
ptg7987094

ptg7987094

in One Hour a Day

C++
SamsTeachYourself

Siddhartha Rao

800 East 96th Street, Indianapolis, Indiana 46240

Seventh Edition

ptg7987094

Sams Teach Yourself C++ in One Hour a Day,
Seventh Edition
Copyright © 2012 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or other-
wise, without written permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein. Although every precaution has been
taken in the preparation of this book, the publisher and author assume no responsibility for
errors or omissions. Nor is any liability assumed for damages resulting from the use of the
information contained herein.

ISBN-13: 978-0-672-33567-9
ISBN-10: 0-672-33567-0

The Library of Congress Cataloging-in-Publication Data is on file.

Printed in the United States of America

First Printing May 2012

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this infor-
mation. Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis.
The author and the publisher shall have neither liability nor responsibility to any person
or entity with respect to any loss or damages arising from the information contained in
this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Acquisitions Editor
Mark Taber

Development Editor
Songlin Qiu

Managing Editor
Sandra Schroeder

Project Editor
Mandie Frank

Copy Editor
Charlotte Kughen

Indexer
Tim Wright

Proofreader
Megan Wade

Technical Editor
Jon Upchurch

Publishing
Coordinator
Vanessa Evans

Designer
Gary Adair

Compositor
Studio Galou, LLC

ptg7987094

Contents at a Glance
Introduction 1

PART I: The Basics
1 Getting Started 5

2 The Anatomy of a C++ Program 15

3 Using Variables, Declaring Constants 29

4 Managing Arrays and Strings 57

5 Working with Expressions, Statements, and Operators 77

6 Controlling Program Flow 105

7 Organizing Code with Functions 141

8 Pointers and References Explained 165

PART II: Fundamentals of Object-Oriented C++ Programming
9 Classes and Objects 203

10 Implementing Inheritance 251

11 Polymorphism 283

12 Operator Types and Operator Overloading 311

13 Casting Operators 353

14 An Introduction to Macros and Templates 367

PART III: Learning the Standard Template Library (STL)
15 An Introduction to the Standard Template Library 393

16 The STL String Class 405

17 STL Dynamic Array Classes 423

18 STL list and forward_list 445

19 STL Set Classes 467

20 STL Map Classes 487

PART IV: More STL
21 Understanding Function Objects 511

22 C++11 Lambda Expressions 527

23 STL Algorithms 543

24 Adaptive Containers: Stack and Queue 579

25 Working with Bit Flags Using STL 597

PART V: Advanced C++ Concepts
26 Understanding Smart Pointers 607

27 Using Streams for Input and Output 621

ptg7987094

28 Exception Handling 643

29 Going Forward 659

Appendixes
A Working with Numbers: Binary and Hexadecimal 671

B C++ Keywords 677

C Operator Precedence 679

D Answers 681

E ASCII Codes 723

Index 727

ptg7987094

Table of Contents

Introduction 1

PART I: The Basics

LESSON 1: Getting Started 5

A Brief History of C++ 6

Connection to C 6

Advantages of C++ . .. 6

Evolution of the C++ Standard . .. 7

Who Uses Programs Written in C++? . .. 7

Programming a C++ Application 7

Steps to Generating an Executable . .. 8

Analyzing Errors and Firefighting. ... 8

Integrated Development Environments. .. 8

Programming Your First C++ Application . .. 9

Building and Executing Your First C++ Application . .. 10

Understanding Compiler Errors 12

What’s New in C++11 12

Summary. ... 13

Q&A 13

Workshop . .. 14

LESSON 2: The Anatomy of a C++ Program 15

Part of the Hello World Program . .. 16

Preprocessor Directive #include 16

The Body of Your Program main() . .. 17

Returning a Value . .. 18

The Concept of Namespaces 19

Comments in C++ Code. ... 20

Functions in C++ . .. 21

Basic Input Using std::cin and Output Using std::cout 24

Summary. ... 26

Q&A 26

Workshop . .. 27

ptg7987094

LESSON 3: Using Variables, Declaring Constants 29

What Is a Variable? . .. 30

Memory and Addressing in Brief . .. 30

Declaring Variables to Access and Use Memory . .. 30

Declaring and Initializing Multiple Variables of a Type 32

Understanding the Scope of a Variable 33

Global Variables 35

Common Compiler-Supported C++ Variable Types . .. 36

Using Type bool to Store Boolean Values . .. 37
Using Type char to Store Character Values . .. 37
The Concept of Signed and Unsigned Integers. ... 38
Signed Integer Types short, int, long, and long long 39
Unsigned Integer Types unsigned short, unsigned int, unsigned
long, and unsigned long long 39

Floating-Point Types float and double 40

Determining the Size of a Variable Using sizeof . .. 40

Using typedef to Substitute a Variable’s Type 44

What Is a Constant? 45

Literal Constants 45

Declaring Variables as Constants Using const 46

Declaring Constants Using constexpr . .. 47

Enumerated Constants. .. 48

Defining Constants Using #define . .. 50

Naming Variables and Constants . .. 51

Keywords You Cannot Use as Variable or Constant Names. .. 52

Summary. ... 53

Q&A 53

Workshop . .. 55

LESSON 4: Managing Arrays and Strings 57

What Is an Array? . .. 58

The Need for Arrays . .. 58

Declaring and Initializing Static Arrays 59

How Data Is Stored in an Array 60

Accessing Data Stored in an Array . .. 61

Modifying Data Stored in an Array . .. 62

vi Sams Teach Yourself C++ in One Hour a Day

ptg7987094

Multidimensional Arrays . .. 65

Declaring and Initializing Multidimensional Arrays . .. 65

Accessing Elements in a Multidimensional Array . .. 66

Dynamic Arrays 68

C-style Strings 70

C++ Strings: Using std::string 72

Summary. ... 75

Q&A 75

Workshop . .. 76

LESSON 5: Working with Expressions, Statements, and Operators 77

Statements . .. 78

Compound Statements or Blocks . .. 79

Using Operators 79

The Assignment Operator (=) . .. 79

Understanding l-values and r-values . .. 79

Operators to Add (+), Subtract (-), Multiply (*),

Divide (/), and Modulo Divide (%) . .. 80

Operators to Increment (++) and Decrement (--) . .. 81

To Postfix or to Prefix? 81

Equality Operators (==) and (!=). ... 84

Relational Operators . .. 85

Logical Operations NOT, AND, OR, and XOR 87

Using C++ Logical Operators NOT (!), AND (&&), and OR (||) . .. 88

Bitwise NOT (~), AND (&), OR (|), and XOR (^) Operators 92

Bitwise Right Shift (>>) and Left Shift (<<) Operators 94

Compound Assignment Operators . .. 96

Using Operator sizeof to Determine the Memory Occupied by a Variable 98

Operator Precedence. .. 99

Summary . .. 101

Q&A. ... 102

Workshop . .. 102

LESSON 6: Controlling Program Flow 105

Conditional Execution Using if … else . .. 106

Conditional Programming Using if … else . .. 107

Executing Multiple Statements Conditionally 109

Contents vii

ptg7987094

Nested if Statements 111

Conditional Processing Using switch-case. .. 115

Conditional Execution Using Operator (?:) . .. 118

Getting Code to Execute in Loops . .. 119

A Rudimentary Loop Using goto. .. 119

The while Loop 121

The do…while loop 123

The for Loop 125

Modifying Loop Behavior Using continue and break 128

Loops That Don’t End, that is, Infinite Loops 129

Controlling Infinite Loops . .. 130

Programming Nested Loops 133

Using Nested Loops to Walk a Multidimensional Array. .. 134

Using Nested Loops to Calculate Fibonacci Numbers 136

Summary . .. 137

Q&A. ... 138

Workshop . .. 138

LESSON 7: Organizing Code with Functions 141

The Need for Functions . .. 142

What Is a Function Prototype? 143

What Is a Function Definition? 144

What Is a Function Call, and What Are Arguments? 144

Programming a Function with Multiple Parameters. .. 145

Programming Functions with No Parameters or No Return Values. 146

Function Parameters with Default Values . .. 147

Recursion—Functions That Invoke Themselves . .. 149

Functions with Multiple Return Statements . .. 151

Using Functions to Work with Different Forms of Data . .. 152

Overloading Functions 152

Passing an Array of Values to a Function . .. 154

Passing Arguments by Reference. .. 156

How Function Calls Are Handled by the Microprocessor . .. 158

Inline Functions 159

Lambda Functions . .. 161

Summary . .. 162

viii Sams Teach Yourself C++ in One Hour a Day

ptg7987094

Q&A. ... 163

Workshop . .. 163

LESSON 8: Pointers and References Explained 165

What Is a Pointer? . .. 166

Declaring a Pointer . .. 166

Determining the Address of a Variable Using the Reference Operator (&) 167

Using Pointers to Store Addresses . .. 168

Access Pointed Data Using the Dereference Operator (*). .. 170

What Is the sizeof() of a Pointer? . .. 173

Dynamic Memory Allocation 175

Using Operators new and delete to Allocate and Release
Memory Dynamically 175

Effect of Incrementing and Decrementing Operators (++ and --) on Pointers 179

Using const Keyword on Pointers . .. 181

Passing Pointers to Functions 182

Similarities Between Arrays and Pointers . .. 184

Common Programming Mistakes When Using Pointers . .. 186

Memory Leaks. ... 187

When Pointers Don’t Point to Valid Memory Locations. .. 187

Dangling Pointers (Also Called Stray or Wild Pointers) . .. 189

Pointer Programming Best-Practices 189

Checking If Allocation Request Using new Succeeded . .. 191

What Is a Reference? 193

What Makes References Useful? . .. 194

Using Keyword const on References 196

Passing Arguments by Reference to Functions 196

Summary . .. 198

Q&A. ... 198

Workshop . .. 200

PART II: Fundamentals of Object-Oriented C++ Programming

LESSON 9: Classes and Objects 203

The Concept of Classes and Objects 204

Declaring a Class . .. 204

Instantiating an Object of a Class . .. 205

Contents ix

ptg7987094

Accessing Members Using the Dot Operator 206

Accessing Members Using the Pointer Operator (->). ... 206

Keywords public and private 208

Abstraction of Data via Keyword private . .. 210

Constructors 212

Declaring and Implementing a Constructor 212

When and How to Use Constructors 213

Overloading Constructors . .. 215

Class Without a Default Constructor 217

Constructor Parameters with Default Values 219

Constructors with Initialization Lists 220

Destructor . .. 222

Declaring and Implementing a Destructor . .. 222

When and How to Use Destructors 223

Copy Constructor . .. 225

Shallow Copying and Associated Problems 225

Ensuring Deep Copy Using a Copy Constructor . .. 228

Move Constructors Help Improve Performance . .. 233

Different Uses of Constructors and Destructor . .. 235

Class That Does Not Permit Copying 235

Singleton Class That Permits a Single Instance . .. 236

Class That Prohibits Instantiation on the Stack. ... 239

this Pointer. .. 241

sizeof() a Class 242

How struct Differs from class 244

Declaring a friend of a class 245

Summary . .. 247

Q&A. ... 248

Workshop . .. 249

LESSON 10: Implementing Inheritance 251

Basics of Inheritance 252

Inheritance and Derivation . .. 252

C++ Syntax of Derivation . .. 254

Access Specifier Keyword protected 256

Base Class Initialization—Passing Parameters to the Base Class . .. 258

x Sams Teach Yourself C++ in One Hour a Day

ptg7987094

Derived Class Overriding Base Class’ Methods . 261

Invoking Overridden Methods of a Base Class . . 263

Invoking Methods of a Base Class in a Derived Class . . 264

Derived Class Hiding Base Class’ Methods . 266

Order of Construction .. 268

Order of Destruction . 268

Private Inheritance.. 271

Protected Inheritance .. 273

The Problem of Slicing . 277

Multiple Inheritance. . 277

Summary .. 281

Q&A. 281

Workshop .. 281

LESSON 11: Polymorphism 283

Basics of Polymorphism . 284

Need for Polymorphic Behavior .. 284

Polymorphic Behavior Implemented Using Virtual Functions . . 286

Need for Virtual Destructors . 288

How Do virtual Functions Work? Understanding the Virtual Function Table . . 292

Abstract Base Classes and Pure Virtual Functions . . 296

Using virtual Inheritance to Solve the Diamond Problem . 299

Virtual Copy Constructors? . 304

Summary .. 307

Q&A. 307

Workshop .. 308

LESSON 12: Operator Types and Operator Overloading
311What Are Operators in C++? .. 312

Unary Operators .. 313

Types of Unary Operators . . 313

Programming a Unary Increment/Decrement Operator . 314

Programming Conversion Operators. . 317

Programming Dereference Operator (*) and Member Selection

Operator (->) . 319

Binary Operators . 323

Types of Binary Operators . . 324

Contents xi

ptg7987094

Programming Binary Addition (a+b) and Subtraction (a–b) Operators 325
Implementing Addition Assignment (+=) and Subtraction Assignment
(-=) Operators 327

Overloading Equality (==) and Inequality (!=) Operators . .. 330

Overloading <, >, <=, and >= Operators . .. 332

Overloading Copy Assignment Operator (=) 335

Subscript Operator ([]) 338

Function Operator () 342

Operators That Cannot Be Overloaded . .. 349

Summary . .. 350

Q&A. ... 351

Workshop . .. 351

LESSON 13: Casting Operators 353

The Need for Casting 354

Why C-Style Casts Are Not Popular with Some C++ Programmers 355

The C++ Casting Operators. .. 355

Using static_cast . .. 356

Using dynamic_cast and Runtime Type Identification 357

Using reinterpret_cast 360

Using const_cast . .. 361

Problems with the C++ Casting Operators . .. 362

Summary . .. 363

Q&A. ... 364

Workshop . .. 364

LESSON 14: An Introduction to Macros and Templates 367

The Preprocessor and the Compiler 368

Using #define Macros to Define Constants. ... 368

Using Macros for Protection Against Multiple Inclusion . .. 371

Using #define To Write Macro Functions. .. 372

Why All the Parentheses? . .. 374

Using Macro assert to Validate Expressions. ... 375

Advantages and Disadvantages of Using Macro Functions 376

An Introduction to Templates 378

Template Declaration Syntax 378

The Different Types of Template Declarations 379

Template Functions. .. 379

xii Sams Teach Yourself C++ in One Hour a Day

ptg7987094

Templates and Type Safety. .. 381

Template Classes . .. 381

Template Instantiation and Specialization . .. 383

Declaring Templates with Multiple Parameters . .. 383

Declaring Templates with Default Parameters 384

Sample Template class<> HoldsPair 385

Template Classes and static Members. ... 386

Using Templates in Practical C++ Programming . .. 389

Summary . .. 390

Q&A. ... 390

Workshop . .. 391

PART III: Learning the Standard Template Library (STL)

LESSON 15: An Introduction to the Standard Template Library 393

STL Containers. ... 394

Sequential Containers 394

Associative Containers 395

Choosing the Right Container 396

STL Iterators 399

STL Algorithms . .. 400

The Interaction Between Containers and Algorithms Using Iterators. ... 400

STL String Classes 403

Summary . .. 403

Q&A. ... 403

Workshop . .. 404

LESSON 16: The STL String Class 405

The Need for String Manipulation Classes 406

Working with the STL String Class 407

Instantiating the STL String and Making Copies . .. 407

Accessing Character Contents of a std::string 410

Concatenating One String to Another 412

Finding a Character or Substring in a String 413

Truncating an STL string . .. 415

String Reversal 417

String Case Conversion 418

Contents xiii

ptg7987094

Template-Based Implementation of an STL String. ... 420

Summary . .. 420

Q&A. ... 421

Workshop . .. 421

LESSON 17: STL Dynamic Array Classes 423

The Characteristics of std::vector . .. 424

Typical Vector Operations . .. 424

Instantiating a Vector 424

Inserting Elements at the End Using push_back() . .. 426

Inserting Elements at a Given Position Using insert() 428

Accessing Elements in a Vector Using Array Semantics . .. 431

Accessing Elements in a Vector Using Pointer Semantics . .. 433

Removing Elements from a Vector . .. 434

Understanding the Concepts of Size and Capacity 436

The STL deque Class 438

Summary . .. 441

Q&A. ... 441

Workshop . .. 442

LESSON 18: STL list and forward_list 445

The Characteristics of a std::list . .. 446

Basic list Operations 446

Instantiating a std::list Object 446

Inserting Elements at the Front or Back of the List . .. 448

Inserting at the Middle of the List . .. 450

Erasing Elements from the List 453

Reversing and Sorting Elements in a List . .. 455

Reversing Elements Using list::reverse() . .. 455

Sorting Elements . .. 456

Sorting and Removing Elements from a list That Contains Objects of a class 458

Summary . .. 465

Q&A. ... 465

Workshop . .. 465

xiv Sams Teach Yourself C++ in One Hour a Day

ptg7987094

LESSON 19: STL Set Classes 467

An Introduction to STL Set Classes 468

Basic STL set and multiset Operations . .. 468

Instantiating a std::set Object 469

Inserting Elements in a set or multiset 471

Finding Elements in an STL set or multiset . .. 473

Erasing Elements in an STL set or multiset . .. 475

Pros and Cons of Using STL set and multiset 480

Summary . .. 484

Q&A. ... 484

Workshop . .. 485

LESSON 20: STL Map Classes 487

An Introduction to STL Map Classes 488

Basic std::map and std::multimap Operations 489

Instantiating a std::map or std::multimap . .. 489

Inserting Elements in an STL map or multimap . .. 491

Finding Elements in an STL map . .. 494

Finding Elements in an STL multimap 496

Erasing Elements from an STL map or multimap . .. 497

Supplying a Custom Sort Predicate. .. 499

How Hash Tables Work 504

Using C++11 Hash Tables: unordered_map and unordered_multimap 504

Summary . .. 508

Q&A. ... 509

Workshop . .. 510

PART IV: More STL

LESSON 21: Understanding Function Objects 511

The Concept of Function Objects and Predicates . .. 512

Typical Applications of Function Objects. .. 512

Unary Functions. ... 512

Unary Predicate 517

Binary Functions . .. 519

Binary Predicate. ... 522

Contents xv

ptg7987094

Summary . .. 524

Q&A. ... 524

Workshop . .. 525

LESSON 22: C++11 Lambda Expressions 527

What Is a Lambda Expression? . .. 528

How to Define a Lambda Expression 529

Lambda Expression for a Unary Function . .. 529

Lambda Expression for a Unary Predicate . .. 531

Lambda Expression with State via Capture Lists [...] 532

The Generic Syntax of Lambda Expressions. ... 534

Lambda Expression for a Binary Function . .. 535

Lambda Expression for a Binary Predicate . .. 537

Summary . .. 540

Q&A. ... 541

Workshop . .. 541

LESSON 23: STL Algorithms 543

What Are STL Algorithms? 544

Classification of STL Algorithms . .. 544

Non-Mutating Algorithms . .. 544

Mutating Algorithms. ... 545

Usage of STL Algorithms . .. 547

Finding Elements Given a Value or a Condition . .. 547

Counting Elements Given a Value or a Condition . .. 550

Searching for an Element or a Range in a Collection. ... 552

Initializing Elements in a Container to a Specific Value . .. 554

Using std::generate() to Initialize Elements to a Value Generated at Runtime. 556

Processing Elements in a Range Using for_each() . .. 557

Performing Transformations on a Range Using std::transform() . .. 560

Copy and Remove Operations. ... 562

Replacing Values and Replacing Element Given a Condition 565

Sorting and Searching in a Sorted Collection and Erasing Duplicates 567

Partitioning a Range 570

Inserting Elements in a Sorted Collection . .. 572

Summary . .. 575

Q&A. ... 575

Workshop . .. 576

xvi Sams Teach Yourself C++ in One Hour a Day

ptg7987094

LESSON 24: Adaptive Containers: Stack and Queue 579

The Behavioral Characteristics of Stacks and Queues. ... 580

Stacks 580

Queues 580

Using the STL stack Class . .. 581

Instantiating the Stack 581

Stack Member Functions . .. 582

Insertion and Removal at Top Using push() and pop() 583

Using the STL queue Class . .. 585

Instantiating the Queue 585

Member Functions of a queue. ... 586

Insertion at End and Removal at the Beginning of queue via push()

and pop() . .. 587

Using the STL Priority Queue 589

Instantiating the priority_queue Class. ... 589

Member Functions of priority_queue 590

Insertion at the End and Removal at the Beginning of priority_queue via
push() and pop(). ... 591

Summary . .. 594

Q&A. ... 594

Workshop . .. 594

LESSON 25: Working with Bit Flags Using STL 597

The bitset Class . .. 598

Instantiating the std::bitset . .. 598

Using std::bitset and Its Members. .. 599

Useful Operators Featured in std::bitset . .. 599

std::bitset Member Methods 600

The vector<bool> . .. 603

Instantiating vector<bool> . .. 603

vector<bool> Functions and Operators 604

Summary . .. 605

Q&A. ... 605

Workshop . .. 606

Contents xvii

ptg7987094

PART V: Advanced C++ Concepts

LESSON 26: Understanding Smart Pointers 607

What Are Smart Pointers?. .. 608

The Problem with Using Conventional (Raw) Pointers . .. 608

How Do Smart Pointers Help? 608

How Are Smart Pointers Implemented? . .. 609

Types of Smart Pointers . .. 610

Deep Copy . .. 611

Copy on Write Mechanism. .. 613

Reference-Counted Smart Pointers . .. 613

Reference-Linked Smart Pointers . .. 614

Destructive Copy . .. 614

Using the std::unique_ptr . .. 617

Popular Smart Pointer Libraries . .. 618

Summary . .. 619

Q&A. ... 619

Workshop . .. 620

LESSON 27: Using Streams for Input and Output 621

Concept of Streams 622

Important C++ Stream Classes and Objects 623

Using std::cout for Writing Formatted Data to Console . .. 624

Changing Display Number Formats Using std::cout 624

Aligning Text and Setting Field Width Using std::cout . .. 627

Using std::cin for Input . .. 628

Using std::cin for Input into a Plain Old Data Type. .. 628

Using std::cin::get for Input into C-Style char Buffer 629

Using std::cin for Input into a std::string . .. 630

Using std::fstream for File Handling 632

Opening and Closing a File Using open() and close() 632

Creating and Writing a Text File Using open() and operator<< . .. 634

Reading a Text File Using open() and operator>>. .. 635

Writing to and Reading from a Binary File 636

Using std::stringstream for String Conversions . .. 638

Summary . .. 640

Q&A. ... 640

Workshop . .. 641

xviii Sams Teach Yourself C++ in One Hour a Day

ptg7987094

LESSON 28: Exception Handling 643

What Is an Exception? 644

What Causes Exceptions? . .. 644

Implementing Exception Safety via try and catch . .. 645

Using catch(...) to Handle All Exceptions . .. 645

Catching Exception of a Type 647

Throwing Exception of a Type Using throw 648

How Exception Handling Works . .. 650

Class std::exception . .. 652

Your Custom Exception Class Derived from std::exception 653

Summary . .. 655

Q&A. ... 656

Workshop . .. 656

LESSON 29: Going Forward 659

What’s Different in Today’s Processors? . .. 660

How to Better Use Multiple Cores 661

What Is a Thread? . .. 661

Why Program Multithreaded Applications? . .. 662

How Can Threads Transact Data? . .. 663

Using Mutexes and Semaphores to Synchronize Threads . .. 664

Problems Caused by Multithreading. .. 664

Writing Great C++ Code . .. 665

Learning C++ Doesn’t Stop Here! . .. 667

Online Documentation. ... 667

Communities for Guidance and Help 668

Summary . .. 668

Q&A. ... 668

Workshop . .. 669

Appendixes

APPENDIX A: Working with Numbers: Binary and Hexadecimal 671

Decimal Numeral System . .. 672

Binary Numeral System . .. 672

Why Do Computers Use Binary? . .. 673

Contents xix

ptg7987094

What Are Bits and Bytes? . .. 673

How Many Bytes Make a Kilobyte?. .. 674

Hexadecimal Numeral System 674

Why Do We Need Hexadecimal? . .. 674

Converting to a Different Base. ... 675

The Generic Conversion Process . .. 675

Converting Decimal to Binary. ... 675

Converting Decimal to Hexadecimal 676

APPENDIX B: C++ Keywords 677

APPENDIX C: Operator Precedence 679

APPENDIX D: Answers 681

APPENDIX E: ASCII Codes 723

ASCII Table of Printable Characters 724

Index 727

xx Sams Teach Yourself C++ in One Hour a Day

ptg7987094

About the Author

Siddhartha Rao is a technologist at SAP AG, the world’s leading supplier of enterprise
software. As the head of SAP Product Security India, his primary responsibilities include
hiring expert talent in the area of product security as well as defining development best
practices that keeps SAP software globally competitive. Awarded Most Valuable
Professional by Microsoft for Visual Studio–Visual C++, he is convinced that C++11
will help you program faster, simpler, and more efficient C++ applications.

Siddhartha also loves traveling and discovering new cultures given an opportunity to. For
instance, parts of this book have been composed facing the Atlantic Ocean at a quaint
village called Plogoff in Brittany, France—one of the four countries this book was
authored in. He looks forward to your feedback on this global effort!

Dedication
This book is dedicated to my lovely parents and my wonderful sister for being

there when I have needed them the most.

Acknowledgments

I am deeply indebted to my friends who cooked and baked for me while I burned the
midnight oil working on this project. I am grateful to the editorial staff for their very
professional engagement and the wonderful job in getting this book to your shelf!

ptg7987094

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can email or write directly to let us know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

Please note that we cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail we receive, we might not be able to reply
to every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone number or email address.

E-mail: feedback@samspublishing.com

Mail: Reader Feedback
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

ptg7987094

Introduction

2011 was a special year for C++. With the ratification of the new standard, C++11
empowers you to write better code using new keywords and constructs that increase your
programming efficiency. This book helps you learn C++11 in tiny steps. It has been
thoughtfully divided into lessons that teach you the fundamentals of this object-oriented
programming language from a practical point of view. Depending on your proficiency
level, you will be able to master C++11 one hour at a time.

Learning C++ by doing is the best way—so try the rich variety of code samples in this
book hands-on and help yourself improve your programming proficiency. These code
snippets have been tested using the latest versions of the available compilers at the time
of writing, namely the Microsoft Visual C++ 2010 compiler for C++ and GNU’s C++
compiler version 4.6, which both offer a rich coverage of C++11 features.

Who Should Read This Book?
The book starts with the very basics of C++. All that is needed is a desire to learn this
language and curiosity to understand how stuff works. An existing knowledge of C++
programming can be an advantage but is not a prerequisite. This is also a book you might
like to refer to if you already know C++ but want to learn additions that have been made
to the language in C++11. If you are a professional programmer, Part III, “Learning the
Standard Template Library (STL),” is bound to help you create better, more practical
C++11 applications.

Organization of This Book
Depending on your current proficiency levels with C++, you can choose the section you
would like to start with. This book has been organized into five parts:

n Part I, “The Basics,” gets you started with writing simple C++ applications. In
doing so, it introduces you to the keywords that you most frequently see in C++
code of a variable without compromising on type safety.

n Part II, “Fundamentals of Object-Oriented C++ Programming,” teaches you the
concept of classes. You learn how C++ supports the important object-oriented pro-
gramming principles of encapsulation, abstraction, inheritance, and polymorphism.

ptg7987094

Lesson 9, “Classes and Objects,” teaches you the new C++11 concept of move
constructor followed by the move assignment operator in Lesson 12, “Operator
Types and Operator Overloading.” These performance features help reduce
unwanted and unnecessary copy steps, boosting the performance of your applica-
tion. Lesson 14, “An Introduction to Macros and Templates,” is your stepping stone
into writing powerful generic C++ code.

n Part III, “Learning the Standard Template Library (STL),” helps you write efficient
and practical C++ code using the STL string class and containers. You learn how
std::string makes simple string concatenation operations safe and easy and how
you don’t need to use C-style char* strings anymore. You will be able to use STL
dynamic arrays and linked lists instead of programming your own.

n Part IV, “More STL,” focuses on algorithms. You learn to use sort on containers
such as vector via iterators. In this part, you find out how C++11 keyword auto
has made a significant reduction to the length of your iterator declarations. Lesson
22, “C++11 Lambda Expressions,” presents a powerful new feature that results in
significant code reduction when you use STL algorithms.

n Part V, “Advanced C++ Concepts,” explains language capabilities such as smart
pointers and exception-handling, which are not a must in a C++ application but
help make a significant contribution toward increasing its stability and quality. This
part ends with a note on best practices in writing good C++11 applications.

Conventions Used in This Book
Within the lessons, you find the following elements that provide additional information:

2 Sams Teach Yourself C++ in One Hour a Day

These boxes provide additional information related to material you
read.

C++11
These boxes highlight features new to C++11. You may need to use the newer versions
of the available compilers to use these language capabilities.

NOTE

ptg7987094

This book uses different typefaces to differentiate between code and plain English.
Throughout the lessons, code, commands, and programming-related terms appear in a
computer typeface.

Sample Code for this Book
The code samples in this book are available online for download from the publisher’s
website.

Introduction 3

These boxes alert your attention to problems or side effects that
can occur in special situations.

CAUTION

These boxes give you best practices in writing your C++ programs.TIP

DO use the “Do/Don’t” boxes to find a
quick summary of a fundamental prin-
ciple in a lesson.

DON’T overlook the useful information
offered in these boxes.

DO DON’T

ptg7987094

This page intentionally left blank

ptg7987094

LESSON 1
Getting Started

Welcome to Sams Teach Yourself C++ in One Hour a Day! You’re ready to
get started on becoming a proficient C++ programmer.

In this lesson, you find out

n Why C++ is a standard in software development

n How to enter, compile, and link your first working C++ program

n What’s new in C++11

ptg7987094

A Brief History of C++
The purpose of a programming language is to make consumption of computational
resources easier. C++ is not a new language, yet one that is popularly adopted and still
being improved. The latest version of C++ being ratified by the ISO Standards
Committee in 2011 is called C++11.

Connection to C
Initially developed by Bjarne Stroustroup at Bell Labs in 1979, C++ was designed to be
a successor to C. C is a procedural language in which one defines functions that take
certain actions. In contrast, C++ was designed to be an object-oriented language, and it
implements concepts such as inheritance, abstraction, polymorphism, and encapsulation.
C++ features classes that are used to contain member data and member methods that
operate on that data. (Methods are akin to functions in C.) The effect is that the program-
mer thinks of data and what he wishes to do with it. C++ compilers have traditionally
supported C programming, too. This has had its advantages as far as backward compli-
ance of legacy code goes; however, it has come with its share of disadvantages as com-
pilers have become incredibly complex in providing programmers with this backward
compliance while still implementing all the new features that evolution of the language
has required.

Advantages of C++
C++ is considered an intermediate-level programming language, which means that it
allows for high-level programming of applications as well as low-level programming of
libraries that work close to the hardware. For many programmers, C++ provides the opti-
mal mix of being a high-level language that lets one develop complex applications while
supplying flexibility in allowing the developer to extract the best performance via accu-
rate control of resource consumption and availability.

In spite of the presence of newer programming languages such as Java and others based
on .NET, C++ has remained relevant and has also evolved. Newer languages provide cer-
tain features like memory management via garbage collection implemented in a runtime
component that endear them to some programmers. Yet, often these very programmers
would still choose C++ for cases where they need accurate control over their applica-
tion’s performance. A tiered architecture where a web server is programmed in C++
while the front-end application is in HTML, Java, or .NET is commonplace now.

6 LESSON 1: Getting Started

ptg7987094

Evolution of the C++ Standard
Years of evolution resulted in C++ being widely accepted and adopted albeit in many
different forms because of the many different compilers, which each having its own
idiosyncrasies. This popularity and the resulting deviations in the versions available led
to a lot of interoperability problems and porting issues. Hence, there emerged a need to
standardize it all.

In 1998, the first standard version of C++ was ratified by the ISO Committee in ISO/IEC
14882:1998. This was followed by a revision in 2003 (ISO/IEC 14882:2003). The cur-
rent version of the C++ Standard was ratified in August 2011. It is officially called
C++11 (ISO/IEC 14882:2011) and contains some of the most ambitious and progressive
changes the standard has ever seen.

Programming a C++ Application 7

1

A lot of documentation on the Internet still refers to a version of
C++ called C++0x. It was expected that the new standard would
be ratified in 2008 or 2009, and x was used as a marker for the
year. Finally in August 2011, the proposed new standard was
approved and is appropriately called C++11.

In other words, C++11 is the new C++0x.

Who Uses Programs Written in C++?
Irrespective of who you are or what you do—a seasoned programmer or one who uses
the computer for a specific purpose—chances are that you are constantly consuming C++
applications and libraries. Be it operating systems, device drivers, office applications,
web servers, cloud-based applications, search engines, or even some of the newer pro-
gramming languages, C++ is often the language of choice for creating them.

Programming a C++ Application
When you start Notepad or VI on your computer, you actually are telling the processor to
run an executable of that program. The executable is the finished product that can be run
and should do what the programmer intended to achieve.

NOTE

ptg7987094

Steps to Generating an Executable
Writing a C++ program is a first step towards creating an executable that can eventually
run on your operating system. The basic steps in creating applications in C++ are the
following:

1. Writing (or programming) C++ code using a text editor

2. Compiling code using a C++ compiler that converts it to a machine language
version contained in “object files”

3. Linking the output of the compiler using a linker to get an executable (.exe in
Windows, for example)

Note that the microprocessor cannot consume text files, which is essentially what you
create when you program. Compilation is the step where code in C++ contained typically
in .CPP text files is converted into byte code that the processor can eventually understand.
The compiler converts one code file at a time, generating an object file with a .o or .obj
extension and ignoring dependencies that this CPP file may have on code in another file.
Joining the dots and resolving these dependencies is the job of the linker. In addition to
bringing the various object files together, it establishes dependencies, and in the event of
successful linkage, it creates an executable for the programmer to execute and eventually
distribute.

Analyzing Errors and Firefighting
Most complex applications, especially those developed by many programmers working
in a team, rarely compile and work perfectly at the first run. A huge or complex applica-
tion programmed in any language—C++ included—often needs many runs and re-runs to
analyze the problems and detect bugs. The bugs are then fixed, the program is rebuilt,
and the process continues. Thus, in addition to the three steps of programming, compil-
ing, and linking, development often involves a step called debugging in which the pro-
grammer analyzes anomalies and errors in the application using tools, such as watches,
and debugging features, such as executing the application one line at a time.

Integrated Development Environments
Many programmers prefer using an Integrated Development Environment (IDE) in which
the programming, compiling, and linking steps are integrated within a unified user inter-
face that also supplies debugging features that make it easier to detect errors and solve
problems.

8 LESSON 1: Getting Started

ptg7987094

Programming a C++ Application 9

1

There are many freely available C++ IDEs and compilers. The pop-
ular ones are Microsoft Visual C++ Express for Windows and the
GNU C++ Compiler called g++ for Linux. If you’re programming on
Linux, you can install the free Eclipse IDE to develop C++ applica-
tions using the g++ compiler.

TIP

Although no compiler completely supports the C++11 Standard at
the time of writing this book, many major features have already
been supported by the aforementioned compilers.

CAUTION

DO either use a simple text editor
such as Notepad or gedit to create
your source code or use an IDE.

DO save your files with the .cpp
extension.

DON’T use rich text editors because
they often add their own markup in
addition to the code you program.

DON’T use a .c extension because
many compilers treat such files as C
code instead of C++ code.

DO DON’T

Programming Your First C++ Application
Now that you know the tools and the steps involved, it is time to program your first C++
application, which follows tradition and prints a “Hello World!” on your screen.

If you are on Windows and using Microsoft Visual C++ Express, you can follow these
steps:

1. Create a new project via the menu option File, New, Project.

2. Choose type Win32 Console Application and uncheck the Use Precompiled Header
option.

3. Name your project Hello and replace the automatically generated contents in
Hello.cpp with the code snippet shown in Listing 1.1.

If you are programming on Linux, use a simple text editor (I used gedit on Ubuntu)
to create a CPP file with contents as seen in Listing 1.1.

ptg7987094

LISTING 1.1 Hello.cpp, the Hello World Program

1: #include <iostream>
2:
3: int main()
4: {
5: std::cout << “Hello World!” << std::endl;
6: return 0;
7: }

This simple application does nothing more than print a line to the screen using
std::cout. std::endl instructs cout to end that line, and the application exits by return-
ing 0 to the operating system.

10 LESSON 1: Getting Started

To read a program to yourself, it might help if you know how to
pronounce the special characters and keywords.

For instance, you can call #include hash-include. Other versions
are sharp-include or pound-include, depending on where you come
from.

Similarly, you can read std::cout as standard-c-out.

NOTE

Remember, the devil is in the details, meaning that you need to be
typing your code in exactly the same way as it is shown in the list-
ing. Compilers are notorious for expecting compliance to their
expectations. If you mistakenly put a : at the end of a statement
where a ; is expected, all hell will certainly break loose!

Building and Executing Your First C++ Application
If you’re using Microsoft Visual C++ Express, press Ctrl + F5 to run your program
directly via the IDE. This compiles, links, and executes your application. You could also
do the individual steps:

1. Right-click the project and select Build to generate the executable.

2. Navigate to the path of the executable using the command-prompt (typically under
the Debug directory of the project folder).

3. Run it by typing the name of the executable.

CAUTION

ptg7987094

Your program composed in Microsoft Visual C++ will look quite similar to that illus-
trated in Figure 1.1.

Programming a C++ Application 11

1
FIGURE 1.1
A simple “Hello
World” C++
program edited
in Microsoft
Visual C++
2010 Express.

If you are on Linux, invoke the g++ compiler and linker using the command line:

g++ -o hello Hello.cpp

Entering this tells g++ to create an executable named “hello” by compiling your C++ file
Hello.cpp. Executing .\hello on Linux or Hello.exe on Windows returns the follow-
ing output:

Hello World!

Congratulations! You have started on your way to learning one of the most popular and
powerful programming languages of all times!

Significance of the C++ ISO Standard

As you can see, standard compliance helps the code snippet in Listing 1.1 be com-
piled and executed on multiple platforms or operating systems—the prerequisite
being the availability of a standard compliant C++ compiler. Thus, if you need to cre-
ate a product that needs to be run by Windows as well as Linux users, for example,
standard compliant programming practices (that don’t use a compiler or platform-
specific semantics) give you an inexpensive way to reach more users without need-
ing to program specifically for every environment you need to be supporting. This,
of course, works optimally for applications that don’t need much interaction at an
operating system level.

ptg7987094

Understanding Compiler Errors
Compilers are painfully exact in their requirements, yet good ones make a decent effort
at telling you where you have made mistakes. If you face a problem in compiling the
application in Listing 1.1, you might get errors that look quite like the following (intro-
duced deliberately by omitting the semicolon in Line 5):

hello.cpp(6): error C2143: syntax error : missing ‘;’ before ‘return’

This error message from the Visual C++ Compiler is quite descriptive: It tells the name
of the file that contains the error, the line number (6, in this case) where you missed a
semicolon, and a description of the error itself accompanied by the error number (C2143,
in this case). Though the punctuation mark was deleted from the fifth line for this exam-
ple, the error reported is in the line after because the error became apparent to the com-
piler only when it analyzed the return statement which indicated that the previous
statement ought to have been terminated before the return. You can try to add the semi-
colon at the start of the sixth line and the program compiles just fine!

12 LESSON 1: Getting Started

Line-breaks don’t automatically terminate statements as they do
in some languages such as VBScript.

In C++, it is possible to have a statement spanning multiple lines.

What’s New in C++11
If you are an experienced C++ programmer, you might have noticed that the basic C++
program in Listing 1.1 hasn’t changed one bit. Although it’s true that C++11 remains
backward compliant with previous versions of C++, a lot of work has been done in
making the language simpler to use and to program in.

Features such as auto allow you to define a variable whose type is deduced automati-
cally by the compiler, compacting wordy iterator declarations for instance without com-
promising on type-safety. “Lambda functions” are functions without a name. They allow
you to write compact function objects without long class definitions, reducing lines of
code significantly. C++11 promises programmers the ability to write portable, multi-
threaded, and yet standard-compliant C++ applications. These applications, when cor-
rectly built, support concurrent execution paradigms and are well positioned to scale in
performance when the user boosts the capability of his hardware configuration by
increasing the number of CPU cores.

These are some of the many improvements featured in C++11 that are discussed through-
out this book.

NOTE

ptg7987094

Summary
In this lesson you learned how to program, compile, link, and execute your first C++ pro-
gram. This lesson also gave you a brief overview on the evolution of C++ and demon-
strated the effectiveness of a standard in showing that the same program can be compiled
using different compilers on different operating systems.

Q&A
Q Can I ignore warning messages from my compiler?

A In certain cases, compilers issue warning messages. Warnings are different from
errors in that the line in question is syntactically correct and compile-worthy.
However, there possibly is a better way to write it, and good compilers issue a
warning with a recommendation for a fix.

The suggested correction can mean a more secure way of programming or one that
lets your application work with characters and symbols from non-Latin languages.
You should heed these warnings and improve your program accordingly. Don’t
mask the warning messages, unless you are sure that they’re false positives.

Q How does an interpreted language differ from a compiled language?

A Languages such as Windows Script are interpreted. There is no compilation step.
An interpreted language uses an interpreter that directly reads the script text file
(code) and performs the desired actions. Consequently, you need to have the inter-
preter installed on a machine where the script needs to be executed; consequently,
performance usually takes a hit as the interpreter works as a runtime translator
between the microprocessor and the code written.

Q What are runtime errors, and how are they different from compile-time
errors?

A Errors that happen when you execute your application are called runtime errors.
You might have experienced the infamous “Access Violation” on older versions of
Windows, which is a runtime error. Compile-time errors don’t reach the end-user
and are an indication of syntactical problems; they keep the programmer from gen-
erating an executable.

Q&A 13

1

ptg7987094

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain you understand the answers before continuing to the next
lesson.

Quiz
1. What is the difference between an interpreter and a compiler?

2. What does the linker do?

3. What are the steps in the normal development cycle?

4. How does the C++11 Standard better support multicore CPUs?

Exercises
1. Look at the following program and try to guess what it does without running it:

1: #include <iostream>
2: int main()
3: {
4: int x = 8;
5: int y = 6;
6: std::cout << std::endl;
7: std::cout << x - y << “ “ << x * y << x + y;
8: std::cout << std::endl;
9: return 0;
10:}

2. Type in the program from Exercise 1 and then compile and link it. What does it
do? Does it do what you guessed?

3. What do you think is the error in this program:
1: include <iostream>
2: int main()
3: {
4: std::cout << “Hello Buggy World \n”;
5: return 0;
6: }

4. Fix the error in the program in Exercise 3, compile, link, and run it. What does
it do?

14 LESSON 1: Getting Started

ptg7987094

LESSON 2
The Anatomy of a
C++ Program

C++ programs consist of classes, functions, variables, and other
component parts. Most of this book is devoted to explaining these
parts in depth, but to get a sense of how a program fits together, you
must see a complete working program.

In this lesson, you learn

n The parts of a C++ program

n How the parts work together

n What a function is and what it does

n Basic input and output operations

ptg7987094

Part of the Hello World Program
Your first C++ program in Lesson 1, “Getting Started,” did nothing more than write a
simple “Hello World” statement to the screen. Yet this program contains some of the
most important and basic building blocks of a C++ program. You use Listing 2.1 as a
starting point to analyze components all C++ programs contain.

LISTING 2.1 HelloWorldAnalysis.cpp: Analyze a C++ Program

1: // Preprocessor directive that includes header iostream
2: #include <iostream>
3:
4: // Start of your program: function block main()
5: int main()
6: {
7: /* Write to the screen */
8: std::cout << “Hello World” << std::endl;
9:
10: // Return a value to the OS
11: return 0;
12: }

This C++ program can be broadly classified into two parts: the preprocessor directives
that start with a # and the main body of the program that starts with int main().

16 LESSON 2: The Anatomy of a C++ Program

Lines 1, 4, 7, and 10, which start with a // or with a /*, are com-
ments and are ignored by the compiler. These comments are for
humans to read.

Comments are discussed in greater detail in the next section.

Preprocessor Directive #include
As the name suggests, a preprocessor is a tool that runs before the actual compilation
starts. Preprocessor directives are commands to the preprocessor and always start with a
pound sign #. In Line 2 of Listing 2.1, #include <filename> tells the preprocessor to
take the contents of the file (iostream, in this case) and include them at the line where
the directive is made. iostream is a standard header file that is included because it con-
tains the definition of std::cout used in Line 8 that prints “Hello World” on the screen.
In other words, the compiler was able to compile Line 8 that contains std::cout because
we instructed the preprocessor to include the definition of std::cout in Line 2.

NOTE

ptg7987094

Part of the Hello World Program 17

2

In professionally programmed C++ applications, not all includes
are only standard headers. Complex applications are typically pro-
grammed in multiple files wherein some need to include others.
So, if an artifact declared in FileA needs to be used in FileB, you
need to include the former in the latter. You usually do that by
putting the following include statement in FileA:

#include “...relative path to FileB\FileB”

We use quotes in this case and not angle brackets in including a
self-created header. <> brackets are typically used when including
standard headers.

The Body of Your Program main()
Following the preprocessor directive(s) is the body of the program characterized by the
function main(). The execution of a C++ program always starts here. It is a standardized
convention that function main() is declared with an int preceding it. int is the return
value type of the function main().

NOTE

In many C++ applications, you find a variant of the main() func-
tion that looks like this:

int main (int argc, char* argv[])

This is also standard compliant and acceptable as main returns
int. The contents of the parenthesis are “arguments” supplied to
the program. This program possibly allows the user to start it with
command-line arguments, such as

program.exe /DoSomethingSpecific

/DoSomethingSpecific is the argument for that program passed
by the OS as a parameter to it, to be handled within main.

Let’s discuss Line 8 that fulfills the actual purpose of this program!

std::cout << “Hello World” << std::endl;

cout (“console-out”, also pronounced see-out) is the statement that writes “Hello World”
to the screen. cout is a stream defined in the standard namespace (hence, std::cout),
and what you are doing in this line is putting the text “Hello World” into this stream by
using the stream insertion operator <<. std::endl is used to end a line, and inserting it
into a stream is akin to inserting a carriage return. Note that the stream insertion operator
is used every time a new entity needs to be inserted into the stream.

NOTE

ptg7987094

The good thing about streams in C++ is that similar stream semantics used with another
stream type result in a different operation being performed with the same text—for
example, insertion into a file instead of a console. Thus, working with streams gets intu-
itive, and when you are used to one stream (such as cout that writes text to the console),
you find it easy to work with others (such as fstream that helps write text files to the
disk).

Streams are discussed in greater detail in Lesson 27, “Using Streams for Input and
Output.”

18 LESSON 2: The Anatomy of a C++ Program

The actual text, including the quotes “Hello World”, is called a
string literal.

Returning a Value
Functions in C++ need to return a value unless explicitly specified otherwise. main() is a
function, too, and always returns an integer. This value is returned to the operating sys-
tem (OS) and, depending on the nature of your application, can be very useful as most
OSes provide for an ability to query on the return value of an application that has termi-
nated naturally. In many cases, one application is launched by another and the parent
application (that launches) wants to know if the child application (that was launched) has
completed its task successfully. The programmer can use the return value of main() to
convey a success or error state to the parent application.

NOTE

Conventionally programmers return 0 in the event of success or -1
in the event of error. However, the return value is an integer, and
the programmer has the flexibility to convey many different states
of success or failure using the available range of integer return
values.

NOTE

C++ is case-sensitive. So, expect compilation to fail if you write
Int instead of int, Void instead of void, and Std::Cout instead
of std::cout.

CAUTION

ptg7987094

The Concept of Namespaces
The reason you used std::cout in the program and not only cout is that the artifact
(cout) that you want to invoke is in the standard (std) namespace.

So, what exactly are namespaces?

Assume that you didn’t use the namespace qualifier in invoking cout and assume that
cout existed in two locations known to the compiler—which one should the compiler
invoke? This causes a conflict and the compilation fails, of course. This is where name-
spaces get useful. Namespaces are names given to parts of code that help in reducing the
potential for a naming conflict. By invoking std::cout, you are telling the compiler to
use that one unique cout that is available in the std namespace.

The Concept of Namespaces 19

2

You use the std (pronounced “standard”) namespace to invoke
functions, streams, and utilities that have been ratified by the ISO
Standards Committee and are hence declared within it.

Many programmers find it tedious to repeatedly add the std namespace specifier to
their code when using cout and other such features contained in the same. The using
namespace declaration as demonstrated in Listing 2.2 will help you avoid this repetition.

LISTING 2.2 The using namespace Declaration

1: // Pre-processor directive
2: #include <iostream>
3:
4: // Start of your program
5: int main()
6: {
7: // Tell the compiler what namespace to search in
8: using namespace std;
9:
10: /* Write to the screen using std::cout */
11: cout << “Hello World” << endl;
12:
13: // Return a value to the OS
14: return 0;
15: }

NOTE

ptg7987094

Analysis ▼

Note Line 8. By telling the compiler that you are using the namespace std, you don’t
need to explicitly mention the namespace on Line 11 when using std::cout or
std::endl.

A more restrictive variant of Listing 2.2 is shown in Listing 2.3 where you do not include
a namespace in its entirety. You only include those artifacts that you wish to use.

LISTING 2.3 Another Demonstration of the using Keyword

1: // Pre-processor directive
2: #include <iostream>
3:
4: // Start of your program
5: int main()
6: {
7: using std::cout;
8: using std::endl;
9:
10: /* Write to the screen using cout */
11: cout << “Hello World” << endl;
12:
13: // Return a value to the OS
14: return 0;
15: }

Analysis ▼

Line 8 in Listing 2.2 has now been replaced by Lines 7 and 8 in Listing 2.3. The differ-
ence between using namespace std and using std::cout is that the former allows all
artifacts in the std namespace to be used without explicitly needing to specify the name-
space qualifier std::. With the latter, the convenience of not needing to disambiguate the
namespace explicitly is restricted to only std::cout and std::endl.

Comments in C++ Code
Lines 1, 4, 10 and 13 in Listing 2.3 contain text in a spoken language (English, in this
case) yet do not interfere with the ability of the program to compile. They also do not
alter the output of the program. Such lines are called comments. Comments are ignored
by the compiler and are popularly used by programmers to explain their code—hence,
they are written in human- (or geek-) readable language.

20 LESSON 2: The Anatomy of a C++ Program

ptg7987094

C++ supports comments in two styles:

n // indicates that the line is a comment. For example:
// This is a comment

n /* followed by */ indicates the contained text is a comment, even if it spans multi-
ple lines:
/* This is a comment
and it spans two lines */

Functions in C++ 21

2
It might seem strange that a programmer needs to explain his
own code, but the bigger a program gets or the larger the number
of programmers working on a particular module gets, the more
important it is to write code that can be easily understood. It
is important to explain what is being done and why it is being
done in that particular manner using well-written comments.

NOTE

Do add comments explaining the work-
ing of complicated algorithms and com-
plex parts of your program.

Do compose comments in a style that
fellow programmers can understand.

Don’t use comments to explain or
repeat the obvious.

Don’t forget that adding comments will
not justify writing obscure code.

Don’t forget that when code is
modified, comments might need to
be updated, too.

DO DON’T

Functions in C++
Functions in C++ are the same as functions in C. Functions are artifacts that enable you
to divide the content of your application into functional units that can be invoked in a
sequence of your choosing. A function, when called (that is, invoked), typically returns
a value to the calling function. The most famous function is, of course, main(). It is
recognized by the compiler as the starting point of your C++ application and has to
return an int (i.e., an integer).

You as a programmer have the choice and usually the need to compose your own func-
tions. Listing 2.4 is a simple application that uses a function to display statements on the
screen using std::cout with various parameters.

ptg7987094

LISTING 2.4 Declaring, Defining, and Calling a Function That Demonstrates Some
Capabilities of std::cout

1: #include <iostream>
2: using namespace std;
3:
4: // Function declaration
5: int DemoConsoleOutput();
6:
7: int main()
8: {
9: // Call i.e. invoke the function
10: DemoConsoleOutput();
11:
12: return 0;
13: }
14:
15: // Function definition
16: int DemoConsoleOutput()
17: {
18: cout << “This is a simple string literal” << endl;
19: cout << “Writing number five: “ << 5 << endl;
20: cout << “Performing division 10 / 5 = “ << 10 / 5 << endl;
21: cout << “Pi when approximated is 22 / 7 = “ << 22 / 7 << endl;
22: cout << “Pi more accurately is 22 / 7 = “ << 22.0 / 7 << endl;
23:
24: return 0;
25: }

Output .
This is a simple string literal
Writing number five: 5
Performing division 10 / 5 = 2
Pi when approximated is 22 / 7 = 3
Pi more accurately is 22 / 7 = 3.14286

Analysis .

Lines 5, 10, and 15 through 25 are those of interest. Line 5 is called a function declara-
tion, which basically tells the compiler that you want to create a function called
DemoConsoleOutput() that returns an int (integer). It is because of this declaration that
the compiler agrees to compile Line 10, assuming that the definition (that is, the imple-
mentation of the function) comes up, which it does in Lines 15 through 25.

This function actually displays the various capabilities of cout. Note how it not only
prints text the same way as it displayed “Hello World” in previous examples, but also the

22 LESSON 2: The Anatomy of a C++ Program

ptg7987094

result of simple arithmetic computations. Lines 21 and 22 both attempt to display the
result of pi (22 / 7), but the latter is more accurate simply because by diving 22.0 by 7,
you tell the compiler to treat the result as a real number (a float in C++ terms) and not
as an integer.

Note that your function is stipulated to return an integer and returns 0. As it did not
perform any decision-making, there was no need to return any other value. Similarly,
main() returns 0, too. Given that main() has delegated all its activity to the function
DemoConsoleOutput(), you would be wiser to use the return value of the function in
returning from main() as seen in Listing 2.5.

LISTING 2.5 Using the Return Value of a Function

1: #include <iostream>
2: using namespace std;
3:
4: // Function declaration and definition
5: int DemoConsoleOutput()
6: {
7: cout << “This is a simple string literal” << endl;
8: cout << “Writing number five: “ << 5 << endl;
9: cout << “Performing division 10 / 5 = “ << 10 / 5 << endl;
10: cout << “Pi when approximated is 22 / 7 = “ << 22 / 7 << endl;
11: cout << “Pi more accurately is 22 / 7 = “ << 22.0 / 7 << endl;
12:
13: return 0;
14: }
15:
16: int main()
17: {
18: // Function call with return used to exit
19: return DemoConsoleOutput();
20: }

Analysis .

The output of this application is the same as the output of the previous listing. Yet, there
are slight changes in the way it is programmed. For one, as you have defined (i.e., imple-
mented) the function before main() at Line 5, you don’t need an extra declaration of the
same. Modern C++ compilers take it as a function declaration and definition in one.
main() is a bit shorter, too. Line 19 invokes the function DemoConsoleOutput() and
simultaneously returns the return value of the function from the application.

Functions in C++ 23

2

ptg7987094

24 LESSON 2: The Anatomy of a C++ Program

In cases such as this where a function is not required to make a
decision or return success or failure status, you can declare a
function of return type void:

void DemoConsoleOutput()

This function cannot return a value, and the execution of a func-
tion that returns void cannot be used to make a decision.

Functions can take parameters, can be recursive, can contain multiple return statements,
can be overloaded, can be expanded in-line by the compiler, and lots more. These con-
cepts are introduced in greater detail in Lesson 7, “Organizing Code with Functions.”

Basic Input Using std::cin and Output
Using std::cout
Your computer enables you to interact with applications running on it in various forms
and allows these applications to interact with you in many forms, too. You can interact
with applications using the keyboard or the mouse. You can have information displayed
on the screen as text, displayed in the form of complex graphics, printed on paper using
a printer, or simply saved to the file system for later usage. This section discusses the
very simplest form of input and output in C++—using the console to write and read
information.

You use std::cout (pronounced “standard see-out”) to write simple text data to the con-
sole and use std::cin (“standard see-in”) to read text and numbers (entered using the
keyboard) from the console. In fact, in displaying “Hello World” on the screen, you have
already encountered cout, as seen in Listing 2.1:

8: std::cout << “Hello World” << std::endl;

The statement shows cout followed by the insertion operator << (that helps insert data
into the output stream), followed by the string literal “Hello World” to be inserted, fol-
lowed by a newline in the form of std::endl (pronounced “standard end-line”).

The usage of cin is simple, too, and as cin is used for input, it is accompanied by the
variable you want to be storing the input data in:

std::cin >> Variable;

Thus, cin is followed by the extraction operator >> (extracts data from the input stream),
which is followed by the variable where the data needs to be stored. If the user input

NOTE

ptg7987094

needs to be stored in two variables, each containing data separated by a space, then you
can do so using one statement:

std::cin >> Variable1 >> Variable2;

Note that cin can be used for text as well as numeric inputs from the user, as shown in
Listing 2.6.

LISTING 2.6 Use cin and cout to Display Number and Text Input by User

1: #include <iostream>
2: #include <string>
3: using namespace std;
4:
5: int main()
6: {
7: // Declare a variable to store an integer
8: int InputNumber;
9:
10: cout << “Enter an integer: “;
11:
12: // store integer given user input
13: cin >> InputNumber;
14:
15: // The same with text i.e. string data
16: cout << “Enter your name: “;
17: string InputName;
18: cin >> InputName;
19:
20: cout << InputName << “ entered “ << InputNumber << endl;
21:
22: return 0;
23: }

Output .
Enter an integer: 2011
Enter your name: Siddhartha
Siddhartha entered 2011

Analysis .

Line 8 shows how a variable of name InputNumber is declared to store data of type int.
The user is requested to enter a number using cout in Line 10, and the entered number is
stored in the integer variable using cin in Line 13. The same exercise is repeated with
storing the user’s name, which of course cannot be held in an integer but in a different

Basic Input Using std::cin and Output Using std::cout 25

2

ptg7987094

type called string as seen in Lines 17 and 18. The reason you included <string> in
Line 2 was to use type string later inside main(). Finally in Line 20, a cout statement
is used to display the entered name with the number and an intermediate text to produce
the output Siddhartha entered 2011.

This is a very simple example of how basic input and output work in C++. Don’t worry
if the concept of variables is not clear to you as it is explained in good detail in the fol-
lowing Lesson 3, “Using Variables, Declaring Constants.”

Summary
This lesson introduced the basic parts of a simple C++ program. You understood what
main() is, got an introduction to namespaces, and learned the basics of console input and
output. You are able to use a lot of these in every program you write.

Q&A
Q What does #include do?

A This is a directive to the preprocessor that runs when you call your compiler. This
specific directive causes the contents of the file named in <> after #include to be
inserted at that line as if it were typed at that location in your source code.

Q What is the difference between // comments and /* comments?

A The double-slash comments (//) expire at the end of the line. Slash-star (/*) com-
ments are in effect until there is a closing comment mark (*/). The double-slash
comments are also referred to as single-line comments, and the slash-star com-
ments are often referred to as multiline comments. Remember, not even the end of
the function terminates a slash-star comment; you must put in the closing comment
mark or you will receive a compile-time error.

Q When do you need to program command-line arguments?

A To allow the user to alter the behavior of a program. For example, the command ls
in Linux or dir in Windows enables you to see the contents within the current
directory or folder. To view files in another directory, you would specify the path
of the same using command-line arguments, as seen in ls / or dir \.

26 LESSON 2: The Anatomy of a C++ Program

ptg7987094

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain you understand the answers before continuing to the next
lesson.

Quiz
1. What is the problem in declaring Int main()?

2. Can comments be longer than one line?

Exercises
1. BUG BUSTERS: Enter this program and compile it. Why does it fail? How can

you fix it?
1: #include <iostream>
2: void main()
3: {
4: std::Cout << Is there a bug here?”;
5: }

2. Fix the bug in Exercise 1 and recompile, link, and run it.

3. Modify Listing 2.4 to demonstrate subtraction (using –) and multiplication
(using *).

Workshop 27

2

ptg7987094

This page intentionally left blank

ptg7987094

LESSON 3
Using Variables,
Declaring Constants

Variables are tools that help the programmer temporarily store data for a
finite amount of time. Constants are tools that help the programmer
define artifacts that are not allowed to change.

In this lesson, you find out

n How to use C++11 keywords auto and constexpr

n How to declare and define variables and constants

n How to assign values to variables and manipulate those values

n How to write the value of a variable to the screen

ptg7987094

What Is a Variable?
Before you actually explore the need and use of variables in a programming language,
take a step back and first see what a computer contains and how it works.

Memory and Addressing in Brief
All computers, smart phones, and other programmable devices contain a microprocessor
and a certain amount of memory for temporary storage called Random Access Memory
(RAM). In addition, many devices also allow for data to be persisted on a storage device
such as the hard disk. The microprocessor executes your application, and in doing so it
works with the RAM to fetch the application to be executed as well as the data associ-
ated with it, which includes that displayed on the screen and that entered by the user.

The RAM itself can be considered to be a storage area akin to a row of lockers in the
dorms, each locker having a number—that is, an address. To access a location in mem-
ory, say location 578, the processor needs to be asked via an instruction to fetch a value
from there or write a value to it.

Declaring Variables to Access and Use Memory
The following examples will help you understand what variables are. Assume you are
writing a program to multiply two numbers supplied by the user. The user is asked to
feed the multiplicand and the multiplier into your program, one after the other, and you
need to store each of them so that you can use them later to multiply. Depending on what
you want to be doing with the result of the multiplication, you might even want to store
it for later use in your program. It would be slow and error-prone if you were to explic-
itly specify memory addresses (such as 578) to store the numbers, as you would need to
worry about inadvertently overwriting existing data at the location or your data being
overwritten at a later stage.

When programming in languages like C++, you define variables to store those values.
Defining a variable is quite simple and follows this pattern:

variable_type variable_name;

or

variable_type variable_name = initial_value;

The variable type attribute tells the compiler the nature of data the variable can store, and
the compiler reserves the necessary space for it. The name chosen by the programmer is
a friendly replacement for the address in the memory where the variable’s value is stored.
Unless the initial value is assigned, you cannot be sure of the contents of that memory
location, which can be bad for the program. Therefore, initialization is optional, but it’s

30 LESSON 3: Using Variables, Declaring Constants

ptg7987094

often a good programming practice. Listing 3.1 shows how variables are declared, initial-
ized, and used in a program that multiplies two numbers supplied by the user.

LISTING 3.1 Using Variables to Store Numbers and the Result of Their Multiplication

1: #include <iostream>
2: using namespace std;
3:
4: int main ()
5: {
6: cout << “This program will help you multiply two numbers” << endl;
7:
8: cout << “Enter the first number: “;
9: int FirstNumber = 0;
10: cin >> FirstNumber;
11:
12: cout << “Enter the second number: “;
13: int SecondNumber = 0;
14: cin >> SecondNumber;
15:
16: // Multiply two numbers, store result in a variable
17: int MultiplicationResult = FirstNumber * SecondNumber;
18:
19: // Display result
20: cout << FirstNumber << “ x “ << SecondNumber;
21: cout << “ = “ << MultiplicationResult << endl;
22:
23: return 0;
24: }

Output ▼

This program will help you multiply two numbers
Enter the first number: 51
Enter the second number: 24
51 x 24 = 1224

Analysis ▼

This application asks the user to enter two numbers, which the program multiplies and
displays the result. For the application to be able to use numbers entered by the user, it
needs to store them in the memory. Variables FirstNumber and SecondNumber declared
in Lines 9 and 13 do the job of temporarily storing integer values entered by the user.
You use std::cin in Lines 10 and 14 to accept input from the user and to store them in
the two integer variables. The cout statement in Line 21 is used to display the result on
the console.

What Is a Variable? 31

3

ptg7987094

Take a variable declaration and analyze it further:

9: int FirstNumber = 0;

What this line declares is a variable of type int, which indicates an integer, and a name
FirstNumber. Zero is assigned to the variable as an initial value.

Thus, in comparison to assembly programming, in which you need to explicitly ask the
processor to store the multiplicand in a location—say 578—C++ enables you to access
memory locations to store and retrieve data using friendlier concepts such as the
FirstNumber variable. The compiler does the job of mapping this variable FirstNumber
to a location in memory and takes care of the associated bookkeeping for you.

The programmer thus works with human-friendly names, leaving it to the compiler to
convert the variable into an address and create instructions for the microprocessor and
RAM to work with.

32 LESSON 3: Using Variables, Declaring Constants

Naming variables appropriately is important for writing good,
understandable, and maintainable code.

Variable names can be alphanumeric, but they cannot start with a
number. They cannot contain spaces and cannot contain arith-
metic operators (such as +, –, and so on) within them. You can
elongate variable names using an underscore.

Variables names also cannot be reserved keywords. For example,
a variable named return causes compilation failures.

Declaring and Initializing Multiple Variables of a Type
In Listing 3.1, FirstNumber, SecondNumber, and MultiplicationResult are all of the
same type—integers—and are declared in three separate lines. If you wanted to, you
could condense the declaration of these three variables to one line of code that would
look like this:

int FirstNumber = 0, SecondNumber = 0, MultiplicationResult = 0;

CAUTION

As you can see, C++ makes it possible to declare multiple vari-
ables of a type at once and even to declare variables at the begin-
ning of a function. Yet, declaring a variable when it is first needed
is often better as it makes the code readable—one notices the
type of the variable when the declaration is close to its point of
first use.

NOTE

ptg7987094

What Is a Variable? 33

3

Data stored in variables is data stored in RAM. This data is lost
when a computer is shut down or an application is terminated
unless the programmer explicitly persists the data on a storage
medium like a hard disk.

Storing to a file on disk is discussed in Lesson 27, “Using
Streams for Input and Output.”

Understanding the Scope of a Variable
Ordinary variables have a well-defined scope within which they’re valid and can be used.
When used outside their scope, the variable names will not be recognized by the com-
piler and your program won’t compile. Beyond its scope, the variable is an unidentified
entity that the compiler knows nothing of.

To better understand the scope of a variable, reorganize the program in Listing 3.1 into a
function MultiplyNumbers() that multiplies the two numbers and returns the result. See
Listing 3.2.

LISTING 3.2 Demonstrating the Scope of the Variables

1: #include <iostream>
2: using namespace std;
3:
4: void MultiplyNumbers ()
5: {
6: cout << “Enter the first number: “;
7: int FirstNumber = 0;
8: cin >> FirstNumber;
9:
10: cout << “Enter the second number: “;
11: int SecondNumber = 0;
12: cin >> SecondNumber;
13:
14: // Multiply two numbers, store result in a variable
15: int MultiplicationResult = FirstNumber * SecondNumber;
16:
17: // Display result
18: cout << FirstNumber << “ x “ << SecondNumber;
19: cout << “ = “ << MultiplicationResult << endl;
20: }
21: int main ()
22: {
23: cout << “This program will help you multiply two numbers” << endl;
24:
25: // Call the function that does all the work

CAUTION

ptg7987094

LISTING 3.2 Continued

26: MultiplyNumbers();
27:
28: // cout << FirstNumber << “ x “ << SecondNumber;
29: // cout << “ = “ << MultiplicationResult << endl;
30:
31: return 0;
32: }

Output ▼

This program will help you multiply two numbers
Enter the first number: 51
Enter the second number: 24
51 x 24 = 1224

Analysis ▼

Listing 3.2 does exactly the same stuff as Listing 3.1 and produces the same output. The
only difference is that the bulk of the work is delegated to a function called
MultiplyNumbers() invoked by main(). Note that variables FirstNumber and
SecondNumber cannot be used outside of MultiplyNumbers(). If you uncomment Line
28 or 29 in main(), you experience compile failure, most likely of type undeclared
identifier.

This is because the scope of the variables FirstNumber and SecondNumber is local and
limited to the function they’re declared in, in this case MultiplyNumbers(). A local
variable can be used in a function after its declaration till the end of the function. The
curly brace (}) that indicates the end of a function also limits the scope of variables
declared in the same. When a function ends, all local variables are destroyed and the
memory they occupied returned.

When compiled, variables declared within MultiplyNumbers() perish when the function
ends, and if they’re used in main(), compilation fails as the variables have not been
declared in there.

34 LESSON 3: Using Variables, Declaring Constants

If you declare another set of variables with the same name in
main(), then don’t still expect them to carry a value that might
have been assigned in MultiplyNumbers().

The compiler treats the variables in main() as independent enti-
ties even if they share their names with a variable declared in
another function, as the two variables in question are limited by
their scope.

CAUTION

ptg7987094

Global Variables
If the variables used in function MultiplyNumbers() in Listing 3.2 were declared
outside the scope of the function MultiplyNumber() instead of within it, then they
would be usable in both main() and MultiplyNumbers(). Listing 3.3 demonstrates
global variables, which are the variables with the widest scope in a program.

LISTING 3.3 Using Global Variables

1: #include <iostream>
2: using namespace std;
3:
4: // three global integers
5: int FirstNumber = 0;
6: int SecondNumber = 0;
7: int MultiplicationResult = 0;
8:
9: void MultiplyNumbers ()
10: {
11: cout << “Enter the first number: “;
12: cin >> FirstNumber;
13:
14: cout << “Enter the second number: “;
15: cin >> SecondNumber;
16:
17: // Multiply two numbers, store result in a variable
18: MultiplicationResult = FirstNumber * SecondNumber;
19:
20: // Display result
21: cout << “Displaying from MultiplyNumbers(): “;
22: cout << FirstNumber << “ x “ << SecondNumber;
23: cout << “ = “ << MultiplicationResult << endl;
24: }
25: int main ()
26: {
27: cout << “This program will help you multiply two numbers” << endl;
28:
29: // Call the function that does all the work
30: MultiplyNumbers();
31:
32: cout << “Displaying from main(): “;
33:
34: // This line will now compile and work!
35: cout << FirstNumber << “ x “ << SecondNumber;
36: cout << “ = “ << MultiplicationResult << endl;
37:
38: return 0;
39: }

What Is a Variable? 35

3

ptg7987094

Output ▼

This program will help you multiply two numbers
Enter the first number: 51
Enter the second number: 19
Displaying from MultiplyNumbers(): 51 x 19 = 969
Displaying from main(): 51 x 19 = 969

Analysis ▼

Listing 3.3 displays the result of multiplication in two functions, neither of which have
declared the variables FirstNumber, SecondNumber, and MultiplicationResult. These
variables are global as they have been declared in Lines 5–7, outside the scope of any
function. Note Lines 23 and 36 that use these variables and display their values. Pay spe-
cial attention to how MultiplicationResult is assigned in MultiplyNumbers() yet is
effectively reused in main().

36 LESSON 3: Using Variables, Declaring Constants

Using global variables indiscriminately is generally considered poor
programming practice.

Global variables can be assigned values in any function and can
contain an unpredictable state, especially if different function
modules are programmed by different programmers in a team.

An elegant way of having the result of multiplication in main() as
required in Listing 3.3 is to have MultiplyNumbers() return that
result to main.

Common Compiler-Supported C++
Variable Types
In most of the examples this far, you have defined variables of type int—that is, inte-
gers. However, C++ programmers have a variety of fundamental variable types supported
directly by the compiler to choose from. Choosing the right variable type is as important
as choosing the right tools for the job! A Phillips screwdriver won’t work well with a
regular screw head just like an unsigned integer can’t be used to store values that are
negative! Table 3.1 enlists the various variable types and the nature of data they can con-
tain. This information is very important in writing efficient and reliable C++ programs.

CAUTION

ptg7987094

TABLE 3.1 Variable Types

Type Values

bool true or false

char 256 character values

unsigned short int 0 to 65,535

short int –32,768 to 32,767

unsigned long int 0 to 4,294,967,295

long int –2,147,483,648 to 2,147,483,647

unsigned long long 0 to 18,446,744,073,709,551,615

long long –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

int (16 bit)nt data type –32,768 to 32,767

int (32 bit)nt data type –2,147,483,648 to 2,147,483,647

unsigned int (16 bit) 0 to 65,535

unsigned int (32 bit) 0 to 4,294,967,295

float 1.2e–38 to 3.4e38

double 2.2e–308 to 1.8e308

The following sections explain the important types in greater detail.

Using Type bool to Store Boolean Values
C++ provides a type that is specially created for containing boolean values true or
false, both of which are reserved C++ keywords. This type is particularly useful in stor-
ing settings and flags that can be ON or OFF, present or absent, available or unavailable,
and the like.

A sample declaration of an initialized Boolean variable is

bool AlwaysOnTop = false;

An expression that evaluates to a Boolean type is

bool DeleteFile = (UserSelection == “yes”);
// evaluates to true only if UserSelection contains "yes", else to false

Using Type char to Store Character Values
Use type char to store a single character. A sample declaration is

char UserInput = ‘Y’; // initialized char to ‘Y’

Common Compiler-Supported C++ Variable Types 37

3

ptg7987094

Note that memory is comprised of bits and bytes. Bits can be either 0 or 1, and bytes
can contain numeric representation using these bits. So, working or assigning character
data as shown in the example, the compiler converts the character into a numeric
representation that can be placed into memory. The numeric representation of Latin
characters A–Z, a–z, numbers 0–9, some special keystrokes (for example, DEL), and
special characters (such as backspace) has been standardized by the American Standard
Code for Information Interchange, also called ASCII.

You can look up the table in Appendix E, “ASCII Codes,” to see that the character ‘Y’
assigned to variable UserInput has the ASCII value 89 in decimal. Thus, what the com-
piler does is store 89 in the memory space allocated for UserInput.

The Concept of Signed and Unsigned Integers
Sign implies positive or negative. All numbers you work with using a computer are
stored in the memory in the form of bits and bytes. A memory location that is 1 byte
large contains 8 bits. Each bit can either be a 0 or 1 (that is, carry one of these two values
at best). Thus, a memory location that is 1 byte large can contain a maximum of 2 to the
power 8 values—that is, 256 unique values. Similarly, a memory location that is 16 bits
large can contain 2 to the power 16 values—that is, 65,536 unique values.

If these values were to be unsigned—assumed to be only positive—then one byte could
contain integer values ranging from 0 through 255 and two bytes would contain values
ranging from 0 through 65,535, respectively. Look at Table 3.1 and note that the
unsigned short is the type that supports this range, as it is contained in 16 bits of mem-
ory. Thus, it is quite easy to model positive values in bits and bytes (see Figure 3.1).

38 LESSON 3: Using Variables, Declaring Constants

1 1 1 1 1 1 1 1 1 1 1 1 1 1

15.Bit 0

= 65535

16 bits carry value

FIGURE 3.1
Organization of
bits in a 16-bit
unsigned short
integer.

How to model negative numbers in this space? One way is to “sacrifice” a bit as the
sign-bit that would indicate if the values contained in the other bits are positive or
negative (see Figure 3.2). The sign-bit needs to be the most-significant-bit (MSB) as
the least-significant-one would be required to model odd numbers. So, when the MSB
contains sign-information, it is assumed that 0 would be positive and 1 would mean
negative, and the other bytes contain the absolute value.

ptg7987094

Thus, a signed number that occupies 8 bits can contain values ranging from –128
through 127, and one that occupies 16 bits can contain values ranging from –32768
through 32767. If you look at Table 3.1 again, note that the (signed) short is the type
that supports positive and negative integer values in a 16-bit space.

Signed Integer Types short, int, long, and long long
These types differ in their sizes and thereby differ in the range of values they can con-
tain. int is possibly the most used type and is 32 bits wide on most compilers. Use the
right type depending on your projection of the maximum value that particular variable
would be expected to hold.

Declaring a variable of a signed type is quite simple:

short int SmallNumber = -100;
int LargerNumber = -70000;
long PossiblyLargerThanInt = -70000; //on some platforms, long is an int
long long LargerThanInt = -70000000000;

Unsigned Integer Types unsigned short, unsigned
int, unsigned long, and unsigned long long
Unlike their signed counterparts, unsigned integer variable types cannot contain sign
information, and hence they can actually support twice as many positive values.

Declaring a variable of an unsigned type is as simple as this:

unsigned short int SmallNumber = 255;
unsigned int LargerNumber = 70000;
// on some platforms, long is int
unsigned long PossiblyLargerThanInt = 70000;
unsigned long long LargerThanInt = 70000000000;

Common Compiler-Supported C++ Variable Types 39

3

FIGURE 3.2
Organization of
bits in a 16-bit
signed short
integer.

15.Bit 0

1 1 1 1 1 1 1 1 1 1 1 1 11

15 bits contain absolute value

Sign Bit
0: Indicates positive integer
1: Indicates negative integer

ptg7987094

40 LESSON 3: Using Variables, Declaring Constants

You would use an unsigned variable type when you expect only
positive values. So, if you’re counting the number of apples, don’t
use int; use unsigned int. The latter can hold twice as many
values in the positive range as the former can.

NOTE

So, an unsigned type might not be suited for a variable in a bank-
ing application used to store the account balance.

Floating-Point Types float and double
Floating-point numbers are what you might have learned in school as real numbers.
These are numbers that can be positive or negative. They can contain decimal values. So,
if you want to store the value of pi (22 / 7 or 3.14) in a variable in C++, you would use a
floating-point type.

Declaring variables of these types follows exactly the same pattern as the int in
Listing 3.1. So, a float that allows you to store decimal values would be declared
as the following:

float Pi = 3.14;

And a double precision float (called simply a double) is defined as

double MorePrecisePi = 22 / 7;

CAUTION

The data types mentioned in the table are often referred to as
POD (Plain Old Data). The category POD contains these as well as
aggregations (structs, enums, unions, or classes) thereof.

Determining the Size of a Variable Using
sizeof
Size is the amount of memory that the compiler reserves when the programmer declares
a variable to hold the data assigned to it. The size of a variable depends on its type, and
C++ has a very convenient operator called sizeof that tells you the size in bytes of a
variable or a type.

NOTE

ptg7987094

The usage of sizeof is quite simple. To determine the size of an integer, you invoke
sizeof with parameter int (the type) as demonstrated by Listing 3.4.

cout << “Size of an int: “ << sizeof (int);

LISTING 3.4 Finding the Size of Standard C++ Variable Types

1: #include <iostream>
2:
3: int main()
4: {
5: using namespace std;
6: cout << "Computing the size of some C++ inbuilt variable types" << endl;
7:
8: cout << "Size of bool: " << sizeof(bool) << endl;
9: cout << "Size of char: " << sizeof(char) << endl;
10: cout << "Size of unsigned short int: " << sizeof(unsigned short) << endl;
11: cout << "Size of short int: " << sizeof(short) << endl;
12: cout << "Size of unsigned long int: " << sizeof(unsigned long) << endl;
13: cout << "Size of long: " << sizeof(long) << endl;
14: cout << "Size of int: " << sizeof(int) << endl;
15: cout << "Size of unsigned long long: "<< sizeof(unsigned long long)<<
endl;
16: cout << "Size of long long: " << sizeof(long long) << endl;
17: cout << "Size of unsigned int: " << sizeof(unsigned int) << endl;
18: cout << "Size of float: " << sizeof(float) << endl;
19: cout << "Size of double: " << sizeof(double) << endl;
20:
21: cout << "The output changes with compiler, hardware and OS" << endl;
22:
23: return 0;
24: }

Output ▼

Computing the size of some C++ inbuilt variable types
Size of bool: 1
Size of char: 1
Size of unsigned short int: 2
Size of short int: 2
Size of unsigned long int: 4
Size of long: 4
Size of int: 4
Size of unsigned long long: 8
Size of long long: 8
Size of unsigned int: 4
Size of float: 4
Size of double: 8
The output changes with compiler, hardware and OS

Determining the Size of a Variable Using sizeof 41

3

ptg7987094

Analysis ▼

The output of Listing 3.4 reveals sizes of various types in bytes and is specific to my
platform: compiler, OS, and hardware. This output in particular is a result of running the
program in 32-bit mode (compiled by a 32-bit compiler) on a 64-bit operating system.
Note that a 64-bit compiler probably creates different results, and the reason I chose a
32-bit compiler was to be able to run the application on 32-bit as well as 64-bit systems.
The output tells that the sizeof a variable doesn’t change between an unsigned or signed
type; the only difference in the two is the MSB that carries sign information in the former.

42 LESSON 3: Using Variables, Declaring Constants

All sizes seen in the output are in bytes. The size of an object is
an important parameter when allocating memory for it, particularly
when this allocation is made by the programmer dynamically.

C++11

NOTE

Using auto, the Compiler’s Type Inference Capabilities

There are cases where the type of a variable is apparent given the initialization
value it is being assigned. For example, if a variable is being initialized with the
value true, the type of the variable can be best estimated as bool. In C++11,
you have the option to not explicitly specify the type when you use keyword
auto instead.

auto Flag = true;

We have left the task of defining an exact type for variable Flag to the compiler.
What the compiler does is check the nature of the value the variable is being
initialized to and then decide on the best possible type that suits this variable.
In this particular case, it is clear that an initialization value of true best suits
a variable that is of type bool. The compiler thus determines bool as the type
that suits variable Flag best and internally treats Flag as a bool, as is also
demonstrated by Listing 3.5.

ptg7987094

LISTING 3.5 Using auto Keyword and Relying on the Compiler’s Type-inference
Capabilities

1: #include <iostream>
2: using namespace std;
3:
4: int main()
5: {
6: auto Flag = true;
7: auto Number = 2500000000000;
8:
9: cout << “Flag = “ << Flag;
10: cout << “ , sizeof(Flag) = “ << sizeof(Flag) << endl;
11: cout << “Number = “ << Number;
12: cout << “ , sizeof(Number) = “ << sizeof(Number) << endl;
13:
14: return 0;
15: }

Output ▼

Flag = 1 , sizeof(Flag) = 1
Number = 2500000000000 , sizeof(Number) = 8

Analysis ▼

See how instead of deciding that Flag should be of type bool or that Number should be a
long long, you have used the auto keyword in Lines 6 and 7 where the two variables
have been declared. This delegates the decision on the type of variable to the compiler,
which uses the initialization value as a ballpark. You have used sizeof to actually check
if the compiler created the types you suspected it would, and you can check against the
output of Listing 3.4 to verify that it really did.

Determining the Size of a Variable Using sizeof 43

3

Using auto requires you to initialize the variable for the compiler,
which needs this initialization value in deciding what the variable type
can be.

When you don’t initialize a variable of type auto, you get a compile
error.

Even if auto seems to be a trivial feature at first sight, it makes programming a lot easier
in those cases where the type variable is a complex type. Take the case where you
declare a dynamic array of integers in the form of a std::vector, called MyNumbers:

std::vector<int> MyNumbers;

NOTE

ptg7987094

You access or iterate elements in the array and display them using the following code:

for (vector<int>::const_iterator Iterator = MyNumbers.begin();
Iterator < MyNumbers.end();
++Iterator)

cout << *Iterator << “ “;

Neither the std::vector nor the for loop has been explained to you yet, so don’t worry
if the preceding code looks like Greek and Latin. What it does is that for every element
in the vector, starting at begin() and ending before end(), it displays the value using
cout. Look at the complexity of the first line that declares a variable Iterator and
assigns it an initial value, as returned by begin(). This variable Iterator is of type
vector<int>::const_iterator, which is quite a complicated thing for the programmer
to learn and write. Instead of knowing this by heart, the programmer can rely on the
return type of begin() and simplify this for loop to the following:

for(auto Iterator = MyNumbers.begin();
Iterator < MyNumbers.end();
++Iterator)

cout << *Iterator << “ “;

Note how compact the first line has become. The compiler checks the initialization value
of Iterator that is the return value of begin() and assigns it the same type as the return
value. This simplifies C++ coding, especially when you use templates quite a bit.

Using typedef to Substitute a Variable’s
Type
C++ allows you to substitute variable types to something that you might find convenient.
You use the keyword typedef for that. Here is an example where a programmer wants to
call an unsigned int a descriptive STRICTLY_POSITIVE_INTEGER.

typedef unsigned int STRICTLY_POSITIVE_INTEGER;
STRICTLY_POSITIVE_INTEGER PosNumber = 4532;

When compiled, the first line tells the compiler that a STRICLY_POSITIVE_INTEGER is
nothing but an unsigned int. At later stages when the compiler encounters the already
defined type STRICLY_POSITIVE_INTEGER, it substitutes it for unsigned int and contin-
ues compilation.

44 LESSON 3: Using Variables, Declaring Constants

ptg7987094

What Is a Constant? 45

3

typedef or type substitution is particularly convenient when deal-
ing with complex types that can have a cumbersome syntax, for
example those using templates.

What Is a Constant?
Imagine you are writing a program to calculate the area and the circumference of a
circle. The formulas are

Area = Pi * Radius * Radius;

Circumference = 2 * Pi * Radius of circle

In this formula, Pi is the constant of value 22 / 7. You don’t want the value of Pi to
change anywhere in your program. You also don’t want accidental assignments of possi-
bly incorrect values to Pi, say via an inadvertent copy-paste or find-replace error. C++
enables you to define Pi as a constant that cannot be changed after declaration. In other
words, after it’s defined the value of a constant cannot be altered. Assignments to a
constant in C++ cause compilation errors.

Thus, constants are like variables in C++ except that these cannot be changed. Similar to
variables, constants also occupy space in the memory and have a name to identify the
address where the space is reserved. However, the content of this space cannot be over-
written. Constants in C++ can be

n Literal constants

n Declared constants using the const keyword

n Constant expressions using the constexpr keyword (new to C++11)

n Enumerated constants using the enum keyword

n Defined constants that are not recommended and deprecated

Literal Constants
Look at Listing 3.1 again—the simple program that multiplies two numbers. We have
declared an integer called FirstNumber, like this:

9: int FirstNumber = 0;

NOTE

ptg7987094

The integer called FirstNumber is assigned an initial value of zero. Here zero is a part of
the code, gets compiled into the application, is unchangeable, and is called a literal con-
stant. Literal constants can be of many types—bool, integer, string, and so on. In your
very first C++ program in Listing 1.1, you displayed “Hello World” using the following:

std::cout << “Hello World” << std::endl;

In here, “Hello World” is a string literal constant.

Declaring Variables as Constants Using const
The most important type of constants in C++ from a practical and programmatic point of
view are declared by using keyword const before the variable type. The generic declara-
tion looks like the following:

const type-name constant-name;

Let’s see a simple application that displays the value of a constant called Pi (see
Listing 3.6).

LISTING 3.6 Declaring a Constant Called Pi

1: #include <iostream>
2:
3: int main()
4: {
5: using namespace std;
6:
7: const double Pi = 22.0 / 7;
8: cout << “The value of constant Pi is: “ << Pi << endl;
9:
10: // Uncomment next line to fail compilation
11: // Pi = 345;
12:
13: return 0;
14: }

Output ▼

The value of constant Pi is: 3.14286

Analysis ▼

Note the declaration of constant Pi in Line 7. We use the const keyword to tell the
compiler that Pi is a constant of type double. If you uncomment Line 11 where the pro-
grammer tries to assign a value to a variable you have defined as a constant, you see a
compile failure that says something similar to, “You cannot assign to a variable that is
const.” Thus, constants are a powerful way to ensure that certain data cannot be modified.

46 LESSON 3: Using Variables, Declaring Constants

ptg7987094

What Is a Constant? 47

3

It is good programming practice to define variables that are not
supposed to change their values as const. The usage of the
const keyword ensures that the programmer has thought about
ensuring the constant-ness of data and ensures his application
against inadvertent changes to this constant.

This is particularly useful in a multi-programmer environment.

Constants are useful when declaring the length of static arrays, which are fixed at com-
pile time. Listing 4.2 in Lesson 4, “Managing Arrays and Strings,” includes a sample that
demonstrates the use of a const int to define the length of an array.

C++11

Declaring Constants Using constexpr
The concept of constexpr always existed in C++ even before C++11 but was not for-
malized to a keyword. Note the example in Listing 3.5 in which 22.0 / 7 is a constant
expression supported by pre-2011 compilers, too. However, pre-2011 compilers did not
allow for defining functions that could be evaluated at compile time. In C++11, you can
now define this:

constexpr double GetPi() {return 22.0 / 7;}

GetPi() used in combination with another constant such as this still makes a valid
statement:

constexpr double TwicePi() {return 2 * GetPi();}

The difference between const and constexpr is very little at first look; however, there
are new optimization possibilities from the compiler’s and application’s point of view.
The second statement (without the constexpr) would’ve been a runtime computation in
pre-2011 compilers—evaluated when the application is running—but is an expression
resolved at compile-time with C++11-compliant compilers, which makes the application
run faster.

NOTE

At time of writing this book, constexpr was not supported by
Microsoft Visual C++ Express Compiler. constexpr is supported
by GNU’s g++ compiler.

NOTE

ptg7987094

Enumerated Constants
There are situations where a particular variable can take only a certain set of values.
These are situations where you don’t want the colors in the rainbow to contain Turquoise
or the directions on a compass to contain Left. In both these cases, what you want is a
type of a variable whose values are restricted to a certain set defined by you. Enumerated
constants are exactly the tool you need in this situation and are characterized by the key-
word enum.

For example, the following is an enumerated constant that specifies colors in a rainbow:

enum RainbowColors
{

Violet = 0,
Indigo,
Blue,
Green,
Yellow,
Orange,
Red

};

Here’s another that contains the cardinal directions:

enum CardinalDirections
{

North,
South,
East,
West

};

Note that these enumerated constants can now be used as variable types that can accept
values restricted to those that they have been declared to contain. So, if defining a vari-
able that contains the colors of a Rainbow, you declare the variable like this:

RainbowColors MyWorldsColor = Blue; // Initial value

In the preceding line of code, you have declared an enumerated constant MyWorldsColor
of type RainbowColors. This enumerated constant variable is restricted to contain any of
the legal VIBGYOR colors, and no other value.

48 LESSON 3: Using Variables, Declaring Constants

ptg7987094

What Is a Constant? 49

3

When declaring an enumerated constant, the compiler converts
the enumerated values such as Violet and so on into integers.
Each enumerated value specified is one more than the previous
value. You have the choice of specifying a starting value and if
this is not specified, the compiler takes it as 0. So, North is evalu-
ated as value 0.

If you want to, you can also specify an explicit value against each
of the enumerated constants by initializing them.

Listing 3.7 demonstrates how enumerated constants are used to hold the four cardinal
directions, with an initializing value supplied to the first one.

LISTING 3.7 Using Enumerated Values to Indicate Cardinal Wind Directions

1: #include <iostream>
2: using namespace std;
3:
4: enum CardinalDirections
5: {
6: North = 25,
7: South,
8: East,
9: West
10: };
11:
12: int main()
13: {
14: cout << “Displaying directions and their symbolic values” << endl;
15: cout << “North: “ << North << endl;
16: cout << “South: “ << South << endl;
17: cout << “East: “ << East << endl;
18: cout << “West: “ << West << endl;
19:
20: CardinalDirections WindDirection = South;
21: cout << “Variable WindDirection = “ << WindDirection << endl;
22:
23: return 0;
24: }

NOTE

ptg7987094

Output ▼

Displaying directions and their symbolic values
North: 25
South: 26
East: 27
West: 28
Variable WindDirection = 26

Analysis ▼

Note how we have defined the four cardinal directions as enumerated constants but have
given the first North an initial value of 25 (see Line 6). This automatically ensures that
the following constants are assigned values 26, 27, and 28 as demonstrated in the output.
In Line 20 you create a variable of type CardinalDirections that is assigned an initial
value South. When displayed on the screen in Line 21, the compiler dispatches the inte-
ger value associated with South, which is 26.

50 LESSON 3: Using Variables, Declaring Constants

You may want to take a look at Listings 6.4 and 6.5 in Lesson
6,”Controlling Program Flow.” They use enum to enumerate the
days of the week and conditional processing to tell what the day
of the user’s choosing is named after.

Defining Constants Using #define
First and foremost, don’t use this if you are writing a program anew. The only reason this
book analyzes the definition of constants using #define is to help you understand certain
legacy programs that do define Pi using this syntax:

#define Pi 3.14286

This is a preprocessor macro, and what is done here is that all mentions of Pi henceforth
are replaced by 3.14286 for the compiler to process. Note that this is a text replacement
(read: non-intelligent replacement) done by the preprocessor. The compiler neither
knows nor cares about the actual type of the constant in question.

TIP

Defining constants using the preprocessor via #define is depre-
cated and should not be used.

CAUTION

ptg7987094

Naming Variables and Constants
There are many different ways to name variables and many different conventions. Some
programmers prefer prefixing their variable names with a few characters that indicate
type. For example:

bool bIsLampOn = false;

Here, b is the prefix that the programmer has added to indicate that the variable is of type
bool. This kind of notation is called Hungarian Notation and was initially developed and
promoted by Microsoft. However, C++ is a strongly type-safe language and the compiler
knows what a variable is, not by the prefix on its name, but because of the type definition
that is bool. So, these days programmers are strongly recommended to not follow the
Hungarian Notation. It is necessary that the variable is understandable, even if that
means the name gets a little long. Assuming that the Boolean variable in the example
was used to program the electronics of a car, a slightly better variant would be the
following:

bool IsHeadLampOn = false;

Note, both these variants are better and recommended over something like this:

bool b = false;

Such nondescriptive variable names should be avoided at all costs.

Naming Variables and Constants 51

3

DO give variables descriptive names,
even if that makes them long.

DO ensure that the name of the
variable explains its purpose.

DO put yourself into the shoes of one
who hasn’t seen your code yet and
think if the name would make sense
to him or her.

DO check if your team is following
certain naming conventions and follow
them.

DON’T give names that are too short
or contain just a character.

DON’T give names that use exotic
acronyms known only to you.

DON’T give names that are reserved
C++ keywords as these won’t compile.

DO DON’T

ptg7987094

Keywords You Cannot Use as Variable or
Constant Names
Some words are reserved by C++, and you cannot use them as variable names. These
keywords have special meaning to the C++ compiler. Keywords include if, while, for,
and main. A list of keywords defined by C++ is presented in Table 3.2 as well as in
Appendix B, “C++ Keywords.” Your compiler might have additional reserved words, so
you should check its manual for a complete list.

TABLE 3.2 The C++ Keywords

asm else new this

auto enum operator throw

bool explicit private true

break export protected try

case extern public typedef

catch false register typeid

char float reinterpret_cast typename

class for return union

const friend short unsigned

const_cast goto signed using

continue if sizeof virtual

default inline static void

delete int static_cast volatile

do long struct wchar_t

double mutable switch while

dynamic_cast namespace template

In addition, the following words are reserved:

And bitor not_eq xor

and_eq compl or xor_eq

bitand not or_eq

52 LESSON 3: Using Variables, Declaring Constants

ptg7987094

Summary
In this lesson you learned about using memory to store values temporarily in variables
and constants. You learned that variables have a size determined by their type and that
the operator sizeof can be used to determine the size of one. You got to know of differ-
ent types of variables such as bool, int, and so on and that they are to be used to contain
different types of data. The right choice of a variable type is important in effective pro-
gramming, and the choice of a variable that’s too small for the purpose can result in a
wrapping error or an overflow situation. You learned the new C++11 keyword auto,
where you let the compiler decide the data-type for you on the basis of the initialization
value of the variable.

You also learned about the different types of constants and usage of the most important
ones among them using keywords const and enum.

Q&A
Q Why define constants at all if you can use regular variables instead of them?

A Constants, especially those declared using the keyword const, are your way of
telling the compiler that the value of a particular variable be fixed and not allowed
to change. Consequently, the compiler always ensures that the constant variable is
never assigned another value, not even if another programmer was to take up your
work and inadvertently try to overwrite the value. So, declaring constants where
you know the value of a variable should not change is a good programming prac-
tice and increases the quality of your application.

Q Why should I initialize the value of a variable?

A If you don’t initialize, you don’t know what the variable contains for a starting
value. The starting value is just the contents of the location in the memory that are
reserved for the variable. Initialization such as that seen here:

int MyFavoriteNumber = 0;

writes the initial value of your choosing, in this case 0, to the memory location
reserved for the variable MyFavoriteNumber as soon as it is created. There are situ-
ations where you do conditional processing depending on the value of a variable
(often checked against nonzero). Such logic does not work reliably without initial-
ization because an unassigned or initiated variable contains junk that is often
nonzero and random.

Q&A 53

3

ptg7987094

Q Why does C++ give me the option of using short int and int and long int?
Why not just always use the integer that always allows for the highest number
to be stored within?

A C++ is a programming language that is used to program for a variety of applica-
tions, many running on devices with little computing capacity or memory
resources. The simple old cell phone is one example where processing capacity and
available memory are both limited. In this case, the programmer can often save
memory or speed or both by choosing the right kind of variable if he doesn’t need
high values. If you are programming on a regular desktop or a high-end smart-
phone, chances are that the performance gained or memory saved in choosing one
integer type over another is going to be insignificant and in some cases even
absent.

Q Why should I not use global variables frequently? Isn’t it true that they’re
usable throughout my application and I can save some time otherwise lost to
passing values around functions?

A Global variables can be read and assigned globally. The latter is the problem as
they can be changed globally. Assume you are working on a project with a few
other programmers in a team. You have declared your integers and other variables
to be global. If any programmer in your team changes the value of your integer
inadvertently in his code—which even might be a different .CPP file than the one
you are using—the reliability of your code is affected. So, sparing a few seconds or
minutes should not be criteria, and you should not use global variables indiscrimi-
nately to ensure the stability of your code.

Q C++ is giving me the option of declaring unsigned integers that are supposed
to contain only positive integer values and zero. What happens if I decrement
a zero value contained in an unsigned int?

A You see a wrapping effect. Decrementing an unsigned integer that contains 0 by 1
means that it wraps to the highest value it can hold! Check Table 3.1—you see that
an unsigned short can contain values from 0 to 65535. So, declare an unsigned
short and decrement it to see the unexpected:
unsigned short MyShortInt = 0; // Initial Value
MyShortInt = MyShortInt - 1; // Decrement by 1
std::cout << MyShortInt << std::endl; // Output: 65535!

Note that this is not a problem with the unsigned short, rather with your usage of
the same. An unsigned integer (or short or long) is not to be used when negative
values are within the specifications. If the contents of MyShortInt are to be used to
dynamically allocate those many number of bytes, a little bug that allows a zero
value to be decremented would result in 64KB being allocated! Worse, if

54 LESSON 3: Using Variables, Declaring Constants

ptg7987094

MyShortInt were to be used as an index in accessing a location of memory,
chances are high that your application would access an external location and would
crash!

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain that you understand the answers before continuing to the
next lesson.

Quiz
1. What is the difference between a signed and an unsigned integer?

2. Why should you not use #define to declare a constant?

3. Why would you initialize a variable?

4. Consider the enum below. What is the value of QUEEN?
enum YOURCARDS {ACE, JACK, QUEEN, KING};

5. What is wrong with this variable name?
int Integer = 0;

Exercises
1. Modify enum YOURCARDS in quiz question 4 to demonstrate that the value of QUEEN

can be 45.

2. Write a program that demonstrates that the size of an unsigned integer and a nor-
mal integer are the same, and that both are smaller in size than a long integer.

3. Write a program to calculate the area and circumference of a circle where the
radius is fed by the user.

4. In Exercise 3, if the area and circumference were to be stored in integers, how
would the output be any different?

5. BUGBUSTERS: What is wrong in the following initialization:
auto Integer;

Workshop 55

3

ptg7987094

This page intentionally left blank

ptg7987094

LESSON 4
Managing Arrays and
Strings

In previous lessons, you declared variables used to contain a single int,
char, or string to mention a few instances. However, you may want to
declare a collection of objects, such as 20 ints or a litter of Cats.

In this lesson, you find out

n What arrays are and how to declare and use them

n What strings are and how to use character arrays to make them

n A brief introduction to std::string

ptg7987094

What Is an Array?
The dictionary definition of an array gets really close to what we want to be understand-
ing. According to Merriam Webster, an array is “a group of elements forming a complete
unit, for example an array of solar panels.”

The following are characteristics of an array:

n An array is a collection of elements.

n All elements contained in an array are of the same kind.

n This collection forms a complete set.

In C++, arrays enable you to store data elements of a type in the memory, in a sequential
and ordered fashion.

The Need for Arrays
Imagine that you are writing a program where the user can type in five integers and you
display them back to him. One way would be to have your program declare five distinct
and unique integer variables and use them to store and display values. The declarations
would look like this:

int FirstNumber = 0;
int SecondNumber = 0;
int ThirdNumber = 0;
int FourthNumber = 0;
int FifthNumber = 0;

If your user wants this program to store and display 500 integers at a later stage, you
need to declare 500 such integers using the preceding system. This still is doable given
generous amounts of patience and time. However, imagine the user asks you to support
500,000 integers instead of 5—what would you do?

You would do it right and do it smart from the point go by declaring an array of five inte-
gers each initialized to zero, like this:

int MyNumbers [5] = {0};

Thus, if you were asked to support 500,000 integers, your array would scale up quite
quickly, like this:

int ManyNumbers [500000] = {0};

An array of five characters would be defined as

char MyCharacters [5];

58 LESSON 4: Managing Arrays and Strings

ptg7987094

Such arrays are called static arrays because the number of elements they contain as well
as the memory the array consumes is fixed at the time of compilation.

Declaring and Initializing Static Arrays
In the preceding lines of code, you have declared an array called MyNumbers that contains
five elements of type int—that is, integer—all initialized to a value 0. Thus, array decla-
ration in C++ follows a simple syntax:

element-type array-name [number of elements] = {optional initial values}

You can even declare an array and initialize its contents on a per-element basis, like this
integer array where each of the five integers is initialized to five different integer values:

int MyNumbers [5] = {34, 56, -21, 5002, 365};

You can initialize all elements of an array to one value, like this:

int MyNumbers [5] = {100}; // initialize all integers to 100

You can also partially initialize elements in an array, like this:

int MyNumbers [5] = {34, 56}; // initialize first two elements

You can define the length of an array (that is, the number of elements in one) as a con-
stant and use that constant in your array definition:

const int ARRAY_LENGTH = 5;
int MyNumbers [ARRAY_LENGTH] = {34, 56, -21, 5002, 365};

This is particularly useful when you need to access and use the length of the array at
multiple places, such as when iterating elements in one, and then instead of having to
change the length at each of those places, you just correct the initialization value at the
const int declaration.

What Is an Array? 59

4

When partially initializing arrays, it is possible that certain compil-
ers initialize those elements ignored by you to an initial value 0.

You can opt to leave out the number of elements in an array if you know the initial val-
ues of the elements in the array:

int MyNumbers [] = {2011, 2052, -525};

The preceding code creates an array of three integers with the initial values 2011, 2052,
and –525.

NOTE

ptg7987094

It is not an error that we started numbering the books with 0. As you later see, indexes
in C++ start at 0 and not at 1. Similar to the five books on a shelf, the array MyNumbers
containing five integers looks quite similar to Figure 4.2.

Note that the memory space occupied by the array is comprised of five blocks, each of
equal size, that is defined by the type of data to be held in the array, in this case integer.
If you remember, you studied the size of an integer in Lesson 3, “Using Variables,
Declaring Constants.” The amount of memory reserved by the compiler for the array
MyNumbers is hence sizeof(int) * 5. In general, the amount of memory reserved by
the compiler for an array in bytes is

Bytes consumed by an array = sizeof(element-type) * Number of Elements

60 LESSON 4: Managing Arrays and Strings

Arrays declared this far are called static arrays as the length of the
array is fixed by the programmer at compile-time. This array cannot
take more data than what the programmer has specified. It also
does not consume any less memory if left half-used or unused.

How Data Is Stored in an Array
Think of books placed on a shelf, one next to the other. This is an example of a one-
dimensional array, as it expands in only one dimension, that is the number of books on it.
Each book is an element in the array, and the rack is akin to the memory that has been
reserved to store this collection of books as shown in Figure 4.1.

NOTE

Recipes

B
ook 0 Recipes
B

ook 1 Recipes
B

ook 2

Recipes

B
ook 3
B

ook 4
FIGURE 4.1
Books on a shelf:
a one-dimensional
array.

ptg7987094Accessing Data Stored in an Array
Elements in an array can be accessed using their zero-based index. These indexes are
called zero-based because the first element in an array is at index 0. So, the first integer
value stored in the array MyNumbers is MyNumbers[0], the second is MyNumbers[1], and
so on. The fifth is MyNumbers[4]. In other words, the index of the last element in an
array is always (Length of Array – 1).

When asked to access element at index N, the compiler uses the memory address of the
first element (positioned at index zero) as the starting point and then skips N elements by
adding the offset computed as N*sizeof(element) to reach the address containing the
(N+1)th element. The C++ compiler does not check if the index is within the actual
defined bounds of the array. You can try fetching the element at index 1001 in an array of
only 10 elements, putting the security and stability of your program at risk. The onus of
ensuring that the array is not accessed beyond its bounds lies solely on the programmer.

What Is an Array? 61

4

Recipes

34

Recipes

56

Recipes

-21

Recipes

5002
365

Memory reserved for MyNumbers Memory

sizeof(int)
FIGURE 4.2
Organization of an
array of five inte-
gers, MyNumbers,
in memory.

Accessing an array beyond its bounds results in unpredictable
behavior. In many cases this causes your program to crash.
Accessing arrays beyond their bounds should be avoided at all
costs.

Listing 4.1 demonstrates how you declare an array of integers, initialize its elements to
integer values, and access them to display them on the screen.

CAUTION

ptg7987094

LISTING 4.1 Declaring an Array of Integers and Accessing Its Elements

0: #include <iostream>
1:
2: using namespace std;
3:
4: int main ()
5: {
6: int MyNumbers [5] = {34, 56, -21, 5002, 365};
7:
8: cout << “First element at index 0: “ << MyNumbers [0] << endl;
9: cout << “Second element at index 1: “ << MyNumbers [1] << endl;
10: cout << “Third element at index 2: “ << MyNumbers [2] << endl;
11: cout << “Fourth element at index 3: “ << MyNumbers [3] << endl;
12: cout << “Fifth element at index 4: “ << MyNumbers [4] << endl;
13:
14: return 0;
15: }

Output ▼

First element at index 0: 34
Second element at index 1: 56
Third element at index 2: -21
Fourth element at index 3: 5002
Fifth element at index 4: 365

Analysis ▼

Line 6 declares an array of five integers with initial values specified for each of them.
The subsequent lines simply display the integers using cout and using the array variable
MyNumbers with an appropriate index.

62 LESSON 4: Managing Arrays and Strings

To familiarize you with the concept of zero-based indexes used to
access elements in arrays, we started numbering lines of code in
Listing 4.1 and beyond with the first line being numbered as Line 0.

Modifying Data Stored in an Array
In the previous code listing, you did not enter user-defined data into the array. The syntax
for assigning an integer to an element in that array is quite similar to assigning an integer
value to an integer variable.

NOTE

ptg7987094

For example, assigning a value 2011 to an integer is like the following:

int AnIntegerValue;
AnIntegerValue = 2011;

Assigning a value 2011 to the fourth element in your array is like this:

MyNumbers [3] = 2011; // Assign 2011 to the fourth element

Listing 4.2 demonstrates the use of constants in declaring the length of an array and
shows how individual array elements can be assigned values during the execution of the
program.

LISTING 4.2 Assigning Values to Elements in an Array

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: const int ARRAY_LENGTH = 5;
6:
7: // Array of 5 integers, initialized to zero
8: int MyNumbers [ARRAY_LENGTH] = {0};
9:
10: cout << “Enter index of the element to be changed: “;
11: int nElementIndex = 0;
12: cin >> nElementIndex;
13:
14: cout << “Enter new value: “;
15: cin >> MyNumbers [nElementIndex];
16:
17: cout << “First element at index 0: “ << MyNumbers [0] << endl;
18: cout << “Second element at index 1: “ << MyNumbers [1] << endl;
19: cout << “Third element at index 2: “ << MyNumbers [2] << endl;
20: cout << “Fourth element at index 3: “ << MyNumbers [3] << endl;
21: cout << “Fifth element at index 4: “ << MyNumbers [4] << endl;
22:
23: return 0;
24: }

Output ▼

Enter index of the element to be changed: 2
Enter new value: 2011
First element at index 0: 0
Second element at index 1: 0
Third element at index 2: 2011
Fourth element at index 3: 0
Fifth element at index 4: 0

What Is an Array? 63

4

ptg7987094

Output ▼

The array declaration syntax in Line 8 makes use of a const integer ARRAY_LENGTH

initialized to five before that. As this is a static array, the length of the array is fixed at
compile time. So, the compiler substitutes ARRAY_LENGTH by 5 and compiles considering
MyArray to be an array of integers containing five elements. In Lines 10 through 12, the
user is asked what element he wants to set in the array and that zero-based index is stored
in an integer ElementIndex. This integer is used in Line 14 to modify the contents of the
array. The output shows that modifying element at index 2 and actually modifies the third
element in the array, as indexes are zero-based entities. You have to get used to this.

64 LESSON 4: Managing Arrays and Strings

Many novice C++ programmers assign the fifth value at index five
in an array of five integers. Note that this exceeds the bound of
the array as the compiled code tries accessing the sixth element
in the array which is beyond its defined bounds.

This kind of error is called a fence-post error. It’s named after the
fact that the number of posts needed to build a fence is always
one more than the number of sections in the fence.

NOTE

Something very fundamental is missing in Listing 4.2: It does not
check if the index entered by the user is within the bounds of the
array. The previous program should actually verify if ElementIndex
is within 0 and 4 and reject all other entries. This missing check
allows the user to potentially assign a value beyond the bounds
of the array. This can potentially cause the application—and the
system, in a worst-case scenario—to crash.

Performing checks is explained in Lesson 6, “Controlling Program
Flow.”

CAUTION

Using Loops to Access Array Elements

When working with arrays and their elements in serial order, you should access them
(in other words, iterate) using loops. See Lesson 6 and Listing 6.10 in particular to
quickly learn how elements in an array can be efficiently inserted or accessed using
a for loop.

ptg7987094

Multidimensional Arrays
The arrays that we have seen this far have been akin to books on a shelf. There can be
more books on a longer shelf and fewer books on a shorter one. That is, the length of the
shelf is the only dimension defining the capacity of the shelf, hence it is one-dimensional.
Now, what if we were to use arrays to model an array of solar panels as shown in
Figure 4.3? Solar panels, unlike bookshelves, expand in two dimensions: in length and in
breadth.

Multidimensional Arrays 65

4

Do always initialize arrays, or else they
will contain junk values.

Do always ensure that your arrays are
used within their defined boundaries.

Don’t ever access the Nth element
using index N, in an array of N ele-
ments.

Don’t forget that the first element in
an array is accessed using index 0.

DO DON’T

Row 0

Row 1

Column 0 Column 1 Column 2

Panel
0

Panel
1

Panel
2

Panel
3

Panel
4

Panel
5

FIGURE 4.3
Array of solar
panels on a roof.

As you see in Figure 4.3, six solar panels are placed in a two-dimensional arrangement
comprised of two rows and three columns. From one perspective, you can see this
arrangement as an array of two elements, each element itself being an array of three
panels—in other words, an array of arrays. In C++, you can model two-dimensional
arrays, but you are not restricted to just two dimensions. Depending on your need and
the nature of the application, you can model multidimensional arrays in memory, too.

Declaring and Initializing Multidimensional Arrays
C++ enables you to declare multidimensional arrays by indicating the number of ele-
ments you want to reserve in each dimension. So, a two-dimensional array of integers
representing the solar panels in Figure 4.3 is

int SolarPanelIDs [2][3];

ptg7987094

Note that in Figure 4.3, you have also assigned each panel an ID ranging from 0 through
5 for the six panels in the solar array. If you were to initialize the integer array in the
same order, it would look like the following:

int SolarPanelIDs [2][3] = {{0, 1, 2}, {3, 4, 5}};

As you see, the initialization syntax you have used is actually similar to one where we
initialize two one-dimensional arrays. Note that it is not two because this is a two-
dimensional array, rather we have two arrays because there are two rows. If this were
to be an array comprised of three rows and three columns, it would look like this:

int ThreeRowsThreeColumns [3][3] = {{-501, 206, 2011}, {989, 101, 206}, {303,
456, 596}};

66 LESSON 4: Managing Arrays and Strings

Even though C++ enables us to model multidimensional arrays,
the memory where the array is contained is one-dimensional. So,
the compiler maps the multidimensional array into the memory
space, which expands only in one direction.

If you wanted to, you could’ve also initialized the array called
SolarPanelIDs like the following, and it would still be the same:

int SolarPanelIDs [2][3] = {0, 1, 2, 3, 4, 5};

However, the other method makes a better example because it’s
easier to imagine and understand a multidimensional array as an
array of arrays.

Accessing Elements in a Multidimensional Array
Think of a multidimensional array as an array of arrays. So, when dealing with a two-
dimensional array comprised of three rows and three columns containing integers, you
can visualize it as handling an array comprised of three elements, where each element is
an array comprised of three integers.

So, when you need to access an integer in this array, you would need to use a first sub-
script to address the array where the integer is and the second subscript to address that
integer in this array. Consider this array:

int ThreeRowsThreeColumns [3][3] = {{-501, 206, 2011}, {989, 101, 206}, {303,
456, 596}};

NOTE

ptg7987094

It has been initialized in a way you can visualize three arrays, each containing three inte-
gers. Here, the integer element with value 206 is at position [0][1]. The element with
value 456 is at position [2][2]. Listing 4.3 explains how integer elements in this array can
be accessed.

LISTING 4.3 Accessing Elements in a Multidimensional Array

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: int ThreeRowsThreeColumns [3][3] = \
6: {{-501, 206, 2011}, {989, 101, 206}, {303, 456, 596}};
7:
8: cout << “Row 0: “ << ThreeRowsThreeColumns [0][0] << “ “ \
9: << ThreeRowsThreeColumns [0][1] << “ “ \
10: << ThreeRowsThreeColumns [0][2] << endl;
11:
12:
13: cout << “Row 1: “ << ThreeRowsThreeColumns [1][0] << “ “ \
14: << ThreeRowsThreeColumns [1][1] << “ “ \
15: << ThreeRowsThreeColumns [1][2] << endl;
16:
17: cout << “Row 2: “ << ThreeRowsThreeColumns [2][0] << “ “\
18: << ThreeRowsThreeColumns [2][1] << “ “ \
19: << ThreeRowsThreeColumns [2][2] << endl;
20:
21: return 0;
22: }

Output ▼

Row 0: -501 206 2011
Row 1: 989 101 206
Row 2: 303 456 596

Analysis ▼

Note how you have accessed elements in the array row-wise, starting with the array that
is Row 0 (the first row, with index 0) and ending with the array that is Row 2 (third row,
with index 2). As each of the rows is an array, the syntax for addressing the third element
in the first row is seen in Line 10.

Multidimensional Arrays 67

4

ptg7987094

68 LESSON 4: Managing Arrays and Strings

In Listing 4.3 the length of the code increases dramatically with
the increase in the number of elements in the array or dimensions
thereof. This code is actually unsustainable in a professional
development environment.

You can see a more efficient way to program accessing elements
in a multidimensional array in Listing 6.14 in Lesson 6, in which
you use a nested for loop to access all elements in such an
array. Using for loops is actually shorter and less error prone,
and the length of the program is not affected by changing the
number of elements in the array.

Dynamic Arrays
Consider an application that stores medical records for hospitals. There is no good way
for the programmer to know what the upper limits of the number of records his applica-
tion might need to handle are. He can make an assumption that is way more than the rea-
sonable limit for a small hospital to err on the safe side. In those cases, he is reserving
huge amounts of memory without reason and reducing the performance of the system.

The key is to not use static arrays like the ones we have seen this far, rather to choose
dynamic arrays that optimize memory consumption and scale up depending on the
demand for resources and memory at execution-time. C++ provides you with very conve-
nient and easy-to-use dynamic arrays in the form of std::vector as shown in Listing 4.4.

LISTING 4.4 Creating a Dynamic Array of Integers and Adding Values Dynamically

0: #include <iostream>
1: #include <vector>
2:
3: using namespace std;
4:
5: int main()
6: {
7: vector<int> DynArrNums (3);
8:
9: DynArrNums[0] = 365;
10: DynArrNums[1] = -421;
11: DynArrNums[2]= 789;
12:
13: cout << “Number of integers in array: “ << DynArrNums.size() << endl;

NOTE

ptg7987094

14:
15: cout << “Enter another number for the array” << endl;
16: int AnotherNum = 0;
17: cin >> AnotherNum;
18: DynArrNums.push_back(AnotherNum);
19:
20: cout << “Number of integers in array: “ << DynArrNums.size() << endl;
21: cout << “Last element in array: “;
22: cout << DynArrNums[DynArrNums.size() - 1] << endl;
23:
24: return 0;
25: }

Output ▼

Number of integers in array: 3
Enter another number for the array
2011
Number of integers in array: 4
Last element in array: 2011

Analysis ▼

Don’t worry about the syntax in Listing 4.4 as vector and templates have not been
explained as yet. Try to observe the output and correlate it to the code. The initial size of
the array according to the output is 3, consistent with the declaration of the vector at
Line 7. Knowing this, you still ask the user to enter a fourth number at Line 15, and,
interestingly enough, you are able to push this number into the vector using push_back()
at Line 18. The vector dynamically resizes itself to accommodate more data. This can
be then seen in the size of the array that increases to 4. Note the usage of the familiar
static array syntax to access data in the vector. Line 22 accesses the last element (wher-
ever that might be, given a position calculated at run-time) using the zero-based index,
where the last element is at index “size – 1”, and size() returns the total number of ele-
ments (integers) in the vector.

Dynamic Arrays 69

4

To use the dynamic array class std::vector, you need to include
header vector, which is also shown in Line 1 of Listing 4.4.

#include <vector>

Vectors are explained in greater detail in Lesson 17, “STL
Dynamic Array Classes.”

NOTE

ptg7987094

C-style Strings
C-style strings are a special case of an array of characters. You have already seen some
examples of C-style strings in the form of string literals that you have been writing into
your code:

std::cout << “Hello World”;

This is equivalent to using the array declaration:

char SayHello[] = {‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘ ‘, ‘W’, ‘o’, ‘r’, ‘l’, ‘d’, ‘\0’};
std::cout << SayHello << std::endl;

Note that the last character in the array is a null character ‘\0’. This is also called the
string-terminating character because it tells the compiler that the string has ended. Such
C-style strings are a special case of character arrays in that the last character always pre-
cedes the null-terminator ‘\0’. When you embed a string literal in your code, the com-
piler does the job of adding a ‘\0’ after it.

If you inserted ‘\0’ anywhere in the middle of the array, it would not change the size of
the array; it would only mean that string-processing using the array as input would stop
at that point. Listing 4.5 demonstrates this point.

70 LESSON 4: Managing Arrays and Strings

‘\0’ might look like two characters to you, and it indeed is two
characters typed using the keyboard. Yet, the backslash is a spe-
cial escape code that the compiler understands and \0 means
null—that is, it asks the compiler to insert a null or zero in there.

You could not write ‘0’ directly because that would be accepted
as character zero, which has the non-zero ASCII code 48.

Check the table in Appendix E, “ASCII Codes,” to see this and
other ASCII values.

LISTING 4.5 Analyzing the Null Terminator in a C-style String

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: char SayHello[] = {‘H’,’e’,’l’,’l’,’o’,’ ‘,’W’,’o’,’r’,’l’,’d’,’\0’};
6: cout << SayHello << endl;

NOTE

ptg7987094

7: cout << “Size of array: “ << sizeof(SayHello) << endl;
8:
9: cout << “Replacing space with null” << endl;
10: SayHello[5] = ‘\0’;
11: cout << SayHello << endl;
12: cout << “Size of array: “ << sizeof(SayHello) << endl;
13:
14: return 0;
15: }

Output ▼

Hello World
Size of array: 12
Replacing space with null
Hello
Size of array: 12

Analysis ▼

Line 10 is where we replace the space in “Hello World” by the null terminating charac-
ter. Note that the array now has two null-terminators, but it’s the first one that occurs that
creates an effect. When the space character has been replaced by null, the result of dis-
playing the string results in it being truncated to just “Hello”. sizeof() at Lines 7 and
12 indicate that the size of the array has not changed, even if the displayed data changed
a lot.

C-style Strings 71

4

If you forget to add the ‘\0’ when declaring and initializing the
character array in Listing 4.5 at Line 5, then expect the output to
contain garbled characters after printing “Hello World”; this is
because std::cout does not stop with printing the array until it
reaches a null character, even if it means exceeding the bounds of
the array.

This mistake can cause your program to crash and, in some
cases, compromise the stability of the system.

C-style strings are fraught with danger. Listing 4.6 demonstrates the risks involved in
using one.

CAUTION

ptg7987094

LISTING 4.6 A Risky Application Using C-style Strings and User Input

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: cout << “Enter a word NOT longer than 20 characters:” << endl;
6:
7: char UserInput [21] = {‘\0’};
8: cin >> UserInput;
9:
10: cout << “Length of your input was: “ << strlen (UserInput) << endl;
11:
12: return 0;
13: }

Output ▼

Enter a word NOT longer than 20 characters:
Don’tUseThisProgram
Length of your input was: 19

Analysis ▼

The danger is visible in the output. The program is begging the user to not enter data
longer than 20 characters. The reason it does so is that the character buffer declared in
Line 7 meant to store user input has a fixed—static—length of 21 characters. As the last
character in the string needs to be a null-terminator ‘\0’, the maximum length of text
stored by the buffer is limited to 20. Note the usage of strlen in Line 10 to compute the
length of the string. strlen walks the character buffer and counts the number of charac-
ters crossed until it reaches the null terminator that indicates the end of the string. This
null terminator has been inserted by cin at the end of the user’s input. This behavior of
strlen makes it dangerous as it can easily walk past the bounds of the character array if
the user has supplied text longer than the mentioned limit. See Listing 6.2 in Lesson 6 to
learn how to implement a check that ensures that an array is not written beyond its
bounds.

C++ Strings: Using std::string
C++ standard string is the most efficient way to deal with text input—and in performing
string manipulations like concatenations.

72 LESSON 4: Managing Arrays and Strings

ptg7987094

C++ Strings: Using std::string 73

4

Applications programmed in C (or in C++ by programmers who
have a strong C background) often use string copy functions such
as strcpy, concatenation functions such as strcat, and strlen
to determine the length of a string, in addition to others of this
kind.

These functions take C-style strings as input and are dangerous
as they seek the null-terminator and can exceed the boundaries of
the character array they’re using if the programmer has not
ensured the presence of the terminating null.

C++ offers you genuinely powerful, yet safe, options in manipulating strings using
std::string, as shown in Listing 4.7. std::string is not static in size like a regular
char array implementation of a C-style string is and can scale up when more data needs
to be stored in it.

LISTING 4.7 Using std::string to Initialize, Store User Input, Copy, Concatenate, and
Determine the Length of a String

0: #include <iostream>
1: #include <string>
2:
3: using namespace std;
4:
5: int main()
6: {
7: string Greetings (“Hello std::string!”);
8: cout << Greetings << endl;
9:
10: cout << “Enter a line of text: “ << endl;
11: string FirstLine;
12: getline(cin, FirstLine);
13:
14: cout << “Enter another: “ << endl;
15: string SecLine;
16: getline(cin, SecLine);
17:
18: cout << “Result of concatenation: “ << endl;
19: string Concat = FirstLine + “ “ + SecLine;
20: cout << Concat << endl;
21:
22: cout << “Copy of concatenated string: “ << endl;
23: string Copy;
24: Copy = Concat;
25: cout << Copy << endl;

CAUTION

ptg7987094

26:
27: cout << “Length of concat string: “ << Concat.length() << endl;
28:
29: return 0;
30: }

Output ▼

Hello std::string!
Enter a line of text:
I love
Enter another:
C++ strings
Result of concatenation:
I love C++ strings
Copy of concatenated string:
I love C++ strings
Length of concat string: 18

Analysis ▼

Try to understand the output and correlate it to the various elements in code. Don’t let
new syntax features bother you at this stage. The program starts with displaying a string
that has been initialized in Line 7 to “Hello std::string”. It then asks the user to enter
two lines of text, which are stored in variables FirstLine and SecLine, in Lines 12 and
16. The actual concatenation is quite simple and looks like an arithmetic addition in Line
19, where even a space has been added to the first line. The act of copying is a simple act
of assigning, in Line 24. Determining the length of the string is done by invoking
length() on it, in Line 27.

74 LESSON 4: Managing Arrays and Strings

To use a C++ string, you need to include the header string:

#include <string>

This is also visible in Line 1 in Listing 4.7.

To learn the various functions of std::string in detail, take a quick look at Lesson 16,
“The STL string Class.” Because you have not learned about classes and templates,
ignore sections that seem unfamiliar in that lesson and concentrate on understanding the
gist of the samples.

NOTE

ptg7987094

Summary
This lesson taught you about the basics of arrays, what they are, and where they can be
used. You learned how to declare them, initialize them, access elements in an array, and
write values to elements in an array. You learned how important it is to not exceed the
bounds of an array. That is called a buffer overflow, and ensuring that input is checked
before using to index elements helps ensure that the limits of an array are not crossed.

Dynamic arrays are those where the programmer doesn’t need to worry about fixing the
max length of an array at compile time, and they allow for better memory management
in the event of usage that is lesser than the expected maximum.

You also learned that C-style strings are a special case of char arrays where the end of
the string is marked by a null-terminating character ‘\0’. More importantly, though, you
learned that C++ offers a far better option in the std::string, which provides conve-
nient utility functions that enable you to determine the length, concatenate, and perform
similar actions.

Q&A
Q Why take the trouble to initialize a static array’s elements?

A Unless initialized, the array, unlike a variable of any other type, contains junk and
unpredictable values as the memory at that location was left untouched after the
last operations. Initializing arrays ensures that the information therein has a distinct
and predictable initial state.

Q Would you need to initialize the elements in a dynamic array for the same rea-
sons as mentioned in the first question?

A Actually, no. A dynamic array is quite a smart array. Elements in the array don’t
need to be initialized to a default value unless there is a specific reason related to
the application that needs you to have certain initial values in the array.

Q Given a choice, would you use C-style strings that need a null terminator?

