeles

TRUCK EN ROUTE

Delivered 10 palettes to Los Angeles

Delivered 5 palettes to Phoenix

Delivered 2 palettes to Albuquerque

Delivered 6 palettes to Dallas

Delivered 7 palettes to Houston



244 C++ Standard Library Practical Tips

The program has a primitive representation of a load of cargo, namely, the
number of palettes and the destination city. These two items can be stored in a pair
data structure, which Tip 45 and “Miscellaneous Containers” in Chapter 2 de-
scribe. The pair contains an integer (the number of palettes) and a string (the des-
tination city). You must put a space between the two closing angle brackets in the
declaration of the stack. Otherwise, the compiler will interpret two consecutive
right angle brackets as the right shift operator.

The program starts by creating an empty stack to represent the truck. The first
loop in the code loads the cargo onto the truck. make_pair, also described in “Mis-
cellaneous Containers” (Chapter 2), is a nice way of creating a pair. In the loop, the
code uses the stack’s member function push to add each load to the truck. This
function is the only way to add elements to the stack. The cargo is put onto the
truck with the easternmost cities first and the westernmost last. The first part of the
output shows the loading order.

When the truck makes its deliveries, it is unloaded in reverse order. The only
way to remove an item from a stack is to use the pop member function. pop does not
return the item but just removes it. Thus, the code first calls the member function
top, which returns a reference to the only item that can be accessed in a stack,
namely, the one on top. A reference can be chained to access the two public data
members of the pair, called first and second. The code prints these values and then
pops the item off the stack.

Although the program could have unloaded the truck with a for-loop, it’s
cleaner to use a while-loop and the member function empty as shown. The second
half of the output shows that the cargo is unloaded in reverse order.

A FIRST-IN, FIRST-OUT DATA STRUCTURE 
AND BUFFERING

Applies to: Queue
See also: Tip 43

Quick Solution
queue<int> q;

q.push( 1 );

q.push( 2 );

cout << q.front() << endl; // 1

q.pop();

q.push( 3 );

cout << q.front() << endl; // 2

q.pop();

TIP 42



cout << q.front() << endl; // 3

q.pop();

Detailed Solution

The STL comes with a queue container. This is a first-in, first-out (FIFO) queue
that lets you insert any number of elements and remove them in the order you in-
serted them. You can remove the elements after you’ve inserted them all, but it’s
much more common to remove them at various times during the insertions. The
classic application of this is a data buffer. For example, two pieces of hardware may
run at different speeds. If the faster one processes data and passes it to the slower
one, that data must be stored, or buffered, until the slowpoke is ready for the data. 

The need for buffering occurs in the real world, too, especially in commerce.
Customers often arrive at checkout counters faster than the clerks can ring up their
orders and have to wait in line or, as they say in Britain, queue up. The program in
Listing 8.2 provides an example of queuing by keeping track of vehicles coming to
a car wash. Because the customers can arrive more quickly than cars can be cleaned,
the software stores the objects representing the cars in a queue. This ensures that
the cars will be cleaned in the order they arrived.

LISTING 8.2 Using a Queue

// adaptor_queue.cpp

#include <iostream>

#include <queue>

#include <string>

using namespace std;

class Vehicle

{

public:

Vehicle( string description = "Unknown car",

string license = "Unknown license", bool wax = false );

string description() const;

string license() const;

bool wax() const;

private:

string description_, license_;

bool wax_;

};

Tips on Other Containers 245



inline

Vehicle::Vehicle( string description, string license, bool wax )

: description_( description ), license_( license ), wax_( wax )

{} // empty

string Vehicle::description() const

{  return description_; }

string Vehicle::license() const

{  return license_; }

bool Vehicle::wax() const

{  return wax_; }

int main( )

{

const char* description[] = { "blue Toyota Camry", "red VW",

"green Toyota Sienna", "black Ford Mustang",

"white Pontiac" };

const char* license[] = { "ZD43UY", "CRO611", "AUW9046",

"KW45JK", "ZQU342" };

const bool wax[] = { false, true, false, true, false };

const int num_cars = sizeof( wax ) / sizeof( wax[0] );

queue<Vehicle> line;

int count = 0;

while( count < num_cars || !line.empty() )

{

for( int i = 0; i < 2; ++i )

if( count < num_cars )

{

cout << "A " << description[count] << ", license "

<< license[count] << ", is here for a wash";

if( wax[count] )

cout << " and a wax";

cout << endl << endl;

// put the car in the queue

line.push( Vehicle( description[count], license[count],

wax[count] ) );

++count;

}

else

246 C++ Standard Library Practical Tips



Tips on Other Containers 247

break;

// wash one car and call for it to be picked up

cout << "ATTENTION PLEASE: a " << line.front().description()

<< ", license " << line.front().license()

<< ",\n\has been carefully washed ";

if( line.front().wax() )

cout << "and waxed ";

cout << "and is available for pick-up\n\n";

line.pop();

}

}

The output is

A blue Toyota Camry, license ZD43UY, is here for a wash

A red VW, license CRO611, is here for a wash and a wax

ATTENTION PLEASE: a blue Toyota Camry, license ZD43UY, has been

carefully washed and is available for pick-up

A green Toyota Sienna, license AUW9046, is here for a wash

A black Ford Mustang, license KW45JK, is here for a wash and a wax

ATTENTION PLEASE: a red VW, license CRO611, has been carefully

washed and waxed and is available for pick-up

A white Pontiac, license ZQU342, is here for a wash

ATTENTION PLEASE: a green Toyota Sienna, license AUW9046, has been

carefully washed and is available for pick-up

ATTENTION PLEASE: a black Ford Mustang, license KW45JK, has been

carefully washed and waxed and is available for pick-up

ATTENTION PLEASE: a white Pontiac, license ZQU342, has been 

carefully washed and is available for pick-up



The program starts by declaring a little class that holds a description of a car
coming to the carwash, along with its license plate number and whether the car
needs to be waxed. The remainder of the program is a loop that loads arriving cars
into a queue and removes them when they have been cleaned. In each iteration of
the loop, two cars can enter the carwash but only one can be washed and leave. 

The code displays information about each customer’s vehicle as it arrives and
puts it on the queue by using the member function push. The cars should be
processed from the head (front) of the queue to maintain the first-in, first-out
order. The code demonstrates this by getting the characteristics of a finished car
with the front queue member function. This deletes the car from the front of the
queue with the member function pop. This function removes the next element but
does not return it as front does, which is why you’ll often see these two used in 
conjunction.

If you need something a little more powerful than a queue, try a priority queue.
As Tip 43 explains, elements come off the queue in order of importance.

BUFFERING WITH PRIORITY REMOVAL

Applies to: Priority queue
See also: Tip 42

Quick Solution
priority_queue<int> p;

p.push( 1 );

p.push( 7 );

p.push( 5 );

cout << p.top() << endl; // 7

p.pop();

cout << p.top() << endl; // 5

p.pop();

cout << p.top() << endl; // 1

p.pop();

Detailed Solution

Tip 42 explains that a queue is a data structure in which elements are removed in the
order they are inserted. The queue is commonly used as a buffer to manage 
situations in which data arrives more quickly than it can be processed. A priority queue
can also serve as a buffer, but the data is removed according to how important it is,
rather than on a first-come, first-served basis. The priority queue holds ranked ele-
ments, and the higher an element’s ranking, the sooner the element can be removed.

248 C++ Standard Library Practical Tips

TIP 43



Tips on Other Containers 249

A good use of a priority queue is to process incoming pieces of information that
have an importance attached to them. The program in Listing 8.3 illustrates 
messages from a security system that is monitoring a group of buildings. The
guards should respond to the events according to the danger they represent; for 
example, it’s more important to handle a smoke alarm going off than to help an
employee jump-start his car.

LISTING 8.3 Using a Priority Queue

// adaptor_priority_queue.cpp

#include <iostream>

#include <queue>

#include <string>

using namespace std;

class Message

{

public:

Message( string message = "Software problem",

string source = "Message constructor", int security_level = 0 );

// message - description of problem

// source - site of problem

// security_level - 0-10, 10 is most important

bool operator<( const Message& rhs ) const;

// compare security levels

string message() const;

int security_level() const;

string source() const;

private:

string message_, source_;

int security_level_;

};

inline

Message::Message( string message, string source, int security_level )

: message_( message ), source_( source ),

security_level_( security_level )

{} // empty



bool Message::operator<( const Message& rhs ) const

{  return security_level() < rhs.security_level(); }

string Message::message() const

{  return message_; }

string Message::source() const

{  return source_; }

int Message::security_level() const

{  return security_level_; }

int main( )

{

const char* message[] = { "situation normal",

"visitor needs a pass", "lights on in Building 7",

"visitor still needs a pass",

"smoke from corner of Building 7",

"call from Lab 46, Building 7 - they smell smoke",

"fire alarm, Building 7, Lab 46" };

const char* source[] = { "South gate", "West gate", "South gate",

"West gate", "South gate", "South gate", "South gate" };

const int security_level[] = { 0, 1, 3, 2, 6, 7, 8 };

const int num_messages

= sizeof( security_level ) / sizeof( security_level[0] );

priority_queue<Message> messages;

cout << "MESSAGES IN CHRONOLOGICAL ORDER\n";

for( int i = 0; i < num_messages; ++i )

{

cout << "Event " << (i+1) << ": Security level - "

<< security_level[i] << "\n\t" << source[i] << " reports "

<< message[i] << endl;

messages.push( Message( message[i], source[i],

security_level[i] ) );

}

cout << "\n\nMESSAGES IN PRIORITY ORDER\n";

while( !messages.empty() )

{

cout << "Security level - "

<< messages.top().security_level() << "\n\t"

<< messages.top().source() << " reports "

250 C++ Standard Library Practical Tips



Tips on Other Containers 251

<< messages.top().message() << endl;

messages.pop();

}

}

The output is

MESSAGES IN CHRONOLOGICAL ORDER

Event 1: Security level - 0

South gate reports situation normal

Event 2: Security level - 1

West gate reports visitor needs a pass

Event 3: Security level - 3

South gate reports lights on in Building 7

Event 4: Security level - 2

West gate reports visitor still needs a pass

Event 5: Security level - 6

South gate reports smoke from corner of Building 7

Event 6: Security level - 7

South gate reports call from Lab 46, Building 7 - they smell 

smoke

Event 7: Security level - 8

South gate reports fire alarm, Building 7, Lab 46

MESSAGES IN PRIORITY ORDER

Security level - 8

South gate reports fire alarm, Building 7, Lab 46

Security level - 7

South gate reports call from Lab 46, Building 7 - they smell 

smoke

Security level - 6

South gate reports smoke from corner of Building 7

Security level - 3

South gate reports lights on in Building 7

Security level - 2

West gate reports visitor still needs a pass

Security level - 1

West gate reports visitor needs a pass

Security level - 0

South gate reports situation normal



The program starts by declaring a class to represent a message from the secu-
rity system. Each message consists of a text string that describes the problem, an-
other text string with the origin of the message, and a security level. The higher this
number is, the more important the message is. Because the program doesn’t expect
to ever call the class’ default constructor, the program sets strange default values in
the constructor so that an accidental call becomes apparent. The class also declares
the less-than operator, which compares the security levels of two class instances. By
default, the priority queue uses the less-than operator to determine the priority of
each of its elements. Note also that the priority queue does not have its own
header—it’s in <queue>.

The first loop simulates messages coming into the security center. Each message
is loaded into the priority queue as the message comes in by using the push member
function. This is the only way to add elements to the data structure. The first part of
the output shows the messages in the order they were inserted into the priority queue.

The second loop simulates the guards handling the security messages. The loop
keeps executing as long as the member function empty returns false. The loop re-
moves the message with the highest priority by using the pop member function. Un-
fortunately, this function removes the element but does not return it, so before
calling pop, the code displays the message by using top. This member function re-
turns a reference to the top element in the priority queue, that is, the one with the
highest ranking. The reference can be chained as shown to access members of the el-
ement in the container, in this case the Message class. The second half of the output
illustrates that the messages are indeed removed in descending order of security level.

If the priority queue is more than you need, try a regular queue. Tip 42 demon-
strates that elements come out of the queue in the order they came in, 
regardless of importance.

USING A FIXED-SIZE COLLECTION OF BITS

Applies to: Bitset
See also: Tip 26, Tip 28, Tip 91

Quick Solution
bitset<50> a( 0xff0 );

const bitset<50> b( 0xf );

a |= b; // bitwise OR

a &= b; // bitwise AND

a.flip(); // toggle all bits

a.reset( 4 ); // clear bit 4

252 C++ Standard Library Practical Tips

TIP 44



a.set(); // set all bits

See the detailed solution and a Standard Library reference book for the many
more capabilities of the bitset.

Detailed Solution

In C programs and old C++ code, you’ll often see the unsigned long data type used
to hold a group of bits. The bits can be manipulated with the operators &, |, and ~.
The C++ Standard Library has a big improvement of this process—the bitset. Its
advantages are that it can be any size, that the bits can be accessed by a subscript
(index), and that bitset has more bitwise operators than the three mentioned ear-
lier. Although the bitset is also useful for performing binary (base two) I/O (see Tip
91), its primary function is bit-tweaking. To have access to the bitset you must in-
clude the header <bitset>.

A vector or deque of Booleans can serve as an alternative to a bitset (see Tip 26
and Tip 28). Their chief benefit is that they can be resized. Table 8.1 summarizes
the pros and cons of these three containers.

Tips on Other Containers 253

Property bitset vector<bool> deque<bool>

Designed for compressed storage X X

Works in STL algorithms X

Resizing X X

Indexing X X X

Quick access to front and back X X

Binary (base two) I/O X

Construction from string X

Count number of set bits X

Report if any or no bits set X

Containerwise equality, inequality X X X

Convenient set, clear of all bits X

Flip (complement) any or all bits X X

OR, EXCLUSIVE OR, AND X
(returning itself or new bitset)

Left and right shifts X

Convert to unsigned int or string X

TABLE 8.1 Comparison of bitset, vector<bool>, and deque<bool>



254 C++ Standard Library Practical Tips

The program in Listing 8.4 is an example of its use.

LISTING 8.4 Using a Bitset

// adaptor_bitset.cpp

#include <bitset>

#include <iostream>

using namespace std;

int main( )

{

const int num_lights = 15;

const bitset<num_lights> outside( 0xf );

const bitset<num_lights> inside( 0xff0 );

const bitset<num_lights> driveway( 0x7000 );

// on creation all bits are off

bitset<num_lights> lights;

cout << "Lights are off during the day: " << lights;

lights |= outside;

cout << "\nAt dusk, turn on outside lights: " << lights;

lights |= driveway;

cout << "\nAdd driveway lights: " << lights;

lights |= inside;

cout << "\nAdd inside lights: " << lights;

// to save electricity turn off half the lights

for( int i = 0; i < num_lights; i +=2 )

lights.reset( i );

cout << "\nTo save electricity turn on only every other light:"

<< lights;

// turn off inside lights at night

lights &= bitset<num_lights>( inside ).flip();

cout << "\nAt bedtime turn off inside lights: " << lights;

// turn off all lights at sunrise

lights.reset();

cout << "\nTurn off all lights at sunrise: " << lights << endl;

}

The output is



Tips on Other Containers 255

The program demonstrates bitsets by simulating the control of lights around a
house. The code declares a constant integer that specifies the number of lights and
then uses that as the template parameter to 3 bitsets. These bitsets define groups of
lights for the inside, outside, and driveway of the house. The code declares the bit-
sets to be constants because they define the sets of lights and so shouldn’t be
changed. Even though the groups are smaller than the total number of lights (3, 4,
and 8 versus 15), they are declared to each contain 15 bits because only bitsets of the
same size can be combined with the bitset operators. Besides the default construc-
tor, the bitset has constructors that accept an unsigned long value or a C++ text
string as the initial specification of the bit states. There are only 15 bits in this ex-
ample, so it’s easy to specify the bits by using an unsigned long and a hexadecimal
value.

Next, the program models a panel of light switches with a bitset. On creation,
a bitset made with the default constructor has all bits set to 0. You can display the
bits as a group of 1s and 0s by simply inserting the bitset into an output stream. The
first line of the output shows that all of the bits are initially off (0). The code then
turns on sets of lights by ORing the panel bitset with each group bitset. The second,
third, and fourth lines of output show the result.

With the high cost of electricity nowadays, it’s a good idea to save money by
turning off some of the lights around the house. The program shows how to turn
off every other light by using a loop and the bitset member function reset, which
sets the specified bit to 0. The output statement displays the bits.

When everyone goes to sleep, all the lights inside the house should be turned
off. The bit-tweaking for this is to AND the bits in the panel with a bitset that has
all inside-light bits set to 0 and all other bits set to 1. The code accomplishes this
with the expression

lights &= bitset<num_lights>( inside ).flip()

This is the common STL use of an unnamed, temporary variable (see “Prede-
fined Function Objects” in Chapter 2) and is equivalent to

Lights are off during the day: 000000000000000

At dusk, turn on outside lights: 000000000001111

Add driveway lights: 111000000001111

Add inside lights: 111111111111111

To save electricity turn on only every other light:010101010101010

At bedtime turn off inside lights: 010000000001010

Turn off all lights at sunrise: 000000000000000



bitset<num_lights> temp( inside );

temp.flip();

lights &= temp;

The member function flip toggles (reverses the value of) all bits in the bitset.
Finally, the program turns off all lights with the member function reset. Use its

complement set to turn on all bits in the bitset.

USING A PAIR OF THE SAME OR DIFFERENT 
DATA TYPES

Applies to: Pair
See also: Tip 17, Tip 55

Quick Solution
pair<int,double> p( 1, 32.56 );

cout << p.first << "   " << p.second; // 1   32.56

Detailed Solution

The pair is not a container adaptor but is a very handy little data structure that
holds two items, which can have the same or different data types. Pairs have a 
variety of uses:

In the map and multimaps containers (see “Associative Containers” in 
Chapter 2)
In the STL algorithms equal_range and mismatch

To return two values from a function
To manipulate two items at once, for example, Tip 55
As a mini-struct to hold two items that are logically related

You can make the pair hold three items by making one of the pair’s members
hold another pair. You could continue this nesting, but that quickly becomes a
mess. It’s better to use a struct instead. (Future versions of C++ may have a data
structure similar to a pair called a tuple. It holds more than two elements [Jarvi02]).

The pair has two data members, first and second, that are both public. It has
all six relational operators. There are two equality operators, == and !=. Two pairs
are equal if the first members are equal and the second members are equal. They
are not equal if the first members are not equal and/or the second members are. 

256 C++ Standard Library Practical Tips

TIP 45



The four relational operators are <, >, <=, and >=. When testing for inequality,
if the first data members are not equal, they decide the result. If they are equal, the
comparison of the second data members determines the answer.

Listing 8.5 has a program that shows the pair in action.

LISTING 8.5 Using a Pair

// adaptor_pair.cpp

#include <algorithm>

#include <iostream>

#include <iterator>

#include <string>

#include <vector>

#include <utility>

using namespace std;

typedef pair<int,string> Billionaire;

bool less_than_second( const Billionaire& b1, const Billionaire& b2 );

// return true if the first billionaire name comes before the second

int main( )

{

const char* names[] = { "Alsaud, Alwaleed Bin Talal",

"Allen, Paul", "Albrecht, Karl and Theo", "Buffett, Warren",

"Gates, Bill" };

const int billion[] = { 18, 20, 26, 30, 41 };

const int num_billionaires = sizeof( names ) / sizeof( names[0] );

// create vector and initialize with above info

vector<Billionaire> billionaire( num_billionaires );

transform( billion, billion+num_billionaires, names,

billionaire.begin(), make_pair<int,string> );

// compare two billionaires

if( billionaire[1].first > billionaire[3].first )

cout << billionaire[1].second << " has more money than "

<< billionaire[3].second << endl;

else if( billionaire[1].first == billionaire[3].first )

cout << billionaire[1].second << " and "

<< billionaire[3].second

<< " have the same amount of money\n";

Tips on Other Containers 257



else

cout << billionaire[1].second << " has less money than "

<< billionaire[3].second << endl;

// default sort is in ascending order by money.

sort( billionaire.begin(), billionaire.end() );

// Display in reverse to see richest first

cout << "\nFIVE RICHEST PEOPLE BY WEALTH";

vector<Billionaire>::const_reverse_iterator billionaire_rend

= billionaire.rend();

for( vector<Billionaire>::const_reverse_iterator i

= billionaire.rbegin(); i != billionaire_rend; ++i )

cout << "\n$" << i->first << " billion - " << i->second;

// sort into ascending order by last name and display

sort( billionaire.begin(), billionaire.end(), less_than_second );

cout << "\n\nFIVE RICHEST PEOPLE BY NAME\n";

vector<Billionaire>::const_iterator billionaire_end

= billionaire.end();

for( vector<Billionaire>::const_iterator i = billionaire.begin();

i != billionaire_end; ++i )

cout << i->second << " - $" << i->first << " billion\n";

}

inline

bool less_than_second( const Billionaire& b1, const Billionaire& b2 )

{

return b1.second < b2.second;

}

The output is

258 C++ Standard Library Practical Tips

Allen, Paul has less money than Buffett, Warren

FIVE RICHEST PEOPLE BY WEALTH

$41 billion - Gates, Bill

$30 billion - Buffett, Warren

$26 billion - Albrecht, Karl and Theo

$20 billion - Allen, Paul



Tips on Other Containers 259

The program stores a billionaire’s name and how much money he has [Bil-
lionaire04] together in a pair. The <utility> header allows access to the pair and
the utility function make_pair described later in this tip. The code starts by making
a typedef called Billionaire for the pair. This is common when working with pairs
and cuts down on the amount of typing. Next, the program declares a vector with
enough elements to hold the pairs that will be put into it. 

The code constructs the pairs with the function make_pair. This utility function
lets you construct a pair without explicitly declaring the data types. In general, it saves
a little typing, though, in function templates, it can save a lot. The alternative to using
it in the program would be to construct a temporary, unnamed variable like this:

billionaires.push_back( pair<int,string>( billions[i], names[i] ) );

After filling the vector, the program demonstrates access to the two public data
members by comparing the wealth of a couple of the billionaires. Notice that the
code compares the first data members and doesn’t use the pair’s comparison op-
erators because they could give an incorrect result. For example, if the first line of
the comparison were

if( billionaires[1] > billionaires[3] )

and the two billionaires had the same amount of money, the result of the inequal-
ity would be decided by their last names, which is not what you want.

The next section of code shows a situation where it is fine to use the pair’s less-
than operator. In this case, the program calls the STL algorithm sort, which does
what its name says it does. By default, it uses the less-than operator to sort. If two
billionaires had equal amounts of money, it would just sort them alphabetically,
which is not only acceptable here but desirable. The loop that follows the sorting
prints the vector in reverse order to list the people with the biggest hoard first.

Finally, the program ends by sorting the vector of billionaires by name. The
person’s name is in the second data member of the pair and, because the pair’s less-

$18 billion - Alsaud, Alwaleed Bin Talal

FIVE RICHEST PEOPLE BY NAME

Albrecht, Karl and Theo - $26 billion

Allen, Paul - $20 billion

Alsaud, Alwaleed Bin Talal - $18 billion

Buffett, Warren - $30 billion

Gates, Bill - $41 billion



than operator (which sort uses by default) compares the first data members, the
program has a custom comparison function. This function, shown at the end of the
program, returns true if the second data member of the pair on the left of the less-
than sign (<) is less than the second data member of the pair on the right. Other-
wise, it returns false. The code passes the function to the sorting routine and the
bottom half of the output shows that the billionaires are indeed sorted by name and
not by money.

260 C++ Standard Library Practical Tips



261

Tips on Algorithms9

A
lgorithms are one of the two major parts of the Standard Template Library.
(The other big part is the containers.) Most of the algorithms are conceptu-
ally simple to understand—count counts the number of elements equal to a

specified one, fill fills a range with a value, find finds a particular value. STL ref-
erence books can fill in the details for you. This chapter will provide you with other
things, such as how to know what algorithms to use and when to use them, and
how to use ordinary functions and class member functions in algorithms. This
chapter will also give you some good advice on sorting. Here’s what you will see:

How to choose among similar algorithms
How to use ordinary functions, pointers to ordinary functions and class 
member functions in algorithms
How to use a two-argument function in an algorithm that expects a one-
argument function
How to find or erase the first or last matching element
How to remove all matching elements, logically or permanently
What to do before using the set algorithms
How to sort on one of many fields
How to sort without copying
How to copy elements that meet a criterion
How to operate on each element of a container

USE THE MOST SPECIFIC ALGORITHM

Applies to: All algorithms

Quick Solution

If an algorithm is available that does what you want, use it instead of for_each; for
example, use count or count_if to count specific elements. If available, use a con-

TIP 46 



262 C++ Standard Library Practical Tips

tainer’s member function instead of the equivalent STL algorithm; for example, the
find member function of a set instead of the find STL algorithm.

Detailed Solution

for_each is a very useful algorithm that takes a function or function object that
you’ve written and marches it through a range of elements, doing your bidding on
each. You can just examine the elements or you can modify them. There’s room for
a lot of creativity and a lot of power with for_each, but don’t use it. Okay, that’s a
little strong, so how about this—look for another algorithm that does what you
want before using for_each.

The advice in this tip is to use the most specific STL algorithm you can. There
are two different ways you can do this. The first is to see if there’s an algorithm
other than for_each with the functionality you need. For example, suppose you
wanted to count how many numbers in a vector are greater than 100. You could
easily write a class that could be passed to for_each, and each time it received an el-
ement, it would increment a counter if the number were more than 100. for_each
returns a copy of the class with the gathered information and voilà—you have your
answer. The problem with this is that there’s already an algorithm (count_if) that
is designed for counting. When used in conjunction with the built-in functors, this
algorithm lets you count the specified numbers much more easily.

There are a number of advantages to using a more specific algorithm than for_each:

There is often less code to write.
The code that you do write is often simpler.
The specific algorithm may be more efficient.
The intent of the code is clearer. It’s easier to tell that you’re counting if the 
algorithm is called “count” than if it’s called “for_each.”

You don’t have to memorize all the algorithms to know what’s available. Just
flip through a list of them occasionally so they’ll be in the back of your mind. Table
9.1 may help you recall what’s in the STL algorithmic toolkit. It lists (by function-
ality) specific algorithms that serve as alternatives to for_each.

There’s a second meaning to using the most specific algorithm that you can—
be aware of container member functions that do the same thing as STL algorithms.
(Fortunately, they have the same names.) Sometimes the containers provide the
functionality because they can’t be used with the algorithm; for example, the sort
algorithm requires random iterators, which a list doesn’t have. In other cases, the
container provides an algorithm because that version is more efficient; for example,
the find member function of sets.



Lists tend to have member function alternatives that are related to modifying or
moving elements. Associative containers provide alternatives for finding elements.
Table 9.2 shows the algorithms for which you should substitute member functions.

The algorithms are in alphabetical order and an X indicates that the container pro-
vides a member function (with the same name).

Tips on Algorithms 263

Purpose Algorithms

Counting count, count_if

Minimum/maximum min_element, max_element

Searching find, find_if, search, search_n, find_first_of,
find_end, adjacent_find

Changing values fill, fill_n, generate, generate_n, replace,
replace_if

Computing accumulate, adjacent_difference, partial_sum

TABLE 9.1 Alternatives to for_each

Algorithm List Set/multisets Map/multimap

count X X

equal_range X X

find X X

lower_bound X X

merge X

remove, remove_if X

reverse X

sort X

unique X

upper_bound X X

TABLE 9.2 Member Function Alternatives to Algorithms



264 C++ Standard Library Practical Tips

USE A FUNCTION IN ALGORITHMS

Applies to: Algorithms with functional arguments
See also: Tip 4, Tip 20, Tip 50, Tip 58, Tip 79, Listing 13.1, Listing 13.11

Quick Solution
int f1( int n );

int f2( int n1, int n2 );

// ...

vector<int> in;

// ...

vector<int> out( in.size() );

transform( in.begin(), in.end(), out.begin(), f1 ); // use function alone

transform( in.begin(), in.end(), out.begin(), 

bind2nd( ptr_fun( f2 ), 10 ) ); // use function with adaptor

Detailed Solution

Many of the STL algorithms take functional arguments that allow you to customize
their behavior. For example, you can pass the sorting criterion to sort, the condi-
tion for equality to count_if or find_if and the operation to for_each or transform.
A functional argument can be an ordinary function. A functional argument must
have the correct number of arguments, which is either one or two, depending on
the algorithm. The argument type should be the same as the type in the input range,
and if the output is going into an output range, those types should match. A func-
tion that is a predicate must always produce the same output for the same input.
“Predefined Function Objects” in Chapter 2 explains this in more detail.

To use an ordinary function as a functional argument, you simply pass the
function’s name. However, if you want to use the function with a function adaptor,
you need to wrap the function name in a call to the predefined adaptor ptr_fun.
The program in Listing 9.1 gives you some good examples of both ways of using an
ordinary function.

LISTING 9.1 Using a Function in Algorithms

// algorithm_function.cpp

#include <algorithm>

#include <functional>

#include <iostream>

#include <iterator>

#include <numeric>

TIP 47 



#include <vector>

#include "tips.hpp"

using namespace std;

// ***** The phrase "the sum of the proper divisors" of a

//       number means the sum of all the divisors of the number

//       except for that number itself, e.g.

//       the sum of the proper divisors of 8 is 1 + 2 + 4 = 7

bool is_amicable_pair(  int m, int n );

// returns true if the sum of the proper divisors of m is n and

// vice versa. Otherwise, returns false

// m > 1, n > 1

bool is_perfect( int n );

// returns true if the sum of the proper divisors of n is n itself

// otherwise, returns false

// n > 1

int proper_divisor_sum( int n );

// compute the sum of the proper divisors of n

// n > 1

int main( )

{

// make the sequence 2, 3, ..., divisor_length+1

const int divisor_length = 11;

vector<int> sequence( divisor_length, 1 );

sequence[0] = 2;

partial_sum( sequence.begin(), sequence.end(), sequence.begin() );

// for each number compute the sum of the proper divisors

vector<int> result( divisor_length );

transform( sequence.begin(), sequence.end(), result.begin(),

proper_divisor_sum );

tips::print( sequence, "               Numbers" );

tips::print( result,   "Sum of proper divisors" );

// make the sequence 2, 3, ..., perfect_length+1

const int perfect_length = 9999;

sequence.assign( perfect_length, 1 );

sequence[0] = 2;

Tips on Algorithms 265



partial_sum( sequence.begin(), sequence.end(), sequence.begin() );

// find all the perfect numbers in the sequence

result.clear();

remove_copy_if( sequence.begin(), sequence.end(),

back_inserter( result ), not1( ptr_fun( is_perfect ) ) );

cout << endl;

tips::print( result, "Perfect numbers" );

// make the sequence 0, 1, 2, 3, ..., amicable_last

const int amicable_last = 1500;

sequence.assign( amicable_last+1, 1 );

sequence[0] = 0;

partial_sum( sequence.begin(), sequence.end(), sequence.begin() );

// find all the amicable pairs in the sequence

cout << "\nAmicable pairs\n";

result.resize( 1 );

for( int i = 2; i <= amicable_last; ++i )

{

vector<int>::iterator out =

remove_copy_if( sequence.begin()+i, sequence.end(),

result.begin(),

not1( bind1st( ptr_fun( is_amicable_pair ), i ) ) );

if( out != result.begin() )

cout << i << " " << result[0] << endl;

}

// faster way to find all the amicable pairs in the sequence

cout << "\nFaster amicable pairs\n";

result.resize( sequence.size() );

transform( sequence.begin()+2, sequence.end(), result.begin()+2,

proper_divisor_sum );

for( int i = 2; i <= amicable_last; ++i )

if( result[i] > 1 // no prime numbers

&& result[i] != i // no perfect numbers

&& i < result[i] // no duplicate pairs

&& result[i] <= amicable_last // don't go past end

&& result[result[i]] == i // other number is amicable

)

{

cout << i << " " << result[i] << endl;

}

266 C++ Standard Library Practical Tips



}

inline

bool is_amicable_pair(  int m, int n )

{ return m != n &&

proper_divisor_sum( m ) == n && proper_divisor_sum( n ) == m; }

inline

bool is_perfect( int n )

{ return proper_divisor_sum( n ) == n; }

int proper_divisor_sum( int n )

{

int sum = 1;

int stop = n;

for( int i = 2; i < stop; ++i )

if( n % i == 0 )

{

sum += i;

stop = n / i;

sum += stop;

}

return sum;

}

The output is

Some of the many things studied in number theory are perfect numbers and
their close relatives, amicable pairs. A perfect number is an integer greater than one

Tips on Algorithms 267

Numbers: 2 3 4 5 6 7 8 9 10 11 12 

Sum of proper divisors: 1 1 5 1 6 1 7 7 8 1 16 

Perfect numbers: 6 28 496 8128 

Amicable pairs

220 284

1184 1210

Faster amicable pairs

220 284

1184 1210



268 C++ Standard Library Practical Tips

such that the sum of all its divisors other than itself is equal to that integer. This sum
is called the sum of the proper divisors. Six is a perfect number because 1 + 2 + 3 is 6.
Eight is not a perfect number because 1 + 2 + 4 is 7, not 8. An amicable pair of num-
bers is two different integers (each greater than one) such that the sum of the first in-
teger’s proper divisors is equal to the second integer and vice versa. The program in
this tip calculates sums of proper divisors, perfect numbers, and amicable pairs.

The function that does the work is proper_divisor_sum. It expects an argument
that’s greater than one and then does what the name says—finds the sum of the
proper divisors. In a show of good modularity, the other two functions are simple
uses of the first. is_amicable_pair returns true if its two arguments are different
and if the sum of the proper divisors of the first is equal to the second argument and
vice versa. Otherwise, is_amicable_pair returns false. is_perfect performs the
eponymous operation, returning true if the sum of the proper divisors of its argu-
ment is equal to the argument itself and false otherwise.

The main program starts by making a vector filled with ones, as described in
Tip 4, then uses the STL algorithm partial_sum and Tip 79 to make a consecutive
sequence of integers starting with two. To calculate the sum of the proper divisors
of each of these numbers, the program uses another STL algorithm, transform. Its
first two arguments are the input range, the third argument is the start of the out-
put range, and the last argument is the operation to perform. This is just the ordi-
nary function proper_divisor_sum. Note that the output vector doesn’t need a back
inserter because it was created with the same size as the input vector.

The first section of the output shows the integer sequence. Beneath it are the
sums of each numbers, proper divisors. Most of the sums are smaller than the
numbers they come from, some are larger, and one is the same, six. It’s the first per-
fect number.

Next, the program illustrates how to find all perfect numbers in a sequence.
The program changes the size and contents of the current vector by passing a new
length and element value to the vector’s assign member function. Then the pro-
gram creates a sequence starting with two as before. The goal is to put copies of all
the numbers in the input vector that are perfect into an output vector. The most
logical way to do this would be to use a copy_if algorithm with is_perfect as the
functional argument. Unfortunately, as Tip 58 explains, the STL doesn’t have a
copy_if algorithm. That tip provides a custom-written one and explains how to use
the STL algorithm remove_copy_if instead.

remove_copy_if copies elements in an input range that fail a criterion to an
output range. If you used is_perfect as the functional argument, it would copy all
input elements that were not perfect numbers to the output, which is the opposite
of what you want. To fix this, you can take the logical negation of the result of
is_perfect by using the predefined function adaptor not1. You can’t apply that di-
rectly to an ordinary function, though, or you’ll get a compiler error. To make



such a function usable with an adaptor, you need to wrap the function in a call to
another adaptor, ptr_fun. The call to remove_copy_if demonstrates this and shows
that the third argument is a back inserter to the output vector. You need a back in-
serter here because you don’t know how large the output will be, that is, how many
elements will be copied. The output shows that there are four, the first four perfect
numbers.

The last part of the program shows two different ways of finding amicable pairs
with values of 1500 or less. The first method starts by making the sequence of inte-
gers 0, 1, 2, . . . , 1500 in a vector. (The algorithm doesn’t use the first two numbers
in the sequence, but having them there makes the code cleaner.) The program also
resizes the output vector to have one element because when the loop that follows
uses the vector, the vector will never need to hold more than one element.

The way the program uses that loop is to look for an amicable pair with the
number 2, an amicable pair with the number 3, and so forth. The loop contains a
call to remove_copy_if. To avoid redundant comparisons, the loop only tests values
in the sequence that are greater than the loop counter. This is why the start of the
input range is the vector’s begin iterator plus the loop counter. (Tip 20 explains
how you can do some kinds of arithmetic with random iterators such as those of a
vector.)

The third argument to remove_copy_if is the start of the output sequence.
There’s no need for a back inserter because any given number can be part of at most
one amicable pair and the output vector is big enough to contain one element. For
the last argument, the code again uses an ordinary function. This time the function
takes two arguments—the two integers that may be an amicable pair. One of the in-
tegers stays the same while it is compared to all the other integers in the vector. To
always pass this number as the first argument to is_amicable_pair whenever
remove_copy_if calls it, use the predefined function adaptor bind1st. Tip 50 ex-
plains that this makes the first argument to is_amicable_pair always be the indi-
cated number. The second argument is the element that remove_copy_if passes to
it. (In this program, you could also use the function adaptor bind2nd to freeze the
second argument and let the element be the first argument—the result would be
the same.)

remove_copy_if returns an iterator that points to one past the last element in-
serted in the output range, so if the algorithm didn’t insert anything, the iterator
would be equal to the beginning iterator of the output vector. If it did insert some-
thing, there’s an amicable pair, which the code prints. The output shows the two
amicable pairs that the program found.

Although this first method uses only a loop with a call to one STL algorithm,
it’s very inefficient. There are three problems:

Tips on Algorithms 269



remove_copy_if calls is_amicable_pair, which computes the sum of the proper
divisors for each of the two numbers passed to it. The first number is fixed dur-
ing every call to remove_copy_if. Its sum should only be computed once, not
at every call.
Similarly, each iteration recomputes the sum of the proper divisors, even
though these numbers don’t change during the execution of the loop.
If remove_copy_if does find an amicable pair in the sequence, it doesn’t need to
look any further in that sequence for more pairs because there can’t be any more.

The last problem isn’t very important because amicable pairs are rare. How-
ever, the first two problems are serious.

The last part of the program shows another way of finding amicable pairs. It
uses transform to compute the sum of the proper divisors of each number in the se-
quence 2, 3, . . . , 1500. (The input and output vectors have two additional elements,
but adding two to the start of the corresponding begin iterators causes transform to
ignore those elements.) Once the code has computed and stored all of the necessary
sums of proper divisors, a single loop with no STL algorithms in it finishes the
work. For each number from 2 to 1500 inclusive, the code checks if

The corresponding sum is greater than 1. If the sum is 1, the number is prime
and a prime number can’t be in an amicable pair. Also, by definition, 1 cannot
be a member of an amicable pair, which is why the loop counter starts at 2.
The sum is not equal to the loop counter. The two numbers in an amicable pair
must be different and if this check weren’t here, perfect numbers, such as 6 and
28, would produce amicable pairs.
The loop counter is less than the sum. This avoids the same amicable pair being
found twice, once for the two numbers and again when they are reversed.
The sum is less than or equal to the last index in the vector of sums. This is 
necessary because the next condition uses the sum as an index.
The sum at the index of the current sum is the current loop counter. This
means the numbers are an amicable pair.

The output shows that both methods find the same amicable pairs. However,
the second method is much faster. On one computer here, the first technique takes
about 10 seconds and the second one runs instantaneously. There are two morals,
then, to this story: 

Often, the algorithm you use rather than the code makes the big difference in
speed.
You don’t have to do everything with STL algorithms. You can solve part of a
problem with them and use regular C++ techniques to solve the rest.

270 C++ Standard Library Practical Tips



Tips on Algorithms 271

USE A CLASS MEMBER FUNCTION IN AN ALGORITHM

Applies to: Mem_fun_ref, bind2nd, algorithms with function arguments
See also: Tip 49, Tip 59, Tip 81, Tip 86, Listing 13.4

Quick Solution
class Player

{

public:

// ...

int bonus( int games_won ) const;

void add_win();

private:

};

// ...

vector<Player> team;

// ...

// member function need not be const if used only with mem_fun_ref

for_each( team.begin(), team.end(), mem_fun_ref( &Player::add_win ) );

vector<int> bonus( team.size() );

// member function must be const if used with mem_fun_ref and binder

transform( team.begin(), team.end(), bonus.begin(),

bind2nd( mem_fun_ref( &Player::bonus ), 7 ) );

Detailed Solution

C++ is great for object-oriented programming, a powerful and enjoyable coding
technique. It also meshes well with the Standard Template Library. STL containers
can easily hold classes, and you can even use some of the class member functions
with STL algorithms. One common thing to do is to iterate over a container of
classes and call a member function at each element that prints out information in
that class instantiation. Such a member function is often called print or display.
You can also go through a container, calling a getter (accessor) member function
and storing the results in another container. Then you can analyze the numbers, for
example, by finding the average value.

Unfortunately, there are some strict limitations on using member functions:

TIP 48



Member functions used with mem_fun_ref (explained later) and passed to
bind1st or bind2nd must be constant, that is, declared with the const keyword
after the function name.
You can only work with member functions that take zero or one arguments.
You can’t use the member functions as arguments to the predefined function
objects. For example, you can’t have a member function that returns a number
be an argument to the predefined function object multiplies, which computes
the product of two numbers.

Nevertheless, being able to call a class member function is handy. The program
in Listing 9.2 gives a couple of examples of this.

LISTING 9.2 Using a Class Member Function in an Algorithm

// algorithm_member.cpp

#include <algorithm>

#include <functional>

#include <iomanip>

#include <iostream>

#include <numeric>

#include <string>

#include <vector>

using namespace std;

class Player

{

public:

Player( string name = "Unknown", int income = 0,

int bonus_percentage = 0 );

// name - player's last name

// income - yearly income (salary+endorsements+ads) in euro

// bonus_percentage - percent of salary bonus per game won

int bonus( int games_won ) const;

// bonus in euro = 30% of income * bonus_percentage * games_won

void print() const;

// display info about player

string name() const;

272 C++ Standard Library Practical Tips



int income() const;

private:

int salary() const;  // in euro

int bonus_percentage_;

int income_;

string name_;

};

inline

Player::Player( string name, int income, int bonus_percentage )

: bonus_percentage_( bonus_percentage ), income_( income ),

name_( name )

{} // empty

inline

int Player::bonus( int games_won ) const

{ return static_cast<int>(

salary() * ( bonus_percentage_ / 100.0 ) * games_won ); }

inline

void Player::print() const

{

cout << setw( 10 ) << left << name() << "Income: " << setw( 8 )

<< right << income() << " euro per year   Bonus: "

<< bonus_percentage_ << "% of salary per game won\n";

}

inline

int Player::income() const

{ return income_; }

inline

string Player::name() const

{ return name_; }

inline

int Player::salary() const

{ return static_cast<int>( 0.3 * income() ); }

int main( )

{

// 5 highest paid players on Real Madrid in 2004

Tips on Algorithms 273



vector<Player> real_madrid;

real_madrid.push_back( Player( "Beckham", 22400000, 3 ) );

real_madrid.push_back( Player( "Ronaldo", 16500000, 3 ) );

real_madrid.push_back( Player( "Zidane",  14000000, 3 ) );

real_madrid.push_back( Player( "Raul",     9300000, 2 ) );

real_madrid.push_back( Player( "Figo",     8500000, 1 ) );

// print the info for each player

for_each( real_madrid.begin(), real_madrid.end(),

mem_fun_ref( &Player::print ) );

// get all the incomes

vector<int> temporary( real_madrid.size() );

transform( real_madrid.begin(), real_madrid.end(),

temporary.begin(), mem_fun_ref( &Player::income ) );

// compute and display the average income

int average_income = accumulate( temporary.begin(),

temporary.end(), 0 ) / temporary.size();

cout << "\nAverage income for the " << real_madrid.size()

<< " highest paid players on Real Madrid: "

<< average_income << " euro\n\n";

// compute and display the bonuses to-date

const int games_won = 5;

transform( real_madrid.begin(), real_madrid.end(),

temporary.begin(),

bind2nd( mem_fun_ref( &Player::bonus ), games_won ) );

cout << "With " << games_won << " games won to-date"

<< " the average bonus is "

<< accumulate( temporary.begin(), temporary.end(), 0 )

/ temporary.size() << " euro\n";

}

The output is

274 C++ Standard Library Practical Tips

Beckham   Income: 22400000 euro per year   Bonus: 3% of salary per

game won

Ronaldo   Income: 16500000 euro per year   Bonus: 3% of salary per

game won

Zidane    Income: 14000000 euro per year   Bonus: 3% of salary per

game won



Tips on Algorithms 275

The program starts by declaring a class to represent soccer players (“football”
players, for European readers). The class has the player’s last name, his yearly in-
come (in euro), and a number that specifies the percentage of his salary that he gets
as a bonus for each game his team wins. Member functions print information about
the player and return his income, name, or salary. Actually, a player’s salary is often
just a small part of his income. The remainder comes from endorsements, adver-
tising, and so forth. For example, David Beckham’s salary in 2004 was a little less
than 30% of his income for that year [Soccer04]. The code assumes other players
have similar income breakdowns, and in computing the bonus, the code uses 30%
of the total income as their salary.

The main part of the program declares a vector to hold the players. It then
pushes on to it the five highest paid players in 2004 from the Real Madrid (Royal
Madrid) soccer club. (They also happen to be among the top ten highest paid soc-
cer players for any team, as shown in [Soccer04].) Each constructor has the person’s
last name, his yearly income in euro, and his bonus percentage. Although the
salaries are correct, the percentages have been made up. Don’t worry if it looks like
your favorite player has been slighted, and don’t send us any hate mail either.

Once the players have been loaded into the vector, the program prints them by
calling each element’s print member function. It does this by using the STL algo-
rithm for_each (see Tip 59). Its first two arguments specify the container’s range
and the last argument is the operation that will be done on each element. The code
illustrates how to call a member function of the element—put in the reference op-
erator (&), class name, scope operator (::) and function name and surround the
whole mess with the function adaptor mem_fun_ref, which is available through the
header <functional>. You have to use the adaptor—if you don’t, you’ll get a com-
piler error. The output shows the information for the five players.

It’s possible to also call constant member functions that return a value. To do
this, the code first declares a vector with the same number of elements as there are
players. Then the code cycles through all the players by calling transform (see Tip
81 for more details on this STL algorithm). The first two arguments are the input

Raul      Income:  9300000 euro per year   Bonus: 2% of salary per

game won

Figo      Income:  8500000 euro per year   Bonus: 1% of salary per

game won

Average income for the 5 highest paid players on Real Madrid:

14140000 euro

With 5 games won to-date the average bonus is 557399 euro



range, the third argument is the start of the output range, and the last argument is
a function that takes an element from the input and returns a value that is placed
in the output. In this case, the argument is the member function income, called the
same way as before. Once the incomes are in a container, you can analyze them, for
example, finding the highest and lowest, the median, and so forth. The program
computes the average income by using the STL algorithm accumulate to add the in-
comes and dividing by the number of incomes (see Tip 86). The second section of
the output shows the result. 

Finally, the program computes the total bonuses paid out to the players so far.
It uses transform as before, but this time calls the member function bonus, which
takes one argument—the number of games won so far. That member function is
again inside mem_fun_ref, and now that whole mess is in a call to the function adap-
tor bind2nd. bind2nd takes its second argument (the number of games) and passes
it to bonus every time it’s called by transform. (Remember that the member func-
tion must be constant if you use it with bind1st or bind2nd.) When transform is fin-
ished, the code computes the average as before and prints it without even storing it
in an intermediate variable. The last line of the output is the result.

This tip gives you some ideas about how and when to call member functions of
classes in containers. You can also do similar things if you have a container with
pointers to classes. If you’re in this situation, take a look at the next tip, Tip 49.

USE A POINTER TO A CLASS MEMBER FUNCTION IN AN
ALGORITHM

Applies to: Mem_fun, algorithms with function arguments
See also: Tip 48, Tip 59, Listing 13.4

Quick Solution
class Player

{

public:

// ...

int bonus( int games_won ) const;

void add_win();

private:

};

// ...

vector<Player*> team;

276 C++ Standard Library Practical Tips

TIP 49



Tips on Algorithms 277

// ...

// member function need not be const if used only with mem_fun

for_each( team.begin(), team.end(), mem_fun( &Player::add_win ) );

vector<int> bonus( team.size() );

// member function must be const if used with mem_fun and binder

transform( team.begin(), team.end(), bonus.begin(),

bind2nd( mem_fun( &Player::bonus ), 7 ) );

Detailed Solution

Tip 48 shows you how to call the member function of a class that’s stored in a con-
tainer. You can also do this if you have pointers to the class in the container. And
having pointers to classes just screams out for polymorphism. Polymorphism is the
ability to call one function (signature) and have different functions respond. The
functions have to belong to classes in the same inheritance tree, they have to be de-
clared virtual, and you have to access them through pointers or references. If you
have several classes that are derived from one base class and you call the member
function through a pointer to that base class, the function of whatever class was ac-
tually assigned to that pointer responds.

The restrictions on the member functions you can use are the same as in Tip
48, namely the following:

Member functions used with mem_fun (explained later) and passed to bind1st
or bind2nd must be constant, that is, declared with the const keyword after the
function name.
You can only work with member functions that take zero or one arguments.
You can’t use the member functions as arguments to the predefined function
objects. For example, you can’t have a member function that returns a number
be an argument to the predefined function object multiplies, which computes
the product of two numbers.

The code in Listing 9.3 is a good example of using polymorphism with STL
containers and algorithms.

LISTING 9.3 Using a Pointer to a Member Function in Algorithms

// algorithm_member_pointer.cpp

#include <algorithm>

#include <cmath>



#include <functional>

#include <iostream>

#include <numeric>

#include <string>

#include <vector>

using namespace std;

class Shape

{

public:

Shape( const string& name = "Unknown" );

virtual float area() const = 0;

virtual void draw() const = 0;

// REQUIRE: print shape on cout, no larger than 11x11 characters

void draw_captioned( string caption ) const;

// calls draw() and prints the caption and name on the next line

string name() const;

virtual float perimeter() const = 0;

void print() const;

// print name, area and perimeter

private:

string name_;

};

inline

Shape::Shape( const string& name )

: name_( name )

{} // empty

inline

void Shape::draw_captioned( string caption ) const

{

draw();

cout << caption << name() << endl << endl;

}

278 C++ Standard Library Practical Tips



inline

string Shape::name() const

{ return name_; }

inline

void Shape::print() const

{  cout << name() << " with area " << area() << " and perimeter "

<< perimeter() << endl;

}

// **** First derived class

class Square : public Shape

{

public:

Square( int width = 5 );

// 1 <= width <= 11

virtual float area() const;

virtual void draw() const;

// REQUIRE: print shape on cout, no larger than 11x11 characters

virtual float perimeter() const;

private:

int width_;

};

inline

Square::Square( int width )

: Shape( "Square" ), width_( width )

{}   // empty

inline

float Square::area() const

{  return width_ * width_; }

void Square::draw() const

{

for( int i = 0; i < width_; ++i )

{

for( int j = 0; j < width_; ++j )

cout << '*';

cout << endl;

Tips on Algorithms 279



280 C++ Standard Library Practical Tips

}

}

inline

float Square::perimeter() const

{ return 4 * width_; }

// **** Second derived class

class Pyramid : public Shape

{

public:

Pyramid( int height = 4 );

// makes an isosceles triangle with given height and base equal

// to 2*height-1 . 2 <= height <= 6

virtual float area() const;

virtual void draw() const;

virtual float perimeter() const;

private:

int base_;

int height_;

};

inline

Pyramid::Pyramid( int height )

: Shape( "Pyramid" ), base_( 2*height-1 ), height_( height )

{}   // empty

inline

float Pyramid::area() const

{  return 0.5 * height_ * base_; }

void Pyramid::draw() const

{

for( int i = 1; i <= height_; ++i )

{

for( int j = -(height_-1); j <= (height_-1); ++j )

cout << ( abs( j ) < i  ? '*' : ' ' );

cout << endl;

}

}

inline



float Pyramid::perimeter() const

{ return base_ + 2 * sqrt( height_*height_ + base_*base_/4.0 ); }

int main( )

{

Square s1( 2 );

Pyramid p( 6 );

Square s2( 4 );

vector<Shape*> shape( 3 );

shape[0] = &s1;

shape[1] = &p;

shape[2] = &s2;

// have each shape print its information

for_each( shape.begin(), shape.end(), mem_fun( &Shape::print ) );

cout << endl;

// have each shape draw itself with a caption

for_each( shape.begin(), shape.end(),

bind2nd( mem_fun( &Shape::draw_captioned ), "Geometry I: " ) );

// find the total area of the shapes

vector<float> size( shape.size() );

transform( shape.begin(), shape.end(), size.begin(),

mem_fun( &Shape::area ) );

cout << "\nTotal area: "

<< accumulate( size.begin(), size.end(), 0.0f ) << endl;

}

The output is

Tips on Algorithms 281

Square with area 4 and perimeter 8

Pyramid with area 33 and perimeter 27.2788

Square with area 16 and perimeter 16

**

**

Geometry I: Square



The program starts by declaring an abstract base class called Shape. You can tell it’s
abstract because it has a member function set equal to 0. This is called a pure
virtual function. Abstract classes specify an interface (the member functions) but not an
implementation. The derived classes provide the code for the pure virtual functions.

You can’t instantiate an abstract class, but you can derive from it. You can,
however, instantiate any derived class that provides code for all the pure virtual
functions. Shape, an abstract class from which to derive classes representing shapes,
has three abstract member functions. They provide the perimeter and area of the
shape and make a simple drawing of it on the standard output stream. The class
also has nonvirtual functions that return the name of the shape, draw it with a spec-
ified caption, and display the name, area, and perimeter.

The first derived class represents a square. Its constructor accepts the width of
the square, the area member function returns the square of the width, and the
perimeter member function returns four times the width. The code to draw the
square makes a simple drawing with asterisks.

The second derived class represents a two-dimensional pyramid. This is a tri-
angle whose two sides are the same length and whose base is twice the height minus
one. The class provides implementations of its base class’s three pure virtual functions.

The main program starts by constructing two squares and a pyramid. Then the
program makes a vector with pointers to the abstract base class and points the first
and third pointers to the squares and the second pointer to the pyramid. (Remem-
ber that a pointer to a base class can point to derived classes.) Next, the program
uses the STL algorithm for_each (see Tip 59) and the adaptor mem_fun to call the
print member function associated with each pointer. (If you tried to call the mem-
ber function without using mem_fun, you’d get a compiler error.) The first section of

282 C++ Standard Library Practical Tips

*

***

*****

*******

*********

***********

Geometry I: Pyramid

****

****

****

****

Geometry I: Square

Total area: 53



the output shows the result. You can see that although the algorithm only called the
member function print, the first and third calls ran that function from the square
class and the second call ran the function from the pyramid class. This is polymor-
phism in action.

Next, to show that you can call a constant member function that accepts one
argument, the program uses for_each to call the member function draw_captioned.
The program passes the same figure caption to each call. The different figures in the
second section of the output again show how the calls to the same member function
produce different results, depending on what derived class the pointers are aimed at.

Finally, the program shows another way to use containers with pointers to
classes by using the STL algorithm transform to get the area of each shape. The first
two arguments are the input range, the third is the start of the output range (a con-
tainer the code created to hold the areas), and the last is the name of the member
function to be called, surrounded once again by mem_fun. To get the total area, the
code calls accumulate, an STL algorithm that adds all the numbers in its input
range. The last line of the output shows the result.

This tip showed how you can combine two of the neatest features of C++—the
Standard Template Library and polymorphism. The containers had pointers to
classes, which enabled polymorphism to work. If your containers have the classes
themselves rather than pointers to them, you don’t get polymorphism but Tip 48
demonstrates some cool things that you can still do.

FREEZE AN ARGUMENT TO A FUNCTION OBJECT

Applies to: Bind1st, bind2nd, binary function objects, binary predicates
See also: Tip 47, Tip 62, Tip 79, Tip 81, Listing 13.1, Listing 13.7, Listing 

13.9, Listing 13.11

Quick Solution
vector<double> v1, v2;

// ...

transform( v1.begin(), v1.end(), v1.begin(), // compute inverse

bind1st( divides<double>(), 1.0 ) ); // freeze first argument

transform( v2.begin(), v2.end(), v2.begin(), // compute percent

bind2nd( multiplies<double>(), 100.0 ) ); // freeze second argument

Detailed Solution

All but two of the Standard Library’s built-in function objects take two arguments.
Sometimes both of these arguments can come from containers, for example, when

Tips on Algorithms 283

TIP 50



284 C++ Standard Library Practical Tips

using the STL algorithm transform. Often, however, you want one of the arguments
to have a fixed value and the other to change, to be the different elements of a con-
tainer. For example, you might want to subtract the smallest element in a container
from all elements to make the minimum container value be 0. You might want to re-
move all elements in a container that are less than a certain value, or you might want
to operate on a bunch of integers with the modulus of two to see which ones are even.

The Standard Library has two functors (function objects) that let you convert
binary function objects to unary ones. They do this by binding or freezing either the
first or the second argument to some constant value. The functor bind1st freezes
the first (left) argument of a binary function object. bind2nd does the same for the
second argument. Both of these are function adaptors, which are function objects
that let you combine function objects with each other, combine them with special
functions, or, as in this tip, combine them with specific values.

Each of the binding functors takes two arguments. The first is an adaptable bi-
nary function object (see “Functors” in Chapter 2), and the second is the fixed
value that will be used for one of that object’s two arguments. You can’t use the
binding functions on objects with more than two arguments. Also, there are no pre-
defined binding functors for arguments other than the first and second ones.
Nonetheless, the two binders available let you do some very practical things, as the
program in Listing 9.4 shows.

LISTING 9.4 Freezing an Argument to a Function Object

// algorithm_freeze.cpp

#include <algorithm>

#include <functional>

#include <iomanip>

#include <numeric>

#include <string>

#include <vector>

#include "tips.hpp"

using namespace std;

bool in_string( char c, const string target );

// returns true if c is in target, false otherwise

int main( )

{

// make the sequence 1 2 3 4 5

vector<float> v( 5, 1 );



partial_sum( v.begin(), v.end(), v.begin() );

tips::print( v, "Original numbers" );

// compute the inverses

transform( v.begin(), v.end(), v.begin(),

bind1st( divides<float>(), 1 ) );

cout << fixed << setprecision( 2 );

tips::print( v, "Inverses" );

// convert to percentages

transform( v.begin(), v.end(), v.begin(),

bind1st( multiplies<float>(), 100 ) );

tips::print( v, "Percentages" );

// make a sequence starting at -10 and increasing by 100

v.assign( v.size(), 100 );

v[0] = -10;

partial_sum( v.begin(), v.end(), v.begin() );

tips::print( v, "\nOriginal numbers" );

// truncate numbers to fall between 0 and 255 inclusive

replace_if( v.begin(), v.end(),

bind2nd( greater<float>(), 255 ), 255 );

replace_if( v.begin(), v.end(), bind2nd( less<float>(), 0 ), 0 );

tips::print( v, "Saturated numbers" );

// count the vowels in a sentence

const string vowels( "aeiouAEIOU" );

string phrase( "The quick brown fox jumps over the lazy dog." );

cout << "\nThere are " << count_if( phrase.begin(), phrase.end(),

bind2nd( ptr_fun( in_string ), vowels ) )

<< " vowels in \n\"" << phrase << "\"\n";

}

inline

bool in_string( char c, const string target )

{  return target.find( c ) != string::npos; }

The output is

Tips on Algorithms 285

Original numbers: 1 2 3 4 5 

Inverses: 1.00 0.50 0.33 0.25 0.20 

Percentages: 100.00 50.00 33.33 25.00 20.00 



286 C++ Standard Library Practical Tips

The program starts by making a vector with five consecutive numbers, using
the partial_sum algorithm and the technique of Tip 79. The first line of the output
shows the numbers. Next, the program uses transform (see Tip 81) to take the inverse
of each number. The inverse is simply 1 divided by the number, so the code uses
bind1st to freeze at 1 the first argument of the built-in adaptor divides. The program
then converts the inverses to percentages by multiplying by 100. The  code does this
by freezing the first argument of a built-in functor (multiplies) to 100. The software
could have frozen the second argument instead and the result would have been the
same. The second and third lines of the output show the inverses and percentages.

To illustrate binding arguments for functors that compute things other than arith-
metic, the program makes another sequence of numbers and runs some relational op-
erators on them. It forces all integers in the container to lie between 0 and 255
inclusive. (This action is common in digital image processing and computer graphics.)
First, the program calls the STL algorithm replace_if to replace all values that are
greater than 255 by 255 itself. bind2nd freezes the second argument at 255. Another call
to replace_if sets any values less than zero to zero. Again, the code uses bind2nd to al-
ways compare the container elements to a fixed value, in this case, zero. The middle
section of the output confirms that all processed numbers are in the correct range.

The last part of the code demonstrates a method of counting the vowels in a
string of text. The count_if STL algorithm passes every character in the text string
to a predicate that returns true if the character is in a text string passed to it and
false otherwise. In the code, the text string passed to the predicate is the lower and
upper case vowels. The predicate is a custom one—the function in_string. It sim-
ply uses the string’s find member function to see if the character is in the text. (See
Tip 62 for details on searching in text strings.) However, before in_string or any
regular function can be used in bind2nd, it must be wrapped in the function adap-
tor ptr_fun (see Tip 47). This is because bind2nd expects an adaptable function ob-
ject as its first argument. A plain function is not adaptable (because it’s missing
certain type definitions that the binders expect), but it can be made so by putting it
in ptr_fun. The last line of the output shows that the code did indeed count the
number of vowels in the pangram. 

Original numbers: -10.00 90.00 190.00 290.00 390.00 

Saturated numbers: 0.00 90.00 190.00 255.00 255.00 

There are 11 vowels in 

"The quick brown fox jumps over the lazy dog."



FIND AND ERASE THE FIRST OR LAST MATCHING 
ELEMENT

Applies to: Sequence container
See also: Tip 1, Tip 30, Tip 42, Tip 47, Tip 49, Tip 50, Tip 52, Tip 53

Quick Solution
list<int> l;

// ...

list<int>::iterator itr = find( l.begin(), l.end(), 5 ); // find first 5

if( itr != l.end() ) // if found, erase

l.erase( itr );

list<int>::reverse_iterator last = find_if( l.rbegin(), l.rend(),

bind2nd( greater<int>(), 10 ) ); // find last greater than 10

if( last != l.rend() ) // if found, erase

l.erase( --last.base() );

Detailed Solution

Sometimes you’d like to find the first occurrence of an object in your container and
perhaps even remove it. For example, you might have a deque serving as a queue
that contains rental cars. As the cars come in, they’re placed on the end of the
queue. Cars at the head of the queue are cleaned and made ready to rent again first,
so to find the most prepared kind of car your customer wants, for example, a blue,
subcompact car with manual transmission, you would search from the top of the
queue. Once you’ve rented it, you would remove it from the list of available autos.
(By the way, the STL has a queue container [see Tip 42], but unfortunately, you can
neither search through it nor remove any element except the one at the head of the
queue.)

Although find (the STL algorithm that finds the first occurrence of a particu-
lar item in a range) works on unsorted ranges, it’s often useful to sort the range first.
This effectively adds an extra condition to your search criteria because the element
you find matches the search criteria while having the lowest possible sorting crite-
rion. Similarly, by searching in reverse from the end of the sorted container, you get
the element with the highest sorting value that also matches the search criteria. 

As an example, suppose you have a list of military personnel, with each element
having the soldier’s name, rank, and type of job. It’s your job to fill vacant positions
with troops of the right rank and job skill. If you sorted the list in ascending order
of rank and searched from the beginning by job, you would find the lowest ranked

Tips on Algorithms 287

TIP 51



288 C++ Standard Library Practical Tips

person who could do the work. If you searched in reverse from the end, you would
find the highest ranked person of the appropriate capability.

The STL algorithm find finds the first element equal to a specified one, that is,
the element closest to the start of the range. By using reverse iterators, find locates
the last such element. Its close relative find_if works the same way, except that you
give it the matching criterion instead of letting it use equality as the test. 

Once you have the location of the element, you can use the container’s erase
member function to delete it. The program in Listing 9.5 illustrates these tech-
niques by looking for certain publications in a list and removing those that it finds.

LISTING 9.5 Finding and Erasing the First or Last Matching Element

// algorithm_find_first.cpp

#include <algorithm>

#include <functional>

#include <iostream>

#include <list>

#include <string>

using namespace std;

class Publication

{

public:

Publication( string first_name = "", string last_name = "",

string title = "", string journal = "", int year = 0 );

bool operator<( const Publication& rhs ) const;

// order by date

string last_name() const;

void print() const;

// display publication data

int year() const;

private:

string first_name_;

string journal_;

string last_name_;

string title_;

int year_;



};

inline

Publication::Publication( string first_name, string last_name,

string title, string journal, int year )

: first_name_( first_name ), journal_( journal ),

last_name_( last_name ), title_( title ), year_( year )

{} // empty

inline

bool Publication::operator<( const Publication& rhs ) const

{  return year() < rhs.year(); }

inline

string Publication::last_name() const

{  return last_name_; }

inline

void Publication::print() const

{

cout << last_name() << ", " << first_name_ << endl

<< title_ << endl << journal_ << ", " << year()

<< endl << endl;

}

inline

int Publication::year() const

{  return year_; }

inline

bool equals_last_name( const Publication publication,

string last_name )

{  return publication.last_name() == last_name; }

int main( )

{

list<Publication> publication;

publication.push_back( Publication( "Greg", "Reese",

"Target detection against narrow band noise backgrounds",

"Vision Research", 1999 ) );

publication.push_back( Publication( "Greg", "Reese",

Tips on Algorithms 289



"Image Enhancement by Intensity Dependent Spread Functions",

"Computer Vision, Graphics and Image Processing", 1992 ) );

publication.push_back( Publication( "Greg", "Reese",

"Theoretical Results for Intensity Dependent Spread Functions",

"Journal of the Optical Society of America A", 1992 ) );

publication.push_back( Publication( "Tom", "Cornsweet",

"Intensity-dependent spatial summation",

"Journal of the Optical Society of America A", 1985 ) );

publication.push_back( Publication( "Chris", "Woodward",

"Site Preferences and Formations Energies...",

"Physics Review B", 1998 ) );

publication.push_back( Publication( "Chris", "Woodward",

"Equilibrium Mg Segregation at Al/Al3Sc Heterophase...",

"Physical Review Letters", 2003 ) );

// sort in chronologically ascending order

publication.sort();

// display all publications

cout << "THERE ARE " << publication.size() << " PUBLICATIONS\n";

for_each( publication.begin(), publication.end(),

mem_fun_ref( &Publication::print ) );

// find earliest publication by Reese

string author( "Reese" );

list<Publication>::iterator earliest =

find_if( publication.begin(), publication.end(),

bind2nd( ptr_fun( equals_last_name ), author ) );

// if publication found, display and delete it

if( earliest != publication.end() )

{

cout << "\nEARLIEST PUBLICATION BY " << author << endl;

earliest->print();

publication.erase( earliest );

}

else

cout << "NO PUBLICATIONS BY " << author << endl;

// find latest publication by Reese

290 C++ Standard Library Practical Tips



list<Publication>::reverse_iterator latest =

find_if( publication.rbegin(), publication.rend(),

bind2nd( ptr_fun( equals_last_name ), author ) );

// if publication found, display and delete it

if( latest != publication.rend() )

{

cout << "\nLATEST PUBLICATION BY " << author << endl;

latest->print();

publication.erase( --latest.base() );

}

else

cout << "NO PUBLICATIONS BY " << author << endl;

// display all remaining publications

cout << "THERE ARE " << publication.size()

<< " PUBLICATIONS REMAINING\n";

for_each( publication.begin(), publication.end(),

mem_fun_ref( &Publication::print ) );

}

The output is

Tips on Algorithms 291

THERE ARE 6 PUBLICATIONS

Cornsweet, Tom

Intensity-dependent spatial summation

Journal of the Optical Society of America A, 1985

Reese, Greg

Image Enhancement by Intensity Dependent Spread Functions

Computer Vision, Graphics and Image Processing, 1992

Reese, Greg

Theoretical Results for Intensity Dependent Spread Functions

Journal of the Optical Society of America A, 1992

Woodward, Chris

Site Preferences and Formations Energies...

Physics Review B, 1998

Reese, Greg

Target detection against narrow band noise backgrounds

Vision Research, 1999



Suppose the user has a number of journal articles that he can cite in a paper he’s
writing. Once he cites one, he’d like to remove it so he doesn’t include it in his list of
references again. The program simulates these actions. It starts by declaring a class
to hold information about a journal publication. The class contains the author’s first
and last names, the article’s title, the name of the journal, and the year of publication.
The class’s member functions include the less-than operator, which sorts in ascend-
ing order of publication date, getters for the last name and year of publication, and
a function that prints the internal information. There’s also the global function
equals_last_name, which returns true only if the passed publication’s last name is
equal to the passed last name. This is the predicate that find_if will use.

292 C++ Standard Library Practical Tips

Woodward, Chris

Equilibrium Mg Segregation at Al/Al3Sc Heterophase...

Physical Review Letters, 2003

EARLIEST PUBLICATION BY Reese

Reese, Greg

Image Enhancement by Intensity Dependent Spread Functions

Computer Vision, Graphics and Image Processing, 1992

LATEST PUBLICATION BY Reese

Reese, Greg

Target detection against narrow band noise backgrounds

Vision Research, 1999

THERE ARE 4 PUBLICATIONS REMAINING

Cornsweet, Tom

Intensity-dependent spatial summation

Journal of the Optical Society of America A, 1985

Reese, Greg

Theoretical Results for Intensity Dependent Spread Functions

Journal of the Optical Society of America A, 1992

Woodward, Chris

Site Preferences and Formations Energies...

Physics Review B, 1998

Woodward, Chris

Equilibrium Mg Segregation at Al/Al3Sc Heterophase...

Physical Review Letters, 2003



The aim of the program is to find the earliest and latest publications of an au-
thor, display them, and remove them from the collection of articles. To do this, the
program starts by creating a list to hold the publications. (A list is a good container
to use because the program will be deleting elements throughout the container
and, as Tip 1 points out, lists are designed for this.) The program then adds some
articles by the author or his colleagues to the list.

The goal is to find the earliest and latest publications, so the software sorts the
elements into ascending chronological order by calling the list’s sort member func-
tion (see Tip 30). The program uses for_each to call each element’s print member
function, as Tip 49 explains. The output shows that the six publications are indeed
in chronological order. However, the code can’t just take the first and last of the
sorted publications as its result because they might not be by the right author. 

To find the first publication by a particular author, the code uses find_if. The
first two arguments are the container’s range and the last is the match condition.
Because the code sorts from the start of the container and the elements are in order
of date, the first matching element will automatically be the earliest suitable publi-
cation. Thus, the match condition only needs to verify that the publication’s author
is the desired one. 

The third argument to find_if does this. It calls the global function
equals_last_name, which returns true only if the passed publication’s last name is
the same as the name that is the function’s second argument. This argument is the
same throughout the call to find_if, and its value is held constant through the use
of the adaptor bind2nd (see Tip 50). Unfortunately, you can’t just use an adaptor on
a normal function like equals_last_name—it has to be adapted for the adaptor. Tip
47 and the program in Listing 9.5 show that you do this with the predefined func-
tion adaptor ptr_fun. The upshot is that the call to find_if returns an iterator that
marks the earliest publication by the specified author, in this case, “Reese.” If there
are no works by him, the value returned is the container’s end iterator.

If the program does find the publication, it prints the information about the ar-
ticle and deletes it by passing the iterator to the list’s erase member function. All
standard containers have this function, and all those functions require that the it-
erator lie strictly within the container’s range; that is, the iterator can’t be equal to
the end iterator. This is why it’s important to make sure that find_if did find an el-
ement before you try to erase it. The output shows that the result is the earliest of
Reese’s publications in the list.

The list is in chronological order, so if you search from the back to the front,
you can find the latest publication by a particular author. Reverse iterators make it
easy to do this. The first two arguments to the second call to find_if are the list’s
reverse begin iterator (rbegin) and reverse end iterator (rend). The third argument
is the same as before, but the algorithm’s return value is a reverse iterator. Again,
the code verifies that find_if found something, but notice that this time, the code

Tips on Algorithms 293



compares the returned iterator to the list’s reverse end iterator, not to the normal
end iterator. The program prints the element’s information as before. 

When it comes to deleting the elements, there’s a problem—the erase member
functions don’t accept reverse iterators. To convert them to regular iterators, use
the reverse iterator’s base member function and decrement by one. “Reverse Iter-
ators” in Chapter 2 explains this peculiar behavior.

The remainder of the output shows that the second call to find_if did find
Reese’s latest journal publication and that the list now only has four elements 
because the calls to erase permanently removed two.

Well, now you know how to find and remove the first or last specified element
in a range. Sometimes, you might want to remove all elements that meet some cri-
teria. If so, check Tip 52 and Tip 53.

REMOVE ALL MATCHING ELEMENTS

Applies to: Sequence container, remove, remove_if
See also: Tip 16, Tip 50, Tip 53, Tip 76, Tip 79

Quick Solution
deque<int> d;

// ...

deque<int>::iterator logical_end = // remove all odd elements

remove_if( d.begin(), d.end(), bind2nd( modulus<int>(), 2 ) );

vector<int> v( d.begin(), logical_end ); // make vector of even numbers

When you remove elements from a container using remove or remove_if, the
size of the container does not change.

Detailed Solution

It’s not uncommon to want to get rid of some of the elements in a container. For
example, suppose you’re trying to determine which students qualify for a scholar-
ship. Assume you have elements representing students and your container has the
entire student body. First, you could remove all students whose grade-point aver-
age is not high enough to qualify for the scholarship. Then you could remove from
the container all students who have too much money to receive the grant. After
continuing this culling, you would be left with a container that has all the students
that are eligible for the scholarship.

The STL algorithm remove gets rid of all elements in a range that are equal to a
specified element. For example, you can use it to remove all values of 0 from a range

294 C++ Standard Library Practical Tips

TIP 52 



Tips on Algorithms 295

of integers. remove’s close relative remove_if does the same thing, except that you
pass it the criterion that determines whether or not an element is removed. This lets
you remove all values that are greater than a certain value, less than or equal to a
certain value, and so on.

There’s a twist to using these algorithms, and that is that neither of them per-
manently eliminate the elements in a container that they operate on. That’s right,
remove and remove_if don’t really remove elements; that is, they don’t change the
size of the container. What they do is return an iterator to the logical end of the
container, that is, to one element past all the elements that have not been removed.
You then use the container’s begin iterator and the logical end iterator to specify the
range of all elements that should be considered in further processing because they
have not been removed from the original range. You have to carry this end iterator
around in the code and make sure to use it instead of the iterator given by the con-
tainer’s end member function. Don’t try to use the values in the removed area.
What is there is undefined, and those elements are often not even the ones that were
removed.

The reason the removal algorithms don’t change the size of the container when
they remove elements is that they operate on an iterator range that might belong to
a container whose elements can’t be erased, that is, permanently removed. For ex-
ample, if the range represents a C-style array, you can’t change that array’s size. If
you do want to decrease a container’s size when you get rid of elements, Tip 53 ex-
plains how to really remove elements from a container. The program in Listing 9.6
shows an elegant use of logically removing container elements.

LISTING 9.6 Removing All Matching Elements

// algorithm_remove_all.cpp

#include <algorithm>

#include <functional>

#include <iostream>

#include <iterator>

#include <numeric>

#include <vector>

using namespace std;

int main( )

{

const int last_number = 50;

vector<int> v( last_number - 1, 1 );

v[0] = 2;



// make the sequence 2, 3, ..., 49, 50

partial_sum( v.begin(), v.end(), v.begin() );

vector<int>::iterator stop = v.end();

for( vector<int>::iterator start = v.begin(); start != stop;

++start )

// remove all subsequent numbers that are not divisible by

// the current one

stop = remove_if( start+1, stop,

not1( bind2nd( modulus<int>(), *start ) ) );

cout << "Prime numbers: ";

copy( v.begin(), stop, ostream_iterator<int>( cout, " " ) );

}

The output is

The program uses an ancient algorithm for finding prime numbers. (A prime
number is a positive integer that is divisible by only two different positive integers, 1
and itself.) The Greek mathematician Eratosthenes (275–194 BC) created a procedure
for finding all the primes up to a certain number. Here’s a version of his algorithm:

List all the integers from 2 up to some other integer of your choice.
Remove all numbers after 2 that are divisible by 2.
The next remaining number is 3. Remove all numbers after 3 that are divisible
by 3.
Start with the next remaining number and remove all numbers after it that are
divisible by it.
Repeat the preceding step until no numbers remain. The numbers left are all
the primes from 2 (the first prime) through the integer you chose.

Because this algorithm strains out the numbers that are not prime from those that
are, it’s known as the Sieve of Eratosthenes.

The program starts by using the STL algorithm partial_sum to make the integers
2 through 50. (Tip 79 explains this technique.) The subsequent one-statement
for-loop then carries out the entire sieve. The code first declares an iterator that
stores the logical end of the sequence, that is, that marks the end of the numbers
that have not been removed. Initially, this is simply the end iterator of the vector.

296 C++ Standard Library Practical Tips

Prime numbers: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47



Tips on Algorithms 297

Next, in the initialization section of the loop, the program declares another iterator
that points to the current number used to test divisibility and sets it to the start of
the vector. The STL algorithm remove_if then does the work. 

The first argument is the start of the sequence that remove_if should operate on.
As the preceding algorithm explains, this is 1 after the current starting position in the
vector, which is why the iterator in the argument has 1 added to it. The second argu-
ment marks the end of the sequence, and this is the logical end returned from the pre-
vious call to remove_if, or the actual end of the vector on the first call to remove_if.

The last argument is the condition for removing a number, namely, that it be di-
visible by the current starting number. To test this, you can divide the two numbers
and examine the integer remainder. If it’s 0, the two numbers are divisible, otherwise
they are not. Fortunately, the Standard Library provides a functor for finding the re-
mainder when dividing two integers—it’s called modulus. Tip 76 explains how to use
modulus and the other Standard Library functors for doing arithmetic.

The first argument that remove_if passes to modulus is an integer in the vector.
The second argument (the divisor) is the current starting number. On any call to
remove_if, the divisor is always the same because it is “frozen” by the built-in func-
tor bind2nd, as Tip 50 explains. Finally, a third Standard Library functor, not1,
returns the logical negation of the integer. This makes the condition for removal
true if the remainder is 0 and false if it isn’t. Thus, the entire statement removes
all numbers after the current one that are exactly divisible by the current number,
which is just what Eratosthenes wants us to do.

remove_if returns the end position of the numbers that it has not removed. This
spot is used as the stopping point in the next call to remove_if. The output shows the
result, which is all the prime numbers from 2 through 50. The code uses the STL al-
gorithm copy and the technique of Tip 16 to display the numbers. Notice that stop,
rather than the end iterator of the container, specifies the end of the range.

REALLY REMOVE ALL MATCHING ELEMENTS

Applies to: Sequence container, remove, remove_if
See also: Tip 5, Tip 50, Tip 51, Tip 52, Tip 76, Tip 84, Tip 86, Tip 90, 

Listing 13.4, Listing 13.7, Listing 13.13

Quick Solution
deque<int> d;

// ...

d.erase( remove_if( d.begin(), d.end(), bind2nd( modulus<int>(), 2 ) ),

d.end() ); // erase all odd elements from the deque

TIP 53



298 C++ Standard Library Practical Tips

When you remove elements from a container as shown, the size of the con-
tainer does change.

Detailed Solution

Tip 52 shows that you can logically remove elements from a container. This means
that the elements that have not been removed are at the beginning of the container
and a separate iterator marks the end of those elements. The container’s size doesn’t
change, though. The advantages of this system are that you can avoid the expense of
permanently deleting elements and that you can remove elements from ranges in
which the elements can’t be deleted, for example, a C-style array. The disadvantage
is that you have to tote around an extra variable to mark the logical end of the con-
tainer. This is a pain and takes us back to the bad old days of C-style arrays, which
needed a separate variable to specify their length.

This tip shows you how to erase (permanently remove) elements from a stan-
dard sequence container. The size of the container decreases as elements are erased
so that the container’s length truly represents the number of elements that have not
been removed. The program in Listing 9.7 demonstrates erasing elements by get-
ting rid of fluke points in a set of experimental data.

LISTING 9.7 Really Removing All Matching Elements

// algorithm_really_remove_all.cpp

#include <algorithm>

#include <cmath>

#include <functional>

#include <iostream>

#include <list>

#include <numeric>

#include <vector>

#include "tips.hpp"

using namespace std;

int main( )

{

const float data_array[] = { 1, 1.3, 1.5, 0.9, 0.1, 0.2, -0.1,

-0.9, -1.1, 0.1, 0.5, 55.4, 0.8, -7.2, -1.4 };

// create and initialize vector with above data

vector<float> data( data_array,



data_array + sizeof( data_array ) / sizeof( data_array[0] ) );

cout << "BEFORE ERASING OUTLIERS DATA VECTOR HAS "

<< data.size() << " ELEMENTS\n";

tips::print( data, "Data" );

// compute the mean

float mean = accumulate( data.begin(), data.end(), 0.0f )

/ data.size();

// subtract the mean from every data point

vector<float> zero_mean( data );

transform( zero_mean.begin(), zero_mean.end(), zero_mean.begin(),

bind2nd( minus<float>(), mean ) );

// compute the sample standard deviation

float deviation = inner_product( zero_mean.begin(),

zero_mean.end(), zero_mean.begin(), 0.0f );

deviation = sqrt( deviation / ( data.size() - 1 ) );

// erase all points more than three standard deviations

// greater than the mean

const int num_deviations = 3;

vector<float>::iterator end =

remove_if( data.begin(), data.end(), bind2nd( greater<float>(),

mean + num_deviations * deviation ) );

data.erase( end, data.end() );

// erase all points more than three standard deviations

// less than the mean

data.erase( remove_if( data.begin(), data.end(),

bind2nd( less<float>(), mean - num_deviations * deviation ) ),

data.end() );

cout << "\nAFTER ERASING OUTLIERS DATA VECTOR HAS "

<< data.size() << " ELEMENTS\n";

tips::print( data, "Data" );

// transfer to a list and remove all negative numbers

list<float> l( data.begin(), data.end() );

cout << "\nSize of list before calling remove_if: "

<< l.size() << endl;

l.remove_if( bind2nd( less<float>(), 0 ) );

cout << "Size of list after calling remove_if: "

Tips on Algorithms 299



<< l.size() << endl;

tips::print( l, "List" );

}

The output is

In experimental data, there may occasionally be a few data points that are vastly
different than the rest of the numbers. These anomalous values are called outliers
and may come from equipment failures or gross human errors. A common way to
get rid of outliers from a data set is to use these steps:

1. Compute the (sample) mean or average of the data.
2. Compute the (sample) standard deviation of the data by

a. Subtracting the mean from each data point,
b. Finding the sum of the squares of these differences,
c. Dividing by the number of points minus one, and
d. Taking the square root.

3. Eliminate all points that are greater than the mean plus three times the
standard deviation or less than the mean minus three times the standard
deviation. These points are the outliers.

The previous algorithm for computing the standard deviation makes three
passes through the data—one to compute the mean, one to subtract it from the
data, and one to add the sum of the squares of these differences. If you’re interested,
Tip 90 shows a different method of computing the variance, which is just the square
of the standard deviation.

Before examining how the program removes outliers, look at the data array in
the first line of the main function. Notice how all the values are between –2 and 2,
except for 55.4 and –7.2. These two may be outliers, especially the first one.

300 C++ Standard Library Practical Tips

BEFORE ERASING OUTLIERS DATA VECTOR HAS 15 ELEMENTS

Data: 1 1.3 1.5 0.9 0.1 0.2 -0.1 -0.9 -1.1 0.1 0.5 55.4 0.8 -7.2 -1.4

AFTER ERASING OUTLIERS DATA VECTOR HAS 14 ELEMENTS

Data: 1 1.3 1.5 0.9 0.1 0.2 -0.1 -0.9 -1.1 0.1 0.5 0.8 -7.2 -1.4 

Size of list before calling remove_if: 14

Size of list after calling remove_if: 9

List: 1 1.3 1.5 0.9 0.1 0.2 0.1 0.5 0.8



Tips on Algorithms 301

The code starts by loading the numbers into a vector using the technique of Tip 5.
The first section of the output shows the data set. Next, the program computes the
mean by adding up all the values and dividing by the number of values. The STL 
algorithm accumulate does the sum nicely, as Tip 86 explains. The code then makes
a copy of the vector with the data (using the vector’s copy constructor) so that it can
compute the standard deviation without changing the original data.

To subtract the mean from each data point, the program calls the STL algo-
rithm transform. (Tip 76 explains how to do subtraction or any of the other three
types of arithmetic on all elements of a container.) At this point, each element of the
new vector of data is the corresponding original element minus the mean. As the
code shows, you can easily get the sum of the squares of the elements by using yet
another STL algorithm, inner_product. (Tip 84 provides the details for this tech-
nique.) Finally, the program divides the sum of the squares by one less than the
number of data points and this gives the standard deviation.

The  program removes outliers in two steps. The first call to remove_if gets rid
of all points that are more than three standard deviations above the mean. The 
criterion passed to remove_if is easily made by combining the built-in STL function
object greater with the mean plus three standard deviations. These constants are
passed to the functors with another standard functor, bind2nd. Tip 50 provides
more details on passing constants to functors.

remove_if returns an iterator that marks the end of the elements in the range
that have not been removed. At this point, though, the vector still has its original
size. To permanently remove the elements, call the erase member function, which
all standard sequence containers have. This function accepts a range specified in the
normal way—start of the range and one past the end of the range. The start is sim-
ply the iterator returned by remove_if and the end is the iterator provided by the
container’s end member function.

The second call to remove_if erases all points more than three standard devia-
tions below the mean and combines the calls to remove_if and erase into one call.
This way of coding is common and is called the remove-erase idiom. It works even
when remove_if doesn’t remove any elements. In that case, it returns an iterator to
the end of the container. This makes the start and end of the range passed to erase
be the same, so it does nothing. This is what happens in the sample program. By
looking at the output, you can see that only the first call to erase removed any ele-
ments. You can also see that the actual size of the container has changed.

The last section of code is not part of removing outliers, but shows the special
case of erasing from a list. Unfortunately, the terminology is confusing—a list has
remove and remove_if member functions that actually do erase. A list also has erase
member functions, but at least they erase, not remove. The difference is that remove
and remove_if erase all elements in the list that equal a value or satisfy a predicate,



whereas the erase functions erase an element at a given iterator or elements in a
range of iterators.

The end of the output demonstrates that the list changes size when you call its
remove_if member function. Because the two removal member functions are op-
timized for lists, you should use them instead of the corresponding STL algorithms.

This tip showed you how to erase all elements. If you just want to erase the first
or last such element, check out Tip 51. If you want to remove all elements from a
range that match a criterion without actually erasing them, see Tip 52.

SORT BEFORE PERFORMING SET OPERATIONS

Applies to: Sequence containers, merge, set_difference, set_intersection, 
set_symmetric_difference, set_union, unique

See also: Tip 17, Tip 30, Tip 49, Tip 59

Quick Solution
vector<int> v1, v2;

// ...

vector<int> v3( v1.size() + v2.size() );

sort( v1.begin(), v1.end() ); // must sort v1 and v2 first

sort( v2.begin(), v2.end() );

// elements in v1 and not in v2

set_difference( v1.begin(), v1.end(), v2.begin(), v2.end(), v3.begin()

);

// elements in v1 or v2 but not in both

set_symmetric_difference( v1.begin(), v1.end(), v2.begin(), v2.end(),

v3.begin() );

// elements in v1 and v2

set_intersection( v1.begin(), v1.end(), v2.begin(), v2.end(), 

v3.begin() );

// elements in v1 or v2 or both

set_union( v1.begin(), v1.end(), v2.begin(), v2.end(), v3.begin() );

// elements in both vectors put in order in one vector

merge( v1.begin(), v1.end(), v2.begin(), v2.end(), v3.begin() );

302 C++ Standard Library Practical Tips

TIP 54



Tips on Algorithms 303

// remove duplicate elements (size unchanged)

unique( v1.begin(), v1.end() );

Detailed Solution

The STL has a number of algorithms (see Table 9.3) for combining two ranges in
different ways. Although the algorithms perform operations from mathematical set
theory, they are quite useful for other purposes, as the code in Listing 9.8 illustrates. 

All the algorithms have two versions. One version uses the default sorting cri-
terion (less-than) and the other accepts a predicate that specifies the sorting. The
signatures for each version are the same for all five algorithms. For example, for
set_union the two signatures are

OutputIterator

set_union( InputIterator start1, InputIterator stop1,

InputIterator start2, InputIterator stop2, OutputIterator startOut )

OutputIterator

set_union( InputIterator start1, InputIterator stop1,

InputIterator start2, InputIterator stop2, OutputIterator startOut,

BinaryPredicate predicate )

Algorithm Purpose

merge Puts all elements from both input ranges into 
an output range. All elements in the input 
ranges end up in the output range

set_difference Puts all elements that are in the first range but 
not in the second range in the output range

set_intersection Puts all elements that are in both ranges in the 
sorted output range

set_symmetric_difference Puts all elements that are in the first range or 
the second but not in both ranges into the 
output range

set_union Puts all elements that are in either or both 
ranges into a sorted output range.

unique Removes consecutive duplicates

TABLE 9.3 Sorted-Range Algorithms



304 C++ Standard Library Practical Tips

The second input range is a little unusual in that the end of that range needs to
be specified. This is necessary because the two ranges could have different sizes.
However, the output range, as usual, only has the start specified. You have to make
sure the output range can contain the output or else use an inserter. If you make the
output size be the sum of the two input sizes, you’ll always be able to hold the 
results of these algorithms. This will probably waste a good amount of memory,
though, so the best bet is to use an inserter.

The most important thing to remember when using these algorithms is that the
input ranges must be sorted before you use the algorithms. They also have to be
sorted according to the same criterion you use in the algorithm, either the default
function or a specified one. If you use unsorted input ranges, neither the compiler
nor the algorithms will report that, and the results will generally be incorrect. This
bug can be hard to track down.

Here are a few other tips for using the sorted range algorithms:

All algorithms return the end of the output range.
The output is always sorted.
For merge, all elements (including all copies) end up in the output range so that the
number of elements is the sum of the number of elements in the two input ranges.
For set_union, if one or both ranges have duplicates of some element, the num-
ber of times that element appears in the output is the maximum of the number
of times it appears in the first or second range. For example, if one input range
has five 2s and the other input range has three 2s, the output will contain five
2s. If those ranges were used in merge, the output would contain eight 2s.
For set_intersection, duplicates occur in the output if both input ranges have
the same element duplicated. The number of times that element appears in the
output is the minimum of the number of times it appears in the two input
ranges. For example, if one input range has five 2s and the other input range
has three 2s, the output will contain three 2s.
For set_difference, output duplicates are possible if the first input range has
duplicates. The number of duplicates in the output is the number of times an
element appears in the first input range minus the number of times the element
appears in the second range. (If the element appears more times in the second
range, it won’t be in the output at all.) For example, if one input range has five
2s and the other input range has three 2s, the output will contain two 2s.
For set_symmetric_difference, output duplicates can occur if elements are du-
plicated in an input range. The number of duplicates in the output is the larger
number of duplicates in one input range minus the number of times it appears
in the second range. For example, if one input range has five 2s and the other
input range has three 2s, the output will contain two 2s.



The program in Listing 9.8 shows a good application of the sorted set algorithms.

LISTING 9.8 Using Sorted Set Algorithms

// algorithm_sort_sets.cpp

#include <algorithm>

#include <functional>

#include <iomanip>

#include <iostream>

#include <list>

#include <string>

#include <vector>

using namespace std;

class Part

{

public:

enum part { engine, transmission, body };

Part( part a_part = Part::engine, int id = 0 );

bool operator<( const Part& rhs ) const;

// sort by ID

void print() const;

// display information about part

private:

part part_;

int id_;

};

inline

Part::Part( part a_part, int id )

: part_( a_part ), id_( id )

{} // empty

inline

bool Part::operator<( const Part& rhs ) const

{  return id_ < rhs.id_;   }

void Part::print() const

{

Tips on Algorithms 305



string component;

if( part_ == engine )

component = "engine";

else if( part_ == transmission )

component = "transmission";

else

component = "body";

cout << "ID: " << setw( 8 ) << left << id_

<< " Part: " << component << endl;

}

int main( )

{

// make the list of parts that Inspector A has examined

list<Part> inspector_A;

inspector_A.push_back( Part( Part::engine, 341002 ) );

inspector_A.push_back( Part( Part::transmission, 1001 ) );

inspector_A.push_back( Part( Part::body, 97344 ) );

inspector_A.push_back( Part( Part::engine, 222145 ) );

inspector_A.push_back( Part( Part::body, 8877 ) );

// make the list of parts that Inspector B has examined

list<Part> inspector_B( inspector_A );

inspector_B.front() = Part( Part::transmission, 62804 );

inspector_B.back() = Part( Part::body, 111359 );

// must sort before using set algorithms

inspector_A.sort();

inspector_B.sort();

cout << "ALL PARTS EXAMINED BY INSPECTOR A\n";

for_each( inspector_A.begin(), inspector_A.end(),

mem_fun_ref( &Part::print ) );

cout << "\n\nALL PARTS EXAMINED BY INSPECTOR B\n";

for_each( inspector_B.begin(), inspector_B.end(),

mem_fun_ref( &Part::print ) );

vector<Part> result;

cout << "\n\nALL PARTS EXAMINED BY BOTH INSPECTORS\n";

set_intersection( inspector_A.begin(), inspector_A.end(),

inspector_B.begin(), inspector_B.end(),

306 C++ Standard Library Practical Tips



back_inserter( result ) );

for_each( result.begin(), result.end(),

mem_fun_ref( &Part::print ) );

cout << "\n\nALL PARTS EXAMINED BY INSPECTOR A ONLY\n";

result.clear();

set_difference( inspector_A.begin(), inspector_A.end(),

inspector_B.begin(), inspector_B.end(),

back_inserter( result ) );

for_each( result.begin(), result.end(),

mem_fun_ref( &Part::print ) );

// make vector large enough to hold all inspected parts

result.resize( inspector_A.size() + inspector_B.size() );

cout << "\n\nALL PARTS EXAMINED BY INSPECTOR B ONLY\n";

vector<Part>::iterator the_end =

set_difference( inspector_B.begin(), inspector_B.end(),

inspector_A.begin(), inspector_A.end(), result.begin() );

for_each( result.begin(), the_end, mem_fun_ref( &Part::print ) );

cout << "\n\nALL PARTS EXAMINED BY ONLY ONE INSPECTOR\n";

the_end = set_symmetric_difference( inspector_A.begin(),

inspector_A.end(), inspector_B.begin(), inspector_B.end(),

result.begin() );

for_each( result.begin(), the_end, mem_fun_ref( &Part::print ) );

cout << "\n\nALL PARTS EXAMINED BY AT LEAST ONE INSPECTOR\n";

the_end = set_union( inspector_A.begin(), inspector_A.end(),

inspector_B.begin(), inspector_B.end(), result.begin() );

for_each( result.begin(), the_end, mem_fun_ref( &Part::print ) );

cout << "\n\nALL PARTS EXAMINED\n";

the_end = merge( inspector_A.begin(), inspector_A.end(),

inspector_B.begin(), inspector_B.end(), result.begin() );

for_each( result.begin(), the_end, mem_fun_ref( &Part::print ) );

}

The output is

Tips on Algorithms 307



308 C++ Standard Library Practical Tips

ALL PARTS EXAMINED BY INSPECTOR A

ID: 1001     Part: transmission

ID: 8877     Part: body

ID: 97344    Part: body

ID: 222145   Part: engine

ID: 341002   Part: engine

ALL PARTS EXAMINED BY INSPECTOR B

ID: 1001     Part: transmission

ID: 62804    Part: transmission

ID: 97344    Part: body

ID: 111359   Part: body

ID: 222145   Part: engine

ALL PARTS EXAMINED BY BOTH INSPECTORS

ID: 1001     Part: transmission

ID: 97344    Part: body

ID: 222145   Part: engine

ALL PARTS EXAMINED BY INSPECTOR A ONLY

ID: 8877     Part: body

ID: 341002   Part: engine

ALL PARTS EXAMINED BY INSPECTOR B ONLY

ID: 62804    Part: transmission

ID: 111359   Part: body

ALL PARTS EXAMINED BY ONLY ONE INSPECTOR

ID: 8877     Part: body

ID: 62804    Part: transmission

ID: 111359   Part: body

ID: 341002   Part: engine

ALL PARTS EXAMINED BY AT LEAST ONE INSPECTOR

ID: 1001     Part: transmission

ID: 8877     Part: body

ID: 62804    Part: transmission

ID: 97344    Part: body

ID: 111359   Part: body

ID: 222145   Part: engine

ID: 341002   Part: engine



Here’s the situation: in a car manufacturing plant, two quality-control inspec-
tors must examine each major part. The software has a list of the parts that each in-
spector has examined so far. By using the sorted set algorithms, you can get lots of
information about the status of the inspections, such as which parts have been ex-
amined by only one inspector or already looked at by both inspectors.

The program starts by declaring a simple class to represent a car part. The class
has the type of part (engine, transmission, or body) and the identification number
(ID) of part. It has a less-than operator that sorts according to the ID. Finally,
there’s a little print function that shows the part type and identification number.

The main program starts by creating a list of parts that Inspector A has looked
at and another list for Inspector B. It displays these two lists by having for_each (see
Tip 59) call the print member function (see Tip 49) of each element in the lists.
Next, the code sorts the lists by calling the list’s sort member function (see Tip 30).
The program must do this before using any of the sorted range functions. (If the
parts were stored in vectors or deques, the program would use the STL sort algo-
rithm instead.) The first two sections of the output show the result, which is sim-
ply what parts each inspector has examined. This output is also useful for verifying
that subsequent calls to the sorted range algorithms work correctly. 

After declaring a vector to hold the results of the algorithms, the code calls
set_intersection, which finds the elements common to both lists. These are the
parts that both inspectors have examined. If this meant that they were finished with
this stage of quality control, more complicated code would send them along to the
next phase of manufacturing. You can see that the output from this algorithm and
the others described next is sorted, by default, into ascending value of the part ID.

The first call to set_difference shows the parts that only Inspector A has
looked at. It also illustrates one of two techniques for working with the output of
the sorted set algorithms. In this method, the code declares an empty output vec-
tor or clears the vector before using it in the algorithm to ensure that there are no

Tips on Algorithms 309

ALL PARTS EXAMINED

ID: 1001     Part: transmission

ID: 1001     Part: transmission

ID: 8877     Part: body

ID: 62804    Part: transmission

ID: 97344    Part: body

ID: 97344    Part: body

ID: 111359   Part: body

ID: 222145   Part: engine

ID: 222145   Part: engine

ID: 341002   Part: engine



310 C++ Standard Library Practical Tips

elements present. When the code passes the vector to the algorithm, the software
wraps the vector in a call to a back inserter, which simply pushes each output ele-
ment onto the back of the vector. The advantage of this method is that the output
vector only contains as many elements as the algorithm produces. This conserves
memory and makes it convenient to use the vector because the size tells you the
number of elements in the output. The disadvantages are that the back inserter may
cause reallocation (see Tip 17) and that you have to remember to clear the vector
each time before using it in one of the sorted set algorithms.

The next call to set_difference has the two input ranges switched, so the result
is the parts that only Inspector B has examined. It also illustrates the second method
of working with the output. First, the program resizes the vector to hold the maxi-
mum possible number of output elements that any call to the algorithms could pro-
duce. This is just the total number of input elements in all the input containers.
Next, the program declares an iterator for the output vector. All the algorithms in
Table 9.3 return an iterator that marks the end of the output range, that is, it’s 1
past the last element written. The code then uses this value instead of the vector’s
end iterator when specifying the range of elements in the vector, for example, in the
call to for_each. The advantages of this method are that the output vector will never
reallocate and that you don’t need to clear the vector each time before using it. The
disadvantages are that you must know ahead of time the maximum possible num-
ber of elements, you might allocate more memory than necessary, and you have to
tote around the end-of-range iterator instead of using the one in the vector. The re-
mainder of the program uses this method.

Next, the code calls set_symmetric_difference, which produces the parts that
only one inspector has looked at. This tells the Quality Control department how
many parts are halfway done with inspection. The program also calls set_union to
list all parts that have been examined by at least one inspector. Note that there are
no duplicates in this list. That’s the difference from the output to merge (called
next), which does include duplicates and thus is not as useful in this application.

SORT ON ONE OF MANY FIELDS

Applies to: Vector, deque
See also: Tip 3, Tip 4, Tip 5, Tip 9, Tip 45, Tip 79

Quick Solution

See the detailed solution.

TIP 55



Detailed Solution

Sometimes the situation arises in which you have a number of containers with re-
lated data, and you need to sort them based only on the values in one container, the
key. For example, one vector may contain the names of some cars, a second vector
may have their horsepower, and a third vector may have the year in which they
were made. The first elements in all the containers correspond to one car, the sec-
ond elements correspond to another car, and so on. If you want to sort by horse-
power, you’ll need to move the other fields around too, so that after sorting all
corresponding elements are still together.

You might ask, “If all elements at a given index are related to each other, why
aren’t they in a class? Then you would just have one container of objects which you
could easily sort.” The answer is that this is what you should do. Unfortunately,
sometimes you have to deal with code written by people who haven’t yet embraced
object-oriented programming—they aren’t using classes. The program might be
legacy code, that is, old software, that doesn’t even use standard containers, just C-
style arrays. The program in Listing 9.9 shows you how to sort on one of many
fields, even if those fields are stored in arrays. 

LISTING 9.9 Sorting on One of Many Fields

// algorithm_sort_fields.cpp

#include <algorithm>

#include <iomanip>

#include <iostream>

#include <numeric>

#include <vector>

using namespace std;

void display( float price[], float height[], int weight[],

int array_length );

void legacy_sorter( float price[], float height[], int weight[],

int array_length );

// sort on price, other fields rearranged accordingly

int main( )

{

float price[] = { 299.99, 174.95, 199.99, 198.99, 329.00 };

float height[] = { 2.9, 2.2, 2.3, 2.4, 3.2 };

int weight[] = { 84, 62, 70, 72, 94 };

Tips on Algorithms 311



const int n = sizeof( price ) / sizeof( price[0] );

cout << "BEFORE SORTING BY PRICE\n";

display( price, height, weight, n );

legacy_sorter( price, height, weight, n );

cout << "\nAFTER SORTING BY PRICE\n";

display( price, height, weight, n );

}

void legacy_sorter( float price[], float height[], int weight[],

int array_length )

{

// need space between > and >

vector< pair<float,int> > index( array_length );

// make the sequence 0, 1, 2, ..., array_length-1

vector<int> temp_int( array_length, 1 );

temp_int[0] = 0;

partial_sum( temp_int.begin(), temp_int.end(), temp_int.begin() );

// make a vector of pairs of prices and indexes

transform( price, price+array_length, temp_int.begin(),

index.begin(), make_pair<float,int> );

// sort by price

sort( index.begin(), index.end() );

// rearrange the prices

vector<float> temp_float( price, price+array_length );

for( int i = 0; i < array_length; ++i )

price[i] = temp_float[index[i].second];

// rearrange the heights

temp_float.assign( height, height+array_length );

for( int i = 0; i < array_length; ++i )

height[i] = temp_float[index[i].second];

// rearrange the weights

temp_int.assign( weight, weight+array_length );

for( int i = 0; i < array_length; ++i )

weight[i] = temp_int[index[i].second];

}

312 C++ Standard Library Practical Tips



void display( float price[], float height[], int weight[],

int array_length )

{

cout << fixed;

for( int i = 0; i < array_length; ++i )

cout << "Price: " << fixed << setprecision( 2 ) << setw( 6 )

<< price[i] << setprecision( 1 ) << setw( 5 ) << height[i]

<< setw( 4 ) << weight[i] << endl;

}

The output is

The example program demonstrates sorting on one of many fields by having
three C-style arrays with the price, height, and weight of some machines. The pro-
gram declares two global functions to perform the work. The first, display, simply
displays the information in the arrays. The second, legacy_sorter, sorts the data in
the arrays based on price. It’s best not to use arrays at all (vectors are much better),
but because this type of sorting arises in structured programming, it’s likely that ar-
rays will be around too.

The code for sorting is in legacy_sorter. The idea is to store the original index
of each price with the price, and as the prices are sorted, the indexes stay with them.
When the sorting is finished, the other arrays are rearranged according to the shuf-
fled indexes. That is, the first rearranged element originally had the first index, the
second rearranged element originally had the second index, and so forth.

The function starts by making a vector with the same length as the arrays (see
Tip 4) and containing pairs. A pair is a handy data structure (see Tip 45) that 

Tips on Algorithms 313

BEFORE SORTING BY PRICE

Price: 299.99  2.9  84

Price: 174.95  2.2  62

Price: 199.99  2.3  70

Price: 198.99  2.4  72

Price: 329.00  3.2  94

AFTER SORTING BY PRICE

Price: 174.95  2.2  62

Price: 198.99  2.4  72

Price: 199.99  2.3  70

Price: 299.99  2.9  84

Price: 329.00  3.2  94



314 C++ Standard Library Practical Tips

contains two elements that can have different data types. In this case, the first is a
floating-point number (the price) and the second is an integer, the index. The two
elements are in that order because one pair being less than another is first deter-
mined by comparing the first elements, rather than the second. Note also that there
must be a space between the two closing angle brackets in the declaration of the
vector. Otherwise, the compiler would interpret two consecutive right angle brack-
ets as the right shift operator.

Next, the program uses the STL algorithm partial_sum and Tip 79 to make the
integers from 0 up to the array length minus 1. These serve as the indexes of the orig-
inal positions of the data. The code continues by putting the prices and correspond-
ing indexes together into pairs and storing them in a vector. The STL algorithm
transform does the work. Its first two arguments are the range of the C-style array.
Tip 3 explains that the STL was fortunately designed to let arrays be used this way.

Once the vector is filled with the price-index pairs, it becomes trivial to sort it. The
code does this in one line by calling the STL algorithm sort. By default, sortuses the
less-than operator, which for pairs is the result of comparing the first elements with
their less-than operator. The upshot is that the pairs are sorted by increasing price.

Finally, the function rearranges the arrays. It creates a vector of floating-point
numbers and initializes them with the values in the price array (see Tip 5). Then the
function uses a simple loop to copy those numbers back into the array in sorted
order. Next, the function stores the array of heights in the same vector using the
vector’s assign member function (as Tip 9 describes) and uses a loop to put the
heights back into the array in the correct order. Finally, the function rearranges the
weights the same way. The output shows the data in the arrays before and after sort-
ing and confirms that the information is in ascending order of price.

SORT WITH MULTIPLE CRITERIA

Applies to: Sequence containers
See also: Tip 48, Tip 59, Listing 13.7

Quick Solution

See the detailed solution.

Detailed Solution

The default sorting criterion in both the STL sort algorithm and the sort member
function of lists is less-than. By using the predefined functors in the STL, you can
easily change that to other simple criteria, such as greater-than, equal-to, and so on.
However, you can’t use those functors to do many things that are even slightly

TIP 56



Tips on Algorithms 315

more complicated, such as the absolute value of the first argument being less than
the absolute value of the second. 

One way to make a complex sorting criterion is to code it as a function. This
has several disadvantages. First off, the function can only take two arguments—the
values that sort passes to it. If you need any other values, they have to be stored in-
side the function as constants or passed as global variables. That first alternative is
not flexible because you can’t change the values of the constants. The second alter-
native is bad programming practice.

Another drawback is that the number of functions you need can proliferate
dramatically. For example, suppose you have a class that represents a car. It con-
tains the model year, price, engine power, and gas mileage. You’d like to let the user
sort on any of these items. When there are ties, you’d like to sort the tied values by
another one of the items, for example, sort by price and, within price, sort by year.
There are four fields for the first sorting and three for the second (assume the two
sorting values can’t be the same), so there are a total of 12 different ways to sort.
This means you’d have the unenviable job of writing 12 different sorting functions.

The way to handle multiple or complex sorting criteria is to write a class that
makes the sorting decision. It must define operator() as a binary predicate that de-
cides if the first argument should come before the second. You pass an instance of
the class to sort, and it calls the call operator. You can set in the class constructor
any values you need or change them with mutators. You can also make the sorting
decision as complicated as you want. If you have lots of combinations of things that
go into making the decision, you can handle them by logic in one member function
(the call operator) instead of writing many different global functions. Although this
can make the member function pretty ugly, it’s better than having to write a lot of
global functions to do the work. 

Here’s an example of sorting with many different criteria. The code in Listing
9.10 demonstrates with the sort algorithm, but the list sort member function
works the same way.

LISTING 9.10 Sorting with Multiple Criteria

// algorithm_sort_criteria.cpp

#include <algorithm>

#include <functional>

#include <iomanip>

#include <iostream>

#include <vector>

using namespace std;



316 C++ Standard Library Practical Tips

class Resistor_lot

{

public:

Resistor_lot( int lot = 0, int pieces = 0, int price = 1,

int resistance = 1 );

// lot >= 0 - lot number

// pieces >= 0 - number of resistors in lot

// price > 0 - price in dollars per hundred resistors

// resistance > 0 - resistance in ohms

int lot() const;

int pieces() const;

int price() const;

void print() const;

// display info on lot

int resistance() const;

private:

int lot_, pieces_, price_, resistance_;

};

inline

Resistor_lot::Resistor_lot( int lot, int pieces, int price,

int resistance) : lot_( lot ), pieces_( pieces ), price_( price ),

resistance_( resistance )

{} // empty

inline

int Resistor_lot::lot() const

{ return lot_; }

inline

int Resistor_lot::pieces() const

{ return pieces_; }

inline

int Resistor_lot::price() const

{ return price_; }

inline

void Resistor_lot::print() const

{ cout << left << "Lot #: " << setw( 5 ) << lot()



<< "Resistance (ohms): " << setw( 7 ) << resistance()

<< "Pieces: " << setw( 6 ) << pieces()

<< "Price/100: $" << setw( 5 ) << price() << endl;

}

inline

int Resistor_lot::resistance() const

{ return resistance_; }

class Resistor_lot_sorter

{

public:

enum sort_field { none, lot, pieces, price, resistance };

Resistor_lot_sorter( bool ascending = true,

sort_field field1 = lot,

sort_field field2 = none );

// ascending - if true sort in ascending order, else descending

// field1 - first field to sort on. Can't be none

// field2 - second field to sort on. Can be equal to none but

//          must be different than field1

bool operator()( const Resistor_lot& lhs,

const Resistor_lot& rhs );

// returns true if field1 of lhs is less than field1 of rhs

// returns false if field1 of lhs is greater than field1 of rhs

// returns false if field1 of both are equal and field2 is none

// if field2 is not none returns true if field2 of lhs is less

// than field2 of rhs, otherwise returns false

void ascending( bool ascend );

// ascend - if true sort in ascending order, else descending

bool is_ascending() const;

void field( sort_field field1 = lot, sort_field field2 = none );

// field1 - first field to sort on. Can't be none

// field2 - second field to sort on. Must be different than field1

private:

bool compare( const Resistor_lot& x, const Resistor_lot& y );

// carries out comparison for operator()

Tips on Algorithms 317



bool ascending_;

sort_field field1_;

sort_field field2_;

};

inline

Resistor_lot_sorter::Resistor_lot_sorter( bool ascending,

sort_field field1, sort_field field2 )

: ascending_( ascending ), field1_( field1 ), field2_( field2 )

{} // empty

inline

bool Resistor_lot_sorter::operator()( const Resistor_lot& lhs,

const Resistor_lot& rhs )

{

if( is_ascending() )

return compare( lhs, rhs );

else

return compare( rhs, lhs );

}

inline

void Resistor_lot_sorter::ascending( bool ascend )

{ ascending_ = ascend; }

bool Resistor_lot_sorter::compare( const Resistor_lot& x,

const Resistor_lot& y )

{

bool result = false;

// store the values to compare

int x_value, y_value;

if( field1_ == lot )

{

x_value = x.lot();

y_value = y.lot();

}

else if( field1_ == pieces )

{

x_value = x.pieces();

y_value = y.pieces();

}

else if( field1_ == price )

{

318 C++ Standard Library Practical Tips



x_value = x.price();

y_value = y.price();

}

else

{

x_value = x.resistance();

y_value = y.resistance();

}

// compare values and return if not equal

if( x_value < y_value )

return true;

else if( x_value > y_value )

return false;

// at this point the two values are equal. If we're not sorting

// on a second field, return false

if( field2_ == none )

return false;

// now let the second field decide. If the two fields are equal

// this code still works but having them be the same doesn't

// make sense

if( field2_ == lot )

result = x.lot() < y.lot();

else if( field2_ == pieces )

result = x.pieces() < y.pieces();

else if( field2_ == price )

result = x.price() < y.price();

else

result = x.resistance() < y.resistance();

return result;

}

inline

bool Resistor_lot_sorter::is_ascending() const

{ return ascending_; }

inline

void Resistor_lot_sorter::field( sort_field field1,

sort_field field2 )

{

field1_ = field1;

Tips on Algorithms 319



field2_ = field2;

}

int main( )

{

vector<Resistor_lot> lot;

lot.push_back( Resistor_lot( 23, 1200, 36, 33 ) );

lot.push_back( Resistor_lot( 448, 2000, 34, 33 ) );

lot.push_back( Resistor_lot( 2, 148, 54, 2200 ) );

lot.push_back( Resistor_lot( 505, 2450, 17, 15000 ) );

lot.push_back( Resistor_lot( 201, 442, 19, 27000 ) );

Resistor_lot_sorter sorter;

cout << "ASCENDING ORDER BY LOT NUMBER\n";

sort( lot.begin(), lot.end(), sorter );

for_each( lot.begin(), lot.end(),

mem_fun_ref( &Resistor_lot::print ) );

cout << "\nDESCENDING ORDER BY NUMBER OF PIECES\n";

sorter.field( Resistor_lot_sorter::pieces );

sorter.ascending( false );

sort( lot.begin(), lot.end(), sorter );

for_each( lot.begin(), lot.end(),

mem_fun_ref( &Resistor_lot::print ) );

cout << "\nASCENDING ORDER BY RESISTANCE, THEN PRICE\n";

sorter.field( Resistor_lot_sorter::resistance,

Resistor_lot_sorter::price );

sorter.ascending( true );

sort( lot.begin(), lot.end(), sorter );

for_each( lot.begin(), lot.end(),

mem_fun_ref( &Resistor_lot::print ) );

}

The output is

320 C++ Standard Library Practical Tips

ASCENDING ORDER BY LOT NUMBER

Lot #: 2    Resistance (ohms): 2200   Pieces: 148   Price/100: $54

Lot #: 23   Resistance (ohms): 33     Pieces: 1200  Price/100: $36

Lot #: 201  Resistance (ohms): 27000  Pieces: 442   Price/100: $19

Lot #: 448  Resistance (ohms): 33     Pieces: 2000  Price/100: $34

Lot #: 505  Resistance (ohms): 15000  Pieces: 2450  Price/100: $17 



Suppose your software needs to display information about electrical resistors
stored in a vendor’s warehouse. The resistors are in lots, and you know the lot
number, number of resistors, resistor price and resistance. You’d like to sort on any
of these fields and sort ties on a different field. In addition, you’d like to sort in as-
cending or descending order. The sample program demonstrates how to do all this.