A Yes, but only if someone places a gun to your head. C++ std::string is a lot
safer and supplies features that should make any good programmer stay away from
using C-style strings.

Q Does the length of the string include the null-terminator at the end of it?

A No, it doesn’t. The length of string “Hello World” is 11, including the space and
excluding the null character at the end of it.

Q&A 75

4

ptg7987094

Q Well, I still want to use C-style strings in char arrays defined by myself. What
should be the size of the array I am using?

A Here you go with one of the complications of using C-style strings. The size of the
array should be one greater than the size of the largest string it will ever contain.
This is essential so that it can accommodate for the null character at the end of the
largest string. If “Hello World” was to be the largest string your char array would
ever hold, then the length of the array needs to be 11 + 1 = 12 characters.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain you understand the answers before continuing to the next
lesson.

Quiz
1. Check the array MyNumbers in Listing 4.1. What are the indexes of the first and last

elements in that array?

2. If you need to allow the user to input strings, would you use C-style strings?

3. How many characters are in ‘\0’ as seen by the compiler?

4. You forget to end your C-style string with a null terminator. What happens when
you use it?

5. See the declaration of vector in Listing 4.4 and try composing a dynamic array that
contains elements of the type char.

Exercises
1. Declare an array that represents the squares on the chessboard; the type of the

array can be an enum that defines the nature of the pieces on the board.

2. BUG BUSTERS: What is wrong with this code fragment?
int MyNumbers[5] = {0};
MyNumbers[5] = 450; // Setting the 5th element to value 450

3. BUG BUSTERS: What is wrong with this code fragment?
int MyNumbers[5];
cout << MyNumbers[3];

76 LESSON 4: Managing Arrays and Strings

ptg7987094

LESSON 5
Working with
Expressions,
Statements, and
Operators

At its heart, a program is a set of commands executed in sequence.
These commands are programmed into expressions and statements
and use operators to perform specific calculations or actions.

In this lesson, you learn

n What statements are

n What blocks or compound statements are

n What operators are

n How to perform simple arithmetic and logical operations

ptg7987094

Statements
Languages—spoken or programmed—are composed of statements that are executed one
after another. Let’s analyze the first important statement you learned:

cout << “Hello World” << endl;

A statement using cout displays text using the console on the screen. All statements in
C++ end with a semicolon (;), which defines the boundary of a statement. This is similar
to the period (.) you add when ending a sentence in English. The next statement can start
immediately after the semicolon, but for convenience and readability you often program
successive statements on successive lines. In other words, this is actually a set of two
statements in a line:

cout << “Hello World” << endl; cout << “Another hello” << endl; // One line, two
➥statements

78 LESSON 5: Working with Expressions, Statements, and Operators

Whitespaces typically are not visible to the compiler. This includes
spaces, tabs, line feeds, carriage returns, and so on. Whitespaces
within string literals, though, make a difference to the output.

The following would be invalid:

cout << “Hello
World” << endl; // new line in string literal not allowed

Such code typically results in an error indicating that the compiler is missing a closing
quote (”) and a statement-terminating semicolon (;) in the first line. If you need to
spread a statement over two lines for some reason, you can do it by inserting a backslash
(\) at the end:

cout << “Hello \
World” << endl; // split to two lines is OK

Another way of writing the preceding statement in two lines is to write two string literals
instead of just one:

cout << “Hello “
“World” << endl; // two string literals is also OK

In the preceding example, the compiler notices two adjacent string literals and concate-
nates them for you.

NOTE

ptg7987094

Using Operators 79

5

Splitting a statement into many lines can be quite useful when
you have long text elements or complex expressions comprised of
many variables that make a statement much longer than what
most displays can allow.

Compound Statements or Blocks
When you group statements together within braces {...}, you create a compound state-
ment or a block.

{
int Number = 365;
cout << “This block contains an integer and a cout statement” << endl;

}

A block typically groups many statements to indicate that they belong together. Blocks
are particularly useful when programming conditional if statements or loops, which are
explained in Lesson 6, “Controlling Program Flow.”

Using Operators
Operators are tools that C++ provides for you to be able to work with data, transform it,
process it, and possibly make decisions on the basis of it.

The Assignment Operator (=)
The assignment operator is one that you already have been using intuitively in this book:

int MyInteger = 101;

The preceding statement uses the assignment operator in initializing the integer to 101.
The assignment operator replaces the value contained by the operand to the left (called
l-value) by that on the right (called r-value).

Understanding l-values and r-values
l-values often refer to locations in memory. A variable such as MyInteger from the pre-
ceding example is actually a handle to a memory location and is an l-value. r-values, on
the other hand, can be the very content of a memory location.

NOTE

ptg7987094

So, all l-values can be r-values, but not all r-values can be l-values. To understand it bet-
ter, look at the following example, which doesn’t make any sense and therefore won’t
compile:

101 = MyInteger;

Operators to Add (+), Subtract (-), Multiply (*),
Divide (/), and Modulo Divide (%)
You can perform an arithmetic operation between two operands by using + for addition,
- for subtraction, * for multiplication, / for division, and % for modulo operation:

int Num1 = 22;
int Num2 = 5;
int addition = Num1 + Num2; // 27
int subtraction = Num1 – Num2; // 17
int multiplication = Num1 * Num2; // 110
int division = Num1 / Num2; // 4
int modulo = Num1 % Num2; // 2

Note that the division operator (/) returns the result of division between two operands. In
the case of integers, however, the result contains no decimals as integers by definition
cannot hold decimal data. The modulo operator (%) returns the remainder of a division
operator, and it is applicable only on integer values. Listing 5.1 is a simple program that
demonstrates an application to perform arithmetic functions on two numbers input by
the user.

LISTING 5.1 Demonstrate Arithmetic Operators on Integers Input by the User

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: cout << “Enter two integers:” << endl;
6: int Num1 = 0, Num2 = 0;
7: cin >> Num1;
8: cin >> Num2;
9:
10: cout << Num1 << “ + “ << Num2 << “ = “ << Num1 + Num2 << endl;
11: cout << Num1 << “ - “ << Num2 << “ = “ << Num1 - Num2 << endl;
12: cout << Num1 << “ * “ << Num2 << “ = “ << Num1 * Num2 << endl;
13: cout << Num1 << “ / “ << Num2 << “ = “ << Num1 / Num2 << endl;
14: cout << Num1 << “ % “ << Num2 << “ = “ << Num1 % Num2 << endl;
15:
16: return 0;
17: }

80 LESSON 5: Working with Expressions, Statements, and Operators

ptg7987094

Output ▼

Enter two integers:
365
25
365 + 25 = 390
365 - 25 = 340
365 * 25 = 9125
365 / 25 = 14
365 % 25 = 15

Analysis ▼

Most of the program is quite self explanatory. The line of most interest is possibly the
one that uses the % modulo operator. What this does is return the remainder that is the
result of dividing Num1 (365) by Num2 (25).

Operators to Increment (++) and Decrement (--)
Sometimes you need to count in increments of one. This is particularly required in
variables that control loops where the value of the variable needs to be incremented or
decremented every time a loop has been executed.

C++ includes the ++ (increment) and -- (decrement) operators to help you with this task.

The syntax for using these is the following:

int Num1 = 101;
int Num2 = Num1++; // Postfix increment operator
int Num2 = ++Num1; // Prefix increment operator
int Num2 = Num1--; // Postfix decrement operator
int Num2 = --Num1; // Prefix decrement operator

As the code sample indicates, there are two different ways of using the incrementing and
decrementing operators: before and after the operand. Operators that are placed before
the operand are called prefix increment or decrement operators, and those that are placed
after are called postfix increment or decrement operators.

To Postfix or to Prefix?
It’s important to first understand the difference between prefix and postfix and then use
the one that works for you. The result of execution of the postfix operators is that the
l-value is first assigned the r-value and after that assignment the r-value is incremented
(or decremented). This means that in all cases where a postfix operator has been used,
the value of Num2 is the old value of Num1 (before the increment or decrement operation).

Using Operators 81

5

ptg7987094

Prefix operators have exactly the opposite in behavior. The r-value is first incremented
and then assigned to the l-value. In these cases, Num2 and Num1 carry the same value.
Listing 5.2 demonstrates the effect of prefix and postfix increment and decrement opera-
tors on a sample integer.

LISTING 5.2 Demonstrate the Difference Between Postfix and Prefix Operators

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: int MyInt = 101;
6: cout << “Start value of integer being operated: “ << MyInt << endl;
7:
8: int PostFixInc = MyInt++;
9: cout << “Result of Postfix Increment = “ << PostFixInc << endl;
10: cout << “After Postfix Increment, MyInt = “ << MyInt << endl;
11:
12: MyInt = 101; // Reset
13: int PreFixInc = ++MyInt;
14: cout << “Result of Prefix Increment = “ << PreFixInc << endl;
15: cout << “After Prefix Increment, MyInt = “ << MyInt << endl;
16:
17: MyInt = 101;
18: int PostFixDec = MyInt--;
19: cout << “Result of Postfix Decrement = “ << PostFixDec << endl;
20: cout << “After Postfix Decrement, MyInt = “ << MyInt << endl;
21:
22: MyInt = 101;
23: int PreFixDec = --MyInt;
24: cout << “Result of Prefix Decrement = “ << PreFixDec << endl;
25: cout << “After Prefix Decrement, MyInt = “ << MyInt << endl;
26:
27: return 0;
28: }

Output ▼

Start value of integer being operated: 101
Result of Postfix Increment = 101
After Postfix Increment, MyInt = 102
Result of Prefix Increment = 102
After Prefix Increment, MyInt = 102
Result of Postfix Decrement = 101
After Postfix Decrement, MyInt = 100
Result of Prefix Decrement = 100
After Prefix Decrement, MyInt = 100

82 LESSON 5: Working with Expressions, Statements, and Operators

ptg7987094

Analysis ▼

The results show that the postfix operators were different from the prefix ones in that the
l-values being assigned in Lines 8 and 18 contain the original values of the integer before
the actual increment or decrement operations. The prefix operations in Lines 13 and 23,
on the other hand, result in the l-value being assigned the incremented or decremented
value. This is the most important difference that needs to be kept in perspective when
choosing the right operator type.

Note that in the following statements, the prefix or postfix operators make no difference
to the output of the program:

MyInt++; // Is the same as…
++MyInt;

This is because there is no assignment of an initial value, and the end result in both cases
is just that the integer is incremented.

Using Operators 83

5

You often hear of cases where prefix increment or decrement oper-
ators are preferred on grounds of better performance. That is,
++MyInt is preferred over MyInt++.

This is true at least theoretically because with the postfix opera-
tors, the compiler needs to store the initial value temporarily in
the event of it needing to be assigned. The effect on performance
in these cases is negligible with respect to integers, but in the
case of certain classes there might be a point in this argument.

NOTE

Avoid Overflows by Making Wiser Selection of Data Types

Data types such as short, int, long, unsigned short, unsigned int, unsigned
long, and the like have a finite capacity for containing numbers. When you exceed
the limit imposed by the type chosen in an arithmetic operation, you create an over-
flow.

Take unsigned short for an example. Data type short consumes 16 bits and can
hence contain values from 0 through 65535. When you add 1 to 65535 in an
unsigned short, the value overflows to 0. It’s quite like the odometer of a car that
suffers a mechanical overflow when it can support only five digits and the car has
done 99,999 kilometers (or miles).

In this case, unsigned short was never the right type for such a counter. The pro-
grammer was better off using unsigned int to support numbers higher than
65,535.

ptg7987094

84 LESSON 5: Working with Expressions, Statements, and Operators

In the case of a signed short integer, which has a range of –32768 through
32767, adding 1 to 32767 often results in the signed integer taking the highest
negative value—but this is compiler dependent.

Listing 5.3 demonstrates the overflow errors that you can inadvertently introduce via
arithmetic operations.

LISTING 5.3 Demonstrating the Ill-Effects of Signed and Unsigned Integer Overflow
Errors

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: unsigned short UShortValue = 65535;
6: cout << “Incrementing unsigned short “ << UShortValue << “ gives: “;
7: cout << ++UShortValue << endl;
8:
9: short SignedShort = 32767;
10: cout << “Incrementing signed short “ << SignedShort<< “ gives: “;
11: cout << ++SignedShort << endl;
12:
13: return 0;
14:

Output ▼

Incrementing unsigned short 65535 gives: 0
Incrementing signed short 32767 gives: -32768

Analysis ▼

As you see, the output indicates that unintentional overflow situations result in unpre-
dictable and unintuitive behavior for the application. If you were using the integer values
in question to allocate memory, then with the unsigned short, you can reach a point
where you request zero bytes when your actual need is 65,536 bytes.

Equality Operators (==) and (!=)
Often you need to check for a certain condition being fulfilled or not being fulfilled
before you proceed to take an action. Equality operators == (operands are equal) and
!= (operands are unequal) help you with exactly that.

ptg7987094

The result of an equality check is a bool—that is, true or false.

int MyNum = 20;
bool CheckEquality = (MyNum == 20); // true
bool CheckInequality = (MyNum != 100); // true

bool CheckEqualityAgain = (MyNum == 200); // false
bool CheckInequalityAgain = (MyNum != 20); // false

Relational Operators
In addition to equality checks, you might want to check for inequality of a certain variable
against a value. To assist you with that, C++ includes relational operators (see Table 5.1).

TABLE 5.1 Relational Operators

Operator Name Description

Less than (<) Evaluates to true if one operand is less than the other
(Op1 < Op2), else evaluates to false

Greater than (>) Evaluates to true if one operand is greater than the other
(Op1 > Op2), else evaluates to false

Less than or equal to (<=) Evaluates to true if one operand is less than or equal to
another, else evaluates to false

Greater than or equal to (>=) Evaluates to true if one operand is greater than or equal
to another, else evaluates to false

As Table 5.1 indicates, the result of a comparison operation is always true or false, in
other words a bool. The following sample code indicates how the relational operators
introduced in Table 5.1 can be put to use:

int MyNum = 20; // sample integer value
bool CheckLessThan = (MyNum < 100); // true
bool CheckGreaterThan = (MyNum > 100); // false
bool CheckLessThanEqualTo = (MyNum <= 20); // true
bool CheckGreaterThanEqualTo = (MyNum >= 20); // true
bool CheckGreaterThanEqualToAgain = (MyNum >= 100); // false

Listing 5.4 is a program that demonstrates the effect of using these operators by display-
ing the result on the screen.

LISTING 5.4 Demonstrating Equality and Relational Operators

0: #include <iostream>
1: using namespace std;
2:
3: int main()

Using Operators 85

5

ptg7987094

LISTING 5.4 Continued

4: {
5: cout << “Enter two integers:” << endl;
6: int Num1 = 0, Num2 = 0;
7: cin >> Num1;
8: cin >> Num2;
9:
10: bool Equality = (Num1 == Num2);
11: cout << “Result of equality test: “ << Equality << endl;
12:
13: bool Inequality = (Num1 != Num2);
14: cout << “Result of inequality test: “ << Inequality << endl;
15:
16: bool GreaterThan = (Num1 > Num2);
17: cout << “Result of “ << Num1 << “ > “ << Num2;
18: cout << “ test: “ << GreaterThan << endl;
19:
20: bool LessThan = (Num1 < Num2);
21: cout << “Result of “ << Num1 << “ < “ << Num2 << “ test: “ << LessThan <<

➥endl;
22:
23: bool GreaterThanEquals = (Num1 >= Num2);
24: cout << “Result of “ << Num1 << “ >= “ << Num2;
25: cout << “ test: “ << GreaterThanEquals << endl;
26:
27: bool LessThanEquals = (Num1 <= Num2);
28: cout << “Result of “ << Num1 << “ <= “ << Num2;
29: cout << “ test: “ << LessThanEquals << endl;
30:
31: return 0;
32: }

Output ▼

Enter two integers:
365
-24
Result of equality test: 0
Result of inequality test: 1
Result of 365 > -24 test: 1
Result of 365 < -24 test: 0
Result of 365 >= -24 test: 1
Result of 365 <= -24 test: 0

Next run:

Enter two integers:
101

86 LESSON 5: Working with Expressions, Statements, and Operators

ptg7987094

101
Result of equality test: 1
Result of inequality test: 0
Result of 101 > 101 test: 0
Result of 101 < 101 test: 0
Result of 101 >= 101 test: 1
Result of 101 <= 101 test: 1

Analysis ▼

The program displays the binary result of the various operations. Interesting is to note
the output in the event the two supplied integers are the same. The operators ==, >=, and
<= produce identical results.

The fact that the output of equality and relational operators is binary makes these per-
fectly suited to using them in statements that help in decision-making and as loop condi-
tion expressions that ensure a loop executes only so long as the condition evaluates to
true. You can learn more about conditional execution and loops in Lesson 6.

Logical Operations NOT, AND, OR, and XOR
Logical NOT operation is supported by the operator ! and works on a single operand.
Table 5.2 is the truth table for a logical NOT operation, which, as expected, simply
inverses the supplied Boolean flag.

TABLE 5.2 Truth Table of Logical NOT Operation

Operand Result of NOT (Operand)

False True

True False

Other operators such as AND, OR, and XOR need two operands. Logical AND operation
evaluates to true only when each operand evaluates to true. Table 5.3 demonstrates the
functioning of a logical AND operation.

TABLE 5.3 Truth Table of Logical AND Operation

Operand 1 Operand 2 Result of Operand1 AND Operand2

False False False

True False False

False True False

True True True

Using Operators 87

5

ptg7987094

Logical AND operation is supported by operator &&.

Logical OR evaluates to true when at least one of the operands evaluates to true, as
demonstrated by Table 5.4.

TABLE 5.4 Truth Table of Logical OR Operation

Operand 1 Operand 2 Result of Operand1 OR Operand2

False False False

True False True

False True True

True True True

Logical OR operation is supported by operator ||.

The exclusive OR (abbreviated to XOR) operation is slightly different than the logical
OR for it evaluates to true when any one operand is true but not both, as demonstrated
by Table 5.5.

TABLE 5.5 Truth Table of Logical XOR Operation

Operand 1 Operand 2 Result of Operand1 OR Operand2

False False False

True False True

False True True

True True False

C++ provides a bitwise XOR in the form of the ^ operator. This operator helps evaluate a
result that is generated via an XOR operation on the operand’s bits.

Using C++ Logical Operators NOT (!), AND (&&), and
OR (||)
Consider these statements:

n “If it is raining AND if there are no buses, I cannot go to work.”

n “If there is a deep discount OR if I am awarded a record bonus, I can buy that car.”

You need such logical constructs in programming where the result of two operations is
used in a logical context in deciding the future flow of your program. C++ provides

88 LESSON 5: Working with Expressions, Statements, and Operators

ptg7987094

logical AND and OR operators that you can use in conditional statements, hence condi-
tionally changing the flow of your program.

Listing 5.5 demonstrates the workings of logical AND and logical OR operators.

LISTING 5.5 Analyzing C++ Logical Operators && and ||

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: cout << “Enter true(1) or false(0) for two operands:” << endl;
6: bool Op1 = false, Op2 = false;
7: cin >> Op1;
8: cin >> Op2;
9:
10: cout << Op1 << “ AND “ << Op2 << “ = “ << (Op1 && Op2) << endl;
11: cout << Op1 << “ OR “ << Op2 << “ = “ << (Op1 || Op2) << endl;
12:
13: return 0;
14: }

Output ▼

Enter true(1) or false(0) for two operands:
1
0
1 AND 0 = 0
1 OR 0 = 1

Next run:

Enter true(1) or false(0) for two operands:
1
1
1 AND 1 = 1
1 OR 1 = 1

Analysis ▼

The program actually indicates how the operators supply logical AND and OR functions
to you. What the program doesn’t do is show you how to use them in making decisions.

Listing 5.6 demonstrates a program that executes different lines of code depending on the
values contained in variables using conditional statement processing and logical operators.

Using Operators 89

5

ptg7987094

LISTING 5.6 Using Logical NOT (!) and Logical AND (&&) Operators in if Statements for
Conditional Processing

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: cout << “Use boolean values(0 / 1) to answer the questions” << endl;
6: cout << “Is it raining? “;
7: bool Raining = false;
8: cin >> Raining;
9:
10: cout << “Do you have buses on the streets? “;
11: bool Buses = false;
12: cin >> Buses;
13:
14: // Conditional statement uses logical AND and NOT
15: if (Raining && !Buses)
16: cout << “You cannot go to work” << endl;
17: else
18: cout << “You can go to work” << endl;
19:
20: if (Raining && Buses)
21: cout << “Take an umbrella” << endl;
22:
23: if ((!Raining) && Buses)
24: cout << “Enjoy the sun and have a nice day” << endl;
25:
26: return 0;
27: }

Output ▼

Use boolean values(0 / 1) to answer the questions
Is it raining? 1
Do you have buses on the streets? 1
You can go to work
Take an umbrella

Next run:

Use boolean values(0 / 1) to answer the questions
Is it raining? 1
Do you have buses on the streets? 0
You cannot go to work

90 LESSON 5: Working with Expressions, Statements, and Operators

ptg7987094

Last run:

Use boolean values(0 / 1) to answer the questions
Is it raining? 0
Do you have buses on the streets? 1
You can go to work
Enjoy the sun and have a nice day

Analysis ▼

The program in Listing 5.6 uses conditional statements in the form of the if construct
that has not been introduced to you. Yet, try to understand the behavior of this construct
by correlating it against the output. Line 15 contains the logical expression (Raining &&
!Buses) that can be read as “Raining AND NO buses.” This uses the logical AND opera-
tor to connect the absence of buses (indicated by the logical NOT on presence of buses)
to the presence of rain.

Using Operators 91

5

If you want to read a little about the if construct, you can quickly
visit Lesson 6.

Listing 5.7 uses logical NOT (!) and OR (||) operators in a demonstration of conditional
processing.

LISTING 5.7 Using Logical NOT and Logical OR Operators to Help You Decide If You Can
Buy That Dream Car

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: cout << “Answer questions with 0 or 1” << endl;
6: cout << “Is there a deep discount on your favorite car? “;
7: bool Discount = false;
8: cin >> Discount;
9:
10: cout << “Did you get a fantastic bonus? “;
11: bool FantasticBonus = false;
12: cin >> FantasticBonus;
13:
14: if (Discount || FantasticBonus)
15: cout << “Congratulations, you can buy that car!” << endl;
16: else

NOTE

ptg7987094

LISTING 5.7 Continued

17: cout << “Sorry, waiting a while is a good idea” << endl;
18:
19: return 0;
20: }

Output ▼

Answer questions with 0 or 1
Is there a deep discount on your favorite car? 0
Did you get a fantastic bonus? 1
Congratulations, you can buy that car!

Next run:

Answer questions with 0 or 1
Is there a deep discount on your favorite car? 0
Did you get a fantastic bonus? 0
Sorry, waiting a while is a good idea

Last run:

Answer questions with 0 or 1
Is there a deep discount on your favorite car? 1
Congratulations, you can buy that car!

Analysis ▼

Line 14 uses the if construct followed by an accompanying else in Line 16. The if
construct executes the following statement in Line 15 when the condition (Discount ||
FantasticBonus) evaluates to true. This expression contains the logical OR operator
and evaluates to true when there is no discount on your favorite car. When the expres-
sion evaluates to false, the statement following else in Line 17 is executed.

Bitwise NOT (~), AND (&), OR (|), and XOR (^)
Operators
The difference between the logical and the bitwise operators is that bitwise operators
don’t return a boolean result. Instead, they supply a result in which individual bits are
governed by executing the operator on the operands’ bits. C++ allows you to perform
operations such as NOT, OR, AND, and exclusive OR (that is, XOR) operations on a bit-
wise mode where you can manipulate individual bits by negating them using ~, ORring
them using |, ANDing them using &, and XORring them using ^. The latter three are
performed against a number (typically a bit mask) of your choosing.

92 LESSON 5: Working with Expressions, Statements, and Operators

ptg7987094

Some bitwise operations are useful in those situations where bits contained in an integer—
for example, each specify the state of a certain flag. Thus, an integer with 32 bits can be
used to carry 32 Boolean flags. Listing 5.8 demonstrates the use of bitwise operators.

LISTING 5.8 Demonstrating the Use of Bitwise Operators to Perform NOT, AND, OR, and
XOR on Individual Bits in an Integer

0: #include <iostream>
1: #include <bitset>
2: using namespace std;
3:
4: int main()
5: {
6: cout << “Enter a number (0 - 255): “;
7: unsigned short InputNum = 0;
8: cin >> InputNum;
9:
10: bitset<8> InputBits (InputNum);
11: cout << InputNum << “ in binary is “ << InputBits << endl;
12:
13: bitset<8> BitwiseNOT = (~InputNum);
14: cout << “Logical NOT |” << endl;
15: cout << “~” << InputBits << “ = “ << BitwiseNOT << endl;
16:
17: cout << “Logical AND, & with 00001111” << endl;
18: bitset<8> BitwiseAND = (0x0F & InputNum);// 0x0F is hex for 0001111
19: cout << “0001111 & “ << InputBits << “ = “ << BitwiseAND << endl;
20:
21: cout << “Logical OR, | with 00001111” << endl;
22: bitset<8> BitwiseOR = (0x0F | InputNum);
23: cout << “00001111 | “ << InputBits << “ = “ << BitwiseOR << endl;
24:
25: cout << “Logical XOR, ^ with 00001111” << endl;
26: bitset<8> BitwiseXOR = (0x0F ^ InputNum);
27: cout << “00001111 ^ “ << InputBits << “ = “ << BitwiseXOR << endl;
28:
29: return 0;
30: }

Output ▼

Enter a number (0 - 255): 181
181 in binary is 10110101
Logical NOT |
~10110101 = 01001010
Logical AND, & with 00001111
0001111 & 10110101 = 00000101
Logical OR, | with 00001111
00001111 | 10110101 = 10111111

Using Operators 93

5

ptg7987094

Logical XOR, ^ with 00001111
00001111 ^ 10110101 = 10111010

Analysis ▼

This program uses bitset—a type you have not seen yet—to make displaying binary data
easier. The role of std::bitset here is purely to help with displaying and nothing more.
In Lines 10, 13, 17, and 22 you actually assign an integer to a bitset object, which is used
to display that same integer data in binary mode. The operations are done on integers.
For a start, focus on the output, which shows you the original integer 181 fed by the user
in binary and then proceeds to demonstrate the effect of the various bitwise operators ~,
&, |, and ^ on this integer. You see that the bitwise NOT used in Line 14 toggles the indi-
vidual bits. The program also demonstrates how the operators &, |, and ^ work, perform-
ing the operations using each bit in the two operands to create the result. Correlate this
result with the truth tables introduced earlier, and the workings should become clearer to
you.

94 LESSON 5: Working with Expressions, Statements, and Operators

If you want to learn more about manipulating bit flags in C++, take
a look at Lesson 25, “Working with Bit Flags Using STL.” It dis-
cusses the std::bitset in detail.

Bitwise Right Shift (>>) and Left Shift (<<) Operators
Shift operators move the entire bit sequence to the right or to the left, and thus can help
with multiplication or division by multiples of two, apart from having other uses in an
application.

A sample use of a shift operator used to multiply by two is the following:

int DoubledValue = Num << 1; // shift bits one position left to double value

A sample use of a shift operator used to halve is the following:

int HalvedValue = Num >> 2; // shift bits one position right to halve value

Listing 5.9 demonstrates how you can use shift operators to effectively multiply or divide
an integer value.

LISTING 5.9 Using Bitwise Right Shift Operator (>>) to Quarter and Half and Left Shift
(<<) to Double and Quadruple an Input Integer

0: #include <iostream>
1: using namespace std;
2:

NOTE

ptg7987094

3: int main()
4: {
5: cout << “Enter a number: “;
6: int Input = 0;
7: cin >> Input;
8:
9: int Half = Input >> 1;
10: int Quarter = Input >> 2;
11: int Double = Input << 1;
12: int Quadruple = Input << 2;
13:
14: cout << “Quarter: “ << Quarter << endl;
15: cout << “Half: “ << Half << endl;
16: cout << “Double: “ << Double << endl;
17: cout << “Quadruple: “ << Quadruple << endl;
18:
19: return 0;
20: }

Output ▼

Enter a number: 16
Quarter: 4
Half: 8
Double: 32
Quadruple: 64

Analysis ▼

The input number is 16, which in binary terms is 1000. In Line 9, you move it one bit
right to change it to 0100, which is 8, effectively halving it. In Line 10, you move it
two bits right changing 1000 to 00100, which is 4. Similarly the effect of the left shift
operators in Lines 11 and 12 are exactly the opposite. You move it one bit left to get
10000, which is 32 and two bits left to get 100000, which is 64, effectively doubling
and quadrupling the number!

Using Operators 95

5

Bitwise shift operators don’t rotate values. Additionally, the result
of shifting signed numbers is implementation dependent. On
some compilers, most-significant-bit when shifted left is not
assigned to the least-significant-bit; rather the latter is zero.

NOTE

ptg7987094

Compound Assignment Operators
Compound assignment operators are assignment operators where the operand to the left
is assigned the value resulting from the operation.

Consider the following code:

int Num1 = 22;
int Num2 = 5;
Num1 += Num2; // Num1 contains 27 after the operation

This is similar to what’s expressed in the following line of code:

Num1 = Num1 + Num2;

Thus, the effect of the += operator is that the sum of the two operands is calculated and
then assigned to the operand on the left (which is Num1). Table 5.6 is a quick reference on
the many compound assignment operators and explains their working.

TABLE 5.6 Compound Assignment Operators

Operator Usage Equivalent

Addition Assignment Num1 += Num2; Num1 = Num1 + Num2;

Subtraction Assignment Num1 -= Num2; Num1 = Num1 - Num2;

Multiplication Assignment Num1 *= Num2; Num1 = Num1 * Num2;

Division Assignment Num1 /= Num2; Num1 = Num1 / Num2;

Modulo Assignment Num1 %= Num2; Num1 = Num1 % Num2;

Bitwise Left-Shift Assignment Num1 <<= Num2; Num1 = Num << Num2;

Bitwise Right-Shift Assignment Num1 >>= Num2; Num1 = Num >> Num2;

Bitwise AND Assignment Num1 &= Num2; Num1 = Num1 & Num2;

Bitwise OR Assignment Num1 |= Num2; Num1 = Num1 | Num2;

Bitwise XOR Assignment Num1 ^= Num2; Num1 = Num1 ^ Num2;

Listing 5.10 demonstrates the effect of using these operators.

96 LESSON 5: Working with Expressions, Statements, and Operators

ptg7987094

LISTING 5.10 Using Compound Assignment Operators to Add; Subtract; Divide; Perform
Modulus; Shift; and Perform Bitwise OR, AND, and XOR

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: cout << “Enter a number: “;
6: int Value = 0;
7: cin >> Value;
8:
9: Value += 8;
10: cout << “After += 8, Value = “ << Value << endl;
11: Value -= 2;
12: cout << “After -= 2, Value = “ << Value << endl;
13: Value /= 4;
14: cout << “After /= 4, Value = “ << Value << endl;
15: Value *= 4;
16: cout << “After *= 4, Value = “ << Value << endl;
17: Value %= 1000;
18: cout << “After %= 1000, Value = “ << Value << endl;
19:
20: // Note: henceforth assignment happens within cout
21: cout << “After <<= 1, value = “ << (Value <<= 1) << endl;
22: cout << “After >>= 2, value = “ << (Value >>= 2) << endl;
23:
24: cout << “After |= 0x55, value = “ << (Value |= 0x55) << endl;
25: cout << “After ^= 0x55, value = “ << (Value ^= 0x55) << endl;
26: cout << “After &= 0x0F, value = “ << (Value &= 0x0F) << endl;
27:
28: return 0;
29:}

Output ▼

Enter a number: 440
After += 8, Value = 448
After -= 2, Value = 446
After /= 4, Value = 111
After *= 4, Value = 444
After %= 1000, Value = 444
After <<= 1, value = 888
After >>= 2, value = 222
After |= 0x55, value = 223
After ^= 0x55, value = 138
After &= 0x0F, value = 10

Using Operators 97

5

ptg7987094

Analysis ▼

Note that Value is continually modified throughout the program via the various assign-
ment operators. Each operation is performed using Value, and the result of the operation
is assigned back to it. Hence, at Line 9, the user input 440 is added to 8, which results in
448 and is assigned back to Value. In the subsequent operation at Line 11, 2 is sub-
tracted from 448, resulting in 446, which is assigned back to Value, and so on.

Using Operator sizeof to Determine the Memory
Occupied by a Variable
This operator tells you the amount of memory in bytes consumed by a particular type or
a variable. The usage of sizeof is the following:

sizeof (variable);

or

sizeof (type);

98 LESSON 5: Working with Expressions, Statements, and Operators

sizeof(...) might look like a function call, but it is not a func-
tion. sizeof is an operator. Interestingly, this operator cannot be
defined by the programmer and hence cannot be overloaded.

You learn more about defining your own operators in Lesson 12,
“Operator Types and Operator Overloading.”

Listing 5.11 demonstrates the use of sizeof in determining memory space occupied by
an array. Additionally, you might want to revisit Listing 3.4 to analyze the usage of
sizeof in determining memory consumed by the most familiar variable types.

LISTING 5.11 Using sizeof to Determine the Number of Bytes Occupied by an Array of
100 Integers, and That by Each Element Therein

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: cout << “Use sizeof of determine memory occupied by arrays” << endl;
6: int MyNumbers [100] = {0};
7:
8: cout << “Bytes occupied by an int: “ << sizeof(int) << endl;

NOTE

ptg7987094

9: cout << “Bytes occupied by array MyNumbers: “ << sizeof(MyNumbers) <<
➥endl;

10: cout << “Bytes occupied by each element: “ << sizeof(MyNumbers[0]) <<
➥endl;

11:
12: return 0;
13: }

Output ▼

Use sizeof of determine memory occupied by arrays
Bytes occupied by an int: 4
Bytes occupied by array MyNumbers: 400
Bytes occupied by each element: 4

Analysis ▼

The program demonstrates how sizeof is capable of returning the size of an array of 100
integers in bytes, which is 400 bytes. The program also demonstrates that the size of
each element is 4 bytes.

sizeof can be quite useful when you need to dynamically allocate memory for N
objects, especially of a type created by yourself. You would use the result of the sizeof
operation in determining the amount of memory occupied by each object and then
dynamically allocate using the operator new.

Dynamic memory allocation is explained in detail in Lesson 8, “Pointers and References
Explained.”

Operator Precedence
You possibly learned something in school on the order of arithmetic operations called
BODMAS (Brackets Orders Division Multiplication Addition Subtraction), indicating
the order in which a complex arithmetical expression should be evaluated.

In C++, you use operators and expressions such as the following:

int MyNumber = 10 * 30 + 20 – 5 * 5 << 2;

The question is, what value would MyNumber contain? This is not left to guesswork of
any kind. The order in which the various operators are invoked is very strictly specified
by the C++ standard. This order is what is meant by operator precedence. See Table 5.7.

Using Operators 99

5

ptg7987094

TABLE 5.7 The Precedence of Operators

Rank Name Operator

1 Scope resolution ::

2 Member selection, subscripting, . ->
function calls, postfix ()
increment, and decrement ++ --

3 sizeof, prefix increment and decrement, ++ --
complement, and, not, unary minus ^ !
and plus, address-of and dereference, - +
new, new[], delete, delete[], casting, & *
sizeof() ()

4 Member selection for pointer .* ->*

5 Multiply, divide, modulo * / %

6 Add, subtract + -

7 Shift (shift left, shift right) << >>

8 Inequality relational < <= > >=

9 Equality, inequality == !=

10 Bitwise AND &

11 Bitwise exclusive OR ^

12 Bitwise OR |

13 Logical AND &&

14 Logical OR ||

15 Conditional ?:

16 Assignment operators = *= /= %=

+= -= <<=

>>=

&= |= ^=

17 Comma ,

Have another look at the complicated expression used as the earlier example:

int MyNumber = 10 * 30 + 20 – 5 * 5 << 2;

In evaluating the result of this expression, you need to use the rules related to operator
precedence as shown in Table 5.7 to understand what value the compiler assigns it. As
multiply and divide have priority over add and subtract, which in turn have priority over
shift, you simplify it to the following:

int MyNumber = 300 + 20 – 25 << 2;

As add and subtract have priority over shift, this gets simplified to

int MyNumber = 295 << 2;

100 LESSON 5: Working with Expressions, Statements, and Operators

ptg7987094

Finally, you perform the shift operation. Knowing that one bit left shift doubles, and
hence two bits left shift quadruples, you can say that the expression evaluates to 295 * 4,
which is 1180.

Summary 101

5

Use parenthesis to make reading code easy.

The expression used earlier is actually poorly written. It is easy for
the compiler to understand, but you should write code that
humans can understand, too.

So, the same expression is much better written this way:

int MyNumber = ((10 * 30) – (5 * 5) + 20) << 2; // leave
little room for doubt

CAUTION

DO use parentheses to make your
code and expressions readable.

DO use the right variable types and
ensure that it will never reach overflow
situations.

DO understand that all l-values (for
example, variables) can be r-values,
but not all r-values (for example, “Hello
World”) can be l-values.

DON’T program complicated expres-
sions relying on the operator prece-
dence table; your code needs to be
human readable, too.

DON’T confuse ++Variable and
Variable++ thinking they’re the same.
They’re different when used in an
assignment.

DO DON’T

Summary
In this lesson you learned what C++ statements, expressions, and operators are. You
learned how to perform basic arithmetic operations such as addition, subtraction, multi-
plication, and division in C++. You also had an overview on logical operations such as
NOT, AND, OR, and XOR. You learned of the C++ logical operators !, &&, and || that
help you in conditional statements and the bitwise operators such as ~, &, |, and ^ that
help you manipulate data, one bit at a time.

You learned about operator precedence and how important it is to use parenthesis to
write code that can also be understood by fellow programmers. You were given an
overview on integer overflow and how important avoiding it actually is.

ptg7987094

Q&A
Q Why do some programs use unsigned int if unsigned short takes less mem-

ory and compiles, too?

A unsigned short typically has a limit of 65535, and if incremented, overflows to
zero. To avoid this behavior, well-programmed applications choose unsigned int
when it is not certain that the value will stay well below this limit.

Q I need to calculate the double of a number after it’s divided by three. So, do
you see any problem in my code:

int result = Number / 3 << 1;?

A Yes! Why didn’t you simply use parenthesis to make this line simpler to read to
fellow programmers? Adding a comment or two won’t hurt either.

Q My application divides two integer values 5 and 2:
int Num1 = 5, Num2 = 2;
int result = Num1 / Num2;

On execution, the result contains value 2. Isn’t this wrong?

A Not at all. Integers are not meant to contain decimal data. The result of this opera-
tion is hence 2 and not 2.5. If 2.5 is the result you expect, change all data types to
float or double. These are meant to handle floating-point (decimal) operations.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain that you understand the answers before continuing to the
next lesson.

Quiz
1. I am writing an application to divide numbers. What’s a better suited data type: int

or float?

2. What is the value of 32 / 7?

3. What is the value of 32.0/7?

4. Is sizeof(...) a function?

102 LESSON 5: Working with Expressions, Statements, and Operators

ptg7987094

5. I need to compute the double of a number, add 5 to it, and then double it again. Is
this correct?
int Result = number << 1 + 5 << 1;

6. What is the result of XOR operation where the XOR operands both evaluate to
true?

Exercises
1. Improve on the code in quiz question 4, using parenthesis to create clarity.

2. What is the value of result stored by this expression:
int Result = number << 1 + 5 << 1;

3. Write a program that asks the user to input two Boolean values and demonstrates
the result of various bitwise operators on them.

Workshop 103

5

ptg7987094

This page intentionally left blank

ptg7987094

LESSON 6
Controlling Program
Flow

Most applications need to perform differently under different situations or
with user inputs. To enable your application to react differently, you need
to be able to program conditional statements that execute different code
segments in different situations.

In this lesson, you find out

n How to make your program behave differently on certain
conditions

n How to execute a section of code repeatedly in a loop

n How to better control the flow of execution in a loop

ptg7987094

Conditional Execution Using if … else
Programs you have seen and composed this far have a serial order of execution—from
top down. Every line was executed and no line was ever ignored. But, serial execution of
all lines of code in a top-down fashion rarely happens in most applications.

Imagine you want a program that multiplies two numbers if the user presses m or adds
the numbers if he presses anything else.

As you can see in Figure 6.1, not all code paths are executed in every run. If the user
presses m, the code that multiplies the two numbers is executed. If he enters anything
other than m, the code that adds is executed. There is never a situation where both are
executed.

106 LESSON 6: Controlling Program Flow

No

Yes

Start

Num1 = 25
Num2 = 56

Ask
user’s
choice

User enters
‚m‘?

Result =
Num1* Num2

Result =
Num1+ Num2

Display
Result

End

FIGURE 6.1
Example of condi-
tional processing
required on the
basis of user
input.

ptg7987094

Conditional Programming Using if … else
Conditional execution of code is implemented in C++ using the if … else construct that
looks like this:

if (conditional expression)
Do something when expression evaluates true;

else // Optional
Do something else when condition evaluates false;

So, an if ... else construct that lets a program multiply if the user enters m and adds
otherwise looks like this:

if (UserSelection == ‘m’)
Result = Num1 * Num2; // multiply

else
Result = Num1 + Num2; // add

Conditional Execution Using if … else 107

6

Note that evaluation of an expression to true in C++ essentially
means that the expression does not evaluate to false, false
being zero. So, an expression that evaluates to any non-zero
number—negative or positive—is essentially considered to be
evaluating to true when used in a conditional statement.

Let’s analyze this construct in Listing 6.1, which enables the user to decide whether he
wishes to either multiply or divide two numbers, hence using conditional processing to
generate the desired output.

LISTING 6.1 Multiplying or Adding Two Integers on Basis of User Input

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: cout << “Enter two integers: “ << endl;
6: int Num1 = 0, Num2 = 0;
7: cin >> Num1;
8: cin >> Num2;
9:
10: cout << “Enter \’m\’ to multiply, anything else to add: “;
11: char UserSelection = ‘\0’;
12: cin >> UserSelection;
13:
14: int Result = 0;
15: if (UserSelection == ‘m’)

NOTE

ptg7987094

LISTING 6.1 Continued

16: Result = Num1 * Num2;
17: else
18: Result = Num1 + Num2;
19:
20: cout << “Result is: “ << Result << endl;
21:
22: return 0;
23: }

Output ▼

Enter two integers:
25
56
Enter ‘m’ to multiply, anything else to add: m
Result is: 1400

Next run:

Enter two integers:
25
56
Enter ‘m’ to multiply, anything else to add: a
Result is: 81

Analysis ▼

Note the use of if in Line 15 and else in Line 17. What we are instructing the compiler
to do is to execute multiplication in Line 15 if the expression (UserSelection == ‘m’)
that follows if evaluates to true or to execute addition if the expression evaluates to
false. (UserSelection == ‘m’) is an expression that evaluates to true when the user
has entered character m (case-sensitive), else it evaluates to false. Thus, this simple pro-
gram models the flowchart in Figure 6.1 and demonstrates how your application can
behave differently in different situations.

108 LESSON 6: Controlling Program Flow

The else part of the if … else construct is optional and doesn’t
need to be used in those situations where there is nothing to be
executed in event of failure.

NOTE

ptg7987094

Conditional Execution Using if … else 109

6

If in Listing 6.1, Line 15 is

15: if (UserSelection == ‘m’);

then the if construct is meaningless as it has been terminated in
the same line by an empty statement (the semicolon). Be careful
and avoid this situation as you won’t get a compile error if there is
no accompanying else to the if.

Some good compilers warn you of an “empty control statement” in
this situation.

Executing Multiple Statements Conditionally
If you want to execute multiple statements in event of a condition succeeding or failing,
you need to enclose them within statement blocks. These are essentially braces {…}
enclosing multiple statements to be executed as a block. For example:

if (condition)
{

// condition success block
Statement 1;
Statement 2;

}
else
{

// condition failure block
Statement 3;
Statement 4;

}

Such blocks are also called compound statements.

Lesson 4, “Managing Arrays and Strings,” explained the dangers of using static arrays
and crossing its bounds. This problem more often than not manifests itself in character
arrays. When writing a string into a character array or copying into it, it is important to
check if the array is large enough to hold this character. Listing 6.2 shows you how to
perform this very important check to avoid buffer overflows.

LISTING 6.2 Check for Capacity Before Copying a String into a char Array

0: #include <iostream>
1: #include <string>
2: using namespace std;
3:

CAUTION

ptg7987094

LISTING 6.2 Continued

4: int main()
5: {
6: char Buffer[20] = {‘\0’};
7:
8: cout << “Enter a line of text: “ << endl;
9: string LineEntered;
10: getline (cin, LineEntered);
11:
12: if (LineEntered.length() < 20)
13: {
14: strcpy(Buffer, LineEntered.c_str());
15: cout << “Buffer contains: “ << Buffer << endl;
16: }
17:
18: return 0;
19: }

Output ▼

Enter a line of text:
This fits buffer!
Buffer contains: This fits buffer!

Analysis ▼

Note how the length of the string is checked against the length of the buffer in Line 12
before copying into it. What is also special about this if check is the presence of a state-
ment block in Lines 13 through 16 (also called compound statement) in the event of the
check evaluating to true.

110 LESSON 6: Controlling Program Flow

Note that the if(condition) line did NOT have a semicolon after
it. This was intentional and ensures that the statement following
if gets executed in event of success.

The following piece of code

if(condition);
statement;

compiles, but you do not experience the desired results because
the if clause has been terminated by a following semicolon
amounting to no conditional processing and resulting in the follow-
ing statement always being executed.

CAUTION

ptg7987094

Nested if Statements
Often you have situations where you need to validate against a host of different condi-
tions, many of which are dependent on the evaluation of a previous condition. C++
allows you to nest if statements to handle such requirements.

Nested if statements are similar to this:

if (expression1)
{

DoSomething1;
if(expression2)

DoSomething2;
else

DoSomethingElse2;
}
else

DoSomethingElse1;

Consider an application similar to Listing 6.1, in which the user can instruct the applica-
tion to divide or multiply by pressing a command character d or m. Now, division should
be permitted only when the divisor is non-zero. So, in addition to checking the user input
for the intended command, it is also important to check if the divisor is non-zero when
the user instructs the program to divide. Listing 6.3 uses a nested if construct.

LISTING 6.3 Using Nested if Statements in Multiplying or Dividing a Number

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: cout << “Enter two numbers: “ << endl;
6: float Num1 = 0, Num2 = 0;
7: cin >> Num1;
8: cin >> Num2;
9:
10: cout << “Enter ‘d’ to divide, anything else to multiply: “;
11: char UserSelection = ‘\0’;
12: cin >> UserSelection;
13:
14: if (UserSelection == ‘d’)
15: {
16: cout << “You want division!” << endl;
17: if (Num2 != 0)
18: {
19: cout << “No div-by-zero, proceeding to calculate” << endl;
20: cout << Num1 << “ / “ << Num2 << “ = “ << Num1 / Num2 << endl;

Conditional Execution Using if … else 111

6

ptg7987094

LISTING 6.3 Continued

21: }
22: else
23: cout << “Division by zero is not allowed” << endl;
24: }
25: else
26: {
27: cout << “You want multiplication!” << endl;
28: cout << Num1 << “ x “ << Num2 << “ = “ << Num1 * Num2 << endl;
29: }
30:
31: return 0;
32: }

Output ▼

Enter two numbers:
45
9
Enter ‘d’ to divide, anything else to multiply: m
You want multiplication!
45 x 9 = 405

Next run:

Enter two numbers:
22
7
Enter ‘d’ to divide, anything else to multiply: d
You want division!
No div-by-zero, proceeding to calculate
22 / 7 = 3.14286

Last run:

Enter two numbers:
365
0
Enter ‘d’ to divide, anything else to multiply: d
You want division!
Division by zero is not allowed

Analysis ▼

The output is the result of running the program three times with three different sets of
input, and as you can see, the program has executed different code paths for each of
these three runs. This program has quite a few changes over Listing 6.1:

112 LESSON 6: Controlling Program Flow

ptg7987094

n The numbers are accepted as floating-point variables, to better handle decimals,
which are important when dividing numbers.

n The if condition is different than in Listing 6.1. You no longer check if the user
has pressed m; rather, Line 14 contains an expression (UserSelection == ‘d’)
that evaluates to true when the user enters d. If so, you proceed with division.

n Given that this program divides two numbers and the divisor is entered by the user,
it is important to check if the divisor is non-zero. This is done using the nested if
in Line 17.

Thus, what this program demonstrates is how nested if constructs can be very useful in
performing different tasks depending on the evaluation of multiple parameters.

Conditional Execution Using if … else 113

6

The nested tabs that you inserted in the code are optional, but
they make a significant contribution to the readability of the
nested if constructs.

Note that if...else constructs can also be grouped together. Listing 6.4 is a program
that asks the user for the day of the week and then tells what that day is named after
using grouped if...else constructs.

LISTING 6.4 Tell What Days of the Week Are Named After

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: enum DaysOfWeek
6: {
7: Sunday = 0,
8: Monday,
9: Tuesday,
10: Wednesday,
11: Thursday,
12: Friday,
13: Saturday
14: };
15:
16: cout << “Find what days of the week are named after!” << endl;
17: cout << “Enter a number for a day (Sunday = 0): “;
18:
19: int Day = Sunday; // Initialize to Sunday

TIP

ptg7987094

LISTING 6.4 Continued

20: cin >> Day;
21:
22: if (Day == Sunday)
23: cout << “Sunday was named after the Sun” << endl;
24: else if (Day == Monday)
25: cout << “Monday was named after the Moon” << endl;
26: else if (Day == Tuesday)
27: cout << “Tuesday was named after Mars” << endl;
28: else if (Day == Wednesday)
29: cout << “Wednesday was named after Mercury” << endl;
30: else if (Day == Thursday)
31: cout << “Thursday was named after Jupiter” << endl;
32: else if (Day == Friday)
33: cout << “Friday was named after Venus” << endl;
34: else if (Day == Saturday)
35: cout << “Saturday was named after Saturn” << endl;
36: else
37: cout << “Wrong input, execute again” << endl;
38:
39: return 0;
40: }

Output ▼

Find what days of the week are named after!
Enter a number for a day (Sunday = 0): 5
Friday was named after Venus

Next run:

Find what days of the week are named after!
Enter a number for a day (Sunday = 0): 9
Wrong input, execute again

Analysis ▼

Note the if-else-if construct used in Lines 22 through 37 to check user input and pro-
duce the corresponding output. The output in the second run indicates that the program is
able to tell the user when he enters a number that is outside of the range 0–6, and hence
does not correspond to any day of the week. The advantage of this construct is that it is
perfectly suited to validating conditions that are mutually exclusive, that is, Monday can
never be a Tuesday and an invalid input cannot be any day of the week. Another interest-
ing thing to note in this program is the use of the enumerated constant called DaysOfWeek
declared in Line 5 and used throughout the if statements. You could’ve simply com-
pared user input against integer values such as 0 for Sunday and so on. However, the use
of enumerated constant Sunday makes the code more readable.

114 LESSON 6: Controlling Program Flow

ptg7987094

Conditional Processing Using switch-case
The objective of switch-case is to enable you to check a particular expression against a
host of possible constants and possibly perform a different action for each of those dif-
ferent values. The new C++ keywords you would often find in such a construct are
switch, case, default, and break.

The following is the syntax of a switch-case construct:

switch(expression)
{
case LabelA:

DoSomething;
break;

case LabelB:

DoSomethingElse;
break;

// And so on…
default:

DoStuffWhenExpressionIsNotHandledAbove;
break;

}

What happens is that the resulting code evaluates the expression and checks against
each of the case labels following it for equality. Each case label needs to be a constant. It
then executes the code following that label. When the expression does not evaluate to
LabelA, it checks against LabelB. If that check evaluates to true, it executes
DoSomethingElse. This check continues until it encounters a break. This is the first time
you are seeing break. break causes execution to exit the code block. breaks are not
compulsory; however, without a break the execution simply continues checking against
the next labels and so on, which is what you want to avoid in this case. default is
optional, too, and is the case that is executed when the expression does not equate to any
of the labels in the switch-case construct.

Conditional Execution Using if … else 115

6

switch-case constructs are well-suited to being used with enu-
merated constants. The keyword enum has been introduced to you
in Lesson 3, “Using Variables, Declaring Constants.”

Listing 6.5 is the switch-case equivalent of the program in Listing 6.4 that tells what
the days of the week are named after and also uses enumerated constants.

TIP

ptg7987094

LISTING 6.5 Tell What Days of the Week Are Named After Using switch-case, break,
and default

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: enum DaysOfWeek
6: {
7: Sunday = 0,
8: Monday,
9: Tuesday,
10: Wednesday,
11: Thursday,
12: Friday,
13: Saturday
14: };
15:
16: cout << “Find what days of the week are named after!” << endl;
17: cout << “Enter a number for a day (Sunday = 0): “;
18:
19: int Day = Sunday; // Initialize to Sunday
20: cin >> Day;
21:
22: switch(Day)
23: {
24: case Sunday:
25: cout << “Sunday was named after the Sun” << endl;
26: break;
27:
28: case Monday:
29: cout << “Monday was named after the Moon” << endl;
30: break;
31:
32: case Tuesday:
33: cout << “Tuesday was named after Mars” << endl;
34: break;
35:
36: case Wednesday:
37: cout << “Wednesday was named after Mercury” << endl;
38: break;
39:
40: case Thursday:
41: cout << “Thursday was named after Jupiter” << endl;
42: break;
43:
44: case Friday:
45: cout << “Friday was named after Venus” << endl;

116 LESSON 6: Controlling Program Flow

ptg7987094

LISTING 6.5 Continued

46: break;
47:
48: case Saturday:
49: cout << “Saturday was named after Saturn” << endl;
50: break;
51:
52: default:
53: cout << “Wrong input, execute again” << endl;
54: break;
55: }
56:
57: return 0;
58: }

Output ▼

Find what days of the week are named after!
Enter a number for a day (Sunday = 0): 5
Friday was named after Venus

Next run:

Find what days of the week are named after!
Enter a number for a day (Sunday = 0): 9
Wrong input, execute again

Analysis ▼

Lines 22–55 contain the switch-case construct that produces different output depending
on the integer contained in Day as entered by the user. When the user enters the number 5,
the application checks the switch expression Day that evaluates to 5 against the first four
labels that are enumerated constants Sunday (value 0) through Thursday (value 4), skip-
ping the code below each of them as none of them are equal to 5. It reaches label Friday
where the expression evaluating to 5 equals enumerated constant Friday. Thus, it executes
the code under Friday until it reaches break and exits the switch construct. In the second
run, when an invalid value is fed, the execution reaches default and runs the code under
it, displaying the message asking the user to execute again.

This program using switch-case produces exactly the same output as Listing 6.4 using
the if-else-if construct. Yet, the switch-case version looks a little more structured and
is possibly well-suited to situations where you want to be doing more that just writing a
line to the screen (in which case you would also include code within a case within braces,
creating blocks).

Conditional Execution Using if … else 117

6

ptg7987094

Conditional Execution Using Operator (?:)
C++ has an interesting and powerful operator called the conditional operator that is simi-
lar to a compacted if-else construct.

The conditional operator is also called a ternary operator as it takes three operands:

(conditional expression evaluated to bool) ? expression1 if true : expression2
if false;

Such an operator can be used in compactly evaluating the greater of two given numbers,
as seen here:

int Max = (Num1 > Num2)? Num1 : Num2; // Max contains greater of Num1 and Num2

Listing 6.6 is a demonstration of conditional processing using operator (?:).

LISTING 6.6 Using the Conditional Operator (?:) to Find the Max of Two Numbers

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: cout << “Enter two numbers” << endl;
6: int Num1 = 0, Num2 = 0;
7: cin >> Num1;
8: cin >> Num2;
9:
10: int Max = (Num1 > Num2)? Num1 : Num2;
11: cout << “The greater of “ << Num1 << “ and “ \
12: << Num2 << “ is: “ << Max << endl;
13:
14: return 0;
15: }

Output ▼

Enter two numbers
365
-1
The greater of 365 and -1 is: 365

Analysis ▼

Line 10 is the code of interest. It contains a very compact statement that makes a deci-
sion on which of the two numbers input is larger. This line is another way to code the
following using if-else:

118 LESSON 6: Controlling Program Flow

ptg7987094

int Max = 0;
if (Num1 > Num2)

Max = Num1;
else

Max = Num2;

Thus, conditional operators saved a few lines! Saving lines of code, however, should not
be a priority. There are programmers who prefer conditional operators and those that
don’t. It is important to code conditional operators in a way that can be easily understood.

Getting Code to Execute in Loops 119

6

DO use constants and enumerates
for switch expressions to make code
readable.

DO remember to handle default,
unless deemed totally unnecessary.

DO check if you inadvertently forgot to
insert break in each case statement.

DON’T add two cases with the same
label—it won’t make sense and won’t
compile.

DON’T complicate your case state-
ments by including cases without
break and relying on sequence. This
can break functionality if you later
move the case without paying ade-
quate attention.

DON’T use complicated conditions or
expressions when programming using
conditional operators (:?).

DO DON’T

Getting Code to Execute in Loops
This far you have seen how to make your program behave differently when certain vari-
ables contain different values—for example, in Listing 6.2 where you multiplied when the
user pressed m; otherwise, you added. However, what if the user doesn’t want the program
to just end? What if he wants to perform another add or multiply operation, or maybe five
more? This is when you need to repeat the execution of already existing code.

This is when you need to program a loop.

A Rudimentary Loop Using goto
As the name suggests, goto tells the instruction pointer to continue execution from a par-
ticular point in code. You can use it to go backward and re-execute certain statements.

The syntax for the goto statement is

SomeFunction()
{

ptg7987094

JumpToPoint: // Called a label
CodeThatRepeats;

goto JumpToPoint;
}

You declare a label called JumpToPoint and use goto to repeat execution from this
point on, as demonstrated in Listing 6.7. Unless you invoke goto given a condition that
can evaluate to false under certain circumstances, or unless the code that repeats con-
tains a return statement executed under certain conditions, the piece of code between
the goto command and label will repeat endlessly and keep the program from ending.

LISTING 6.7 Asking the User If He Wants to Repeat Calculations Using goto

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: JumpToPoint:
6: int Num1 = 0, Num2 = 0;
7:
8: cout << “Enter two integers: “ << endl;
9: cin >> Num1;
10: cin >> Num2;
11:
12: cout << Num1 << “ x “ << Num2 << “ = “ << Num1 * Num2 << endl;
13: cout << Num1 << “ + “ << Num2 << “ = “ << Num1 + Num2 << endl;
14:
15: cout << “Do you wish to perform another operation (y/n)?” << endl;
16: char Repeat = ‘y’;
17: cin >> Repeat;
18:
19: if (Repeat == ‘y’)
20: goto JumpToPoint;
21:
22: cout << “Goodbye!” << endl;
23:
24: return 0;
25: }

Output ▼

Enter two integers:
56
25
56 x 25 = 1400
56 + 25 = 81

120 LESSON 6: Controlling Program Flow

ptg7987094

Do you wish to perform another operation (y/n)?
y
Enter two integers:
95
-47
95 x -47 = -4465
95 + -47 = 48
Do you wish to perform another operation (y/n)?
n
Goodbye!

Analysis ▼

Note that the primary difference between Listing 6.7 and Listing 6.1 is that 6.1 needs
two runs (two separate executions) to enable the user to enter a new set of numbers and
see the result of her addition and multiplication. Listing 6.7 does that in one execution
cycle by asking the user if she wishes to perform another operation. The code that actu-
ally enables this repetition is in Line 20, where goto is invoked if the user enters y for
yes. Execution of goto in Line 20 results in the program jumping to the label
JumpToPoint declared in Line 5, which effectively restarts the program.

Getting Code to Execute in Loops 121

6

goto is not the recommended form of programming loops
because the prolific usage of goto can result in unpredictable flow
of code where execution can jump from one line to another in no
particular order or sequence, in some cases leaving variables in
unpredictable states, too.

A bad case of programming using goto results in what is called
spaghetti code. You can avoid goto by using while, do... while,
and for loops that are explained in the following pages.

The only reason you were taught goto is so that you understand
code that uses one.

The while Loop
C++ keyword while can help do what goto did in Listing 6.7, but in a refined manner.
Its usage syntax is:

while(expression)
{

// Condition evaluates to true
StatementBlock;

}

CAUTION

ptg7987094

The statement block is executed so long as the expression evaluates to true. It is hence
important to code in a way that there are situations where the expression would also eval-
uate to false, else the while loop would never end.

Listing 6.8 is an equivalent of Listing 6.7 but uses while instead of goto in allowing the
user to repeat a calculation cycle.

LISTING 6.8 Using a while Loop to Help the User Rerun Calculations

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: char UserSelection = ‘m’; // initial value
6:
7: while (UserSelection != ‘x’)
8: {
9: cout << “Enter the two integers: “ << endl;
10: int Num1 = 0, Num2 = 0;
11: cin >> Num1;
12: cin >> Num2;
13:
14: cout << Num1 << “ x “ << Num2 << “ = “ << Num1 * Num2 << endl;
15: cout << Num1 << “ + “ << Num2 << “ = “ << Num1 + Num2 << endl;
16:
17: cout << “Press x to exit(x) or any other key to recalculate” << endl;
18: cin >> UserSelection;
19: }
20:
21: cout << “Goodbye!” << endl;
22:
23: return 0;
24: }

Output ▼

Enter the two integers:
56
25
56 x 25 = 1400
56 + 25 = 81
Press x to exit(x) or any other key to recalculate
r
Enter the two integers:
365
-5
365 x -5 = -1825

122 LESSON 6: Controlling Program Flow

ptg7987094

365 + -5 = 360
Press x to exit(x) or any other key to recalculate
x
Goodbye!

Analysis ▼

The while loop in Lines 7–19 contains most of the logic in this program. Note how the
while checks expression (UserSelection != ‘x’), proceeding only if this expression
evaluates to true. To enable a first run, you initialized the char variable UserSelection
to ‘m’ in Line 5. This needed to be any value that is not ‘x’ (else the condition would
fail at the very first loop and the application would exit without letting the user do any-
thing constructive). The first run is very simple, but the user is asked in Line 17 if he
wishes to perform another set of calculations. Line 18 containing the user’s input is
where you modify the expression that while evaluates, giving the program a chance to
continue or to terminate. When the first loop is done, execution returns to evaluating the
expression in the while statement at Line 7 and repeats if the user has not pressed x.
When the user presses x at the end of a loop, the next evaluation of the expression at
Line 7 results in a false, and the execution exits the while loop, eventually ending the
application after displaying a goodbye statement.

Getting Code to Execute in Loops 123

6

A loop is also called an iteration. Statements involving while,
do...while, and for are also called iterative statements.

The do…while loop
There are cases (like the one in Listing 6.8) where you need to ensure that a certain seg-
ment of code repeats in a loop and that it executes at least once. This is where the
do...while loop is useful.

The syntax of the do…while loop is

do
{

StatementBlock; // executed at least once
} while(condition); // ends loop if condition evaluates to false

Note how the line containing the while(expression) terminates with a semicolon.
This is different than the previous while loop in which a semicolon would’ve effectively
terminated the loop in the very line, resulting in an empty statement.

NOTE

ptg7987094

Listing 6.9 demonstrates how do...while loops can be implemented in executing state-
ments at least once.

LISTING 6.9 Using do…while to Repeat Execution of a Block of Code

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: char UserSelection = ‘x’; // initial value
6: do
7: {
8: cout << “Enter the two integers: “ << endl;
9: int Num1 = 0, Num2 = 0;
10: cin >> Num1;
11: cin >> Num2;
12:
13: cout << Num1 << “ x “ << Num2 << “ = “ << Num1 * Num2 << endl;
14: cout << Num1 << “ + “ << Num2 << “ = “ << Num1 + Num2 << endl;
15:
16: cout << “Press x to exit(x) or any other key to recalculate” << endl;
17: cin >> UserSelection;
18: } while (UserSelection != ‘x’);
19:
20: cout << “Goodbye!” << endl;
21:
22: return 0;
23: }

Output ▼

Enter the two integers:
654
-25
654 x -25 = -16350
654 + -25 = 629
Press x to exit(x) or any other key to recalculate
m
Enter the two integers:
909
101
909 x 101 = 91809
909 + 101 = 1010
Press x to exit(x) or any other key to recalculate
x
Goodbye!

124 LESSON 6: Controlling Program Flow

ptg7987094

Analysis ▼

This program is very similar in behavior and output to the previous one. Indeed the only
difference is the do keyword at Line 6 and the usage of while later at Line 18. The exe-
cution of code happens serially, one line after another until the while is reached at Line
18. This is where while evaluates the expression (UserSelection != ‘x’). When the
expression evaluates to true (that is, the user doesn’t press x to exit), execution of the
loop repeats. When the expression evaluates to false (that is, the user presses x), execu-
tion quits the loop and continues with wishing goodbye and ending the application.

The for Loop
The for statement is a more sophisticated loop in that it allows for an initialization state-
ment executed once (typically used to initialize a counter), checking for an exit condition
(typically using this counter), and performing an action at the end of every loop (typi-
cally incrementing or modifying this counter).

The syntax of the for loop is

for (initial expression executed only once;
exit condition executed at the beginning of every loop;
loop expression executed at the end of every loop)

{
DoSomeActivities;

}

The for loop is a feature that enables the programmer to define a counter variable with
an initial value, check the value against an exit condition at the beginning of every loop,
and change the value of the variable at the end of a loop.

Listing 6.10 demonstrates an effective way to access elements in an array using a for
loop.

LISTING 6.10 Using for Loops to Enter Elements in a Static Array and Displaying It

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: const int ARRAY_LENGTH = 5;
6: int MyInts[ARRAY_LENGTH] = {0};
7:
8: cout << “Populate array of “ << ARRAY_LENGTH << “ integers” << endl;
9:
10: for (int ArrayIndex = 0; ArrayIndex < ARRAY_LENGTH; ++ArrayIndex)

Getting Code to Execute in Loops 125

6

ptg7987094

LISTING 6.10 Continued

11: {
12: cout << “Enter an integer for element “ << ArrayIndex << “: “;
13: cin >> MyInts[ArrayIndex];
14: }
15:
16: cout << “Displaying contents of the array: “ << endl;
17:
18: for (int ArrayIndex = 0; ArrayIndex < ARRAY_LENGTH; ++ArrayIndex)
19: cout << “Element “ << ArrayIndex << “ = “ << MyInts[ArrayIndex] <<
endl;
20:
21: return 0;
22: }

Output ▼

Populate array of 5 integers
Enter an integer for element 0: 365
Enter an integer for element 1: 31
Enter an integer for element 2: 24
Enter an integer for element 3: -59
Enter an integer for element 4: 65536
Displaying contents of the array:
Element 0 = 365
Element 1 = 31
Element 2 = 24
Element 3 = -59
Element 4 = 65536

Analysis ▼

There are two for loops in Listing 6.10—at Lines 10 and 18. The first helps enter ele-
ments into an array of integers and the other to display. Both for loops are identical in
syntax. Both declare an index variable ArrayIndex to access elements the array. This
variable is incremented at the end of every loop; therefore, it helps access the next ele-
ment in the next run of the loop. The middle expression in the for loop is the exit condi-
tion. It checks if ArrayIndex that is incremented at the end of every loop is still within
the bounds of the array by comparing it against ARRAY_LENGTH. This way, it is also
ensured that the for loop never exceeds the length of the array.

126 LESSON 6: Controlling Program Flow

ptg7987094

Getting Code to Execute in Loops 127

6

A variable such as ArrayIndex from Listing 6.10 that helps
access elements in a collection such as an array is also called
an iterator.

The scope of this iterator declared within the for construct is
limited to the for loop. Thus, in the second for loop in Listing
6.10, this variable that has been re-declared is effectively a new
variable.

However, the usage of the initialization, conditional expression, and the expression to be
evaluated at the end of every loop is optional. It is possible to have a for loop without
some or any of these, as shown in Listing 6.11.

LISTING 6.11 Using a for Loop, Omitting Loop Expression, to Repeat Calculations on
User Request

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: // without loop expression (third expression missing)
6: for(char UserSelection = ‘m’; (UserSelection != ‘x’);)
7: {
8: cout << “Enter the two integers: “ << endl;
9: int Num1 = 0, Num2 = 0;
10: cin >> Num1;
11: cin >> Num2;
12:
13: cout << Num1 << “ x “ << Num2 << “ = “ << Num1 * Num2 << endl;
14: cout << Num1 << “ + “ << Num2 << “ = “ << Num1 + Num2 << endl;
15:
16: cout << “Press x to exit or any other key to recalculate” << endl;
17: cin >> UserSelection;
18: }
19:
20: cout << “Goodbye!” << endl;
21:
22: return 0;
23: }

NOTE

ptg7987094

Output ▼

Enter the two integers:
56
25
56 x 25 = 1400
56 + 25 = 81
Press x to exit or any other key to recalculate
m
Enter the two integers:
789
-36
789 x -36 = -28404
789 + -36 = 753
Press x to exit or any other key to recalculate
x
Goodbye!

Analysis ▼

This is identical to Listing 6.8 that used the while loop; the only difference is that this
one uses for in Line 8. The interesting thing about this for loop is that it contains only
the initialization expression and the conditional expression, ignoring the option to change
a variable at the end of each loop.

128 LESSON 6: Controlling Program Flow

You can initialize multiple variables in a for loop within the first
initialization expression that is executed once. A for loop in
Listing 6.11 with multiple initializations looks like the following:

for (int Index = 0, AnotherInt = 5; Index < ARRAY_LENGTH;
➥++Index, --AnotherInt)

Note the new addition called AnotherInt that is initialized to 5.

Interestingly, we also are able to decrement it in the loop expres-
sion, once per loop.

Modifying Loop Behavior Using continue
and break
There are a few cases— especially in complicated loops handling a lot of parameters
with a lot of conditions—where you are not able to program the loop condition effi-
ciently and need to modify program behavior even within the loop. This is where con-
tinue and break can help you.

NOTE

ptg7987094

continue lets you resume execution from the top of the loop. It simply skips the code
that is within the loop block after it. Thus, the effect of continue in a while, do...while,
or for loop is that it results in the loop condition being reevaluated and the loop block
being reentered if the condition evaluates to true.

Modifying Loop Behavior Using continue and break 129

6

In case of a continue within a for loop, the loop expression (the
third expression within the for statement typically used to incre-
ment the counter) is evaluated before the condition is reevaluated.

break exits the loop’s block, effectively ending the loop within which it was invoked.

NOTE

Usually programmers expect all code in a loop to be executed
when the loop conditions are satisfied. continue and break
modify this behavior and can result in nonintuitive code.

So, you should use continue and break sparingly and only when
you cannot program a loop cannot correctly and efficiently without
them.

Listing 6.12 that follows demonstrates using continue to ask the user to reenter the num-
bers before calculating using them and uses break to exit the loop.

Loops That Don’t End, that is, Infinite Loops
Remember that while, do...while, and for loops have a condition expression that results
in the loop terminating when the condition evaluates to false. If you program a condi-
tion that always evaluates to true, the loop never ends.

An infinite while loop looks like this:

while(true) // while expression fixed to true
{

DoSomethingRepeatedly;
}

An infinite do...while loop would be:

do
{

DoSomethingRepeatedly;
} while(true); // do…while expression never evaluates to false

CAUTION

ptg7987094

An infinite for loop can be programmed the following way:

for (;;) // no condition supplied = unending for
{

DoSomethingRepeatedly;
}

Strange as it may seem, such loops do have a purpose. Imagine an operating system that
needs to continually check if you have connected a device such as a USB stick to the
USB port. This is an activity that should not stop for so long as the OS is running. Such
cases warrant the use of loops that never end. Such loops are also called infinite loops as
they execute forever, to eternity.

Controlling Infinite Loops
If you want to end an infinite loop (say the OS in the preceding example needs to
shut down), you do so by inserting a break (typically used within an if (condition)
block).

The following is an example of using break to exit an infinite while:

while(true) // while expression fixed to true
{

DoSomethingRepeatedly;
if(expression)

break; // exit loop when expression evaluates to true
}

Using break inside an infinite do..while:

do
{

DoSomethingRepeatedly;
if(expression)

break; // exit loop when expression evaluates to true
} while(true); // do…while expression never evaluates to false

Using break inside an infinite for loop:

for (;;) // no condition supplied = unending for
{

DoSomethingRepeatedly;
if(expression)

break; // exit loop when expression evaluates to true
}

Listing 6.12 shows how to program infinite loops using continue and break to control
the exit criteria.

130 LESSON 6: Controlling Program Flow

ptg7987094

LISTING 6.12 Using continue to Restart and break to Exit an Infinite for Loop

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: for(;;) // an infinite loop
6: {
7: cout << “Enter two integers: “ << endl;
8: int Num1 = 0, Num2 = 0;
9: cin >> Num1;
10: cin >> Num2;
11:
12: cout << “Do you wish to correct the numbers? (y/n): “;
13: char ChangeNumbers = ‘\0’;
14: cin >> ChangeNumbers;
15:
16: if (ChangeNumbers == ‘y’)
17: continue; // restart the loop!
18:
19: cout << Num1 << “ x “ << Num2 << “ = “ << Num1 * Num2 << endl;
20: cout << Num1 << “ + “ << Num2 << “ = “ << Num1 + Num2 << endl;
21:
22: cout << “Press x to exit or any other key to recalculate” << endl;
23: char UserSelection = ‘\0’;
24: cin >> UserSelection;
25:
26: if (UserSelection == ‘x’)
27: break; // exit the infinite loop
28: }
29:
30: cout << “Goodbye!” << endl;
31:
32: return 0;
33: }

Output ▼

Enter two integers:
560
25
Do you wish to correct the numbers? (y/n): y
Enter two integers:
56
25
Do you wish to correct the numbers? (y/n): n
56 x 25 = 1400
56 + 25 = 81
Press x to exit or any other key to recalculate
r
Enter two integers:

Modifying Loop Behavior Using continue and break 131

6

ptg7987094

95
-1
Do you wish to correct the numbers? (y/n): n
95 x -1 = -95
95 + -1 = 94
Press x to exit or any other key to recalculate
x
Goodbye!

Analysis ▼

The for loop in Line 5 is different from the one in Listing 6.11 in that this is an infinite
for loop containing no condition expression that is evaluated on every iteration of the
loop. In other words, without the execution of a break statement, this loop (and hence
this application) never exits. Note the output, which is different from the other output
you have seen so far in that it allows the user to make a correction to his input integers
before the program proceeds to calculate the sum and multiplication. This logic is imple-
mented using a continue given the evaluation of a certain condition in Lines 16 and 17.
When the user presses y on being asked if he wants to correct the numbers, the condition
in Line 16 evaluates to true, hence executing the following continue. When continue is
encountered, execution jumps to the top of the loop, asking the user again if he wants to
enter two integers. Similarly at the end of the loop when the user is asked if he wants to
exit, his input is checked against ‘x’ in Line 26, and if so, the following break is exe-
cuted, ending the loop.

132 LESSON 6: Controlling Program Flow

Listing 6.12 uses an empty for(;;) statement to create an
infinite loop. You can replace that with while(true) or a do...
while(true); to generate the same output using a different
loop type.

NOTE

DO use do…while when the logic in
the loop needs to be executed at least
once.

DO use while, do…while, or for loops
with well-defined condition
expressions.

DO indent code in a statement
block contained in a loop to improve
readability.

DON’T use goto.

DON’T use continue and break
indiscriminately.

DON’T program infinite loops with
break unless absolutely necessary.

DO DON’T

ptg7987094

Programming Nested Loops
Just as you saw nested if statements in the beginning of this lesson, often you do need to
nest one loop under another. Imagine two arrays of integers. If you want to find the mul-
tiple of each number in Array1 against each in Array2, you use a nested loop to make
programming this easy. The first loop iterates Array1, while the second iterates Array2
under the first.

Listing 6.13 demonstrates that you can nest a loop of any type under a loop of any type.

LISTING 6.13 Using Nested Loops to Multiply Each Element in an Array by Each in
Another

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: const int ARRAY1_LEN = 3;
6: const int ARRAY2_LEN = 2;
7:
8: int MyInts1[ARRAY1_LEN] = {35, -3, 0};
9: int MyInts2[ARRAY2_LEN] = {20, -1};
10:
11: cout << "Multiplying each int in MyInts1 by each in MyInts2:" << endl;
12:
13: for(int Array1Index = 0; Array1Index < ARRAY1_LEN; ++Array1Index)
14: for(int Array2Index = 0; Array2Index < ARRAY2_LEN; ++Array2Index)
15: cout << MyInts1[Array1Index] << " x " << MyInts2[Array2Index] \
16: << " = " << MyInts1[Array1Index] * MyInts2[Array2Index] << endl;
17:
18: return 0;
19: }

Output ▼

Multiplying each int in MyInts1 by each in MyInts2:
35 x 20 = 700
35 x -1 = -35
-3 x 20 = -60
-3 x -1 = 3
0 x 20 = 0
0 x -1 = 0

Programming Nested Loops 133

6

ptg7987094

Output ▼

The two nested for loops in question are in Lines 13 and 14. The first for loop iterates
the array MyInts1, whereas the second for loop iterates the other array MyInts2. The
first for loop executes the second for loop within each iteration. The second for loop
iterates over all elements in MyInts2 and in each iteration multiplies that element with
the element indexed via Array1Index from the first loop above it. So, for every element
in MyInts1, the second loop iterates over all elements in MyInts2, resulting in the first
element in MyInts1 at offset 0 being multiplied with all elements in MyInts2. Then the
second element in MyInts1 is multiplied with all elements in MyInts2. Finally, the third
element in MyInts1 is multiplied with all elements in MyInts2.

134 LESSON 6: Controlling Program Flow

For convenience and for keeping focus on the loops, the contents
of the array in Listing 6.13 are initialized. You should feel free to
derive from previous examples, such as Listing 6.10, to get the
user to enter numbers into the integer array.

Using Nested Loops to Walk a Multidimensional
Array
In Lesson 4, you learned of multidimensional arrays. Indeed in Listing 4.3 you access
elements in a two-dimensional array of three rows and three columns. What you did
there was to individually access each element in the array, one element per line. There
was no automation, and, if the array was to be made larger, you would need to code a lot
more, in addition to changing the array’s dimensions to access its elements. However,
using loops can change all that, as demonstrated by Listing 6.14.

LISTING 6.14 Using Nested Loops to Iterate Elements in a Two-dimensional Array of
Integers

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: const int MAX_ROWS = 3;
6: const int MAX_COLS = 4;
7:
8: // 2D array of integers
9: int MyInts[MAX_ROWS][MAX_COLS] = { {34, -1, 879, 22},
10: {24, 365, -101, -1},

NOTE

ptg7987094

LISTING 6.14 Continued

11: {-20, 40, 90, 97} };
12:
13: // iterate rows, each array of int
14: for (int Row = 0; Row < MAX_ROWS; ++Row)
15: {
16: // iterate integers in each row (columns)
17: for (int Column = 0; Column < MAX_COLS; ++Column)
18: {
19: cout << “Integer[“ << Row << “][“ << Column \
20: << “] = “ << MyInts[Row][Column] << endl;
21: }
22: }
23:
24: return 0;
25: }

Output ▼

Integer[0][0] = 34
Integer[0][1] = -1
Integer[0][2] = 879
Integer[0][3] = 22
Integer[1][0] = 24
Integer[1][1] = 365
Integer[1][2] = -101
Integer[1][3] = -1
Integer[2][0] = -20
Integer[2][1] = 40
Integer[2][2] = 90
Integer[2][3] = 97

Analysis ▼

Lines 14–22 contain two for loops that you need to access and iterate through a two-
dimensional array of integers. A two-dimensional array is in effect an array of an array
of integers. Note how the first for loop accesses the rows (each being an array of inte-
gers), whereas the second accesses each element in this array—that is, accesses columns
therein.

Programming Nested Loops 135

6

Listing 6.14 uses braces to enclose the nested for only to
improve readability. This nested loop works just fine without the
braces, too, as the loop statement is just a single statement to
be executed (and not a compound statement that necessitates
the use of enclosing braces).

NOTE

ptg7987094

Using Nested Loops to Calculate Fibonacci Numbers
The famed Fibonacci series is a set of numbers starting with 0 and 1, where every fol-
lowing number in the series is the sum of the previous two. So, a Fibonacci series starts
with a sequence like this:

0, 1, 1, 2, 3, 5, 8, … and so on

Listing 6.15 demonstrates how to create a Fibonacci series comprised of as many num-
bers as you want (limited by the physical capacity of the integer holding the final num-
ber).

LISTING 6.15 Using Nested Loops to Calculate a Fibonacci Series

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: const int NumsToCal = 5;
6: cout << “This program will calculate “ << NumsToCal \
7: << “ Fibonacci Numbers at a time” << endl;
8:
9: int Num1 = 0, Num2 = 1;
10: char WantMore = ‘\0’;
11: cout << Num1 << “ “ << Num2 << “ “;
12:
13: do
14: {
15: for (int Index = 0; Index < NumsToCal; ++Index)
16: {
17: cout << Num1 + Num2 << “ “;
18:
19: int Num2Temp = Num2;
20: Num2 = Num1 + Num2;
21: Num1 = Num2Temp;
22: }
23:
24: cout << endl << “Do you want more numbers (y/n)? “;
25: cin >> WantMore;
26: }while (WantMore == ‘y’);
27:
28: cout << “Goodbye!” << endl;
29:
30: return 0;
31: }

136 LESSON 6: Controlling Program Flow

ptg7987094

Output ▼

This program will calculate 5 Fibonacci Numbers at a time
0 1 1 2 3 5 8
Do you want more numbers (y/n)? y
13 21 34 55 89
Do you want more numbers (y/n)? y
144 233 377 610 987
Do you want more numbers (y/n)? y
1597 2584 4181 6765 10946
Do you want more numbers (y/n)? n
Goodbye!

Analysis ▼

The outer do...while at Line 13 is basically the query loop that repeats if the user wants
to see more numbers. The inner for loop at Line 15 does the job of calculating the next
Fibonacci number and displays five numbers at a time. In Line 19 you assign Num2 to a
temp value to be able to assign it at Line 21. Note that if you hadn’t stored this temp
value, you would be assigning the modified value in Line 20 directly to Num1, which is
not what you want. The loop repeats with new values in Num1 and Num2 thanks to these
three Lines—if the user presses y to repeat.

Summary
This lesson is all about ensuring that you don’t just write code that executes only from
top to bottom; it shows you how to code conditional statements that create alternative
execution paths and make code blocks repeat in a loop. You learned the if…else con-
struct and using switch-case statements to handle different situations in the event of
variables containing different values.

In understanding loops, you were taught goto—but you were simultaneously warned
against using it due to its ability to create code that cannot be understood. You learned
programming loops in C++ using while, do…while, and for constructs. You learned how
to make the loops iterate endlessly to create infinite loops and to use continue and
break to better control them.

Summary 137

6

ptg7987094

Q&A
Q What happens if I omit a break in a switch-case statement?

A The break statement enables program execution to exit the switch construct.
Without it, execution continues evaluating the following case statements.

Q How do I exit an infinite loop?

A Use break to exit the loop. Using return exits the function module, too.

Q My while loop looks like while(Integer). Does the while loop execute when
Integer evaluates to -1?

A Ideally a while expression should evaluate to a Boolean value true or false, else
it is interpreted as such: false is zero. A condition that does not evaluate to zero is
considered to evaluate to true. Because -1 is not zero, the while condition evalu-
ates to true and the loop is executed. If you want the loop to be executed only for
positive numbers, write an expression while(Integer>0). This rule is true for all
conditional statements and loops.

Q How do I exit an infinite loop?

A Use break to exit the loop. Using return instead of break exits the function mod-
ule, too.

Q Is there an empty while loop equivalent of for(;;)?

A No, while always needs an accompanying conditional expression.

Q I changed a do…while(exp); to a while(exp); by copying and pasting. Should
I anticipate any problems?

A Yes, big ones! while(exp); is already a valid yet empty while loop due to the null
statement (the semicolon) following the while, even if it is followed by a statement
block. The statement block in question is executed once, but outside of the loop.
You should be careful when copying and pasting code.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered as well as exercises to provide you with experience in using what
you’ve learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix D, and be certain you understand the answers before continuing to
the next lesson.

138 LESSON 6: Controlling Program Flow

ptg7987094

Quiz
1. Why bother to indent code within statements blocks, nested ifs, and nested loops

when it compiles even without indentation?

2. You can implement a quick fix using goto. Why would you still avoid it?

3. Is it possible to write a for loop where the counter decrements? How would it
look?

4. What is the problem with the following loop?
for (int Counter=0; Counter==10; ++Counter)

cout << Counter << “ “;

Exercises
1. Write a for loop to access elements in an array in the reverse order.

2. Write a nested loop equivalent of Listing 6.13 that adds elements in two arrays, but
in reverse order.

3. Write a program that displays Fibonacci numbers similar to Listing 6.15 but asks
the user how many numbers she wants to compute.

4. Write a switch-case construct that tells if a color is in the rainbow or otherwise.
Use enumerated constants.

5. BUG BUSTERS: What is wrong with this code?
for (int Counter=0; Counter=10; ++Counter)

cout << Counter << “ “;

6. BUG BUSTERS: What is wrong with this code?
int LoopCounter = 0;
while(LoopCounter <5);
{

cout << LoopCounter << “ “;
LoopCounter++;

}

7. BUG BUSTERS: What is wrong with this code?
cout << “Enter a number between 0 and 4” << endl;
int Input = 0;
cin >> Input;

switch (Input)

Workshop 139

6

ptg7987094

{
case 0:
case 1:
case 2:
case 3:
case 4:

cout << “Valid input” << endl;
default:

cout << “Invalid input” << endl;
}

140 LESSON 6: Controlling Program Flow

ptg7987094

LESSON 7
Organizing Code with
Functions

So far in this book you have seen simple programs where all program-
ming effort is contained in main(). This works very well for really small
programs and applications. The larger and more complex your program
gets, the longer the contents of main() become, unless you choose to
structure your program using functions.

Functions give you a way to compartmentalize and organize your pro-
gram’s execution logic. They enable you to split the contents of your
application into logical blocks that are invoked sequentially.

A function is hence a subprogram that optionally takes parameters and
returns a value, and it needs to be invoked to perform its task. In this
lesson you learn

n The need for programming functions

n Function prototypes and function definition

n Passing parameters to functions and returning values from them

n Overloading functions

n Recursive functions

n C++11 lambda functions

ptg7987094

The Need for Functions
Think of an application that asks the user to enter the radius of a circle and then com-
putes the circumference and area. One way to do this is to have it all inside main().
Another way is to break this application into logical blocks: in particular two that com-
pute area and circumference given radius, respectively. See Listing 7.1.

LISTING 7.1 Two Functions That Compute the Area and Circumference of a Circle Given
Radius

0: #include <iostream>
1: using namespace std;
2:
3: const double Pi = 3.14159;
4:
5: // Function Declarations (Prototypes)
6: double Area(double InputRadius);
7: double Circumference(double InputRadius);
8:
9: int main()
10: {
11: cout << “Enter radius: “;
12: double Radius = 0;
13: cin >> Radius;
14:
15: // Call function “Area”
16: cout << “Area is: “ << Area(Radius) << endl;
17:
18: // Call function “Circumference”
19: cout << “Circumference is: “ << Circumference(Radius) << endl;
20:
21: return 0;
22: }
23:
24: // Function definitions (implementations)
25: double Area(double InputRadius)
26: {
27: return Pi * InputRadius * InputRadius;
28: }
29:
30: double Circumference(double InputRadius)
31: {
32: return 2 * Pi * InputRadius;
33: }

142 LESSON 7: Organizing Code with Functions

ptg7987094

Output ▼

Enter radius: 6.5
Area is: 132.732
Circumference is: 40.8407

Analysis ▼

At first look, it looks like the same stuff with a different package. You will appreciate
that compartmentalizing the computation of area and circumference into different
functions can potentially help reuse as the functions can be invoked repeatedly as
and when required. main(), which is also a function, is quite compact and delegates
activity to functions such as Area and Circumference that are invoked in Lines 16
and 19, respectively.

The program demonstrates the following artifacts involved in programming using
functions:

n Function prototypes are declared in Lines 6 and 7, so the compiler knows what the
terms Area and Circumference when used in main() mean.

n Functions Area() and Circumference() are invoked in main() in Lines 16 and 19.

n Function Area() is defined in Lines 25–38, Circumference() in Lines 30–33.

What Is a Function Prototype?
Let’s take a look at Listing 7.1 again—Lines 6 and 7 in particular:

double Area(double InputRadius);
double Circumference(double InputRadius);

Figure 7.1 shows what a function prototype is comprised of.

The Need for Functions 143

7

double Area(double InputRadius);

Return
value
type

Function
Name

Function parameter(s) – optional:
Parameter list comprised of type and

optionally name, separated by comma in
event of multiple parameters

FIGURE 7.1
Parts of a function
prototype.

The function prototype basically tells what a function is called (the name, Area), the list
of parameters the function accepts (one parameter, a double called InputRadius) and the
return type of the function (a double).

ptg7987094

Without the function prototype, on reaching Lines 16 and 19 in main() the compiler
wouldn’t know what the terms Area and Circumference are. The function prototypes tell
the compiler that Area and Circumference are functions; they take one parameter of type
double and return a value of type double. The compiler then recognizes these statements
as valid and the job of linking the function call to its implementation and ensuring that
the program execution actually triggers them is that of the linker.

144 LESSON 7: Organizing Code with Functions

A function can have multiple parameters separated by commas,
but it can have only one return type.

When programming a function that does not need to return any
value, specify the return type as void.

What Is a Function Definition?
The actual meat and potatoes—the implementation of a function—is what is called the
definition. Analyze the definition of function Area:

25: double Area(double InputRadius)
26: {
27: return Pi * InputRadius * InputRadius;
28: }

A function definition is always comprised of a statement block. A return statement is
necessary unless the function is declared with return type void. In this case, Area needs
to return a value because the return type of the function has not been declared as void.
The statement block contains statements within open and closed braces ({…}) that are
executed when the function is called. Area() uses the input parameter InputRadius that
contains the radius as an argument sent by the caller to compute the area of the circle.

What Is a Function Call, and What Are Arguments?
Invoking a function is also called making a function call. When a function is declared as
one with parameters, the function call needs to send arguments that are values the func-
tion requests within its parameter list. Let’s analyze a call to Area in Listing 7.1:

16: cout << “Area is: “ << Area(Radius) << endl;

Here, Area(Radius) is the function call, wherein Radius is the argument sent to the
function Area. When invoked, execution jumps to Area that uses the radius sent to com-
pute the area of the circle. When function Area is done, it returns a double. This return
value double is then displayed on the screen via the cout statement.

NOTE

ptg7987094

Programming a Function with Multiple Parameters
Assume you were writing a program that computes the area of a cylinder, as shown in
Figure 7.2.

The Need for Functions 145

7

FIGURE 7.2
A cylinder.

Height

Radius

The formula you use would be the following:

Area of Cylinder = Area of top circle + Area of bottom circle + Area of Side
= Pi * Radius^2 + Pi * Radius ^2 + 2 * Pi * Radius * Height
= 2 * Pi * Radius^2 + 2 * Pi * Radius * Height

Thus, you need to work with two variables, the radius and the height, in computing the
area of the cylinder. In such cases, when writing a function that computes the surface
area of the cylinder, you specify at least two parameters in the parameter list, within the
function declaration. You do this by separating individual parameters by a comma as
shown in Listing 7.2.

LISTING 7.2 Function That Accepts Two Parameters to Compute the Surface Area of a
Cylinder

0: #include <iostream>
1: using namespace std;
2:
3: const double Pi = 3.14159;
4:
5: // Declaration contains two parameters
6: double SurfaceArea(double Radius, double Height);
7:
8: int main()
9: {
10: cout << “Enter the radius of the cylinder: “;
11: double InRadius = 0;
12: cin >> InRadius;
13: cout << “Enter the height of the cylinder: “;
14: double InHeight = 0;
15: cin >> InHeight;
16:
17: cout << “Surface Area: “ << SurfaceArea(InRadius, InHeight) << endl;

ptg7987094

LISTING 7.2 Continued

18:
19: return 0;
20: }
21:
22: double SurfaceArea(double Radius, double Height)
23: {
24: double Area = 2 * Pi * Radius * Radius + 2 * Pi * Radius * Height;
25: return Area;
26: }

Output ▼

Enter the radius of the cylinder: 3
Enter the height of the cylinder: 6.5
Surface Area: 179.071

Analysis ▼

Line 6 contains the declaration of function SurfaceArea with two parameters: Radius
and Height, both of type double, separated by a comma. Lines 22–26 show the
definition—that is, the implementation of SurfaceArea. As you can see, the input
parameters Radius and Height are used to compute the value stored in Area, that is
then returned to the caller.

146 LESSON 7: Organizing Code with Functions

Function parameters are like local variables. They are valid within
the scope of the function only. So in Listing 7.2, parameters
Radius and Height to function SurfaceArea are valid and usable
within function SurfaceArea only and not outside it.

Programming Functions with No Parameters or No
Return Values
If you delegate the task of saying “Hello World” to a function that does only that and
nothing else, you could do it with one that doesn’t need any parameters (as it doesn’t
need to do anything apart from say “Hello”), and possibly one that doesn’t return any
value (because you don’t expect anything from such a function that would be useful else-
where). Listing 7.3 demonstrates one such function.

NOTE

ptg7987094

LISTING 7.3 A Function with No Parameters and No Return Values

0: #include <iostream>
1: using namespace std;
2:
3: void SayHello();
4:
5: int main()
6: {
7: SayHello();
8: return 0;
9: }
10:
11: void SayHello()
12: {
13: cout << “Hello World” << endl;
14: }

Output ▼

Hello World

Analysis ▼

Note that the function prototype in Line 3 declares function SayHello as one with return
value of type void—that is, SayHello doesn’t return a value. Consequently, in the func-
tion definition in Lines 11–14, there is no return statement. Even the function call within
main() in Line 7 doesn’t assign the function’s return value to any variable or use in any
expression because the function is one that returns nothing.

Function Parameters with Default Values
In samples thus far, you assumed the value of Pi, fixed it as a constant, and never gave
the user an opportunity to change it. However, the user may be interested in a less or
more accurate reading. How do you program a function that would assume the value of
Pi of your choosing unless another one is supplied?

One way of solving this problem is to supply an additional parameter in function Area()
for Pi and supply a value chosen by you as a default one. Such an adaptation of function
Area() from Listing 7.1 would look like the following:

double Area(double InputRadius, double Pi = 3.14);

Note the second parameter Pi and an associated default value of 3.14. This second para-
meter is now an optional parameter for the caller. So, the calling function can still invoke
Area using this syntax:

Area(Radius);

The Need for Functions 147

7

ptg7987094

In this case, the second parameter has been ignored, and it defaults to the value of 3.14.
However, if the user has supplied a different Pi, then you can specify it in your call to
Area, as this:

Area(Radius, Pi); // User defined Pi

Listing 7.4 demonstrates how you can program functions that contain default values for
parameters that can be overridden with a user-supplied value, if available and desired.

LISTING 7.4 Function That Computes the Area of a Circle, Using Pi as a Second
Parameter with Default Value 3.14

0: #include <iostream>
1: using namespace std;
2:
3: // Function Declaration (Prototype)
4: double Area(double InputRadius, double Pi = 3.14); // Pi with default value
5:
6: int main()
7: {
8: cout << “Enter radius: “;
9: double Radius = 0;
10: cin >> Radius;
11:
12: cout << “Pi is 3.14, do you wish to change this (y / n)? “;
13: char ChangePi = ‘n’;
14: cin >> ChangePi;
15:
16: double CircleArea = 0;
17: if (ChangePi == ‘y’)
18: {
19: cout << “Enter new Pi: “;
20: double NewPi = 3.14;
21: cin >> NewPi;
22: CircleArea = Area (Radius, NewPi);
23: }
24: else
25: CircleArea = Area(Radius); // Ignore 2nd param, use default value
26:
27: // Call function “Area”
28: cout << “Area is: “ << CircleArea << endl;
29:
30: return 0;
31: }
32:
33: // Function definitions don’t specify default values again
34: double Area(double InputRadius, double Pi)
35: {
36: return Pi * InputRadius * InputRadius;
37: }

148 LESSON 7: Organizing Code with Functions

ptg7987094

Output ▼

Enter radius: 1
Pi is 3.14, do you wish to change this (y / n)? n
Area is: 3.14

Next run:

Enter radius: 1
Pi is 3.14, do you wish to change this (y / n)? y
Enter new Pi: 3.1416
Area is: 3.1416

Analysis ▼

In the two runs shown in the preceding output, the radius entered by the user was the
same—1. In the second run, however, the user opted for the choice to change the preci-
sion of Pi, and hence the area computed is slightly different. Note that in both cases, as
seen in Line 22 and Line 25, you invoke the same function. Line 25 contains Area
invoked without the second parameter Pi, which, in this case, defaults to the value 3.14,
supplied as default in the declaration in Line 4.

The Need for Functions 149

7

You can have multiple parameters with default values; however,
these should all be at the tail end of the parameter list.

Recursion—Functions That Invoke Themselves
In certain cases, you can actually have a function call itself. Such a function is called a
recursive function. Note that a recursive function should have a very clearly defined exit
condition where it returns without invoking itself again.

NOTE

In the absence of an exit condition or in the event of a bug in the
same, your program execution gets stuck at the recursive function
that won’t stop invoking itself, and this eventually stops when the
stack overflows, causing an application crash.

Recursive functions can be useful when determining a number in the Fibonacci series as
shown in Listing 7.5. This series starts with two numbers, 0 and 1:

F(0) = 0
F(1) = 1

CAUTION

ptg7987094

And the value of a subsequent number in the series is the sum of the previous two num-
bers. So, the nth value (for n > 1) is determined by the (recursive) formula:

Fibonacci(n) = Fibonacci(n – 1) + Fibonacci(n – 2)

As a result the Fibonacci series expands to

F(2) = 1
F(3) = 2
F(4) = 3
F(5) = 5
F(6) = 8, and so on.

LISTING 7.5 Using Recursive Functions to Calculate a Number in the Fibonacci Series

0: #include <iostream>
1: using namespace std;
2:
3: int GetFibNumber(int FibIndex)
4: {
5: if (FibIndex < 2)
6: return FibIndex;
7: else // recursion if FibIndex >= 2
8: return GetFibNumber(FibIndex - 1) + GetFibNumber(FibIndex - 2);
9: }
10:
11: int main()
12: {
13: cout << “Enter 0-based index of desired Fibonacci Number: “;
14: int Index = 0;
15: cin >> Index;
16:
17: cout << “Fibonacci number is: “ << GetFibNumber(Index) << endl;
18: return 0;
19: }

Output ▼

Enter 0-based index of desired Fibonacci Number: 6
Fibonacci number is: 8

Analysis ▼

The function GetFibNumber defined in Lines 3–9 is recursive as it invokes itself at Line
8. Note the exit condition programmed in Lines 5 and 6; if the index is less than two, the
function is not recursive. Given that the function invokes itself successively with reduc-
ing value of FibIndex, at a certain point it reaches a level where it enters the exit condi-
tion and the recursion stops.

150 LESSON 7: Organizing Code with Functions

ptg7987094

Functions with Multiple Return Statements
You are not restricted to having only one return statement in your function definition.
You can return from any point in the function, and multiple times if you want, as shown
in Listing 7.6. Depending on the logic and the need of the application, this might or
might not be poor programming practice.

LISTING 7.6 Using Multiple Return Statements in One Function

0: #include <iostream>
1: using namespace std;
2: const double Pi = 3.14159;
3:
4: void QueryAndCalculate()
5: {
6: cout << “Enter radius: “;
7: double Radius = 0;
8: cin >> Radius;
9:
10: cout << “Area: “ << Pi * Radius * Radius << endl;
11:
12: cout << “Do you wish to calculate circumference (y/n)? “;
13: char CalcCircum = ‘n’;
14: cin >> CalcCircum;
15:
16: if (CalcCircum == ‘n’)
17: return;
18:
19: cout << “Circumference: “ << 2 * Pi * Radius << endl;
20: return;
21: }
22:
23: int main()
24: {
25: QueryAndCalculate ();
26:
27: return 0;
28: }

Output ▼

Enter radius: 1
Area: 3.14159
Do you wish to calculate circumference (y/n)? y
Circumference: 6.28319

Next run:

Enter radius: 1
Area: 3.14159
Do you wish to calculate circumference (y/n)? n

The Need for Functions 151

7

ptg7987094

Analysis ▼

The function QueryAndCalculate contains multiple return statements: one at Line 17
and the next one at Line 20. This function asks the user if she also wants to calculate cir-
cumference. If she presses n for no, the program quits by using the return statement.
For all other values, it continues with calculating the circumference and then returning.

152 LESSON 7: Organizing Code with Functions

Use multiple returns in a function with caution. It is a lot easier to
understand and follow a function that starts at the top and
returns at the bottom than one that returns at multiple points in-
between.

In Listing 7.6, use of multiple returns could’ve been avoided sim-
ply by changing the if condition to testing for ‘y’ or yes:

if (CalcCircum == ‘y’)
cout << “Circumference: “ << 2 * Pi * Radius << endl;

Using Functions to Work with Different
Forms of Data
Functions don’t restrict you to passing values one at a time; you can pass an array of val-
ues to a function. You can create two functions with the same name and return value but
different parameters. You can program a function such that its parameters are not created
and destroyed within the function call; instead, you use references that are valid even
after the function has exited so as to allow you to manipulate more data or parameters in
a function call. In this section you learn about passing arrays to functions, function over-
loading, and passing arguments by reference to functions.

Overloading Functions
Functions with the same name and return type but with different parameters or set of
parameters are said to be overloaded functions. Overloaded functions can be quite useful
in applications where a function with a particular name that produces a certain type of
output might need to be invoked with different sets of parameters. Say you need to be
writing an application that computes the area of a circle and the area of a cylinder. The
function that computes the area of a circle needs a parameter—the radius. The other
function that computes the area of the cylinder needs the height of the cylinder in addi-
tion to the radius of the cylinder. Both functions need to return the data of the same type,

CAUTION

ptg7987094

containing the area. So, C++ enables you to define two overloaded functions, both called
Area, both returning double, but one that takes only the radius as input and another that
takes the height and the radius as input parameters as shown in Listing 7.7.

LISTING 7.7 Using an Overloaded Function to Calculate the Area of a Circle or a
Cylinder

0: #include <iostream>
1: using namespace std;
2:
3: const double Pi = 3.14159;
4:
5: double Area(double Radius); // for circle
6: double Area(double Radius, double Height); // overloaded for cylinder
7:
8: int main()
9: {
10: cout << “Enter z for Cylinder, c for Circle: “;
11: char Choice = ‘z’;
12: cin >> Choice;
13:
14: cout << “Enter radius: “;
15: double Radius = 0;
16: cin >> Radius;
17:
18: if (Choice == ‘z’)
19: {
20: cout << “Enter height: “;
21: double Height = 0;
22: cin >> Height;
23:
24: // Invoke overloaded variant of Area for Cyclinder
25: cout << “Area of cylinder is: “ << Area (Radius, Height) << endl;
26: }
27: else
28: cout << “Area of cylinder is: “ << Area (Radius) << endl;
29:
30: return 0;
31: }
32:
33: // for circle
34: double Area(double Radius)
35: {
36: return Pi * Radius * Radius;
37: }
38:
39: // overloaded for cylinder
40: double Area(double Radius, double Height)
41: {

Using Functions to Work with Different Forms of Data 153

7

ptg7987094

LISTING 7.7 Continued

42: // reuse the area of circle
43: return 2 * Area (Radius) + 2 * Pi * Radius * Height;
44: }

Output ▼

Enter z for Cylinder, c for Circle: z
Enter radius: 2
Enter height: 5
Area of cylinder is: 87.9646

Next run:

Enter z for Cylinder, c for Circle: c
Enter radius: 1
Area of cylinder is: 3.14159

Analysis ▼

Lines 5 and 6 declare the prototype for the overloaded forms of Area, one that accepts a
single parameter—radius of a circle—and another that accepts two parameters—radius
and height of a cylinder. Both functions have the same names, Area; same return types,
double; and different sets of parameters —hence they’re overloaded. The definitions of
the overloaded functions are in Lines 34–44, where the two functions determine the area
of a circle given the radius and the area of a cylinder given the radius and height, respec-
tively. Interestingly, as the area of a cylinder is comprised of the area of the two circles it
contains (one on top and the other on the bottom) in addition to the area of the sides, the
overloaded version for cylinder was able to reuse Area for the circle, as shown in Line 43.

Passing an Array of Values to a Function
A function that displays an integer can be represented like this:

void DisplayInteger(int Number);

A function that can display an array of integers has a slightly different prototype:

void DisplayIntegers(int[] Numbers, int Length);

The first parameter tells the function that the data being input is an array, whereas the
second parameter supplies the length of the array such that you can use the array without
crossing its boundaries. See Listing 7.8.

154 LESSON 7: Organizing Code with Functions

ptg7987094

LISTING 7.8 Function That Takes an Array as a Parameter

0: #include <iostream>
1: using namespace std;
2:
3: void DisplayArray(int Numbers[], int Length)
4: {
5: for (int Index = 0; Index < Length; ++Index)
6: cout << Numbers[Index] << “ “;
7:
8: cout << endl;
9: }
10:
11: void DisplayArray(char Characters[], int Length)
12: {
13: for (int Index = 0; Index < Length; ++Index)
14: cout << Characters[Index] << “ “;
15:
16: cout << endl;
17: }
18:
19: int main()
20: {
21: int MyNumbers[4] = {24, 58, -1, 245};
22: DisplayArray(MyNumbers, 4);
23:
24: char MyStatement[7] = {‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘!’, ‘\0’};
25: DisplayArray(MyStatement, 7);
26:
27: return 0;
28: }

Output ▼

24 58 -1 245
H e l l o !

Analysis ▼

There are two overloaded functions called DisplayArray here: one that displays the con-
tents of elements in an array of integers and another that displays the contents of an array
of characters. In Lines 22 and 25, the two functions are invoked using an array of inte-
gers and an array of characters, respectively, as input. Note that in declaring and initializ-
ing the array of characters in Line 24, you have intentionally included the null
character—as a best practice and a good habit—even though the array is not used as a
string in a cout statement or the like (cout << MyStatement;) in this application.

Using Functions to Work with Different Forms of Data 155

7

ptg7987094

Passing Arguments by Reference
Take another look at the function in Listing 7.1 that computed the area of a circle given
the radius:

24: // Function definitions (implementations)
25: double Area(double InputRadius)
26: {
27: return Pi * InputRadius * InputRadius;
28: }

Here, the parameter InputRadius contains a value that is copied in to it when the func-
tion is invoked in main():

15: // Call function “Area”
16: cout << “Area is: “ << Area(Radius) << endl;

This means that the variable Radius in main is unaffected by the function call, as Area()
works on a copy of the value Radius contains, held in InputRadius. There are cases
where you might need a function to work on a variable that modifies a value that is avail-
able outside the function, too, say in the calling function. This is when you declare a
parameter that takes an argument by reference. A form of the function Area() that com-
putes and returns the area as a parameter by reference looks like this:

// output parameter Result by reference
void Area(double Radius, double& Result)
{

Result = Pi * Radius * Radius;
}

Note how Area() in this form takes two parameters. Don’t miss the ampersand (&) next
to the second parameter Result. This sign indicates to the compiler that the second argu-
ment should NOT be copied to the function; instead, it is a reference to the variable
being passed. The return type has been changed to void as the function no longer sup-
plies the area computed as a return value, rather as an output parameter by reference.
Returning values by references is demonstrated in Listing 7.9, which computes the area
of a circle.

LISTING 7.9 Fetching the Area of a Circle as a Reference Parameter and Not as a
Return Value

0: #include <iostream>
1: using namespace std;
2:
3: const double Pi = 3.1416;

156 LESSON 7: Organizing Code with Functions

ptg7987094

LISTING 7.9 Continued

4:
5: // output parameter Result by reference
6: void Area(double Radius, double& Result)
7: {
8: Result = Pi * Radius * Radius;
9: }
10:
11: int main()
12: {
13: cout << “Enter radius: “;
14: double Radius = 0;
15: cin >> Radius;
16:
17: double AreaFetched = 0;
18: Area(Radius, AreaFetched);
19:
20: cout << “The area is: “ << AreaFetched << endl;
21: return 0;
22: }

Output ▼

Enter radius: 2
The area is: 12.5664

Analysis ▼

Note Lines 17 and 18 where the function Area is invoked with two parameters; the sec-
ond is one that should contain the result. As Area takes the second parameter by refer-
ence, the variable Result used in Line 8 within Area points to the same memory location
as the double AreaFetched declared in Line 17 within the caller main(). Thus, the result
computed in function Area at Line 8 is available in main and displayed on the screen in
Line 20.

Using Functions to Work with Different Forms of Data 157

7

A function can return only one value using the return statement.
So, if your function needs to perform operations that affect many
values that are required at the caller, passing arguments by refer-
ence is one way to get a function to supply those many modifica-
tions back to the calling module.

NOTE

ptg7987094

How Function Calls Are Handled by the
Microprocessor
Although it is not extremely important to know exactly how a function call is imple-
mented on a microprocessor level, you might find it interesting. Understanding this helps
you understand why C++ gives you the option of programming inline functions, which
are explained later in this section.

A function call essentially means that the microprocessor jumps to executing the next
instruction belonging to the called function at a nonsequential memory location. After it
is done with executing the instructions in the function, it returns to where it left off. To
implement this logic, the compiler converts your function call into a CALL instruction for
the microprocessor specifying the address the next instruction needs to be taken from—
this address belongs to your function routine. When compiling the function itself, the
compiler converts the return instructions into a RET instruction for the microprocessor.

When the microprocessor encounters CALL, it saves the position of the instruction to be
executed after the function call on the stack and jumps to the memory location contained
in the CALL instruction.

158 LESSON 7: Organizing Code with Functions

Understanding the Stack

The stack is a Last-In-First-Out memory structure, quite like a stack of plates where
you pick the plate on top, which was the last one to be placed on the stack. Putting
data onto the stack is called a push operation. Getting data out of the stack is
called a pop operation. As the stack grows upward, the stack pointer always incre-
ments as it grows and points to the top of the stack. See Figure 7.3.

INTEGER 3

INTEGER 2

INTEGER 1

Stack Pointer
(always points to the top
where the next element
can be inserted that is,
pushed)

FIGURE 7.3
A visual
representation
of a stack
containing
three integers.

The nature of the stack makes it optimal for handling function calls. When a function
is called, all local variables are instantiated on the stack—that is, pushed onto the
stack. When the function ends, they’re simply popped off it, and the stack pointer
returns to where it originally was.

ptg7987094

This memory location contains instructions belonging to the function. The microproces-
sor executes them until it reaches the RET statement (the microprocessor’s code for
return programmed by you). The RET statement results in the microprocessor popping
that address from the stack stored during the CALL instruction. This address contains the
location in the calling function where the execution needs to continue from. Thus, the
microprocessor is back to the caller and continues where it left off.

Inline Functions
A regular function call is translated into a CALL instruction, which results in stack opera-
tions and microprocessor execution shift to the function and so on. This might sound like
a lot of stuff happening under the hood, but it happens quite quickly—for most of the
cases. However, what if your function is a very simple one like the following?

double GetPi()
{

return 3.14159;
}

The overhead of performing an actual function call on this might be quite high for the
amount of time spent actually executing GetPi(). This is why C++ compilers enable the
programmer to declare such functions as inline. Keyword inline is the programmers’
request that these functions be expanded inline where called.

inline double GetPi()
{

return 3.14159;
}

Similarly, functions that just double a number and perform such simple operations are
good candidates for being inlined, too. Listing 7.10 demonstrates one such case.

LISTING 7.10 Using an Inline Function That Doubles an Integer

0: #include <iostream>
1: using namespace std;
2:
3: // define an inline function that doubles
4: inline long DoubleNum (int InputNum)
5: {
6: return InputNum * 2;
7: }
8:

How Function Calls Are Handled by the Microprocessor 159

7

ptg7987094

LISTING 7.10 Continued

9: int main()
10: {
11: cout << “Enter an integer: “;
12: int InputNum = 0;
13: cin >> InputNum;
14:
15: // Call inline function
16: cout << “Double is: “ << DoubleNum(InputNum) << endl;
17:
18: return 0;
19: }

Output ▼

Enter an integer: 35
Double is: 70

Analysis ▼

The keyword in question is inline used in Line 4. Compilers typically see this keyword
as a request to place the contents of the function DoubleNum directly where the function
has been invoked—in Line 16—which increases the execution speed of the code.

Classifying functions as inline can also result in a lot of code bloat, especially if the
function being inline does a lot of sophisticated processing. Using the inline keyword
should be kept to a minimum and reserved for only those functions that do very little and
need to do it with minimal overhead, as demonstrated earlier.

160 LESSON 7: Organizing Code with Functions

Most modern C++ compilers offer various performance optimiza-
tion options. Some, such as the Microsoft C++ Compiler, offer you
to optimize for size or speed. The former is quite important when
developing software for devices and peripherals where memory
may be at a premium. When optimizing for size, the compiler
might often reject many inline requests as that might bloat code.

When optimizing for speed, the compiler typically sees and utilizes
opportunities to inline code where it would make sense and does
it for you—sometimes even in those cases where you have not
explicitly requested it.

NOTE

ptg7987094

C++11

Lambda Functions
This section is just an introduction to a concept that’s not exactly easy for beginners. So,
skim through it and try to learn the concept without being disappointed if you don’t
grasp it all. lambda functions are discussed in depth in Lesson 22, “C++11 Lambda
Expressions.”

Lambda functions are very useful if you often program using STL algorithms to sort or
process data, for example, contained in STL containers such as the std::vector
(dynamic array). Typically, a sort requires you to supply a binary predicate that is imple-
mented as an operator in a class, leading to quite a tedious bit of coding. Compilers that
are C++11 compliant enable you to program lambda functions and cut quite a bit of flab
as shown in Listing 7.11.

LISTING 7.11 Using Lambda Functions to Display Elements in an Array and to
Sort Them

0: #include <iostream>
1: #include <algorithm>
2: #include <vector>
3: using namespace std;
4:
5: void DisplayNums(vector<int>& DynArray)
6: {
7: for_each (DynArray.begin(), DynArray.end(), \
8: [](int Element) {cout << Element << “ “;});// lambda
9:
10: cout << endl;
11: }
12:
13: int main()
14: {
15: vector<int> MyNumbers;
16: MyNumbers.push_back(501);
17: MyNumbers.push_back(-1);
18: MyNumbers.push_back(25);
19: MyNumbers.push_back(-35);
20:
21: DisplayNums(MyNumbers);
22:
23: cout << “Sorting them in descending order” << endl;
24:
25: sort (MyNumbers.begin(), MyNumbers.end(), \
26: [](int Num1, int Num2) {return (Num2 < Num1); });
27:

How Function Calls Are Handled by the Microprocessor 161

7

ptg7987094

LISTING 7.11 Continued

28: DisplayNums(MyNumbers);
29:
30: return 0;
31: }

Output ▼

501 -1 25 -35
Sorting them in descending order
501 25 -1 -35

Analysis ▼

The program contains integers pushed into a dynamic array provided by the C++
Standard Library in the form of a std::vector, in Lines 15–19. The function
DisplayNums uses the STL algorithm to iterate through each element in the array and
display its value. In doing so, it uses a lambda function in Line 8 instead of what
would’ve been a long unary function predicate. std::sort used in Line 25 also uses a
binary predicate (Line 26) in the form of a lambda function that returns true if the sec-
ond number is smaller than the first, effectively sorting the collection in an ascending
order.

The syntax of a lambda function is the following:

[optional parameters](parameter list){ statements; }

Summary
In this lesson, you learned the basics of modular programming. You learned how func-
tions can help you structure your code better and also help you reuse algorithms you
write. You learned that functions can take parameters and return values, parameters can
have default values that the caller can override, and parameters can also contain argu-
ments passed by reference. You learned how to pass arrays, and you also learned how to
program overloaded functions that have the same name and return type but different
parameter lists.

Last but not the least, you got a sneak preview into what lambda functions are.
Completely new as of C++11, lambda functions have the potential to change how C++
applications will be programmed henceforth, especially when using STL.

162 LESSON 7: Organizing Code with Functions

ptg7987094

Q&A
Q What happens if I program a recursive function that doesn’t end?

A Program execution doesn’t end. That might not be bad, per se, for there are
while(true) and for(;;) loops that do the same; however, a recursive function
call consumes more and more stack space, which is finite and runs out, eventually
causing an application crash due to a stack overflow.

Q Why not inline every function? It increases execution speed, right?

A That really depends. However, inlining every function results in functions that are
used in multiple places to be placed at the point where they’re called, and this
results in code bloat. That apart, most modern compilers are better judges of what
calls can be inlined and do so for the programmer, depending on the compiler’s
performance settings.

Q Can I supply default parameter values to all parameters in a function?

A Yes, that is definitely possible and recommended when that makes sense.

Q I have two functions, both called Area. One takes a radius and the other takes
height. I want one to return float and the other to return double. Will this
work?

A Function overloading needs both functions with the same name to also have the
same return types. In this case, your compiler shows an error as the name has been
used twice in what it expects to be two functions of different names.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain that you understand the answers before continuing to the
next lesson.

Quiz
1. What is the scope of variables declared in a function’s prototype?

2. What is the nature of the value passed to this function?
int Func(int &SomeNumber);

3. I have a function that invokes itself. What is such a function called?

Workshop 163

7

ptg7987094

4. I have declared two functions, both with the same name and return type but differ-
ent parameter lists. What are these called?

5. Does the stack pointer point to the top, middle, or bottom of the stack?

Exercises
1. Write overloaded functions that calculate the volume of a sphere and a cylinder.

The formulas are the following:
Volume of sphere = (4 * Pi * Radius * Radius * Radius) / 3
Volume of a cylinder = Pi * Radius * Radius * Height

2. Write a function that accepts an array of double as input.

3. BUG BUSTERS: What is wrong with the following code?
#include <iostream>
using namespace std;

const double Pi = 3.1416;

void Area(double Radius, double Result)
{

Result = Pi * Radius * Radius;
}

int main()
{

cout << “Enter radius: “;
double Radius = 0;
cin >> Radius;

double AreaFetched = 0;
Area(Radius, AreaFetched);

cout << “The area is: “ << AreaFetched << endl;
return 0;

}

4. BUG BUSTERS: What is wrong with the following function declaration?
double Area(double Pi = 3.14, double Radius);

5. Write a function with return type void that still helps the caller calculate the area
and circumference of a circle when supplied the radius.

164 LESSON 7: Organizing Code with Functions

ptg7987094

LESSON 8
Pointers and
References Explained

One of the biggest advantages of C++ is that it enables you to write
high-level applications that are abstracted from the machine as well as
those that work close to the board. Indeed, C++ enables you to tweak
the performance of your application on a bytes and bits level.
Understanding how pointers and references work is one step toward
being able to write programs that are effective in their consumption of
system resources.

In this lesson, you find out

n What pointers are

n What the free store is

n How to use operators new and delete to allocate and free memory

n How to write stable applications using pointers and dynamic
allocation

n What references are

n Differences between pointers and references

n When to use a pointer and when to use references

ptg7987094

What Is a Pointer?
Put simply, a pointer is a variable that stores an address in memory. Just the same way as
a variable of type int is used to contain an integer value, a pointer variable is one that is
used to contain a memory address, as illustrated in Figure 8.1.

166 LESSON 8: Pointers and References Explained

Pointer at address
0x101 contains value

0x558

Data in memory at
address 0x558

0x558
Memory

0x101
Addresses

FIGURE 8.1
Visualizing a
pointer.

Thus, a pointer is a variable, and like all variables a pointer occupies space in memory
(in the case of Figure 8.1, at address 0x101). What’s special about pointers is that the
value contained in a pointer (in this case, 0x558) is interpreted as a memory address. So,
a pointer is a special variable that points to a location in memory.

Declaring a Pointer
A pointer being a variable needs to be declared, too. You normally declare a pointer to
point to a specific value type (for example, int). This would mean that the address con-
tained in the pointer points to a location in the memory that holds an integer. You can
also specify a pointer to a block of memory (also called a void pointer).

A pointer being a variable needs to be declared like all variables do:

PointedType * PointerVariableName;

As is the case with most variables, unless you initialize a pointer it will contain a random
value. You don’t want a random memory address to be accessed so you initialize a
pointer to NULL. NULL is a value that can be checked against and one that cannot be a
memory address:

PointedType * PointerVariableName = NULL; // initializing value

Thus, declaring a pointer to an integer would be:

int *pInteger = NULL; //

A pointer, like all data types you have learned, contains a junk
value unless it has been initialized. This junk value is particularly
dangerous in the case of a pointer because the value of the
pointer is expected to contain an address. Uninitialized pointers
can result in your program accessing invalid memory locations,
resulting in a crash.

CAUTION

ptg7987094

Determining the Address of a Variable Using the
Reference Operator (&)
Variables are tools the language provides for you to work with data in the memory. This
concept was explained in detail in Lesson 3, “Using Variables, Declaring Constants.”
Pointers are variables, too, but they’re a special type that is used exclusively to contain a
memory address.

If VarName is a variable, &VarName gives the address in memory where its value is placed.

So, if you have declared an integer, using the syntax that you’re quite well acquainted
with, such as:

int Age = 30;

&Age would be the address in memory where the value (30) is placed. Listing 8.1 demon-
strates the concept of the memory address of an integer variable that is used to hold the
value it contains.

LISTING 8.1 Determining the Addresses of an int and a double

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: int Age = 30;
6: const double Pi = 3.1416;
7:
8: // Use & to find the address in memory
9: cout << “Integer Age is at: 0x” << hex << &Age << endl;
10: cout << “Double Pi is located at: 0x” << hex << &Pi << endl;
11:
12: return 0;
13: }

Output ▼

Integer Age is at: 0x0045FE00
Double Pi is located at: 0x0045FDF8

Analysis ▼

Note how referencing operator (&) has been used in Lines 9 and 10 to reveal the
addresses of variables Age and constant Pi. The text 0x has been appended as a conven-
tion that is used when displaying hexadecimal numbers.

What Is a Pointer? 167

8

ptg7987094

Using Pointers to Store Addresses
You have learned how to declare pointers and how to determine the address of a variable.
You also know that pointers are variables that are used to hold memory addresses. It’s
time to connect these dots and use pointers to store the addresses obtained using the ref-
erencing operator (&).

Assume a variable declaration of the types you already know:

// Declaring a variable
Type VariableName = InitialValue;

To store the address of this variable in a pointer, you would declare a pointer to the same
Type and initialize the pointer to the variable’s address using the referencing operator (&):

// Declaring a pointer to the same type and initializing to address
Type* Pointer = &Variable;

Thus, if you have declared an integer, using the syntax that you’re quite well acquainted
with, such as

int Age = 30;

You would declare a pointer to the type int to hold the actual address where Age is
stored, like this:

int* pInteger = &Age; // Pointer to integer Age

In Listing 8.2 you see how a pointer can be used to store an address fetched using the
referencing operator (&).

168 LESSON 8: Pointers and References Explained

You know that the amount of memory consumed by a variable is
dependent on its type. Listing 3.4 in Lesson 3 uses sizeof() to
demonstrate that the size of an integer is 4 bytes (on my system,
using my compiler). So, using the preceding output that says that
integer Age is located at address 0x0045FE08 and using the
knowledge that sizeof(int) is 4, you know that the four bytes
located in the range 0x0045FE00 to 0x0045FE04 belong to the
integer Age.

NOTE

The referencing operator (&) is also called the address-of operator.NOTE

ptg7987094

LISTING 8.2 Demonstrating the Declaration and Initialization of a Pointer

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: int Age = 30;
6: int* pInteger = &Age; // pointer to an int, initialized to &Age
7:
8: // Displaying the value of pointer
9: cout << “Integer Age is at: 0x” << hex << pInteger << endl;
10:
11: return 0;
12: }

Output ▼

Integer Age is at: 0x0045FE00

Analysis ▼

Essentially, the output of this code snippet is the same as the previous one because both
the samples are displaying the same thing—the address in memory where Age is stored.
The difference here is that the address is first assigned to a pointer at Line 6, and the
value of the pointer (now the address) is displayed using cout at Line 9.

What Is a Pointer? 169

8

Your output might differ in addresses from those you see in these
samples. In fact, the address of a variable might change at every
run of the application on the very same computer.

Now that you know how to store an address in a pointer variable, it is easy to imagine
that the same pointer variable can be reassigned a different memory address and made to
point to a different value, as shown in Listing 8.3.

LISTING 8.3 Pointer Reassignment to Another Variable

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: int Age = 30;

NOTE

ptg7987094

LISTING 8.3 Continued

6:
7: int* pInteger = &Age;
8: cout << “pInteger points to Age now” << endl;
9:
10: // Displaying the value of pointer
11: cout << “pInteger = 0x” << hex << pInteger << endl;
12:
13: int DogsAge = 9;
14: pInteger = &DogsAge;
15: cout << “pInteger points to DogsAge now” << endl;
16:
17: cout << “pInteger = 0x” << hex << pInteger << endl;
18:
19: return 0;
20: }

Output ▼

pInteger points to Age now
pInteger = 0x002EFB34
pInteger points to DogsAge now
pInteger = 0x002EFB1C

Analysis ▼

This program indicates that one pointer to an integer, pInteger, can point to any integer.
In Line 7, it has been initialized to &Age, hence containing the address of variable Age. In
Line 14 the same pointer is assigned &DogsAge, pointing to another location in the mem-
ory that contains DogsAge. Correspondingly, the output indicates that the value of the
pointer, that is the address being pointed to, changes as the two integers Age and DogsAge

are, of course, stored in different locations in memory, 0x002EFB34 and 0x002EFB1C,
respectively.