The program starts by declaring a class to represent a resistor lot. Its construc-
tor accepts the preceding information. There are accessor member functions to re-
turn those values and a member function to display the information about the lot.

To make the sorting criteria, the program declares another class designed to
compare resistor lots. An enumeration in the class lets the user specify which value
to sort on. The first field can be lot number, number of pieces, price, or resistance.
The second field must be different than the first or can have the value “none.” In
this case, the order of tied elements is unspecified. The constructor accepts the val-
ues for the two fields and whether to sort in ascending or descending order. The
class also has mutators to change those three values and an accessor to get the sort-
ing direction. 

The class also declares the call operator operator() that sort will use. The op-
erator receives two arguments and passes them on to a private member function for
comparison. That function returns true if its first argument is less than its second
and false otherwise. If the resistor lots are to be sorted in ascending order, the call
operator passes its arguments in the same order to the comparison function. If the
sorting should be descending, the operator passes its arguments in reversed order.
This essentially causes the comparison function make a greater-than decision and
so sort in descending order.

The comparison function begins by getting the values specified by the first sort-
ing field from the passed resistor lots, that is, the lot numbers, number of pieces,

Tips on Algorithms 321

DESCENDING ORDER BY NUMBER OF PIECES

Lot #: 505  Resistance (ohms): 15000  Pieces: 2450  Price/100: $17

Lot #: 448  Resistance (ohms): 33     Pieces: 2000  Price/100: $34

Lot #: 23   Resistance (ohms): 33     Pieces: 1200  Price/100: $36

Lot #: 201  Resistance (ohms): 27000  Pieces: 442   Price/100: $19

Lot #: 2    Resistance (ohms): 2200   Pieces: 148   Price/100: $54

ASCENDING ORDER BY RESISTANCE, THEN PRICE

Lot #: 448  Resistance (ohms): 33     Pieces: 2000  Price/100: $34

Lot #: 23   Resistance (ohms): 33     Pieces: 1200  Price/100: $36

Lot #: 2    Resistance (ohms): 2200   Pieces: 148   Price/100: $54

Lot #: 505  Resistance (ohms): 15000  Pieces: 2450  Price/100: $17

Lot #: 201  Resistance (ohms): 27000  Pieces: 442   Price/100: $19



322 C++ Standard Library Practical Tips

prices, or resistances. The function compares the two values and returns true if the
first is less than the second and false if the second is less than the first. If they are
equal and there’s no sorting on the second field, the function returns false. If there
is sorting on the second field, the function again compares the specified values and re-
turns the result of the comparison. Although the logic in the comparison function and
call operator is a little complicated, if you were to do the equivalent work by writing
one global function for each sorting combination, you would need 32 such functions.

The main part of the program starts by declaring a vector and storing in it the
resistor lots in the warehouse. The code then creates a resistor lot sorter with the de-
fault constructor, passes it to sort, and prints the sorted vector. The code does this
by using for_each and calling the member function of the resistor lot class that dis-
plays the internal information. Tip 48 and Tip 59 give you more details on this
technique. The first section of the output shows that the resistor lots are sorted in
ascending lot number. This display would make it easy for a warehouse employee
who might try to examine lots specified by lot number.

On the other hand, a salesman or warehouse manager might want to sell resis-
tors from the lots that have the most pieces first. To accommodate him, the soft-
ware changes the value of the first field in the sorter class to be the number of
pieces and makes the sorting direction be descending. It sorts and displays the lots
as before. The second section of the output shows the result.

Finally, a customer might want to browse through the available resistors and
would likely do this by listing them by resistance. For resistors with the same resis-
tance, he would like the cheapest ones listed first. The code accomplishes this by
changing the two fields in the sorter, specifying an ascending sort, and then sorting
and displaying the resistor lots. The last part of the output shows the result. Note
that the first two lots have the same resistance, but the cheaper lot is listed first.

SORT WITHOUT COPYING

Applies to: Sort, vector, deque
See also: Tip 49, Tip 59

Quick Solution
bool less_than_iterator( const vector<Big_class>::iterator i,

const vector<Big_class>::iterator j )

{  return *i < *j;   } // Big_class must define operator<

// ...

vector<Big_class> big;

// ...

TIP 57



// make a vector of iterators pointing to the big classes

vector< vector<Big_class>::iterator > iterators( big.size() );

// set the iterators

vector< vector<Big_class>::iterator >::iterator j =

iterators.begin();

vector<Big_class>::iterator i = big.begin();

while( i != big.end() )

*j++ = i++;

// sort iterators

sort( iterators.begin(), iterators.end(), less_than_iterator );

// ...

Detailed Solution

Sorting moves a container’s elements around a lot by using the element’s assign-
ment operator and copy constructor. This implies that you should make those
functions run fast. Actually, because copying is ubiquitous throughout the STL, any
classes you write for use there should make these functions very efficient. Unfortu-
nately, some classes may be difficult to move, even if you write them carefully. For
example, they may simply use a lot of memory for data, which makes their copy
constructors and assignment operators very time-consuming to run.

Here’s a neat technique that alleviates this problem. This technique lets you ac-
cess the elements in sorted order without having to copy or move them at all. The
trick is to make a vector of iterators that point to the elements and then sort the it-
erators, which can be moved about very quickly. The program in Listing 9.11
demonstrates this idea.

LISTING 9.11 Sorting Without Copying

// algorithm_sort_no_copy.cpp

#include <algorithm>

#include <functional>

#include <iostream>

#include <vector>

using namespace std;

class Experiment

{

public:

Experiment( int num_points = 0 );

Tips on Algorithms 323



// num_points - number of data points in experiment

bool operator<( const Experiment& rhs ) const;

// return true if number of points in "this" is less than that in

// rhs, return false otherwise

int num_points() const;

void print() const;

private:

vector<float> data_;

};

inline

Experiment::Experiment( int num_points )

: data_( num_points )   // simulate getting data

{}    // empty

inline

bool Experiment::operator<( const Experiment& rhs ) const

{ return num_points() < rhs.num_points(); }

inline

int Experiment::num_points() const

{  return static_cast<int>( data_.size() ); }

inline

void Experiment::print() const

{  cout << "\nThis experiment has " << num_points()

<< " data points";

}

bool less_than_iterator( const vector<Experiment>::iterator i,

const vector<Experiment>::iterator j );

// evaluate *i < *j

int main( )

{

vector<Experiment> experiments;

const int num_experiments = 5;

experiments.reserve( num_experiments );

// create some experiments

324 C++ Standard Library Practical Tips



experiments.push_back( Experiment( 30000 ) );

experiments.push_back( Experiment( 90000 ) );

experiments.push_back( Experiment( 5300 ) );

experiments.push_back( Experiment( 130000 ) );

experiments.push_back( Experiment( 2500 ) );

cout << "ORDER OF EXPERIMENTS BEFORE SORTING";

for_each( experiments.begin(), experiments.end(),

mem_fun_ref( &Experiment::print ) );

// make a vector of iterators pointing to the experiments

vector< vector<Experiment>::iterator >

iterators( experiments.size() );

vector< vector<Experiment>::iterator >::iterator j

= iterators.begin();

vector<Experiment>::iterator i = experiments.begin();

vector<Experiment>::iterator experiments_end = experiments.end();

while( i != experiments_end )

*j++ = i++;

sort( iterators.begin(), iterators.end(), less_than_iterator );

cout << "\n\nSORTED ITERATORS";

vector< vector<Experiment>::iterator >::iterator iterators_end

= iterators.end();

for( j = iterators.begin(); j != iterators_end; ++j )

(*j)->print();

// verify that order of experiments hasn't changed

cout << "\n\nORDER AFTER SORTING";

for_each( experiments.begin(), experiments.end(),

mem_fun_ref( &Experiment::print ) );

}

bool less_than_iterator( const vector<Experiment>::iterator i,

const vector<Experiment>::iterator j )

{  return *i < *j;   }

The output is

Tips on Algorithms 325



326 C++ Standard Library Practical Tips

The program starts by making a little class to represent an experiment. The
class has a vector that holds data points. In the constructor, the user specifies the
number of points to be gathered during the experiment. The amount of data can be
quite large, so copying and assigning the experiment class could be slow. Nonethe-
less, the user may want to sort the vector, perhaps to analyze the smaller experi-
ments first.

Execution begins by loading experiments of various sizes into a vector. Then
the code uses the for_each STL algorithm (see Tip 59) and the print member func-
tion of the class (see Tip 49) to display the number of points in each element of the
vector. The first section of the output shows the results, including the fact that the
experiments are not ordered by number of data points.

Next, the program creates a vector of iterators that point to the elements in the
vector of experiments. The program calls the STL algorithm sort and passes it a
custom function that determines the ordering. This function accepts two iterators
that point to instances of the Experiment class. The function dereferences the itera-
tors and compares them using the class’s less-than operator, which returns true if
the number of data points in the first instance is less than that in the second in-
stance. Otherwise, it returns false. The middle section of the output shows that the
vector of pointers is now ordered by number of data points.

ORDER OF EXPERIMENTS BEFORE SORTING

This experiment has 30000 data points

This experiment has 90000 data points

This experiment has 5300 data points

This experiment has 130000 data points

This experiment has 2500 data points

SORTED ITERATORS

This experiment has 2500 data points

This experiment has 5300 data points

This experiment has 30000 data points

This experiment has 90000 data points

This experiment has 130000 data points

ORDER AFTER SORTING

This experiment has 30000 data points

This experiment has 90000 data points

This experiment has 5300 data points

This experiment has 130000 data points

This experiment has 2500 data points



Finally, the program displays the elements in the original vector to demonstrate
that their order has not changed.

COPY IF A CONDITION IS MET

Applies to: Standard containers
See also: Tip 5, Tip 7, Tip 16, Tip 50

Quick Solution
vector<int> v1;

// ...

// copy all numbers in v1 greater than 10 to v2

vector<int> v2;

remove_copy_if( v1.begin(), v1.end(), back_inserter( v2 ),

not1( bind2nd( greater<int>(), 10 ) ) );

See the detailed solution for a better, though lengthier, method.

Detailed Solution

Suppose you want to copy all elements that meet a condition from one container to
another. If you look through the STL algorithms, you’ll find a bunch with “copy”
in their names (there are actually 11 of them). You’ll also find quite a few with “if”
in their names. There are also a couple that have “copy_if” as part of their names.
There isn’t, however, a plain, old copy_if. It was accidentally left out of the Stan-
dard Library.

The program in Listing 9.12 shows you two ways of copying elements that satisfy
a criterion. The first uses the STL algorithm remove_copy_if. The second uses a cus-
tom-written function, appropriately called copy_if. If you’re going to be doing this
sort of copying often (and it is a common task),  you should just add copy_if to your
toolbox and use it instead of remove_copy_if. It’s clearer, better, and easier to use. 

LISTING 9.12 Copying Elements if They Meet a Criterion

// algorithm_copy_if.cpp

#include <algorithm>

#include <functional>

#include <vector>

#include "tips.hpp"

Tips on Algorithms 327

TIP 58



328 C++ Standard Library Practical Tips

using namespace std;

template<class InputIterator, class OutputIterator,

class Predicate >

OutputIterator copy_if( InputIterator start, InputIterator stop,

OutputIterator out, Predicate select  )

{

while( start != stop )

{

if( select( *start ) )

*out++ = *start;

++start;

}

return out;

}

int main( )

{

const int numbers = 7;

const int num[numbers] = { -5, 0, 13, 20, 10, 4, -1 };

vector<int> v1( num, num+numbers );

tips::print( v1, "Original numbers" );

// put all numbers less than 10 in v2

vector<int> v2;

copy_if( v1.begin(), v1.end(), back_inserter( v2 ),

bind2nd( less<int>(), 10 ) );

tips::print( v2, "\nNumbers less than 10" );

// put all numbers greater than 10 in v2

v2.resize( v1.size() );

vector<int>::const_iterator v2_copy_end =

remove_copy_if( v1.begin(), v1.end(), v2.begin(),

not1( bind2nd( greater<int>(), 10 ) ) );

cout << "\nNumbers greater than 10: ";

for( vector<int>::const_iterator i = v2.begin(); i != v2_copy_end;

++i )

cout << *i << " ";

}

The output is



Tips on Algorithms 329

The top of the code shows the copy_if function. Like all the STL algorithms,
this is a template. The first two function arguments specify the input range, the
third argument is the start of the output range, and the fourth is the predicate that
decides whether or not an element will be copied. (For more on predicates, see
“Predefined Function Objects” in Chapter 2.) The predicate should have one argu-
ment with the same data type as that in the input range and should return true if
a particular element is to be copied and false otherwise. copy_if returns an output
iterator that marks the end of the elements that have been copied. The program
demonstrates a use of this returned value.

As the beginning of Appendix A and Table A.1 explain, the names of the tem-
plate parameters imply what kinds of data types the parameters should be. For ex-
ample, the first parameter’s name is InputIterator which means that whatever is
passed to the first two arguments of the function must have the capabilities of an
input iterator. This could (obviously) be an input iterator, but it could also be a for-
ward, bidirectional, or random access iterator. Moreover, the input and output ar-
guments of copy_if don’t have to come from a container. You could make input
iterators from an input stream like cin (see Tip 7) to copy only certain user inputs
to an output container. Similarly, you could copy only certain elements of a con-
tainer to the standard output stream, which is very close to what Tip 16 shows.

The code in copy_if that does the work is short and simple. A loop simply goes
through the input range and copies any element that meets the passed criterion to
the output range. That’s it.

The main part of the program starts by loading some numbers into a vector,
using the technique explained by Tip 5. The code then calls copy_if to copy all
numbers less than 10 to the second vector. The code does this with the Standard Li-
brary less functor (see “Predefined Function Objects” in Chapter 2) and the sec-
ond argument frozen at 10 (see Tip 50). Because the code doesn’t know how many
elements the function will copy to the output vector, it creates an empty vector and
uses a back inserter to load the elements into the vector. (“Insert Iterators” in Chap-
ter 2 explains inserters in more detail.) The first line of the output shows the origi-
nal numbers and those less than ten.

The second half of the program shows alternatives to using a back inserter or
copy_if. If you make the output vector large enough to hold the most elements it
could possibly receive, you won’t need a back inserter. For this program, that

Original numbers: -5 0 13 20 10 4 -1 

Numbers less than 10: -5 0 4 -1 

Numbers greater than 10: 13 20 



means the output vector has to be as large as the input vector, so the code calls the
output vector’s member function resize to set the appropriate length. 

The remainder of the program demonstrates another way of copying elements
that meet a condition. This technique uses the STL algorithm remove_copy_if,
which copies elements for which the predicate is not true from the input to the out-
put range. To get remove_copy_if to copy those elements that do make the predicate
true just negate the condition using the STL functor not1 as shown. The iterator
that remove_copy_if returns is one past the last element that it wrote. 

The program displays the second group of found numbers by looping from its
beginning to the ending point that remove_copy_if returned. This will be different
than the actual number of elements in the output vector if remove_copy_if didn’t fill
that container. The last line of the output shows the result.

You might wonder why you can’t just make a copy_if function out of 
remove_copy_if. It would look something like this:

template<class InputIterator, class OutputIterator,

class Predicate >

OutputIterator copy_if( InputIterator in, InputIterator stop,

OutputIterator out, Predicate select  )

{

return remove_copy_if( in, stop, out, not1( select ) );

}

The problem is that not1 only operates on adaptable functions (see “Predefined
Function Objects” in Chapter 2) and the passed predicate may or may not be adapt-
able. A common example of a non-adaptable functor is an ordinary function,
which would prevent the preceding copy_if from even compiling.

OPERATE ON EACH ELEMENT OF A CONTAINER

Applies to: Standard containers, for_each, transform
See also: Tip 11, Tip 15, Tip 28, Tip 30, Tip 45, Tip 46, Tip 50, Tip 54, 

Tip 57, Tip 90, Listing 13.4

Quick Solution
class Athlete

{

public:

// ...

void print() const;

int salary() const;

330 C++ Standard Library Practical Tips

TIP 59 



Tips on Algorithms 331

// ...

};

// ...

vector<Athlete> team;

// ...

// print info about all team members

for_each( team.begin(), team.end(), mem_fun_ref( &Athlete::print ) );

// find team salary

vector<int> v( team.size() );

transform( team.begin(), team.end(), v.begin(), 

mem_fun_ref( &Athlete::salary ) );

cout << "Total team salary is " << accumulate( v.begin(), v.end(), 0 );

Detailed Solution

The STL provides two algorithms that allow you to perform an operation you spec-
ify on each element in a range: for_each and transform. The first operates on every
element of an input range and has the signature

UnaryProcedure

for_each( InputIterator start, InputIterator stop, 

UnaryProcedure procedure )

The second algorithm, transform, operates on one or two input ranges and
puts the result in an output range. transform has two versions, depending on
whether there are one or two input ranges.

OutputIterator

transform( InputIterator start, InputIterator stop, 

OutputIterator startOut, UnaryOperation operation1 )

OutputIterator

transform( InputIterator start1, InputIterator stop1, 

InputIterator start2, OutputIterator startOut, 

BinaryOperation operation2 )

To help you decide which one to use, Table 9.4 compares the two algorithms.
Although Table 9.4 will help you decide which of the two algorithms to use, a

bigger question is whether you should use either at all. As Tip 46 says, if there is a



more specific algorithm available to do the job, use it. If you want to count, use
count. If you want to replace, use replace.

Tip 11, Tip 28, Tip 45, and Tip 50 are examples of using transform. Chapter 7
and Chapter 11 also have many examples of this handy algorithm. Tip 15, Tip 30,
Tip 54, Tip 57, Tip 90, and the program in Listing 9.13 demonstrate for_each.

LISTING 9.13 Operating on Each Element of a Container

// algorithm_for_each.cpp

#include <algorithm>

#include <iostream>

#include <string>

#include <vector>

using namespace std;

class Base_counter

{

public:

Base_counter();

332 C++ Standard Library Practical Tips

for_each transform

One input range only One or two input ranges

Can modify
a

or not modify input values Can modify
b

or not modify input 
values

Has no output range Must write to the output range

Returns a copy of the procedure Returns an iterator marking the end of 
the output range

Argument passed by reference Argument(s) passed by value

Slightly faster because procedure Slightly slower because returns and 
modifies argument directly assigns result of procedure

a If the parameter in the function argument of for_each is passed by reference, the function argument can 
modify it. If it’s passed by value or constant reference, the function argument can only read it.

b transform only passes parameters by value to its function argument. However, it can indirectly modify
an input range by also using it as the output range.

TABLE 9.4 Differences Between for_each and transform



Tips on Algorithms 333

void operator()( char base );

// add base to internal count. base must be A, C, G, T or N

int GC_clamping() const;

// number of consecutive Gs and Cs at end of the sequence

int num_A() const;

int num_C() const;

int num_G() const;

int num_T() const;

int num_unknown() const;

// number of times a particular base is in the sequence

int num_bases() const;

// total number of bases in the sequence

float percent_GC() const;

// percentage of bases that are G or C (zero if no bases)

void print() const;

// display summary of data

private:

int GC_clamping_;

int num_A_;

int num_C_;

int num_G_;

int num_T_;

int num_unknown_;

};

inline

Base_counter::Base_counter()

:  GC_clamping_( 0 ), num_A_( 0 ), num_C_( 0 ), num_G_( 0 ),

num_T_( 0 ), num_unknown_( 0 )

{} // empty

void Base_counter::operator()( char base )

{

if( base == 'A' )

++num_A_;

else if( base == 'C' )

++num_C_;



else if( base == 'G' )

++num_G_;

else if( base == 'T' )

++num_T_;

else

++num_unknown_;

if( base == 'C' || base == 'G' )

GC_clamping_ = 0;

if( base == 'C' || base == 'G' )

++GC_clamping_;

else

GC_clamping_ = 0;

}

inline

int Base_counter::GC_clamping() const

{  return GC_clamping_; }

inline

int Base_counter::num_A() const

{  return num_A_; }

inline

int Base_counter::num_C() const

{  return num_C_; }

inline

int Base_counter::num_G() const

{  return num_G_; }

inline

int Base_counter::num_T() const

{  return num_T_; }

inline

int Base_counter::num_unknown() const

{  return num_unknown_; }

inline

int Base_counter::num_bases() const

{  return num_A() + num_T() + num_C() + num_G() + num_unknown(); }

334 C++ Standard Library Practical Tips



inline

float Base_counter::percent_GC() const

{  return num_bases() == 0 ? 0 :

100.0f * ( num_C()+num_G() ) / num_bases(); }

void Base_counter::print() const

{

cout  << "A bases: " << num_A() << endl

<< "T bases: " << num_T() << endl

<< "G bases: " << num_G() << endl

<< "C bases: " << num_C() << endl

<< "Unknown bases: " << num_unknown() << endl

<< "Total bases: " << num_bases() << endl

<< "Percent GC: " << percent_GC() << endl

<< "GC clamping: " << GC_clamping() << endl;

}

int main( )

{

string bee( "TTTACGCCCGATTCCCAACACGGTCGC" );

Base_counter count = for_each( bee.begin(), bee.end(),

Base_counter() );

cout << "DNA ANALYSIS FOR BEE\n";

count.print();

string zebrafish( "GCTNGTAATGGGGTATACTGATTCAGCGTGGTGTTTCCCC" );

count = for_each( zebrafish.begin(), zebrafish.end(),

Base_counter() );

cout << "\n\nDNA ANALYSIS FOR ZEBRAFISH\n";

count.print();

}

Tips on Algorithms 335

DNA analysis for bee

A bases: 5

T bases: 6

G bases: 5

C bases: 11

Unknown bases: 0

Total bases: 27

Percent GC: 59.2593

GC clamping: 3



The output is

The program demonstrates using for_each in a molecular biology applica-
tion—a simple analysis of DNA. DNA, the blueprint of life, is made up of four dif-
ferent chemicals called bases. They are denoted by A, C, G, and T. Sometimes the
kind of base hasn’t been determined so a fifth symbol, N, is used to represent an un-
known type of base. 

It’s useful to know how many of each kind of base there are in a strand of
DNA. The percentage of the strand made up of Gs and Cs can also be important,
and in some situations, the number of consecutive Gs or Cs at the end of the strand
is of interest. This is called the amount of GC clamping. The idea behind the pro-
gram is to make a class that can keep track of these numbers and use for_each to
pass every base in a strand of DNA to the class so it can accumulate the statistics.

The class has five private variables to record the number of each of the bases it
receives and has a sixth private integer that holds the amount of GC clamping. The
constructor simply initializes all the variables to zero. for_each applies the class’s
call operator, which does two things. First, the call operator increments the counter
corresponding to the base it receives. Second, it increments the GC clamping
counter if the base is a G or a C or sets the counter to 0 for any other base. The re-
sulting value is the number of consecutive G’s and C’s at the end of the sequence.
The class also has seven accessors—five to get the number of times each of the five
bases occurs, one for the total number of bases in the strand, and one for the per-
centage of G’s and C’s. Third, the print member function sends a little report to the
standard output stream.

The main program starts by storing a little snippet of bee DNA in a string (you
can find DNA sequences of many organisms at http://www.ncbi.nlm.nih.gov). Then
it creates a temporary instance of the counting class and passes it as the third argu-
ment to for_each. That algorithm calls the class’s call operator for each element of
the string, that is, for each base in the DNA strand. String iterators aren’t used that
often, but this is a nice application of them. 

When for_each finishes, it returns a copy of the class that was passed to it.
(for_each is the only STL algorithm that does this.) Receiving a copy of the passed

336 C++ Standard Library Practical Tips

DNA analysis for zebrafish

A bases: 6

T bases: 13

G bases: 12

C bases: 8

Unknown bases: 1

Total bases: 40

Percent GC: 50

GC clamping: 4

http://www.ncbi.nlm.nih.gov


Tips on Algorithms 337

class is a very convenient feature because the copy can contain data about the 
sequence the algorithm ran over. That’s the case for the base-counter class in the
program. It now has information about the DNA sequence, which the program dis-
plays by calling the print member function. The result is the first section of the out-
put that follows Listing 9.13.

The program finishes by analyzing DNA from a zebrafish the same way. Note
that the program again creates a temporary instance of the class in the third argu-
ment to for_each. If you didn’t want to create a new instance (for example, if each
instance used a lot of resources) you could just pass it the old instance. However,
you’d have to add a member function that would let you reset all the counters to
zero. Otherwise, the numbers would accumulate with each run and would not re-
flect only the last piece of DNA analyzed. The second half of the output shows the
analysis for the zebrafish.



This page intentionally left blank 



339

Tips on Text Processing10

C
has always been weak in text processing. It manipulates lines of text, or text
strings, through character arrays. Such an array, which this book will call a
C-string, is simply an array of type char terminated by a zero. 

There are two major problems with C-strings. The first is that their size is fixed.
Once you declare or allocate the array, you can’t make it bigger. This is a particu-
larly annoying flaw because text lines vary widely in length. In practice, program-
mers have to do two things to handle this restriction. The first is to make the array
long enough to hold the maximum number of text characters that would ever be
put in it. The second is to constantly verify that text being stored in the array 
doesn’t exceed that maximum.

The second problem is that pesky zero at the end of the array. Its presence is
crucial because all the routines that use C-strings depend on it. For example,
strlen, which computes the length of the string, starts at the beginning of the char-
acter array and counts array elements until it reaches an element that’s zero. Then
the routine stops and returns the count. If the zero is not there, you’ve got a prob-
lem. The routine will continue reading in memory until it comes across a value of
zero that is there by chance or until it tries to access a protected region, at which
point it will crash.

So one problem with the terminating zero is that you have to remember to put
it there and be careful not to overwrite it with a nonzero value. Another problem is
remembering to leave room in the array for the terminating zero. This means that
if the array has n elements, it can only accept n-1 characters because the last element
needs to be zero. Put another way, if the maximum number of characters allowed
in a particular line of text is n, the program must ensure that the text array is n+1
elements long. This needs to be documented carefully and thoroughly and,
well…you know what program documentation is like.

The C++ Standard Library comes to the rescue with a new class called string.
(Let’s refer to this class as a “string.”) First, a string automatically expands to accept
any text given to it. This process is invisible to the programmer—you don’t have to
worry about it. Second, it doesn’t use a terminating zero (or more specifically, its



340 C++ Standard Library Practical Tips

programming interface doesn’t use one), so you don’t have to worry about that 
either.

string is in the standard namespace std. It integrates into C++ as well as a
built-in data type. For example, it operates in streams, has operators such as + and
+=, and generally behaves like a good C++ citizen. 

string is very easy to use and you’ll find it a joy and relief to work with it instead
of C-strings. However, if you’ve been with C-strings for a while, you probably feel
comfortable with the host of string manipulation functions that are available. Many
of these functions have obvious analogies in strings. A number of them can also be
carried out with the STL very easily, but it’s certainly not obvious how. To ease your
transition from C-style strings to C++ strings, this chapter gives you the Standard Li-
brary equivalent of many C-string functions. (Some of them, though common, are
not officially part of the Standard Library.) Table 10.1 lists these functions alphabet-
ically and tells you which tip has the Standard Library equivalent. 

Function Standard Library Description

sprintf Tip 70 Formatted write to a string

sscanf Tip 69 Formatted read from a string

strcat Tip 61 Concatenate two strings

strchr Tip 62 Find first occurrence of a given character

strcmp Tip 65 Lexicographical comparison

strcpy Tip 60 Copy one string to another

strcspn Tip 62 Find first occurrence in one string of 
characters in another string

strdup Tip 60 Duplicate a string

stricmp Tip 67 Case insensitive string comparison

strlen Tip 64 Length of string

strlwr Tip 73 Convert to lower case

strncat Tip 61 Append at most n characters

strncmp Tip 65 Lexicographical comparison of first n
characters of two strings

strncpy Tip 60 Copy at most n characters

strnicmp Tip 67 Case insensitive, lexicographical 
comparison of first n characters

TABLE 10.1 Standard Library Equivalents of C-String Functions



The chapter also has tips on how to convert a C++ string to a C-string and how
to strip leading and trailing whitespace from a string of text.

COPY STRINGS AND SUBSTRINGS

Applies to: String

Quick Solution
string s1, s2;

//...

string s3( s1 ); // copy by construction

s2 = s1;         // copy by assignment

// copy substring of 8 characters starting at index 5

s3 = s1.substr( 5, 8 ); 

Detailed Solution

Table 10.2 shows three ways of copying C-strings and gives the equivalent func-
tionality for C++ strings. The code in Listing 10.1 illustrates these techniques.

Tips on Text Processing 341

Function Standard Library Description

strnset Tip 63 Set the first n characters to a given 
character

strpbrk Tip 62 Find first of a set of characters

strrchr Tip 62 Find last occurrence of a given character

strrev Tip 64 Reverse the characters in a string

strset Tip 63 Set all characters to a given character

strspn Tip 62 Find the first character not in a given set

strstr Tip 62 Find first occurrence of a substring

strtok Tip 75 Tokenize a string

strupr Tip 73 Convert to upper case

TIP 60



342 C++ Standard Library Practical Tips

LISTING 10.1 Copying Strings

// string_copy.cpp

#include <iostream>

#include <string>

using namespace std;

int main( )

{

string s1( "Jupiter Symphony" );

string s1_copy;

// equivalent of strcpy()

s1_copy = s1;

// equivalent of strdup()

string s1_duplicate( s1 );

cout << "String 1:              " << s1

<< "\nCopy of String 1:      " << s1_copy

<< "\nDuplicate of String1:  " << s1_duplicate;

string s2( "Eroica Symphony" );

cout << "\n\nString 2:  " << s2;

// equivalent of strncpy()

s1 = s2.substr( 0, 6 );

cout << "\nCopying the first 6 letters of String 2 "

"to String 1 gives:  " << s1;

}

The output is

Function Member Function Description

strcpy = Copy one string to another

strdup = Duplicate a string

strncpy =, substr Copy at most n characters

TABLE 10.2 Equivalents for Copying Strings



The program starts by declaring an initialized string and an empty string. It
then assigns the first string to the empty one, thus making a copy of the former
string. This is the equivalent of strcpy, and a nicer one at that.

The next line of code shows the equivalent for strdup, which is simply the copy
constructor. This is not exactly the same as strdup because that function 
dynamically allocates memory and returns a pointer to the string. In C, this is use-
ful for providing a copy of a string whose length is not known at compile time.
Since C++ strings can dynamically change their size, having an exact equivalent of
strdup is not very useful. 

strncpy is in C to limit the number of characters moved to the destination
string to prevent that string from overflowing. Again, because C++ strings auto-
matically adjust their size, limiting the number of copied characters is not neces-
sary. The clearest way to replace a string by the first n characters of another string
is to set the former to a substring of the latter. The code for the equivalent of
strncpy shows this. However, you can also use one of the many forms of the string’s
replace member function, specifically

s1.replace( p1, n1, s2, p2, n2 )

This replaces n1 characters of string s1 starting at index p1 with n2 characters of
string s2 starting at index p2. For example, the substr call at the end of the code in
Listing 10.1 would be

s1.replace( 0, s1.length(), s2, 0, 6 );

In other words, replace all of the characters of s1 with the first six characters of s2.

CONCATENATE STRINGS AND SUBSTRINGS

Applies to: Strings

Tips on Text Processing 343

String 1:              Jupiter Symphony

Copy of String 1:      Jupiter Symphony

Duplicate of String1:  Jupiter Symphony

String 2:  Eroica Symphony

Copying the first 6 letters of String 2 to String 1 gives:  Eroica

TIP 61



344 C++ Standard Library Practical Tips

Quick Solution
string s1, s2, s3;

//...

s1 += s3; // strcat

s2 += s3.substr( 0, 10 ); // strncat

Detailed Solution

C-strings provide a function to concatenate or append two strings. They have an-
other function to concatenate an initial group of characters from one string to an-
other. Table 10.3 shows that the C++ equivalents are done with the += operator
using either full strings or substrings. The code in Listing 10.2 illustrates these
methods.

LISTING 10.2 CONCATENATING STRINGS

// string_concatenate.cpp

#include <iostream>

#include <string>

using namespace std;

int main( )

{

string s1( "An apple a day " );

string s1_original( s1 );  // save s1 for later

string s2( "keeps the doctor away" );

cout << "String 1:  " << s1 << endl << "String 2:  " << s2;

// equivalent of strcat()

s1 += s2;

cout << "\nString 2 appended to String 1:  " << s1;

Function Member Function Description

strcat += Concatenate two strings

strncat +=, substr Concatenate at most n characters

TABLE 10.3 Equivalents for Concatenating Strings and Substrings



s1 = s1_original;

cout << "\n\nString 1:  " << s1 << "\nString 2:  " << s2;

// equivalent of strncat()

s1 += s2.substr( 0, 18 );

cout

<< "\nAppending the first 16 letters of "

"String 2 to String 1 gives:\n" << s1;

}

The output is

You can concatenate strings by using the += operator, as the code for the equiv-
alent of strcat shows. You can also use the append member function, but the oper-
ator is common and makes sense, given its interpretation when used with numbers. 

strncat is typically used in C to limit the number of characters moved to the
destination string to prevent that string from overflowing. C++ strings automati-
cally adjust their size, so limiting the number of copied characters is not necessary.
However, the code shows that you can concatenate the first group of letters of a
string by using the += operator as before but on the substring produced by the
string’s substr member function.

SEARCH STRINGS

Applies to: Strings

Quick Solution
string s;

//...

Tips on Text Processing 345

String 1:  An apple a day 

String 2:  keeps the doctor away

String 2 appended to String 1:  An apple a day keeps the doctor away

String 1:  An apple a day 

String 2:  keeps the doctor away

Appending the first 16 letters of String 2 to String 1 gives:

An apple a day keeps the doctor

TIP 62



346 C++ Standard Library Practical Tips

// find first occurrence of a character

string::size_type index = s.find( 'u' ); 

if( index != string::npos )

cout << "\nThe first \"u\" is at index " << index;

else

cout << "\nThere is no \"u\" in the string";

// find last occurrence of a character

index = s.rfind( 'u' );

if( index != string::npos )

cout << "\nThe last \"u\" is at index " << index;

else

cout << "\nThere is no \"u\" in the string";

// find first occurrence of a string

index = s.find( "tub" ); 

// ...

// find last occurrence of a string

index = s.rfind( "tub" ); 

// ...

// find first occurrence of a character from a group of characters

index = s.find_first_of( "aeiou" ); 

//...

// find first occurrence of a character not in a group of characters

index = s.find_first_not_of( "aeiou" ); 

//...

Detailed Solution

There are a number of functions for searching in C-strings. C++ strings have equiv-
alent member functions that are easy to use and have more descriptive names.
Table 10.4 shows the C functions and their C++ equivalents. The program in List-
ing 10.3 demonstrates searching in strings.



LISTING 10.3 Searching for Strings

// string_search.cpp

#include <iostream>

#include <string>

using namespace std;

int main( )

{

string typing( "The quick, brown fox jumps over the lazy dog" );

cout << "String:  " << typing << endl;

// find first occurrence of a character - equivalent of strchr()

string::size_type index = typing.find( 'u' );

if( index != string::npos )

cout << "\nThe first \"u\" is at index " << index;

else

cout << "\nThere is no \"u\" in the string";

// find last occurrence of a character - equivalent of strrchr()

index = typing.rfind( 'u' );

if( index != string::npos )

cout << "\nThe last \"u\" is at index " << index;

else

cout << "\nThere is no \"u\" in the string";

// find first occurrence of a substring - equivalent of strstr()

index = typing.find( "fox" );

Tips on Text Processing 347

Function Member Function Description

strchr find Find first occurrence of a given character

strcspn find_first_of Find first occurrence of characters in 
another string

strpbrk find_first_of Find first of a set of characters

strrchr rfind Find last occurrence of a given character

strspn find_first_not_of Find first character not in a given set

strstr find Find first occurrence of a substring

TABLE 10.4 Equivalents for String Searches



348 C++ Standard Library Practical Tips

if( index != string::npos )

cout << "\n\"fox\" first occurs at index " << index;

else

cout << "\n\"fox\" is not in the string";

// find last occurrence of a substring - no C-string equivalent

index = typing.rfind( "fox" );

if( index != string::npos )

cout << "\n\"fox\" last occurs at index " << index;

else

cout << "\n\"fox\" is not in the string";

// equivalent of strcspn() and strpbrk()

index = typing.find_first_of( "aeiou" );

if( index != string::npos )

cout << "\nThe first lower-case vowel is at index " << index;

else

cout << "\nThere is no lower-case vowel in the string";

// equivalent of strspn()

index = typing.find_first_not_of( "aeiou" );

if( index != string::npos )

cout << "\nThe first letter that is not a lower-case vowel "

"is at index " << index;

else

cout << "\nAll letters in the string are lower-case vowels";

}

The output of this code is

The first search uses the find member function to locate the first occurrence of
a character. This is the equivalent of strchr. If the character is present, find returns

String:  The quick, brown fox jumps over the lazy dog

The first "u" is at index 5

The last "u" is at index 22

"fox" first occurs at index 17

"fox" last occurs at index 17

The first lower-case vowel is at index 2

The first letter that is not a lower-case vowel is at index 0



the zero-based index of the first occurrence of the character. If the character is not
there, find returns string::npos. In general, you should always verify that a search
member function found what it was looking for by making sure the return value is
not string::npos. (In some idioms, though, this is not necessary.)

npos stands for “no position” and is a constant in the string scope. There are
two ways of accessing npos. The first is to use it with the string scope, that is,
string::npos. For example,

string canal( "Panama" );

if( canal.find( 'p' ) != string::npos )

{ //...

Alternatively, you can access npos as a public data member in a string variable,
for example, 

string canal( "Panama" );

if( canal.find( 'p' ) != canal.npos )

{ //...

The next search uses the string member function rfind (reverse find) to get the
index of the last occurrence of a character. This is the equivalent of strrchr. This
and other member functions that look in reverse return normal indexes, that is,
zero-based with the first index being at the start of the string.

The next two searches are the same except that they look for substrings, not
characters. The member function find with a string argument is the equivalent of
strstr. Searching for the last occurrence of a substring is easy with rfind. There is
no C equivalent for this.

strcspn and strpbrk are very similar. strcspn searches in a C-string until it
finds any one of a specified set of characters, then returns the length of the initial
segment that comprises characters that are not in the given set. strpbrk looks for the
first occurrence of any character from a given set and returns a pointer to it. The
find_first_of member function of a string acts similarly by returning the index of
the first occurrence of any of a given group of characters. Finally, strspn returns the
length of the initial segment of the C-string that is made up of characters only from
a given set. Because the find_first_not_of member function returns the index of
the first character not in a given set, these two values are equal.

REPLACE CHARACTERS BY A GIVEN CHARACTER

Applies to: Strings

Tips on Text Processing 349

TIP 63



350 C++ Standard Library Practical Tips

Quick Solution
string s;

//...

// replace the 5 characters starting at index 4 with 10 asterisks

s.replace( 4, 5, 10, '*' );

s.assign( s.length(), '*' ); // replace all characters with asterisks

Detailed Solution

Table 10.5 shows that you can replace all characters in a C-string with one specific
character by using strset. You can do the same thing for just an initial group of
characters with strnset. The program in Listing 10.4 demonstrates how to do both
of these things with C++ strings. 

LISTING 10.4 Replacing Characters in Strings

// string_replace.cpp

#include <iostream>

#include <string>

using namespace std;

int main( )

{

string credit_card( "4578 9906 512 6661" );

cout << "Credit card number: " << credit_card;

// equivalent of strnset()

credit_card.replace( 0, credit_card.length()-4,

credit_card.length()-4, '*' );

cout << "\nSecure display of credit card number: " << credit_card;

Function Member Function Description

strnset replace Set the first n characters to a given 
character

strset replace or assign Set all characters to a given character

TABLE 10.5 Equivalents for Replacing Characters



// equivalent of strset()

credit_card.assign( credit_card.length(), '*' );

cout << "\nMore secure display of credit card number: "

<< credit_card;

}

The output is

The program stores a credit card number as a string and displays the whole
number. (This is a made-up number, so don’t even think of using it.) A more 
secure and commonly used output is to just show the last four digits. The code does
this by substituting an asterisk for all but the last four characters in the credit card
number. It does this by calling one of the many forms of the string’s replace mem-
ber function, namely

replace( index, length, number, c )

where index is the index where the replacements will begin, length is the number
of characters in the string that will be removed and number is the number of occur-
rences of the character c that will be inserted. (You can remove a different amount
than what you put in.) The second line of the output shows the resulting string.

Finally, the assign member function replaces all characters with a given one, in
this case an asterisk. The code could also have used the preceding form of replace,
that is, 

credit_card.replace( 0, credit_card.length(), credit_card.length(), '*' )

The last line of the output shows the result.

REVERSE STRINGS AND GET THEIR LENGTH

Applies to: Strings, reverse

Quick Solution
string s;

//...

Tips on Text Processing 351

Credit card number: 4578 9906 512 6661

Secure display of credit card number: **************6661

More secure display of credit card number: ******************

TIP 64



352 C++ Standard Library Practical Tips

cout << "String has " << s.length() << " characters";

reverse( s.begin(), s.end() ); // reverse characters

Detailed Solution

Finding the number of characters in a string (also called its length or size) is very
common. Not as common is reversing the order of the characters. In either case,
Table 10.6 provides the C++ equivalents, and the program in Listing 10.5 gives ex-
amples of using them. 

LISTING 10.5 Reversing a String and Finding its Length

// string_reverse.cpp

#include <algorithm>

#include <iostream>

#include <string>

using namespace std;

int main( )

{

string adage( "A bird in the hand is worth two in the bush" );

cout << "String: " << adage;

cout << "\nThe string has " << adage.length() << " letters";

// equivalent of strrev()

reverse( adage.begin(), adage.end() );

cout << "\n\nReversed string: " << adage;

cout << "\nThe reversed string has " << adage.length()

<< " letters";

}

The output is

Function Member Function or Algorithm Description

strlen length or size Length of string

strrev reverse Reverse the characters in a 
string

TABLE 10.6 Equivalents for String Reversal and Length



The program declares and initializes a string and prints the number of charac-
ters that it has. It gets this value by calling the member function length. (You can
also use the member function size, which gives the identical result.) The reverse
algorithm reverses the order of the characters. The output shows that the original
and reversed strings still have the same length.

COMPARE STRINGS WITH CASE-SENSITIVITY

Applies to: Strings
See also: Tip 13, Tip 66, Tip 67, Tip 68

Quick Solution
string s1, s2;

//...

if( s1 < s2 ) // case-sensitive comparisons

cout << s1 << " comes before " << s2;

else if( s1 > s2 )

cout << s1 << " comes after " << s2;

else

cout << s1 << " is the same as " << s2;

Detailed Solution

A lexicographical comparison is a fancy way of saying a “dictionary ordering.” If one
string comes before another in the dictionary, the first string is said to be less than
the second. Similarly, if one string comes after another in the dictionary, it is greater
than that string. Tip 13 provides the general definition of lexicographical comparison.

Table 10.7 shows that the function that compares C-strings is strcmp. It per-
forms a lexicographical comparison on two C-strings and returns a negative value
if the first is less than the second, a positive value if the first is greater than the 
second, and zero if they are the same. 

All the comparisons are case-sensitive. This means that the results depend on
whether the letters are in upper- or lower-case. For example, the two strings in the

Tips on Text Processing 353

String: A bird in the hand is worth two in the bush

The string has 43 letters

Reversed string: hsub eht ni owt htrow si dnah eht ni drib A

The reversed string has 43 letters

TIP 65



354 C++ Standard Library Practical Tips

program in Listing 10.6 differ only by one letter—a capital “B” versus a small “b.”
The one with the capital letter is less than the other because in the ASCII character
set, capital letters come before small letters. To learn how to make case-insensitive
comparisons, see Tip 67. For making comparisons on substrings, see Tip 66 and
Tip 68.

LISTING 10.6 Case-Sensitive String Comparisons

// string_case.cpp

#include <iostream>

#include <string>

using namespace std;

int main( )

{

string saying1( "A bird in the hand is worth two in the bush" );

string saying2( "A Bird in the hand is worth two in the bush" );

cout << "USING compare()\n";

// equivalent of strcmp()

int result = saying1.compare( saying2 );

if( result < 0 )

cout << "\"" << saying1 << "\"\nis less than\n\""

<< saying2 << "\"";

else if( result > 0 )

cout << "\"" << saying1 << "\"\nis greater than\n\""

<< saying2 << "\"";

else

cout << "\"" << saying1 << "\"\nis equal to \n\""

<< saying2 << "\"";

// now do again, using < and >

cout << "\n\nUSING < AND >\n";

Function Member Function Description

strcmp compare, <, ==, > Lexicographical comparison

TABLE 10.7 Equivalents for Case-Sensitive String Comparison



// equivalent of strcmp()

if( saying1 < saying2 )

cout << "\"" << saying1 << "\"\nis less than\n\""

<< saying2 << "\"";

else if( saying1 > saying2 )

cout << "\"" << saying1 << "\"\nis greater than\n\""

<< saying2 << "\"";

else

cout << "\"" << saying1 << "\"\nis equal to\n\""

<< saying2 << "\"";

}

The output is

The program creates two strings whose contents differ only by the capitaliza-
tion of one letter (the “B” in “Bird”). The program first finds their order by using
the compare member function. In its simplest form, the function accepts another
string and returns an integer. The meaning is the same as in strcmp—if the value is
less than zero, the string is less than the passed string, and so forth. The first line of
the output shows that the string with the capital “B” is less than the string with the
lowercase “b.”

The second half of the program shows another way of comparing, which is by
using the less-than (<) and greater-than (>) operators. This method is clearer be-
cause the meaning of those operators is obvious, and you don’t have to remember
the significance of any return values, as you do for compare.

The output shows that the results are the same.

COMPARE SUBSTRINGS WITH CASE-SENSITIVITY

Applies to: Strings
See also: Tip 65, Tip 67, Tip 68

Tips on Text Processing 355

USING compare()

"A bird in the hand is worth two in the bush" is greater than

"A Bird in the hand is worth two in the bush"

USING < AND >

"A bird in the hand is worth two in the bush" is greater than

"A Bird in the hand is worth two in the bush"

TIP 66



Quick Solution
string s1, s2;

//...

if( s1.substr( 3, 7 ) < s2.substr( 3, 7 ) )

cout << s1.substr( 3, 7 ) << " comes before " << s2.substr( 3, 7 );

else if( s1.substr( 3, 7 ) > s2.substr( 3, 7 ) )

cout << s1.substr( 3, 7 ) << " comes after " << s2.substr( 3, 7 );

else

cout << s1.substr( 3, 7 ) << " is the same as " << s2.substr( 3, 7 );

Detailed Solution

Tip 65 explained lexicographical comparisons and showed how to do such case-
sensitive comparisons with C-strings and in C++. As Table 10.8 shows, to make a
case-sensitive, lexicographical comparison of the first n characters of two C-strings,
you use strncmp. Like strcmp, it returns a negative value if the first substring is less
than the second, a positive value if the first substring is greater than the second, and
zero if they are the same. 

The code in Listing 10.7 shows two ways of making case-sensitive, lexico-
graphical comparisons of sections of C++ strings. Tip 65 explains how to do the
same thing on whole strings. Tip 67 and Tip 68 provide the case-insensitive equiv-
alents of these kinds of comparisons.

LISTING 10.7 Case-Sensitive Substring Comparison

// string_case_substring.cpp

#include <iostream>

#include <string>

using namespace std;

int main( )

{

string saying1( "A Bird in the hand is worth two in the bush" );

356 C++ Standard Library Practical Tips

Function Member Function Description

strncmp compare, <, ==, >, substr Lexicographical comparison of 
first n characters

TABLE 10.8 Equivalents for Case-Sensitive Comparison of Substrings



string saying2( "A bird in the hand is worth two in the bush" );

cout << "USING compare()\n";

// equivalent of strncmp()

int result = saying1.compare( 0, 6, saying2, 0, 6 );

if( result < 0 )

cout << "\"" << saying1.substr( 0, 6 ) << "\" is less than \""

<< saying2.substr( 0, 6 ) << "\"";

else if( result > 0 )

cout << "\"" << saying1.substr( 0, 6 ) << "\" is greater than \""

<< saying2.substr( 0, 6 ) << "\"";

else

cout << "\"" << saying1.substr( 0, 6 ) << "\" is equal to \""

<< saying2.substr( 0, 6 ) << "\"";

// now do again, using < and >

cout << "\n\nUSING < and >\n";

// equivalent of strncmp()

if( saying1.substr( 0, 6 ) < saying2.substr( 0, 6 ) )

cout << "\"" << saying1.substr( 0, 6 ) << "\" is less than \""

<< saying2.substr( 0, 6 ) << "\"";

else if( saying1.substr( 0, 6 ) > saying2.substr( 0, 6 ) )

cout << "\"" << saying1.substr( 0, 6 ) << "\" is greater than \""

<< saying2.substr( 0, 6 ) << "\"";

else

cout << "\"" << saying1.substr( 0, 6 ) << "\" is equal to \""

<< saying2.substr( 0, 6 ) << "\"";

// generalization of strncmp()

cout << "\n\nCOMPARE SUBSTRINGS OF DIFFERENT LENGTHS AND INDEXES\n";

if( saying1.substr( 2, 11 ) < saying2.substr( 14, 17 ) )

cout << "\"" << saying1.substr( 2, 11 ) << "\" is less than \""

<< saying2.substr( 14, 17 ) << "\"";

else if( saying1.substr( 2, 11 ) > saying2.substr( 14, 17 ) )

cout << "\"" << saying1.substr( 2, 11 )

<< "\" is greater than \"" << saying2.substr( 14, 17 ) << "\"";

else

cout << "\"" << saying1.substr( 2, 11 ) << "\" is equal to \""

<< saying2.substr( 14, 17 ) << "\"";

}

Tips on Text Processing 357



358 C++ Standard Library Practical Tips

The output is

The program starts by declaring two strings whose contents differ by the capi-
talization of two letters. The compare member function of a string then performs a
lexicographical comparison on some initial substrings. The version of compare to
use takes five arguments. The first two are the starting index and length of the sub-
string in the current string. The third argument is the other string in the compari-
son. The fourth and fifth arguments are the starting index and length of the
substring to use from the third argument. 

The program uses starting indexes of zero and lengths that are the same to pro-
vide the equivalent functionality of strncmp. However, compare is clearly more pow-
erful because the indexes can be different and nonzero and the substring lengths
also need not be the same. The output shows that the first substring is less than the
second because the only difference is a capital letter in the first. As Tip 65 explains,
capital letters come before their lowercase equivalents in ASCII text.

The penultimate section of the code shows another way of comparing, which is
by using the less-than (<) and greater-than (>) operators on substrings. This
method is clearer because the meanings of those operators are obvious, and you
don’t have to remember the significance of any return values, as you do for compare.
The substrings are easy to get via the substr member function. Its first argument is
the starting index, and its second is the length. As before, this technique is more
powerful than strncmp because the substrings can have different lengths and don’t
have to start at the beginning of the string. The last section of code and output
demonstrates comparing substrings that start at different indexes and have differ-
ent lengths.

It’s worth noting that substr creates a new string and so is considerably slower than
compare. If speed is not a problem in your application, use substr because it’s clearer.
Where performance is critical use the more complex member function compare.

USING compare()

"A Bird" is less than "A bird"

USING < and >

"A Bird" is less than "A bird"

COMPARE SUBSTRINGS OF DIFFERENT LENGTHS AND INDEXES

"Bird in the" is less than "hand is worth two"



COMPARE STRINGS WITHOUT CASE-SENSITIVITY

Applies to: String, lexicographical_compare, mismatch
See also: Tip 13, Tip 65, Tip 66, Tip 68

Quick Solution

See the detailed solution.

Detailed Solution

Making a lexicographical comparison of two strings is just determining their dictionary
order. Tip 65 shows how easy it is to make a case-sensitive comparison. Doing the same
thing while ignoring case is harder. Table 10.9 shows the STL algorithm that does the
work; the code in Listing 10.8 and the discussion that accompanies it explain how.

LISTING 10.8 Case-Insensitive String Comparison

// string_caseless.cpp

#include <algorithm>

#include <cctype>

#include <iostream>

#include <string>

using namespace std;

// return true if c1 equals c2 (regardless of case), false otherwise

bool equal_to_insensitive( char c1, char c2 )

{

return  tolower( static_cast<unsigned char>( c1 ) )

== tolower( static_cast<unsigned char>( c2 ) );

}

// case-insensitive lexicographical comparison

// return < 0 if s1 < s2, return > 0 if s1 > s2,

// return 0 if s1 == s2

Tips on Text Processing 359

TIP 67

Function Algorithm Description

stricmp lexicographical_compare, mismatch Case-insensitive string 
comparison

TABLE 10.9 Equivalents for Case-Insensitive Comparison of Strings



360 C++ Standard Library Practical Tips

// either string can have any length

int case_insensitive_comparison( const string& s1, const string& s2 )

{

string::const_iterator short_begin, short_end, long_begin, long_end;

// set iterators to the beginning and end of the shorter and longer

// strings

if( s1.length() <= s2.length() )

{

short_begin = s1.begin();

short_end = s1.end();

long_begin = s2.begin();

long_end = s2.end();

}

else

{

short_begin = s2.begin();

short_end = s2.end();

long_begin = s1.begin();

long_end = s1.end();

}

// find the first spot where corresponding characters don't match,

// ignoring case

pair<string::const_iterator,string::const_iterator> spot =

mismatch( short_begin, short_end, long_begin,

equal_to_insensitive );

int result;

// if all characters of shorter string matched corresponding

// characters of longer string...

if( spot.first == short_end )

// if at end of longer string both strings are same length so

// both strings are the same

if( spot.second == long_end )

result = 0; // s1 == s2

// not at end of longer string so shorter string is less than

// longer one

else

result = -1; // s1 < s2



// mismatch in short string - examine characters to decide result

else

{

// convert characters to lower case

int first =

tolower( static_cast<unsigned char>( *spot.first  ) );

int second =

tolower( static_cast<unsigned char>( *spot.second ) );

// result of routine based on case-insensitive character

// comparison

if( first < second )

result = -1;

else if( first > second )

result = 1;

else

result = 0;

}

// if long string was first string passed, result is opposite of

// that computed

if( long_begin == s1.begin() )

result *= -1;

return result;

}

// return true if c1 < c2 (ignoring case), false otherwise

bool less_than_insensitive( char c1, char c2 )

{

return  tolower( static_cast<unsigned char>( c1 ) )

< tolower( static_cast<unsigned char>( c2 ) );

}

int main( )

{

string s1( "Fate casts its baleful eye" );

string s2( "FATE CASTS ITS BALEFUL EYE" );

string s3( "FaTe CaStS iTs BaLeFuL eYe On Ye" );

cout << "COMPARE STRINGS IGNORING CASE\n\n";

// equivalent of stricmp()

int result = case_insensitive_comparison( s1, s2 );

Tips on Text Processing 361



if( result < 0 )

cout << "\"" << s1 << "\" is less than \"" << s2 << "\"";

else if( result > 0 )

cout << "\"" << s1 << "\" is greater than \"" << s2 << "\"";

else

cout << "\"" << s1 << "\" is equal to \"" << s2 << "\"";

result = case_insensitive_comparison( s1, s3 );

if( result < 0 )

cout << "\n\"" << s1 << "\" is less than \"" << s3 << "\"";

else if( result > 0 )

cout << "\n\"" << s1 << "\" is greater than \"" << s3 << "\"";

else

cout << "\n\"" << s1 << "\" is equal to \"" << s3 << "\"";

// case-insensitive determination of less-than

if( s1.length() <= s2.length() )

if( lexicographical_compare( s1.begin(), s1.end(),

s2.begin(), s2.end(), less_than_insensitive ) )

cout << "\n\"" << s1 << "\" is less than \"" << s2 << "\"";

else

cout << "\n\"" << s1 << "\" is not less than \"" << s2 << "\"";

else

if( lexicographical_compare( s2.begin(), s2.end(),

s1.begin(), s1.end(), less_than_insensitive ) )

cout << "\n\"" << s2 << "\" is less than \"" << s1 << "\"";

else

cout << "\n\"" << s2 << "\" is not less than \"" << s1 << "\"";

}

The output is

362 C++ Standard Library Practical Tips

COMPARE STRINGS IGNORING CASE

"Fate casts its baleful eye" is equal to "FATE CASTS ITS BALEFUL EYE"

"Fate casts its baleful eye" is less than "FaTe CaStS iTs BaLeFuL eYe

On Ye"

"Fate casts its baleful eye" is not less than "FATE CASTS ITS BALEFUL

EYE"



Tips on Text Processing 363

The C++ Standard Library does not have a direct equivalent of stricmp, so you
will have to use a custom function. Your initial thought might be to use the compare
member function of strings (as in Tip 65 and Tip 66), but it only does case-sensitive
comparisons. An alternative is to use the STL algorithm mismatch, which accepts a
functor that specifies how each pair of elements should be compared.

The function to write will compare the strings lexicographically, but the actual
case-insensitive comparison of a pair of characters will be done by another custom
function, equal_to_insensitive, shown in the code. It does this by converting each
character to lower case using tolower, which is in <cctype>. tolower takes an int ar-
gument, but the value of the int must be in the range of an unsigned char or have
the special value EOF. Because a char can be signed or unsigned (this depends on
your C++ implementation), the code explicitly casts to unsigned char to ensure
that things work correctly.

Next, the program shows the custom-written function case_insensitive_
comparison, which is the equivalent of stricmp. The routine starts by comparing the
lengths of the two strings and storing the beginning and end iterators of the shorter
string (or the first string if both are the same size) in a pair of local variables. The
routine also stores the beginning and end iterators of the longer string. The func-
tion finds and maintains this information to specify the first range in the STL algo-
rithm mismatch described later. This range must not be bigger than the second
range used by that algorithm.

The next statement uses mismatch to do the bulk of the function’s work. This
STL algorithm in its basic form compares two ranges and returns a pair of iterators
that marks the first place at which corresponding elements are not equal. In a more
general version, the algorithm optionally accepts a predicate and returns a pair of
iterators that point to the first pair of corresponding elements that make the pred-
icate false. The code uses the home-grown function equal_to_insensitive, de-
scribed previously, as the predicate. Using mismatch takes advantage of the
seldom-used beginning and end iterators that a string has.

The function case_insensitive_comparison calls mismatch, which returns two
iterators pointing to the first pair of corresponding elements that are not equal, 
ignoring case. The iterators are stored in a pair data structure that, as Tip 45 ex-
plains, has two public members, first and second. If first is equal to the first
string’s end iterator, mismatch determined that every character in the first range was
equal to (ignoring case) the corresponding element in the second range. However,
the second range could be the same size as the first or could be longer. The code
handles these two cases by examining the second data member of the pair. If it’s
equal to the end of the longer sequence, both ranges are the same length and have
the same corresponding characters, that is, the two strings are the same (ignoring
case). The function returns zero to signal this relationship. If second is not equal to
the end of the second range, that range is longer than the first and so, by the defin-



ition of lexicographical comparison (see Tip 13), the first string is shorter than the
second. The function returns a negative value to report this fact.

If the iterator in first is not equal to the end of the first range, mismatch finds
a pair of corresponding elements that are not equal, even after ignoring their capi-
talization. In this case, the result of comparing the function determines the rela-
tionship of the strings. mismatch converts both corresponding characters to lower
case, compares them, and returns a negative value if the first character is less than
(comes before than) the second, a positive value if the first comes after the second,
or zero if the two are the same.

The results computed to this point in the function assume that the first string
is shorter than or the same length as the second. If this is not true, the actual results
are the opposite of what the routine calculated. The code checks this by seeing if the
beginning iterator of the long string is the same as the beginning iterator of the first
string. If this is true, the first string is actually the longer string, and the code mul-
tiplies the result by negative one to get the correct numbers. The first two compar-
isons in the output show the results of using case_insensitive_comparison to
compare two strings.

Sometimes you may only need to know if one string is lexicographically less
than the other and nothing else. That is, if it’s not less, you don’t care whether it is
greater than or equal to the second string. In this case, you can call the STL 
algorithm lexicographical_compare with the function less_than_insensitive, as
the code shows. Because the second range passed to the algorithm must be at least as large
as the first, the program determines which string is longer and calls lexicographical_
compare with the string ranges in the correct order.

Well, that’s how to compare two strings regardless of their capitalization. If you
want to do the same thing with substrings, see Tip 68. If you want to compare
strings or substrings and account for capitalization, see Tip 65 and Tip 66.

One final note—the technique and code in this tip work on English text but
may not, and most likely won’t, work on words from other languages. Doing case-
insensitive comparisons and sorting in a portable manner, that is, for various lan-
guages, is difficult. See the article by Matt Austern for details [Austern00]. If you
have Scott Meyers’ excellent book Effective STL [Meyers01], it has Austern’s article
in an appendix.

COMPARE SUBSTRINGS WITHOUT CASE-SENSITIVITY

Applies to: Strings, mismatch
See also: Tip 65, Tip 66, Tip 67

364 C++ Standard Library Practical Tips

TIP 68



Tips on Text Processing 365

Quick Solution

See the detailed solution.

Detailed Solution

Tip 67 shows how to compare two whole strings regardless of capitalization. This
tip demonstrates the same thing for substrings. Table 10.10 lists the necessary Stan-
dard Library components, and the code in Listing 10.9 demonstrates how to use
them. The technique is almost the same as that in Tip 67, so see the text there for a
detailed explanation of both programs.

LISTING 10.9 Case-Insensitive Substring Comparison

// string_ caseless_substring.cpp

#include <algorithm>

#include <cctype>

#include <iostream>

#include <string>

using namespace std;

// return true if c1 equals c2 (regardless of case), false otherwise

bool equal_to_insensitive( char c1, char c2 )

{

return  tolower( static_cast<unsigned char>( c1 ) )

== tolower( static_cast<unsigned char>( c2 ) );

}

// case-insensitive lexicographical comparison of substrings

// compare first "length" characters of both strings

// length must be >=0, if greater than a string length

//    entire string is used

// return < 0 if substring of s1 < substring of s2

Function Member Function or Algorithm Description

strnicmp mismatch, substr Case-insensitive,
lexicographical comparison of 
first n characters

TABLE 10.10 Equivalents for Case-Insensitive Comparison of Substrings



366 C++ Standard Library Practical Tips

// return > 0 if substring of s1 > substring of s2

// return 0 if substring of s1 == substring of s2

// either string can have any length

int case_insensitive_comparison( const string& string1,

const string& string2, int length )

{

// make substrings of specified length. If string is shorter, substr

// returns entire string

string s1 = string1.substr( 0, length );

string s2 = string2.substr( 0, length );

string::const_iterator short_begin, short_end, long_begin, long_end;

// set iterators to the beginning and end of the shorter and longer

// strings

if( s1.length() <= s2.length() )

{

short_begin = s1.begin();

short_end = s1.end();

long_begin = s2.begin();

long_end = s2.end();

}

else

{

short_begin = s2.begin();

short_end = s2.end();

long_begin = s1.begin();

long_end = s1.end();

}

// find the first spot where corresponding characters don't match,

// ignoring case

pair<string::const_iterator,string::const_iterator> spot =

mismatch( short_begin, short_end, long_begin,

equal_to_insensitive );

int result;

// if all characters of shorter string matched corresponding

// characters of longer string...

if( spot.first == short_end )

// if at end of longer string both strings are same length so

// both strings are the same



if( spot.second == long_end )

result = 0; // s1 == s2

// not at end of longer string so shorter string is less than

// longer one

else

result = -1; // s1 < s2

// mismatch in short string - examine characters to decide result

else

{

// convert characters to lower case

int first =

tolower( static_cast<unsigned char>( *spot.first  ) );

int second =

tolower( static_cast<unsigned char>( *spot.second ) );

// result of routine based on case-insensitive character

// comparison

if( first < second )

result = -1;

else if( first > second )

result = 1;

else

result = 0;

}

// if long string was first string passed, result is opposite of

// that computed

if( long_begin == s1.begin() )

result *= -1;

return result;

}

int main( )

{

string s1( "Fate casts its baleful eye" );

string s2( "FATE CASTS ITS OMINOUS EYE" );

const int comparisons = 2;

const int lengths[comparisons] = { 10, 16 };

int result;

for( int i = 0; i < comparisons; ++i )

Tips on Text Processing 367



{

cout << "COMPARE (IGNORING CASE) THE FIRST " << lengths[i]

<< " CHARACTERS OF\n\"" << s1 << "\" and \"" << s2 <<

"\"\n     ";

// equivalent of strnicmp()

result = case_insensitive_comparison( s1, s2, lengths[i] );

cout << "\"" << s1.substr( 0, lengths[i] ) << "\" ";

if( result < 0 )

cout << "is less than";

else if( result > 0 )

cout << "is greater than";

else

cout << "is equal to";

cout << " \"" << s2.substr( 0, lengths[i] ) << "\"\n\n";

}

const int s1_index = 1;

const int s2_index = 6;

const int length = 8;

cout << "COMPARE (IGNORING CASE) THE FIRST " << length

<< " CHARACTERS OF\n\"" << s1 << "\" STARTING AT INDEX "

<< s1_index << " AND\n\"" << s2 << "\" STARTING AT INDEX "

<< s2_index << endl;

// compare substrings of same length but different starting indexes

result = case_insensitive_comparison( s1.substr( s1_index ),

s2.substr( s2_index ), length );

cout << "\"" << s1.substr( s1_index, length ) << "\" ";

if( result < 0 )

cout << "is less than";

else if( result > 0 )

cout << "is greater than";

else

cout << "is equal to";

cout << " \"" << s2.substr( s2_index, length ) << “\”” << endl;

}

The output is

368 C++ Standard Library Practical Tips



Tips on Text Processing 369

The code in Listing 10.9 starts with two custom-written functions. The first,
equal_to_insensitive, is identical to that in Tip 67. The second, case_insensitive_
comparison, is almost the same as that in Tip 67, but it has an additional argument
that specifies the length of the substrings to compare. This makes its signature the
same as (or similar to) that of strnicmp.

The code in case_insensitive_comparison starts by extracting the substrings
from the passed strings. It does this by using the string’s member function substr.
That function’s first argument is the starting index of the substring, and its optional
second argument is the number of characters to extract. If this is greater than the
length of the string, substr just uses all of the characters. The remaining code in
case_insensitive_comparison is identical to that in Tip 67, so see the text there for
a detailed explanation of how the routine works.

The first call to case_insensitive_comparison simulates strnicmp, which com-
pares the first n characters of a string without regard to capitalization. The first two
sections of the output show the result of comparing the first 10 characters of each
string and the first 16 characters of each string.

The last section of the code demonstrates comparing two substrings of the
same length but starting at different indexes of the strings. To do this, the program
passes the return from a call to the string member function substr when it is given
the starting index. (There is no length passed, so substr uses the entire string from
the index to the end.) The last section of the output shows the result.

This tip showed how to compare two substrings regardless of their capitaliza-
tion. If you want to do the same thing with strings, see Tip 67. If you want to com-
pare strings or substrings and account for capitalization, see Tip 65 and Tip 66.

COMPARE (IGNORING CASE) THE FIRST 10 CHARACTERS OF

"Fate casts its baleful eye" and "FATE CASTS ITS OMINOUS EYE"

"Fate casts" is equal to "FATE CASTS"

COMPARE (IGNORING CASE) THE FIRST 16 CHARACTERS OF

"Fate casts its baleful eye" and "FATE CASTS ITS OMINOUS EYE"

"Fate casts its b" is less than "FATE CASTS ITS O"

COMPARE (IGNORING CASE) THE FIRST 8 CHARACTERS OF

"Fate casts its baleful eye" STARTING AT INDEX 1 AND

"FATE CASTS ITS OMINOUS EYE" STARTING AT INDEX 6

"ate cast" is greater than "ASTS ITS"



370 C++ Standard Library Practical Tips

READ FORMATTED STRINGS

Applies to: String, istringstream
See also: Tip 70

Quick Solution
string race( "800 Lubcek 2 10.56" );

// make an input string stream

istringstream information( race );

string runner;

int distance, minutes;

float seconds;

// read formatted string

information >> distance >> runner >> minutes >> seconds;

cout << runner << " won the " << distance << " meter run in " << minutes

<< " minutes and " << seconds << " seconds";

Detailed Solution

To read from a formatted C-string, you use sscanf. This function uses format spec-
ifiers, which have a number of drawbacks:

You need to remember format specifiers, such as %d, %u, and %g.
You have to make sure to have the same number of arguments as format spec-
ifiers.
You have to make sure the arguments are in the right order. 
It’s difficult to control how many characters are written to the output string,
making it easy to overflow the string. 

In addition, the arguments to sscanf are pointers, a fact that beginning pro-
grammers often forget.

C++ strings and string streams provide an easier way of reading formatted text.
You simply make an input string stream from the string you want to read and then
read it as if you were reading from cin. You can even use this technique to read 
values from a line in an input file stream. Table 10.11 shows the Standard Library
component you need, and the program in Listing 10.10 demonstrates the procedure.

TIP 69



LISTING 10.10 Reading Formatted Strings

// string_formatted_read.cpp

#include <iomanip>

#include <iostream>

#include <sstream>

#include <string>

using namespace std;

int main( )

{

// start with a formatted string that you want to read

string person( "Steinberg Saul 62 4 7" );

// make an input string stream

istringstream information( person );

string first_name, last_name;

int age, num_kids, num_grandkids;

cout << "READ FROM STRING STREAM\n";

information >> last_name >> first_name >> age >> num_kids

>> num_grandkids;

cout << first_name << " " << last_name << " is " << age

<< " and has " << num_kids << " kids and " << num_grandkids

<< " grandchildren";

cout <<

"\n\nTRY TO READ THREE NUMBERS FROM A STREAM WITH TWO NUMBERS\n";

information.str( "123 456" );

int num1, num2, num3;

information >> num1 >> num2 >> num3;

if( information )

cout << "The three numbers are: " << num1 << " " << num2

<< " " << num3;

Tips on Text Processing 371

Function Standard Library Component Description

sscanf istringstream Formatted read from string

TABLE 10.11 Equivalent for Reading Formatted Strings



372 C++ Standard Library Practical Tips

else

cout << "Couldn't read three numbers";

cout << "\n\nCLEAR STREAM, THEN READ TWO NUMBERS\n";

information.clear();

information >> num1 >> num2;

if( information )

cout << "The two numbers are: " << num1 << " " << num2;

else

cout << "Couldn't read two numbers";

}

The output is

The code provides an example of a formatted string, one that has a last name,
first name, age, and two other numbers. First, the program creates an input string
stream by passing the string to the constructor as shown. Then the program reads
from the stream by using the extraction operator (>>), exactly as it would read from
cin. The first two lines of output show the result.

A more sophisticated program would verify that the reading succeeded. It can
do this by checking the status of the stream after reading, as the second section of
the program demonstrates. The code stores the textual representation of two num-
bers in the input string stream by calling the stream’s str member function. This
overwrites the previous contents of the stream. The program then tries to read
three numbers from a stream that has only two. It checks the result of reading by
testing the stream as if it were a Boolean. If the result is true, the read was success-
ful. If it is false, there is an error and you must clear the stream’s state as shown be-
fore reading from it again.

If you’re reading formatted strings, you’re probably interested in writing them,
too. Tip 70 tells you all about that.

READ FROM STRING STREAM

Saul Steinberg is 62 and has 4 kids and 7 grandchildren

TRY TO READ THREE NUMBERS FROM A STREAM WITH TWO NUMBERS

Couldn't read three numbers

CLEAR STREAM, THEN READ TWO NUMBERS

The two numbers are: 123 456



WRITE FORMATTED STRINGS

Applies to: Strings, ostringstream
See also: Tip 69

Quick Solution
int port = 10;

int value = 0X24AEF;

string message( "Incomplete packet" );

ostringstream out;

// make a formatted string

out << "Error - " << message << "   Port - " << port << "   Value - "

<< hex << uppercase << showbase << value;

cout << out.str(); // simulate writing to message box

Detailed Solution

Creating formatted strings of text is not unusual. One common use is in error re-
porting. For example, a program might want to print information about an error
into a string and then pass that string to another module to report the error. It
might do this by logging the error string in a file or displaying it in a GUI dialog
box.

To create a formatted C-string, you call sprintf. For example, this code

char text[100];

const int num_aliens = 20;

const char first_name[] = "John";

sprintf( text, "In the movie, all %d aliens were named \"%s\".",

num_aliens, first_name );

produces the output

In the movie, all 20 aliens were named "John"

However, sprintf has several drawbacks. First, you have to make sure that you
have the same number of arguments as format specifiers. Then you have to make sure
the arguments are in the right order. Second, you need to remember all those format
specifiers, such as %d, %u, and %g. And finally, it’s difficult to control how many char-
acters are written to the output string. It’s easy to make the string overflow.

Tips on Text Processing 373

TIP 70



374 C++ Standard Library Practical Tips

C++ strings and string streams provide an easier way of writing formatted
text—you simply insert variables into an output stream. Although this is really a
string output stream, the method of using it is the same as writing to cout. Data
types know how to write themselves to streams, so there’s no need for format spec-
ifiers that denote the data type. You can still control precision, width, and so on by
using stream manipulators.

Table 10.12 tells what you need from the Standard Library to write formatted
strings. The program in Listing 10.11 provides an example.

LISTING 10.11 Writing Formatted Strings

// string_formatted_write.cpp

#include <iomanip>

#include <iostream>

#include <sstream>

#include <string>

using namespace std;

// primitive GUI display

void display_error( const string& message );

int main( )

{

// simulate an error

const int error_number = 37;

const int chip_number = 4;

const char error_message[] = "Unable to read from custom chip ";

ostringstream out;

// make the error message

out << "Error number " << error_number << ": " << error_message

<< chip_number;

// send it to the GUI for display

Function Standard Library Component Description

sprintf ostringstream Formatted write to string

TABLE 10.12 Equivalent for Writing Formatted Strings



display_error( out.str() );

// display just the string

cout << "FIRST TIME WRITING TO STREAM\n" << out.str() << endl;

// write to stream

out << "\nError number " << (error_number+2) << ": "

<< error_message << (chip_number+2);

cout << "\nSECOND TIME WRITING TO STREAM\n" << out.str() << endl;

// erase stream and write error message

out.str( "" );

out << "\nError number " << (error_number+2) << ": "

<< error_message << (chip_number+2);

cout << "\nERASE AND THEN WRITE TO STREAM" << out.str() << endl;

}

const string::size_type max_length = 60;

void display_error( const string& message )

{

string::size_type length = min( max_length, message.length() );

cout << setfill( '*' ) << setw( length+4 ) << '*' << endl

<< '*' << setfill( ' ' ) << setw( length+3 ) << '*' << endl

<< "* " << message.substr( 0, length+3 ) << " *" << endl

<< '*' << setw( length+3 ) << '*' << endl

<< setfill( '*' ) << setw( length+4 ) << '*' << endl << endl;

}

The output is

Tips on Text Processing 375

******************************************************

*                                                    *

* Error number 37: Unable to read from custom chip 4 *

*                                                    *

******************************************************

FIRST TIME WRITING TO STREAM

Error number 37: Unable to read from custom chip 4

SECOND TIME WRITING TO STREAM

Error number 37: Unable to read from custom chip 4

Error number 39: Unable to read from custom chip 6



376 C++ Standard Library Practical Tips

The first insertion into the output string stream shows how some numbers and
text might be combined into a simple error message. The next line shows how to
use the str member function of the stream to get a copy of its internal string. In this
example, display_error simulates a GUI error. Note that the code declares the type
of the constant variable max_length to be string::size_type. This is because min is
a template with both arguments the same data type. If the two arguments were dif-
ferent, for example, int and std::string::size_type, the compiler would produce
an error. This happened on two of the compilers the code was tested on. However,
a third compiler was set up so that if the two arguments were different the compiler
called a macro form of min. The macro accepted different data types so the compiler
produced no error.

After displaying the error, the code prints the current contents of the string as
a line of output and then writes to the stream again, using different numbers to dis-
tinguish the two writes. The output is surprising—both the first and second strings
are still in the stream. That’s a point to remember—repeated writes to an output
string stream are concatenated.

To erase the contents of the stream, call its str member function with an empty
string literal as shown. (The stream’s clear member function clears error flags, not
the contents of the stream.) Then write your line to the stream and it will be the
only text present, as the output shows.

GET A C STRING FROM A C++ STRING

Applies to: String

Quick Solution
void print_title( const char* title );

// ...

string book_title( "The C++ Standard Library: Practical Tips" );

print_title( book_title.c_str() );

ERASE AND THEN WRITE TO STREAM

Error number 39: Unable to read from custom chip 6

TIP 71



Detailed Solution

C++ strings are more powerful, easier to use, and more fun than C-strings. How-
ever, sometimes, especially for compatibility with old code, you need to use a 
C-string. Can you have your cake and eat it too?

The answer is, “Yes.” You can get a C-string from a string, or more precisely,
you can get a const pointer to a C-string. Do this by using the c_str member func-
tion of a string. For example, suppose for some crazy reason you wanted to use the
old-fashioned printf function with a string. The program in Listing 10.12 shows
how you could do it.

LISTING 10.12 Get a C-Style String from a C++ String

// string_c_str.cpp

#include <cstdio>

#include <string>

using namespace std;

int main( )

{

string boss( "Mr. Big" );

// printf takes a const char* argument, so use c_str()

printf( "%s is an important man.\n\n", boss.c_str() );

// strupr() takes a char* argument, so make a copy first

char man[50];

strcpy( man, boss.c_str() );

strupr( man );

printf( "A big man should have big letters: %s\n", man );

}

The output is

The call to printf illustrates the use of a C++ string’s c_str member function.
Actually, many of the C-style string manipulation functions take constant pointers
to string arrays, as printf does. Some, however, such as strlwr, strupr and strtok,

Tips on Text Processing 377

Mr. Big is an important man.

A big man should have big letters: MR. BIG



378 C++ Standard Library Practical Tips

change the string argument and so take nonconstant pointers. You can’t get such a
beast directly from a string. Instead, copy the string into a C-style string array,
modify it, and then print the result, as in this tip’s code.

STRIP WHITESPACE

Applies to: String, find_if
See also: Tip 15, Tip 47, Tip 49

Quick Solution

See detailed solution.

Detailed Solution

Whitespace is a sequence of characters that prints blank on paper, such as spaces,
tabs, and carriage returns. It’s often useful to be able to remove any whitespace that
occurs at the beginning and end of a line of text. For example, in input files con-
taining data, if the first character in the line is a particular character, such as a per-
cent sign or a pound sign, the program might treat that line as a comment and
ignore it. However, the person who created the data file may have accidentally put
a space in front of the comment character. In this case, if your program checks only
the first character of the line, it will not detect the initial comment character, so you
need to remove any leading whitespace.

Another use for stripping whitespace is when you are counting the number of
characters in a line. You don’t want to count any leading or trailing whitespace, so
you need to remove it. Of course, you would still keep any whitespace between 
alphanumeric characters, for example, spaces between words. 

The code in Listing 10.13 shows you two ways of removing leading and trailing
whitespace. Both methods assume the line is stored in a string. The first technique
relies on the interesting fact that strings have iterators that can be used in STL 
algorithms.

LISTING 10.13 Stripping Whitespace in Strings

// string_whitespace.cpp

#include <algorithm>

#include <cctype>

#include <functional>

#include <iostream>

#include <string>

TIP 72



using namespace std;

void show_stripped( string& s );

void strip_whitespace1( string& s );

void strip_whitespace2( string& s );

int main( )

{

string front_space( "  Space in front" );

show_stripped( front_space );

string back_space( "Space in back\t\t\t " );

show_stripped( back_space );

string front_and_back_space( "  Space in front and back\t\t" );

show_stripped( front_and_back_space );

string no_space( "ABCDEFGHIJKLMNOPQRSTUVWXYZ" );

show_stripped( no_space );

string all_space( "  \n\n\t\t" );

show_stripped( all_space );

}

void strip_whitespace1( string& s )

{

// find the first character that is not whitespace

string::iterator first =

find_if( s.begin(), s.end(), not1( ptr_fun( isspace ) ) );

// erase from the beginning to just before that character

s.erase( s.begin(), first );

// find the last character that is not whitespace

string::reverse_iterator last =

find_if( s.rbegin(), s.rend(), not1( ptr_fun( isspace ) ) );

// erase from after that character to the end

s.erase( last.base(), s.end() );

}

void show_stripped( string& s )

{

cout << "\n\"" << s <<  "\" has " << s.length() << " characters\n";

Tips on Text Processing 379



strip_whitespace1( s );

cout << "After stripping, \"" << s <<  "\" has "

<< s.length() << " characters\n";

}

void strip_whitespace2( string& s )

{

const char whitespace[] = " \n\r\t\v";

string::size_type spot = s.find_first_not_of( whitespace );

// if it's all whitespace, delete all characters and return

if( spot == string::npos )

{

s.erase();

return;

}

// if there's leading whitespace, delete it

else if( spot != 0 )

s.erase( 0, spot );

spot = s.find_last_not_of( whitespace );

if( spot != s.length()-1 )

s.erase( spot+1 );   // erase to end of string

}

The output is

380 C++ Standard Library Practical Tips

"  Space in front" has 16 characters

After stripping, "Space in front" has 14 characters

"Space in back             " has 17 characters

After stripping, "Space in back" has 13 characters

"  Space in front and back        " has 27 characters

After stripping, "Space in front and back" has 23 characters

"ABCDEFGHIJKLMNOPQRSTUVWXYZ" has 26 characters

After stripping, "ABCDEFGHIJKLMNOPQRSTUVWXYZ" has 26 characters

"          " has 6 characters

After stripping, "" has 0 characters



The first line of the function strip_whitespace1 uses the find_if algorithm to
start at the beginning of the string and look at each character until the algorithm
finds one that is not a whitespace. The third argument of the algorithm determines
whether a character is whitespace. isspace is in the header <cctype> and returns true
(not equal to zero) if its argument is a space, tab, carriage return, newline, vertical
tab, formfeed, or similar character. In essence, isspace defines what whitespace is.

not1 is an adaptor functor that returns the logical negation of the output of 
isspace in order to find the first character that is not whitespace. ptr_fun is an
adaptor that lets you use not1 with a function, in this case, isspace. (See “Functors”
in Chapter 2 or Tip 47 and Tip 49 for more information about using functions and
adaptors in the STL algorithms.) The erase member function of the string removes
all characters from the beginning of the string to just before the first nonwhitespace
character. In other words, it erases the leading whitespace. If the entire line is white-
space, find_if returns the end iterator for the string, which makes erase delete all
the characters. On the other hand, if there is no leading whitespace, find_if returns
the beginning iterator. This makes the range passed to erase be empty, which re-
sponds by doing nothing.

The next occurrence of find_if does the same thing as the first, but it uses 
reverse iterators (see Tip 15 and “Reverse Iterators” in Chapter 2). They cause the
algorithm to start at the end of the string and search towards the beginning for the
first character that is not whitespace. The code then erases from after the last 
nonwhitespace character to the end of the string. Because string’s erase member
function takes a normal (not a reverse) iterator, the program uses the base
member function of the reverse iterator to make the necessary conversion. “Reverse
Iterators” in Chapter 2 discusses the conversion between forward and reverse iter-
ators in more detail.

The function show_stripped is a simple test function that prints its string argu-
ment before and after stripping. The code calls this function for various strings, illus-
trating that the function that strips whitespace works for strings with whitespace that
is leading, trailing, leading and trailing, or nonexistent. It also shows that a string that
is all whitespace (such as a blank line in a file) has all of its characters removed.

An alternative to using the find_if algorithm is to perform the work using
only member functions that belong to the string. The function strip_whitespace2
in the code of Listing 10.13 shows how. One salient difference is in the first line,
which defines what characters constitute whitespace, instead of using the definition
in isspace as before. Although a custom-written definition is a little more work, it
is also more flexible because it can precisely specify which characters constitute
whitespace. The drawback, though, is that it is less portable—isspace will denote
the whitespace on any system.

The second line of the function finds the first character in the string that is not
whitespace. If there is no such character, the string is all whitespace (or empty) and

Tips on Text Processing 381



the call of the erase member function gets rid of all characters. There’s nothing left
to do, so the function returns. If the code did find a character that is not whitespace,
it deletes all characters up to that one. Note that in that call of erase, the first argu-
ment is the starting position and the second is the number of characters to erase.

Finally, the call to find_last_not_of returns the position of the last character
that is not whitespace and the subsequent code deletes all characters after that. A
nonwhitespace character must exist or the function would have returned already.
The output of strip_whitespace2 is the same as that for strip_whitespace1.

CONVERT TO UPPER OR LOWER CASE

Applies to: Strings, transform
See also: Tip 67, Tip 81

Quick Solution

See detailed solution.

Detailed Solution

Table 10.13 lists two handy functions that many C-strings come with for setting all
letters to upper- or lowercase. Unfortunately, C++ strings don’t have such a direct
way of letting you do this. Actually, the topic of converting case is much more dif-
ficult than it appears and is still widely discussed in the C++ newsgroups. The pro-
gram in Listing 10.14 shows a fairly easy way of changing case.

LISTING 10.14 Changing Case in Strings

// string_capitalization.cpp

#include <algorithm>

#include <cctype>

#include <iostream>

#include <string>

382 C++ Standard Library Practical Tips

TIP 73

Function Algorithm Description

strlwr transform Convert to lower case

strupr transform Convert to upper case

TABLE 10.13 Equivalents for Converting Case



using namespace std;

inline

char my_tolower( char c )

{  return

static_cast<char>( tolower( static_cast<unsigned char>( c ) ) );

}

inline

char my_toupper( char c )

{  return

static_cast<char>( toupper( static_cast<unsigned char>( c ) ) );

}

int main( )

{

string book( "The C++ Programming Language, 3rd Edition" );

cout << "String:\t\t" << book << endl << endl;

// equivalent of strupr()

transform( book.begin(), book.end(), book.begin(), my_toupper );

cout << "Big letters:\t" << book << endl << endl;

// equivalent of strlwr()

transform( book.begin(), book.end(), book.begin(), my_tolower );

cout << "Small letters:\t" << book;

}

The output is

The code in Listing 10.14 is another example of using the iterators in a string.
The basic idea is to have the STL algorithm transform pass each character of the
string to either toupper or tolower, which sets its case. There are some nuances,
though. For example, both toupper and tolower, which are part of the C++ 

Tips on Text Processing 383

String: The C++ Programming Language, 3rd Edition

Big letters: THE C++ PROGRAMMING LANGUAGE, 3RD EDITION

Small letters: the c++ programming language, 3rd edition



Standard Library, expect their argument to be in the range of an unsigned char.
However, the char data type can be signed or unsigned, depending on the imple-
mentation of the compiler. Thus, to ensure that the char elements of the string have
the correct type, you should cast them to an unsigned char before passing them to
toupper or tolower. This is what the custom functions my_toupper and my_tolower

do. They also explicitly convert their return values back to char.
The way the program actually works is to use transform, but with the custom

functions as the function argument. transform passes each input character to its
conversion function and then stores the returned character in the output container.
In this case, the input and output containers are the same, which is how the input
string gets its capitalization changed.

For another example of transform, see Tip 81. As Tip 67 notes, this technique
won’t work for many languages other than English.

EXTRACT WORDS DELIMITED BY WHITESPACE

Applies to: String, copy
See also: Tip 7, Tip 75

Quick Solution
string preface;

// ...

istringstream stream( preface );

// make a vector with each word in the preface

vector< string > words( (istream_iterator<string>( stream )),

istream_iterator<string>() );

Detailed Solution

Often, it’s useful to be able to extract words from a string. A subsequent activity
might be to count the number of words, find how many unique words there are, or
sort the words. The program in Listing 10.15 shows a quick way of getting words
that are separated by whitespace. The “words” could also include numerals and
punctuation—actually, any symbols that are not whitespace. (If you want to extract
words that are between characters that aren’t whitespace, see Tip 75.)

384 C++ Standard Library Practical Tips

TIP 74



LISTING 10.15 Extracting Words in Strings Delimited by Whitespace

// string_extract_words.cpp

#include <iostream>

#include <iterator>

#include <sstream>

#include <string>

#include <vector>

#include "tips.hpp"

using namespace std;

int main( )

{

string text( "How much wood would a woodchuck chuck?" );

istringstream stream( text );

// make a vector with each word of the text

vector< string > words( (istream_iterator<string>( stream )),

istream_iterator<string>() );

// confirm by writing to output

cout << "There are " << words.size() << " words in \"" << text

<< "\"\n\nTHE WORDS ARE\n";

tips::print( words, 0, "\n" );

}

The output is

Tips on Text Processing 385

Function Component Description

strtok string Tokenize text

TABLE 10.14 Equivalent for Tokenizing



386 C++ Standard Library Practical Tips

After declaring a string variable, the code declares an input string stream and
initializes it to the string that’s stored in the string variable. Next, the code declares
a vector using the form of the constructor that accepts a range. The code gets iter-
ators from the range by making an input stream iterator (istream_iterator) from
the input string stream. (See “Stream Iterators” in Chapter 2 for more information
about the stream iterator adaptors.) Tip 7 does the same thing with the standard
input stream instead of an input string stream. That tip explains the details of the
technique, including the odd-looking but necessary parentheses around the first ar-
gument in the vector’s constructor.

When the constructor reads from the input iterator, istream_iterator<string>
translates this to a call to the input operator >>. This skips leading whitespace and reads
characters until it finds more whitespace or gets to the end of the stream. In other
words, it reads words and stores each one as an element in the array. The output shows
the words and demonstrates that the size of the vector provides a word count.

EXTRACT TOKENS THAT ARE BETWEEN DELIMITERS

Applies to: Strings
See also: Tip 74

Quick Solution

See detailed solution.

Detailed Solution

Tip 74 illustrates a quick method of finding all the words in a text string. Although
the example uses words of English, the “words” could include numbers, such as in
a street address. However, a limitation of the technique is that the “words” be 
separated only by whitespace. Sometimes you have other characters that form the

There are 7 words in "How much wood would a woodchuck chuck?"

THE WORDS ARE

How

much

wood

would

a

woodchuck

chuck?

TIP 75



separation. One example is the group “/”, “:”, and “.” in file names or URL ad-
dresses. Another example is a type of personal information in the United States
called the Social Security number. It always has the form xxx-xx-xxx, where the x’s
are digits and the delimiter is the hyphen. This tip provides a generalization of the
method in Tip 74 that will let you handle these cases.

The process of finding groups from one set of characters that are separated by
characters from another set is called tokenizing. The groups of interest, the “words”
in Tip 74, are known as tokens. The characters separating them are called delimiters
or separators. C provides the function strtok that accepts text and any set of 
delimiters and tokenizes the text. Although powerful, it is clumsy to use.

C++ does not have an equivalent of strtok. However, the code in Listing 10.16
demonstrates a function (tokenize) that does the same thing and is easier to use. 

LISTING 10.16 Tokenizing Strings

// string_tokenize.cpp

#include <algorithm>

#include <iostream>

#include <iterator>

#include <string>

#include <vector>

#include "tips.hpp"

using namespace std;

vector<string> tokenize( const string& text, const char* delimiters );

int main( )

{

const char file_delimiters[] = ":\\.";

string file( "c:\\greg\\book\\code\\string_tokenize.cpp" );

// find the parts of the file name

vector<string> tokens = tokenize( file, file_delimiters );

// display the tokens

cout << "TOKENS IN " << file << endl;

tips::print( tokens );

// try a file with no delimiters

file = "data";

Tips on Text Processing 387



tokens = tokenize( file, file_delimiters );

cout << "\nTOKENS IN " << file << endl;

tips::print( tokens );

// try a file that's all delimiters

file = "..";

tokens = tokenize( file, file_delimiters );

cout << "\nTOKENS IN " << file << endl;

tips::print( tokens );

// try different delimiters by finding the numbers

// in a Social Security number

string social_security( "431-02-9495" );

tokens = tokenize( social_security, "-" );

cout << "\nTOKENS IN " << social_security << endl;

tips::print( tokens );

}

vector<string> tokenize( const string& text, const char* delimiters )

{

vector<string> tokens;

// can't use NULL pointer in find_first_of

if( delimiters == 0   )

return tokens;

string::size_type start = 0;  // beginning index of token

string::size_type finish;     // ending index of token

while( true )

{

// find the next character that is not a delimiter

start = text.find_first_not_of( delimiters, start );

// if there is a character that is not a delimiter...

if( start != string::npos )

{

// find the next character after it that is a delimiter

finish = text.find_first_of( delimiters, start );

// if there is such a delimiter, the token is all the

// characters from the starting character to just before

// the delimiter

if( finish != string::npos )

{

tokens.push_back( text.substr( start, finish-start ) );

388 C++ Standard Library Practical Tips



start = finish;   // use finish, not finish+1

}

// if there is not such a delimiter, the token is all the

// characters from the starting character to the end of the

// string. Bail out because there's no more text to look at

else

{

tokens.push_back( text.substr( start,

text.length()-start ) );

break;

}

}

// all remaining characters are delimiters

else

break;

}

return tokens;

}

The output is

Tokenizing is done by the custom function tokenize. Its algorithm is as follows:

Find the first token character and the first delimiter after that and take the
token characters in between to be the first token.
Find the first token character after the first delimiter and the first delimiter after
that and take the token characters in between to be the next token.
Keep doing this until there are no more delimiters.

Tips on Text Processing 389

TOKENS IN c:\greg\book\code\string_tokenize.cpp

c greg book code string_tokenize cpp 

TOKENS IN data

data

TOKENS IN ..

TOKENS IN 431-02-9495

431 02 9495



390 C++ Standard Library Practical Tips

The function starts out by verifying that the pointer delimiters is not NULL
because find_first_of and find_first_not_of won’t accept a NULL pointer. Then
the function carries out the algorithm by repeatedly finding the index of the first
character that is not a delimiter, that is, is a token character, finding the index of the
first delimiter after that, and putting the substring in between in the output vector.
Once the function has stored the substring, it stores the delimiter index as the new
index to start the token search from. It might seem that the search should start one
character later (because the delimiter is obviously not a token character), but if the
string ends with a single delimiter, there is no subsequent character at all.

The first part of the main program demonstrates the use of tokenize in finding
the parts of a file specification, such as the drive, the folders, the file name, and the
extension. It uses the colon, backslash, and period as the delimiters. The output
shows the results for a typical file specification in a Windows operating system, for
a file specification with no delimiters and for one that’s all delimiters.

The last part of the program is an example of extracting numbers separated by
hyphens, as would be found in a Social Security number. In this case, the delimiters
are just one character—the hyphen.



391

Tips on Numerical
Processing

11

T
his chapter shows you how to use the C++ Standard Library for numerical
processing, illustrates some common computations, such as calculating sta-
tistics, and demonstrates things you may not have heard of, such as com-

puting the dot product of two vectors. The examples illustrate how some of the less
common STL algorithms and capabilities are useful in numerical processing. Here
are some of the things you’ll learn:

How to perform arithmetic on numbers in containers
How to make sequences of consecutive or random numbers
How to evaluate a one- or two-dimensional function
How to compute statistics of data, including the minimum, maximum, mean,
median, mode, variance, and percentiles
How to work with complex numbers
How to read and write a number in hexadecimal, octal, or binary format
How to display leading or trailing zeros and a thousands’ separator
How to easily read a data set from or write one to a file

The techniques here are all practical and useful. However, they are not neces-
sarily good for serious numerical work in which you need the utmost speed and
must carefully control the accuracy of the computations. If this interests you, delve
into the numerical-computation literature, which is extensive and sometimes quite
arcane. One good book on the subject is Numerical Recipes in C++ [Press02], which
covers a lot of material and is actually fun to read. 

PERFORM ARITHMETIC ON CONTAINERS

Applies to: Sequence containers, transform
See also: Tip 5, Tip 50, Tip 52, Listing 13.6, Listing 13.9

TIP 76



392 C++ Standard Library Practical Tips

Quick Solution
vector<double> v1, v2;

// ... load numbers. v2 must be at least as long as v1

vector<double> result( v1.size() );

transform( v1.begin(), v1.end(), v2.begin(), result.begin(),

plus<double>() ); // add corresponding elements

transform( v1.begin(), v1.end(), v2.begin(), result.begin(),

minus<double>() ); // subtract corresponding elements

transform( v1.begin(), v1.end(), v2.begin(), result.begin(),

multiplies<double>() ); // multiply corresponding elements

transform( v1.begin(), v1.end(), v2.begin(), result.begin(),

divides<double>() ); // divide corresponding elements

Detailed Solution

If you have two containers, it would be reasonable to want to combine them element-
by-element with arithmetic. That is, you would like to combine the first elements of
the two containers by arithmetic and store them in the first element of an output con-
tainer, combine the second elements of the two containers and store them in the sec-
ond element of the output container, and so on. This type of operation is common in
particular with vectors, both the mathematical kind and the STL variety.

Fortunately, it’s easy to perform the arithmetic described. The Standard Library
contains function objects for addition, subtraction, multiplication, division, and
modulus. Each of these takes two arguments and returns its eponymous result. Table
11.1 lists the rather inconsistently named function objects. It also shows that there is
a unary function object called negate that returns the negative of its argument.

Function Object Operation

plus parameter1 + parameter2

minus parameter1 – parameter2

multiplies parameter1 * parameter2

divides parameter1 / parameter2

modulus parameter1 % parameter2

negate –parameter1

TABLE 11.1 Arithmetic Function Objects in the STL



Tips on Numerical Processing 393

By using these function objects with the STL algorithm transform, you can per-
form element-wise arithmetic. They are also useful in other STL algorithms, as the
code in Tip 52 shows. The program Listing 11.1 is a useful demonstration of ele-
ment-wise arithmetic.

LISTING 11.1 Performing Arithmetic on Containers

// numeric_arithmetic.cpp

#include <algorithm>

#include <functional>

#include <iomanip>

#include <vector>

#include "tips.hpp"

using namespace std;

int main()

{

const float data2003[] = { 55.43, 76.02, 89.90, 44.24, 79.87 };

const float data2004[] = { 57.74, 82.68, 87.65, 44.89, 84.98 };

// create and initialize vectors with above data

vector<float> rates2004( data2004,

data2004 + sizeof( data2004 ) / sizeof( data2004[0] ) );

vector<float> rates2003( data2003,

data2003 + sizeof( data2003 ) / sizeof( data2003[0] ) );

vector<float> change( rates2004.size() );

// compute the difference from 2003 to 2004

transform( rates2004.begin(), rates2004.end(), rates2003.begin(),

change.begin(), minus<float>() );

// divide by the 2003 rates

transform( change.begin(), change.end(), rates2003.begin(),

change.begin(), divides<float>() );

// multiply by 100 to get a percent

transform( change.begin(), change.end(), change.begin(),

bind2nd( multiplies<float>(), 100.0f ) );



394 C++ Standard Library Practical Tips

cout << fixed << setprecision( 1 );

tips::print( change, "Percent change in rates" );

}

The output is

The program illustrates container arithmetic by computing the percent that
programmer rates change over a year. The program starts by initializing two vectors
with some made-up hourly programming rates, using the technique that Tip 5 ex-
plains. The vector rates2004 contains the rates for five different programmers in
2004, and the vector rates2003 has their corresponding rates a year earlier. Equa-
tion 11.1 gives the percent change:

Percent change = 100% × ( Rate2004 – Rate2003 ) / Rate2003 (11.1)

After initializing the vectors, the program declares a third vector to hold the per-
cent change. It is the same size as the other two vectors. The first call to transform
subtracts the 2003 rates from the 2004 rates and stores the difference in the change
vector. The first two arguments to transform are the beginning and end of the first
input range. The third argument is the beginning of the second input range, which
is assumed to be at least as long as the first range. The fourth argument is the start of
the output range and the last argument is a function object. The object takes two ar-
guments, which come from the first and second input ranges. In this program, the
function object is one that is built-in and performs subtraction. The code then calls
transform again, this time to divide the differences by the 2003 rates. Note that the
change vector is both an input and output, which is perfectly legitimate.

The last call to transform multiplies all elements in the change vector by 100.
This form of transform only has one input, not two as the preceding calls to the al-
gorithm have. The function object multiplies still takes two parameters, but the
second one is “frozen” at 100 through the use of a binder, as Tip 50 explains. 

COMPLEX NUMBERS

Applies to: Complex numbers

Quick Solution
complex<double> c1( 7.63, 9.88 ); // create from rectangular coordinates

Percent change in rates: 4.2 8.8 -2.5 1.5 6.4 

TIP 77



complex<double> c2( polar( 10.04, 0.77 ) ); // from polar coordinates

complex<double> c3 = c1 + c2; // -, *, and / also available

cout << setprecision( 4 )

<< "Sum: " << c3 << "  Magnitude: " << abs( c3 )

<< "  Angle: " << arg( c3 ) << "  Norm: " << norm( c3 ) << endl

<< "Real: " << c3.real() << "  Imaginary: " << c3.imag()

<< "  Conjugate: " << conj( c3 ) << endl << "Square root: "

<< sqrt( c3 ) << "  Log: " << log( c3 ) << endl

<< "Sine: " << sin( c3 ) << "  Hyperbolic sine: " << sinh( c3 );

Detailed Solution

C++ finally has complex numbers. They come as a class template that can be para-
meterized by the floating-point data types float, double or long double. (The C++
Standard doesn’t specify what happens if you use other data types.) Global func-
tions or member functions let you perform the usual operations, for example, per-
form arithmetic, create a complex number in polar coordinates, find the norm,
magnitude, argument (angle or phase), and conjugate, and get the real and imagi-
nary parts. The class template defines the self-assignment arithmetic operators (+=,
-=, *=, and /=) as well as the two comparison operators == and !=. These last two op-
erations are not very useful with floating-point numbers, though. It’s better to
compare such numbers for equality by subtracting them, taking the absolute value,
and seeing if that value is less than some small number.

Inequalities involving less-than or greater-than are not defined because they
have no meaning for complex numbers. However, there are many transcendental
functions for complex numbers, such as raising to a power, exponentiation, square
root, natural and common log, and the trigonometric and hyperbolic functions. Fi-
nally, complex numbers can read themselves from and write themselves to streams.

Complex numbers are used in Fourier analysis, solving differential equations,
and in electrical engineering. One application is circuit analysis. For example, Fig-
ure 11.1 shows a parallel RLC circuit, made up of a resistor of resistance R, an in-
ductor of inductance L, and a capacitor of capacitance C. The goal is to compute
the impedance Z of the network. The impedance is a complex number that is a gen-
eralization of resistance. Impedance describes how the network reacts to a sinu-
soidal input.

Tips on Numerical Processing 395



Equations 11.2 and 11.3 give the impedance Z:

(11.2)

or

(11.3)

where and is the radian frequency of the sinusoid. One important fre-

quency is , called the resonant frequency. At this frequency, the imped-
ance is a real number and, thus, has an imaginary part that is equal to zero.

The program in Listing 11.2 calculates the impedance of the parallel RLC 
circuit for the resonant frequency and several other ones.

LISTING 11.2 Computing an Impedance with Complex Numbers

// numeric_complex.cpp

#include <complex>

#include <iomanip>

#include <iostream>

#include <cmath>

using namespace std;

// compute the complex impedance of a parallel RLC circuit

complex<double> parallel_RLC_impedance( double frequency,

double resistance, double inductance, double capacitance );

int main( )

= LC

j = 1

Z

R
j C

L

=
+

1

1 1

Z

R j L
j C

=
+ +

1

1 1

396 C++ Standard Library Practical Tips

FIGURE 11.1 A parallel RLC circuit with impedance Z.



{

const double R = 1000.0;   // R in ohms

const double L = 0.2;      // L in henries

const double C = 10.0e-9;  // C in farads

double frequency;

// set the resonant frequency

frequency = 1.0 / sqrt( L * C );

// compute the impedance at the resonant frequency

complex<double> impedance =

parallel_RLC_impedance( frequency, R, L, C );

cout << setprecision( 2 ) << fixed

<< "AT RESONANT FREQUENCY\nImpedance = "

<< impedance << "   Magnitude = " << abs( impedance )

<< "   Phase = " << arg( impedance ) << endl;

// compute the impedance at one tenth of the resonant frequency

impedance = parallel_RLC_impedance( frequency / 10, R, L, C );

cout << "\nAT ONE TENTH OF RESONANT FREQUENCY\nImpedance = "

<< impedance << "   Magnitude = " << abs( impedance )

<< "   Phase = " << arg( impedance ) << endl;

// compute the impedance at ten times the resonant frequency

impedance = parallel_RLC_impedance( frequency * 10, R, L, C );

cout << "\nAT TEN TIMES THE RESONANT FREQUENCY\nImpedance = "

<< impedance << "   Magnitude = " << abs( impedance )

<< "   Phase = " << arg( impedance ) << endl;

}

inline

complex<double> parallel_RLC_impedance( double frequency,

double resistance, double inductance, double capacitance )

{

complex<double> impedance_inverse( 1.0 / resistance,

frequency * capacitance - 1.0 / ( frequency * inductance ) );

return 1.0 / impedance_inverse;

}

The output is

Tips on Numerical Processing 397



The first line of the function parallel_RLC_impedance shows a complex number
being initialized on construction. The number is actually the denominator in Equa-
tion 11.3. The return is simply the inverse of the denominator, which the formula
shows is the impedance. When taking the inverse of a complex number (as in the
return statement of the function), you must include the decimal point on the 
numeral 1 because the complex template classes don’t provide operators for divid-
ing an integer by a complex number.

The first part of the output shows that the impedance is indeed real at the res-
onant frequency. Note that complex numbers write themselves to streams as a pair
of numbers surrounded by parentheses. The remainder of the output shows com-
plex impedances in rectangular coordinates (the numbers within parentheses) and
polar coordinates (magnitude and phase).

DIFFERENCES BETWEEN A CONTAINER’S ELEMENTS

Applies to: Sequence containers, adjacent_difference
See also: Tip 7, Tip 16, Tip 76, Tip 97

Quick Solution
vector<int> v( 4, 3 ); // fill with 3s

v[1] = 5;

v[2] = v[3] = 15;

vector<int> difference( v.size() );

adjacent_difference( v.begin(), v.end(), difference.begin() );

// now difference has: 3, 2, 10, and 0

398 C++ Standard Library Practical Tips

AT RESONANT FREQUENCY

Impedance = (1000.00,-0.00)   Magnitude = 1000.00   Phase = -0.00

AT ONE TENTH OF RESONANT FREQUENCY

Impedance = (169.48,375.17)   Magnitude = 411.68   Phase = 1.15

AT TEN TIMES THE RESONANT FREQUENCY

Impedance = (169.48,-375.17)   Magnitude = 411.68   Phase = -1.15

TIP 78



Detailed Solution

Sometimes the values of data are not as important as the changes in the values. For
one thing, plots of changes can often let you see significant events in data more eas-
ily than charts of the data itself. For another, differences are often important in their
own right. For example, the distance a car travels divided by the time it took to go
that far is the car’s speed, something that the police seem to be very interested in.
Similarly, the change in a car’s velocity divided by the time it takes to make that
change is the vehicle’s acceleration. 

A third use of differences is to give data more meaning by putting the numbers
in context, that is, making them relative to each other. For example, stock prices are
often given in absolute terms (the closing price per share) and in relative terms (the
percent change from the previous day’s closing price). The former lets you know
how much your fortune is worth, and the latter lets you compare daily changes in
your hoard regardless of its actual size. The STL makes it easy to compute differ-
ences in values, as the code in Listing 11.3 shows.

LISTING 11.3 Differences Between a Container’s Elements

// numeric_difference.cpp

#include <algorithm>

#include <fstream>

#include <iomanip>

#include <iostream>

#include <iterator>

#include <numeric>

#include <vector>

using namespace std;

int main( )

{

// open the file with the stock prices

ifstream stock_file( "stock.txt" );

if(!stock_file )

{

cout << "Couldn't open stock.txt\n";

return 0;

}

// create a vector and initialize it with the stock prices

vector<float> price( (istream_iterator<float>( stock_file )),

istream_iterator<float>() );

Tips on Numerical Processing 399



// compute the adjacent differences and store in a new vector

vector<float> percent_change( price.size() );

adjacent_difference( price.begin(), price.end(),

percent_change.begin() );

// divide by the previous day's stock price

transform( percent_change.begin()+1, percent_change.end(),

price.begin(), percent_change.begin()+1, divides<float>() );

// multiply by 100 to get percent daily change

transform( percent_change.begin()+1, percent_change.end(),

percent_change.begin()+1, bind2nd( multiplies<float>(), 100 ) );

// display the first five values

cout << "First five stock prices:    "

<< fixed << setprecision( 2 );

copy( price.begin(), price.begin()+5,

ostream_iterator<float>( cout,  "  " ) );

cout << "\nFirst five percent changes: ";

copy( percent_change.begin(), percent_change.begin()+5,

ostream_iterator<float>( cout, "  " ) );

}

The output is

The program is an example of computing the percent daily change in stock
prices, and starts by opening a file with the daily closing prices of a stock during
four months in the summer and fall. The program creates a vector and initializes it
with the data the program reads in (see Tip 7 and Tip 97). Figure 11.2 is a plot of
the prices in the file.

Next, the code makes a container that has enough elements to hold the data
and then calls the STL algorithm adjacent_difference to insert new numbers. The
function takes an input iterator range and writes the computed values starting at
the given output iterator. The value at an output iterator is the difference between
the corresponding input iterator value and the value preceding it. The first iterator
has no preceding value, so adjacent_difference simply makes the first output value
be the first input value. Storing the values this way also has the benefit that you can

400 C++ Standard Library Practical Tips

First five stock prices:    18.84  18.85  19.23  19.01  17.39

First five percent changes: 18.84  0.05  2.02  -1.14  -8.52



exactly reconstruct the original data from the adjacent_difference output by using
the partial_sum STL algorithm.

Equation 11.4 provides a more formal definition of adjacent_difference’s out-
put. For an input container in and an output container out, the ith element of the
output is

(11.4)

After computing the adjacent difference, it uses transform to divide that difference
by the preceding day’s stock price to give the relative change. transform is a very
powerful STL algorithm that allows you to combine two input ranges through a
specified operation and place the result in an output range. Tip 76 explains in more
detail how to do arithmetic with transform.

When the code calls transform, the first argument is the start of its input range,
and this is element 1 of the vector, not element 0. Element 0 has no preceding-day
price to divide by, so it must be ignored. The second argument is the end of the first
input range. The third argument is the start of the second input range, which in the
example is the actual stock price. The fourth argument is the start of the output
range, and the fifth is the operation for combining the two inputs. In the code, the
division functor specifies the operation.

The code shows that the output container is the same as one of the input con-
tainers, and this is a perfectly legitimate and common practice. Overall then, the call
to transform divides all but the first element of percent_change by the preceding el-
ement in price and puts the results back into percent_change.

out
in in for 

in
[ ]

[ ] [ ]        

[
i

i i i
=

>1 0

0]]                      for i = 0

Tips on Numerical Processing 401

FIGURE 11.2 Some stock prices.



The next section of code calls transform again, but this variation of the algo-
rithm contains only one input range. The call multiplies all elements of
percent_change except the first by 100 to get a percent change in stock price instead
of just the relative change. These are the numbers of interest, and Figure 11.3 shows
them on a graph.

The last part of the program displays the first five original stock prices and the first
five numbers in the container of percent changes, using the method in Tip 16. Notice
in the output that the first of these values is indeed the same as the first original value.

MAKE CONSECUTIVE, EVENLY SPACED NUMBERS

Applies to: Sequence containers, partial_sum
See also: Tip 4, Tip 55, Tip 81, Listing 13.11

Quick Solution
vector<int> n( 5, 1 ); // fill with 1s

partial_sum( n.begin(), n.end(), n.begin() ); // 1 2 3 4 5

n.assign( n.size(), 1 ); // fill with 1s

n[0] = 8;

partial_sum( n.begin(), n.end(), n.begin() ); // 8 9 10 11 12

n.assign( n.size(), 5 ); // fill with 5s

402 C++ Standard Library Practical Tips

FIGURE 11.3 Percent changes in the stock prices.

TIP 79



n[0] = 2;

partial_sum( n.begin(), n.end(), n.begin() ); // 2 7 12 17 22

n.assign( n.size(), -1 );

n[0] = 3;

partial_sum( n.begin(), n.end(), n.begin() ); // 3 2 1 0 -1

Detailed Solution

Sometimes it’s useful to fill a container with evenly spaced numbers. One applica-
tion of this is to use it to evaluate a (mathematical) function at a series of points, as
Tip 81 shows. Another application is to use the numbers as the input of indepen-
dent values (those usually appearing on the horizontal axis) to a graphing routine.
The code in Listing 11.4 shows how to make evenly spaced numbers, starting on
any number and with any spacing.