Access Pointed Data Using the Dereference
Operator (*)
You have a pointer to data, containing a valid address. How do you access that
location—that is, get or set data at that location? The answer lies in using the de-refer-
encing operator (*). Essentially, if you have a valid pointer pData, use *pData to access
the value stored at the address contained in the pointer. Operator (*) is demonstrated by
Listing 8.4.

170 LESSON 8: Pointers and References Explained

ptg7987094

LISTING 8.4 Demonstrating the Use of the Dereference Operator (*) to Access
Integer Values

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: int Age = 30;
6: int DogsAge = 9;
7:
8: cout << “Integer Age = “ << Age << endl;
9: cout << “Integer DogsAge = “ << DogsAge << endl;
10:
11: int* pInteger = &Age;
12: cout << “pInteger points to Age” << endl;
13:
14: // Displaying the value of pointer
15: cout << “pInteger = 0x” << hex << pInteger << endl;
16:
17: // Displaying the value at the pointed location
18: cout << “*pInteger = “ << dec << *pInteger << endl;
19:
20: pInteger = &DogsAge;
21: cout << “pInteger points to DogsAge now” << endl;
22:
23: cout << “pInteger = 0x” << hex << pInteger << endl;
24: cout << “*pInteger = “ << dec << *pInteger << endl;
25:
26: return 0;
27: }

Output ▼

Integer Age = 30
Integer DogsAge = 9
pInteger points to Age
pInteger = 0x0025F788
*pInteger = 30
pInteger points to DogsAge now
pInteger = 0x0025F77C
*pInteger = 9

Analysis ▼

In addition to changing the address stored within a pointer as also in the previous sample
in Listing 8.3, this one also uses the dereference operator (*) with the same pointer vari-
able pInteger to print the different values at these two addresses. Note Lines 18 and 24.

What Is a Pointer? 171

8

ptg7987094

In both these lines, the integer pointed to by pInteger is accessed using the dereference
operator (*). As the address contained in pInteger is changed at Line 20, the same
pointer after this assignment accesses the variable DogsAge, displaying 9.

When the dereference operator (*) is used, the application essentially uses the address
stored in the pointer as a starting point to fetch 4 bytes from the memory that belong to
an integer (as this is a pointer to integers and sizeof(int) is 4). Thus, the validity of the
address contained in the pointer is absolutely essential. By initializing the pointer to &Age
in Line 11, you have ensured that the pointer contains a valid address. When you don’t
initialize the pointer, it can contain any random value (that existed in the memory loca-
tion where the pointer variable is located) and dereference of that pointer usually results
in an Access Violation—that is, accessing a memory location that your application was
not authorized to.

172 LESSON 8: Pointers and References Explained

The dereferencing operator (*) is also called the indirection
operator.

You have used the pointer in the preceding sample to read (get) values from the pointed
memory location. Listing 8.5 shows what happens when *pInteger is used as an
l-value—that is, assigned to instead of just being accessed.

LISTING 8.5 Manipulating Data Using a Pointer and the Dereference Operator (*)

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: int DogsAge = 30;
6: cout << “Initialized DogsAge = “ << DogsAge << endl;
7:
8: int* pAge = &DogsAge;
9: cout << “pAge points to DogsAge” << endl;
10:
11: cout << “Enter an age for your dog: “;
12:
13: // store input at the memory pointed to by pAge
14: cin >> *pAge;
15:
16: // Displaying the address where age is stored
17: cout << “Input stored using pAge at 0x” << hex << pAge << endl;
18:
19: cout << “Integer DogsAge = “ << dec << DogsAge << endl;

NOTE

ptg7987094

LISTING 8.5 Continued

20:
21: return 0;
22: }

Output ▼

Initialized DogsAge = 30
pAge points to DogsAge
Enter an age for your dog: 10
Input stored using pAge at 0x0025FA18
Integer DogsAge = 10

Analysis ▼

The key step here is in Line 14 where the integer fed by the user is saved at the location
stored in the pointer pAge. Note that even though you store the input number using the
pointer pAge, Line 19 displays the variable DogsAge, yet shows that value you stored
using the pointer. This is because pAge points to DogsAge, as initialized in Line 8. Any
change to that memory location where DogsAge is stored, and where pAge points to,
made using one is going to be reflected in the other.

What Is the sizeof() of a Pointer?
You have learned that the pointer is just another variable that contains a memory address.
Hence, irrespective of the type that is being pointed to, the content of a pointer is an
address—a number. The length of an address that is the number of bytes required to store
it is a constant for a given system. The sizeof() a pointer is hence dependent on the
compiler and the operating system the program has been compiled for and is not depen-
dent on the nature of the data being pointed to, as Listing 8.6 demonstrates.

LISTING 8.6 Demonstrating That Pointers to Different Types Have the Same Sizes

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: int Age = 30;
6: double Pi = 3.1416;
7: char SayYes = ‘y’;
8:
9: // initialize pointers to addresses of the variables
10: int* pInt = &Age;
11: double* pDouble = Π

What Is a Pointer? 173

8

ptg7987094

LISTING 8.6 Continued

12: char* pChar = &SayYes;
13:
14: cout << “sizeof fundamental types -” << endl;
15: cout << “sizeof(int) = “ << sizeof(int) << endl;
16: cout << “sizeof(double) = “ << sizeof(double) << endl;
17: cout << “sizeof(char) = “ << sizeof(char) << endl;
18:
19: cout << “sizeof pointers to fundamental types -” << endl;
20: cout << “sizeof(pInt) = “ << sizeof(pInt) << endl;
21: cout << “sizeof(pDouble) = “ << sizeof(pDouble) << endl;
22: cout << “sizeof(pChar) = “ << sizeof(pChar) << endl;
23:
24: return 0;
25: }

Output ▼

sizeof fundamental types -
sizeof(int) = 4
sizeof(double) = 8
sizeof(char) = 1
sizeof pointers to fundamental types -
sizeof(pInt) = 4
sizeof(pDouble) = 4
sizeof(pChar) = 4

Analysis ▼

The output clearly shows that even though a sizeof(char) is 1 byte and a sizeof
(double) is 8 bytes, the sizeof(pointer) is always constant at 4 bytes. This is because
the amount of memory required to store an address is the same, irrespective of whether
the address points to 1 byte or 8.

174 LESSON 8: Pointers and References Explained

The output for Listing 8.6 that displays that the sizeof a pointer
is 4 bytes might be different than what you see on your system.
The output was generated when the code was compiled using a
32-bit compiler. If you use a 64-bit compiler and run the program
on a 64-bit system, you might see that the sizeof your pointer
variable is 64 bits—that is, 8 bytes.

NOTE

ptg7987094

Dynamic Memory Allocation
When you write a program containing an array declaration such as

int Numbers[100]; // a static array of 100 integers

your program has two problems:

1. You are actually limiting the capacity of your program as it cannot store more than
100 numbers.

2. You are reducing the performance of the system in cases where only 1 number
needs to be stored, yet space has been reserved for 100.

These problems exist because the memory allocation in an array as declared earlier is
static and fixed by the compiler.

To program an application that is able to optimally consume memory resources on the
basis of the needs of the user, you need to use dynamic memory allocation. This enables
you to allocate more when you need more memory and release memory that you have in
excess. C++ supplies you two operators, new and delete, to help you better manage the
memory consumption of your application. Pointers being variables that are used to con-
tain memory addresses play a critical role in efficient dynamic memory allocation.

Using Operators new and delete to Allocate and
Release Memory Dynamically
You use new to allocate new memory blocks. The most frequently used form of new
returns a pointer to the requested memory if successful or else throws an exception.
When using new, you need to specify the data type for which the memory is being
allocated:

Type* Pointer = new Type; // request memory for one element

You can also specify the number of elements you want to allocate that memory for
(when you need to allocate memory for more than one element):

Type* Pointer = new Type[NumElements]; // request memory for NumElements

Thus, if you need to allocate integers, you use the following syntax:

int* pNumber = new int; // get a pointer to an integer
int* pNumbers = new int[10]; // get a pointer to a block of 10 integers

Dynamic Memory Allocation 175

8

Note that new indicates a request for memory. There is no guaran-
tee that a call for allocation always succeeds because this
depends on the state of the system and the availability of memory
resources.

NOTE

ptg7987094

Every allocation using new needs to be eventually released using an equal and opposite
de-allocation via delete:

Type* Pointer = new Type;
delete Pointer; // release memory allocated above for one instance of Type

This rule also applies when you request memory for multiple elements:

Type* Pointer = new Type[NumElements];
delete[] Pointer; // release block allocated above

176 LESSON 8: Pointers and References Explained

Note the usage of delete[] when you allocate a block using
new[...] and delete when you allocate just an element using
new.

If you don’t release allocated memory after you stop using it, this memory remains
reserved and allocated for your application. This in turn reduces the amount of system
memory available for other applications to consume and possibly even makes the execu-
tion of your application slower. This is called a leak and should be avoided at all costs.

Listing 8.7 demonstrates memory dynamic allocation and deallocation.

LISTING 8.7 Accessing Memory Allocated Using new via Operator (*) and Releasing It
Using delete

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: // Request for memory space for an int
6: int* pAge = new int;
7:
8: // Use the allocated memory to store a number
9: cout << “Enter your dog’s age: “;
10: cin >> *pAge;
11:
12: // use indirection operator* to access value
13: cout << “Age “ << *pAge << “ is stored at 0x” << hex << pAge << endl;
14:
15: delete pAge; // release memory
16:
17: return 0;
18: }

NOTE

ptg7987094

Output ▼

Enter your dog’s age: 9
Age 9 is stored at 0x00338120

Analysis ▼

Line 6 demonstrates the use of operator new to request space for an integer where you
plan to store the dog’s age as input by the user. Note that new returns a pointer, and that
is the reason it is assigned to one. The age entered by the user is stored in this newly
allocated memory using cin and the dereference operator (*) in Line 10. Line 13 dis-
plays this stored value using the dereference operator (*) again and also displays the
memory address where the value is stored. Note that the address contained in pAge in
Line 13 still is what was returned by new in Line 6 and hasn’t changed since.

Dynamic Memory Allocation 177

8

Operator delete cannot be invoked on any address contained in a
pointer, rather only those that have been returned by new and only
those that have not already been released by a delete.

Thus, the pointers seen in Listing 8.6 contain valid addresses, yet
should not be released using delete because the addresses were
not returned by a call to new.

Note that when you allocate for a range of elements using new…[…], you would de-
allocate using delete[] as demonstrated by Listing 8.8.

LISTING 8.8 Allocating Using new[…] and Releasing It Using delete[]

0: #include <iostream>
1: #include <string>
2: using namespace std;
3:
4: int main()
5: {
6: cout << “Enter your name: “;
7: string Name;
8: cin >> Name;
9:
10: // Add 1 to reserve space for a terminating null
11: int CharsToAllocate = Name.length() + 1;
12:
13: // request for memory to hold copy of input
14: char* CopyOfName = new char [CharsToAllocate];

CAUTION

ptg7987094

LISTING 8.8 Continued

15:
16: // strcpy copies from a null-terminated string
17: strcpy(CopyOfName, Name.c_str());
18:
19: // Display the copied string
20: cout << “Dynamically allocated buffer contains: “ << CopyOfName << endl;
21:
22: // Done using buffer? Delete
23: delete[] CopyOfName;
24:
25: return 0;
26: }

Output ▼

Enter your name: Siddhartha
Dynamically allocated buffer contains: Siddhartha

Analysis ▼

The most important lines in question are the new and delete[] operators used in Lines
11 and 23, respectively. What makes this sample different is the allocation of a block of
memory with space for multiple elements as compared to Listing 8.7 that allocated for
only one element. Such allocations for an array of elements need to be matched by de-
allocation using delete[] to free memory when done. The number of characters to be
allocated is calculated in Line 11 as one more than the number of characters entered by
the user to accommodate for the terminating NULL character that is important in C-style
strings. The need for this terminating NULL is also explained in Lesson 4, “Managing
Arrays and Strings.” The actual act of copying is done in Line 17 by strcpy that uses the
c_str() function supplied by std::string Name as input to copy into the char buffer
called CopyOfName.

178 LESSON 8: Pointers and References Explained

Operators new and delete allocate memory from the free store.
The free store is a memory abstraction in the form of a pool of
memory where your application can allocate (that is, reserve)
memory to and de-allocate (that is, release) memory from.

NOTE

ptg7987094

Effect of Incrementing and Decrementing Operators
(++ and --) on Pointers
A pointer contains a memory address. For example, the pointer to an integer in Listing
8.3 contains 0x002EFB34—the address where the integer is placed. The integer itself is 4
bytes long and hence occupies four places in memory from 0x002EFB34 to 0x002EFB37.
Incrementing this pointer using operator (++) would not result in the pointer pointing to
0x002EFB35, for pointing to the middle of an integer would literally be pointless.

An increment or decrement operation on a pointer is interpreted by the compiler as your
need to point to the next consecutive value in the block of memory, assuming it to be of
the same type, and not to the next byte (unless the value type is 1 byte large, like a char,
for instance).

So, incrementing a pointer such as pInteger seen in Listing 8.3 results in it being incre-
mented by 4 bytes, which is the sizeof an int. Using ++ on this pointer is telling the
compiler that you want it to point to the next consecutive integer. Hence, after increment-
ing, the pointer would then point to 0x002EFB38. Similarly, adding 2 to this pointer
would result in it moving 2 integers ahead, that is 8 bytes ahead. Later you see a correla-
tion between this behavior displayed by pointers and indexes used in arrays.

Decrementing pointers using operator (--) demonstrates the same effect—the address
value contained in the pointer is reduced by the sizeof the data type it is being pointed to.

Dynamic Memory Allocation 179

8

What Happens When You Increment or Decrement a Pointer?

The address contained in the pointer is incremented or decremented by the sizeof
the type being pointed to (and not necessarily a byte). This way, the compiler
ensures that the pointer never points to the middle or end of data placed in the
memory; it only points to the beginning.

If a pointer has been declared as

Type* pType = Address;

++pType would mean that pType contains (and hence points to) Address +
sizeof(Type).

See Listing 8.9 that explains the effect of incrementing pointers or adding offsets to
them.

ptg7987094

LISTING 8.9 Allocate Dynamically Based on Need, Examine Incrementing Pointers with
Offset Values and Operator ++

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: cout << “How many integers you wish to enter? “;
6: int InputNums = 0;
7: cin >> InputNums;
8:
9: int* pNumbers = new int [InputNums]; // allocate requested integers
10: int* pCopy = pNumbers;
11:
12: cout<<“Successfully allocated memory for “<<InputNums<< “ integers”<<endl;
13: for(int Index = 0; Index < InputNums; ++Index)
14: {
15: cout << “Enter number “<< Index << “: “;
16: cin >> *(pNumbers + Index);
17: }
18:
19: cout << “Displaying all numbers input: “ << endl;
20: for(int Index = 0, int* pCopy = pNumbers; Index < InputNums; ++Index)
21: cout << *(pCopy++) << “ “;
22:
23: cout << endl;
24:
25: // done with using the pointer? release memory
26: delete[] pNumbers;
27:
28: return 0;
29: }

Output ▼

How many integers you wish to enter? 2
Successfully allocated memory for 2 integers
Enter number 0: 789
Enter number 1: 575
Displaying all numbers input:
789 575

Another run:

How many integers you wish to enter? 5
Successfully allocated memory for 5 integers
Enter number 0: 789

180 LESSON 8: Pointers and References Explained

ptg7987094

Enter number 1: 12
Enter number 2: -65
Enter number 3: 285
Enter number 4: -101
Displaying all numbers input:
789 12 -65 285 -101

Analysis ▼

The program asks the user the number of integers he wants to feed into the system before
allocating memory for the same in Line 9. Note how we keep a backup copy of this
address in Line 10, to be used later when releasing that block of memory via delete in
Line 26. This program demonstrates the advantage of using pointers and dynamic mem-
ory allocation over a static array. This application consumes less memory when the user
needs to store fewer numbers and more when he needs to store more but never wastes
system resources. Due to dynamic allocation, there is no upper limit to the number of
integers that can be stored, except for those placed by the availability of system
resources. Lines 13–17 are a for loop where the user is asked to enter the numbers that
are then stored in consecutive positions in the memory using the expression in Line 16. It
is here that the zero-based offset value (Index) is added to the pointer, causing the com-
piler to create a program that inserts the value fed by the user at the appropriate location
in memory without overwriting the previous value. In other words, (pNumber + Index)
is an expression that returns a pointer pointing to the integer at the zero-based index
location in memory (that is, Index 1 is for the second integer), and hence the dereference
operation in *(pNumber + Index) is the expression that cin uses to access the value at
that zero-based index. The for loop in Lines 20 and 21 is similarly used to display those
values stored by the previous loop. The for statement uses multiple initializations, creat-
ing a copy in pCopy and incrementing this copy in Line 21 to display the value.

The reason you create a copy in Line 10 is so that the loop modifies the pointer being
used via the increment operator (++). The original pointer returned by new needs to be
stored intact for the corresponding delete[] in Line 26 needs to be invoked using the
address returned by new and not any random value.

Using const Keyword on Pointers
In Lesson 3, you learned that declaring a variable as const effectively ensures that value
of the variable is fixed as the initialization value for the life of the variable. The value of
such a variable cannot be changed, and it cannot be used as an l-value.

Dynamic Memory Allocation 181

8

ptg7987094

Pointers are variables, too, and hence the const keyword that is relevant to variables is
relevant to pointers as well. However, pointers are a special kind of variable that contains
a memory address and are also used to modify a block of data in memory. Thus, when it
comes to pointers and constants, you have the following combinations:

n Data pointed to is constant and cannot be changed, yet the address contained in the
pointer can be changed—that is, the pointer can also point elsewhere:
int HoursInDay = 24;
const int* pInteger = &HoursInDay; // cannot use pInteger to change
HoursInDay
int MonthsInYear = 12;
pInteger = &MonthsInYear; // OK!
*pInteger = 13; // Compile fails: cannot change data
int* pAnotherPointerToInt = pInteger; // Compile fails: cannot assign const
to non-const

n The address contained in the pointer is constant and cannot be changed, yet the
data pointed to can be changed:
int DaysInMonth = 30;
// pInteger cannot point to anything else
int* const pDaysInMonth = &DaysInMonth;
*pDaysInMonth = 31; // OK! Value can be changed
int DaysInLunarMonth = 28;
pDaysInMonth = &DaysInLunarMonth; // Compile fails: Cannot change address!

n Both the address contained in the pointer and the value being pointed to are con-
stant and cannot be changed (most restrictive variant):
int HoursInDay = 24;
// pointer can only point to HoursInDay
const int* const pHoursInDay = &HoursInDay;
*pHoursInDay = 25; // Compile fails: cannot change pointed value
int DaysInMonth = 30;
pHoursInDay = &DaysInMonth; // Compile fails: cannot change pointer value

These different forms of const are particularly useful when passing pointers to functions.
Function parameters need to be declared to support the highest possible (restrictive) level
of const-ness, to ensure that a function does not modify the pointed value when it is not
supposed to. This helps make a function maintainable, especially given time and change
in the programmer working on it.

Passing Pointers to Functions
Pointers are an effective way to pass memory space that contains values and can contain
the result to a function. When using a pointer with functions, it becomes important to
ensure that the called function is only allowed to modify those parameters that you want

182 LESSON 8: Pointers and References Explained

ptg7987094

to modify, but not others. For example, a function that calculates the area of a circle
given radius sent as a pointer should not be allowed to modify the radius. This is where
you use const pointers effectively to control what a function is allowed to modify and
what it isn’t as demonstrated by Listing 8.10.

LISTING 8.10 Use const Keyword in Calculating the Area of a Circle When Radius and
Pi Are Supplied as Pointers

0: #include <iostream>
1: using namespace std;
2:
3: void CalcArea(const double* const pPi, // const pointer to const data
4: const double* const pRadius, // i.e. nothing can be changed
5: double* const pArea) //change pointed value, not address
6: {
7: // check pointers before using!
8: if (pPi && pRadius && pArea)
9: *pArea = (*pPi) * (*pRadius) * (*pRadius);
10: }
11:
12: int main()
13: {
14: const double Pi = 3.1416;
15:
16: cout << “Enter radius of circle: “;
17: double Radius = 0;
18: cin >> Radius;
19:
20: double Area = 0;
21: CalcArea (&Pi, &Radius, &Area);
22:
23: cout << “Area is = “ << Area << endl;
24:
25: return 0;
26: }

Output ▼

Enter radius of circle: 10.5
Area is = 346.361

Analysis ▼

Lines 3–5 demonstrate the two forms of const where both pRadius and pPi are supplied
as “const pointers to const data,” so that neither the pointer address nor the data being
pointed to can be modified. pArea is evidently the parameter meant to store the output,

Dynamic Memory Allocation 183

8

ptg7987094

for the value of the pointer (address) cannot be modified but the data being pointed to
can be. Line 7 shows how pointer parameters to a function are checked for validity
before using them. You don’t want the function to calculate the area if the caller inadver-
tently sends a NULL pointer as any of the three parameters, for that would result in an
application crash.

Similarities Between Arrays and Pointers
Don’t you think that the sample in Listing 8.9 where the pointer was incremented using
zero-based index to access the next integer in the memory has too many similarities to
the manner in which arrays are indexed? When you declare an array of integers

int MyNumbers[5];

what the compiler does for you is to allocate a fixed amount of memory to hold five inte-
gers and give you a pointer to the first element in that array that is identified by the name
you assign the array variable. In other words, MyNumbers is a pointer to the first element
MyNumber[0]. Listing 8.11 highlights this correlation.

LISTING 8.11 Demonstrate That the Array Variable Is a Pointer to the First Element

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: // Static array of 5 integers
6: int MyNumbers[5];
7:
8: // array assigned to pointer to int
9: int* pNumbers = MyNumbers;
10:
11: // Display address contained in pointer
12: cout << “pNumbers = 0x” << hex << pNumbers << endl;
13:
14: // Address of first element of array
15: cout << “&MyNumbers[0] = 0x” << hex << &MyNumbers[0] << endl;
16:
17: return 0;
18: }

Output ▼

pNumbers = 0x004BFE8C
&MyNumbers[0] = 0x004BFE8C

184 LESSON 8: Pointers and References Explained

ptg7987094

Analysis ▼

This simple program demonstrates that an array variable can be assigned to a pointer of
the same type as seen in Line 9, essentially confirming that an array is akin to a pointer.
Lines 12 and 15 demonstrate that the address stored in the pointer is the same as the
address where the first element in the array (at index 0) is placed in memory. This pro-
gram tells you that an array is a pointer to the first element in it.

Should you need to access the second element via the expression MyNumbers[1], you can
also access the same using the pointer pNumbers with syntax *(pNumbers + 1). The
third element is accessed in the static array using MyNumbers[2], whereas the third ele-
ment is accessed in the dynamic array using syntax *(pNumbers + 2).

Because array variables are essentially pointers, it should be possible to use the de-
reference operator (*) that you have used with pointers to work with arrays. Similarly, it
should be possible to use the array operator ([]) to work with pointers as demonstrated
by Listing 8.12.

LISTING 8.12 Accessing Elements in an Array Using the Dereference Operator (*) and
Using the Array Operator ([]) with a Pointer

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: const int ARRAY_LEN = 5;
6:
7: // Static array of 5 integers, initialized
8: int MyNumbers[ARRAY_LEN] = {24, -1, 365, -999, 2011};
9:
10: // Pointer initialized to first element in array
11: int* pNumbers = MyNumbers;
12:
13: cout << “Displaying array using pointer syntax, operator*” << endl;
14: for (int Index = 0; Index < ARRAY_LEN; ++Index)
15: cout << “Element “ << Index << “ = “ << *(MyNumbers + Index) << endl;
16:
17: cout << “Displaying array using pointer with array syntax, operator[]” <<

endl;
18: for (int Index = 0; Index < ARRAY_LEN; ++Index)
19: cout << “Element “ << Index << “ = “ << pNumbers[Index] << endl;
20:
21: return 0;
22: }

Dynamic Memory Allocation 185

8

ptg7987094

Output ▼

Displaying array using pointer syntax, operator*
Element 0 = 24
Element 1 = -1
Element 2 = 365
Element 3 = -999
Element 4 = 2011
Displaying array using pointer with array syntax, operator[]
Element 0 = 24
Element 1 = -1
Element 2 = 365
Element 3 = -999
Element 4 = 2011

Analysis ▼

The application contains a static array of five integers initialized to five initial values in
Line 8. The application displays the contents of this array, using two alternative routes—
one using the array variable with the indirection operator (*) in Line 15 and the other
using the pointer variable with the array operator ([]) in Line 19.

Thus, what this program demonstrates is that both array MyNumbers and pointer pNumbers
actually exhibit pointer behavior. In other words, an array declaration is similar to a
pointer that will be created to operate within a fixed range of memory. Note that one can
assign an array to a pointer as in Line 11, but one cannot assign a pointer to an array
because the nature of an array is static and the array hence cannot be a l-value.

186 LESSON 8: Pointers and References Explained

It is important to remember that pointers that are allocated
dynamically using operator new still need to be released using
operator delete, even if you used syntax similar to that of a static
array.

If you forget this, your application leaks memory, and that’s bad.

Common Programming Mistakes When
Using Pointers
C++ enables you to allocate memory dynamically so that the memory consumption of
your application is optimal. Unlike newer languages such as C# and Java that are based
on a run-time environment, C++ does not feature an automatic garbage collector that

CAUTION

ptg7987094

cleans up the memory your program has allocated but can’t use. Because pointers can get
a bit tricky, a programmer has a host of opportunities to make mistakes.

Memory Leaks
This is probably one of the most frequent problems with C++ applications: The longer
they run, the larger the amount of memory they consume and the slower the system gets.
This typically happens when the programmer did not ensure that his application releases
memory allocated dynamically using new with a matching call to delete after the block
of memory is no longer required.

It is up to you—the programmer—to ensure that all allocated memory is also released by
your application. Something like this should never be allowed to happen:

int* pNumbers = new int [5]; // initial allocation
// use pointer pNumbers
...
// forget to release using delete[] pNumbers;
...
// make another allocation and overwrite the pointer
pNumbers = new int[10]; // leaks the previously allocated memory

When Pointers Don’t Point to Valid Memory
Locations
When you dereference a pointer using operator (*) to access the pointed value, you need
to be 100% sure that the pointer contains a valid memory location, else your program
will either crash or misbehave. Logical as this may seem, invalid pointers are quite a
common reason for application crashes. Pointers can be invalid for a range of reasons, all
being attributed to poor memory management. A typical case where a pointer might be
invalid is shown in Listing 8.13.

LISTING 8.13 A Demonstration of Bad Programming Using Invalid Pointers

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: // uninitialized pointer (bad)
6: int* pTemperature;
7:
8: cout << “Is it sunny (y/n)?” << endl;
9: char UserInput = ‘y’;
10: cin >> UserInput;

Common Programming Mistakes When Using Pointers 187

8

ptg7987094

LISTING 8.13 Continued

11:
12: if (UserInput == ‘y’)
13: {
14: pTemperature = new int;
15: *pTemperature = 30;
16: }
17:
18: // pTemperature contains invalid value if user entered ‘n’
19: cout << “Temperature is: “ << *pTemperature;
20:
21: // delete also being invoked for those cases new wasn’t done
22: delete pTemperature;
23:
24: return 0;
25: }

Output ▼

Is it sunny (y/n)? y
Temperature is: 30

Second run:

Is it sunny (y/n)? n
<CRASH!>

Analysis ▼

There are many problems in the program, some already commented in the code. Note
how memory is allocated and assigned to the pointer in Line 14, which is conditionally
executed when the user presses y for yes. For all other inputs of the user, this if block is
not executed, and the pointer pTemperature remains invalid. Thus, when the user presses
n in the second run, the application crashes because pTemperature contains an invalid
memory address and dereferencing an invalid pointer in Line 19 causes problems.

Similarly, invoking delete on this pointer, which has not been allocated for using new as
seen in Line 22, is equally wrong. Note that if you have a copy of a pointer, you need to
be calling delete on only one of them (you also need to avoid having copies of a pointer
floating around).

A better (safer, more stable) version of the program in Listing 8.13 is one where pointers
are initialized, used where their values are valid, and released only once but only when
valid.

188 LESSON 8: Pointers and References Explained

ptg7987094

Dangling Pointers (Also Called Stray or Wild
Pointers)
Note that any valid pointer is invalid after it has been released using delete. So, if the
pointer pTemperature were to be used after Line 22, even in those cases where the user
did press y and the pointer was valid until this point, it gets invalidated after the call to
delete and should not be used.

To avoid this problem, many programmers assign NULL to a pointer when initializing it
or after it has been deleted and check a pointer for validity using it before dereferencing
it using operator (*).

Pointer Programming Best-Practices
There are some basic rules when it comes to using pointers in your application that will
make living with them easier.

Pointer Programming Best-Practices 189

8

DO always initialize pointer variables,
else they contain junk values. These
junk values are interpreted as address
locations, but those your application is
not authorized to access. If you cannot
initialize a pointer to a valid address
returned by new or another valid vari-
able, initialize to NULL.

DO check pointers for NULL before
using them. Checking for NULL will
ensure that pointers that have not
been assigned valid address in state-
ments following their declaration
(where they’re initialized to NULL) can-
not be used (like they erroneously were
in Listing 8.13).

DO ensure that pointers are pro-
grammed in a way that they’re used
when their validity is ensured, else
your program might encounter a crash.

DO remember to release memory allo-
cated using new by using delete, else
your application will leak memory and
reduce system performance.

DON’T access a block of memory or
use a pointer after it has been
released using delete.

DON’T invoke delete on a memory
address more than once.

DON’T leak memory by forgetting to
invoke delete when done using an
allocated block of memory.

DO DON’T

ptg7987094

Having learned some programming best practices for using pointers, it’s time to correct
the extremely faulty code in Listing 8.13 and use the code demonstrated in Listing 8.14.

LISTING 8.14 Safer Pointer Programming, a Correction of Listing 8.13

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: cout << “Is it sunny (y/n)? “;
6: char UserInput = ‘y’;
7: cin >> UserInput;
8:
9: if (UserInput == ‘y’)
10: {
11: // initialized pointer (good)
12: int* pTemperature = new int;
13: *pTemperature = 30;
14:
15: cout << “Temperature is: “ << *pTemperature << endl;
16:
17: // done using pointer? delete
18: delete pTemperature;
19: }
20:
21: return 0;
22: }

Output ▼

Is it sunny (y/n)? y
Temperature is: 30

Next run:

Is it sunny (y/n)? n

(Ends without crashing)

Analysis ▼

The main difference is that the pointer is created when needed—that is, when the user
presses y—and it is initialized on creation as seen in Line 12. The deletion of memory
also happens with the same block, thus there are no cases where the pointer is used (in
dereference or in call delete) when it had not been assigned a valid memory location.

190 LESSON 8: Pointers and References Explained

ptg7987094

Checking If Allocation Request Using new Succeeded
new succeeds unless asked for an unusually large amount of memory or if the system is
in a critical state where it has little to spare. There are applications that need to make
requests for large chunks of memory (for example, database applications), and it is gen-
erally important to not assume memory allocation to be successful. C++ provides you
with two possible methods to ensure that your pointer is valid. The default method uses
exceptions wherein unsuccessful allocations result in exception of the form
std::bad_alloc to be thrown. This results in the execution of your application being
disrupted, and unless you have programmed an exception handler, your application
crashes with an error message akin to “unhandled exception.”

Lesson 28, “Exception Handling,” discusses solving this problem in detail. Listing 8.15
gives you a sneak preview of how exception handling can be used to check for failed
allocation requests.

LISTING 8.15 Handle Exceptions, Exit Gracefully When new Fails

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: try
6: {
7: // Request lots of memory space
8: int* pAge = new int [536870911];
9:
10: // Use the allocated memory
11:
12: delete[] pAge;
13: }
14: catch (bad_alloc)
15: {
16: cout << “Memory allocation failed. Ending program” << endl;
17: }
18: return 0;
19: }

Output ▼

Memory allocation failed. Ending program

Pointer Programming Best-Practices 191

8

ptg7987094

Analysis ▼

This program might execute differently on your computer. My environment could not
successfully allocate the requested space for 536870911 integers. Had I not programmed
an exception handler (the catch block you see in Lines 14–17), the program would have
ended quite disgracefully. When using debug mode binaries built using Microsoft Visual
Studio, program execution will produce output as shown in Figure 8.2.

192 LESSON 8: Pointers and References Explained

FIGURE 8.2
Program Crash
In Absence Of
Exception Handling
in Listing 8.15
(Debug build using
MSVC compiler).

Debug mode binaries have exception handlers inserted by the development environment,
and these intervene using the message above. In release mode, the OS (in this case
Windows) terminates the application quite unceremoniously as shown by Figure 8.3.

FIGURE 8.3
Program Crash
In Absence Of
Exception Handling
in Listing 8.15
(Release build).

When your application crashes as seen above, it is terminated by the OS and in the
absence of an exception handler you have not had the chance to even say “good-bye.”

The presence of the exception handler resulted in the application being able to make a
decent exit after telling the user that a problem has been encountered, rather than letting
the OS display a crash message.

ptg7987094

There is a variant of new called new(nothrow) that does not throw an exception, rather
results in the operator new returning NULL to the pointer that can be checked for validity
before it is used. See Listing 8.16.

LISTING 8.16 Using new(nothrow) That Returns NULL When Allocation Fails

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: // Request lots of memory space, use nothrow version
6: int* pAge = new(nothrow) int [0x1fffffff];
7:
8: if (pAge) // check pAge != NULL
9: {
10: // Use the allocated memory
11: delete[] pAge;
12: }
13: else
14: cout << “Memory allocation failed. Ending program” << endl;
15:
16: return 0;
17: }

Output ▼

Memory allocation failed. Ending program

Analysis ▼

The same program using new(nothrow) that returned NULL as the requested memory
allocation failed instead of throwing std::bad_alloc as the previous one in Listing 8.15
did. Both forms are good, and the choice is for you to make.

What Is a Reference?
A reference is an alias for a variable. When you declare a reference, you need to initial-
ize it to a variable. Thus, the reference variable is just a different way to access the data
stored in the variable being referenced.

You would declare a reference using the reference operator (&) as seen in the following
statement:

VarType Original = Value;
VarType& ReferenceVariable = Original;

What Is a Reference? 193

8

ptg7987094

To further understand how to declare references and use them, see Listing 8.17.

LISTING 8.17 Demonstrating That References Are Aliases for the Assigned Value

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: int Original = 30;
6: cout << “Original = “ << Original << endl;
7: cout << “Original is at address: “ << hex << &Original << endl;
8:
9: int& Ref = Original;
10: cout << “Ref is at address: “ << hex << &Ref << endl;
11:
12: int& Ref2 = Ref;
13: cout << “Ref2 is at address: “ << hex << &Ref2 << endl;
14: cout << “Ref2 gets value, Ref2 = “ << dec << Ref2 << endl;
15:
16: return 0;
17: }

Output ▼

Original = 30
Original is at address: 0044FB5C
Ref is at address: 0044FB5C
Ref2 is at address: 0044FB5C
Ref2 gets value, Ref2 = 30

Analysis ▼

The output demonstrates that references, irrespective of whether they’re initialized to the
original variable as seen in Line 9 or to a reference as seen in Line 12, address the same
location in memory where the original is contained. Thus, references are true aliases—
that is, just another name for Original. Displaying the value using Ref2 in Line 14 gets
the same value as the Original in Line 6 because Ref2 aliases Original and is con-
tained in the same location in memory.

What Makes References Useful?
References enable you to work with the memory location they are initialized to. This
makes references particularly useful when programming functions. As you learned in
Lesson 7, “Organizing Code with Functions,” a typical function is declared like this:

ReturnType DoSomething(Type Parameter);

194 LESSON 8: Pointers and References Explained

ptg7987094

Function DoSomething() is invoked like this:

ReturnType Result = DoSomething(argument); // function call

The preceding code would result in the argument being copied into Parameter, which is
then used by the function DoSomething(). This copying step can be quite an overhead if
the argument in question consumes a lot of memory. Similarly, when DoSomething()
returns a value, it is copied again into Result. It would be ideal if we could avoid or
eliminate the copy steps, enabling the function to work directly on the data in the caller’s
stack. References enable you to do just that.

A version of the function without the copy step looks like this:

ReturnType DoSomething(Type& Parameter); // note the reference&

This function would be invoked as the following:

ReturnType Result = DoSomething(argument);

As the argument is being passed by reference, Parameter is not a copy of argument
rather an alias of the latter, much like Ref in Listing 8.17. Additionally, a function that
accepts a parameter as a reference can optionally return values using reference parame-
ters. See Listing 8.18 to understand how functions can use references instead of return
values.

LISTING 8.18 Function That Calculates Square Returned in a Parameter by Reference

0: #include <iostream>
1: using namespace std;
2:
3: void ReturnSquare(int& Number)
4: {
5: Number *= Number;
6: }
7:
8:
9: int main()
10: {
11: cout << “Enter a number you wish to square: “;
12: int Number = 0;
13: cin >> Number;
14:
15: ReturnSquare(Number);
16: cout << “Square is: “ << Number << endl;
17:
18: return 0;
19: }

What Is a Reference? 195

8

ptg7987094

Output ▼

Enter a number you wish to square: 5
Square is: 25

Analysis ▼

The function that performs the operation of squaring is in Lines 3–6. Note how it accepts
the number to be squared as a parameter by reference and returns the result in the same.
Had you forgotten to mark the parameter Number as a reference (&), the result would not
reach the calling function main() as ReturnSquare() would then perform its operations
on a local copy of Number and that would be destroyed when the function exits. Using
references, you ensure that ReturnSquare() is operating in the same address space
where Number in main() is defined. Thus, the result of the operation is available in
main() even after the function ReturnSquare() has exited.

In this sample, the input parameter containing the number sent by the user has been mod-
ified. If you need both values, the original and the square, you can have the function
accept two parameters: one that contains the input and the other that supplies the square.

Using Keyword const on References
You might need to have references that are not allowed to change the value of the origi-
nal variable being aliased. Using const when declaring such references is the way to
achieve that:

int Original = 30;
const int& ConstRef = Original;
ConstRef = 40; // Not allowed: ConstRef can’t change value in Original
int& Ref2 = ConstRef; // Not allowed: Ref2 is not const
const int& ConstRef2 = ConstRef; // OK

Passing Arguments by Reference to Functions
One of the major advantages of references is that they allow a called function to work on
parameters that have not been copied from the calling function, resulting in significant
performance improvements. However, as the called function works using parameters
directly on the stack of the calling function, it is often important to ensure that the called
function cannot change the value of the variable at the caller’s end. References that are
defined as const help you do just that, as demonstrated by Listing 8.19. A const refer-
ence parameter cannot be used as an l-value, so any attempt at assigning to it causes a
compilation failure.

196 LESSON 8: Pointers and References Explained

ptg7987094

LISTING 8.19 Using const Reference to Ensure That the Calling Function Cannot
Modify a Value Sent by Reference

0: #include <iostream>
1: using namespace std;
2:
3: void CalculateSquare(const int& Number, int& Result) // note “const”
4: {
5: Result = Number*Number;
6: }
7:
8: int main()
9: {
10: cout << “Enter a number you wish to square: “;
11: int Number = 0;
12: cin >> Number;
13:
14: int Square = 0;
15: CalculateSquare(Number, Square);
16: cout << Number << “^2 = “ << Square << endl;
17:
18: return 0;
19: }

Output ▼

Enter a number you wish to square: 27
27^2 = 729

Analysis ▼

In contrast to the previous program where the variable that sent the number to be squared
also held the result, this one uses two variables—one to send the number to be squared
and the other to hold the result of the operation. To ensure that the number being sent
cannot be modified, it has been marked as a const reference using the const keyword, as
shown in Line 3. This automatically makes parameter Number an input parameter—one
whose value cannot be modified.

As an experiment, you may modify Line 5 to return the square using the same logic
shown in the Lis ting 8.18:
Number *= Number;

You are certain to face a compilation error that tells you that a const value cannot be
modified. Thus const references are a powerful tool supplied by C++ that indicate a
parameter being an input parameter and at the same time ensure that the value being

What Is a Reference? 197

8

ptg7987094

passed by reference cannot be modified by the called function. It might seem trivial at
first, but in a multiprogrammer environment where the person writing the first version
might be different than the one enhancing it or correcting it, using const references
makes an important difference to the quality of programming.

Summary
In this lesson you learned about pointers and references. You learned how pointers can
be used to access and manipulate memory and how they’re a tool that assists in dynamic
memory allocation. You learned operators new and delete that can be used to allocate
memory for an element. You learned that their variants new…[] and delete[] help you
allocate memory for an array of data. You were introduced to traps in pointer program-
ming and dynamic allocation and found out that releasing dynamically allocated memory
is important to avoiding leaks. References are aliases and are a powerful alternative to
using pointers when passing arguments to functions in that references are guaranteed to
be valid. You learned of “const correctness” when using pointers and references and will
hopefully henceforth declare functions with the most restrictive level of const-ness in
parameters as possible.

Q&A
Q Why dynamically allocate when you can do with static arrays where you don’t

need to worry about deallocation?

A Static arrays have a fixed size and will neither scale upward if your application
needs more memory nor will they optimize if your application needs less. This is
where dynamic memory allocation makes a difference.

Q I have two pointers:
int* pNumber = new int;
int* pCopy = pNumber;

Am I not better off calling delete using both to ensure that the memory is
gone?

A That would be wrong. You are allowed to invoke delete only once on the address
returned by new. Also, you would ideally avoid having two pointers pointing to the
same address because performing delete on any one would invalidate the other.
Your program should also not be written in a way that you have any uncertainty
about the validity of pointers used.

198 LESSON 8: Pointers and References Explained

ptg7987094

Q When should I use new(nothrow)?

A If you don’t want to handle the exception std::bad_alloc, you use the nothrow
version of operator new that returns NULL if the requested allocation fails.

Q I can call a function to calculate area using the following two methods:
void CalculateArea (const double* const pRadius, double* const pArea);
void CalculateArea (const double& radius, double& area);

Which variant should I prefer?

A The latter, using references as references, is not invalid, whereas pointers can be.
Besides, it’s simpler, too.

Q I have two pointers:
int Number = 30;
const int* pNumber = &Number;

I understand that I cannot change the value of Number using the pointer
pNumber due to the const declaration. Can I assign pNumber to a non-const
pointer and then use it to manipulate the value contained in integer Number?

A No, you cannot change the const-correctness of the pointer:
int* pAnother = pNumber; // cannot assign pointer to const to a non-const

Q Why should I bother passing values to a function by reference?

A You don’t need to so long as it doesn’t affect you much. However, if your function
parameters accept objects that are quite heavy (large in bytes), then passing by
value would be quite an expensive operation. Your function call would be a lot
more efficient in using references. Remember to use const generously, except
where the function needs to store a result in a variable.

Q What is the difference between these two declarations:
int MyNumbers[100];
int* MyArrays[100];

A MyNumbers is an array of integers—that is, MyNumbers is a pointer to a memory
location that holds 100 integers, pointing to the first at index 0. It is the static alter-
native of the following:
int* MyNumbers = new int [100]; // dynamically allocated array
// use MyNumbers
delete MyNumbers;

MyArrays, on the other hand, is an array of 100 pointers, each pointer being capa-
ble of pointing to an integer or an array of integers.

Q&A 199

8

ptg7987094

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain you understand the answers before continuing to the next
lesson.

Quiz
1. Why can’t you assign a const reference to a non-const reference?

2. Are new and delete functions?

3. What is the nature of value contained in a pointer variable?

4. What operator would you use to access the data pointed by a pointer?

Exercises
1. What is the display when these statements are executed:

0: int Number = 3;
1: int* pNum1 = &Number;
2:_*pNum1 = 20;
3: int* pNum2 = pNum1;
4: Number *= 2;
5: cout << *pNum2;

2. What are the similarities and differences between these three overloaded functions:
int DoSomething(int Num1, int Num2);
int DoSomething(int& Num1, int& Num2);
int DoSomething(int* pNum1, int* pNum2);

3. How would you change the declaration of pNum1 in Exercise 1 at Line 1 so as to
make the assignment at Line 3 invalid? (Hint: It has something to do with ensuring
that pNum1 cannot change the data pointed to.)

4. BUG BUSTERS: What is wrong with this code?
#include <iostream>
using namespace std;
int main()
{

200 LESSON 8: Pointers and References Explained

ptg7987094

int *pNumber = new int;
pNumber = 9;
cout << “The value at pNumber: “ << *pNumber;
delete pNumber;
return 0;

}

5. BUG BUSTERS: What is wrong with this code?

#include <iostream>
using namespace std;
int main()
{

int pNumber = new int;
int* pNumberCopy = pNumber;
*pNumberCopy = 30;
cout << *pNumber;
delete pNumberCopy;
delete pNumber;
return 0;

}

6. What is the output of the above program when corrected?

Workshop 201

8

ptg7987094

This page intentionally left blank

ptg7987094

LESSON 9
Classes and Objects

So far you have explored the structure of a simple program that starts
execution at main() and enables you to declare local and global variables
and constants and branch your execution logic into function modules that
can take parameters and return values. All this is very similar to a proce-
dural language like C, which has no object-orientation to it. In other
words, you need to learn about managing data and connecting methods
to it.

In this lesson, you will learn

n What classes are

n How classes help you consolidate data with methods (akin to
functions) that work on them

n About constructors, copy constructors, and destructors

n How C++11 helps improve performance via the move constructor

n Object-oriented concepts of encapsulation and abstraction

n What this pointer is about

n What a struct is and how it differs from class

ptg7987094

The Concept of Classes and Objects
Imagine you are writing a program that models a human being, like yourself. This
human being needs to have an identity: a name, a date of birth, a place of birth, and a
gender. The human can perform certain functions, such as talk and introduce him- or her-
self, among others. Now, the former information is data about the human being, whereas
the latter information comprises functions as illustrated by Figure 9.1.

204 LESSON 9: Classes and Objects

Human Being

Data
 • Gender

• Date of birth
• Place of birth

 • Name
Methods
 • IntroduceSelf()
 • ...

FIGURE 9.1
A broad represen-
tation of a human.

To model a human, what you now need is a construct that enables you to group within it
the attributes that define a human (data) and the activities a human can perform (methods
that are similar to functions) using the available attributes. This construct is the class.

Declaring a Class
Declaration of a class involves the usage of keyword class followed by the name of the
class, followed by a statement block {…} that encloses a set of member attributes and
methods within curly braces, finally terminated by a semicolon.

A declaration of a class is akin to the declaration of a function. It tells the compiler about
the class and its properties. Declaration of a class alone does not make a difference to the
execution of a program, as the class needs to be used just the same way as a function
needs to be invoked.

A class that models a human looks like the following (ignore syntactic short-comings for
the moment):

ptg7987094

class Human
{

// Data attributes:
string Name;
string DateOfBirth;
string PlaceOfBirth;
string Gender;

// Methods:
void Talk(string TextToTalk);
void IntroduceSelf();
…

};

Needless to say, IntroduceSelf() uses Talk() and some of the data attributes that are
grouped within class Human. Thus, in keyword class, C++ has provided you with a
powerful way to create your own data type that allows you to encapsulate attributes and
functions that work using those. All attributes of a class, in this case Name, DateOfBirth,
PlaceOfBirth, and Gender, and all functions declared within it, namely Talk() and
IntroduceSelf(), are called members of class Human.

Encapsulation, which is the ability to logically group data and methods that work using
it, is a very important property of Object Oriented Programming.

The Concept of Classes and Objects 205

9

Methods are essentially functions that are members of a class.

Instantiating an Object of a Class
A class is like a blueprint, and declaring a class alone has no effect on the execution of a
program. The real-world avatar of a class at runtime is an object. To use the features of a
class, you typically instantiate an object of that class and use that object to access its
member methods and attributes.

Instantiating an object of type class Human is similar to creating an instance of another
type, say double:

double Pi = 3.1415; // a double declared as a local variable (on stack)
Human Tom; // An object of class Human declared as a local variable

Alternatively, you would dynamically allocate for an instance of class Human as you
would an int using new:

int* pNumber = new int; // an integer allocated dynamically on free store
delete pNumber; // de-allocating the memory

NOTE

ptg7987094

Human* pAnotherHuman = new Human(); // dynamically allocated Human
delete pAnotherHuman; // de-allocating memory allocated for a Human

Accessing Members Using the Dot Operator .
An example of a human would be Tom, male, born in 1970 in Alabama. Instance Tom is
an object of class Human, an avatar of the class that exists in reality, that is at runtime:

Human Tom; // an instance of Human

As the class declaration demonstrates, Tom has attributes such as DateOfBirth that can be
accessed using the dot operator (.):

Tom.DateOfBirth = “1970”;

This is because attribute DateOfBirth belongs to class Human being a part of its blue-
print as seen in the class declaration. This attribute exists in reality—that is, at runtime—
only when an object has been instantiated. The dot operator (.) helps you access
attributes of an object.

Ditto for methods such as IntroduceSelf():

Tom.IntroduceSelf();

If you have a pointer pTom to an instance of class Human, you can either use the pointer
operator (->) to access members, as explained in the next section, or use the indirection
operator (*) to reference the object following the dot operator.

Human* pTom = new Human();
(*pTom).IntroduceSelf();

Accessing Members Using the Pointer Operator (->)
If an object has been instantiated on the free store using new or if you have a pointer to
an object, then you use the pointer operator (->) to access the member attributes and
functions:

Human* pTom = new Human();
pTom->DateOfBirth = “1970”;
pTom->IntroduceSelf();
delete pTom;

// Alternatively when you have a pointer:
Human Tom;
Human* pTom = &Tom; // Assign address using reference operator&
pTom->DateOfBirth = “1970”; // is equivalent to Tom.DateOfBirth = “1970”;
pTom->IntroduceSelf(); // is equivalent to Tom.IntroduceSelf();

206 LESSON 9: Classes and Objects

ptg7987094

A compile-worthy form of class Human featuring keywords such as private and
public is demonstrated by Listing 9.1.

LISTING 9.1 A Compile-worthy Class Human

0: #include <iostream>
1: #include <string>
2: using namespace std;
3:
4: class Human
5: {
6: private:
7: string Name;
8: int Age;
9:
10: public:
11: void SetName (string HumansName)
12: {
13: Name = HumansName;
14: }
15:
16: void SetAge(int HumansAge)
17: {
18: Age = HumansAge;
19: }
20:
21: void IntroduceSelf()
22: {
23: cout << “I am “ + Name << “ and am “;
24: cout << Age << “ years old” << endl;
25: }
26: };
27:
28: int main()
29: {
30: // Constructing an object of class Human with attribute Name as “Adam”
31: Human FirstMan;
32: FirstMan.SetName(“Adam”);
33: FirstMan.SetAge(30);
34:
35: // Constructing an object of class Human with attribute Name as “Eve”
36: Human FirstWoman;
37: FirstWoman.SetName(“Eve”);
38: FirstWoman.SetAge (28);
39:
40: FirstMan.IntroduceSelf();
41: FirstWoman.IntroduceSelf();
42: }

The Concept of Classes and Objects 207

9

ptg7987094

Output ▼

I am Adam and am 30 years old
I am Eve and am 28 years old

Analysis ▼

Lines 4–26 demonstrate the construction of a very basic C++ class. These need to be
viewed from a very practical point of view, ignoring terms and concepts you don’t under-
stand at first sight because they are discussed in detail later in this lesson. Focus on the
structure of class Human and how this class has been utilized in main().

This class contains two private variables, one of type string called Name at Line 7 and
another of type int called Age at Line 8, and a few public functions (also called meth-
ods), SetName(), SetAge(), and IntroduceSelf() at Lines 11, 16, and 21, that use the
private variables. Lines 31 and 36 in main() create two objects of class Human, respec-
tively. The lines following this creation of objects set the member variables of the objects
FirstMan and FirstWoman using methods SetName() and SetAge() that are called acces-
sor methods. Note how Lines 40 and 41 invoke method IntroduceSelf() on the two
objects to create two distinct lines in the output that utilize the member variables you set
in the previous lines.

Did you notice keywords private and public in Listing 9.1? It’s time you learned fea-
tures that C++ supplies to help you protect attributes your class should keep hidden from
those using it.

Keywords public and private
Each of us has a lot of information. Some of this information is available to people
around us—for example, our names. This information can be called public. However,
certain attributes are those that you might not want the world to see or know—for exam-
ple, your income. This information is private and often kept a secret.

C++ enables you to model class attributes and methods as public—implying one with an
object of the class can invoke them—or private—implying that only artifacts that belong
to the class (or its “friends”) can invoke those private members. C++ keywords public
and private help you as the designer of a class decide what parts of a class can be
invoked from outside it, for instance, from main(), and what cannot.

What advantages does this ability to mark attributes or methods as private present you
as the programmer? Consider the declaration of class Human ignoring all but the member
attribute Age:

208 LESSON 9: Classes and Objects

ptg7987094

class Human
{
private:

// Private member data:
int Age;
string Name;

public:
int GetAge()
{

return Age;
}

void SetAge(int InputAge)
{

Age = InputAge;
}

// ...Other members and declarations
};

Assume an instance of a Human called Eve:

Human Eve;

When the user of this instance tries to access Eve’s age with

cout << Eve.Age; // compile error

then this user would get a compile error akin to “Error: Human::Age—cannot access pri-
vate member declared in class Human.” The only permissible way to know the Age
would be to ask for it via public method GetAge() supplied by class Human and imple-
mented in a way the programmer of the class thought was an appropriate way to expose
the Age:

cout << Eve.GetAge(); // OK

If the programmer of class Human so desires, he could use GetAge() to show Eve as
younger than she is! In other words, this means C++ allows the class to control what
attributes it wants to expose and how it wants to expose the same. If there were no
GetAge() public member method implemented by class Human, the class would effec-
tively have ensured that the user cannot query Age at all. This feature can be useful in sit-
uations that are explained later in this lesson.

Similarly, Human::Age cannot be assigned directly either:

Eve.Age = 22; // compile error

The only permissible way to set the age is via method SetAge():

Eve.SetAge(22); // OK

Keywords public and private 209

9

ptg7987094

This has many advantages. The current implementation of SetAge() does nothing but
directly set the member variable Human::Age. However, you can use SetAge() to verify
the Age being set is non-zero and not negative and thus validate external input:

class Human
{
private:

int Age;

public:
void SetAge(int InputAge)
{

if (InputAge > 0)
Age = InputAge;

}
};

Thus, C++ enables the designer of the class to control how data attributes of the class are
accessed and manipulated.

Abstraction of Data via Keyword private
While allowing you to design a class as a container that encapsulates data and methods
that operate on that data, C++ empowers you to decide what information is unreachable
to the outside world (that is, unavailable outside the class) via keyword private. At the
same time, you have the possibility to allow controlled access to even information
declared private via methods that you have declared as public. Thus your implementa-
tion of a class can abstract what you think the world outside it—other classes and func-
tions such as main()—don’t need to know.

Going back to the example related to Human::Age being a private member, you know that
even in reality many people don’t like to reveal their true ages. If class Human was
required to tell an age two years younger than the current age, it could do so easily via a
public function GetAge() that uses the Human::Age parameter, reduces it by two, and
supplies the result as demonstrated by Listing 9.2.

LISTING 9.2 A Model of Class Human Where the True Age Is Abstracted from the User
and a Younger Age Is Reported

0: #include <iostream>
1: using namespace std;
2:
3: class Human
4: {

210 LESSON 9: Classes and Objects

ptg7987094

5: private:
6: // Private member data:
7: int Age;
8:
9: public:
10: void SetAge(int InputAge)
11: {
12: Age = InputAge;
13: }
14:
15: // Human lies about his / her Age (if over 30)
16: int GetAge()
17: {
18: if (Age > 30)
19: return (Age - 2);
20: else
21: return Age;
22: }
23: };
24:
25: int main()
26: {
27: Human FirstMan;
28: FirstMan.SetAge(35);
29:
30: Human FirstWoman;
31: FirstWoman.SetAge(22);
32:
33: cout << “Age of FirstMan “ << FirstMan.GetAge() << endl;
34: cout << “Age of FirstWoman “ << FirstWoman.GetAge() << endl;
35:
36: return 0;
37: }

Output ▼

Age of FirstMan 33
Age of FirstWoman 22

Analysis ▼

Note the public method Human::GetAge() at Line 16. As the actual age contained in pri-
vate integer member Human::Age is not directly accessible, the only resort external users
of this class have towards querying an object of class Human for attribute Age is via
method GetAge(). Thus, the actual age held in Human::Age is abstracted from the outside
world.

Keywords public and private 211

9

ptg7987094

Abstraction is a very important concept in object-oriented languages. It empowers pro-
grammers to decide what attributes of a class need to remain known only to the class and
its members with nobody outside it (with the exception of those declared as its “friends”)
having access to it.

Constructors
A constructor is a special function (or method) that is invoked when an object is created.
Just like functions, constructors can also be overloaded.

Declaring and Implementing a Constructor
A constructor is a special function that has the name of the class and no return value. So,
class Human has a constructor that is declared like this:

class Human
{
public:

Human(); // declaration of a constructor
};

This constructor can either be implemented inline in the class or can be implemented
externally outside the class declaration. An implementation or definition inside the class
looks like this:

class Human
{
public:

Human()
{

// constructor code here
}

};

A variant enabling you to define the constructor outside the class’ declaration looks like
this:

class Human
{
public:

Human(); // constructor declaration
};

// constructor definition (implementation)
Human::Human()
{

212 LESSON 9: Classes and Objects

ptg7987094

// constructor code here
}

Constructors 213

9

:: is called the scope resolution operator. For example,
Human::DateOfBirth is referring to variable DateOfBirth declared
within the scope of class Human. ::DateOfBirth, on the other
hand, refers to another variable DateOfBirth in a global scope.

When and How to Use Constructors
A constructor is always invoked when an object is created. This makes a constructor a
perfect place for you to initialize class member variables such as integers, pointers, and
so on to known initial values. Take a look at Listing 9.2 again. Note that if you had for-
gotten to SetAge(), the integer variable Human::Age would contain an unknown junk
value as that variable has not been initialized (try it by commenting out Lines 28 and 31).
Listing 9.3 uses constructors to implement a better version of class Human, where vari-
able Age has been initialized.

LISTING 9.3 Using Constructors to Initialize Class Member Variables

0: #include <iostream>
1: #include <string>
2: using namespace std;
3:
4: class Human
5: {
6: private:
7: // Private member data:
8: string Name;
9: int Age;
10:
11: public:
12: // constructor
13: Human()
14: {
15: Age = 0; // initialized to ensure no junk value
16: cout << “Constructed an instance of class Human” << endl;
17: }
18:
19: void SetName (string HumansName)
20: {
21: Name = HumansName;
22: }
23:

NOTE

ptg7987094

LISTING 9.3 Continued

24: void SetAge(int HumansAge)
25: {
26: Age = HumansAge;
27: }
28:
29: void IntroduceSelf()
30: {
31: cout << “I am “ + Name << “ and am “;
32: cout << Age << “ years old” << endl;
33: }
34: };
35:
36: int main()
37: {
38: Human FirstMan;
39: FirstMan.SetName(“Adam”);
40: FirstMan.SetAge(30);
41:
42: Human FirstWoman;
43: FirstWoman.SetName(“Eve”);
44: FirstWoman.SetAge (28);
45:
46: FirstMan.IntroduceSelf();
47: FirstWoman.IntroduceSelf();
48: }

Output ▼

Constructed an instance of class Human
Constructed an instance of class Human
I am Adam and am 30 years old
I am Eve and am 28 years old

Analysis ▼

In the output you see an addition of two very relevant first lines in comparison to Listing
9.1. Now, take a look at main() defined in Lines 36–48. You see that these two lines
have been created indirectly via the creation (construction) of two objects FirstMan and
FirstWoman in Lines 38 and 42. As these two objects are of type class Human, their cre-
ation has automatically resulted in the execution of the constructor of class Human
defined in Lines 13–17. This constructor has the cout statement that created this output.
Note that the constructor also initializes the integer Age to zero. Should you forget to set
the Age of a newly created object, you can rest assured that the constructor ensures that
the value is not a random integer (that might look valid) but is instead a zero that indi-
cates a failure in setting the Human::Age class attribute.

214 LESSON 9: Classes and Objects

ptg7987094

Constructors 215

9

A constructor that can be invoked without argument is called the
default constructor. Programming a default constructor is optional.

If you don’t program any constructor as seen in Listing 9.1, the
compiler creates one for you (that constructs member attributes
but does not initialize Plain Old Data types such as int to any
value).

Overloading Constructors
As constructors can be overloaded just like functions, we can create a constructor that
requires Human to be created with a name as a parameter, for instance:

class Human
{
public:

Human()
{

// default constructor code here
}

Human(string HumansName)
{

// overloaded constructor code here
}

};

The application of overloaded constructors is demonstrated by Listing 9.4 in creating an
object of class Human with a name supplied at the time of construction.

LISTING 9.4 A Class Human with Multiple Constructors

0: #include <iostream>
1: #include <string>
2: using namespace std;
3:
4: class Human
5: {
6: private:
7: // Private member data:
8: string Name;
9: int Age;
10:
11: public:
12: // constructor
13: Human()

NOTE

ptg7987094

LISTING 9.4 Continued

14: {
15: Age = 0; // initialized to ensure no junk value
16: cout << “Default constructor creates an instance of Human” << endl;
17: }
18:
19: // overloaded constructor that takes Name
20: Human(string HumansName)
21: {
22: Name = HumansName;
23: Age = 0; // initialized to ensure no junk value
24: cout << “Overloaded constructor creates “ << Name << endl;
25: }
26:
27: // overloaded constructor that takes Name and Age
28: Human(string HumansName, int HumansAge)
29: {
30: Name = HumansName;
31: Age = HumansAge;
32: cout << “Overloaded constructor creates “;
33: cout << Name << “ of “ << Age << “ years” << endl;
34: }
35:
36: void SetName (string HumansName)
37: {
38: Name = HumansName;
39: }
40:
41: void SetAge(int HumansAge)
42: {
43: Age = HumansAge;
44: }
45:
46: void IntroduceSelf()
47: {
48: cout << “I am “ + Name << “ and am “;
49: cout << Age << “ years old” << endl;
50: }
51: };
52:
53: int main()
54: {
55: Human FirstMan; // use default constructor
56: FirstMan.SetName(“Adam”);
57: FirstMan.SetAge(30);
58:
59: Human FirstWoman (“Eve”); // use overloaded constructor
60: FirstWoman.SetAge (28);
61:
62: Human FirstChild (“Rose”, 1);

216 LESSON 9: Classes and Objects

ptg7987094

63:
64: FirstMan.IntroduceSelf();
65: FirstWoman.IntroduceSelf();
66: FirstChild.IntroduceSelf();
67: }

Output ▼

Default constructor creates an instance of Human
Overloaded constructor creates Eve
Overloaded constructor creates Rose of 1 years
I am Adam and am 30 years old
I am Eve and am 28 years old
I am Rose and am 1 years old

Analysis ▼

Adam is created using the default constructor; Eve is created using an overloaded con-
structor that accepts string as parameter that is assigned to Human::Name, whereas Rose
is created using a third overloaded constructor that takes a string and an int as a para-
meter where the int is assigned to Human::Age. This program demonstrates how over-
loading constructors can be quite useful, helping you initialize variables.

Constructors 217

9

You can choose to not implement the default constructor to enforce
object instantiation with certain minimal parameters.

Class Without a Default Constructor
In Listing 9.5, see how class Human without the default constructor enforces the creator
to supply a Name and Age as a prerequisite to creating an object.

LISTING 9.5 A Class with Overloaded Constructor(s) and No Default Constructor

0: #include <iostream>
1: #include <string>
2: using namespace std;
3:
4: class Human
5: {
6: private:
7: // Private member data:
8: string Name;

TIP

ptg7987094

LISTING 9.5 Continued

9: int Age;
10:
11: public:
12:
13: // overloaded constructor (no default constructor)
14: Human(string HumansName, int HumansAge)
15: {
16: Name = HumansName;
17: Age = HumansAge;
18: cout << “Overloaded constructor creates “ << Name;
19: cout << “ of age “ << Age << endl;
20: }
21:
22: void IntroduceSelf()
23: {
24: cout << “I am “ + Name << “ and am “;
25: cout << Age << “ years old” << endl;
26: }
27: };
28:
29: int main()
30: {
31: // Uncomment next line to try creating using a default constructor
32: // Human FirstMan;
33:
34: Human FirstMan(“Adam”, 30);
35: Human FirstWoman(“Eve”, 28);
36:
37: FirstMan.IntroduceSelf();
38: FirstWoman.IntroduceSelf();
39: }

Output ▼

Overloaded constructor creates Adam of age 30
Overloaded constructor creates Eve of age 28
I am Adam and am 30 years old
I am Eve and am 28 years old

Analysis ▼

Line 32 in main() begs attention. It is quite similar to the code that creates FirstMan in
Listing 9.3, yet if you uncomment it, compilation fails with the message error:
‘Human’ : no appropriate default constructor available. This is because this

218 LESSON 9: Classes and Objects

ptg7987094

version of class Human has only one constructor that takes a string and an int as input
parameters, as seen in Line 14. There is no default constructor available, and in the
presence of an overloaded constructor, the C++ compiler does not generate a default
constructor for you.

Thus, this sample demonstrates the ability to design classes that can enforce creation
only when certain parameters have been provided, in this case a Name and an Age for cre-
ating an object of type class Human. What this sample in Listing 9.5 also demonstrates
is the ability to create an object of class Human with his Name supplied at creation time,
and no possibility to change it afterward. This is because the name attribute of the Human
is stored in a private variable of type string called Name that cannot be accessed or
modified by main() or by any entity that is not a member of class Human. In other
words, the user of class Human is forced by the overloaded constructor to specify a
name (and age) for every object he creates and is not allowed to change that name—
modeling a real-world scenario quite well, don’t you think? Your name was given to you
by your parents at birth; people are allowed to know it, but nobody (except you) has the
authority to change it.

Constructor Parameters with Default Values
Just the same way as functions can have parameters with default values specified, so
can constructors. What you see in the following code is a slightly modified version of
the constructor from Listing 9.5 at Line 14 where the Age parameter has a default value
of 25:

class Human
{
private:

// Private member data:
string Name;
int Age;

public:
// overloaded constructor (no default constructor)
Human(string HumansName, int HumansAge = 25)
{

Name = HumansName;
Age = HumansAge;
cout << “Overloaded constructor creates “ << Name;
cout << “ of age “ << Age << endl;

}

// ... other members
};

Constructors 219

9

ptg7987094

Such a class can be instantiated with the syntax:

Human Adam(“Adam”); // Adam.Age is assigned a default value 25
Human Eve(“Eve, 18); // Eve.Age is assigned 18 as specified

220 LESSON 9: Classes and Objects

Note that a default constructor is one that can be instantiated
without arguments, and not necessarily one that doesn’t take
parameters. So, this constructor with two parameters, both with
default values, is a default constructor:

class Human
{
private:

// Private member data:
string Name;
int Age;

public:
// Note default values for the two input parameters
Human(string HumansName = “Adam”, int HumansAge = 25)
{

Name = HumansName;
Age = HumansAge;
cout << “Overloaded constructor creates “ << Name;
cout << “ of age “ << Age << endl;

}
};

The reason is that class Human can still be instantiated without
arguments:

Human Adam; // Human with default Name "Adam", Age 25

Constructors with Initialization Lists
You have seen how constructors are useful to initialize variables. Another way to initial-
ize members is by using initialization lists. An initialization list variant of the constructor
in Listing 9.5 that takes two parameters looks like this:

class Human
{
private:

string Name;
int Age;

public:
// constructor takes two parameters to initialize members Age and Name
Human(string InputName, int InputAge)

NOTE

ptg7987094

:Name(InputName), Age(InputAge)
{

cout << “Constructed a Human called “ << Name;
cout << “, “ << Age << “ years old” << endl;

}
// ... other class members
};

Thus, the initialization list is characterized by a colon (:) following the parameter decla-
ration contained in parentheses (…), followed by an individual member variable and the
value it is initialized to. This initialization value can be a parameter such as InputName or
can even be a fixed value. Initialization lists can also be useful in invoking base class
constructors with specific arguments and are discussed again in Lesson 10,
“Implementing Inheritance.”

You can see class Human that features a default constructor with parameters with
default values and an initialization list in Listing 9.6.

LISTING 9.6 Default Constructor That Accepts Parameters with Default Values to Set
Members Using Initialization Lists

0: #include <iostream>
1: #include <string>
2: using namespace std;
3:
4: class Human
5: {
6: private:
7: int Age;
8: string Name;
9:
10: public:
11: Human(string InputName = “Adam”, int InputAge = 25)
12: :Name(InputName), Age(InputAge)
13: {
14: cout << “Constructed a Human called “ << Name;
15: cout << “, “ << Age << “ years old” << endl;
16: }
17: };
18:
19: int main()
20: {
21: Human FirstMan;
22: Human FirstWoman(“Eve”, 18);
23:
24: return 0;
25: }

Constructors 221

9

ptg7987094

Output ▼

Constructed a Human called Adam, 25 years old
Constructed a Human called Eve, 18 years old

Analysis ▼

The constructor with initialization lists is seen in Lines 11–16, where you can also see
that the parameters have been given default values “Adam” for Name and 25 for Age.
Hence, when an instance of class Human called FirstMan is created in Line 21, its
members are automatically assigned the default values. FirstWoman, on the other hand,
has been supplied with an explicit Name and Age as shown in Line 22.

Destructor
Destructors, like constructors, are special functions, too. Unlike constructors, destructors
are automatically invoked when an object is destroyed.

Declaring and Implementing a Destructor
The destructor, like the constructor, looks like a function that takes the name of the class,
yet has a tilde (~) preceding it. So, class Human can have a destructor that is declared
like this:

class Human
{

~Human(); // declaration of a destructor
};

This destructor can either be implemented inline in the class or externally outside the
class declaration. An implementation or definition inside the class looks like this:

class Human
{
public:

~Human()
{

// destructor code here
}

};

A variant enabling you to define the destructor outside the class’ declaration looks like
this:

class Human
{

222 LESSON 9: Classes and Objects

ptg7987094

public:
~Human(); // destructor declaration

};

// destructor definition (implementation)
Human::~Human()
{

// destructor code here
}

As you can see, the declaration of the destructor differs from that of the constructor
slightly in that this contains a tilde (~). The role of the destructor is, however, diametri-
cally opposite to that of the constructor.

When and How to Use Destructors
Destructors are always invoked when an object of a class goes out of scope or is deleted
via delete and is destroyed. This property makes destructors the ideal place to reset vari-
ables and release dynamically allocated memory and other resources.

This book has consistently recommended the usage of std::string over a C-style char
buffer where you have to manage memory allocation and the likes yourself. std::string
and such other utilities are nothing but classes themselves that make the best of construc-
tors and destructors (in addition to operators, that you study in Lesson 12, “Operator
Types and Operator Overloading”). Analyze a sample class MyString as shown in
Listing 9.7 that allocates memory for a string in the constructor and releases it in the
destructor.

LISTING 9.7 A Simple Class That Encapsulates a C-style Buffer to Ensure Deallocation
via the Destructor

0: #include <iostream>
1: using namespace std;
2:
3: class MyString
4: {
5: private:
6: char* Buffer;
7:
8: public:
9: // Constructor
10: MyString(const char* InitialInput)
11: {
12: if(InitialInput != NULL)
13: {
14: Buffer = new char [strlen(InitialInput) + 1];

Destructor 223

9

ptg7987094

LISTING 9.7 Continued

15: strcpy(Buffer, InitialInput);
16: }
17: else
18: Buffer = NULL;
19: }
20: // Destructor: clears the buffer allocated in constructor
21: ~MyString()
22: {
23: cout << “Invoking destructor, clearing up” << endl;
24: if (Buffer != NULL)
25: delete [] Buffer;
26: }
27:
28: int GetLength()
29: {
30: return strlen(Buffer);
31: }
32:
33: const char* GetString()
34: {
35: return Buffer;
36: }
37: }; // end of class MyString
38:
39: int main()
40: {
41: MyString SayHello(“Hello from String Class”);
42: cout << “String buffer in MyString is “ << SayHello.GetLength();
43: cout << “ characters long” << endl;
44:
45: cout << “Buffer contains: “;
46: cout << “Buffer contains: “ << SayHello.GetString() << endl;
47: }

Output ▼

String buffer in MyString is 23 characters long
Buffer contains: Hello from String Class
Invoking destructor, clearing up

Analysis ▼

This class basically encapsulates a C-style string in MyString::Buffer and relieves you
of the task of allocating memory; it deallocates the same every time you need to use a
string. The lines of utmost interest to us are the constructor MyString() in Lines 10–19,
and the destructor ~MyString() in Lines 21–26. The constructor enforces construction

224 LESSON 9: Classes and Objects

ptg7987094

with an input string via a compulsory input parameter and then copies it to the C-style
string Buffer after allocating memory for it in Line 14 where strlen is used to deter-
mine the length of the input string and copying into this newly allocated memory in Line
15 using strcpy. In case the user of the class has supplied a NULL as InitialInput,
MyString::Buffer is initialized to NULL as well (to keep this pointer from containing a
random value that can be dangerous when used to access a memory location). The
destructor code does the job of ensuring that the memory allocated in the constructor is
automatically returned to the system. It checks if MyString::Buffer is not NULL, and,
if so, it performs a delete[] on it that complements the new in the constructor. Note that
nowhere in main() has the programmer ever done a new or a delete. This class not only
abstracted that implementation from him, but in doing so ensured technical correctness in
releasing allocated memory. The destructor ~MyString() is automatically invoked when
main returns, and this is demonstrated in the output that executes the cout statements in
the destructor.

Classes that handle strings better are one of the many applicable uses of a destructor.
Lesson 26, “Understanding Smart Pointers,” demonstrates how destructors play a critical
role in working with pointers in a smarter way.

Copy Constructor 225

9

Destructors cannot be overloaded. A class can have only one
destructor. If you forget to implement a destructor, the compiler
creates and invokes a dummy destructor, that is, an empty one
(that does no cleanup of dynamically allocated memory).

Copy Constructor
In Lesson 7, “Organizing Code with Functions,” you learned that arguments passed to a
function like Area() (shown in Listing 7.1) are copied:

double Area(double InputRadius);

So, the argument sent as parameter InputRadius is copied when Area() is called. This
rule applies to objects or instances of classes as well.

Shallow Copying and Associated Problems
Classes such as MyString, shown in Listing 9.7, contain a pointer member that points to
dynamically allocated memory, allocated in the constructor using new and deallocated in
the destructor using delete[]. When an object of this class is copied, the pointer mem-
ber is copied, but not the pointed buffer, resulting in two objects pointing to the same

NOTE

ptg7987094

dynamically allocated buffer in memory. This is called a shallow copy and presents a
threat to the stability of the program, as Listing 9.8 demonstrates.

LISTING 9.8 The Problem in Passing Objects of a Class Such as MyString by Value

0: #include <iostream>
1: using namespace std;
2:
3: class MyString
4: {
5: private:
6: char* Buffer;
7:
8: public:
9: // Constructor
10: MyString(const char* InitialInput)
11: {
12: if(InitialInput != NULL)
13: {
14: Buffer = new char [strlen(InitialInput) + 1];
15: strcpy(Buffer, InitialInput);
16: }
17: else
18: Buffer = NULL;
19: }
20:
21: // Destructor
22: ~MyString()
23: {
24: cout << “Invoking destructor, clearing up” << endl;
25: if (Buffer != NULL)
26: delete [] Buffer;
27: }
28:
29: int GetLength()
30: {
31: return strlen(Buffer);
32: }
33:
34: const char* GetString()
35: {
36: return Buffer;
37: }.
38: };
39:
40: void UseMyString(MyString Input)
41: {
42: cout << “String buffer in MyString is “ << Input.GetLength();
43: cout << “ characters long” << endl;

226 LESSON 9: Classes and Objects

ptg7987094

44:
45: cout << “Buffer contains: “ << Input.GetString() << endl;
46: return;
47: }
48:
49: int main()
50: {
51: MyString SayHello(“Hello from String Class”);
52:
53: // Pass SayHello as a parameter to the function
54: UseMyString(SayHello);
55:
56: return 0;
57: }

Output ▼

String buffer in MyString is 23 characters long
Buffer contains: Hello from String Class
Invoking destructor, clearing up
Invoking destructor, clearing up
<crash as seen in Figure 9.2>

Copy Constructor 227

9

FIGURE 9.2
Screenshot of
crash caused by
executing Listing
9.8 (in MS Visual
Studio debug
mode).

Analysis ▼

Why does the class that worked just fine in Listing .9.6 cause a crash in Listing 9.7? The
only difference between Listing 9.6 and 9.7 is that the job of using the object SayHello
of class MyString created in main() has been delegated to function UseMyString(),
invoked in Line 54. Delegating work to this function has resulted in object SayHello in
main() to be copied into argument Input used in UseMyString(). This is a copy gener-
ated by the compiler as the function has been declared to take Input as a parameter by

ptg7987094

value and not by reference. The compiler performs a binary copy of Plain Old Data such
as integers, characters, and raw pointers. So the pointer value contained in
SayHello.Buffer has simply been copied to Input—that is, SayHello.Buffer points to
the same memory location as Input.Buffer. This is illustrated in Figure 9.3.

228 LESSON 9: Classes and Objects

new at constructor

Memory allocated using

Pointer values copied during function call

 (Two pointers containing same address)

Input (binary copy of)

char* Buffer

“Hello from String

SayHello

char* Buffer

FIGURE 9.3
Shallow copy of
SayHello into
Input when
UseMyString() is
invoked.

The binary copy did not perform a deep copy of the pointed memory location, and you
now have two objects of class MyString pointing to the same location in memory.
Thus, when the function UseMyString() returned, variable Input goes out of scope and
is destroyed. In doing so, the destructor of class MyString is invoked, and the destruc-
tor code in Line 26 in Listing 9.8 releases the memory allocated to Buffer via delete.
Note that this call to delete invalidates the memory being pointed to in object SayHello
contained in main(). When main() ends, SayHello goes out of scope and is destroyed.
This time, however, Line 26 repeats a call to delete on a memory address that is no
longer valid (released and invalidated via the destruction of Input). This double delete
is what results in a crash. Note that the debug assertion message seen in Figure 9.2
shows Line 52 (Line 51 in the book’s zero-based line numbering system) because it’s
pointing at the object SayHello that was not destructed successfully.

The compiler in this case could not automatically ensure a deep
copy as it doesn’t know for sure the number of bytes pointed to by
pointer member MyString::Buffer or the nature of allocation at
the time of compilation.

Ensuring Deep Copy Using a Copy Constructor
The copy constructor is a special overloaded constructor that you as the programmer of
the class need to supply. The compiler guarantees invocation of the copy constructor
every time an object of the class is copied, and this includes passing an object to a func-
tion by value.

NOTE

ptg7987094

The declaration syntax of a copy constructor for class MyString is the following:

class MyString
{

MyString(const MyString& CopySource); // copy constructor
};

MyString::MyString(const MyString& CopySource)
{

// Copy constructor implementation code
}

Thus, a copy constructor takes an object of the same class by reference as a parameter.
This parameter is an alias of the source object and is the handle you have in writing your
custom copy code (where you would ensure a deep copy of all buffers in the source), as
Listing 9.9 demonstrates.

LISTING 9.9 Define a Copy Constructor to Ensure Deep Copy of Dynamically Allocated
Buffers

0: #include <iostream>
1: using namespace std;
2:
3: class MyString
4: {
5: private:
6: char* Buffer;
7:
8: public:
9: // constructor
10: MyString(const char* InitialInput)
11: {
12: cout << “Constructor: creating new MyString” << endl;
13: if(InitialInput != NULL)
14: {
15: Buffer = new char [strlen(InitialInput) + 1];
16: strcpy(Buffer, InitialInput);
17:
18: // Display memory address pointed by local buffer
19: cout << “Buffer points to: 0x” << hex;
20: cout << (unsigned int*)Buffer << endl;
21: }
22: else
23: Buffer = NULL;
24: }
25:
26: // Copy constructor
27: MyString(const MyString& CopySource)

Copy Constructor 229

9

ptg7987094

LISTING 9.9 Continued

28: {
29: cout << “Copy constructor: copying from MyString” << endl;
30:
31: if(CopySource.Buffer != NULL)
32: {
33: // ensure deep copy by first allocating own buffer
34: Buffer = new char [strlen(CopySource.Buffer) + 1];
35:
36: // copy from the source into local buffer
37: strcpy(Buffer, CopySource.Buffer);
38:
39: // Display memory address pointed by local buffer
40: cout << “Buffer points to: 0x” << hex;
41: cout << (unsigned int*)Buffer << endl;
42: }
43: else
44: Buffer = NULL;
45: }
46:
47: // Destructor
48: ~MyString()
49: {
50: cout << “Invoking destructor, clearing up” << endl;
51: if (Buffer != NULL)
52: delete [] Buffer;
53: }
54:
55: int GetLength()
56: {
57: return strlen(Buffer);
58: }
59:
60: const char* GetString()
61: {
62: return Buffer;
63: }
64: };
65:
66: void UseMyString(MyString Input)
67: {
68: cout << “String buffer in MyString is “ << Input.GetLength();
69: cout << “ characters long” << endl;
70:
71: cout << “Buffer contains: “ << Input.GetString() << endl;

230 LESSON 9: Classes and Objects

ptg7987094

72: return;
73: }
74:
75: int main()
76: {
77: MyString SayHello(“Hello from String Class”);
78:
79: // Pass SayHello by value (will be copied)
80: UseMyString(SayHello);
81:
82: return 0;
83: }

Output ▼

Constructor: creating new MyString
Buffer points to: 0x0040DA68
Copy constructor: copying from MyString
Buffer points to: 0x0040DAF8
String buffer in MyString is 17 characters long
Buffer contains: Hello from String Class
Invoking destructor, clearing up
Invoking destructor, clearing up

Analysis ▼

Most of the code is similar to Listing 9.8 save for a few lines of cout added to construc-
tor and a new copy constructor in Lines 27–45. To start with, let’s focus on main() that
(as before) creates an object SayHello in Line 77. Creating SayHello results in the first
line of output that comes from the constructor of MyString, at Line 12. For sake of con-
venience, the constructor also displays the memory address that Buffer points to. main()
then passes SayHello by value to function UseMyString() in Line 80, which automati-
cally results in the copy constructor being invoked as shown in the output. The code in
the copy constructor is very similar to that in the constructor. The basic idea is the same,
check the length of C-style string Buffer contained in the copy source at Line 34, allo-
cate that much memory in one’s own instance of Buffer, and then use strcpy to copy
from source to destination at Line 37. This is not a shallow copy of pointer values. This
is a deep copy where the content being pointed to is copied to a newly allocated buffer
that belongs to this object, as illustrated in Figure 9.4.

Copy Constructor 231

9

ptg7987094

new at constructor

Memory allocated using

new at copy constructor

Input (deep copy of SayHello)

char* Buffer

“Hello from String Class”

“Hello from String Class”

SayHello

char* Buffer

memory

Memory allocated using

The output in Listing 9.9 indicates that the memory addresses being pointed to by
Buffer is different in the copy—that is, two objects don’t point to the same dynamically
allocated memory address. As a result, when function UseMyString() returns and para-
meter Input is destroyed, the destructor code does a delete[] on the memory address
that was allocated in the copy constructor and belongs to this object. In doing so, it does
not touch memory that is being pointed to by SayHello in main(). So, both functions
end and their respective objects are destroyed successfully and peacefully without the
application crashing.

232 LESSON 9: Classes and Objects

FIGURE 9.4
Illustration of a
deep copy of
argument
SayHello into
parameter Input
when function
UseMyString()
is invoked.

The copy constructor has ensured deep copy in cases such as
function calls:

MyString SayHello(“Hello from String Class”);
UseMyString(SayHello);

However, what if you tried copying via assignment:

MyString overwrite(“who cares?”);
overwrite = SayHello;

This would still be a shallow copy due to the default assignment
operator supplied by the compiler as you haven’t yet specified any.
To avoid the problem of shallow copies during assignment, you
need to implement the copy assignment operator (=).

The copy assignment operator is discussed in length in Lesson
12. Listing 12.9 is an improved MyString that implements the
same:

MyString::operator= (const MyString& CopySource)
{

//... copy assignment operator code
}

NOTE

ptg7987094

Copy Constructor 233

9

Using const in the copy constructor declaration ensures that the
copy constructor does not modify the source object being referred to.

Additionally, the parameter in the copy-constructor is passed by ref-
erence as a necessity. If this weren’t a reference, the constructor
would itself invoke a copy by value, thus causing a shallow copy of
the source data—exactly what you set out to avoid.

CAUTION

DO always program a copy constructor
and copy assignment operator when
your class contains raw pointer mem-
bers (char* and the like).

DO always program the copy construc-
tor with a const reference source
parameter.

DO use string classes such as
std::string and smart pointer
classes as members instead of raw
pointers as they implement copy con-
structors and save you the effort.

DON’T use raw pointers as class mem-
bers unless absolutely unavoidable.

DO DON’T

The class MyString with a raw pointer member, char* Buffer is
used as an example to explain the need for copy constructors.

If you were to program a class that needs to contain string data
for storing names and so on, you use std::string instead of
char* and might not even need a copy constructor in the absence
of raw pointers. This is because the default copy constructor
inserted by the compiler would ensure the invocation of all avail-
able copy constructors of member objects such as std::string.

C++11

Move Constructors Help Improve Performance
There are cases where your objects are subjected to copy steps automatically, due to the
nature of the language and its needs. Consider the following:

class MyString
{

NOTE

ptg7987094

// pick implementation from Listing 9.9
};
MyString Copy(MyString& Source)
{

MyString CopyForReturn(Source.GetString()); // create copy
return CopyForReturn; // return by value invokes copy constructor

}
int main()
{

MyString sayHello (“Hello World of C++”);
MyString sayHelloAgain(Copy(sayHello)); // invokes 2x copy constructor

return 0;
}

As the comment indicates, in the instantiation of sayHelloAgain, the copy constructor
was invoked twice, thus a deep copy was performed twice because of our call to function
Copy(sayHello) that returns a MyString by value. However, this value returned is very
temporary and is not available outside this expression. So, the copy constructor invoked
in good faith by the C++ compiler actually causes a performance reduction that can
become significant if this is a dynamic array of objects of great size.

To avoid this performance bottleneck, program a move constructor in addition to a copy
constructor. The syntax of a move constructor is

// move constructor
MyString(MyString&& MoveSource)
{

if(MoveSource.Buffer != NULL)
{

Buffer = MoveSource.Buffer; // take ownership i.e. ‘move’
MoveSource.Buffer = NULL; // set the move source to NULL i.e. free it

}
}

When available, the C++11 compiler automatically opts for a move constructor for
“moving” the temporary resource and hence avoiding a deep-copy step. With the move
constructor implemented, the comment should be appropriately changed to the following:

MyString sayHelloAgain(Copy(sayHello)); // invokes 1x copy constructor, 1x
move constructor

The move constructor is usually implemented with the move assignment operator, which
is discussed in greater detail in Lesson 12. Listing 12.11 is a better version of class
MyString that implements the move constructor and the move assignment operator.

234 LESSON 9: Classes and Objects

ptg7987094

Different Uses of Constructors and
Destructor
You have learned a few important and basic concepts in this lesson, such as the concepts
of constructors, destructor, and the abstraction of data and methods via keywords such as
public and private. These concepts enable you to create classes that can control how
they’re created, copied, destroyed, or expose data.

Let’s look at a few interesting patterns that help you solve many important design
problems.

Class That Does Not Permit Copying
You are asked to model the constitution of your country. A country has only one
president. Your class President risks the following:

President OurPresident;
DoSomething(OurPresident); // duplicate created in passing by value
President clone;
clone = OurPresident; // duplicate via assignment

Clearly, you need to avoid this situation. Beyond modeling a certain constitution, you
might be programming an operating system and need to model one local area network,
one processor, and so on. You need to avoid situations where resources can be copied. If
you don’t declare a copy constructor, the C++ compiler inserts a default public copy
constructor for you. This ruins your design and threatens your implementation. Yet, the
language gives you a solution to this design paradigm.

You would ensure that your class cannot be copied by declaring a private copy con-
structor. This ensures that the function call DoSomething(OurPresident) will cause a
compile failure. To avoid assignment, you declare a private assignment operator.

Thus, the solution is the following:

class President
{
private:

President(const President&); // private copy constructor
President& operator= (const President&); // private copy assignment operator

// … other attributes
};

Different Uses of Constructors and Destructor 235

9

ptg7987094

There is no need for implementation of the private copy constructor or assignment opera-
tor. Just declaring them as private is adequate and sufficient toward fulfilling your goal of
ensuring non-copyable objects of class President.

Singleton Class That Permits a Single Instance
class President discussed earlier is good, but it has a shortcoming: It cannot help
creation of multiple presidents via instantiation of multiple objects:

President One, Two, Three;

Individually they are non-copyable thanks to the private copy constructors, but what
you ideally need is a class President that has one, and only one, real-world
manifestation—that is, there is only one object and creation of additional ones is prohib-
ited. Welcome to the concept of singleton that uses private constructors, a private assign-
ment operator, and a static instance member to create this (controversially) powerful
pattern.

236 LESSON 9: Classes and Objects

When the keyword static is used on a class’s data member, it
ensures that the member is shared across all instances.

When static is used on a local variable declared within the scope
of a function, it ensures that the variable retains its value between
function calls.

When static is used on a member function—a method—the
method is shared across all instances of the class.

Keyword static is an essential ingredient in creating a singleton class as demonstrated
by Listing 9.10.

LISTING 9.10 Singleton class President That Prohibits Copying, Assignment, and
Multiple Instance Creation

0: #include <iostream>
1: #include <string>
2: using namespace std;
3:
4: class President
5: {
6: private:
7: // private default constructor (prohibits creation from outside)
8: President() {};
9:

TIP

ptg7987094

10: // private copy constructor (prohibits copy creation)
11: President(const President&);
12:
13: // private assignment operator (prohibits assignment)
14: const President& operator=(const President&);
15:
16: // member data: Presidents name
17: string Name;
18:
19: public:
20: // controlled instantiation
21: static President& GetInstance()
22: {
23: // static objects are constructed only once
24: static President OnlyInstance;
25:
26: return OnlyInstance;
27: }
28:
29: // public methods
30: string GetName()
31: {
32: return Name;
33: }
34:
35: void SetName(string InputName)
36: {
37: Name = InputName;
38: }
39: };
40:
41: int main()
42: {
43: President& OnlyPresident = President::GetInstance();
44: OnlyPresident.SetName(“Abraham Lincoln”);
45:
46: // uncomment lines to see how compile failures prohibit duplicates
47: // President Second; // cannot access constructor
48: // President* Third= new President(); // cannot access constructor
49: // President Fourth = OnlyPresident; // cannot access copy constructor
50: // OnlyPresident = President::GetInstance(); // cannot access operator=
51:
52: cout << “The name of the President is: “;
53: cout << President::GetInstance().GetName() << endl;
54:
55: return 0;
56: }

Different Uses of Constructors and Destructor 237

9

ptg7987094

Output ▼

The name of the President is: Abraham Lincoln

Analysis ▼

Take a quick look at main() that has a few lines of code and a host of commented lines
that show all the combinations in creating new instances or copies of a class President
that won’t work. Let’s analyze them one by one:

47: // President Second; // cannot access constructor
48: // President* Third= new President(); // cannot access constructor

Lines 47 and 48 try object creation on the stack and heap, respectively, using the default
constructor, which is unavailable because it’s private, as shown in Line 8:

49: // President Fourth = OnlyPresident; // cannot access copy constructor

Line 49 is an attempt at creating a copy of an existing object via the copy constructor
(assignment at creation time invokes copy constructor), which is unavailable in main()
because it is declared private in Line 11:

50: // OnlyPresident = President::GetInstance(); // cannot access operator=

Line 50 is an attempt at creating a copy via assignment, which does not work as the
assignment operator is declared private in Line 14. So, main() can never create an
instance of class President and the only option left is seen in Line 43, where it uses
the static function GetInstance() to get an instance of class President. Because
GetInstance() is a static member, it is quite like a global function that can be invoked
without having an object as a handle. GetInstance(), implemented in Lines 21–27, uses
a static variable OnlyInstance to ensure that there is one and only one instance of class
President created. To understand that better, imagine that Line 24 is executed only once
(static initialization) and hence GetInstance() returns the only one available instance of
class President, irrespective of how that instance is used, as shown in Lines 43 and 53
in main().

238 LESSON 9: Classes and Objects

Use the singleton pattern only where absolutely necessary, keep-
ing future growth of the application and its features in perspective.
Note that the very feature that it restricts creation of multiple
instances can become an architectural bottleneck when a use
case comes up that needs multiple instances of the class.

For example, if our project was growing from modeling a nation to
modeling the United Nations that is currently represented by 192
nations with 192 presidents, clearly we have an architectural prob-
lem in the making.

CAUTION

ptg7987094

Class That Prohibits Instantiation on the Stack
Space on the stack is often limited. If you are writing a database that may contain a giga-
byte of data in its internal structures, you might want to ensure that a client of this class
cannot instantiate it on its stack; instead it is forced to create instances only on the heap.
The key to ensuring this is declaring the destructor private:

class MonsterDB
{
private:

// private destructor
~MonsterDB();
//… collections that reserve a huge amount of data

};

Thus, when trying to consume class MonsterDB, one is not allowed to create an
instance like this:

int main()
{

MonsterDB myDatabase; // compile error
// … more code
return 0;

}

This instance, if successfully constructed, would be on the stack. However, as the com-
piler knows that myDatabase needs to be destroyed when it goes out of scope, it automat-
ically tries to invoke the destructor at the end of main(), which is not accessible because
it is private, resulting in a compile failure.

However, the private destructor does not stop you from instantiating on the heap:

int main()
{

MonsterDB* myDatabase = new MonsterDB(); // no error
// … more code
return 0;

}

If you see a memory leak there, you are not mistaken. As the destructor is not accessible
from main, you cannot do a delete, either. What class MonsterDB needs to support is a
static public member function that destroys an instance (as a member, it has access to
the destructor). See Listing 9.11.

Different Uses of Constructors and Destructor 239

9

ptg7987094

LISTING 9.11 A Database class MonsterDB That Allows Object Creation Only on the
Free Store (Using new)

0: #include <iostream>
1: using namespace std;
2:
3: class MonsterDB
4: {
5: private:
6: ~MonsterDB() {}; // private destructor
7:
8: public:
9: static void DestroyInstance(MonsterDB* pInstance)
10: {
11: // static member can access private destructor
12: delete pInstance;
13: }
14:
15: // ... imagine a few other methods
16: };
17:
18: int main()
19: {
20: MonsterDB* pMyDatabase = new MonsterDB();
21:
22: // pMyDatabase -> member methods (....);
23:
24: // uncomment next line to see compile failure
25: // delete pMyDatabase; // private destructor cannot be invoked
26:
27: // use static member to deallocate
28: MonsterDB::DestroyInstance(pMyDatabase);
29:
30: return 0;
31: }

The code snippet produces no output.

Analysis ▼

The purpose of the code is just to demonstrate how a class that prohibits creation on the
stack can be programmed with the help of a private destructor, as shown in Line 6, and
a static function DestroyInstance(), as shown in Lines 9–13, used in main() in Line 28.

240 LESSON 9: Classes and Objects

ptg7987094

this Pointer
An important concept in C++, this is a reserved keyword applicable within the scope of
a class that contains the address of the object. In other words, the value of this is
&object. Within a class member method, when you invoke another member method, the
compiler sends this pointer as an implicit, invisible parameter in the function call:

class Human
{
private:
// … private member declarations

void Talk (string Statement)
{

cout << Statement;
}

public:

void IntroduceSelf()
{

Talk(“Bla bla”);
}

};

What you see here is the method IntroduceSelf() using private member Talk() to print
a statement on the screen. In reality, the compiler embeds the this pointer in calling
Talk, that is invoked as Talk(this, “Bla bla”).

From a programming perspective, this does not have too many applications, except
those where it is usually optional. For instance, the code to access Age within SetAge(),
as shown in Listing 9.1, can have a variant:

void SetAge(int HumansAge)
{

this->Age = HumansAge; // same as Age = HumansAge
}

this Pointer 241

9

Note that the this pointer is not sent to class methods declared
as static as static functions are not connected to an instance of
the class. Instead they are shared by all instances.

If you want to use an instance variable in a static function, explic-
itly declare a parameter that the caller uses to send the this
pointer as an argument.

NOTE

ptg7987094

sizeof() a Class
You have learned the fundamentals of defining your own type using keyword class that
enables you to encapsulate data attributes and methods that operate on that data.
Operator sizeof(), covered in Lesson 3, “Using Variables, Declaring Constants,” is
used to determine the memory requirement of a specific type, in bytes. This operator is
valid for classes, too, and basically reports the sum of bytes consumed by each data
attribute contained within the class declaration. Depending on the compiler you use,
sizeof() might or might not include padding for certain attributes on word boundaries.
Note that member functions and their local variables do not play a role in defining the
sizeof() a class. See Listing 9.12.

LISTING 9.12 The Result of Using sizeof on Classes and Their Instances

0: #include <iostream>
1: using namespace std;
2:
3: class MyString
4: {
5: private:
6: char* Buffer;
7:
8: public:
9: // Constructor
10: MyString(const char* InitialInput)
11: {
12: if(InitialInput != NULL)
13: {
14: Buffer = new char [strlen(InitialInput) + 1];
15: strcpy(Buffer, InitialInput);
16: }
17: else
18: Buffer = NULL;
19: }
20:
21: // Copy Constructor
22: MyString(const MyString& CopySource)
23: {
24: if(CopySource.Buffer != NULL)
25: {
26: Buffer = new char [strlen(CopySource.Buffer) + 1];
27: strcpy(Buffer, CopySource.Buffer);
28: }
29: else
30: Buffer = NULL;
31: }
32:
33: ~MyString()
34: {

242 LESSON 9: Classes and Objects

ptg7987094

35: if (Buffer != NULL)
36: delete [] Buffer;
37: }
38:
39: int GetLength()
40: {
41: return strlen(Buffer);
42: }
43:
44: const char* GetString()
45: {
46: return Buffer;
47: }
48: };
49:
50: class Human
51: {
52: private:
53: int Age;
54: bool Gender;
55: MyString Name;
56:
57: public:
58: Human(const MyString& InputName, int InputAge, bool InputGender)
59: : Name(InputName), Age (InputAge), Gender(InputGender) {}
60:
61: int GetAge ()
62: {
63: return Age;
64: }
65: };
66:
67: int main()
68: {
69: MyString FirstMan(“Adam”);
70: MyString FirstWoman(“Eve”);
71:
72: cout << “sizeof(MyString) = “ << sizeof(MyString) << endl;
73: cout << “sizeof(FirstMan) = “ << sizeof(FirstMan) << endl;
74: cout << “sizeof(FirstWoman) = “ << sizeof(FirstWoman) << endl;
75:
76: Human FirstMaleHuman(FirstMan, 25, true);
77: Human FirstFemaleHuman(FirstWoman, 18, false);
78:
79: cout << “sizeof(Human) = “ << sizeof(Human) << endl;
80: cout << “sizeof(FirstMaleHuman) = “ << sizeof(FirstMaleHuman) << endl;
81: cout << “sizeof(FirstFemaleHuman) = “ << sizeof(FirstFemaleHuman) <<
endl;
82:
83: return 0;
84: }

sizeof() a Class 243

9

ptg7987094

Output ▼

sizeof(MyString) = 4
sizeof(FirstMan) = 4
sizeof(FirstWoman) = 4
sizeof(Human) = 12
sizeof(FirstMaleHuman) = 12
sizeof(FirstFemaleHuman) = 12

Analysis ▼

The sample is admittedly long as it contains class MyString as previously shown in
Listing 9.9 (without most of the display text statements) and a variant of class Human
that uses type MyString to store Name and has an added parameter bool for Gender.

Let’s start with analyzing the output. What you see is that the result of sizeof() on a
class is the same as that of an object of the class. Hence, sizeof(MyString) is the same
as sizeof(FirstMan) because essentially the number of bytes consumed by such a class
are fixed at compile time and are known when the class is designed. Don’t be surprised
that FirstMan and FirstWoman have the same size in bytes in spite of one containing
Adam and the other Eve because these are stored by MyString::Buffer that is a char*,
a pointer whose size is fixed at 4 bytes (on my 32-bit system) and is independent of the
volume of data being pointed to.

Try calculating the sizeof() a Human manually that is reported as 12. Lines 53, 54, and
55 tell that a Human contains an int, a bool, and a MyString. Referring to Listing 3.4 for
a quick refresh on bytes consumed by inbuilt types, you know that an int consumes 4
bytes, a bool 1 byte, and MyString 4 bytes on the system I used for the examples, which
do not sum up to 12 as reported by the output. This is because of word padding and other
factors that influence the result of sizeof().

How struct Differs from class
struct is a keyword from the days of C, and for all practical purposes it is treated by a
C++ compiler very similarly to a class. The exceptions are applicable to the different
default access specifiers (public and private) when the programmer has not mentioned
any. So, unless specified members in a struct are public by default (private for a
class), and unless specified, a struct features public inheritance from a base struct
(private for a class). Inheritance is discussed in detail in Lesson 10.

244 LESSON 9: Classes and Objects

ptg7987094

A struct variant of class Human from Listing 9.12 would be the following:

struct Human
{

// constructor, public by default (as no access specified is mentioned)
Human(const MyString& InputName, int InputAge, bool InputGender)

: Name(InputName), Age (InputAge), Gender(InputGender) {}

int GetAge ()
{

return Age;
}

private:
int Age;
bool Gender;
MyString Name;

};

As you can see, a struct Human is quite similar to class Human, and instantiation of an
object of type struct would be similar to type class as well:

Human FirstMan(“Adam”, 25, true); // is an instance of struct Human

Declaring a friend of a class
A class does not permit external access to its data members and methods that are
declared private. This rule is waived for those classes and functions that are disclosed as
friend classes or functions, using keyword friend as seen in Listing 9.13.

LISTING 9.13 Using the friend Keyword to Allow an External Function DisplayAge()
Access to Private Data Members

0: #include <iostream>
1: #include <string>
2: using namespace std;
3:
4: class Human
5: {
6: private:
7: string Name;
8: int Age;
9:
10: friend void DisplayAge(const Human& Person);
11:
12: public:

Declaring a friend of a class 245

9

ptg7987094

LISTING 9.13 Continued

13: Human(string InputName, int InputAge)
14: {
15: Name = InputName;
16: Age = InputAge;
17: }
18: };
19:
20: void DisplayAge(const Human& Person)
21: {
22: cout << Person.Age << endl;
23: }
24:
25: int main()
26: {
27: Human FirstMan(“Adam”, 25);
28: cout << “Accessing private member Age via friend: “;
29: DisplayAge(FirstMan);
30:
31: return 0;
32: }

Output ▼

Accessing private member Age via friend: 25

Analysis ▼

Line 10 contains the declaration that indicates to the compiler that function
DisplayAge() in global scope be permitted special access to the private members of
class Human. You can comment Line 10 to see an immediate compile failure at Line 22.

Like functions, external classes can also be designated as a trusted friend, as Listing 9.14
demonstrates.

LISTING 9.14 Using the friend Keyword to Allow an External Class Utility Access to
Private Data Members

0: #include <iostream>
1: #include <string>
2: using namespace std;
3:
4: class Human
5: {
6: private:
7: string Name;

246 LESSON 9: Classes and Objects

ptg7987094

8: int Age;
9:
10: friend class Utility;
11:
12: public:
13: Human(string InputName, int InputAge)
14: {
15: Name = InputName;
16: Age = InputAge;
17: }
18: };
19:
20: class Utility
21: {
22: public:
23: static void DisplayAge(const Human& Person)
24: {
25: cout << Person.Age << endl;
26: }
27: };
28:
29: int main()
30: {
31: Human FirstMan(“Adam”, 25);
32: cout << “Accessing private member Age via friend class: “;
33: Utility::DisplayAge(FirstMan);
34:
35: return 0;
36: }

Output ▼

Accessing private member Age via friend class: 25

Analysis ▼

Line 10 indicates class Utility to be a friend of class Human. This allows all methods
in class Utility access even to the private data members and methods in class Human.

Summary
This lesson taught you one of the most fundamental keywords and concepts in C++, that
of a class. You learned how a class encapsulates member data and member functions that
operate using the same. You saw how access specifiers such as public and private help
you abstract data and functionality that entities external to the class don’t need to see.

Summary 247

9

ptg7987094

You learned the concept of copy constructors and how C++11 allows you to optimize on
unwanted copy steps with the help of move constructors. You saw some special cases
where all these elements come together to help you implement design patterns such as
the singleton.

Q&A
Q What is the difference between the instance of a class and an object of that

class?

A Essentially none. When you instantiate a class, you get an instance that can also be
called an object.

Q What is a better way to access members: using the dot operator (.) or using
the pointer operator (->)?

A If you have a pointer to an object, the pointer operator would be best suited. If you
have instantiated an object as a local variable on the stack, then the dot operator is
best suited.

Q Should I always program a copy constructor?

A If your class’ data members are well-programmed smart pointers, string classes, or
STL containers such as std::vector, then the default copy constructor inserted by
the compiler ensures that their respective copy constructors are invoked. However,
if your class has raw pointer members (such as int* for a dynamic array instead of
std::vector<int>), you need to supply a correctly programmed copy constructor
that ensures a deep copy of an array during function calls where an object of the
class is passed by value.

Q My class has only one constructor that has been defined with a parameter
with a default value. Is this still a default constructor?

A Yes. If an instance of a class can be created without arguments, then the class is
said to have a default constructor. A class can have only one default constructor.

Q Why do some samples in this lesson use functions such as SetAge() to set inte-
ger Human::Age? Why not make Age public and assign it as needed?

A From a technical viewpoint, making Human::Age a public member would work as
well. However, from a design point of view, keeping member data private is a good
idea. Accessor functions such as GetAge() or SetAge() are a refined and scalable
way to access this private data, allowing you to perform error checks for instance
before the value of Human::Age is set or reset.

248 LESSON 9: Classes and Objects

ptg7987094

Q Why is the parameter of a copy constructor one that takes the copy source by
reference?

A For one, the copy constructor is expected by the compiler to be that way. The rea-
son behind it is that a copy constructor would invoke itself if it accepted the copy
source by value, resulting in an endless copy loop.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain you understand the answers before continuing to the next
lesson.

Quiz
1. When I create an instance of a class using new, where is the class created?

2. My class has a raw pointer int* that contains a dynamically allocated array of
integers. Does sizeof report different sizes depending on the number of integers in
the dynamic array?

3. All my class members are private, and my class does not contain any declared
friend class or function. Who can access these members?

4. Can one class member method invoke another?

5. What is a constructor good for?

6. What is a destructor good for?

Exercises
1. BUG BUSTERS: What is wrong in the following class declaration?

Class Human
{

int Age;
string Name;

public:
Human() {}

}

Workshop 249

9

ptg7987094

2. How would the user of the class in Exercise 1 access member Human::Age?

3. Write a better version of the class seen in Exercise 1 that initializes all parameters
using an initialization list in the constructor.

4. Write a class Circle that computes the area and circumference given a radius
that is supplied to the class as a parameter at the time of instantiation. Pi should be
contained in a constant private member that cannot be accessed from outside the
circle.

250 LESSON 9: Classes and Objects

ptg7987094

LESSON 10
Implementing
Inheritance

Object-oriented programming is based on four important aspects:
encapsulation, abstraction, inheritance, and polymorphism. Inheritance
is a powerful way to reuse attributes and is a stepping stone towards
polymorphism.

In this lesson, you find out about

n Inheritance in the context of programming

n The C++ syntax of inheritance

n public, private, and protected inheritance

n Multiple inheritance

n Problems caused by hiding base class methods and slicing

ptg7987094

Basics of Inheritance
What Tom Smith inherits from his forefathers is first and foremost his family name that
makes him a Smith. In addition, he inherits certain values that his parents have taught
him and a skill at sculpting wood that has been the Smith family occupation for many
generations. These attributes collectively identify Tom as an offspring of the Smith
family tree.

In programming parlance, you are often faced with situations where components being
managed have similar attributes, differing minutely in details or in behavior. One way to
solve this problem is to make each component a class where each class implements all
attributes, even re-implementing the common ones. Another solution is using inheritance
to allow classes that are similar to derive from a base class that implements common
functionality, overriding this base functionality to implement behavior that makes each
class unique. The latter is often the preferred way. Welcome to inheritance in our world
of object-oriented programming, as illustrated by Figure 10.1.

252 LESSON 10: Implementing Inheritance

class Base

(also called Super Class)

class Derived1

(Inherits from Base, hence also
called subclass of Base)

class Derived2

(Inherits from Base, hence also
called subclass of Base)

FIGURE 10.1
Inheritance
between classes.

Inheritance and Derivation
Figure 10.1 shows a diagrammatic relationship between a base class and its derived
classes. It might not be easy right now to visualize what a base class or a derived class
could be; try to understand that a derived class inherits from the base class and in that
sense is a base class (just like Tom is a Smith).

The is-a relationship between a derived class and its base is
applicable only to public inheritance. This lesson starts with public
inheritance to understand the concept of inheritance and the most
frequent form of inheritance before moving on to private or
protected inheritance.

NOTE

ptg7987094

To make understanding this concept easy, think of a base class Bird. Classes are
derived from Bird are class Crow, class Parrot, or class Kiwi. A class Bird would
define the most basic attributes of a bird, such as is feathered, has wings, lays eggs, can
fly (for the most part). Derived classes such as Crow, Parrot, or Kiwi inherit these attrib-
utes and customize them (for example, a Kiwi would contain no implementation of
Fly()). Table 10.1 demonstrates a few more examples of inheritance.

TABLE 10.1 Examples of Public Inheritance Taken from Daily Life

Base Class Example Derived Classes

Fish Goldfish, Carp, Tuna (Tuna is a Fish)

Mammal Human, Elephant, Lion, Platypus (Platypus is a Mammal)

Bird Crow, Parrot, Ostrich, Kiwi, Platypus (Platypus is a Bird, too!)

Shape Circle, Polygon (Circle is a Shape)

Polygon Triangle, Octagon (Octagon is a Polygon, which is a Shape)

What these examples show is that when you put on your object-oriented programming
glasses, you see examples of inheritance in many objects around yourself. Fish is a base
class for a Tuna because a Tuna, like a Carp, is a Fish and presents all fish-like charac-
teristics such as being cold-blooded. However, Tuna differs from a Carp in the way it
looks, swims, and in the fact that it is a saltwater fish. Thus, Tuna and Carp inherit com-
mon characteristics from a common base class Fish, yet specialize the base class attrib-
utes to distinguish themselves from each other. This is illustrated in Figure 10.2

Basics of Inheritance 253

10

class Fish

• Can swim, lays eggs
• Seawater or Freshwater

class Tuna

• Can swim fast, lays eggs
• Seawater (Marine) fish

class Carp

• Swims slow, lays eggs

• Freshwater fish

FIGURE 10.2
Hierarchical rela-
tionship between
Tuna, Carp, and
Fish.

A platypus can swim, yet is a special animal with mammalian characteristics such as
feeding its young with milk, avian (bird-like) characteristics as it lays eggs, and reptilian
characteristics as it is venomous. Thus, one can imagine a class Platypus inheriting

ptg7987094

from two base classes, class Mammal and class Bird, to inherit mammalian and avian
features. This form of inheritance is called multiple inheritance, which is discussed later
in this lesson.

C++ Syntax of Derivation
How would you inherit class Carp from class Fish, or in general a class Derived
from class Base? C++ syntax for doing this would be the following:

// declaring a super class
class Base
{

// ... base class members
};
// declaring a sub-class
class Derived: access-specifier Base
{

// ... derived class members
};

The access-specifier can be one of public (most frequently used) for a “derived class
is a base class” relationship, private, or protected for a “derived class has a base class”
relationship.

An inheritance hierarchical representation for a class Carp that derives from class
Fish would be

class Fish
{
// ... Fish’s members
};

class Carp:public Fish
{
// ... Carp’s members
};

A compile-worthy declaration of a class Carp and class Tuna that derive from class
Fish is demonstrated by Listing 10.1.

254 LESSON 10: Implementing Inheritance

A Note About Terminology

When reading about inheritance, you will come across terms such as inherits from or
derives from, which essentially mean the same.

Similarly, the base class is also called the super class. The class that derives from
the base, also known as the derived class, can be called the subclass.

ptg7987094

LISTING 10.1 A Simple Inheritance Hierarchy Demonstrated by the Piscean World

0: #include <iostream>
1: using namespace std;
2:
3: class Fish
4: {
5: public:
6: bool FreshWaterFish;
7:
8: void Swim()
9: {
10: if (FreshWaterFish)
11: cout << “Swims in lake” << endl;
12: else
13: cout << “Swims in sea” << endl;
14: }
15: };
16:
17: class Tuna: public Fish
18: {
19: public:
20: Tuna()
21: {
22: FreshWaterFish = false;
23: }
24: };
25:
26: class Carp: public Fish
27: {
28: public:
29: Carp()
30: {
31: FreshWaterFish = true;
32: }
33: };
34:
35: int main()
36: {
37: Carp myLunch;
38: Tuna myDinner;
39:
40: cout << “Getting my food to swim” << endl;
41:
42: cout << “Lunch: “;
43: myLunch.Swim();
44:
45: cout << “Dinner: “;
46: myDinner.Swim();
47:
48: return 0;
49: }

Basics of Inheritance 255

10

ptg7987094

Output ▼

Getting my food to swim
Lunch: Swims in lake
Dinner: Swims in sea

Analysis ▼

Note Lines 37 and 38 in main() that create an object of classes Carp and Tuna, respec-
tively, as myLunch and myDinner. Lines 43 and 46 are where I ask my lunch and dinner
to swim by invoking method Swim() that they seem to support. Now, look at the class
definitions of Tuna in Lines 17–24 and Carp in Lines 26–33. As you can see, these
classes are quite compact, and neither of them seems to define a method Swim() that you
have managed to successfully invoke in main(). Evidently, Swim() comes from the class
Fish that they inherit from, defined in Lines 3–15. As Fish declares a public method
called Swim(), classes Tuna and Carp that inherit from Fish (via public inheritance as
shown in Lines 17 and 26) automatically expose the base class’ public method Swim().
Note how the constructor of Carp and Tuna initializes base class flag FreshWaterFish,
which plays a role in deciding the output displayed by Fish::Swim().

Access Specifier Keyword protected
Listing 10.1 is one where class Fish has a public attribute FreshWaterFish that is set
by the derived classes Tuna and Carp so as to customize (also called specialize) the
behavior of Fish and adapt it to saltwater and freshwater, respectively. However,
Listing 10.1 exhibits a serious flaw: If you want, even main() could tamper with this flag
that has been marked public and hence open for manipulation from outside class Fish
via a simple line such as the following:

myDinner.FreshWaterFish = true; // making Tuna a fresh water fish!

This obviously needs to be avoided. What you need is a possibility that allows certain
attributes in the base class to be accessible only to the derived class but not accessible to
the outside world. This means that you want Boolean flag FreshWaterFish in class

Fish to be accessible to class Tuna and class Carp that derive from it but not accessi-
ble to main() that instantiates classes Tuna or Carp. This is where keyword protected
helps you.

256 LESSON 10: Implementing Inheritance

protected, like public and private, is also an access specifier.
When you declare an attribute as protected, you are effectively
making the attribute accessible to classes that derive and friends,
yet simultaneously making it inaccessible to everyone else out-
side, including main().

NOTE

ptg7987094

protected is the access specifier you should use if you want a certain attribute in a
base class to be accessible to classes that derive from this base, as demonstrated in
Listing 10.2.

LISTING 10.2 A Better class Fish Using the protected Keyword to Expose Its
Member Attribute Only to the Derived Classes

0: #include <iostream>
1: using namespace std;
2:
3: class Fish
4: {
5: protected:
6: bool FreshWaterFish; // accessible only to derived classes
7:
8: public:
9: void Swim()
10: {
11: if (FreshWaterFish)
12: cout << “Swims in lake” << endl;
13: else
14: cout << “Swims in sea” << endl;
15: }
16: };
17:
18: class Tuna: public Fish
19: {
20: public:
21: Tuna()
22: {
23: FreshWaterFish = false; // set base class protected member
24: }
25: };
26:
27: class Carp: public Fish
28: {
29: public:
30: Carp()
31: {
32: FreshWaterFish = false;
33: }
34: };
35:
36: int main()
37: {
38: Carp myLunch;
39: Tuna myDinner;
40:
41: cout << “Getting my food to swim” << endl;

Basics of Inheritance 257

10

ptg7987094

LISTING 10.2 Continued

42:
43: cout << “Lunch: “;
44: myLunch.Swim();
45:
46: cout << “Dinner: “;
47: myDinner.Swim();
48:
49: // uncomment line below to see that protected members
50: // are not accessible from outside the class hierarchy
51: // myLunch.FreshWaterFish = false;
52:
53: return 0;
54: }

Output ▼

Getting my food to swim
Lunch: Swims in lake
Dinner: Swims in sea

Analysis ▼

In spite of the fact that the output of Listing 10.2 is the same as Listing 10.1, there are a
good number of fundamental changes to class Fish as defined in Lines 3–19. The first
and most evident change is that the Boolean member Fish::FreshWaterFish is now a
protected attribute, and hence, not accessible via main() as shown in Line 51 (uncom-
ment it to see a compiler error). All the same, this parameter with access specifier pro-
tected is accessible from the derived classes Tuna and Carp as shown in Lines 23 and 32,
respectively. What this little program effectively demonstrates is the use of keyword
protected in ensuring that base class attributes that need to be inherited are protected
from being accessed outside the class hierarchy.

This is a very important aspect of object-oriented programming, combining data abstrac-
tion and inheritance, in ensuring that derived classes can safely inherit base class attrib-
utes that cannot be tampered with by anyone outside this hierarchical system.

Base Class Initialization—Passing Parameters to the
Base Class
What if a base class contains an overloaded constructor that enforces arguments at the
time of instantiation? How would such a base class be instantiated when the derived class

258 LESSON 10: Implementing Inheritance

ptg7987094

is being constructed? The clue lies in using initialization lists and in invoking the appro-
priate base class constructor via the constructor of the derived class as shown in the fol-
lowing code:

class Base
{
public:

Base(int SomeNumber) // overloaded constructor
{

// Do something with SomeNumber
}

};
Class Derived: public Base
{
public:

Derived(): Base(25) // instantiate class Base with argument 25
{

// derived class constructor code
}

};

This mechanism can be quite useful in class Fish wherein, by supplying a Boolean
input parameter to the constructor of Fish that initializes Fish::FreshWaterFish, this
base class Fish can ensure that every derived class is forced to mention whether the
Fish is a freshwater one or a saltwater one as shown in Listing 10.3.

LISTING 10.3 Derived Class Constructor with Initialization Lists

0: #include <iostream>
1: using namespace std;
2:
3: class Fish
4: {
5: protected:
6: bool FreshWaterFish; // accessible only to derived classes
7:
8: public:
9: // Fish constructor
10: Fish(bool IsFreshWater) : FreshWaterFish(IsFreshWater){}
11:
12: void Swim()
13: {
14: if (FreshWaterFish)
15: cout << “Swims in lake” << endl;
16: else
17: cout << “Swims in sea” << endl;
18: }
19: };

Basics of Inheritance 259

10

ptg7987094

LISTING 10.3 Continued

20:
21: class Tuna: public Fish
22: {
23: public:
24: Tuna(): Fish(false) {}
25: };
26:
27: class Carp: public Fish
28: {
29: public:
30: Carp(): Fish(true) {}
31: };
32:
33: int main()
34: {
35: Carp myLunch;
36: Tuna myDinner;
37:
38: cout << “Getting my food to swim” << endl;
39:
40: cout << “Lunch: “;
41: myLunch.Swim();
42:
43: cout << “Dinner: “;
44: myDinner.Swim();
45:
46: // uncomment line 48 to see that protected members
47: // are not accessible from outside the class heirarchy
48: // myLunch.FreshWaterFish = false;
49:
50: return 0;
51: }

Output ▼

Getting my food to swim
Lunch: Swims in lake
Dinner: Swims in sea

Analysis ▼

Fish now has a constructor that takes a default parameter initializing
Fish::FreshWaterFish. Thus, the only possibility to create an object of Fish is via pro-
viding it a parameter that initialized the protected member. This way class Fish ensures
that the protected member doesn’t contain a random value, especially if a derived class

260 LESSON 10: Implementing Inheritance

ptg7987094

forgets to set it. Derived classes Tuna and Carp are now forced to define a constructor
that instantiates the base class instance of Fish with the right parameter (true or false,
indicating freshwater or otherwise), as shown in Lines 24 and 30, respectively.

Basics of Inheritance 261

10

In Listing 10.3 you see that boolean member variable
Fish::FreshWaterFish was never accessed directly by a derived
class in spite of it being a protected member, as this variable
was set via the constructor of Fish.

To ensure maximum security, if the derived classes don’t need to
access a base class attribute, remember to mark the attribute
private.

Derived Class Overriding Base Class’ Methods
If a class Derived implements the same functions with the same return values and sig-
natures as in a class Base it inherits from, it effectively overrides that method in class
Base as shown in the following code:

class Base
{
public:

void DoSomething()
{

// implementation code… Does something
}

};
class Derived:public Base
{
public:

void DoSomething()
{

// implementation code… Does something else
}

};

Thus, if method DoSomething() were to be invoked using an instance of Derived, then it
would not invoke the functionality in class Base.

If classes Tuna and Carp were to implement their own Swim() method that also exists in
the base class as Fish::Swim(), then a call to Swim as shown in main() from the follow-
ing excerpt of Listing 10.3

36: Tuna myDinner;
// ...other lines
44: myDinner.Swim();

NOTE

ptg7987094

would result in the local implementation of Tuna::Swim() being invoked, which
essentially overrides the base class’ Fish::Swim() method. This is demonstrated by
Listing 10.4.

LISTING 10.4 Derived Classes Tuna and Carp Overriding Method Swim() in Base
Class Fish

0: #include <iostream>
1: using namespace std;
2:
3: class Fish
4: {
5: private:
6: bool FreshWaterFish;
7:
8: public:
9: // Fish constructor
10: Fish(bool IsFreshWater) : FreshWaterFish(IsFreshWater){}
11:
12: void Swim()
13: {
14: if (FreshWaterFish)
15: cout << “Swims in lake” << endl;
16: else
17: cout << “Swims in sea” << endl;
18: }
19: };
20:
21: class Tuna: public Fish
22: {
23: public:
24: Tuna(): Fish(false) {}
25:
26: void Swim()
27: {
28: cout << “Tuna swims real fast” << endl;
29: }
30: };
31:
32: class Carp: public Fish
33: {
34: public:
35: Carp(): Fish(true) {}
36:
37: void Swim()
38: {
39: cout << “Carp swims real slow” << endl;
40: }
41: };

262 LESSON 10: Implementing Inheritance

ptg7987094

42:
43: int main()
44: {
45: Carp myLunch;
46: Tuna myDinner;
47:
48: cout << “Getting my food to swim” << endl;
49:
50: cout << “Lunch: “;
51: myLunch.Swim();
52:
53: cout << “Dinner: “;
54: myDinner.Swim();
55:
56: return 0;
57: }

Output ▼

Getting my food to swim
Lunch: Carp swims real slow
Dinner: Tuna swims real fast

Analysis ▼

The output demonstrates that myLunch.Swim() in Line 51 invokes Carp::Swim() defined
in Lines 37–40. Similarly, myDinner.Swim() from Line 54 invokes Tuna::Swim()
defined in Lines 26–29. In other words, the implementation of Fish::Swim() in the base
class Fish, as shown in Lines 12–18, is overridden by the identical function Swim()
defined by the classes Tuna and Carp that derive from Fish. The only way to invoke
Fish::Swim() is either by having the derived class explicitly use it in its member func-
tion, or by having main() use the scope resolution operator in explicitly invoking
Fish::Swim(), as is shown later in this lesson.

Invoking Overridden Methods of a Base Class
In Listing 10.4, you saw an example of derived class Tuna overriding the Swim() func-
tion in Fish by implementing its version of the same. Essentially:

Tuna myDinner;
myDinner.Swim(); // will invoke Tuna::Swim()

If you want to be invoke Fish::Swim() in Listing 10.4 via main(), you need to use the
scope resolution operator (::) in the following syntax:

myDinner.Fish::Swim(); // will invoke Fish::Swim() in spite of being a Tuna

Basics of Inheritance 263

10

ptg7987094

Listing 10.5 that follows shortly demonstrates invoking a base class member using an
instance of the derived class.

Invoking Methods of a Base Class in a Derived Class
Typically, Fish::Swim() would contain a generic implementation of swimming applica-
ble to all fishes, tunas and carps included. If your specialized implementations in
Tuna:Swim() and Carp::Swim() need to reuse the base class’ generic implementation of
Fish::Swim(), you use the scope resolution operator (::) as shown in the following
code:

class Carp: public Fish
{
public:

Carp(): Fish(true) {}

void Swim()
{

cout << “Carp swims real slow” << endl;
Fish::Swim(); // use scope resolution operator::

}
};

This is demonstrated in Listing 10.5.