LISTING 11.4 Making Consecutive Numbers

// numeric_consecutive.cpp

#include <iostream>

#include <numeric>

#include <vector>

#include "tips.hpp"

using namespace std;

int main( )

{

vector<int> num1( 5, 1 );

cout << "Consecutive numbers from " << num1[0]

<< " at intervals of " << num1[1] << ": ";

partial_sum( num1.begin(), num1.end(), num1.begin() );

tips::print( num1 );

// intervals of 1 starting at 4

num1.assign( num1.size(), 1 );

num1[0] = 4;

cout << "\nConsecutive numbers from " << num1[0]

<< " at intervals of " << num1[1] << ": ";

partial_sum( num1.begin(), num1.end(), num1.begin() );

tips::print( num1 );

Tips on Numerical Processing 403



404 C++ Standard Library Practical Tips

// intervals of 3 starting at 2

num1.assign( num1.size(), 3 );

num1[0] = 2;

cout << "\nConsecutive numbers from " << num1[0]

<< " at intervals of " << num1[1] << ": ";

partial_sum( num1.begin(), num1.end(), num1.begin() );

tips::print( num1 );

// intervals of -1 starting at 5

num1.assign( num1.size(), -1 );

num1[0] = 5;

cout << "\nConsecutive numbers from " << num1[0]

<< " at intervals of " << num1[1] << ": ";

partial_sum( num1.begin(), num1.end(), num1.begin() );

tips::print( num1 );

// intervals of 0.5 starting at 3.2

vector<float> num2( 5, 0.5 );

num2[0] = 3.2;

cout << "\nConsecutive numbers from " << num2[0]

<< " at intervals of " << num2[1] << ": ";

partial_sum( num2.begin(), num2.end(), num2.begin() );

tips::print( num2 );

}

The output is

The first example in the code shows how to make consecutive integers starting at
one. First, you construct a sequence container of integers filled with ones (see Tip 4).
The code shows an example of a vector with five ones. Then, to construct the desired
numbers, simply call the STL algorithm partial_sum with the beginning and end it-
erators of the container as inputs and the beginning iterator as the output. That’s it.

partial_sum places the first element of the input in the first element of the out-
put. Then it places the sum of the second and all previous elements of the input in

Consecutive numbers from 1 at intervals of 1: 1 2 3 4 5 

Consecutive numbers from 4 at intervals of 1: 4 5 6 7 8 

Consecutive numbers from 2 at intervals of 3: 2 5 8 11 14 

Consecutive numbers from 5 at intervals of -1: 5 4 3 2 1 

Consecutive numbers from 3.2 at intervals of 0.5: 3.2 3.7 4.2 4.7 5.2



the second element of the output, the sum of the third and all previous elements of
the input in the third element of the output, and so on. This creates the desired 
sequence, as the output shows.

To create consecutive integers starting at a number other than 1, set all 
elements of the container to 1, set the first element to the starting number of the 
sequence, and then call partial_sum as before. The second paragraph of code and
second line of output illustrate this.

To make consecutive integers separated by more than 1, fill the container with
the number that you want to be the difference between any two consecutive ele-
ments, set the first element to the integer you want the sequence to start on, and call
partial_sum. The code and corresponding output show an example of five integers
starting at two and increasing by three. You can also make decreasing sequences, as
the fourth paragraph of code and its output illustrate.

Finally, you can use the same techniques to make consecutive floating-point
numbers separated by a fractional amount. The last paragraph of code and its output
provide an example. For another example of using consecutive numbers, see Tip 55.

MAKE A SEQUENCE OF RANDOM NUMBERS

Applies to: Sequence container, generate
See also: Tip 50, Tip 76, Tip 99

Quick Solution
vector<int> v( 10 );

// fill with random numbers

generate( v.begin(), v.end(), rand ); // rand is in <cstdlib>

Detailed Solution

Occasionally, you may want to make a sequence of random numbers. You can do
this very easily, as the example in Listing 11.5 shows.

LISTING 11.5 Making a Sequence of Random Numbers

// numeric_random.cpp

#include <algorithm>

#include <functional>

#include <cstdlib>

#include <vector>

Tips on Numerical Processing 405

TIP 80



#include "tips.hpp"

using namespace std;

int main( )

{

vector<int> random( 8 );

// fill the container with random numbers

generate( random.begin(), random.end(), rand );

tips::print( random, "Random numbers" );

// make all random numbers go from 1 to 6

transform( random.begin(), random.end(), random.begin(),

bind2nd( modulus<int>(), 6 ) );

transform( random.begin(), random.end(), random.begin(),

bind2nd( plus<int>(), 1 ) );

tips::print( random, "Random numbers from 1 to 6" );

}

The output is

The program creates a vector with space to hold some random numbers, in this
case eight of them. Next, it fills the container with random numbers, all with one line
of code. It accomplishes this feat by calling the STL algorithm generate. Its first two
arguments are a range. Its third argument is a function or function object that ac-
cepts no parameters and returns a number. To get a random number, the program
uses the Standard Library function rand, available in the <cstdlib> header. This pro-
duces uniformly distributed random integers in the range 0 to RAND_MAX, also defined
in <cstdlib>. The first line of the output shows the resulting eight random numbers.
Your numbers may be different because the implementation of rand varies.

The rest of the code shows how to make the numbers lie between two specified
values. For example, if you wanted to simulate die rolls, you would make the num-
bers lie between 1 and 6, inclusive. The first step is to call transform to compute the
remainder of each number when it is divided by 6, that is, to calculate the number
modulo 6. Tip 76 explains this use of transform, and Tip 50 provides more details
on using bind2nd to always pass the same argument to a function. After the call to
transform, all elements of the vector lie between 0 and 5 inclusive. Adding 1 with a
call to transform makes the random numbers fall in the inclusive range of 1 to 6.

406 C++ Standard Library Practical Tips

Random numbers: 130 10982 1090 11656 7117 17595 6415 22948 

Random numbers from 1 to 6: 5 3 5 5 2 4 2 5



The last line of the output shows the result. Again, your numbers may differ, but
they should all be at least 1 and not greater than 6.

The program in Listing 11.5 will always produce the same sequence of random
numbers. If you want to change the sequence, you can set the initial seed (starting
number of the sequence) by calling srand in <cstdlib>. To always get a different se-
quence, initialize srand with the current system time, available from time in <ctime>.

The technique for limiting the range of random numbers by taking the modulus
does not produce numbers that are as statistically random as those in the original se-
quence, but they are suitable for casual use. Good random number generators are ac-
tually pretty hard to make. To see some examples, and some generators that make
nonuniform distributions, see [Press02] or the Boost library described in Tip 99.

EVALUATE A MATHEMATICAL FUNCTION

Applies to: Transform
See also: Tip 5, Tip 79, Listing 13.11

Quick Solution
float f1( float x );

float f2( float x, float y );

// ...

vector<float> v1, v2;

// ...

vector<float> z( v1.size() );

// evaluate function of one variable

transform( v1.begin(), v1.end(), z.begin(), f1 );

// evaluate function of two variables

transform( v1.begin(), v1.end(), v2.begin(), z.begin(), f2 );

Detailed Solution

The Standard Library makes it very easy to evaluate your own function using con-
tainer elements as inputs. The function can have one or two arguments. The STL al-
gorithm to use is transform. It has two signatures. The first form,

OutputIterator transform( InputIterator start, InputIterator stop,

OutputIterator out, UnaryOperation unary_op )

Tips on Numerical Processing 407

TIP 81



408 C++ Standard Library Practical Tips

takes an input range for the first two arguments, the start of an output range for the
third argument and a function object as the fourth argument. It operates on each
element of the input, and transform puts its result in the corresponding element of
the output.

The second form is

OutputIterator transform( InputIterator1 start1, InputIterator1 stop1,

InputIterator2 start2, OutputIterator out, 

BinaryOperation binary_op )

Its first two arguments specify the range of the first input, the third argument
gives the start of the second input range, the fourth argument is the start of the out-
put range, and the last argument is again a function object. This time the function
object takes two arguments. The first comes from the first input range, and the sec-
ond argument comes from the second input range. The output range must be at
least the size of the first input range (unless you use a back inserter), but note, too,
that the second input range must also be at least the size of the first.

The code in Listing 11.6 demonstrates the use of both of these forms to evalu-
ate custom-written functions.

LISTING 11.6 Evaluating a Mathematical Function

// numeric_function.cpp

#include <algorithm>

#include <numeric>

#include <vector>

#include "tips.hpp"

int factorial( int n );

int teams( int candidate_size, int team_size );

using namespace std;

int main( )

{

// make a vector with 0, 1, 2, 3, 4, 5

vector<int> numbers( 6, 1 );

numbers[0] = 0;

partial_sum( numbers.begin(), numbers.end(), numbers.begin() );

// compute the factorial of each number



vector<int> result( 6 );

transform( numbers.begin(), numbers.end(), result.begin(),

factorial );

tips::print( result, "Factorials of 0-5" );

// candidates available and team sizes for baseball, basketball,

// football and soccer

const int candidate_array[] = { 14, 11, 30, 17 };

const int team_array[]      = {  9,  5, 22, 11 };

const int array_length = sizeof( candidate_array )

/ sizeof( candidate_array[0] );

vector<int> candidate( candidate_array,

candidate_array + array_length );

vector<int> team( team_array, team_array + array_length );

result.resize( array_length );

// compute the number of possible teams

transform( candidate.begin(), candidate.end(), team.begin(),

result.begin(), teams );

cout << endl

<< "There are " << result[0] << " possible baseball teams\n"

<< "There are " << result[1] << " possible basketball teams\n"

<< "There are " << result[2] << " possible football teams\n"

<< "There are " << result[3] << " possible soccer teams";

}

// n >= 0

int factorial( int n )

{

int n_factorial = 1;

for( int i = n; i > 1; --i )

n_factorial *= i;

return n_factorial;

}

// num_candidates >= 1,  1 <= team_size <= num_candidates

int teams( int num_candidates, int team_size )

{

// use double to avoid integer overflow

double permutations = 1;

Tips on Numerical Processing 409



for( int i = num_candidates; i > num_candidates - team_size; --i )

permutations *= i;

for( int i = team_size; i > 1; --i )

permutations /= i;

return static_cast<int>( permutations );

}

The output is

The program starts by making a vector containing the integers from 0 to 5. It
does this using the technique in Tip 79. Then the program uses transform to com-
pute the factorial of each of these integers. The factorial of a non-negative integer n
is denoted n!. Equation 11.5 gives the formula for a factorial, namely,

(11.5)

The first line of the output shows the result.
The remainder of the program illustrates the evaluation of a two-parameter

function. The function teams computes the number of different teams of a given
size that could be made up from a pool of candidate team members. For example,
how many different ways could a baseball team of 9 players be made from a pool of
14 potential team members? The other stored values compute the number of dif-
ferent teams that could be made up for basketball, football (an American game like
rugby), and soccer, which is known in the rest of the world as football.

The code stores the data in initialized arrays and creates vectors with the same
values using the technique of Tip 5. The code resizes the output vector to be the
same length as the input vectors. (In this program, resizing is not actually necessary
because the vector is already longer than it needs to be. However, resizing this way
is good practice.) Finally, the code calls transform with the two input vectors. The
last four lines of the output show the result.

n n n n! ( ) ( )= …1 2 3 2 1

410 C++ Standard Library Practical Tips

Factorials of 0-5: 1 1 2 6 24 120 

There are 2002 possible baseball teams

There are 462 possible basketball teams

There are 5852925 possible football teams

There are 12376 possible soccer teams



Tips on Numerical Processing 411

COMPUTE THE DOT PRODUCT

Applies to: Inner_product
See also: Tip 8, Tip 76, Listing 13.13

Quick Solution
vector<double> x, y;

// ...

vector<double> z( x.size() );

// last argument must have decimal point

double dot_product = inner_product( x.begin(), x.end(), y.begin(), 0.0 );

Detailed Solution

The dot product of two vectors, also called the inner product, occurs frequently in
fields where vectors are used. (Here, “vector” means the mathematical entity, not
the C++ container.) In physics and engineering two- and three-dimensional vec-
tors are common. In computer graphics, three- and four-dimensional vectors are
often used. N-dimensional vectors, where N is much greater than four, occur often
in pattern recognition.

To compute the dot product of two vectors, you multiply the first components
of the two vectors, multiply the second components, and so forth, and add these
products. (Both vectors must be the same size, that is, dimension.) In other words,
for the two N-dimensional vectors

Equation 11.6 defines the dot product, namely,

(11.6)

In computer graphics, the dot product can be used to calculate the distance of
a point from the origin, the distance of a point from a plane and the intersection of
a line and a circle. All of these are especially important in computer games. Another
use, which the code in Listing 11.7 illustrates, is to calculate the angle between two
vectors. This occurs in games when computing the angle at which one object
bounces off another, for example, a hovercar rebounding from a wall or a pool ball
caroming off a billiard table.

The formula for the angle between two vectors v and w is

v w v w
i i

i

N

=
=1

v w= =( , , )         ( , , )v v v w w wN N1 2 1 2

TIP 82



412 C++ Standard Library Practical Tips

(11.7)

where the absolute value (norm) of a vector is

(11.8)

Equation 11.8 shows that the norm of a vector is the square root of the dot product
of the vector with itself.

The code in Listing 11.7 calculates the angles in each pair of vectors in Figure 11.4.

LISTING 11.7 Computing the Dot Product

// numeric_dot_product.cpp

#include <algorithm>

#include <cmath>

#include <iostream>

#include <numeric>

#include <vector>

using namespace std;

// compute angle (in degrees) between two vectors

double vector_angle( const vector<double>& v1,

const vector<double>& v2 );

x x x= =
=

x
i

N

1

2

1

= cos–1
v w

v w

FIGURE 11.4 Pairs of vectors separated by different angles.



int main( )

{

vector<double> v( 2 ), w( 2 );

// first pair of vectors

v[0] = 10.0 * sqrt( 3.0 );   // v[1] = 0.0 from constructor

w[0] = 10.0 * sqrt( 3.0 );

w[1] = 10.0;

cout << "There is a " << vector_angle( v, w ) <<

" degree angle between the first pair of vectors\n";

// second pair of vectors

const double tail[2] = { 5.0, 5.0 };

const double v_head[2] = { 10.0, 10.0 };

const double w_head[2] = { 0.0, 10.0 };

transform( v_head, v_head+2, tail, v.begin(), minus<double>() );

transform( w_head, w_head+2, tail, w.begin(), minus<double>() );

cout << "There is a " << vector_angle( v, w ) <<

" degree angle between the second pair of vectors\n";

// third pair of vectors

const double v_3d[3] = { 1.0, 1.0, 0.0 };

double w_3d[3] = { 0.3, 0.3, 0.3 };

w_3d[2] *= sqrt( 2.0 );

v.assign( v_3d, v_3d+3 );

w.assign( w_3d, w_3d+3 );

cout << "There is a " << vector_angle( v, w ) <<

" degree angle between the third pair of vectors\n";

}

double vector_angle( const vector<double>& v1,

const vector<double>& v2 )

{

const double pi = 3.1415926535;

// *** must put decimal point in constant at end of inner_product

double norm1_squared =

inner_product( v1.begin(), v1.end(), v1.begin(), 0.0 );

double norm2_squared =

inner_product( v2.begin(), v2.end(), v2.begin(), 0.0 );

double dot_product =

inner_product( v1.begin(), v1.end(), v2.begin(), 0.0 );

// angle in radians

Tips on Numerical Processing 413



414 C++ Standard Library Practical Tips

double angle =

acos( dot_product / sqrt( norm1_squared * norm2_squared ) );

// convert to degrees

angle *= 360.0 / ( 2 * pi );

return angle;

}

The output is

The first section of code sets up the vectors in Figure 11.4(a) and calls the cus-
tom-written function vector_angle, which computes the angle between the two
vectors. The two vectors illustrated in Figure 11.4(b) don’t meet at the origin, so the
next section of the program subtracts the coordinates of the tails from the coordi-
nates of the heads to get the vectors of interest. The code shows how to use the STL
algorithm transform to do this easily. (Tip 76 gives details on performing arithmetic
on a container’s elements.) Finally, the last section shows the angle computation for
the three-dimensional vectors in Figure 11.4(c). Note that the code  transfers the
data from the arrays to the vectors using the technique of Tip 8.

The function vector_angle computes the angle between the two vectors passed
to it. It begins by calculating the square of the norm of the first vector by using
Equations 11.6 and 11.8 and the STL algorithm inner_product. The fourth argu-
ment of that function is a constant to which each product of vector elements is
added inside the inner_product. The constant must be 0 in this application, and if
the vectors contain doubles or floats, as is the case, there must be a decimal point
in the passed value, for example, 0.0 in the code. The reason is that the routine 
derives the data type of the returned value from whatever is passed as the fourth 
argument. If you pass an integer, the return type is an integer and the routine drops
fractions in the dot product computation. Thus, for example, the norm of
(0.3,0.3,0.3) will come out to be zero.

After computing the norms and the dot product, the routine calculates the
angle using Equation 11.7. The denominator in the code shows the square root of
the product of the squares of the norms. This is equivalent to the product of the
square roots of the norms but saves the expense of calculating a second square
root.

There is a 30 degree angle between the first pair of vectors

There is a 90 degree angle between the second pair of vectors

There is a 45 degree angle between the third pair of vectors



Finally, the routine converts the angle to degrees. It defines pi ( ). Although
not required to by the C++ standard, the header <cmath> often makes that constant
available as M_PI. It may also contain additional common functions of pi, such as
× 2, / 4, and so forth.

FIND THE MINIMUM AND MAXIMUM IN A CONTAINER

Applies to: Min_element, max_element
See also: Tip 5, Tip 76, Tip 88, Listing 13.12

Quick Solution
vector<double> data;

// ...

vector<double>::iterator max_iterator

= max_element( data.begin(), data.end() );

vector<double>::iterator min_iterator

= min_element( data.begin(), data.end() );

cout << "Data max = " << *max_iterator 

<< "   Data min = " << *min_iterator;

Detailed Solution

It’s common to want to know the extremes of a data set. This tip demonstrates how
easy it is to find the minimum and maximum of a collection of numbers. It applies
these values to the practical problem of scaling a data set, that is, making it lie
within a certain range. In this case, the program takes the input data set and makes
it fall between 0 and 100 inclusive. The code in Listing 11.8 is parameterized, so it’s
easy to set any desired output range.

LISTING 11.8 Finding the Minimum and Maximum in a Container

// numeric_min_max.cpp

#include <algorithm>

#include <functional>

#include <iomanip>

#include <iostream>

#include <vector>

using namespace std;

Tips on Numerical Processing 415

TIP 83



416 C++ Standard Library Practical Tips

int main( )

{

const float data_array[] = { 13.4, 27.6, 15.5, 44.3, 51.2,

30.2, 18.0 };

vector<float> data( data_array,

data_array + sizeof( data_array ) / sizeof( data_array[0] ) );

// find min and max

float data_min = *min_element( data.begin(), data.end() );

float data_max = *max_element( data.begin(), data.end() );

cout << "Before scaling: Minimum = " << setw( 5 ) << data_min

<< "   Maximum = " << data_max;

// make scale factor and additive offset

const float desired_max = 100.0f;

const float desired_min = 0.0f;

const float m =

( desired_max - desired_min ) / ( data_max - data_min );

const float b = desired_min - m * data_min;

// scale the data

transform( data.begin(), data.end(), data.begin(),

bind2nd( multiplies<float>(), m ) );

transform( data.begin(), data.end(), data.begin(),

bind2nd( plus<float>(), b ) );

cout << "\nAfter  scaling: Minimum = " << setw( 5 )

<< *min_element( data.begin(), data.end() )

<< "   Maximum = " << *max_element( data.begin(), data.end() );

}

The output is

The program starts by creating a vector and initializing with a given set of num-
bers, as Tip 5 explains. The code then finds the smallest and largest numbers by
using min_element and max_element. These two algorithms find the extrema in a
container, rather than the more common min and max, which just operate on two
numbers. By default, min_element and max_element use whatever less-than operator

Before scaling: Minimum =  13.4   Maximum = 51.2

After  scaling: Minimum =     0   Maximum = 100



is defined for the data elements of the container. However, you can use your own
comparison method, as Tip 88 demonstrates. 

Note that the two algorithms don’t produce the minimum and maximum val-
ues. Instead, they return iterators, which mark the locations of those values. Thus,
the results of the functions must be dereferenced as the sample program shows.

After finding the extrema, the software calculates a scaling factor and additive
offset. If the data is first multiplied by the scaling factor and then has the offset
added to it, the resulting numbers will have the desired minimum and maximum
values. A more robust program would verify that the minimum and maximum of
the data are not the same (which they would be if all numbers in the data set were
equal) to avoid dividing by 0 when calculating the scaling factor.

Next, the code scales the data by calling transform twice. The first call multi-
plies all elements in the vector by the scaling factor. The second call adds the offset
to all of the elements. Tip 76 describes using transform to do arithmetic on a con-
tainer’s elements. The output shows that the data has indeed been scaled so that its
minimum is 0 and maximum is 100.

A final point to remember is that if you’re sorting the elements in a container,
perhaps to compute the mode as in Tip 88, you don’t need to call min_element or
max_element—just look at the first and last elements in the sorted container to get
the values you want.

MINIMUM AND MAXIMUM OF TWO VALUES USING 
CUSTOM CRITERION

Applies to: Min, max
See also: Tip 5, Tip 65

Quick Solution
bool my_less_than( const list<int>& lhs, const list<int>& rhs );

// custom definition of "less than".

list<int> a, b;

// ...

list<int> min_list = min( a, b, my_less_than );

list<int> max_list = max( a, b, my_less_than );

Detailed Solution

Using min and max to compute the minimum or maximum of two numbers is a
common operation. Actually, these functions can also compare objects other than

Tips on Numerical Processing 417

TIP 84



numbers, such as strings, classes or vectors. min and max compare two objects using
the default less-than (<) operator, which may not always be appropriate. 

Although it is not well-known, you can supply a custom comparison operator
to both min and max. The function or functor should accept constant references to
two arguments (the same ones supplied to min and max) and return true if the first
argument is less than the second. Otherwise, it should return false.

The example in Listing 11.9 shows a custom comparison of vectors. The default
less-than operator for vectors returns true if the first vector is lexicographically less
than the second. (See Tip 65 for an explanation of lexicographical ordering.) An-
other way of comparing vectors is to compare their norms or magnitudes. The
norm of a vector is the sum of the squares of its components; the magnitude is just
the square root of the norm. The comparison function norm_less_than returns true
if the norm of the first vector is less than that of the second and false otherwise.

LISTING 11.9 Using Custom Definitions of the Minimum and Maximum

// numeric_custom_min_max.cpp

#include <numeric>

#include <vector>

#include "tips.hpp"

using namespace std;

bool norm_less_than( const vector<double>& a,

const vector<double>& b );

int main( )

{

const double data1[] = { 1.57, 3.32, -0.44 };

const double data2[] = { -1.90, -2.01, 4.03 };

vector<double> v1( data1, data1+sizeof( data1 )/sizeof( double ) );

vector<double> v2( data2, data2+sizeof( data2 )/sizeof( double ) );

const vector<double>& min_vector = min( v1, v2, norm_less_than );

const vector<double>& max_vector = max( v1, v2, norm_less_than );

tips::print( min_vector, "Vector with smallest norm" );

tips::print( max_vector, "Vector with  largest norm" );

}

418 C++ Standard Library Practical Tips



Tips on Numerical Processing 419

// returns true if the norm of a is < norm of b, false otherwise

inline

bool norm_less_than( const vector<double>& a,

const vector<double>& b )

{

return inner_product( a.begin(), a.end(), a.begin(), 0.0 )

< inner_product( b.begin(), b.end(), b.begin(), 0.0 );

}

The output is

The program in Listing 11.9 starts by creating two vectors, each initialized with
data from arrays. (Tip 5 explains this technique.) The code then finds the minimum
and maximum of the pair, with the definition of the extrema provided by the cus-
tom function norm_less_than. A quick glance at the numbers shows that the second
vector does indeed have the largest norm. If the program had used min and max

without passing a comparison function, the second vector would have been the
smallest because when compared lexicographically, its initial negative number
would have made it come first.

The STL algorithm inner_product in the function norm_less_than makes it easy
to compute the norm. inner_product multiplies each component of the first con-
tainer to it by the corresponding component of the second container passed to it,
sums the products, and adds the passed constant (the fourth argument, which is 0
in the preceding example). However, if the two containers are the same, the result
is the sum of the squares of the elements.

By the way, using the norm instead of the magnitude for comparison is a nice
little trick to remember. If the magnitude of one vector is less than the magnitude
of another, the norm of the first is also less than the norm of the second. In other
words, norms give the same ordering as magnitudes, but they don’t compute the
square root, which takes a lot of time.

MINIMUM AND MAXIMUM OF DATA TYPES

Applies to: All built-in data types
See also: Tip 4, Tip 9, Tip 76, Tip 79, Listing 13.6, Listing 13.8, Listing 13.11, 

Listing 13.12

Vector with smallest norm: 1.57 3.32 -0.44 

Vector with  largest norm: -1.9 -2.01 4.03

TIP 85



Quick Solution
short a, b;

// ...

long int long_sum = static_cast<long int>( a ) + b;

short int short_sum;

if( long_sum > numeric_limits<short int>::max() )

short_sum = numeric_limits<short int>::max();

else if( long_sum < numeric_limits<short int>::min() )

short_sum = numeric_limits<short int>::min();

else

short_sum = static_cast<short int>( long_sum );

Detailed Solution

You can easily get the minimum and maximum values of any built-in data type. This
information is useful in situations where you need to guard against exceeding those
values. Take digital images, for example. They are made up of pixels (picture ele-
ments), each of which is a numerical representation of the amount of light at the
corresponding spot on the camera sensor. For black-and-white images, each pixel is
typically an unsigned char, and for color images, a group of three unsigned chars.
This data type usually has a range of 0 to 255 inclusive. Two images can be combined
by adding their corresponding pixels. However, during this operation, it’s easy for
the sum to exceed the maximum value that an unsigned char can hold. If this hap-
pens, the value “wraps-around,” so that it is interpreted as a much lower number.

The solution is to promote the unsigned char to a higher data type that can
hold the sum without wrap-around (such as an int), replace the sum by the maxi-
mum value for an unsigned char if the sum exceeds that maximum amount, and
then convert the result back to an unsigned char. You can use a similar procedure
when subtracting images. In this case, test the difference to see if it is less than the
minimum value for an unsigned char.

The code in Listing 11.10 demonstrates testing against the maximum value of
an unsigned char.

LISTING 11.10 Finding the Minimum and Maximum of a Data Type

// numeric_data_type_min_max.cpp

#include <algorithm>

#include <limits>

#include <numeric>

#include <vector>

420 C++ Standard Library Practical Tips



Tips on Numerical Processing 421

#include "tips.hpp"

using namespace std;

unsigned char checked_sum( unsigned char num1, unsigned char num2 );

int main( )

{

// create and display the first group of pixels

const int n = 8;

vector<unsigned char> pixels1( n, 250 );

vector<int> int_pixels( pixels1.begin(), pixels1.end() );

tips::print( int_pixels, "First  pixels" );

// create and display the second group of pixels

vector<unsigned char> pixels2( n, 1 );

partial_sum( pixels2.begin(), pixels2.end(), pixels2.begin() );

int_pixels.assign( pixels2.begin(), pixels2.end() );

tips::print( int_pixels, "\nSecond pixels" );

// perform and display sum with wrap-around

vector<unsigned char> sum( n );

transform( pixels1.begin(), pixels1.end(), pixels2.begin(),

sum.begin(), plus<unsigned char>() );

int_pixels.assign( sum.begin(), sum.end() );

tips::print( int_pixels, "\nBad      sums" );

// perform and display sum without wrap-around

transform( pixels1.begin(), pixels1.end(), pixels2.begin(),

sum.begin(), checked_sum );

int_pixels.assign( sum.begin(), sum.end() );

tips::print( int_pixels, "\nGood     sums" );

}

// add unsigned char's without wrap-around

inline

unsigned char checked_sum( unsigned char num1, unsigned char num2 )

{

int sum = static_cast<int>( num1 ) + num2;

int the_max = numeric_limits<unsigned char>::max();

return static_cast<unsigned char>( sum <= the_max ? sum : the_max );

}

The output is



The code starts out by creating a vector of eight unsigned chars (representing
pixels), each with a value of 250. (See Tip 4 for more information on this construc-
tor.) It then stores the values in a vector of ints (see Tip 9) before printing them on
the screen. If it tried to print the unsigned chars directly on the screen, they would
be interpreted as ASCII text and produce strange output.

Next, the program creates and displays another set of eight unsigned char pix-
els. It uses the partial_sum algorithm to create a sequence that goes from one to
eight. (Tip 79 explains more about this handy technique.) Once the two containers
are ready, the program adds the contents together and stores the results in a third
container using the technique in Tip 76. The algorithm transform performs the ad-
dition using the functor plus for unsigned chars. This adds a pair of unsigned chars
without converting them to a higher data type and thus produces wrap-around, as
the third line of the output shows.

Finally, the code again adds the pixels, but this time passing the custom-writ-
ten function checked_sum to perform the addition. The first line of that routine
shows that one of the unsigned chars is cast to an int before being added to the
other one. (C++ then automatically promotes the other to an int.) The return
statement passes back the sum if it is not greater than the maximum value of an un-
signed char or that maximum value otherwise.

The maximum and minimum values of each data type (along with a tremen-
dous amount of other information) are available in the template class numeric_lim-
its. This class is in the standard namespace, and you must include the header
<numeric> to use it. Get the maximum value of a data type by using an expression
like that shown in the code. Get the minimum the same way, except use min().
Note, however, that for floating types with denormalization (variable number of
exponent bits), min returns the minimum positive normalized value.

The old C preprocessor limits are still available in C++. It’s better to use the
new ones, though, because they offer more type safety and you can easily supple-
ment them for your own numeric data types.

422 C++ Standard Library Practical Tips

First  pixels: 250 250 250 250 250 250 250 250 

Second pixels: 1 2 3 4 5 6 7 8 

Bad      sums: 251 252 253 254 255 0 1 2

Good     sums: 251 252 253 254 255 255 255 255



Tips on Numerical Processing 423

COMPUTE THE MEAN

Applies to: Accumulate
See also: Tip 5, Tip 90, Listing 13.4

Quick Solution
vector<int> v;

// ...

double mean = accumulate( v.begin(), v.end(), 0 ) 

/ static_cast<double>( v.size() );

Detailed Solution

The STL algorithm accumulate makes computing the mean (average) a snap. It re-
turns the sum of all elements in a container. To get the mean you simply divide by
the number of elements, which is the container’s size. Listing 11.11 has a short ex-
ample.

LISTING 11.11 Finding the Mean Value

// numeric_mean.cpp

#include <iomanip>

#include <iostream>

#include <numeric>

#include <vector>

using namespace std;

int main( )

{

// miles per gallon for different cars in fleet

const float mpg_data[] = { 21.4, 19.5, 8.8, 31.1, 20.2, 22.2,

23.4 };

// create a vector and initialize it with the above data

vector<float> mpg( mpg_data,

mpg_data + sizeof( mpg_data ) / sizeof( mpg_data[0] ) );

// mean

float fleet_average = accumulate( mpg.begin(), mpg.end(), 0.0 )

/ mpg.size();

TIP 86



cout << "Fleet average miles per gallon: "

<< setprecision( 1 ) << fixed << fleet_average << endl;

}

The output is

The program starts by creating a vector and initializing it with some data, as de-
scribed in Tip 5. Next, it calls accumulate, which adds all elements in a range to a
given value and returns the sum. The program passes the vector’s starting and end-
ing iterators as the first two arguments. The third argument is an initial value to
which accumulate adds all of the elements in the input range. Be careful, because the
third argument specifies the return type of the algorithm and the data type to which
the input elements are converted during summation. If your container has floating-
point numbers, make sure to make the initial value floating-point, too. If, for ex-
ample, you were to make it an integer, each floating-point number would be
converted to an integer when added to the variable within accumulate that is
recording the sum. This could produce a substantially incorrect answer.

The program computes the average by dividing the sum of the elements re-
turned from accumulate by the number of elements, that is, the vector size. More
robust code would verify that the size is not 0 before dividing. The output shows the
computed mean.

For those who like a little variety in their lives, Tip 90 demonstrates another
method of computing the mean, as well as other statistics of data.

COMPUTE THE MEDIAN

Applies to: Nth_element
See also: Tip 5, Tip 88

Quick Solution
vector<int> v;

// ...

// midpoint is the median, assuming odd number of elements

nth_element( v.begin(), v.begin() + v.size() / 2, v.end() );

cout << "\nMedian value: " << v[v.size()/2];

424 C++ Standard Library Practical Tips

Fleet average miles per gallon: 20.9

TIP 87



Detailed Solution

One common statistic is the mean. Another useful characteristic of a data set is the
median. The median is the middle number in a sorted data set. Half of the numbers
are greater than or equal to the median, and half are less than or equal to it. The me-
dian is a common statistic of salary surveys because it is less sensitive to abnormally
large numbers than the mean is. For example, the average salary in a survey of people
working at software firms would be thrown off if a billionaire’s earnings were included
in the figures, but the median salary would most likely be unaffected by the high wages.

To find the median, it isn’t necessary to sort the numbers. All that you really
need to find is the number that falls in the middle of the set. Fortunately, the STL
algorithm nth_element can separate numbers in exactly this way. The first argument
to nth_element is the container’s beginning iterator and the last argument is its
ending iterator. The middle argument is an iterator that serves as a dividing point.
After the call to nth_element, all elements in the container before the middle iterator
will be less than or equal to the middle element and all elements after the middle it-
erator will be greater than or equal to that element. You can compute the median by
letting the middle iterator point to the middle of the container. (If the array has an
even number of elements, you adjust this procedure, for example, by taking the me-
dian to be the average of the two elements closest to the middle.) nth_element does
not sort the numbers on either side of the middle iterator. However, that’s unneces-
sary for computing the median and just makes the calculation slower.

The program in Listing 11.12 is an example of finding the median of some salaries.

LISTING 11.12 Finding the Median

// numeric_median.cpp

#include <algorithm>

#include <vector>

#include "tips.hpp"

using namespace std;

int main( )

{

// salaries

const int num_salaries = 9;

const int salary_array[num_salaries] = { 54200, 60100, 55500, 39000,

44600, 43200, 58000, 180000000, 41300 };

// create a vector and initialize it with the above data

Tips on Numerical Processing 425



426 C++ Standard Library Practical Tips

vector<int> salaries( salary_array, salary_array+num_salaries );

tips::print( salaries, "Original salaries" );

// midpoint is the median

nth_element( salaries.begin(), salaries.begin()+num_salaries/2,

salaries.end() );

tips::print( salaries, "\nAfter nth_element" );

cout << "\nMedian     salary: " << salaries[num_salaries/2];

// display sorted salaries for clarity

sort( salaries.begin(), salaries.end() );

tips::print( salaries, "\n\nAfter     sorting" );

}

The output is

The program starts by making and initializing a vector with some salaries, using
the technique of Tip 5. Next, the program calls nth_element to split the salaries in
half, with the middle number being the median. The first line of the output shows
the original order of the salaries and the second line shows the order after the par-
titioning. The median, 54200, is simply the middle element of the array. Notice that
all the numbers to its left are smaller and all those to its right are larger. Neither of
those two groups is sorted, though.

For interest, the program finishes by sorting and printing the array. This makes
it easier to see that 54200 is indeed the middle number of the set. However, nth_el-
ement is faster than sort, and therefore a better choice for computing the median.
On average, nth_element performs a number of operations that varies linearly with
the number of elements in the input range, whereas the number of operations that
sort performs is approximately the number of elements times the logarithm of
that number.

Original salaries: 54200 60100 55500 39000 44600 43200 58000

180000000 41300 

After nth_element: 41300 43200 44600 39000 54200 60100 58000

180000000 55500 

Median     salary: 54200

After     sorting: 39000 41300 43200 44600 54200 55500 58000 60100

180000000



If you have to sort all the numbers anyway—for example, to calculate the mode
as described in Tip 88—don’t call nth_element. Just select the middle element of the
sorted container, and that will be the median.

COMPUTE THE MODE

Applies to: Map, vector, equal_range, sort
See also: Tip 5, Tip 35, Tip 83, Tip 87

Quick Solution

See detailed solution.

Detailed Solution

A useful data statistic is the mode, which is the number that occurs most often in a
data set. If, for example, the data represents the identification numbers of parts that
failed, you might want to redesign the part that fails most often first. Listing 11.13
has a program that computes the mode of some quiz grades two different ways.

LISTING 11.13 Computing the Median

// numeric_mode.cpp

#include <algorithm>

#include <iostream>

#include <map>

#include <vector>

#include "tips.hpp"

using namespace std;

inline

bool second_less( const pair<int,int> a, const pair<int,int> b )

{  return a.second < b.second;   }

// return true if second member of a is less than second member of b,

// otherwise false

int main( )

{

const int num_grades = 15;

const int grade_array[num_grades] =

Tips on Numerical Processing 427

TIP 88



{ 9, 2, 3, 3, 7, 5, 7, 7, 4, 10, 5, 6, 7, 4, 7 };

// create and initialize vector with above data

vector<int> grades( grade_array, grade_array + num_grades );

vector<int>::iterator grades_end = grades.end();

tips::print( grades, "Original  grades" );

// Method 1: increment entry in map each time a grade occurs

map<int,int> frequency;

for( vector<int>::iterator i = grades.begin(); i != grades_end;

++i )

++frequency[*i];

// find the largest value in the map

pair<int,int> mode_pair = *max_element( frequency.begin(),

frequency.end(), second_less );

// the corresponding key is the mode

cout << "Mode by method 1: " << mode_pair.first;

// Method 2: must sort grades first

sort( grades.begin(), grades.end() );

tips::print( grades, "\n\nSorted    grades" );

// prepare for finding mode

vector<int>::iterator start = grades.begin();

int mode_range = 0;

int mode_grade = 0;

pair<vector<int>::iterator,vector<int>::iterator> range;

// look for the largest range, which is the mode

while( start != grades_end )

{

range = equal_range( start, grades_end, *start );

if( range.second - range.first > mode_range )

{

mode_range = range.second - range.first;

mode_grade = *start;

}

start = range.second;

}

cout  << "Mode by method 2: " << mode_grade

<< "\n\nMinimum: " << grades[0]

<< "  Maximum: " << grades[num_grades-1]

428 C++ Standard Library Practical Tips



Tips on Numerical Processing 429

<< "  Median: " << grades[num_grades/2] << endl;

}

The output is

The program starts by creating a vector with some specific grades in it, using
the technique of Tip 5. To start the first method of finding the mode, the code cre-
ates a map whose key and value are both integers. The map key will be the data
value (in this program the grade), and the map value will be the frequency, that is,
the number of times that the data value (grade) occurs. After creating the map,
which is empty initially, the code goes through the entire vector with a simple for-
loop that executes only one line. The line uses each vector element as an index into
the map and increments the map value at that index. This creates a count of how
often each grade is in the data set. 

As Tip 35 explains, the map subscript operator has the curious property that if
the key passed to it doesn’t exist in the map, the operator creates a new element in
the map with that key. The map value of that element is whatever is produced by
the default constructor of the map value data type. For numeric data types, this is
0. Thus, if the map element for a grade doesn’t exist, it is automatically created, its
value is initialized to 0 and then incremented by 1. If the element does exist, its
value is simply incremented. At the end of the loop, the map contains a count of
how many times each grade occurs.

By definition, the mode is the value that occurs most often. To find it, use the
STL algorithm max_element (as described in Tip 83) to look through the map and
find the biggest map value. There’s a small hitch, however—by default, the algo-
rithm uses the less-than operator for the data type in the container. In this case, the
data type is the STL pair and the less-than operator compares two pairs by using
their first elements. These are the grades, not the frequencies of occurrence. To
compare the second element of each pair, the code uses a simple function (sec-
ond_less) that it passes as the third argument to max_element. This function com-
pares the two arguments passed to it and returns true if the member second of the
first argument is less than the member second of the second argument and false

Original  grades: 9 2 3 3 7 5 7 7 4 10 5 6 7 4 7 

Mode by method 1: 7

Sorted    grades: 2 3 3 4 4 5 5 6 7 7 7 7 7 9 10 

Mode by method 2: 7

Minimum: 2  Maximum: 10  Median: 6



430 C++ Standard Library Practical Tips

otherwise. max_element returns an iterator that points to the maximum element and
the code dereferences this and stores the resulting pair. The first value in this pair
is the grade that occurs most often, that is, the mode. The second line of the output
shows the result.

The second method starts by sorting the grades with the STL algorithm sort.
(The grades must be sorted in order to use the STL algorithm equal_range, which
is described next.) The third line of the output shows the sorted grades. A grade of
seven is the mode. 

The part of the program that finds the mode is the while loop. It uses
equal_range, which finds the range of elements that is equal to a given value (the
third argument) and returns this range as a pair of iterators. The first member of
the pair is the location of the first number in the vector equal to the specified num-
ber. The second pair member is one past the last location of that number. The loop
calculates the range of each different number in the array. This range is equal to the
number of times a number occurs, so by definition the largest of the ranges is the
mode. Note that the vector must be sorted for equal_range to work properly.

The output shows the results of the computations. In addition, the last line of
the output demonstrates that the minimum is the first element of the sorted vector,
the maximum is the last element, and the median is the middle element. If you’re
finding the mode by using the second method, you get these other three free. If you
don’t need the mode, but would like these other data characteristics, see Tip 83 and
Tip 87 for faster ways of computing these numbers.

Which method should you use? The advantages of the first method are that it’s
simpler and doesn’t change the container with the original data. The benefits of the
second method are that it only requires one container and you get the minimum,
maximum and median of the data set as part of the computation. Use the one
that’s best for your application. 

COMPUTE THE PERCENTILE

Applies to: Nth_element, partial_sort, sort
See also: Tip 5, Tip 16, Listing 13.5

Quick Solution
vector<int> v;

// ...

// find and display lowest 20th percentile unsorted

int percentile_20 = 0.2 * v.size();

nth_element( v.begin(), v.begin()+percentile_20-1, v.end() );

TIP 89



cout << "The lowest 20th percentile elements in unsorted order are: ";

copy( v.begin(), v.begin() + percentile_20,

ostream_iterator<int>( cout, " " ) );

// find and display lowest 20th percentile sorted

partial_sort( v.begin(), v.begin()+percentile_20, v.end() );

cout << "\nThe lowest 20th percentile elements in sorted order are: ";

copy( v.begin(), v.begin()+percentile_20,

ostream_iterator<int>( cout, " " ) );

Detailed Solution

Often in statistics or data analysis, you want to show a certain percentile of the data,
such as the bottom 25th percentile or the top 5th percentile. Your first thought
about how to do this might be to sort the numbers and then extract the appropri-
ate set from the beginning or end of the sorted group. You can do this easily with
C++, but it is inefficient. If you only want a top or bottom percentile, why bother
sorting the entire set? Some STL algorithms can produce those numbers without
sorting the whole thing. This can save a good bit of time. The program in Listing
11.14 shows you how.

LISTING 11.14 Finding a Percentile

// numeric_percentile.cpp

#include <algorithm>

#include <iostream>

#include <iterator>

#include <vector>

using namespace std;

int main( )

{

const int grade_array[] = { 98, 7, 54, 69, 87, 88, 56, 92, 77,

39, 22, 68, 80, 90, 93, 44, 75, 57, 98, 84, 82, 47, 34, 13, 78 };

const int num_grades =

sizeof( grade_array ) / sizeof( grade_array[0] );

// make a vector of the grades to use for sorting

const int percentile_20 = static_cast<int>( 0.2 * num_grades );

vector<int> grades( grade_array, grade_array+num_grades );

Tips on Numerical Processing 431



432 C++ Standard Library Practical Tips

// find and display grades in lowest 20th percentile

nth_element( grades.begin(), grades.begin()+percentile_20-1,

grades.end() );

cout << "The lowest  20th percentile grades are: ";

copy( grades.begin(), grades.begin() + percentile_20,

ostream_iterator<int>( cout, " " ) );

// find and display grades in highest 20th percentile

copy( grade_array, grade_array+num_grades, grades.begin() );

nth_element( grades.begin(), grades.begin()+percentile_20-1,

grades.end(), greater<int>() );

cout << "\nThe highest 20th percentile grades are: ";

copy( grades.begin(), grades.begin() + percentile_20,

ostream_iterator<int>( cout, " " ) );

// find and display sorted grades in lowest 20th percentile

copy( grade_array, grade_array+num_grades, grades.begin() );

partial_sort( grades.begin(), grades.begin()+percentile_20,

grades.end() );

cout << "\n\nThe lowest  20th percentile sorted grades are: ";

copy( grades.begin(), grades.begin()+percentile_20,

ostream_iterator<int>( cout, " " ) );

// find and display sorted grades in highest 20th percentile

copy( grade_array, grade_array+num_grades, grades.begin() );

partial_sort( grades.begin(), grades.begin()+percentile_20,

grades.end(), greater<int>() );

cout << "\nThe highest 20th percentile sorted grades are: ";

copy( grades.begin(), grades.begin()+percentile_20,

ostream_iterator<int>( cout, " " ) );

// sort and display all grades

copy( grade_array, grade_array+num_grades, grades.begin() );

sort( grades.begin(), grades.end() );

cout << "\n\nThe sorted grades are: ";

copy( grades.begin(), grades.begin()+9,

ostream_iterator<int>( cout, " " ) );

cout << endl;

copy( grades.begin()+9, grades.end(),

ostream_iterator<int>( cout, " " ) );

}



The output is

The code shows a set of grades stored in a C array. It then creates a vector con-
taining these numbers (see Tip 5) and calls nth_element to find the lowest 20th per-
centile. There are 25 elements, so the lowest five elements make up that percentile.

The first argument to nth_element is the container’s beginning iterator and the
last argument is its ending iterator. The middle argument is an iterator that serves
as a dividing point. After the call to nth_element, all elements in the container be-
fore the middle iterator will be less than or equal to the middle element and all el-
ements after the middle iterator will be greater than or equal to that element. In
other words, each element in the first sequence is less than or equal to each element
in the last sequence. Because the code is looking for the first five elements (the low-
est 20th percentile) and numbering starts from zero, the middle argument is the be-
ginning iterator plus the amount in the percentile minus one. The copy algorithm
displays these five elements, using a technique explained in Tip 16. Note that the
numbers are not sorted, but they are the five lowest, as the display of the complete
sorted array at the end of the output shows.

The next section of the code illustrates finding the top 20th percentile. The
code starts by copying the original data into the array (this is unnecessary but con-
firms that the starting input is the same as before) and then calling nth_element, this
time with a fourth argument. By default, the algorithm partitions the numbers in
ascending order. However, you can pass it a binary predicate (see “Predefined
Function Objects” in Chapter 2) to control the partitioning. In this case, the fourth
argument is the greater-than functor, which makes the highest numbers appear at
the beginning of the container. Again, the numbers in the percentile are not sorted.

If you need the numbers in the percentile to be sorted, but you still don’t want
to sort the entire array, you can do that with partial_sort, which sorts the initial
section of the numbers but not the second part. The first and third arguments are
the beginning and ending iterators of the container. The middle argument is the
ending iterator for a range that starts at the beginning iterator. As with all ranges,
the ending iterator is actually one past the last element of interest. This is why the

Tips on Numerical Processing 433

The lowest  20th percentile grades are: 13 7 22 34 39 

The highest 20th percentile grades are: 98 93 98 92 90 

The lowest  20th percentile sorted grades are: 7 13 22 34 39 

The highest 20th percentile sorted grades are: 98 98 93 92 90 

The sorted grades are: 7 13 22 34 39 44 47 54 56 

57 68 69 75 77 78 80 82 84 87 88 90 92 93 98 98



434 C++ Standard Library Practical Tips

TIP 90

code does not subtract one from percentile_20 as it does in the call to nth_element.
Notice in the output that the numbers are indeed sorted.

The fourth section of code shows the call to partial_sort with the greater-than
functor as the fourth argument. This forces the specified range to be sorted in de-
scending order, as the output demonstrates.

Finally, the last few lines of code illustrate a full sort, using the appropriately
named sort algorithm. If you need to find several percentiles, it may be better to
just sort the whole set of numbers once and then extract the desired percentiles. The
output shows the sorted array, which allows the previous answers to be confirmed. 

Table 11.2 shows the complexities of the algorithms used in this example. The
C++ Standard also provides additional information (such as worst-case behavior)
for some of these algorithms.

COMPUTE STATISTICS OF DATA

Applies to: For_each
See also: Tip 53, Tip 80, Tip 83, Tip 86, Tip 87, Tip 88, Tip 89

Quick Solution

See detailed solution.

Detailed Solution

In computing statistics of data, such as the mean and variance, each data value con-
tributes to some fundamental quantities from which the statistics are computed.
These quantities are the sum of the data values, the sum of the squares, and, for
higher-order statistics, the sum of higher powers of the data. The process of going to
each member of a set is an obvious application of the STL algorithm for_each. This
general-purpose algorithm can go to every element of a container and perform some

Algorithm Complexity

nth_element On average, linear with number of elements

partial_sort Approximately number of elements × log( number of sorted 
elements )

sort On average, approximately number of elements × log( number 
of elements )

TABLE 11.2 Complexities of Some STL Sorting and Partitioning Algorithms



operation on that member. Listing 11.15 is a program that shows how to gather
powers of the data values and then compute the mean and variance. You could eas-
ily enhance it to compute other statistics, such as the skewness or kurtosis.

LISTING 11.15 Computing Statistics

// numeric_statistics.cpp

#include <algorithm>

#include <cstdlib>

#include <functional>

#include <iostream>

#include <list>

using namespace std;

class Statistics

{

public:

Statistics();

void operator()( double value );

double mean();

double variance( );

private:

double x_, x_squared_;

int count_;

};

inline

Statistics::Statistics()

: x_squared_(0), x_(0), count_(0)

{} // empty

inline

void Statistics::operator()( double value )

{

++count_;

x_ += value;

x_squared_ += value * value;

}

inline

double Statistics::mean( )

Tips on Numerical Processing 435



436 C++ Standard Library Practical Tips

{

return x_ / count_;

}

inline double Statistics::variance( )

{

return x_squared_ /count_ - mean() * mean();

}

int main( )

{

list<int> data( 100000 );

// create random numbers

generate( data.begin(), data.end(), rand );

// make them go from 0 to 200

transform( data.begin(), data.end(), data.begin(),

bind2nd( modulus<int>(), 201 ) );

// make them go from -100 to 100

transform( data.begin(), data.end(), data.begin(),

bind2nd( minus<int>(), 100 ) );

// gather the statistics

Statistics stats = for_each( data.begin(), data.end(),

Statistics() );

// print the statistics

cout << "Mean = " << stats.mean()

<< "\nVariance = " << stats.variance() << endl;

}

The output is
The idea behind the technique in this tip is to create a class that stores the sum

of powers of the data. for_each will call the class on every member of a container

Mean = -0.15499

Variance = 3366.54



Tips on Numerical Processing 437

and then return a copy of the class with the gathered information stored in it. Then
the code will call class member functions to get the mean and variance.

The beginning of the code shows the class, called Statistics, that has private
variables that store the sum of the values, the sum of the squares of the values, and
the number of values. Statistics also has member functions that return the mean
and the variance, which is equal to the mean of the squares minus the square of the
mean. The most important member function is the call operator(), which for_each
will use. for_each passes a number to the call operator, which adds the number and
its square into the respective sums stored in the class, and also increments the
counter in the class that records the number of data values processed. (See “Func-
tors” in Chapter 2 for more information on the call operator.)

The program starts by making a large list and using the STL algorithm gener-
ate to fill it with random numbers (see Tip 80). Then the program uses transform
and the modulus functor to make the numbers vary from 0 to 200 inclusive and
calls transform again to subtract 100 from the numbers, which leaves a set of uni-
formly distributed random numbers that varies between –100 and +100 inclusively. 

Next, the program calls for_each, passing the input data range and a temporary
copy of the Statistics class Statistics. This contains the function operator that re-
ceives each element in the input range from for_each. Interestingly enough,
for_each returns a copy of the function argument passed to it. Of all the STL algo-
rithms, only for_each does this.  The returned copy of the function argument may
be different than the original. In this example, the class instance returned does dif-
fer from the original because it has stored the sums of powers of the data internally.

Once a copy of Statistics has been returned, the program uses it to display the
mean and variance. The output shows the results, which are very close to the theo-
retical values of 0 and 3366.67. 

There are other ways of calculating statistics using the C++ Standard Library.
Tip 53 provides a method of finding the standard deviation, which is the square of
the variance. Tip 86 shows you how to compute the mean. Tip 87 demonstrates
finding the median. Tip 88 gives you to ways of calculating the mode, and Tip 89
delves into percentiles.

INPUT AND OUTPUT IN BINARY FORMAT

Applies to: Bitset
See also: Tip 44, Tip 92, Tip 93

Quick Solution
cout << "Enter a binary number: ";

bitset< numeric_limits<unsigned long>::digits > bits;

TIP 91



438 C++ Standard Library Practical Tips

cin >> bits;

unsigned long decimal_equivalent = bits.to_ulong();

// write a decimal integer as a binary number

int num = 100;

cout  << "\nDecimal number: " << num << "\tBinary equivalent: " 

<< bitset<8>(num);

Detailed Solution

By default, C++ reads and displays integers in base 10, that is, decimal. Unfortu-
nately, the language doesn’t provide direct support for reading and writing binary
numbers. However, you can read and write them indirectly in binary format. The
program in Listing 11.16 shows how.

LISTING 11.16 Making I/O in Binary Format

// numeric_binary.cpp

#include <bitset>

#include <iostream>

#include <limits>

using namespace std;

int main( )

{

// Read a binary number into a bitset

cout << "Enter a binary number: ";

bitset< numeric_limits<unsigned long>::digits > bits;

cin >> bits;

unsigned long decimal_equivalent = bits.to_ulong();

cout  << "Binary number: " << bits

<< "\nDecimal equivalent: " << decimal_equivalent;

// write a decimal integer as a binary number

int num = 100;

cout  << "\n\nDecimal number: " << num

<< "\tBinary equivalent: " << bitset<8>(num) << endl;

}



The input and output are

You can accept a binary (base two) number from an input stream by using a bit-
set. This class template, which is part of the Standard Library, allows you to easily
manipulate groups of bits (see Tip 44 and “Miscellaneous Containers” in Chapter 2).
In general, a bitset can have any number of bits. It can convert the bit pattern into
an unsigned long, but the pattern must not have more bits than that data type does.

The program starts by creating a bitset. The code specifies the number of dig-
its that the bitset will have by calling the digits member of the numeric_limits tem-
plate class. In this example, the number of digits is that for an unsigned long
integer. The program then inserts the bitset into the input stream to receive the
user’s binary number. A bitset reads until it has accepted as many bits as its creation
size, until the user finishes entering digits (typically by pressing the Enter key), or
until it finds a character that is not a zero or one. If the user enters fewer bits than
the bitset can hold, the bitset fills its remaining bits with zeros.

The next line of code shows that to convert the binary number read in to a nu-
meric variable, you call the bitset’s to_ulong member function. This converts the bit
pattern into an unsigned long that can then be used for other things such as arith-
metic. (If there are too many bits to fit into an unsigned long integer, to_ulong
throws an overflow_error exception.) For an input of  “1101,” the second line of
the output shows the result of putting the bitset in the output stream. The pattern
is correct but the bitset prints all its bits, resulting in a potentially cumbersome dis-
play. The text that follows explains how to mitigate this problem. The third line of
the output shows the decimal value of the converted binary input.

If you have a variable in your program, you can display it in binary format as
long as the variable is convertible to an unsigned integer. The last line of the pro-
gram demonstrates that you can do this by making a temporary bitset variable
from your number and inserting the bitset in the output stream. If you know that
the binary value of the number will never occupy more than a certain number of
bits, create the bitset with that number of bits. To illustrate this, the code makes a
bitset with only eight bits. The bitset prints all its bits, so a smaller bitset produces
a shorter, and most likely cleaner, display. Compare the two binary numbers dis-
played in the output following Listing 11.16 to see this.

Tips on Numerical Processing 439

Enter a binary number: 1101

Binary number: 00000000000000000000000000001101

Decimal equivalent: 13

Decimal number: 100 Binary equivalent: 01100100



If you’re interested in base two I/O, you may also be interested in octal or hexa-
decimal I/O. If so, please see Tip 92 and Tip 93.

INPUT AND OUTPUT IN OCTAL FORMAT

Applies to: Oct, dec, resetiosflags, showbase, noshowbase
See also: Tip 91, Tip 93

Quick Solution
cout << "Enter an octal number: ";

int num;

cin >> oct >> num;

cout << "Octal: " << oct << num << "\tOctal with base: " << showbase 

<< num;

Detailed Solution

By default, integers are displayed in base 10, that is, decimal. For some types of
work, such as writing interfaces to hardware, it may be handy to have input and
output in octal (base 8). Listing 11.17 demonstrates the ways to do this.