LISTING 10.5 Using Scope Resolution Operator (::) to Invoke Base Class Methods
from Derived Class Methods and main()

0: #include <iostream>
1: using namespace std;
2:
3: class Fish
4: {
5: private:
6: bool FreshWaterFish;
7:
8: public:
9: // Fish constructor
10: Fish(bool IsFreshWater) : FreshWaterFish(IsFreshWater){}
11:
12: void Swim()
13: {
14: if (FreshWaterFish)
15: cout << “Swims in lake” << endl;
16: else
17: cout << “Swims in sea” << endl;
18: }

264 LESSON 10: Implementing Inheritance

ptg7987094

19: };
20:
21: class Tuna: public Fish
22: {
23: public:
24: Tuna(): Fish(false) {}
25:
26: void Swim()
27: {
28: cout << “Tuna swims real fast” << endl;
29: }
30: };
31:
32: class Carp: public Fish
33: {
34: public:
35: Carp(): Fish(true) {}
36:
37: void Swim()
38: {
39: cout << “Carp swims real slow” << endl;
40: Fish::Swim();
41: }
42: };
43:
44: int main()
45: {
46: Carp myLunch;
47: Tuna myDinner;
48:
49: cout << “Getting my food to swim” << endl;
50:
51: cout << “Lunch: “;
52: myLunch.Swim();
53:
54: cout << “Dinner: “;
55: myDinner.Fish::Swim();
56:
57: return 0;
58: }

Output ▼

Getting my food to swim
Lunch: Carp swims real slow
Swims in lake
Dinner: Swims in sea

Basics of Inheritance 265

10

ptg7987094

Analysis ▼

Carp::Swim() in Lines 37–41 demonstrates calling the base class function Fish::Swim()
using the scope resolution operator (::). Line 55, on the other hand, shows how you can
use the scope resolution operator (::) to invoke base class method Fish::Swim() from
main() given an instance of Tuna.

Derived Class Hiding Base Class’ Methods
Overriding can take an extreme form where Tuna::Swim() can potentially hide all over-
loaded versions of Fish::Swim() available, even causing compilation failure when the
overloaded ones are used (hence, called hidden), as demonstrated by Listing 10.6.

LISTING 10.6 Demonstrating That Tuna::Swim() Hides Overloaded Method
Fish::Swim(bool)

0: #include <iostream>
1: using namespace std;
2:
3: class Fish
4: {
5: public:
6: void Swim()
7: {
8: cout << “Fish swims... !” << endl;
9: }
10:
11: void Swim(bool FreshWaterFish)
12: {
13: if (FreshWaterFish)
14: cout << “Swims in lake” << endl;
15: else
16: cout << “Swims in sea” << endl;
17: }
18: };
19:
20: class Tuna: public Fish
21: {
22: public:
23: void Swim()
24: {
25: cout << “Tuna swims real fast” << endl;
26: }
27: };
28:
29: int main()
30: {
31: Tuna myDinner;

266 LESSON 10: Implementing Inheritance

ptg7987094

32:
33: cout << “Getting my food to swim” << endl;
34:
35: // myDinner.Swim(false); // compile failure: Fish::Swim(bool) is hidden
by Tuna::Swim()
36: myDinner.Swim();
37:
38: return 0;
39: }

Output ▼

Getting my food to swim
Tuna swims real fast

Analysis ▼

This version of class Fish is a bit different than those that you have seen this far. Apart
from being a minimalized version to explain the problem at hand, this version of Fish
contains two overloaded methods for Swim(), one that takes no parameters, as shown in
Lines 6–9, and another that takes a bool parameter, as shown in Lines 11–17. As Tuna
inherits public from Fish as shown in Line 20, one would not be wrong to expect that
both versions of method Fish::Swim() would be available via an instance of class
Tuna. The fact is, however, that Tuna implementing its own Tuna::Swim(), as shown in
Lines 23–26, results in the hiding of Fish::Swim(bool) from the compiler. If you
uncomment Line 35, you see a compilation failure.

So, if you want to invoke the Fish::Swim(bool) function via an instance of Tuna, you
have the following solutions:

n Solution 1: Use the scope resolution operator in main():
myDinner.Fish::Swim();

n Solution 2: Use the using keyword in class Tuna to unhide Swim() in class

Fish:
class Tuna: public Fish
{
public:

using Fish::Swim; // unhide Swim methods in base class Fish

void Swim()
{

cout << “Tuna swims real fast” << endl;
}

};

Basics of Inheritance 267

10

ptg7987094

n Solution 3: Override all overloaded variants of Swim() in class Tuna (invoke
methods of Fish::Swim(...) via Tuna::Fish(...) if you want):

class Tuna: public Fish
{
public:

void Swim(bool FreshWaterFish)
{

Fish::Swim(FreshWaterFish);
}

void Swim()
{

cout << “Tuna swims real fast” << endl;
}

};

Order of Construction
So, when you create an object of class Tuna that derives from class Fish, was the
constructor of Tuna invoked before or after the constructor of class Fish? Additionally,
within the instantiation of objects in the class hierarchy, what respective order do mem-
ber attributes such as Fish::FreshWaterFish have? The fact is that base class objects
are instantiated before the derived class. So, the Fish part of Tuna is constructed first, so
that member attributes—especially the protected and public ones contained in class
Fish—are ready for consumption when class Tuna is instantiated. Within the instantia-
tion of class Fish and class Tuna, the member attributes (such as
Fish::FreshWaterFish) are instantiated before the constructor Fish::Fish() is
invoked, ensuring that member attributes are ready before the constructor works with
them. The same applies to Tuna::Tuna().

Order of Destruction
When an instance of Tuna goes out of scope, the sequence of destruction is the opposite
to that of construction. Listing 10.7 is a simple example that demonstrates the sequence
of construction and destruction.

LISTING 10.7 The Order of Construction and Destruction of the Base Class, Derived
Class, and Members Thereof

0: #include <iostream>
1: using namespace std;
2:
3: class FishDummyMember

268 LESSON 10: Implementing Inheritance

ptg7987094

4: {
5: public:
6: FishDummyMember()
7: {
8: cout << “FishDummyMember constructor” << endl;
9: }
10:
11: ~FishDummyMember()
12: {
13: cout << “FishDummyMember destructor” << endl;
14: }
15: };
16:
17: class Fish
18: {
19: protected:
20: FishDummyMember dummy;
21:
22: public:
23: // Fish constructor
24: Fish()
25: {
26: cout << “Fish constructor” << endl;
27: }
28:
29: ~Fish()
30: {
31: cout << “Fish destructor” << endl;
32: }
33: };
34:
35: class TunaDummyMember
36: {
37: public:
38: TunaDummyMember()
39: {
40: cout << “TunaDummyMember constructor” << endl;
41: }
42:
43: ~TunaDummyMember()
44: {
45: cout << “TunaDummyMember destructor” << endl;
46: }
47: };
48:
49:
50: class Tuna: public Fish
51: {
52: private:
53: TunaDummyMember dummy;
54:

Basics of Inheritance 269

10

ptg7987094

LISTING 10.7 Continued

55: public:
56: Tuna()
57: {
58: cout << “Tuna constructor” << endl;
59: }
60: ~Tuna()
61: {
62: cout << “Tuna destructor” << endl;
63: }
64:
65: };
66:
67: int main()
68: {
69: Tuna myDinner;
70: }

Output ▼

FishDummyMember constructor
Fish constructor
TunaDummyMember constructor
Tuna constructor
Tuna destructor
TunaDummyMember destructor
Fish destructor
FishDummyMember destructor

Analysis ▼

main() as shown in Lines 67–70 is spectacularly small for the volume of output it gen-
erates. Instantiation of a Tuna is enough to generate these lines of output because of the
cout statements that you have inserted into the constructors and destructors of all objects
involved. For the sake of understanding how member variables are instantiated and
destroyed, you defined two dummy classes, FishDummyMember, and TunaDummyMember
with cout in their constructors and destructors. class Fish and class Tuna contain a
member of each of these dummy classes as shown in Lines 20 and 53. The output indi-
cates that when an object of class Tuna is instantiated, instantiation actually starts at the
top of the hierarchy. So, the base class Fish part of class Tuna is instantiated first,
and in doing so, the members of the Fish—that is, Fish::dummy—are instantiated first.
This is then followed by the constructor of the Fish, which is rightfully executed after

270 LESSON 10: Implementing Inheritance

ptg7987094

the member attributes such as dummy have been constructed. After the base class has been
constructed, the instantiation of Tuna continues first with instantiation of member
Tuna::dummy, finally followed by the execution of the constructor code in Tuna::Tuna().
The output demonstrates that the sequence of destruction is exactly the opposite.

Private Inheritance
Private inheritance differs from public inheritance (which is what you have seen up to
now) in that the keyword private is used in the line where the derived class declares its
inheritance from a base class:

class Base
{

// ... base class members and methods

};

class Derived: private Base // private inheritance
{

// ... derived class members and methods
};

Private inheritance of the base class means that all public members and attributes of the
base class are private (that is, inaccessible) to anyone with an instance of the derived
class. In other words, even public members and methods of class Base can only be con-
sumed by class Derived, but not by anyone else in possession of an instance of
Derived.

This is in sharp contrast to the examples with Tuna and base Fish that you have been fol-
lowing since Listing 10.1. main() in Listing 10.1 could invoke function Fish::Swim()
on an instance of Tuna because Fish::Swim() is a public method and because class
Tuna derives from class Fish using the public inheritance. Try renaming public to
private in Line 17 and see compilation fail.

Thus, for the world outside the inheritance hierarchy, private inheritance essentially does
not mean an is-a relationship (imagine a tuna that can’t swim!). As private inheritance
allows base class attributes and methods to be consumed only by the subclass that
derives from it, this relationship is also called a has-a relationship. There are a few
examples of private inheritance in some things you see around you in daily life (see
Table 10.2).

Private Inheritance 271

10

ptg7987094

TABLE 10.2 Examples of Private Inheritance Taken from Daily Life

Base Class Example Derived Class

Motor Car (Car has a Motor)

Heart Mammal (Mammal has a Heart)

Refill Pen (Pen has a Refill)

Moon Sky (Sky has a Moon)

Let’s visualize private inheritance in a car’s relationship to its motor. See Listing 10.8.

LISTING 10.8 A class Car Related to class Motor via private Inheritance

0: #include <iostream>
1: using namespace std;
2:
3: class Motor
4: {
5: public:
6: void SwitchIgnition()
7: {
8: cout << “Ignition ON” << endl;
9: }
10: void PumpFuel()
11: {
12: cout << “Fuel in cylinders” << endl;
13: }
14: void FireCylinders()
15: {
16: cout << “Vroooom” << endl;
17: }
18: };
19:
20: class Car:private Motor
21: {
22: public:
23: void Move()
24: {
25: SwitchIgnition();
26: PumpFuel();
27: FireCylinders();
28: }
29: };
30:
31: int main()
32: {
33: Car myDreamCar;
34: myDreamCar.Move();

272 LESSON 10: Implementing Inheritance

ptg7987094

35:
36: return 0;
37: }

Output ▼

Ignition ON
Fuel in cylinders
Vroooom

Analysis ▼

class Motor defined in Lines 3–18 is quite simple with three protected member func-
tions that switch ignition, pump fuel, and fire the cylinders. class Car as Line 20
demonstrates inherits from Motor, using keyword private. Thus, public function
Car::Move() invokes members from the base class Motor. If you try inserting the follow-
ing in main():

myDreamCar.PumpFuel();

it fails compilation with an error similar to error C2247: Motor::PumpFuel not
accessible because ‘Car’ uses ‘private’ to inherit from ‘Motor’.

Protected Inheritance 273

10

If another class SuperCar had to inherit from Car, then irrespec-
tive of the nature of inheritance between SuperCar and Car,
SuperCar would not have access to any public member or method
of base class Motor. This is because the relationship between
Car and Motor is one of private inheritance, meaning that all enti-
ties other than Car have private access (that is, no access)
even to public members of Base.

In other words, the most restrictive access specifier takes domi-
nance in the compiler’s calculation of whether one class should
have access to a base class’ public or protected members.

Protected Inheritance
Protected inheritance differs from public inheritance in that the keyword protected is
used in the line where the derived class declares its inheritance from a base class:

class Base
{

NOTE

ptg7987094

// ... base class members and methods

};

class Derived: protected Base // protected inheritance
{

// ... derived class members and methods
};

Protected inheritance is similar to private inheritance in the following ways:

n It also signifies a has-a relationship.

n It also lets the derived class access all public and protected members of Base.

n Those outside the inheritance hierarchy with an instance of Derived cannot access
public members of Base.

Yet, protected inheritance is a bit different when it comes to the derived class being
inherited from:

class Derived2: protected Derived
{

// can access members of Base
};

Protected inheritance hierarchy allows the subclass of the subclass (that is, Derived2)
access to public members of the Base as shown in Listing 10.9. This would not be pos-
sible if the inheritance between Derived and Base were private.

LISTING 10.9 class SuperCar That Derives from class Car That Derives from class
Motor Using protected Inheritance

0: #include <iostream>
1: using namespace std;
2:
3: class Motor
4: {
5: public:
6: void SwitchIgnition()
7: {
8: cout << “Ignition ON” << endl;
9: }
10: void PumpFuel()
11: {
12: cout << “Fuel in cylinders” << endl;
13: }
14: void FireCylinders()
15: {

274 LESSON 10: Implementing Inheritance

ptg7987094

16: cout << “Vroooom” << endl;
17: }
18: };
19:
20: class Car:protected Motor
21: {
22: public:
23: void Move()
24: {
25: SwitchIgnition();
26: PumpFuel();
27: FireCylinders();
28: }
29: };
30:
31: class SuperCar:protected Car
32: {
33: public:
34: void Move()
35: {
36: SwitchIgnition(); // has access to base members
37: PumpFuel(); // due to “protected” inheritance between Car and

Motor
38: FireCylinders();
39: FireCylinders();
40: FireCylinders();
41: }
42: };
43:
44: int main()
45: {
46: SuperCar myDreamCar;
47: myDreamCar.Move();
48:
49: return 0;
50: }

Output ▼

Ignition ON
Fuel in cylinders
Vroooom
Vroooom
Vroooom

Analysis ▼

class Car inherits using protected from Motor as shown in Line 20. class SuperCar
inherits using protected from class Car using protected as shown in Line 31. As you

Protected Inheritance 275

10

ptg7987094

can see, the implementation of SuperCar::Move() uses public methods defined in base
class Motor. This access to the ultimate base class Motor via intermediate base class
Car is governed by the relationship between Car and Motor. If this were private instead
of protected, SuperClass would have no access to the public members of Motor as the
compiler would choose the most restrictive of the relevant access specifiers. Note that the
nature of relationship between the classes Car and SuperCar plays no role in access to
Base. So, even if you change protected in Line 31 to public or to private, the fate of
compilation of this program remains unchanged.

276 LESSON 10: Implementing Inheritance

Use private or protected inheritance only when you have to.

In most cases where private inheritance is used, such as that of
the Car and the Motor, the base class could have as well been a
member attribute of the class Car instead of being a super-
class. By inheriting from class Motor, you have essentially
restricted your Car to having only one motor, for no significant gain
over having an instance of class Motor as a private member.

Cars have evolved, and hybrid cars, for instance, have a gas motor
in addition to an electric one. Our inheritance hierarchy for class
Car would prove to be a bottleneck in being compatible to such
developments.

CAUTION

Having an instance of Motor as a private member instead of
inheriting from it is called composition or aggregation. Such a
class Car looks like this:

class Car
{
private:

Motor heartOfCar;

public:
void Move()
{

heartOfCar.SwitchIgnition();
heartOfCar.PumpFuel();
heartOfCar.FireCylinders();

}
};

This can be good design as it enables you to easily add more
motors as member attributes to an existing Car class without
changing its inheritance hierarchy or its design with respect to its
clients.

NOTE

ptg7987094

The Problem of Slicing
What happens when a programmer does the following?

Derived objectDerived;
Base objectBase = objectDerived;

Or, alternatively, what if a programmer does this?

void FuncUseBase(Base input);
...
Derived objectDerived;
FuncUseBase(objectDerived); // objectDerived will be sliced when copied during
function call

In both cases, an object of type Derived is being copied into another of type Base, either
explicitly via assignment or by passing as an argument. What happens in these cases is
that the compiler copies only the Base part of objectDerived—that is, not the complete
object—rather than only that part of it that would fit Base. This is typically not what the
programmer expects, and this unwanted reduction of the part of data that makes the
Derived a specialization of Base is called slicing.

Multiple Inheritance 277

10

To avoid slicing problems, don’t pass parameters by value. Pass
them as pointers to the base class or as a (optionally const) ref-
erence to the same.

Multiple Inheritance
Earlier in this chapter I mentioned that in some certain cases multiple inheritance might
be relevant, such as with the platypus. The platypus is part mammal, part bird, and part
reptile. For such cases, C++ allows a class to derive from two or more base classes:

class Derived: access-specifier Base1, access-specifier Base2
{

// class members
};

The class diagram for a platypus, as illustrated by Figure 10.3, looks quite different to
the previous ones for Tuna and Carp (refer to Figure 10.2).

CAUTION

ptg7987094

Thus, the C++ representation of class Platypus is the following:

class Platypus: public Mammal, public Reptile, public Bird
{

// ... platypus members
};

A manifestation of Platypus that demonstrates multiple inheritance is demonstrated by
Listing 10.10.

LISTING 10.10 Using Multiple Inheritance to Model a Platypus That Is Part Mammal,
Part Bird, and Part Reptile

0: #include <iostream>
1: using namespace std;
2:
3: class Mammal
4: {
5: public:
6: void FeedBabyMilk()
7: {
8: cout << “Mammal: Baby says glug!” << endl;
9: }
10: };
11:
12: class Reptile
13: {
14: public:
15: void SpitVenom()

278 LESSON 10: Implementing Inheritance

class Mammal

• Feeds young milk
• Covered with hair/fur

class Bird

• Lays eggs
• Has a beak/bill

class Platypus

• Can swim

Inherited Attributes
• Feeds young milk
• Covered with hair/fur
• Lays eggs
• Has a beak/bill
• Webbed feet
• Venomous

class Reptile

• Webbed feet
• Venomous

FIGURE 10.3
Relationship of a
class Platypus,
to classes
Mammal, Reptile
and Bird.

ptg7987094

16: {
17: cout << “Reptile: Shoo enemy! Spits venom!” << endl;
18: }
19: };
20:
21: class Bird
22: {
23: public:
24: void LayEggs()
25: {
26: cout << “Bird: Laid my eggs, am lighter now!” << endl;
27: }
28: };
29:
30: class Platypus: public Mammal, public Bird, public Reptile
31: {
32: public:
33: void Swim()
34: {
35: cout << “Platypus: Voila, I can swim!” << endl;
36: }
37: };
38:
39: int main()
40: {
41: Platypus realFreak;
42: realFreak.LayEggs();
43: realFreak.FeedBabyMilk();
44: realFreak.SpitVenom();
45: realFreak.Swim();
46:
47: return 0;
48: }

Output ▼

Bird: Laid my eggs, am lighter now!
Mammal: Baby says glug!
Reptile: Shoo enemy! Spits venom!
Platypus: Voila, I can swim!

Analysis ▼

class Platypus features a really compact definition in Lines 30–37. It essentially does
nothing more than inherit from the three classes Mammal, Reptile, and Bird. main() in
Lines 41–44 is able to invoke these three characteristics of the individual base classes
using an object of the derived class Platypus that is aptly named realFreak. In

Multiple Inheritance 279

10

ptg7987094

addition to invoking the functions inherited from classes Mammal, Bird, and Reptile,
main() in Line 45 invokes Platypus::Swim(). This program demonstrates the syntax of
multiple inheritance and also how a derived class exposes all the public attributes (in this
case public member methods) of its many base classes.

280 LESSON 10: Implementing Inheritance

Platypus can swim, but it's not a fish. Hence in Listing 10.10, you
did not inherit Platypus also from Fish just for the convenience of
using an existing Fish::Swim() function. When making design deci-
sions, don’t forget that public inheritance also should signify an is-a
relationship and should not be used indiscriminately to fulfill certain
goals related to reuse. Those can still be achieved differently.

NOTE

DO create a public inheritance hierar-
chy to establish an is-a relationship.

DO create a private or protected
inheritance hierarchy to establish a
has-a relationship.

DO remember that public inheritance
means that classes deriving from the
derived class have access to the pub-
lic and protected members of the base
class.

DO remember that private inheritance
means that even classes deriving from
the derived class have no access to
the base class.

DO remember that protected inheri-
tance means that classes deriving
from the derived class have access to
the protected and public methods of
the base class.

DO remember that irrespective of the
nature of inheritance relationship,
private members in the base class
cannot be accessed by any derived
class.

DON’T create an inheritance hierarchy
just to reuse a trivial function.

DON’T use private or public inheritance
indiscriminately as they can end up
being architectural bottlenecks towards
the future scalability of your applica-
tion.

DON’T program derived class functions
that unintentionally hide those in the
base class by having the same name
but a different set of input parameters.

DO DON’T

ptg7987094

Summary
In this lesson, you learned the basics of inheritance in C++. You learned that public
inheritance is an is-a relationship between the derived class and base class, whereas
private and protected inheritances create has-a relationships. You saw the application
of access specifier protected in exposing attributes of a base class only to the derived
class, but keeping them hidden from classes outside the inheritance hierarchy. You
learned that protected inheritance differs from private in that the derived classes of the
derived class can access public and protected members of the base class, which is not
possible in private inheritance. You learned the basics of overriding methods and hiding
them and how to avoid unwanted method hiding via the using keyword.

You are now ready to answer some questions and then continue to learning the next
major pillar of object-oriented programming, polymorphism.

Q&A
Q I have been asked to model class Mammal along with a few mammals such as

the Human, Lion, and Whale. Should I use an inheritance hierarchy, and if so
which one?

A As Human, Lion, and Whale are all mammals and essentially fulfill an is-a relation-
ship, you should use public inheritance where class Mammal is the base class, and
others such as class Human, Lion, and Whale inherit from it.

Q What is the difference between the terms derived class and subclass?

A Essentially none. These are both used to imply a class that derives—that is,
specializes—a base class.

Q A derived class uses public inheritance in relating to its base class. Can it
access the base class’ private members?

A No. The compiler always ensures that the most restrictive of the applicable access
specifiers is in force. Irrespective of the nature of inheritance, private members of
a class are never compromised (that is, accessible) outside the class. An exception
to this rule is those classes and functions that have been declared as a friend.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material that was covered and exercises to provide you with experience in using what

Workshop 281

10

ptg7987094

you’ve learned. Try to answer the quiz and exercise questions before checking the
answers in Appendix D, and be certain you understand the answers before continuing to
the next lesson.

Quiz
1. I want some base class members to be accessible to the derived class but not out-

side the class hierarchy. What access specifier do I use?

2. If I pass an object of the derived class as an argument to a function that takes a
parameter of the base class by value, what happens?

3. Which one should I favor? Private inheritance or composition?

4. How does the using keyword help me in an inheritance hierarchy?

5. A class Derived inherits private from class Base. Another class SubDerived
inherits public from class Derived. Can SubDerived access public members of
class Base?

Exercises
1. In what order are the constructors invoked for class Platypus as shown in

Listing 10.10?

2. Show how a class Polygon, class Triangle, and class Shape are related to
each other.

3. class D2 inherits from class D1, which inherits from class Base. To keep D2
from accessing the public members in Base, what access specifier would you use
and where would you use it?

4. What is the nature of inheritance with this code snippet?
class Derived: Base
{

// ... Derived members
};

5. BUG BUSTERS: What is the problem in this code:

class Derived: public Base
{

// ... Derived members
};
void SomeFunc (Base value)
{

// …
}

282 LESSON 10: Implementing Inheritance

ptg7987094

LESSON 11
Polymorphism

Having learned the basics of inheritance, creating an inheritance hierarchy,
and understanding that public inheritance essentially models an is-a rela-
tionship, it’s time to move on to consuming this knowledge in learning the
holy grail of object-oriented programming: polymorphism.

In this lesson, you find out

n What polymorphism actually means

n What virtual functions do and how to use them

n What abstract base classes are and how to declare them

n What virtual inheritance means and where you need it

ptg7987094

Basics of Polymorphism
“Poly” is Greek for many, and “morph” means form. Polymorphism is that feature of
object-oriented languages that allows objects of different types to be treated similarly.
This lesson focuses on polymorphic behavior that can be implemented in C++ via the
inheritance hierarchy, also known as subtype polymorphism.

Need for Polymorphic Behavior
In Lesson 10, “Implementing Inheritance,” you found out how Tuna and Carp inherit pub-
lic method Swim() from Fish as shown in Listing 10.1. It is, however, possible that both
Tuna and Carp provide their own Tuna::Swim() and Carp::Swim() methods to make Tuna
and Carp different swimmers. Yet, as each of them is also a Fish, if a user with an
instance of Tuna uses the base class type to invoke Fish::Swim(), he ends up executing
only the generic part Fish::Swim() and not Tuna::Swim(), even though that base class
instance Fish is a part of a Tuna. This problem is demonstrated in Listing 11.1.

284 LESSON 11: Polymorphism

All the code samples in this lesson have been stripped to the
bare essentials required to explain the topic in question and to
keep the number of lines of code to a minimum to improve read-
ability.

When you are programming, you should program your classes cor-
rectly and create inheritance hierarchies that make sense, keeping
the design and purpose of the application in perspective.

LISTING 11.1 Invoking Methods Using an Instance of the Base Class Fish, That
Belongs to a Tuna

0: #include <iostream>
1: using namespace std;
2:
3: class Fish
4: {
5: public:
6: void Swim()
7: {
8: cout << “Fish swims!” << endl;
9: }
10: };
11:
12: class Tuna:public Fish
13: {

NOTE

ptg7987094

14: public:
15: // override Fish::Swim
16: void Swim()
17: {
18: cout << “Tuna swims!” << endl;
19: }
20: };
21:
22: void MakeFishSwim(Fish& InputFish)
23: {
24: // calling Fish::Swim
25: InputFish.Swim();
26: }
27:
28: int main()
29: {
30: Tuna myDinner;
31:
32: // calling Tuna::Swim
33: myDinner.Swim();
34:
35: // sending Tuna as Fish
36: MakeFishSwim(myDinner);
37:
38: return 0;
39: }

Output ▼

Tuna swims!
Fish swims!

Analysis ▼

class Tuna specializes class Fish via public inheritance as shown in Line 12. It also
overrides Fish::Swim(). main() makes a direct call to Tuna::Swim() in Line 33 and
passes myDinner (of type Tuna) as a parameter to MakeFishSwim() that interprets it
as a reference Fish&, as shown in the declaration at Line 22. In other words,
MakeFishSwim(Fish&) doesn’t care if the object sent was a Tuna, handles it as a Fish,
and invokes Fish::Swim. So, the second line of output indicates that the same object
Tuna produced the output of a Fish not indicating any specialization thereof (this could
as well be a Carp).

What the user would ideally expect is that an object of type Tuna behaves like a tuna
even if the method invoked is Fish::Swim(). In other words, when InputFish.Swim() is
invoked in Line 25, he expects it to execute Tuna::Swim(). Such polymorphic behavior

Basics of Polymorphism 285

11

ptg7987094

where an object of known type class Fish can behave as its actual type; namely,
derived class Tuna, can be implemented by making Fish::Swim() a virtual function.

Polymorphic Behavior Implemented Using Virtual
Functions
You have access to an object of type Fish, via pointer Fish* or reference Fish&. This
object could have been instantiated solely as a Fish, or be part of a Tuna or Carp that
inherits from Fish. You don’t know (and don’t care). You invoke method Swim() using
this pointer or reference, like this:

pFish->Swim();
myFish.Swim();

What you expect is that the object Fish swims as a Tuna if it is part of a Tuna, as a Carp
if it is part of a Carp, or an anonymous Fish if it wasn’t instantiated as part of a special-
ized class such as Tuna or Carp. You can ensure this by declaring function Swim() in the
base class Fish as a virtual function:

class Base
{

virtual ReturnType FunctionName (Parameter List);
};
class Derived
{

ReturnType FunctionName (Parameter List);
};

Use of keyword virtual means that the compiler ensures that any overriding variant of
the requested base class method is invoked. Thus, if Swim() is declared virtual, invok-
ing myFish.Swim() (myFish being of type Fish&) results in Tuna::Swim() being exe-
cuted as demonstrated by Listing 11.2.

LISTING 11.2 The Effect of Declaring Fish::Swim() as a virtual Method

0: #include <iostream>
1: using namespace std;
2:
3: class Fish
4: {
5: public:
6: virtual void Swim()
7: {

286 LESSON 11: Polymorphism

ptg7987094

8: cout << “Fish swims!” << endl;
9: }
10: };
11:
12: class Tuna:public Fish
13: {
14: public:
15: // override Fish::Swim
16: void Swim()
17: {
18: cout << “Tuna swims!” << endl;
19: }
20: };
21:
22: class Carp:public Fish
23: {
24: public:
25: // override Fish::Swim
26: void Swim()
27: {
28: cout << “Carp swims!” << endl;
29: }
30: };
31:
32: void MakeFishSwim(Fish& InputFish)
33: {
34: // calling virtual method Swim()
35: InputFish.Swim();
36: }
37:
38: int main()
39: {
40: Tuna myDinner;
41: Carp myLunch;
42:
43: // sending Tuna as Fish
44: MakeFishSwim(myDinner);
45:
46: // sending Carp as Fish
47: MakeFishSwim(myLunch);
48:
49: return 0;
50: }

Output ▼

Tuna swims!
Carp swims!

Basics of Polymorphism 287

11

ptg7987094

Analysis ▼

The implementation of function MakeFishSwim(Fish&) has not changed one bit since
Listing 11.1. Yet, the output it produces is dramatically different. For one, Fish::Swim()
has not been invoked at all because of the presence of overriding variants Tuna::Swim()
and Carp::Swim() that have taken priority over Fish::Swim() because the latter has
been declared as a virtual function. This is a very important development. It implies
that even without knowing the exact type of Fish being handled, the implementation
MakeFishSwim() could result in different implementations of Swim() defined in different
derived classes being invoked, given only a base class instance.

This is polymorphism: treating different fishes as a common type Fish, yet ensuring that
the right implementation of Swim() supplied by the derived types is executed.

Need for Virtual Destructors
There is a more sinister side to the feature demonstrated by Listing 11.1—unintentionally
invoking base class functionality of an instance of type derived, when a specialization is
available. What happens when a function calls operator delete using a pointer of type
Base* that actually points to an instance of type Derived?

Which destructor would be invoked? See Listing 11.3.

LISTING 11.3 A Function That Invokes Operator delete on Base*

0: #include <iostream>
1: using namespace std;
2:
3: class Fish
4: {
5: public:
6: Fish()
7: {
8: cout << “Constructed Fish” << endl;
9: }
10: ~Fish()
11: {
12: cout << “Destroyed Fish” << endl;
13: }
14: };
15:
16: class Tuna:public Fish
17: {
18: public:
19: Tuna()
20: {

288 LESSON 11: Polymorphism

ptg7987094

21: cout << “Constructed Tuna” << endl;
22: }
23: ~Tuna()
24: {
25: cout << “Destroyed Tuna” << endl;
26: }
27: };
28:
29: void DeleteFishMemory(Fish* pFish)
30: {
31: delete pFish;
32: }
33:
34: int main()
35: {
36: cout << “Allocating a Tuna on the free store:” << endl;
37: Tuna* pTuna = new Tuna;
38: cout << “Deleting the Tuna: “ << endl;
39: DeleteFishMemory(pTuna);
40:
41: cout << “Instantiating a Tuna on the stack:” << endl;
42: Tuna myDinner;
43: cout << “Automatic destruction as it goes out of scope: “ << endl;
44:
45: return 0;
46: }

Output ▼

Allocating a Tuna on the free store:
Constructed Fish
Constructed Tuna
Deleting the Tuna:
Destroyed Fish
Instantiating a Tuna on the stack:
Constructed Fish
Constructed Tuna
Automatic destruction as it goes out of scope:
Destroyed Tuna
Destroyed Fish

Analysis ▼

main() creates an instance of Tuna on the free store using new at Line 37 and then
releases the allocated memory immediately after using service function
DeleteFishMemory() at Line 39. For the sake of comparison, another instance of Tuna is
created as a local variable myDinner on the stack at Line 42 and goes out of scope when

Basics of Polymorphism 289

11

ptg7987094

main() ends. The output is created by the cout statements in the constructors and
destructors of classes Fish and Tuna. Note that while Tuna and Fish were both con-
structed on the free store due to new, the destructor of Tuna was not invoked on delete,
rather only that of the Fish. This is in stark contrast to the construction and destruction
of local member myDinner where all constructors and destructors are invoked. Lesson 10
demonstrated in Listing 10.7 the correct order of construction and destruction of classes
in an inheritance hierarchy, showing that all destructors need to be invoked, including
~Tuna(). Clearly, something is amiss.

This flaw means that code in the destructor of a deriving class that has been instantiated
on the free store using new would not be invoked if delete is called using a pointer of
type Base*. This can result in resources not being released, memory leaks, and so on and
is a problem that is not to be taken lightly.

To avoid this problem, you use virtual destructors as seen in Listing 11.4.

LISTING 11.4 Using virtual Destructors to Ensure That Destructors in Derived
Classes Are Invoked When Deleting a Pointer of Type Base*

0: #include <iostream>
1: using namespace std;
2:
3: class Fish
4: {
5: public:
6: Fish()
7: {
8: cout << “Constructed Fish” << endl;
9: }
10: virtual ~Fish() // virtual destructor!
11: {
12: cout << “Destroyed Fish” << endl;
13: }
14: };
15:
16: class Tuna:public Fish
17: {
18: public:
19: Tuna()
20: {
21: cout << “Constructed Tuna” << endl;
22: }
23: ~Tuna()
24: {
25: cout << “Destroyed Tuna” << endl;
26: }
27: };

290 LESSON 11: Polymorphism

ptg7987094

28:
29: void DeleteFishMemory(Fish* pFish)
30: {
31: delete pFish;
32: }
33:
34: int main()
35: {
36: cout << “Allocating a Tuna on the free store:” << endl;
37: Tuna* pTuna = new Tuna;
38: cout << “Deleting the Tuna: “ << endl;
39: DeleteFishMemory(pTuna);
40:
41: cout << “Instantiating a Tuna on the stack:” << endl;
42: Tuna myDinner;
43: cout << “Automatic destruction as it goes out of scope: “ << endl;
44:
45: return 0;
46: }

Output ▼

Allocating a Tuna on the free store:
Constructed Fish
Constructed Tuna
Deleting the Tuna:
Destroyed Tuna
Destroyed Fish
Instantiating a Tuna on the stack:
Constructed Fish
Constructed Tuna
Automatic destruction as it goes out of scope:
Destroyed Tuna
Destroyed Fish

Analysis ▼

The only change between Listing 11.4 and 11.3 is the addition of keyword virtual at
Line 10 where the destructor of base class Fish has been declared. Note that this
change resulted in the compiler essentially executing Tuna::~Tuna() in addition to
Fish::~Fish() when operator delete is invoked on Fish* that actually points to a Tuna,
as shown in Line 31. Now, this output also demonstrates that the sequence and the invo-
cation of constructors and destructors are the same irrespective of whether the object of
type Tuna is instantiated on the free store using new, as shown in Line 37, or as a local
variable on the stack, as shown in Line 42.

Basics of Polymorphism 291

11

ptg7987094

How Do virtual Functions Work? Understanding the
Virtual Function Table

292 LESSON 11: Polymorphism

Always declare the base class destructor as virtual:

class Base
{
public:

virtual ~Base() {}; // virtual destructor
};

This ensures that one with a pointer Base* cannot invoke delete
in a way that the destructor of the deriving classes is not invoked.

NOTE

This section is optional toward learning to use polymorphism. Feel
free to skip it or read it to feed your curiosity.

Function MakeFishSwim(Fish&) in Listing11.2 ends up invoking Carp::Swim() or
Tuna::Swim() methods in spite of the programmer calling Fish::Swim()within it.
Clearly, at compile time, the compiler knows nothing about the nature of objects that
such a function will encounter to be able to ensure that the same function ends up
executing different Swim() methods at different points in time. The Swim() method that
needs to be invoked is evidently a decision made at run time, using an invisible logic
that implements polymorphism, which is supplied by the compiler at compile time.

Consider a class Base that declared N virtual functions:

class Base
{
public:

virtual void Func1()
{

// Func1 implementation
}
virtual void Func2()

NOTE

ptg7987094

{
// Func2 implementation

}

// .. so on and so forth
virtual void FuncN()
{

// FuncN implementation
}

};

class Derived that inherits from Base overrides Base::Func2(), exposing the other vir-
tual functions directly from class Base:

class Derived: public Base
{
public:

virtual void Func1()
{

// Func2 overrides Base::Func2()
}

// no implementation for Func2()

virtual void FuncN()
{

// FuncN implementation
}

};

The compiler sees an inheritance hierarchy and understands that the Base defines certain
virtual functions that have been overridden in Derived. What the compiler now does is to
create a table called the Virtual Function Table (VFT) for every class that implements a
virtual function or derived class that overrides it. In other words, classes Base and
Derived get an instance of their own Virtual Function Table. When an object of these
classes is instantiated, a hidden pointer (let’s call it VFT*) is initialized to the respective
VFT. The Virtual Function Table can be visualized as a static array containing function
pointers, each pointing to the virtual function (or override) of interest, as illustrated in
Figure 11.1.

Basics of Polymorphism 293

11

ptg7987094

Thus, each table is comprised of function pointers, each pointing to the available imple-
mentation of a virtual function. In the case of class Derived, all except one function
pointer in its VFT point to local implementations of the virtual method in Derived.
Derived has not overridden Base::Func2(), and hence that function pointer points to the
implementation in class Base.

This means that when a user of class Derived calls

CDerived objDerived;
objDerived.Func2();

the compiler ensures a lookup in the VFT of class Derived and ensures that the imple-
mentation Base::Func2() is invoked. This also applies to calls that use methods that
have been virtually overridden:

void DoSomething(Base& objBase)
{

objBase.Func1(); // invoke Derived::Func1
}
int main()
{

Derived objDerived;
DoSomething(objDerived);

};

294 LESSON 11: Polymorphism

VFT for Base Base::Func1()
{
 // ... base implementation
}

Base::Func2()
{
 // ... base implementation
}

Base::FuncN()
{
 // ... base implementation
}

Instance Base

VFT Pointer

Other members

...

virtual Func1()

virtual Func2()

virtual FuncN()

.

.

.

Derived::Func1()
{
 // overrides Base::Func1()
}

Derived::FuncN()
{
 // Overrides Base::FuncN()
}

Instance Derived

VFT Pointer

Other members

...

virtual Func1()

virtual Func2()

virtual FuncN()

.

.

.

VFT for Derived

FIGURE 11.1
Visualization of a
Virtual Function
Table for classes.
Derived and Base.

ptg7987094

In this case, even though objDerived is being interpreted via objBase as an instance of
class Base, the VFT pointer in this instance is still pointing to the same table created
for class Derived. Thus, Func1() executed via this VFT is certainly
Derived::Func1().

This is how Virtual Function Tables help the implementation of (subtype) polymorphism
in C++.

The proof of existence of a hidden Virtual Function Table pointer is demonstrated by
Listing 11.5, which compares the sizeof two identical classes—one that has virtual
functions and another that doesn’t.

LISTING 11.5 Demonstrating the Presence of a Hidden VFT Pointer in Comparing Two
Classes Identical but for a Function Declared Virtual

0: #include <iostream>
1: using namespace std;
2:
3: class SimpleClass
4: {
5: int a, b;
6:
7: public:
8: void FuncDoSomething() {}
9: };
10:
11: class Base
12: {
13: int a, b;
14:
15: public:
16: virtual void FuncDoSomething() {}
17: };
18:
19: int main()
20: {
21: cout << “sizeof(SimpleClass) = “ << sizeof(SimpleClass) << endl;
22: cout << “sizeof(Base) = “ << sizeof(Base) << endl;
23:
24: return 0;
25: }

Output ▼

sizeof(SimpleClass) = 8
sizeof(Base) = 12

Basics of Polymorphism 295

11

ptg7987094

Analysis ▼

This is a sample that has been stripped to the bare minimum. You see two classes,
SimpleClass and Base, that are identical in the types and number of members, yet Base
has the function FuncDoSomething() declared as virtual (nonvirtual in SimpleClass).
The difference in adding this virtual keyword is that the compiler generates a virtual
function table for class Base and a reserved place for a pointer to the same in Base as a
hidden member. This pointer consumes the 4 extra bytes in my 32-bit system and is the
proof of the pudding.

296 LESSON 11: Polymorphism

C++ also allows you to query a pointer Base* if it is of type
Derived* using casting operator dynamic_cast and then perform
conditional execution on the basis of the result of the query.

This is called Run Time Type Identification (RTTI) and should ide-
ally be avoided even though it is supported by most C++ compil-
ers. This is because needing to know the type of derived class
object behind a base class pointer is commonly considered poor
programming practice.

RTTI and dynamic_cast are discussed in Lesson 13, “Casting
Operators.”

Abstract Base Classes and Pure Virtual Functions
A base class that cannot be instantiated is called an abstract base class. Such a base class
fulfills only one purpose, that of being derived from. C++ allows you to create an
abstract base class using pure virtual functions.

A virtual method is said to be pure virtual when it has a declaration as shown in the
following:

class AbstractBase
{
public:

virtual void DoSomething() = 0; // pure virtual method
};

This declaration essentially tells the compiler that DoSomething() needs to be imple-
mented and by the class that derives from AbstractBase:

class Derived: public AbstractBase
{
public:

NOTE

ptg7987094

void DoSomething() // pure virtual method
{

cout << “Implemented virtual function” << endl;
}

};

Thus, what class AbstractBase has done is that it has enforced class Derived to supply
an implementation for virtual method DoSomething(). This functionality where a base
class can enforce support of methods with a specified name and signature in classes that
derive from it is that of an interface. Think of a Fish again. Imagine a Tuna that cannot
swim fast because Tuna did not override Fish::Swim(). This is a failed implementation
and a flaw. Making class Fish an abstract base class with Swim as a pure virtual func-
tion ensures that Tuna that derives from Fish implements Tuna::Swim() and swims like
a Tuna and not like just any Fish. See Listing 11.6.

LISTING 11.6 class Fish as an Abstract Base Class for Tuna and Carp

0: #include <iostream>
1: using namespace std;
2:
3: class Fish
4: {
5: public:
6: // define a pure virtual function Swim
7: virtual void Swim() = 0;
8: };
9:
10: class Tuna:public Fish
11: {
12: public:
13: void Swim()
14: {
15: cout << “Tuna swims fast in the sea!” << endl;
16: }
17: };
18:
19: class Carp:public Fish
20: {
21: void Swim()
22: {
23: cout << “Carp swims slow in the lake!” << endl;
24: }
25: };
26:
27: void MakeFishSwim(Fish& inputFish)
28: {
29: inputFish.Swim();

Basics of Polymorphism 297

11

ptg7987094

LISTING 11.6 Continued

30: }
31:
32: int main()
33: {
34: // Fish myFish; // Fails, cannot instantiate an ABC
35: Carp myLunch;
36: Tuna myDinner;
37:
38: MakeFishSwim(myLunch);
39: MakeFishSwim(myDinner);
40:
41: return 0;
42: }

Output ▼

Carp swims slow in the lake!
Tuna swims fast in the sea!

Analysis ▼

The first line in main() at Line 34 (commented out) is significant. It demonstrates that
the compiler does not allow you to create an instance of Fish. It expects something con-
crete, such as a specialization of Fish—for example, Tuna—which makes sense even in
the real-world arrangement of things. Thanks to the pure virtual function Fish::Swim()
declared in Line 7, both Tuna and Carp are forced into implementing Tuna::Swim() and
Carp::Swim(). Lines 27–30 that implement MakeFishSwim(Fish&) demonstrate that
even if an abstract base class cannot be instantiated, you can use it as a reference or a
pointer. Abstract base classes are thus a very good mechanism to declare functions that
you expect all derived classes to implement and fulfill. If a class Trout that derived from
Fish forgets to implement Trout::Swim(), the compilation also fails.

298 LESSON 11: Polymorphism

Abstract Base Classes are often simply called ABCs.

ABCs help enforce certain design constraints on your program.

NOTE

ptg7987094

Using virtual Inheritance to Solve the
Diamond Problem
In Lesson 10 you saw the curious case of a duck-billed platypus that is part mammal,
part bird, and part reptile. This is an example where a class Platypus needs to inherits
from class Mammal, class Bird, and class Reptile. However, each of these in turn
inherit from a more generic class Animal, as illustrated by Figure 11.2.

Using virtual Inheritance to Solve the Diamond Problem 299

11

class Animal

• Can move

class Mammal

• Feeds young milk

• Covered with hair/fur

Inherited Attributes

• Can move

class Bird

• Lays eggs

• Has a beak/bill

Inherited Attributes

• Can move

class Platypus

• Can swim

Inherited Attributes

• Can move

• Feeds young milk

• Covered with hair/fur

• Lays eggs

• Has a beak/bill

• Webbed feet

• Venomous

class Reptile

• Webbed feet

• Venomous

Inherited Attributes

• Can move

FIGURE 11.2
The class
diagram of
a platypus
demonstrating
multiple
inheritance.

So, what happens when you instantiate a Platypus? How many instances of class Animal
are instantiated for one instance of Platypus? Listing 11.7 helps answer this question.

ptg7987094

LISTING 11.7 Checking for the Number of Base Class Animal Instances for One
Instance of Platypus

0: #include <iostream>
1: using namespace std;
2:
3: class Animal
4: {
5: public:
6: Animal()
7: {
8: cout << “Animal constructor” << endl;
9: }
10:
11: // sample method
12: int Age;
13: };
14:
15: class Mammal:public Animal
16: {
17: };
18:
19: class Bird:public Animal
20: {
21: };
22:
23: class Reptile:public Animal
24: {
25: };
26:
27: class Platypus:public Mammal, public Bird, public Reptile
28: {
29: public:
30: Platypus()
31: {
32: cout << “Platypus constructor” << endl;
33: }
34: };
35:
36: int main()
37: {
38: Platypus duckBilledP;
39:
40: // uncomment next line to see compile failure
41: // Age is ambiguous as there are three instances of base Animal
42: // duckBilledP.Age = 25;
43:
44: return 0;
45: }

300 LESSON 11: Polymorphism

ptg7987094

Output ▼

Animal constructor
Animal constructor
Animal constructor
Platypus constructor

Analysis ▼

As the output demonstrates, due to multiple inheritance and all three base classes of
Platypus inheriting in turn from class Animal, you have three instances of Animal
created automatically for every instance of a Platypus, as shown in Line 38. This is
quite ridiculous as Platypus is still one animal that has inherited certain attributes from
Mammal, Bird, and Reptile. The problem in the number of instances of base Animal is
not limited to memory consumption alone. Animal has an integer member Animal::Age
(which has been kept public for explanation purposes). When you want to access
Animal::Age via an instance of Platypus, as shown in Line 42, you get a compilation
error simply because the compiler doesn’t know if you want to set
Mammal::Animal::Age or Bird::Animal::Age or Reptile::Animal::Age. It can get
even more ridiculous—if you so wanted you could set all three:

duckBilledP.Mammal::Animal::Age = 25;
duckBilledP.Bird::Animal::Age = 25;
duckBilledP.Reptile::Animal::Age = 25;

Clearly, one duck-billed platypus should have only one Age. Yet, you want class
Platypus to be a Mammal, Bird, and Reptile. The solution is in virtual inheritance. If
you expect a derived class to be used as a base class, it possibly is a good idea to define
its relationship to the base using the keyword virtual:

class Derived1: public virtual Base
{

// ... members and functions
};
class Derived2: public virtual Base
{

// ... members and functions
};

A better class Platypus (actually a better class Mammal, class Bird, and class Reptile) is
in Listing 11.8.

Using virtual Inheritance to Solve the Diamond Problem 301

11

ptg7987094

LISTING 11.8 Demonstrating How virtual Keyword in Inheritance Hierarchy Helps
Restrict the Number of Instances of Base Class Animal to One

0: #include <iostream>
1: using namespace std;
2:
3: class Animal
4: {
5: public:
6: Animal()
7: {
8: cout << “Animal constructor” << endl;
9: }
10:
11: // sample method
12: int Age;
13: };
14:
15: class Mammal:public virtual Animal
16: {
17: };
18:
19: class Bird:public virtual Animal
20: {
21: };
22:
23: class Reptile:public virtual Animal
24: {
25: };
26:
27: class Platypus:public Mammal, public Bird, public Reptile
28: {
29: public:
30: Platypus()
31: {
32: cout << “Platypus constructor” << endl;
33: }
34: };
35:
36: int main()
37: {
38: Platypus duckBilledP;
39:
40: // no compile error as there is only one Animal::Age
41: duckBilledP.Age = 25;
42:
43: return 0;
44: }

302 LESSON 11: Polymorphism

ptg7987094

Output ▼

Animal constructor
Platypus constructor

Analysis ▼

Do a quick comparison against the output of previous Listing 11.7, and you see that the
number of instances of class Animal constructed has fallen to one, which is finally
reflective of the fact that only one Platypus has been constructed as well. This is
because of the keyword virtual used in the relationship between classes Mammal, Bird,
and Reptile ensures that when these classes are grouped together under Platypus the
common base Animal exists only in a single instance. This solves a lot of problems; one
among them is Line 41 that now compiles without ambiguity resolution as shown in
Listing 11.7.

Using virtual Inheritance to Solve the Diamond Problem 303

11

Problems caused in an inheritance hierarchy containing two or
more base classes that inherit from a common base, which
results in the need for ambiguity resolution in the absence of
virtual inheritance, is called the Diamond Problem.

The name “Diamond” is possibly inspired by the shape the class
diagram takes (visualize Figure 11.2 with straight and slanted
lines relating Platypus to Animal via Mammal, Bird, and Reptile
to see a diamond).

NOTE

The virtual keyword in C++ often is used in different contexts
for different purposes. (My best guess is that someone wanted to
save time on inventing an apt keyword.) Here is a summary:

A function declared virtual means that an existing overriding func-
tion in a derived class is invoked.

An inheritance relationship declared using keyword virtual
between classes Derived1 and Derived2 that inherits from class
Base means that another class Derived3 that inherits from
Derived1 and Derived2 still results in the creation of only one
instance of Base during instantiation of type Derived3.

Thus the same keyword virtual is used to implement two differ-
ent concepts.

NOTE

ptg7987094

Virtual Copy Constructors?
Well, the question mark at the end of the section title is justified. It is technically impos-
sible in C++ to have virtual copy constructors. Yet, such a feature helps you create a col-
lection (for example, a static array) of type Base*, each element being a specialization of
that type:

// Tuna, Carp and Trout are classes that inherit public from base class Fish
Fish* pFishes[3];
Fishes[0] = new Tuna();
Fishes[1] = new Carp();
Fishes[2] = new Trout();

Then assigning it into another array of the same type, where the virtual copy constructor
ensures a deep copy of the derived class objects as well, ensures that Tuna, Carp, and
Trout are copied as Tuna, Carp, and Trout even though the copy constructor is operating
on type Fish*.

Well, that’s a nice dream.

Virtual copy constructors are not possible because the virtual keyword in context of
base class methods being overridden by implementations available in the derived class
are about polymorphic behavior generated at runtime. Constructors, on the other hand,
are not polymorphic in nature as they can construct only a fixed type, and hence C++
does not allow usage of the virtual copy constructors.

Having said that, there is a nice workaround in the form of defining your own clone
function that allows you to do just that:

class Fish
{
public:

virtual Fish* Clone() const = 0; // pure virtual function
};

class Tuna:public Fish
{
// ... other members
public:

Tuna * Clone() const // virtual clone function
{

return new Tuna(*this); // return new Tuna that is a copy of this
}

};

Thus, virtual function Clone is a simulated virtual copy constructor that needs to be
explicitly invoked, as shown in Listing 11.9.

304 LESSON 11: Polymorphism

ptg7987094

LISTING 11.9 Tuna and Carp That Support a Clone Function as a Simulated Virtual
Copy Constructor

0: #include <iostream>
1: using namespace std;
2:
3: class Fish
4: {
5: public:
6: virtual Fish* Clone() = 0;
7: virtual void Swim() = 0;
8: };
9:
10: class Tuna: public Fish
11: {
12: public:
13: Fish* Clone()
14: {
15: return new Tuna (*this);
16: }
17:
18: void Swim()
19: {
20: cout << “Tuna swims fast in the sea” << endl;
21: }
22: };
23:
24: class Carp: public Fish
25: {
26: Fish* Clone()
27: {
28: return new Carp(*this);
29: }
30: void Swim()
31: {
32: cout << “Carp swims slow in the lake” << endl;
33: }
34: };
35:
36: int main()
37: {
38: const int ARRAY_SIZE = 4;
39:
40: Fish* myFishes[ARRAY_SIZE] = {NULL};
41: myFishes[0] = new Tuna();
42: myFishes[1] = new Carp();
43: myFishes[2] = new Tuna();
44: myFishes[3] = new Carp();
45:
46: Fish* myNewFishes[ARRAY_SIZE];
47: for (int Index = 0; Index < ARRAY_SIZE; ++Index)

Virtual Copy Constructors? 305

11

ptg7987094

LISTING 11.9 Continued

48: myNewFishes[Index] = myFishes[Index]->Clone();
49:
50: // invoke a virtual method to check
51: for (int Index = 0; Index < ARRAY_SIZE; ++Index)
52: myNewFishes[Index]->Swim();
53:
54: // memory cleanup
55: for (int Index = 0; Index < ARRAY_SIZE; ++Index)
56: {
57: delete myFishes[Index];
58: delete myNewFishes[Index];
59: }
60:
61: return 0;
62: }

Output ▼

Tuna swims fast in the sea
Carp swims slow in the lake
Tuna swims fast in the sea
Carp swims slow in the lake

Analysis ▼

Lines 40–44 in main() demonstrate how a static array of pointers to base class Fish*
has been declared and individual elements assigned to newly created objects of type
Tuna, Carp, Tuna, and Carp, respectively. Note how this array myFishes is able to collect
seemingly different types that are all related by a common base type Fish. This is
already cool, if you compare it against previous arrays in this book that have mostly been
of a simple monotonous type int. If that wasn’t cool enough, you were able to copy into
a new array of type Fish* called myNewFishes using the virtual function Fish::Clone
within a loop, as shown in Line 48. Note that your array is quite small at only four ele-
ments. It could’ve been a lot longer but wouldn’t have made much of a difference to the
copy logic that would only need to adjust the loop-ending condition parameter. Line 52
is the actual check where you invoke virtual function Fish::Swim() on each stored ele-
ment in the new array to verify if Clone() copied a Tuna as a Tuna and not just a Fish().
The output demonstrates that it genuinely did copy the Tunas and the Carps just as
expected.

306 LESSON 11: Polymorphism

ptg7987094Summary
In this lesson you learned to tap the power of creating inheritance hierarchies in your
C++ code, by using polymorphism. You learned how to declare and program virtual
functions—how they ensure that the derived class implementation overrides that in the
base class even if an instance of the base class is used to invoke the virtual method. You
saw how pure virtual functions were a special type of virtual functions that ensure that
the base class alone cannot be instantiated, making it a perfect place to define interfaces
that derived classes must fulfill. Finally, you saw the Diamond Problem created by multi-
ple inheritance and how virtual inheritance helps you solve it.

Q&A
Q Why use the virtual keyword with a base class function when code compiles

without it?

A Without the virtual keyword, you are not able to ensure that someone calling
objBase.Function() will be redirected to Derived::Function(). Besides, compi-
lation of code is not a measure of its quality.

Q Why did the compiler create the Virtual Function Table?

A To store function pointers that ensure that the right version of a virtual function is
invoked.

Q&A 307

11

DO remember to mark virtual those
base class functions that need to
be overridden by the derived class
versions.

DO remember that pure virtual func-
tions make your class an Abstract
Base Class, and these functions need
to be implemented by a deriving class.

DO consider using virtual inheritance.

DON’T forget to supply your base class
with a virtual destructor.

DON’T forget that the compiler does
not allow you to create a standalone
instance of an Abstract Base Class.

DON’T forget that virtual inheritance is
about ensuring that the common base
in a diamond hierarchy has only one
instance.

DON’T confuse the function of keyword
virtual when used in creating an
inheritance hierarchy with the same
when used in declaring base class
functions.

DO DON’T

ptg7987094

Q Should a base class always have a virtual destructor?

A Ideally yes. Only then can you ensure that when someone does a
Base* pBase = new Derived();
delete pBase;

delete on a pointer of type Base* results in the destructor ~Derived() being
invoked only if destructor ~Base() is declared virtual.

Q What is an Abstract Base Class good for when I can’t even instantiate it
standalone?

A The ABC is not meant to be instantiated as a standalone object; rather it is always
meant to be derived from. It contains pure virtual functions that define the minimal
blueprint of functions that deriving classes need to implement, thus taking the role
of an interface.

Q Given an inheritance hierarchy, do I need to use the keyword virtual on all
declarations of a virtual function or just in the base class?

A It is enough to have just one virtual function declaration, and that has to be in the
base class.

Q Can I define member functions and have member attributes in an ABC?

A Sure you can. Remember that you still cannot instantiate an ABC as it has at least
one pure virtual function that needs to be implemented by a deriving class.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain you understand the answers before continuing to the next
lesson.

Quiz
1. You are modeling shapes—circle and triangle—and want every shape to compulso-

rily implement functions Area() and Print(). How would you do it?

2. Does a compiler create a Virtual Function Table for all classes?

3. My class Fish has two public methods, one pure virtual function, and some
member attributes. Is it still an abstract base class?

308 LESSON 11: Polymorphism

ptg7987094

Exercises
1. Demonstrate an inheritance hierarchy that implements the question in Quiz 1 for

Circle and Triangle.

2. BUG BUSTERS: What is the problem in the following code:
class Vehicle
{
public:

Vehicle() {}
~Vehicle(){}

};
class Car: public Vehicle
{
public:

Car() {}
~Car() {}

};

3. In the (uncorrected) code in Exercise 2, what is the order of execution of construc-
tors and destructors if an instance of car is created and destroyed like this:

Vehicle* pMyRacer = new Car;
delete pMyRacer;

Workshop 309

11

ptg7987094

This page intentionally left blank

ptg7987094

LESSON 12
Operator Types and
Operator Overloading

Keyword class enables you to encapsulate not only data and methods,
but also operators that make it easy to operate on objects of this class.
You can use these operators to perform operations such as assignment
or addition on class objects similar to those on integers that you saw in
Lesson 5, “Working with Expressions, Statements, and Operators.” Just
like functions, operators can also be overloaded.

In this lesson, you will learn:

n Using the keyword operator

n Unary and binary operators

n Conversion operators

n C++11 move assignment operator

n Operators that cannot be redefined

ptg7987094

What Are Operators in C++?
On a syntactical level, there is very little that differentiates an operator from a function,
save for the use of the keyword operator. An operator declaration looks quite like a
function declaration:

return_type operator operator_symbol (...parameter list...);

The operator_symbol in this case could be any of the several operator types that the
programmer can define. It could be + (addition) or && (logical AND) and so on. The
operands help the compiler distinguish one operator from another. So, why does C++
provide operators when functions are also supported?

Consider a utility class Date that encapsulates the day, month, and year:

Date Holiday (25, 12, 2011); // initialized to 25th Dec 2011

Now, if you want this date to point to the next day—26th Dec 2011, in this case—which
of the following would be more convenient if not also intuitive?

n Option 1 (using operators):
++ Holiday;

n Option 2 (using a fictitious Date::Increment()):
Holiday.Increment(); // 26th Dec 2011

Clearly, Option 1 scores over method Increment(). The operator-based mechanism facil-
itates consumption by supplying ease of use and intuitiveness. Implementing operator (<)
in class Date would help you compare two dates like this:

if(Date1 < Date2)
{

// Do something
}
else
{

// Do something else
}

The application of operators is beyond classes such as those that manage dates. Imagine
an addition operator (+) that allows easy concatenation of strings in a string utility class
such as MyString as shown in Listing 9.9:

MyString sayHello (“Hello “);
MyString sayWorld (“world”);
MyString sumThem (sayHello + sayWorld); // uses operator+ (unavailable in
Listing 9.9)

312 LESSON 12: Operator Types and Operator Overloading

ptg7987094

Unary Operators 313

12

The added effort in implementing relevant operators pays off in
the ease with which your class is consumed.

On a very broad level, operators in C++ can be classified into two types: unary operators
and binary operators.

Unary Operators
As the name suggests, operators that function on a single operand are called unary oper-
ators. The typical definition of a unary operator implemented as a global function or a
static member function is

return_type operator operator_type (parameter_type)
{

// ... implementation
}

A unary operator that is the member of a class is defined as

return_type operator operator_type ()
{

// ... implementation
}

Types of Unary Operators
The unary operators that can be overloaded (or redefined) are shown in Table 12.1.

TABLE 12.1 Unary Operators

Operator Name

++ Increment

— Decrement

* Pointer dereference

–> Member selection

! Logical NOT

& Address-of

~ One’s complement

+ Unary plus

- Unary negation

Conversion operators Conversion operators

NOTE

ptg7987094

Programming a Unary Increment/Decrement
Operator
A unary prefix increment operator (++) can be programmed using the following syntax
within the class declaration: // Unary increment operator (prefix)

Date& operator ++ ()
{

// operator implementation code
return *this;

}

The postfix increment operator (++), on the other hand, has a different return value and
an input parameter (that is not always used):

Date operator ++ (int)
{

// Store a copy of the current state of the object, before incrementing day
Date Copy (*this);

// operator implementation code (that increments this object)

// Return the state before increment was performed
return Copy;

}

The prefix and postfix decrement operators have a similar syntax as the increment opera-
tors, just that the declaration would contain a — where you see a ++. Listing 12.1 shows
a simple class Date that allows incrementing days using operator (++).

LISTING 12.1 A Calendar Class That Handles Day, Month and Year, and Allows
Incrementing and Decrementing Days

0: #include <iostream>
1: using namespace std;
2:
3: class Date
4: {
5: private:
6: int Day; // Range: 1 - 30 (lets assume all months have 30 days!
7: int Month;
8: int Year;
9:
10: public:

314 LESSON 12: Operator Types and Operator Overloading

ptg7987094

11: // Constructor that initializes the object to a day, month and year
12: Date (int InputDay, int InputMonth, int InputYear)
13: : Day (InputDay), Month (InputMonth), Year (InputYear) {};
14:
15: // Unary increment operator (prefix)
16: Date& operator ++ ()
17: {
18: ++Day;
19: return *this;
20: }
21:
22: // Unary decrement operator (prefix)
23: Date& operator — ()
24: {
25: —Day;
26: return *this;
27: }
28:
29: void DisplayDate ()
30: {
31: cout << Day << “ / “ << Month << “ / “ << Year << endl;
32: }
33: };
34:
35: int main ()
36: {
37: // Instantiate and initialize a date object to 25 Dec 2011
38: Date Holiday (25, 12, 2011);
39:
40: cout << “The date object is initialized to: “;
41: Holiday.DisplayDate ();
42:
43: // Applying the prefix increment operator
44: ++ Holiday;
45:
46: cout << “Date after prefix-increment is: “;
47:
48: // Display date after incrementing
49: Holiday.DisplayDate ();
50:
51: — Holiday;
52: — Holiday;
53:
54: cout << “Date after two prefix-decrements is: “;
55: Holiday.DisplayDate ();
56:
57: return 0;
58: }

Unary Operators 315

12

ptg7987094

Output ▼

The date object is initialized to: 25 / 12 / 2011
Date after prefix-increment is: 26 / 12 / 2011
Date after two prefix-decrements is: 24 / 12 / 2011

Analysis ▼

The operators of interest are in Lines 16 to 27, and they help in incrementing objects of
class Date to add or subtract a day at a time as shown in Lines 44, 51, and 52 in
main(). Prefix increment operators are those that first perform the increment operation
and return a reference to the same object.

316 LESSON 12: Operator Types and Operator Overloading

This version of a date class has bare minimum implementation to
reduce lines and to explain how prefix operator (++) and operator
(—) are to be implemented. In doing so, I have assumed that a
month has 30 days and have not implemented rollover functionali-
ties for month and year.

To support postfix increment or decrement, you simply add the following code to class
Date:

// postfix differs from prefix operator in return-type and parameters
Date operator ++ (int)
{

// Store a copy of the current state of the object, before incrementing day
Date Copy (Day, Month, Year);

++Day;

// Return the state before increment was performed
return Copy;

}
// postfix decrement operator
Date operator — (int)
{

Date Copy (Day, Month, Year);

—Day;

return Copy;
}

NOTE

ptg7987094

When your version of class Date supports both prefix and postfix increment and decre-
ment operators, you will be able to use objects of the class using the following syntax:

Date Holiday (25, 12, 2011); // instantiate
++ Holiday; // using prefix increment operator++
Holiday ++; // using postfix increment operator++
— Holiday; // using prefix decrement operator—
Holiday —; // using postfix decrement operator—

Unary Operators 317

12

As the implementation of the postfix operators demonstrates, a
copy containing the existing state of the object is created before
the increment or decrement operation to be returned thereafter.

In other words, if you had the choice between using ++ object;
and object ++; to essentially only increment, you should choose
the former to avoid the creation of a temporary copy that is not
used.

Programming Conversion Operators
If you use Listing 12.1 and add the following line to main()

cout << Holiday; // error in absence of conversion operator

the code would result in the following compile failure: error: binary ‘<<’ : no
operator found which takes a right-hand operand of type ‘Date’ (or there

is no acceptable conversion). This error essentially indicates that cout doesn’t
know how to interpret an instance of Date as class Date does not support the relevant
operators.

However, cout can work very well with a const char*:

std::cout << “Hello world”; // const char* works!

So, getting cout to work with an object of type Date might be as simple as adding an
operator that returns a const char* version:

operator const char*()
{

// operator implementation that returns a char*
}

Listing 12.2 is a simple implementation of this operator.

NOTE

ptg7987094

LISTING 12.2 Implementing Conversion operator const char* for class Date

0: #include <iostream>
1: #include <sstream>
2: #include <string>
3: using namespace std;
4:
5: class Date
6: {
7: private:
8: int Day; // Range: 1 - 30 (lets assume all months have 30 days!
9: int Month;
10: int Year;
11:
12: string DateInString;
13:
14: public:
15:
16: // Constructor that initializes the object to a day, month and year
17: Date (int InputDay, int InputMonth, int InputYear)
18: : Day (InputDay), Month (InputMonth), Year (InputYear) {};
19:
20: operator const char*()
21: {
22: ostringstream formattedDate;
23: formattedDate << Day << “ / “ << Month << “ / “ << Year;
24:
25: DateInString = formattedDate.str();
26: return DateInString.c_str();
27: }
28: };
29:
30: int main ()
31: {
32: // Instantiate and initialize a date object to 25 Dec 2011
33: Date Holiday (25, 12, 2011);
34:
35: cout << “Holiday is on: “ << Holiday << endl;
36:
37: return 0;
38: }

Output ▼

Holiday is on: 25 / 12 / 2011

318 LESSON 12: Operator Types and Operator Overloading

ptg7987094

Analysis ▼

The benefit of implementing operator const char* as shown in Lines 20 to 27 is visible
in Line 35 in main(). Now, an instance of class Date can directly be used in a cout
statement, taking advantage of the fact that cout understands const char*. The compiler
automatically uses the output of the appropriate (and in this case, the only available)
operator in feeding it to cout that displays the date on the screen. In your implementa-
tion of operator const char*, you use std::ostringstream to convert the member
integers into a std::string object as shown in Lines 23 and 25. You could’ve directly
returned formattedDate.str(), yet you store a copy in private member
Date::DateInString in Line 25 because formattedDate being a local variable is
destroyed when the operator returns. So, the pointer got via str() would be invalidated
on return.

This operator opens up new possibilities towards consuming class Date. You can now
even assign a Date directly to a string:

string strHoliday (Holiday); // OK! Compiler invokes operator const char*
strHoliday = Date(11, 11, 2011); // also OK!

Unary Operators 319

12

Program as many operators as you think your class would be used
in. If your application needs an integer representation of a Date
then you would program it using:

operator int()
{

// your conversion code here
}

This would allow an instance of Date to be used or transacted as
an integer:

SomeFuncThatTakesInt(Date(25, 12, 2011));

Programming Dereference Operator (*) and Member
Selection Operator (->)
The dereference operator (*) and member selection operator (->) are most frequently
used in the programming of smart pointer classes. Smart pointers are utility classes that
wrap regular pointers and make memory management easy by handling memory (or
resource) ownership and copy issues. In some cases, they can even help improve the

NOTE

ptg7987094

performance of the application. Smart pointers are discussed in detail in Lesson 26,
“Understanding Smart Pointers”; this lesson takes a brief look at how overloading opera-
tors helps smart pointers work.

Analyze the use of the std::unique_ptr in Listing 12.3 and understand how it uses
operator (*) and operator (->) to help you use the smart-pointer class like any normal
pointer.

LISTING 12.3 Using Smart Pointer unique_ptr to Manage a Dynamically Allocated
Instance of class Date

0: #include <iostream>
1: #include <memory> // include this to use std::unique_ptr
2: using namespace std;
3:
4: class Date
5: {
6: private:
7: int Day;
8: int Month;
9: int Year;
10:
11: string DateInString;
12:
13: public:
14: // Constructor that initializes the object to a day, month and year
15: Date (int InputDay, int InputMonth, int InputYear)
16: : Day (InputDay), Month (InputMonth), Year (InputYear) {};
17:
18: void DisplayDate()
19: {
20: cout << Day << “ / “ << Month << “ / “ << Year << endl;
21: }
22: };
23:
24: int main()
25: {
26: unique_ptr<int> pDynamicAllocInteger(new int);
27: *pDynamicAllocInteger = 42;
28:
29: // Use smart pointer type like an int*
30: cout << “Integer value is: “ << *pDynamicAllocInteger << endl;
31:
32: unique_ptr<Date> pHoliday (new Date(25, 11, 2011));
33: cout << “The new instance of date contains: “;
34:
35: // use pHoliday just as you would a Date*
36: pHoliday->DisplayDate();
37:
38: // no need to do the following when using unique_ptr:

320 LESSON 12: Operator Types and Operator Overloading

ptg7987094

39: // delete pDynamicAllocInteger;
40: // delete pHoliday;
41:
42: return 0;
43: }

Output ▼

Integer value is: 42
The new instance of date contains: 25 / 11 / 2011

Analysis ▼

Line 26 is where you declare a smart pointer to type int. This line shows template ini-
tialization syntax for smart pointer class unique_ptr. Similarly, Line 32 declares a smart
pointer to an instance of class Date. Focus on the pattern, and ignore the details for the
moment.

Unary Operators 321

12

Don’t worry if this template syntax looks awkward because tem-
plates are introduced later in Lesson 14, “An Introduction to
Macros and Templates.”

This example not only demonstrates how a smart pointer allows you to use normal
pointer syntax as shown in Lines 30 and 36. In Line 30, you are able to display the value
of the int using *pDynamicAllocInteger, whereas in Line 36 you use pHoliday-
>DisplayData() as if these two variables were an int* and Date* respectively. The
secret lies in the smart pointer class std::unique_ptr implementing operator (*) and
operator (->) respectively. Listing 12.4 is an implementation of a simple and rudimentary
smart pointer class.

LISTING 12.4 Implementing operator (*) and Operator (->) in a Simple Smart Pointer
Class

0: #include <iostream>
1: using namespace std;
2:
3: template <typename T>
4: class smart_pointer
5: {
6: private:
7: T* m_pRawPointer;
8: public:
9: smart_pointer (T* pData) : m_pRawPointer (pData) {} // constructor

NOTE

ptg7987094

LISTING 12.4 Continued

10: ~smart_pointer () {delete m_pRawPointer ;} // destructor
11:
12: T& operator* () const // dereferencing operator
13: {
14: return *(m_pRawPointer);
15: }
16:
17: T* operator-> () const // member selection operator
18: {
19: return m_pRawPointer;
20: }
21: };
22:
23: class Date
24: {
25: private:
26: int Day, Month, Year;
27: string DateInString;
28:
29: public:
30: // Constructor that initializes the object to a day, month and year
31: Date (int InputDay, int InputMonth, int InputYear)
32: : Day (InputDay), Month (InputMonth), Year (InputYear) {};
33:
34: void DisplayDate()
35: {
36: cout << Day << “ / “ << Month << “ / “ << Year << endl;
37: }
38: };
39:
40: int main()
41: {
42: smart_pointer<int> pDynamicInt(new int (42));
43: cout << “Dynamically allocated integer value = “ << *pDynamicInt;
44:
45: smart_pointer<Date> pDate(new Date(25, 12, 2011));
46: cout << “Date is = “;
47: pDate->DisplayDate();
48:
49: return 0;
50: }

Output ▼

Dynamically allocated integer value = 42
Date is = 25 / 12 / 2011

322 LESSON 12: Operator Types and Operator Overloading

ptg7987094

Analysis ▼

This is a version of Listing 12.3 that uses your own smart_pointer class defined in
Lines 3 to 24. You use template declaration syntax so that your smart pointer can be cus-
tomized to point to any type, be it an int, as shown in Line 45, or a Date, as shown in
Line 48. Our smart pointer class contains a private member of the type it is pointing to,
declared in Line 7. Essentially, the smart pointer class aims to automate the management
of the resource pointed to by this member, which includes automatically releasing it in
the destructor as shown in Line 10. This destructor ensures that even if you did a new,
you don’t need to do a delete, and not releasing this memory resource manually does
not result in a memory leak. Focus on the implementation of operator (*) in Lines 12 to
15 that returns type T& (that is, a reference to the type this template is specialized for).
The implementation returns a reference to the instance being pointed to, as shown in
Line 14. Similarly, operator (->), as shown in Lines 17 to 20, returns type T* (that is, a
pointer of the type this template is specialized for). The implementation of operator (->)
in Line 19 returns the member pointer. Collectively, these two operators ensure that class
smart_pointer abstracts memory management of a raw pointer and allows usage of reg-
ular pointer functionality, thus making it a “smart” pointer.

Binary Operators 323

12

Smart pointer classes can do a lot more than just parade around
as normal pointers, or de-allocate memory when they go out of
scope. Find out more about this topic in Lesson 26,
“Understanding Smart Pointers.”

If the usage of unique_ptr in Listing 12.3 makes you curious,
look up its implementation in the header file <memory> as sup-
plied by your compiler or IDE to understand what it does behind
the scenes.

Binary Operators
Operators that function on two operands are called binary operators. The definition of a
binary operator implemented as a global function or a static member function is the fol-
lowing:

return_type operator_type (parameter1, parameter2);

The definition of a binary operator implemented as a class member is

return_type operator_type (parameter);

NOTE

ptg7987094

The reason the class member version of a binary operator accepts only one parameter is
that the second parameter is usually derived from the attributes of the class itself.

Types of Binary Operators
Table 12.2 contains binary operators that can be overloaded or redefined in your C++
application.

TABLE 12.2 Overloadable Binary Operators

Operator Name

, Comma

!= Inequality

% Modulus

%= Modulus/assignment

& Bitwise AND

&& Logical AND

&= Bitwise AND/assignment

* Multiplication

*= Multiplication/assignment

+ Addition

+= Addition/assignment

– Subtraction

–= Subtraction/assignment

–>* Pointer-to-member selection

/ Division

/= Division/assignment

< Less than

<< Left shift

<<= Left shift/assignment

<= Less than or equal to

= Assignment, Copy Assignment and Move Assignment

== Equality

> Greater than

>= Greater than or equal to

>> Right shift

>>= Right shift/assignment

^ Exclusive OR

324 LESSON 12: Operator Types and Operator Overloading

ptg7987094

Operator Name

^= Exclusive OR/assignment

| Bitwise inclusive OR

|= Bitwise inclusive OR/assignment

|| Logical OR

[] Subscript operator

Programming Binary Addition (a+b) and Subtraction
(a–b) Operators
Similar to the increment/decrement operators, the binary plus and minus, when defined,
enable you to add or subtract the value of a supported data type from an object of the
class that implements these operators. Take a look at your calendar class Date again.
Although you have already implemented the capability to increment Date so that it
moves the calendar one day forward, you still do not support the capability to move it,
say, five days ahead. To do this, you need to implement binary operator (+), as the code
in Listing 12.5 demonstrates.

LISTING 12.5 Calendar Class Featuring the Binary Addition Operator

0: #include <iostream>
1: using namespace std;
2:
3: class Date
4: {
5: private:
6: int Day, Month, Year;
7:
8: public:
9:
10: // Constructor that initializes the object to a day, month and year
11: Date (int InputDay, int InputMonth, int InputYear)
12: : Day (InputDay), Month (InputMonth), Year (InputYear) {};
13:
14: // Binary addition operator
15: Date operator + (int DaysToAdd)
16: {
17: Date newDate (Day + DaysToAdd, Month, Year);
18: return newDate;
19: }
20:
21: // Binary subtraction operator
22: Date operator - (int DaysToSub)
23: {

Binary Operators 325

12

ptg7987094

LISTING 12.5 Continued

24: return Date(Day - DaysToSub, Month, Year);
25: }
26:
27: void DisplayDate ()
28: {
29: cout << Day << “ / “ << Month << “ / “ << Year << endl;
30: }
31: };
32:
33: int main()
34: {
35: // Instantiate and initialize a date object to 25 Dec 2011
36: Date Holiday (25, 12, 2011);
37:
38: cout << “Holiday on: “;
39: Holiday.DisplayDate ();
40:
41: Date PreviousHoliday (Holiday - 19);
42: cout << “Previous holiday on: “;
43: PreviousHoliday.DisplayDate();
44:
45: Date NextHoliday(Holiday + 6);
46: cout << “Next holiday on: “;
47: NextHoliday.DisplayDate ();
48:
49: return 0;
50: }

Output ▼

Holiday on: 25 / 12 / 2011
Previous holiday on: 6 / 12 / 2011
Next holiday on: 31 / 12 / 2011

Analysis ▼

Lines 14 to 25 contain the implementations of the binary operator (+) and operator (-)
that permit the use of simple addition and subtraction syntax as seen in main() in Lines
41 and 45 respectively.

The binary addition operator would also be very useful if you are programming a string
class. In Lesson 9, “Classes and Objects,” you analyze a simple string wrapper class
MyString that encapsulates memory management, copying and the likes for a C-style
character string, as shown in Listing 9.9. What this class doesn’t support is concatenating
two strings using the following syntax:

326 LESSON 12: Operator Types and Operator Overloading

ptg7987094

MyString Hello(“Hello “);
MyString World(“ World”);
MyString HelloWorld(Hello + World); // error: operator+ not defined

Needless to say, operator (+) would make using MyString extremely easy and is hence
worth the effort:

MyString operator+ (const MyString& AddThis)
{

MyString NewString;

if (AddThis.Buffer != NULL)
{

NewString.Buffer = new char[GetLength() + strlen(AddThis.Buffer) + 1];
strcpy(NewString.Buffer, Buffer);
strcat(NewString.Buffer, AddThis.Buffer);

}

return NewString;
}

Add the preceding code to Listing 9.9 with a private default constructor MyString() with
empty implementation to be able to use the addition syntax. You can see a version of
class MyString with operator (+) among others in Listing 12.12 later in this lesson.

Binary Operators 327

12

Operators increase the usability of your class. However, you need
to implement operators where they make sense. Note how you
implemented addition and subtraction operators for class Date
but only addition operator (+) for class MyString. That’s because
performing subtraction operations on a string is very improbable
and such an operator would possibly go waste.

Implementing Addition Assignment (+=) and
Subtraction Assignment (-=) Operators
The addition assignment operators allow syntax such as “a += b;” that allows the pro-
grammer to increment the value of an object a by an amount b. In doing this, the utility
of the addition assignment operator is that it can be overloaded to accept different types
of parameter b. Listing 12.6 that follows allows you to add an integer value to a CDate
object.

NOTE

ptg7987094

LISTING 12.6 Defining Operator (+=) and Operator (-=) to Add or Subtract Days in the
Calendar Given an Integer Input

0: #include <iostream>
1: using namespace std;
2:
3: class Date
4: {
5: private:
6: int Day, Month, Year;
7:
8: public:
9:
10: // Constructor that initializes the object to a day, month and year
11: Date (int InputDay, int InputMonth, int InputYear)
12: : Day (InputDay), Month (InputMonth), Year (InputYear) {};
13:
14: // Binary addition assignment
15: void operator+= (int DaysToAdd)
16: {
17: Day += DaysToAdd;
18: }
19:
20: // Binary subtraction assignment
21: void operator-= (int DaysToSub)
22: {
23: Day -= DaysToSub;
24: }
25:
26: void DisplayDate ()
27: {
28: cout << Day << “ / “ << Month << “ / “ << Year << endl;
29: }
30: };
31:
32: int main()
33: {
34: // Instantiate and initialize a date object to 25 Dec 2011
35: Date Holiday (25, 12, 2011);
36:
37: cout << “Holiday is on: “;
38: Holiday.DisplayDate ();
39:
40: cout << “Holiday -= 19 gives: “;
41: Holiday -= 19;
42: Holiday.DisplayDate();
43:
44: cout << “Holiday += 25 gives: “;
45: Holiday += 25;
46: Holiday.DisplayDate ();
47:

328 LESSON 12: Operator Types and Operator Overloading

ptg7987094

48: return 0;
49: }

Output ▼

Holiday is on: 25 / 12 / 2011
Holiday -= 19 gives: 6 / 12 / 2011
Holiday += 25 gives: 31 / 12 / 2011

Analysis ▼

The addition and subtraction assignment operators of interest are in Lines 14 to 24.
These allow adding and subtracting an integer value for days, as seen in main(), for
instance:

41: Holiday -= 19;
45: Holiday += 25;

Your class Date now allows users to add or remove days from it as if they are dealing
with integers using addition or subtraction assignment operators that take an int as a
parameter. You can even provide overloaded versions of the addition assignment operator
(+=) that takes an instance of a fictitious class CDays :

// The addition-assignment operator that add a CDays to an existing Date
void operator += (const CDays& mDaysToAdd)
{

Day += mDaysToAdd.GetDays ();
}

Binary Operators 329

12

The multiplication assignment *=, division assignment /=, modu-
lus assignment %=, subtraction assignment -=, left-shift assign-
ment <<=, right-shift assignment >>=, XOR assignment ^=, bitwise
inclusive OR assignment |=, and bitwise AND assignment &= oper-
ators have a similar syntax to the addition assignment operator
shown in Listing 12.6.

Although the ultimate objective of overloading operators is making
the class easy and intuitive to use, there are many situations
where implementing an operator might not make sense. For exam-
ple, our calendar class Date has absolutely no use for a bitwise
AND assignment &= operator. No user of this class should ever
expect (or even think of) getting useful results from an operation
such as greatDay &= 20;.

NOTE

ptg7987094

Overloading Equality (==) and Inequality (!=)
Operators
What do you expect when the user of class Date compares one object to another:

if (Date1 == Date2)
{

// Do something
}
else
{

// Do something else
}

In the absence of an equality operator, the compiler simply performs a binary compari-
son of the two objects and returns true if they are exactly identical. This might work in
some cases (including with the Date class as of now), but it probably does not work to
your expectations if the class in question has a non-static string member that contains a
string value (char*) such as MyString in Listing 9.9. In such a case, a binary comparison
of the member attributes actually compares the string pointers that are not equal (even if
the strings pointed to are identical in content) and returns false consistently.

Thus, it is a good practice to define the comparison operators. A generic expression of
the equality operator is the following:

bool operator== (const ClassType& compareTo)
{

// comparison code here, return true if equal else false
}

The inequality operator can reuse the equality operator:

bool operator!= (const ClassType& compareTo)
{

// comparison code here, return true if inequal else false

}

The inequality operator can be the inverse (logical NOT) of the result of the equality
operator. Listing 12.7 demonstrates comparison operators defined by our calendar class
Date.

LISTING 12.7 Demonstrates Operators == and !=

0: #include <iostream>
1: using namespace std;
2:

330 LESSON 12: Operator Types and Operator Overloading

ptg7987094

3: class Date
4: {
5: private:
6: int Day, Month, Year;
7:
8: public:
9:
10: // Constructor that initializes the object to a day, month and year
11: Date (int InputDay, int InputMonth, int InputYear)
12: : Day (InputDay), Month (InputMonth), Year (InputYear) {};
13:
14: bool operator== (const Date& compareTo)
15: {
16: return ((Day == compareTo.Day)
17: && (Month == compareTo.Month)
18: && (Year == compareTo.Year));
19: }
20:
21: bool operator!= (const Date& compareTo)
22: {
23: return !(this->operator==(compareTo));
24: }
25:
26: void DisplayDate ()
27: {
28: cout << Day << “ / “ << Month << “ / “ << Year << endl;
29: }
30: };
31:
32: int main()
33: {
34: Date Holiday1 (25, 12, 2011);
35: Date Holiday2 (31, 12, 2011);
36:
37: cout << “Holiday 1 is: “;
38: Holiday1.DisplayDate();
39: cout << “Holiday 2 is: “;
40: Holiday2.DisplayDate();
41:
42: if (Holiday1 == Holiday2)
43: cout << “Equality operator: The two are on the same day” << endl;
44: else
45: cout << “Equality operator: The two are on different days” << endl;
46:
47: if (Holiday1 != Holiday2)
48: cout << “Inequality operator: The two are on different days” << endl;
49: else
50: cout << “Inequality operator: The two are on the same day” << endl;
51:
52: return 0;
53: }

Binary Operators 331

12

ptg7987094

Output ▼

Holiday 1 is: 25 / 12 / 2011
Holiday 2 is: 31 / 12 / 2011
Equality operator: The two are on different days
Inequality operator: The two are on different days

Analysis ▼

The equality operator (==) is a simple implementation that returns true if the day, month,
and year are all equal, as shown in Lines 14 to 19. The inequality operator (!=) simply
reuses the equality operator code as seen in line 23. The presence of these operators
helps compare two Date objects, Holiday1 and Holiday2, in main() in Lines 42 and 47.

Overloading <, >, <=, and >= Operators
The code in Listing 12.7 made the Date class intelligent enough to be able to tell
whether two Date objects are equal or unequal. However, what if the user of the class
required to perform a conditional check is akin to this:

if (Date1 < Date2) {// do something}

or

if (Date1 <= Date2) {// do something}

or

if (Date1 > Date2) {// do something}

or

if (greatDay >= Date2) {// do something}

The user of your calendar class would definitely find it very useful if he could simply
compare two dates to know whether one precedes or follows another. The programmer of
the class needs to implement this comparison to make using his class as user friendly and
intuitive as possible, as demonstrated by the code shown in Listing 12.8.

LISTING 12.8 Demonstrates Implementing <, <=, >, and >= Operators

0: #include <iostream>
1: using namespace std;
2:
3: class Date
4: {
5: private:
6: int Day, Month, Year;

332 LESSON 12: Operator Types and Operator Overloading

ptg7987094

7:
8: public:
9:
10: // Constructor that initializes the object to a day, month and year
11: Date (int InputDay, int InputMonth, int InputYear)
12: : Day (InputDay), Month (InputMonth), Year (InputYear) {};
13:
14: bool operator== (const Date& compareTo)
15: {
16: return ((Day == compareTo.Day)
17: && (Month == compareTo.Month)
18: && (Year == compareTo.Year));
19: }
20:
21: bool operator< (const Date& compareTo)
22: {
23: if (Year < compareTo.Year)
24: return true;
25: else if (Month < compareTo.Month)
26: return true;
27: else if (Day < compareTo.Day)
28: return true;
29: else
30: return false;
31: }
32:
33: bool operator<= (const Date& compareTo)
34: {
35: if (this->operator== (compareTo))
36: return true;
37: else
38: return this->operator< (compareTo);
39: }
40:
41: bool operator > (const Date& compareTo)
42: {
43: return !(this->operator<= (compareTo));
44: }
45:
46: bool operator>= (const Date& compareTo)
47: {
48: if(this->operator== (compareTo))
49: return true;
50: else
51: return this->operator> (compareTo);
52: }
53:
54: bool operator!= (const Date& compareTo)
55: {
56: return !(this->operator==(compareTo));
57: }

Binary Operators 333

12

ptg7987094

LISTING 12.8 Continued

58:
59: void DisplayDate ()
60: {
61: cout << Day << “ / “ << Month << “ / “ << Year << endl;
62: }
63: };
64:
65: int main()
66: {
67: Date Holiday1 (25, 12, 2011);
68: Date Holiday2 (31, 12, 2011);
69:
70: cout << “Holiday 1 is: “;
71: Holiday1.DisplayDate();
72: cout << “Holiday 2 is: “;
73: Holiday2.DisplayDate();
74:
75: if (Holiday1 < Holiday2)
76: cout << “operator<: Holiday1 happens first” << endl;
77:
78: if (Holiday2 > Holiday1)
79: cout << “operator>: Holiday2 happens later” << endl;
80:
81: if (Holiday1 <= Holiday2)
82: cout << “operator<=: Holiday1 happens on or before Holiday2” << endl;
83:
84: if (Holiday2 >= Holiday1)
85: cout << “operator>=: Holiday2 happens on or after Holiday1” << endl;
86:
87: return 0;
88: }

Output ▼

Holiday 1 is: 25 / 12 / 2011
Holiday 2 is: 31 / 12 / 2011
operator<: Holiday1 happens first
operator>: Holiday2 happens later
operator<=: Holiday1 happens on or before Holiday2
operator>=: Holiday2 happens on or after Holiday1

Analysis ▼

The operators of interest are implemented in Lines 21 to 52 and partially reuse operator
(==) that you saw in Listing 12.7. Note how these operators have been implemented:
most reuse one or the other.

334 LESSON 12: Operator Types and Operator Overloading

ptg7987094

The usage of the operators inside the main() function between Lines 75 to 84 indicates
how the implementation of these operators make using the Date class easy and intuitive.

Overloading Copy Assignment Operator (=)
There are times when you want to assign the contents of an instance of a class to another,
like this:

Date Holiday(25, 12, 2011);
Date AnotherHoliday(1, 1, 2010);
AnotherHoliday = Holiday; // uses copy assignment operator

This invokes the default copy assignment operator that the compiler has built in to your
class unless you have supplied one. Depending on the nature of your class, the default
copy constructor might be inadequate, especially if your class is managing a resource
that will not be copied. To ensure deeper copies, as with the copy constructor, you need
to specify a copy assignment operator:

ClassType& operator= (const ClassType& CopySource)
{

if(this != ©Source) // protection against copy into self
{

// Assignment operator implementation
}
return *this;

}

Deep copies are important if your class encapsulates a raw pointer, such as class
MyString shown in Listing 9.9. In the absence of an assignment operator, the default
copy assignment operator supplied by the compiler simply copies the address contained
in char* Buffer from the source to the destination, without performing a deep copy of
the memory being pointed to. This is the same scenario as one in the absence of the copy
constructor. To ensure deep copy during assignments, define a copy assignment operator
as shown in Listing 12.9.

LISTING 12.9 A Better class MyString from Listing 9.9 with a Copy Assignment
Operator

0: #include <iostream>
1: using namespace std;
2:
3: class MyString
4: {
5: private:
6: char* Buffer;

Binary Operators 335

12

ptg7987094

LISTING 12.9 Continued

7:
8: public:
9: // constructor
10: MyString(const char* InitialInput)
11: {
12: if(InitialInput != NULL)
13: {
14: Buffer = new char [strlen(InitialInput) + 1];
15: strcpy(Buffer, InitialInput);
16: }
17: else
18: Buffer = NULL;
19: }
20:
21: // insert copy constructor from Listing 9.9
22: MyString(const MyString& CopySource);
23:
24: // Copy assignment operator
25: MyString& operator= (const MyString& CopySource)
26: {
27: if ((this != &CopySource) && (CopySource.Buffer != NULL))
28: {
29: if (Buffer != NULL)
30: delete[] Buffer;
31:
32: // ensure deep copy by first allocating own buffer
33: Buffer = new char [strlen(CopySource.Buffer) + 1];
34:
35: // copy from the source into local buffer
36: strcpy(Buffer, CopySource.Buffer);
37: }
38: return *this;
39: }
40:
41: // Destructor
42: ~MyString()
43: {
44: if (Buffer != NULL)
45: delete [] Buffer;
46: }
47:
48: int GetLength()
49: {
50: return strlen(Buffer);
51: }
52:
53: operator const char*()
54: {
55: return Buffer;

336 LESSON 12: Operator Types and Operator Overloading

ptg7987094

56: }
57: };
58:
59: int main()
60: {
61: MyString String1(“Hello “);
62: MyString String2(“ World”);
63:
64: cout << “Before assignment: “ << endl;
65: cout << String1 << String2 << endl;
66: String2 = String1;
67: cout << “After assignment String2 = String1: “ << endl;
68: cout << String1 << String2 << endl;
69:
70: return 0;
71: }

Output ▼

Before assignment:
Hello World
After assignment String2 = String1:
Hello Hello

Analysis ▼

I have purposely omitted the copy constructor in this sample to reduce lines of code (but
you should be inserting it when programming such a class; refer Listing 9.9 as a refer-
ence). The copy assignment operator is implemented in Lines 25 to 39. It is quite similar
in function to a copy constructor and performs a starting check to ensure that the same
object is not both the copy source and destination. After the checks return true, the copy
assignment operator for MyString first deallocates its internal Buffer before reallocating
space for the text from the copy source and then uses strcpy() to copy, as shown in
Line 36.

Binary Operators 337

12

Another subtle change in Listing 12.9 over Listing 9.9 is that you
have replaced function GetString() by operator const char* as
shown in Lines 53 to 56. This operator makes it even easier to
use class MyString, as shown in Line 68, where one cout
statement is used to display two instances of MyString.

NOTE

ptg7987094

338 LESSON 12: Operator Types and Operator Overloading

When implementing a class that manages a dynamically allocated
resource such as a char* C-style string, a dynamic array or the
likes, always ensure that you have implemented (or considered
implementation of) the copy constructor and the copy assignment
operator in addition to the constructor and the destructor.

Unless you clearly evaluate the resource ownership issue when an
object of your class is copied, your class is incomplete and even
dangerous when used.

CAUTION

To create a class that cannot be copied, declare the copy con-
structor and copy assignment operator as private. Declaration
(and not even implementation) is sufficient for the compiler to
throw error on all attempts at copying this class via passing to a
function by value or assigning one instance into another.

Subscript Operator ([])
The operator that allow array-style [] access to a class is called subscript operator. The
typical syntax of a subscript operator is:

return_type& operator [] (subscript_type& subscript);

So, when creating a class such as MyString that encapsulates a dynamic array class of
characters in a char* Buffer, a subscript operator makes it really easy to randomly
access individual characters in the buffer:

class MyString
{

// ... other class members
public:

/*const*/ char& operator [] (int Index) /*const*/
{

// return the char at position Index in Buffer
}

};

The sample in Listing 12.10 demonstrates how the subscript operator ([]) helps the user
in iterating through the characters contained in an instance of MyString using normal
array semantics.

TIP

ptg7987094

LISTING 12.10 Implementing Subscript Operator [] in class MyString to Allow
Random Access to Characters Contained in MyString::Buffer

0: #include <iostream>
1: #include <string>
2: using namespace std;
3:
4: class MyString
5: {
6: private:
7: char* Buffer;
8:
9: // private default constructor
10: MyString() {}
11:
12: public:
13: // constructor
14: MyString(const char* InitialInput)
15: {
16: if(InitialInput != NULL)
17: {
18: Buffer = new char [strlen(InitialInput) + 1];
19: strcpy(Buffer, InitialInput);
20: }
21: else
22: Buffer = NULL;
23: }
24:
25: // Copy constructor: insert from Listing 9.9 here
26: MyString(const MyString& CopySource);
27:
28: // Copy assignment operator: insert from Listing 12.9 here
29: MyString& operator= (const MyString& CopySource);
30:
31: const char& operator[] (int Index) const
32: {
33: if (Index < GetLength())
34: return Buffer[Index];
35: }
36:
37: // Destructor
38: ~MyString()
39: {
40: if (Buffer != NULL)
41: delete [] Buffer;
42: }
43:
44: int GetLength() const
45: {
46: return strlen(Buffer);
47: }

Binary Operators 339

12

ptg7987094

LISTING 12.10 Continued

48:
49: operator const char*()
50: {
51: return Buffer;
52: }
53: };
54:
55: int main()
56: {
57: cout << “Type a statement: “;
58: string strInput;
59: getline(cin, strInput);
60:
61: MyString youSaid(strInput.c_str());
62:
63: cout << “Using operator[] for displaying your input: “ << endl;
64: for(int Index = 0; Index < youSaid.GetLength(); ++Index)
65: cout << youSaid[Index] << “ “;
66: cout << endl;
67:
68: cout << “Enter index 0 - “ << youSaid.GetLength() - 1 << “: “;
69: int InIndex = 0;
70: cin >> InIndex;
71: cout << “Input character at zero-based position: “ << InIndex;
72: cout << “ is: “<< youSaid[InIndex] << endl;
73:
74: return 0;
75: }

Output ▼

Type a statement: Hey subscript operators[] are fabulous
Using operator[] for displaying your input:
H e y s u b s c r i p t o p e r a t o r s [] a r e f a b u l o u s
Enter index 0 - 37: 2
Input character at zero-based position: 2 is: y

Analysis ▼

This is just a fun program that takes a sentence you input, constructs a MyString using it,
as shown in Line 61, and then uses a for loop to print the string character by character
with the help of the subscript operator ([]) using an array-like syntax, as shown in Lines
64 and 65. The operator ([]) itself is defined in Lines 31 to 35 and supplies direct access
to the character at the specified position after ensuring that the requested position is not
beyond the end of the char* Buffer.

340 LESSON 12: Operator Types and Operator Overloading

ptg7987094

Binary Operators 341

12

Const-Correctness for Operators

Using keyword const is important even when programming
operators. Note how Listing 12.10 has restricted the return
value of subscript operator [] to const char&. The program
works and compiles even without the const keywords, yet
the reason you have it there is to avoid this code:

MyString sayHello(“Hello World”);
sayHello[2] = ‘k’;error: operator[] is const

By using const you are protecting internal member
MyString::Buffer from direct modifications from the outside via
operator []. In addition to classifying the return value as const,
you even have restricted the operator function type to const to
ensure that this operator cannot modify the class’s member
attributes.

In general, use the maximum possible const restriction to avoid
unintentional data modifications and increase protection of the
class’s member attributes.

When implementing subscript operators, you can improve on the version shown in
Listing 12.10. That one is an implementation of a single subscript operator that works for
both reading from and writing to the slots in the dynamic array.

You can, however, implement two subscript operators—one as a const function and the
other as a non-const one:

char& operator [] (int nIndex); // use to write / change Buffer at Index
char& operator [] (int nIndex) const; // used only for accessing char at Index

The compiler is smart enough to invoke the const function for read operations and the
non-const version for operations that write into the MyString object. Thus, you can (if
you want to) have separate functionalities in the two subscript functions. For example,
one function can log writes into the container while the other can log reads from it.
There are other binary operators (enlisted in Table 12.2) that can be redefined or over-
loaded but that are not discussed further in this lesson. Their implementation, however, is
similar to those that have already been discussed.

Other operators, such as the logical operators and the bitwise operators, need to be pro-
grammed if the purpose of the class would be enhanced by having them. Clearly, a calen-
dar class such as Date does not necessarily need to implement logical operators, whereas
a class that performs string and numeric functions might need them all the time.

CAUTION

ptg7987094

Keep the objective of your class and its use in perspective when overloading operators or
writing new ones.

Function Operator ()
The operator () that make objects behave like a function is called a function operator.
They find application in the standard template library (STL) and are typically used in
STL algorithms. Their usage can include making decisions; such function objects are
typically called unary or binary predicate, depending on the number of operands they
work on. Listing 12.11 analyzes a really simple function object so you can first under-
stand what gives them such an intriguing name!

Listing 12.11 A Function Object Created Using Operator ()

1: #include <iostream>
2: #include <string>
3:using namespace std;
4:
5: class CDisplay
6: {
7: public:
8: void operator () (string Input) const
9: {
10: cout << Input << endl;
11: }
12:};
13:
14:int main ()
15:{
16: CDisplay mDisplayFuncObject;
17:
18: // equivalent to mDisplayFuncObject.operator () (“Display this string!”);
19: mDisplayFuncObject (“Display this string!”);
20:
21: return 0;
22: }

Output ▼

Display this string!

342 LESSON 12: Operator Types and Operator Overloading

ptg7987094

Analysis ▼

Lines 8 to 11 implement operator () that is then used inside the function main() at Line
18. Note how the compiler allows the use of object mDisplayFuncObject as a function
in Line 18 by implicitly converting what looks like a function call to a call to operator
().

Hence, this operator is also called the function operator () and the object of CDisplay is
also called a function object or functor. This topic is discussed exhaustively in Lesson
21, “Understanding Function Objects.”

C++11

Move Constructor and Move Assignment Operator for High
Performance Programming
The move constructor and the move assignment operators are performance optimization
features that have become a part of the standard in C++11, ensuring that temporary val-
ues (rvalues that don’t exist beyond the statement) are not unnecessarily copied. This is
particularly useful when handling a class that manages a dynamically allocated resource,
such as a dynamic array class or a string class.

The Problem of Unwanted Copy Steps

Take a look at the addition operator as implemented in Listing 12.5. Notice that it actu-
ally creates a copy and returns it. The same is true for the subtraction operator. Now,
what happens when you create a new instance of MyString using this syntax:

MyString Hello(“Hello ”);
MyString World(“World”);
MyString CPP(“ of C++”);
MyString sayHello(Hello + World + CPP); // operator+, copy constructor
MyString sayHelloAgain (“overwrite this”);
sayHelloAgain = Hello + World + CPP; // operator+, copy constructor, copy
assignment operator=

This simple construct is a very intuitive way to concatenate three strings and uses the
binary addition operator (+), which is programmed like this:

MyString operator+ (const MyString& AddThis)
{

MyString NewString;

if (AddThis.Buffer != NULL)
{

// copy into NewString

Function Operator () 343

12

ptg7987094

}
return NewString; // return copy by value, invoke copy constructor

}

This addition operator (+) that makes it easy to concatenate using intuitive expressions
also has the potential to cause performance problems. The creation of sayHello requires
the execution of the addition operator twice, each execution of operator (+) results in the
creation of a temporary copy as a MyString is returned by value, thus causing the execu-
tion of the copy constructor. The copy constructor does a deep copy—to a temporary
value that does not exist after the expression. Thus this expression results in temporary
copies (rvalues, for the purists) that are not ever required after the statement and hence
are a performance bottleneck forced by C++. Well, until recently at least.

This problem has now finally been resolved in C++11 in which the compiler specifically
recognizes temporaries and uses move constructors and move assignment operators, if
you supply these.

Declaring a Move Constructor and Move Assignment Operator

The syntax of the move constructor is as follows:

Class MyClass
{
private:

Type* PtrResource;

public:
MyClass(); // default constructor
MyClass(const MyClass& CopySource); // copy constructor
MyClass& operator= (const MyClass& CopySource); // copy assignment operator

MyClass(MyClass&& MoveSource) // Move constructor, note &&
{

PtrResource = MoveSource.PtrResource; // take ownership, start move
MoveSource.PtrResource = NULL;

}

MyClass& operator= (MyClass&& MoveSource)//move assignment operator, note &&
{

if(this != &MoveSource)
{

delete [] PtrResource; // free own resource
PtrResource = MoveSource.PtrResource; // take ownership, start move
MoveSource.PtrResource = NULL; // free move source of ownership

}
}

};

344 LESSON 12: Operator Types and Operator Overloading

ptg7987094

Thus, the declaration of the move constructor and assignment operator are different from
the regular copy constructor and copy assignment operator in that the input parameter is
of type MyClass&&. Additionally, as the input parameter is the move-source, it cannot be
a const parameter as it is modified. Return values remain the same, as these are over-
loaded versions of the constructor and the assignment operator respectively.

C++11-compliant compilers ensure that for rvalue temporaries the move constructor is
used instead of the copy constructor and the move assignment operator is invoked instead
of the copy assignment operator. In your implementation of these two, you ensure that
instead of copying, you are simply moving the resource from the source to the destina-
tion. Listing 12.12 demonstrates the effectiveness of these two recent additions to C++11
in optimizing class MyString.

LISTING 12.12 class MyString with Move Constructor and Move Assignment
Operator in Addition to Copy Constructor and Copy Assignment Operator

0: #include <iostream>
1: using namespace std;
2:
3: class MyString
4: {
5: private:
6: char* Buffer;
7:
8: // private default constructor
9: MyString(): Buffer(NULL)
10: {
11: cout << “Default constructor called” << endl;
12: }
13:
14: public:
15: // Destructor
16: ~MyString()
17: {
18: if (Buffer != NULL)
19: delete [] Buffer;
20: }
21:
22: int GetLength()
23: {
24: return strlen(Buffer);
25: }
26:
27: operator const char*()

Function Operator () 345

12

ptg7987094

LISTING 12.12 Continued

28: {
29: return Buffer;
30: }
31:
32: MyString operator+ (const MyString& AddThis)
33: {
34: cout << “operator+ called: “ << endl;
35: MyString NewString;
36:
37: if (AddThis.Buffer != NULL)
38: {
39: NewString.Buffer = new char[GetLength() + strlen(AddThis.Buffer) +
1];
40: strcpy(NewString.Buffer, Buffer);
41: strcat(NewString.Buffer, AddThis.Buffer);
42: }
43:
44: return NewString;
45: }
46:
47: // constructor
48: MyString(const char* InitialInput)
49: {
50: cout << “Constructor called for: “ << InitialInput << endl;
51: if(InitialInput != NULL)
52: {
53: Buffer = new char [strlen(InitialInput) + 1];
54: strcpy(Buffer, InitialInput);
55: }
56: else
57: Buffer = NULL;
58: }
59:
60: // Copy constructor
61: MyString(const MyString& CopySource)
62: {
63: cout<<“Copy constructor to copy from: “<<CopySource.Buffer<<endl;
64: if(CopySource.Buffer != NULL)
65: {
66: // ensure deep copy by first allocating own buffer
67: Buffer = new char [strlen(CopySource.Buffer) + 1];
68:
69: // copy from the source into local buffer
70: strcpy(Buffer, CopySource.Buffer);
71: }
72: else
73: Buffer = NULL;
74: }

346 LESSON 12: Operator Types and Operator Overloading

ptg7987094

75:
76: // Copy assignment operator
77: MyString& operator= (const MyString& CopySource)
78: {
79: cout<<“Copy assignment operator to copy from: “<<CopySource.Buffer<< endl;
80: if ((this != &CopySource) && (CopySource.Buffer != NULL))
81: {
82: if (Buffer != NULL)
83: delete[] Buffer;
84:
85: // ensure deep copy by first allocating own buffer
86: Buffer = new char [strlen(CopySource.Buffer) + 1];
87:
88: // copy from the source into local buffer
89: strcpy(Buffer, CopySource.Buffer);
90: }
91:
92: return *this;
93: }
94:
95: // move constructor
96: MyString(MyString&& MoveSource)
97: {
98: cout << “Move constructor to move from: “ << MoveSource.Buffer << endl;
99: if(MoveSource.Buffer != NULL)
100: {
101: Buffer = MoveSource.Buffer; // take ownership i.e. ‘move’
102: MoveSource.Buffer = NULL; // free move source
103: }
104: }
105:
106: // move assignment operator
107: MyString& operator= (MyString&& MoveSource)
108: {
109: cout<<”Move assignment operator to move from: “<<MoveSource.Buffer<<endl;
110: if((MoveSource.Buffer != NULL) && (this != &MoveSource))
111: {
112: delete Buffer; // release own buffer
113:
114: Buffer = MoveSource.Buffer; // take ownership i.e. ‘move’
115: MoveSource.Buffer = NULL; // free move source
116: }
117:
118: return *this;
119: }
120: };
121:
122: int main()
123: {

Function Operator () 347

12

ptg7987094

LISTING 12.12 Continued

124: MyString Hello(“Hello “);
125: MyString World(“World”);
126: MyString CPP(“ of C++”);
127:
128: MyString sayHelloAgain (“overwrite this”);
129: sayHelloAgain = Hello + World + CPP;
130:
131: return 0;
132: }

Output ▼

Output without the move constructor and move assignment operator (by commenting out
Lines 95 to 119):

Constructor called for: Hello
Constructor called for: World
Constructor called for: of C++
Constructor called for: overwrite this
operator+ called:
Default constructor called
Copy constructor to copy from: Hello World
operator+ called:
Default constructor called
Copy constructor to copy from: Hello World of C++
Copy assignment operator to copy from: Hello World of C++

Output with the move constructor and move assignment operator enabled:

Constructor called for: Hello
Constructor called for: World
Constructor called for: of C++
Constructor called for: overwrite this
operator+ called:
Default constructor called
Move constructor to move from: Hello World
operator+ called:
Default constructor called
Move constructor to move from: Hello World of C++
Move assignment operator to move from: Hello World of C++

Analysis ▼

This might be a really long code sample, but most of it has already been demonstrated in
previous example and lessons. The most important part of this listing is in Lines 95 to

348 LESSON 12: Operator Types and Operator Overloading

ptg7987094

119 that implement the move constructor and the move assignment operator respectively.
Parts of the output that have been influenced by this new addition to C++11 has been
marked in bold. Note how the output changes drastically when compared against the
same class without these two entities. If you look at the implementation of the move con-
structor and the move assignment operator again, you see that the move semantic is
essentially implemented by taking ownership of the resources from the move source as
shown in Lines 101 in the move constructor and 114 in the move assignment operator.
This is immediately followed by assigning NULL to the move source pointer as shown in
Lines 102 and 115. Thus even when the move source is destroyed, delete invoked via
the destructor (programmed in Lines 16 to 20) essentially does nothing as the ownership
has been moved to the destination object. Note that in the absence of the move construc-
tor, the copy constructor is called that does a deep copy of the pointed string. Thus, the
move constructor has saved a good amount of processing time in reducing unwanted
memory allocations and copy steps.

Programming the move constructor and the move assignment operator is completely
optional. Unlike the copy constructor and the copy assignment operator, the compiler
does not add a default implementation for you.

Use this C++11 feature to optimize the functioning of classes that point to dynamically
allocated resources that would otherwise be deep copied even in scenarios where they’re
only required temporarily.

Operators That Cannot Be Overloaded
With all the flexibility that C++ gives you in customizing the behavior of the operators
and making your classes easy to use, it still keeps some cards to itself by not allowing
you to change or alter the behavior of some operators that are expected to perform con-
sistently. The operators that cannot be redefined are shown in Table 12.3.

TABLE 12.3 Operators That CANNOT Be Overloaded or Redefined

Operator Name

. Member selection

.* Pointer-to-member selection

:: Scope resolution

? : Conditional ternary operator

sizeof Gets the size of an object/class type

Operators That Cannot Be Overloaded 349

12

ptg7987094

Summary
You learned how programming operators can make a significant difference to the ease
with which your class can be consumed. When programming a class that manages a
resource, for example a dynamic array or a string, you need to supply a copy constructor
and copy assignment operator for a minimum, in addition to a destructor. A utility class
that manages a dynamic array can do very well with a move constructor and a move
assignment operator that ensures that the contained resource is not deep-copied for tem-
porary objects. Last but not least, you learned that operators such as ., .*, ::, ?:, and
sizeof cannot be redefined.

350 LESSON 12: Operator Types and Operator Overloading

DO program as many operators as
would help making using your class
easy, but not more.

DO always program a copy assignment
operator (with a copy constructor and
destructor) for a class that contains
raw pointer members.

DO always program a move assign-
ment operator (and move constructor)
for classes that manage dynamically
allocated resources, such as an array
of data, when using a C++11-compli-
ant compiler.

DON’T forget that the compiler pro-
vides a default copy assignment opera-
tor and copy constructor if you don’t
supply these, and they won’t ensure
deep copies of any raw pointers con-
tained within the class.

DON’T forget that if you don’t supply a
move assignment operator or move
constructor, the compiler does not cre-
ate these for you, but instead falls
back on the regular copy assignment
operator and copy constructor.

DON’T forget that programming opera-
tors is optional, yet improves usability
of your class.

DON’T forget that your smart pointer
class isn’t a pointer until you have pro-
grammed operator (*) and operator (-
>), and it isn’t smart enough until you
have implemented the destructor and
thought out the copy assignment and
copy construction cases.

DO DON’T

ptg7987094

Q&A
Q My class encapsulates a dynamic array of integers. What functions and opera-

tors should I implement for a minimum?

A When programming such a class, you need to clearly define the behavior in the
scenario where an instance is being copied directly into another via assignment or
copied indirectly by being passed to a function by value. You typically implement
the copy constructor, copy assignment operator, and the destructor. You also imple-
ment the move constructor and move assignment operator if you want to tweak the
performance of this class in certain cases.

Q I have an instance object of a class. I want to support this syntax: cout <<
object;. What operator do I need to implement?

A You need to implement a conversion operator that allows your class to be inter-
preted as a type that std::cout can handle upfront. One way is to define operator
char*() as you also did in Listing 12.2.

Q I want to create my own smart pointer class. What functions and operators do
I need to implement for a minimum?

A A smart pointer needs to supply the ability of being used as a normal pointer as in
pSmartPtr or pSmartPtr->Func(). To enable this you implement operator () and
operator (->). In addition, for it to be smart, you also take care of automatic
resource release/returns by programming the destructor accordingly, and you would
clearly define how copy or assignment works by implementing the copy construc-
tor and copy assignment operator or by prohibiting it by declaring these two as
private.

Workshop
The Workshop contains quiz questions to help solidify your understanding of the mater-
ial covered and exercises to provide you with experience in using what you’ve learned.
Try to answer the quiz and exercise questions before checking the answers in Appendix
D, and be certain you understand the answers before going to the next lesson.

Workshop 351

12

ptg7987094

Quiz
1. Can my subscript operator [] return const and non-const variants of return types?

const Type& operator[](int Index);
Type& operator[](int Index); // is this OK?

2. Would you ever declare the copy constructor or copy assignment operator as pri-
vate?

3. Would it make sense to define a move constructor and move assignment operator
for your class Date?

Exercises
1. Program a conversion operator for class Date that converts the date it holds into a

unique integer.

2. Program a move constructor and move assignment operator for class
DynIntegers that encapsulates a dynamically allocated array in the form of private
member int*.

352 LESSON 12: Operator Types and Operator Overloading

ptg7987094

LESSON 13
Casting Operators

Casting is a mechanism by which the programmer can temporarily or
permanently change the interpretation of an object by the compiler. Note
that this does not imply that the programmer changes the object itself—
he simply changes the interpretation thereof. Operators that change the
interpretation of an object are called casting operators.

In this lesson, you learn

n The need for casting operators

n Why C-style casts are not popular with some C++ programmers

n The four C++ casting operators

n The concepts of upcasting and downcasting

n Why C++ casting operators are not all-time favorites either

ptg7987094

The Need for Casting
In a perfectly type-safe and type-strong world comprising well-written C++ applications,
there should be no need for casting and for casting operators. However, we live in a real
world where modules programmed by a lot of different people and vendors often using
different environments have to work together. To make this happen, compilers very often
need to be instructed to interpret data in ways that make them compile and the applica-
tion function correctly.

Let’s take a real-world example: Although some C++ compilers might support bool as a
native type, a lot of libraries are still in use that were programmed years back and in C.
These libraries made for C compilers had to rely on the use of an integral type to hold
Boolean data. So, a bool on these compilers is something akin to:

typedef unsigned short BOOL;

A function that returns Boolean data would be declared as:

BOOL IsX ();

Now, if such a library is to be used with a new application programmed in the latest ver-
sion of the C++ compiler, the programmer has to find a way to make the bool data type
as understood by his C++ compiler function with the BOOL data type as understood by the
library. The way to make this happen is by using casts:

bool bCPPResult = (bool)IsX (); // C-Style cast

The evolution of C++ saw the emergence of new C++ casting operators and that created
a split in the C++ programming community: a group that continued using C-style casts in
their C++ applications, and another that religiously converted to casting keywords intro-
duced by C++ compilers. The argument of the former group is that the C++ casts are
cumbersome to use, and sometimes differ in functionality to such a small extent that they
are of only theoretical value. The latter group, which evidently is comprised of C++ syn-
tax purists, points out at the flaws in the C-style casts to make their case.

Because the real world contains both kinds of code in operation, it would be good to
simply read through this lesson, know the advantages and disadvantages of each style,
and formulate your own opinion.

354 LESSON 13: Casting Operators

ptg7987094

Why C-Style Casts Are Not Popular with
Some C++ Programmers
Type safety is one of the mantras that C++ programmers swear by when singing praises
to the qualities of this programming language. In fact, most C++ compilers won’t even
let you get away with this:

char* pszString = “Hello World!”;
int* pBuf = pszString; // error: cannot convert char* to int*

…and quite rightfully so!

Now, C++ compilers still do see the need to be backward compliant to keep old and
legacy code building, and therefore automatically allow syntax such as

int* pBuf = (int*)pszString; // Cast one problem away, create another

However, C-style casts actually force the compiler to interpret the destination as a type
that is very conveniently of the programmer’s choice—a programmer who, in this case,
did not bother thinking that the compiler reported an error in the first place for good rea-
son, and simply muzzled the compiler and forced it to obey. This, of course, does not go
well down the throats of C++ programmers who see their type safety being compromised
by casts that force anything through.

The C++ Casting Operators
Despite the disadvantages of casting, the concept of casting itself cannot be discarded.
In many situations, casts are legitimate requirements to solve important compatibility
issues. C++ additionally supplies a new casting operator specific to inheritance-based
scenarios that did not exist with C programming.

The four C++ casting operators are

n static_cast

n dynamic_cast

n reinterpret_cast

n const_cast

The usage syntax of the casting operators is consistent:

destination_type result = cast_type <destination_type> (object_to_be_casted);

The C++ Casting Operators 355

13

ptg7987094

Using static_cast
static_cast is a mechanism that can be used to convert pointers between related types,
and perform explicit type conversions for standard data types that would otherwise hap-
pen automatically or implicitly. As far as pointers go, static_cast implements a basic
compile-time check to ensure that the pointer is being cast to a related type. This is an
improvement over a C-style cast that allows a pointer to one object to be cast to an
absolutely unrelated type without any complaint. Using static_cast, a pointer can be
upcasted to the base type, or can be down-casted to the derived type, as the following
code-sample indicates.

Base* pBase = new Derived (); // construct a Derived object
Derived* pDerived = static_cast<Derived*>(pBase); // ok!

// CUnrelated is not related to Base via any inheritance heirarchy
CUnrelated* pUnrelated = static_cast<CUnrelated*>(pBase); // Error
//The cast above is not permitted as types are unrelated

356 LESSON 13: Casting Operators

Casting a Derived* to a Base* is called upcasting and can be
done without any explicit casting operator:

Derived objDerived;
Base* pBase = &objDerived; // ok!

Casting a Base* to a Derived* is called downcasting and cannot
be done without usage of explicit casting operators:

Derived objDerived;
Base* pBase = &objDerived; // Upcast -> ok!
Derived* pDerived = pBase; // Error: Downcast needs explicit cast

However, note that static_cast verifies only that the pointer types are related. It does
not perform any runtime checks. So, with static_cast, a programmer could still get
away with this bug:

Base* pBase = new Base ();
Derived* pDerived = static_cast<Derived*>(pBase); // Still no errors!

Here, pDerived actually points to a partial Derived object because the object being
pointed to is actually a Base() type. Because static_cast performs only a compile-time
check of verifying that the types in question are related and does not perform a runtime
check, a call to pDerived->SomeDerivedClassFunction() would get compiled, but
probably result in unexpected behavior during runtime.

NOTE

ptg7987094

Apart from helping in upcasting or downcasting, static_cast can, in many cases, help
make implicit casts explicit and bring them to the attention of the programmer or reader:

double dPi = 3.14159265;
int Num = static_cast<int>(dPi); // Making an otherwise implicit cast, explicit

In the preceding code, Num = dPi would have worked as well and to the same effect.
However, using a static_cast brings the nature of conversion to the attention of the
reader and indicates (to someone who knows static_cast) that the compiler has per-
formed the necessary adjustments based on the information available at compile-time to
perform the required type conversion.

Using dynamic_cast and Runtime Type Identification
Dynamic casting, as the name suggests, is the opposite of static casting and actually
executes the cast at runtime—that is, at application execution time. The result of a
dynamic_cast operation can be checked to see whether the attempt at casting succeeded.
The typical usage syntax of the dynamic_cast operator is

destination_type* pDest = dynamic_cast <class_type*> (pSource);

if (pDest) // Check for success of the casting operation before using pointer
pDest->CallFunc ();

For example:

Base* pBase = new Derived();

// Perform a downcast
Derived* pDerived = dynamic_cast <Derived*> (pBase);

if (pDerived) // Check for success of the cast
pDerived->CallDerivedClassFunction ();

As shown in the preceding short example, given a pointer to a base-class object, the
programmer can resort to dynamic_cast to verify the type of the destination object
being pointed to before proceeding to use the pointer as such. Note that in the code
snippet it is apparent that the destination object is a Derived type. So, the sample is of
demonstrative value only. Yet, this is not always the case—for example, when a pointer
of type Derived* is passed to a function that accepts type Base*. The function can use
dynamic_cast given a base-class pointer type to detected type and then perform opera-
tions specific to the types detected. Thus dynamic_cast helps determine the type at
runtime and use a casted pointer when it is safe to do so. See Listing 13.1 that uses a
familiar hierarchy of class Tuna and class Carp related to base class Fish, where the
function DetectFishType() dynamically detects if a Fish* is a Tuna* or a Carp*.

The C++ Casting Operators 357

13

ptg7987094

358 LESSON 13: Casting Operators

Therefore, this mechanism of identifying the type of the object at
runtime is called runtime type identification or RTTI

LISTING 13.1 Using Dynamic Casting to Tell Whether an Fish Object Is a Tuna or a Carp

0: #include <iostream>
1: using namespace std;
2:
3: class Fish
4: {
5: public:
6: virtual void Swim()
7: {
8: cout << “Fish swims in water” << endl;
9: }
10:
11: // base class should always have virtual destructor
12: virtual ~Fish() {}
13: };
14:
15: class Tuna: public Fish
16: {
17: public:
18: void Swim()
19: {
20: cout << “Tuna swims real fast in the sea” << endl;
21: }
22:
23: void BecomeDinner()
24: {
25: cout << “Tuna became dinner in Sushi” << endl;
26: }
27: };
28:
29: class Carp: public Fish
30: {
31: public:
32: void Swim()
33: {
34: cout << “Carp swims real slow in the lake” << endl;
35: }
36:
37: void Talk()
38: {
39: cout << “Carp talked crap” << endl;
40: }
41: };
42:

NOTE

ptg7987094

43: void DetectFishType(Fish* InputFish)
44: {
45: Tuna* pIsTuna = dynamic_cast <Tuna*>(InputFish);
46: if (pIsTuna)
47: {
48: cout << “Detected Tuna. Making Tuna dinner: “ << endl;
49: pIsTuna->BecomeDinner(); // calling Tuna::BecomeDinner
50: }
51:
52: Carp* pIsCarp = dynamic_cast <Carp*>(InputFish);
53: if(pIsCarp)
54: {
55: cout << “Detected Carp. Making carp talk: “ << endl;
56: pIsCarp->Talk(); // calling Carp::Talk
57: }
58:
59: cout << “Verifying type using virtual Fish::Swim: “ << endl;
60: InputFish->Swim(); // calling virtual function Swim
61: }
62:
63: int main()
64: {
65: Carp myLunch;
66: Tuna myDinner;
67:
68: DetectFishType(&myDinner);
69: cout << endl;
70: DetectFishType(&myLunch);
71:
72: return 0;
73:}

Output ▼

Detected Tuna. Making Tuna dinner:
Tuna became dinner in Sushi
Verifying type using virtual Fish::Swim:
Tuna swims real fast in the sea

Detected Carp. Making carp talk:
Carp talked crap
Verifying type using virtual Fish::Swim:
Carp swims real slow in the lake

Analysis ▼

This is the hierarchy of Tuna and Carp to the Fish that you were acquainted with in
Lesson 10, “Implementing Inheritance.” For sake of explanation, not only do the two
derived classes implement virtual function Swim(), but they contain a function each that
is specific to their types, namely Tuna::BecomeDinner() and Carp::Talk(). What is

The C++ Casting Operators 359

13

ptg7987094

special in this sample is that given an instance of the base class Fish*, you are able to
dynamically detect if that pointer points to a Tuna or a Carp. This dynamic detection or
runtime type identification happens in function DetectFishType() defined in Lines 43 to
61. In Line 45, dynamic_cast is used to test the nature of the input base class pointer of
type Fish* for type Tuna*. If this Fish* points to a Tuna, the operator returns a valid
address, else it returns NULL. Hence, the result of a dynamic_cast always needs to be
checked for validity. After the check in Line 46 succeeds, you know that the pointer
pIsTuna points to a valid Tuna, and you are able to call function Tuna::BecomeDinner()
using it, as shown in Line 49. With the Carp, you use the pointer to invoke function
Carp::Talk() as shown in Line 56. Before returning, DetectFishType() does a verifica-
tion on the type by invoking Fish::Swim(), which being virtual redirects the call to the
Swim() method implemented in Tuna or Carp, as applicable.

360 LESSON 13: Casting Operators

The return value of a dynamic_cast operation should always be
checked for validity. It is NULL when the cast fails.

Using reinterpret_cast
reinterpret_cast is the closest a C++ casting operator gets to the C-style cast. It really
does allow the programmer to cast one object type to another, regardless of whether or
not the types are related; that is, it forces a reinterpretation of type using a syntax as seen
in the following sample:

Base * pBase = new Base ();
CUnrelated * pUnrelated = reinterpret_cast<CUnrelated*>(pBase);
// The code above was not good programming, even when it compiles!

This cast actually forces the compiler to accept situations that static_cast would nor-
mally not permit. It finds usage in certain low-level applications (such as drivers, for
example) where data needs to be converted to a simple type that the API can accept (for
example, some APIs work only with BYTE streams; that is, unsigned char*):

SomeClass* pObject = new SomeClass ();
// Need to send the object as a byte-stream...
unsigned char* pBytes = reinterpret_cast <unsigned char*>(pObject);

The cast used in the preceding code has not changed the binary representation of the
source object and has effectively cheated the compiler into allowing the programmer to
peek into individual bytes contained by an object of type SomeClass. Because no other
C++ casting operator would allow such a conversion, reinterpret_cast explicitly warns
the programmer that a potentially unsafe (and nonportable) conversion is occurring.