LISTING 11.17 Making I/O in Octal Format

// numeric_octal.cpp

#include <iomanip>

#include <iostream>

using namespace std;

int main( )

{

// Read an octal number

cout << "Enter an octal number: ";

int num;

cin >> oct >> num;

// Display number in decimal and octal

cout  << "Decimal: " << num << "\tOctal: " << oct << num

<< "\tOctal with base: " << showbase << num << endl;

// Clear all numerical base flags for input stream

cout << "\nEnter 77 and 077: ";

440 C++ Standard Library Practical Tips

TIP 92



int n77, n077;

cin >> resetiosflags( ios::basefield ) >> n77 >> n077;

cout << dec << "\nDecimal equivalents: 77 = " << n77

<< "\t077 = " << n077;

}

The input and output are

The program starts by prompting for an octal number. The code inserts the
manipulator oct into the input stream before reading the number. The manipula-
tor causes all subsequent integer inputs to be interpreted as octal numbers and,
therefore, expects those numbers to have numerals only from 0 to 7 inclusive. The
change to octal format stays in effect until you explicitly reset it.

Next, the program displays the number it read in. By default, the output is in
decimal. The code writes the output in decimal, inserts the oct manipulator into the
output stream, and writes the same number in octal. If the user entered 61 as
shown, the second line of output shows the decimal equivalent (49) and the octal
output, which is 61—the same as the octal input. The end of the output line
demonstrates that C++ can put a prefix of “0” on octal outputs. This allows you to
distinguish octal numbers from those in decimal or hexadecimal. To use this con-
venient feature, insert the showbase manipulator into the output stream. To stop
displaying the base, insert the manipulator noshowbase into the output stream.

If you would like to enter numbers in different bases (octal, decimal or hexa-
decimal), there’s a better way of accomplishing this than by constantly changing the
base manipulators. What you can do is to set the input stream to have no default
base by using the resetiosflags manipulator to clear all bases, as shown in the
code. Then, if an input integer starts with 0, C++ assumes the number is octal; if it
starts with 0x or 0X, it is taken to be hexadecimal; and otherwise, it is interpreted
as a decimal integer. The last two lines of output demonstrate this behavior with a
decimal and octal input.

To get back to the default input interpretation, that is, all integers are assumed
to be decimal, insert the dec manipulator into the input stream. To work with

Tips on Numerical Processing 441

Enter an octal number: 61

Decimal: 49     Octal: 61       Octal with base: 061

Enter 77 and 077: 77 077

Decimal equivalents: 77 = 77    077 = 63



442 C++ Standard Library Practical Tips

numbers in binary format, see Tip 91. If hexadecimal I/O is important to you, see
Tip 93.

INPUT AND OUTPUT IN HEXADECIMAL FORMAT

Applies to: Hex, showbase, noshowbase, uppercase, nouppercase
See also: Tip 91, Tip 92

Quick Solution
cout << "Enter a hexadecimal number: ";

int num;

cin >> hex >> num;

cout << "\nHexadecimal default: " << hex << num

<< "\nHexadecimal without base: " << noshowbase << num

<< "\nHexadecimal with uppercase base: "

<< showbase << uppercase << num

<< "\nHexadecimal with lowercase base: "

<< nouppercase << num;

Detailed Solution

By default, integers are read and written in base 10, that is, decimal. Sometimes it
is convenient to work in hexadecimal (base 16). This might happen if you’re writ-
ing software that interfaces with hardware. The code in Listing 11.18 shows how to
get hexadecimal input and output.

LISTING 11.18 Making I/O in Hexadecimal Format

// numeric_hex.cpp

#include <iomanip>

#include <iostream>

using namespace std;

int main( )

{

// Read a hexadecimal number

cout << "Enter a hexadecimal number: ";

int num;

cin >> hex >> num;

TIP 93



// Display number in decimal and hexadecimal

cout  << "\nDecimal: " << num

<< "\nHexadecimal default: " << hex << num

<< "\nHexadecimal without base: " << noshowbase << num

<< "\nHexadecimal with uppercase base: "

<< showbase << uppercase << num

<< "\nHexadecimal with lowercase base: "

<< nouppercase << num;

// Clear all numerical base flags for input stream

cout << "\n\nEnter 77 and 0x77: ";

int n77, n077;

cin >> resetiosflags( ios::basefield ) >> n77 >> n077;

cout << dec << "\nDecimal equivalents: 77 = " << n77

<< "\t0x77 = " << n077;

}

The input and output are

The program starts by prompting for a hexadecimal number. It inserts the ma-
nipulator hex into the input stream before reading the number. The manipulator
causes all subsequent integer inputs to be interpreted as hexadecimal numbers. C++
therefore expects those numbers to include only the 10 numerals, the letters “A”
through “F” inclusive (in either upper or lower case), and possibly the prefixes “0x”
or “0X.” This change to hexadecimal format stays in effect until explicitly reset.

Next, the program displays the number it read in. By default, the output is in
decimal. The code writes the output in decimal, inserts the hex manipulator into the
output stream, and writes the same number in hexadecimal. If the user enters 3a as

Tips on Numerical Processing 443

Enter a hexadecimal number: 3a

Decimal: 58

Hexadecimal default: 3a

Hexadecimal without base: 3a

Hexadecimal with uppercase base: 0X3A

Hexadecimal with lowercase base: 0x3a

Enter 77 and 0x77: 77 0X77

Decimal equivalents: 77 = 77    0x77 = 119



444 C++ Standard Library Practical Tips

shown in the first line of the output, the program responds with the decimal equiv-
alent (58) and the hexadecimal output 3a—the same as the hexadecimal input.
These are in the second and third lines of the output.

By default, C++ does not show the base of the printed number. If the number
contains only digits from 0 to 7 inclusive, it’s hard to tell if it is in octal, decimal, or
hexadecimal. You can alleviate this problem by having the output appear with the
prefix “0x,” in upper or lower case. To make the prefix be displayed, insert the show-
base manipulator into the output stream. If you also insert the manipulator upper-
case, it forces the hexadecimal digits that are letters (A–F) and the base (if any) to
display in capital letters; otherwise, they appear in lower case. To produce a lower
case prefix and letters, insert nouppercase. To stop displaying the base, insert
noshowbase into the output stream.

If you would like to enter numbers in different bases (octal, decimal or hexa-
decimal), you can do so more easily than by constantly changing the base manipu-
lators. First, set the input stream to have no default base by using the resetiosflags
manipulator to clear all bases, as shown in the code. After that, if an input integer
starts with 0, C++ assumes the number is octal; if it starts with 0x or 0X, it is taken
to be hexadecimal, and otherwise it is interpreted as a decimal integer. The last two
lines of output demonstrate this behavior with a decimal and hexadecimal input.

To get back to the default input interpretation, that is, all integers are assumed
to be decimal, insert the dec manipulator into the input stream. To work with
numbers in binary format, see Tip 91. If you work with octal numbers, see Tip 92. 

DISPLAY LEADING ZEROS OF INTEGERS

Applies to: Setw, setfill

Quick Solution
int part, component;

// ...

// display part with 6 digits and component with 4. Use leading zeros

cout << setfill( '0' );

cout << "Part: " << setw( 6 ) << part << "   Component: "

<< setw( 4 ) << component;

Detailed Solution

In most circumstances when integers in base 10 are displayed, the leftmost digit
shown is never a 0. In some situations, it is desirable to print leading 0s, which go
on the left side of integers. In forms, for example, the month and day numbers

TIP 94



often have to be written with two digits. If the number has only one digit, a leading
0 must be added. Moreover, sometimes only the last two digits of the year are
shown, and this might require a leading 0, for example, 2003 written as 03.

Another use of showing integers with leading zeros is in displaying identifica-
tion numbers. Usually an exact number of digits of the ID must be shown, and this
might necessitate leading zeros. Unfortunately, you can’t directly specify that C++
display leading zeros. However, it’s easy to do, as the code in Listing 11.19 demon-
strates, by using such zeros in dates and identification numbers.

LISTING 11.19 Displaying Leading Zeros

// numeric_leading_zero.cpp

#include <iomanip>

#include <iostream>

using namespace std;

int main( )

{

const int num_members = 6;

const int id[num_members] = { 67809, 5492, 10000086, 8954,

345, 2278 };

const int month[num_members] = { 9, 1, 1, 12, 10, 4 };

const int day[num_members] = { 2, 1, 13, 30, 31, 4 };

const int year[num_members] = { 2000, 2003, 2004, 1998,

2001, 2003 };

// display data with leading zeros

cout << setfill( '0' );

for( int i = 0; i < num_members; ++i )

cout << "Member " << setw( 8 ) << id[i]

<< " joined the club on " << setw( 2 ) << month[i] << "/"

<< setw( 2 ) << day[i] << "/" << setw( 2 )

<< year[i] % 100 << endl;

}

The output is

Tips on Numerical Processing 445



446 C++ Standard Library Practical Tips

The program starts by making some arrays with information about the mem-
bers of a club. The arrays store the members’ identification numbers and the dates
on which people joined. The remainder of the code illustrates the creation of out-
put with leading zeros. The technique is to force the numbers that are written to oc-
cupy a certain number of characters in the output. The digits are right-justified, and
if there aren’t enough to occupy the required characters, C++ pads the output with
a fill character. By default, this is a space, but by changing it to the numeral 0,  you
get a number with leading zeros. 

The first thing the code does is to call setfill to make the fill character be “0.”
Once a program specifies the fill character with setfill, it remains that way until
explicitly changed. Then the program uses the manipulator setw (set width) and
passes it the number of characters that the output must take up. However, setting
the width with setw only affects the next formatted output, so the code must call it
before every number that it wants to be padded. The output shows member iden-
tifications and dates displayed with zeros in front of them. The dates are in the
American format, that is, month, day, and year.

DISPLAY PRECISION OF FLOATING-POINT NUMBERS

Applies to: Setprecision, fixed, scientific, showpoint, noshowpoint

Quick Solution
double x = 0.39;

cout

<< "0.39, default, 1 decimal place:  " << setprecision( 1 ) << x

<< "\n0.39, fixed, 2 decimal places:  " << fixed

<< setprecision( 2 ) << x

<< "\n0.39, scientific, 3 decimal places: "  << scientific

<< setprecision( 3 ) << x;

TIP 95

Member 00067809 joined the club on 09/02/00

Member 00005492 joined the club on 01/01/03

Member 10000086 joined the club on 01/13/04

Member 00008954 joined the club on 12/30/98

Member 00000345 joined the club on 10/31/01

Member 00002278 joined the club on 04/04/03



Detailed Solution

In displays of scientific numbers, especially experimental data, it’s important to
show the precision of measurements, that is, to show a certain number of places
after the decimal point. This may include trailing zeros if the precision warrants it.
C++ allows you to show the precision of floating-point numbers, both in fixed-
point and scientific notation. In the former, the decimal place is always between the
one’s and the one-tenth’s digits. In the latter, the number is written as a number
whose absolute value is at least 1 and less than 10 and is multiplied by 10 to an ap-
propriate power. The program in Listing 11.20 illustrates how to set the displayed
precision. (The precision of the data used in computation is independent of and
unaffected by the displayed precision.)

LISTING 11.20 Displaying Precision of Numbers

// numeric_trailing_zero.cpp

#include <iomanip>

#include <iostream>

using namespace std;

int main( )

{

const double x = .39;

const double y = 27;

cout

<< ".39, fixed, 1 decimal place:  "

<< fixed << setprecision( 1 ) << x << endl

<< ".39, fixed, 2 decimal places: "

<< setprecision( 2 ) << x << endl

<< ".39, fixed, 3 decimal places: "

<< setprecision( 3 ) << x << endl << endl

<< ".39, scientific, 1 decimal place:  "

<< scientific << setprecision( 1 ) << x << endl

<< ".39, scientific, 2 decimal places: "

<< setprecision( 2 ) << x << endl

<< ".39, scientific, 3 decimal places: "

<< setprecision( 3 ) << x << endl << endl

Tips on Numerical Processing 447



// return to default floating-point output format

<< resetiosflags( ios::fixed | ios::scientific )

<< setprecision( 6 )

<< ".39 and 27., default: "  << x << "   " << y << endl

<< ".39 and 27., default, 1 decimal place:  "

<< setprecision( 1 ) << x << "   " << y << endl

<< ".39 and 27., default, 2 decimal places: "

<< setprecision( 2 ) << x << "   " << y << endl

<< ".39 and 27., default, 3 decimal places: "

<< setprecision( 3 ) << x << "   " << y << endl << endl

<< ".39 and 27., default, decimal point: "

<< showpoint << x << "   " << y << endl

<< ".39 and 27., default, decimal point, 1 decimal place:  "

<< setprecision( 1 ) << x << "   " << y << endl

<< ".39 and 27., default, decimal point, 2 decimal places: "

<< setprecision( 2 ) << x << "   " << y << endl

<< ".39 and 27., default, decimal point, 3 decimal places: "

<< setprecision( 3 ) << x << "   " << y << endl;

}

The output is

448 C++ Standard Library Practical Tips

.39, fixed, 1 decimal place:  0.4

.39, fixed, 2 decimal places: 0.39

.39, fixed, 3 decimal places: 0.390

.39, scientific, 1 decimal place:  3.9e-01

.39, scientific, 2 decimal places: 3.90e-01

.39, scientific, 3 decimal places: 3.900e-01

.39 and 27., default: 0.39   27

.39 and 27., default, 1 decimal place:  0.4   3e+01

.39 and 27., default, 2 decimal places: 0.39   27

.39 and 27., default, 3 decimal places: 0.39   27



By default, C++ sometimes prints in fixed notation and sometimes in scientific
notation. It’s hard to set the precision in this mixed format, so the program uses
easier formats first. The key is to always have the output of floating-point numbers
appear in fixed-point notation or in scientific notation.

To make fixed-point output, insert the manipulator fixed into the stream.
Then, to control the precision, insert setprecision with the desired number of dec-
imal places into the stream also, as the code shows. This makes the output display
the desired precision, as the first three lines of output indicate. They also show that
numbers are rounded, not truncated, in the display of precision.

The next three pairs of code line produce similar output but in scientific nota-
tion. Again, note that the output shows exactly the desired number of decimal
places.

The manipulators fixed, scientific, and setprecision affect all floating-point
output after their insertion into the stream. They remain in effect until changed.
The default precision is 6. To set the default display of floating-point numbers, use
the resetiosflags manipulator as shown.

Left to its own devices, C++ prints floating-point numbers in either fixed or
scientific notation, depending on the value of the number. The first set of four out-
put lines labeled default show the result with the default number of decimal places
and then one, two, and three decimal places. The result is confusing because the
number of places after the decimal point is not always the same as the number spec-
ified in setprecision. If the number has an integer value, C++ omits the decimal
point. To force it to always display a decimal point, use the manipulator showpoint.
This remains in effect until you turn it off with the manipulator noshowpoint.

DISPLAY A THOUSANDS’ SEPARATOR

Applies to: Locale, numpunct facet

Quick Solution

See detailed solution.

Tips on Numerical Processing 449

TIP 96

.39 and 27., default, decimal point: 0.390   27.0

.39 and 27., default, decimal point, 1 decimal place:  0.4   3.e+01

.39 and 27., default, decimal point, 2 decimal places: 0.39   27.

.39 and 27., default, decimal point, 3 decimal places: 0.390   27.0



450 C++ Standard Library Practical Tips

Detailed Solution

By default, C++ does not display digits’ separators other than the decimal point.
However, it’s easier to read large numbers if their digits are broken into groups. In
the United States and other countries, the digits are grouped into threes and a
comma, called the thousands’ separator, is inserted between each triplet. Thus, for
example, one million is written as 1,000,000. 

Other countries have different conventions. For example, in Germany, the
thousands’ separator is the period, not the comma. In Nepal, the groups are two
and three digits long. The sample program in Listing 11.21 illustrates the case of di-
viding the digits into triplets and separating them by a comma.

LISTING 11.21 Displaying the Thousands’ Separator

// numeric_separator.cpp

#include <iomanip>

#include <iostream>

#include <locale>

using namespace std;

class Separator_facet: public numpunct<char>

{

public:

explicit Separator_facet( size_t refs = 0)

: numpunct<char>( refs )

{}

protected:

virtual string do_grouping() const

{ return "\3"; }

};

int main()

{

const int million = 1000000;

const double number = 1234.56789;

cout << "Default format:         " << million

<< fixed << setprecision( 5 ) << "      " << number;

// make a new locale and attach it to the standard output stream

locale separator_locale( cout.getloc(), new Separator_facet );

cout.imbue( separator_locale );



Tips on Numerical Processing 451

cout << "\n\nThousands' separator: " << million << "     "

<< number << endl;

}

The output is

Unfortunately, producing a thousands’ separator is more complicated than
what you would expect. To make this kind of formatting, you need to work with a
locale, which is the way C++ encapsulates national formatting conventions. These
conventions include the formatting for numbers, time, money, and text characters.
The various aspects of the formatting are handled by classes called facets. For ex-
ample, the class num_get handles numeric input, num_put produces numeric output,
and numpunct contains the symbols used in numeric formatting. To use any of these,
you must include the standard header <locale>.

Every stream contains a locale that does its formatting. However, once a locale
is created, neither it nor its facets can be changed. The only way to modify a locale
is to construct a new one from it, pass the alterations to the constructor, and replace
it with the newly made locale. Specifically, in this tip, you have to replace the
stream’s locale with a new locale that has a numeric-punctuation facet with a thou-
sands’ separator in it.

The new facet will actually be a class that is derived from numpunct, the original
facet. The top of the code shows this class definition. The important part is the
overriding of the protected, virtual function do_grouping. The base class’s function
just returns an empty string, which makes the digits appear in their default format
with no separators. The derived class instead returns a string whose one character
has the numeric value 3. This produces output that is grouped by threes. The de-
fault thousands’ separator is the comma, so that doesn’t need to be changed.

The program starts by displaying an integer and floating-point number in the
default format. The first line of the output shows that neither have thousands’ sep-
arators. Next, the program creates a new locale based on the current output
stream’s locale. The first argument to the constructor is that locale, which you can
obtain from the standard output stream by calling its member function getloc.

The second argument is a pointer to an instance of the derived class. If the facet
is made with a constructor whose argument is explicitly or implicitly 0, and a

Default format:         1000000      1234.56789

Thousands' separator: 1,000,000     1,234.56789



pointer to it is passed to the locale, the locale takes ownership and becomes 
responsible for deleting the facet. This is why the code doesn’t delete the facet. 

The next line of code replaces the output stream’s locale with the new one by
passing it to the stream’s imbue member function. Now all integer and floating-
point values written to the standard output stream will display thousands’ separa-
tors. The second line of the output shows what this looks like.

ACCESS DATA IN A FILE

Applies to: Standard container , ostream_iterator, istream_iterator, copy
See also: Tip 5, Tip 7, Tip 16, Tip 80

Quick Solution
ifstream in( "numbers.txt" );

// read file with one number per row

vector<int> input_data( (istream_iterator<int>( in )),

istream_iterator<int>() );

Detailed Solution

When working with data sets, it’s often convenient to be able to quickly read a set
of numbers from a file or write a set to a file. This tip shows you how to do that.
One limitation in the technique, though, is that the data set must only have one
data type. This isn’t much of a problem because all elements in a container must
also be the same type. Listing 11.22 demonstrates the technique.

LISTING 11.22 Accessing Data in a File

// numeric_file_data.cpp

#include <algorithm>

#include <cstdlib>

#include <fstream>

#include <functional>

#include <iostream>

#include <iterator>

#include <vector>

#include "tips.hpp"

using namespace std;

452 C++ Standard Library Practical Tips

TIP 97



int main( )

{

// generate ten random numbers

vector<int> output_data( 10 );

generate( output_data.begin(), output_data.end(), rand );

// turn them into numbers that go from 0 to 9

transform( output_data.begin(), output_data.end(),

output_data.begin(), bind2nd( modulus<int>(), 10 ) );

// open a file

ofstream out( "data.txt" );

if( !out )

{

cout << "Couldn't open output file\n";

return 0;

}

// write data to the file and close it

copy( output_data.begin(), output_data.end(),

ostream_iterator<int>( out, "\n" ) );

out.close();

// open the file to read from it

ifstream in( "data.txt" );

if( !in )

{

cout << "Couldn't open input file\n";

return 0;

}

// read the data and close the file

vector<int> input_data( (istream_iterator<int>( in )),

istream_iterator<int>() );

in.close();

// display the input and output data

tips::print( output_data, "Output data" );

tips::print( input_data, "Input  data" );

}

The output is

Tips on Numerical Processing 453



and the text file the program creates (data.txt) is

The program starts by using the STL algorithm generate to create some ran-
dom numbers in a vector and make them lie in the range of zero to nine inclusive.
(See Tip 80 for more details on making sequences of random numbers.) Next, the
code creates an output stream connected to a data file and verifies that the creation
succeeded. Then, in one call to an algorithm, the code writes the entire data set in
the list to the file by using copy. The typical use of this function is to copy one con-
tainer to another. However, the destination is actually an output iterator, and it
doesn’t necessarily have to point to a container.

The first two arguments are the usual suspects, input iterators to the beginning
and end of the container. For the last argument, the code constructs an output it-
erator from a file output stream. “Stream Iterators” in Chapter 2 explains this tech-
nique. In fact, you can use almost identical code to write the standard output
stream, as Tip 16 shows. And if you wanted to, you could omit the closing of the file
that the program shows to make the code more analogous to that in Tip 16. How-
ever, it is good practice to close a file stream when you’re done with it.

To read from a file, you first make an input file stream that is connected to that
file. Then, to read the data into a container, you use the form of the container’s con-
structor that accepts an iterator range. (Tip 5 explains this constructor.) The first
argument shows how to make an input iterator that points to the beginning of an
input stream. The second argument, which is the default constructor for
istream_iterator, creates an end-of-stream iterator, equivalent to end() in a con-
tainer. It marks the end of the file, as “Stream Iterators” in Chapter 2 explains. The

454 C++ Standard Library Practical Tips

Output data: 0 2 0 6 7 5 5 8 6 4 

Input  data: 0 2 0 6 7 5 5 8 6 4

0

2

0

6

7

5

5

8

6

4



code passes these two iterators to the vector’s constructor. Tip 7 illustrates that you
can use the same technique to fill a container from the standard input stream. It
also explains why the parentheses around the first argument are necessary.

The output shows that the code read the same numbers from the file that it
stored there.

Tips on Numerical Processing 455



This page intentionally left blank 



457

Final Tips12

This chapter has some final suggestions on ways to get more out of the C++
Standard Library, and especially out of the Standard Template Library. These tips
are general in nature and aren’t about coding per se. Actually, they don’t have any
programs with them. However, in the long run, they can be just as valuable as cod-
ing techniques. This chapter will show you the following:

Where to get a free, portable version of the STL
Where to get free, high quality code that uses the STL
How to let great C++ Standard Library tips you’ve discovered help others

GET A FREE, PORTABLE STL

Applies to: Standard Template Library on many platforms and compilers

Quick Solution

A free, highly portable, STL is available from www.stlport.org.

Detailed Solution

Sometimes a small project starts out well and just keeps getting bigger and better.
A good example is Boris Fomitchev’s STLport, a portable version of the STL. In
1997, after the first release of SGI’s STL, he made a quick port of the STL for inter-
nal use at his workplace. He also started distributing it on his own Web page. Peo-
ple found the ported code very useful and many volunteered to help him write
versions for other platforms. Now (September 2004), the code runs on about 20
different platforms and usually on a number of versions of each compiler. Here are
some interesting points about this library:

TIP 98

www.stlport.org


458 C++ Standard Library Practical Tips

It’s available for free, even on commercial projects. There are no royalties to
pay.
It comes with extensions to the official version of the STL, such as hash tables,
singly linked lists and ropes (strings designed to handle large amounts of text).
It’s the only current version of the STL that has built-in debugging help. It pro-
vides checks on the validity, ownership, and dereferenceability of iterators and
on the preconditions of the STL algorithms. This is very useful because STL
code can be quite hard to debug.
The developers make bug fixes available immediately.
You can get information from and have discussions with other users online.
The development team has professional consultants available, though there is
a charge for that.

If you’re going to be moving your code among platforms, you may want to
consider using STLport. The library and more information are available for free at
www.stlport.org.

GET FREE, HIGH-QUALITY STL CODE

Applies to: Applications that use the STL

Quick Solution

Get free, powerful, high-quality, STL code from www.boost.org.

Detailed Solution

Want some great STL libraries? For free? They’re yours for the taking. The Boost li-
braries, at www.boost.org, are a tremendous resource. The organization’s Web site
provides C++ source libraries. The code is free (under terms of a license), it’s
portable, and it’s peer-reviewed. This last item means that other programmers scru-
tinize the code and approve it before it is made available to the public. This really
increases the libraries’ quality. Thousands of programmers use the libraries and
there are newsgroups and mailing lists for developers, users, and specific projects.

Besides providing software libraries, Boost serves as a test bed for code that may
become part of the C++ Standard Library. As of September 2004, 10 Boost libraries
were included in a report to the C++ Standards Committee recommending their
addition to the C++ Standard. By using these libraries, you can gain experience
with code that may become an official part of the language.

Here’s a partial list of what was available on September 2004:

TIP 99

www.stlport.org
www.boost.org
www.boost.org


String and Text Processing: Conversion of arbitrary data types to and from
text, including better numerical conversions than currently available, recur-
sive-descent parser generator framework, tokenizer, regular expression match-
ing (wildcards)

Containers: Arrays of constant size, runtime-sized bitsets, graph compo-
nents and algorithms, multidimensional arrays

Iterators: Iterator construction framework

Function objects and higher-order programming: Generalized binders,
function object wrappers for deferred calls or callbacks, enhanced function ob-
ject adaptors, lambda abstractions (unnamed functions)

Math and numerics: Greatest common divisor and least common multi-
ple, quaternions and octonions, special functions such as the hyperbolic arct-
angent (atanh) and the sine cardinal (sinc), random number generation,
rational numbers, linear algebra

Miscellaneous: Cyclic redundancy codes; dates and times; portable paths,
directory iteration and other file system operations; timers

One of the most exciting prospects is the lambda abstraction library, which lets
you define small, unnamed functions directly in the call of an STL algorithm. To il-
lustrate, suppose you want to construct a container filled with ones but don’t know
the simple way to do this that Tip 4 shows. First, you write a little function that ac-
cepts a reference and sets that passed value to one. Then you use for_each with the
container and function, for example, 

void initialize( int& n )

{   n = 1;   }

// ...

list<int> bid( 100 );

for_each( bid.begin(), bid.end(), initialize );

This works, but you’ve had to create a whole function to do something very
simple. This is extra work and extra maintenance for a function that you might
never use again. With lambda abstractions you can simply write

list<int> bid( 100 );

for_each( bid.begin(), bid.end(), _1 = 1);

The expression _1 = 1 creates a lambda functor that assigns a value of one to
the variable _1. for_each calls the functor for every element, replacing the _1 with

Final Tips 459



460 C++ Standard Library Practical Tips

the element. It then executes the expression (the “body” of the functor), which sets
the element to 1. The result is that all elements of the list are set to 1. In effect, the
lambda expression behaves the same as a custom-written function but entails less
work. Lambda functors make the STL algorithms more convenient to use and
much more powerful. Let’s hope they make it into the standard soon.

SHARE THE WEALTH—CONTRIBUTE YOUR FAVORITE TIP

Applies to: All C++ programmers

Quick Solution

Send in your tips and show other programmers the cool things you’ve discovered.

Detailed Solution

The preceding 99 tips in this book can make your C++ Standard Library code 
better, faster, and cleaner. I figured some of them out while writing lots and lots of
software. However, many of them came from reading books and magazines, 
having technical discussions with colleagues, and studying other people’s code.
Programmers have a long and strong tradition of sharing their work so that the 
entire community can be more productive and make higher quality software.
Here’s another chance to participate.

Is there an STL trick that you’ve found immensely helpful? Do you have a Stan-
dard Library code snippet of unrivaled elegance? Is there a technique that’s saved
you lots of time? Let others know about it and make life easier for everyone. Drop
me an email at Greg.Reese@ieee.org, and I can add your little masterpiece to our
collection of tips.

TIP 100



461

Image Processing13

T
his chapter is an example of using this book’s tips in realistic code. The soft-
ware here performs some basic digital image processing. A digital image is a
picture that is stored in a computer and whose colors or shades of gray have

been converted to numbers. Digital image processing, or simply image processing, is
computationally manipulating digital images to better extract information from
them. In some cases of image processing, you want the computer to explicitly take
measurements in the image, such as the size of the object, the distance between two
points in the image, or the brightness of various points of light in the image. These
may, for example, be pictures of stars. In other cases, you just want to make the
image look better so that a person can see things in it more easily. You might want
to blur the image to get rid of speckling, make the contrast larger to let objects in
the image be more distinguishable, or bring out edges so that items in the image can
be seen more easily.

Figure 13.1 shows the basic sequence of events in image processing. Light falls
on a scene and is reflected to a digital camera that focuses it onto a two-dimensional
grid of light receptors. Each receptor measures the amount of light that falls on it
and converts that value into a number. Low numbers represent small amounts of
light (dark areas), and high numbers represent large amounts of light (bright
areas). The array of numbers is moved to a computer on which the image can be
processed. The computer then displays the image for a person to examine, stores it,
or sends it along to other software that can process it further and automatically 
extract information.

There are many variations to this sequence of events:

What enters the camera from the scene does not have to be visible light—it can
be sound (medical ultrasound images), invisible light (infrared or X-ray im-
ages), or other forms of electromagnetic radiation (radar or radio wave images).
Light can come from the scene itself, such as stars or fireworks.
You can create images on the computer so that no camera is needed. Artificial
images are common in research settings and for testing software.



462 C++ Standard Library Practical Tips

Instead of just capturing the strength of the light, the camera can measure the
strength at different wavelengths (colors). Consumer digital cameras measure
the strength in three colors—red, green, and blue. Satellites often take hyper-
spectral images in which they measure the strength in many wavelength bands,
including ones that are not visible.
The images can be three-dimensional, such as CT scans or MRI images. 
Currently, however, these 3D pictures are made up of two-dimensional images
that are stacked to simulate three dimensions.

When the measurement from a light receptor is stored as a number in an
image, it is known as a pixel or pel, meaning a picture element. When you look at a
digital image, you can’t see the individual pixels because they are displayed closely
together, as Figure 13.2(a) demonstrates. However, if you enlarge the image
enough, you will be able to see the pixels. They look like squares of solid shades of
gray or color (if the image is a color image). Figure 13.2(b) is an enlargement of the
part of the image in the white square of Figure 13.2(a). 

This chapter will only cover simple forms of image creation and image en-
hancement and will only deal with gray-level images, that is, digital images that
have no colors, only shades of gray. These are analogous to black-and-white pho-
tographs. The chapter also assumes that each pixel takes up one byte whose values
run from 0 to 255 inclusive. In C++, an unsigned char usually has that size and
range.

The coding style for the software in this chapter is more realistic than that for
the tips. Functions and classes are well-documented and have descriptions of their
inputs, outputs, and the requirements that the user must uphold to call the soft-
ware. Also, the code does not have any using statements and, in particular, does not
contain the using namespace std; statement that the tips have. You’ll see that, in

FIGURE 13.1 Sequence of events in image processing.



this application, explicitly writing the standard namespace scope operator std::
actually causes very little clutter.

IMAGE CLASS

Before creating images or processing them, it’s necessary to have a class that repre-
sents the image. The first question about this class is how it will store a two-di-
mensional (2D) image. C++ stores native two-dimensional arrays, for example,
unsigned char image[128][64], row by row in a one-dimensional array. The image
class can’t use a native C++ 2D array because its size is fixed at compile time and the
image class should be able to resize at runtime. (Images also tend to be much larger
than what should be declared locally, that is, on the stack.) Although there are var-
ious ways of storing a 2D array, the image class will use a method similar to how
C++ stores a 2D array.

The image class will store the pixels in a one-dimensional vector. The first (top)
row of pixels comes first in the vector, followed by the second row, the third row,
and so on. Figure 13.3 shows this arrangement for an image with R rows and C
columns.

The fact that the class actually stores the image in a one-dimensional vector is
an implementation detail that is invisible to the user, who always specifies a partic-
ular pixel by giving its row and column. The class must convert this to an index in
the vector. The formula for this is

i = r × C + c (13.1)

Image Processing 463

FIGURE 13.2(a) A digital image. FIGURE 13.2(b) Enlarged view of  the
white square in (a).



464 C++ Standard Library Practical Tips

where r is the row number of the pixel, c is its column number, C is the number of
columns in the image and i is the resulting index in the vector. The number of rows
doesn’t enter into the equation. The image class has a private member function
called convert that performs the conversion in Equation 13.1.

Another common procedure with images is to read all the pixels or write to all
of them. For example, to find the minimum and maximum pixels in the image, you
have to examine all the pixels. If you want to make the entire image brighter by the
same amount, you can add a constant to all the pixels. Because operating on all pix-
els is common and useful, the image class has the member functions begin and end,
which provide an STL range that covers the entire image. The class specifies the
range with iterators so you can use it in the STL algorithms.

A third common procedure is to iterate over a section of columns in one row
or all columns in one row. To make this easier to do, the image class provides the
member functions row_begin and row_end to return the requested stretch of
columns as an STL iterator range. The class doesn’t provide analogous functions for
iterating over the rows of a column because that is rarely done in image processing.

Listing 13.1 shows the code for the image class, called Image. Although it is the
longest piece of code in this book, Image isn’t very complicated. For example, all but
one of the member functions are simple enough to be inlined.

LISTING 13.1 The Image Class

1    // ip_image.hpp

2

3    template<class T>

FIGURE 13.3 Two-dimensional image in a one-dimensional vector.



4    class Image

5    {

6    public:

7

8    // iterators and references

9    typedef typename std::vector<T>::iterator iterator;

10    typedef typename std::vector<T>::const_iterator const_iterator;

11    typedef typename std::vector<T>::reference reference;

12    typedef typename std::vector<T>::const_reference const_reference;

13

14    // constructors

15    Image();

16    // make empty image

17

18    Image( int rows, int columns, T initial_value = T() );

19    // make image of specified size and filled with given value

20    // REQUIRE: rows > 0, columns > 0,

21    //          initial_value in range of T (see NOTE of operator=)

22    // NOTE:    to make an empty image use the default constructor

23

24     // assignment operator and destructor

25     // use compiler's default versions

26

27    // operators

28    reference operator()( int row, int column );

29    const_reference operator()( int row, int column ) const;

30    // read and write pixel at specified location, e.g., im(3,17)

31    // REQUIRE: 0 <= row < rows(), 0 <= column < columns()

32    // NOTE: in all coordinates in this class, row zero is the top

33    //       row, row rows()-1 is the bottom row, column zero is the 

34    //       left column, column columns()-1 is the right column

35

36    void operator=( T value );

37    // fill image with specified value

38    // NOTE: passed value may have data type other than T as long as

39    //       it is convertible to T. If so, passed value should lie 

40    //       in range of T to avoid problems with conversion, e.g.,

41    //       Image<unsigned char> im;

42    //       im = 100; <- constant interpreted as int but must lie 

43    //                 in range of unsigned char to avoid conversion

44    //                 error

45

46    // iterator functions

47    iterator begin();

Image Processing 465



48    const_iterator begin() const;

49    iterator end();

50    const_iterator end() const;

51

52    // read or write all pixels

53    iterator row_begin( int row );

54    const_iterator row_begin( int row ) const;

55    iterator row_end( int row );

56    const_iterator row_end( int row ) const;

57    // returns beginning and end of a single row for reading and

58    // writing all pixels in a row. Refer to this as a

59    // "row iterator"

60    // REQUIRE: 0 <= row < rows(), when used as range, row in

61    //          row_begin and row_end must be the same

62    // PROMISE: iterators mark half open ranges so can be used in

63    //          STL algorithms. End iterators should not be

64    //          dereferenced

65

66    iterator row_begin( int row, int column );

67    const_iterator row_begin( int row, int column ) const;

68    iterator row_end( int row, int column );

69    const_iterator row_end( int row, int column ) const;

70    // row iterators for reading and writing between specified

71    // columns of a single row

72    // REQUIRE: 0 <= row < rows(), 0 <= column < columns()

73    //          when used as range, row in row_begin

74    //          and row_end must be the same and column in row_begin

75    //          must be <= column in row_end

76    // PROMISE: iterators mark half open ranges so can be used in

77    //          STL algorithms. End iterators should not be

78    //          dereferenced

79    // NOTE:    the columns specified are inclusive, i.e., the

80    //          returned range includes both the column in row_begin

81    //          AND the column in row_end. row_end actually returns

82    //          one column past the column specified so that the

83    //          range can be used in STL algorithms. For example,

84    //

85    //          copy( image.row_begin( 3, 5 ),

86    //             image.row_end( 3, 8 ), v.begin() );

87    //

88    //          copies the pixels in columns 5, 6, 7, AND 8 to

89    //          v.begin()

90

91    void clear();

466 C++ Standard Library Practical Tips



92    // make the image be empty, i.e., have zero rows and columns

93

94    int columns() const;

95    // number of columns in image

96    // PROMISE: columns() >= 0

97

98    bool empty() const;

99    // returns true if the image has zero rows and columns,

100    // otherwise false

101

102    void resize( int rows, int columns );

103    // change the size of the image

104    // REQUIRE: rows > 0, columns > 0

105    // PROMISE: if rows and columns are the same as the current

106    //          values, does nothing. If not, gets rid of the old

107    //          image and makes a new one of the specified size

108    //          filled with zeros.

109

110    int rows() const;

111    // number of rows in image

112    // PROMISE: rows() >= 0

113

114    private:

115

116    typename std::vector<T>::size_type convert( int row, int column )

const;

117    // convert from a 2D pixel location to 1D index in pixels_

118    // REQUIRE: 0 <= row < rows(), 0 <= column < columns

119

120    int columns_;

121    int rows_;

122    std::vector<T> pixels_;

123 };

124

125 // constructors

126

127 template<class T>

128 inline

129 Image<T>::Image()

130    : columns_( 0 ), rows_( 0 ), pixels_()

131 {} // empty

132

133 template<class T>

134 inline

Image Processing 467



135 Image<T>::Image( int rows, int columns, T initial_value )

136    : columns_( columns ), rows_( rows ),

137      pixels_( rows * columns, initial_value )

138 {} // empty

139

140 // image fill and pixel read/write

141 template<class T>

142 inline void Image<T>::operator=( T value )

143 { pixels_.assign( pixels_.size(), value ); }

144

145

146 template<class T>

147 inline typename Image<T>::reference Image<T>::operator()( int row,

148    int column )

149 { return pixels_[convert( row, column )]; }

150

151 template<class T>

152 inline typename Image<T>::const_reference

153 Image<T>::operator()( int row, int column ) const

154 { return pixels_[convert( row, column )]; }

155

156 // iterator functions

157 template<class T>

158 inline typename Image<T>::iterator Image<T>::begin()

159 { return pixels_.begin(); }

160

161 template<class T>

162 inline typename Image<T>::const_iterator Image<T>::begin() const

163 { return pixels_.begin(); }

164

165 template<class T>

166 inline typename Image<T>::iterator Image<T>::end()

167 { return pixels_.end(); }

168

169 template<class T>

170 inline typename Image<T>::const_iterator Image<T>::end() const

171 { return pixels_.end(); }

172

173 template<class T>

174 inline typename Image<T>::iterator Image<T>::row_begin( int row )

175 { return pixels_.begin() + row * columns(); }

176

177 template<class T>

178 inline typename Image<T>::const_iterator

468 C++ Standard Library Practical Tips



179 Image<T>::row_begin( int row ) const

180 { return pixels_.begin() + row * columns(); }

181

182

183 template<class T>

184 inline typename Image<T>::iterator Image<T>::row_end( int row )

185 { return row_begin( row + 1); }

186

187 template<class T>

188 inline typename Image<T>::const_iterator

189 Image<T>::row_end( int row ) const

190 { return row_begin( row + 1 ); }

191

192 template<class T>

193 inline typename Image<T>::iterator

194 Image<T>::row_begin( int row, int column )

195 { return row_begin( row ) + column; }

196

197 template<class T>

198 inline typename Image<T>::const_iterator

199 Image<T>::row_begin( int row, int column ) const

200 { return row_begin( row ) + column; }

201

202 template<class T>

203 inline typename Image<T>::iterator

204 Image<T>::row_end( int row, int column )

205 { return row_begin( row, column ) + 1; }

206

207 template<class T>

208 inline typename Image<T>::const_iterator

209 Image<T>::row_end( int row, int column ) const

210 { return row_begin( row, column ) + 1; }

211

212

213 // other functions in alphabetical order

214

215 template<class T>

216 inline void Image<T>::clear()

217 {

218    pixels_.clear();

219    rows_ = 0;

220    columns_ = 0;

221 }

222

Image Processing 469



223 template<class T>

224 inline int Image<T>::columns() const

225 { return columns_; }

226

227 template<class T>

228 inline typename std::vector<T>::size_type

229 Image<T>::convert( int row, int column ) const

230 { return row * columns() + column; }

231

232 template<class T>

233 inline bool Image<T>::empty() const

234 { return pixels_.empty(); }

235

236 template<class T>

237 void Image<T>::resize( int the_rows, int the_columns )

238 {

239    if( the_rows == rows() && the_columns == columns() )

240       return;

241

242    // clear first because resize won't change values of undeleted

243    // pixels

244    pixels_.clear();

245    pixels_.resize( the_rows * the_columns ); // fills with T()

246    rows_ = the_rows;

247    columns_ = the_columns;

248 }

249

250 template<class T>

251 inline int Image<T>::rows() const

252 { return rows_; }

253

Although this chapter will only deal with gray-level images, it’s easy to make the
image class be a class template. That will let you work with images of other data
types, such as unsigned short, float, or a class for color pixels.

The template for Image starts by declaring some type definitions (typedef) for
iterators, references, and their constant versions in lines 9–12. Then Image declares
two constructors. The first, in line 15, is the default constructor and makes an
empty image, that is, one with no rows and no columns. The second constructor
(line 18) lets the user make an image of the specified dimensions and, optionally,
filled with a given constant. (The expression T() in line 18 is the default construc-
tor of the image’s data type. For numerical data types, this produces a value of 0.)

470 C++ Standard Library Practical Tips



The compiler will create a default assignment operator and destructor, and these
will work fine for the template classes.

Lines 28–29 define operator() to take two values, the row and column of a
pixel. The call operator returns a reference or constant reference to that pixel. This
operator allows convenient access to individual pixels. For example,

Image<unsigned char> image( 256, 256 );

// ...

if( image( 10, 20 ) > image( 10, 40 ) )

image( 10, 20 ) = 100;

shows individual pixels being read from and written to. Note that you can’t access
pixels using double brackets as you do for 2D C++ arrays; for example,
image[10][20] is not allowed.

Line 36 defines an assignment operator that accepts a value and sets all pixels
equal to that value, for example, image = 50 makes all pixels in image be 50. Be
aware that when using an unsigned char image and assigning it an integer constant,
you may get a warning from the compiler about losing precision or significant dig-
its. This is because C++ assumes the constant is an int and you’re trying to assign
it to an unsigned char. As long as the value of the constant is within the range of an
unsigned char (typically 0–255 inclusive), you’ll be all right.

Next comes a slew of member functions that return iterators or row iterators.
They can all be used in STL algorithms that require forward iterators. (It turns out
that they are actually random iterators, but because none of the code in this appli-
cation requires that an iterator be that versatile , being a forward iterator is suffi-
cient.) When specifying the end column for the row_end member functions in lines
68–69, the user should make the column number inclusive, that is, that column is
to be included in a range. (Image processing users typically think in closed ranges,
not the half-open ranges of the STL.) The row_end member functions will actually
return an iterator to one pixel past that column, which enables you to use row_begin
and row_end with STL algorithms.

Finally, the class template declares a few additional member functions. These
let you get the number of rows and columns in the image, determine whether the
image is empty, and resize the image. The last function, declared on line 102, deletes
the pixels in the current image and replaces them by an image of the specified di-
mensions filled with pixels that are 0. If, however, the number of rows and number
of columns are the same as those in the image, the function does nothing.

The rest of Image is declared private. It contains variables for the pixels and the
number of rows and columns. A member function (convert) converts a two-di-
mensional pixel location to an index into the pixel vector using Equation 13.1.

Image Processing 471



The member function definitions start on line 127. Most are straightforward.
On line 143, the operator that sets each pixel to the specified value uses the vector’s
assign member function. The first argument is the number of elements in the vec-
tor that are to be assigned, and the second argument is the assigned value. By using
the total number of elements in the vector as the first argument, the code changes
all elements. Tip 47, Tip 50, and Tip 79 demonstrate this technique more fully.

Line 151 is the start of the iterator function definitions. Image’s beginning and
end iterators are simply those of its vector data member. Line 175 illustrates that the
beginning iterator for a row is an iterator pointing to column 0 of that row. The
pixel vector’s iterators are random iterators; Tip 20 explains that you can add inte-
gers to them. Thus, the returned iterator is the sum of the vector’s beginning itera-
tor and the number of elements to the first column of the desired row. The end
iterator is just the start of the next row, as line 185 shows. Note that the element for
the end iterator of the last row doesn’t exist. This is why Image specifies that its end
iterators can’t be dereferenced.

The clear member function starts on line 215. It calls the pixel vector’s clear
function and takes the necessary step of setting the dimensions of the image to 0.
Another member function, resize, starts on line 236. The routine first checks the
desired dimensions; if they’re the same as the current ones, the routine returns
without doing anything. If the dimensions aren’t the same, the code clears the vec-
tor, resizes it (which automatically fills the vector with zeros), and sets the new di-
mensions. The function clears the vector because if it is resized to a smaller size, the
vector won’t set all the elements to 0. (An alternative would be to skip the clearing
and set all elements to 0 after resizing.)

The remainder of this chapter demonstrates various image processing tech-
niques and how they use the tips in this book. Most of the code is made up of global
functions, though there are some member functions, too. Many of the routines are
template functions, but sometimes it’s more practical to make them only run on
unsigned char images.

IMAGE CREATION

Not all images are captured by cameras—some are created on the computer. These
artificial images are useful for a variety of reasons:

To test image processing software. If the images are simple, you can compute
the output of a process by hand and compare it to the results of the software.
To make images for vision research. Because it can be easier than making a
physical object to view, the pixel values in the artificial image can be set more
precisely, or the object may not exist (random patterns of bright and dark).

472 C++ Standard Library Practical Tips



To make images of objects that are infeasible for most people to photograph,
for example, planes in flight.

Block

The first image to create is a block, that is, a rectangle of one pixel value. Blocks are
useful for providing uniform backgrounds for other objects, for testing other image
enhancement code such as edge enhancement, and even for research in human vi-
sion, including illusions. For example, which of the blocks in the middle of Figure
13.4(a) and Figure 13.4(b) is lighter?

The code in Listing 13.2 produces a uniform, rectangular block anywhere in an
image.

LISTING 13.2 Make a Block

// ip_block.hpp

template<class T>

void block( Image<T>& image, int top, int left, int bottom, int right,

T value )

// draw a rectangle of one value in the image

// INPUT:   top - top row of block        left - left column of block

//          bottom - bottom row of block  right - right column of block

// REQUIRE: both rows and columns must be in the image and

//          top <= bottom,   left <= right

{

for( int i = top; i <= bottom; ++i )

std::fill( image.row_begin( i, left ), image.row_end( i, right ),

FIGURE 13.4(a) One block. FIGURE 13.4(b) Another block.

Image Processing 473



value );

}

inline

void block( Image<unsigned char>& image, int top, int left, int bottom,

int right, int value )

// REQUIRE: same as above but value must be in range of unsigned char

{  block( image, top, left, bottom, right,

static_cast<unsigned char>( value ) );

}

The function operates by looping over all the rows in the block and, for each
row, filling in all the columns with the passed pixel value. The STL algorithm fill
does this by setting each element in its input range to the specified value. The code
in block demonstrates the generality of the STL algorithms by operating on custom
iterators.

The code to make the images in Figure 13.4 is

Image<unsigned char> image( 600, 600 );

int width_third = image.rows() / 3;

int top = width_third;

int bottom = image.rows() - width_third;

int left = width_third;

int right = image.columns() - width_third;

image = 100;

block( image, top, left, bottom, right, 127 ); // left figure

image = 154;

block( image, top, left, bottom, right, 127 ); // right figure

This code snippet also tells you which block is lighter.
In the preceding snippet, image is an instance of the Image<unsigned char> class.

In the remainder of this chapter image, image1, image2, and out will also be instances
of that class.

Vertical Bars

Another simple pattern is a set of vertical bars. Bars are useful for testing monitor
displays, for debugging image processing code such as edge enhancement, and
sometimes for research in human vision, including illusions. Figure 13.5 shows
some vertical bars, and Listing 13.3 is the code that makes them.

474 C++ Standard Library Practical Tips



Image Processing 475

LISTING 13.3 Make Bars

// ip_bars.cpp

#include <algorithm>

#include <limits>

#include "ip_all.hpp"

void bars( Image<unsigned char>& image, unsigned char start,

unsigned char increment, int width )

// draw an image of vertical bars. Each bar has the same width and

// the pixel value of the bars increases by a fixed amount.

// INPUT:   image - image in which to draw

//          start - pixel value in left bar

//          increment - increase in pixel value between a bar and the

//          one on its left

//          width - width in pixels of each bar

// REQUIRE: 0 < width < image.rows()

// NOTE:    1) The right bar may be narrower than the others if the

//          number of columns in the image is not a multiple of width.

//          2) Whenever the pixel value exceeds the maximum value of

//          an unsigned char it is set back to start.

//          3) If the image is empty the function does nothing.

{

if( image.empty() )

return;

FIGURE 13.5 Vertical bars.



int value = static_cast<int>( start ) - increment;

// make the first row

for( int i = 0; i < image.columns(); ++i )

{

if( i % width == 0 )

{

value += increment;

if( value > std::numeric_limits<unsigned char>::max() )

value = start;

}

image( 0, i ) = static_cast<unsigned char>( value );

}

// copy the top row into all the others

for( int i = 1; i < image.rows(); ++i )

std::copy( image.row_begin( 0 ), image.row_end( 0 ),

image.row_begin( i ) );

}

The first thing the function does is to check if the image is empty and, if so, the
function returns. Next, the function creates the first row by looping through each
pixel of that row, computing the value of the bar there, and setting the pixel to that
value. Because the remaining rows are the same as the first, the function avoids
more of the bar calculations by using the STL algorithm copy to copy the first row
to the remaining rows. Note the use of custom iterators in the STL algorithm.

The code to make the image in Figure 13.5 is

Image<unsigned char> im( 600, 600 );

const int start = 0;

const int increment = 24;

const int width = 64;

bars( image, start, increment, width );

If you look carefully at the bars, especially in the right side of the image, you
may see a very narrow dark stripe on the left side of a bar’s edge and a very narrow
bright stripe on the right side of that edge. However, as you can tell from the code
in Listing 13.3, those stripes aren’t in the image. These illusory stripes are known as
Mach bands.

476 C++ Standard Library Practical Tips



Image Processing 477

IMAGE MAGNIFICATION

One advantage of digital images is that you can easily write code to zoom in on or
magnify an image. Similarly, you can have the computer digitally shrink the image.
Current consumer digital cameras can even do this in real time.

Shrinking

Sometimes it’s useful to shrink an image. The obvious application is to make im-
ages small enough to fit in a document, for example, an image catalog, or to match
the size of other images. Another use that occurs frequently is in GUIs where, for
example, the operating system or programs may show thumbnails (small versions
of images) of files in a directory. 

Figure 13.6 illustrates one technique for shrinking an image. The method is
simple and fast, but it does restrict you to constricting the dimensions by integer
amounts, for example, 1/2 the length and width, 1/3 the length and width, and so on.
In the technique, each pixel in the output is the average of a block of pixels in the
input. Each block is a square n pixels on a side, where n is the factor by which to
shrink the image. For n = 3, Pixel A' in the output is the average of the pixels
marked A in the input, Pixel B' is the average of the pixels marked B', and so forth.
Figure 13.6 also shows that if the number of rows or columns is not an exact mul-
tiple of the factor by which you shrink the image, there may be some leftover
columns on the right or rows on the bottom. The shrinking technique ignores
them. Figure 13.7(a) shows an original image. Figure 13.7(b) is the result of apply-
ing the shrinking technique. 

FIGURE 13.6 Shrinking an image.



Listing 13.4 shows the code for shrinking an image.

LISTING 13.4 Shrinking an Image

// ip_shrink.cpp

#include <algorithm>

#include <numeric>

#include "ip_all.hpp"

void shrink( const Image<unsigned char>& in, int amount,

Image<unsigned char>& out )

// shrink image by the specified amount. Each dimension is shrunk by

// the same factor (given by amount), e.g., amount=2 makes length and

// width half the size of the original

// INPUT:   in - original image

//          amount - factor by which to shrink

// OUTPUT:  out - shrunk image

// REQUIRE: amount >= 1

// NOTE:    1) if input image is empty or amount is greater than the

//          number of rows or columns, the function clears the output

//          image and does nothing.

//          2) if amount is 1, the function copies the input to the

//          output

//          3) if the number of rows or number of columns is not an

//          exact multiple of amount, the function ignores the excess

//          columns on the right or rows on the bottom of the input

478 C++ Standard Library Practical Tips

FIGURE 13.7(a) An image. FIGURE 13.7(b) A shrunken version.



{

if( in.empty() || in.rows() / amount == 0

|| in.columns() / amount == 0 )

{

out.clear();

return;

}

else if( amount == 1 )

{

out = in;

return;

}

out.resize( in.rows() / amount, in.columns() / amount );

// number of input pixels to be averaged

int divisor = amount * amount;

int in_row = 0;

// for each output row...

for( int i = 0; i < out.rows(); ++i, in_row += amount )

{

int in_col = 0;

// for each output column...

for( int j = 0; j < out.columns(); ++j, in_col += amount )

{

int sum = 0;

// for each input row...

for( int k = in_row; k < in_row + amount; ++k )

// sum over input columns in current input row

sum += std::accumulate( in.row_begin( k, in_col ),

in.row_end( k, in_col + amount - 1 ), 0 );

out(i,j) = static_cast<unsigned char>( sum / divisor );

}

}

}

The code in Listing 13.4 starts by checking if the image is empty or if the num-
ber of rows or columns is less than the amount being shrunk. If so, the routine

Image Processing 479



480 C++ Standard Library Practical Tips

clears the output image and returns. The second alternative is to assign the input
image to the output if the amount of shrinkage is one. The true work starts if the
amount of shrinkage is greater than one. 

First, the code computes the number of output rows and columns and resizes
the output image accordingly. Then the code follows with a nested loop that tra-
verses every pixel of the output image. For each such pixel, the loop computes the
average of the corresponding input pixels by calling the STL algorithm accumulate
for each row of the input block and dividing the sum of these calls by the number
of pixels in the block. Tip 86 explains accumulate in detail. Tip 48, Tip 49, Tip 53,
and Tip 59 provide additional examples of its use.

The code to make the image in Figure 13.7(b) is

const int shrinkage = 2;

shrink( image, shrinkage, out );

Expanding

It can be useful to expand or enlarge an image. Actually, often you want to zoom in
on just a section of the image. The obvious application is to see more detail in the
image, but you might also want to enlarge the image for aesthetic reasons. 

The expansion method the code uses is primitive but fast—it simply duplicates
pixels. Figure 13.8 illustrates the technique. The method replicates by the specified
amount and in both directions each pixel in the input image. In other words, to 
enlarge an image section by a factor of n for each input pixel, the method places an
n × n block of pixels of the same value in the corresponding spot in the output
image. For example, suppose the user wants to expand the small section of the
image on the left in Figure 13.8 by a factor of three. The right side of the figure
shows that Pixel A in the input becomes a 3 × 3 block of pixels, each equal to A, in
the output. The other three input pixels are replicated in the same way. Note that
the output image consists only of pixels in the selected region of the input. The code
ignores input pixels that aren’t in that area. Figure 13.9(a) is an original image with
a section marked, and Figure 13.9(b) shows that area enlarged by a factor of 3.

Although the technique is fast, it does have some disadvantages. One is that the
image section can only be enlarged by integer amounts. A more serious drawback
is that the magnified image can easily appear “blocky,” that is, composed of squares
with no shading in them. Figure 13.10(a) and Figure 13.10(b), made by the code in
Listing 13.5, illustrate the blocky appearance at high magnification. Other methods
(called interpolation techniques) are more complicated and slower than replication
but are much less blocky. 



Image Processing 481

FIGURE 13.8 Enlarging a section of an image.

FIGURE 13.9(a) An image. FIGURE 13.9(b) The section in (a) 
magnified by three.

FIGURE 13.10(a) The section in 
Figure 13.9(a) magnified by seven.

Figure 13.10(b) Magnified by 11.