CAUTION

ptg7987094

The C++ Casting Operators 361

13

As far as possible, you should refrain from using
reinterpret_cast in your applications because it allows you to
instruct the compiler to treat type X as an unrelated type Y, which
does not look like good design or implementation.

Using const_cast
const_cast enables you to turn off the const access modifier to an object. If you are
wondering why this cast is necessary at all, you are probably right in doing so. In an
ideal situation where programmers write their classes correctly, they remember to use the
const keyword frequently and in the right places. The practical world is unfortunately
way too different, and code like following is quite prevalent:

class SomeClass
{
public:

// ...
void DisplayMembers (); // a display function ought to be const

};

So, when you program a function such as

void DisplayAllData (const SomeClass& mData)
{

mData.DisplayMembers (); // Compile failure
// reason for failure: call to a non-const member using a const reference

}

You are evidently correct in passing the mData object as a const reference. After all, a
display function should be read-only and should not be allowed to call non-const mem-
ber functions—that is, should not be allowed to call a function that can change the state
of the object. However, the implementation of DisplayMembers(), which also ought to
be const, unfortunately is not. Now, so long as SomeClass belongs to you and the source
code is in your control, you can make corrective changes to DisplayMembers(). In many
cases, however, it might belong to a third-party library, and making changes to it is not
possible. In situations such as these, const_cast is your savior.

The syntax for invoking DisplayMembers() in such a scenario is

void DisplayAllData (const SomeClass& mData)
{

SomeClass& refData = const_cast <SomeClass&>(mData);
refData.DisplayMembers(); // Allowed!

}

CAUTION

ptg7987094

Note that using const_cast to invoke non-const functions should be a last resort. In
general, keep in mind that using const_cast to modify a const object can result in
undefined behavior.

Note also that const_cast can be used with pointers:

void DisplayAllData (const SomeClass* pData)
{

// pData->DisplayMembers(); Error: attempt to invoke a non-const function!
SomeClass* pCastedData = const_cast <SomeClass*>(pData);
pCastedData->DisplayMembers(); // Allowed!

}

Problems with the C++ Casting
Operators
Not everyone is happy with all C++ casting operators—not even those who swear by
C++. Their reasons range from the syntax being cumbersome and non-intuitive to being
redundant.

Let’s simply compare this code:

double dPi = 3.14159265;

// C++ style cast: static_cast
int Num = static_cast <int>(dPi); // result: nNum is 3

// C-style cast
int Num2 = (int)dPi; // result: Num2 is 3

// leave casting to the compiler
int Num3 = dPi; // result: Num3 is 3. No errors!

In all the three cases, the programmer achieved the same result. In practical scenarios,
the second option is probably the most prevalent, followed by the third. Few people
might use the first option. In any case, the compiler is intelligent enough to convert such
types correctly. This gives the cast syntax an impression that it makes the code more dif-
ficult to read.

Similarly, other uses of static_cast are also handled well by C-style casts that are
admittedly simpler looking:

// using static_cast
Derived* pDerived = static_cast <Derived*>(pBase);

362 LESSON 13: Casting Operators

ptg7987094

// But, this works just as well...
Derived* pDerivedSimple = (Derived*)pBase;

Thus, the advantage of using static_cast is often overshadowed by the clumsiness of
its syntax. Bjarne Stroustrup’s own words express the situation accurately: “Maybe,
because static_cast is so ugly and so relatively hard to type, you’re more likely to
think twice before using one? That would be good, because casts really are mostly avoid-
able in modern C++.” (See Bjarne Stroustrup’s C++ Style and Technique FAQ at
http://www.research.att.com/~bs/bs_faq2.html.)

Looking at other operators, reinterpret_cast is for forcing your way through when
static_cast does not work; ditto for const_cast with respect to modifying the const
access modifiers. Thus, C++ casting operators other than dynamic_cast are avoidable in
modern C++ applications. Only when addressing the needs of legacy applications might
other casting operators become relevant. In such cases, preferring C-style casts to C++
casting operators is often a matter of taste. What’s important is that you avoid casting as
far as possible, and when you do use it, you know what happens behind the scenes.

Problems with the C++ Casting Operators 363

13

DO remember that casting a Derived*
to a Base* is called upcasting and this
is safe.

DO remember that casting a Base*
directly to a Derived* is called down-
casting, and this can be unsafe unless
you use dynamic_cast.

DO remember that the objective of cre-
ating an inheritance hierarchy is typi-
cally in having virtual functions that
when invoked using base class point-
ers ensure that the available derived
class versions are invoked.

DON’T forget to check the pointer for
validity after using dynamic_cast.

DON’T design your application around
RTTI using dynamic_cast.

DO DON’T

Summary
In this lesson, you learned the different C++ casting operators, the arguments for and
against using them. You also learned that in general you should avoid the usage of casts.

http://www.research.att.com/~bs/bs_faq2.html

ptg7987094

Q&A
Q Is it okay to modify the contents of a const-object by casting a pointer or ref-

erence to it using const_cast?

A Most definitely not. The result of such an operation is not defined and is definitely
not desired.

Q I need a Bird*, but have a Dog* at hand. The compiler does not allow me to
use the pointer to the Dog object as a Bird*. However, when I use reinter-
pret_cast to cast the Dog* to Bird*, the compiler does not complain and it
seems I can use this pointer to call Bird’s member function, Fly(). Is this
okay?

A Again, definitely not. reinterpret_cast changed only the interpretation of the
pointer, and did not change the object being pointed to (that is still a Dog). Calling
a Fly() function on a Dog object will not give the results you are looking for, and
could possibly cause an application failure.

Q I have a Derived object being pointed to by a pBase that is a Base*. I am sure
that pBase points to a Derived object, so do I really need to use dynamic_cast?

A Because you are sure that the object being pointed to is a Derived type, you can
save on runtime performance by using static_cast.

Q C++ provides casting operators, and yet I am advised to not use them as much
as possible. Why is that?

A You keep aspirin at home, but you don’t make it your staple diet just because it’s
available, right? Use casts only when you need them.

Workshop
The workshop contains quiz questions to help solidify your understanding of the material
covered and exercises to provide you with experience in using what you’ve learned. Try
to answer the quiz and exercise questions before checking the answers in Appendix D,
and be certain you understand the answers before going to the next lesson.

364 LESSON 13: Casting Operators

ptg7987094

Quiz
1. You have a base class object pointer pBase. What cast would you use to determine

whether it is a Derived1 type or a Derived2 type?

2. You have a const reference to an object and tried calling a public member
function, written by you. The compiler does not allow this because the function
in question is not a const member. Would you correct the function or would you
use const_cast?

3. reinterpret_cast should be used only when static_cast does not work, and the
cast is known to be required and safe. True or false?

4. Is it true that many instances of static_cast-based conversions, especially
between simple data types, would be performed automatically by a good C++
compiler?

Exercises
1. BUG BUSTERS: What is the problem in the following code?

void DoSomething(Base* pBase)
{

Derived* pDerived = dynamic_cast <Derived*>(pBase);
pDerived->DerivedClassMethod();

}

2. You have pointer pFish* that points to object of class Tuna.
Fish* pFish = new Tuna;
Tuna* pTuna = <what cast?>pFish;

What cast would you use to get a pointer Tuna* point to this object of type Tuna?
Demonstrate using code.

Workshop 365

13

ptg7987094

This page intentionally left blank

ptg7987094

LESSON 14
An Introduction to
Macros and Templates

By now, you should have a solid understanding of basic C++ syntax.
Programs written in C++ should be understandable and you are poised
to learn language features that help you write applications efficiently.

In this lesson, you learn

n An introduction to the preprocessor

n The #define keyword and macros

n An introduction to templates

n How to write templates functions and classes

n The difference between macros and templates

n How C++11 helps program compile time checks using
static_assert

ptg7987094

The Preprocessor and the Compiler
In Lesson 2, “The Anatomy of a C++ Program,” first learned about the preprocessor. The
preprocessor, as the name indicates, is what runs before the compiler starts. In other
words, the preprocessor actually decides what is compiled on the basis of how you
instruct it. Preprocessor directives are characterized by the fact that they all start with a #
sign. For example:

// tell the preprocessor to insert the contents of header iostream here
#include <iostream>

// define a macro constant
#define ARRAY_LENGTH 25
int MyNumbers[ARRAY_LENGTH]; // array of 25 integers

// define a macro function
#define SQUARE(x) ((x) * (x))
int TwentyFive = SQUARE(5);

This lesson focuses on two types of preprocessor directives seen in the code snippet
above; one using #define to define a constant and another using #define define a macro
function. Both these directives, irrespective of what role they play, actually tell the pre-
processor to replace every instance of the macro (ARRAY_LENGTH or SQUARE) with the
value they define.

368 LESSON 14: An Introduction to Macros and Templates

Macros are also about text substitution. The preprocessor does
nothing intelligent beyond replacing in-place the identifier by
another text.

Using #define Macros to Define
Constants
The syntax of using #define to compose a constant quite simple:

#define identifier value

For example, a constant ARRAY_LENGTH that is substituted by 25 would hence be the
following:

#define ARRAY_LENGTH 25

NOTE

ptg7987094

This identifier is now replaced by 25 wherever the preprocessor encounters the text
ARRAY_LENGTH:

int MyNumbers [ARRAY_LENGTH] = {0};
double Radiuses [ARRAY_LENGTH] = {0.0};
std::string Names [ARRAY_LENGTH];

After the preprocessor runs, the three are visible to the compiler as follows:

int MyNumbers [25] = {0}; // an array of 25 integers
double Radiuses [25] = {0.0}; // an array of 25 doubles
std::string Names [25]; // an array of 25 std::strings

The replacement is applicable to every section of your code, including a for loop such as
this one:

for(int Index = 0; Index < ARRAY_LENGTH; ++Index)
MyNumbers[Index] = Index;

This for loop is visible to the compiler as

for(int Index = 0; Index < 25; ++Index)
MyNumbers[Index] = Index;

To see exactly how such a macro works, review Listing 14.1.

LISTING 14.1 Declaring and Using Macros That Define Constants

0: #include <iostream>
1: #include<string>
2: using namespace std;
3:
4: #define ARRAY_LENGTH 25
5: #define PI 3.1416
6: #define MY_DOUBLE double
7: #define FAV_WHISKY “Jack Daniels”
8:
9: int main()
10: {
11: int MyNumbers [ARRAY_LENGTH] = {0};
12: cout << “Array’s length: “ << sizeof(MyNumbers) / sizeof(int) << endl;
13:
14: cout << “Enter a radius: “;
15: MY_DOUBLE Radius = 0;
16: cin >> Radius;
17: cout << “Area is: “ << PI * Radius * Radius << endl;
18:

Using #define Macros to Define Constants 369

14

ptg7987094

LISTING 14.1 Continued

19: string FavoriteWhisky (FAV_WHISKY);
20: cout << “My favorite drink is: “ << FAV_WHISKY << endl;
21:
22: return 0;
23: }

Output ▼

Array’s length: 25
Enter a radius: 2.1569
Area is: 14.7154
My favorite drink is: Jack Daniels

Analysis ▼

ARRAY_LENGTH, PI, MY_DOUBLE, and FAV_WHISKY are the four macro constants defined in
Lines 3 to 7 respectively. As you can see, the first is used in defining the length of an
array at Line 11, which has been confirmed indirectly by using operator sizeof() in
Line 12. MY_DOUBLE is used to declare a variable Radius of type double in Line 15,
whereas PI is used to calculate the area of the circle in Line 17. Finally FAV_WHISKY is
used to initialize a std::string object in Line 19 and is directly used in the cout state-
ment in Line 20. All these instances show how the preprocessor simply makes a text
replacement.

This “dumb” text replacement that seems to have found a ubiquitous application in
Listing 14.1 has its drawbacks, too.

370 LESSON 14: An Introduction to Macros and Templates

As the preprocessor makes a dumb text substitution, it lets you
get away with ransom (but the compiler doesn’t always). You could
define FAV_WHISKY in line 7 in Listing 14.1 like this:

#define FAV_WHISKY 42 // “Jack Daniels”

which would result in a compilation error in Line 19 for the
std::string instantiation, but in the absence of it, the compiler
would go ahead and print the following:

My favorite drink is: 42

This, of course, wouldn’t make sense, and most importantly went
through undetected. Additionally, you don’t have much control on
the macro defined constant PI: was it a double or a float? The
answer is neither. PI to the preprocessor was just a text substitu-
tion element “3.1416”. It never was a defined data type.

TIP

ptg7987094

Constants are better defined using the const keyword with data
types instead. So, this is much better:

const int ARRAY_LENGTH = 25;
const double PI = 3.1416;
const char* FAV_WHISKY = “Jack Daniels”;
typedef double MY_DOUBLE; // use typedef to alias a type

Using Macros for Protection Against Multiple
Inclusion
C++ programmers typically declare their classes and functions in .H files called header
files. The respective functions are defined in .CPP files that include the header files using
the #include <header> preprocessor directive. If one header file—let’s call it
class1.h—declares a class that has another class declared in class2.h as a member,
then class1.h needs to include class2.h. If the design were complicated, and the other
class required the former as well, then class2.h would include class1.h, too!

For the preprocessor however, two header files that include each other is a problem of
recursive nature. To avoid this problem, you can use macros in conjunction with pre-
processor directives #ifndef and #endif.

header1.h that includes <header2.h> looks like the following:

#ifndef HEADER1_H _//multiple inclusion guard:
#define HEADER1_H_ // preprocessor will read this and following lines once
#include <header2.h>

class Class1
{

// class members
};
#endif // end of header1.h

header2.h looks similar, but with a different macro definition and includes
<header1.h>:

#ifndef HEADER2_H_//multiple inclusion guard
#define HEADER2_H_
#include <header1.h>

class Class2
{

// class members
};
#endif // end of header2.h

Using #define Macros to Define Constants 371

14

ptg7987094

372 LESSON 14: An Introduction to Macros and Templates

#ifndef can be read as if-not-defined. It is a conditional process-
ing command, instructing the preprocessor to continue only if the
identifier has not been defined.

#endif marks the end of this conditional processing instruction
for the preprocessor.

Thus, when the preprocessor enters header1.h in the first run and encounters #ifndef
statement, it notices that the macro HEADER1_H_ has not been defined and proceeds. The
first line following #ifndef defines the macro HEADER1_H_ ensuring that a second pre-
processor run of this file terminates at the first line containing #ifndef, as that condition
now evaluates to false. The same stands true for header2.h. This simple mechanism is
arguably one of the most frequently used macro-based functionalities in the world of
C++ programming.

Using #define To Write Macro Functions
The ability of the preprocessor to simply replace text elements identified by a macro
often results it in being used to write simple functions, for example:

#define SQUARE(x) ((x) * (x))

This helps determine the square of a number. Similarly, a macro that calculates the area
of a circle looks like this:

#define PI 3.1416
#define AREA_CIRCLE(r) (PI*(r)*(r))

Macro functions are often used for such very simple calculations. They provide the
advantage of normal function calls in that these are expanded in-line before compilations
and hence can help improve code performance in certain cases. Listing 14.2 demon-
strates the use of these macro functions.

LISTING 14.2 Using Macro Functions That Calculate the Square of a Number, Area of a
Circle, and Min and Max of Two Numbers

0: #include <iostream>
1: #include<string>
2: using namespace std;
3:
4: #define SQUARE(x) ((x) * (x))
5: #define PI 3.1416

NOTE

ptg7987094

6: #define AREA_CIRCLE(r) (PI*(r)*(r))
7: #define MAX(a, b) (((a) > (b)) ? (a) : (b))
8: #define MIN(a, b) (((a) < (b)) ? (a) : (b))
9:
10: int main()
11: {
12: cout << “Enter an integer: “;
13: int Input1 = 0;
14: cin >> Input1;
15:
16: cout << “SQUARE(“ << Input1 << “) = “ << SQUARE(Input1) << endl;
17: cout << “Area of a circle with radius “ << Input1 << “ is: “;
18: cout << AREA_CIRCLE(Input1) << endl;
19:
20: cout << “Enter another integer: “;
21: int Input2 = 0;
22: cin >> Input2;
23:
24: cout << “MIN(“ << Input1 << “, “ << Input2 << “) = “;
25: cout << MIN (Input1, Input2) << endl;
26:
27: cout << “MAX(“ << Input1 << “, “ << Input2 << “) = “;
28: cout << MAX (Input1, Input2) << endl;
29:
30: return 0;
31: }

Output ▼

Enter an integer: 36
SQUARE(36) = 1296
Area of a circle with radius 36 is: 4071.51
Enter another integer: -101
MIN(36, -101) = -101
MAX(36, -101) = 36

Analysis ▼

Lines 4 to 8 contain a few utility macro functions that return the square of a number, area
of a circle, and min and max of two numbers. Note how AREA_CIRCLE in Line 6 evaluates
the area using a macro constant PI, thus indicating that one macro can reuse another.
After all, these are just plain text replacement commands for the preprocessor. Let’s
analyze Line 25 that uses the macro MIN:

cout << MIN (Input1, Input2) << endl;

Using #define To Write Macro Functions 373

14

ptg7987094

This line is essentially fed to the compiler in the following format where the macro is
expanded in-place:

cout << (((Input1) < (Input2)) ? (Input1) : (Input2)) << endl;

374 LESSON 14: An Introduction to Macros and Templates

Note that macros are not type sensitive and macro functions can
be dangerous. AREA_CIRCLE, for instance, should ideally be a
function that returns double so that you are certain of the return
value resolution of the area calculated, and its independence to
the nature of the input radius was.

Why All the Parentheses?
Take a look at the macro to calculate the circle’s area again:

#define AREA_CIRCLE(r) (PI*(r)*(r))

This calculation has curious syntax in the number of brackets used. In comparison, refer
to the function Area() programmed in Listing 7.1 of Lesson 7, “Organizing Code with
Functions.”.

// Function definitions (implementations)
double Area(double InputRadius)
{

return Pi * InputRadius * InputRadius; // look, no brackets?
}

So, why did you overdo the brackets for the macro while the same formula in a function
looks a lot different. The reason lies in the way the macro is evaluated—as a text substi-
tution mechanism supported by the preprocessor.

Consider the macro without most of the brackets:

#define AREA_CIRCLE(r) (PI*r*r)

What would happen when you invoke this macro using a statement like this:

cout << AREA_CIRCLE (4+6);

This would be expanded by the compiler into

cout << (PI*4+6*4+6); // not the same as PI*10*10

CAUTION

ptg7987094

Thus, following the rules of operator precedence where multiplication happens before
addition, the compiler actually evaluates the area like this:

cout << (PI*4+24+6); // 42.5664 (which is incorrect)

In the absence of parenthesis, plain-text conversion played havoc on our programming
logic! Parenthesis help avoid this problem:

#define AREA_CIRCLE(r) (PI*(r)*(r))
cout << AREA_CIRCLE (4+6);

The expression after substitution is viewed by the compiler as the following:

cout << (PI*(4+6)*(4+6)); // PI*10*10, as expected

These brackets automatically result in the calculation of an accurate area, making your
macro code independent of operator precedence and the effects thereof.

Using Macro assert to Validate Expressions
Although it is good to single step and test every code path immediately after program-
ming, it might be physically impossible. What is possible is to insert checks that validate
expressions or variable values.

The assert macro enables you to do just that. To use assert you include <assert.h>
and the syntax is as follows:

assert (expression that evaluates to true or false);

A sample use of assert() that validates the contents of a pointer is:

#include <assert.h>
int main()
{

char* sayHello = new char [25];
assert(sayHello != NULL); // throws up a message if pointer is NULL

// other code

delete [] sayHello;
return 0;

}

assert()ensures that you are notified if the pointer is invalid. For demonstration sake, I
initialized sayHello to NULL and on execution in debug mode Visual Studio immediately
popped up the screen you see in Figure 14.1.

Using #define To Write Macro Functions 375

14

ptg7987094

Thus, assert(), as implemented in Microsoft Visual Studio, enables you to click the
Retry button that brings you back into your application, and the call stack indicates
which line failed the assertion test. This makes assert() a handy debugging feature; for
instance, you can validate input parameters of functions using assert. This is highly rec-
ommended and helps you improve the quality of your code over the long term.

376 LESSON 14: An Introduction to Macros and Templates

FIGURE 14.1
What happens
when an assert
checking validity of
the pointer fails.

assert() is typically disabled in release modes and provides you
with an error message or information only in the debug build of
most development environments.

Additionally, some environments have implemented this as a
function, not as a macro.

NOTE

As assert does not make it to the release build, it is important to
ensure that checks that are critical to the functioning of your appli-
cation (for example the return value of a dynamic_cast operation)
are still performed using an if-statement. An assert assists you
in problem detection; it’s not something to replace pointer checks
necessary in the code.

Advantages and Disadvantages of Using Macro
Functions
Macros enable you to reuse certain utility functions irrespective of the type of variables
you are dealing with. Consider the following line from Listing 14.2 again:

#define MIN(a, b) (((a) < (b)) ? (a) : (b))

CAUTION

ptg7987094

You can use this macro function MIN on integers:

cout << MIN(25, 101) << endl;

But you can reuse the same on double, too:

cout << MIN(0.1, 0.2) << endl;

Note that if MIN() were to be a normal function, you would program two variants of it:
MIN_INT() that accepted int parameters and returned an int and MIN_DOUBLE() that does
the same with type double instead. This optimization in reducing lines of code is a slight
advantage and entices some programmers into using macros for defining simple utility
functions. These macro functions get expanded inline before compilation and hence the
performance of a simple macro is superior to that of an ordinary function call doing the
same task. This is because the function call requires the creation of a call stack, passing
arguments and so on—administrative overload that often takes more CPU time than the
calculation of MIN itself.

For these advantages, macros present the severe problem of not supporting any form of
type safety. If that wasn’t enough, debugging a complicated macro is not easy either.

If you need the ability to program generic functions that are type independent, yet type
safe, you program a template function instead of a macro function. If you need to boost
performance, you call that function inline. $I~macro functions;advantages of>

You have already been introduced to programming inline functions using keyword
inline in Listing 7.10 in Lesson 7, “Organizing Code with Functions”.

Using #define To Write Macro Functions 377

14

DO program your own macro functions
as infrequently as possibly.

DO use const variables where you can
instead of macros.

DO remember that macros are not type
safe and the preprocessor performs no
type checking.

DON’T forget to envelop every variable
in a macro function definition with
brackets.

DON’T forget to insert multiple inclu-
sion guards using #ifndef, #define,
and #endif in your header files.

DON’T forget to sprinkle your code
with generous number of assert()
statements—these don’t make it to
the release version and are good at
improving the quality of your code.

DO DON’T

It’s time to learn generic programming practices using templates!

ptg7987094

An Introduction to Templates
Templates are probably one of the most powerful features of the C++ language that often
are the least approached, or understood. Before we tackle with this matter, let’s first look
at the definition of a template as supplied by Webster’s Dictionary:

Pronunciation: \’tem-plét\
Function: noun
Etymology: Probably from French templet, diminutive of temple, part of a loom,
probably from Latin templum

Date: 1677
1: a short piece or block placed horizontally in a wall under a beam to distribute its

weight or pressure (as over a door)
2: (1): a gauge, pattern, or mold (as a thin plate or board) used as a guide to the

form of a piece being made (2): a molecule (as of DNA) that serves as a pattern
for the generation of another macromolecule (as messenger RNA) b: overlay

3: something that establishes or serves as a pattern

The last definition probably comes closest to the interpretation of the word template as
used in the C++ parlance. Templates in C++ enable you to define a behavior that you can
apply to objects of varying types. This sounds ominously close to what macros let you
do (refer to the simple macro MAX that determined the greater of two numbers), save for
the fact that macros are type unsafe and templates are type safe.

Template Declaration Syntax
You begin the declaration of a template using the template keyword followed by a type
parameter list. The format of this declaration is

template <parameter list>
template function / class declaration..

The keyword template marks the start of a template declaration and is followed by the
template parameter list. This parameter list contains the keyword typename that defines
the template parameter objectType, making it a placeholder for the type of the object
that the template is being instantiated for.

template <typename T1, typename T2 = T1>
bool TemplateFunction(const T1& param1, const T2& param2);

// A template class
template <typename T1, typename T2 = T1>
class Template
{
private:

T1 m_Obj1;

378 LESSON 14: An Introduction to Macros and Templates

ptg7987094

T2 m_Obj2;

public:
T1 GetObj1() {return m_Obj1; }
// ... other members

};

What you see is a template function and a template class, each taking two template para-
meters T1 and T2, where T2 has been given the default type as that of T1.

The Different Types of Template Declarations
A template declaration can be

n A declaration or definition of a function

n A declaration or definition of a class

n A definition of a member function or a member class of a class template

n A definition of a static data member of a class template

n A definition of a static data member of a class nested within a class template

n A definition of a member template of a class or class template

Template Functions
Imagine a function that would adapt itself to suit parameters of different types. Such a
function is possible using template syntax! Let’s analyze a sample template declaration
that is the equivalent of the previously discussed macro MAX that returns the greater of
two supplied parameters:

template <typename objectType>
const objectType& GetMax (const objectType& value1, const objectType& value2)
{

if (value1 > value2)
return value1;

else
return value2;

}

Sample usage:

int Integer1 = 25;
int Integer2 = 40;
int MaxValue = GetMax <int> (Integer1, Integer2);
double Double1 = 1.1;
double Double2 = 1.001;
double MaxValue = GetMax <double> (Double1, Double2);

An Introduction to Templates 379

14

ptg7987094

Note the detail <int> used in the call to GetMax. It effectively defines the template para-
meter objectType as int. The preceding code leads to the compiler generating two ver-
sions of the template function GetMax, which can be visualized as the following:

const int& GetMax (const int& value1, const int& value2)
{

//...
}
const double & GetMax (const double& value1, const double& value2)
{

// ...
}

In reality, however, template functions don’t necessarily need an accompanying type
specifier. So, the following function call works perfectly well:

int MaxValue = GetMax(Integer1, Integer2);

Compilers in this case are intelligent enough to understand that the template function is
being invoked for the integer type. With template classes, however, you need to explicitly
specify type, as shown in Listing 14.3.

LISTING 14.3 A Template Function GetMax That Helps Evaluate the Higher of Two
Supplied Values

0: #include<iostream>
1: #include<string>
2: using namespace std;
3:
4: template <typename Type>
5: const Type& GetMax (const Type& value1, const Type& value2)
6: {
7: if (value1 > value2)
8: return value1;
9: else
10: return value2;
11: }
12:
13: template <typename Type>
14: void DisplayComparison(const Type& value1, const Type& value2)
15: {
16: cout << “GetMax(“ << value1 << “, “ << value2 << “) = “;
17: cout << GetMax(value1, value2) << endl;
18: }
19:
20: int main()
21: {
22: int Int1 = -101, Int2 = 2011;

380 LESSON 14: An Introduction to Macros and Templates

ptg7987094

23: DisplayComparison(Int1, Int2);
24:
25: double d1 = 3.14, d2 = 3.1416;
26: DisplayComparison(d1, d2);
27:
28: string Name1(“Jack”), Name2(“John”);
29: DisplayComparison(Name1, Name2);
30:
31: return 0;
32: }

Output ▼

GetMax(-101, 2011) = 2011
GetMax(3.14, 3.1416) = 3.1416
GetMax(Jack, John) = John

Analysis ▼

This sample features two template functions: GetMax() in Lines 4 to 11, which is used
by DisplayComparison() in Lines 13 to 18. main() demonstrates in Lines 23, 26, and
29 how the same template function has been reused for very different data types: inte-
ger, double, and std::string. Not only are these template functions reusable (just like
their macro counterparts), but they’re easier to program and maintain and are type-safe!

Note that you could’ve also invoked DisplayComparison with the explicit type:

23: DisplayComparison<int>(Int1, Int2);

However, this is unnecessary when calling template functions. You don’t need to specify
the template parameter type(s) because the compiler is able to infer it automatically.
When programming template classes, though, you need to do it.

Templates and Type Safety
Template functions DisplayComparison() and GetMax() shown in Listing 14.3 are type
safe. This means that they would not allow a meaningless call like this one:

DisplayComparison(Integer, “Some string”);

This would immediately result in a compile failure.

Template Classes
Lesson 9, “Classes and Objects,” taught you that classes are programming units that
encapsulate certain attributes and methods that operate on those attributes. Attributes typ-
ically are private members, such as int Age in a class Human. Classes are design blue-
prints, and the real-world representation of a class is an object of the class. So, “Tom”

An Introduction to Templates 381

14

ptg7987094

can be thought of as an object of class Human with attribute Age containing value 15, for
example. What if you want to store Age in a long long for some humans who are
expected to get extraordinarily old, and Age in short for others who are expected to have
a low lifespan? This is where template classes could be handy. Template classes are the
templatized versions of C++ classes. These are blueprints of blueprints. When using a
template class, you are given the option to specify the “type” you are specializing the
class for. This enables you to create some humans with template parameter Age as a long
long, some with int, and some with Age as an integer of type short.

A simple template class that features a single template parameter T can be written as the
following:

template <typename T>
class MyFirstTemplateClass
{
public:

void SetValue (const T& newValue) { Value = newValue; }
const T& GetValue() const {return Value;}

private:
T Value;

};

The class MyFirstTemplateClass class has been designed to hold a variable of type T—
the type of which is assigned at the time the template is used. So, let’s look at a sample
usage of this template class:

MyFirstTemplateClass <int> HoldInteger; // Template instantiation
HoldInteger.SetValue(5);
std::cout << “The value stored is: “ << HoldInteger.GetValue() << std::endl;

You have used this template class to hold and retrieve an object of type int; that is, the
Template class is instantiated for a template parameter of type int. Similarly, you can
use the same class to deal with character strings in a similar manner:

MyFirstTemplateClass <char*> HoldString;
HoldString.SetValue(“Sample string”);
std::cout << “The value stored is: “ << HoldString.GetValue() << std::endl;

Thus, the class defines a pattern and gets reused for applying that same pattern it imple-
ments on different data types. A customizable Human where you could choose the type of
the Age parameter would look like this:

template <typename T>
class CustomizableHuman
{

382 LESSON 14: An Introduction to Macros and Templates

ptg7987094

public:
void SetAge (const T& newValue) { Age = newValue; }
const T& GetAge() const {return Age;}

private:
T Age; // T is type you choose to customize this template for!

};

In using this template, you mention the type in the template instantiation syntax:

CustomizableHuman<int> NormalLifeSpan; // instantiate for type int
NormalLifeSpan.SetAge(80);

CustomizableHuman<long long> LongLifeSpan; // instantiate for type long long
LongLifeSpan.SetAge(3147483647);

CustomizableHuman<short> ShortLifeSpan; // instantiate for type short
ShortLifeSpan.SetAge(40);

Template Instantiation and Specialization
The terminology changes a bit when it comes to templates. The word instantiation, when
used in the context of classes, normally refers to objects as instances of classes.

In case of templates, however, instantiation is the act or process of creating a specific
type from a template declaration and one or more template arguments.

So, if you look at a template declaration:

template <typename T>
class TemplateClass
{

T m_member;
};

when you use this template, you would write the code as

TemplateClass <int> IntTemplate;

The specific type created as a result of this instantiation is called a specialization.

Declaring Templates with Multiple Parameters
The template parameter list can be expanded to declare multiple parameters separated by
a comma. So, if you want to declare a generic class that holds a pair of objects that can
be of differing types, you can do so using the construct as shown in the following sample
(that displays a template class with two template parameters):

An Introduction to Templates 383

14

ptg7987094

template <typename T1, typename T2>
class HoldsPair
{
private:

T1 Value1;
T2 Value2;

public:
// Constructor that initializes member variables
HoldsPair (const T1& value1, const T2& value2)
{

Value1 = value1;
Value2 = value2;

};
// ... Other function declarations

};

In here, class HoldsPair accepts two template parameters named T1 and T2. We can
use this class to hold two objects of the same type or of different types as you can see
here:

// A template instantiation that pairs an int with a double
HoldsPair <int, double> pairIntDouble (6, 1.99);

// A template instantiation that pairs an int with an int
HoldsPair <int, int> pairIntDouble (6, 500);

Declaring Templates with Default Parameters
We could modify the previous version of HoldsPair <...> to declare int as the default
template parameter type.

template <typename T1=int, typename T2=int>
class HoldsPair
{

// ... method declarations
};

This is quite similar in construction to functions that define default input parameter val-
ues except for the fact that, in this case, we define default types.

The second usage of HoldsPair can thus be compacted to

// A template instantiation that pairs an int with an int (default type)
HoldsPair <> pairIntDouble (6, 500);

384 LESSON 14: An Introduction to Macros and Templates

ptg7987094

Sample Template class<> HoldsPair
It’s time to develop further on the template version of HoldsPair that been covered so
far. Have a look at Listing 14.4.

LISTING 14.4 A Template Class with a Pair of Member Attributes

0: // Declaring default paramter types, first int, second float
1: template <typename T1=int, typename T2=double>
2: class HoldsPair
3: {
4: private:
5: T1 Value1;
6: T2 Value2;
7: public:
8: // Constructor that initializes member variables
9: HoldsPair (const T1& value1, const T2& value2)
10: {
11: Value1 = value1;
12: Value2 = value2;
13: };
14:
15: // Accessor functions
16: const T1 & GetFirstValue () const
17: {
18: return Value1;
19: };
20:
21: const T2& GetSecondValue () const
22: {
23: return Value2;
24: };
25: };
26:
27: #include <iostream>
28: using namespace std;
29:
30: int main ()
31: {
32: // Two instantiations of template HoldsPair -
33: HoldsPair <> mIntFloatPair (300, 10.09);
34: HoldsPair<short,char*>mShortStringPair(25,“Learn templates,love C++”);
35:
36: // Output values contained in the first object...
37: cout << “The first object contains -” << endl;
38: cout << “Value 1: “ << mIntFloatPair.GetFirstValue () << endl;
39: cout << “Value 2: “ << mIntFloatPair.GetSecondValue () << endl;

An Introduction to Templates 385

14

ptg7987094

LISTING 14.4 Continued

40:
41: // Output values contained in the second object...
42: cout << “The second object contains -” << endl;
43: cout << “Value 1: “ << mShortStringPair.GetFirstValue () << endl;
44: cout << “Value 2: “ << mShortStringPair.GetSecondValue () << endl;
45:
46: return 0;
47: }

Output ▼

The first object contains -
Value 1: 300
Value 2: 10.09
The second object contains -
Value 1: 25
Value 2: Learn templates, love C++

Analysis ▼

This simple program illustrates how to declare the template class HoldsPair to hold a
pair of values of types that are dependent on the template’s parameter list. Line 1 con-
tains a template parameter list that defines two template parameters T1 and T2 with
default types as int and double respectively. Accessor functions GetFirstValue () and
GetSecondValue() can be used to query the values held by the object. Note how
GetFirstValue and GetSecondValue get adapted on the basis of the template instantia-
tion syntax to return the appropriate object types. You have managed to define a pattern
in HoldsPair that you can reuse to deliver the same logic for different variable types.
Thus, templates increase code reusability.

Template Classes and static Members
We learned how templates are blueprints of classes that are in turn blueprints of objects.
How would static member attributes function within a template class? You learned in
Lesson 9, “Classes and Objects,” that declaring a class member static results in the mem-
ber being shared across all instances of a class. It’s quite similar with a template class,
too, save for the fact that a static member is shared across all instances of a template
class with the same specialization. So a static member X within a template class T is sta-
tic within all instances of T specialized for int. Similarly X is static within all instances
of T specialized for double, independently of the other specialization for int. In other
words, you can visualize it as the compiler creating two versions: X_int for the former
and X_double for the latter. Listing 14.5 demonstrates this.

386 LESSON 14: An Introduction to Macros and Templates

ptg7987094

LISTING 14.5 The Effect of Static Variables on Template Class and Instances Thereof

0: #include <iostream>
1: using namespace std;
2:
3: template <typename T>
4: class TestStatic
5: {
6: public:
7: static int StaticValue;
8: };
9:
10: // static member initialization
11: template<typename T> int TestStatic<T>::StaticValue;
12:
13: int main()
14: {
15: TestStatic<int> Int_Year;
16: cout << “Setting StaticValue for Int_Year to 2011” << endl;
17: Int_Year.StaticValue = 2011;
18: TestStatic<int> Int_2;
19:
20: TestStatic<double> Double_1;
21: TestStatic<double> Double_2;
22: cout << “Setting StaticValue for Double_2 to 1011” << endl;
23: Double_2.StaticValue = 1011;
24:
25: cout << “Int_2.StaticValue = “ << Int_2.StaticValue << endl;
26: cout << “Double_1.StaticValue = “ << Double_1.StaticValue << endl;
27:
28: return 0;
29: }

Output ▼

Setting StaticValue for Int_Year to 2011
Setting StaticValue for Double_2 to 1011
Int_2.StaticValue = 2011
Double_1.StaticValue = 1011

Analysis ▼

In Lines 17 and 21, you set member StaticValue for an instantiation of the template for
type int and type double respectively. In Lines 25 and 26 in main() you read this value,
but using the other instance members Int_2 and Double_1. The output demonstrates that
you get two distinct values of StaticValue, 2011, which is set using the other instance
specialized for int, and 1011, which is set using the other instance specialized for double.

An Introduction to Templates 387

14

ptg7987094

Thus, the compiler ensured that the behavior of the static variable remains intact for the
specialization of the class for a type. Each specialization of the template class effectively
gets its own static variable.

388 LESSON 14: An Introduction to Macros and Templates

Static member instantiation syntax for a template class is not to
be missed in Line 11 in Listing 14.5.

template<typename T> int TestStatic<T>::StaticValue;

This follows the pattern:

template<template parameters> StaticType ClassName<Template
Arguments>::StaticVarName;

C++11

Using static_assert to Perform Compile-Time Checks
This is a C++11 feature that enables you to block compilation if certain checks are not
fulfilled. Weird as this might sound, it’s quite useful with template classes. You might
want to ensure that your template class is not instantiated for an integer! static_assert
is a compile-time assert that can display a custom message on your development environ-
ment (or console):

static_assert(expression being validated, “Error message when check fails”);

To ensure that your template class cannot be instantiated for type int, you can use sta-
tic_assert() with sizeof(T), comparing it against sizeof(int) and displaying an
error message if the inequality check fails:

static_assert(sizeof(T) != sizeof(int), “No int please!”);

Such a template class that uses static_assert to block compilation for certain instantia-
tion types is seen in Listing 14.6.

LISTING 14.6 A Finicky Template Class That Protests Using static_assert When
Instantiated for Type int

0: template <typename T>
1: class EverythingButInt
2: {
3: public:
4: EverythingButInt()

NOTE

ptg7987094

5: {
6: static_assert(sizeof(T) != sizeof(int), “No int please!”);
7: }
8: };
9:
10: int main()
11: {
12: EverythingButInt<int> test; // template instantiation with int.
13: return 0;
14: }

Output ▼

There is no output as compile fails, providing you with the note you supplied:

error: No int please!

Analysis ▼

The protest registered by the compiler is programmed in Line 6. Thus, static_assert is
a way C++11 helps you protect your template code against unwanted instantiation.

Using Templates in Practical C++ Programming
The most important and powerful application of templates are in the Standard Template
Library (STL). STL is comprised of a collection of template classes and functions con-
taining generic utility classes and algorithms. These STL template classes enable you to
implement dynamic arrays, lists, and key-value pair containers, whereas algorithms, such
as sort, work on those containers and process the data they contain.

The knowledge of template syntax you gained earlier greatly assists you in using STL
containers and functions that are presented in great detail in the following lessons of this
book. A better understanding of STL containers and algorithms in turn helps you write
efficient C++ applications that use STL’s tested and reliable implementation and helps
you avoid spending time in boilerplate details.

An Introduction to Templates 389

14
DO use templates for the implementa-
tion of generic concepts.

DO choose templates over macros.

DON’T forget to use the principles of
const correctness when programming
template functions and classes.

DON’T forget that a static member
contained within a template class is
static for every type-specialization of
the class.

DO DON’T

ptg7987094

Summary
In this lesson, you learned more details about working with the preprocessor. Each time
you run the compiler, the preprocessor runs first and translates directives such as
#define.

The preprocessor does text substitution, although with the use of macros these can be
somewhat complex. Macro functions provide complex text substitution based on argu-
ments passed at compile time to the macro. It is important to put parentheses around
every argument in the macro to ensure that the correct substitution takes place.

Templates help you write reusable code that supplies the developer with a pattern that
can be used for a variety of data types. They also make for a type-safe replacement of
macros. With the knowledge of templates gained in this lesson, you are now poised to
learn to use the STL!

Q&A
Q Why should I use inclusion guards in my header files?

A Inclusion guards using #ifndef, #define, and #endif protect your header from
multiple or recursive inclusion errors, and in some cases they even speed up com-
pilation.

Q When should I favor macro functions over templates if the functionality in
question can be implemented in both?

A Ideally, you should always favor templates as the templates allow for generic
implementation that is also type safe. Macros don’t allow for type-safe implemen-
tations and are best avoided.

Q Do I need to specify template arguments when invoking a template function?

A Normally not as the compiler can infer this for you, given the arguments used in
the function call.

Q How many instances of static variables exist for a given template class?

A This is entirely dependent on the number of types for which the template class has
been instantiated. So, if your class has been instantiated for an int, a string, and a
custom type X, you can expect three instances of your static variable to be avail-
able—one per template specialization.

390 LESSON 14: An Introduction to Macros and Templates

ptg7987094

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D, and be certain you understand the answers.

Quiz
1. What is an inclusion guard?

2. Consider the following macro:
#define SPLIT(x) x / 5

What is the result if this is called with 20?

3. What is the result if the SPLIT macro in Question 2 is called with 10+10?

4. How would you modify the SPLIT macro to avoid erroneous results?

Exercises
1. Write a macro that multiplies two numbers.

2. Write a template version of the macro in Exercise 1.

3. Implement a template function for swap that exchanges two variables.

4. BUG BUSTERS: How would you improve the following macro that computes the
quarter of an input value?
#define QUARTER(x) (x / 4)

5. Write a simple template class that holds two arrays of types that are defined via the
class’s template parameter list. The size of the array is 10, and the template class
should have accessor functions that allow for the manipulation of array elements.

Workshop 391

14

ptg7987094

This page intentionally left blank

ptg7987094

LESSON 15
An Introduction to the
Standard Template
Library

Put in simple terms, the standard template library (STL) is a set of
template classes and functions that supply the programmer with

n Containers for storing information

n Iterators for accessing the information stored

n Algorithms for manipulating the content of the containers

In this lesson, you get overview on these three pillars of STL.

ptg7987094

STL Containers
Containers are STL classes that are used to store data. STL supplies two types of
container classes:

n Sequential containers

n Associative containers

In addition to these STL also provides classes called Container Adapters that are variants
of the same with reduced functionality which support a specific purpose.

Sequential Containers
As the name suggests, these are containers used to hold data in a sequential fashion, such
as arrays and lists. Sequential containers are characterized by a fast insertion time, but
are relatively slow in find operations.

The STL sequential containers are

n std::vector—Operates like a dynamic array and grows at the end. Think of a
vector like a shelf of books to which you can add or remove books on one end

n std::deque—Similar to std::vector except that it allows for new elements to be
inserted or removed at the beginning, too

n std::list—Operates like a doubly-linked list. Think of this like a chain where an
object is a link in the chain. You can add or remove links—that is, objects—at any
position

n std::forward_list—Similar to a std::list except that it is a singly-linked list
of elements that allows you to iterate only in one direction

The STL vector class is akin to an array and allows for random access of an element;
that is, you can directly access or manipulate an element in the vector given its position
(index) using the subscript operator ([]). In addition to this, the STL vector is a
dynamic array and therefore can resize itself to suit the application’s runtime require-
ments. To keep the property of being able to randomly access an element in the array
when given a position, most implementations of the STL vector keep all elements in
contiguous locations. Therefore, a vector that needs to resize itself often can reduce the
performance of the application, depending on the type of the object it contains. Lesson 4,
“Managing Arrays and Strings,” introduced you to the vector briefly in Listing 4.4. This
container is discussed extensively in Lesson 17, “STL Dynamic Array Classes.”

394 LESSON 15: An Introduction to the Standard Template Library

ptg7987094

You can think of the STL list as STL’s implementation of a regular linked list.
Although elements in a list cannot be randomly accessed, as they can be in the STL
vector, a list can organize elements in noncontiguous sections of memory. Therefore,
the std::list does not have the performance issues that are applicable to a vector
when the vector needs to reallocate its internal array. STL list class is discussed
extensively in Lesson 18, “STL list and forward_list.”

Associative Containers
Associative containers are those that store data in a sorted fashion—akin to a dictionary.
This results in slower insertion times, but presents significant advantages when it comes
to searching.

The associative containers supplied by STL are

n std::set—Stores unique values sorted on insertion in a container featuring
logarithmic complexity.

n std::unordered_set—Stores unique values sorted on insertion in a container
featuring near constant complexity. Available starting C++11.

n std::map—Stores key-value pairs sorted by their unique keys in a container with
logarithmic complexity

n std::unordered_map—Stores key-value pairs sorted by their unique keys in a con-
tainer with near constant complexity. Available starting C++11.

n std::multiset—Akin to a set. Additionally, supports the ability to store multiple
items having the same value; that is, the value doesn’t need to be unique.

n std::unordered_multiset—Akin to a unordered_set. Additionally, supports the
ability to store multiple items having the same value; that is, the value doesn’t need
to be unique. Available starting C++11.

n std::multimap—Akin to a map. Additionally, supports the ability to store key-
value pairs where keys don’t need to be unique.

n std::unordered_multimap—Akin to a unordered_map. Additionally, supports the
ability to store key-value pairs where keys don’t need to be unique. Available start-
ing C++11.

The sort criteria of STL containers can be customized by programming predicate
functions.

STL Containers 395

15

ptg7987094

396 LESSON 15: An Introduction to the Standard Template Library

Some implementations of STL also feature associative
containers such as hash_set, hash_multiset, hash_map,
and hash_multimap. These are similar to the unordered_*
containers, which are supported by the standard. In some
scenarios, hash_* and the unordered_* variants can be better
at searching for an element as they offer constant time operat-
ions (independent of the number of elements in the container).
Typically, these containers also supply public methods that are
identical to those supplied by their standard counterparts and
hence are as easy to use.

Using the standard-compliant variants will result in code that is
easier to port across platforms and compilers, and should hence
be preferred. It is also possible that the logarithmic reduction
in performance of a standard-compliant container might not
significantly affect your application.

Choosing the Right Container
Clearly, your application might have requirements that can be satisfied by more than one
STL container. There is a selection to be made, and this selection is important because a
wrong choice could result in a functional application that under-performs.

Therefore, it is important to evaluate the advantages and disadvantages of the containers
before selecting one. See Table 15.1 for more details.

TABLE 15.1 Properties of STL’s Container Classes

Container Advantages Disadvantages

std::vector Quick (constant time) Resizing can result in performance loss.
(Sequential insertion at the end.
Container)

Array-like access. Search time is proportional to the
number of elements in the container.

Insertion only at the end.

std::deque All advantages of the vector. Disadvantages of the vector with
(Sequential Additionally, offers constant- respect to performance and search are
Container) time insertion at the applicable to the deque.

beginning of the container too.

Unlike the vector, the deque by
specification does not need to feature
the reserve() function that allows the
programmer to reserve memory space
to be used—a feature that avoids fre-
quent resizing to improve performance.

TIP

ptg7987094

TABLE 15.1 Continued

Container Advantages Disadvantages

std::list Constant time insertion at the Elements cannot be accessed randomly
(Sequential front, middle, or end of the list. given an index as in an array.
Container)

Removal of elements from a Accessing elements can be slower than
list is a constant-time activity the vector because elements are not
regardless of the position of stored in adjacent memory locations.
the element.

Insertion or removal of Search time is proportional to the
elements does not invalidate number of elements in the container.
iterators that point to other
elements in the list.

std:: Singly-linked list class that Allows insertion only at the front of the
forward_list allows iteration only in one list via push_front()
(Sequential direction
Container)

std::set Search is not directly Insertion of elements is slower than
(Associative proportional to the number of in sequential counterparts, as
Container) elements in the container, elements are sorted at insertion.

rather to the logarithm thereof
and hence is often significantly
faster than sequential containers.

std:: Search, insertion and removal in As elements are weakly ordered, one
unordered_ this type of container is nearly cannot rely on their relative position
set independent of the number of within the container.
(Associative elements in the container.
Container)

std:: Should be used when a set Insertions may be slower than in a
multiset needs to contain non-unique sequential container as elements (pairs)
(Associative values too. are sorted on insertion.
Container)

std:: Should be preferred over an Elements are weakly ordered, so one
unordered_ unordered_set when you cannot rely on their relative position
multiset need to contain non-unique within the container
(Associative values too.
Container)

Performance is similar to
unordered_set, namely constant
average time for search, insertion
and removal of elements,
independent of size of container.

STL Containers 397

15

ptg7987094

TABLE 15.1 Continued

Container Advantages Disadvantages

std::map Key-value pairs container that Elements (pairs) are sorted on
(Associative offers search performance insertion, hence insertion will be slower
Container) proportional to the logarithm than in a sequential container of pairs.

of number of elements in the
container and hence often
significantly faster than
sequential containers.

std:: Offers advantage of near Elements are weakly ordered and hence
unordered_ constant time search, insertion not suited to cases where order is
map and removal of elements important.
(Associative independent of the size of the
Container) container.

std:: To be selected over std::map Insertion or elements will be slower
multimap when requirements necessitate than in a sequential equivalent as
(Associative the need of a key-value pairs elements are sorted on insertion.
Container) container that holds elements

with non-unique keys.

std:: To be selected over multimap Is a weakly ordered container, so you
unordered_ when you need a key-value cannot use it when you need to rely on
multimap pairs container where keys can the relative order of elements.
(Associative be non-unique.
Container)

Allows constant average time
insertion, search and removal of
elements, independent of the
size of the container

Container Adapters
Container Adapters are variants of sequential and associative containers that have
limited functionality and are intended to fulfill a particular purpose. The main adapter
classes are:

n std::stack—Stores elements in a LIFO (last-in-first-out) fashion, allowing ele-
ments to be inserted (pushed) and removed (popped) at the top.

n std::queue—Stores elements in FIFO (first-in-first-out) fashion, allowing the first
element to be removed in the order they’re inserted.

n std::priority_queue—Stores elements in a sorted order, such that the one whose
value is evaluated to be the highest is always first in the queue.

These containers are discussed in detail in Lesson 24, “Adaptive Containers: Stack and
Queue”.

398 LESSON 15: An Introduction to the Standard Template Library

ptg7987094

STL Iterators
The simplest example of an iterator is a pointer. Given a pointer to the first element in an
array, you can increment it and point to the next element or, in many cases, manipulate
the element at that location.

Iterators in STL are template classes that in some ways are a generalization of pointers.
These are template classes that give the programmer a handle by which he can work with
and manipulate STL containers and perform operations on them. Note that operations
could as well be STL algorithms that are template functions, Iterators are the bridge that
allows these template functions to work with containers, which are template classes, in a
consistent and seamless manner.

Iterators supplied by STL can be broadly classified into the following:

n Input iterator—One that can be dereferenced to reference an object. The object
can be in a collection, for instance. Input iterators of the purest kinds guarantee
read access only.

n Output iterator—One that allows the programmer to write to the collection.
Output iterators of the strictest types guarantee write access only.

The basic iterator types mentioned in the preceding list are further refined into the
following:

n Forward iterator—A refinement of the input and output iterators allowing both
input and output. Forward iterators may be constant, allowing for read-only access
to the object the iterator points to, and otherwise allow for both read and write
operations, making it mutable. A forward iterator would typically find use in a
singly linked list.

n Bidirectional iterator—A refinement of the forward iterator in that it can be
decremented to move backward as well. A bidirectional iterator would typically
find use in a doubly linked list.

n Random access iterators—In general, a refinement over the concept of bidirec-
tional iterators that allow addition and subtraction of offsets or allow one iterator to
be subtracted from another to find the relative separation or distance between the
two objects in a collection. A random iterator would typically find use in an array.

STL Iterators 399

15

At an implementation level, a refinement can be thought of as an
inheritance or a specialization.

NOTE

ptg7987094

STL Algorithms
Finding, sorting, reversing, and the like are standard programming requirements that
should not require the programmer to reinvent implementation to support. This is pre-
cisely why STL supplies these functions in the form of STL algorithms that work well
with containers using iterators to help the programmer with some of the most common
requirements.

Some of the most used STL algorithms are

n std::find—Helps find a value in a collection

n std::find_if—Helps find a value in a collection on the basis of a specific user-
defined predicate

n std::reverse—Reverses a collection

n std::remove_if—Helps remove an item from a collection on the basis of a user-
defined predicate

n std::transform—Helps apply a user-defined transformation function to elements
in a container

These algorithms are template functions in the std namespace and require that the stan-
dard header <algorithm> be included.

The Interaction Between Containers and
Algorithms Using Iterators
Let’s examine how iterators seamlessly connect containers and the STL algorithms using
an example. The program shown in Listing 15.1 uses the STL sequential container
std::vector, which is akin to a dynamic array, to store some integers and then find one
in the collection using the algorithm std::find. Note how iterators form the bridge con-
necting the two. Don’t worry about the complexity of the syntax or functionality.
Containers such as std::vector and algorithms such as std::find are discussed in
detail in Lesson 17, “STL Dynamic Array Classes” and Lesson 23, “STL Algorithms,”
respectively. If you find this part complicated, you can skip the section for the moment.

LISTING 15.1 Find an Element and Its Position in a Vector

1: #include <iostream>
2: #include <vector>
3: #include <algorithm>
4: using namespace std;

400 LESSON 15: An Introduction to the Standard Template Library

ptg7987094

5:
6: int main ()
7: {
8: // A dynamic array of integers
9: vector <int> vecIntegerArray;
10:
11: // Insert sample integers into the array
12: vecIntegerArray.push_back (50);
13: vecIntegerArray.push_back (2991);
14: vecIntegerArray.push_back (23);
15: vecIntegerArray.push_back (9999);
16:
17: cout << “The contents of the vector are: “ << endl;
18:
19: // Walk the vector and read values using an iterator
20: vector <int>::iterator iArrayWalker = vecIntegerArray.begin ();
21:
22: while (iArrayWalker != vecIntegerArray.end ())
23: {
24: // Write the value to the screen
25: cout << *iArrayWalker << endl;
26:
27: // Increment the iterator to access the next element
28: ++ iArrayWalker;
29: }
30:
31: // Find an element (say 2991) in the array using the ‘find’ algorithm...
32: vector <int>::iterator iElement = find (vecIntegerArray.begin ()
33: ,vecIntegerArray.end (), 2991);
34:
35: // Check if value was found
36: if (iElement != vecIntegerArray.end ())
37: {
38: // Value was found... Determine position in the array:
39: int Position = distance (vecIntegerArray.begin (), iElement);
40: cout << “Value “<< *iElement;
41: cout << “ found in the vector at position: “ << Position << endl;
42: }
43:
44: return 0;
45: }

Output ▼

The contents of the vector are:
50
2991
23
9999
Value 2991 found in the vector at position: 1

The Interaction Between Containers and Algorithms Using Iterators 401

15

ptg7987094

Analysis ▼

Listing 15.1 displays the use of iterators in walking through the vector and as interfaces
that help connect algorithms such as find to containers like vector that contains the data
on which the algorithm is meant to operate. The iterator object iArrayWalker is declared
in Line 20 and is initialized to the beginning of the container; that is, the vector using
the return value of the member function begin(). Lines 22 to 29 demonstrate how this
iterator is used in a loop to locate and display the elements contained in the vector, in a
manner that is quite similar to how one can display the contents of a static array. The
usage of the iterator is quite consistent across all STL containers. They all feature a func-
tion begin() that points to the first element, and a function end() that points to the end
of the container after the last element. This also explains why the while loop in Line 22
stops at the element before end() and not with end(). Line 32 demonstrates how find is
used to locate a value in the vector. The result of the find operation is an iterator as
well, and the success of the find is tested by comparing the iterator against the end of
the container, as seen in Line 36. If an element is found, it can be displayed by derefer-
encing that iterator (such as how one would dereference a pointer). The algorithm dis-
tance is applied by computing the offset position of the element found.

If you blindly replace all instances of ‘vector’ by ‘deque’ in Listing 15.1, your code
would still compile and work perfectly. That’s how easy iterators make working with
algorithms and containers.

C++11

Using Keyword auto to Let Compiler Define Type
Listing 15.1 shows a number of iterator declarations. They look similar to this:

20: vector <int>::iterator iArrayWalker = vecIntegerArray.begin ();

This iterator type definition might look quite intimidating. If you are using a
C++11-compliant compiler, you can simplify this line to the following:

20: auto iArrayWalker = vecIntegerArray.begin (); // compiler detects type

Note that a variable defined as type auto needs initialization (so the compiler can detect
type depending on that of the value it is being initialized to).

402 LESSON 15: An Introduction to the Standard Template Library

ptg7987094

STL String Classes
STL supplies a template class that has been specially designed for string operations.
std::basic_string<T> is used popularly in its two template specializations:

n std::string—A char-based specialization of std::basic_string used for the
manipulation of simple character strings.

n std::wstring— A wchar_t-based specialization of std::basic_string used for
the manipulation of wide character strings.

This utility class is extensively discussed in Lesson 16, “The STL String Class,” where
you see how it makes working with and manipulating strings really simple.

Summary
In this lesson, you learned the concepts on which STL containers, iterators, and algo-
rithms are based. You were introduced to the basic_string<T>, which is discussed in
detailed in the upcoming lesson. Containers, iterators and algorithms are one of the most
important concepts in STL, and a thorough understanding of these will help you effi-
ciently use STL in your application. Lessons 17 through 25 explain the implementation
of these concepts and their application in greater detail.

Q&A
Q I need to use an array. I don’t know the number of elements it needs to con-

tain. What STL container should I use?

A A std::vector or a std::deque is perfectly suited to this requirement. Both man-
age memory and can dynamically scale themselves to an application’s increasing
requirements.

Q My application has a requirement that involves frequent searches. What kind
of container should I choose?

A An associative containers like std::map or std::set or the unordered variants there of
are most suited to requirements that involve frequent searches.

Q I need to store key-value pairs for quick lookup. However, the use-case can
result in multiple keys that are not unique. What container should I choose?

A An associative container of type std::multimap is suited to this requirement. A
multimap can hold nonunique key-value pairs and can offer a quick lookup that is
characteristic of associative containers.

Q&A 403

15

ptg7987094

Q An application needs to be ported across platforms and compilers. There is a
requirement for a container that helps in a quick lookup based on a key.
Should I use std::map or std::hash_map?

A Portability is an important constraint and using standard-compliant containers is
necessary. You might also use std::unordered_map if you are using C++11 compli-
ant compilers for all the platforms concerned.

Workshop
The Workshop contains quiz questions to help solidify your understanding of the mater-
ial covered. Try to answer the quiz questions before checking the answers in Appendix
D, and be certain you understand the answers before going to the next lesson.

Quiz
1. What would be your choice of a container that has to contain an array of objects

with insertion possible at the top and at the bottom?

2. You need to store elements for quick lookup. What container would you choose?

3. You need to store elements in a std::set but still have the storage and lookup cri-
teria altered, based on conditions that are not necessarily the value of the elements.
Is this possible?

4. What part of STL helps connect algorithms to containers so that algorithms can
work on those elements?

5. Would you choose to use container hash_set in an application that needs to be
ported to different platforms and built using different C++ compilers?

404 LESSON 15: An Introduction to the Standard Template Library

ptg7987094

LESSON 16
The STL String Class

The standard template library (STL) supplies the programmer with a
container class that aids in string operations and manipulations. The
string class not only dynamically resizes itself to cater to the applica-
tion’s requirement but also supplies useful helper functions or methods
that help manipulate the string and work using it. Thus, it helps program-
mers make use of standard, portable, and tested functionality in their
applications and focus time on developing features that are critical to it.

In this lesson, you learn

n Why string manipulation classes are necessary

n How to work with the STL string class

n How STL helps you concatenate, append, find and perform other
string operations with ease

n How to use template-based implementation of the STL string

ptg7987094

The Need for String Manipulation
Classes
In C++, a string is an array of characters. As you saw in Lesson 4, “Managing Arrays
and Strings,” the simplest character array can be defined as following:

char staticName [20];

staticName is the declaration of a character array (also called a string) of a fixed (hence
static) length of 20 elements. As you see, this buffer can hold a string of limited length
and would soon be overrun if you tried to hold a greater number of characters in it.
Resizing this statically allocated array is not possible. To overcome this constraint, C++
supplies dynamic allocation of data. Therefore, a more dynamic representation of a
string array is

char* dynamicName = new char [ArrayLength];

dynamicName is a dynamically allocated character array that can be instantiated to the
length as stored in the value ArrayLength, determinable at runtime, and hence can be
allocated to hold a data of variable length. However, should you want to change the
length of the array at runtime, you would first have to deallocate the allocated memory
and then reallocate to hold the required data.

Things get complicated if these char* strings are used as member attributes of a class.
In situations where an object of this class is assigned to another, in the absence of a cor-
rectly programmed copy constructor and assignment operator, the two objects contain
copies of a pointer, essentially pointing to the same char buffer. The result is two string
pointers in two objects, each holding the same address and hence pointing to the same
location in memory. The destruction of the first object results in the pointer in the other
object being invalidated, and an impending crash looms on the horizon.

String classes solve these problems for you. The STL string classes std::string that
models a character string and std::wstring that models a wide character string helps
you in the following ways:

n Reduces the effort of creation and manipulating strings

n Increases the stability of the application being programmed by internally managing
memory allocation details

n Supplies copy constructor and assignment operators that automatically ensure that
member strings get correctly copied

n Supplies useful utility functions that help in copying, truncating, finding, and
erasing to name a few

406 LESSON 16: The STL String Class

ptg7987094

n Provides operators that help in comparisons

n Focuses efforts on your application’s primary requirements rather than on string
manipulation details

Working with the STL String Class 407

16

Both std::string and std::wstring are actually template
specializations of the same class, namely std::basic_string<T>
for types char and wchar_t respectively. When you have learned
using one, you can use the same methods and operators on the
other.

You will soon learn some useful helper functions that STL string classes supply using
std::string as an example.

Working with the STL String Class
The most commonly used string functions are:

n Copying

n Concatenating

n Finding characters and substrings

n Truncating

n String reversal and case conversions, which are achieved using algorithms provided
by the standard library

To use the STL string class, you must include the header <string>.

Instantiating the STL String and Making Copies
The string class features many overloaded constructors and therefore can be instantiated
and initialized in many different ways. For example, you can simply initialize or assign a
constant character string literal to a regular STL std::string object:

const char* constCStyleString = “Hello String!”;
std::string strFromConst (constCStyleString);

or

std::string strFromConst = constCStyleString;

NOTE

ptg7987094

The preceding is quite similar to

std::string str2 (“Hello String!”);

As is apparent, instantiating a string object and initializing it to a value did not require
supplying the length of the string or the memory allocation details—the constructor of
the STL string class automatically did this.

Similarly, it is possible to use one string object to initialize another:

std::string str2Copy (str2);

You can also instruct the string constructor to accept only the first n characters of the
supplied input string:

// Initialize a string to the first 5 characters of another
std::string strPartialCopy (constCStyleString, 5);

You can also initialize a string to contain a specific number of instances of a particular
character:

// Initialize a string object to contain 10 ‘a’s
std::string strRepeatChars (10, ‘a’);

Listing 16.1 analyzes some popularly used std::string instantiation and string copy
techniques.

LISTING 16.1 STL String Instantiation and Copy Techniques

0: #include <string>
1: #include <iostream>
2:
3: int main ()
4: {
5: using namespace std;
6: const char* constCStyleString = “Hello String!”;
7: cout << “Constant string is: “ << constCStyleString << endl;
8:
9: std::string strFromConst (constCStyleString); // constructor
10: cout << “strFromConst is: “ << strFromConst << endl;
11:
12: std::string str2 (“Hello String!”);
13: std::string str2Copy (str2);
14: cout << “str2Copy is: “ << str2Copy << endl;
15:
16: // Initialize a string to the first 5 characters of another
17: std::string strPartialCopy (constCStyleString, 5);
18: cout << “strPartialCopy is: “ << strPartialCopy << endl;
19:
20: // Initialize a string object to contain 10 ‘a’s

408 LESSON 16: The STL String Class

ptg7987094

21: std::string strRepeatChars (10, ‘a’);
22: cout << “strRepeatChars is: “ << strRepeatChars << endl;
23:
24: return 0;
25: }

Output ▼

Constant string is: Hello String!
strFromConst is: Hello String!
str2Copy is: Hello String!
strPartialCopy is: Hello
strRepeatChars is: aaaaaaaaaa

Analysis ▼

The preceding code sample displays how you can instantiate a STL string object and
initialize it to another string, creating a partial copy or initializing your STL string
object to a set of recurring characters. constCStyleString is a C-style character string
that contains a sample value, initialized in Line 6. Line 9 displays how easy std::string
makes it to create a copy using the constructor. Line 12 copies another constant string
into a std::string object str2, and Line 13 demonstrates how std::string has another
overloaded constructor that allows you to copy a std::string object, to get str2Copy.
Line 17 demonstrates how partial copies can be achieved and Line 21 how a std::string
can be instantiated and initialized to contain repeating occurrences of the same character.
This code sample was just a small demonstration of how std::string and its numerous
copy constructors make it easy for a programmer to create strings, copy them, and dis-
play them.

Working with the STL String Class 409

16

If you were to use C-style strings to copy another of the same
kind, the equivalent of Line 9 in Listing 16.1 would be this:

const char* constCStyleString = “Hello World!”;

// To create a copy, first allocate memory for one...
char * pszCopy = new char [strlen (constCStyleString) + 1];
strcpy (pszCopy, constCStyleString); // The copy step

// deallocate memory after using pszCopy
delete [] pszCopy;

As you can see, the result is many more lines of code and higher
probability of introducing errors, and you need to worry about
memory management and deallocations. STL string does all this
for you, and more!

NOTE

ptg7987094

Accessing Character Contents of a std::string
The character contents of an STL string can be accessed via iterators or via an array-
like syntax where the offset is supplied, using the subscript operator []. A C-style repre-
sentation of the string can be obtained via member function c_str (). See Listing 16.2.

LISTING 16.2 Two Ways of Accessing Character Clements of an STL
string::Operator[] and Iterators

0: #include <string>
1: #include <iostream>
2:
3: int main ()
4: {
5: using namespace std;
6:
7: // The sample string
8: string strSTLString (“Hello String”);
9:
10: // Access the contents of the string using array syntax
11: cout<<“Displaying the elements in the string using array-syntax: “<<endl;
12: for (size_t nCharCounter = 0
13: ; nCharCounter < strSTLString.length ()
14: ; ++ nCharCounter)
15: {
16: cout << “Character [“ << nCharCounter << “] is: “;
17: cout << strSTLString [nCharCounter] << endl;
18: }
19: cout << endl;
20:
21: // Access the contents of a string using iterators
22: cout << “Displaying the contents of the string using iterators: “ <<

endl;
23: int charOffset = 0;
24: string::const_iterator iCharacterLocator;
25: for (iCharacterLocator = strSTLString.begin ()
26: ; iCharacterLocator != strSTLString.end ()
27: ; ++ iCharacterLocator)
28: {
29: cout << “Character [“ << charOffset ++ << “] is: “;
30: cout << *iCharacterLocator << endl;
31: }
32: cout << endl;
33:
34: // Access the contents of a string as a C-style string
35: cout << “The char* representation of the string is: “;
36: cout << strSTLString.c_str () << endl;

410 LESSON 16: The STL String Class

ptg7987094

37:
38: return 0;
39: }

Output ▼

Displaying the elements in the string using array-syntax:
Character [0] is: H
Character [1] is: e
Character [2] is: l
Character [3] is: l
Character [4] is: o
Character [5] is:
Character [6] is: S
Character [7] is: t
Character [8] is: r
Character [9] is: i
Character [10] is: n
Character [11] is: g

Displaying the contents of the string using iterators:
Character [0] is: H
Character [1] is: e
Character [2] is: l
Character [3] is: l
Character [4] is: o
Character [5] is:
Character [6] is: S
Character [7] is: t
Character [8] is: r
Character [9] is: i
Character [10] is: n
Character [11] is: g

The char* representation of the string is: Hello String

Analysis ▼

The code displays the multiple ways of accessing the contents of a string. Iterators are
important in the sense that many of the string’s member function return their results in
the form of iterators. Lines 12–18 display the characters in the string using array-like
semantics via the subscript operator [], implemented by the std::string class. Note
that this operator needs you to supply the offset as seen in Line 17. Therefore, it is very
important that you do not cross the bounds of the string; that is, you do not read a char-
acter at an offset beyond the length of the string. Lines 25–31 also print the content of
the string character-by-character, but using iterators.

Working with the STL String Class 411

16

ptg7987094

Concatenating One String to Another
String concatenation can be achieved by using either the += operator or the append mem-
ber function:

string strSample1 (“Hello”);
string strSample2 (“ String!”);
strSample1 += strSample2; // use std::string::operator+=
// alternatively use std::string::append()
strSample1.append (strSample2); // (overloaded for char* too)

Listing 16.3 demonstrates the usage of these two variants.

LISTING 16.3 Concatenate Strings Using Addition Assignment Operator (+=) or Method
append()

0: #include <string>
1: #include <iostream>
2:
3: int main ()
4: {
5: using namespace std;
6:
7: string strSample1 (“Hello”);
8: string strSample2 (“ String!”);
9:
10: // Concatenate
11: strSample1 += strSample2;
12: cout << strSample1 << endl << endl;
13:
14: string strSample3 (“ Fun is not needing to use pointers!”);
15: strSample1.append (strSample3);
16: cout << strSample1 << endl << endl;
17:
18: const char* constCStyleString = “ You however still can!”;
19: strSample1.append (constCStyleString);
20: cout << strSample1 << endl;
21:
22: return 0;
23: }

Output ▼

Hello String!

Hello String! Fun is not needing to use pointers!

Hello String! Fun is not needing to use pointers! You however still can!

412 LESSON 16: The STL String Class

ptg7987094

Analysis ▼

Lines 11, 15, and 19 display different methods of concatenating to an STL string. Note
the use of the += operator and the capability of the append function, which has many
overloads, to accept another string object (as shown in Line 11) and to accept a C-style
character string.

Finding a Character or Substring in a String
The STL string supplies a find member function with a few overloaded versions that
help find a character or a substring in a given string object.

// Find substring “day” in a string strSample, starting at position 0
size_t charPos = strSample.find (“day”, 0);

// Check if the substring was found, compare against string::npos
if (charPos != string::npos)

cout << “First instance of \”day\” was found at position “ << charPos;
else

cout << “Substring not found.” << endl;

Listing 16.4 demonstrates the utility of std::string::find.

LISTING 16.4 Using string::find() to Locate a Substring or char

0: #include <string>
1: #include <iostream>
2:
3: int main ()
4: {
5: using namespace std;
6:
7: string strSample (“Good day String! Today is beautiful!”);
8: cout << “The sample string is: “ << endl;
9: cout << strSample << endl << endl;
10:
11: // Find substring “day” in it...
12: size_t charPos = strSample.find (“day”, 0);
13:
14: // Check if the substring was found...
15: if (charPos != string::npos)
16: cout << “First instance of \”day\” was found at position “ << charPos;
17: else
18: cout << “Substring not found.” << endl;
19:
20: cout << endl << endl;
21:
22: cout << “Locating all instances of substring \”day\”” << endl;

Working with the STL String Class 413

16

ptg7987094

LISTING 16.4 Continued

23: size_t SubstringPos = strSample.find (“day”, 0);
24:
25: while (SubstringPos != string::npos)
26: {
27: cout << “\”day\” found at position “ << SubstringPos << endl;
28:
29: // Make find search forward from the next character
30: size_t nSearchPosition = SubstringPos + 1;
31:
32: SubstringPos = strSample.find (“day”, nSearchPosition);
33: }
34:
35: cout << endl;
36:
37: cout << “Locating all instances of character ‘a’” << endl;
38: const char charToSearch = ‘a’;
39: charPos = strSample.find (charToSearch, 0);
40:
41: while (charPos != string::npos)
42: {
43: cout << “‘“ << charToSearch << “‘ found”;
44: cout << “ at position: “ << charPos << endl;
45:
46: // Make find search forward from the next character
47: size_t charSearchPos = charPos + 1;
48:
49: charPos = strSample.find (charToSearch, charSearchPos);
50: }
51:
52: return 0;
53: }

Output ▼

The sample string is:
Good day String! Today is beautiful!

First instance of “day” was found at position 5

Locating all instances of substring “day”
“day” found at position 5
“day” found at position 19

Locating all instances of character ‘a’
‘a’ found at position: 6
‘a’ found at position: 20
‘a’ found at position: 28

414 LESSON 16: The STL String Class

ptg7987094

Analysis ▼

Lines 12–18 display the simplest usage of the find function where it ascertains whether
a particular substring is found in a string. This is done by comparing the result of the
find operation against std::string::npos (that is actually –1) and indicates that the
element searched for has not been found. When the find function does not return npos,
it returns the offset that indicates the position of the substring or character in the string.

The code thereafter indicates how find can be used in a while loop to locate all
instances of a character or a substring in an STL string. The overloaded version of the
find function used here accepts two parameters: the substring or character to search for
and the search offset that indicates the point from which find should search.

Working with the STL String Class 415

16

The STL string also features functions akin to find(), such
as find_first_of(), find_first_not_of(), find_last_of(),
and find_last_not_of(), which assist the programmer further in
his programming requirements.

Truncating an STL string
The STL string features a function called erase that can erase

n A number of characters when given an offset position and count
string strSample (“Hello String! Wake up to a beautiful day!”);
strSample.erase (13, 28); // Hello String!

n A character when supplied with an iterator pointing to it
strSample.erase (iCharS); // iterator points to a specific character

n A number of characters given a range supplied by two iterators that bind the same

strSample.erase (strSample.begin (), strSample.end ()); // erase from begin
to end

The sample that follows in Listing 16.5 demonstrates different applications of the over-
loaded versions of string::erase() function.

NOTE

ptg7987094

LISTING 16.5 Using string::erase to Truncate a String Starting an Offset Position or
Given an Iterator

0: #include <string>
1: #include <algorithm>
2: #include <iostream>
3:
4: int main ()
5: {
6: using namespace std;
7:
8: string strSample (“Hello String! Wake up to a beautiful day!”);
9: cout << “The original sample string is: “ << endl;
10: cout << strSample << endl << endl;
11:
12: // Delete characters from the string given position and count
13: cout << “Truncating the second sentence: “ << endl;
14: strSample.erase (13, 28);
15: cout << strSample << endl << endl;
16:
17: // Find a character ‘S’ in the string using STL find algorithm
18: string::iterator iCharS = find (strSample.begin ()
19: , strSample.end (), ‘S’);
20:
21: // If character found, ‘erase’ to deletes a character
22: cout << “Erasing character ‘S’ from the sample string:” << endl;
23: if (iCharS != strSample.end ())
24: strSample.erase (iCharS);
25:
26: cout << strSample << endl << endl;
27:
28: // Erase a range of characters using an overloaded version of erase()
29: cout << “Erasing a range between begin() and end(): “ << endl;
30: strSample.erase (strSample.begin (), strSample.end ());
31:
32: // Verify the length after the erase() operation above
33: if (strSample.length () == 0)
34: cout << “The string is empty” << endl;
35:
36: return 0;
37: }

Output ▼

The original sample string is:
Hello String! Wake up to a beautiful day!

Truncating the second sentence:
Hello String!

416 LESSON 16: The STL String Class

ptg7987094

Erasing character ‘S’ from the sample string:
Hello tring!

Erasing a range between begin() and end():
The string is empty

Analysis ▼

The listing indicates the three versions of the erase function. One version erases a set of
characters when supplied a staring offset and count, as shown in line 14. Another version
erases a specific character given an iterator that points to it, as shown in line 24. The
final version erases a range of characters given a couple of iterators that supply the
bounds of this range, as shown in line 30. As the bounds of this range are supplied by
begin() and end () member functions of the string that effectively include all the con-
tents of the string, calling an erase() on this range clears the string object of its con-
tents. Note that the string class also supplies a clear () function that effectively clears
the internal buffer and resets the string object.

C++11

Simplify wordy iterator declarations using auto
C++11 helps simplify wordy iterator declarations as shown in Listing 16.5:

18: string::iterator iCharS = find (strSample.begin ()
19: , strSample.end (), ‘S’);

To reduce this, use keyword auto as introduced to you in Lesson 3, “Using Variables,
Declaring Constants”:

auto iCharS = find (strSample.begin ()
, strSample.end (), ‘S’);

The compiler automatically deducts type of variable iCharS given return value type
information from std::find.

String Reversal
Sometimes it is important to reverse the contents of a string. Say you want to determine
whether the string input by the user is a palindrome. One way to do it would be to
reverse a copy of the same and then compare the two. STL strings can be reversed easily
using the generic algorithm std::reverse algorithm:

string strSample (“Hello String! We will reverse you!”);
reverse (strSample.begin (), strSample.end ());

Working with the STL String Class 417

16

ptg7987094

Listing 16.6 demonstrates the application of algorithm std::reverse to a std::string.

LISTING 16.6 Reversing a STL String Using std::reverse

0: #include <string>
1: #include <iostream>
2: #include <algorithm>
3:
4: int main ()
5: {
6: using namespace std;
7:
8: string strSample (“Hello String! We will reverse you!”);
9: cout << “The original sample string is: “ << endl;
10: cout << strSample << endl << endl;
11:
12: reverse (strSample.begin (), strSample.end ());
13:
14: cout << “After applying the std::reverse algorithm: “ << endl;
15: cout << strSample << endl;
16:
17: return 0;
18: }

Output ▼

The original sample string is:
Hello String! We will reverse you!

After applying the std::reverse algorithm:
!uoy esrever lliw eW !gnirtS olleH

Analysis ▼

The std::reverse algorithm used in Line 12 works on the bounds of the container that
are supplied to it using the two input parameters. In this case, these bounds are the start-
ing and the ending bounds of the string object, reversing the contents of the entire
string. It would also be possible to reverse a string in parts by supplying the appropriate
bounds as input. Note that the bounds should never exceed end().

String Case Conversion
String case conversion can be effected using the algorithm std::transform, which
applies a user-specified function to every element of a collection. In this case, the collec-
tion is the string object itself. The sample in Listing 16.7 shows how to switch the case
of characters in a string.

418 LESSON 16: The STL String Class

ptg7987094

LISTING 16.7 Converting an STL String Using std::transform to Uppercase

0: #include <string>
1: #include <iostream>
2: #include <algorithm>
3:
4: int main ()
5: {
6: using namespace std;
7:
8: cout << “Please enter a string for case-convertion:” << endl;
9: cout << “> “;
10:
11: string strInput;
12: getline (cin, strInput);
13: cout << endl;
14:
15: transform(strInput.begin(),strInput.end(),strInput.begin(),toupper);
16: cout << “The string converted to upper case is: “ << endl;
17: cout << strInput << endl << endl;
18:
19: transform(strInput.begin(),strInput.end(),strInput.begin(),tolower);
20: cout << “The string converted to lower case is: “ << endl;
21: cout << strInput << endl << endl;
22:
23: return 0;
24: }

Output ▼

Please enter a string for case-convertion:
> ConverT thIS StrINg!

The string converted to upper case is:
CONVERT THIS STRING!

The string converted to lower case is:
convert this string!

Analysis ▼

Lines 15 and 19 demonstrate how efficiently std::transform can be used to change the
case of the contents of an STL string.

Working with the STL String Class 419

16

ptg7987094

Template-Based Implementation of an
STL String
The std::string class, as you have learned, is actually a specialization of the STL
template class std::basic_string <T>. The template declaration of container class
basic_string is as follows:

template<class _Elem,
class _Traits,
class _Ax>
class basic_string

In this template definition, the parameter of utmost importance is the first one: _Elem.
This is the type collected by the basic_string object. The std::string is therefore the
template specialization of basic_string for _Elem=char, whereas the wstring is the
template specialization of basic_string for _Elem=wchar_t.

In other words, the STL string class is defined as

typedef basic_string<char, char_traits<char>, allocator<char> >
string;

and the STL wstring class is defined as

typedef basic_string<wchar_t, char_traits<wchar_t>, allocator<wchar_t> >
string;

So, all string features and functions studied so far are actually those supplied by
basic_string, and are therefore also applicable to the STL wstring class.

420 LESSON 16: The STL String Class

You would use the std::wstring when programming an applica-
tion that needs to better support non-Latin characters such as
those in Japanese or Chinese.

Summary
In this lesson, you learned that the STL string class is a container supplied by the stan-
dard template library that helps the programmer with many string manipulation require-
ments. The advantage of using this class is apparent in that the need for the programmer
to implement memory management, string comparison, and string manipulation func-
tions is taken care of by a container class supplied by the STL framework.

TIP

ptg7987094

Q&A
Q I need to reverse a string using std::reverse. What header has to be included

for me to be able to use this function?

A <algorithm> is the header that needs to be included for std::reverse to be avail-
able.

Q What role does std::transform play in converting a string to lowercase using
the tolower () function?

A std::transform invokes tolower () for the characters in the string object that
are within the bounds supplied to the transform function.

Q Why do std::wstring and std::string feature exactly the same behavior and
member functions?

A They do so because they are both template specializations of the template class
std::basic_string.

Q Does the comparison operator < of the STL string class produce results that
are case sensitive or not case sensitive?

A The results are based on a case-sensitive comparison.

Workshop
The Workshop contains quiz questions to help solidify your understanding of the mater-
ial covered and exercises to provide you with experience in using what you’ve learned.
Try to answer the quiz and exercise questions before checking the answers in Appendix
D, and be certain you understand the answers before going to the next lesson.

Quiz
1. What STL template class does the std::string specialize?

2. If you were to perform a case-insensitive comparison of two strings, how would
you do it?

3. Are the STL string and a C-style string similar?

Exercises
1. Write a program to verify whether the word input by the user is a palindrome. For

example: ATOYOTA is a palindrome, as the word does not change when reversed.

2. Write a program that tells the user the number of vowels in a sentence.

Workshop 421

16

ptg7987094

3. Convert every alternate character of a string into uppercase.

4. Your program should have four string objects that are initialized to “I”, “Love”,
“STL”, “String.” Append them with a space in between and display the sentence.

422 LESSON 16: The STL String Class

ptg7987094

LESSON 17
STL Dynamic Array
Classes

Unlike static arrays, dynamic arrays supply the programmer with the
flexibility of storing data without needing to know the exact volume
thereof at the time of programming the application. Naturally, this is a
frequently needed requirement, and the Standard Template Library (STL)
supplies a ready-to-use solution in the form of the std::vector class.

In this lesson, you learn

n The characteristics of std::vector

n Typical vector operations

n The concept of a vector’s size and capacity

n The STL deque class

ptg7987094

The Characteristics of std::vector
vector is a template class that supplies generic functionality of a dynamic array and
features the following characteristics:

n Addition of elements to the end of the array in constant time; that is, the time
needed to insert at the end is not dependent on the size of the array. Ditto for
removal of an element at the end.

n The time required for the insertion or removal of elements at the middle is directly
proportional to the number of elements behind the element being removed.

n The number of elements held is dynamic and the vector class manages the
memory usage.

A vector being a dynamic array that can be visualized as seen in Figure 17.1.

424 LESSON 17: STL Dynamic Array Classes

Element
[0]

Element
[1]

Element
[2]

Insertion at
back

FIGURE 17.1
The internals of a
vector.

To use class std::vector, include header:

#include <vector>

Typical Vector Operations
The behavioral specifications and public members of the std::vector class are defined
by the C++ standard. Consequently, operations on the vector that you will learn in
this lesson are supported by a variety of C++ programming platforms that are standard
compliant.

Instantiating a Vector
A vector is a template class that needs to be instantiated in accordance with template
instantiation techniques that are covered in Lesson 14, “An introduction to Macros and
Templates.” The template instantiation of vector needs to specify the type of object that
you want to collect in this dynamic array.

std::vector<int> vecDynamicIntegerArray; // vector containing integers
std::vector<float> vecDynamicFloatArray; // vector containing floats
std::vector<Tuna> vecDynamicTunaArray; // vector containing Tunas

TIP

ptg7987094

To declare an iterator that points to an element in the list, you would use

std::list<int>::const_iterator iElementInSet;

If you need an iterator that can be used to modify values or invoke non-const functions,
you use iterator instead of const_iterator.

Given that std::vector has a few overloaded constructors, you also have an option of
instantiating a vector telling the number of elements it should start with and their initial
values, or you can use a part of whole of one vector in instantiating another.

Listing 17.1 demonstrates a few vector instantiations

LISTING 17.1 Different Forms of Instantiating std::vector: Specify Size, Initial Value,
and Copying Values from Another

0: #include <vector>
1:
2: int main ()
3: {
4: std::vector <int> vecIntegers;
5:
6: // Instantiate a vector with 10 elements (it can grow larger)
7: std::vector <int> vecWithTenElements (10);
8:
9: // Instantiate a vector with 10 elements, each initialized to 90
10: std::vector <int> vecWithTenInitializedElements (10, 90);
11:
12: // Instantiate one vector and initialize it to the contents of another
13: std::vector <int> vecArrayCopy (vecWithTenInitializedElements);
14:
15: // Using iterators instantiate vector to 5 elements from another
16: std::vector <int> vecSomeElementsCopied (vecWithTenElements.cbegin ()
17: , vecWithTenElements.cbegin () + 5);
18:
19: return 0;
20: }

Analysis ▼

The preceding code features a template specialization of the vector class for type
integer; in other words, it instantiates a vector of integers. This vector, named
vecIntegers, uses the default constructor that is quite useful when you do not know the
minimal size requirements of the container—that is, when you do not know how many
integers you want to hold in it. The second and third forms of vector instantiation as
seen in Lines 10 and 13 are ones in which the programmer knows that he needs a vector

Typical Vector Operations 425

17

ptg7987094

that contains at least 10 elements. Note that this does not limit the ultimate size of the
container, rather just sets the initializing size. The fourth form in Lines 16 and 17 is the
one in which a vector can be used to instantiate the contents of another—in other words,
to create one vector object that is the copy of another, or a part thereof. This is also a
construct that works for all STL containers. The last form is the one that uses iterators.
vecSomeElementsCopied contains the first five elements from vecWithTenElements.

426 LESSON 17: STL Dynamic Array Classes

The fourth construct can work only with objects of like types.
So, you could instantiate a vecArrayCopy—a vector of integer
objects using another vector of integer objects. If one of them
were to be a vector of, say, type float, the code would not
compile.

NOTE

Are You Facing Errors Compiling cbegin() and cend()?

If you are trying to compile this program using a non-C++11-
compliant compiler, use begin() and end() instead of cbegin()
and cend(), respectively.

cbegin() and cend() are different (and better) in that they return
a iterator, but are not supported by older compilers.

Inserting Elements at the End Using push_back()
Having instantiated a vector of integers, the obvious next task is to insert elements
(integers) into it. Insertion in a vector happens at the end of the array, and elements

are “pushed” into its back using the member method push_back:

vector <int> vecIntegers; // declare a vector of type int

// Insert sample integers into the vector:
vecIntegers.push_back (50);
vecIntegers.push_back (1);

Listing 17.2 demonstrates the use of push_back() in the dynamic addition of elements to
a std::vector.

TIP

ptg7987094

LISTING 17.2 Inserting Elements in a Vector Using push_back()

0: #include <iostream>
1: #include <vector>
2: using namespace std;
3:
4: int main ()
5: {
6: vector <int> vecIntegers;
7:
8: // Insert sample integers into the vector:
9: vecIntegers.push_back (50);
10: vecIntegers.push_back (1);
11: vecIntegers.push_back (987);
12: vecIntegers.push_back (1001);
13:
14: cout << “The vector contains “;
15: cout << vecIntegers.size () << “ Elements” << endl;
16:
17: return 0;
18: }

Output ▼

The vector contains 4 Elements

Analysis ▼

push_back(), as seen in Lines 9–12 is the vector class’ public member method that
inserts objects at the end of the dynamic array. Note the usage of function size(), which
returns the number of elements held in the vector.

C++11

Initializer Lists
C++11 features initializer lists via class std::initialize_list<> that, when supported,
enables you to instantiate and initialize elements in a vector like you would a static array:

vector<int> vecIntegers = {50, 1, 987, 1001};
// alternatively:
vector<int> vecMoreIntegers {50, 1, 987, 1001};

This syntax reduces three lines in Listing 17.2. Yet, we haven’t used it because at the
time of writing this book, initializer lists were not supported by the implementation of
std::vector in Microsoft Visual C++ 2010 compiler.

Typical Vector Operations 427

17

ptg7987094

Inserting Elements at a Given Position Using
insert()
You use push_back to insert elements at the end of a vector. What if you want to insert
in the middle? Many other STL containers, including std::vector, feature an insert()
function with many overloads.

In one, you can specify the position at which an element can be inserted into the
sequence:

// insert an element at the beginning
vecIntegers.insert (vecIntegers.begin (), 25);

In another, you can specify the position as well as the number of elements with a value
that need to be inserted:

// Insert 2 numbers of value 45 at the end
vecIntegers.insert (vecIntegers.end (), 2, 45);

You can also insert the contents of one vector into another at a chosen position:

// Another vector containing 2 elements of value 30
vector <int> vecAnother (2, 30);

// Insert two elements from another container in position [1]
vecIntegers.insert (vecIntegers.begin () + 1,

vecAnother.begin (), vecAnother.end ());

You use an iterator, often returned by begin() or end(), to tell the insert() function the
position where you want the new elements to be placed.

428 LESSON 17: STL Dynamic Array Classes

Note that this iterator can also be the return value of an STL algo-
rithm, for example the std::find() function, which can be used
to find an element and then insert another at that position (inser-
tion will shift the element found).

These forms of vector::insert() are demonstrated in Listing 17.3.

LISTING 17.3 Using the vector::insert Function to Insert Elements at a Set Position

0: #include <vector>
1: #include <iostream>
2: using namespace std;

TIP

ptg7987094

3:
4: void DisplayVector(const vector<int>& vecInput)
5: {
6: for (auto iElement = vecInput.cbegin() // auto and cbegin(): C++11
7: ; iElement != vecInput.cend() // cend() is new in C++11
8: ; ++ iElement)
9: cout << *iElement << ‘ ‘;
10:
11: cout << endl;
12: }
13:
14: int main ()
15: {
16: // Instantiate a vector with 4 elements, each initialized to 90
17: vector <int> vecIntegers (4, 90);
18:
19: cout << “The initial contents of the vector: “;
20: DisplayVector(vecIntegers);
21:
22: // Insert 25 at the beginning
23: vecIntegers.insert (vecIntegers.begin (), 25);
24:
25: // Insert 2 numbers of value 45 at the end
26: vecIntegers.insert (vecIntegers.end (), 2, 45);
27:
28: cout << “Vector after inserting elements at beginning and end: “;
29: DisplayVector(vecIntegers);
30:
31: // Another vector containing 2 elements of value 30
32: vector <int> vecAnother (2, 30);
33:
34: // Insert two elements from another container in position [1]
35: vecIntegers.insert (vecIntegers.begin () + 1,
36: vecAnother.begin (), vecAnother.end ());
37:
38: cout << “Vector after inserting contents from another vector: “;
39: cout << “in the middle:” << endl;
40: DisplayVector(vecIntegers);
41:
42: return 0;
43: }

Output ▼

The initial contents of the vector: 90 90 90 90
Vector after inserting elements at beginning and end: 25 90 90 90 90 45 45
Vector after inserting contents from another vector: in the middle:
25 30 30 90 90 90 90 45 45

Typical Vector Operations 429

17

ptg7987094

Analysis ▼

This code effectively demonstrates the power of the insert function by enabling you to
put values in the middle of the container. vector in Line 17 contains four elements, all
initialized to 90. Taking this vector as a starting point, we use various overloads of the
vector::insert member function. In Line 23 you add one element at the beginning.
Line 26 uses an overload to add two elements of value 45 at the end. Line 35 demon-
strates how elements can be inserted from one vector into the middle (in this example,
the second position at offset 1) of another.

Although vector::insert is quite a versatile function, push_back() should be your pre-
ferred way of adding elements to a vector.

Note that insert() is an inefficient way to add elements to the vector (when adding in
a position that is not the end of the sequence) because adding elements in the beginning
or the middle makes the vector class shift all subsequent elements backward (after
making space for the last ones at the end). Thus, depending on the type of the objects
contained in the sequence, the cost of this shift operation can be significant in terms of
the copy constructor or copy assignment operator invoked. In our little sample, the
vector contains objects of type int that are relatively inexpensive to move around.
This might not be the case in many other uses of the vector class.

430 LESSON 17: STL Dynamic Array Classes

If your container needs to have very frequent insertions in the mid-
dle, you should ideally choose the std::list, explained in Lesson
18, “STL list and forward_list.”

TIP

Are You Using an Older C++ Compiler?

Function DisplayVector() in Listing 17.3 uses the C++11
keyword auto to define the type of an iterator in Line 6. In this
sample and ahead, to compile using a non-C++11-compliant
compiler, you need to replace auto by the explicit type, in this
case vector<int>::const_iterator.

CAUTION

ptg7987094

Typical Vector Operations 431

17

So, DisplayVector() for an older compiler would need to be
modified to the following:

// for older C++ compilers
void DisplayVector(const vector<int>& vecInput)
{

for (vector<int>::const_iterator iElement = vecInput.begin
()

; iElement != vecInput.end ()
; ++ iElement)
cout << *iElement << ‘ ‘;

cout << endl;
}

Accessing Elements in a Vector Using Array
Semantics
Elements in a vector can be accessed using the following methods: via array semantics
using the subscript operator ([]), using the member function at(), or using iterators.

Listing 17.1 showed how an instance of vector can be created that is initialized for 10
elements:

std::vector <int> vecArrayWithTenElements (10);

You can access and set individual elements using an array-like syntax:

vecArrayWithTenElements[3] = 2011; // set 4th element

Listing 17.4 demonstrates how elements in a vector can be accessed using the subscript
operator ([]).

LISTING 17.4 Accessing Elements in a vector Using Array Semantics

0: #include <iostream>
1: #include <vector>
2:
3: int main ()
4: {
5: using namespace std;
6: vector <int> vecIntegerArray;
7:
8: // Insert sample integers into the vector:
9: vecIntegerArray.push_back (50);
10: vecIntegerArray.push_back (1);

ptg7987094

LISTING 17.4 Continued

11: vecIntegerArray.push_back (987);
12: vecIntegerArray.push_back (1001);
13:
14: for (size_t Index = 0; Index < vecIntegerArray.size (); ++Index)
15: {
16: cout << “Element[“ << Index << “] = “ ;
17: cout << vecIntegerArray[Index] << endl;
18: }
19:
20: // changing 3rd integer from 987 to 2011
21: vecIntegerArray[2] = 2011;
22: cout << “After replacement: “ << endl;
23: cout << “Element[2] = “ << vecIntegerArray[2] << endl;
24:
25: return 0;
26: }

Output ▼

Element[0] = 50
Element[1] = 1
Element[2] = 987
Element[3] = 1001
After replacement:
Element[2] = 2011

Analysis ▼

At Lines 17, 21, and 23 the vector has been used to access and assign elements the
same way you might use a static array using vector’s subscript operator ([]). This sub-
script operator accepts an element-index that is zero-based just as in a static array. Note
how the for loop has been programmed in Line 15 to ensure that the index doesn’t cross
the bounds of the vector by comparing it against vector::size().

432 LESSON 17: STL Dynamic Array Classes

Accessing elements in a vector using [] is fraught with the same
dangers as accessing elements in an array; that is, you should
not cross the bounds of the container. If you use the subscript
operator ([]) to access elements in a vector at a position that is
beyond its bounds, the result of the operation will be undefined
(anything could happen, possibly an access violation).

CAUTION

ptg7987094

Typical Vector Operations 433

17

A safer alternative is to use the at() member function:

// gets element at position 2
cout << vecIntegerArray.at (2);
// the vector::at() version of the code above in Listing
17.4, line 17:

cout << vecIntegerArray.at(Index);

at() performs a runtime check against the size of the container
and throws an exception if you cross the boundaries (which you
shouldn’t do anyway).

Subscript operator ([]) is safe when used in a manner that
ensures bound integrity, as in the earlier example.

Accessing Elements in a Vector Using Pointer
Semantics
You can also access elements in a vector using pointer-like semantics by the use of iter-
ators, as shown in Listing 17.5.

LISTING 17.5 Accessing Elements in a Vector Using Pointer Semantics (Iterators)

0: #include <iostream>
1: #include <vector>
2:
3: int main ()
4: {
5: using namespace std;
6: vector <int> vecIntegers;
7:
8: // Insert sample integers into the vector:
9: vecIntegers.push_back (50);
10: vecIntegers.push_back (1);
11: vecIntegers.push_back (987);
12: vecIntegers.push_back (1001);
13:
14: // Access objects in a vector using iterators:
15: vector <int>::iterator iElementLocator = vecIntegers.begin ();
16: // iterator declared using C++11 keyword auto (uncomment next line)
17: // auto iElementLocator = vecIntegers.begin ();
18:
19: while (iElementLocator != vecIntegers.end ())
20: {
21: size_t Index = distance (vecIntegers.begin (),

ptg7987094

LISTING 17.5 Continued

22: iElementLocator);
23:
24: cout << “Element at position “;
25: cout << Index << “ is: “ << *iElementLocator << endl;
26:
27: // move to the next element
28: ++ iElementLocator;
29: }
30:
31: return 0;
32: }

Output ▼

Element at position 0 is: 50
Element at position 1 is: 1
Element at position 2 is: 987
Element at position 3 is: 1001

Analysis ▼

The iterator in this example behaves more or less like a pointer, and the nature of its
usage in the preceding application is quite like pointer arithmetic, as seen in Line 25
where the value stored in the vector is accessed using the dereference operator (*) and
Line 29 where the iterator, when incremented using operator (++), points to the next ele-
ment. Notice how std::distance() is used in Line 21 to evaluate the zero-based offset
position of the element in the vector (that is, position relative to the beginning), given
begin() and the iterator pointing to the element.

Removing Elements from a Vector
Just the same way as the vector features insertion at the end via the push_back method,
it also features the removal of an element at the end via the pop_back function. Removal
of an element from the vector using pop_back takes constant time—that is, the time
required is independent of the number of elements stored in the vector. The code that
follows in Listing 17.6 demonstrates the use of function pop_back to erase elements
from the back of the vector.

LISTING 17.6 Using pop_back to Erase the Last Element

0: #include <iostream>
1: #include <vector>
2: using namespace std;

434 LESSON 17: STL Dynamic Array Classes

ptg7987094

3:
4: template <typename T>
5: void DisplayVector(const vector<T>& vecInput)
6: {
7: for (auto iElement = vecInput.cbegin() // auto and cbegin(): C++11
8: ; iElement != Input.cend() // cend() is new in C++11
9: ; ++ iElement)
10: cout << *iElement << ‘ ‘;
11:
12: cout << endl;
13: }
14:
15: int main ()
16: {
17: vector <int> vecIntegers;
18:
19: // Insert sample integers into the vector:
20: vecIntegers.push_back (50);
21: vecIntegers.push_back (1);
22: vecIntegers.push_back (987);
23: vecIntegers.push_back (1001);
24:
25: cout << “Vector contains “ << vecIntegers.size () << “ elements: “;
26: DisplayVector(vecIntegers);
27:
28: // Erase one element at the end
29: vecIntegers.pop_back ();
30:
31: cout << “After a call to pop_back()” << endl;
32: cout << “Vector contains “ << vecIntegers.size () << “ elements: “;
33: DisplayVector(vecIntegers);
34:
35: return 0;
36: }

Output ▼

Vector contains 4 elements: 50 1 987 1001
After a call to pop_back()
Vector contains 3 elements: 50 1 987

Analysis ▼

The output indicates that the pop_back function used at Line 29 has reduced the elements
in the vector by erasing the last element inserted into it. Line 32 calls size() again to
demonstrate that the number of elements in the vector has reduced by one, as indicated
in the output.

Typical Vector Operations 435

17

ptg7987094

436 LESSON 17: STL Dynamic Array Classes

Function DisplayVector() in Lines 4–13 has taken a template
form in Listing 17.6 as compared to Listing 17.3 where it
accepted only a vector for integers. This helps us reuse this
template function for a vector of type float (instead of int):

vector <float> vecFloats;
DisplayVector(vecFloats); // works, as this is a generic
function

It now supports a vector of any class that supports an operator
(*) that returns a value cout would understand.

Understanding the Concepts of Size and
Capacity
The size of a vector is the number of elements stored in a vector. The capacity of a
vector is the total number of elements that can potentially be stored in the vector
before it reallocates memory to accommodate more elements. Therefore, a vector’s size
is less than or equal to its capacity.

You can query a vector for the number of elements by calling size():

cout << “Size: “ << vecIntegers.size ();

Or query it for its capacity by calling capacity():

cout << “Capacity: “ << vecIntegers.capacity () << endl;

A vector can cause some amount of performance problems when it needs to frequently
reallocate the memory of the internal dynamic array. To a great extent, this problem can
be addressed by using the member function reserve (number). What reserve essen-
tially does is increase the amount of memory allocated for the vector’s internal array so
as to accommodate that number of elements without needing to reallocate. Depending on
the type of the objects stored in the vector, reducing the number of reallocations also
reduces the number of times the objects are copied and saves on performance. The code
sample in Listing 17.7 demonstrates the difference between size() and capacity().

LISTING 17.7 Demonstration of size() and capacity()

0: #include <iostream>
1: #include <vector>
2:
3: int main ()

NOTE

ptg7987094

4: {
5: using namespace std;
6:
7: // Instantiate a vector object that holds 5 integers of default value
8: vector <int> vecIntegers (5);
9:
10: cout << “Vector of integers was instantiated with “ << endl;
11: cout << “Size: “ << vecIntegers.size ();
12: cout << “, Capacity: “ << vecIntegers.capacity () << endl;
13:
14: // Inserting a 6th element in to the vector
15: vecIntegers.push_back (666);
16:
17: cout << “After inserting an additional element... “ << endl;
18: cout << “Size: “ << vecIntegers.size ();
19: cout << “, Capacity: “ << vecIntegers.capacity () << endl;
20:
21: // Inserting another element
22: vecIntegers.push_back (777);
23:
24: cout << “After inserting yet another element... “ << endl;
25: cout << “Size: “ << vecIntegers.size ();
26: cout << “, Capacity: “ << vecIntegers.capacity () << endl;
27:
28: return 0;
29: }

Output ▼

Vector of integers was instantiated with
Size: 5, Capacity: 5
After inserting an additional element...
Size: 6, Capacity: 7
After inserting yet another element...
Size: 7, Capacity: 7

Analysis ▼

Line 8 shows the instantiation of a vector of integers containing five integers at default
value (0). Lines 11 and 12, which print the size and the capacity of the vector, respec-
tively, display that both are equal at instantiation time. Line 9 inserts a sixth element in
the vector. Given that the capacity of the vector was five prior to the insertion, there
isn’t adequate memory in the internal buffer of the vector to support this new sixth ele-
ment. In other words, for the vector class to scale itself and store six elements, it needs
to reallocate the internal buffer. The implementation of the reallocation logic is smart—
in order avoid another reallocation on insertion of another element, it preemptively allo-
cates a capacity greater than the requirements of the immediate scenario.

Understanding the Concepts of Size and Capacity 437

17

ptg7987094

The output shows that on insertion of a sixth element in a vector that has the capacity
for five, the reallocation involved increases the capacity to seven elements. size()
always reflects the number of elements in the vector and has a value of six at this stage.
The addition of a seventh element in Line 22 results in no increase in capacity—the
existing allocated memory meets the demand sufficiently. Both size and capacity display
an equal value at this stage, indicating that the vector is used to its full capacity, and
insertion of the next element will cause the vector to reallocate its internal buffer, copy-
ing existing values before it inserts the new value.

438 LESSON 17: STL Dynamic Array Classes

The preemptive increase in the capacity of the vector when the
internal buffer is reallocated is not regulated by any clause in the
standard. This is dependent on the flavor of STL being used.

The STL deque Class
deque (pronunciation rhymes with deck) is an STL dynamic array class quite similar
in properties to that of the vector except that it allows for the insertion and removal of
elements at the front and back of the array. You would instantiate a deque of integers
like this:

// Define a deque of integers
deque <int> dqIntegers;

NOTE

To use a std::deque, include header <deque>:

#include<deque>

A deque can be visualized as shown in Figure 17.2.

TIP

Element
[0]

Element
[1]

Insertion at
back

Insertion at
front

FIGURE 17.2
Internals of a
deque.

The deque is quite similar to the vector in that it supports element insertions and
deletions at the back via the push_back() and pop_back() methods. Just like the vector,
the deque also allows you to access it using array semantics via operator ([]). deque is
different than the vector in that it also enables you to insert elements at the front using
push_front() and remove from the front using pop_front(), as demonstrated by
Listing 17.8.

ptg7987094

LISTING 17.8 Instantiating an STL deque and Using push_front() and pop_front()
Methods to Insert and Delete Elements at the Front

0: #include <deque>
1: #include <iostream>
2: #include <algorithm>
3:
4: int main ()
5: {
6: using namespace std;
7:
8: // Define a deque of integers
9: deque <int> dqIntegers;
10:
11: // Insert integers at the bottom of the array
12: dqIntegers.push_back (3);
13: dqIntegers.push_back (4);
14: dqIntegers.push_back (5);
15:
16: // Insert integers at the top of the array
17: dqIntegers.push_front (2);
18: dqIntegers.push_front (1);
19: dqIntegers.push_front (0);
20:
21: cout << “The contents of the deque after inserting elements “;
22: cout << “at the top and bottom are:” << endl;
23:
24: // Display contents on the screen
25: for (size_t nCount = 0
26: ; nCount < dqIntegers.size ()
27: ; ++ nCount)
28: {
29: cout << “Element [“ << nCount << “] = “;
30: cout << dqIntegers [nCount] << endl;
31: }
32:
33: cout << endl;
34:
35: // Erase an element at the top
36: dqIntegers.pop_front ();
37:
38: // Erase an element at the bottom
39: dqIntegers.pop_back ();
40:
41: cout << “The contents of the deque after erasing an element “;
42: cout << “from the top and bottom are:” << endl;
43:
44: // Display contents again: this time using iterators
45: // if on older compilers, remove auto and uncomment next line
46: // deque <int>::iterator iElementLocator;
47: for (auto iElementLocator = dqIntegers.begin ()

The STL deque Class 439

17

ptg7987094

LISTING 17.8 Continued

48: ; iElementLocator != dqIntegers.end ()
49: ; ++ iElementLocator)
50: {
51: size_t Offset = distance (dqIntegers.begin (), iElementLocator);
52: cout << “Element [“ << Offset << “] = “ << *iElementLocator << endl;
53: }
54:
55: return 0;
56: }

Output ▼

The contents of the deque after inserting elements at the top and bottom are:
Element [0] = 0
Element [1] = 1
Element [2] = 2
Element [3] = 3
Element [4] = 4
Element [5] = 5

The contents of the deque after erasing an element from the top and bottom are:
Element [0] = 1
Element [1] = 2
Element [2] = 3
Element [3] = 4

Analysis ▼

Line 10 is where you instantiate a deque of integers. Note how similar this syntax is to
the instantiation of a vector of integers. Lines 13–16 display the usage of the deque
member function push_back followed by push_front in Lines 18–20. The latter makes
the deque unique in comparison to the vector. Ditto for the usage of pop_front, as
shown in Line 37. The first mechanism of displaying the contents of deque uses the
array-like syntax to access elements, whereas the latter uses iterators. In the case of the
latter, as shown in Lines 47–53, the algorithm std::distance is used to evaluate the off-
set position of the element in the deque in the same manner that you have already seen
work with the vector in Listing 17.5.

440 LESSON 17: STL Dynamic Array Classes

ptg7987094

Summary
In this lesson, you learned the basics of using the vector and the deque as dynamic
arrays. The concepts of size and capacity were explained, and you saw how the usage of
the vector can be optimized to reduce the number of reallocations of its internal buffer,
which copies the objects contained and potentially reduces performance. The vector is
the simplest of the STL’s containers, yet the most used and, arguably, the most efficient
one.

Q&A
Q Does the vector change the order of the elements stored in it?

A The vector is a sequential container, and elements are stored and accessed in the
very order that they are inserted.

Q What function is used to insert items in a vector, and where is the object
inserted?

A The member function push_back inserts elements at the end of the vector.

Q What function gets the number of elements stored in a vector?

A The member function size() returns the number of elements stored in a vector.
Incidentally, this is true for all STL containers.

Q Does the insertion or removal of elements at the end of the vector take more
time if the vector contains more elements?

A No. Insertion and removal of elements at the end of a vector are constant-time
activities.

Q&A 441

17

DO use the dynamic arrays vector or
deque when you don’t know the num-
ber of elements you need to store.

DO remember that a vector can grow
only at one end via the method
push_back().

DO remember that a deque can grow
on both ends via the methods
push_back() and push_front().

DON’T forget that the method
pop_back() deletes the last element
from the collection.

DON’T forget that the method
pop_front() deletes the first element
from a deque.

DON’T access a dynamic array beyond
its bounds.

DO DON’T

ptg7987094

Q What is the advantage of using the reserve member function?

A reserve (...) allocates space in the internal buffer of the vector, and insertion
of elements does not need the vector to reallocate the buffer and copy existing
contents. Depending on the nature of the objects stored in the vector, reserving
space in a vector can result in performance improvements.

Q Are the properties of the deque any different than the vector when it comes to
insertion of elements?

A No, the properties of the deque are similar to that of the vector when it comes to
insertion, which is a constant-time activity for elements added at the end of
sequence and a linear-time activity for elements inserted in the middle. However,
the vector allows insertion at only one end (the bottom), whereas the deque allows
for insertion at both (the top and the bottom).

Workshop
The Workshop contains quiz questions to help solidify your understanding of the mater-
ial covered and exercises to provide you with experience in using what you’ve learned.
Try to answer the quiz and exercise questions before checking the answers in Appendix
D, and be certain you understand the answers before going to the next lesson.

Quiz
1. Can elements be inserted at the middle or the beginning of a vector in constant

time?

2. My vector returns size() as 10 and capacity() as 20. How many more elements
can I insert in it without needing the vector class to trigger a buffer reallocation?

3. What does the pop_back function do?

4. If vector <int> is a dynamic array of integers, a vector <CMammal> is a dynamic
array of what type?

5. Can elements in a vector be randomly accessed? If so, how?

6. What iterator type allows random access of elements in a vector?

442 LESSON 17: STL Dynamic Array Classes

ptg7987094

Exercises
1. Write an interactive program that accepts integer input from the user and saves it in

the vector. The user should be able to query a value stored in the vector at any
time, given an index.

2. Extend the program from Exercise 1 to be able to tell the user whether a value he
queries for already exists in the vector.

3. Jack sells jars on eBay. To help him with packaging and shipment, write a program
in which he can enter the dimensions of each of these articles, store them in a
vector, and have them printed on the screen.

Workshop 443

17

ptg7987094

This page intentionally left blank

ptg7987094

LESSON 18
STL list and
forward_list

The Standard Template Library (STL) supplies the programmer with a dou-
bly linked list in the form of template class std::list. The main advan-
tage of a linked list is in fast and constant time insertion and removal of
elements. Starting C++11, you can also use a singly linked list in the
form of std::forward_list that can be traversed only in one direction.

In this lesson, you learn

n How to instantiate the list and forward_list

n Using the STL list classes, including insertion and removal

n How to reverse and sort elements

ptg7987094

The Characteristics of a std::list
A linked list is a collection of nodes in which each node, in addition to containing a
value or object of interest, also points to the next node; that is, each node links to the
next one and previous one as shown in Figure 18.1.

446 LESSON 18: STL list and forward_list

Node N

Link
Prev

Data Link
Next

Node N + 1

Link
Prev

Data Link
Next

FIGURE 18.1
Visual representa-
tion of a doubly
linked list.

The STL implementation of the list class allows for constant-time insertions in the top,
bottom, or middle of the list.

To use class std::list, include header:

#include <list>

Basic list Operations
To use STL’s list class, include header file <list>. The template class list that exists
in the std namespace is a generic implementation that needs to be template-instantiated
before you can use any of its useful member functions.

Instantiating a std::list Object
The template instantiation of list needs to specify the type of object that you want to
collect in the list. So, the initialization of a list would look like the following:

std::list<int> listIntegers; // list containing integers
std::list<float> listFloats; // list containing floats
std::list<Tuna> listTunas; // list containing objects of type Tuna

To declare an iterator that points to an element in the list, you would use

std::list<int>::const_iterator iElementInSet;

If you need an iterator that can be used to modify values or invoke non-const functions,
you use iterator instead of const_iterator.

Given that implementations of the std::list do provide you with a set of overloaded
constructors, you can even create lists that are initialized to contain a number of elements
of your choosing, each initialized to a value, as demonstrated by Listing 18.1.

TIP

ptg7987094

LISTING 18.1 Different Forms of Instantiating std::list, Specifying Number of
Elements and Initial Values

0: #include <list>
1: #include <vector>
2:
3: int main ()
4: {
5: using namespace std;
6:
7: // instantiate an empty list
8: list <int> listIntegers;
9:
10: // instantiate a list with 10 integers
11: list<int> listWith10Integers(10);
12:
13: // instantiate a list with 4 integers, each initialized to 99
14: list<int> listWith4IntegerEach99 (10, 99);
15:
16: // create an exact copy of an existing list
17: list<int> listCopyAnother(listWith4IntegerEach99);
18:
19: // a vector with 10 integers, each 2011
20: vector<int> vecIntegers(10, 2011);
21:
22: // instantiate a list using values from another container
23: list<int> listContainsCopyOfAnother(vecIntegers.cbegin(),
24: vecIntegers.cend());
25:
26: return 0;
27: }

Analysis ▼

This program produces no output and demonstrates the application of the various over-
loaded constructors in creating a list of integers. In Line 8 you create an empty list,
whereas in Line 11 you create a list containing 10 integers. Line 14 is a list, called
listWith4IntegersEach99, that contains 4 integers that are each initialized to value 99.
Line 17 demonstrates creating a list that is an exact copy of the contents of another.
Lines 20–24 are surprising and curious! You instantiate a vector that contains 10
integers, each containing value 2011, and then instantiate a list in Line 23 that contains
elements copied from the vector, using const iterators returned by vector::cbegin()
and vector::cend() (that are new in C++11). Listing 18.1 is also a demonstration of
how iterators help decouple the implementation of one container from another, enabling
you to use their generic functionality to instantiate a list using values taken from a vec-
tor, as shown in Lines 23 and 24.

Basic list Operations 447

18

ptg7987094

448 LESSON 18: STL list and forward_list

Are You Facing Errors Compiling cbegin() and cend()?

If you are trying to compile this program using a non-C++11-
compliant compiler, use begin() and end() instead of cbegin()
and cend(), respectively. cbegin() and cend() available with
C++11 are useful in that they return a const iterator which cannot
be used to modify the elements.

TIP

On comparing Listing 18.1 against Listing 17.1 in Lesson 17,
“STL Dynamic Array Classes,” you will note a remarkable pattern
and similarity in the way containers of different types have been
instantiated. The more you program using STL containers, the
more reusable patterns you will see and the easier it will get.

Inserting Elements at the Front or Back of the List
Similar to a deque, insertion at the front (or top, depending on your perspective) is
effected using the list member method push_front(). Insertion at the end is done
using member method push_back(). These two methods take one input parameter, which
is the value to be inserted:

listIntegers.push_back (-1);
listIntegers.push_front (2001);

Listing 18.2 demonstrates the effect of using these two methods on a list of integers.

LISTING 18.2 Inserting Elements in the List Using push_front() and push_back()

0: #include <list>
1: #include <iostream>
2: using namespace std;
3:
4: template <typename T>
5: void DisplayContents (const T& Input)
6: {
7: for (auto iElement = Input.cbegin() // auto and cbegin: C++11
8: ; iElement != Input.cend()

NOTE

ptg7987094

9: ; ++ iElement)
10: cout << *iElement << ‘ ‘;
11:
12: cout << endl;
13: }
14:
15: int main ()
16: {
17: std::list <int> listIntegers;
18:
19: listIntegers.push_front (10);
20: listIntegers.push_front (2011);
21: listIntegers.push_back (-1);
22: listIntegers.push_back (9999);
23:
24: DisplayContents(listIntegers);
25:
26: return 0;
27: }

Output ▼

2011 10 -1 9999

Analysis ▼

Lines 19–22 demonstrate the usage of push_front() and push_back(). The value being
supplied as an argument to push_front() takes the first position in the list, whereas that
sent via push_back() takes the last position. The output displays the content of the list
via generic template function DisplayContents() demonstrating the order of the
inserted elements (and that they aren’t stored in order of insertion).

Basic list Operations 449

18

Are You Facing an Error Compiling Keyword auto?

Function DisplayContents() in Listing 18.2 uses C++11 keyword
auto to define the type of an iterator in Line 7. Additionally, it
uses cbegin() and cend() that are new in C++11 and return a
const_iterator.

In this example and in later examples, to compile using a
non-C++11-compliant compiler, you need to replace auto by the
explicit type.

CAUTION

ptg7987094

450 LESSON 18: STL list and forward_list

So, DisplayContents() for an older compiler needs to be modi-
fied to the following:

template <typename T>
void DisplayContents (const T& Input)
{

for (T::const_iterator iElement = Input.begin ()
; iElement != Input.end ()
; ++ iElement)
cout << *iElement << ‘ ‘;

cout << endl;
}

DisplayContents() in Listing 18.2, Lines 4–13 is a more generic
version of the method DisplayVector() in Listing 17.6 (note the
changed parameter list). Although the latter worked only for the
vector, generalizing the type of elements stored in one, this ver-
sion is truly generic even across container types.

You can invoke the version of DisplayContents() in Listing 18.2
with a vector or a list as argument and it will work just fine.

Inserting at the Middle of the List
std::list is characterized by its capability to insert elements at the middle of the col-
lection in constant time. This is done using the member function insert.

The list insert member function is available in three forms:

n Form 1
iterator insert(iterator pos, const T& x)

Here the insert function accepts the position of insertion as the first parameter
and the value to insert as the second. This function returns an iterator pointing to
the recently inserted element in the list.

n Form 2
void insert(iterator pos, size_type n, const T& x)

This function accepts the position of insertion as the first parameter, the value to
insert as the last parameter, and the number of elements in variable n.

NOTE

ptg7987094

n Form 3
template <class InputIterator>
void insert(iterator pos, InputIterator f, InputIterator l)

This overloaded variant is a template function that accepts, in addition to the posi-
tion, two input iterators that mark the bounds of the collection to insert into the
list. Note that the input type InputIterator is a template-parameterized type and
therefore can point to the bounds of any collection—be it an array, a vector, or just
another list.

Listing 18.3 demonstrates the use of these overloaded variants of the list::insert
function.

LISTING 18.3 The Various Methods of Inserting Elements in a List

0: #include <list>
1: #include <iostream>
2: using namespace std;
3:
4: template <typename T>
5: void DisplayContents (const T& Input)
6: {
7: for (auto iElement = Input.cbegin() // auto and cbegin: C++11
8: ; iElement != Input.cend()
9: ; ++ iElement)
10: cout << *iElement << ‘ ‘;
11:
12: cout << endl;
13: }
14:
15: int main ()
16: {
17: list <int> listIntegers1;
18:
19: // Inserting elements at the beginning...
20: listIntegers1.insert (listIntegers1.begin (), 2);
21: listIntegers1.insert (listIntegers1.begin (), 1);
22:
23: // Inserting an element at the end...
24: listIntegers1.insert (listIntegers1.end (), 3);
25:
26: cout << “The contents of list 1 after inserting elements:” << endl;
27: DisplayContents (listIntegers1);
28:
29: list <int> listIntegers2;
30:

Basic list Operations 451

18

ptg7987094

LISTING 18.3 Continued

31: // Inserting 4 elements of the same value 0...
32: listIntegers2.insert (listIntegers2.begin (), 4, 0);
33:
34: cout << “The contents of list 2 after inserting ‘“;
35: cout << listIntegers2.size () << “‘ elements of a value:” << endl;
36: DisplayContents (listIntegers2);
37:
38: list <int> listIntegers3;
39:
40: // Inserting elements from another list at the beginning...
41: listIntegers3.insert (listIntegers3.begin (),
42: listIntegers1.begin (), listIntegers1.end ());
43:
44: cout << “The contents of list 3 after inserting the contents of “;
45: cout << “list 1 at the beginning:” << endl;
46: DisplayContents (listIntegers3);
47:
48: // Inserting elements from another list at the end...
49: listIntegers3.insert (listIntegers3.end (),
50: listIntegers2.begin (), listIntegers2.end ());
51:
52: cout << “The contents of list 3 after inserting “;
53: cout << “the contents of list 2 at the beginning:” << endl;
54: DisplayContents (listIntegers3);
55:
56: return 0;
57: }

Output ▼

The contents of list 1 after inserting elements:
1 2 3
The contents of list 2 after inserting ‘4’ elements of a value:
0 0 0 0
The contents of list 3 after inserting the contents of list 1 at the beginning:
1 2 3
The contents of list 3 after inserting the contents of list 2 at the beginning:
1 2 3 0 0 0 0

Analysis ▼

begin() and end() are member functions that return iterators pointing to the beginning
and the end of the list, respectively. This is generally true for all STL containers, includ-
ing the std::list. The list insert function accepts an iterator that marks the position
before which items are to be inserted. The iterator returned by the end () function, as

452 LESSON 18: STL list and forward_list

ptg7987094

used in Line 24, points to after the last element in the list. Therefore, that line inserts
integer value 3 before the end as the last value. Line 32 indicates the initialization of a
list with four elements placed at the beginning—that is, at the front—each with value
0. Lines 41 and 42 demonstrate the usage of the list::insert() function to insert ele-
ments from one list at the end of another. Although this example inserts a list of inte-
gers into another list, the range inserted could as well have been the limits of a vector,
supplied by begin() and end() as also seen in Listing 18.1, or a regular static array.

Erasing Elements from the List
The list member function erase comes in two overloaded forms: one that erases one
element given an iterator that points to it and another that accepts a range and therefore
erases a range of elements from the list. You can see the list::erase function in
action in Listing 18.4, which demonstrates how you erase an element or a range of ele-
ments from a list.

LISTING 18.4 Erasing Elements from a List

0: #include <list>
1: #include <iostream>
2: using namespace std;
3:
4: template <typename T>
5: void DisplayContents(const T& Input)
6: {
7: for(auto iElement = Input.cbegin() // auto and cbegin: C++11
8: ; iElement != Input.cend()
9: ; ++ iElement)
10: cout << *iElement << ‘ ‘;
11:
12: cout << endl;
13: }
14:
15: int main()
16: {
17: std::list <int> listIntegers;
18:
19: // Insert elements at the beginning and end...
20: listIntegers.push_back(4);
21: listIntegers.push_front(3);
22: listIntegers.push_back(5);
23:
24: // Store an iterator obtained in using the ‘insert’ function
25: auto iValue2 = listIntegers.insert(listIntegers.begin(), 2);
26:
27: cout << “Initial contents of the list:” << endl;

Basic list Operations 453

18

ptg7987094

LISTING 18.4 Continued

28: DisplayContents(listIntegers);
29:
30: listIntegers.erase(listIntegers.begin(), iValue2);
31: cout << “Contents after erasing a range of elements:” << endl;
32: DisplayContents(listIntegers);
33:
34: cout << “After erasing element ‘“<< *iValue2 << “‘:” << endl;
35: listIntegers.erase(iValue2);
36: DisplayContents(listIntegers);
37:
38: listIntegers.erase(listIntegers.begin(), listIntegers.end());
39: cout << “Number of elements after erasing range: “;
40: cout << listIntegers.size() << endl;
41:
42: return 0;
43: }

Output ▼

Initial contents of the list:
2 3 4 5
Contents after erasing a range of elements:
2 3 4 5
After erasing element ‘2’:
3 4 5
Number of elements after erasing range: 0

Analysis ▼

Lines 20–25 in main() use various methods to insert integers into the list. When
insert() is used to insert a value, it returns an iterator to the newly inserted element.
This iterator pointing to an element with value 2 is stored in Line 25 in a variable
iValue2, to be used later in a call to erase() at Line 35 to delete this very element from
the list. Lines 30 and 38 demonstrate the usage of erase() to delete a range of elements.
In the former, you delete a range from begin() to the element containing value 2 (but
not including that element). Whereas in the latter, you clear a range from begin() to
end(), effectively erasing the entire list.

454 LESSON 18: STL list and forward_list

Listing 18.4 demonstrates at Line 40 that the number of
elements in a std::list can be determined using list method
size(), very similar to that of a vector. This is a pattern applica-
ble to all STL container classes.

NOTE

ptg7987094

Reversing and Sorting Elements in a List
list has a special property that iterators pointing to the elements in a list remain valid
in spite of rearrangement of the elements or insertion of new elements and so on. To
keep this important property intact, the list function features sort and reverse as
member methods even though the STL supplies these as algorithms that will and do
work on the list class. The member versions of these algorithms ensure that iterators
pointing to elements in the list are not invalidated when the relative position of the
elements is disturbed.

Reversing Elements Using list::reverse()
list features a member function reverse() that takes no parameters and reverses the
order of contents in a list for the programmer:

listIntegers.reverse(); // reverse order of elements

The usage of reverse() is demonstrated in Listing 18.5.

LISTING 18.5 Reversing Elements in a List

0: #include <list>
1: #include <iostream>
2: using namespace std;
3:
4: template <typename T>
5: void DisplayContents(const T& Input)
6: {
7: for(auto iElement = Input.cbegin() // auto and cbegin: C++11
8: ; iElement != Input.cend()
9: ; ++ iElement)
10: cout << *iElement << ‘ ‘;
11:
12: cout << endl;
13: }
14:
15: int main()
16: {
17: std::list <int> listIntegers;
18:
19: // Insert elements at the beginning and end
20: listIntegers.push_front(4);
21: listIntegers.push_front(3);
22: listIntegers.push_front(2);
23: listIntegers.push_front(1);
24: listIntegers.push_front(0);
25: listIntegers.push_back(5);
26:

Reversing and Sorting Elements in a List 455

18

ptg7987094

LISTING 18.5 Continued

27: cout << “Initial contents of the list:” << endl;
28: DisplayContents(listIntegers);
29:
30: listIntegers.reverse();
31:
32: cout << “Contents of the list after using reverse():” << endl;
33: DisplayContents(listIntegers);
34:
35: return 0;
36: }

Output ▼

Initial contents of the list:
0 1 2 3 4 5
Contents of the list after using reverse():
5 4 3 2 1 0

Analysis ▼

As shown in Line 30, reverse() simply reverses the order of elements in the list. It is
a simple call without parameters that ensures that iterators pointing to elements in the
list, if kept by the programmer, remain valid even after the reversal.

Sorting Elements
The list member function sort() is available in a version that takes no parameters:

listIntegers.sort(); // sort in ascending order

Another version allows you to define your own sort priorities via a binary predicate func-
tion as a parameter:

bool SortPredicate_Descending (const int& lsh, const int& rsh)
{

// define criteria for list::sort: return true for desired order
return (lsh > rsh);

}
// Use predicate to sort a list:
listIntegers.sort (SortPredicate_Descending);

These two variants are demonstrated in Listing 18.6.

456 LESSON 18: STL list and forward_list

ptg7987094

LISTING 18.6 Sorting a List of Integers in Ascending and Descending Order Using
list::sort()

0: #include <list>
1: #include <iostream>
2: using namespace std;
3:
4: bool SortPredicate_Descending (const int& lsh, const int& rsh)
5: {
6: // define criteria for list::sort: return true for desired order
7: return (lsh > rsh);
8: }
9:
10: template <typename T>
11: void DisplayContents (const T& Input)
12: {
13: for (auto iElement = Input.cbegin() // auto and cbegin: C++11
14: ; iElement != Input.cend()
15: ; ++ iElement)
16: cout << *iElement << ‘ ‘;
17:
18: cout << endl;
19: }
20:
21: int main ()
22: {
23: list <int> listIntegers;
24:
25: // Insert elements at the beginning and end
26: listIntegers.push_front (444);
27: listIntegers.push_front (2011);
28: listIntegers.push_front (-1);
29: listIntegers.push_front (0);
30: listIntegers.push_back (-5);
31:
32: cout << “Initial contents of the list are - “ << endl;
33: DisplayContents (listIntegers);
34:
35: listIntegers.sort ();
36:
37: cout << “Order of elements after sort():” << endl;
38: DisplayContents (listIntegers);
39:
40: listIntegers.sort (SortPredicate_Descending);
41: cout << “Order of elements after sort() with a predicate:” << endl;
42: DisplayContents (listIntegers);
43:
44: return 0;
45: }

Reversing and Sorting Elements in a List 457

18

ptg7987094

Output ▼

Initial contents of the list are -
0 -1 2011 444 -5
Order of elements after sort():
-5 -1 0 444 2011
Order of elements after sort() with a predicate:
2011 444 0 -1 -5

Analysis ▼

This sample displays the sort functionality on a list of integers. The first few lines of
code create the list object and insert sample values in it. Line 35 displays the usage of a
sort() function without parameters that sorts elements in ascending order by default,
comparing integers using operator < (which, in the case of integers, is implemented
by the compiler). However, if the programmer wants to override this default
behavior, he must supply the sort function with a binary predicate. The function
SortPredicate_Descending(), defined in Lines 4–8, is a binary predicate that helps the
list’s sort function decide whether one element is less than the other. If not, it swaps
their positions. In other words, you tell the list what’s to be interpreted as less (which,
in this case, is the first parameter being greater than the second). This “predicate” is
passed as a parameter to the variant of the sort() function as shown in Line 40. The
predicate returns true only if the first value is greater than the second. That is, sort that
uses the predicate interprets the first value (lsh) to be logically less than the second
(rsh) only if the numeric value of the former is greater than that of the latter. On the
basis of this interpretation, it swaps position to fulfill the criteria specified by the
predicate.

Sorting and Removing Elements from a list That
Contains Objects of a class
What if you had a list of a class type, and not a simple built-in type such as int? Say a
list of address book entries where each entry is a class that contains name, address, and
so on. How would you ensure that this list is sorted on name?

The answer is one of the following:

n Implement operator < within the class-type that the list contains.

n Supply a sort binary predicate—a function that takes two values as input and
returns a Boolean value indicating whether the first value is smaller than the
second.

458 LESSON 18: STL list and forward_list

ptg7987094

Most practical applications involving STL containers rarely collect integers; instead, they
collect user-defined types such as classes or structs. Listing 18.7 demonstrates one
using the example of a contacts list. It seems rather long at first sight but is mostly full
of simple code.

LISTING 18.7 A List of Class Objects: Creating a Contacts List

0: #include <list>
1: #include <string>
2: #include <iostream>
3: using namespace std;
4:
5: template <typename T>
6: void DisplayContents (const T& Input)
7: {
8: for(auto iElement = Input.cbegin() // auto, cbegin and cend: c++11
9: ; iElement != Input.cend()
10: ; ++ iElement)
11: cout << *iElement << endl;
12:
13: cout << endl;
14: }
15:
16: struct ContactItem
17: {
18: string strContactsName;
19: string strPhoneNumber;
20: string strDisplayRepresentation;
21:
22: // Constructor and destructor
23: ContactItem (const string& strName, const string & strNumber)
24: {
25: strContactsName = strName;
26: strPhoneNumber = strNumber;
27: strDisplayRepresentation = (strContactsName + “: “ + strPhoneNumber);
28: }
29:
30: // used by list::remove() given contact list item
31: bool operator == (const ContactItem& itemToCompare) const
32: {
33: return (itemToCompare.strContactsName == this->strContactsName);
34: }
35:
36: // used by list::sort() without parameters
37: bool operator < (const ContactItem& itemToCompare) const
38: {
39: return (this->strContactsName < itemToCompare.strContactsName);
40: }
41:

Reversing and Sorting Elements in a List 459

18

ptg7987094

LISTING 18.7 Continued

42: // Used in DisplayContents via cout
43: operator const char*() const
44: {
45: return strDisplayRepresentation.c_str();
46: }
47: };
48:
49: bool SortOnPhoneNumber (const ContactItem& item1,
50: const ContactItem& item2)
51: {
52: return (item1.strPhoneNumber < item2.strPhoneNumber);
53: }
54:
55: int main ()
56: {
57: list <ContactItem> Contacts;
58: Contacts.push_back(ContactItem(“Jack Welsch”, “+1 7889 879 879”));
59: Contacts.push_back(ContactItem(“Bill Gates”, “+1 97 7897 8799 8”));
60: Contacts.push_back(ContactItem(“Angela Merkel”, “+49 23456 5466”));
61: Contacts.push_back(ContactItem(“Vladimir Putin”, “+7 6645 4564 797”));
62: Contacts.push_back(ContactItem(“Manmohan Singh”, “+91 234 4564 789”));
63: Contacts.push_back(ContactItem(“Barack Obama”, “+1 745 641 314”));
64:
65: cout << “List in initial order: “ << endl;
66: DisplayContents(Contacts);
67:
68: Contacts.sort();
69: cout << “After sorting in alphabetical order via operator<:” << endl;
70: DisplayContents(Contacts);
71:
72: Contacts.sort(SortOnPhoneNumber);
73: cout << “After sorting in order of phone numbers via predicate:” << endl;
74: DisplayContents(Contacts);
75:
76: cout << “After erasing Putin from the list: “;
77: Contacts.remove(ContactItem(“Vladimir Putin”, “”));
78: DisplayContents(Contacts);
79:
80: return 0;
81: }

Output ▼

List in initial order:
Jack Welsch: +1 7889 879 879

460 LESSON 18: STL list and forward_list

ptg7987094

Bill Gates: +1 97 7897 8799 8
Angela Merkel: +49 23456 5466
Vladimir Putin: +7 6645 4564 797
Manmohan Singh: +91 234 4564 789
Barack Obama: +1 745 641 314

After sorting in alphabetical order via operator<:
Angela Merkel: +49 23456 5466
Barack Obama: +1 745 641 314
Bill Gates: +1 97 7897 8799 8
Jack Welsch: +1 7889 879 879
Manmohan Singh: +91 234 4564 789
Vladimir Putin: +7 6645 4564 797

After sorting in order of phone numbers via predicate:
Barack Obama: +1 745 641 314
Jack Welsch: +1 7889 879 879
Bill Gates: +1 97 7897 8799 8
Angela Merkel: +49 23456 5466
Vladimir Putin: +7 6645 4564 797
Manmohan Singh: +91 234 4564 789

After erasing Putin from the list:
Barack Obama: +1 745 641 314
Jack Welsch: +1 7889 879 879
Bill Gates: +1 97 7897 8799 8
Angela Merkel: +49 23456 5466
Manmohan Singh: +91 234 4564 789

Analysis ▼

For a start, focus on main() in Lines 57–81. You have instantiated a list of address book
items of type ContactItem in Line 57. In Lines 58–63, you populate this list with some
names and (fake) telephone numbers of a few celebrity technologists and politicians and
display it in Line 66. Line 68 is when you use list::sort without a predicate function.
In the absence of a predicate, this sort function seeks the presence of operator< in
ContactItem that has been defined in Lines 37–40. ContactItem::operator< helps
list::sort sort its elements in the alphabetical order of the stored names (and not tele-
phone numbers or a random logic). To sort the same list in the order of phone numbers,
you use list::sort() supplying a binary predicate function SortOnPhoneNumber() as
an argument in Line 72. This function implemented in Lines 49–53 ensures that the input
arguments of type ContactItem are compared to each other on the basis of the phone
numbers and not the names. Thus, it helps list::sort sort the list of celebrities on the

Reversing and Sorting Elements in a List 461

18

ptg7987094

basis of their phone numbers as the output indicates. Finally, Line 77 is where you use
list::remove() to remove a celebrity contact from the list. You supply an object with
the celebrity’s name as a parameter. list::remove() compares this object to other ele-
ments in the list, using ContactItem::operator= implemented in Lines 30–34. This
operator returns true if the names match, helping list::remove() decide what the crite-
ria of a match should be.

This example not only demonstrates how STL’s template version of the linked list can
be used to create a list of any object type, but also the importance of operators and
predicates.

C++11

std::forward_list

Starting with C++11, you have the option of using a forward_list instead of a doubly
linked list in std::list. std::forward_list is a singly linked list—that is, it allows
iteration in only one direction as shown in Figure 18.2.

462 LESSON 18: STL list and forward_list

Node 1

Data Link
Next

Node 2

Data Link
Next

Node N

Data Link
Next

FIGURE 18.2
A visual represen-
tation of a singly
linked list.

To use a std::forward_list, you need to include header
<forward_list>:

#include<forward_list>

The usage of the forward_list is quite similar to list, save for the fact that you can
move iterators only in one direction and that you have a push_front() function to insert
elements but no push_back(). Of course, you can always use insert() and its over-
loaded functions to insert an element at a given position.

Listing 18.8 demonstrates some functions of a forward_list class.

TIP

ptg7987094

LISTING 18.8 Basic Insertion and Removal Operations on a forward_list

0: #include<forward_list>
1: #include<iostream>
2: using namespace std;
3:
4: template <typename T>
5: void DisplayContents (const T& Input)
6: {
7: for (auto iElement = Input.cbegin() // auto and cbegin: C++11
8: ; iElement != Input.cend ()
9: ; ++ iElement)
10: cout << *iElement << ‘ ‘;
11:
12: cout << endl;
13: }
14:
15: int main()
16: {
17: forward_list<int> flistIntegers;
18: flistIntegers.push_front(0);
19: flistIntegers.push_front(2);
20: flistIntegers.push_front(2);
21: flistIntegers.push_front(4);
22: flistIntegers.push_front(3);
23: flistIntegers.push_front(1);
24:
25: cout << “Contents of forward_list: “ << endl;
26: DisplayContents(flistIntegers);
27:
28: flistIntegers.remove(2);
29: flistIntegers.sort();
30: cout << “Contents after removing 2 and sorting: “ << endl;
31: DisplayContents(flistIntegers);
32:
33: return 0;
34: }

Output ▼

Contents of forward_list:
1 3 4 2 2 0
Contents after removing 2 and sorting:
0 1 3 4

Reversing and Sorting Elements in a List 463

18

ptg7987094

Analysis ▼

As the sample shows, the forward_list is quite similar in function to a list. As the
forward_list doesn’t support bidirectional iteration, you can use operator++ on an iter-
ator, but not operator--. This sample demonstrates the usage of function remove(2) in
Line 28 to remove all elements with value 2. Line 29 demonstrates sort() using the
default sort predicate that uses std::less<T>.

The advantage of the forward_list is that in being a singly linked list, its memory con-
sumption is slightly lower than that of a list (as an element needs to know only the next
element but not the previous one).

464 LESSON 18: STL list and forward_list

DO choose a std::list over
std::vector where you frequently
insert or delete elements, especially in
the middle—a vector needs to resize
its internal buffer to allow array seman-
tics and causes expensive copy opera-
tions, but a list just links or unlinks
elements.

DO remember that you can insert in
the beginning or end of a list using the
push_front() or push_back() mem-
ber methods, respectively.

DO remember to program operator<
and operator== in a class that will be
collected in a STL container such as
list to supply the default sort or
remove predicate.

DO remember that you can always
determine the number of elements in
the list using the list::size()
method, as with any other STL con-
tainer class.

DO remember that you can empty a
list using list::clear() method,
as with any other STL container class.

DON’T use a list when you have infre-
quent insertions or deletions at the
ends and no insertions or deletions in
the middle; vector or deque can be
significantly faster in these cases.

DON’T forget to supply a predicate
function if you want the list to sort()
or remove() using non-default criteria.

DO DON’T

ptg7987094

Summary
This lesson taught you the properties of the list and the different list operations. You
now know some of the most useful list functions and can create a list of any object
type.

Q&A
Q Why does the list provide member functions such as sort and remove?

A The STL list class is bound to respect the property that iterators pointing to ele-
ments in the list should remain valid irrespective of the position of the elements
in the list itself. Although STL algorithms work on list too, the list’s member
functions ensure that the aforementioned property of the list is withheld and iter-
ators pointing to elements in the list before the sort was done continue to point to
the same elements even after the sort.

Q You are using a list of type CAnimal, which is a class. What operators should
CAnimal define for list member functions to be able to work on it accurately?

A You must provide the default comparison operator == and the default < operator to
any class that can be used in STL containers.

Q How would you replace keyword auto by an explicit type declaration in the
following line:
list<int> listIntegers(10); // list of 10 integers
auto iFirstElement = listIntegers.begin();

A If you are on an older compiler that is not C++11 compatible, you would replace
auto by an explicit type declaration:
list<int> listIntegers(10); // list of 10 integers
list<int>::iterator iFirstElement = listIntegers.begin();

Workshop
The Workshop contains quiz questions to help solidify your understanding of the mater-
ial covered and exercises to provide you with experience in using what you’ve learned.
Try to answer the quiz and exercise questions before checking the answers in Appendix
D, and be certain you understand the answers before going to the next lesson.

Workshop 465

18

ptg7987094

Quiz
1. Is there any loss in performance when inserting items in the middle of the STL

list as compared to the beginning or the end?

2. Two iterators are pointing to two elements in an STL list object, and then an ele-
ment is inserted between them. Are these iterators invalidated by the insert action?

3. How can the contents of a std::list be cleared?

4. Is it possible to insert multiple elements in a list?

Exercises
1. Write a short program that accepts numbers from the user and inserts them at the

top of the list.

2. Using a short program, demonstrate that an iterator pointing to an element in a
list continues to remain valid even after another element has been inserted before
it, thus changing the relative position of the former element.

3. Write a program that inserts the contents of a vector into an STL list using the
list’s insert function.

4. Write a program that sorts and reverses a list of strings.

466 LESSON 18: STL list and forward_list

ptg7987094

LESSON 19
STL Set Classes

The Standard Template Library (STL) supplies the programmer with
container classes that help with applications requiring frequent and
quick searches. The std::set and std::multiset are used to contain
a sorted set of elements and offer you the ability to find elements
given a logarithmic complexity. Their unordered counterparts offer
constant-time insertion and search capabilities.

This lesson includes

n How STL set and multiset, unordered_set, and
unordered_multiset containers can be of use to you

n Insertion, removal, and search of elements

n Advantages and disadvantages in using these containers

ptg7987094

An Introduction to STL Set Classes
The set and multiset are containers that facilitate a quick lookup of keys in a container
that stores them; that is, the keys are the values stored in the one-dimensional container.
The difference between the set and the multiset is that the latter allows for duplicates
whereas the former can store only unique values.

Figure 19.1 is only demonstrative and indicates that a set of names contains unique
names, whereas a multiset permits duplicates. Being template classes, STL containers
are generic and can be used to contain strings the way they contain integers, structures,
or class objects.

468 LESSON 19: STL Set Classes

“Jack”
“Steve”

“Amanda”
“Jill”

A set of strings

“Jack”
“Steve”

“Amanda”
“Jill”

“Jack”

A multiset of strings

To facilitate quick searching, STL implementations of the set and multiset internally
look like a binary tree. This means that elements inserted in a set or a multiset are
sorted on insertion for quicker lookups. It also means that, unlike in a vector where ele-
ments at a position can be replaced by another, an element at a given position in a set
cannot be replaced by a new element of a different value. This is true because the set
would ideally like to have it placed in a possible different location in accordance with its
value relative to those in the internal tree.

FIGURE 19.1
Visual representa-
tion of a set and
a multiset of
names.

To use class std::set or std::multiset, include header:

#include <set>

Basic STL set and multiset Operations
STL set and multiset are template classes that need to be instantiated before you can
use any of their member functions.

TIP

ptg7987094

Instantiating a std::set Object
Instantiating a set or multiset of a type requires a specialization of the template class
std::set or std::multiset for that type:

std::set <int> setIntegers;
std::multiset <int> msetIntegers;

To define a set or multiset that contains objects of class Tuna, you would program the
following:

std::set <Tuna> setIntegers;
std::multiset <Tuna> msetIntegers;

To declare an iterator that points to an element in the set or multiset, you would use
this:

std::set<int>::const_iterator iElementInSet;
std::multiset<int>::const_iterator iElementInMultiset;

If you need an iterator that can be used to modify values or invoke non-const functions,
you would use iterator instead of const_iterator.

Given that both set and multiset are containers that sort elements on insertion, they use
a default predicate std::less if you don’t supply sort criteria. This ensures that your set
contains elements sorted in ascending order.

You create a binary sort predicate by defining a class with operator() that takes two
values of the type contained in the set as input and returns true depending on your crite-
ria. One such sort predicate that sorts in descending order is the following:

// used as a template parameter in set / multiset instantiation
template <typename T>
struct SortDescending
{

bool operator()(const T& lhs, const T& rhs) const
{

return (lhs > rhs);
}

};

You then supply this predicate in the set or multiset instantiation as follows:

// a set and multiset of integers (using sort predicate)
set <int, SortDescending<int> > setIntegers;
multiset <int, SortDescending<int> > msetIntegers;

Basic STL set and multiset Operations 469

19

ptg7987094

In addition to these variants, you can always create a set or a multiset that copies from
another or copies via a supplied range, as demonstrated in Listing 19.1.

LISTING 19.1 Different Instantiation Techniques of set and multiset

0: #include <set>
1:
2: // used as a template parameter in set / multiset instantiation
3: template <typename T>
4: struct SortDescending
5: {
6: bool operator()(const T& lhs, const T& rhs) const
7: {
8: return (lhs > rhs);
9: }
10: };
11:
12: int main ()
13: {
14: using namespace std;
15:
16: // a simple set or multiset of integers (using default sort predicate)
17: set <int> setIntegers1;
18: multiset <int> msetIntegers1;
19:
20: // set and multiset instantiated given a user-defined sort predicate
21: set<int, SortDescending<int> > setIntegers2;
22: multiset<int, SortDescending<int> > msetIntegers2;
23:
24: // creating one set from another, or part of another container
25: set<int> setIntegers3(setIntegers1);
26: multiset<int> msetIntegers3(setIntegers1.cbegin(), setIntegers1.cend());
27:
28: return 0;
29: }

Analysis ▼

This program produces no output but demonstrates the various instantiation techniques
for set and multiset, specialized to contain type int. In Lines 17 and 18, you see the
simplest form where the template parameters other than type have been ignored, result-
ing in the default sort predicate being taken, as implemented in struct (or class)
std::less<T>. If you want to override the default sort, you need to specify a predicate
like the ones defined in Lines 3–10 and used in main() in Lines 21 and 22. This predi-
cate ensures that the sort is descending (default ascending). Finally, Lines 25 and 26

470 LESSON 19: STL Set Classes

ptg7987094

show instantiation techniques where one set is a copy of another and a multiset instanti-
ates from a range of values taken from a set (but could be a vector or a list or any STL
container class that returns iterators that describe bounds via cbegin() and cend()).

Basic STL set and multiset Operations 471

19

Are You Facing Errors Compiling cbegin() and cend()?

If you are trying to compile this program using a non-C++11-
compliant compiler, use begin() and end() instead of cbegin()
and cend(), respectively. cbegin() and cend() available with
C++11 are useful in that they return a const iterator which cannot
be used to modify the elements.

Inserting Elements in a set or multiset
Most functions in a set and multiset work in a similar fashion. They accept similar
parameters and return similar value types. For instance, inserting elements in both kinds
of containers can be done using the member insert, which accepts the value to be
inserted:

setIntegers.insert (-1);
msetIntegers.insert (setIntegers.begin (), setIntegers.end ());

Listing 19.2 demonstrates inserting elements in these containers.

LISTING 19.2 Inserting Elements in an STL set and multiset

0: #include <set>
1: #include <iostream>
2: using namespace std;
3:
4: template <typename T>
5: void DisplayContents (const T& Input)
6: {
7: for(auto iElement = Input.cbegin () // auto, cebgin(): C++11
8: ; iElement != Input.cend () // cend() is new in C++11
9: ; ++ iElement)
10: cout << *iElement << ‘ ‘;
11:
12: cout << endl;
13: }
14:
15: int main ()
16: {
17: set <int> setIntegers;

TIP

ptg7987094

LISTING 19.2 Continued

18: multiset <int> msetIntegers;
19:
20: setIntegers.insert (60);
21: setIntegers.insert (-1);
22: setIntegers.insert (3000);
23: cout << “Writing the contents of the set to the screen” << endl;
24: DisplayContents (setIntegers);
25:
26: msetIntegers.insert (setIntegers.begin (), setIntegers.end ());
27: msetIntegers.insert (3000);
28:
29: cout << “Writing the contents of the multiset to the screen” << endl;
30: DisplayContents (msetIntegers);
31:
32: cout << “Number of instances of ‘3000’ in the multiset are: ‘“;
33: cout << msetIntegers.count (3000) << “‘“ << endl;
34:
35: return 0;
36: }

Output ▼

Writing the contents of the set to the screen
-1 60 3000
Writing the contents of the multiset to the screen
-1 60 3000 3000
Number of instances of ‘3000’ in the multiset are: ‘2’

Analysis ▼

Lines 4–13 contain the generic template function DisplayContents(), which you
have also seen in Lesson 17, “TL Dynamic Array Classes,” and 18, “STL list and
forward_list,” and writes the contents of an STL container to the console or screen.
Lines 17 and 18, as you already know, define a set object and a multiset object. Lines
20–22 insert values into the set using the insert() member function. Line 26 demon-
strates how insert()can be used to insert the contents of a set into a multiset, insert-
ing in this case the contents of setIntegers into the multiset msetIntegers. In Line 27
you insert an element with value 3000 that already exists in the multiset. The output
demonstrates that the multiset is able to hold multiple values. Lines 25 and 26 demon-
strate the utility of the multiset::count() member function, which returns the number
of elements in the multiset that hold that particular value.

472 LESSON 19: STL Set Classes

ptg7987094

Basic STL set and multiset Operations 473

19

Use multiset::count() to find the number of elements in the
multiset that have the same value as that supplied as an argu-
ment to this function.

TIP

Are You Facing an Error Compiling Keyword auto?

Function DisplayContents() in Listing 19.2 uses C++11 keyword
auto in Line 7 to define the type of an iterator. Additionally, it
uses cbegin() and cend() that are new in C++11 and return a
const_iterator.

In this sample and ahead, to compile using a non-C++11-
compliant compiler, you need to replace auto by the explicit type.

So, DisplayContents() for an older compiler needs to be modi-
fied to the following:

template <typename T>
void DisplayContents (const T& Input)
{

for (T::const_iterator iElement = Input.begin () //
explicit type

; iElement != Input.end ()
; ++ iElement)
cout << *iElement << ‘ ‘;

cout << endl;
}

Finding Elements in an STL set or multiset
Associative containers like set and multiset or map and multimap feature find()—a
member function that enables you to find a value given a key:

auto iElementFound = setIntegers.find (-1);

// Check if found...
if (iElementFound != setIntegers.end ())

cout << “Element “ << *iElementFound << “ found!” << endl;
else

cout << “Element not found in set!” << endl;

TIP

ptg7987094

The use of find() is demonstrated in Listing 19.3. In case of a multiset that allows
multiple elements with the same value, this function finds the first value that matches the
supplied key.

LISTING 19.3 Using the find Member Function

0: #include <set>
1: #include <iostream>
2: using namespace std;
3:
4: int main ()
5: {
6: set<int> setIntegers;
7:
8: // Insert some random values
9: setIntegers.insert (43);
10: setIntegers.insert (78);
11: setIntegers.insert (-1);
12: setIntegers.insert (124);
13:
14: // Write contents of the set to the screen
15: for (auto iElement = setIntegers.cbegin ()
16: ; iElement != setIntegers.cend ()
17: ; ++ iElement)
18: cout << *iElement << endl;
19:
20: // Try finding an element
21: auto iElementFound = setIntegers.find (-1);
22:
23: // Check if found...
24: if (iElementFound != setIntegers.end ())
25: cout << “Element “ << *iElementFound << “ found!” << endl;
26: else
27: cout << “Element not found in set!” << endl;
28:
29: // Try finding another element
30: auto iAnotherFind = setIntegers.find (12345);
31:
32: // Check if found...
33: if (iAnotherFind != setIntegers.end ())
34: cout << “Element “ << *iAnotherFind << “ found!” << endl;
35: else
36: cout << “Element 12345 not found in set!” << endl;
37:
38: return 0;
39: }

474 LESSON 19: STL Set Classes

ptg7987094

Output ▼

-1
43
78
124
Element -1 found!
Element 12345 not found in set!

Analysis ▼

Lines 21–27 display the usage of the find() member function. find() returns an iterator
that needs to be compared against end(), as shown in Line 24, to verify whether an ele-
ment was found. If the iterator is valid, you can access the value pointed by it using
*iElementFound.

Basic STL set and multiset Operations 475

19

The example in Listing 19.3 works correctly for a multiset, too;
that is, if Line 6 is a multiset instead of a set, it does not
change the way the application works.

Erasing Elements in an STL set or multiset
Associative containers such as set and multiset or map and multimap feature
erase()—a member function that allows you to delete a value given a key:

setObject.erase (key);

Another form of the erase function allows the deletion of a particular element given an
iterator that points to it:

setObject.erase (iElement);

You can erase a range of elements from a set or a multiset using iterators that supply
the bounds:

setObject.erase (iLowerBound, iUpperBound);

The sample in Listing 19.4 demonstrates the use of erase() in removing elements from
the set or multiset.

LISTING 19.4 Using the erase Member Function on a multiset

0: #include <set>
1: #include <iostream>

NOTE

ptg7987094

LISTING 19.4 Continued

2: using namespace std;
3:
4: template <typename T>
5: void DisplayContents (const T& Input)
6: {
7: for(auto iElement = Input.cbegin () // auto, cebgin(): C++11
8: ; iElement != Input.cend () // cend() is new in C++11
9: ; ++ iElement)
10: cout << *iElement << ‘ ‘;
11:
12: cout << endl;
13: }
14:
15: typedef multiset <int> MSETINT;
16:
17: int main ()
18: {
19: MSETINT msetIntegers;
20:
21: // Insert some random values
22: msetIntegers.insert (43);
23: msetIntegers.insert (78);
24: msetIntegers.insert (78); // Duplicate
25: msetIntegers.insert (-1);
26: msetIntegers.insert (124);
27:
28: cout << “multiset contains “ << msetIntegers.size () << “ elements.”;
29: cout << “ These are: “ << endl;
30:
31: // Write contents of the multiset to the screen
32: DisplayContents(msetIntegers);
33:
34: cout << “Please enter a number to be erased from the set” << endl;
35: int nNumberToErase = 0;
36: cin >> nNumberToErase;
37:
38: cout << “Erasing “ << msetIntegers.count (nNumberToErase);
39: cout << “ instances of value “ << nNumberToErase << endl;
40:
41: // Try finding an element
42: msetIntegers.erase (nNumberToErase);
43:
44: cout << “multiset contains “ << msetIntegers.size () << “ elements.”;
45: cout << “ These are: “ << endl;
46: DisplayContents(msetIntegers);
47:
48: return 0;
49: }

476 LESSON 19: STL Set Classes

ptg7987094

Output ▼

multiset contains 5 elements. These are:
-1 43 78 78 124
Please enter a number to be erased from the set
78
Erasing 2 instances of value 78
multiset contains 3 elements. These are:
-1 43 124

Analysis ▼

Note the usage of typedef in Line 15. Line 38 demonstrates the usage of count() to tell
the number of elements with a specific value. The actual erase happens in Line 42, which
deletes all elements that match the particular number.

Note that erase() is overloaded. You can call erase() on an iterator, say one returned
by a find operation to delete one element of the value found, as seen here:

MSETINT::iterator iElementFound = msetIntegers.find (nNumberToErase);
if (iElementFound != msetIntegers.end ())

msetIntegers.erase (iElementFound);
else

cout << “Element not found!” << endl;

Similarly, you can use erase() to remove a range of values from the multiset:

MSETINT::iterator iElementFound = msetIntegers.find (nValue);

if (iElementFound != msetIntegers.end ())
msetIntegers.erase (msetIntegers.begin (), iElementFound);

The preceding snippet removes all elements from the start to the element of value
nValue, not including the latter. Both set and multiset can be emptied of their contents
using member function clear().

Now that you have an overview of the basic set and multiset functions, it’s time to
review a sample that features a practical application made using this container class. The
sample in Listing 19.5 is the simplest implementation of a menu-based telephone direc-
tory that enables the user to insert names and telephone numbers, find them, erase them,
and display them all.

LISTING 19.5 A Telephone Directory Featuring STL set, find, and erase

0: #include <set>
1: #include <iostream>

Basic STL set and multiset Operations 477

19

ptg7987094

LISTING 19.5 Continued

2: #include <string>
3: using namespace std;
4:
5: template <typename T>
6: void DisplayContents (const T& Input)
7: {
8: for(auto iElement = Input.cbegin () // auto, cebgin(): C++11
9: ; iElement != Input.cend () // cend() is new in C++11
10: ; ++ iElement)
11: cout << *iElement << endl;
12:
13: cout << endl;
14: }
15:
16: struct ContactItem
17: {
18: string strContactsName;
19: string strPhoneNumber;
20: string strDisplayRepresentation;
21:
22: // Constructor and destructor
23: ContactItem (const string& strName, const string & strNumber)
24: {
25: strContactsName = strName;
26: strPhoneNumber = strNumber;
27: strDisplayRepresentation = (strContactsName + “: “ + strPhoneNumber);
28: }
29:
30: // used by set::find()
31: bool operator == (const ContactItem& itemToCompare) const
32: {
33: return (itemToCompare.strContactsName == this->strContactsName);
34: }
35:
36: // used as a sort predicate
37: bool operator < (const ContactItem& itemToCompare) const
38: {
39: return (this->strContactsName < itemToCompare.strContactsName);
40: }
41:
42: // Used in DisplayContents via cout
43: operator const char*() const
44: {
45: return strDisplayRepresentation.c_str();
46: }
47: };
48:
49: int main ()
50: {

478 LESSON 19: STL Set Classes

ptg7987094

51: set<ContactItem> setContacts;
52: setContacts.insert(ContactItem(“Jack Welsch”, “+1 7889 879 879”));
53: setContacts.insert(ContactItem(“Bill Gates”, “+1 97 7897 8799 8”));
54: setContacts.insert(ContactItem(“Angela Merkel”, “+49 23456 5466”));
55: setContacts.insert(ContactItem(“Vladimir Putin”, “+7 6645 4564 797”));
56: setContacts.insert(ContactItem(“Manmohan Singh”, “+91 234 4564 789”));
57: setContacts.insert(ContactItem(“Barack Obama”, “+1 745 641 314”));
58: DisplayContents(setContacts);
59:
60: cout << “Enter a person whose number you wish to delete: “;
61: string NameInput;
62: getline(cin, NameInput);
63:
64: auto iContactFound = setContacts.find(ContactItem(NameInput, “”));
65: if(iContactFound != setContacts.end())
66: {
67: // Erase the contact found in set
68: setContacts.erase(iContactFound);
69: cout << “Displaying contents after erasing: “ << NameInput << endl;
70: DisplayContents(setContacts);
71: }
72: else
73: cout << “Contact not found” << endl;
74:
75: return 0;
76: }

Output ▼

Angela Merkel: +49 23456 5466
Barack Obama: +1 745 641 314
Bill Gates: +1 97 7897 8799 8
Jack Welsch: +1 7889 879 879
Manmohan Singh: +91 234 4564 789
Vladimir Putin: +7 6645 4564 797

Enter a person whose number you wish to delete: Jack Welsch
Displaying contents after erasing: Jack Welsch
Angela Merkel: +49 23456 5466
Barack Obama: +1 745 641 314
Bill Gates: +1 97 7897 8799 8
Manmohan Singh: +91 234 4564 789
Vladimir Putin: +7 6645 4564 797

Analysis ▼

This is quite similar to Listing 18.7 that sorted a std::list in alphabetical order, the dif-
ference being that in case of the std::set, sort happens on insertion. As the output indi-
cates, you didn’t need to invoke any function to ensure that elements in the set are

Basic STL set and multiset Operations 479

19

ptg7987094

sorted because they’re sorted on insertion. You give the user the choice to delete an entry,
and Line 64 demonstrates the call to find() to locate that entry that is deleted in Line 68
using erase().

480 LESSON 19: STL Set Classes

This implementation of the telephone directory is based on the
STL set and therefore does not allow for multiple entries contain-
ing the same value. If you need your implementation of the direc-
tory to allow two people with the same name (say, Tom) to be
stored, you would choose the STL multiset. The preceding code
would still work correctly if setContacts were to be a multiset.
To make further use of the multiset’s capability to store multiple
entries of the same value, you use the count() member function
to know the number of items that hold a particular value. This is
demonstrated in the previous code sample. Similar items are
placed adjacently in a multiset, and the find() function returns
an iterator to the first found value. This iterator can be incre-
mented to reach the next found items.

Pros and Cons of Using STL set and
multiset
The STL set and multiset provide significant advantages in applications that need fre-
quent lookups because their contents are sorted and therefore quicker to locate. However,
to provide this advantage, the container needs to sort elements at insertion time. Thus,
there is an overhead in inserting elements because elements are sorted—an overhead that
might be a worthwhile compromise if you need to use features and functions such as
find() often.

find() makes use of the internal binary tree structure. This sorted binary tree structure
results in another implicit disadvantage over sequential containers such as the vector. In
a vector, the element pointed to by an iterator (say, one returned by a std::find()
operation) can be overwritten by a new value. In case of a set, however, elements are
sorted by the set class according to their respective values, and therefore overwriting an
element using an iterator should never be done, even if that were programmatically
possible.

TIP

ptg7987094

C++11

STL Hash Set Implementation std::unordered_set and
std::unordered_multiset

The STL std::set and STL std::multiset sort elements (that are simultaneously the
keys) on the basis of std::less<T> or a supplied predicate. Searching in a sorted
container is faster than searching in an unsorted container such as a vector, and
std::sort offers logarithmic complexity. This means that the time spent finding an ele-
ment in a set is not directly proportional to the number of elements in the set, rather to
the LOG thereof. So, on average it takes twice as long to search in a set of 10,000 ele-
ments as it would take in a set of 100 (as 100^2 = 10000, or log(10000) = 2× log(100)).

Yet, this dramatic improvement of performance over an unsorted container (where search
is directly proportional to the number of elements) is not enough at times. Programmers
and mathematicians alike seek constant-time insertions and sort possibilities, and one of
them uses a hash-based implementation, where a hash function is used to determine the
sorting index. Elements inserted into a hash set are first evaluated by a hash function that
generates a unique index, which is the index of the bucket they’re placed in.

The hash set variant provided by STL is container class std::unordered_set.

Pros and Cons of Using STL set and multiset 481

19

To use STL containers std::unordered_set or
std::unordered_multiset, include

#include<unordered_set>

The usage of this class doesn’t change too much in comparison to a std::set:

// instantiation:
unordered_set<int> usetInt;

// insertion of an element
usetInt.insert(1000);

// find():
auto iPairThousand = usetInt.find(1000);

if (iPairThousand != usetInt.end())
cout << *iPairThousand << endl;

TIP

ptg7987094

Yet, one very important feature of an unordered_map is the availability of a hash func-
tion that is responsible for deciding the sorting order:

unordered_set<int>::hasher HFn = usetInt.hash_function();

Listing 19.6 demonstrates the usage of some of the common methods supplied by
std::hash_set.

LISTING 19.6 std::unordered_set and the Use of insert(), find(), size(),
max_bucket_count(), load_factor(), and max_load_factor()

0: #include<unordered_set>
1: #include <iostream>
2: using namespace std;
3:
4: template <typename T>
5: void DisplayContents(const T& Input)
6: {
7: cout << “Number of elements, size() = “ << Input.size() << endl;
8: cout << “Max bucket count = “ << Input.max_bucket_count() << endl;
9: cout << “Load factor: “ << Input.load_factor() << endl;
10: cout << “Max load factor = “ << Input.max_load_factor() << endl;
11: cout << “Unordered set contains: “ << endl;
12:
13: for(auto iElement = Input.cbegin() // auto, cbegin: c++11
14: ; iElement != Input.cend() // cend() is new in C++11
15: ; ++ iElement)
16: cout<< *iElement << ‘ ‘;
17:
18: cout<< endl;
19: }
20:
21: int main()
22: {
23: // instantiate unordered_set of int to string:
24: unordered_set<int> usetInt;
25:
26: usetInt.insert(1000);
27: usetInt.insert(-3);
28: usetInt.insert(2011);
29: usetInt.insert(300);
30: usetInt.insert(-1000);
31: usetInt.insert(989);
32: usetInt.insert(-300);
33: usetInt.insert(111);
34: DisplayContents(usetInt);
35: usetInt.insert(999);
36: DisplayContents(usetInt);

482 LESSON 19: STL Set Classes

ptg7987094

37:
38: // find():
39: cout << “Enter int you want to check for existence in set: “;
40: int Key = 0;
41: cin >> Key;
42: auto iPairThousand = usetInt.find(Key);
43:
44: if (iPairThousand != usetInt.end())
45: cout << *iPairThousand << “ found in set” << endl;
46: else
47: cout << Key << “ not available in set” << endl;
48:
49: return 0;
50: }

Output ▼

Number of elements, size() = 8
Max bucket count = 8
Load factor: 1
Max load factor = 1
Unordered set contains:
1000 -3 2011 300 -1000 -300 989 111
Number of elements, size() = 9
Max bucket count = 64
Load factor: 0.140625
Max load factor = 1
Unordered set contains:
1000 -3 2011 300 -1000 -300 989 999 111
Enter int you want to check for existence in set: -1000
-1000 found in set

Analysis ▼

The sample creates an unordered_set of integers; inserts eight values into it; and then
displays contents, including statistics supplied by methods max_bucket_count(),
load_factor(), and max_load_factor() as shown in Lines 8–10. The output tells that
the bucket count is initially at eight, with eight elements in the container, resulting in a
load factor of 1, which is the same as the maximum load factor. When a ninth element is
inserted into the unordered_set, it reorganizes itself, creates 64 buckets, and re-creates
the hash table and the load factor reduces. The rest of the code in main() demonstrates
how the syntax for finding elements in an unordered_set is similar to that in a set.
find() returns an iterator that needs to be checked for success of find() as shown in
Line 42 before it can be used.

Pros and Cons of Using STL set and multiset 483

19

ptg7987094

Summary
In this lesson, you learned about using the STL set and multiset, their significant mem-
ber functions, and their characteristics. You also saw their application in the program-
ming of a simple menu-based telephone directory that also features search and erase
functions.

Q&A
Q How would I declare a set of integers to be sorted and stored in order of

descending magnitude?

A set <int> defines a set of integers. This takes the default sort predicate
std::less <T> to sort items in order of ascending magnitude and can also be
expressed as set <int, less <int> >. To sort in order of descending magnitude,
define the set as set <int, greater <int> >.

484 LESSON 19: STL Set Classes

As hashes are typically used in a hash table to look up a value
given a key, see the section on std::unordered_map in Lesson
20, “STL Map Classes.”

std::unordered_map is an implementation of a hash table that is
new in C++11.

NOTE

DO remember that STL set and
multiset containers are optimized for
situations that involve frequent search.

DO remember that a std::multiset
allows multiple elements (keys) of the
same value whereas std::set permits
only unique values.

DO use multiset::count(value) to
find the number of elements of a par-
ticular value.

DO remember that set::size() or
multiset::size() gives you the num-
ber of elements in the container.

DON’T forget to program operator<
and operator== for classes that can
be collected in containers such as set
or multiset. The former becomes the
sort predicate, whereas the latter is
used for functions such as
set::find().

DON’T use std::set or
std::multiset in scenarios with
frequent insertions and infrequent
searches. std::vector or std::list
is usually better suited to such cases.

DO DON’T

ptg7987094

Q What would happen if, in a set of strings, I inserted the string “Jack” twice?

A A set is not meant to be used to insert non-unique values. So, the implementation
of the std::set class would not allow insertion of the second value.

Q In the preceding example, if I wanted to have two instances of “Jack”, what
would I change?

A By design, a set holds only unique values. You would need to change your selec-
tion of container to a multiset.

Q What multiset member function returns the count of items of a particular
value in the container?

A count (value) is the function of interest.

Q I have found an element in the set using the find function and have an
iterator pointing to it. Would I use this iterator to change the value being
pointed to?

A No. Some STL implementations might allow the user to change the value of an
element inside a set via an iterator returned by, for example, find. However, this
is not the correct thing to do. An iterator to an element in the set should be used as
a const iterator—even when the STL implementation has not enforced it as such.

Workshop
The Workshop contains quiz questions to help solidify your understanding of the mater-
ial covered and exercises to provide you with experience in using what you’ve learned.
Try to answer the quiz and exercise questions before checking the answers in Appendix
D, and be certain you understand the answers before going to the next lesson.

Quiz
1. You declare a set of integers as set <int>. What function supplies the sort

criteria?

2. Where would you find duplicate elements in a multiset?

3. What set or multiset function supplies the number of elements in the container?

Workshop 485

19

ptg7987094

Exercises
1. Extend the telephone directory example in this lesson to find a person’s name

given a phone number, without changing structure ContactItem. (Hint: Define the
set with a binary predicate that sorts items in accordance with the number, thus
overriding the default sort based on the < operator.)

2. Define a multiset to store entered words and their meanings; that is, make a
multiset work as a dictionary. (Hint: The multiset should be one of a structure
that contains two strings: the word and its meaning.)

3. Demonstrate via a simple program that a set cannot accept duplicate entries
whereas a multiset can.

486 LESSON 19: STL Set Classes

ptg7987094

LESSON 20
STL Map Classes

The Standard Template Library (STL) supplies the programmer with
container classes that help with applications that require frequent and
quick searches.

This lesson covers

n How STL map and multimap, unordered_map and
unordered_multimap containers can be of use to you

n Insertion, removal, and search of elements

n Supplying a custom sort predicate

n Basics of how hash tables work

ptg7987094

An Introduction to STL Map Classes
The map and multimap are key-value pair containers that allow for a lookup on the basis
of a key as shown in Figure 20.1.

488 LESSON 20: STL Map Classes

Key Value

Pair

Key Value

Pair

Key Value

Pair

Map (Container of Key-Value Pairs, sorted by Key)

FIGURE 20.1
Visual illustration
of a container for
pairs, each holding
a key and a value.

The difference between the map and the multimap is that only the latter allows for dupli-
cates, whereas the former can store only unique keys.

To facilitate quick searching, STL implementations of the map and multimap internally
look like binary trees. This means that elements inserted in a map or a multimap are
sorted on insertion. It also means that, unlike in a vector where elements at a position can
be replaced by another, elements in a map at a given position cannot be replaced by a new
element of a different value. This is because the map would ideally like to have it placed
in a possible different location in accordance with its value relative to those in the inter-
nal tree.

ptg7987094

Basic std::map and std::multimap Operations 489

20

To use class std::map or std::multimap, include header:

#include<map>

Basic std::map and std::multimap
Operations
STL map and multimap are template classes that need to be instantiated before you can
use any of their member functions.

Instantiating a std::map or std::multimap
Instantiating a map or multimap of an integer as key and a string as value requires a spe-
cialization of the template class std::map or std::multimap. The template instantiation
of the map class needs the programmer to specify the key type, the value type, and
optionally a predicate that helps the map class to sort the elements on insertion.
Therefore, typical map instantiation syntax looks like this:

#include <map>
using namespace std;
...
map <keyType, valueType, Predicate=std::less <keyType> > mapObject;
multimap <keyType, valueType, Predicate=std::less <keyType> > mmapObject;

Thus, the third template parameter is optional. When you supply only the key type and
the value type, ignoring the third template parameter, std::map and std::multimap

default to class std::less<> to define the sort criteria. Thus, a map or multimap that
maps an integer to a string looks like this:

std::map<int, string> mapIntToString;
std::multimap<int, string> mmapIntToString;

Listing 20.1 illustrates instantiation techniques in greater detail.

LISTING 20.1 Instantiating map and multimap Objects That Map an int Key to a
string Value

0: #include<map>
1: #include<string>
2:
3: template<typename KeyType>
4: struct ReverseSort
5: {

TIP

ptg7987094

LISTING 20.1 Continued

6: bool operator()(const KeyType& key1, const KeyType& key2)
7: {
8: return (key1 > key2);
9: }
10: };
11:
12: int main ()
13: {
14: using namespace std;
15:
16: // map and multimap key of type int to value of type string
17: map<int, string> mapIntToString1;
18: multimap<int, string> mmapIntToString1;
19:
20: // map and multimap constructed as a copy of another
21: map<int, string> mapIntToString2(mapIntToString1);
22: multimap<int, string> mmapIntToString2(mmapIntToString1);
23:
24: // map and multimap constructed given a part of another map or multimap
25: map<int, string> mapIntToString3(mapIntToString1.cbegin(),
26: mapIntToString1.cend());
27:
28: multimap<int, string> mmapIntToString3(mmapIntToString1.cbegin(),
29: mmapIntToString1.cend());
30:
31: // map and multimap with a predicate that inverses sort order
32: map<int, string, ReverseSort<int> > mapIntToString4
33: (mapIntToString1.cbegin(), mapIntToString1.cend());
34:
35: multimap<int, string, ReverseSort<int> > mmapIntToString4
36: (mapIntToString1.cbegin(), mapIntToString1.cend());
37:
38: return 0;
39: }

Analysis ▼

For a start, focus on main() in Lines 12–39. The simplest map and multimap of an inte-
ger key to a string value can be seen in Lines 21 and 22. Lines 25–28 demonstrate the
creation of a map or a multimap initialized to a range of values from another as input.
Lines 31–36 demonstrate how you instantiate a map or multimap with your own custom
sort criteria. Note that the default sort (in the previous instantiations) uses std::less<T>
that would sort elements in the increasing order. If you want to change this behavior, you
supply a predicate that is a class or a struct that implements operator(). Such a pred-
icate struct ReverseSort is in Lines 4–10 and has been used in the instantiation of a
map at Line 32 and a multimap at Line 35.

490 LESSON 20: STL Map Classes

ptg7987094

Basic std::map and std::multimap Operations 491

20

Are You Facing Errors Compiling cbegin() and cend()?

If you are trying to compile this program using a non-C++11-
compliant compiler, use begin() and end() instead of cbegin()
and cend(), respectively. cbegin() and cend() available with
C++11 are useful in that they return a const iterator which cannot
be used to modify the elements.

Inserting Elements in an STL map or multimap
Most functions in a map and multimap work in a similar fashion. They accept similar
parameters and return similar value types. You can insert elements in both kinds of con-
tainers by using the insert member function:

std::map<int, std::string> mapIntToString1;
// insert pair of key and value using make_pair function
mapIntToString.insert (make_pair (-1, “Minus One”));

As these two containers maintain elements in key-value pairs, you can also directly sup-
ply a std::pair initialized to the key and value to be inserted:

mapIntToString.insert (pair <int, string>(1000, “One Thousand”));

Alternatively, you can use an array-like syntax to insert, which does appear quite user
friendly and is supported via subscript operator[]:

mapIntToString [1000000] = “One Million”;

You can also instantiate a multimap as a copy of a map:

std::multimap<int, std::string> mmapIntToString(mapIntToString.cbegin(),
mapIntToString.cend());

Listing 20.2 demonstrates the various instantiation methods.

LISTING 20.2 Inserting Elements in a map and multimap Using Overloads of insert()
and Array Semantics via operator[]

0: #include <map>
1: #include <iostream>
2: #include<string>
3:
4: using namespace std;
5:
6: // Type-define the map and multimap definition for easy readability

TIP

ptg7987094

LISTING 20.2 Continued

7: typedef map <int, string> MAP_INT_STRING;
8: typedef multimap <int, string> MMAP_INT_STRING;
9:
10: template <typename T>
11: void DisplayContents (const T& Input)
12: {
13: for(auto iElement = Input.cbegin() // auto and cbegin(): C++11
14: ; iElement != Input.cend() // cend() is new in C++11
15: ; ++ iElement)
16: cout << iElement->first << “ -> “ << iElement->second << endl;
17:
18: cout << endl;
19: }
20:
21: int main ()
22: {
23: MAP_INT_STRING mapIntToString;
24:
25: // Insert key-value pairs into the map using value_type
26: mapIntToString.insert (MAP_INT_STRING::value_type (3, “Three”));
27:
28: // Insert a pair using function make_pair
29: mapIntToString.insert (make_pair (-1, “Minus One”));
30:
31: // Insert a pair object directly
32: mapIntToString.insert (pair <int, string>(1000, “One Thousand”));
33:
34: // Insert using an array-like syntax for inserting key-value pairs
35: mapIntToString [1000000] = “One Million”;
36:
37: cout << “The map contains “ << mapIntToString.size ();
38: cout << “ key-value pairs. They are: “ << endl;
39: DisplayContents(mapIntToString);
40:
41: // instantiate a multimap that is a copy of a map
42: MMAP_INT_STRING mmapIntToString(mapIntToString.cbegin(),
43: mapIntToString.cend());
44:
45: // The insert function works the same way for multimap too
46: // A multimap can store duplicates - insert a duplicate
47: mmapIntToString.insert (make_pair (1000, “Thousand”));
48:
49: cout << endl << “The multimap contains “ << mmapIntToString.size ();
50: cout << “ key-value pairs. They are: “ << endl;
51: cout << “The elements in the multimap are: “ << endl;
52: DisplayContents(mmapIntToString);
53:

492 LESSON 20: STL Map Classes

ptg7987094

LISTING 20.2 Continued

54: // The multimap can also return the number of pairs with the same key
55: cout << “The number of pairs in the multimap with 1000 as their key: “
56: << mmapIntToString.count (1000) << endl;
57:
58: return 0;
59: }

Output ▼

The map contains 4 key-value pairs. They are:
-1 -> Minus One
3 -> Three
1000 -> One Thousand
1000000 -> One Million

The multimap contains 5 key-value pairs. They are:
The elements in the multimap are:
-1 -> Minus One
3 -> Three
1000 -> One Thousand
1000 -> Thousand
1000000 -> One Million

The number of pairs in the multimap with 1000 as their key: 2

Analysis ▼

Note how we typedef the template instantiation of the map and multimap in Lines 7 and
8. You can do this to make your code look a bit simpler (and reduce the template clutter).
Lines 10–19 are a form of DisplayContents() adapted for map and multimap in which
the iterator is used to access first, which indicates the key, and second, which indicates
the value. Lines 26–32 demonstrate the different ways of inserting a key-value pair into a
map using overloaded variants of method insert(). Line 35 demonstrates how you can
use array-semantics via operator[] to insert elements in a map. Note that these insert
mechanisms work as well for a multimap, which is demonstrated in Line 47, where you
insert a duplicate into a multimap. Interestingly, the multimap is initialized as a copy of
the map, as shown in Lines 42 and 43. The output demonstrates how the two containers
have automatically sorted the input key-value pairs in ascending order of keys. The out-
put also demonstrates that the multimap can store two pairs with the same key (in this
case 1000). Line 56 demonstrates the usage of multimap::count() to tell the number of
elements with a supplied key in the container.

Basic std::map and std::multimap Operations 493

20

ptg7987094

494 LESSON 20: STL Map Classes

Are You Facing an Error Compiling Keyword auto?

Function DisplayContents() in Listing 20.2 uses C++11 keyword
auto in Line 13 to define the type of an iterator. In this example
and later examples, to compile using a non-C++11-compliant com-
piler, you need to replace auto by the explicit type.

So, DisplayContents() for an older compiler needs to be modi-
fied to:

template <typename T>
void DisplayContents (const T& Input)
{

for (T::const_iterator iElement = Input.begin ()
; iElement != Input.end ()
; ++ iElement)
cout << iElement->first << “ -> “ << iElement->second

<< endl;

cout << endl;
}

Finding Elements in an STL map
Associative containers, such as map and multimap, feature a member function called find
that enables you to find a value given a key. The result of a find operation is always an
iterator:

multimap <int, string>::const_iterator iPairFound = mapIntToString.find(Key);

You would first check this iterator for the success of find() and then use it to access the
found value:

if (iPairFound != mapIntToString.end())
{

cout << “Key “ << iPairFound->first << “ points to Value: “;
cout << iPairFound->second << endl;

}
else

cout << “Sorry, pair with key “ << Key << “ not in map” << endl;

TIP

If you are using C++11-compliant compilers, the iterator declara-
tion can get simple by the use the auto keyword:

auto iPairFound = mapIntToString.find(Key);

The compiler determines the type of the iterator automatically by
inferring it from the declared return value of map::find().

TIP

ptg7987094

The example in Listing 20.3 demonstrates the usage of multimap::find.

LISTING 20.3 Using find() Member Function to Locate a Key-Value Pair in a map

0: #include <map>
1: #include <iostream>
2: #include <string>
3: using namespace std;
4:
5: template <typename T>
6: void DisplayContents (const T& Input)
7: {
8: for(auto iElement = Input.cbegin () // auto and cbegin(): C++11
9: ; iElement != Input.cend() // cend() is new in C++11
10: ; ++ iElement)
11: cout << iElement->first << “ -> “ << iElement->second << endl;
12:
13: cout << endl;
14: }
15:
16: int main()
17: {
18: map<int, string> mapIntToString;
19:
20: mapIntToString.insert(make_pair(3, “Three”));
21: mapIntToString.insert(make_pair(45, “Forty Five”));
22: mapIntToString.insert(make_pair(-1, “Minus One”));
23: mapIntToString.insert(make_pair(1000, “Thousand”));
24:
25: cout << “The multimap contains “ << mapIntToString.size();
26: cout << “ key-value pairs. They are: “ << endl;
27:
28: // Print the contents of the map to the screen
29: DisplayContents(mapIntToString);
30:
31: cout << “Enter the key you wish to find: “;
32: int Key = 0;
33: cin >> Key;
34:
35: auto iPairFound = mapIntToString.find(Key);
36: if (iPairFound != mapIntToString.end())
37: {
38: cout << “Key “ << iPairFound->first << “ points to Value: “;
39: cout << iPairFound->second << endl;
40: }
41: else
42: cout << “Sorry, pair with key “ << Key << “ not in map” << endl;
43:
44: return 0;
45: }

Basic std::map and std::multimap Operations 495

20

ptg7987094

Output ▼

The multimap contains 4 key-value pairs. They are:
-1 -> Minus One
3 -> Three
45 -> Forty Five
1000 -> Thousand

Enter the key you wish to find: 45
Key 45 points to Value: Forty Five

Next, run (where find() locates no matching value):

The multimap contains 4 key-value pairs. They are:
-1 -> Minus One
3 -> Three
45 -> Forty Five
1000 -> Thousand

Enter the key you wish to find: 2011
Sorry, pair with key 2011 not in map

Analysis ▼

Lines 20–23 in main() populate a map with sample pairs, each mapping an integer key to
a string value. When the user supplies a key to be used in finding in the map, Line 35
uses the find() function to look up the supplied key in the map. map::find() always
returns an iterator, and it is always wise to check for the success of the find() operation
by comparing this iterator to end(), as shown in Line 36. If the iterator is indeed valid,
use member second to access the value, as shown in Line 39. In the second run, you
input a key 2011 that is not represented in the map, and an error message is displayed to
the user.

496 LESSON 20: STL Map Classes

Never use the result of a find() operation directly without check-
ing the iterator returned for success.

Finding Elements in an STL multimap
If Listing 20.3 were a multimap, opening the possibility that the container contains mul-
tiple pairs with the same key, you would need to find the values that correspond to the
repeating key. Hence, in the case of a multiset you would use multiset::count() to
find the number of values corresponding to a key and increment the iterator to access
those consequently placed values.

CAUTION

ptg7987094

auto iPairFound = mmapIntToString.find(Key);

// Check if “find” succeeded
if(iPairFound != mmapIntToString.end())
{

// Find the number of pairs that have the same supplied key
size_t nNumPairsInMap = mmapIntToString.count(1000);

for(size_t nValuesCounter = 0
; nValuesCounter < nNumPairsInMap // stay within bounds
; ++ nValuesCounter)

{
cout << “Key: “ << iPairFound->first; // key
cout << “, Value [“ << nValuesCounter << “] = “;
cout << iPairFound->second << endl; // value

++ iPairFound;
}

}
else

cout << “Element not found in the multimap”;

Erasing Elements from an STL map or multimap
The map and multimap feature a member function, erase(), which deletes an element
from the container. The erase() is invoked with the key as the parameter to delete all
pairs with a certain key:

mapObject.erase (key);

Another form of the erase function allows the deletion of a particular element given an
iterator that points to it:

mapObject.erase (iElement);

You can erase a range of elements from a map or a multimap using iterators that supply
the bounds:

mapObject.erase (iLowerBound, iUpperBound);

Listing 20.4 illustrates the usage of the erase functions.

LISTING 20.4 Erasing Elements from a multimap

0: #include<map>
1: #include<iostream>
2: #include<string>
3: using namespace std;
4:

Basic std::map and std::multimap Operations 497

20

ptg7987094

LISTING 20.4 Continued

5: template<typename T>
6: void DisplayContents(const T& Input)
7: {
8: for(auto iElement = Input.cbegin () // auto and cbegin(): C++11
9: ; iElement != Input.cend() // cend() is new in C++11
10: ; ++ iElement)
11: cout<< iElement->first<< “ -> “<< iElement->second<< endl;
12:
13: cout<< endl;
14: }
15:
16: int main()
17: {
18: multimap<int, string> mmapIntToString;
19:
20: // Insert key-value pairs into the multimap
21: mmapIntToString.insert(make_pair(3, “Three”));
22: mmapIntToString.insert(make_pair(45, “Forty Five”));
23: mmapIntToString.insert(make_pair(-1, “Minus One”));
24: mmapIntToString.insert(make_pair(1000, “Thousand”));
25:
26: // Insert duplicates into the multimap
27: mmapIntToString.insert(make_pair(-1, “Minus One”));
28: mmapIntToString.insert(make_pair(1000, “Thousand”));
29:
30: cout<< “The multimap contains “<< mmapIntToString.size();
31: cout<< “ key-value pairs. “<< “They are: “<< endl;
32: DisplayContents(mmapIntToString);
33:
34: // Erasing an element with key as -1 from the multimap
35: auto NumPairsErased = mmapIntToString.erase(-1);
36: cout<< “Erased “ << NumPairsErased << “ pairs with -1 as key.”<< endl;
37:
38: // Erase an element given an iterator from the multimap
39: auto iPairLocator = mmapIntToString.find(45);
40: if(iPairLocator != mmapIntToString.end())
41: {
42: mmapIntToString.erase(iPairLocator);
43: cout<< “Erased a pair with 45 as key using an iterator”<< endl;
44: }
45:
46: // Erase a range from the multimap...
47: cout<< “Erasing the range of pairs with 1000 as key.”<< endl;
48: mmapIntToString.erase(mmapIntToString.lower_bound(1000)
49: , mmapIntToString.upper_bound(1000));
50:
51: cout<< “The multimap now contains “<< mmapIntToString.size();
52: cout<< “ key-value pair(s).”<< “They are: “<< endl;
53: DisplayContents(mmapIntToString);
54:

498 LESSON 20: STL Map Classes

ptg7987094

LISTING 20.4 Continued

55: return 0;
56: }

Output ▼

The multimap contains 6 key-value pairs. They are:
-1 -> Minus One
-1 -> Minus One
3 -> Three
45 -> Forty Five
1000 -> Thousand
1000 -> Thousand

Erased 2 pairs with -1 as key.
Erased a pair with 45 as key using an iterator
Erasing the range of pairs with 1000 as key.
The multimap now contains 1 key-value pair(s).They are:
3 -> Three

Analysis ▼

Lines 21–28 insert sample values into the multimap, some of them being duplicates
(because a multimap, unlike a map, does support the insertion of duplicate items). After
pairs have been inserted into the multimap, the code erases items by using the version of
the erase function that accepts a key and erases all items with that key (–1) as shown in
Line 35. The return value of map::erase(Key) is the number of elements erased, which
is displayed on the screen. In Line 39, you use the iterator returned by find(45) to erase
a pair from the map with key 45. Lines 48 and 49 demonstrate how pairs with a key can
be deleted given a range specified by lower_bound() and upper_bound().

Supplying a Custom Sort Predicate
The map and multimap template definition includes a third parameter that accepts the sort
predicate for the map to function correctly. This third parameter, when not supplied (as in
the preceding examples), is substituted with the default sort criterion provided by
std::less <>, which essentially compares two objects using operator <.

To supply a different sort criterion than what the key-type supports, you would typically
program a binary predicate in the form of a class or a struct using operator():

template<typename KeyType>
struct Predicate
{

Supplying a Custom Sort Predicate 499

20

ptg7987094

bool operator()(const KeyType& key1, const KeyType& key2)
{

// your sort priority logic here
}

};

A map that holds a std::string type as the key has a default sort criterion based on the
< operator defined by the std::string class, triggered via default sort predicate
std::less<T> and therefore is case sensitive. For many applications, such as a telephone
directory, it is important to feature an insertion and search operation that is not case sen-
sitive. One way of solving this requirement is to supply the map with a sort predicate that
returns either true or false on the basis of a comparison that is not case sensitive:

map <keyType, valueType, Predicate> mapObject;

Listing 20.5 explains this in detail.

LISTING 20.5 Supplying a Custom Sort Predicate—A Telephone Directory

0: #include<map>
1: #include<algorithm>
2: #include<string>
3: #include<iostream>
4: using namespace std;
5:
6: template <typename T>
7: void DisplayContents (const T& Input)
8: {
9: for(auto iElement = Input.cbegin () // auto and cbegin(): C++11
10: ; iElement != Input.cend() // cend() is new in C++11
11: ; ++ iElement)
12: cout << iElement->first << “ -> “ << iElement->second << endl;
13:
14: cout << endl;
15: }
16:
17: struct PredIgnoreCase
18: {
19: bool operator()(const string& str1, const string& str2) const
20: {
21: string str1NoCase(str1), str2NoCase(str2);
22: std::transform(str1.begin(), str1.end(), str1NoCase.begin(),

tolower);
23: std::transform(str2.begin(), str2.end(), str2NoCase.begin(),

tolower);
24:
25: return(str1NoCase< str2NoCase);
26: };
27: };
28:

500 LESSON 20: STL Map Classes

ptg7987094

29: typedef map<string, string> DIRECTORY_WITHCASE;
30: typedef map<string, string, PredIgnoreCase> DIRECTORY_NOCASE;
31:
32: int main()
33: {
34: // Case-insensitive directory: case of string-key plays no role
35: DIRECTORY_NOCASE dirCaseInsensitive;
36:
37: dirCaseInsensitive.insert(make_pair(“John”, “2345764”));
38: dirCaseInsensitive.insert(make_pair(“JOHN”, “2345764”));
39: dirCaseInsensitive.insert(make_pair(“Sara”, “42367236”));
40: dirCaseInsensitive.insert(make_pair(“Jack”, “32435348”));
41:
42: cout << “Displaying contents of the case-insensitive map:”<< endl;
43: DisplayContents(dirCaseInsensitive);
44:
45: // Case-sensitive map: case of string-key affects insertion & search
46: DIRECTORY_WITHCASE dirCaseSensitive(dirCaseInsensitive.begin()
47: , dirCaseInsensitive.end());
48:
49: cout << “Displaying contents of the case-sensitive map:”<< endl;
50: DisplayContents(dirCaseSensitive);
51:
52: // Search for a name in the two maps and display result
53: cout << “Please enter a name to search: “<< endl<< “> “;
54: string strNameInput;
55: cin >> strNameInput;
56:
57: // find in the map...
58: auto iPairInNoCaseDir = dirCaseInsensitive.find(strNameInput);
59: if(iPairInNoCaseDir != dirCaseInsensitive.end())
60: {
61: cout << iPairInNoCaseDir->first<< “‘s number in the case-insensi-

tive”;
62: cout << “ directory is: “<< iPairInNoCaseDir->second<< endl;
63: }
64: else
65: {
66: cout << strNameInput<< “‘s number not found “;
67: cout << “in the case-insensitive directory”<< endl;
68: }
69:
70: // find in the case-sensitive map...
71: auto iPairInCaseSensDir = dirCaseSensitive.find(strNameInput);
72: if(iPairInCaseSensDir != dirCaseSensitive.end())
73: {
74: cout<<iPairInCaseSensDir->first<<"'s number in the case-sensitive";
75: cout << “ directory is: “<< iPairInCaseSensDir->second<< endl;

Supplying a Custom Sort Predicate 501

20

ptg7987094

LISTING 20.5 Continued

76: }
77: else
78: {
79: cout << strNameInput<< “‘s number was not found “;
80: cout << “in the case-sensitive directory”<< endl;
81: }
82:
83: return 0;
84:}

Output ▼

Displaying contents of the case-insensitive map:
Jack -> 32435348
John -> 2345764
Sara -> 42367236

Displaying contents of the case-sensitive map:
Jack -> 32435348
John -> 2345764
Sara -> 42367236

Please enter a name to search:
> sara
Sara’s number in the case-insensitive directory is: 42367236
sara’s number was not found in the case-sensitive directory

Analysis ▼

The code in question contains two directories with equal content, one that has been
instantiated with the default sort predicate, using std::less<T> and case-sensitive
std::string::operator<, and another that has been instantiated with a predicate
struct PredIgnoreCase as shown in Lines 17–27 that compare two strings after
reducing them to lowercase. The output indicates that when you search the two maps for
‘sara’ the map with the case-insensitive instantiation is able to locate Sara in its records
whereas the map with default instantiation is unable to find this entry.

502 LESSON 20: STL Map Classes

In Listing 20.5, struct PredIgnoreCase can also be a class if you
add the keyword public for operator(). For a C++ compiler, a
struct is akin to a class with members that are public by default
and that inherits public by default.

NOTE

ptg7987094

This sample demonstrated how you can use predicates to customize the behavior of a
map. It also implies that the key could potentially be of any type, and that the program-
mer can supply a predicate that defines the behavior of the map for that type. Note that
the predicate was a struct that implemented operator(). It could have also been a
class. Such objects that double as functions are called Function objects or functors.
This topic is addressed in further detail in Lesson 21, “Understanding Function
Objects.”

Supplying a Custom Sort Predicate 503

20

The std::map is well suited for storing key-value pairs where you
can look up a value given a key. map does guarantee better perfor-
mance than an STL vector or list when it comes to searching.
Yet, it does slow down when the number of elements increases.
The operational performance of a map is said to be logarithmic in
nature—that is, proportional to the LOG of the number of ele-
ments placed in the map.

In simple words, a logarithmic complexity means that a container
such as std::map or std::set is twice as slow for 10,000 ele-
ments as it is for 100.

An unsorted vector presents linear complexity when it comes to
search, which means that it is a 100 times slower for 10,000 ele-
ments as it is for 100.

So, while logarithmic complexity already looks quite good, one should remember that
insertions in a map (or multimap or set or multiset) get slower, too, as these containers
sort on insertion. Thus, the search for faster containers continues, and mathematicians
and programmers alike seek the holy grail of containers featuring constant-time inser-
tions and searches. The Hash Table is one such container that promises constant-time
insertions and near-constant-time searches (in most cases), given a key, independent of
the size of the container.

C++11

STL’s Hash Table–Based Key-Value Container
std::unordered_map

Starting with C++11, the STL supports a hash map in the form of class
std::unordered_map. To use this template container class include

#include<unordered_map>

The unordered_map promises average constant-time insertion and the removal and
lookup of arbitrary elements in the container.

NOTE

ptg7987094

How Hash Tables Work
Although it is not within the scope of this book to discuss this topic in detail (for it has
been the subject of one PhD thesis too many), let’s just try to grasp the basics of what
makes hash tables work.

A hash table can be viewed as a collection of key-value pairs, where given a key, the
table can find a value. The difference between the hash table and a simple map is that a
hash table stores key-value pairs in buckets, each bucket having an index that defines its
relative position in the table (akin to an array). This index is decided by a hash-function
that uses the key as input:

Index = HashFunction(Key, TableSize);

When performing a find() given a key, HashFunction() is used once again to determine
the position of the element and the table returns the value at the position, like an array
would return an element stored within it. In cases where HashFunction() is not opti-
mally programmed, more than one element would have the same Index, landing in the
same bucket—that internally would be a list of elements. In such cases, called collisions,
a search would be slower and not a constant any more.

Using C++11 Hash Tables: unordered_map and
unordered_multimap
From a usage point of view, these two containers are not too different from std::map and
std::multimap, respectively. They can perform instantiation, insertion, and find and fol-
low similar patterns:

// instantiate unordered_map of int to string:
unordered_map<int, string> umapIntToString;

// insert()
umapIntToString.insert(make_pair(1000, “Thousand”));

// find():
auto iPairThousand = umapIntToString.find(1000);
cout << iPairThousand->first << “ —> “ << iPairThousand->second << endl;

// find value using array semantics:
cout << “umapIntToString[1000] = “ << umapIntToString[1000] << endl;

Yet, one very important feature of a unordered_map is the availability of a hash function
that is responsible for deciding the sorting order:

unordered_map<int, string>::hasher HFn =
umapIntToString.hash_function();

504 LESSON 20: STL Map Classes

ptg7987094

You can view the priority assigned to a key by invoking the hash function for a key:

size_t HashingValue1000 = HFn(1000);

As an unordered_map stores key-value pairs in buckets, it does an automatic load
balancing when the number of elements in the map reach or tend to reach the number
of buckets in the same:

cout << “Load factor: “ << umapIntToString.load_factor() << endl;
cout << “Max load factor = “ << umapIntToString.max_load_factor() << endl;
cout << “Max bucket count = “ << umapIntToString.max_bucket_count() << endl;

load_factor() is an indicator of the extent to which buckets in the unordered_map have
been filled. When load_factor() exceeds max_load_factor() due to an insertion, the
map reorganizes itself to increase the number of available buckets and rebuilds the hash
table, as demonstrated by Listing 20.6.

Supplying a Custom Sort Predicate 505

20

std::unordered_multimap is similar to unordered_map except
that it supports multiple pairs with the same key.

The usage of std::unordered_multimap is quite similar to
std::multimap, with certain hash table–specific functions, as
shown in Listing 20.6.

LISTING 20.6 Instantiating STL Hash Table Implementation unordered_map,
Using insert(), find(), size(), max_bucket_count(), load_factor(), and
max_load_factor()

0: #include<iostream>
1: #include<string>
2: #include<unordered_map>
3: using namespace std;
4:
5: template <typename T1, typename T2>
6: void DisplayUnorderedMap(unordered_map<T1, T2>& Input)
7: {
8: cout << “Number of pairs, size(): “ << Input.size() << endl;
9: cout << “Max bucket count = “ << Input.max_bucket_count() << endl;
10: cout << “Load factor: “ << Input.load_factor() << endl;
11: cout << “Max load factor = “ << Input.max_load_factor() << endl;
12: cout << “Unordered Map contains: “ << endl;
13:
14: for(auto iElement = Input.cbegin() // auto, cbegin: c++11
15: ; iElement != Input.cend() // cend() is new in C++11
16: ; ++ iElement)

TIP

ptg7987094

LISTING 20.6 Continued

17: cout<< iElement->first<< “ -> “<< iElement->second<< endl;
18: }
19:
20: int main()
21: {
22: unordered_map<int, string> umapIntToString;
23: umapIntToString.insert(make_pair(1, “One”));
24: umapIntToString.insert(make_pair(45, “Forty Five”));
25: umapIntToString.insert(make_pair(1001, “Thousand One”));
26: umapIntToString.insert(make_pair(-2, “Minus Two”));
27: umapIntToString.insert(make_pair(-1000, “Minus One Thousand”));
28: umapIntToString.insert(make_pair(100, “One Hundred”));
29: umapIntToString.insert(make_pair(12, “Twelve”));
30: umapIntToString.insert(make_pair(-100, “Minus One Hundred”));
31:
32: DisplayUnorderedMap<int, string>(umapIntToString);
33:
34: cout << “Inserting one more element” << endl;
35: umapIntToString.insert(make_pair(300, “Three Hundred”));
36: DisplayUnorderedMap<int, string>(umapIntToString);
37:
38: cout << “Enter key to find for: “;
39: int Key = 0;
40: cin >> Key;
41:
42: auto iElementFound = umapIntToString.find(Key);
43: if (iElementFound != umapIntToString.end())
44: {
45: cout << “Found! Key “ << iElementFound->first << “ points to value “;
46: cout << iElementFound->second << endl;
47: }
48: else
49: cout << “Key has no corresponding value in unordered map!” << endl;
50:
51: return 0;
52: }

Output ▼

Number of pairs, size(): 8
Max bucket count = 8
Load factor: 1
Max load factor = 1
Unordered Map contains:
-1000 -> Minus One Thousand

506 LESSON 20: STL Map Classes

ptg7987094

1001 -> Thousand One
1 -> One
-100 -> Minus One Hundred
45 -> Forty Five
-2 -> Minus Two
12 -> Twelve
100 -> One Hundred
Inserting one more element
Number of pairs, size(): 9
Max bucket count = 64
Load factor: 0.140625
Max load factor = 1
Unordered Map contains:
1 -> One
-1000 -> Minus One Thousand
1001 -> Thousand One
-100 -> Minus One Hundred
45 -> Forty Five
-2 -> Minus Two
300 -> Three Hundred
12 -> Twelve
100 -> One Hundred
100 -> One Hundred
Enter key to find for: 300
Found! Key 300 points to value Three Hundred

Analysis ▼

Observe the output and note how unordered_map that starts with an initial bucket count
of eight, populated with eight pairs, resizes itself when a ninth pair has been inserted.
This is when the bucket count is increased to 64. Note the usage of methods
max_bucket_count(), load_factor(), and max_load_factor() in Lines 9–11. Apart
from these, note that the rest of code really doesn’t distinguish heavily compared to a
std::map. This includes the usage of find() in Line 42, which returns an iterator as with
a std::map that needs to be checked against end() to confirm success of the operation.

Supplying a Custom Sort Predicate 507

20

Don’t rely on the order of elements in an unordered_map (hence
the name) irrespective of the key. The order of an element relative
to other elements in a map depends on many factors, including its
key, order of insertion, and number of buckets to name a few.

These containers are optimized for search performance and are
not for you to rely on the order of elements when you iterate
through them.

CAUTION

ptg7987094

Summary
In this lesson, you learned about using the STL map and multimap, their significant mem-
ber functions, and their characteristics. You also learned that these containers have a log-
arithmic complexity and that STL supplies your hash table containers in the form of
unordered_map and unordered_multimap. These feature performance in insert() and
find() operations that is independent of container size. You also learned the importance
of being able to customize the sort criterion using a predicate, as demonstrated in the
Directory application of Listing 20.5.

508 LESSON 20: STL Map Classes

std::unordered_map supplies insertions and searches (in event
of no collisions) that are almost constant and independent of the
number of elements contained. This, however, doesn’t necessarily
make the std::unordered_map superior to the std::map that
provides logarithmic complexity in all situations. The constant
could be a lot longer, making the former slow in cases where the
number of elements contained is not too high.

It is important to base one’s decision on the type of container
after performing certain benchmark tests that simulate usage in a
real scenario.

NOTE

DO use a map in those situations
where you need a key-value pair where
keys are unique.

DO use a multimap in those situations
where you need a key-value pair where
keys can repeat (for example, a tele-
phone directory).

DO remember that both map and
multimap, like other STL containers,
feature member method size() that
tells you the number of pairs they
contain.

DO use an unordered_map or
unordered_multimap when constant-
time insertions and searches are
absolutely essential (typically when the
number of elements is very high).

DON’T forget that
multimap::count(Key) can tell you
the number of pairs indexed using Key
available in the container.

DON’T forget to check the result of a
find() operation by comparing it
against the end() of a container.

DO DON’T

ptg7987094

Q&A
Q How would I declare a map of integers to be sorted or stored in order of

descending magnitude?

A map <int> defines a map of integers. This takes the default sort predicate
std::less <T> to sort items in order of ascending magnitude and can also be
expressed as map <int, less <int> >. To sort in order of descending magnitude,
define the map as map <int, greater <int> >.

Q What would happen if in a map of strings I inserted the string “Jack” twice?

A A map is not meant to be used to insert non-unique values. So, the implementation
of the std::map class does not allow insertion of the second value.

Q In the preceding example, what would I change if I wanted to have two
instances of “Jack”?

A By design a map holds only unique values. You need to change your selection of
container to a multimap.

Q What multimap member function returns the count of items of a particular
value in the container?

A count (value) is the function of interest.

Q I have found an element in the map using the find() function and have an
iterator pointing to it. Would I use this iterator to change the value being
pointed to?

A No. Some STL implementations might allow the user to change the value of an
element inside a map via an iterator returned by find(). This, however, is not the
correct thing to do. An iterator to an element in the map should be used as a const
iterator—even when your implementation of STL has not enforced it as such.

Q I am using an older compiler that doesn’t support keyword auto. How should
I declare a variable that holds the return value of a map::find()?

A An iterator is always defined using this syntax:
container<Type>::iterator variableName;

So the iterator declaration for a map of integers would be the following:
std::map<int>::iterator iPairFound = mapIntegers.find(1000);
if (iPairFound != mapIntegers.end())

;// Do Something

Q&A 509

20

ptg7987094

Workshop
The Workshop contains quiz questions to help solidify your understanding of the mater-
ial covered and exercises to provide you with experience in using what you’ve learned.
Try to answer the quiz and exercise questions before checking the answers in Appendix
D, and be certain you understand the answers before going to the next lesson.

Quiz
1. You declare a map of integers as map <int>. What function supplies the sort

criteria?

2. Where would you find duplicate elements in a multimap?

3. What map or multimap function supplies the number of elements in the container?

4. Where would you find duplicate elements in a map?

Exercises
1. You need to write an application that works as a telephone directory where the

names of the people need not be unique. What container would you choose? Write
a definition of the container.

2. The following is a map template definition in your dictionary application:
map <wordProperty, string, fPredicate> mapWordDefinition;

where word is the structure:
struct wordProperty
{

string strWord;
bool bIsFromLatin;

};

Define the binary predicate fPredicate that helps the map sort a key of type
wordProperty according to the string attribute it contains.

3. Demonstrate via a simple program that a map cannot accept duplicate entries
whereas a multimap can.

510 LESSON 20: STL Map Classes

ptg7987094

LESSON 21
Understanding
Function Objects

Function objects or functors might sound exotic or intimidating, but they
are entities of C++ that you have probably seen, if not also used, without
having realized it. In this lesson, you learn

n The concept of function objects

n The usage of function objects as predicates

n How unary and binary predicates are implemented using function
objects

ptg7987094

The Concept of Function Objects and
Predicates
On a conceptual level, function objects are objects that work as functions. On an
implementation level, however, function objects are objects of a class that implement
operator(). Although functions and function-pointers can also be classified as function
objects, it is the capability of an object of a class that implements operator() to carry
state (that is, values in member attributes of the class) that makes it useful with
Standard Template Library (STL) algorithms.

Function objects as typically used by a C++ programmer working with STL are classifi-
able into the following types:

n Unary function—A function called with one argument; for example, f(x). When
a unary function returns a bool, it is called a predicate.

n Binary function—A function called with two arguments; for example, f(x, y). A
binary function that returns a bool is called a binary predicate.

Function objects that return a boolean type naturally are used in algorithms that need
decision-making. A function object that combines two function objects is called an adap-
tive function object.

Typical Applications of Function Objects
It is possible to explain function objects over pages and pages of theoretical explanations.
It is also possible to understand how they look and work via tiny sample applications.
Let’s take the practical approach and dive straight into the world of C++ programming
with function objects or functors!

Unary Functions
Functions that operate on a single parameter are unary functions. A unary function can
do something very simple—for example, display an element on the screen. This can be
programmed as the following:

// A unary function
template <typename elementType>
void FuncDisplayElement (const elementType & element)
{

cout << element << ‘ ‘;
};

512 LESSON 21: Understanding Function Objects

ptg7987094

The function FuncDisplayElement accepts one parameter of templatized type
elementType that it displays using console output statement std::cout. The same func-
tion can also have another representation in which the implementation of the function is
actually contained by the operator() of a class or a struct:

// Struct that can behave as a unary function
template <typename elementType>
struct DisplayElement
{

void operator () (const elementType& element) const
{

cout << element << ‘ ‘;
}

};

Typical Applications of Function Objects 513

21

Note that DisplayElement is a struct. If it were a class,
operator() would need to be given a public access modifier. A
struct is akin to a class where members are public by default.

Either of these implementations can be used with the STL algorithm for_each to print
the contents of a collection to the screen, an element at a time, as shown in Listing 21.1.

LISTING 21.1 Displaying the Contents of a Collection on the Screen Using a Unary
Function

0: #include <algorithm>
1: #include <iostream>
2: #include <vector>
3: #include <list>
4:
5: using namespace std;
6:
7: // struct that behaves as a unary function
8: template <typename elementType>
9: struct DisplayElement
10: {
11: void operator () (const elementType& element) const
12: {
13: cout << element << ‘ ‘;
14: }
15: };
16:
17: int main ()
18: {
19: vector <int> vecIntegers;

TIP

ptg7987094

LISTING 21.1 Continued

20:
21: for (int nCount = 0; nCount < 10; ++ nCount)
22: vecIntegers.push_back (nCount);
23:
24: list <char> listChars;
25:
26: for (char nChar = ‘a’; nChar < ‘k’; ++nChar)
27: listChars.push_back (nChar);
28:
29: cout << “Displaying the vector of integers: “ << endl;
30:
31: // Display the array of integers
32: for_each (vecIntegers.begin () // Start of range
33: , vecIntegers.end () // End of range
34: , DisplayElement <int> ()); // Unary function object
35:
36: cout << endl << endl;
37: cout << “Displaying the list of characters: “ << endl;
38:
39: // Display the list of characters
40: for_each (listChars.begin () // Start of range
41: , listChars.end () // End of range
42: , DisplayElement <char> ());// Unary function object
43:
44: return 0;
45: }

Output ▼

Displaying the vector of integers:
0 1 2 3 4 5 6 7 8 9

Displaying the list of characters:
a b c d e f g h i j

Analysis ▼

Lines 8–15 contain the function object DisplayElement, which implements
operator(). The usage of this function object is seen with STL algorithm
std::for_each in Lines 32–34. for_each accepts three parameters: The first is the
starting point of the range, the second is the end of the range, and the third parameter
is the function that is called for every element in the specified range. In other words,
that code invokes DisplayElement::operator() for every element in the vector
vecIntegers. Note that instead of using the struct DisplayElement, you could have
also used FuncDisplayElement to the same effect. Lines 40–42 demonstrate the same
functionality with a list of characters.

514 LESSON 21: Understanding Function Objects

ptg7987094

Typical Applications of Function Objects 515

21

C++11 introduces lambda expressions that are unnamed function
objects.

A lambda expression version of struct DisplayElement<T> from
Listing 21.1 compacts the entire code, including the definition of
the struct and its usage, in three lines within main(), replacing
Lines 32–34:

// Display the array of integers using lambda expression
for_each (vecIntegers.begin () // Start of range

, vecIntegers.end () // End of range
, [](int& Element) {cout << element << ‘ ‘; }); //
Lambda expression

Thus, lambdas are a fantastic improvement to C++, and you
should not miss learning them in Lesson 22, “C++11 Lambda
Expressions.” Listing 22.1 demonstrates using lambda functions
in a for_each to display the contents of a container, instead of
the function object as seen in Listing 21.1.

The real advantage of using a function object implemented in a struct becomes appar-
ent when you are able to use the object of the struct to store information. This is some-
thing FuncDisplayElement cannot do the way a struct can because a struct can have
member attributes other than the operator(). A slightly modified version that makes use
of member attributes is the following:

template <typename elementType>
struct DisplayElementKeepCount
{

int Count;

DisplayElementKeepCount () // constructor
{

Count = 0;
}

void operator () (const elementType& element)
{

++ Count;
cout << element << ‘ ‘;

}
};

In the preceding snippet, DisplayElementKeepCount is a slight modification over the
previous version. operator() is not a const member function anymore as it increments
(hence, changes) member Count to keep a count of the number of times it was called to

TIP

ptg7987094

display data. This count is made available via the public member attribute Count.
The advantage of using such function objects that can also store state is shown in
Listing 21.2.

LISTING 21.2 Use a Function Object to Hold State

0: #include<algorithm>
1: #include<iostream>
2: #include<vector>
3: using namespace std;
4:
5: template<typename elementType>
6: struct DisplayElementKeepCount
7: {
8: int Count;
9:
10: // Constructor
11: DisplayElementKeepCount() : Count(0) {}
12:
13: // Display the element, hold count!
14: void operator()(const elementType& element)
15: {
16: ++ Count;
17: cout << element<< ‘ ‘;
18: }
19: };
20:
21: int main()
22: {
23: vector<int> vecIntegers;
24: for(int nCount = 0; nCount< 10; ++ nCount)
25: vecIntegers.push_back(nCount);
26:
27: cout << “Displaying the vector of integers: “<< endl;
28:
29: // Display the array of integers
30: DisplayElementKeepCount<int> Result;
31: Result = for_each(vecIntegers.begin() // Start of range
32: , vecIntegers.end() // End of range
33: , DisplayElementKeepCount<int>());// function object
34:
35: cout << endl<< endl;
36:
37: // Use the state stores in the return value of for_each!
38: cout << “‘“ << Result.Count << “‘ elements were displayed!”<< endl;
39:
40: return 0;
41: }

516 LESSON 21: Understanding Function Objects

ptg7987094

Output ▼

Displaying the vector of integers:
0 1 2 3 4 5 6 7 8 9

‘10’ elements were displayed!

Analysis ▼

The biggest difference between this sample and the one in Listing 21.1 is the usage of
DisplayElementKeepCount() as the return value of for_each(). operator() imple-
mented in struct DisplayElementKeepCount is invoked by algorithm for_each()
for every element in the container. It displays the element and increments the internal
counter stored in Count. After for_each() is done, you use the object in Line 38 to
display the number of times elements were displayed. Note that a regular function used
in this scenario instead of the function implemented in a struct would not be able to
supply this feature in such a direct way.

Unary Predicate
A unary function that returns a bool is a predicate. Such functions help make decisions
for STL algorithms. Listing 21.3 is a sample predicate that determines whether an input
element is a multiple of an initial value.

LISTING 21.3 A Unary Predicate That Determines Whether a Number Is a Multiple of
Another

0: // A structure as a unary predicate
1: template <typename numberType>
2: struct IsMultiple
3: {
4: numberType Divisor;
5:
6: IsMultiple (const numberType& divisor)
7: {
8: Divisor = divisor;
9: }
10:
11: bool operator () (const numberType& element) const
12: {
13: // Check if the divisor is a multiple of the divisor
14: return ((element % Divisor) == 0);
15: }
16: };

Typical Applications of Function Objects 517

21

ptg7987094

Analysis ▼

Here the operator() returns bool and can work as a unary predicate. The structure has a
constructor and is initialized to the value of the divisor. This value stored in the object is
then used to determine whether the elements sent for comparison are divisible by it, as
you can see in the implementation of operator(), using the math operation modulus %
that returns the remainder of a division operation. The predicate compares that remainder
to zero to determine whether the number is a multiple.

In Listing 21.4, we make use of the predicate as seen previously in Listing 21.3 to deter-
mine whether numbers in a collection are multiples of a divisor input by the user.

LISTING 21.4 Unary Predicate IsMultiple Used with std::find_if() to Find an
Element in a vector That Is a Multiple of a User-Supplied Divisor

0: #include <algorithm>
1: #include <vector>
2: #include <iostream>
3: using namespace std;
4: // Insert struct IsMultiple from Listing 21.3 here
5: int main ()
6: {
7: vector <int> vecIntegers;
8: cout << “The vector contains the following sample values: “;
9:
10: // Insert sample values: 25 - 31
11: for (int nCount = 25; nCount < 32; ++ nCount)
12: {
13: vecIntegers.push_back (nCount);
14: cout << nCount << ‘ ‘;
15: }
16: cout << endl << “Enter divisor (> 0): “;
17: int Divisor = 2;
18: cin >> Divisor;
19:
20: // Find the first element that is a multiple of 4 in the collection
21: auto iElement = find_if (vecIntegers.begin ()
22: , vecIntegers.end ()
23: , IsMultiple<int>(Divisor));
24:
25: if (iElement != vecIntegers.end ())
26: {
27: cout << “First element in vector divisible by “ << Divisor;
28: cout << “: “ << *iElement << endl;
29: }
30:
31: return 0;
32: }

518 LESSON 21: Understanding Function Objects

ptg7987094

Output ▼

The vector contains the following sample values: 25 26 27 28 29 30 31
The first element in the vector that is divisible by 4 is: 28

Analysis ▼

The sample starts with a sample container that is a vector of integers. In Lines 11–15,
it inserts sample numbers into this container. The usage of the unary predicate is in
find_if() as shown in Line 23. In here, the function object IsMultiple() is initialized
to a divisor value supplied by the user and stored in variable Divisor. find_if() works
by invoking the unary predicate IsMultiple::operator() for every element in the spec-
ified range. When the operator() returns true for an element (which happens when that
element is divided by 4 and does not produce a remainder), find_if() returns an iterator
iElement to that element. The result of the find_if() operation is compared against the
end() of the container to verify that an element was found, as shown in Line 25, and the
iterator iElement is then used to display the value, as shown in Line 28.

Typical Applications of Function Objects 519

21

To see how using lambda expressions compact the program
shown in Listing 21.4, take a look at Listing 22.3 in Lesson 22.

Unary predicates find application in a lot of STL algorithms such as std::partition
that can partition a range using the predicate, stable_partition that does the same
while keeping relative order of the elements partitioned, find functions such as
std::find_if(), and functions that help erase elements such as std::remove_if() that
erases elements in a range that satisfy the predicate.

Binary Functions
Functions of type f(x, y) are particularly useful when they return a value based on the
input supplied. Such binary functions can be used for a host of arithmetic activity that
involves two operands, such as addition, multiplication, subtraction, and so on. A sample
binary function that returns the multiple of input arguments can be written as the
following:

template <typename elementType>
class Multiply
{
public:

elementType operator () (const elementType& elem1,
const elementType& elem2)

TIP

ptg7987094

{
return (elem1 * elem2);

}
};

The implementation of interest is again in operator() that accepts two arguments
and returns their multiple. Such binary functions are used in algorithms such as
std::transform where you can use it to multiply the contents of two containers.
Listing 21.5 demonstrates the usage of such binary functions in std::transform.

LISTING 21.5 Using a Binary Function to Multiply Two Ranges

0: #include <vector>
1: #include <iostream>
2: #include <algorithm>
3:
4: template <typename elementType>
5: class Multiply
6: {
7: public:
8: elementType operator () (const elementType& elem1,
9: const elementType& elem2)
10: {
11: return (elem1 * elem2);
12: }
13: };
14:
15: int main ()
16: {
17: using namespace std;
18:
19: // Create two sample vector of integers with 10 elements each
20: vector <int> vecMultiplicand, vecMultiplier;
21:
22: // Insert sample values 0 to 9
23: for (int nCount1 = 0; nCount1 < 10; ++ nCount1)
24: vecMultiplicand.push_back (nCount1);
25:
26: // Insert sample values 100 to 109
27: for (int nCount2 = 100; nCount2 < 110; ++ nCount2)
28: vecMultiplier.push_back (nCount2);
29:
30: // A third container that holds the result of multiplication
31: vector <int> vecResult;
32:
33: // Make space for the result of the multiplication
34: vecResult.resize (10);
35: transform (vecMultiplicand.begin (), // range of multiplicands

520 LESSON 21: Understanding Function Objects

ptg7987094

36: vecMultiplicand.end (), // end of range
37: vecMultiplier.begin (), // multiplier values
38: vecResult.begin (), // range that holds result
39: Multiply <int> ()); // the function that multiplies
40:
41: cout << “The contents of the first vector are: “ << endl;
42: for (size_t nIndex1 = 0; nIndex1 < vecMultiplicand.size (); ++ nIndex1)
43: cout << vecMultiplicand [nIndex1] << ‘ ‘;
44: cout << endl;
45:
46: cout << “The contents of the second vector are: “ << endl;
47: for (size_t nIndex2 = 0; nIndex2 < vecMultiplier.size (); ++nIndex2)
48: cout << vecMultiplier [nIndex2] << ‘ ‘;
49: cout << endl << endl;
50:
51: cout << “The result of the multiplication is: “ << endl;
52: for (size_t nIndex = 0; nIndex < vecResult.size (); ++ nIndex)
53: cout << vecResult [nIndex] << ‘ ‘;
54:
55: return 0;
56: }

Output ▼

The contents of the first vector are:
0 1 2 3 4 5 6 7 8 9
The contents of the second vector are:
100 101 102 103 104 105 106 107 108 109

The result of the multiplication held in the third vector is:
0 101 204 309 416 525 636 749 864 981

Analysis ▼

Lines 5–13 contain the class Multiply, as shown in the preceeding code snippet. In
this sample, you use the algorithm std::transform to multiple the content of two
ranges and store in a third. In this case, the ranges in question are held in std::vector
as vecMultiplicand, vecMultiplier, and vecResult. In other words, you use
std::transform in Lines 35–39 to multiply every element in vecMultiplicand
by its corresponding element in vecMultiplier and store the result of the
multiplication in vecResult. The multiplication itself is done by the binary function
CMultiple::operator () that is invoked for every element in the vectors that make the
source and destination ranges. The return value of the operator() is held in vecResult.

Typical Applications of Function Objects 521

21

ptg7987094

This sample thus demonstrates the application of binary functions in performing arith-
metic operations on elements in STL containers.

Binary Predicate
A function that accepts two arguments and returns a bool is a binary predicate. Such
functions find application in STL functions such as std::sort(). Listing 21.6 demon-
strates the usage of a binary predicate that compares two strings after reducing them both
to lowercase. Such a predicate can be used in performing a case-insensitive sort on a
vector of string, for instance.

LISTING 21.6 A Binary Predicate for Case-Insensitive String Sort

0: #include <algorithm>
1: #include <string>
2: using namespace std;
3:
4: class CompareStringNoCase
5: {
6: public:
7: bool operator () (const string& str1, const string& str2) const
8: {
9: string str1LowerCase;
10:
11: // Assign space
12: str1LowerCase.resize (str1.size ());
13:
14: // Convert every character to the lower case
15: transform (str1.begin (), str1.end (), str1LowerCase.begin (),
16: tolower);
17:
18: string str2LowerCase;
19: str2LowerCase.resize (str2.size ());
20: transform (str2.begin (), str2.end (), str2LowerCase.begin (),
21: tolower);
22:
23: return (str1LowerCase < str2LowerCase);
24: }
25: };

Analysis ▼

The binary predicate implemented in operator() first brings the input strings down to
lowercase using algorithm std::transform() as shown in Lines 15 and 20 before using
the string’s comparison operator, operator <, to return the result of comparison.

522 LESSON 21: Understanding Function Objects

ptg7987094

You can use this binary-predicate with algorithm std::sort() to sort a dynamic array
contained in a vector of string as demonstrated by Listing 21.7.

LISTING 21.7 Using Function Object class CompareStringNoCase to Perform a
Case-Insensitive Sort on a vector of string

0: // Insert class CompareStringNoCase from Listing 21.6 here
1: #include <vector>
2: #include <iostream>
3:
4: template <typename T>
5: void DisplayContents (const T& Input)
6: {
7: for(auto iElement = Input.cbegin() // auto, cbegin and cend: c++11
8: ; iElement != Input.cend ()
9: ; ++ iElement)
10: cout << *iElement << endl;
11: }
12:
13: int main ()
14: {
15: // Define a vector of string to hold names
16: vector <string> vecNames;
17:
18: // Insert some sample names in to the vector
19: vecNames.push_back (“jim”);
20: vecNames.push_back (“Jack”);
21: vecNames.push_back (“Sam”);
22: vecNames.push_back (“Anna”);
23:
24: cout << “The names in vector in order of insertion: “ << endl;
25: DisplayContents(vecNames);
26:
27: cout << “Names after sorting using default std::less<>: “ << endl;
28: sort(vecNames.begin(), vecNames.end());
29: DisplayContents(vecNames);
30:
31: cout << “Names after sorting using predicate that ignores case:” << endl;
32: sort(vecNames.begin(), vecNames.end(), CompareStringNoCase());
33: DisplayContents(vecNames);
34:
35: return 0;
36: }

Output ▼

The names in vector in order of insertion:
jim
Jack

Typical Applications of Function Objects 523

21

ptg7987094

Sam
Anna
Names after sorting using default std::less<>:
Anna
Jack
Sam
jim
Names after sorting using predicate that ignores case:
Anna
Jack
jim
Sam

Analysis ▼

Output displays the contents of the vector in three stages. The first displays contents in
order of insertion. The second after a sort() at Line 28 reorders using default sort predi-
cate less<T>, the output demonstrates that jim is not placed after Jack because this is a
case-sensitive sort via string::operator<. The last version uses the sort predicate class
CompareStringNoCase<> in Line 32 (implemented in Listing 21.6) that ensures that jim
comes after Jack notwithstanding the difference in case.

Binary predicates are required in a variety of STL algorithms. For example,
std::unique() that erases duplicate neighboring elements, std::sort() that sorts,
std::stable_sort() that sorts while maintaining relative order, and std::transform()
that can perform an operation on two ranges are some of the STL algorithms that need a
binary predicate.

Summary
In this lesson, you gained an insight into the world of functors (or function objects). You
learned how function objects are more useful when implemented in a structure or a class
than those that are simple functions because the former can also be used to hold state-
related information. You got an insight into predicates, which are a special class of func-
tion objects, and saw some practical examples that display their utility.

Q&A
Q A predicate is a special category of a function object. What makes it special?

A Predicates always return boolean.

524 LESSON 21: Understanding Function Objects

ptg7987094

Q What kind of a function object should I use in a call to a function such as
remove_if?

A You should use a unary predicate that would take the value to be processed as the
initial state via the constructor.

Q What kind of a function object should I use for a map?

A You should use a binary predicate.

Q Is it possible that a simple function with no return value can be used as a
predicate?

A Yes. A function with no return values can still do something useful. For example, it
can display input data.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D.

Quiz
1. What is the term used for a unary function that returns a bool result?

2. What would be the utility of a function object that neither modifies data nor returns
bool? Can you explain using an example?

3. What is the definition of the term function objects?

Exercises
1. Write a unary function that can be used with std::for_each to display the double

of the input parameter.

2. Extend this predicate to indicate the number of times it was used.

3. Write a binary predicate that helps sort in ascending order.

Workshop 525

21

ptg7987094

This page intentionally left blank

ptg7987094

LESSON 22
C++11 Lambda
Expressions

Lambda expressions are a compact way to define and construct function
objects without a name. These expressions are new to C++11. In this
lesson, you find out

n How to program a lambda expression

n How to use lambda expressions as predicates

n How to program lambda expressions that can hold and manipulate
a state

ptg7987094

What Is a Lambda Expression?
A lambda expression can be visualized as a compact version of an unnamed struct (or
class) with a public operator(). In that sense, a lambda expression is a function object
like those in Lesson 21, “Understanding Function Objects.” Before jumping into analyz-
ing the programming of lambda functions, take a function object from Listing 21.1 (from
Lesson 21) as an example:

// struct that behaves as a unary function
template <typename elementType>
struct DisplayElement
{

void operator () (const elementType& element) const
{

cout << element << ‘ ‘;
}

};

This function object prints an element to the screen and is typically used in algorithms
such as std::for_each:

// Display the array of integers
for_each (vecIntegers.begin () // Start of range

, vecIntegers.end () // End of range
, DisplayElement <int> ()); // Unary function object

A lambda expression compacts the entire code including the definition of the function
object in to three lines:

// Display the array of integers using lambda expression
for_each (vecIntegers.begin () // Start of range

, vecIntegers.end () // End of range
, [](int& Element) {cout << element << ‘ ‘; }); // Lambda expression

When the compiler sees the lambda expression, in this case

[](int Element) {cout << element << ‘ ‘; }

it automatically expands this expression into a representation that is similar to struct
DisplayElement<int>:

struct NoName
{

void operator () (const int& element) const
{

cout << element << ‘ ‘;
}

};

528 LESSON 22: C++11 Lambda Expressions

ptg7987094

How to Define a Lambda Expression
The definition of a lambda expression has to start with square brackets []. These brack-
ets essentially tell the compiler that the lambda expression has started. They are followed
by the parameter list, which is the same as the parameter list you would supply your
implementation of operator() if you were not using a lambda expression.

Lambda Expression for a Unary Function
The lambda version of a unary operator(Type) that takes one parameter would be the
following:

[](Type paramName) { // lambda expression code here; }

Note that you can pass the parameter by reference if you so wish:

[](Type& paramName) { // lambda expression code here; }

Use Listing 22.1 to study the usage of a lambda function in displaying the contents of a
Standard Template Library (STL) container using algorithm for_each.

LISTING 22.1 Displaying Elements in a Container via Algorithm for_each() That Is
Invoked with a Lambda Expression Instead of a Function Object

0: #include <algorithm>
1: #include <iostream>
2: #include <vector>
3: #include <list>
4:
5: using namespace std;
6:
7: int main ()
8: {
9: vector <int> vecIntegers;
10:
11: for (int nCount = 0; nCount < 10; ++ nCount)
12: vecIntegers.push_back (nCount);
13:
14: list <char> listChars;
15: for (char nChar = ‘a’; nChar < ‘k’; ++nChar)
16: listChars.push_back (nChar);
17:
18: cout << “Displaying vector of integers using a lambda: “ << endl;
19:
20: // Display the array of integers
21: for_each (vecIntegers.begin () // Start of range
22: , vecIntegers.end () // End of range
23: , [](int& element) {cout << element << ‘ ‘; }); // lambda

Lambda Expression for a Unary Function 529

E

ptg7987094

LISTING 22.1 Continued

24:
25: cout << endl << endl;
26: cout << “Displaying list of characters using a lambda: “ << endl;
27:
28: // Display the list of characters
29: for_each (listChars.begin () // Start of range
30: , listChars.end () // End of range
31: , [](char& element) {cout << element << ‘ ‘; }); // lambda
32:
33: cout << endl;
34:
35: return 0;
36: }

Output ▼

Displaying vector of integers using a lambda:
0 1 2 3 4 5 6 7 8 9

Displaying list of characters using a lambda:
a b c d e f g h i j

Analysis ▼

There are two lambda expressions of interest in Lines 23 and 31. They are quite similar,
save for the type of the input parameter, as they have been customized to the nature of
the elements within the two containers. The first takes one parameter that is an int, as it
is used to print one element at a time from a vector of integers, whereas the second
accepts a char, as it is used to display elements of type char stored in a std::list.

530 LESSON 22: C++11 Lambda Expressions

It is no coincidence that the output produced by Listing 22.1 is
the same as that in Listing 21.1. In fact, this program is a lambda
version of the one you studied in Listing 21.1 that used function
object DisplayElement<T>.

Comparing the two, you realize how lambda functions have the
potential to make C++ code simpler and more compact.

NOTE

ptg7987094

Lambda Expression for a Unary Predicate
A predicate helps make decisions. A unary predicate is a unary expression that returns a
bool, conveying true or false. Lambda expressions can return values, too. For example,
the following is a lambda expression that returns true for even numbers:

[](int& Num) {return ((Num % 2) == 0); }

The nature of the return value in this case tells the compiler that the lambda expression
returns a bool.

You can use a lambda expression that is a unary predicate in algorithms, such as
std::find_if(), to find even numbers in a collection. See Listing 22.2 for an example.

LISTING 22.2 Find an Even Number in a Collection Using a Lambda Expression for a
Unary Predicate and Algorithm std::find_if()

0: #include<algorithm>
1: #include<vector>
2: #include<iostream>
3: using namespace std;
4:
5: int main()
6: {
7: vector<int> vecNums;
8: vecNums.push_back(25);
9: vecNums.push_back(101);
10: vecNums.push_back(2011);
11: vecNums.push_back(-50);
12:
13: auto iEvenNum = find_if(vecNums.cbegin()
14: , vecNums.cend() // range to find in
15: , [](const int& Num){return ((Num % 2) == 0); });
16:
17: if (iEvenNum != vecNums.cend())
18: cout << “Even number in collection is: “ << *iEvenNum << endl;
19:
20: return 0;
21: }

Output ▼

Even number in collection is: -50

Lambda Expression for a Unary Predicate 531

E

ptg7987094

Analysis ▼

The lambda function that works as a unary predicate is shown in Line 15. Algorithm
find_if() invokes the unary predicate for every element in the range. When the predi-
cate returns true, find_if() reports a find by returning an iterator to that element. The
predicate in this case is the lambda expression that returns true when find_if() invokes
it with an integer that is even (that is, the result of modulus operation with 2 is zero).

532 LESSON 22: C++11 Lambda Expressions

Listing 22.2 not only demonstrates a lambda expression as a
unary predicate, but also the use of const within a lambda
expression.

Remember to use const for input parameters, especially when
they’re a reference.

Lambda Expression with State via
Capture Lists [...]
In Listing 22.2, you created a unary predicate that returned true if an integer was divisi-
ble by 2—that is, the integer is an even number. What if you want a more generic func-
tion that returns true when the number is divisible by a divisor of the user’s choosing?
You need to maintain that “state”—the divisor—in the expression:

int Divisor = 2; // initial value
…
auto iElement = find_if (begin of a range

, end of a range
, [Divisor](int dividend){return (dividend % Divisor) == 0; });

A list of arguments transferred as state variables [...] is also called the lambda’s capture
list.

NOTE

Such a lambda expression is a one-line equivalent of the 16 lines
of code seen in Listing 21.3 that defines unary predicate struct
IsMultiple<>.

Thus, lambdas improve the programming efficiency in C++11 by
leaps and bounds!

NOTE

ptg7987094

Listing 22.3 demonstrates the application of a unary predicate given a state variable in
finding a number in the collection that is a multiple of a divisor supplied by the user.

LISTING 22.3 Demonstrating the Use of Lambda Expressions That Hold State to Check
If One Number Is Divisible by Another

0: #include <algorithm>
1: #include <vector>
2: #include <iostream>
3: using namespace std;
4:
5: int main ()
6: {
7: vector <int> vecIntegers;
8: cout << “The vector contains the following sample values: “;
9:
10: // Insert sample values: 25 - 31
11: for (int nCount = 25; nCount < 32; ++ nCount)
12: {
13: vecIntegers.push_back (nCount);
14: cout << nCount << ‘ ‘;
15: }
16: cout << endl << “Enter divisor (> 0): “;
17: int Divisor = 2;
18: cin >> Divisor;
19:
20: // Find the first element that is a multiple of divisor
21: vector <int>::iterator iElement;
22: iElement = find_if (vecIntegers.begin ()
23: , vecIntegers.end ()
24: , [Divisor](int dividend){return (dividend % Divisor) == 0; });
25:
26: if (iElement != vecIntegers.end ())
27: {
28: cout << “First element in vector divisible by “ << Divisor;
29: cout << “: “ << *iElement << endl;
30: }
31:
32: return 0;
33: }

Output ▼

The vector contains the following sample values: 25 26 27 28 29 30 31
Enter divisor (> 0): 4
First element in vector divisible by 4: 28

Lambda Expression with State via Capture Lists [...] 533

E

ptg7987094

Analysis ▼

The lambda expression that contains state and works as a predicate is shown in Line 24.
Divisor is a state-variable, comparable to IsMultiple::Divisor that you saw in
Listing 21.3. Hence, state variables are akin to members in a function object class that
you would have composed in days prior to C++11. Thus, you are now able to pass states
on to your lambda function and customize its usage on the basis of the same.

534 LESSON 22: C++11 Lambda Expressions

Listing 22.3 is the lambda expression equivalent of Listing 21.4,
without the function object class. A 16-line reduction caused by
one C++11 feature!

The Generic Syntax of Lambda
Expressions
A lambda expression always starts with square brackets and can be configured to take
multiple state variables separated using commas in a capture list [...]:

[StateVar1, StateVar2](Type& param) { // lambda code here; }

If you want to ensure that these state variables are modified within a lambda, you add
keyword mutable:

[StateVar1, StateVar2](Type& param) mutable { // lambda code here; }

Note that here, the variables supplied in the capture list [] are modifiable within the
lambda, but changes do not take effect outside it. If you want to ensure that modifica-
tions made to the state variables within the lambda are valid outside it, too, then you use
references:

[&StateVar1, &StateVar2](Type& param) { // lambda code here; }

Lambdas can take multiple input parameters, separated by commas:

[StateVar1, StateVar2](Type1& var1, Type2& var2) { // lambda code here; }

If you want to mention the return type and not leave the disambiguation to the compiler,
you use -> as in the following:

[State1, State2](Type1 var1, Type2 var2) -> ReturnType
{ return (value or expression); }

NOTE

ptg7987094

Finally, the compound statement {} can hold multiple statements, each separated by a ;
as shown here:

[State1, State2](Type1 var1, Type2 var2) -> ReturnType
{ Statement 1; Statement 2; return (value or expression); }

Lambda Expression for a Binary Function 535

E

In case your lambda expression spans multiple lines, you are
forced to supply an explicit return type.

Listing 22.5 later in this lesson demonstrates a lambda function
that specifies a return type and spans multiple lines.

Thus, a lambda function is a compact, fully functional replacement of a function object
such as the following:

template<typename Type1, typename Type2>
struct IsNowTooLong
{

// State variables
Type1 var1;
Type2 var2;

// Constructor
IsNowTooLong(const Type1& in1, Type2& in2): var1(in1), var2(in2) {};

// the actual purpose
ReturnType operator()
{

Statement 1;
Statement 2;
return (value or expression);

}
};

Lambda Expression for a Binary Function
A binary function takes two parameters and optionally returns a value. A lambda expres-
sion equivalent of the same would be

[...](Type1& param1Name, Type2& param2Name) { // lambda code here; }

A lambda function that multiplies two equal-sized vectors element by element using
std::transform and stores the result in a third vector is shown in Listing 22.4.

NOTE

ptg7987094

LISTING 22.4 Lambda Expression as a Binary Function to Multiply Elements from Two
Containers and Store in a Third

0: #include <vector>
1: #include <iostream>
2: #include <algorithm>
3:
4: int main ()
5: {
6: using namespace std;
7:
8: // Create two sample vector of integers with 10 elements each
9: vector <int> vecMultiplicand, vecMultiplier;
10:
11: // Insert sample values 0 to 9
12: for (int nCount1 = 0; nCount1 < 10; ++ nCount1)
13: vecMultiplicand.push_back (nCount1);
14:
15: // Insert sample values 100 to 109
16: for (int nCount2 = 100; nCount2 < 110; ++ nCount2)
17: vecMultiplier.push_back (nCount2);
18:
19: // A third container that holds the result of multiplication
20: vector <int> vecResult;
21:
22: // Make space for the result of the multiplication
23: vecResult.resize (10);
24:
25: transform (vecMultiplicand.begin (), // range of multiplicands
26: vecMultiplicand.end (), // end of range
27: vecMultiplier.begin (), // multiplier values
28: vecResult.begin (), // range that holds result
29: [](int a, int b) {return a * b; }); // lambda
30:
31: cout << “The contents of the first vector are: “ << endl;
32: for (size_t nIndex1 = 0; nIndex1 < vecMultiplicand.size (); ++ nIndex1)
33: cout << vecMultiplicand [nIndex1] << ‘ ‘;
34: cout << endl;
35:
36: cout << “The contents of the second vector are: “ << endl;
37: for (size_t nIndex2 = 0; nIndex2 < vecMultiplier.size (); ++nIndex2)
38: cout << vecMultiplier [nIndex2] << ‘ ‘;
39: cout << endl << endl;
40:
41: cout << “The result of the multiplication is: “ << endl;
42: for (size_t nIndex = 0; nIndex < vecResult.size (); ++ nIndex)
43: cout << vecResult [nIndex] << ‘ ‘;
44: cout << endl;
45:
46: return 0;
47: }

536 LESSON 22: C++11 Lambda Expressions

ptg7987094

Output ▼

The contents of the first vector are:
0 1 2 3 4 5 6 7 8 9
The contents of the second vector are:
100 101 102 103 104 105 106 107 108 109

The result of the multiplication is:
0 101 204 309 416 525 636 749 864 981

Analysis ▼

The lambda expression in question is shown in Line 29 as a parameter to
std::transform. This algorithm takes two ranges as input and applies a transformation
algorithm that is contained in a binary function. The return value of the binary function
is stored in a target container. This binary function is a lambda expression that takes two
integers as input and returns the result of the multiplication via the return value. This
return value is stored by std::transform in vecResult. The output demonstrates the
contents of the two containers and the result of multiplying them element by element.

Lambda Expression for a Binary Predicate 537

E

Listing 22.4 was the demonstration of the lambda equivalent of
function object class Multiply<> in Listing 21.5.

Lambda Expression for a Binary
Predicate
A binary function that returns true or false to help make a decision is called a binary
predicate. These predicates find use in sort algorithms, such as std::sort(), that invoke
the binary predicate for any two values in a container to know which one should be
placed after the other. The generic syntax of a binary predicate is

[...](Type1& param1Name, Type2& param2Name) { // return bool expression; }

Listing 22.5 demonstrates a lambda expression used in a sort.

LISTING 22.5 Lambda Expression as a Binary Predicate in std::sort() to Enable
Case-Insensitive Sort

0: #include <algorithm>
1: #include <string>
2: #include <vector>

NOTE

ptg7987094

LISTING 22.5 Continued

3: #include <iostream>
4: using namespace std;
5:
6: template <typename T>
7: void DisplayContents (const T& Input)
8: {
9: for(auto iElement = Input.cbegin() // auto, cbegin and cend: c++11
10: ; iElement != Input.cend ()
11: ; ++ iElement)
12: cout << *iElement << endl;
13: }
14:
15: int main ()
16: {
17: // Define a vector of string to hold names
18: vector <string> vecNames;
19:
20: // Insert some sample names in to the vector
21: vecNames.push_back (“jim”);
22: vecNames.push_back (“Jack”);
23: vecNames.push_back (“Sam”);
24: vecNames.push_back (“Anna”);
25:
26: cout << “The names in vector in order of insertion: “ << endl;
27: DisplayContents(vecNames);
28:
29: cout << “Names after sorting using default std::less<>: “ << endl;
30: sort(vecNames.begin(), vecNames.end());
31: DisplayContents(vecNames);
32:
33: cout << “Names after sorting using predicate that ignores case:” << endl;
34: sort(vecNames.begin(), vecNames.end(),
35: [](const string& str1, const string& str2) -> bool // lambda
36: {
37: string str1LowerCase;
38:
39: // Assign space
40: str1LowerCase.resize (str1.size ());
41:
42: // Convert every character to the lower case
43: transform(str1.begin(), str1.end(),

str1LowerCase.begin(),tolower);
44:
45: string str2LowerCase;
46: str2LowerCase.resize (str2.size ());
47: transform (str2.begin (), str2.end (), str2LowerCase.begin (),

538 LESSON 22: C++11 Lambda Expressions

ptg7987094

48: tolower);
49:
50: return (str1LowerCase < str2LowerCase);
51: } // end of lambda
52:); // end of sort
53: DisplayContents(vecNames);
54:
55: return 0;
56: }

Output ▼

The names in vector in order of insertion:
jim
Jack
Sam
Anna
Names after sorting using default std::less<>:
Anna
Jack
Sam
jim
Names after sorting using predicate that ignores case:
Anna
Jack
jim
Sam

Analysis ▼

This demonstrates a genuinely large lambda function spanning Lines 35–51— the third
parameter of std::sort() starts at Line 34 and ends at Line 52! What this lambda func-
tion demonstrates is that a lambda can span multiple statements, the prerequisite being
that the return value type is explicitly specified as shown in Line 35 (bool). The output
demonstrates the content of the vector as inserted, where jim is before Jack. The con-
tent of the vector after a default sort without a supplied lambda or predicate as shown in
Line 30 sorts jim after Sam, as this is case sensitive via string::operator<. Finally, a
version using a case-insensitive lambda expression is seen in Lines 34–52 that places jim
after Jack as the user typically would expect. This sort also uses a lambda expression
that spans multiple lines.

Lambda Expression for a Binary Predicate 539

E

ptg7987094

Summary
In this lesson, you learned a very important feature in C++11: lambda functions. You
saw how lambdas are basically unnamed function objects that can take parameters, have
state, return values, and be multiple lined. You learned how to use lambdas instead of
function objects in STL algorithms, helping find(), sort(), or transform(). Lambdas
make programming in C++ fast and efficient, and you should try to use them as often as
possible.

540 LESSON 22: C++11 Lambda Expressions

This extraordinarily large lambda in Listing 22.5 is a lambda
version of Listing 21.6, class CompareStringNoCase, used in
Listing 21.7.

Clearly, this is not an optimal use of a lambda because, in this
case, a function object is reusable in multiple std::sort() state-
ments, if required, and also in other algorithms that need a binary
predicate.

So, you need to use lambdas when they’re short, sweet, and
effective.

NOTE

DO remember that lambda expressions
always start with [] or [state1,
state2, ..].

DO remember that unless specified,
state variables supplied within a cap-
ture list [] are not modifiable unless
you use the keyword mutable.

DON’T forget that lambda expressions
are unnamed representations of a
class or a struct with operator().

DON’T forget to use const correct
parameter types when writing your
lambda expressions [](const T&
value) { // lambda expression
; }.

DON’T forget to explicitly mention
return type when the lambda expres-
sion includes multiple statements
within the statement block {}.

DON’T choose lambda expressions
over a function object when the
lambda gets extremely long and spans
multiple statements, for these are
redefined in every use and do not
assist code reusability.

DO DON’T

ptg7987094

Q&A
Q Should I always prefer a lambda over a function object?

A Lambdas that span multiple lines as shown in Listing 22.5 might not help increase
programming efficiency over function objects that are easily reused.

Q How are the state parameters of a lambda transferred, by value or by
reference?

A When a lambda is programmed with a capture list as this:
[Var1, Var2, ... N](Type& Param1, ...) { …expression ;}

the state parameters Var1 and Var2 are copied (not supplied as a reference). If you
want to have them as reference parameters, you use this syntax:
[&Var1, &Var2, ... &N](Type& Param1, ...) { ...expression ;}

In this case, you need to exercise caution as modifications to the state variables
supplied within the capture list continue outside the lambda.

Q Can I use the local variables in a function in a lambda?

A You can pass the local variables in a capture list:
[Var1, Var2, ... N](Type& Param1, ...) { ...expression ;}

If you want to capture all variables, you use this syntax:

[=](Type& Param1, ...) { ...expression ;}

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. Try to answer the quiz and exercise questions before checking the answers in
Appendix D.

Quiz
1. How does a compiler recognize the start of a lambda expression?

2. How would you pass state variables to a lambda function?

3. If you need to supply a return value in a lambda, how would you do it?

Workshop 541

E

ptg7987094

Exercises
1. Write a lambda binary predicate that would help sort in descending order.

2. Write a lambda function that, when used in for_each, adds a user-specified value
to that in a container such as vector.

542 LESSON 22: C++11 Lambda Expressions

ptg7987094

LESSON 23
STL Algorithms

An important part of the Standard Template Library (STL) is a set of
generic functions, supplied by the header <algorithm>, that help
manipulate or work with the contents of a container. In this lesson,
you find out

n How to use STL algorithms to reduce boiler-plate code

n Generic functions to help you count, search, find, and remove in
addition to other operations in STL containers

ptg7987094

What Are STL Algorithms?
Finding, searching, removing, and counting are some generic algorithmic activities that
find application in a broad range of programs. STL solves these and many other require-
ments in the form of generic template functions that work on containers via iterators. To
use STL algorithms, the programmer first has to include the header <algorithm>.

544 LESSON 23: STL Algorithms

Although most algorithms work via iterators on containers, not all
algorithms necessarily work on containers and hence not all algo-
rithms need iterators. Some, such as swap(), simply accept a pair
of values to swap them. Similarly, min() and max() work directly
on values, too.

Classification of STL Algorithms
STL algorithms can be broadly classified into two types: non-mutating and mutating
algorithms.

Non-Mutating Algorithms
Algorithms that change neither the order nor the contents of a container are called
non-mutating algorithms. Some of the prominent non-mutating algorithms are shown in
Table 23.1.

TABLE 23.1 Quick Reference of Non-Mutating Algorithms

Algorithm Description

Counting Algorithms

count Finds all elements in a range whose values match a sup-
plied value

count_if Finds all elements in a range whose values satisfy a sup-
plied condition

Search Algorithms

search Searches for the first occurrence of a given sequence
within a target range either on the basis of element equal-
ity (that is, the operator ==) or using a specified binary
predicate

search_n Searches a specified target range for the first occurrence
of n number of elements of a given value or those that
satisfy a given predicate

NOTE

ptg7987094

TABLE 23.1 Continued

Algorithm Description

find Searches for the first element in the range that matches
the specified value

find_if Searches for the first element in a range that satisfies
the specified condition

find_end Searches for the last occurrence of a particular subrange
in a supplied range

find_first_of Searches for the first occurrence of any element supplied
in one range within a target range; or, in an overloaded
version, searches for the first occurrence of an element
that satisfies a supplied find criterion

adjacent_find Searches for two elements in a collection that are either
equal or satisfy a supplied condition

Comparison Algorithms

equal Compares two elements for equality or uses a specified
binary predicate to determine the same

mismatch Locates the first difference position in two ranges of
elements using a specified binary predicate

lexicographical_compare Compares the elements between two sequences to deter-
mine which is the lesser of the two

Mutating Algorithms
Mutating algorithms are those that change the contents or the order of the sequence they
are operating on. Some of the most useful mutating algorithms supplied by STL are
shown in Table 23.2.

TABLE 23.2 A Quick Reference of Mutating Algorithms

Algorithm Description

Initialization Algorithms

fill Assigns the specified value to every element in the specified
range.

fill_n Assigns the specified value to the first n elements in the specified
range.

generate Assigns the return value of a specified function object to each ele-
ment in the supplied range.

generate_n Assigns the value generated by a function to a specified count of
values in a specified range.

Classification of STL Algorithms 545

23

ptg7987094

TABLE 23.2 Continued

Algorithm Description

Modifying Algorithms

for_each Performs an operation on every element in a range. When the
specified argument modifies the range, for_each becomes a
mutating algorithm.

transform Applies a specified unary function on every element in the speci-
fied range.

Copy Algorithms

copy Copies one range into another.

copy_backward Copies one range into another, arranging elements in the destina-
tion range in the reverse order.

Removal Algorithms

remove Removes an element of a specified value from a specified range.

remove_if Removes an element that satisfies a specified unary predicate
from a specified range.

remove_copy Copies all elements from a source range to a destination range,
except those of a specified value.

remove_copy_if Copies all elements from a source range to a destination range
except those that satisfy a specified unary predicate.

unique Compares adjacent elements in a range and removes the following
duplicates. An overloaded version works using a binary predicate.

unique_copy Copies all but adjacent duplicate elements from a specified source
range to a specified destination range.

Replacement Algorithms

replace Replaces every element in a specified range that matches a
specified value by a replacement value.

replace_if Replaces every element in a specified range that matches
a specified value by a replacement value.

Sort Algorithms

sort Sorts elements in a range using a specified sort criterion, which is
a binary predicate that supplies a strict-weak-ordering. sort might
change relative positions of equivalent elements.

stable_sort Stable sort is similar to sort but preserves order, too.

partial_sort Sorts a specified number of elements in a range.

partial_sort_copy Copies elements from a specified source range to a destination
range that holds them in a sort order.