LISTING 13.5 Expanding an Image

// ip_expand.cpp

#include <algorithm>

#include "ip_all.hpp"

void expand( const Image<unsigned char>& in, int top, int left,

int bottom, int right, int zoom, Image<unsigned char>& out )

// expand a block in an image by the specified amount. Each dimension

// is expanded by the same factor (given by zoom),

// e.g., zoom=2 makes length and width double the original size

// INPUT:   in - original image

//          zoom - factor by which to expand

//          top - top row of block        left - left column of block

//          bottom - bottom row of block  right - right column of block

// OUTPUT:  out - expanded block

// REQUIRE: zoom >= 1

//          both rows and columns must be in the image and

//          top <= bottom,   left <= right

// NOTE:    1) if input image is empty the function clears the output

//          image and does nothing more

//          2) if zoom is 1, the function copies the input block

//          to the output image

{

if( in.empty() )

{

out.clear();

return;

}

out.resize( (bottom - top + 1) * zoom, (right - left + 1) * zoom );

// for every input row...

for( int i = top, out_row = 0; i <= bottom; ++i, out_row += zoom )

{

// and every pixel of this input row...

for( int j = left, out_col = 0; j <= right;

++j, out_col += zoom )

// replicate the pixel in the output image

std::fill_n( out.row_begin( out_row, out_col ), zoom,

482 C++ Standard Library Practical Tips



in(i,j) );

// copy the above row to complete replication of the input row

for( int k = 1; k < zoom; ++k )

std::copy( out.row_begin( out_row ), out.row_end( out_row ),

out.row_begin( out_row + k ) );

}

}

The code in Listing 13.5 starts by checking whether the image is empty. If so,
the routine clears the output image and exits. Otherwise, the routine makes the di-
mensions of the output image be that of the input section multiplied by the mag-
nification factor. The heart of the routine is a nested loop that traverses every pixel
of the input image section. For each such pixel, the loop calls the STL algorithm
fill_n to replicate that pixel in the output row a number of times equal to the mag-
nification factor (zoom). (The algorithm shows the use of a custom iterator and the
unusual occurrence in an STL algorithm of one iterator and a length to specify an
input range.) Once the routine fills in that output row, it uses the STL algorithm
copy to copy that row into the following rows until the current input row has been
replicated in the output zoom times. Many of the tips in the book, including Tip 16
and Tip 89, use copy.

The code to make the image in Figure 13.9(b) is

const int width = 65;

const int left = 490;

const int top = 390;

const int right = left + width - 1;

const int bottom = top + width - 1;

int expansion = 3;

expand( image, top, left, bottom, right, expansion, out );

The code for the images in Figure 13.10 is the same except for a different value
of expansion.

IMAGE ARITHMETIC

Another series of techniques in image enhancement is to combine images pixel by
pixel. Assuming the images have the same dimensions, the first pixel in one image
is combined with the first pixel in the other image to yield the first pixel in the out-
put image. Next, the second pixels are combined to give the second output pixel,

Image Processing 483



and so on. The operation for combining two pixels is general, but often turns out
to be arithmetic. The text that follows describes image subtraction. Adding images
is typically used as part of computing their average. Multiplication is not very com-
mon, but you can use it to superimpose texture on an object. Division can some-
times compensate for different amounts of lighting on a scene. Astronomers apply
it to some types of images to show details of stars obscured by interstellar dust and
to make young stars more visible.

Another set of techniques for combining pixels is logical operators, such as
AND, OR, EXCLUSIVE OR, and so on. These operations are more commonly ap-
plied to binary images (those containing only two shades of gray—black and white)
than to gray-level images.

By using the STL algorithm transform and passing it different operations, you
can combine images with any form of arithmetic. As Listing 13.6 shows, the code is
very simple and short, but it demonstrates the power of the C++ Standard Library.

LISTING 13.6 Combining Images

// ip_combine.hpp

template<class Operation>

inline

void combine( const Image<unsigned char>& in1,

const Image<unsigned char>& in2,

Image<unsigned char>& out, Operation operation )

// combine two images pixel by pixel

// INPUT:   in1, in2 - two input images. Can be the same

//          operation - a function argument that specifies how a pixel

//          from one input image is to be combined with the

//          corresponding pixel from the other. operation must be able

//          to be used in std::transform. operation accepts two

//          unsigned char inputs (the pair of pixels) and returns an

//          unsigned char for the output pixel

// OUTPUT:  out - the output image. Can be the same as an input image

// REQUIRE: the dimensions of the two images must be the same

{

// resize only if output dimensions not same as input dimensions

if( out.rows() != in1.rows() || out.columns() != in1.columns() )

out.resize( in1.rows(), in1.columns() );

std::transform( in1.begin(), in1.end(), in2.begin(), out.begin(),

operation );

}

inline

484 C++ Standard Library Practical Tips



unsigned char clip( int value )

// if value is higher than the max unsigned char, return that max

// if value is lower than the min unsigned char, return that min

// otherwise return value. All returns are unsigned char

{

unsigned char result;

if( value > std::numeric_limits<unsigned char>::max() )

result = std::numeric_limits<unsigned char>::max();

else if( value < std::numeric_limits<unsigned char>::min() )

result = std::numeric_limits<unsigned char>::min();

else

result = static_cast<unsigned char>( value );

return result;

}

inline

unsigned char minus_safe( unsigned char a, unsigned char b )

// if a-b is less than zero, return zero, otherwise return a-b

// NOTE: this function is particularly useful as an operation in the

//       function called combine

{ return a >= b ? a - b : 0; }

inline

unsigned char plus_safe( unsigned char a, unsigned char b )

{ return static_cast<int>( a ) + b

> std::numeric_limits<unsigned char>::max()

? std::numeric_limits<unsigned char>::max() : a + b;

}

// if a+b is higher than the max unsigned char, return that max

// otherwise return a+b

// NOTE: this function is particularly useful as an operation in the

//       function called combine

inline

void subtract( const Image<unsigned char>& in1,

const Image<unsigned char>& in2, Image<unsigned char>& out )

// subtract two images pixel by pixel

// INPUT:   in1, in2 - two input images

// OUTPUT:  out - the output image, in1 - in2

// REQUIRE: the dimensions of the two images must be the same

// SEE:     combine(), minus_safe()

// NOTE:    differences are clipped to the minimum of an unsigned char

{ combine( in1, in2, out, minus_safe ); }

Image Processing 485



The template function combine does the work. It has two input images and one
output image as parameters and an operation that specifies how each pair of pixels
should be combined. If the dimensions of the output image are not the same as
those of an input image, the function resizes the output image to the input image
dimensions. This avoids reallocation of memory and, more importantly, lets the
user pass the same image for input and output, thus saving memory. combine then
uses transform, the ranges of both input images, and the passed operation to com-
bine the images. Tip 76 and “Predefined Function Objects” in Chapter 2 explain
transform in detail. In essence, one call to an STL algorithm lets you add two entire
digital images, subtract them, and so forth. This is truly powerful.

A major problem with performing arithmetic on pixels represented by 
unsigned chars is that the range of that data type (typically 0–255 inclusive) is too
small to contain the result of the arithmetic. For example, the sum of two unsigned
char pixels can easily exceed 255; the difference of two unsigned char pixels can eas-
ily be negative; multiplication can produce numbers far out of bounds, and division
can yield fractions. When you write code to do the arithmetic, for example, add or
subtract two unsigned chars, if the result exceeds the range of the data type, there
is no error. The program simply interprets the resulting bit pattern as an unsigned
char, but its value is not correct and can’t be used in computations.

One way to handle the addition and subtraction of unsigned char pixels is to
clip the result. This means that if the result is greater than the maximum of an 
unsigned char, the clipped result is that maximum value. Similarly, if the result is
less than the minimum of an unsigned char, the clipped result is that minimum.
Otherwise, the clipped result is the same as the result because it is in the range of an 
unsigned char. The software must store the unsigned chars in a data type with a
larger range before doing the actual addition or subtraction. The code assumes this
data type can be a short int or an int. This is usually true, though, strictly speak-
ing, it doesn’t have to be.

The function clip in Listing 13.6 clips the value of an int to the range of an 
unsigned char in the manner previously discussed. The function obtains the mini-
mum and maximum values of an unsigned char by using the technique of Tip 85.
If you know the operation that is being performed on two pixels, a hand-coded safe
version is faster than clip. For example, the function minus_safe subtracts two 
unsigned chars. This difference can never exceed the maximum of an unsigned
char, so the code doesn’t need to check for that condition. Similarly, plus_safe
avoids checking for a negative sum. 

The last function in Listing 13.6 demonstrates what the user actually calls to
combine a pair of images. This function, subtract, simply calls combine with
minus_safe as an argument.

486 C++ Standard Library Practical Tips



Image Processing 487

Subtraction

You can use subtraction to remove backgrounds and to aid in making images ap-
pear sharper. However, the main use of image subtraction is to bring out differ-
ences between images. These differences can arise for a variety of reasons:

Objects in the scene are not aligned exactly, for example, a label on a can that
is stuck on at an angle compared to another label.
Objects in one scene may be missing in another, for example, a missing chip in
a circuit board caused by a manufacturing defect.
Objects in the two scenes may be slightly different. For example, X-ray images
from special cameras can indicate the composition of materials by vertical lines.
Faint, additional lines are present in a material with trace compounds.
Objects in a scene may have moved between images.

The last case is particularly interesting because if you measure the amount the
object moved and you know the time between images, you can compute the ob-
ject’s velocity. Figure 13.11(a) is an image of a scene. The scene in Figure 13.11(b)
has a slight change, and the difference may be hard to notice. By subtracting one
image from the other, the change stands out clearly, as Figure 13.12 shows.

FIGURE 13.11(a) Image. FIGURE 13.11(b) Changed image.



The code to create the image in Figure 13.12 is

subtract( image2, image1, out );

contrast_stretch( out );

The function constrast_stretch is explained later in this chapter. It expands
the contrast in the image and can make objects stand out more. Figure 13.12 shows
that the brightest region, which is where the biggest change between the images is,
occurs where there is a lamppost in one image but not in the other. Everything else
is the same in the two images.

IMAGE ENHANCEMENT

Image enhancement is the process of improving an image so that you can get more
information from it. You can enhance an image in many ways:

Blur the image to get rid of speckling
Remove patterns imposed on the image from electronic interference
Remove geometric distortion due to lens imperfections
Make the contrast larger so objects in the image become more distinguishable
Bring out edges so that things in the image can be seen more easily
Remove irrelevant parts of the image

Some enhancements that you perform are for the benefit of people, that is, they
make it easier for a person to see things in the image. Other enhancements make it
easier for computerized image processing to extract information. Techniques that
help the computers can make the images look worse to people and vice versa. 

488 C++ Standard Library Practical Tips

FIGURE 13.12 Difference of images in Figure 13.11.



The rest of this chapter demonstrates some basic kinds of image enhancements.
The sections that follow, “Clipping” and “Look-Up Tables,” are examples of point
operations. A point operation is a technique in which the value of the output pixel
depends only on the value of the corresponding input pixel. The last section, “Con-
volution,” demonstrates a different enhancement in which the value of an output
pixel depends on the value of the corresponding input pixel and on other input pix-
els around it.

Clipping

Clipping is setting all pixels that are above some gray level to one value, or all pix-
els below some gray level to one value. Clipping can make it easier for people to
concentrate on certain shades in the image. For example, if you know that the ob-
ject you’re interested in can never appear dark, it may be helpful to set all dark pix-
els to 0, that is, complete black. This helps prevent you from being distracted by
dark shapes and helps image processing software avoid finding objects in dark re-
gions.

Clipping High or Low

Figure 13.13(a) is an X-ray image of a real tooth in a model jaw. (People studying
to be dental hygienists practice taking X-rays on these models.) A thin, black frame
added around the image shows that the top and bottom right corners are bright
white, perhaps from an exposure problem. These high pixel values can invalidate
some types of image enhancement, such as the contrast stretching described later .
No part of the tooth is anywhere near this bright, so it is safe to change very bright
pixels to black so you can ignore them. Figure 13.13(b) shows the image when all
pixels greater than 200 have been set to zero. Although there is still a faint white
curve, almost all the bright white is gone, and the rest of the image, especially the
tooth, is untouched. The code in Listing 13.7 lets you clip an image.

Image Processing 489

FIGURE 13.13(a) Original. FIGURE 13.13(b) All values greater 
than 200 set to zero.



LISTING 13.7 Clipping High or Low

// ip_clip.hpp

template<class T>

inline

void clip_high( Image<T>& image, T threshold, T replacement )

// changes all pixels > a number to the same value

// INPUT: image - image to be clipped

//        threshold - set all values > threshold to replacement

// OUTPUT: image - original but with values clipped

// REQUIRE: T must define >

{

std::replace_if( image.begin(), image.end(),

std::bind2nd( std::greater<T>(), threshold ), replacement );

}

template<class T>

inline

void clip_low( Image<T>& image, T threshold, T replacement )

// changes all pixels <= a number to the same value

// INPUT: image - image to be clipped

//        threshold - set all values <= threshold to replacement

// OUTPUT: image - original but with values clipped

// REQUIRE: T must define >

{

std::replace_if( image.begin(), image.end(),

std::bind2nd( std::less_equal<T>(), threshold ), replacement );

}

inline

void clip_high( Image<unsigned char>& image, int threshold,

int replacement )

// same as above clip_high. Lets threshold and replacement be integers

// without making a compiler warning

// REQUIRE: threshold and replacement must be in range of unsigned char

{

clip_high<unsigned char>( image,

static_cast<unsigned char>( threshold ),

static_cast<unsigned char>( replacement ) );

}

inline

void clip_low( Image<unsigned char>& image, int threshold,

490 C++ Standard Library Practical Tips



int replacement )

// same as above clip_low. Lets threshold and replacement be integers

// without making a compiler warning

// REQUIRE: threshold and replacement must be in range of unsigned char

{

clip_low<unsigned char>( image,

static_cast<unsigned char>( threshold ),

static_cast<unsigned char>( replacement ) );

}

The first function in Listing 13.7 is clip_high, which replaces all pixels in the
passed image that are above (greater than) the threshold with the replacement
value. The impressive thing is that it does this with one call to the STL algorithm 
replace_if. Its first two arguments are the range of pixels provided by the image.
The third is a function argument that is the replacement criterion. The code passes
the predefined functor greater with its second argument frozen at the specified
threshold value. (Tip 50 explains more about binding arguments to functors. Tip
53 and Tip 56 have examples of using greater with a bound argument.) The last ar-
gument is the replacement value.

The next function in Listing 13.7, clip_low, replaces all pixels in the image that
are less than or equal to a specified threshold with a given value. This function op-
erates the same way as clip_high does, except that clip_low uses less_equal as the
replacement criterion. Finally, the last two functions are wrappers that permit
clip_high and clip_low to be called when the image data type is unsigned char but
the other two arguments are ints. This is the case if the arguments that are passed
are integer constants because C++ considers those constants to be ints.

The code to clip the image in Figure 13.13(a) is

const int threshold =200;

const int replacement = 0;

clip_high( image, threshold, replacement );

Making a Binary Image

Making a binary image, that is, an image with only two pixel values, is an important
special case of clipping. For eight-bit images such as those in this chapter, the two
values are typically 0 (complete black) and 255 (complete white). Conversion to a
binary image often follows a chain of image enhancements designed to bring out
pixels of a certain type, such as those on vertical edges or those on horizontal lines.
For example, if the user is looking for vertical lines in the image, he first does some
processing to make these lines show up (see Figure 13.24(b) later in this chapter).
Each pixel in the resulting image is a measure of how likely it is that the pixel is on
a vertical line. The user chooses a value in the range of an unsigned char as the

Image Processing 491



492 C++ Standard Library Practical Tips

threshold. This means that he considers all pixel values above the threshold to be on
a vertical line and all pixels less than or equal to the threshold to not be on such a
line. Once the user has thresholded the pixels, he can compute properties of the ob-
jects in the binary image, such as their area, perimeter, length, and so forth. 

Usually, most of the binary pixels do not meet the criterion, resulting in an
image that is mainly black. To save ink or make a monitor display more under-
standable, the values are commonly reversed before they are displayed or printed.
In this case, black pixels are those of interest, and white pixels are not.

Occasionally, you may get an original image that is already almost binary. In
this case, you can just convert the image with various gray levels to a binary image,
which looks very similar to the original. For example, Figure 13.14(a) shows an
original image of a Russian-style church in Alaska. Figure 13.14(b) is the result of
converting to a binary image by thresholding at 90.

The code in Listing 13.8 shows how simple the function to make a binary image
is. The code calls clip_high (discussed previously) and passes a replacement value
that is the maximum for the instantiated data type. Then the code calls clip_low,
passing the minimum value. Tip 85 explains how to get properties of a data type,
such as the maximum and minimum.

LISTING 13.8 Making a Binary Image

template<class T>

inline

void binary( Image<T>& image, T threshold )

// convert to a binary (two-valued) image

FIGURE 13.14(a) Original image. FIGURE 13.14(b) Binary version.



// INPUT: image - image to be turned binary

//        threshold - set all values > threshold to maximum value of T

//                    set all values <= threshold to minimum value of T

// OUTPUT: image - has only two values in it

// REQUIRE: T must define >

{

clip_high( image, threshold, std::numeric_limits<T>::max() );

clip_low(  image, threshold, std::numeric_limits<T>::min() );

}

inline

void binary( Image<unsigned char>& image, int threshold )

// same as above binarize. Lets threshold be an integer without

// making a compiler warning

// REQUIRE: threshold must be in range of unsigned char

{

binary<unsigned char>( image,

static_cast<unsigned char>( threshold ) );

}

The code to convert the image in Figure 13.14(a) to a binary image is

const int threshold =90;

binary( image, threshold );

Making a Negative

Another image enhancement is to invert the pixels in a gray-level image. To do this,
you replace each pixel by the maximum of an unsigned char minus that pixel. The
effect is that of making a photographic negative. There are various uses of such a
negative:

If you have a lot of black in a binary image that you want to print, you can save
ink by making a negative, thus reversing the black and white. 
In some fields that use X-rays, low densities (such as air) appear dark and high
densities (such as bone) are bright. Other fields have the opposite convention.
You can convert between the two by making a negative.
Some monitors may be able to display bright regions better than dark ones or
vice versa. If you’re interested in one of these regions, making a negative can let
the monitor display the image better.
Sometimes people can see (perceive) things in a negative that they can’t in the
original image and vice versa.

Image Processing 493



Figure 13.15(a) shows an original image and Figure 13.15(b) is its negative.
Listing 13.9 has the code to do this processing.

LISTING 13.9 Making a Negative

// ip_negative.cpp

#include <algorithm>

#include <functional>

#include <limits>

#include "ip_all.hpp"

void negative( Image<unsigned char>& image )

// replace each pixel by the maximum of an unsigned char minus pixel

{

std::transform( image.begin(), image.end(), image.begin(),

std::bind1st( std::minus<unsigned char>(),

std::numeric_limits<unsigned char>::max() ) );

}

The code in Listing 13.9 demonstrates again how powerful the STL can be by
taking only one statement to make the negative of an image. This also provides a
good example of performing arithmetic on each element of a container, the subject
of Tip 76. The STL algorithm transform does the work. Its first two arguments are
the input range, and its third argument is the start of the output range. In this case,
the input and output ranges are the same. The last argument is the predefined
functor minus, which takes two numbers and returns their difference. However, the

FIGURE 13.15(a) Original image.

494 C++ Standard Library Practical Tips

FIGURE 13.15(b) Negative.



code freezes or binds the first number (see Tip 50) to be the maximum of an un-
signed char, typically, 255. Thus, the net effect of the algorithm is to replace every
pixel in the image by 255 minus the pixel, that is, to make the negative of the image.

The code to make the negative of the image in Figure 13.15(a) is

negative( image );

Look-Up Tables

A look-up table (LUT) is a mapping from any possible input value to an output
value. It’s a powerful enhancement tool for eight-bit images and is practical for in-
teger-valued pixels of even 10 or 12 bits. The big advantage of a LUT is that it lets
you compute the output for each of the 256 possible inputs of an eight-bit image
just once. After you’ve done that, getting any pixel’s output is simply a matter of in-
dexing, not computation. This can be a great time saver, especially if you have large
images or complicated output calculations.

Figure 13.16 illustrates the mechanics of a LUT. Initially, you compute the out-
put for each possible input value, say, 0–255 inclusive. Next, you store the results in
a container that can be indexed. (A vector works well for this.) In the container,
which will become the LUT, store the output for an input value of 0 in element 0,
the output for an input of 1 in element 1, and so on. Then, to use the LUT on an
image, run through each of the input image’s pixels, using the value of the pixel as
an index into the LUT that yields the output value. For example, in Figure 13.16 an
input value of 1 denotes element 1 of the LUT. This has a value of 41, which is what
the output pixel is set to. Similarly, an input pixel value of 254 becomes an output

Image Processing 495

FIGURE 13.16 A look-up table (LUT).



value of 255. Notice that when using a LUT, you can use the same image for the
input and the output. This is because an output pixel depends only on the value of
its corresponding input pixel. The body of the for-loop in the code of Listing 13.10
explicitly shows the replacement of each input pixel by a value in the LUT.

LISTING 13.10 Making the Output with a LUT

// ip_lut.hpp

template< class ForwardIterator, class RandomIterator >

void lut( ForwardIterator start, ForwardIterator stop,

RandomIterator lookup_table )

// run every element in the range through the look-up table (LUT)

// INPUT:   start - beginning of range

//          stop - end of range

//          lookup_table - iterator pointing to the start of the LUT

// REQUIRE: 1) all iterators must only point to unsigned char

//          2) lookup_table must be a random iterator and has at least

//             as many elements as there are values in an unsigned char

{

for( ; start != stop; ++start )

*start = lookup_table[*start];

}

The code in Listing 13.10 shows the function that converts a range of pixels
with a given LUT. This function template accepts a range, given by forward itera-
tors and the start of a LUT, given by a random iterator. The function loops through
the range using the value of each pixel as an index with the random iterator. The
loop replaces each pixel with the corresponding value found in the LUT.

The function lut is a template so that it can accept any forward iterator that
points to an unsigned char. This allows the function to be used with Image<unsigned
char> regardless of the specific iterator returned by that class. For example, if the
class maintained the pixels internally in a list, and so returned iterators into a list in-
stead of a vector, lut would still work.

Adding a Constant

The first application of an LUT is to add a (positive) constant to each pixel of an
image. This is helpful if the objects you’re interested in are dark and you’re not in-
terested in bright areas. Adding the constant can easily saturate the bright areas as
“Image Arithmetic,” earlier in this chapter, explains. However, because bright re-
gions aren’t of interest in this example, that saturation isn’t detrimental. 

496 C++ Standard Library Practical Tips



Image Processing 497

Figure 13.17 shows an original and a version brightened by adding a constant
to it. The code sets the constant to be the number that will raise the maximum pixel
in the image up to the maximum value of an unsigned char. Listing 13.11 shows the
code for adding a constant to an image.

LISTING 13.11 Adding a Constant to an Image

// ip_plus_equals.cpp

#include <algorithm>

#include <limits>

#include <numeric>

#include "ip_all.hpp"

void operator+=( Image<unsigned char>& image, int value )

// add a constant to each pixel in the image. If a pixel exceeds the

// maximum of an unsigned char it is set to that maximum

// INPUT:    image - the image

//           value - number to add to each pixel

// REQUIRE:  value must be in range of unsigned char

{

std::vector<unsigned char>

lookup_table( std::numeric_limits<unsigned char>::max() + 1, 1 );

// put 0,1,2,...,255 into the look-up table (LUT)

lookup_table[0] = 0;

std::partial_sum( lookup_table.begin(), lookup_table.end(),

lookup_table.begin() );

FIGURE 13.17(a) Original image. FIGURE 13.17(b) A constant added.



498 C++ Standard Library Practical Tips

// compute the LUT

std::transform( lookup_table.begin(), lookup_table.end(),

lookup_table.begin(),

std::bind2nd( std::ptr_fun( plus_safe ),

static_cast<unsigned char>( value ) ) );

// apply the LUT to the image

lut( image.begin(), image.end(), lookup_table.begin() );

}

The software adds a constant to every pixel by making a += operator for an
image of unsigned chars. The code declares a vector with enough elements to hold
all the possible values of an unsigned char. This length is 1 plus the maximum value
of that data type, which (as Tip 85 explains) is available from the predefined nu-
meric_limits template. The function then uses the technique of Tip 79 to fill the
LUT with the numbers 0, 1, 2, . . .  255. To compute the numbers in the LUT, the
code uses the STL algorithm transform with the custom function plus_safe. (Tip
81 demonstrates the same technique, and Tip 47 and Tip 50 explain why ptr_fun
and bind2nd are necessary.) Finally, the code calls the function lut to apply the LUT
to the image. 

To get Figure 13.17(b) from Figure 13.17(a), the code adds the number that
will make the image have the maximum value of an unsigned char. This is the dif-
ference between that maximum and the maximum of the image, for example, 

unsigned char image_max = *max_element( image.begin(), image.end() );

image += numeric_limits<unsigned char>::max() - image_max;

Contrast Stretch

The intuitive meaning of contrast in a (gray) image is the range of gray levels. If the
image has just a few shades of gray, it has low contrast. If it has many shades of gray,
its contrast is high. A contrast stretch is a more complex and more powerful image
enhancement than is adding a constant to an image. This technique spreads out the
gray levels in an image so that they occupy the full eight-bit range. The number of
gray levels remains the same, as does their relative order. This means that if one
gray level is less than another in the original image, its stretched value will also be
less than the stretched value of the other gray level.

The formula for a contrast stretch that takes the gray-level range [IMin, IMax] and
changes it to the range [0,OMax] is

(13.2)O

O

I I
x I I I IMax

Max Min

Min Max Min= ( ) ( )   for

                                    I I Mafor xx MinI=



Image Processing 499

where I is an input pixel value and O is the corresponding output value. For the
eight-bit images in this chapter, OMax is 255.

You can perform a contrast stretch via an LUT, as Figure 13.18(a) and Figure
13.18(b) show. Listing 13.12 shows the code that stretches the contrast in an image.

LISTING 13.12 Performing a Contrast Stretch

// ip_contrast_stretch.cpp

#include <algorithm>

#include <functional>

#include <limits>

#include "ip_all.hpp"

void contrast_stretch( Image<unsigned char>& image )

// stretch gray levels so that they occupy the entire 8-bit range

// NOTE:   if image has only one pixel value or is empty

//         function does nothing

{

if( image.empty() )

return;

unsigned char image_max

= *std::max_element( image.begin(), image.end() );

unsigned char image_min

= *std::min_element( image.begin(), image.end() );

FIGURE 13.18(a) Original image. FIGURE 13.18(b) Image after contrast
stretch.



// one shade only in image so nothing to do. Return to avoid

// dividing by zero below

if( image_max == image_min )

return;

std::vector<unsigned char>

lookup_table( std::numeric_limits<unsigned char>::max() + 1 );

float scale = static_cast<float>(

std::numeric_limits<unsigned char>::max() )

/ ( image_max - image_min );

// make the lookup table

for( int i = 0; i < std::numeric_limits<unsigned char>::max(); ++i )

lookup_table[i] = static_cast<unsigned char>(

scale * ( i - image_min ) );

lut( image.begin(), image.end(), lookup_table.begin() );

}

After verifying that the image is not empty, the function contrast_stretch in
the code of Listing 13.12 finds the minimum and maximum values in the image,
using the STL functions that Tip 83 describes. If they are the same, the image has
only one shade of gray. In this case, stretching the range has no meaning (and
would lead to a division by 0 if the first part of Equation 13.2 were used), so the
function returns without doing anything to the image. If there is more than one
pixel value, the code computes the scaling coefficient in Equation 13.2. Tip 85 ex-
plains how to get the maximum value of an unsigned char. Once it has the scaling
coefficient, the code constructs the LUT by using Equation 13.2 to compute the
output for every possible input value. Finally, the code applies the LUT to the image
using the function lut, described previously. 

Figure 13.18 shows an original image and the result of contrast stretching. The
code to stretch the image contrast is simply

contrast_stretch( image );

Convolution

Another general category of image enhancement techniques is the neighborhood
operation. In a neighborhood operation, the output at a given pixel depends on the
corresponding input pixel and on the pixels in a little region or neighborhood
around that input pixel. One good example of a neighborhood operation is convo-
lution.

500 C++ Standard Library Practical Tips



Image Processing 501

Convolution is a powerful and general image enhancement technique. You can
use it to blur an image, enhance lines or edges running in various directions, and
increase the sharpness of images. The most important part of convolution is the
kernel or mask. This is a rectangular array of numbers. The array is usually small
and square. This chapter assumes that the kernel is a square with an odd number of
pixels on each side. The data type of the kernel is int, and the numbers can be pos-
itive, negative, or zero. The mechanics of convolution are the same regardless of the
numbers, so one routine will handle any convolution. The values of the numbers
are what create the different kinds of enhancements.

Figure 13.19 shows how convolution works. The input and output images are
the same dimensions. To get the output at any pixel, imagine centering the kernel
above the corresponding input pixel. You then multiply each element of the kernel
by the input pixel beneath it, and add up these products. To get the output at the next
pixel (the one to the right of the current output pixel), you slide the kernel to the right
one pixel and repeat the multiplication and summation process. Once you do this for
an entire row, you move the kernel down one row and compute the outputs for that
row. The process is over when you have computed the convolution for all rows.

There are a few details to note before proceeding to the code. The first is that
typically the user provides a divisor and offset to the convolution routine. In this
case, the code divides the sum of products at each pixel by the divisor and adds the
offset. The second is that the function stores the sum of the products in an int and
assumes that the sum doesn’t exceed the range of that data type. This is rarely a
problem because the numbers in the kernel are typically small, that is, single digits.
A third issue is what to do when the kernel hangs over the edge of the input image.
For example, if you use a 3 × 3 kernel, Figure 13.19 shows that whenever the kernel
is centered on the outer edge of the image, that is, the top or bottom rows, or the

FIGURE 13.19 How convolution works.



left or right columns, part of the kernel will not fall on the input image. There are
various ways of handling this problem. The routine in Listing 13.13 computes the
convolution only for input pixels in which the kernel is entirely on the image and
simply sets the other pixels to the passed offset value. 

LISTING 13.13 Convolving

// ip_convolve.cpp

#include "ip_all.hpp"

void convolve( const Image<unsigned char>& in, const int kernel[],

Image<unsigned char>& out, int width, int divisor, int offset )

// convolve an image with the given square kernel

// INPUT:   in - input image

//          kernel - array with kernel elements, arranged row-by-row

//          width - width of square kernel (default = 3)

//          divisor - number by which to divide sum of products

//             (default = 1)

//          offset - number to add to product sum divided by divisor

//             (default = 0)

// OUTPUT:  out - input image convolved with kernel. Has same

//                dimensions as input image

// REQUIRE: 1) width must be odd and greater than one

//          2) divisor must not be zero

//          3) kernel must have at least width*width elements with

//             the top row of the kernel first, the second row second,

//             etc.

// NOTE:    1) if the width is greater than the number of input rows

//             or columns the function does nothing

//          2) the function does not process a border of size width/2

//             pixels. Instead, it sets those pixels to the clipped

//             value of the offset.

{

// if any dimension of the kernel is bigger than the corresponding

// dimension of the input image, bail out

if( in.rows() < width || in.columns() < width )

return;

out.resize( in.rows(), in.columns() );

int border_width = width / 2;

// for every input row except the top and bottom borders

502 C++ Standard Library Practical Tips



for( int i = border_width; i < in.rows() - border_width; ++i )

{

// for every input column except the left and right borders

for( int j = border_width; j < in.columns() - border_width; ++j )

{

const int* p = kernel;

int sum = 0;

// for every kernel row

for( int k = i - border_width; k <= i + border_width; ++k,

p += width )

// compute and accumulate the sum of products in the row

sum += std::inner_product(

in.row_begin( k, j - border_width ),

in.row_end( k, j + border_width ), p, 0 );

sum = sum / divisor + offset;

out(i,j) = clip( sum );

}

}

// fill the borders

frame( out, border_width, clip( offset ) );

}

The function first verifies that the image is at least as large as the kernel and
exits if not. If  the image is at least as large as the kernel, the code resizes the output
image to have the same dimensions as the input image, computes the width of the
border, and enters the processing loop. This nested loop covers every pixel inside
the border. Before proceeding to the innermost loop, the function initializes two
variables. One is an int that stores the sum of the products, and the other is a
pointer set to the start of the kernel array. At every input pixel, the function com-
putes the sum of the products for each row of the kernel. 

This calculation (the sum of products) is common in science and engineering
and is called the inner product or dot product. Fortunately, the STL has an algo-
rithm that is specifically designed to compute it—inner_product. Tip 82 explains
this algorithm in detail, and Tip 53 provides another example of its use. The algo-
rithm takes two ranges, multiplies their corresponding elements, and returns the
sum of those products. The first two arguments to inner_product are the range of
columns in the input image row. (This demonstrates the use of a custom iterator in
an STL algorithm.) The third argument is an iterator that points to the start of the
second range. Note that what is passed is actually a pointer, but Tip 3 explains that

Image Processing 503



a pointer in a C-style array can be used as an iterator into that array. The last argu-
ment is the value to which inner_product initializes the internal variable that holds
the sum of products. The type of the variable is the same as the type of the last ar-
gument. Because that argument is an integer constant, C++ makes the data type be
an int. Thus, each product is the multiplication of an int by an unsigned char, and
this prevents the product from overflowing. If both data types were unsigned char,
the product would easily exceed the range of that data type and make the resulting
number useless. 

When the loop finishes, sum contains the sum of the inner products of each
processed row. This is equal to the convolution of the kernel with the image when
the kernel is centered on the current pixel. The code finishes by dividing the sum by
the divisor, adding the offset, clipping the result to lie in the range of an unsigned
char, and setting the output pixel to that value. Although Listing 13.13 doesn’t
show it, the function declaration for convolve provides default values of 3 for the
kernel width, 1 for the divisor, and 0 for the offset.

The function frame, which is called at the end of Listing 13.13, is an auxiliary
function that draws a frame (an unfilled rectangle) in an image. The preceding text
explains how the convolution code of Listing 13.13 uses it. However, frame is also
convenient for highlighting regions in images (see Figure 13.2(a)) or the entire
image itself, as in Figure 13.13(a). The code in Listing 13.14 first draws the top and
bottom of the frame by getting an iterator range from the image for each section of
a row. The code then passes the range to the STL algorithm fill, which copies the
specified frame value to those columns of the row. The function finishes by filling
in the left and right sides of the frame using the STL algorithm fill_n. This algo-
rithm sets to a given value the specified number of elements, starting at the begin-
ning of a range. Although it would be easy to use fill again, fill_n is particularly
useful in this case because the code is given the number of elements, that is, the
thickness of the frame. Listing 13.14 concludes with two overloaded variations of
the frame function that make using it more convenient.

LISTING 13.14 Drawing a Frame in an Image

// ip_frame.hpp

template<class T>

void frame( Image<T>& image, int top, int left, int bottom, int right,

int thickness, T value )

// draw a frame in an image

// INPUT:   image - input image

//          top - top row of block        left - left column of block

//          bottom - bottom row of block  right - right column of block

//          thickness - thickness of frame in pixels

504 C++ Standard Library Practical Tips



//          value - pixel value to use for frame

// REQUIRE: both rows and columns must be in the image and

//          top <= bottom,   left <= right

//          thickness <= 2*image.rows(), thickness <= 2*image.columns()

{

// draw top and bottom

for( int i = 0; i < thickness; ++i )

{

std::fill( image.row_begin( top+i, left ),

image.row_end( top+i, right ), value );

std::fill( image.row_begin( bottom-i, left ),

image.row_end( bottom-i, right ), value );

}

// draw left and right

for( int i = top + thickness; i <= bottom - thickness; ++i )

{

std::fill_n( image.row_begin( i, left ), thickness, value );

std::fill_n( image.row_begin( i, right-thickness+1 ), thickness,

value );

}

}

inline

void frame( Image<unsigned char>& image, int top, int left, int bottom,

int right, int thickness, int value )

// REQUIRE: same as above but value must be in range of unsigned char

{

frame( image, top, left, bottom, right, thickness,

static_cast<unsigned char>( value ) );

}

inline

void frame( Image<unsigned char>& image, int thickness, int value )

// draw frame around entire image

// REQUIRE: same as above

{ frame( image, 0, 0, image.rows()-1, image.columns()-1, thickness,

static_cast<unsigned char>( value ) );

}

The convolution code in Listing 13.13 is independent of the kernel values. By
simply changing the kernel and using the same function, you can get many differ-
ent image enhancements. Here are some examples.

Image Processing 505



Averaging

If an image has a lot of speckling in it, you can mitigate its effects by blurring the
image. To do this, you let each output pixel be the average in a square neighbor-
hood centered about the corresponding input pixel. You can compute this average
with convolution by using a square kernel filled with ones, a divisor equal to the
sum of the kernel elements, and an offset of zero. For example, a 3×3 kernel with a 
divisor of nine, an offset of zero, and centered on a 3×3 section of the image 

produces the value

which is just the average of the nine input pixels. (In the preceding equation, the 
asterisk denotes convolution.) Figure 13.20(a) shows a highly speckled image of a
small block on a background, similar to Figure 13.4. Figure 13.20(b) shows the re-
sult of blurring with the 3x3 kernel. The code in Listing 13.15 makes the blurred
image.

LISTING 13.15 Blurring an Image

const int width = 3;

const int divisor = width * width;

const vector<int> kernel( divisor, 1 );

convolve( image, &kernel[0], out, width, divisor );

The code parameterizes the width of the kernel and then sets the divisor, which
is the square of the width. Then the code creates a vector filled with that number of
ones by using the technique of Tip 4. Finally, the code passes those elements to con-
volve as a C-style array by using the method explained in Tip 25.

1
9

1 1 1

1 1 1

1 1 1

*

a b c

d e f

g h i

+

= + + + + + +

0

1
9

1 1 1 1 1 1 1a b c d e f g ++ +( )
= + + + + + + + +

1 1

9

h

a b c d e f g h i

a b c

d e f

g h i

506 C++ Standard Library Practical Tips



Blurring can make it easier to see objects in the image by reducing the amount
of speckling, but blurring also gets rid of some details. You can adjust the amount
of blurring by changing the size of the averaging kernel. The code to do this is the
same as in Listing 13.15, except the value of width changes. Figure 13.21(a) shows
the result of blurring with a 7×7 kernel. Figure 13.21(b) uses an 11×11 kernel.

Sharpening

You can also sharpen an image using convolution. Details can show up better, but
speckling is also amplified. Figure 13.22(a) is a micrograph (a very magnified pic-
ture) of the grains in a material. Figure 13.22(b) shows a sharpened version of the
image. The kernel and code to do this are

Image Processing 507

FIGURE 13.21(a) Blur with 7×7
kernel.

FIGURE 13.21(b) Blur with 11×11
kernel.

FIGURE 13.20(a) Original image. FIGURE 13.20(b) Blur with 3×3 kernel.



const int kernel[] = { 0, -1,  0,

-1,  5, -1,

0, -1,  0 };

convolve( image, kernel, out );

The call does not specify the last three arguments to convolve, so the function
uses its default values of 3 for the kernel width, 1 for the divisor, and 0 for the offset.

Edge enhancement

The final demonstrations of convolution show its use in enhancing edges in images.
By using various kernels, you can bring out horizontal or vertical edges, edges run-
ning at different angles, or edges running in any direction.

Figure 13.23(a) shows an image of a Russian-style church in Alaska. You can
make the horizontal edges stand out, as in Figure 13.23(b), with the code

const int width = 3;

const int divisor = 3;

const int threshold = 25;

const int kernel[] = { -1, -1, -1,

0,  0,  0,

1,  1,  1 };

convolve( image, kernel, out, width, divisor );

binarize( out, threshold );

negative( out );

508 C++ Standard Library Practical Tips

FIGURE 13.22(a) Original image. FIGURE 13.22(b) Sharpened version.



The code thresholds the convolved image, setting all pixels greater than 25 to 255
(white) and all other pixels to 0 (black). In essence, this defines what a horizontal edge
is in this image. To make the printed image appear better, the last line in the code snip-
pet makes a negative of the image, which in this case simply reverses black and white.

The kernel makes horizontal edges come out strongly and enhances edges in
other directions, but the further the edges are from the horizontal, the less the ker-
nel brings them out. The enhancement of horizontal lines is apparent in a number
of ways. Notice that the horizontal bars in the window panes are present, but not
the vertical bars. Similarly, the horizontal bar of the cross on the steeple is fully vis-
ible, but the vertical bar has disappeared. The telephone wires stand out even
though they’re about 45° from the horizontal because they are very strong edges,
that is, they jump from the bright white of the clouds to the dark black of the wires.
This makes the kernel bring them out more than would be expected.

Figure 13.24(a) shows the church again. The code to make the vertical edges
stand out, as in Figure 13.24(b), is

const int width = 3;

const int divisor = 3;

const int threshold = 25;

const int kernel[] = { -1, 0, 1,

-1, 0, 1,

-1, 0, 1 };

convolve( image, kernel, out, width, divisor );

binarize( out, threshold );

negative( out );

Image Processing 509

FIGURE 13.23(a) Original image. FIGURE 13.23(b) Horizontal
edges enhanced.



As before, the code thresholds the convolved image to create a binary image
and reverses black and white to make the printed image appear better. Note now
that the vertical bar of the cross and vertical bars on the window panes appear. 

Figure 13.25(a) is again the original image of the church. As an example of en-
hancing an edge at an angle, consider a northeast edge, that is, one such that move-
ment in the northeast direction crosses the edge. The telephone wires are good
examples of this. The code to make northeast edges stand out, as in Figure 13.25(b), is

510 C++ Standard Library Practical Tips

FIGURE 13.24(a) Original image. FIGURE 13.24(b) Vertical edges 
enhanced.

FIGURE 13.25(a) Original image. FIGURE 13.25(b) Northeast edges 
enhanced.



const int width = 3;

const int divisor = 3;

const int threshold = 25;

const int kernel[] = { 0,  1, 1,

-1,  0, 1,

-1, -1, 0 };

convolve( image, kernel, out, width, divisor );

binarize( out, threshold );

negative( out );

As before, the code thresholds the convolved image to create a binary image
and reverses black and white to make the printed image appear better. The tele-
phone wires and the right edge of the roof now come out strongly. The left edge of the
roof and the top of the stair railings, which are southwest edges, disappear completely.

The last example of convolution demonstrates the enhancement of edges that
run in any direction. Figure 13.26 shows that both horizontal and vertical edges, for
example, the cross and the window pane bars, and diagonal edges, for example, the
rooftop and telephone wires, come out strongly in the processed image. The code
to make all edges stand out is

const int width = 3;

const int divisor = 1;

const int threshold = 25;

const int kernel[] = { 0, -1,  0,

Image Processing 511

FIGURE 13.26(a) Original image. FIGURE 13.26(b) All edges 
enhanced.



-1,  4, -1,

0, -1,  0 };

convolve( image, kernel, out, width, divisor );

binarize( out, threshold );

negative( out );

This kernel is known as the Laplacian.

512 C++ Standard Library Practical Tips



513

T
his appendix provides more information on the STL algorithms used in this
book. Not all the algorithms in the library are here, nor is every version of the
algorithms. Check an STL reference book such as Matthew Austern’s Generic

Programming and the STL [Austern00] or Nicolai Josuttis’s The C++ Standard Li-
brary [Josuttis99], or the C++ Standard itself [ISO98] for the complete list. The de-
scriptions in the appendix are concise but still helpful. If you want additional
information—for example, on errors that can be thrown or on the complexity of
the algorithm—check one of the aforementioned sources.

All the algorithms are template functions. For clarity, this list uses the names of
the function parameters to represent the requirements of the parameter data type.
For example,

OutputIterator adjacent_difference( InputIterator first, 

InputIterator last, OutputIterator out )

means that the actual function declaration is

template <class InputIterator, class OutputIterator>

OutputIterator adjacent_difference( InputIterator first, 

InputIterator last, OutputIterator out);

Table A.1 describes the terminology used in the rest of the appendix.

More Information on 
STL Algorithms

Appendix

A

Term Data Type

BidirectionalIterator Bidirectional iterator.
BidirectionalIterator1

BidirectionalIterator2

TABLE A.1 Abbreviations of Data Types Used in Appendix A



514 C++ Standard Library Practical Tips

Term Data Type

BinaryOperation Binary operation. A functor or function that has two 
arguments and returns a value that can be assigned 
to an element in the output range.

BinaryPredicate Binary predicate. A functor or function that has 
two arguments and returns a value that can be tested 
for being true or false. The first argument always 
comes from the first input range, and the second 
always comes from the second input range. The 
algorithm dereferences the iterators and passes them 
to the predicate.

Compare A functor or function that returns true if the first 
argument is less than the second and false otherwise.

ForwardIterator Forward iterator.
ForwardIterator1

ForwardIterator2

Generator A functor or pointer to a function that takes no 
arguments and returns a value that is convertible to 
the data type of the output range.

InputIterator Input iterator.
InputIterator1

InputIterator2

OutputIterator Output iterator.
OutputIterator1

OutputIterator2

RandomAccessIterator Random access iterator.
RandomAccessIterator1

RandomAccessIterator2

T Data type.

UnaryOperation Unary operation. A functor or function pointer that 
has one argument and returns a value that can be 
assigned to an element in the output range.

UnaryPredicate Unary predicate. A functor or function pointer that 
has one argument and returns a value that can be 
tested for being true or false. 

UnaryProcedure Unary procedure. A functor or function pointer that 
has one argument and can read the argument or 
modify it. In the latter case, the argument is passed 
by reference. The procedure shouldn’t return a 
value.



The STL algorithms that this book uses are, in alphabetical order, the following:

T accumulate( InputIterator stop, InputIterator stop, T init )

The output of this algorithm is the sum of the initial value and all the values in
the input range. For example, if there are five values in the input range, a1 through
a5, the outputs are

init + a1 + a2+ a3+ a4+ a5

However, internally, the algorithm computes the result differently. The algo-
rithm declares a variable of type T (say, total) that’s initialized to init. Then the al-
gorithm computes total = total + *i for every i in the input range. Note that the
assignment converts the result of every addition to the data type of total, which is
the same as the data type of init. This can cause problems, for example, if the
range has floating-point numbers but the initial value is an integer. See Tip 86 for
more information.

OutputIterator adjacent_difference( InputIterator start, 
InputIterator stop, OutputIterator out )

This algorithm assigns the first input element to the first output element. For
every input element after that, it assigns the difference of that element and the pre-
vious one to the corresponding element in the output. The input and output ranges
may be the same. The algorithm returns the position of the first element in the out-
put range that it didn’t overwrite.

OutputIterator copy( InputIterator start, InputIterator stop,
OutputIterator out )

This algorithm copies each element in the input range to the output range and
returns the position of the first element in the output range that it didn’t overwrite.

iterator_traits<InputIterator>::difference_type

count_if( InputIterator start, InputIterator stop, 
UnaryPredicate predicate )

This algorithm returns the number of iterators i in the input range for which
the predicate is true.

bool equal( InputIterator1 start1, InputIterator1 stop1,
InputIterator2 start2 )

More Information on STL Algorithms 515



The algorithm returns true if every element in the first input range is equal to
(==) the corresponding element in the second input range. Otherwise, the 
algorithm returns false.

bool fill( ForwardIterator start, ForwardIterator stop,
const T& value )

bool fill_n( OutputIterator start, Size n, const T& value )

The first algorithm assigns the specified value to each element in the range
[start,stop). The second algorithm does the same for the range [start,start+n).

InputIterator find( InputIterator start, InputIterator stop,
const T& value )

The algorithm finds the first iterator i in the input range whose value is the
same as that specified. If find doesn’t locate one, the algorithm returns stop.

InputIterator find_if( InputIterator start, InputIterator stop,
UnaryPredicate predicate )

The algorithm finds the first iterator i in the input range that makes the pred-
icate true. If find doesn’t locate one, the algorithm returns stop.

UnaryProcedure for_each(InputIterator start, InputIterator stop, 
UnaryProcedure f)

This algorithm applies the unary procedure to every element in the input range
in order, that is, starting with start and going up to but not including stop. The
procedure can just read the element or modify it. In the latter case, the algorithm
passes in the value by reference. The algorithm ignores any value that the procedure
returns. for_each, however, returns a copy of the procedure.

void generate( ForwardIterator start, ForwardIterator stop,
Generator generator )

This algorithm calls generator once for each element in the input range and as-
signs the result of the call to the element.

T inner_product( InputIterator1 start1, InputIterator1 stop1,
InputIterator2 start2, T init)

516 C++ Standard Library Practical Tips



This algorithm computes the sum of the products of the corresponding ele-
ments in the two input ranges. For example, if the five values in the input ranges are
a1 through a5 and b1 through b5, the output is

output = init + a1×b1 + a2×b2 + a3×b3 + a4×b4 + a5×b5

The algorithm actually computes the output by setting some internal variable
total of data type T to init and then calculating total = total + ( *i1 ) × ( *i2 )

for every pair of corresponding elements i1 and i2 in the input ranges. This means
that each time the total is updated, the value being added is converted to data type
T. See Tip 86 for an example of the problems this can cause.

bool lexicographical_compare( InputIterator1 start1, 
InputIterator1 stop1, InputIterator2 start2, InputIterator2 stop2 )

bool lexicographical_compare( InputIterator1 start1, 
InputIterator1 stop1, InputIterator2 start2, InputIterator2 stop2,

Compare compare )

These algorithms return true if the sequence of elements in the first range is
lexicographically less than the sequence in the second range. Otherwise, they return
false. The first form uses the less-than operator (<) to compare two elements. The
second form uses an operator supplied by the user. When making the lexicograph-
ical comparison, the following rules hold:

If two sequences are the same, that is, they have the same number of elements
and the corresponding elements are equivalent, neither sequence is lexico-
graphically less than the other.
Suppose one sequence has N elements and is shorter than the other. If the first
N elements of the long sequence are the same as in the short sequence, the short
sequence is lexicographically less than the longer one.
Otherwise, the result of the lexicographical comparison is the same as the result
of the comparison of the first pair of corresponding elements that aren’t equiv-
alent.

const T& max( const T& a, const T& b )
const T& max( const T& a, const T& b, Compare compare )

The first form of this algorithm returns the larger value. The second form re-
turns b if compare( a, b ) is true, otherwise it returns false. If the two arguments
are equivalent, the algorithm returns the first one.

More Information on STL Algorithms 517



ForwardIterator max_element( ForwardIterator start, 
ForwardIterator stop )

ForwardIterator max_element( ForwardIterator start, 
ForwardIterator stop, Compare comp)

This algorithm returns the location of the element with the maximum value. If
there is more than one such element, the iterator points to the first one.

OutputIterator merge( InputIterator1 start1, InputIterator1 stop1,
InputIterator2 start2, InputIterator2 stop2, OutputIterator out )

This algorithm merges two sorted ranges together to produce a third sorted
range. The output range can’t overlap either of the two input ranges. The input
ranges should be sorted by the less-than operator (<) because that’s how the algo-
rithm sorts the merged elements. The sorted output is stable, that is, for equivalent
elements in the two input ranges, the element from the first range always precedes
the element from the second. The algorithm returns the position of the first ele-
ment in the output range that it didn’t overwrite.

pair<InputIterator1, InputIterator2>

mismatch(InputIterator1 first1, InputIterator1 last1,
InputIterator2 first2, BinaryPredicate pred)

This algorithm returns an iterator i and its corresponding iterator j such that
j is the same distance (number of elements) from first2 as i is from first1. i is
the first iterator in the range [first1, last1) for which pred( *i, *j ) is false. If
no such i exists, the algorithm returns the pair last1 and its corresponding itera-
tor.

const T& min( const T& a, const T& b )

const T& min( const T& a, const T& b, Compare comp )

The first form of this algorithm returns the smaller value. The second form re-
turns b if compare( b, a ) is true, otherwise it returns a false. If the two arguments
are equivalent, the algorithm returns the first one.

ForwardIterator min_element( ForwardIterator start, 
ForwardIterator stop )

518 C++ Standard Library Practical Tips



This algorithm returns the location of the element with the minimum value. If
there is more than one such element, the iterator points to the first one.

void nth_element( RandomAccessIterator start, RandomAccessIterator nth,
RandomAccessIterator stop )

void nth_element( RandomAccessIterator start, RandomAccessIterator nth,
RandomAccessIterator stop, Compare comp)

After this algorithm finishes, the element in the position marked by nth is the
element that would be there if the whole range were sorted. All elements that pre-
cede that element are less than or equal to it. All elements that follow that element
are greater than or equal to it. In the second form, for any iterator i that comes be-
fore nth and any iterator j that comes at or after nth, comp( *j, *i ) is false.

void partial_sort( RandomAccessIterator start, 
RandomAccessIterator middle, RandomAccessIterator stop )

void partial_sort( RandomAccessIterator start, 
RandomAccessIterator middle, RandomAccessIterator stop, Compare 

comp))

These algorithms place the first middle – first elements in sorted order in the
range [start, middle). The order of the remaining elements in [middle, stop) is un-
specified.

OutputIterator partial_sum( InputIterator start, InputIterator stop,

OutputIterator out )

For each element in the input range, this algorithm computes the sum of that
element and all preceding elements. Then the algorithm assigns the sum to the cor-
responding element of the output range. The input and output ranges can be the
same. The algorithm returns the position of the first element in the output range
that it didn’t overwrite.

OutputIterator remove_copy( InputIterator start, InputIterator stop,
OutputIterator out, const T& value )

This algorithm copies all the elements from the input range to the output range
except those that equal the passed value. The input and output ranges can’t over-
lap. The relative order of the elements in the output range is the same as that in the

More Information on STL Algorithms 519



input range. The algorithm returns the position of the first element in the output
range that it didn’t overwrite.

OutputIterator remove_copy_if( InputIterator start, InputIterator stop,
OutputIterator out, UnaryPredicate predicate )

This algorithm copies all the elements from the input range to the output range
except those for which the predicate is true. The input and output ranges can’t
overlap. The relative order of the elements in the output range is the same as that
in the input range. The algorithm returns the position of the first element in the
output range that it didn’t overwrite.

ForwardIterator remove_if( ForwardIterator start, ForwardIterator stop,
UnaryPredicate predicate )

This algorithm eliminates all elements in the range for which the predicate is
true. The algorithm returns the end of the resulting range. The order of the re-
maining elements is stable, that is, they are in the same relative order as they were
originally.

void replace_copy( ForwardIterator start, ForwardIterator stop,
OutputIterator out, const T& old_value, const T& new_value )

This algorithm copies the input range to the output, replacing any elements
equal to old_value with new_value.

void replace_if( ForwardIterator start, ForwardIterator stop,
UnaryPredicate predicate, const T& new_value )

This algorithm replaces each element in the range that makes the predicate
true with new_value.

void reverse( BidirectionalIterator start, BidirectionalIterator stop )

This algorithm reverses the order of elements in the given range.

OutputIterator set_difference( InputIterator1 start1, 
InputIterator1 stop1, InputIterator2 start2, InputIterator2 stop2,

OutputIterator out )

This algorithm takes the elements of the first range that are not in the second
range and copies them to the output. The output range can’t overlap either of the

520 C++ Standard Library Practical Tips



input ranges. The input ranges must be sorted, and the output will be sorted. The
algorithm returns the end of the output range that it made.

OutputIterator set_intersection( InputIterator1 start1, 
InputIterator1 stop1, InputIterator2 start2, InputIterator2 stop2,

OutputIterator out )

This algorithm takes the elements that are in both containers and copies them
to the output. If there are multiple occurrences of an element in either range, the
routine copies the smaller of the number of occurrences in both ranges to the out-
put. The output range can’t overlap either of the input ranges. The input ranges
must be sorted, and the output will be sorted. The algorithm returns the end of the
output range that it made.

OutputIterator set_symmetric_difference( InputIterator1 start1,
InputIterator1 stop1, InputIterator2 start2, InputIterator2 stop2,

OutputIterator out )

This algorithm takes the elements of the first range that are not in the second
range and the elements of the second range that are not in the first and copies them
to the output. The output range can’t overlap either of the input ranges. The input
ranges must be sorted, and the output will be sorted. The algorithm returns the end
of the output range that it made. A “set symmetric difference” is also known as an
“exclusive OR.”

OutputIterator set_union( InputIterator1 start1, InputIterator1 stop1,
InputIterator2 start2, InputIterator2 stop2, OutputIterator out )

This algorithm copies the elements that are in one or both ranges to the output.
If there are multiple occurrences of an element in either range, the routine copies
the larger of the number of occurrences in both ranges to the output. The output
range can’t overlap either of the input ranges. The input ranges must be sorted, and
the output will be sorted. The algorithm returns the end of the output range that it
made.

void sort( RandomAccessIterator start, RandomAccessIterator stop )

void sort( RandomAccessIterator start, RandomAccessIterator stop,
Compare compare )

This algorithm sorts the elements in the specified range. The first form uses the
less-than operator (<). The second uses the comparison operation supplied by the
user.

More Information on STL Algorithms 521



ForwardIterator2 swap_ranges(ForwardIterator1 start1, 
ForwardIterator1 stop1, ForwardIterator2 start 2)

This algorithm exchanges corresponding elements in the two ranges, which can-
not overlap. It returns the first position in the second range that it didn’t exchange.

OutputIterator transform( InputIterator start, InputIterator stop,
OutputIterator out, UnaryOperation unary_op )

OutputIterator transform( InputIterator1 start1, InputIterator1 stop1,
InputIterator2 start2, OutputIterator out, BinaryOperation 

binary_op )

The first form of this algorithm applies the unary operator to each element in
the input range and assigns the result to the corresponding element in the output
range. The output range can be the same as the input range. The second form ap-
plies the binary operator to pairs of corresponding elements in the input ranges and
assigns the result to the corresponding element in the output range. The element
from the first input range is the first argument to the operator and the element
from the second input range.

ForwardIterator unique ( ForwardIterator start, ForwardIterator stop )

This algorithm removes all but the first element from every group of consecu-
tive, equal (==) elements and returns the end of the resulting range.

522 C++ Standard Library Practical Tips



523

CONTENTS

The CD-ROM included with the book contains all the source code files shown in
the book. They are in two folders—TIPS and IMAGE_PROCESSING. In addition,
the FIGURES folder has electronic versions of the book’s figures. TIPS has the
source code files listed in the tips. There are 95 source files (cpp), one header file
(hpp), and one data file (txt). All files can be used with any C++ compiler that con-
forms to the C++ standard. 

IMAGE_PROCESSING has eight source files, nine header files, and a makefile.
These carry out all the processing in Chapter 13. The file ip_test.cpp contains a
driver program that performs some simple tests on each routine in that chapter.
ip_test.cpp displays the routine function and whether the code passed the test. The
software does not have any provisions for reading and writing images. If you want
to do this, you can get code on the Internet to work with the various file formats,
such as http://www.libtiff.org/ for TIFF files, http://www.libpng.org/ for PNG files, or
http://www.ijg.org/ for JPEG files.

The folder BOOST has the code for the Boost library, version 1.32.0. The code
is independent of platform. There are three files, each compressed a different way
and each containing the entire library. For more information on Boost or the latest
version of the software, go to www.boost.org.

All the files and folders are from Borland’s C++ Builder Personal Edition ex-
cept for the following: filelist.txt, about_the_CD_ROM.rtf, and Publisher-
ReadMe.rtf (in the main folder) and the subfolders TIPS, IMAGE_PROCESSING,
BOOST, and FIGURES.

Here’s how some compilers perform on the source code for the tips and image
processing:

Borland C++ 5.6.4 (in Borland Builder 6): compiles all

About the CD-ROM

Appendix

B

http://www.libtiff.org/
http://www.libpng.org/
http://www.ijg.org/
www.boost.org


Comeau 4.3.3 for Windows XP: compiles all except algorithm_sort_sets.cpp
(known bug)

MinGW 3.2.0 (which uses GCC 3.4.2): compiles all but
string_whitespace.cpp, which compiles if you replace isspace by ::isspace

Microsoft C++ Compiler 14.00.50215.44 (Visual C++ 2005 Express Edition
Beta 2): compiles 77 of the 95 tip files and all the image-processing files

The file filelist.txt in the main folder of the CD-ROM gives the names of all
the files in TIPS, IMAGE_PROCESSING, and BOOST. 

SYSTEM REQUIREMENTS

There are no special system requirements or software frameworks needed for the
tip and image processing code. All you need is a standard-conforming C++ com-
piler. Similarly, the Boost library is independent of platform. There are, however,
precompiled versions for some platforms that make installation of the library eas-
ier. See www.boost.org.

The minimum system requirements for Borland’s C++ Builder Personal Edi-
tion are the following:

Intel Pentium II/400 MHz or compatible
Microsoft Windows 98, 2000 (SP2), or XP
128 MB RAM (256 MB recommended)
550 MB hard disk space (full install)
CD-ROM drive
SVGA or higher resolution monitor (800x600, 256 color)
Mouse or other pointing device

INSTALLATION

You don’t need to run any installation software for the tip or image processing files.
Just copy them to a folder for compiling. The file installation.html contains the
instructions for installing the Boost library. The file is in each of the three Boost
compressed files. 

To install the Borland C++ Builder Personal Edition:

524 The C++ Standard Library: Practical Tips

www.boost.org


1. Go to http://www.borland.com/products/downloads/download_cbuilder.
html#, scroll to the bottom and select the Personal link.

2. Select the New User button and answer the registration questions. You will
have to enter a valid email address. Borland will send the serial number and
authorization key to that address.

3. Insert the CD-ROM that comes with this book into your CD-ROM drive.
After a few seconds, you should see an installation dialog box. Follow the
instructions in the dialog box to install the program. If you don’t get a di-
alog box, press the Windows’ Start button, select Run, type D:\install,
where D is the letter of your CD-ROM drive, and press the OK button.
Then follow the instructions.

About the CD-ROM 525

http://www.borland.com/products/downloads/download_cbuilder.html#
http://www.borland.com/products/downloads/download_cbuilder.html#


This page intentionally left blank 



527

References

[Austern00] Austern, Matthew. Generic Programming and the STL. Addison-
Wesley, 1999.

[Basketball04] National Basketball Association. “Basketball statistics.”
http://www.nba.com/

[Billionaire04] Forbes.com. “The World’s Richest People.” http://www.forbes.
com/lists/2003/02/26/billionaireland.html

[Cities04] United States Census Bureau. “IDB—Rank countries by Publica-
tion.” http://www.census.gov/ipc/www/idbrank.html

[Cline99] Cline, Marshall, Lomow, Greg A., and Girou, Mike. C++ FAQS. 2nd
ed. Addison-Wesley, 1999.

[Countries04] GeoHive. “Largest agglomerations in the world.”
http://www.xist.org/charts/city_agg1950_2015.php, attributes all estimates
and projections to the Population Division of the United Nations.

[Dog04] The Westminster Kennel Club. “Best in Show Winners.”
http://www.westminsterkennelclub.org/history/biswinners.html

[Horse04] Dulay, Cindy Pierson. “Historical data and results for the Triple
Crown races.” http://www.horse-races.net/library

[Horstmann04] Horstmann, Cay. “Safe STL.” http://www.horstmann.com/
safestl.html

[ISO98] ISO. Information Technology—Programming Language—C++. Docu-
ment Number ISO/IEC 14882-1998. ISO/IEC, 1998.

[Jarvi02] Jarvi, Jaakko. Proposal for adding tuple types into the standard library.
2002. Available at http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/
n1403.pdf

[Josuttis99] Josuttis, Nicolai M. The C++ Standard Library. Addison-Wesley,
1999.

[LoRusso97] Lo Russo, Graziano. “Intervista a Alexander Stepanov.” Computer
Programming. No. 60, July/August 1997. Available in English at
http://www.stlport.org/resources/StepanovUSA.html

[Meyers01] Meyers, Scott. Effective STL. Addison-Wesley, 2001.

http://www.nba.com/
http://www.forbes.com/lists/2003/02/26/billionaireland.html
http://www.forbes.com/lists/2003/02/26/billionaireland.html
http://www.census.gov/ipc/www/idbrank.html
http://www.xist.org/charts/city_agg1950_2015.php
http://www.westminsterkennelclub.org/history/biswinners.html
http://www.horse-races.net/library
http://www.horstmann.com/safestl.html
http://www.horstmann.com/safestl.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1403.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2002/n1403.pdf
http://www.stlport.org/resources/StepanovUSA.html


528 The C++ Standard Library: Practical Tips

[Musser01] Musser, David R., Derge, Gillmer J., and Saini, Atul. STL Tutorial
and Reference Guide. 2nd ed. Addison-Wesley, 2001.

[Press02] Press, William H. et al., eds. Numerical Recipes in C++: The Art of Sci-
entific Computing. 2nd ed. Cambridge University Press, 2002.

[Soccer04] SoccerAge.com. “Beckham Tops List of Highest Paid Players.”
http://www.soccerage.com/en/13/u7713.html

[Stevens95] Stevens, Al. “Al Stevens Interviews Alex Stepanov.” Dr. Dobb’s Jour-
nal. March 1995.

[STLport04] STLport.org. http://www.stlport.org
[Stroustrup94] Stroustrup, Bjarne. The Design and Evolution of C++. Addison-

Wesley, 1994.
[Stroustrup97] Stroustrup, Bjarne. The C++ Programming Language. 3rd ed.

Addison-Wesley, 1997.

http://www.soccerage.com/en/13/u7713.html
http://www.stlport.org


BOOKS

The C++ Standard Library and the STL

Austern, Matthew. Generic Programming and the STL. Addison-Wesley, 1999.
Breymann, Ulrich. Designing Components with the C++ STL. Revised edition.

Addison-Wesley, 2000.
Cline, Marshall, Lomow, Greg A., and Girou, Mike. C++ FAQS. 2nd ed.  Addi-

son-Wesley, 1999.
ISO. Information Technology—Programming Language—C++. Document

Number ISO/IEC 14882-1998. ISO/IEC, 1998.
Josuttis, Nicolai M. The C++ Standard Library. Addison-Wesley, 1999.
Langer, Angelika, and Kreft, Klaus. Standard C++ IOStreams and Locales. Ad-

dison-Wesley Longman, 2000.
Meyers, Scott. Effective STL. Addison-Wesley, 2001.
Musser, David R., Derge, Gillmer J. and Saini, Atul. STL Tutorial and Reference

Guide. 2nd ed. Addison-Wesley, 2001.
Robson, Robert. Using the STL. 2nd ed. Springer-Verlag, 2000.
Schildt, Herbert. STL Programming from the Ground Up. Osborne/McGraw

Hill, 1999.

General C++

Alexandrescu, Andrei. Modern C++ Design: Generic Programming and Design
Patterns Applied. Addison-Wesley, 2001.

Meyers, Scott. Effective C++. Addison-Wesley, 1992.

Bibliography

529



530 The C++ Standard Library: Practical Tips

Meyers, Scott. More Effective C++. Addison-Wesley, 1996.
Stroustrup, Bjarne. The C++ Programming Language. 3rd ed. Addison-Wesley,

1997.
Stroustrup, Bjarne. The Design and Evolution of C++. Addison-Wesley, 1994.
Sutter, Herb. Exceptional C++. Addison-Wesley, 2000.
Vandevoorde, David, and Josuttis, Nicolai. C++ Templates: The Complete

Guide. Addison-Wesley, 2003.

MAGAZINE ARTICLES

Ablavsky, Vitaly, Stevens, Mark R., and Pollak, Joshua B. “Data-Structure-
Independent Algorithms for Image Processing.” C/C++ Users Journal.
November 2003.

Batov, Vladimir. “The Same STL Algorithms—Only Better.” C/C++ Users Jour-
nal. September 2003.

Carrato, Michael. “Space Efficient Sets and Maps.” C/C++ Users Journal. July
2003.

Dibling, John.  “Extending the STL.” C/C++ Users Journal. February 2005.
Hyslop, Jim, and Sutter, Herb. “Im-Paired Programming.” C/C++ Users Journal.

March 2004.
Lo Russo, Graziano. “Intervista a Alexander Stepanov,” Computer Program-

ming. No. 60, July/August 1997. Available in English at http://www.
stlport.org/resources/StepanovUSA.html

McCallum, Ethan. “Custom Containers & Iterators for STL-Friendly Code.”
C/C++ Users Journal. March 2005.

Ruud, Brian. “Building a Mutable Set.” C/C++ Users Journal. June 2003.
Smith, Mark L. “An STL-based N-way Set.” C/C++ Users Journal. March 2000.
Sobczak, Maciej. “STL Sequences & the View Concept.” C/C++ Users Journal.

April 2004.
Stevens, Al. “Al Stevens Interviews Alex Stepanov.” Dr. Dobb’s Journal. March

1995.
Sutter, Herb, and Hyslop, Jim. “Typedefs and Iterators: If You’ve Got ’Em, Use

’Em.” C/C++ Users Journal. September 2004.
Sutter, Herb, and Hyslop, Jim. “Order, Order.” C/C++ Users Journal. February

2005.
Taglienti, Claudio. “STL Member Function Adaptors.” C/C++ Users Journal.

January 2004.
Wilson, Matthew. “Adapting Win32 Enumeration APIs to STL Iterator Con-

cepts.” Windows::Developer Magazine. March 2003.

http://www.stlport.org/resources/StepanovUSA.html
http://www.stlport.org/resources/StepanovUSA.html


Zolman, Leor. “Thinking in STL: You Know It Don’t Come Easy.” C/C++ Users
Journal. January 2003.

WEB SITES

ANSI. “ANSI Electronic Standard Store.” http://webstore.ansi.org/ansidoc-
store/default.asp

Barry, Chris. “Still Trying to Learn the STL.” http://echellon.hybd.net/issues/5/ar-
ticles/stl/part1.html

Boost.org. “Welcome to Boost.org.” http://www.boost.org/
Clarke, Allan. “C++ Tips: STL.” http://cpptips.hyperformix.com/Stl.html
DevX.com. “DevX Tip Bank - STL.” http://www.devx.com/tips/vtBrowser/

20528?node=1714
Dinkumware. “Dinkum C++ Library.” http://www.dinkumware.com/manu-

als/reader.aspx?lib=cpp
Doederlein, Osvaldo Pinali . “Crash Course on STL.” http://www.geocities.com/

ResearchTriangle/Node/2005/stl.htm
Forschungszentrum Julich. “WWW C++ Information.” http://www.fz-juelich.

de/zam/cxx/extern.html
Horstmann, Cay. “Safe STL.” http://www.horstmann.com/safestl.html
Kirman, Jak. “A Modest STL Tutorial.” http://www.cs.brown.edu/people/jak/pro-

gramming/stl-tutorial/tutorial.html
Kremer, Rob. “Standard Template Library Overview.” http://pages.cpsc.ucal-

gary.ca/~kremer/STL/monitor/index.html
Langer, Angelika. “Angelika Langer’s Home Page.” http://www.langer.camelot.

de/Welcome.html
Microsoft. “The Standard C++ Library.” http://msdn.microsoft.com/library/de-

fault.asp?url=/library/en-us/vclang98/HTML/INDEX.asp
Moreno, Carlos. “An Introduction to the Standard Template Library (STL).”

http://www.mochima.com/tutorials/STL.html
Musser, David. “STL Tutorial Resources at Rensselaer.”http://www.cs.rpi.edu/

~musser/stl-book/
Myers, Nathan. “(Draft) Standard C++ and C++ Library Architecture.”

http://www.cantrip.org/cpp.html
Open Standards. “C++ Standards Committee Papers.” http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/
Ottewell, Phil. “Phil Ottewell’s STL Tutorial.” http://www.yrl.co.uk/phil/stl/

stl.htmlx
Rogue Wave Software. “Standard C++ Library User Guide.” http://www.ccd.bnl.

gov/bcf/cluster/pgi/pgC++_lib/stdlibug/ug1.htm

Bibliography 531

http://webstore.ansi.org/ansidocstore/default.asp
http://webstore.ansi.org/ansidocstore/default.asp
http://echellon.hybd.net/issues/5/articles/stl/part1.html
http://echellon.hybd.net/issues/5/articles/stl/part1.html
http://www.boost.org/
http://cpptips.hyperformix.com/Stl.html
http://www.devx.com/tips/vtBrowser/20528?node=1714
http://www.devx.com/tips/vtBrowser/20528?node=1714
http://www.dinkumware.com/manuals/reader.aspx?lib=cpp
http://www.dinkumware.com/manuals/reader.aspx?lib=cpp
http://www.geocities.com/ResearchTriangle/Node/2005/stl.htm
http://www.geocities.com/ResearchTriangle/Node/2005/stl.htm
http://www.fz-juelich.de/zam/cxx/extern.html
http://www.fz-juelich.de/zam/cxx/extern.html
http://www.horstmann.com/safestl.html
http://www.cs.brown.edu/people/jak/programming/stl-tutorial/tutorial.html
http://www.cs.brown.edu/people/jak/programming/stl-tutorial/tutorial.html
http://pages.cpsc.ucalgary.ca/~kremer/STL/monitor/index.html
http://pages.cpsc.ucalgary.ca/~kremer/STL/monitor/index.html
http://www.langer.camelot.de/Welcome.html
http://www.langer.camelot.de/Welcome.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclang98/HTML/INDEX.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclang98/HTML/INDEX.asp
http://www.mochima.com/tutorials/STL.html
http://www.cs.rpi.edu/~musser/stl-book/
http://www.cs.rpi.edu/~musser/stl-book/
http://www.cantrip.org/cpp.html
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/
http://www.openstd.org/jtc1/sc22/wg21/docs/papers/
http://www.yrl.co.uk/phil/stl/stl.htmlx
http://www.yrl.co.uk/phil/stl/stl.htmlx
http://www.ccd.bnl.gov/bcf/cluster/pgi/pgC++_lib/stdlibug/ug1.htm
http://www.ccd.bnl.gov/bcf/cluster/pgi/pgC++_lib/stdlibug/ug1.htm


SGI. “Standard Template Library Programmer’s Guide.” http://www.sgi.com/
tech/stl/index.html

STLsoft. “STLsoft Home.” www.stlsoft.org
Stroustrup, Bjarne. “Welcome to Bjarne Stroustrup’s homepage!” http://www.

research.att.com/~bs/homepage.html
STLport.org. “Welcome! STLport.” http://www.stlport.org
Weidl, Johannes. “The Standard Template Library Tutorial.” http://www.in-

fosys.tuwien.ac.at/Research/Component/tutorial/
Wiki Wiki Web. “STL sucks.” http://c2.com/cgi/wiki?StlSucks
Zolman, Leor. “STLFlit: An STL Error Message Decryptor for C++.”

http://www.bdsoft.com/tools/stlfilt.html

INTERNET USENET GROUPS

alt.comp.lang.learn.c-c++
comp.lang.c++
comp.lang.c++.moderated
comp.std.c++

532 The C++ Standard Library: Practical Tips

http://www.sgi.com/tech/stl/index.html
http://www.sgi.com/tech/stl/index.html
http://www.research.att.com/~bs/homepage.html
http://www.research.att.com/~bs/homepage.html
http://www.stlport.org
http://www.infosys.tuwien.ac.at/Research/Component/tutorial/
http://www.infosys.tuwien.ac.at/Research/Component/tutorial/
http://c2.com/cgi/wiki?StlSucks
http://www.bdsoft.com/tools/stlfilt.html
www.stlsoft.org


533

Index

A
accessing memory, see memory
accumulate algorithm, 77, 423–424,

515
activate_minicam_port, 15–16
Ada Generic Library, 29
adaptors

container, 56–58
overview, 28, 241

adding vectors, 64
address operator (&), 148
adjacent_difference algorithm, 77,

398–402, 515
adjacent_find algorithm, 72
advance function, 182
algorithms, 70–77, 513–522

binary, 77
class member functions in,
271–276
described, 70–71
errors, avoiding, 79
freezing arguments to function
objects, 66–67, 283–286
functions in, 62–63, 264–276
header support, 10, 71
heap, 76
in-place vs. copying versions,
70–71
member function alternatives to,
263
modifying, 71, 73
multipass, 35
mutating, 10, 71, 73–74
nonmodifying, 10, 71, 72
numeric, 71, 76–77
overview, 4, 27–28
pointers to class member func-
tions, 276–283
for searching, 10, 72, 74–76
single-pass, 33
for sorting, 10, 71, 74–76
using most specific, 261–263

allocators, 28
amicable pair, 264–270
angles between vectors, 411–415

appending
characters to strings, 343–345
containers, 104–106

appliances, 207–218
argument-dependent lookup, 22
arguments

function, 63
in headers, 5, 6

arithmetic operations
on images, 483–488
predefined functions, 63–64
See also numerical processing

arrays
C-style, from vectors, 147–149
C-style and beginning/ending
iterators, 90–93, 95, 96
header support, 11
indexing, 128–131

assert header, 7
assert macro, 7
assign function, 101, 104
assigning container elements, 87–90
assignment operators, 87, 136–140
associative containers

described, 53–56
hash maps, 187
header support, 9
initialize with specified values,
189–193, 196
maps, 55, 85–87, 207–218,
222–233
maps/multimaps as dictionaries,
193–197
member functions, 263
multimaps, 55–56, 85–87,
207–218, 222–233
multisets, 54, 85–87, 197–207,
218–222, 233–239
sets, 54, 85–87, 197–207,
218–222, 233–239
sorting, 187–189

at function, 144–145
auction items, 153–156
Austern, Matthew, 29, 364, 513
averages

image processing, 506–507
numerical processing, 423–424

B
back function, 140, 156, 162
back inserters, 45–46, 192–193,

264–270
base for numbers, see numerical

processing
basketball players, 164–169
beginning iterators, 37, 90–93, 95, 96
bibliography, 529–532
bidirectional iterators, 32, 35
billionaires, 256–260
binary algorithms, 75, 77
binary function objects, 66–67,

283–286
binary images, 491–493
binary_function, 70
binders, 66–67, 271–276, 283–286
bitset header, 9, 58
bitsets, 58–59, 252–256, 437–440
blocks, creating, 473–474
blurring images, 506–507
Boehm, Hans, 29
boolalpha, 111
Booleans

bitsets, 252–256
comparison of, 253
deque of, 156–160
vector of, 64, 149–151

Boost libraries, 458, 523
buffers

I/O header support, 12
priority queues, 248–252
queues, 57, 244–248

C
“c” prefix for headers, 5, 24
C++ language

extensible languages, 60
support, overview, 4, 5–6

C++ Standard (ISO98), 71, 513
C++ Standard Library

components of, 3



exception handling, 18–20, 78
headers, 4–5
introduction and history, 1–3
overview, 3–12
See also Standard Template Li-
brary (STL)

C++ Standard Library, The (Josuttie),
513

calculations, see numerical processing
call operators, 60–62
car models, 189–193
card game, 140–144
carwash, 244–248
case-insensitive comparisons

of strings, 359–364
of substrings, 364–369

case-sensitive comparisons
of strings, 353–355
of substrings, 355–358

catch blocks, 15–17
CD-ROM (included with book),

523–525
changing, see modifying
characters, header support, 8, 12
clashes, name, 21
classes

with call operator, 61
image class, 463–472

clipping
described, 489
high/low, 489–491
making binary images, 491–493
making negatives, 493–495

club membership, 444–446
code tips, see tips
collisions, name, 21
combining images, 484–486
commit-or-rollback action, 78, 86
comparing

case-insensitive comparison of
strings, 359–364
case-insensitive comparison of
substrings, 364–369
case-sensitive comparison of
strings, 353–355
case-sensitive comparison of
substrings, 355–358
containers for equality, 114–116
dictionary ordering (lexicographi-
cal comparison), 72, 111–113, 353,
359–364

comparison functions, 64–65
comparison operators, 112, 189, 215,

417–419
complement, logical, 67

complex header, 11
complex numbers, 394–398
concatenating strings, 343–345
consecutive, evenly spaced numbers,

402–405
constructors, 90, 136–140
containers, 49–60

adapters, 56–58, 241
appending, 104–106
associative containers, 9, 53–56
bitsets, 9, 58–59, 252–256
changes in elements, 398–402
changing types, 96–98
choosing correct, 85–87
constructing, from another, 96–98
constructing from standard input,
98–100
copying if condition is met,
327–330
C-style arrays, 90–93, 95, 96, 129
deques as, 52
described, 49
displaying elements of, 82–85
displaying on standard output,
120–122
elements, requirements on, 87–88
equal, 114–116
errors, avoiding, 79
exchanging, 106–109
filled with identical elements,
93–94
filled with specified elements,
94–96, 100–102
header support, 9
heterogeneous, 59
homogeneous, 49
invariants, 78
lexicographical comparison,
111–113, 353, 359–364
lists as, 51–52
maximum size, 109–111
numerical processing, see numeri-
cal processing
operating on each element of,
330–337
overview, 4, 27–28
pair, 59–60
performing arithmetic on,
391–394
priority queues, 57–58, 248–252
queues, 57, 244–248
replacing with contents from
another, 102–104
reverse access, 116–120
sequence, see sequence containers

size of, 49, 109–111
stacks, 14–15, 56, 140–144,
241–244
standard, described, 49
vectors as, 50–51
See also iterator adaptors; itera-
tors; specific containers

contrast, 498
contrast stretch, 498–500
convolutions, 500–505
copying

algorithms capable of, 70–71
copy algorithm, 43, 47, 49, 73, 93,
515
copyable elements, 87
if condition is met, 327–330
remove_copy algorithm, 45, 73
replace_copy algorithm, 45, 73
sorting without, 322–327
strings and substrings, 341–343

core languages, 18
count algorithms, 72, 515
creating container elements, 88–90
credit card numbers, 349–351
criteria for sorting, see sorting
cstdef header, 5
C-strings, 7–8
customers and sales contacts, 156–160

D
data types, 513–514
date functions, 6, 7
decimal numbers, 440–442
decrement (- -) operator and itera-

tions, 39
delimiters, 386–390
deque header, 9
deques

alternative to vector of Booleans,
156–160
choosing as container, 85–87
converting between iterators and
indexes, 131–133
described, 52, 153
features of, 253
filled from standard input, 98–100
indexing, 128–131
operations at front, 153–156
sorting on one of many fields,
310–314
sorting without copying, 322–327

dereferencing iterators, 32, 79
destroyable elements, 88
destroying container elements, 88–90
destructors, 90, 136–140

534 Index



diagnostics
header support, 6–7
overview, 4

dictionaries
lexicographical comparison, 72,
111–113, 353, 359–364
maps/multimaps as, 188, 193–197

differences between values, 398–402
digit separators, displaying, 449–452
digital images, 461. See also image

processing
divides function, 64
DNA analysis, 330–337
dog breed and weights, 128–131
dog show winners, 197–207
domain_error, 19–20
duplicates, removing, 182–185
duplicating, see copying

E
edge enhancement for images,

508–512
Effective STL, 364
elements

appending containers, 104–106
assignable, 87
copyable, 87
creating, assigning, and destroy-
ing, 88–90
destroyable, 88
displaying container, 82–85
erasing matching, 297–302
exchanging containers, 106–109
finding/erasing matching, 287–294
identical, filling container with,
93–94
matching, 287–302
modifying or removing, in
sets/multisets, 218–222
operating on each, 330–337
removing from sequence contain-
ers, 294–302
requirements on container, 87–88
reserve space for, 123–125
specified, filling container with,
94–96, 100–102
storing contents of one container
in another, 102–104
See also specific containers

empty function, 110–111
empty ranges, 36
end iterators, 37, 90–93, 95, 96, 216
enhancements, image, 488–489
equal algorithm, 72, 116, 515
equal containers, 114–116

equal_range algorithm, 75, 427–430
equal_range function, 197, 205, 216,

231
equal_to function, 65
equality operator (= =), 88, 115
equality vs. equivalence, 188–189
equivalence vs. equality, 188–189
erase function, 90, 182, 231–233, 287
error handling

exception handling, 13–18
overview, 12–13, 77–78
tips for avoiding errors, 78–79
See also exception handling

error messages, 373–376
error numbers, header support, 7
errors, logic vs. runtime, 19, 78
examples, see tips
exception class, 18
exception handling

C++ Standard Library, guarantee
for, 78
catch blocks, 15–17
handler, described, 15
header, 5, 6
hierarchy of exceptions, 19
out_of_range, 19–20, 145–147
slicing, 17
stack unwinding, 14–15
in standard library, 18–20
system, overview, 13–18
throwing exceptions, 14
try blocks, 15–17
unexpected calls, 18
used by core languages, 18

exception specifications, 17–18
exceptions

exception header, 5, 6
hierarchy of, 19
stdexcept header, 7
See also exception handling

exit routines, 6
experiments and data points, 322–327

F
facets, 451
factorials, 407–410
FIFO (first-in, first-out) order,

244–248
filenames and headers, 5, 24
files, accessing data, 452–455
fill algorithms, 73, 516
find algorithms

described, 72, 187, 516
searching sets/multisets, 197–218

strip whitespace from strings,
378–382

find function, 217, 222, 231, 232,
345–349

first-in, first-out (FIFO) order,
244–248

fixed manipulator, 446–449
flip function, 151
float header, 5, 6
floating-point numbers, 446–449
Fomitchev, Boris, 457
for_each algorithm

alternatives to, 261–263
compared to transform algorithm,
332
computing statistics of data,
434–437
described, 62, 72, 73, 516
operating on each element of
containers, 330–337

for-loop, 233
formatted strings

reading, 370–372
writing, 373–376

forward iterators, 32, 34–35
frames, drawing in images, 504–505
front function, 154, 162
front inserters, 45–46
function object, 63
functional header, 7
function-like object, 63
functions

in algorithms, 264–270
alternatives to algorithms, 263
class member, in algorithms,
271–276
evaluating mathematical func-
tions, 407–410
freezing arguments to function
objects, 66–67, 283–286
polymorphism, 276–283
pure virtual, 282

functors
adapting functions, 68
arithmetic operations, 63–64
binders, 66–67
call operators, 60–62
comparison functions, 64–65
function arguments, 63
logic operations, 65–66
negators, 66–67
overview, 28, 60
predefined function objects, 63–70
predicates, 67

Index 535



536 Index

using functions in algorithms,
62–63, 264–270

G
general inserter, 45–46
generate algorithms, 73, 405–407, 516
generic programming, 27
Generic Programming and the STL

(Austern), 513
global namespace, 22, 24
grades of students, 218–222, 427–434
graduating students, 161–164
graphical user interfaces (GUIs),

184–185
gray-level images, 462
greater function, 65
greater_equal function, 65
GUIs (graphical user interfaces),

184–185

H
.h filename extension, 5, 24
half-open ranges, 36
hash maps, 187
headers

language support, 4–5
naming conventions, 5, 24

heap algorithms, 76
hexadecimal I/O, 442–444
high/low clipping, 489–491
horse races, 233–239
Horstmann, Cay, 78
hyper-spectral images, 462

I
if tests and algorithms, 70–71
image processing

averaging, 506–507
binary images, 491–493
blocks, creating, 473–474
blurring, 506–507
clipping, 489–495
combining images, 484–486
constants, adding to images,
496–498
contrast, 498
contrast stretch, 498–500
convolutions, 500–505
creating images, 472–476
digital images, 461
drawing frames in images,
504–505
edge enhancement, 508–512
enhancements, 488–489
expanding images, 480–483

gray-level images, 462
high/low clipping, 489–491
hyper-spectral images, 462
image arithmetic, 483–488
image class, 463–472
index formula, 463–464
kernel, 501
look-up tables (LUTs), 495–500
masks, 501
negative images, 493–495
neighborhood operations, 500
overview, 461–462
pixels, 462
sharpening, 507–508
shrinking images, 477–480
subtraction of images, 487–488
vertical bars, creating, 474–476

impedance, 394–398
implementation properties, headers, 5,

6
includes algorithm, 75
income of soccer players, 271–276
increment (++) operator and itera-

tors, 31, 32, 38
indexes

converting between iterators and,
131–133
index formula for images, 463–464
for maps, 187–188
for multimaps, 231
vectors, 128–131, 144–147

inequality operator (!=), 116
information, typeinfo header, 5, 6
inner_product algorithm, 77,

411–415, 516–517
inplace_merge algorithm, 75
input iterators, 32, 33. See also I/O

(input/output)
input stream iterators

constructing containers from
standard input, 98–100
data file access, 452–455
described, 48–49
extracting words delimited by
whitespace, 384–386

insert containers, 104–106
insert iterators

back inserters, 45–46
front inserters, 45–46
general inserter, 45–46
prepending elements, 45–46

inserter, see insert iterators
inspection of car parts, 302–310
installation directions, 524–525
integers and leading zeroes, 444–446
international support, 8

Internet groups, 532
invalid iterators, 134–136
invalid_argument, 19–20
invariants, 78
I/O (input/output)

in binary format, 437–440. See
also bitsets
header support, 11–12
in hexadecimal format, 442–444
in octal format, 440–442
overview, 4

iostream header, 84
istream_iterator, 48–49, 98–100,

384–386, 452–455
istringstream, 370–372, 384–386
iter_swap algorithm, 77
iterator adaptors, 38–49

insert iterators, 44–46
reverse iterators, 38–44
stream iterators, 43, 47–49
See also iterators

iterator header, 38
iterators, 30–38

beginning/end, 37, 90–93, 95, 96
bidirectional, 32, 35
container, 37–38
converting between indexes and,
131–133
C-style arrays, 90–93, 95, 96
dereferencing, 32, 79
described, 30
forward, 32, 34–35
header support, 9–10
incrementing (++), 31, 32, 38
input, 32, 33
invalid, 131, 134–136
for multipass algorithms, 35
output, 32, 33–34
overview, 4, 27–28
pointers vs., 30
random access, 32, 35–36
ranges for, 36–38
regular, from reverse, 222–233
from regular to reverse, 42–43
from reverse to regular, 43–44
searching maps/multimaps,
207–218
searching sets/multisets, 205–206
sequences, moving through, 30–31
for single-pass algorithms, 33
types of, 30–33
See also iterator adaptors

J
Josuttis, Nicolai, 513
judging competitions, 169–176



jumps, setting, 5, 6

K
kernel and images, 501
keys, 55, 207–218, 222–233
Koenig, Andrew, 29
Koenig lookups, 22

L
lambda abstraction library, 459–460
Laplacian kernel, 512
last-in, first-out order (LIFO), 56, 140,

242
“Law of the Big Three, The”, 88
Lee, Meng, 29
length function, 109, 351–353
length_error, 19–20
less function, 65
less_equal function, 65
lexicographical_compare algorithm

comparing containers, 111–113
comparing strings, 353, 359–364
described, 72, 517

libraries, 1, 457–460. See also C++
Standard Library

LIFO (last-in, first-out) order, 56, 140,
242

lighting control, 252–256
limits header, 5, 6
list header, 9
lists

appending containers, 104–106
assigning front and back, 161–164,
175
choosing as container, 85–87
constructing lists/vectors from,
96–98
described, 51–52, 161
exchanging containers, 106–109
filled with specified elements,
94–96
iterations through, 31
member functions, 263
merging, 176–182
nodes, 51
removing duplicates, 182–185
size information, 109–111
sorting, 164–169, 176, 181
splice, 169–176
storing contents in another con-
tainer, 102–104

locales, 4, 8, 451
logic errors, 19, 78
logic operations, 65–67
logical algorithms, 160
look-up tables (LUTs)

adding constants, 496–498
contrast stretch, 498–500
described, 495–496

lookups
argument-dependent, 22
Koenig lookups, 22

loops
for-loop, 233
ranges, 36–38
searching maps/multimaps,
207–218
searching sets/multisets, 205

lower_bound algorithm, 75, 187
lowercase/uppercase conversion,

382–384

M
macros, 6
magazine articles, 530–531
make_heap algorithm, 76
make_pair function

described, 59–60
mentioned, 164, 185, 193, 197
using for same or different data
types, 256–260

manipulators, 12
map header, 9
maps

choosing as container, 85–87
described, 55
as dictionaries, 193–197
member functions, 263
mode value, 427–430
modifying or removing elements,
222–233
searching, 207–218
See also associative containers

masks and images, 501
math header, 11
matrix, sparse, 188
max algorithm, 77, 417–419, 517
max_element algorithm, 72, 131,

415–417
maximum

in containers, 415–417
of data types, 419–422
size of containers, 109–111
using custom criterion, 417–419

means, computing, 423–424, 434–437
median, computing, 424–427
mem_fun function, 68
mem_fun_ref function, 68–69,

271–276
memory

checked/unchecked vector access,
144–147

deques, accessing, 52
lists, accessing, 51–52
remove excess, 125–128
reserve space for elements,
123–125
vectors, accessing, 50–51
See also containers

memory management
memory header, 7
new header, 5, 6

merge algorithm, 75, 233–239, 518
merging

lists, 176–182
sets/multisets, 233–239

Meyers, Scott, 100, 364
min algorithm, 77, 417–419, 518
min_element algorithm, 72, 415–417,

518–519
minicam example, 14–16
minimum

in containers, 415–417
of data types, 419–422
using custom criterion, 417–419

minus function, 64
mismatch algorithm, 72, 359–364, 518
modes, computing, 427–430
modifying

algorithms, 71
container types, 96–98
elements in maps/multimaps,
222–233
elements in sets/multisets,
218–222

modifying algorithms, 73
modulus function, 64
multimaps

choosing as container, 85–87
described, 55–56
as dictionaries, 193–197
member functions, 263
modifying or removing elements,
222–233
searching, 207–218
See also associative containers

multiplies function, 64
multisets

choosing as container, 85–87
described, 54
member functions, 263
modifying or removing elements,
218–222
searching, 197–207
sorted range algorithms, 233–239
See also associative containers

Musser, Dave, 29
mutating algorithms, 10, 71, 73–74

Index 537



N
name collision/clash, 21
names and ages, 131–133
namespace, 5, 21–25

argument-dependent lookup, 22
global, 22, 24
header naming conventions, 5, 24
Koenig lookups, 22
qualifying members, 21–22
scope operator (::), 21, 22
std namespace, 24–25
using-declaration, 23–24
using-directive, 24

NDEBUG macro, 145–147
negate function, 64
negative images, 493–495
negators, 66–67
neighborhood operations, 500
new header, 5, 6
next_permutation algorithm, 74
nonmodifying algorithms, 10, 71, 72
norm of vectors, 417–419
noshowbase manipulator, 440–442
noshowpoint manipulator, 446–449
not_equal_to function, 65
not1, not2 (function objects), 66–67
nouppercase manipulator, 442–444
nth_element algorithm, 74, 424–427,

430–434, 519
numerical processing

arithmetic operations, 63–64
complex numbers, 394–398
consecutive, evenly spaced num-
bers, 402–405
data file access, 452–455
differences between values,
398–402
digit separators, displaying,
449–452
dot product of vectors, 411–415
evaluating mathematical func-
tions, 407–410
header support, 10–11
input/output in binary format,
437–440
input/output in hexadecimal
format, 442–444
input/output in octal format,
440–442
integers and leading zeroes,
444–446
mean (average) value, 423–424,
434–437
median value, 424–427

minimum/maximum in contain-
ers, 415–417
minimum/maximum of data
types, 419–422
minimum/maximum using cus-
tom criterion, 417–419
mode value, 427–430
overview, 4, 391
percentiles, 430–434
performing arithmetic on contain-
ers, 391–394
precision of floating-point num-
bers, 446–449
random number sequence,
405–407
statistics of data, 434–437
variance, 434–437

O
octal I/O, 440–442
operators

arithmetic, 63–64
comparison, 112
logic, 65–67
See also functors

ostream_iterator, 47–48, 120–122,
452–455

ostringstream, 373–376
out_of_range, 19–20, 145–147
outliers, 297–302
output iterators, 32, 33–34
output stream iterators

data file access, 452–455
described, 47–48
displaying container on standard
output, 120–122

output/input, see I/O (input/output)
overflow_error, 19–20

P
pair data structure

described, 28
make_pair function, 59–60
using for same or different data
types, 256–260

partial_sort algorithms, 74, 430–434,
519

partial_sum algorithm, 77, 149,
402–405, 519

partitioning, 74
percent changes, 398–402
percentiles, 430–434
percents, 391–394, 398–402
perfect numbers, 264–270

pixels, 419–422, 462
plus function, 64
pointers

to class member functions in
algorithms, 276–283
vs. iterators, 30

pollution, global-namespace, 24
polymorphism, 276–283
pop_back function, 140, 144, 162, 176
pop_front function, 154, 162, 164, 176
pop_heap algorithm, 76
population rankings, 222–233
predefined function objects, 63–70,

264
predicates, 67
prepended elements and front insert-

ers, 45–46
prev_permutation algorithm, 74
prices, sorting, 310–314
prices, stock, 398–402
prime numbers, 294–302
print function, 169
priority queues, 57–58, 248–252
programming

generic, 27
tips, see tips

ptr_fun function, 67–68, 206, 264–270
publications, 287–294
push_back function, 136, 139, 141,

162, 185
push_front function, 144, 154, 156,

162
push_heap algorithm, 76

Q
qualifying namespace members, 21–22
queue header, 9, 57, 58
queues

as containers, 57
FIFO and buffering, 244–248
priority queues, 57–58, 248–252

R
random access

of containers, 49–60
iterators, 32, 35–36

random number sequence, 405–407
random_shuffle algorithm, 74
ranges, 36–38

empty, 36
equal_range algorithm, 75, 197
errors, avoiding, 79
half-open, 36
out_of_range, 19–20, 145–147

538 Index



partitioning, 74
range_error, 19–20
sorted range algorithms, 75–76,
233–239
swap_ranges, 106–109
validity of, 37

rational numbers, 60
reading formatted strings, 370–372
references, 527–528
remove algorithms, 45, 73, 294–302,

327–330, 519–520
removing

duplicates from lists, 182–185
elements from priority queue,
248–252
elements from sequence contain-
ers, 294–302
elements in maps/multimaps,
222–233
elements in sets/multisets,
218–222
excess memory from vectors,
125–128

replace algorithms, 45, 73, 520
replacing string characters with given

characters, 349–351
reserve memory, 123–125
resetiosflags manipulator, 440–442
resistor stock, 314–322
resize function, 139
reverse access to containers, 116–120
reverse algorithms, 74, 116, 520
reverse iterators, 38–44, 117

from, to regular, 43–44, 222–233
from regular iterators to, 42–43

reversing strings, 351–353
rotate algorithms, 74
runtime errors, 19, 78
runtime support headers, 5, 6

S
safe STL, 78
salaries, 424–427
salespeople and districts, 176–182
scientific manipulator, 446–449
scope operator (::), 21, 22
searching

algorithms for, 10, 72, 74–76
errors, avoiding, 79
maps/multimaps, 207–218
sequence containers, 287–294
sets/multisets, 197–207
speed of, 217–218

security messages, 248–252
separators

numerical processing, 449–452

text processing, 386–390
sequence containers

appending, 104–106
described, 49–52
differences between values,
398–402
elements, requirement on, 88
erasing all matching elements,
297–302
filled from standard input, 98–100
filled with identical elements,
93–94
finding/erasing first or last match-
ing elements, 287–294
header support, 9
performing arithmetic on,
391–394
removing elements from, 294–302
sorting before set operations,
302–310
sorting with multiple criteria,
314–322

sequences and iterators, 30–31
set algorithms, 75–76, 233–239,

302–310, 520–521
set header, 9
setfill manipulator, 444–446
setjmp header, 5, 6
setprecision manipulator, 446–449
sets

choosing as container, 85–87
described, 54
member functions, 263
modifying or removing elements,
218–222
searching, 197–207
sorted range algorithms, 233–239
See also associative containers

setw manipulator, 444–446
shapes, 276–283
sharpening images, 507–508
ships and cargo, 144–147
shots and pets, 149–151
showbase manipulator, 440–444
showpoint manipulator, 446–449
shrinking images, 477–480
signal header, 5, 6
size of containers, 49, 109–111
sizeof operator, 93
slicing, 17
sort algorithm, 75, 427–434, 521
sorting

accessing containers in reverse,
116–120
algorithms for, 10, 71, 74–76,
233–239

associative containers, 187–189
for computing modes, 427–430
for computing percentiles,
430–434
lists, 164–169, 176, 181
with multiple criteria, 314–322
on one of many fields, 310–314
sequence containers before set
operations, 302–310
sorted range algorithms and
sets/multisets, 233–239
without copying, 322–327

sparse matrix, 188
splicing lists, 169–176
stable_partition algorithm, 75
stable_sort algorithm, 75
stack header, 9, 56
stacks

as containers, 56
fast access at back of vectors,
140–144
unwinding, 14–15
using, 241–244

Standard C Library, 2, 3
standard containers, 49. See also

containers
standard libraries, 1. See also C++

Standard Library
Standard Template Library (STL)

components of, 27–28
free, portable versions, 457–458
history of, 29–30
overview, 3–4

start and termination header, 5, 6
statistics, see numerical processing
std namespace, 24–25
stdarg header, 5, 6
stddef header, 6
stdlib header, 5, 6, 8, 11, 12
Stepanov, Alexander, 27, 29
STL (Standard Template Library), see

Standard Template Library (STL)
STL port, 457–458
stream iterators

input stream iterators, 48–49,
98–100, 384–386, 452–455
output stream iterators, 47–48,
120–122, 452–455
using copy, 43, 47, 49, 120–122,
452–455

streams
input string streams, 384–386
I/O header support, 12
reading formatted strings, 370–372
writing formatted strings, 373–376

strings

Index 539



appending characters, 343–345
appending containers, 104–106
C++ Standard Library equivalents of C-string func-
tions, 340–341
case-insensitive comparison of, 359–364
case-sensitive comparison of, 353–355
concatenating, 343–345
container size information, 109–111
converting between iterators and indexes, 131–133
copying strings and substrings, 341–343
C-style string from C++, 376–378
delimiters, 386–390
displaying container on standard output, 120–122
exchanging containers, 106–109
extract words delimited by whitespace, 384–386
filling container from standard input, 98–100
filling container with identical values, 93–94
filling container with specified values, 94–96, 100–102
header support, 7–8
length of, 351–353
overview, 4, 339–340
reading formatted, 370–372
replacing characters with given character, 349–351
reverse, 351–353
searching, 345–349
strip whitespace, 378–382
tokenizing text, 384–390
uppercase/lowercase conversion, 382–384
writing formatted, 373–376

strip whitespace in strings, 378–382
Stroustrup, Bjarne, 24, 29
substrings

case-insensitive comparison of, 364–369
case-sensitive comparison of, 355–358
concatenating, 341–343
copying, 341–343
See also strings

subtraction of images, 487–488
sum of proper divisors, 264–270
swap_ranges algorithm, 106–109, 522
swapping

containers, 77, 106–109
iter_swap, 77
vectors, 125–128, 134

system requirements, 524

T
take_pictures, 15–16
teams, number of possible, 407–410
temporary variable, unnamed, 48, 62, 128
text processing, see strings
throwing exceptions, 14
time header, 5, 6, 7
tips

for avoiding STL errors, 78–79
contributing, 460

displaying elements of containers, 82–85
overview, 81–82
Tip 0, 82–85
Tip 1, 85–87
Tip 2, 87–90
Tip 3, 90–93
Tip 4, 93–94
Tip 5, 94–96
Tip 6, 96–98
Tip 7, 98–100
Tip 8, 100–102
Tip 9, 102–104
Tip 10, 104–106
Tip 11, 106–109
Tip 12, 109–111
Tip 13, 111–113
Tip 14, 114–116
Tip 15, 116–120
Tip 16, 120–122
Tip 17, 123–125
Tip 18, 125–128
Tip 19, 128–131
Tip 20, 131–133
Tip 21, 134–136
Tip 22, 136–140
Tip 23, 140–144
Tip 24, 144–147
Tip 25, 147–149
Tip 26, 149–151
Tip 27, 153–156
Tip 28, 156–160
Tip 29, 161–164
Tip 30, 164–169
Tip 31, 169–176
Tip 32, 176–182
Tip 33, 182–185
Tip 34, 189–193
Tip 35, 193–197
Tip 36, 197–207
Tip 37, 197–207
Tip 38, 218–222
Tip 39, 222–233
Tip 40, 233–239
Tip 41, 241–244
Tip 42, 244–248
Tip 43, 248–252
Tip 44, 252–256
Tip 45, 256–260
Tip 46, 261–263
Tip 47, 264–270
Tip 48, 271–276
Tip 49, 276–283
Tip 50, 283–286
Tip 51, 287–294
Tip 52, 294–302
Tip 53, 297–302

540 Index



Tip 54, 302–310
Tip 55, 310–314
Tip 56, 314–322
Tip 57, 322–327
Tip 58, 327–330
Tip 59, 330–337
Tip 60, 341–343
Tip 61, 343–345
Tip 62, 345–349
Tip 63, 349–351
Tip 64, 351–353
Tip 65, 353–355
Tip 66, 355–358
Tip 67, 359–364
Tip 68, 364–369
Tip 69, 370–372
Tip 70, 373–376
Tip 71, 376–378
Tip 72, 378–382
Tip 73, 382–384
Tip 74, 384–386
Tip 75, 386–390
Tip 76, 391–394
Tip 77, 394–398
Tip 78, 398–402
Tip 79, 402–405
Tip 80, 405–407
Tip 81, 407–410
Tip 82, 411–415
Tip 83, 415–417
Tip 84, 417–419
Tip 85, 419–422
Tip 86, 423–424
Tip 87, 424–427
Tip 88, 427–430
Tip 89, 430–434
Tip 90, 434–437
Tip 91, 437–440
Tip 92, 440–442
Tip 93, 442–444
Tip 94, 444–446
Tip 95, 446–449
Tip 96, 449–452
Tip 97, 452–455
Tip 98, 457–458
Tip 99, 458–460
Tip 100, 460

tokenizing text, 384–390
transaction safe action, 78
transform algorithm

compared to for_each algorithm, 332
described, 73, 522
evaluating mathematical functions, 407–410
operating on each element of containers, 330–337
performing arithmetic on containers, 391–394
uppercase/lowercase conversion, 382–384

trucks and cargo, 241–244
try blocks, 15–17
tuples, 59
type identification header, 5, 6
typeinfo header, 5, 6
types, header, 5, 6, 8

U
unary_function, 70
underflow_error, 19–20
unexpected calls, 18
unique algorithms, 76, 183–185, 233–239, 522
unnamed, temporary variable, 48, 62, 128
upper_bound algorithm, 76
uppercase manipulator, 442–444
uppercase/lowercase conversion, 382–384
using-declaration, 23–24
using-directive, 24
utilities, general, 4, 7
utility header, 7

V
valarray header, 11
variables, unnamed temporary, 48, 62, 128
variance, 434–437
vector header, 9
vectors

adding, 64
appending containers, 104–106
assignment operators, 136–140
of Booleans, 64, 149–151, 253
checked and unchecked access, 144–147
choosing as container, 85–87
constructing from lists, 96–98
constructors, 136–140
as containers, 50–51
converting between iterators and indexes, 131–133
C-style arrays from, 147–149
destructors, 136–140
displaying, on standard output, 120–122
dot product, 411–415
exchanging containers, 106–109
fast access at back, 140–144
filled with identical elements, 93–94
filled with specified elements, 100–102
indexing, 128–131, 144–147
invalid iterators, 131, 134–136
mode value, 427–430
norms, 417–419
overview, 123
remove excess memory, 125–128
reserve space for elements, 123–125
reverse access, 116–120
size information, 109–111
sorting on one of many fields, 310–314
sorting without copying, 322–327

Index 541



storing contents in another container, 102–104
swapping, 125–128, 134

vertical bars, creating, 474–476
vowels, 283–286

W
Web sites, 336, 457, 458, 523, 531–532
Westminster Kennel Club competition, 204
whitespace

extract words delimited by, 384–386
stripping in strings, 378–382

writing formatted strings, 373–376

Z
zeros, show leading, 444–446

542 Index


	Contents
	Acknowledgments
	Preface
	Chapter 1 The C++ Standard Library
	Introduction and History
	Overview
	Language Support
	Diagnostics
	General Utilities
	Strings
	Locales
	Containers
	Iterators
	Algorithms
	Numerics
	Input/Output

	Error Handling
	Exception Handling
	Exception Handling in the Standard Library

	Namespaces

	Chapter 2 Review of the Standard Template Library
	History
	Iterators
	Iterator Categories
	Ranges

	Iterator Adaptors
	Reverse Iterators
	Insert Iterators
	Stream Iterators

	Containers
	Sequence Containers
	Associative Containers
	Container Adaptors
	Miscellaneous Containers

	Functors
	Predefined Function Objects

	Algorithms
	Nonmodifying Algorithms
	Modifying Algorithms
	Mutating Algorithms
	Partitioning and Sorting Algorithms
	Sorted Range Algorithms
	Heap Algorithms
	Numeric Algorithms
	Binary Algorithms

	Error Handling
	Endnotes

	Chapter 3 Tips on Containers in General
	Tip 0 Sample Tip—Display the Elements of a Container
	Tip 1 Use the Right Container
	Tip 2 Requirements on Container Elements
	Tip 3 C-Style Arrays Have Beginning and End Iterators
	Tip 4 Construct a Container Filled with the Same Value
	Tip 5 Construct a Container Filled with Specified Values
	Tip 6 Construct One Container from Another
	Tip 7 Construct a Container from Standard Input
	Tip 8 Store Specified Values in an Existing Container
	Tip 9 Store Contents of One Container in Another
	Tip 10 Append One Container to Another
	Tip 11 Exchange Containers
	Tip 12 Get a Container’s Size and Maximum Size
	Tip 13 Is One Container Greater Than Another?
	Tip 14 Are Two Containers Equal?
	Tip 15 Access a Container in Reverse
	Tip 16 Display a Container on Standard Output

	Chapter 4 Tips on Vectors
	Tip 17 Reserve Space for Elements
	Tip 18 Remove Excess Memory
	Tip 19 Use an Index
	Tip 20 Convert Between Iterators and Indexes
	Tip 21 Be Careful of Invalidated Iterators
	Tip 22 Classes Should Have Constructors, Destructors, and an Assignment Operator
	Tip 23 Fast Access at the Back
	Tip 24 Checked and Unchecked Access
	Tip 25 Get a C-Style Array from a Vector
	Tip 26 Use a Vector of Booleans to Manipulate Bits

	Chapter 5 Tips on Deques
	Tip 27 Operations at Front
	Tip 28 Alternative to a Vector of Booleans

	Chapter 6 Tips on Lists
	Tip 29 Use the Front and Back
	Tip 30 Sort
	Tip 31 Splice
	Tip 32 Merge
	Tip 33 Remove Duplicates

	Chapter 7 Tips on Associative Containers
	Tip 34 Initialize with Specified Values
	Tip 35 Use a Map or Multimap as a Dictionary
	Tip 36 Search in Sets and Multisets
	Tip 37 Search in Maps and Multimaps
	Tip 38 Modify or Remove Elements in a Set or Multiset
	Tip 39 Modify or Remove Elements in a Map or Multimap
	Tip 40 Use the Sorted Range Algorithms with Sets and Multisets

	Chapter 8 Tips on Other Containers
	Tip 41 Using a Stack Data Structure
	Tip 42 A First-In, First-Out Data Structure and Buffering
	Tip 43 Buffering with Priority Removal
	Tip 44 Using a Fixed-Size Collection of Bits
	Tip 45 Using a Pair of the Same or Different Data Types

	Chapter 9 Tips on Algorithms
	Tip 46 Use the Most Specific Algorithm
	Tip 47 Use a Function in Algorithms
	Tip 48 Use a Class Member Function in an Algorithm
	Tip 49 Use a Pointer to a Class Member Function in an Algorithm
	Tip 50 Freeze an Argument to a Function Object
	Tip 51 Find and Erase the First or Last Matching Element
	Tip 52 Remove All Matching Elements
	Tip 53 Really Remove All Matching Elements
	Tip 54 Sort Before Performing Set Operations
	Tip 55 Sort on One of Many Fields
	Tip 56 Sort with Multiple Criteria
	Tip 57 Sort Without Copying
	Tip 58 Copy if a Condition Is Met
	Tip 59 Operate on Each Element of a Container

	Chapter 10 Tips on Text Processing
	Tip 60 Copy Strings and Substrings
	Tip 61 Concatenate Strings and Substrings
	Tip 62 Search Strings
	Tip 63 Replace Characters by a Given Character
	Tip 64 Reverse Strings and Get Their Length
	Tip 65 Compare Strings with Case-Sensitivity
	Tip 66 Compare Substrings with Case-Sensitivity
	Tip 67 Compare Strings without Case-Sensitivity
	Tip 68 Compare Substrings without Case-Sensitivity
	Tip 69 Read Formatted Strings
	Tip 70 Write Formatted Strings
	Tip 71 Get a C String from a C++ string
	Tip 72 Strip Whitespace
	Tip 73 Convert to Upper or Lower Case
	Tip 74 Extract Words Delimited by Whitespace
	Tip 75 Extract Tokens That Are Between Delimiters

	Chapter 11 Tips on Numerical Processing
	Tip 76 Perform Arithmetic on Containers
	Tip 77 Complex Numbers
	Tip 78 Differences Between a Container’s Elements
	Tip 79 Make Consecutive, Evenly Spaced Numbers
	Tip 80 Make a Sequence of Random Numbers
	Tip 81 Evaluate a Mathematical Function
	Tip 82 Compute the Dot Product
	Tip 83 Find the Minimum and Maximum in a Container
	Tip 84 Minimum and Maximum of Two Values Using Custom Criterion
	Tip 85 Minimum and Maximum of Data Types
	Tip 86 Compute the Mean
	Tip 87 Compute the Median
	Tip 88 Compute the Mode
	Tip 89 Compute the Percentile
	Tip 90 Compute Statistics of Data
	Tip 91 Input and Output in Binary Format
	Tip 92 Input and Output in Octal Format
	Tip 93 Input and Output in Hexadecimal Format
	Tip 94 Display Leading Zeros of Integers
	Tip 95 Display Precision of Floating-Point Numbers
	Tip 96 Display a Thousands’ Separator
	Tip 97 Access Data in a File

	Chapter 12 Final Tips
	Tip 98 Get a Free, Portable STL
	Tip 99 Get Free, High-Quality STL Code
	Tip 100 Share the Wealth—Contribute Your Favorite Tip

	Chapter 13 Image Processing
	Image Class
	Image Creation
	Block
	Vertical Bars

	Image Magnification
	Shrinking
	Expanding

	Image Arithmetic
	Subtraction

	Image Enhancement
	Clipping
	Look-Up Tables
	Convolution


	Appendix A: More Information on STL Algorithms
	Appendix B: About the CD-ROM
	Contents
	System Requirements
	Installation

	References
	Bibliography
	Books
	The C++ Standard Library and the STL
	General C++

	Magazine Articles
	Web Sites
	Internet Usenet Groups

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z