546 LESSON 23: STL Algorithms

ptg7987094

TABLE 23.2 Continued

Algorithm Description

Partitioning Algorithms

partition Given a specified range, splits elements into two sets within it:
those that satisfy a unary predicate come first and the rest after.
Might not maintain the relative order of elements in a set.

stable_partition Partitions an input range into two sets as in partition but
maintains relative ordering.

Algorithms That Work on Sorted Containers

binary_search Used to determine whether an element exists in a sorted
collection.

lower_bound Returns an iterator pointing to the first position where an element
can potentially be inserted in a sorted collection based on its
value or on a supplied binary predicate.

upper_bound Returns an iterator pointing to the last position where an element
can potentially be inserted into a sorted collection based on its
value or on a supplied binary predicate.

Usage of STL Algorithms
The usage of the STL algorithms mentioned in Tables 23.1 and 23.2 is best learned
directly by a hands-on coding session. To that end, learn the details of using the algo-
rithms from the code examples that follow and start applying them to your application.

Finding Elements Given a Value or a Condition
Given a container such as a vector, STL algorithms find() and find_if() help you
find an element that matches a value or fulfills a condition, respectively. The usage of
find() follows this pattern:

auto iElementFound = find (vecIntegers.cbegin () // Start of range
, vecIntegers.cend () // End of range
, NumToFind); // Element to find

// Check if find succeeded
if (iElementFound != vecIntegers.cend ())

cout << “Result: Value found!” << endl;

find_if() is similar and requires you to supply a unary predicate (a unary function that
returns true or false) as the third parameter.

Usage of STL Algorithms 547

23

ptg7987094

auto iEvenNumber = find_if (vecIntegers.cbegin () // Start of range
, vecIntegers.cend () // End of range

, [](int element) { return (element % 2) == 0; });

if (iEvenNumber != vecIntegers.cend ())
cout << “Result: Value found!” << endl;

Thus, both find functions return an iterator, which you need to compare against the
end() or cend() of the container to verify the success of the find operation. If this check
is successful, you can use this iterator further. Listing 23.1 demonstrates the usage of
find() to locate a value in a vector, and find_if() to locate the first even value.

LISTING 23.1 Using find() to Locate an Integer Value in a vector, find_if to Locate
the First Even Number Given an Unary Predicate in a Lambda Expression

0: #include <iostream>
1: #include <algorithm>
2: #include <vector>
3:
4: int main()
5: {
6: using namespace std;
7: vector<int> vecIntegers;
8:
9: // Inserting sample values -9 to 9
10: for (int SampleValue = -9; SampleValue < 10; ++ SampleValue)
11: vecIntegers.push_back (SampleValue);
12:
13: cout << “Enter number to find in collection: “;
14: int NumToFind = 0;
15: cin >> NumToFind;
16:
17: auto iElementFound = find (vecIntegers.cbegin () // Start of range
18: , vecIntegers.cend () // End of range
19: , NumToFind); // Element to find
20:
21: // Check if find succeeded
22: if (iElementFound != vecIntegers.cend ())
23: cout << “Result: Value “ << *iElementFound << “ found!” << endl;
24: else
25: cout << “Result: No element contains value “ << NumToFind << endl;
26:
27: cout << “Finding the first even number using find_if: “ << endl;
28:
29: auto iEvenNumber = find_if (vecIntegers.cbegin () // Start of range
30: , vecIntegers.cend () // End of range
31: , [](int element) { return (element % 2) == 0; });
32:

548 LESSON 23: STL Algorithms

ptg7987094

33: if (iEvenNumber != vecIntegers.cend ())
34: {
35: cout << “Number ‘“ << *iEvenNumber << “‘ found at position [“;
36: cout << distance (vecIntegers.cbegin (), iEvenNumber);
37: cout << “]” << endl;
38: }
39:
40: return 0;
41: }

Output ▼

Enter number to find in collection: 7
Result: Value 7 found!
Finding the first even number using find_if:
Number ‘-8’ found at position [1]

Next run:

Enter number to find in collection: 2011
Result: No element contains value 2011
Finding the first even number using find_if:
Number ‘-8’ found at position [1]

Analysis ▼

main() starts with creating a vector of integers that is initialized to values in the range of
–9 to 9. You use find() in Lines 17–19 to find the number entered by the user. The use
of find_if() to locate the first even number given the range is shown in Lines 29–31.
Line 31 is the unary predicate programmed as a lambda expression. This lambda expres-
sion returns true when element is divisible by 2.

Usage of STL Algorithms 549

23

Note how Listing 23.1 always checks the iterator returned by
find() or find_if() for validity against cend(). This check
should never be skipped, as it indicates the success of the
find() operation, which should not be taken for granted.

CAUTION

Listing 17.5 in Lesson 17, “STL Dynamic Array Classes,” also
demonstrates the use of std::distance in Line 21 to determine
the offset of the found element from the start of the vector.

TIP

ptg7987094

Counting Elements Given a Value or a Condition
std::count() and count_if() are algorithms that help in counting elements given a
range. std::find()helps you count the number of elements that match a value (tested
via equality operator==):

size_t nNumZeroes = count (vecIntegers.begin (),vecIntegers.end (),0);
cout << “Number of instances of ‘0’: “ << nNumZeroes << endl << endl;

std::count_if() helps you count the number of elements that fulfill a unary predicate
supplied as a parameter (which can be a function object or a lambda expression):

// Unary predicate:
template <typename elementType>
bool IsEven (const elementType& number)
{

return ((number % 2) == 0); // true, if even
}
...
// Use the count_if algorithm with the unary predicate IsEven:
size_t nNumEvenElements = count_if (vecIntegers.begin (),

vecIntegers.end (), IsEven <int>);
cout << “Number of even elements: “ << nNumEvenElements << endl;

The code in Listing 23.2 demonstrates the usage of these functions.

LISTING 23.2 Demonstrates the Usage of std::count() to Determine Number of
Elements with a Value and count_if() to Determine Number of Elements That Fulfill a
Condition

0: #include <algorithm>
1: #include <vector>
2: #include <iostream>
3:
4: // A unary predicate for the *_if functions
5: template <typename elementType>
6: bool IsEven (const elementType& number)
7: {
8: return ((number % 2) == 0); // true, if even
9: }
10:
11: int main ()
12: {
13: using namespace std;
14: vector <int> vecIntegers;
15:
16: cout << “Populating a vector<int> with values from -9 to 9” << endl;
17: for (int nNum = -9; nNum < 10; ++ nNum)

550 LESSON 23: STL Algorithms

ptg7987094

18: vecIntegers.push_back (nNum);
19:
20: // Use count to determine the number of ‘0’s in the vector
21: size_t nNumZeroes = count (vecIntegers.begin (),vecIntegers.end (),0);
22: cout << “Number of instances of ‘0’: “ << nNumZeroes << endl << endl;
23:
24: // Use the count_if algorithm with the unary predicate IsEven:
25: size_t nNumEvenElements = count_if (vecIntegers.begin (),
26: vecIntegers.end (), IsEven <int>);
27:
28: cout << “Number of even elements: “ << nNumEvenElements << endl;
29: cout << “Number of odd elements: “;
30: cout << vecIntegers.size () - nNumEvenElements << endl;
31:
32: return 0;
33: }

Output ▼

Populating a vector<int> with values from -9 to 9
Number of instances of ‘0’: 1

Number of even elements: 9
Number of odd elements: 10

Analysis ▼

Line 21 uses count() to determine the number of instances of 0 in the vector<int>.
Similarly, Line 25 uses count_if() to determine the number of even elements in the
vector. Note the third parameter, which is a unary predicate IsEven() defined in Lines
6–9. The number of elements in the vector that are odd is calculated by subtracting the
return of count_if() with the total number of elements contained in the vector returned
by size().

Usage of STL Algorithms 551

23

Listing 23.2 uses predicate function IsEven() in count_if(),
whereas Listing 23.1 used a lambda function doing the work of
IsEven() in find_if().

The lambda version saves lines of code, but you should remember
that if the two samples were merged, IsEven() could be used in
both find_if() and count_if(), increasing the opportunities for
reuse.

NOTE

ptg7987094

Searching for an Element or a Range in a Collection
Listing 23.1 demonstrated how you can find an element in a container. Sometimes, you
need to find a range of values or a pattern. In such situations, you should use search()
or search_n(). search() can be used to check if one range is contained in another:

auto iRange = search (vecIntegers.begin () // Start of range
, vecIntegers.end () // End of range to search in
, listIntegers.begin () // Start of range to search for
, listIntegers.end ()); // End of range to search for

search_n() can be used to check if n instances of a value placed consequently are to be
found in a container:

auto iPartialRange = search_n (vecIntegers.begin () // Start range
, vecIntegers.end () // End range
, 3 // Count of item to be searched for
, 9); // Item to search for

Both functions return an iterator to the first instance of the pattern found, and this iterator
needs to be checked against end() before it can be used. Listing 23.3 demonstrates the
usage of search() and search_n().

LISTING 23.3 Finding a Range in a Collection Using search() and search_n()

0: #include <algorithm>
1: #include <vector>
2: #include <list>
3: #include <iostream>
4: using namespace std;
5:
6: template <typename T>
7: void DisplayContents (const T& Input)
8: {
9: for(auto iElement = Input.cbegin() // auto, cbegin and cend: c++11
10: ; iElement != Input.cend()
11: ; ++ iElement)
12: cout << *iElement << ‘ ‘;
13:
14: cout << endl;
15: }
16:
17: int main ()
18: {
19: // A sample container - vector of integers - containing -9 to 9
20: vector <int> vecIntegers;

552 LESSON 23: STL Algorithms

ptg7987094

21: for (int nNum = -9; nNum < 10; ++ nNum)
22: vecIntegers.push_back (nNum);
23:
24: // Insert some more sample values into the vector
25: vecIntegers.push_back (9);
26: vecIntegers.push_back (9);
27:
28: // Another sample container - a list of integers from -4 to 4
29: list <int> listIntegers;
30: for (int nNum = -4; nNum < 5; ++ nNum)
31: listIntegers.push_back (nNum);
32:
33: cout << “The contents of the sample vector are: “ << endl;
34: DisplayContents (vecIntegers);
35:
36: cout << “The contents of the sample list are: “ << endl;
37: DisplayContents (listIntegers);
38:
39: cout << “search() for the contents of list in vector:” << endl;
40: auto iRange = search (vecIntegers.begin () // Start of range
41: , vecIntegers.end () // End range to search in
42: , listIntegers.begin () // Start range to search for
43: , listIntegers.end ()); // End range to search for
44:
45: // Check if search found a match
46: if (iRange != vecIntegers.end ())
47: {
48: cout << “Sequence in list found in vector at position: “;
49: cout << distance (vecIntegers.begin (), iRange) << endl;
50: }
51:
52: cout << “Searching {9, 9, 9} in vector using search_n(): “ << endl;
53: auto iPartialRange = search_n (vecIntegers.begin () // Start range
54: , vecIntegers.end () // End range
55: , 3 // Count of item to be searched for
56: , 9); // Item to search for
57:
58: if (iPartialRange != vecIntegers.end ())
59: {
60: cout << “Sequence {9, 9, 9} found in vector at position: “;
61: cout << distance (vecIntegers.begin (), iPartialRange) << endl;
62: }
63:
64: return 0;
65: }

Usage of STL Algorithms 553

23

ptg7987094

Output ▼

The contents of the sample vector are:
-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 9 9
The contents of the sample list are:
-4 -3 -2 -1 0 1 2 3 4
search() for the contents of list in vector:
Sequence in list found in vector at position: 5
Searching {9, 9, 9} in vector using search_n():

Analysis ▼

The sample starts with two sample containers, a vector and a list that are initially popu-
lated with sample integer values. search() is used to find the presence of the contents of
the list in vector, as shown in Line 40. As you want to search in the entire vector for
the contents of the entire list, you supply a range as returned by the iterators corre-
sponding to begin() and end() member methods of the two container classes. This actu-
ally demonstrates how well iterators connect the algorithms to the containers. The
physical characteristics of the containers that supply those iterators are of no significance
to algorithms, which search the contents of a list in a vector seamlessly as they only
work with iterators. search_n() is used in Line 53 to find the first occurrence of series
{9, 9, 9}in the vector.

Initializing Elements in a Container to a Specific
Value
fill() and fill_n() are the STL algorithms that help set the contents of a given range
to a specified value. fill() is used to overwrite the elements in a range given the bounds
of the range and the value to be inserted:

vector <int> vecIntegers (3);

// fill all elements in the container with value 9
fill (vecIntegers.begin (), vecIntegers.end (), 9);

As the name suggests, fill_n() resets a specified n number of values. It needs a starting
position, a count, and the value to fill:

fill_n (vecIntegers.begin () + 3, /*count*/ 3, /*fill value*/ -9);

Listing 23.4 demonstrates how these algorithms make initializing elements in a
vector<int> easy.

554 LESSON 23: STL Algorithms

ptg7987094

LISTING 23.4 Using fill() and fill_n() to Set Initial Values in a Container

0: #include <algorithm>
1: #include <vector>
2: #include <iostream>
3:
4: int main ()
5: {
6: using namespace std;
7:
8: // Initialize a sample vector with 3 elements
9: vector <int> vecIntegers (3);
10:
11: // fill all elements in the container with value 9
12: fill (vecIntegers.begin (), vecIntegers.end (), 9);
13:
14: // Increase the size of the vector to hold 6 elements
15: vecIntegers.resize (6);
16:
17: // Fill the three elements starting at offset position 3 with value -9
18: fill_n (vecIntegers.begin () + 3, 3, -9);
19:
20: cout << “Contents of the vector are: “ << endl;
21: for (size_t nIndex = 0; nIndex < vecIntegers.size (); ++ nIndex)
22: {
23: cout << “Element [“ << nIndex << “] = “;
24: cout << vecIntegers [nIndex] << endl;
25: }
26:
27: return 0;
28: }

Output ▼

Contents of the vector are:
Element [0] = 9
Element [1] = 9
Element [2] = 9
Element [3] = -9
Element [4] = -9
Element [5] = -9

Analysis ▼

Listing 23.4 uses the fill() and fill_n() functions to initialize the contents of the con-
tainer to two separate sets of values, as shown in Lines 12 and 18. Note the usage of the
resize() function before you filled values into the range, essentially creating elements
that were later filled with values. The fill() algorithm works on a complete range,
whereas fill_n() has the potential to work on a partial range.

Usage of STL Algorithms 555

23

ptg7987094

Using std::generate() to Initialize Elements to a
Value Generated at Runtime
Just as fill() and fill_n() functions fill the collection with a specific value, STL algo-
rithms, such as generate() and generate_n(), are used to initialize collections using
values returned by a unary function.

You can use generate() to fill a range using the return value of a generator function:

generate (vecIntegers.begin (), vecIntegers.end () // range
, rand); // generator function to be called

generate_n() is similar to generate() except that you supply the number of elements to
be assigned instead of the closing bound of a range:

generate_n (listIntegers.begin (), 5, rand);

Thus, you can use these two algorithms to initialize the contents of a container to the
contents of a file, for example, or simply to random values, as shown in Listing 23.5.

LISTING 23.5 Using generate() and generate_n() to Initialize Collections to Random
Values

0: #include <algorithm>
1: #include <vector>
2: #include <list>
3: #include <iostream>
4:
5: int main ()
6: {
7: using namespace std;
8:
9: vector <int> vecIntegers (10);
10: generate (vecIntegers.begin (), vecIntegers.end () // range
11: , rand); // generator function to be called
12:
13: cout << “Elements in the vector of size “ << vecIntegers.size ();
14: cout << “ assigned by ‘generate’ are: “ << endl << “{“;
15: for (size_t nCount = 0; nCount < vecIntegers.size (); ++ nCount)
16: cout << vecIntegers [nCount] << “ “;
17:
18: cout << “}” << endl << endl;
19:
20: list <int> listIntegers (10);
21: generate_n (listIntegers.begin (), 5, rand);
22:
23: cout << “Elements in the list of size: “ << listIntegers.size ();
24: cout << “ assigned by ‘generate_n’ are: “ << endl << “{“;

556 LESSON 23: STL Algorithms

ptg7987094

25: list <int>::const_iterator iElementLocator;
26: for (iElementLocator = listIntegers.begin ()
27: ; iElementLocator != listIntegers.end ()
28: ; ++ iElementLocator)
29: cout << *iElementLocator << ‘ ‘;
30:
31: cout << “}” << endl;
32:
33: return 0;
34: }

Output ▼

Elements in the vector of size 10 assigned by ‘generate’ are:
{41 18467 6334 26500 19169 15724 11478 29358 26962 24464 }

Elements in the list of size: 10 assigned by ‘generate_n’ are:
{5705 28145 23281 16827 9961 0 0 0 0 0 }

Analysis ▼

Listing 23.5 uses the generate function to populate all elements in the vector with a ran-
dom value supplied by the rand function. Note that the generate function accepts a
range as an input and consequently calls the specified function object rand for every ele-
ment in the range. generate_n, in comparison, accepts only the starting position. It then
invokes the specified function object‚ rand, the number of times specified by the count
parameter to overwrite the contents of that many elements. The elements in the container
that are beyond the specified offset go untouched.

Processing Elements in a Range Using for_each()
The for_each() algorithm applies a specified unary function object to every element in
the supplied range. The usage of for_each() is

unaryFunctionObjectType mReturn = for_each (start_of_range
, end_of_range
, unaryFunctionObject);

This unary function object can also be a lambda expression that accepts one parameter.

The return value indicates that for_each() returns the function object (also called func-
tor) used to process every element in the supplied range. The implication of this specifi-
cation is that using a struct or a class as a function object can help in storing state

Usage of STL Algorithms 557

23

ptg7987094

information, which you can later query when for_each() is done. This is demonstrated
by Listing 23.6, which uses the function object to display elements in a range and also
uses it to count the number of elements displayed.

LISTING 23.6 Displaying the Contents of Sequences Using for_each()

0: #include <algorithm>
1: #include <iostream>
2: #include <vector>
3: #include <string>
4: using namespace std;
5:
6: // Unary function object type invoked by for_each
7: template <typename elementType>
8: struct DisplayElementKeepCount
9: {
10: int Count;
11:
12: // Constructor
13: DisplayElementKeepCount (): Count (0) {}
14:
15: void operator () (const elementType& element)
16: {
17: ++ Count;
18: cout << element << ‘ ‘;
19: }
20: };
21:
22: int main ()
23: {
24: vector <int> vecIntegers;
25: for (int nCount = 0; nCount < 10; ++ nCount)
26: vecIntegers.push_back (nCount);
27:
28: cout << “Displaying the vector of integers: “ << endl;
29:
30: // Display the array of integers
31: DisplayElementKeepCount<int> Functor =
32: for_each (vecIntegers.begin () // Start of range
33: , vecIntegers.end () // End of range
34: , DisplayElementKeepCount<int> ());// Functor
34:
35: cout << endl;
36:
37: // Use the state stored in the return value of for_each!
38: cout << “‘“ << Functor.Count << “‘ elements were displayed” << endl;

558 LESSON 23: STL Algorithms

ptg7987094

39:
40: string Sample (“for_each and strings!”);
41: cout << “String: “ << Sample << “, length: “ << Sample.length() << endl;
42:
43: cout << “String displayed using lambda:” << endl;
44: int NumChars = 0;
45: for_each (Sample.begin()
46: , Sample.end ()
47: , [&NumChars](char c) { cout << c << ‘ ‘; ++NumChars; });
48:
49: cout << endl;
50: cout << “‘“ << NumChars << “‘ characters were displayed” << endl;
51:
52: return 0;
53: }

Output ▼

Displaying the vector of integers:
0 1 2 3 4 5 6 7 8 9
‘10’ elements were displayed
String: for_each and strings!, length: 21
String displayed using lambda:
f o r _ e a c h a n d s t r i n g s !
‘21’ characters were displayed

Analysis ▼

The code sample demonstrates the utility of for_each() and also of its characteristic to
return the function object Result that is programmed to hold information such as the
count of the number of times it was invoked. The code features two sample ranges, one
contained in a vector of integers, vecIntegers, and the other a std::string object
Sample. The sample invokes for_each() on these ranges in Lines 32 and 45, respec-
tively. The first with DisplayElementKeepCount as the unary predicate and the second
using a lambda expression. for_each() invokes the operator() for every element in the
supplied range, which in turn prints the element on the screen and increments an internal
counter. The function object is returned when for_each() is done, and the member
Count tells the number of times the object was used. This facility of storing information
(or state) in the object that is returned by the algorithm can be quite useful in practical
programming situations. for_each() in Line 45 does exactly the same as its previous
counterpart in Line 32 for a std::string, using a lambda expression instead of a func-
tion object.

Usage of STL Algorithms 559

23

ptg7987094

Performing Transformations on a Range Using
std::transform()
std::for_each() and std::transform() are quite similar in that they both invoke a
function object for every element in a source range. However, std::transform() has
two versions. The first version accepts a unary function and is popularly used to convert
a string to upper- or lowercase using functions toupper() or tolower():

string Sample (“THIS is a TEst string!”);
transform (Sample.begin () // start of source range

, Sample.end () // end of source range
, strLowerCaseCopy.begin ()// start of destination range
, tolower); // unary function

The second version accepts a binary function allowing transform() to process a pair of
elements taken from two different ranges:

// add elements in two ranges and store in a third
transform (vecIntegers1.begin () // start of source range 1

, vecIntegers1.end () // end of source range 1
, vecIntegers2.begin () // start of source range 2
, dqResultAddition.begin ()// store result in a deque
, plus <int> ()); // binary function plus

Both versions of the transform() always assign the result of the specified transforma-
tion function to a supplied destination range, unlike for_each(), which works on only a
single range. The usage of std::transform() is demonstrated in Listing 23.7.

LISTING 23.7 Using std::transform() with Unary and Binary Functions

0: #include <algorithm>
1: #include <string>
2: #include <vector>
3: #include <deque>
4: #include <iostream>
5: #include <functional>
6:
7: int main ()
8: {
9: using namespace std;
10:
11: string Sample (“THIS is a TEst string!”);
12: cout << “The sample string is: “ << Sample << endl;
13:
14: string strLowerCaseCopy;
15: strLowerCaseCopy.resize (Sample.size ());

560 LESSON 23: STL Algorithms

ptg7987094

16:
17: transform (Sample.begin () // start of source range
18: , Sample.end () // end of source range
19: , strLowerCaseCopy.begin ()// start of destination range
20: , tolower); // unary function
21:
22: cout << “Result of ‘transform’ on the string with ‘tolower’:” << endl;
23: cout << “\”” << strLowerCaseCopy << “\”” << endl << endl;
24:
25: // Two sample vectors of integers...
26: vector <int> vecIntegers1, vecIntegers2;
27: for (int nNum = 0; nNum < 10; ++ nNum)
28: {
29: vecIntegers1.push_back (nNum);
30: vecIntegers2.push_back (10 - nNum);
31: }
32:
33: // A destination range for holding the result of addition
34: deque <int> dqResultAddition (vecIntegers1.size ());
35:
36: transform (vecIntegers1.begin () // start of source range 1
37: , vecIntegers1.end () // end of source range 1
38: , vecIntegers2.begin () // start of source range 2
39: , dqResultAddition.begin ()// start of destination range
40: , plus <int> ()); // binary function
41:
42: cout << “Result of ‘transform’ using binary function ‘plus’: “ << endl;
43: cout <<endl << “Index Vector1 + Vector2 = Result (in Deque)” << endl;
44: for (size_t nIndex = 0; nIndex < vecIntegers1.size (); ++ nIndex)
45: {
46: cout << nIndex << “ \t “ << vecIntegers1 [nIndex] << “\t+ “;
47: cout << vecIntegers2 [nIndex] << “ \t = “;
48:
49: cout << dqResultAddition [nIndex] << endl;
50: }
51:
52: return 0;
53: }

Output ▼

The sample string is: THIS is a TEst string!
Result of using ‘transform’ with unary function ‘tolower’ on the string:
“this is a test string!”

Result of ‘transform’ using binary function ‘plus’:

Usage of STL Algorithms 561

23

ptg7987094

Index Vector1 + Vector2 = Result (in Deque)
0 0 + 10 = 10
1 1 + 9 = 10
2 2 + 8 = 10
3 3 + 7 = 10
4 4 + 6 = 10
5 5 + 5 = 10
6 6 + 4 = 10
7 7 + 3 = 10
8 8 + 2 = 10
9 9 + 1 = 10

Analysis ▼

The sample demonstrates both versions of std::transform(), one that works on a single
range using a unary function tolower(), as shown in Line 20, and another that works on
two ranges and uses a binary function plus(), as shown in Line 40. The first changes
the case of a string, character-by-character, to lowercase. If you use toupper() instead
of tolower(), you effect a case conversion to uppercase. The other version of
std::transform(), shown in Lines 36–40, acts on elements taken from two input ranges
(two vectors in this case) and uses a binary predicate in the form of the STL function
plus() (supplied by the header <functional>) to add them. std::transform() takes
one pair at a time, supplies it to the binary function plus, and assigns the result to an ele-
ment in the destination range—one that happens to belong to an std::deque. Note that
the change in container used to hold the result is purely for demonstration purposes. It
only displays how well iterators are used to abstract containers and their implementation
from STL algorithms; transform(), being an algorithm, deals with ranges and really
does not need to know details on the containers that implement these ranges. So, the
input ranges happened to be in vector, and the output ranges happened to be a deque,
and it all works fine—so long as the bounds that define the range (supplied as input
parameters to transform) are valid.

Copy and Remove Operations
STL supplies three prominent copy functions: copy(), copy_if(), and
copy_backward(). copy() can assign the contents of a source range into a destination
range in the forward direction:

auto iLastPos = copy (listIntegers.begin () // start source range
, listIntegers.end () // end source range
, vecIntegers.begin ());// start dest range

562 LESSON 23: STL Algorithms

ptg7987094

copy_if()copies an element only if a unary predicate supplied by you returns true:

// copy odd numbers from list into vector
copy_if (listIntegers.begin(), listIntegers.end()

, iLastPos
, [](int element){return ((element % 2) == 1);});

Usage of STL Algorithms 563

23

Starting with C++11, copy_if() is an algorithm in the std name-
space. If you are using an old or non-C++11-compliant compiler,
you might have problems using it.

copy_backward() assigns the contents to the destination range in the backward direction:

copy_backward (listIntegers.begin ()
, listIntegers.end ()
, vecIntegers.end ());

remove(), on the other hand, deletes elements in a container that matches a specified
value:

// Remove all instances of ‘0’, resize vector using erase()
auto iNewEnd = remove (vecIntegers.begin (), vecIntegers.end (), 0);
vecIntegers.erase (iNewEnd, vecIntegers.end ());

remove_if() uses a unary predicate and removes from the container those elements for
which the predicate evaluates to true:

// Remove all odd numbers from the vector using remove_if
iNewEnd = remove_if (vecIntegers.begin (), vecIntegers.end (),

[](int element) {return ((element % 2) == 1);}); //predicate

vecIntegers.erase (iNewEnd , vecIntegers.end ()); // resizing

Listing 23.8 demonstrates the usage of the copy and removal functions.

LISTING 23.8 A Sample That Demonstrates copy(), copy_if(), remove(), and
remove_if() to Copy a list into a vector and Remove 0s and Even Numbers

0: #include <algorithm>
1: #include <vector>
2: #include <list>
3: #include <iostream>
4: using namespace std;
5:

NOTE

ptg7987094

LISTING 23.8 Continued

6: template <typename T>
7: void DisplayContents(const T& Input)
8: {
9: for (auto iElement = Input.cbegin() // auto, cbegin: c++11
10: ; iElement != Input.cend() // cend() is new in C++11
11: ; ++ iElement)
12: cout << *iElement << ‘ ‘;
13:
14: cout << “| Number of elements: “ << Input.size() << endl;
15: }
16: int main ()
17: {
18: list <int> listIntegers;
19: for (int nCount = 0; nCount < 10; ++ nCount)
20: listIntegers.push_back (nCount);
21:
22: cout << “Source (list) contains:” << endl;
23: DisplayContents(listIntegers);
24:
25: // Initialize the vector to hold twice as many elements as the list
26: vector <int> vecIntegers (listIntegers.size () * 2);
27:
28: auto iLastPos = copy (listIntegers.begin () // start source range
29: , listIntegers.end () // end source range
30: , vecIntegers.begin ());// start dest range
31:
32: // copy odd numbers from list into vector
33: copy_if (listIntegers.begin(), listIntegers.end()
34: , iLastPos
35: , [](int element){return ((element % 2) == 1);});
36:
37: cout << “Destination (vector) after copy and copy_if:” << endl;
38: DisplayContents(vecIntegers);
39:
40: // Remove all instances of ‘0’, resize vector using erase()
41: auto iNewEnd = remove (vecIntegers.begin (), vecIntegers.end (), 0);
42: vecIntegers.erase (iNewEnd, vecIntegers.end ());
43:
44: // Remove all odd numbers from the vector using remove_if
45: iNewEnd = remove_if (vecIntegers.begin (), vecIntegers.end (),
46: [](int element) {return ((element % 2) == 1);}); //predicate
47:
48: vecIntegers.erase (iNewEnd , vecIntegers.end ()); // resizing
49:
50: cout << “Destination (vector) after remove, remove_if, erase:” << endl;
51: DisplayContents(vecIntegers);
52:
53: return 0;
54: }

564 LESSON 23: STL Algorithms

ptg7987094

Output ▼

Source (list) contains:
0 1 2 3 4 5 6 7 8 9 | Number of elements: 10
Destination (vector) after copy and copy_if:
0 1 2 3 4 5 6 7 8 9 1 3 5 7 9 0 0 0 0 0 | Number of elements: 20
Destination (vector) after remove, remove_if, erase:
2 4 6 8 | Number of elements: 4

Analysis ▼

The usage of copy() is shown in Line 28, where you copy the contents of the list into
the vector. copy_if() is used in Line 33, and it copies all but even numbers from the
source range listIntegers into the destination range vecIntegers starting at the itera-
tor position iLastPos returned by copy(). remove() is shown in Line 41 and is used to
rid the vecIntegers of all instances of 0. remove_if() is used in Line 45 to remove all
odd numbers.

Usage of STL Algorithms 565

23

Listing 23.8 demonstrates that both remove() and remove_if()
return an iterator that points to the new end of the container. Yet
the container vecIntegers has not been resized yet. Elements
have been deleted by the remove algorithms and other elements
have been shifted forward, but the size() has remained unal-
tered, meaning there are values at the end of the vector. To resize
the container (and this is important, else it has unwanted values
at the end), you need to use the iterator returned by remove() or
remove_if() in a subsequent call to erase(), as shown in
Lines 42 and 48.

Replacing Values and Replacing Element Given a
Condition
replace() and replace_if() are the STL algorithms that can replace elements in a col-
lection that are equivalent to a supplied value or satisfy a given condition, respectively.
replace() replaces elements based on the return value of the comparison operator (==):

cout << “Using ‘std::replace’ to replace value 5 by 8” << endl;
replace (vecIntegers.begin (), vecIntegers.end (), 5, 8);

CAUTION

ptg7987094

replace_if() expects a user-specified unary predicate that returns true for every value
that needs to be replaced:

cout << “Using ‘std::replace_if’ to replace even values by -1” << endl;
replace_if (vecIntegers.begin (), vecIntegers.end ()

, [](int element) {return ((element % 2) == 0); }, -1);

The usage of these functions is demonstrated by Listing 23.9.

LISTING 23.9 Using replace() and replace_if() to Replace Values in a Specified
Range

0: #include <iostream>
1: #include <algorithm>
2: #include <vector>
3: using namespace std;
4:
5: template <typename T>
6: void DisplayContents(const T& Input)
7: {
8: for (auto iElement = Input.cbegin() // auto, cbegin: c++11
9: ; iElement != Input.cend() // cend() is new in C++11
10: ; ++ iElement)
11: cout << *iElement << ‘ ‘;
12:
13: cout << “| Number of elements: “ << Input.size() << endl;
14: }
15: int main ()
16: {
17: vector <int> vecIntegers (6);
18:
19: // fill first 3 elements with value 8, last 3 with 5
20: fill (vecIntegers.begin (), vecIntegers.begin () + 3, 8);
21: fill_n (vecIntegers.begin () + 3, 3, 5);
22:
23: // shuffle the container
24: random_shuffle (vecIntegers.begin (), vecIntegers.end ());
25:
26: cout << “The initial contents of the vector are: “ << endl;
27: DisplayContents(vecIntegers);
28:
29: cout << endl << “Using ‘std::replace’ to replace value 5 by 8” << endl;
30: replace (vecIntegers.begin (), vecIntegers.end (), 5, 8);
31:
32: cout << “Using ‘std::replace_if’ to replace even values by -1” << endl;
33: replace_if (vecIntegers.begin (), vecIntegers.end ()
34: , [](int element) {return ((element % 2) == 0); }, -1);
35:
36: cout << endl << “Contents of the vector after replacements:” << endl;

566 LESSON 23: STL Algorithms

ptg7987094

37: DisplayContents(vecIntegers);
38:
39: return 0;
40: }

Output ▼

The initial contents of the vector are:
5 8 5 8 8 5 | Number of elements: 6

Using ‘std::replace’ to replace value 5 by 8
Using ‘std::replace_if’ to replace even values by -1

Contents of the vector after replacements:
-1 -1 -1 -1 -1 -1 | Number of elements: 6

Analysis ▼

The sample fills a vector<int> vecIntegers with sample values and then shuffles it
using the STL algorithm std::random_shuffle as shown in Line 24. Line 30 demon-
strates the usage of replace() to replace all 5s by 8s. Hence, when replace_if(), in
Line 33, replaces all even numbers with –1, the end result is that the collection has six
elements, all containing an identical value of –1, as shown in the output.

Sorting and Searching in a Sorted Collection and
Erasing Duplicates
Sorting and searching a sorted range (for sake of performance) are requirements that
come up in practical applications way too often. Very often you have an array of infor-
mation that needs to be sorted, say for presentation’s sake. You can use STL’s sort()
algorithm to sort a container:

sort (vecIntegers.begin (), vecIntegers.end ()); // ascending order

This version of sort() uses std::less<> as a binary predicate that uses operator<
implemented by the type in the vector. You can supply your own predicate to change the
sort order using an overloaded version:

sort (vecIntegers.begin (), vecIntegers.end (),
[](int lhs, int rsh) {return (lhs > rhs);}); // descending order

Usage of STL Algorithms 567

23

ptg7987094

Similarly, duplicates need to be deleted before the collection is displayed. To remove
adjacently placed repeating values, use algorithm unique():

auto iNewEnd = unique (vecIntegers.begin (), vecIntegers.end ());
vecIntegers.erase (iNewEnd, vecIntegers.end ()); // to resize

To search fast, STL provides you with binary_search() that is effective only on a sorted
container:

bool bElementFound = binary_search (vecIntegers.begin (), vecIntegers.end (),
2011);

if (bElementFound)
cout << “Element found in the vector!” << endl;

Listing 23.10 demonstrates STL algorithms std::sort() that can sort a range,
std::binary_search() that can search a sorted range, and std::unique() that elimi-
nates duplicate neighboring elements (that become neighbors after a sort() operation).

LISTING 23.10 Using sort(), binary_search(), and unique()

0: #include <algorithm>
1: #include <vector>
2: #include <string>
3: #include <iostream>
4: using namespace std;
5:
6: template <typename T>
7: void DisplayContents(const T& Input)
8: {
9: for (auto iElement = Input.cbegin() // auto, cbegin: c++11
10: ; iElement != Input.cend() // cend() is new in C++11
11: ; ++ iElement)
12: cout << *iElement << endl;
13: }
14: int main ()
15: {
16: vector<string> vecNames;
17: vecNames.push_back (“John Doe”);
18: vecNames.push_back (“Jack Nicholson”);
19: vecNames.push_back (“Sean Penn”);
20: vecNames.push_back (“Anna Hoover”);
21:
22: // insert a duplicate into the vector
23: vecNames.push_back (“Jack Nicholson”);
24:
25: cout << “The initial contents of the vector are:” << endl;
26: DisplayContents(vecNames);
27:
28: cout << “The sorted vector contains names in the order:” << endl;

568 LESSON 23: STL Algorithms

ptg7987094

29: sort (vecNames.begin (), vecNames.end ());
30: DisplayContents(vecNames);
31:
32: cout << “Searching for \”John Doe\” using ‘binary_search’:” << endl;
33: bool bElementFound = binary_search (vecNames.begin (), vecNames.end (),
34: “John Doe”);
35:
36: if (bElementFound)
37: cout << “Result: \”John Doe\” was found in the vector!” << endl;
38: else
39: cout << “Element not found “ << endl;
40:
41: // Erase adjacent duplicates
42: auto iNewEnd = unique (vecNames.begin (), vecNames.end ());
43: vecNames.erase (iNewEnd, vecNames.end ());
44:
45: cout << “The contents of the vector after using ‘unique’:” << endl;
46: DisplayContents(vecNames);
47:
48: return 0;
49: }

Output ▼

The initial contents of the vector are:
John Doe
Jack Nicholson
Sean Penn
Anna Hoover
Jack Nicholson
The sorted vector contains names in the order:
Anna Hoover
Jack Nicholson
Jack Nicholson
John Doe
Sean Penn
Searching for “John Doe” using ‘binary_search’:
Result: “John Doe” was found in the vector!
The contents of the vector after using ‘unique’:
Anna Hoover
Jack Nicholson
John Doe
Sean Penn

Analysis ▼

The preceding code first sorts the sample vector, vecNames in Line 29, before using
binary_search() in Line 33 to find John Doe in it. Similarly, std::unique() is used in

Usage of STL Algorithms 569

23

ptg7987094

Line 42 to delete the second occurrence of an adjacent duplicate. Note that unique(),
like remove(), does not resize the container. It results in values being shifted but not a
reduction in the total number of elements. To ensure that you don’t have unwanted or
unknown values at the tail end of the container, always follow a call to unique() with
vector::erase() using the iterator returned by unique(), as demonstrated by Lines 42
and 43.

570 LESSON 23: STL Algorithms

Algorithms such as binary_search() are effective only in sorted
containers. Use of this algorithm on an unsorted vector can have
undesirable consequences.

CAUTION

The usage of stable_sort() is the same as that of sort(),
which you saw earlier. stable_sort() ensures that the relative
order of the sorted elements is maintained. Maintaining relative
order comes at the cost of performance—a factor that needs to
be kept in mind, especially if the relative ordering of elements is
not essential.

Partitioning a Range
std::partition() helps partition an input range into two sections: one that satisfies a
unary predicate and another that doesn’t:

bool IsEven (const int& nNumber) // unary predicate
{

return ((nNumber % 2) == 0);
}
...
partition (vecIntegers.begin(), vecIntegers.end(), IsEven);

std::partition(), however, does not guarantee the relative order of elements within
each partition. To maintain relative order, when that is important, you should use
std::stable_partition():

stable_partition (vecIntegers.begin(), vecIntegers.end(), IsEven);

Listing 23.11 demonstrates the usage of these algorithms.

NOTE

ptg7987094

LISTING 23.11 Using partition() and stable_partition() to Partition a Range of
Integers into Even and Odd Values

0: #include <algorithm>
1: #include <vector>
2: #include <iostream>
3: using namespace std;
4:
5: bool IsEven (const int& nNumber)
6: {
7: return ((nNumber % 2) == 0);
8: }
9:
10: template <typename T>
11: void DisplayContents(const T& Input)
12: {
13: for (auto iElement = Input.cbegin() // auto, cbegin: c++11
14: ; iElement != Input.cend() // cend() is new in C++11
15: ; ++ iElement)
16: cout << *iElement << ‘ ‘;
17:
18: cout << “| Number of elements: “ << Input.size() << endl;
19: }
20: int main ()
21: {
22: vector <int> vecIntegers;
23:
24: for (int nNum = 0; nNum < 10; ++ nNum)
25: vecIntegers.push_back (nNum);
26:
27: cout << “The initial contents: “ << endl;
28: DisplayContents(vecIntegers);
29:
30: vector <int> vecCopy (vecIntegers);
31:
32: cout << “The effect of using partition():” << endl;
33: partition (vecIntegers.begin (), vecIntegers.end (), IsEven);
34: DisplayContents(vecIntegers);
35:
36: cout << “The effect of using stable_partition():” << endl;
37: stable_partition (vecCopy.begin (), vecCopy.end (), IsEven);
38: DisplayContents(vecCopy);
39:
40: return 0;
41: }

Usage of STL Algorithms 571

23

ptg7987094

Output ▼

The initial contents:
0 1 2 3 4 5 6 7 8 9 | Number of elements: 10
The effect of using partition():
0 8 2 6 4 5 3 7 1 9 | Number of elements: 10
The effect of using stable_partition():
0 2 4 6 8 1 3 5 7 9 | Number of elements: 10

Analysis ▼

The code partitions a range of integers, as contained inside vector vecIntegers, into
even and odd values. This partitioning is first done using std::partition(), as shown
in Line 33, and is done using stable_partition() in Line 37. For the sake of being able
to compare, you copy the sample range vecIntegers into vecCopy, the former parti-
tioned using partition(), and the latter using stable_partition(). The effect of using
stable_partition rather than partition is apparent in the output. stable_partition()
maintains the relative order of elements in each partition. Note that maintaining this
order comes at the price of performance that might be small, as in this case, or signifi-
cant depending on the type of object contained in the range.

572 LESSON 23: STL Algorithms

stable_partition() is slower than partition(), and therefore
you should use it only when the relative order of elements in the
container is important.

Inserting Elements in a Sorted Collection
It is important that elements inserted in a sorted collection be inserted at the correct posi-
tions. STL supplies functions, such as lower_bound() and upper_bound(), to assist in
meeting that need:

auto iMinInsertPos = lower_bound (listNames.begin(), listNames.end()
, “Brad Pitt”);

// alternatively:
auto iMaxInsertPos = upper_bound (listNames.begin(), listNames.end()

, “Brad Pitt”);

Hence, lower_bound() and upper_bound()return iterators pointing to the minimal and
the maximal positions in a sorted range where an element can be inserted without break-
ing the order of the sort.

Listing 23.12 demonstrates the usage of lower_bound() in inserting an element at the
minimal position in a sorted list of names.

NOTE

ptg7987094

LISTING 23.12 Using lower_bound() and upper_bound() to Insert in a Sorted
Collection

0: #include <algorithm>
1: #include <list>
2: #include <string>
3: #include <iostream>
4: using namespace std;
5:
6: template <typename T>
7: void DisplayContents(const T& Input)
8: {
9: for (auto iElement = Input.cbegin() // auto, cbegin: c++11
10: ; iElement != Input.cend() // cend() is new in C++11
11: ; ++ iElement)
12: cout << *iElement << endl;
13: }
14: int main ()
15: {
16: list<string> listNames;
17:
18: // Insert sample values
19: listNames.push_back (“John Doe”);
20: listNames.push_back (“Brad Pitt”);
21: listNames.push_back (“Jack Nicholson”);
22: listNames.push_back (“Sean Penn”);
23: listNames.push_back (“Anna Hoover”);
24:
25: cout << “The sorted contents of the list are: “ << endl;
26: listNames.sort ();
27: DisplayContents(listNames);
28:
29: cout << “The lowest index where \”Brad Pitt\” can be inserted is: “;
30: auto iMinInsertPos = lower_bound (listNames.begin (), listNames.end ()
31: , “Brad Pitt”);
32: cout << distance (listNames.begin (), iMinInsertPos) << endl;
33:
34: cout << “The highest index where \”Brad Pitt\” can be inserted is: “;
35: auto iMaxInsertPos = upper_bound (listNames.begin (), listNames.end ()
36: , “Brad Pitt”);
37: cout << distance (listNames.begin (), iMaxInsertPos) << endl;
38:
39: cout << endl;
40:
41: cout << “List after inserting Brad Pitt in sorted order: “ << endl;
42: listNames.insert (iMinInsertPos, “Brad Pitt”);
43:
44: DisplayContents(listNames);
45: return 0;
46: }

Usage of STL Algorithms 573

23

ptg7987094

Output ▼

The sorted contents of the list are:
Anna Hoover
Brad Pitt
Jack Nicholson
John Doe
Sean Penn
The lowest index where “Brad Pitt” can be inserted is: 1
The highest index where “Brad Pitt” can be inserted is: 2

List after inserting Brad Pitt in sorted order:
Anna Hoover
Brad Pitt
Brad Pitt
Jack Nicholson
John Doe
Sean Penn

Analysis ▼

An element can be inserted into a sorted collection at two potential positions: one is
returned by lower_bound() and is the lowest (the closest to the beginning of the collec-
tion) and another is the iterator returned by upper_bound() that is the highest (the far-
thest away from the beginning of the collection). In the case of Listing 23.12, where the
string “Brad Pitt” is inserted into the sorted collection already exists in it (inserted in
Line 20), the lower and upper bounds are different (else, they would’ve been identical).
The usage of these functions is shown in Lines 30 and 35, respectively. As the output
demonstrates, the iterator returned by lower_bound(), when used in inserting the string
into the list as shown in Line 42, results in the list keeping its sorted state. Thus, these
algorithms help you make an insertion at a point in the collection without breaking the
sorted nature of the contents. Using the iterator returned by upper_bound() would have
worked fine as well.

574 LESSON 23: STL Algorithms

ptg7987094

Summary
In this lesson, you learned one of the most important and powerful aspects of STL:
algorithms. You gained an insight into the different types of algorithms, and the samples
should have given you a clearer understanding of the algorithms application.

Q&A
Q Would I use a mutating algorithm, such as std::transform(), on an associa-

tive container, such as std::set?

A Even if it were possible, this should not be done. The contents of an associative
container should be treated as constants. This is because associative containers sort
their elements on insertion, and the relative positions of the elements play an
important role in functions such as find() and also in the efficiency of the con-
tainer. For this reason, mutating algorithms, such as std::transform(), should not
be used on STL sets.

Q I need to set the content of every element of a sequential container to a partic-
ular value. Would I use std::transform()for this activity?

A Although std::transform() could be used for this activity, fill() or fill_n() is
more suited to the task.

Summary 575

23

DO remember to use the container’s
erase() member method after using
algorithms remove(), remove_if(), or
unique() to resize the container.

DO always check the iterator returned
by find(), find_if(), search(), or
search_n() functions for validity
before using it by comparing against
the end() of the container.

DO choose stable_partition() over
partition() and stable_sort()
over sort()only when the relative order-
ing of sorted elements is important as
the stable_* versions can reduce the
performance of the application.

DON’T Don’t forget sorting a container
using sort() before calling unique() to
remove repeating adjacent values.
sort() will ensure that all elements of
a value are aligned adjacent to each
other, making unique() effective.

DON’T forget that binary_search()
should be done only on a sorted
container.

DO DON’T

ptg7987094

Q Does copy_backward() reverse the contents of the elements in the destination
container?

A No, it doesn’t. The STL algorithm copy_backward() reverses the order in which
elements are copied but not the order in which elements are stored; that is, it starts
with the end of the range and reaches the top. To reverse the contents of a collec-
tion, you should use std::reverse().

Q Should I use std::sort() on a list?

A std::sort() can be used on a list in the same way it can be used on any sequen-
tial container. However, the list needs to maintain a special property that an opera-
tion on the list does not invalidate existing iterators—a property that std::sort()
cannot guarantee to upkeep. So, for this reason, STL list supplies the sort()
algorithm in the form of the member function list::sort(), which should be
used because it guarantees that iterators to elements in the list are not invalidated
even if their relative positions in the list have changed.

Q Why is it important to use functions such as lower_bound() or upper_bound()

while inserting into a sorted range?

A These functions supply the first and the last positions, respectively, where an ele-
ment can be inserted into a sorted collection without disturbing the sort.

Workshop
The Workshop contains quiz questions to help solidify your understanding of the mater-
ial covered and exercises to provide you with experience in using what you’ve learned.
Try to answer the quiz and exercise questions before checking the answers in Appendix
D, and be certain you understand the answers before going to the next lesson

Quiz
1. You need to remove items that meet a specific condition from a list. Would you use

std::remove_if() or list::remove_if()?

2. You have a list of a class type ContactItem. How does the list::sort() function
sort items of this type in the absence of an explicitly specified binary predicate?

3. How often does the generate() STL algorithm invoke the generator() function?

4. What differentiates std::transform() from std::for_each()?

576 LESSON 23: STL Algorithms

ptg7987094

Exercises
1. Write a binary predicate that accepts strings as input arguments and returns a value

based on case-insensitive comparison.

2. Demonstrate how STL algorithms such as copy use iterators to do their functions
without needing to know the nature of the destination collections by copying
between two sequences held in two dissimilar containers.

3. You are writing an application that records the characteristics of stars that come up
on the horizon in the order in which they rise. In astronomy, the size of the star—
as well as information on their relative rise and set sequences—is important. If
you’re sorting this collection of stars on the basis of their sizes, would you use
std::sort or std::stable_sort?

Workshop 577

23

ptg7987094

This page intentionally left blank

ptg7987094

LESSON 24
Adaptive Containers:
Stack and Queue

The Standard Template Library (STL) features containers that adapt
others to simulate stack and queue behavior. Such containers that
internally use another and present a distinct behavior are called
adaptive containers.

In this lesson, you learn

n The behavioral characteristics of stacks and queues

n Using the STL stack

n Using the STL queue

n Using the STL priority_queue

ptg7987094

The Behavioral Characteristics of Stacks
and Queues
Stacks and queues are quite like arrays or lists but present a restriction on how elements
are inserted, accessed, and removed. Their behavioral characteristics are decided exactly
by the placement of elements on insertion or the position of the element that can be
erased from the container.

Stacks
Stacks are LIFO (last-in-first-out) systems where elements can be inserted or removed at
the top of the container. A stack can be visualized as a stack of plates. The last plate
added to the stack is going to be the first one taken off. Plates in the middle and at the
bottom cannot be inspected. This method of organizing elements involving “addition and
removal at the top” is illustrated by Figure 24.1.

580 LESSON 24: Adaptive Containers: Stack and Queue

Removals
(from top)

Insertions
(at top)

Element N

…

Element 2

Element 1

Element 0

FIGURE 24.1
Operations on a
stack.

This behavior of a stack of plates is simulated in the generic STL container std::stack.

To use class std::stack, include header

#include <stack>

Queues
Queues are FIFO (first-in-first-out) systems where elements can be inserted behind the
previous one, and the one inserted first gets removed first. A queue can be visualized as a
queue of people waiting for stamps at the post office—those who join the queue earlier,
leave earlier. This method of organizing elements involving “addition at the back but
removal at the front” is illustrated by Figure 24.2.

TIP

ptg7987094

FIGURE 24.2
Operations on a
queue.

Using the STL stack Class 581

24

Element
N

Element
…

Element
1

Removals
(at front)

Insertions
(at back)

Element
0

This behavior of a queue is simulated in the generic STL container std::queue.

To use class std::queue, include header

#include <queue>

Using the STL stack Class
The STL stack is a template class that needs the inclusion of header <stack>. It is a
generic class that allows insertions and removal of elements at the top and does not per-
mit any access or inspection of elements at the middle. In that sense, the std::stack is
quite similar in behavior to a stack of plates.

Instantiating the Stack
std::stack is defined by some implementations of STL as

template <
class elementType,
class Container=deque<Type>

> class stack;

The parameter elementType is the type of object that is collected by the stack. The sec-
ond template parameter Container is the stack’s default underlying container implemen-
tation class. std::deque is the default for the stack’s internal data storage and can be
replaced by std::vector or the std::list. Thus, the instantiation of a stack of integers
will look like

std::stack <int> stackInts;

If you want to create a stack of objects of any type, for instance class Tuna, you would
use the following:

std::stack <Tuna> stackTunas;

To create a stack that uses a different underlying container, use

std::stack <double, vector <double> > stackDoublesInVector;

TIP

ptg7987094

Listing 24.1 demonstrates different instantiation techniques.

LISTING 24.1 Instantiation of an STL Stack

0: #include <stack>
1: #include <vector>
2:
3: int main ()
4: {
5: using namespace std;
6:
7: // A stack of integers
8: stack <int> stackInts;
9:
10: // A stack of doubles
11: stack <double> stackDoubles;
12:
13: // A stack of doubles contained in a vector
14: stack <double, vector <double> > stackDoublesInVector;
15:
16: // initializing one stack to be a copy of another
17: stack <int> stackIntsCopy(stackInts);
18:
19: return 0;
20: }

Analysis ▼

The sample produces no output but demonstrates the template instantiation of the STL
stack. Lines 8 and 11 instantiate two stack objects to hold elements of type int and
double, respectively. Line 14 also instantiates a stack of doubles but specifies a second
template parameter—the type of collection class that the stack should use internally, a
vector. If this second template parameter is not supplied, the stack automatically
defaults to using a std::deque instead. Finally, Line 17 demonstrates that one stack
object can be constructed as a copy of another.

Stack Member Functions
The stack, which adapts another container, such as the deque, list, or vector, imple-
ments its functionality by restricting the manner in which elements can be inserted or
removed to supply a behavior that is expected strictly from a stack-like mechanism.
Table 24.1 explains the public member functions of the stack class and demonstrates
their usage for a stack of integers.

582 LESSON 24: Adaptive Containers: Stack and Queue

ptg7987094

TABLE 24.1 Member Function of a std::stack

Function Description

push Inserts an element at the top of the stack

stackInts.push (25);

pop Removes the element at the top of the stack

stackInts.pop ();

empty Tests whether the stack is empty; returns bool

if (stackInts.empty ())

DoSomething ();

size Returns the number of elements in the stack

size_t nNumElements = stackInts.size ();

top Gets a reference to the topmost element in the stack

cout << “Element at the top = “ << stackInts.top ();

As the table indicates, the public member functions of the stack expose only those meth-
ods that allow insertion and removal at positions that are compliant with a stack’s behav-
ior. That is, even though the underlying container might be a deque, a vector, or a list,
the functionality of that container has not been revealed to enforce the behavioral charac-
teristics of a stack.

Insertion and Removal at Top Using push() and pop()
Insertion of elements is done using member method stack<T>::push():

stackInts.push (25); // 25 is atop the stack

The stack by definition allows access of elements typically at the top using member
top():

cout << stackInts.top() << endl;

If you want to remove an element at the top, you can use function pop() to help you
with the same:

stackInts.pop (); // pop: removes topmost element

Listing 24.2 demonstrates inserting elements in a stack using push() and removing ele-
ments using pop().

LISTING 24.2 Working with a Stack of Integers

0: #include <stack>
1: #include <iostream>
2:

Using the STL stack Class 583

24

ptg7987094

LISTING 24.2 Continued

3: int main ()
4: {
5: using namespace std;
6: stack <int> stackInts;
7:
8: // push: insert values at top of the stack
9: cout << “Pushing {25, 10, -1, 5} on stack in that order:” << endl;
10: stackInts.push (25);
11: stackInts.push (10);
12: stackInts.push (-1);
13: stackInts.push (5);
14:
15: cout << “Stack contains “ << stackInts.size () << “ elements” << endl;
16: while (stackInts.size () != 0)
17: {
18: cout << “Popping topmost element: “ << stackInts.top() << endl;
19: stackInts.pop (); // pop: removes topmost element
20: }
21:
22: if (stackInts.empty ()) // true: due to previous pop()s
23: cout << “Popping all elements empties stack!” << endl;
24:
25: return 0;
26: }

Output ▼

Pushing {25, 10, -1, 5} on stack in that order:
Stack contains 4 elements
Popping topmost element: 5
Popping topmost element: -1
Popping topmost element: 10
Popping topmost element: 25
Popping all elements empties stack!

Analysis ▼

The sample first inserts numbers into a stack of integers, stackInts, using the
stack::push() as shown in Lines 9–13. It then proceeds to delete elements using
stack::pop(). As stack permits access to only the topmost element, an element at the
top can be accessed using member stack::top() as shown in Line 18. Elements can be
deleted from the stack one at a time using stack::pop(), as shown in Line 19. The
while loop around it ensures that the pop() operation is repeated until the stack is

584 LESSON 24: Adaptive Containers: Stack and Queue

ptg7987094

empty. As is visible from the order of the elements that were popped, the element
inserted last was popped first, demonstrating the typical LIFO behavior of a stack.

Listing 24.2 demonstrates all five member functions of the stack. Note that push_back
and insert, which are available with all STL sequential containers, used as underlying
containers by the stack class, are not available as public member functions of the stack.
Ditto for iterators that help you peek at elements that are not at the top of the container.
All that the stack exposes is the element at the top, nothing else.

Using the STL queue Class
The STL queue is a template class that requires the inclusion of the header <queue>. It is
a generic class that allows insertion only at the end and removal of elements only at the
front. A queue does not permit any access or inspection of elements at the middle; how-
ever, elements at the beginning and the end can be accessed. In a sense, the std::queue
is quite similar in behavior to a queue of people at the cashier in a supermarket!

Instantiating the Queue
std::queue is defined as

template <
class elementType,
class Container = deque<Type>

> class queue;

Here, elementType is the type of elements collected by the queue object. Container
is the type of collection that the std::queue class uses to maintain its data. The
std::list, vector, and deque are possible candidates for this template parameter,
and the deque is the default.

The simplest instantiation of a queue of integers would be the following:

std::queue <int> qIntegers;

If you want to create a queue containing elements of type double inside a std::list
(instead of a deque, which is default), use the following:

std::queue <double, list <double> > qDoublesInList;

Just like a stack, a queue can also be instantiated as a copy of another queue:

std::queue<int> qCopy(qIntegers);

Listing 24.3 demonstrates the various instantiation techniques of std::queue.

Using the STL queue Class 585

24

ptg7987094

LISTING 24.3 Instantiating an STL Queue

0: #include <queue>
1: #include <list>
2:
3: int main ()
4: {
5: using namespace std;
6:
7: // A queue of integers
8: queue <int> qIntegers;
9:
10: // A queue of doubles
11: queue <double> qDoubles;
12:
13: // A queue of doubles stored internally in a list
14: queue <double, list <double> > qDoublesInList;
15:
16: // one queue created as a copy of another
17: queue<int> qCopy(qIntegers);
18:
19: return 0;
20: }

Analysis ▼

The sample demonstrates how the generic STL class queue can be instantiated to create a
queue of integers, as shown in Line 8, or a queue for objects of type double, as shown
in Line 11. qDoublesInList, as instantiated in Line 14, is a queue in which you have
explicitly specified that the underlying container adapted by the queue to manage its
internals be a std::list, as specified by the second template parameter. In the absence
of the second template parameter, as in the first two queues, the std::deque is used as
the default underlying container for the contents of the queue.

Member Functions of a queue
The std::queue, like std::stack, also bases its implementation on an STL container
such as the vector, list, or deque. The queue exposes only those member functions that
implement the behavioral characteristics of a queue. Table 24.2 explains the member
functions using qIntegers, which Listing 24.3 demonstrates is a queue of integers.

586 LESSON 24: Adaptive Containers: Stack and Queue

ptg7987094

TABLE 24.2 Member Functions of a std::queue

Function Description

push Inserts an element at the back of the queue; that is, at the last position

qIntegers.push (10);

pop Removes the element at the front of the queue; that is, at the first position

qIntegers.pop ();

front Returns a reference to the element at the front of the queue

cout << “Element at front: “ << qIntegers.front ();

back Returns a reference to the element at the back of the queue; that is, the last
inserted element

cout << “Element at back: “ << qIntegers.back ();

empty Tests whether the queue is empty; returns a boolean value

if (qIntegers.empty ())

cout << “The queue is empty!”;

size Returns the number of elements in the queue

size_t nNumElements = qIntegers.size ();

STL queue does not feature functions such as begin() and end(), which are supplied by
most STL containers, including the underlying deque, vector, or list, as used by the
queue class. This is by intention so that the only permissible operations on the queue are
those in compliance with the queue’s behavioral characteristics.

Insertion at End and Removal at the Beginning of
queue via push() and pop()
Insertion of elements in a queue happens at the end and is done using member method
push():

qIntegers.push (5); // elements pushed are inserted at the end

Removal, on the other hand, happens at the beginning and via pop():

qIntegers.pop (); // removes element at front

Unlike the stack, the queue allows elements at both ends—that is, front and back of the
container—to be inspected:

cout << “Element at front: “ << qIntegers.front() << endl;
cout << “Element at back: “ << qIntegers.back () << endl;

Using the STL queue Class 587

24

ptg7987094

Insertion, removal, and inspection is demonstrated in Listing 24.4.

LISTING 24.4 Inserting, Removing, and Inspecting Elements in a queue of Integers

0: #include <queue>
1: #include <iostream>
2:
3: int main ()
4: {
5: using namespace std;
6: queue <int> qIntegers;
7:
8: cout << “Inserting {10, 5, -1, 20} into queue” << endl;
9: qIntegers.push (10);
10: qIntegers.push (5); // elements pushed are inserted at the end
11: qIntegers.push (-1);
12: qIntegers.push (20);
13:
14: cout << “Queue contains “ << qIntegers.size () << “ elements” << endl;
15: cout << “Element at front: “ << qIntegers.front() << endl;
16: cout << “Element at back: “ << qIntegers.back () << endl;
17:
18: while (qIntegers.size () != 0)
19: {
20: cout << “Deleting element: “ << qIntegers.front () << endl;
21: qIntegers.pop (); // removes element at front
22: }
23:
24: if (qIntegers.empty ()) // true as all elements have been pop()-ed
25: cout << “The queue is now empty!” << endl;
26:
27: return 0;
28: }

Output ▼

Inserting {10, 5, -1, 20} into queue
Queue contains 4 elements
Element at front: 10
Element at back: 20
Deleting element: 10
Deleting element: 5
Deleting element: -1
Deleting element: 20

Analysis ▼

Elements were added to qIntegers using push() that inserts them at the end (or back) of
the queue in Lines 9–12. Methods front() and back() are used to reference elements at

588 LESSON 24: Adaptive Containers: Stack and Queue

ptg7987094

the beginning and the end positions of the queue, as shown in Lines 15 and 16. The
while loop in Lines 18–22 displays the element at the beginning of the queue, before
removing it using a pop() operation at Line 21. It continues doing this until the queue is
empty. The output demonstrates that elements were erased from the queue in the same
order in which they were inserted because elements are inserted at the rear of the queue
but deleted from the front.

Using the STL Priority Queue
The STL priority_queue is a template class that also requires the inclusion of the
header <queue>. The priority_queue is different from the queue in that the element of
the highest value (or the value deemed as highest by a binary predicate) is available at
the front of the queue and queue operations are restricted to the front.

Instantiating the priority_queue Class
std::priority_queue class is defined as

template <
class elementType,
class Container=vector<Type>,

class Compare=less<typename Container::value_type>
>
class priority_queue

Here, elementType is the template parameter that conveys the type of elements to be col-
lected in the priority queue. The second template parameter tells the collection class to
be internally used by priority_queue for holding data, whereas the third parameter
allows the programmer to specify a binary predicate that helps the queue determine
the element that is at the top. In the absence of a specified binary predicate, the
priority_queue class uses the default in std::less, which compares two objects using
operator<.

The simplest instantiation of a priority_queue of integers would be

std::priority_queue <int> pqIntegers;

If you want to create a priority queue containing elements of type double inside a
std::deque:

priority_queue <int, deque <int>, greater <int> > pqIntegers_Inverse;

Just like a stack, a queue can also be instantiated as a copy of another queue:

std::priority_queue <int> pqCopy(pqIntegers);

The instantiation of a priority_queue object is demonstrated by Listing 24.5.

Using the STL Priority Queue 589

24

ptg7987094

LISTING 24.5 Instantiating an STL priority_queue

0: #include <queue>
1:
2: int main ()
3: {
4: using namespace std;
5:
6: // A priority queue of integers sorted using std::less <> (default)
7: priority_queue <int> pqIntegers;
8:
9: // A priority queue of doubles
10: priority_queue <double> pqDoubles;
11:
12: // A priority queue of integers sorted using std::greater <>
13: priority_queue <int, deque <int>, greater <int> > pqIntegers_Inverse;
14:
15: // a priority queue created as a copy of another
16: priority_queue <int> pqCopy(pqIntegers);
17:
18: return 0;
19: }

Analysis ▼

Lines 7 and 10 demonstrate the instantiation of two priority_queues for objects of type
int and double, respectively. The absence of any other template parameter results in the
usage of std::vector as the internal container of data, and the default comparison crite-
rion is provided by std::less. These queues are therefore so prioritized that the integer
of the highest value is available at the front of the priority queue. pqIntegers_Inverse,
however, supplies a deque for the second parameter as the internal container and
std::greater as the predicate. This predicate results in a queue where the smallest
number is available at the front.

The effect of using predicate std::greater<T> is explained in Listing 24.7 later in this
lesson.

Member Functions of priority_queue
The member functions front() and back(), available in the queue, are not available in
the priority_queue. Table 24.3 introduces the member functions of a priority_queue.

590 LESSON 24: Adaptive Containers: Stack and Queue

ptg7987094

TABLE 24.3 Member Functions of a std::priority_queue

Function Description

push Inserts an element into the priority queue

pqIntegers.push (10);

pop Removes the element at the top of the queue; that is, the largest element
in the queue

pqIntegers.pop ();

top Returns a reference to the largest element in the queue (which also holds
the topmost position)

cout << “The largest element in the priority queue is: “ <<
pqIntegers.top ();

empty Tests whether the priority queue is empty; returns a boolean value

if (pqIntegers.empty ())

cout << “The queue is empty!”;

size Returns the number of elements in the priority queue

size_t nNumElements = pqIntegers.size ();

As the table indicates, queue members can only be accessed using top(), which returns
the element of the highest value, evaluated using the user-defined predicate or by
std::less in the absence of one.

Insertion at the End and Removal at the Beginning
of priority_queue via push() and pop()
Insertion of elements in a priority_queue is done using member method push():

pqIntegers.push (5); // elements are placed in sorted order

Removal, on the other hand, happens at the beginning via pop():

pqIntegers.pop (); // removes element at front

The usage of priority_queue members is demonstrated by Listing 24.6.

LISTING 24.6 Working with a priority_queue Using push(), top(), and pop()

0: #include <queue>
1: #include <iostream>
2:
3: int main ()
4: {
5: using namespace std;
6:

Using the STL Priority Queue 591

24

ptg7987094

LISTING 24.6 Continued

7: priority_queue <int> pqIntegers;
8: cout << “Inserting {10, 5, -1, 20} into the priority_queue” << endl;
9: pqIntegers.push (10);
10: pqIntegers.push (5); // placed in sorted order
11: pqIntegers.push (-1);
12: pqIntegers.push (20);
13:
14: cout << “Deleting the “ << pqIntegers.size () << “ elements” << endl;
15: while (!pqIntegers.empty ())
16: {
17: cout << “Deleting topmost element: “ << pqIntegers.top () << endl;
18: pqIntegers.pop ();
19: }
20:
21: return 0;
22: }

Output ▼

Inserting {10, 5, -1, 20} into the priority_queue
Deleting the 4 elements
Deleting topmost element: 20
Deleting topmost element: 10
Deleting topmost element: 5
Deleting topmost element: -1

Analysis ▼

Listing 24.6 inserts sample integers into a priority_queue, as shown in Lines 9–12, and
then erases the element on the top/front using pop(), as shown in Line 18. The output
indicates that the element of greatest value is available at the top of the queue. Usage
of priority_queue::pop() therefore effectively deletes the element that evaluates to
having the greatest value among all elements in the container, which is also exposed as
the value at the top, via method top() shown in Line 17. Given that you have not sup-
plied a prioritization predicate, the queue has automatically resorted to sorting elements
in the descending order (highest value at the top).

The next sample, in Listing 24.7, demonstrates the instantiation of a priority_queue
with std::greater <int> as the predicate. This predicate results in the queue evaluating
the smallest number as the element with greatest value, which is then available at the
front of the priority queue.

592 LESSON 24: Adaptive Containers: Stack and Queue

ptg7987094

LISTING 24.7 Instantiating a Priority Queue That Holds the Smallest Value at the Top

0: #include <queue>
1: #include <iostream>
2:
3: int main ()
4: {
5: using namespace std;
6:
7: // Define a priority_queue object with greater <int> as predicate
8: priority_queue <int, vector <int>, greater <int> > pqIntegers;
9:
10: cout << “Inserting {10, 5, -1, 20} into the priority queue” << endl;
11: pqIntegers.push (10);
12: pqIntegers.push (5);
13: pqIntegers.push (-1);
14: pqIntegers.push (20);
15:
16: cout << “Deleting “ << pqIntegers.size () << “ elements” << endl;
17: while (!pqIntegers.empty ())
18: {
19: cout << “Deleting topmost element “ << pqIntegers.top () << endl;
20: pqIntegers.pop ();
21: }
22:
23: return 0;
24: }

Output ▼

Inserting {10, 5, -1, 20} into the priority queue
Deleting 4 elements
Deleting topmost element -1
Deleting topmost element 5
Deleting topmost element 10
Deleting topmost element 20

Analysis ▼

Most of the code and all the values supplied to the priority_queue in this sample are
intentionally the same as those in the previous sample, Listing 24.6. Yet the output dis-
plays how the two queues behave differently. This priority_queue compares the ele-
ments in it using the predicate greater <int> as shown in Line 8. As a result of this
predicate, the integer with the lowest magnitude is evaluated as greater than others and is
therefore placed at the top position. So, function top() used in Line 19 always displays
the smallest integer number in the priority_queue, one that is deleted soon after using a
pop() operation in Line 20.

Using the STL Priority Queue 593

24

ptg7987094

Thus, when elements are popped, this priority_queue pops the integers in order of
increasing magnitude.

Summary
This lesson explained the usage of the three key adaptive containers—the STL stack,
queue, and the priority_queue. These adapt sequential containers for their internal stor-
age requirements, yet via their member functions they present the behavioral characteris-
tics that make stacks and queues so unique.

Q&A
Q Can an element in the middle of a stack be modified?

A No, this would be against the behavior of a stack.

Q Can I iterate through all the elements of a queue?

A The queue does not feature iterators, and elements in a queue can be accessed only
at its ends.

Q Can STL algorithms work with adaptive containers?

A STL algorithms work using iterators. Because neither the stack nor the queue
class supplies iterators that mark the end of the ranges, the use of STL algorithms
with these containers would not be possible.

Workshop
The Workshop contains quiz questions to help solidify your understanding of the mater-
ial covered and exercises to provide you with experience in using what you’ve learned.
Try to answer the quiz and exercise questions before checking the answers in Appendix
D, and be certain you understand the answers before going to the next lesson.

Quiz
1. Can you change the behavior of the priority_queue for a certain element, such

that the one with the greatest value is popped last?

2. You have a priority_queue of class Coins. What member operator do you
need to define for the priority_queue class to present the coin with the greater
value at the top position?

3. You have a stack of class CCoins and have pushed six objects into it. Can you
access or delete the first coin inserted?

594 LESSON 24: Adaptive Containers: Stack and Queue

ptg7987094

Exercises
1. A queue of people (class CPerson) are lining up at the post office. CPerson con-

tains member attributes that hold age and gender and are defined as
class Person
{

public:
int Age;
bool IsFemale;

};

Write a binary predicate for the priority_queue that helps service older people
and women (in that order) on a priority.

2. Write a program that reverses the user’s string input using the stack class.

Workshop 595

24

ptg7987094

This page intentionally left blank

ptg7987094

LESSON 25
Working with Bit Flags
Using STL

Bits can be a very efficient way of storing settings and flags. The
Standard Template Library (STL) supplies classes that help organize
and manipulate bitwise information. This lesson introduces you to

n The bitset class

n The vector<bool>

ptg7987094

The bitset Class
std::bitset is the STL class designed for handling information in bits and bit flags.
std::bitset is not an STL container class because it cannot resize itself. This is a utility
class that is optimized for working with a sequence of bits whose length is known at
compile time.

598 LESSON 25: Working with Bit Flags Using STL

To use class std::bitset, include header:

#include <bitset>

Instantiating the std::bitset
This template class requires you to supply one template parameter that contains the num-
ber of bits the instance of the class has to manage:

bitset <4> fourBits; // 4 bits initialized to 0000

You can also initialize the bitset to a bit sequence represented in a char* string literal:

bitset <5> fiveBits (“10101”); // 5 bits 10101

Copying from one bitset while instantiating another is quite simple:

bitset <8> eightBitsCopy(eightbits);

Some instantiation techniques of the bitset class are demonstrated by Listing 25.1.

LISTING 25.1 Instantiating a std::bitset

0: #include <bitset>
1: #include <iostream>
2: #include <string>
3:
4: int main ()
5: {
6: using namespace std;
7:
8: // instantiate a bitset object
9: bitset <4> fourBits; // 4 bits initialized to 0000
10: cout << “Initial contents of fourBits: “ << fourBits << endl;
11:
12: bitset <5> fiveBits (“10101”); // 5 bits 10101
13: cout << “Initial contents of fiveBits: “ << fiveBits << endl;
14:
15: bitset <8> eightbits (255); // 8 bits initialized to long int 255

TIP

ptg7987094

LISTING 25.1 Continued

16: cout << “Initial contents of eightBits: “ << eightbits << endl;
17:
18: // instantiate one bitset as a copy of another
19: bitset <8> eightBitsCopy(eightbits);
20:
21: return 0;
22: }

Output ▼

Initial contents of fourBits: 0000
Initial contents of fiveBits: 10101
Initial contents of eightBits: 11111111

Analysis ▼

The sample demonstrates four different ways of constructing a bitset object. The
default constructor initializes the bit sequence to 0, as shown in Line 9. A C-style string
that contains the string representation of the desired bit sequence is used in Line 12. An
unsigned long that holds the decimal value of the binary sequence is used in Line 15,
and the copy constructor is used in Line 19. Note that in each of these instances, you had
to supply the number of bits that the bitset is supposed to contain as a template para-
meter. This number is fixed at compile time; it isn’t dynamic. You can’t insert more bits
into a bitset than what you specified in your code the way you can insert more ele-
ments in a vector than the size() planned at compile time.

Using std::bitset and Its Members
The bitset class supplies member functions that help perform insertions into the
bitset, set or reset contents, read the bits, or write them into a stream. It also supplies
operators that help display the contents of a bitset and perform bitwise logical opera-
tions among others.

Useful Operators Featured in std::bitset
You learned operators in Lesson 12, “Operator Types and Operator Overloading,” and
you also learned that the most important role played by operators is in increasing the
usability of a class. std::bitset provides some very useful operators, as shown in
Table 25.1, that make using it really easy. The operators are explained using the sample
bitset you learned in Listing 25.1, fourBits.

Using std::bitset and Its Members 599

25

ptg7987094

TABLE 25.1 Operators Supported by std::bitset

Operator Description

operator<< Inserts a text representation of the bit sequence into the output
stream

cout << fourBits;

operator>> Inserts a string into the bitset object

“0101” >> fourBits;

operator& Performs a bitwise AND operation

bitset <4> result (fourBits1 & fourBits2);

operator| Performs a bitwise OR operation

bitwise <4> result (fourBits1 | fourBits2);

operator^ Performs a bitwise XOR operation

bitwise <4> result (fourBits1 ^ fourBits2);

operator~ Performs a bitwise NOT operation

bitwise <4> result (~fourBits1);

operator>>= Performs a bitwise right shift

fourBits >>= (2); // Shift two bits to the right

operator<<= Performs a bitwise left shift

fourBits <<= (2); // Shift two bits to the left

operator[N] Returns a reference to the nth bit in the sequence

fourBits [2] = 0; // sets the third bit to 0

bool bNum = fourBits [2]; // reads the third bit

In addition to these, std::bitset also features operators such as |=, &=, ^=, and ~= that
help perform bitwise operations on a bitset object.

std::bitset Member Methods
Bits can hold two states—they are either set (1) or reset (0). To help manipulate the con-
tents of a bitset, you can use the member functions as listed in Table 25.2 that can help
you work with a bit, or with all the bits in a bitset.

TABLE 25.2 Member Methods of a std::bitset

Function Description

set Sets all bits in the sequence to 1

fourBits.set (); // sequence now contains: ‘1111’

set (N, val=1) Sets the Nth bit with the value as specified in val (default 1)

fourBits.set (2, 0); // sets the third bit to 0

600 LESSON 25: Working with Bit Flags Using STL

ptg7987094

TABLE 25.2 Continued

Function Description

reset Resets all bits in the sequence to 0

fourBits.reset (); // sequence now contains: ‘0000’

reset (N) Clears the Nth bit

fourBits.reset (2); // the third bit is now 0

flip Toggles all bits in the sequence

fourBits.flip (); // 0101 changes to 1010

size Returns the number of bits in the sequence

size_t NumBits = fourBits.size (); // returns 4

count Returns the number of bits that are set

size_t NumBitsSet = fourBits.count ();

size_t NumBitsReset = fourBits.size () –
fourBits.count ();

The usage of these member methods and operators is demonstrated in Listing 25.2.

LISTING 25.2 Performing Logical Operations Using a Bitset

0: #include <bitset>
1: #include <string>
2: #include <iostream>
3:
4: int main ()
5: {
6: using namespace std;
7: bitset <8> inputBits;
8: cout << “Enter a 8-bit sequence: “;
9:
10: cin >> inputBits; // store user input in bitset
11:
12: cout << “Number of 1s you supplied: “ << inputBits.count () << endl;
13: cout << “Number of 0s you supplied: “;
14: cout << inputBits.size () - inputBits.count () << endl;
15:
16: bitset <8> inputFlipped (inputBits); // copy
17: inputFlipped.flip (); // toggle the bits
18:
19: cout << “Flipped version is: “ << inputFlipped << endl;
20:
21: cout << “Result of AND, OR and XOR between the two:” << endl;
22: cout << inputBits << “ & “ << inputFlipped << “ = “;
23: cout << (inputBits & inputFlipped) << endl; // bitwise AND
24:

Using std::bitset and Its Members 601

25

ptg7987094

LISTING 25.2 Continued

25: cout << inputBits << “ | “ << inputFlipped << “ = “;
26: cout << (inputBits | inputFlipped) << endl; // bitwise OR
27:
28: cout << inputBits << “ ^ “ << inputFlipped << “ = “;
29: cout << (inputBits ^ inputFlipped) << endl; // bitwise XOR
30:
31: return 0;
32: }

Output ▼

Enter a 8-bit sequence: 10110101
Number of 1s you supplied: 5
Number of 0s you supplied: 3
Flipped version is: 01001010
Result of AND, OR and XOR between the two:
10110101 & 01001010 = 00000000
10110101 | 01001010 = 11111111
10110101 ^ 01001010 = 11111111

Analysis ▼

This interactive program demonstrates not only how easy performing bitwise operations
between two bit-sequences using std::bitset is, but also the utility of its stream opera-
tors. Shift operators (>> and <<) implemented by std::bitset made writing a bit
sequence to the screen and reading a bit sequence from the user in string format a simple
task. inputBits contains a user-supplied sequence that is fed into it in Line 10. count()
used in Line 12 tells the number of ones in the sequence, and the number of zeroes is
evaluated as the difference between size() that returns the number of bits in the bitset
and count(), as shown in Line 14. inputFlipped is at the beginning a copy of
inputBits, and then flipped using flip(), as shown in Line 17. It now contains the
sequence with individual bits flipped—that is, toggled (0s become 1s and vice versa).
The rest of the program demonstrates the result of bitwise AND, OR, and XOR opera-
tions between the two bitsets.

602 LESSON 25: Working with Bit Flags Using STL

One disadvantage of STL bitset<> is its inability to resize itself
dynamically. You can use the bitset only where the number of
bits to be stored in the sequence is known at compile time.

STL supplies the programmer with a class vector<bool> (also
called bit_vector in some implementations of STL) that over-
comes this shortcoming.

NOTE

ptg7987094

The vector<bool>
The vector<bool> is a partial specialization of the std::vector and is intended for stor-
ing boolean data. This class is able to dynamically size itself. Therefore, the programmer
does not need to know the number of boolean flags to be stored at compile time.

The vector<bool> 603

25

To use class std::vector<bool>, include header:

#include <vector>

Instantiating vector<bool>
Instantiating a vector<bool> is similar to a vector, with some convenient overloads:

vector <bool> vecBool1;

For instance, you can create a vector with 10 boolean values to start with, each initial-
ized to 1 (that is, true):

vector <bool> vecBool2 (10, true);

You can also create an object as a copy of another:

vector <bool> vecBool2Copy (vecBool2);

Some of the instantiation techniques of a vector<bool> are demonstrated by
Listing 25.3.

LISTING 25.3 The Instantiation of vector<bool>

0: #include <vector>
1:
2: int main ()
3: {
4: using namespace std;
5:
6: // Instantiate an object using the default constructor
7: vector <bool> vecBool1;
8:
9: // Initialize a vector with 10 elements with value true
10: vector <bool> vecBool2 (10, true);
11:
12: // Instantiate one object as a copy of another
13: vector <bool> vecBool2Copy (vecBool2);
14:
15: return 0;
16: }

TIP

ptg7987094

Analysis ▼

This sample presents some of the ways in which a vector<bool> object can be con-
structed. Line 7 is one that uses the default constructor. Line 10 demonstrates the cre-
ation of an object that is initialized to contain 10 boolean flags, each holding the value
true. Line 13 demonstrates how one vector<bool> can be constructed as a copy of
another.

vector<bool> Functions and Operators
The vector<bool> features the function flip() that toggles the state of the Boolean
values in the sequence, similar to the function of bitset<>::flip().

Otherwise, this class is quite similar to the std::vector in the sense that you can, for
example, even push_back flags into the sequence. The example in Listing 25.4 demon-
strates the usage of this class in further detail.

LISTING 25.4 Using the vector<bool>

0: #include <vector>
1: #include <iostream>
2: using namespace std;
3:
4: int main ()
5: {
6: vector <bool> vecBoolFlags (3); // instantiated to hold 3 bool flags
7: vecBoolFlags [0] = true;
8: vecBoolFlags [1] = true;
9: vecBoolFlags [2] = false;
10:
11: vecBoolFlags.push_back (true); // insert a fourth bool at the end
12:
13: cout << “The contents of the vector are: “ << endl;
14: for (size_t nIndex = 0; nIndex < vecBoolFlags.size (); ++ nIndex)
15: cout << vecBoolFlags [nIndex] << ‘ ‘;
16:
17: cout << endl;
18: vecBoolFlags.flip ();
19:
20: cout << “The contents of the vector are: “ << endl;
21: for (size_t nIndex = 0; nIndex < vecBoolFlags.size (); ++ nIndex)
22: cout << vecBoolFlags [nIndex] << ‘ ‘;
23:
24: cout << endl;
25:
26: return 0;
27: }

604 LESSON 25: Working with Bit Flags Using STL

ptg7987094

Output ▼

The contents of the vector are:
1 1 0 1
The contents of the vector are:
0 0 1 0

Analysis ▼

In this sample, the Boolean flags in the vector have been accessed using the operator[],
as shown in Lines 7–9, just like you’d access a regular vector. The function flip() used
in Line 18 toggles individual bit lags, essentially converting all 0s to 1s and vice versa.
Note the usage of push_back() in Line 11. Even though you initialized vecBoolFlags to
contain three flags in Line 6, you were able to add more to it dynamically at Line 11.
Adding more flags than the number specified at compile time is what you cannot do with
a std::bitset.

Summary
In this lesson, you learned about the most effective tool in handling bit sequences and bit
flags: the std::bitset class. You also gained knowledge on the vector<bool> class that
allows you to store Boolean flags—the number of which does not need to be known at
compile time.

Q&A
Q Given a situation where std::bitset and vector<bool> can both be used,

which of the two classes would you prefer to hold your binary flags?

A The bitset, as it is most suited to this requirement.

Q I have a std::bitset object called myBitSeq that contains a certain number of
stored bits. How would I determine the number of bits that are at value 0 (or
false)?

A bitset::count() supplies the number of bits at value 1. This number, when sub-
tracted from bitset::size() (which indicates the total number of bits stored),
would give you the number of 0s in the sequence.

Q Can I use iterators to access the individual elements in a vector<bool>?

A Yes. Because the vector<bool> is a partial specialization of the std::vector, iter-
ators are supported.

Q&A 605

25

ptg7987094

Q Can I specify the number of elements to be held in a vector<bool> at compile
time?

A Yes, by either specifying the number in the overloaded constructor or using
vector<bool>::resize function at a later instance.

Workshop
The Workshop contains quiz questions to help solidify your understanding of the mater-
ial covered and exercises to provide you with experience in using what you’ve learned.
Try to answer the quiz and exercise questions before checking the answers in Appendix
D, and be certain you understand the answers before going to the next lesson.

Quiz
1. Can the bitset expand its internal buffer to hold a variable number of elements?

2. Why is the bitset not classified as an STL container class?

3. Would you use the std::vector to hold a number of bits that is fixed and known
at compile time?

Exercises
1. Write a bitset class that contains four bits. Initialize it to a number, display the

result, and add it to another bitset object. (The catch: Bitsets don’t allow bitsetA =
bitsetX + bitsetY.)

2. Demonstrate how you would toggle (that is, switch) the bits in a bitset.

606 LESSON 25: Working with Bit Flags Using STL

ptg7987094

LESSON 26
Understanding Smart
Pointers

C++ programmers do not necessarily need to use plain pointer types
when managing memory on the heap (or the free store); they can make
use of smart pointers.

In this lesson, you learn

n What smart pointers are and why you need them

n How smart pointers are implemented

n Different smart pointer types

n Why you should not use the deprecated std::auto_ptr

n The C++11 Standard Library smart pointer std::unique_ptr

n Popular smart pointer libraries

ptg7987094

What Are Smart Pointers?
Very simply said, a smart pointer in C++ is a class with overloaded operators, which
behaves like a conventional pointer. Yet, it supplies additional value by ensuring proper
and timely destruction of dynamically allocated data and facilitates a well-defined object
lifecycle.

The Problem with Using Conventional (Raw) Pointers
Unlike other modern programming languages, C++ supplies full flexibility to the pro-
grammer in memory allocation, deallocation, and management. Unfortunately, this flexi-
bility is a double-edged sword. On one side it makes C++ a powerful language, but on
the other it allows the programmer to create memory-related problems, such as memory
leaks, when dynamically allocated objects are not correctly released.

For example:

CData *pData = mObject.GetData ();
/*

Questions: Is object pointed by pData dynamically allocated using new?
Who will perform delete: caller or the called?
Answer: No idea!

*/
pData->Display ();

In the preceding line of code, there is no obvious way to tell whether the memory
pointed to by pData

n Was allocated on the heap, and therefore eventually needs to be deallocated

n Is the responsibility of the caller to deallocate

n Will automatically be destroyed by the object’s destructor

Although such ambiguities can be partially solved by inserting comments and enforcing
coding practices, these mechanisms are much too loose to efficiently avoid all errors
caused by abuse of dynamically allocated data and pointers.

How Do Smart Pointers Help?
Given the problems with using conventional pointer and conventional memory manage-
ment techniques, it should be noted that the C++ programmer is not forced to use them
when he needs to manage data on the heap/free store. The programmer can choose a
smarter way to allocate and manage dynamic data by adopting the use of smart pointers
in his programs:

608 LESSON 26: Understanding Smart Pointers

ptg7987094

smart_pointer<CData> spData = mObject.GetData ();

// Use a smart pointer like a conventional pointer!
spData->Display ();
(*spData).Display ();

// Don’t have to worry about de-allocation
// (the smart pointer’s destructor does it for you)

Thus, smart pointers behave like conventional pointers (let’s call those raw pointers now)
but supply useful features via their overloaded operators and destructors to ensure that
dynamically allocated data is destroyed in a timely manner.

How Are Smart Pointers Implemented?
This question can for the moment can be simplified to “How did the smart pointer
spData function like a conventional pointer?” The answer is this: Smart pointer classes
overload derefencing operator (*) and member selection operator (->) to make the
programmer use them as conventional pointers. Operator overloading was discussed
previously in Lesson 12, “Operator Types and Operator Overloading.”

Additionally, to allow you to manage a type of your choice on the heap, almost all good
smart pointer classes are template classes that contain a generic implementation of their
functionality. Being templates, they are versatile and can be specialized to manage an
object of a type of your choice.

Listing 26.1 is a sample implementation of a simple smart pointer class.

LISTING 26.1 The Minimal Essential Components of a Smart Pointer Class

0: template <typename T>
1: class smart_pointer
2: {
3: private:
4: T* m_pRawPointer;
5: public:
6: smart_pointer (T* pData) : m_pRawPointer (pData) {} // constructor
7: ~smart_pointer () {delete pData;}; // destructor
8:
9: // copy constructor
10: smart_pointer (const smart_pointer & anotherSP);
11: // copy assignment operator
12: smart_pointer& operator= (const smart_pointer& anotherSP);
13:
14: T& operator* () const // dereferencing operator

How Are Smart Pointers Implemented? 609

26

ptg7987094

LISTING 26.1 Continued

15: {
16: return *(m_pRawPointer);
17: }
18:
19: T* operator-> () const // member selection operator
20: {
21: return m_pRawPointer;
22: }
23: };

Analysis ▼

The preceding smart pointer class displays the implementation of the two operators * and
->, as declared in Lines 14–17 and 19–22, that help this class to function as a “pointer,”
in the conventional sense. For instance, to use the smart pointer on an object of type
class Tuna, you would instantiate it like this:

smart_pointer <Tuna> pSmartTuna (new Tuna);
pSmartTuna->Swim();
// Alternatively:
(*pSmartDog).Swim ();

This class smart_pointer still doesn’t display or implement any functionality that would
make this pointer class very smart and make using it an advantage over using a conven-
tional pointer. The constructor, as shown in Line 7, accepts a pointer that is saved as the
internal pointer object in the smart pointer class. The destructor frees this pointer, allow-
ing for automatic memory release.

610 LESSON 26: Understanding Smart Pointers

The implementation that makes a smart pointer really “smart” is
the implementation of the copy constructor, the assignment opera-
tor, and the destructor. They determine the behavior of the smart
pointer object when it is passed across functions, when it is
assigned, or when it goes out of scope (that is, gets destructed).
So, before looking at a complete smart pointer implementation,
you should understand some smart pointer types.

Types of Smart Pointers
The management of the memory resource (that is, the ownership model implemented) is
what sets smart pointer classes apart. Smart pointers decide what they do with the
resource when they are copied and assigned to. The simplest implementations often

NOTE

ptg7987094

result in performance issues, whereas the fastest ones might not suit all applications. In
the end, it is for the programmer to understand how a smart pointer functions before she
decides to use it in her application.

Classification of smart pointers is actually a classification of their memory resource man-
agement strategies. These are

n Deep copy

n Copy on Write (COW)

n Reference counted

n Reference linked

n Destructive copy

Let’s take a brief look into each of these strategies before studying the smart pointer sup-
plied by the C++ standard library—the std::unique_ptr.

Deep Copy
In a smart pointer that implements deep copy, every smart pointer instance holds a com-
plete copy of the object that is being managed. Whenever the smart pointer is copied, the
object pointed to is also copied (thus, deep copy). When the smart pointer goes out of
scope, it releases the memory it points to (via the destructor).

Although the deep-copy–based smart pointer does not seem to render any value over
passing objects by value, its advantage becomes apparent in the treatment of polymor-
phic objects, as seen in the following, where it can avoid slicing:

// Example of Slicing When Passing Polymorphic Objects by Value
// Fish is a base class for Tuna and Carp, Fish::Swim() is virtual
void MakeFishSwim (Fish aFish) // note parameter type
{

aFish.Swim(); // virtual function
}

// ... Some function
Carp freshWaterFish;
MakeFishSwim (freshWaterFish); // Carp will be ‘sliced’ to Fish
// Slicing: only the Fish part of Carp is sent to MakeFishSwim()

Tuna marineFish;
MakeFishSwim(marineFish); // Slicing again

Slicing issues are resolved when the programmer chooses a deep-copy smart pointer, as
shown in Listing 26.2.

Types of Smart Pointers 611

26

ptg7987094

LISTING 26.2 Using a Deep-Copy–Based Smart Pointer to Pass Polymorphic Objects by
Their Base Types

0: template <typename T>
1: class deepcopy_smart_pointer
2: {
3: private:
4: T* m_pObject;
5: public:
6: //... other functions
7:
8: // copy constructor of the deepcopy pointer
9: deepcopy_smart_pointer (const deepcopy_smart_pointer& source)
10: {
11: // Clone() is virtual: ensures deep copy of Derived class object
12: m_pObject = source->Clone ();
13: }
14:
15: // copy assignment operator
16: deepcopy_smart_pointer& operator= (const deepcopy_smart_pointer& source)
17: {
18: if (m_pObject)
19: delete m_pObject;
20:
21: m_pObject = source->Clone ();
22: }
23:
24: };

Analysis ▼

As you can see, deepcopy_smart_pointer implements a copy constructor in Lines 9–13
that allows a deep copy of the polymorphic object via a Clone() function that the object
needs to implement. Similarly, it also implements a copy assignment operator in Lines
16–22. For the sake of simplicity, it is taken for granted in this example that the virtual
function implemented by the base class Fish is called Clone. Typically, smart pointers
that implement deep-copy models have this function supplied as either a template para-
meter or a function object.

Thus, when the smart pointer itself is passed as a pointer to base class type Fish:

deepcopy_smart_ptr<Carp> freshWaterFish(new Carp);
MakeFishSwim (freshWaterFish); // Carp will not be ‘sliced’

The deep-copy implemented in the smart pointer’s constructor kicks in to ensure that the
object being passed is not sliced, even though syntactically only the base part of it is
required by the destination function MakeFishSwim().

612 LESSON 26: Understanding Smart Pointers

ptg7987094

The disadvantage of the deep-copy–based mechanism is performance. This might not be
a factor for some applications, but for many others it might inhibit the programmer from
using a smart pointer for his application. Instead, he might simply pass a base type
pointer (conventional pointer, Fish*) to functions such as MakeFishSwim(). Other pointer
types try to address this performance issue in various ways.

Copy on Write Mechanism
Copy on Write (COW as it is popularly called) attempts to optimize the performance of
deep-copy smart pointers by sharing pointers until the first attempt at writing to the
object is made. On the first attempt at invoking a non-const function, a COW pointer
typically creates a copy of the object on which the non-const function is invoked,
whereas other instances of the pointer continue sharing the source object.

COW has its fair share of fans. For those that swear by COW, implementing operators
(*) and (->) in their const and non-const versions is key to the functionality of the
COW pointer. The latter creates a copy.

The point is that when you chose a pointer implementation that follows the COW philos-
ophy, be sure that you understand the implementation details before you proceed to use
such an implementation. Otherwise, you might land in situations where you have a copy
too few or a copy too many.

Reference-Counted Smart Pointers
Reference counting in general is a mechanism that keeps a count of the number of users
of an object. When the count reduces to zero, the object is released. So, reference count-
ing makes a very good mechanism for sharing objects without having to copy them. If
you have ever worked with a Microsoft technology called COM, the concept of reference
counting would have definitely crossed your path on at least one occasion.

Such smart pointers, when copied, need to have the reference count of the object in
question incremented. There are at least two popular ways to keep this count:

n Reference count maintained in the object being pointed to

n Reference count maintained by the pointer class in a shared object

The first variant where the reference count is maintained in the object is called intrusive
reference counting because the object needs to be modified. The object in this case main-
tains, increments, and supplies the reference count to any smart pointer class that man-
ages it. Incidentally, this is the approach chosen by COM. The second variant where the
reference count is maintained in a shared object is a mechanism where the smart pointer

Types of Smart Pointers 613

26

ptg7987094

class can keep the reference count on the free store (a dynamically allocated integer, for
example) and when copied, the copy constructor increments this value.

Therefore, the reference-counting mechanism makes it pertinent that the programmer
works with the smart pointers only when using the object. A smart pointer managing the
object and a raw pointer pointing to it is a bad idea because the smart pointer (smartly)
releases the object when the count maintained by it goes down to zero, but the raw
pointer continues pointing to the part of the memory that no longer belongs to your
application. Similarly, reference counting can cause issues peculiar to their situation:
Two objects that hold a pointer to each other are never released because their cyclic
dependency holds their reference counts at a minimum of 1.

Reference-Linked Smart Pointers
Reference-linked smart pointers are ones that don’t proactively count the number of ref-
erences using the object; rather, they just need to know when the number comes down to
zero so that the object can be released.

They are called reference-linked because their implementation is based on a double-
linked list. When a new smart pointer is created by copying an existing one, it is
appended to the list. When a smart pointer goes out of scope or is destroyed, the destruc-
tor de-indexes the smart pointer from this list. Reference linking also suffers from the
problem caused by cyclic dependency, as applicable to reference-counted pointers.

Destructive Copy
Destructive copy is a mechanism where a smart pointer, when copied, transfers complete
ownership of the object being handled to the destination and resets itself:

destructive_copy_smartptr <SampleClass> pSmartPtr (new SampleClass ());

SomeFunc (pSmartPtr); // Ownership transferred to SomeFunc
// Don’t use pSmartPtr in the caller any more!

Although this mechanism is obviously not intuitive to use, the advantage supplied by
destructive copy smart pointers is that they ensure that at any point in time, only one
active pointer points to an object. So, they make good mechanisms for returning pointers
from functions, and are of use in scenarios where you can use their “destructive” proper-
ties to your advantage.

The implementation of destructive copy pointers deviates from standard, recom-
mended C++ programming techniques, as shown in Listing 26.3.

614 LESSON 26: Understanding Smart Pointers

ptg7987094

Types of Smart Pointers 615

26

std::auto_ptr is by far the most popular (or notorious, depend-
ing on how you look at it) pointer that follows the principles of
destructive copy. Such a smart pointer is useless after it has
been passed to a function or copied into another.

std::auto_ptr has been deprecated in C++11. Instead, you
should use std::unique_ptr, which cannot be passed by value
due to its private copy constructor and copy assignment operator.
It can only be passed as a reference argument.

LISTING 26.3 A Sample Destructive Copy Smart Pointer

0: template <typename T>
1: class destructivecopy_pointer
2: {
3: private:
4: T* pObject;
5: public:
6: destructivecopy_pointer(T* pInput):pObject(pInput) {}
7: ~destructivecopy_pointer() { delete pObject; }
8:
9: // copy constructor
10: destructivecopy_pointer(destructivecopy_pointer& source)
11: {
12: // Take ownership on copy
13: pObject = source.pObject;
14:
15: // destroy source
16: source.pObject = 0;
17: }
18:
19: // copy assignment operator
20: destructivecopy_pointer& operator= (destructivecopy_pointer& rhs)
21: {
22: if (pObject != source.pObject)
23: {
24: delete pObject;
25: pObject = source.pObject;
26: source.pObject = 0;
27: }
28: }
29: };
30:
31: int main()
32: {
33: destructivecopy_pointer<int> pNumber (new int);

CAUTION

ptg7987094

LISTING 26.3 Continued

34: destructivecopy_pointer<int> pCopy = pNumber;
35:
36: // pNumber is now invalid
37: return 0;
38: }

Analysis ▼

Listing 26.3 describes the most important part of the implementation of a destructive-
copy–based smart pointer. Lines 10–17 and Lines 20–28 contain the copy constructor
and the copy assignment operator, respectively. These functions invalidate the source
when making a copy; that is, the copy constructor sets the pointer contained by the
source to NULL, after copying it, therefore justifying the name destructive copy.
The assignment operator does the same thing. Thus, pNumber is actually invalidated in
Line 34 when it is assigned to another pointer. This behavior is counterintuitive to the
act of assignment.

616 LESSON 26: Understanding Smart Pointers

The copy constructor and copy assignment operators that are criti-
cal to the implementation of destructive copy smart pointers as
shown in Listing 26.3 also attract maximum criticism. Unlike most
C++ classes, this smart pointer class cannot have the copy con-
structor and assignment operator accept const references, as it
needs to invalidate the source after copying it. This is not only
a deviation from traditional copy-constructor and assignment-
operator semantics, but also makes using the smart pointer class
counter intuitive. Few expect the copy source or the assignment
source to be damaged after a copy or assignment step. The fact
that such smart pointers destroy the source also makes them
unsuitable for use in STL containers, such as the std::vector,
or any other dynamic collection class that you might use. These
containers need to copy your content internally and end up invali-
dating the pointers.

So, for more than one reason, there are a lot of programmers who
avoid destructive copy smart pointers like the plague.

CAUTION

The auto_ptr was a destructive-copy–based smart pointer sup-
ported by the C++ Standard until now. It has finally been marked
as deprecated in C++11, and you should use std::unique_ptr
instead.

TIP

ptg7987094

C++11

Using the std::unique_ptr
std::unique_ptr is new to C++ starting with C++11, and it is slightly different from
auto_ptr in the sense that it does not allow copy or assignment.

Types of Smart Pointers 617

26

To use class std::unique_ptr, include header:

#include <memory>

The unique_ptr is a simple smart pointer similar to what’s shown in Listing 26.1, but
with a private copy constructor and assignment operator to disallow copy via passing as
an argument to a function by value, or copy via assignment. Listing 26.4 demonstrates
using one.

LISTING 26.4 Using std::unique_ptr

0: #include <iostream>
1: #include <memory> // include this to use std::unique_ptr
2: using namespace std;
3:
4: class Fish
5: {
6: public:
7: Fish() {cout << “Fish: Constructed!” << endl;}
8: ~Fish() {cout << “Fish: Destructed!” << endl;}
9:
10: void Swim() const {cout << “Fish swims in water” << endl;}
11: };
12:
13: void MakeFishSwim(const unique_ptr<Fish>& inFish)
14: {
15: inFish->Swim();
16: }
17:
18: int main()
19: {
20: unique_ptr<Fish> smartFish (new Fish);
21:
22: smartFish->Swim();
23: MakeFishSwim(smartFish); // OK, as MakeFishSwim accepts reference
24:
25: unique_ptr<Fish> copySmartFish;
26: // copySmartFish = smartFish; // error: operator= is private

TIP

ptg7987094

LISTING 26.4 Continued

27:
28: return 0;
29: }

Output ▼

Fish: Constructed!
Fish swims in water
Fish swims in water
Fish: Destructed!

Analysis ▼

Follow the construction and destruction sequence, as visible in the output. Note that even
though the object pointed to by smartFish was constructed in main(), as expected, it
was destroyed (and automatically so) even without you having invoked operator delete.
This is the behavior of unique_ptr where the pointer that goes out of scope releases the
object it owns via the destructor. Note how you are able to pass smartFish as an argu-
ment to MakeFishSwim() in Line 23. This is not a copy step as MakeFishSwim() accepts
the parameter by reference, as shown in Line 13. If you were to remove the reference
symbol & from Line 13, you would immediately encounter a compile error caused by the
private copy constructor. Similarly, assignment of one unique_ptr object to another, as
shown in Line 26, is also not permitted due to a private copy assignment operator.

In a nutshell, the unique_ptr is safer than the auto_ptr (that is now deprecated in
C++11) as it does not invalidate the source smart pointer object during a copy or assign-
ment. Yet, it allows simple memory management by releasing the object at time of
destruction.

Popular Smart Pointer Libraries
It’s pretty apparent that the version of the smart pointer shipped with the C++ Standard
Library is not going to meet every programmer’s requirements. This is precisely why
there are many smart pointer libraries out there.

Boost (www.boost.org) supplies you with some well-tested and well-documented
smart pointer classes, among many other useful utility classes. You can find further
information on Boost smart pointers and their downloads at
http://www.boost.org/libs/smart_ptr/smart_ptr.htm.

618 LESSON 26: Understanding Smart Pointers

www.boost.org
http://www.boost.org/libs/smart_ptr/smart_ptr.htm

ptg7987094

Similarly, those programming COM applications on Windows platforms should start
using the ATL framework’s effective smart pointer classes such as CComPtr and
CComQIPtr to manage their COM objects, rather than using raw interface pointers.

Summary
In this lesson, you learned how using the right smart pointers can help write code that
uses pointers, yet helps reduce allocation and object ownership–related problems. You
also learned of the different smart pointer types and that it is important to know the
behavior of a smart pointer class before adopting it in your application. You now know
that you should not use std::auto_ptr as it invalidates the source during a copy or
assignment. You learned about the newest smart pointer class available starting with
C++11, the std::unique_ptr.

Q&A
Q I need a vector of pointers. Should I choose auto_ptr as the object type to be

held in the vector?

A As a rule, you should never use std::auto_ptr. It is deprecated. A single copy or
assignment operation can render the source object unusable.

Q What two operators does a class always need to load to be called a smart
pointer class?

A The following: operator* and operator->. They help use objects of the class with
regular pointer semantics.

Q I have an application in which Class1 and Class2 hold member attributes that
point to objects of the other’s type. Should I use a reference counted pointer in
this scenario?

A Probably you wouldn’t because of the cyclic dependency that will keep the refer-
ence count from going down to zero and will consequently keep objects of the two
classes permanently in the heap.

Q How many smart pointers are there in the world?

A. Thousands. No, maybe millions. You should use only smart pointers that have a
well-documented functionality and come from a trusted source, such as Boost.

Q A string class also dynamically manages character arrays on the free store. Is
a string class therefore a smart pointer, too?

A No, it isn’t. These classes typically don’t implement both operator* and
operator-> and are therefore not classifiable as smart pointers.

Q&A 619

26

ptg7987094

Workshop
The Workshop contains quiz questions to help solidify your understanding of the mater-
ial covered and exercises to provide you with experience in using what you’ve learned.
Try to answer the quiz and exercise questions before checking the answers in Appendix
D, and be certain you understand the answers before going to the next lesson.

Quiz
1. Where would you look before writing your own smart pointer for your application?

2. Would a smart pointer slow down your application significantly?

3. Where can reference-counted smart pointers hold the reference count data?

4. Should the linked list mechanism used by reference-linked pointers be singly or
doubly linked?

Exercises
1. BUG BUSTER: Point out the bug in this code:

std::auto_ptr<SampleClass> pObject (new SampleClass ());
std::auto_ptr<SampleClass> pAnotherObject (pObject);
pObject->DoSomething ();
pAnotherObject->DoSomething();

2. Use the unique_ptr class to instantiate a Carp that inherits from Fish. Pass the
object as a Fish pointer and comment on slicing, if any.

3. BUG BUSTER: Point out the bug in this code:
std::unique_ptr<Tuna> myTuna (new Tuna);
unique_ptr<Tuna> copyTuna;
copyTuna = myTuna;

620 LESSON 26: Understanding Smart Pointers

ptg7987094

LESSON 27
Using Streams for
Input and Output

You have actually been using streams all through this book, starting with
Lesson 1, “Getting Started,” in which you displayed “Hello World” on the
screen using std::cout. It’s time to give this part of C++ its due atten-
tion and learn streams from a practical point of view. In this lesson, you
find out

n What streams are and how they are used

n How to write to and read from files using streams

n Useful C++ stream operations

ptg7987094

Concept of Streams
You are developing a program that reads from the disk, writes data to the display, reads
user input from the keyboard, and saves data on the disk. Wouldn’t it be useful if you
could treat all read activities and write activities using similar patterns irrespective of
what device or location the data is coming from or going to? This is exactly what C++
streams offer you!

C++ streams are a generic implementation of read and write (in other words, input and
output) logic that enables you to use certain consistent patterns toward reading or writing
data. These patterns are consistent irrespective of whether you are reading data from the
disk or the keyboard or whether you are writing to the display or back to the disk. You
just need to use the right stream class, and the implementation within the class takes care
of device- and OS-specific details.

Let’s refer to one relevant line taken from your first C++ program, Listing 1.1 in Lesson
1, again:

std::cout << “Hello World!” << std::endl;

That’s right: std::cout is a stream object of class ostream for console output. To use
std::cout, you included header <iostream> that supplies this and other functionality
such as std::cin that allows you to read from a stream.

So, what do I mean when I say that streams allow consistent and device-specific access?
If you were to write “Hello World” to a text file, you would use this syntax on a file
stream object fsHW:

fsHW << “Hello World!” << endl; // “Hello World!” into a file stream

As you can see, after you’ve chosen the right stream class, writing “Hello World” to a
file isn’t too different in C++ than writing it to the display.

622 LESSON 27: Using Streams for Input and Output

operator<< used when writing into a stream is called the stream
insertion operator. You use it when writing to the display, file, and
so on.

operator>> used when writing a stream into a variable is called
the stream extraction operator. You use it when reading input from
the keyboard, file, and so on.

Going ahead, this lesson studies streams from a practical point of view.

TIP

ptg7987094

Important C++ Stream Classes
and Objects
C++ provides you with a set of standard classes and headers that help you perform
some important and frequent I/O operations. Table 27.1 is a list of classes that you use
frequently.

TABLE 27.1 Popularly Used C++ Stream Classes in the std Namespace

Class/Object Purpose

cout Standard output stream, typically redirected to the console

cin Standard input stream, typically used to read data into variables

cerr Standard output stream for errors

fstream Input and output stream class for file operations; inherits from
ofstream and ifstream

ofstream Output stream class for file operations—that is, used to create
files

ifstream Input stream class for file operations—that is, used to read files

stringstream Input and output stream class for string operations; inherits from
istringstream and ostringstream; typically used to perform
conversions from (or to) string and other types

Important C++ Stream Classes and Objects 623

27

cout, cin, and cerr are global objects of stream classes
ostream, istream, and ostream, respectively. Being global
objects, they’re initialized before main() starts.

When using a stream class, you have the option of specifying manipulators that perform
specific actions for you. std::endl is one such manipulator that you have been using
thus far to insert a newline character:

std::cout << “This lines ends here” << std::endl;

Table 27.2 demonstrates a few other such manipulator functions and flags.

TABLE 27.2 Frequently Used Manipulators in the std Namespace for Working
with Streams

Output Manipulators Purpose

endl Inserts a newline character

ends Inserts a null character

NOTE

ptg7987094

TABLE 27.2 Continued

Radix Manipulators Purpose

dec Instructs stream to interpret input or display output in
decimal

hex Instructs stream to interpret input or display output in
hexadecimal

oct Instructs stream to interpret input or display output in
octal

Floating Point
Representation
Manipulators Purpose

fixed Instructs stream to display in fixed point notation

scientific Instructs stream to display in scientific notation

<iomanip>

Manipulators Purpose

setprecision Set decimal point precision as a parameter

setw Set field width as a parameter

setfill Set fill character as a parameter

setbase Set the radix/base, akin to using dec, hex, or oct as a
parameter

setiosflag Set flags via a mask input parameter of type
std::ios_base::fmtflags

resetiosflag Restore defaults for a particular type specified by that
contained in std::ios_base::fmtflags

Using std::cout for Writing Formatted
Data to Console
std::cout used for writing to the standard output stream is possibly the most used
stream in this book this far. Yet, it’s time to revisit cout and use some of the manipula-
tors in changing the way we are able to align and display data.

Changing Display Number Formats Using std::cout
It is possible to ask cout to display an integer in hexadecimal or in octal notations.
Listing 27.1 demonstrates using cout to display an input number in various formats.

624 LESSON 27: Using Streams for Input and Output

ptg7987094

LISTING 27.1 Displaying an Integer in Decimal, Octal, and Hexadecimal Formats Using
cout and <iomanip> Flags

0: #include <iostream>
1: #include <iomanip>
2: using namespace std;
3:
4: int main()
5: {
6: cout << “Enter an integer: “;
7: int Input = 0;
8: cin >> Input;
9:
10: cout << “Integer in octal: “ << oct << Input << endl;
11: cout << “Integer in hexadecimal: “ << hex << Input << endl;
12:
13: cout << “Integer in hex using base notation: “;
14: cout<<setiosflags(ios_base::hex|ios_base::showbase|ios_base::uppercase);
15: cout << Input << endl;
16:
17: cout << “Integer after resetting I/O flags: “;
18: cout<<resetiosflags(ios_base::hex|ios_base::showbase|ios_base::uppercase);
19: cout << Input << endl;
20:
21: return 0;
22: }

Output ▼

Enter an integer: 253
Integer in octal: 375
Integer in hexadecimal: fd
Integer in hex using base notation: 0XFD
Integer after resetting I/O flags: 253

Analysis ▼

The code sample uses the manipulators presented in Table 27.2 to change the way cout
displays the same integer object Input, supplied by the user. Note how manipulators oct
and hex are used in Lines 10 and 11. In Line 14 you use setiosflags() telling it to dis-
play the numbers in hex using uppercase letters, resulting in cout displaying integer
input 253 as 0XFD. The effect of resetioflags() used in Line 18 is demonstrated by the

Using std::cout for Writing Formatted Data to Console 625

27

ptg7987094

integer being displayed by cout using decimal notation again. Another way to change the
radix used in displaying integer to decimal would be the following:

cout << dec << Input << endl; // displays in decimal

It is also possible to format the manner in which cout displays numbers such as Pi in
that you can specify the precision, which in a fixed-point notation specifies the number
of places after decimal to be shown, or you can have a number displayed using scientific
notation. This and more is demonstrated by Listing 27.2.

LISTING 27.2 Using cout to Display Pi and a Circle’s Area Using Fixed-Point and
Scientific Notations

0: #include <iostream>
1: #include <iomanip>
2: using namespace std;
3:
4: int main()
5: {
6: const double Pi = (double)22.0 / 7;
7: cout << “Pi = “ << Pi << endl;
8:
9: cout << endl << “Setting precision to 7: “ << endl;
10: cout << setprecision(7);
11: cout << “Pi = “ << Pi << endl;
12: cout << fixed << “Fixed Pi = “ << Pi << endl;
13: cout << scientific << “Scientific Pi = “ << Pi << endl;
14:
15: cout << endl << “Setting precision to 10: “ << endl;
16: cout << setprecision(10);
17: cout << “Pi = “ << Pi << endl;
18: cout << fixed << “Fixed Pi = “ << Pi << endl;
19: cout << scientific << “Scientific Pi = “ << Pi << endl;
20:
21: cout << endl << “Enter a radius: “;
22: double Radius = 0.0;
23: cin >> Radius;
24: cout << “Area of circle: “ << 2*Pi*Radius*Radius << endl;
25:
26: return 0;
27: }

Output ▼

Pi = 3.14286

Setting precision to 7:
Pi = 3.142857

626 LESSON 27: Using Streams for Input and Output

ptg7987094

Fixed Pi = 3.1428571
Scientific Pi = 3.1428571e+000

Setting precision to 10:
Pi = 3.1428571429e+000
Fixed Pi = 3.1428571429
Scientific Pi = 3.1428571429e+000

Enter a radius: 9.99
Area of circle: 6.2731491429e+002

Analysis ▼

The output demonstrates how increasing the precision to 7 in Line 10 and to 10 in Line
16 changes the display of the value of Pi. Also note how the manipulator scientific
results in the calculated area of the circle being displayed as 6.2731491429e+002.

Aligning Text and Setting Field Width Using
std::cout
One can use manipulators such as setw() to set the width of the field in characters. Any
insertion made to the stream is right-aligned in this specified width. Similarly, setfill()
can be used to determine what character fills the empty area in such a situation, as
demonstrated by Listing 27.3.

LISTING 27.3 Set the Width of a Field via setw() and the Fill Characters Using
setfill() Manipulators

0: #include <iostream>
1: #include <iomanip>
2: using namespace std;
3:
4: int main()
5: {
6: cout << “Hey - default!” << endl;
7:
8: cout << setw(35); // set field width to 25 columns
9: cout << “Hey - right aligned!” << endl;
10:
11: cout << setw(35) << setfill(‘*’);
12: cout << “Hey - right aligned!” << endl;
13:
14: cout << “Hey - back to default!” << endl;
15:
16: return 0;
17: }

Using std::cout for Writing Formatted Data to Console 627

27

ptg7987094

Output ▼

Hey - default!
Hey - right aligned!

***************Hey - right aligned!
Hey - back to default!

Analysis ▼

The output demonstrates the effect of setw(35) supplied to cout in Line 8 and
setfill(‘*’) supplied together with setw(35) in Line 11. You see that the latter results
in the free space preceding the text to be displayed to be filled with asterisks, as specified
in setfill().

Using std::cin for Input
std::cin is versatile and enables you to read input into the plain old data types, such as
the int, double, and char* C-style strings, and you can also read lines or characters
from the screen using methods such as getline().

Using std::cin for Input into a Plain Old Data Type
You can feed integers, doubles, and chars directly from the standard input via cin.
Listing 27.4 demonstrates the usage of cin in reading simple data types from the user.

LISTING 27.4 Using cin to Read Input into an int, a Floating-Point Number Using
Scientific Notation into a double, and Three Letters into a char

0: #include<iostream>
1: using namespace std;
2:
3: int main()
4: {
5: cout << “Enter an integer: “;
6: int InputInt = 0;
7: cin >> InputInt;
8:
9: cout << “Enter the value of Pi: “;
10: double Pi = 0.0;
11: cin >> Pi;
12:
13: cout << “Enter three characters separated by space: “ << endl;
14: char Char1 = ‘\0’, Char2 = ‘\0’, Char3 = ‘\0’;
15: cin >> Char1 >> Char2 >> Char3;
16:

628 LESSON 27: Using Streams for Input and Output

ptg7987094

17: cout << “The recorded variable values are: “ << endl;
18: cout << “InputInt: “ << InputInt << endl;
19: cout << “Pi: “ << Pi << endl;
20: cout << “The three characters: “ << Char1 << Char2 << Char3 << endl;
21:
22: return 0;
23: }

Output ▼

Enter an integer: 32
Enter the value of Pi: 0.314159265e1
Enter three characters separated by space:
c + +
The recorded variable values are:
InputInt: 32
Pi: 3.14159
The three characters: c++

Analysis ▼

The most interesting part about Listing 27.4 is that you entered the value of Pi using
exponential notation, and cin filled that data into double Pi. Note how you are able to
fill three character variables within a single line as shown in Line 15.

Using std::cin::get for Input into C-Style char
Buffer
Just like cin allows you to write directly into an int, you can do the same with a C-style
char array, too:

cout << “Enter a line: “ << endl;
char CStyleStr [10] = {0}; // can contain max 10 chars
cin >> CStyleStr; // Danger: user may enter more than 10 chars

When writing into a C-style string buffer, it is very important that you don’t exceed the
bounds of the buffer to avoid a crash or a security vulnerability. So, a better way of read-
ing into a C-style char buffer is this:

cout << “Enter a line: “ << endl;
char CStyleStr[10] = {0};
cin.get(CStyleStr, 9); // stop inserting at the 9th character

This safer way of inserting text into a C-style buffer is demonstrated by Listing 27.5.

Using std::cin for Input 629

27

ptg7987094

LISTING 27.5 Inserting into a C-Style Buffer Without Exceeding Its Bounds

0: #include<iostream>
1: #include<string>
2: using namespace std;
3:
4: int main()
5: {
6: cout << “Enter a line: “ << endl;
7: char CStyleStr[10] = {0};
8: cin.get(CStyleStr, 9);
9: cout << “CStyleStr: “ << CStyleStr << endl;
10:
11: return 0;
12: }

Output ▼

Enter a line:
Testing if I can cross the bounds of the buffer
CStyleStr: Testing i

Analysis ▼

As the output indicates, you have only taken the first nine characters input by the user
into the C-style buffer due to the use of cin::get as used in Line 8. This is the safest
way to deal with a C-style string.

630 LESSON 27: Using Streams for Input and Output

As far as possible, don’t use C-style strings and char arrays. Use
std::string instead of char* wherever possible.

Using std::cin for Input into a std::string
cin is quite a versatile tool, and you can even use it to scan a string from the user
directly into a std::string:

std::string Input;
cin >> Input; // stops insertion at the first space

Listing 27.6 demonstrates input using cin into a std::string.

TIP

ptg7987094

LISTING 27.6 Inserting Text into a std::string Using cin

0: #include<iostream>
1: #include<string>
2: using namespace std;
3:
4: int main()
5: {
6: cout << “Enter your name: “;
7: string Name;
8: cin >> Name;
9: cout << “Hi “ << Name << endl;
10:
11: return 0;
12: }

Output ▼

Enter your name: Siddhartha Rao
Hi Siddhartha

Analysis ▼

The output did not display my first name alone because the program was designed to. I
expected Name populated using cin in Line 8 to contain my full name as input and not
just the first name. So what happened? Apparently, cin stops insertion when it encoun-
ters the first white space.

To allow the user to enter a complete line, including spaces, you need to use getline():

string Name;
getline(cin, Name);

This usage of getline() with cin is demonstrated in Listing 27.7.

LISTING 27.7 Reading a Complete Line Input by User Using getline() and cin

0: #include<iostream>
1: #include<string>
2: using namespace std;
3:
4: int main()
5: {
6: cout << “Enter your name: “;
7: string Name;
8: getline(cin, Name);

Using std::cin for Input 631

27

ptg7987094

LISTING 27.7 Continued

9: cout << “Hi “ << Name << endl;
10:
11: return 0;
12: }

Output ▼

Enter your name: Siddhartha Rao
Hi Siddhartha Rao

Analysis ▼

getline() as shown in Line 8 did the job of ensuring that white space characters are not
skipped. The output now contains the complete line fed by the user.

Using std::fstream for File Handling
std:fstream is a class that C++ provides for (relatively) platform-independent file
access. std::fstream inherits from std::ofstream for writing a file and std::ofstream
for reading one.

In other words, std::fstream provides you with both read and write functionality.

632 LESSON 27: Using Streams for Input and Output

To use class std::fstream or its base classes, include header:

#include <fstream>

Opening and Closing a File Using open() and close()
To use an fstream, ofstream, or ifstream class, you need to open a file using method
open():

fstream myFile;
myFile.open(“HelloFile.txt”,ios_base::in|ios_base::out|ios_base::trunc);

if (myFile.is_open())
{

// do reading or writing here

myFile.close();
}

TIP

ptg7987094

open() takes two arguments: The first is the path and name of the file being opened (if
you don’t supply a path, it assumes the current directory settings for the application),
whereas the second is the mode in which the file is being opened. The modes chosen
allow the file to be created even if one exists (ios_base::trunc) and allow you to read
and write into the file (in | out).

Note the usage of is_open() to test if open() succeeded.

Using std::fstream for File Handling 633

27

Remember that closing a file stream is important to save its
contents.

There is an alternative way of opening a file stream, which is via the constructor:

fstream myFile(“HelloFile.txt”,ios_base::in|ios_base::out|ios_base::trunc);

Alternatively, if you want to open a file for writing only, use the following:

ofstream myFile(“HelloFile.txt”, ios_base::out);

If you want to open a file for reading, use this:

ifstream myFile(“HelloFile.txt”, ios_base::in);

CAUTION

Irrespective of whether you use the constructor or the member
method open(), it is recommended that you check for the suc-
cessful opening of the file via is_open() before continuing to use
the corresponding file stream object.

The various modes in which a file stream can be opened are the following:

n ios_base::app—Appends to the end of existing files rather than truncating them

n ios_base::ate—Places you at the end of the file, but you can write data anywhere
in the file

n ios_base::trunc—Causes existing files to be truncated; the default

n ios_base::binary—Creates a binary file (default is text)

n ios_base::in—Opens file for read operations only

n ios_base::out—Opens file for write operations only

TIP

ptg7987094

Creating and Writing a Text File Using open() and
operator<<
After you have opened a file stream, you can write to it using operator <<, as
Listing 27.8 demonstrates.

LISTING 27.8 Creating a New Text File and Writing Text into It Using ofstream

0: #include<fstream>
1: #include<iostream>
2: using namespace std;
3:
4: int main()
5: {
6: ofstream myFile;
7: myFile.open(“HelloFile.txt”, ios_base::out);
8:
9: if (myFile.is_open())
10: {
11: cout << “File open successful” << endl;
12:
13: myFile << “My first text file!” << endl;
14: myFile << “Hello file!”;
15:
16: cout << “Finished writing to file, will close now” << endl;
17: myFile.close();
18: }
19:
20: return 0;
21: }

Output ▼

File open successful
Finished writing to file, will close now

Content of file HelloFile.txt:

My first text file!
Hello file!

Analysis ▼

Line 7 opens the file in mode ios_base::out—that is, exclusively for writing. In Line 9
you test if open() succeeded and then proceed to write to the file stream using the inser-
tion operator << as shown in Lines 13 and 14. Finally, you close at Line 17 and return.

634 LESSON 27: Using Streams for Input and Output

ptg7987094

Using std::fstream for File Handling 635

27

Listing 27.8 demonstrates how you are able to write into a file
stream the same way as you would write to the standard output
(console) using cout.

This indicates how streams in C++ allow for a similar way of han-
dling different devices, writing text to the display via cout in the
same way one would write to a file via ofstream.

Reading a Text File Using open() and operator>>
To read a file, one can use fstream and open it using flag ios_base::in or use
ifstream. Listing 27.9 demonstrates reading the file HelloFile.txt created in
Listing 27.8.

LISTING 27.9 Reading Text from File HelloFile.txt Created in Listing 27.8

0: #include<fstream>
1: #include<iostream>
2: #include<string>
3: using namespace std;
4:
5: int main()
6: {
7: ifstream myFile;
8: myFile.open(“HelloFile.txt”, ios_base::in);
9:
10: if (myFile.is_open())
11: {
12: cout << “File open successful. It contains: “ << endl;
13: string fileContents;
14:
15: while (myFile.good())
16: {
17: getline (myFile, fileContents);
18: cout << fileContents << endl;
19: }
20:
21: cout << “Finished reading file, will close now” << endl;
22: myFile.close();
23: }
24: else
25: cout << “open() failed: check if file is in right folder” << endl;
26:
27: return 0;
28: }

NOTE

ptg7987094

Output ▼

File open successful. It contains:
My first text file!
Hello file!
Finished reading file, will close now

636 LESSON 27: Using Streams for Input and Output

As Listing 27.9 reads the text file “HelloFile.txt” created
using Listing 27.8, you either need to move that file to this pro-
ject’s working directory or merge this code into the previous one.

Analysis ▼

As always, you perform check is_open() to verify if the call to open() in Line 8 suc-
ceeded. Note the usage of the extraction operator >> in reading the contents of the file
directly into a string that is then displayed on using cout in Line 18. We use getline()
in this sample for reading input from a file stream in an exactly identical way as you
used it in Listing 27.7 to read input from the user, one complete line at a time.

Writing to and Reading from a Binary File
The actual process of writing to a binary file is not too different from what you have
learned thus far. It is important to use ios_base::binary flag as a mask when opening
the file. You typically use ofstream::write or ifstream::read as Listing 27.10 demon-
strates.

LISTING 27.10 Writing a struct to a Binary File and Reconstructing It from the Same

0: #include<fstream>
1: #include<iomanip>
2: #include<string>
3: #include<iostream>
4: using namespace std;
5:
6: struct Human
7: {
8: Human() {};
9: Human(const char* inName, int inAge, const char* inDOB) : Age(inAge)
10: {
11: strcpy(Name, inName);
12: strcpy(DOB, inDOB);
13: }
14:
15: char Name[30];

NOTE

ptg7987094

16: int Age;
17: char DOB[20];
18: };
19:
20: int main()
21: {
22: Human Input(“Siddhartha Rao”, 101, “May 1910”);
23:
24: ofstream fsOut (“MyBinary.bin”, ios_base::out | ios_base::binary);
25:
26: if (fsOut.is_open())
27: {
28: cout << “Writing one object of Human to a binary file” << endl;
29: fsOut.write(reinterpret_cast<const char*>(&Input), sizeof(Input));
30: fsOut.close();
31: }
32:
33: ifstream fsIn (“MyBinary.bin”, ios_base::in | ios_base::binary);
34:
35: if(fsIn.is_open())
36: {
37: Human somePerson;
38: fsIn.read((char*)&somePerson, sizeof(somePerson));
39:
40: cout << “Reading information from binary file: “ << endl;
41: cout << “Name = “ << somePerson.Name << endl;
42: cout << “Age = “ << somePerson.Age << endl;
43: cout << “Date of Birth = “ << somePerson.DOB << endl;
44: }
45:
46: return 0;
47: }

Output ▼

Writing one object of Human to a binary file
Reading information from binary file:
Name = Siddhartha Rao
Age = 101
Date of Birth = May 1910

Analysis ▼

In Lines 22–31, you create an instance of struct Human that contains a Name, Age, and
DOB and persist it to the disk in a binary file MyBinary.bin using ofstream. This infor-
mation is then read using another stream object of type ifstream in Lines 33– 44. The

Using std::fstream for File Handling 637

27

ptg7987094

output of attributes such as Name and so on is via the information that has been read from
the binary file. This sample also demonstrates the usage of ifstream and ofstream for
reading and writing a file using ifstream::read and ofstream::write, respectively.
Note the usage of reinterpret_cast in Line 29 to essentially force the compiler to
interpret the struct as char*. In Line 38, you use the C-style cast version of what is
used in Line 29.

638 LESSON 27: Using Streams for Input and Output

If it were not for explanation purposes, I would’ve rather persisted
struct Human with all its attributes in an XML file. XML is a text-
and markup-based storage format that allows flexibility and scala-
bility in the manner in which information can be persisted.

If struct Human were to be delivered in this version and after
delivery if you were to add new attributes to it (like NumChildren,
for instance), you would need to worry about ifstream::read
functionality being able to correctly read binary data created using
the older versions.

Using std::stringstream for String
Conversions
You have a string. It contains a string value 45 in it. How do you convert this string
value into an integer with value 45? And vice versa? One of the most useful utilities
provided by C++ is class stringstream that enables you to perform a host of conver-
sion activities.

NOTE

To use class std::stringstream, include header:

#include <sstream>

Listing 27.11 demonstrates some simple stringstream operations.

LISTING 27.11 Converting an Integer Value into a String Representation and Vice Versa
Using std::stringstream

0: #include<fstream>
1: #include<sstream>
2: #include<iostream>

TIP

ptg7987094

3: using namespace std;
4:
5: int main()
6: {
7: cout << “Enter an integer: “;
8: int Input = 0;
9: cin >> Input;
10:
11: stringstream converterStream;
12: converterStream << Input;
13: string strInput;
14: converterStream >> strInput;
15:
16: cout << “Integer Input = “ << Input << endl;
17: cout << “String gained from integer, strInput = “ << strInput << endl;
18:
19: stringstream anotherStream;
20: anotherStream << strInput;
21: int Copy = 0;
22: anotherStream >> Copy;
23:
24: cout << “Integer gained from string, Copy = “ << Copy << endl;
25:
26: return 0;
27: }

Output ▼

Enter an integer: 45
Integer Input = 45
String gained from integer, strInput = 45
Integer gained from string, Copy = 45

Analysis ▼

You ask the user to enter an integer value. You first insert this integer into the
stringstream object, as shown in Line 12, using operator<<. Then, you use the extrac-
tion operator>> in Line 14 to convert this integer into a string. After that, you use this
string as a starting point and get an integer representation Copy of the numeric value held
in string strInput.

Using std::stringstream for String Conversions 639

27

ptg7987094

Summary
This lesson taught you C++ streams from a practical perspective. You learned that you
have been using streams such as I/O streams cout and cin since the very beginning of
the book. You now know how to create simple text files and how to read or write from
them. You learned how stringstream can help you convert simple types such as integers
into strings, and vice versa.

Q&A
Q I see that I can use fstream for both writing and reading to a file, so when

should I use ofstream and ifstream?

A If your code or module needs to only be reading from a file, you should instead use
ifstream. Similarly, if it needs to only write to a file use ofstream. In both cases
fstream would work fine, but for the sake of ensuring data and code integrity, it is
better to have a restrictive policy similar to using const, which is not compulsory
either.

Q When should I use cin.get(), and when should I used cin.getline()?

A cin.getline() ensures that you capture the entire line including white spaces
entered by the user. cin.get()helps you capture user input one character at a time.

Q When should I use stringstream?

A stringstream supplies a convenient way of converting integers and other simple
types into a string and vice versa, as also demonstrated by Listing 27.11.

640 LESSON 27: Using Streams for Input and Output

DO use ifstream when you only
intend to read from a file.

DO use ofstream when you only
intend to write a file.

DO remember to check if a file
stream has opened successfully
via is_open() before inserting or
extracting from the stream.

DON’T forget to close a file stream
using method close() after you are
done using it.

DON’T forget that extracting from cin
to a string via cin >> strData; typ-
ically results in the strData containing
text until the first white space and not
the entire line.

DON’T forget that function
getline(cin, strData); fetches you
an entire line from the input stream,
including white spaces.

DO DON’T

ptg7987094

Workshop
The Workshop contains quiz questions to help solidify your understanding of the mater-
ial covered and exercises to provide you with experience in using what you’ve learned.
Try to answer the quiz and exercise questions before checking the answers in Appendix
D, and be certain you understand the answers before going to the next lesson.

Quiz
1. You need to only write to a file. What stream would you use?

2. How would you use cin to get a complete line from the input stream?

3. You need to write std::string objects to a file. Would you choose
ios_base::binary mode?

4. You opened a stream using open(). Why bother using is_open()?

Exercises
1. BUG BUSTER: Find the error in the following code:

fstream myFile;
myFile.open(“HelloFile.txt”, ios_base::out);
myFile << “Hello file!”;
myFile.close();

2. BUG BUSTER: Find the error in the following code:
ifstream MyFile(“SomeFile.txt”);
if(MyFile.is_open())
{

MyFile << “This is some text” << endl;
MyFile.close();

}

Workshop 641

27

ptg7987094

This page intentionally left blank

ptg7987094

LESSON 28
Exception Handling

The title says it all: dealing with extraordinary situations that disrupt the
flow of your program. The lessons thus far have mostly taken an exceed-
ingly positive approach, assuming that memory allocations will succeed,
files will be found, and so on. Reality is often different.

In this lesson, you learn

n What is an exception

n How to handle exceptions

n How exception handling helps you deliver stable C++ applications

ptg7987094

What Is an Exception?
Your program allocates memory, reads and writes data, saves to a file—the works. All
this executes flawlessly on your awesome development environment, and you are even
proud of the fact that your application doesn’t leak a byte, though it manages a gigabyte!
You ship your application and the customer deploys it on his landscape of a thousand
workstations. Some of his computers are 10 years old. Some have hard disks that barely
spin. It doesn’t take much time for the first complaint to reach your inbox. Some com-
plains will be about an “Access Violation,” whereas some others will quote an
“Unhandled Exception.”

There you go—“unhandled” and “exception.” Clearly, your application was doing well
inside your environment, so why all the fuss?

The fact is that the world out there is very heterogeneous. No two computers, even with
the same hardware configuration, are alike. This is because the software running on each
computer and the state the machine is in decide the amount of resources that are avail-
able at a particular time. It is therefore probable that memory allocation that worked per-
fectly in your environment fails in another environment.

Such failures are rare, yet they happen. These failures result in “exceptions.”

Exceptions disrupt the normal flow of your application. After all, if there is no memory
available, there is possibly no way your application can achieve what it set out to do. Yet,
your application can handle that exception and display a friendly error message to the
user, perform any minimal rescue operation if needed, and exit gracefully.

Handling exceptions helps you avoid those “Access Violation” or “Unhandled
Exception” screens or emails. Let’s see what tools C++ provides you for dealing with the
unexpected.

What Causes Exceptions?
Exceptions can be caused by external factors, such as a system with insufficient
resources, or by factors internal to your application, such as a pointer that is used in spite
of it containing an invalid value or a divide-by-zero error. Some modules are designed to
communicate errors by throwing exceptions to the caller.

644 LESSON 28: Exception Handling

To protect your code against exceptions, you “handle” exceptions
thereby making your code “exception safe.”

NOTE

ptg7987094

Implementing Exception Safety via try
and catch
try and catch are the most important keywords in C++ as far as implementing exception
safety goes. To make statements exception safe, you enclose them within a try block and
handle the exceptions that emerge out of the try block in the catch block:

void SomeFunc()
{

try
{

int* pNumber = new int;
*pNumber = 999;
delete pNumber;

}
catch(...) // ... catches all exceptions
{

cout << “Exception in SomeFunc(), quitting” << endl;
}

}

Using catch(...) to Handle All Exceptions
Remember in Lesson 8, “Pointers and References Explained,” that I mentioned that the
default form of new returns a valid pointer to a location in memory when it succeeds but
throws an exception when it fails. Listing 28.1 demonstrates how you can make memory
allocations exception safe using new and handle situations where the computer is not able
to allocate the memory you requested.

LISTING 28.1 Using try and catch in Ensuring Exception Safety in Memory Allocations

0: #include <iostream>
1: using namespace std;
2:
3: int main()
4: {
5: cout << “Enter number of integers you wish to reserve: “;
6: try
7: {
8: int Input = 0;
9: cin >> Input;
10:
11: // Request memory space and then return it
12: int* pReservedInts = new int [Input];
13: delete[] pReservedInts;
14: }

Implementing Exception Safety via try and catch 645

28

ptg7987094

LISTING 28.1 Continued

15: catch (...)
16: {
17: cout << “Exception encountered. Got to end, sorry!” << endl;
18: }
19: return 0;
20: }

Output ▼

Enter number of integers you wish to reserve: -1
Exception encountered. Got to end, sorry!

Analysis ▼

For this example, I used -1 as the number of integers that I wanted to reserve. This input
is ridiculous, but users do ridiculous things all the time. In the absence of the exception
handler, the program would encounter a very ugly end. But thanks to the exception han-
dler, you see that the output displays a decent message: Got to end, sorry!.

646 LESSON 28: Exception Handling

If you run the program using Visual Studio, you might also
encounter a debug-mode message as illustrated in Figure 28.1.

NOTE

FIGURE 28.1
Assertion due to
Invalid Allocation
Size.

Click Ignore to let the exception handler kick in. This is a debug-
mode message, but the exception handling helps your program
make a clean exit even in release mode.

ptg7987094

Listing 28.1 demonstrates the usage of try and catch blocks. catch() takes parameters,
just like a function does, and ... means that this catch block accepts all kinds of excep-
tions. In this case, however, we might want to specifically isolate exceptions of type
std::bad_alloc as these are thrown when new fails. Catching a specific type will help
you handle that type of problem in particular, for instance, show the user a message
telling what exactly went wrong.

Catching Exception of a Type
The exception in Listing 28.1 was thrown from the C++ Standard Library. Such excep-
tions are of a known type, and catching a particular type is better for you as you can pin-
point the reason for the exception, do better cleanup, or at least show a precise message
to the user, as Listing 28.2 does.

LISTING 28.2 Catching Exceptions of Type std::bad_alloc

0: #include <iostream>
1: #include<exception> // include this to catch exception bad_alloc
2: using namespace std;
3:
4: int main()
5: {
6: cout << “Enter number of integers you wish to reserve: “;
7: try
8: {
9: int Input = 0;
10: cin >> Input;
11:
12: // Request memory space and then return it
13: int* pReservedInts = new int [Input];
14: delete[] pReservedInts;
15: }
16: catch (std::bad_alloc& exp)
17: {
18: cout << “Exception encountered: “ << exp.what() << endl;
19: cout << “Got to end, sorry!” << endl;
20: }
21: catch(...)
22: {
23: cout << “Exception encountered. Got to end, sorry!” << endl;
24: }
25: return 0;
26: }

Implementing Exception Safety via try and catch 647

28

ptg7987094

Output ▼

Enter number of integers you wish to reserve: -1
Exception encountered: bad allocation
Got to end, sorry!

Analysis ▼

Compare the output of Listing 28.2 to that of Listing 28.1. You see that you are now able
to supply a more precise reason for the abrupt ending of the application, namely “bad
allocation.” This is because you have an additional catch block (yes, two catch blocks),
one that traps exceptions of the type catch(bad_alloc&) shown in Lines 16–20, which
is thrown by new.

648 LESSON 28: Exception Handling

In general, you can insert as many catch() blocks as you like,
one after another, depending on the exceptions you expect and
those that would help.

catch(...) as demonstrated in Listing 28.2 catches all those
exception types that have not been explicitly caught by other
catch statements.

Throwing Exception of a Type Using throw
When you caught std::bad_alloc in Listing 28.2, you actually caught an object of class
std::bad_alloc thrown by new. It is possible for you to throw an exception of your own
choosing. All you need is the keyword throw:

void DoSomething()
{

if(something_unwanted)
throw Value;

}

Let’s study the usage of throw in a custom-defined exception as demonstrated by
Listing 28.3 that divides two numbers.

LISTING 28.3 Throwing a Custom Exception at an Attempt to Divide by Zero

0: #include<iostream>
1: using namespace std;
2:
3: double Divide(double Dividend, double Divisor)

TIP

ptg7987094

4: {
5: if(Divisor == 0)
6: throw “Dividing by 0 is a crime”;
7:
8: return (Dividend / Divisor);
9: }
10:
11: int main()
12: {
13: cout << “Enter dividend: “;
14: double Dividend = 0;
15: cin >> Dividend;
16: cout << “Enter divisor: “;
17: double Divisor = 0;
18: cin >> Divisor;
19:
20: try
21: {
22: cout << “Result of division is: “ << Divide(Dividend, Divisor);
23: }
24: catch(char* exp)
25: {
26: cout << “Exception: “ << exp << endl;
27: cout << “Sorry, can’t continue!” << endl;
28: }
29:
30: return 0;
31: }

Output ▼

Enter dividend: 2011
Enter divisor: 0
Exception: Dividing by 0 is a crime
Sorry, can’t continue!

Analysis ▼

The code not only demonstrates that you are also able to catch exceptions of type char*,
as shown in Line 24, but also that you caught an exception thrown in a called function
Divide() at Line 6. Also note that you did not include all of main() within try {}; you
only include the part of it that you expect to throw. This is generally a good practice, as
exception handling can also reduce the execution performance of your code.

Implementing Exception Safety via try and catch 649

28

ptg7987094

How Exception Handling Works
In Listing 28.3, you threw an exception of type char* in function Divide() that was
caught in the catch(char*) handler in calling function main().

Where an exception is thrown, using throw, the compiler inserts a dynamic lookup for a
compatible catch(Type) that can handle this exception. The exception handling logic
first checks if the line throwing the exception is within a try block. If so, it seeks the
catch(Type) that can handle the exception of this Type. If the throw statement is not
within a try block or if there is no compatible catch() for the exception type, the excep-
tion handling logic seeks the same in the calling function. So, the exception handling
logic climbs the stack, one calling function after another, seeking a suitable catch(Type)
that can handle the exception. At each step in the stack unwinding procedure, the vari-
ables local to that function are destroyed in reverse sequence of their construction. This
is demonstrated by Listing 28.4.

LISTING 28.4 The Destruction Order of Local Objects in Event of an Exception

0: #include <iostream>
1: using namespace std;
2:
3: struct StructA
4: {
5: StructA() {cout << “Constructed a struct A” << endl; }
6: ~StructA() {cout << “Destroyed a struct A” << endl; }
7: };
8:
9: struct StructB
10: {
11: StructB() {cout << “Constructed a struct B” << endl; }
12: ~StructB() {cout << “Destroyed a struct B” << endl; }
13: };
14:
15: void FuncB() // throws
16: {
17: cout << “In Func B” << endl;
18: StructA objA;
19: StructB objB;
20: cout << “About to throw up!” << endl;
21: throw “Throwing for the heck of it”;
22: }
23:
24: void FuncA()
25: {
26: try
27: {

650 LESSON 28: Exception Handling

ptg7987094

28: cout << “In Func A” << endl;
29: StructA objA;
30: StructB objB;
31: FuncB();
32: cout << “FuncA: returning to caller” << endl;
33: }
34: catch(const char* exp)
35: {
36: cout << “FuncA: Caught exception, it says: “ << exp << endl;
37: cout << “FuncA: Handled it here, will not throw to caller” << endl;
38: // throw; // uncomment this line to throw to main()
39: }
40: }
41:
42: int main()
43: {
44: cout << “main(): Started execution” << endl;
45: try
46: {
47: FuncA();
48: }
49: catch(const char* exp)
50: {
51: cout << “Exception: “ << exp << endl;
52: }
53: cout << “main(): exiting gracefully” << endl;
54: return 0;
55: }

Output ▼

main(): Started execution
In Func A
Constructed a struct A
Constructed a struct B
In Func B
Constructed a struct A
Constructed a struct B
About to throw up!
Destroyed a struct B
Destroyed a struct A
Destroyed a struct B
Destroyed a struct A
FuncA: Caught exception, it says: Throwing for the heck of it
FuncA: Handled it here, will not throw to caller
main(): exiting gracefully

How Exception Handling Works 651

28

ptg7987094

Analysis ▼

In Listing 28.4, main() invokes FuncA() that invokes FuncB(), which throws in Line 21.
Both calling functions FuncA() and main() are exception safe as they both have a
catch(const char*) block implemented. FuncB() that throws the exception has no
catch() blocks, and hence the catch block within FuncA() at Lines 34–39 is the first
handler to the thrown exception from FuncB(), as FuncA() is the caller of FuncB(). Note
that FuncA() decided that this exception is not of a serious nature and did not propagate
it to main(). Hence, main() continues as if no problem happened. If you uncomment
Line 38, the exception is thrown to the caller of FuncB()—that is, main()receives it, too.

The output also indicates the order in which objects are created (the same order as you
coded their instantiations) and the order in which they’re destroyed as soon as an excep-
tion is thrown (in the reverse order of instantiations). This happens not only in FuncB()
that threw the exception, but also in FuncA() that invoked FuncB() and handled the
thrown exception.

652 LESSON 28: Exception Handling

Listing 28.4 demonstrates how destructors of local objects are
invoked when an exception is thrown.

Should the destructor of an object invoked due to an exception
also throw an exception, it results in an abnormal termination of
your application.

Class std::exception
In catching std::bad_alloc in Listing 28.2, you actually caught an object of class
std::bad_alloc thrown by new. std::bad_alloc is a class that inherits from C++ stan-
dard class std::exception, declared in header <exception>.

std::exception is the base class for the following important exceptions:

n bad_alloc—Thrown when a request for memory using new fails

n bad_cast—Thrown by dynamic_cast when you try to cast a wrong type (a type
that has no inheritance relation)

n ios_base::failure—Thrown by the functions and methods in the iostream
library

Class std::exception that is the base class supports a very useful and important virtual
method what() that gives a more descriptive reason on the nature of the problem causing

CAUTION

ptg7987094

the exception. In Listing 28.2, exp.what() in Line 18 gives the information, “bad alloca-
tion,” telling you what went wrong. You can make use of std::exception being a base
class for many exceptions types and create one catch(const exception&) that can
catch all exceptions that have std::exception as base:

void SomeFunc()
{

try
{

// code made exception safe
}
catch (const std::exception& exp) // catch bad_alloc, bad_cast, etc
{

cout << “Exception encountered: “ << exp.what() << endl;
}

}

Your Custom Exception Class Derived from
std::exception
You can throw an exception of whatever type you want. However, there is a benefit in
inheriting from std::exception—all existing exception handlers that catch(const
std::exception&) and work for bad_alloc, bad_cast and the like will automatically
scale up to catch your new exception class as well because it has the base class in com-
mon with them. This is demonstrated in Listing 28.5.

LISTING 28.5 class CustomException That Inherits from std::exception

0: #include <exception>
1: #include <iostream>
2: #include <string>
3: using namespace std;
4:
5: class CustomException: public std::exception
6: {
7: string Reason;
8: public:
9: // constructor, needs reason
10: CustomException(const char* why):Reason(why) {}
11:
12: // redefining virtual function to return ‘Reason’
13: virtual const char* what() const throw()
14: {
15: return Reason.c_str();
16: }
17: };

How Exception Handling Works 653

28

ptg7987094

LISTING 28.5 Continued

18:
19: double Divide(double Dividend, double Divisor)
20: {
21: if(Divisor == 0)
22: throw CustomException(“CustomException: Dividing by 0 is a crime”);
23:
24: return (Dividend / Divisor);
25: }
26:
27: int main()
28: {
29: cout << “Enter dividend: “;
30: double Dividend = 0;
31: cin >> Dividend;
32: cout << “Enter divisor: “;
33: double Divisor = 0;
34: cin >> Divisor;
35: try
36: {
37: cout << “Result of division is: “ << Divide(Dividend, Divisor);
38: }
39: catch(exception& exp)// catch CustomException, bad_alloc, etc
40: {
41: cout << exp.what() << endl;
42: cout << “Sorry, can’t continue!” << endl;
43: }
44:
45: return 0;
46: }

Output ▼

Enter dividend: 2011
Enter divisor: 0
CustomException: Dividing by 0 is a crime
Sorry, can’t continue!

Analysis ▼

This is the version of Listing 28.3 that threw a simple char* exception on divide by zero.
This one, however, instantiates an object of class CustomException defined in Lines 5–
17 that inherits from std::exception. Note how our customer exception class imple-
ments virtual function what() in Lines 13–16, essentially returning the reason why the
exception was thrown. The catch(exception&) logic in main() in Lines 39–43 handles
not only class CustomException, but also other exceptions of type bad_alloc that have
the same base class exception.

654 LESSON 28: Exception Handling

ptg7987094

Summary 655

28

Note the declaration of virtual method CustomException::what()
in Line 13 in Listing 28.5:

virtual const char* what() const throw()

It ends with throw(), which means that this function itself is not
expected to throw an exception—a very important and relevant
restriction on a class that is used as an exception object. If you
still insert a throw within this function, you can expect a compiler
warning.

If a function ends with throw(int), it means that the function is
expected to throw an exception of type int.

NOTE

DO remember to catch exceptions of
type std::exception.

DO remember to inherit your custom
exception class (if any) from
std::exception.

DO throw exceptions but with discre-
tion. They’re not a substitute for return
values such as true or false.

DON’T throw exceptions from
destructors.

DON’T take memory allocations
for granted; code that does new
should always be exception safe
and within a try block with a
catch(std::exception&).

DON’T insert any heavy logic or
resource allocations inside a catch()
block. You don’t want to be causing
exceptions when you’re handling one.

DO DON’T

Summary
In this lesson you learned a very important part of practical C++ programming. Making
your applications stable beyond your own development environment is important for cus-
tomer satisfaction and intuitive user experiences, and this is exactly what exceptions help
you do. You found out that code that allocates resources or memory can fail and hence
needs to be made exception safe. You learned the C++ exception class std::exception
and that if you need to be programming a custom exception class, you ideally would be
inheriting from this one.

ptg7987094

Q&A
Q Why raise exceptions instead of returning an error?

A Not always do you have the privilege of returning an error. If a call to new fails,
you need to handle exceptions thrown by new to prevent your application from
crashing. Additionally, if an error is very severe and makes the future functioning
of your application impossible, you should consider throwing an exception.

Q Why should my exception class inherit from std::exception?

A This is, of course, not compulsory, but it helps you reuse all those catch() blocks
that already catch exceptions of type std::exception. You can write your own
exception class that doesn’t inherit from anything else, but then you have to insert
new catch(MyNewExceptionType&) statements at all the relevant points.

Q I have a function that throws an exception. Does it need to be caught at the
very same function?

A Not at all. Just ensure that the exception type thrown is caught at one of the calling
functions in the call stack.

Q Can a constructor throw an exception?

A Constructors actually have no choice! They don’t have return values, and throwing
an exception is the best way to demonstrate disagreement.

Q Can a destructor throw an exception?

A Technically, yes. However, this is a bad practice as destructors are also called when
the stack is unwound due to an exception. So, a destructor invoked due to an
exception throwing an exception itself can clearly result in quite an ugly situation
for the state of an already unstable application trying to make a clean exit.

Workshop
The Workshop contains quiz questions to help solidify your understanding of the mater-
ial covered and exercises to provide you with experience in using what you’ve learned.
Try to answer the quiz and exercise questions before checking the answers in Appendix
D, and be certain you understand the answers before going to the following lesson.

Quiz
1. What is std::exception?

2. What type of exception is thrown when an allocation using new fails?

3. Is it alright to allocate a million integers in an exception handler (catch block) to
back up existing data for instance?

656 LESSON 28: Exception Handling

ptg7987094

4. How would you catch an exception object of type class MyException that inherits
from std::exception?

Exercises
1. BUG BUSTER: What is wrong with the following code?

class SomeIntelligentStuff
{

bool StuffGoneBad;
public:

~ SomeIntelligentStuff()
{

if(StuffGoneBad)
throw “Big problem in this class, just FYI”;

}
};

2. BUG BUSTER: What is wrong with the following code?
int main()
{

int* pMillionIntegers = new int [1000000];
// do something with the million integers

delete []pMillionIntegers;
}

3. BUG BUSTER: What is wrong with the following code?

int main()
{

try
{

int* pMillionIntegers = new int [1000000];
// do something with the million integers

delete []pMillionIntegers;
}
catch(exception& exp)
{

int* pAnotherMillionIntegers = new int [1000000];
// take back up of pMillionIntegers and save it to disk

}
}

Workshop 657

28

ptg7987094

This page intentionally left blank

ptg7987094

LESSON 29
Going Forward

You have learned the basics of C++ programming. In fact, you have gone
beyond theoretical boundaries in understanding how using the Standard
Template Library (STL), templates, and the Standard Library can help you
write efficient and compact code. It is time to give performance a look
and gain a perspective on programming best practices.

In this lesson, you learn

n How today’s processors are different

n How your C++ application can best utilize the processor’s
capabilities

n Threads and multithreading

n Best practices in programming in C++

n Improving your C++ skills beyond this book

ptg7987094

What’s Different in Today’s Processors?
Until recently, computers got faster by using processors that featured faster processing
speeds, measured in hertz (Hz), megahertz (Mhz), or gigahertz (GHz). For instance, Intel
8086 (see Figure 29.1) was a 16-bit microprocessor launched in 1978 with a clock speed
of about 10MHz.

660 LESSON 29: Going Forward

FIGURE 29.1
The Intel 8086
microprocessor.

Those were the days when processors got significantly faster and so did your C++ appli-
cation. It was easy to rely on a waiting game to make use of improved hardware perfor-
mance and improving your software’s responsiveness through it. Although today’s
processors are getting faster, the true innovation is in the number of cores they deploy. At
the time of writing this book, Intel was already selling a 64-bit microprocessor with six
embedded cores at 3.2GHz, and the trend, as far as the number of cores go, is increasing,
as illustrated by Figure 29.2. In fact, even smartphones already feature processors with
multiple cores.

FIGURE 29.2
Intel multicore
microprocessor.

You can think of a multicore processor as a single chip with multiple processors running
in parallel within it. Each processor has its own L1 cache and can work independently of
the other.

ptg7987094

A faster processor increasing the speed of your application is logical. How do multiple
cores in a processor help? Each core is evidently capable of running an application in
parallel, but this doesn’t make your application run any faster. Single-threaded C++
applications of the types you have seen this far are possibly missing the bus as far as
using multicore processing capabilities go. The applications run in one thread, and hence
on only one core, as shown in Figure 29.3.

How to Better Use Multiple Cores 661

29

Core 1 Core N

DoSomething()

DoNextThing()

Core 2

Process Image1()

Cool Image Processor Application
(using multiple cores)

Single-Threaded Application
(using one core)

Process Image2()

FIGURE 29.3
A single-threaded
application in a
multiple-core
processor.

If your application executes all use cases in a serial order, the operating system (OS) will
possibly give it only as much time as other applications in the queue and it will occupy
only one core on the processor. In other words, your application is running on a multi-
core processor in the same way as it would do in those years gone by.

How to Better Use Multiple Cores
The key is in creating applications that are multithreaded. Each thread runs in parallel,
allowing the OS to let the threads run on multiple cores. Although it is beyond the scope
of this book to discuss threads and multithreading in great detail, I can just touch this
topic and give you a head start toward high-performance computing.

What Is a Thread?
Your application code always runs in a thread. A thread is a synchronous execution entity
where statements in a thread run one after another. The code inside main() is considered
to execute the main thread of the application. In this main thread, you can create new

ptg7987094

threads that can run in parallel. Such applications that are comprised of one or more
threads running in parallel in addition to the main thread are called multithreaded appli-
cations.

The OS dictates how threads are to be created, and you can create threads directly by
calling those APIs supplied by the OS.

662 LESSON 29: Going Forward

C++11 specifies thread functions that take care of calling the OS
APIs for you, making your multithreaded application a little more
portable.

If you plan to be writing your application for only one OS, check
your OS’s APIs on creating multithreaded applications.

TIP

The actual act of creating a thread is an OS-specific functionality.
C++11 tries to supply you with a platform-independent abstraction
in the form of std::thread in header <thread>.

At the time of writing this book, most major compilers did not
support this functionality very well. Besides, if you are writing for
one platform, you are better off just using the OS-specific thread
functions.

Should you need portable threads in your C++ application, do look
up Boost Thread Libraries at www.boost.org.

Why Program Multithreaded Applications?
Multithreading is used in applications that need to do multiple sessions of a certain activ-
ity in parallel. Imagine that you are 1 of 10,000 other users trying to make a purchase on
Amazon. Amazon’s web server can of course not keep 9,999 users waiting at a time.
What the web server does is create multiple threads, servicing users at the same time. If
the web server is running on a multiple-core processor (which I bet it is), the threads are
able to extract the best out of the available cores and provide optimal performance to
the user.

Another common example of multithreading is an application that does some work in
addition to interacting with the user, for instance via a progress bar. Such applications are
often divided into a User Interface Thread that displays and updates the user interface
and accepts user input, and the Worker Thread that does the work in the background. A
tool that defragments your disk is one such application. After you press the start button, a

NOTE

www.boost.org

ptg7987094

Worker Thread is created that starts with the scan and defragmenting activity. At the
same time, the User Interface Thread displays progress and also gives you the option to
cancel the defragmentation. Note that for the User Interface Thread to show progress, the
Worker Thread that does the defragmentation needs to regularly communicate the same.
Similarly, for the Worker Thread to stop working when you cancel, the User Interface
Thread needs to communicate the same.

How to Better Use Multiple Cores 663

29

Multithreaded applications often need threads to “talk” to each
other so that the application can function as a unit (and not a
collection of runaway threads that do their stuff irrespective of
the other).

Sequence is important, too. You don’t want the User Interface
Thread to end before the defragmenting Worker Thread has ended.
There are situations where one thread needs to wait on another.
For instance, a thread that reads from a database should wait
until the thread that writes is done.

The act of making threads wait on another is called thread
synchronization.

How Can Threads Transact Data?
Threads can share variables. Threads have access to globally placed data. Threads can be
created with a pointer to a shared object (struct or class) with data in it, shown in
Figure 29.4.

NOTE

Shared Object

float Progress

bool Cancel

writes

Worker Thread

Defrags Disk Displays Progress

UI Thread

reads

reads

writes

FIGURE 29.4
Worker and User
Interface Threads
sharing data.

ptg7987094

Different threads can communicate by accessing or writing data that is stored in a loca-
tion in memory that can be accessed by them all and is hence shared. In the example of
the defragmenter where the Worker Thread knows the progress and the User Interface
Thread needs to be informed of it, the Worker Thread can constantly store the progress
in percentage at an integer that the User Interface Thread uses to display the progress.

This is quite a simple case, though—one thread creates information and the other con-
sumes it. What would happen if multiple threads wrote and read from the same location?
Some threads might start reading data when some other threads have not finished writing
them. The integrity of the data in question would be compromised.

This is why threads need to be synchronized.

Using Mutexes and Semaphores to Synchronize
Threads
Threads are OS-level entities, and the objects that you use to synchronize them are sup-
plied by the OS, too. Most operating systems provide you with semaphores and mutexes
for performing thread synchronization activity.

Using a mutex, you normally ensure that one thread has access to a piece of code at a
time. In other words, a mutex is used to bracket a section of code where a thread has to
wait until another thread that is currently executing it is done and releases the mutex. The
next thread acquires the mutex, does its job, and releases the same.

Using semaphores, you can control the number of threads that execute a section of
code. A semaphore that allows access to only one thread at a time is also called a binary
semaphore.

664 LESSON 29: Going Forward

Depending on the OS that you are using, you might have these or
more synchronization objects available. Windows, for instance, fea-
tures critical sections that bracket code that can be executed only
one thread at a time.

Problems Caused by Multithreading
Multithreading with its need for good synchronization across threads can also cause a
good number of sleepless nights when this synchronization is not effective (read: buggy).
Two of the most frequent issues that multithreaded applications face are the following:

NOTE

ptg7987094

n Race conditions—Two or more threads trying to write to the same data. Who
wins? What is the state of that object?

n Deadlock—Two threads waiting on each other to finish resulting in both being in a
“wait” state. Your application is hung.

You can avoid race conditions with good synchronization. In general, when threads are
allowed to write to a shared object, you must take extra care to ensure that

n Only one thread writes at a time.

n No thread is allowed to read that object until the writing thread is done.

You can avoid deadlocks by ensuring that in no situation do two threads wait on each
other. You can either have a master thread that synchronizes worker threads or program
in a way such that tasks are distributed between threads and result in clear workload dis-
tribution. A thread A can wait on B, but B should never need to wait on A.

Programming multithreaded applications is a specialization in itself. Hence, it is beyond
the scope of this book to explain this interesting and exciting topic to you in detail. You
should either refer to the plenty of online documentation available on the topic or learn
multithreading by hands-on programming. Once you master it, you will automatically
position your C++ applications optimally as far as using multicore processors being
released in the future goes.

Writing Great C++ Code
C++ has not only evolved significantly since the days it was first conceived, but stan-
dardization efforts made by major compiler manufacturers and the availability of utilities
and functions help you write compact and clean C++ code. It is indeed easy to program
readable and reliable C++ applications.

Here is a short list of best practices that help you create good C++ applications:

n Give your variables names that make sense (to others as well as to you). It is worth
spending a second more to give variables better names.

n Always initialize variables such as int, float, and the like.

n Always initialize pointer values to either NULL or a valid address—for instance,
that returned by operator new.

n When using arrays, never cross the bounds of the array buffer. This is called a
buffer overflow and can exploited as a security vulnerability.

Writing Great C++ Code 665

29

ptg7987094

n Don’t use C-style char* string buffers or functions such as strlen() and strcpy().
std::string is safer and provides many useful utility methods including ones that
help you find the length, copy, and append.

n Use a static array only when you are certain of the number of elements it will con-
tain. If you are not certain of it, choose a dynamic array such as std::vector.

n When declaring and defining functions that take non-POD (plain old data) types as
input, consider declaring parameters as reference parameters to avoid the unneces-
sary copy step when the function is called.

n If your class contains a raw pointer member (or members), give thought to how
memory resource ownership needs to be managed in the event of a copy or
assignment. That is, consider programming copy constructor and copy assignment
operator.

n When writing a utility class that manages a dynamic array or the like, remember to
program the move constructor and the move assignment operator for better perfor-
mance.

n Remember to make your code const-correct. A get() function should ideally not
be able to modify the class’ members and hence should be a const. Similarly,
function parameters should be const-references, unless you want to change the
values they contain.

n Avoid using raw pointers. Choose the appropriate smart pointers where possible.

n When programming a utility class, take effort in supporting all those operators that
will make consuming and using the class easy.

n Given an option, choose a template version over a macro. Templates are type-safe
and generic.

n When programming a class that will be collected in a container, such as a vector or
a list, or used as a key element in a map, remember to support operator< that will
help define the default sort criteria.

n If your lambda function gets too large, you should possibly consider making a
function object of it—that is, a class with operator() as the functor is reusable
and a single point of maintenance.

n Never take the success of operator new for granted. Code that performs resource
allocation should always be made exception safe—bracketed within try with cor-
responding catch() blocks.

n Never throw from the destructor of a class.

This is not an exhaustive list, but it covers some of the most important points that will
help you in writing good and maintainable C++ code.

666 LESSON 29: Going Forward

ptg7987094

Learning C++ Doesn’t Stop Here!
Congratulations, you have made great progress in learning C++. The best way to
continue is to code and code lots more!

C++ is a sophisticated language. The more you program, the higher will be your level of
understanding of how stuff works behind the scenes. Development environments such as
Visual Studio with intelli-sense features will assist you and feed your curiosity—for
instance, by showing you members of a string class you haven’t seen yet. It’s time to
learn by doing!

Online Documentation
If you need to learn more about the signatures of STL containers, their methods, their
algorithms, and their functional details, visit MSDN (http://msdn.microsoft.com/), which
has very good coverage on the Standard Template Library.

Learning C++ Doesn’t Stop Here! 667

29

When reading STL documentation on MSDN, remember to choose
the right Visual Studio Version, as C++11 support only started
with Visual Studio 2010.

At the time of writing this book, the major C++ compilers did not fully support all
C++11 features. For instance, Visual Studio 2010 doesn’t support variadic templates.
GNU’s GCC compiler version 4.6 has an implementation of std::thread that is
broken. Visiting online documentation of your compiler and seeing what next C++11
feature is planned for support is a good idea in general. The Visual Studio team
maintains a blog called “C++11 Core Language Feature Support” that you can visit at
http://blogs.msdn.com/b/vcblog/archive/2010/04/06/c-0x-core-language-features-in-vc10-
the-table.aspx, and GCC has a support page at http://gcc.gnu.org/projects/cxx0x.html.

TIP

Note that at the time of writing this book, these two compilers
already supported the major bulk of features recommend by
C++11. Rest assured that the code snippets in the book have
been tested using them both.

NOTE

http://msdn.microsoft.com/
http://blogs.msdn.com/b/vcblog/archive/2010/04/06/c-0x-core-language-features-in-vc10-the-table.aspx
http://blogs.msdn.com/b/vcblog/archive/2010/04/06/c-0x-core-language-features-in-vc10-the-table.aspx
http://gcc.gnu.org/projects/cxx0x.html

ptg7987094

Communities for Guidance and Help
C++ has rich and vibrant online communities. Enroll yourself at sites such as CodeGuru
(www.CodeGuru.com) or CodeProject (www.CodeProject.com) to have your technical
queries inspected and answered by the community.

When you feel confident, feel free to contribute to these communities. You will find
yourself answering challenging questions and learning a lot in the process.

Summary
This concluding lesson is actually an opening page in your quest to learn C++! Having
come this far, you have learned the basics and the advanced concepts of the language. In
this lesson, you learned the theoretical basics of multithreaded programming. You
learned that the only way you can extract the best from multicore processors is to orga-
nize your logic in threads and allow parallel processing. You know that there are pitfalls
in multithreaded applications and ways to avoid them. Last but not the least, you learned
some basic C++ programming best practices. You know that writing good C++ code is
not only about using advanced concepts, but also about giving variable names that others
understand, handling exceptions to take care of the unexpected, and using utility classes
such as smart pointers instead of raw ones. You are now ready to take a leap into the
world of professional C++ programming.

Q&A
Q I am quite happy with the performance of my application. Should I still imple-

ment multithreaded capabilities?

A Not at all. Not all applications need to be multithreaded. Rather only those that
need to perform a task concurrently or that serve many users in parallel.

Q The major compilers still don’t support C++11 completely. So, why not use
the old style of programming?

A First and foremost, the two major compilers (Microsoft Visual C++ and GNU’s
GCC) do support most major C++11 features, barring a few. Additionally, C++11
makes programming easy. Keywords such as auto save you long and tedious itera-
tor declarations, and lambda functions make your for_each() construct compact
without the need for a function object. So, the benefits in programming C++11 are
already significant.

668 LESSON 29: Going Forward

www.CodeGuru.com
www.CodeProject.com

ptg7987094

Workshop
The Workshop contains quiz questions to help solidify your understanding of the mater-
ial covered. Try to answer the questions before checking the answers in Appendix D.

Quiz
1. My image processing application doesn’t respond when it is correcting the con-

trast. What should I do?

2. My multithreaded application allows for extremely fast access to the database. Yet,
sometimes I see that the data fetched is garbled. What am I doing wrong?

Workshop 669

29

ptg7987094

This page intentionally left blank

ptg7987094

APPENDIX A
Working with
Numbers: Binary and
Hexadecimal

Understanding how the binary and hexadecimal number systems work is
not critical to programming better applications in C++, but it helps you to
better understand what happens under the hood.

ptg7987094

Decimal Numeral System
Numbers that we use on a daily basis are in the range of 0–9. This set of numbers is
called the Decimal Numeral System. As the system is comprised of 10 unique digits, it’s
a system with base of 10.

Hence, as the base is 10, the zero-based position of each digit denotes the power of 10
that the digit is multiplied with. So

957 = 9 x 102 + 5 x 101 + 7 x 100 = 9 x 100 + 5 x 10 + 7

In the number 957, the zero-based position of 7 is 0, that of 5 is 1, and that of 9 is 2.
These position indexes become powers of the base 10, as shown in the example.
Remember that any number to the power 0 is 1 (so, 100 is the same as 10000 as both
evaluate to 1).

672 APPENDIX A: Working with Numbers: Binary and Hexadecimal

The decimal system is one in which powers of 10 are the most
important. Digits in a number are multiplied by 10, 100, 1000,
and so on to determine the magnitude of the number.

Binary Numeral System
A system with a base of 2 is called a binary system. As the system allows only two
states, it is represented by the numbers 0 and 1. These numbers in C++ typically evaluate
to false and true (true being non-zero).

Just as numbers in a decimal system are evaluated to powers of base 10, those in binary
are evaluated as powers of their base 2:

101 (binary) = 1 x 22 + 0 x 21 + 1 x 20 = 4 + 0 + 1 = 5 (decimal)

So, the decimal equivalent of binary 101 is 5.

NOTE

Digits in a binary number are multiplied by powers of 2 such as 4,
8, 16, 32, and so on to determine the magnitude of the number.
The power is decided by the zero-based place the digit in question
has.

To understand the binary numeral system better, let’s examine Table A.1 that enlists the
various powers of two.

NOTE

ptg7987094

TABLE A.1 Powers of 2

Power Value Binary Representation

0 20 = 1 1

1 21 = 2 10

2 22 = 4 100

3 23 = 8 1000

4 24 = 16 10000

5 25 = 32 100000

6 26 = 64 1000000

7 27 = 128 10000000

Why Do Computers Use Binary?
Widespread usage of the binary system is relatively new and accelerated by the develop-
ment of electronics and computers. The evolution of electronics and electronic compo-
nents resulted in a system that detected states of a component as being ON (under a
significant potential difference or voltage) or OFF (no or low potential difference).

These ON and OFF states were very conveniently interpreted as 1 and 0, completely rep-
resenting the binary number set and making it the method of choice for performing arith-
metic calculations. Logical operations, such as NOT, AND, OR, and XOR, as covered in
Lesson 5, “Working with Expressions, Statements, and Operators” (in Tables 5.2–5.5),
were easily supported by the development of electronic gates, resulting in the binary sys-
tem being whole-heartedly adopted as conditional processing became easy.

What Are Bits and Bytes?
A bit is a basic unit in a computational system that contains a binary state. Thus, a bit is
said to be “set” if it contains state 1 or “reset” if it contains state 0. A collection of bits
is a byte. The number of bits in a byte is theoretically not fixed and is a hardware-
dependent number.

However, most computational systems go with the assumption of 8 bits in a byte, for the
simple, convenient reason that 8 is a power of 2. Eight bits in a byte also allows the
transmission of up to 28 different values, allowing for 255 distinct values. These 255
distinct values are enough for the display or transaction of all characters in the ASCII
character set, and more.

Binary Numeral System 673

A

ptg7987094

How Many Bytes Make a Kilobyte?
1024 bytes (210 bytes) make a kilobyte. Similarly, 1024 kilobytes make a megabyte. 1024
megabytes make a gigabyte. 1024 gigabytes make a terabyte.

Hexadecimal Numeral System
Hexadecimal is a number system with base 16. A digit in the hexadecimal system can be
in the range of 0–9 and A–F. So, 10 in decimal is A in hexadecimal, and 15 in decimal is
F in hexadecimal:

Decimal Hexadecimal Decimal (continued) Hexadecimal (continued)

0 0 8 8

1 1 9 9

2 2 10 A

3 3 11 B

4 4 12 C

5 5 13 D

6 6 14 E

7 7 15 F

Just as numbers in a decimal system are evaluated to powers of base 10, in binary as
powers of their base 2, those in hexadecimal are evaluated to powers of base 16:

0x31F = 3 x 162 + 1 x 161 + F x 160 = 3 x 256 + 16 + 15 (in decimal) = 799

674 APPENDIX A: Working with Numbers: Binary and Hexadecimal

It is convention that hexadecimal numbers be represented with a
prefix “0x”.

Why Do We Need Hexadecimal?
Computers work on binary. The state of each unit of memory in a computer is a 0 or a 1.
However, if we as human beings were to interact on computer- or programming-specific
information in 0s and 1s, we would need a lot of space to transact small pieces of infor-
mation. So, instead of writing 1111 in binary, you are a lot more efficient writing F in
hexadecimal.

So, a hexadecimal representation can very efficiently represent the state of 4 bits in a
digit, using a maximum of two hexadecimal digits to represent the state of a byte.

NOTE

ptg7987094

Converting to a Different Base 675

A

A less-used number system is the Octal Numeral System. This is
a system with base 8, comprising of numbers from 0 to 7.

Converting to a Different Base
When dealing with numbers, you might see the need to view the same number in a dif-
ferent base—for instance, the value of a binary number in decimal or that of a decimal
number in hexadecimal.

In the previous examples, you saw how numbers can be converted from binary or hexa-
decimal into decimal. Take a look at converting binary and hexadecimal numbers into
decimal.

The Generic Conversion Process
When converting a number in one system to another, you successively divide with the
base, starting with the number being converted. Each remainder fills places in the desti-
nation numeral system, starting with the lowest place. The next division uses the quotient
of the previous division operation with the base as the divisor.

This continues until the remainder is within the destination numeral system and the
quotient is 0.

This process is also called the breakdown method.

Converting Decimal to Binary
To convert decimal 33 into binary, you subtract the highest power of 2
possible (32):
Place 1: 33 / 2 = quotient 16, remainder 1
Place 2: 16 / 2 = quotient 8, remainder 0
Place 3: 8 / 2 = quotient 4, remainder 0
Place 4: 4 / 2 = quotient 2, remainder 0
Place 5: 2 / 2 = quotient 1, remainder 0
Place 6: 1 / 2 = quotient 0, remainder 1
——————————————————————-
Binary equivalent of 33 (reading places): 100001
——————————————————————-

NOTE

ptg7987094

Similarly, the binary equivalent of 156 is:
Place 1: 156 / 2 = quotient 78, remainder 0
Place 2: 78 / 2 = quotient 39, remainder 0
Place 3: 39 / 2 = quotient 19, remainder 1
Place 4: 19 / 2 = quotient 9, remainder 1
Place 5: 9 / 2 = quotient 4, remainder 1
Place 6: 4 / 2 = quotient 2, remainder 0
Place 7: 2 / 2 = quotient 1, remainder 0
Place 9: 1 / 0 = quotient 0, remainder 1
——————————————————————-
Binary equivalent of 156: 10011100
——————————————————————-

Converting Decimal to Hexadecimal
The process is the same as for binary; you divide by base 16 instead of 2.

So, to convert decimal 5211 to hex:
Place 1: 5211 / 16 = quotient 325, remainder B16 (1110 is B16)
Place 2: 325 / 16 = quotient 20, remainder 5
Place 3: 20 / 16 = quotient 1, remainder 4
Place 4: 1 / 16 = quotient 0, remainder 1
——————————————————————-
520510 = 145B16
——————————————————————-

676 APPENDIX A: Working with Numbers: Binary and Hexadecimal

To understand better how different number systems work, you can
write a simple C++ program similar to Listing 27.1 in Lesson 27,
“Using Streams for Input and Output.” It uses std::cout with
manipulators for displaying an integer in hex, decimal, and octal
notations.

To display an integer in binary, use std::bitset that has been
explained in Lesson 25, “Working with Bit Flags Using STL,” deriv-
ing inspiration from Listing 25.1.

TIP

ptg7987094

APPENDIX B
C++ Keywords

Keywords are reserved to the compiler for use by the language. You can-
not define classes, variables, or functions that have these keywords as
their names.

ptg7987094

678 APPENDIX B: C++ Keywords

asm
auto
bool
break
case
catch
char
class
const
constexpr
const_cast
continue
decltype
default
delete
do
double
dynamic_cast
else
enum
explicit
export
extern

false
final
float
for
friend
goto
if
inline
int
long
long long int
mutable
namespace
new
operator
override
private
protected
public
register
reinterpret_cast
return
short

signed
sizeof
static
static_assert
static_cast
struct
switch
template
this
throw
true
try
typedef
typeid
typename
union
unsigned
using
virtual
void
volatile
wchar_t
while

In addition, the following keywords are reserved:

and
and_eq
bitand
bitor

compl
not
not_eq
or

or_eq
xor
xor_eq

ptg7987094

APPENDIX C
Operator Precedence

It is a good practice to use parentheses that explicitly compartmentalize
your operations. In absence of those parentheses, the compiler resorts
to a predefined order of precedence in which the operators are used. This
operator precedence, as listed in Table C.1, is what the C++ compiler
adheres to in event of ambiguity.

ptg7987094

TABLE C.1 The Precedence of Operators

Rank Name Operator

1 Scope resolution ::

2 Member selection, subscripting, function calls, . ->
postfix increment, and decrement

()

++ --

3 Sizeof, prefix increment and decrement, ++ --
complement, and, not, unary minus and plus, ^ !
address-of and dereference, new, new[], - +
delete, delete[], casting, sizeof() & *

()

4 Member selection for pointer .* ->*

5 Multiply, divide, modulo * / %

6 Add, subtract + -

7 Shift (shift left, shift right) << >>

8 Inequality relational < <= > >=

9 Equality, inequality == !=

10 Bitwise AND &

11 Bitwise exclusive OR ^

12 Bitwise OR |

13 Logical AND &&

14 Logical OR ||

15 Conditional ?:

16 Assignment operators = *= /= %=

+= -= <<=

>>=

&= |= ^=

17 Comma ,

680 APPENDIX C: Operator Precedence

ptg7987094

APPENDIX D
Answers

Answers for Lesson 1
Quiz

1. An interpreter is a tool that interprets what you code (or an intermedi-
ate byte code) and performs certain actions. A compiler is one that
takes your code as an input and generates an object file. In the case of
C++, after compiling and linking you have an executable that can run
directly by the processor without need for any further interpretation.

2. A compiler takes a C++ code file as input and generates an object file
in machine language. Often your code has dependencies on libraries
and functions in other code files. Creating these links and generating
an executable that integrates all dependencies directly and indirectly
coded by you is the job of the linker.

3. Code. Compile to create object file. Link to create executable. Execute
to test. Debug. Fix errors in code and repeat the steps.

In many cases, compilation and linking is one step.

4. C++11 supports a portable threading model that enables a programmer
to create multithreaded applications using standard C++ threading
functions. Thus, it allows a multicore processor to work optimally by
simultaneously executing different threads in an application on its
multiple cores.

Exercises
1. Display the result of subtracting y from x, multiplying the two, and

adding the two.

2. Output should be
2 48 14

ptg7987094

3. A preprocessor command to include iostream as seen in Line 1 should start
with #.

4. It displays the following:
Hello Buggy World

Answers for Lesson 2
Quiz

1. Code in C++ is case sensitive. Int is not acceptable to the compiler as an integer
type int.

2. Yes.
/* if you comment using this C-style syntax
then you can span your comment over multiple lines */

Exercises
1. It fails because case-sensitive C++ compilers don’t know what std::Cout is or

why the string following it doesn’t start with an opening quote. Additionally, the
declaration of main should always return an int.

2. Here is the corrected version:
#include <iostream>
int main()
{

std::cout << “Is there a bug here?”; // no bug anymore
return 0;

}

3. This program derived from Listing 2.4 demonstrates subtraction and multiplication:

##include <iostream>
#using namespace std;
u
// Function declaration
iint DemoConsoleOutput();
{
int main()
{
// Call i.e. invoke the function
DemoConsoleOutput();

return 0;

682 APPENDIX D: Answers

ptg7987094

}

// Function definition
int DemoConsoleOutput()
{

cout << “Performing subtraction 10 - 5 = “ << 10 - 5 << endl;
cout << “Performing multiplication 10 * 5 = “ << 10 * 5 << endl;

return 0;
}

Output ▼

Performing subtraction 10 - 5 = 5
Performing multiplication 10 * 5 = 50

Answers for Lesson 3
Quiz

1. A signed integer is one in which the most-significant-bit (MSB) functions as
the sign-bit and indicates if the value of the integer is positive or negative. An
unsigned integer in comparison is used to contain only positive integer values.

2. #define is a preprocessor directive that directs the compiler to do a text replace-
ment wherever the defined value is seen. However, it is not type safe and is a
primitive way of defining constants. Therefore, it is to be avoided.

3. To ensure that it contains a definite, non-random value.

4. 2.

5. The name is nondescriptive and repeats the type. Though this compiles, such code
becomes difficult for humans to read and maintain and should be avoided. An inte-
ger is better declared using a name that reveals its purpose. For example:

int Age = 0;

Exercises
1. Many ways of achieving this:

enum YOURCARDS {ACE = 43, JACK, QUEEN, KING};
// ACE is 43, JACK is 44, QUEEN is 45, KING is 46
// Alternatively..
enum YOURCARDS {ACE, JACK, QUEEN = 45, KING};
// ACE is 0, JACK is 1, QUEEN is 45 and KING is 46

Answers for Lesson 3 683

D

ptg7987094

2. See Listing 3.4 and adapt it (reduce it) to get the answer to this question.

3. Here is a program that asks you to enter radius of a circle and calculates the area
and circumference for you:
#include <iostream>
using namespace std;

int main()
{

const double Pi = 3.1416;

cout << “Enter circle’s radius: “;
double Radius = 0;
cin >> Radius;

cout << “Area = “ << Pi * Radius * Radius << endl;
cout << “Circumference = “ << 2 * Pi * Radius << endl;

return 0;
}

Output ▼

Enter circle’s radius: 4
Area = 50.2656
Circumference = 25.1328

4. You get a compilation warning (not error) if you store the result of calculating area
and circumference in an integer and the output looks like this:

Output ▼

Enter circle’s radius: 4
Area = 50
Circumference = 25

5. auto is a construct where the compiler automatically decides on the type the vari-
able can take depending on the value it is being initialized to. The code in question
does not initialize and the statement causes a compilation failure.

Answers for Lesson 4
Quiz

1. 0 and 4 are the zero-based indexes of the first and last elements of an array with
five elements.

684 APPENDIX D: Answers

ptg7987094

2. No, as they are proven to be unsafe especially in handling user input, giving the
user an opportunity to enter a string longer than the length of the array.

3. One null terminating character.

4. Depending on how you use it. If you use it in a cout statement, for instance, the
display logic reads successive characters seeking a terminating null and crosses the
bounds of the array, possibly causing your application to crash.

5. That would simply replace the int in the vector’s declaration by char.

vector<char> DynArrChars (3);

Exercises
1. Here you go. The application initializes for ROOKs, but it’s enough for you to get

an idea:
int main()
{
enum SQUARE
{

NOTHING = 0,
PAWN,
ROOK,
KNIGHT,
BISHOP,
KING,
QUEEN

};

SQUARE ChessBoard[8][8];

// Initialize the squares containing rooks
ChessBoard[0][0] = ChessBoard[0][7] = ROOK;
ChessBoard[7][0] = ChessBoard[7][7] = ROOK;

return 0;
}

2. To set the fifth element of an array, you need to access element MyNumbers[4] as
this is a zero-based index.

3. The fourth element of the array is being accessed without ever being initialized or
assigned. The resulting output is unpredictable. Always initialize variables and also
arrays; otherwise, they contain the last value stored in the memory location they’re
created in.

Answers for Lesson 4 685

D

ptg7987094

Answers for Lesson 5
Quiz

1. Integer types cannot contain decimal values that are possibly relevant for the user
who wants to divide two numbers. So, you would use float.

2. As the compiler interprets them to be an integer, it is 4.

3. As the numerator is 32.0 and not 32, the compiler interprets this to be a floating-
point operation, creating a result in a float that is akin to 4.571.

4. No, sizeof is an operator, and one that cannot be overloaded.

5. It does not work as intended because the addition operator has priority over shift,
resulting in a shift of 1 + 5 = 6 bits instead of just one.

6. The result of XOR is false as also indicated by Table 5.5.

Exercises
1. Here is a correct solution:

int Result = ((number << 1) + 5) << 1; // unambiguous even to reader

2. The result contains number shifted 7 bits left, as operator + takes priority over
operator <<.

3. Here is a program that stores two Boolean values entered by the user and demon-
strates the result of using bitwise operators on them:

#include <iostream>
using namespace std;

int main()
{

cout << “Enter a boolean value true(1) or false(0): “;
bool Value1 = false;
cin >> Value1;

cout << “Enter another boolean value true(1) or false(0): “;
bool Value2 = false;
cin >> Value2;

cout << “Result of bitwise operators on these operands: “ << endl;
cout << “Bitwise AND: “ << (Value1 & Value2) << endl;
cout << “Bitwise OR: “ << (Value1 | Value2) << endl;
cout << “Bitwise XOR: “ << (Value1 ^ Value2) << endl;

return 0;
}

686 APPENDIX D: Answers

ptg7987094

Output ▼

Enter a boolean value true(1) or false(0): 1
Enter another boolean value true(1) or false(0): 0
Result of bitwise operators on these operands:
Bitwise AND: 0
Bitwise OR: 1
Bitwise XOR: 1

Answers for Lesson 6
Quiz

1. You indent not for sake of the compiler, but for the sake of other programmers
(humans) who might need to read or understand your code.

2. You avoid it to keep your code from getting unintuitive and expensive to maintain.

3. See the code in the solution to Exercise 1 that uses the decrement operator.

4. As the condition in the for statement is not satisfied, the loop won’t execute even
once and the cout statement it contains is never executed.

Exercises
1. You need to be aware that array indexes are zero-based and the last element is at

index Length – 1:
#include <iostream>
using namespace std;

int main()
{

const int ARRAY_LEN = 5;
int MyNumbers[ARRAY_LEN]= {-55, 45, 9889, 0, 45};

for (int nIndex = ARRAY_LEN - 1; nIndex >= 0; —nIndex)
cout<<“MyNumbers[“ << nIndex << “] = “<<MyNumbers[nIndex]<<endl;

return 0;
}

Output ▼

MyNumbers[4] = 45
MyNumbers[3] = 0
MyNumbers[2] = 9889

Answers for Lesson 6 687

D

ptg7987094

MyNumbers[1] = 45
MyNumbers[0] = -55

2. One nested loop equivalent of Listing 6.13 that adds elements in two arrays in the
reverse order is demonstrated below:
#include <iostream>
using namespace std;

int main()
{

const int ARRAY1_LEN = 3;
const int ARRAY2_LEN = 2;

int MyInts1[ARRAY1_LEN] = {35, -3, 0};
int MyInts2[ARRAY2_LEN] = {20, -1};

cout << “Adding each int in MyInts1 by each in MyInts2:” << endl;

for(int Array1Index=ARRAY1_LEN-1;Array1Index>=0;--Array1Index)
for(int Array2Index=ARRAY2_LEN-1;Array2Index>=0;--Array2Index)

cout<<MyInts1[Array1Index]<<“ + “<<MyInts2[Array2Index] \
<< “ = “ << MyInts1[Array1Index] + MyInts2[Array2Index] << endl;

return 0;
}

Output ▼

Adding each int in MyInts1 by each in MyInts2:
0 + -1 = -1
0 + 20 = 20
-3 + -1 = -4
-3 + 20 = 17
35 + -1 = 34
35 + 20 = 55

3. You need to replace the constant integer with a value fixed at 5 with code that asks
the user the following:
cout << “How many Fibonacci numbers you wish to calculate: “;
int NumsToCal = 0;
cin >> NumsToCal;

688 APPENDIX D: Answers

ptg7987094

4. The switch-case construct using enumerated constants that tells if a color is in the
rainbow is as below:
#include <iostream>
using namespace std;

int main()
{

enum COLORS
{

VIOLET = 0,
INDIGO,
BLUE,
GREEN,
YELLOW,
ORANGE,
RED,
CRIMSON,
BEIGE,
BROWN,
PEACH,
PINK,
WHITE,

};

cout << “Here are the available colors: “ << endl;
cout << “Violet: “ << VIOLET << endl;
cout << “Indigo: “ << INDIGO << endl;
cout << “Blue: “ << BLUE << endl;
cout << “Green: “ << GREEN << endl;
cout << “Yellow: “ << YELLOW << endl;
cout << “Orange: “ << ORANGE << endl;
cout << “RED: “ << RED << endl;
cout << “Crimson: “ << CRIMSON << endl;
cout << “Beige: “ << BEIGE << endl;
cout << “Brown: “ << BROWN << endl;
cout << “Peach: “ << PEACH << endl;
cout << “Pink: “ << PINK << endl;
cout << “White: “ << WHITE << endl;

cout << “Choose one by entering code: “;
int YourChoice = BLUE; // initial
cin >> YourChoice;

switch (YourChoice)
{
case VIOLET:
case INDIGO:
case BLUE:
case GREEN:
case YELLOW:

Answers for Lesson 6 689

D

ptg7987094

case ORANGE:
case RED:

cout << “Bingo, your choice is a Rainbow color!” << endl;
break;

default:
cout << “The color you chose is not in the rainbow” << endl;
break;

}

return 0;
}

Output ▼

Here are the available colors:
Violet: 0
Indigo: 1
Blue: 2
Green: 3
Yellow: 4
Orange: 5
RED: 6
Crimson: 7
Beige: 8
Brown: 9
Peach: 10
Pink: 11
White: 12
Choose one by entering code: 4
Bingo, your choice is a Rainbow color!

5. The programmer unintentionally makes an assignment to 10 in the for loop condi-
tion statement.

6. The while statement is followed by a null statement ‘;’ on the same line. Thus,
the intended loop following the while is never reached and because LoopCounter
that governs the while is never incremented, the while does not end and the state-
ments following it are never executed.

7. Missing break statement (that is, the default always executes as no case before that
breaks execution).

690 APPENDIX D: Answers

ptg7987094

Answers for Lesson 7
Quiz

1. The scope of these variables is the life of the function.

2. SomeNumber is a reference to the variable in the calling function. It does not hold a
copy.

3. A recursive function.

4. Overloaded functions.

5. Top! Visualize a stack of plates; the one at the top is available for withdrawal, and
that is what the stack pointer points to.

Exercises
1. The function prototypes would look like this:

double Area (double Radius); // circle
double Area (double Radius, double Height); // cylinder

The function implementations (definitions) use the respective formulas supplied in
the question and return the area to the caller as a return value.

2. Let Listing 7.8 inspire you. The function prototype would be the following:
void ProcessArray(double Numbers[], int Length);

3. The parameter Result ought to be a reference for the function Area to be effective:
void Area(double Radius, double &Result)

4. The default parameter should be listed at the end, or all parameters should have
default values specified.

5. The function needs to return its output data by reference to the caller:

void Area (double Radius, double &Area, double &Circumference)
{

Area = 3.14 * Radius * Radius;
Circumference = 2 * 3.14 * Radius;

}

Answers for Lesson 7 691

D

ptg7987094

Answers for Lesson 8
Quiz

1. If the compiler let you do that, it would be an easy way to break exactly what
const references were meant to protect: the data being referred to that cannot be
changed.

2. They’re operators.

3. A memory address.

4. operator (*).

Exercises
1. 40.

2. In the first overloaded variant, the arguments are copied to the called function. In
the second, they’re not copied as they’re references to the variables in the caller
and the function can change them. The third variant uses pointers, which unlike
references can be NULL or invalid, and validity needs to be ensured in such a
system.

3. Use the const keyword:
1: const int* pNum1 = &Number;

4. You are assigning an integer to a pointer directly (that is, overwriting the contained
memory address by an integer value):

*pNumber = 9; // previously: pNumber = 9;

5. There is a double delete on the same memory address returned by new to pNumber

and duplicated in pNumberCopy. Remove one.

6. 30.

Answers for Lesson 9
Quiz

1. On the free store. This is the same as it would be if you allocated for an int using
new.

2. sizeof() calculates the size of a class on the basis of the declared data members.
As the sizeof(pointer) is constant and independent of the mass of data being
pointed to, the sizeof(Class) containing one such pointer member remains con-
stant as well.

692 APPENDIX D: Answers

ptg7987094

3. None except member methods of the same class.

4. Yes, it can.

5. A constructor is typically used to initialize data members and resources.

6. Destructors are typically used for releasing resources and deallocating memory.

Exercises
1. C++ is case sensitive. A class declaration should start with class, not Class. It

should end with a semicolon (;) as shown below:
class Human
{

int Age;
string Name;

public:
Human() {}

};

2. As Human::Age is a private member (remember members of a class are private

by default as opposed to those in a struct) and as there is no public accessor func-
tion, there is no way that the user of this class can access Age.

3. Here is a version of class Human with an initialization list in the constructor:
class Human
{

int Age;
string Name;

public:
Human(string InputName, int InputAge)

: Name(InputName), Age(InputAge) {}
};

4. Note how Pi has not been exposed outside the class as required:

#include <iostream>
using namespace std;

class Circle
{

const double Pi;
double Radius;

public:
Circle(double InputRadius) : Radius(InputRadius), Pi(3.1416) {}

Answers for Lesson 9 693

D

ptg7987094

double GetCircumference()
{

return 2*Pi*Radius;
}

double GetArea()
{

return Pi*Radius*Radius;
}

};

int main()
{

cout << “Enter a radius: “;
double Radius = 0;
cin >> Radius;

Circle MyCircle(Radius);

cout << “Circumference = “ << MyCircle.GetCircumference() << endl;
cout << “Area = “ << MyCircle.GetArea() << endl;

return 0;
}

Answers for Lesson 10
Quiz

1. Use access specifier protected to ensure that a member of the base class is visible
to the derived class, but not to one with an instance of the same.

2. The object of the derived class gets sliced, and only the part of it that corresponds
to the base class gets passed by the value. The resulting behavior can be
unpredictable.

3. Composition for design flexibility.

4. Use it to unhide base class methods.

5. No, because the first class that specializes Base—that is, class Derived—has a
private inheritance relationship with Base. Thus, public members of class Base are
private to class SubDerived, hence are not accessible.

Exercises
1. Construction in order mentioned in the class declaration: Mammal – Bird –

Reptile – Platypus. Destruction in reverse order. Program is as shown in the
following:

694 APPENDIX D: Answers

ptg7987094

#include <iostream>
using namespace std;

class Mammal
{
public:

void FeedBabyMilk()
{

cout << “Mammal: Baby says glug!” << endl;
}

Mammal()
{

cout << “Mammal: Contructor” << endl;
}
~Mammal()
{

cout << “Mammal: Destructor” << endl;
}

};

class Reptile
{
public:

void SpitVenom()
{

cout << “Reptile: Shoo enemy! Spits venom!” << endl;
}

Reptile()
{

cout << “Reptile: Contructor” << endl;
}
~Reptile()
{

cout << “Reptile: Destructor” << endl;
}

};

class Bird
{
public:

void LayEggs()
{

cout << “Bird: Laid my eggs, am lighter now!” << endl;
}

Bird()
{

cout << “Bird: Contructor” << endl;
}
~Bird()
{

Answers for Lesson 10 695

D

ptg7987094

cout << “Bird: Destructor” << endl;
}

};

class Platypus: public Mammal, public Bird, public Reptile
{
public:

Platypus()
{

cout << “Platypus: Contructor” << endl;
}
~Platypus()
{

cout << “Platypus: Destructor” << endl;
}

};

int main()
{

Platypus realFreak;
//realFreak.LayEggs();
//realFreak.FeedBabyMilk();
//realFreak.SpitVenom();

return 0;
}

2. Like this:
class Shape
{

// ... Shape members
};

class Polygon: public Shape
{

// ... Polygon members
}

class Triangle: public Polygon
{

// ... Triangle members
}

3. The inheritance relationship between class D1 and Base should be private to
restrict class D2 from accessing the public members of Base.

4. Classes inherit private by default. If Derived had been a struct, that inheritance
would’ve been public.

5. SomeFunc is taking the parameter of type Base by value. This means that a call of
this type is subject to slicing, which leads to instability and unpredictable output:

696 APPENDIX D: Answers

ptg7987094

Derived objectDerived;
SomeFunc(objectDerived); // will slice

Answers for Lesson 11
Quiz

1. Declare an abstract base class Shape with Area() and Print() as pure virtual func-
tions, forcing Circle and Triangle to implement the same. They’re forced to
comply with your criteria of requiring to support Area() and Print().

2. No. It creates a VFT only for those classes that contain virtual functions; this
includes derived classes, too.

3. Yes, as it still cannot be instantiated. As long as a class has at least one pure virtual
function, it remains an ABC irrespective of the presence or absence of other fully
defined functions or parameters.

Exercises
1. The inheritance hierarchy using an abstract base class Shape for classes Circle and

Triangle is as below:
#include<iostream>
using namespace std;

class Shape
{
public:

virtual double Area() = 0;
virtual void Print() = 0;

};

class Circle
{

double Radius;
public:

Circle(double inputRadius) : Radius(inputRadius) {}

double Area()
{

return 3.1415 * Radius * Radius;
}

void Print()
{

cout << “Circle says hello!” << endl;
}

Answers for Lesson 11 697

D

ptg7987094

};

class Triangle
{

double Base, Height;
public:

Triangle(double inputBase, double inputHeight) : Base(inputBase),
Height(inputHeight) {}

double Area()
{

return 0.5 * Base * Height;
}

void Print()
{

cout << “Triangle says hello!” << endl;
}

};

int main()
{

Circle myRing(5);
Triangle myWarningTriangle(6.6, 2);

cout << “Area of circle: “ << myRing.Area() << endl;
cout << “Area of triangle: “ << myWarningTriangle.Area() << endl;

myRing.Print();
myWarningTriangle.Print();

return 0;
}

2. Missing virtual destructor!

3. Without a virtual destructor, the constructor sequence would be Vehicle() fol-
lowed by Car(), whereas the nonvirtual destructor would result only in ~Car()
being invoked.

Answers for Lesson 12
Quiz

1. No, C++ does not allow two functions with the same name to have different return
values. You can program two implementations of operator [] with identical return

698 APPENDIX D: Answers

ptg7987094

types, one defined as a const function and the other not. In this case, C++ com-
piler picks the non-const version for assignment-related activities and the const
version otherwise:
Type& operator[](int Index) const;
Type& operator[](int Index);

2. Yes, but only if I don’t want my class to allow copying or assignment.

3. As there are no dynamically allocated resources contained within class Date that
cause unnecessary memory allocation and deallocation cycles within the copy con-
structor or copy assignment operator, this class is not a good candidate for a move
constructor or move assignment operator.

Exercises
1. The conversion operator int() is as below:

class Date
{

int Day, Month, Year;
public:

operator int()
{

return ((Year * 10000) + (Month * 100) + Day);
}

// constructor etc
};

2. The move constructor and move assignment operators are seen below:

class DynIntegers
{
private:

int* pIntegers;

public:
// move constructor
DynIntegers(DynIntegers&& MoveSource)
{

pIntegers = MoveSource.pIntegers; // take ownership
MoveSource.pIntegers = NULL; // release ownership from source

}

// move assignment operator
DynIntegers& operator= (DynIntegers&& MoveSource)
{

Answers for Lesson 12 699

D

ptg7987094

if(this != &MoveSource)
{

delete [] pIntegers; // release own resources
pIntegers = MoveSource.pIntegers;
MoveSource.pIntegers = NULL;

}
return *this;

}

~DynIntegers() {delete[] pIntegers;} // destructor

// implement default constructor, copy constructor, assignment operator
};

Answers for Lesson 13
Quiz

1. dynamic_cast.

2. Correct the function, of course. const_cast and casting operators in general
should be a last resort.

3. True.

4. Yes, true.

Exercises
1. The result of a dynamic cast operation should always be checked for validity:

void DoSomething(Base* pBase)
{

Derived* pDerived = dynamic_cast <Derived*>(pBase);

if(pDerived) // check for validity
pDerived->DerivedClassMethod();

}

2. Use static_cast as you know that the object being pointed to is of type Tuna.
Using Listing 13.1 as a base, here is what main() would look like:

int main()
{

Fish* pFish = new Tuna;
Tuna* pTuna = static_cast<Tuna*>(pFish);

700 APPENDIX D: Answers

ptg7987094

// Tuna::BecomeDinner will work only using valid Tuna*
pTuna->BecomeDinner();

// virtual destructor in Fish ensures invocation of ~Tuna()
delete pFish;

return 0;
}

Answers for Lesson 14
Quiz

1. A preprocessor construct that keeps you from multiplying or recursively including
header files.

2. 4.

3. 10 + 10 / 5 = 10 + 2 = 12.

4. Use brackets:
#define SPLIT(x) ((x) / 5)

Exercises
1. Here it is:

#define MULTIPLY(a,b) ((a)*(b))

2. This is the template version of the macro seen in the answer to quiz question 4:
template<typename T> T Split(const T& input)
{

return (input / 5);
}

3. The template version of swap would be
template <typename T>
void Swap (T& x, T& y)
{

T temp = x;
x = y;
y = temp;

}

4. #define QUARTER(x) ((x)/ 4)

Answers for Lesson 14 701

D

ptg7987094

5. The template class definition would look like the following:
template <typename Array1Type, typename Array2Type>
class TwoArrays
{
private:

Array1Type Array1 [10];
Array2Type Array2 [10];

public:
Array1Type& GetArray1Element(int Index){return Array1[Index];}
Array2Type& GetArray2Element(int Index){return Array2[Index];}

};

Answers for Lesson 15
Quiz

1. A deque. Only a deque allows constant-time insertions at the front and at the back
of the container.

2. A std::set or a std::map if you have key-value pairs. If the elements need to be
available in duplicates, too, you would choose std::multiset or std::multimap.

3. Yes. When you instantiate a std::set template, you can optionally supply a sec-
ond template parameter that is a binary predicate that the set class uses as the sort
criterion. Program this binary predicate to criteria that are relevant to your require-
ments. It needs to be strict-weak ordering compliant.

4. Iterators form the bridge between algorithms and containers so that the former
(which are generic) can work on the latter without having to know (be customized
for) every container type possible.

5. hash_set is not a C++ standard-compliant container. So, you should not use it in
any application that has portability listed as one of its requirements. You should
use the std::map in those scenarios.

Answers for Lesson 16
Quiz

1. std::basic_string <T>

2. Copy the two strings into two copy objects. Convert each copied string into either
lowercase or uppercase. Return the result of comparison of the converted copied
strings.

702 APPENDIX D: Answers

ptg7987094

3. No, they are not. C-style strings are actually raw pointers akin to a character array,
whereas STL string is a class that implements various operators and member
functions to make string manipulation and handling as simple as possible.

Exercises
1. The program needs to use std::reverse:

#include <string>
#include <iostream>
#include <algorithm>

int main ()
{

using namespace std;

cout << “Please enter a word for palindrome-check:” << endl;
string strInput;
cin >> strInput;

string strCopy (strInput);
reverse (strCopy.begin (), strCopy.end ());

if (strCopy == strInput)
cout << strInput << “ is a palindrome!” << endl;

else
cout << strInput << “ is not a palindrome.” << endl;

return 0;
}

2. Use std::find:
#include <string>
#include <iostream>

using namespace std;

// Find the number of character ‘chToFind’ in string “strInput”
int GetNumCharacters (string& strInput, char chToFind)
{

int nNumCharactersFound = 0;

size_t nCharOffset = strInput.find (chToFind);
while (nCharOffset != string::npos)
{

++ nNumCharactersFound;

nCharOffset = strInput.find (chToFind, nCharOffset + 1);
}

Answers for Lesson 16 703

D

ptg7987094

return nNumCharactersFound;
}

int main ()
{

cout << “Please enter a string:” << endl << “> “;
string strInput;
getline (cin, strInput);

int nNumVowels = GetNumCharacters (strInput, ‘a’);
nNumVowels += GetNumCharacters (strInput, ‘e’);
nNumVowels += GetNumCharacters (strInput, ‘i’);
nNumVowels += GetNumCharacters (strInput, ‘o’);
nNumVowels += GetNumCharacters (strInput, ‘u’);

// DIY: handle capitals too..

cout << “The number of vowels in that sentence is: “ << nNumVowels;

return 0;
}

3. Use function toupper:
#include <string>
#include <iostream>
#include <algorithm>

int main ()
{

using namespace std;

cout << “Please enter a string for case-conversion:” << endl;
cout << “> “;

string strInput;
getline (cin, strInput);
cout << endl;

for (size_t nCharIndex = 0
; nCharIndex < strInput.length ()
; nCharIndex += 2)
strInput [nCharIndex] = toupper (strInput [nCharIndex]);

cout << “The string converted to upper case is: “ << endl;
cout << strInput << endl << endl;

return 0;
}

704 APPENDIX D: Answers

ptg7987094

4. This can be simply programmed as

#include <string>
#include <iostream>

int main ()
{

using namespace std;

const string str1 = “I”;
const string str2 = “Love”;
const string str3 = “STL”;
const string str4 = “String.”;

string strResult = str1 + “ “ + str2 + “ “ + str3 + “ “ + str4;

cout << “The sentence reads:” << endl;
cout << strResult;

return 0;
}

Answers for Lesson 17
Quiz

1. No, they can’t. Elements can only be added at the back (that is, the end) of a vector
sequence in constant time.

2. 10 more. At the 11th insertion, you trigger a reallocation.

3. Deletes the last element; that is, removes the element at the back.

4. Of type CMammal.

5. Via (a) the subscript operator ([]) (b) Function at().

6. Random-access iterator.

Exercises
1. One solution is

#include <vector>
#include <iostream>

using namespace std;

char DisplayOptions ()

Answers for Lesson 17 705

D

ptg7987094

{
cout << “What would you like to do?” << endl;
cout << “Select 1: To enter an integer” << endl;
cout << “Select 2: Query a value given an index” << endl;
cout << “Select 3: To display the vector” << endl << “> “;
cout << “Select 4: To quit!” << endl << “> “;

char ch;
cin >> ch;

return ch;
}

int main ()
{

vector <int> vecData;

char chUserChoice = ‘\0’;
while ((chUserChoice = DisplayOptions ()) != ‘4’)
{
if (chUserChoice == ‘1’)

{
cout << “Please enter an integer to be inserted: “;
int nDataInput = 0;
cin >> nDataInput;

vecData.push_back (nDataInput);
}
else if (chUserChoice == ‘2’)
{

cout << “Please enter an index between 0 and “;
cout << (vecData.size () - 1) << “: “;
int nIndex = 0;
cin >> nIndex;

if (nIndex < (vecData.size ()))
{

cout<<“Element [“<<nIndex<<“] = “<<vecData[nIndex];
cout << endl;

}
}
else if (chUserChoice == ‘3’)
{

cout << “The contents of the vector are: “;
for (size_t nIndex = 0; nIndex < vecData.size (); ++ nIndex)

cout << vecData [nIndex] << ‘ ‘;
cout << endl;

}
}
return 0;

}

706 APPENDIX D: Answers

ptg7987094

2. Use the std::find algorithm:
vector <int>::iterator iElementFound = std::find (vecData.begin (),

vecData.end (), nDataInput);

3. Derive from the code sample in the solution to Exercise 1 to accept user input and
print the contents of a vector.

Answers for Lesson 18
Quiz

1. Elements can be inserted in the middle of the list as they can be at either ends.
There is no gain or loss in performance due to position.

2. The specialty of the list is that operations such as these don’t invalidate existing
iterators.

3. mList.clear ();

or

mList.erase (mList.begin(), mList.end());

4. Yes, an overload of the insert function enables you to insert a range from a source
collection.

Exercises
1. This is like Exercise solution 1 for the vector in Lesson 17, “Dynamic Array

Classes.” The only change is that you would use the list insert function as
mList.insert (mList.begin(),nDataInput);

2. Store iterators to two elements in a list. Insert an element in the middle using the
list’s insert function. Use the iterators to demonstrate that they are still able to fetch
the values they pointed to before the insertion.

3. A possible solution is
#include <vector>
#include <list>
#include <iostream>

using namespace std;

int main ()
{

vector <int> vecData (4);

Answers for Lesson 18 707

D

ptg7987094

vecData [0] = 0;
vecData [1] = 10;
vecData [2] = 20;
vecData [3] = 30;

list <int> listIntegers;

// Insert the contents of the vector into the beginning of the list
listIntegers.insert (listIntegers.begin (),

vecData.begin (), vecData.end());

cout << “The contents of the list are: “;

list <int>::const_iterator iElement;
for (iElement = listIntegers.begin ()

; iElement != listIntegers.end ()
; ++ iElement)
cout << *iElement << “ “;

return 0;
};

4. A possible solution is
#include <list>
#include <string>
#include <iostream>

using namespace std;

int main ()
{

list <string> listNames;
listNames.push_back (“Jack”);
listNames.push_back (“John”);
listNames.push_back (“Anna”);
listNames.push_back (“Skate”);

cout << “The contents of the list are: “;

list <string>::const_iterator iElement;
for (iElement = listNames.begin(); iElement!=listNames.end();

++iElement)
cout << *iElement << “ “;

cout << endl;

cout << “The contents after reversing are: “;
listNames.reverse ();
for (iElement = listNames.begin(); iElement!=listNames.end();

++iElement)

708 APPENDIX D: Answers

ptg7987094

cout << *iElement << “ “;
cout << endl;

cout << “The contents after sorting are: “;
listNames.sort ();
for (iElement = listNames.begin(); iElement!=listNames.end();

++iElement)
cout << *iElement << “ “;

cout << endl;

return 0;
}

Answers for Lesson 19
Quiz

1. The default sort criterion is specified by std::less<>, which effectively uses
operator< to compare two integers and returns true if the first is less than the
second.

2. Together, one after another.

3. size(), as is the case with all STL containers.

Exercises
1. The binary predicate can be

struct FindContactGivenNumber
{

bool operator () (const CContactItem& lsh, const CContactItem& rsh)
const

{
return (lsh.strPhoneNumber < rsh.strPhoneNumber);

}
};

2. The structure and the multiset definition would be
#include <set>
#include <iostream>
#include <string>

using namespace std;

struct PAIR_WORD_MEANING
{

Answers for Lesson 19 709

D

ptg7987094

string strWord;
string strMeaning;

PAIR_WORD_MEANING (const string& sWord, const string& sMeaning)
: strWord (sWord), strMeaning (sMeaning) {}

bool operator< (const PAIR_WORD_MEANING& pairAnotherWord) const
{

return (strWord < pairAnotherWord.strWord);
}

};

int main ()
{

multiset <PAIR_WORD_MEANING> msetDictionary;
PAIR_WORD_MEANING word1 (“C++”, “A programming language”);
PAIR_WORD_MEANING word2 (“Programmer”, “A geek!”);

msetDictionary.insert (word1);
msetDictionary.insert (word2);

return 0;
}

3. One solution is

#include <set>
#include <iostream>

using namespace std;

template <typename T>
void DisplayContent (const T& sequence)
{

T::const_iterator iElement;

for (iElement = sequence.begin(); iElement!=sequence.end(); ++iElement)
cout << *iElement << “ “;

}

int main ()
{

multiset <int> msetIntegers;

msetIntegers.insert (5);
msetIntegers.insert (5);
msetIntegers.insert (5);

set <int> setIntegers;

710 APPENDIX D: Answers

ptg7987094

setIntegers.insert (5);
setIntegers.insert (5);
setIntegers.insert (5);

cout << “Displaying the contents of the multiset: “;
DisplayContent (msetIntegers);
cout << endl;

cout << “Displaying the contents of the set: “;
DisplayContent (setIntegers);
cout << endl;

return 0;
}

Answers for Lesson 20
Quiz

1. The default sort criterion is specified by std::less<>.

2. Next to each other.

3. size ().

4. You would not find duplicate elements in a map!

Exercises
1. An associative container that allows duplicate entries. For example, a

std::multimap:
std::multimap <string, string> multimapPeopleNamesToNumbers;

2. An associative container that allows duplicate entries.
struct fPredicate
{

bool operator< (const wordProperty& lsh, const wordProperty& rsh) const
{

return (lsh.strWord < rsh. strWord);
}
};

3. Take a hint from the similarly solved exercise 3 in Lesson 19, “STL Set Classes.”

Answers for Lesson 20 711

D

ptg7987094

Answers for Lesson 21
Quiz

1. A unary predicate.

2. It can display data, for example, or simply count elements.

3. Because in C++ all entities that exist during the runtime of an application are
objects. In this case, even structures and classes can be made to work as functions,
hence the term function objects. Note that functions can also be available via func-
tion pointers—these are function objects, too.

Exercises
1. A solution is

template <typename elementType=int>
struct Double
{

void operator () (const elementType element) const
{

cout << element * 2 << ‘ ‘;
}

};

This unary predicate can be used as
int main ()
{

vector <int> vecIntegers;

for (int nCount = 0; nCount < 10; ++ nCount)
vecIntegers.push_back (nCount);

cout << “Displaying the vector of integers: “ << endl;

// Display the array of integers
for_each (vecIntegers.begin () // Start of range

, vecIntegers.end () // End of range
, Double <> ()); // Unary function object

return 0;
}

2. Add a member integer that is incremented every time the operator() is used:
template <typename elementType=int>
struct Double

712 APPENDIX D: Answers

ptg7987094

{
int m_nUsageCount;

// Constructor
Double () : m_nUsageCount (0) {};

void operator () (const elementType element) const
{

++ m_nUsageCount;
cout << element * 2 << ‘ ‘;

}
};

3. The binary predicate is the following:
template <typename elementType>
class CSortAscending
{
public:

bool operator () (const elementType& num1,
const elementType& num2) const

{
return (num1 < num2);

}
};

This predicate can be used as

int main ()
{

std::vector <int> vecIntegers;

// Insert sample numbers: 100, 90... 20, 10
for (int nSample = 10; nSample > 0; — nSample)

vecIntegers.push_back (nSample * 10);

std::sort (vecIntegers.begin (), vecIntegers.end (),
CSortAscending<int> ());

for (size_t nElementIndex = 0;
nElementIndex < vecIntegers.size ();
++ nElementIndex)
cout << vecIntegers [nElementIndex] << ‘ ‘;

return 0;
}

Answers for Lesson 21 713

D

ptg7987094

Answers for Lesson 22
Quiz

1. A lambda always starts with [].

2. Via a capture list [Var1, Var2, …](Type& param) { ...; }

3. Like this:
[Var1, Var2, ...](Type& param) -> ReturnType { ...; }

Exercises
1. This is how the lambda would look:

sort(vecNumbers.begin(), vecNumbers.end(),
[](int Num1, int Num2) {return (Num1 > Num2); });

2. This is what the lambda would look like:
cout << “Number do you wish to add to all elements: “;
int NumInput = 0;
cin >> NumInput;

for_each(vecNumbers.begin(), vecNumbers.end(),
[=](int& element) {element += NumInput;});

The sample that demonstrates the solutions in Exercise 1 and 2 is

#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;

template <typename T>
void DisplayContents (const T& Input)
{

for(auto iElement = Input.cbegin() // auto, cbegin and cend: c++11
; iElement != Input.cend ()
; ++ iElement)
cout << *iElement << ‘ ‘;

cout << endl;
}

int main()
{

vector<int> vecNumbers;
vecNumbers.push_back(25);
vecNumbers.push_back(-5);
vecNumbers.push_back(122);

714 APPENDIX D: Answers

ptg7987094

vecNumbers.push_back(2011);
vecNumbers.push_back(-10001);
DisplayContents(vecNumbers);

sort(vecNumbers.begin(), vecNumbers.end());
DisplayContents(vecNumbers);

sort(vecNumbers.begin(), vecNumbers.end(),
[](int Num1, int Num2) {return (Num1 > Num2); });

DisplayContents(vecNumbers);

cout << “Number do you wish to add to all elements: “;
int NumInput = 0;
cin >> NumInput;

for_each(vecNumbers.begin(), vecNumbers.end(),
[=](int& element) {element += NumInput;});

DisplayContents(vecNumbers);

return 0;
}

Output ▼

25 -5 122 2011 -10001
-10001 -5 25 122 2011
2011 122 25 -5 -10001
Number do you wish to add to all elements: 5
2016 127 30 0 -9996

Answers for Lesson 23
Quiz

1. Use the std::list::remove_if() function because it ensures that existing
iterators to elements in the list (that were not removed) still remain valid.

2. list::sort() (or even std::sort()) in the absence of an explicitly supplied
predicate resorts to a sort using std::less<>, which employs the operator< to
sort objects in a collection.

3. Once per element in the range supplied.

4. for_each() returns the function object, too.

Answers for Lesson 23 715

D

ptg7987094

Exercises
1. Here is one solution:

struct CaseInsensitiveCompare
{

bool operator() (const string& str1, const string& str2) const
{

string str1Copy (str1), str2Copy (str2);

transform (str1Copy.begin (),
str1Copy.end(), str1Copy.begin (), tolower);

transform (str2Copy.begin (),
str2Copy.end(), str2Copy.begin (), tolower);

return (str1Copy < str2Copy);
}

};

2. Here is the demonstration. Note how std::copy() works without knowing the
nature of the collections. It works using the iterator classes only:
#include <vector>
#include <algorithm>
#include <list>
#include <string>
#include <iostream>

using namespace std;

int main ()
{

list <string> listNames;
listNames.push_back (“Jack”);
listNames.push_back (“John”);
listNames.push_back (“Anna”);
listNames.push_back (“Skate”);

vector <string> vecNames (4);
copy (listNames.begin (), listNames.end (), vecNames.begin ());

vector <string> ::const_iterator iNames;
for (iNames = vecNames.begin (); iNames != vecNames.end (); ++ iNames)

cout << *iNames << ‘ ‘;

return 0;
}

3. The difference between std::sort() and std::stable_sort() is that the latter,
when sorting, ensures the relative positions of the objects. Because the application
needs to store data in the sequence it happened, you should choose stable_sort()
to keep the relative ordering between the celestial events intact.

716 APPENDIX D: Answers

ptg7987094

Answers for Lesson 24
Quiz

1. Yes, by supplying a predicate.

2. class Coins needs to implement operator<.

3. No, you can only work on the top of the stack. So you can’t access the coin at the
bottom.

Exercises
1. The binary predicate could be operator<:

class Person
{
public:

int Age;
bool IsFemale;

bool operator< (const Person& anotherPerson) const
{

bool bRet = false;
if (Age > anotherPerson.Age)

bRet = true;
else if (IsFemale && anotherPerson.IsFemale)

bRet = true;

return bRet;
}

};

2. Just insert into the stack. As you pop data, you effectively reverse contents because
a stack is a LIFO type of a container.

Answers for Lesson 25
Quiz

1. No. The number of bits a bitset can hold is fixed at compile time.

2. Because it isn’t one. It can’t scale itself dynamically as other containers do; it
doesn’t support iterators in the way containers need to.

3. No. std::bitset is best suited for this purpose.

Answers for Lesson 25 717

D

ptg7987094

Exercises
1. std::bitset featuring instantiation, initialization, display, and addition is

demonstrated here:
#include <bitset>
#include <iostream>

int main()
{

// Initialize the bitset to 1001
std::bitset <4> fourBits (9);

std::cout << “fourBits: “ << fourBits << std::endl;

// Initialize another bitset to 0010
std::bitset <4> fourMoreBits (2);

std::cout << “fourMoreBits: “ << fourMoreBits << std::endl;

std::bitset<4> addResult(fourBits.to_ulong() +
fourMoreBits.to_ulong());

std::cout << “The result of the addition is: “ << addResult;

return 0;
}

2. Call the flip() function on any of the bitset objects in the preceding sample:

addResult.flip ();
std::cout << “The result of the flip is: “ << addResult << std::endl;

Answers for Lesson 26
Quiz

1. I would look at www.boost.org. I hope you would, too!

2. No, typically well-programmed (and correctly chosen) smart pointers would not.

3. When intrusive, objects that they own need to hold it; otherwise, they can hold this
information in a shared object on the free store.

4. The list needs to be traversed in both directions, so it needs to be doubly linked.

718 APPENDIX D: Answers

www.boost.org

ptg7987094

Exercises
1. pObject->DoSomething (); is faulty because the pointer lost ownership of the

object during the previous copy step. This will crash (or do something very
unpleasant).

2. The code would look like this:
#include <memory>
#include <iostream>
using namespace std;

class Fish
{
public:

Fish() {cout << “Fish: Constructed!” << endl;}
~Fish() {cout << “Fish: Destructed!” << endl;}

void Swim() const {cout << “Fish swims in water” << endl;}
};

class Carp: public Fish
{
};

void MakeFishSwim(const unique_ptr<Fish>& inFish)
{

inFish->Swim();
}

int main ()
{

unique_ptr<Fish> myCarp (new Carp); // note this
MakeFishSwim(myCarp);

return 0;
}

As there is no copy step involved, given that MakeFishSwim() accepts the argument
as a reference, there is no question of slicing. Also, note the instantiation syntax of
variable myCarp.

3. A unique_ptr does not allow copy or assignment as the copy constructor and copy
assignment operator are both private.

Answers for Lesson 26 719

D

ptg7987094

Answers for Lesson 27
Quiz

1. Use ofstream to only write to a file.

2. You would use cin.getline(). See Listing 27.7.

3. You wouldn’t because std::string contains text information and you can stay
with the default mode, which is text (no need for binary).

4. To check if open() succeeded.

Exercises
1. You opened the file but didn’t check for success of open() using is_open() before

using the stream or closing it.

2. You cannot insert into an ifstream, which is designed for input, not output, and
hence does not support stream insertion operator<<.

Answers for Lesson 28
Quiz

1. A class just like any other, but created expressly as a base class for some other
exception classes such as bad_alloc.

2. std::bad_alloc

3. That’s a bad idea for it’s also possible that the exception was thrown in the first
place because of a lack of memory.

4. Using the same catch(std::exception& exp) that you can also use for type
bad_alloc.

Exercises
1. Never throw in a destructor.

2. You forgot to make the code exception safe (missing try... catch block).

3. Don’t allocate in a catch block! Not a million integers. Assume the data allocated
in try as lost and continue with damage control.

720 APPENDIX D: Answers

ptg7987094

Answers for Lesson 29
Quiz

1. It seems that your application does all the activity within one thread. So, if the
image processing itself (contrast correction) is processor intensive, the UI is unre-
sponsive. You ought to split these two activities into two threads so that the OS
switches the two threads, giving processor time to both the UI and the worker that
does the correction.

2. Your threads are possibly poorly synchronized. You are writing to and reading
from an object at the same time, resulting in inconsistent or garbled data recovery.
Insert a binary semaphore and ensure that the table cannot be accessed when it is
being modified.

Answers for Lesson 29 721

D

ptg7987094

This page intentionally left blank

ptg7987094

APPENDIX E
ASCII Codes

Computers work using bits and bytes, essentially numbers. To represent
character data in this numeric system, a standard established by the
American Standard Code for Information Interchange (ASCII) is prevalently
used. ASCII assigns 7-bit numeric codes to Latin characters A–Z, a–z,
numbers 0–9, some special keystrokes (for example, DEL), and special
characters (such as backspace).

7 bits allow for 128 combinations of which the first 32 (0–31) are
reserved as control characters used to interface with peripherals such as
printers.

ptg7987094

ASCII Table of Printable Characters
ASCII codes 32–127 are used for printable characters such as 0–9, A–Z, and a–z and a
few others such as space. The table below shows the decimal and the hexadecimal values
reserved for these symbols.

Symbol DEC HEX Description

32 20 Space

! 33 21 Exclamation mark

“ 34 22 Double quotes (or speech marks)

35 23 Number

$ 36 24 Dollar

% 37 25 Percent sign

& 38 26 Ampersand

‘ 39 27 Single quote

(40 28 Open parenthesis (or open bracket)

) 41 29 Close parenthesis (or close bracket)

* 42 2A Asterisk

+ 43 2B Plus

, 44 2C Comma

- 45 2D Hyphen

. 46 2E Period, dot or full stop

/ 47 2F Slash or divide

0 48 30 Zero

1 49 31 One

2 50 32 Two

3 51 33 Three

4 52 34 Four

5 53 35 Five

6 54 36 Six

7 55 37 Seven

8 56 38 Eight

9 57 39 Nine

: 58 3A Colon

; 59 3B Semicolon

< 60 3C Less than (or open angled bracket)

= 61 3D Equals

724 APPENDIX E: ASCII Codes

ptg7987094

Symbol DEC HEX Description

> 62 3E Greater than (or close angled bracket)

? 63 3F Question mark

@ 64 40 At symbol

A 65 41 Uppercase A

B 66 42 Uppercase B

C 67 43 Uppercase C

D 68 44 Uppercase D

E 69 45 Uppercase E

F 70 46 Uppercase F

G 71 47 Uppercase G

H 72 48 Uppercase H

I 73 49 Uppercase I

J 74 4A Uppercase J

K 75 4B Uppercase K

L 76 4C Uppercase L

M 77 4D Uppercase M

N 78 4E Uppercase N

O 79 4F Uppercase O

P 80 50 Uppercase P

Q 81 51 Uppercase Q

R 82 52 Uppercase R

S 83 53 Uppercase S

T 84 54 Uppercase T

U 85 55 Uppercase U

V 86 56 Uppercase V

W 87 57 Uppercase W

X 88 58 Uppercase X

Y 89 59 Uppercase Y

Z 90 5A Uppercase Z

[91 5B Opening bracket

\ 92 5C Backslash

] 93 5D Closing bracket

^ 94 5E Caret - circumflex

_ 95 5F Underscore

` 96 60 Grave accent

ASCII Table of Printable Characters 725

E

ptg7987094

Symbol DEC HEX Description

a 97 61 Lowercase a

b 98 62 Lowercase b

c 99 63 Lowercase c

d 100 64 Lowercase d

e 101 65 Lowercase e

f 102 66 Lowercase f

g 103 67 Lowercase g

h 104 68 Lowercase h

i 105 69 Lowercase i

j 106 6A Lowercase j

k 107 6B Lowercase k

l 108 6C Lowercase l

m 109 6D Lowercase m

n 110 6E Lowercase n

o 111 6F Lowercase o

p 112 70 Lowercase p

q 113 71 Lowercase q

r 114 72 Lowercase r

s 115 73 Lowercase s

t 116 74 Lowercase t

u 117 75 Lowercase u

v 118 76 Lowercase v

w 119 77 Lowercase w

x 120 78 Lowercase x

y 121 79 Lowercase y

z 122 7A Lowercase z

{ 123 7B Opening brace

| 124 7C Vertical bar

} 125 7D Closing brace

~ 126 7E Equivalency sign - tilde

127 7F Delete

726 APPENDIX E: ASCII Codes

ptg7987094

Symbols

+= (addition assignment)
operator, 327-329

{} (braces), executing multiple
statements conditionally,
109-110

!= (equality) operator, 84

[] (subscript) operator, 338-
341

-+ (subtraction assignment)
operator, 327-329

+ (addition) operator, 80-81,
325-327

& (AND) operator, 92-94, 167-
168

= (assignment) operator, 79

= (copy assignment) operator,
overloading, 335-338

/ (divide) operator, 80-81

== (equality) operator, 84

% (modulo divide) operator,
80-81

* (multiply operator), 80-81,
170-173

~ (NOT) operator, 92-94

| (OR) operator, 92-94

^ (XOR) operator, 92-94

? operator, 118-119

#define directive

constants, defining, 50,
368-371

macro functions, writing,
372-374

A

abstract base classes,
296-298

abstracting data via private
keyword, 210-212

access specifiers, 256

accessing

arrays, zero-based index,
61-62

elements in vectors, 431-434

memory with variables,
30-32

multidimensional array
elements, 66-68

pointed data with dereference
operator, 170-173

STL string classes, 410-411

adaptive containers, 579. See
also containers

queues, 580-581

inserting/removing
elements, 587-589

instantiating, 585-586

member functions, 587

priority queues, 589-594

stacks, 580

inserting/removing
elements, 583-585

instantiating, 581-582

member functions, 582

adaptive function objects, 512

Index

ptg7987094

addition (+) operator, 80-81,
325-327

addressing, 30, 61-62

advantages

of C++, 6

of macro functions, 377

algorithms

containers, 547

STL, 400, 543

classification of, 544-547

copy and remove
operations, 562-565

counting and finding
elements, 550

initializing elements,
554-557

inserting elements,
572-574

overview of, 544

partitioning ranges,
570-572

processing elements,
557-559

replacing elements,
565-567

searching ranges, 552

sorting collections,
567-570

transforming ranges,
560-562

aligning text, 627-628

allocating memory

delete operator, 175-178

new operator, 175-176

analyzing null terminator,
70-71

AND operator (&), 88-92

applications

Hello World

compiling, 12

writing, 9-11

multithreaded, 661

problems caused by,
664-665

programming, reasons
for, 662-663

writing, best practices,
665-666

applying

const cast, 361-362

dynamic cast, 357-360

function objects

binary functions, 519-524

unary functions, 512-519

reinterpret cast, 360

static cast, 356

STL string classes

accessing, 410-411

case conversion, 418-419

concatenation, 412

find member function,
413-415

instantiating, 407-409

reversing, 417-418

template-based
implementation, 420

truncating, 415-417

templates, 389

arguments, 144

passing by reference,
156-157

passing to functions, 196-198

arithmetic operators, 80-83

arrays, 47

as function parameters,
154-155

C-style strings, 70-72

characters, declaring, 406

data, accessing, 61-62

dynamic, 68-69

modifying data in, 62-65

multidimensional

accessing elements in,
66-68

declaring, 65-66

iterating with nested
loops, 134-135

need for, 58-59

organization in, 60

pointers, similarity to,
184-186

static, declaring, 59-60

STL dynamic array class

accessing elements in
vectors, 431-434

deleting elements from
vectors, 434-435

inserting elements into
vectors, 426

instantiating vectors,
424-425

need for, 423

size and capacity of
vectors, 436-437

vectors, 424

ASCII codes, 724-726

assert() macro, validating
expressions, 376

assigning values to array
elements, 62-65

assignment operators, 79,
96-98, 327-329

associative containers, 395

auto keyword, 42-44

B

base classes

abstract base classes, 296-
298

the Diamond Problem, 303

exceptions, 652-655

initialization, 258-261

overridden methods,
invoking, 263

best practices

code, writing, 665-666

for pointers, 189-193

bidirectional iterators, 399

binary files, reading, 636-638

binary functions, 512, 521

binary, 519-520

lambda expressions, 535-537

predicates, 522-524

728 addition (+) operator

ptg7987094

binary numeral system,
672-673

binary operators

addition/subtraction, 325-327

assignment, 327-329

types, 323-324

binary predicates, 512

elements, removing from
linked lists, 458-462

elements, sorting in linked
lists, 458-462

lambda expressions, 537-540

binary semaphores, 664

bit flags, 597

bitset class, 598-601

vector {bool} class, 603-604

bits, 673

bitset class, 598-601

bitwise operators, 92-94

blocks, 79

multiple statements,
executing conditionally,
109-110

blogs, “C++11 Core Language
Feature Support”, 667

bool data type, 37

Boolean values, storing, 37

braces ({}), executing multiple
statements conditionally,
109-110

break statement, 128-129

bytes, 673

C

C++11, new features, 12

“C++11 Core Language
Feature Support” blog, online
documentation, 667

C-style strings, 72

buffer, writing to, 629-630

null terminator, analyzing,
70-71

calculating Fibonacci numbers
with nested loops, 136-137

CALL instruction, 158-159

calling functions, 21-23

calls, 144

capacity of vectors, 436-437

capture lists, maintaining state
in lambda expressions,
532-534

case conversion, STL string
classes, 418-419

casting operators

const cast, 361-362

defined, 353

dynamic cast, 357-360

need for, 354

reinterpret cast, 360

static cast, 356

troubleshooting, 362-363

unpopular styles, 355

catch blocks

exception class

catching exceptions, 652

custom exceptions,
throwing, 653-655

exception handling, 645-648

changing display number
formats, 624-627

char data type, 37

characters

arrays, declaring, 406

STL string classes, accessing,
410-411

values, storing, 38

cin statement, 25

classes

abstract base classes,
296-298

bitset, 598-601

constructors

copy constructors,
228-234

default parameter values,
219-220

initialization lists,
220-222

move constructors, 234

order of construction, 268

overloading, 217-219

shallow copying, 226-228

container classes, 467

map and multimap, 487

multiset container class,
deleting elements,
475-480

multiset container class,
inserting elements,
471-473

multiset container class,
locating elements,
473-475

searching elements, 475

set container class,
deleting elements,
475-480

set container class,
inserting elements,
471-473

set container class,
instantiating, 469-471

set container class,
locating elements,
473-475

declaring, 204

destructors

declaring, 222-223

order of destruction,
268-271

private destructors,
239-240

when to use, 223-225

encapsulation, 205

friend classes, declaring,
245-247

inheritance, 252

base class initialization,
258-261

multiple inheritance,
277-280

private inheritance,
271-273

How can we make this index more useful? Email us at indexes@samspublishing.com

classes 729

ptg7987094

protected inheritance,
256-258, 273-276

public inheritance,
253-254

syntax, 254-256

member variables, initializing
with constructors, 213-214

members, accessing

with dot operator, 206

with pointer operator,
206-208

private keyword, 208-212

public keyword, 208-210

sizeof(), 242-244

STL deque, 438-440

STL dynamic array

accessing elements in
vectors, 431-434

deleting elements from
vectors, 434-435

inserting elements into
vectors, 426

instantiating vectors,
424-425

need for, 423

size and capacity of
vectors, 436-437

vectors, 424

STL string, 405

accessing, 410-411

applying, 407

case conversion, 418-419

concatenation, 412

find member function,
413-415

instantiating, 407-409

need for, 406-407

reversing, 417-418

template-based
implementation, 420

truncating, 415-417

stream classes, 623

strings, 74

subclasses, 254

templates, 382, 385-389

versus struct keyword,
244-245

classification of STL
algorithms

mutating, 545-547

nonmutating, 544-545

closing files, 632-633

code

debugging

exception handling with
catch blocks, 646-648

throwing exceptions,
648-649

writing, best practices,
665-666

code listings

accessing STL strings,
410-411

bitset class

instantiating, 598-599

member methods,
600-601

operators, 599-600

Calendar class, 314

dynamic casting, 358-359

functions

binary, 519-520

unary, 513-514

map and multimap,
customizing sort predicates,
499-503

operators

assignment, 328

binary, 325-326

subscript, 339

queues

instantiating, 585-586

member functions, 587

priority, 589-594

set and multiset, searching
elements, 475

simple smart Pointer class,
321-322

smart pointers,
implementing, 609

stacks

instantiating, 581-582

member functions, 582

STL algorithms

copy and remove
operations, 562-565

counting and finding
elements, 550

initializing elements,
554-557

inserting elements,
572-574

parititioning ranges,
570-572

processing elements,
557-559

replacing elements,
565-567

searchng ranges, 552

sorting collections,
567-570

transforming ranges,
560-562

STL deque class, 440

STL string classes

case conversion, 418-419

concatenation, 412

find member function,
413-415

instantiation, 408-409

reversing, 417-418

template-based
implementation, 420

truncating, 415-417

templates

classes, 385-386

connecting, 400-401

vectors

accessing elements in,
431-434

deleting elements from,
434-435

inserting elements into,
426

instantiating, 424-425

size and capacity of,
436-437

730 classes

ptg7987094

CodeGuru website, 668

collections

elements, inserting, 572-574

ranges, searching, 552

sorting, 567-570

collisions, 504

commands (preprocessor),
#define, 372

comments, 21

comparing

arrays and pointers, 184-186

struct keyword and classes,
244-245

comparison operators,
overloading, 330

compile-time checks,
performing, 388

compilers, determining
variable type with auto
keyword, 42-44

compiling Hello World
application, 12

components of C++ program,
16

body, 17

comments, 21

functions, 21-23

input, 24-26

namespaces, 20

output, 24-26

preprocessor directive, 16

values, returning, 18

variables types, 36-38

compound assignment
operators, 96-98

compound statements, 79

concatenation, STL string
classes, 412

conditional operator, 118-119

conditional statements

if…else, 107-109

multiple statements,
executing conditionally,
109-110

connecting STL, 400-402

const cast, applying, 361-362

const keyword

for pointers, 181-182

for references, 196

constants

defining with #define
directive, 50, 368-371

enumerated, 48-50

literal, 45

naming, 51

variables, declaring as, 46-47

constructors

copy constructors, 228-234

private copy constructors,
235-236

singletons, 236-238

declaring, 212-213

default constructor, 215

default parameter values,
219-220

initialization lists, 220-222

move constructor, 234, 344

order of construction, 268

order of destruction, 268-271

overloading, 215-219

shallow copying, 226-228

virtual copy constructors,
304-307

when to use, 213-214

container adapters, 398

container classes, 467.
See also containers

advantages of set and
multiset, 480

elements, searching, 475

map and multimap, 487

deleting elements,
497-499

inserting elements,
491-494

instantiating, 489-490

locating elements,
494-497

sort predicate,
customizing, 499-503

multiset

advantages of, 480-484

elements, deleting,
475-480

elements, inserting,
471-473

elements, locating,
473-475

set

advantages of, 480-484

elements, deleting,
475-480

elements, inserting,
471-473

elements, locating,
473-475

instantiating, 469-471

unordered map, 504-508

unordered multimap,
504-508

containers

adaptive, 579-580

priority queues, 589-594

queues,
inserting/removing
elements, 587-589

queues, instantiating,
585-586

queues, member
functions, 587

stacks,
inserting/removing
elements, 583-585

stacks, instantiating,
581-582

stacks, member functions,
582

algorithms, 547

elements, initializing,
554-557

searching, 481

STL

associative, 395

How can we make this index more useful? Email us at indexes@samspublishing.com

containers 731

ptg7987094

selecting, 396-398

sequential, 394

continue statement, 128-129

controlling infinite loops,
130-132

conversion operators, 317-319

converting

decimal to binary numeral
system, 675-676

decimal to hexadecimal
numeral system, 676

strings, 638-640

copy assignment operator (=),
overloading, 335-338

copy constructors, 228-234

private, 235-236

singletons, 236-238

virtual copy constructors,
304-307

copy function, 562-565

copying

algorithms, 546

STL string classes, 407-409

cores (processor), 660-661

counting algorithms, 544

counting elements, 550

cout statement, 17, 24

COW (Copy on Write) smart
pointers, 613

creating text files, 634

custom exceptions, throwing,
648-649, 653-655

customizing map and
multimap template class
predicates, 499-503

D

dangling pointers, 189

data transaction in threads,
663-664

deallocating memory, 175-178

debugging

exception handling

custom exceptions,
throwing, 648-649

with catch blocks,
646-648

executables, 8

decimal numeral system, 672

ASCII code values, 724-726

converting to binary, 675-676

converting to hexadecimal,
676

displaying numbers in,
624-627

declarations

function declarations, 22

using namespace, 19-20

declaring

arrays

character arrays, 406

multidimensional arrays,
65-66

static arrays, 59-60

classes, 204

friend classes, 245-247

constructors, 212-213

destructors, 222-223

functions, inline, 159-160

pointers, 166

references, 193-194

templates, 379

with default parameters,
384

with multiple parameters,
383-384

variables

as constants, 46-47

bool type, 37

char type, 38

floating point types, 40

global variables, 35-36

memory, accessing, 30-32

multiple, 32-33

signed integer types, 39

type of, substituting,
44-45

types of, 36

unsigned integer types,
39-40

decrementing operators, effect
on pointers, 179-181

deep copy, 228-234, 611-612

default constructor, 215

default parameters

function values, 147-149

templates, declaring, 384

deference operators, 319-323

defining

constants with #define, 50

string substitutions, 372

templates, 378

variables, 30-32

reserved words, 52

delete operator, managing
memory consumption, 175-
178

deleting elements

duplicates, 567-570

in linked lists, 453-454,
458-462

in map and multimap,
497-499

in multiset container class,
475-480

in set container class,
475-480

in vectors, 434-435

deques, STL deque class,
438-440

dereference operator,
accessing pointed data,
170-173

derivation

base class initialization,
258-261

base class methods

invoking, 264-266

overriding, 261-263

hidden methods, 266-268

slicing, 277

syntax, 254-256

destruction order of local
exception objects, 650-652

destructive copy smart
pointers, 614-618

732 containers

ptg7987094

destructors

destructors, 222-223

order of destruction, 268-271

private destructors, 239-240

shallow copying, 226-228

virtual destructors, 288-292

when to use, 223-225

development, IDEs, 8-9

Diamond Problem, 303

disadvantages of macro
functions, 377

displaying simple data types,
628-629

divide operator (/), 80-81

do…while statement, 123-125

documentation, “C++11 Core
Language Feature Support”
blog, 667

dot operator (.), accessing
members, 206

double data type, 37

double precision float, 40

duplicate elements, deleting,
567-570

dynamic arrays, 68-69

dynamic cast, applying,
357-360

dynamic memory allocation,
175-178

E

elements

characters, accessing,
410-411

collections, searching, 552

counting, 550

finding, 550

initializing, 554-557

inserting, 572-574

processing, 557-559

replacing, 565-567

set or multimultiset,
searching, 475

encapsulation, 205

enumerated constants, 48-50

equality operators, 84,
330-332

erase() function, 453-454,
475-480, 497-499

errors, Fence-Post, 64

exception base class, 652-655

exception handling

custom exceptions, throwing,
648-649

exceptions, causes of, 644

local objects, destruction
order, 650-652

with catch blocks, 645-648

executables, writing, 8

executing multiple statements
conditionally, 109-110

F

Fence-Post error, 64

Fibonacci numbers, 47,
136-137

FIFO (first-in-first-out) systems,
queues, 580

files

binary files, reading, 636-638

opening and closing, 632-633

text files

creating, 634

reading, 635-636

find() function, 473-475,
494-497, 504

find member function, STL
string classes, 413-415

flags (bit), 597

bitset class, 598-601

vector bool, 603-604

float data type, 37

floating point variable
types, 40

for loops, 125-128

forward iterators, 399

forward_list template class,
462-464

for_each algorithm, 557-559

friend classes, declaring,
245-247

function objects

binary, 512, 519-524

unary, 512-519

function operator, 342-345,
348-349

function prototypes, 144

functions, 21-22

arguments, 144

passing by reference,
156-157

passing to, 196-198

binary, 519-521

lambda expressions, 535-
537

predicates, 522-524

CALL instruction, 158-159

calls, 144

constructors

declaring, 212-213

default parameter values,
219-220

initialization lists,
220-222

move constructors, 234

overloading, 215-219

shallow copying, 226-228

when to use, 213-214

copy(), 562-565

definition, 144

destructors

declaring, 222-223

private destructors,
239-240

when to use, 223-225

erase(), 453-454, 475-480,
497-499

find(), 473-475, 494-497, 504

inlining, 159-160

How can we make this index more useful? Email us at indexes@samspublishing.com

functions 733

ptg7987094

lambda functions, 161-162

macro functions

advantages of, 377

assert(), 376

writing, 372-374

main(), 17

need for, 142-143

objects, 511

applying, 512, 519-520

overview of, 512

operators. See operators

overloaded, 152-154

parameters

arrays as parameters,
154-155

with default values, 147-
149

pointers, passing to, 182-184

pop_back, 434

queues, 587, 590-594

recursive functions, 149-150

remove(), 562-565

reverse(), 455-456

sort(), 456-462

stacks, 582

template functions, 379-381

unary, 512-516

lambda expressions,
529-530

predicates, 517-519

values, returning, 18, 23-24

virtual functions, 292-296

polymorphic behavior,
implementing, 286-288

with multiple parameters,
145-146

with multiple return
statements, 151-152

with no parameters,
programming, 146-147

with no return value,
programming, 146

G-H

generating executables, 8

global variables, 35-36

goto statement, 119-121

hash tables

collisions, 504

containers, searching in, 481

unordered map class,
504-508

unordered multimap class,
504-508

header files, 371

Hello.cpp file, 10

hello world program

main() function, 17

preprocessor directive, 16

source code, 10

hexadecimal numeral system,
674

ASCII code values, 724-726

displaying integers in,
624-627

hidden methods, 266-268

history of C++, 7

I

I-values, 80

IDEs (Integrated Development
Environments), 8-9

if…else statements, 107-109

nested if statements, 111-114

implementing

constructors, 212-214

destructors, 222-225

smart pointers, 609-610

include statement, 16

increment operator (++), 81,
179-181

inequality operators, 330-332

infinite loops, 129-132

inheritance, 252

base class methods

initialization, 258-261

invoking in derived class,
264-266

overriding, 261-263

hidden methods, 266-268

multiple inheritance, 277-280

order of construction, 268

order of destruction, 268-271

overridden methods,
invoking, 263

polymorphism, 284-285

abstract base classes,
296-298

implementing with virtual
functions, 286-288

virtual functions, 292-296

private inheritance, 271-273

protected inheritance, 256-
258, 273-276

public inheritance, 253-254

slicing, 277

subclasses, 254

syntax, 254-256

virtual inheritance, 299-303

initialization algorithms, 545

initialization lists, 220-222

base class initialization,
259-261

initializing

arrays, static arrays, 59-60

class member variables via
constructors, 213-214

elements, 554-557

lists, 446-447

multidimensional arrays,
65-66

variables, 31-33

inline functions, 159-160

input, 24-26

input iterators, 399

inserting

elements, 572-574

734 functions

ptg7987094

in linked lists, 448-453

in map and multimap
template classes,
491-494

in multiset container
class, 471-473

in set container class,
471-473

in singly-linked lists,
462-464

in vectors, 426

queue elements, 587-589

stack elements, 583-585

text into strings, 630-632

instantiating

bitset classes, 598-599

map template class, 489-490

queues, 585-590

set objects, 469-471

stacks, 581-582

STL string classes, 407-409

templates, 383

vector {bool} class, 603-604

vectors, 424-425

int data type, 37

integers

signed, 38-39

size of, determining, 40-42

unsigned, 38-40

Intel 8086 processor, 660

intrusive reference counting,
613

invalid pointers, 187-188

invoking

base class methods in
derived class, 264-266

overridden methods, 263

iterating multidimensional
arrays with nested loops,
134-135

iterators

STL, 399

vector elements, accessing,
433-434

J-K

junk value, 166

key-value pairs, hash tables

collisions, 504

unordered map class,
504-508

unordered multimap class,
504-508

keywords, 52, 677-678

auto, 42-44

const, 196

private, 210-212

protected inheritance,
256-258

struct, 244-245

L

lambda expressions, 515

for binary functions, 535-537

for binary predicates,
537-540

state, maintaining, 532-534

syntax, 534-535

for unary functions, 529-530

for unary predicates, 531-532

lambda functions, 161-162

libraries, smart pointers, 618

LIFO (last-in-first-out) systems,
stacks, 580

linked lists, 445. See also lists

list template class

characteristics of, 446

elements, erasing,
453-454, 458-462

elements, inserting, 448-
453

elements, reversing,
455-456

elements, sorting,
456-462

instantiating, 446-447

singly-linked lists, 462-464

list template class

elements

erasing, 453-454,
458- 462

inserting, 448-453

reversing, 455-456

sorting, 456-462

instantiating, 446-447

lists

captures lists, maintaining
state in lambda
expressions, 532-534

elements

erasing, 453-454,
458- 462

inserting, 448-453

reversing, 455-456

sorting, 456-462

initializing, 446-447

singly-linked, 462-464

literal constants, 45

locating elements

in map template class,
494-496

in multimap template class,
496-497

in multiset container class,
473-475

in set container class,
473-475

logical operators, 87-92

long int data type, 37

loops

break statement, 128-129

continue statement, 128-129

do…while statement,
123-125

for loops, 125-128

goto statement, 119-121

infinite loops, 129-132

nested loops, 133

How can we make this index more useful? Email us at indexes@samspublishing.com

loops 735

ptg7987094

Fibonacci numbers,
calculating, 136-137

multidimensional arrays,
iterating, 134-135

while statement, 121-123

M

macro functions

advantages of, 377

syntax, 374-375

writing, 372-374

macros

#define, defining constants,
368-371

assert(), validating
expressions, 376

multiple inclusion,
preventing, 371-372

main() function, 17

maintaining state in lambda
expressions, 532-534

managing memory
consumption. See also
memory; smart pointers

delete operator, 175-178

new operator, 175-178

manipulating strings, 72-74

map template class

elements

deleting, 497-499

inserting, 491-494

locating, 494-496

instantiating, 489-490

sort predicate, customizing,
499-503

member functions

queues, 587, 590-594

stacks, 582

member methods, bitset
classes, 600-601

memory, 30

accessing with variables,
30-32

arrays

organization in, 60

zero-based index, 61-62

CALL instruction, 158-159

of classes, sizeof(), 242-244

deep copying, 228-234

dynamic allocation

delete operator, 175-178

new operator, 175-178

I-values, 80

invalid memory locations,
pointing to, 187-188

leaks, 187

pointers

declaring, 166

smart pointers, 608-618

this pointer, 241

shallow copying, 226-228

variables, determining size
of, 40-42

methods

base class, overriding,
261-263

bitset class, 600-601

hidden, 266-268

overridden, invoking, 263

push back(), 426, 448-453

push front(), 448-453

microprocessors, CALL
instruction, 158-159

modifying

algorithms, 546

data in arrays, 62-65

modulo divide operator (%),
80-81

move constructors, 234, 344

multicore processors, 660-661

threads

data transaction, 663-664

synchronization, 664

multidimensional arrays

accessing elements in, 66-68

declaring, 65-66

multimap template class, 487

elements

deleting, 497-499

inserting, 491-494

locating, 496-497

instantiating, 489-490

sort predicate, customizing,
499-503

multiple inclusion, preventing
with macros, 371-372

multiple inheritance, 254,
277-280

multiple parameters

functions, programming,
145-146

templates, declaring, 383-384

multiple return statements for
functions, 151-152

multiple variables, declaring,
32-33

multiply operator (*), 80-81

multiset template class, 467

advantages of, 480-484

elements

deleting, 475-480

inserting, 471-473

locating, 473-475

multithreaded applications,
661-662

problems caused by, 664-665

programming, reasons for,
662-663

mutating algorithms, 545-547

mutexes, thread
synchronization, 664

N

namespaces, 19-20

naming

constants, 51

variables, 32, 51-52, 677-678

nested if statements, 111-114

nested loops, 133

Fibonacci numbers,
calculating, 136-137

multidimensional arrays,
iterating, 134-135

736 loops

ptg7987094

new features in C++11, 12

new operator, managing
memory consumption,
175-178

non-redefinable operators,
349-350

nonmutating algorithms,
544-545

NOT operator, 87-94

nt data type, 37

null terminator, analyzing,
70-71

number formats, changing,
624-627

O

objects, function objects, 511

applying, 512, 519-520

binary functions, 519-524

overview of, 512

unary functions, 512-519

online documentation, “C++11
Core Language Feature
Support” blog, 667

opening files, 632-633

operators

AND operator (&),
determining variable
address, 167-168

add operator (+), 80-81

assignment operator (=), 79

binary

addition/subtraction,
325-327

assignment, 327-329

types, 323-324

bitset classes, 599-600

bitwise, 92-94

casting

const cast, 361-362

defined, 353

dynamic cast, 357-360

need for, 354

reinterpret cast, 360

static cast, 356

troubleshooting, 362-363

unpopular styles, 355

comparison operators,
overloading, 330

compound assignment
operators, 96-98

conditional operators,
118-119

copy assignment (=)
operator, overloading,
335-338

decrement operator (—), 81

divide operator (/), 80-81

dot operator, accessing
members, 206

equality operators, 84,
330-332

function operators, 342-349

increment (++) operator, 81

inequality operator, 330-332

logical operators, 87-92

modulo divide operator (%),
80-81

multiply operator (*), 80-81

non-redefinable, 349-350

OR operator (||), 88-92

overloading, 332-335, 342

pointer operator, accessing
members, 206-208

postfix, 81-84

precedence, 99-101, 679-680

prefix, 81-84

relational operators, 85-87

sizeof(), 98-99

stream extraction operator,
622

subscript, 338-341

subtract operator (-), 80-81

symbols, 312

types, 312-313

unary

conversion operators,
317-319

decrement operators,
314-317

increment operators,
314-317

programming deference,
319-323

types, 313

OR operator (||), 88-92

order of construction, 268

order of destruction, 268-271

organization of arrays, 60

output, 24-26

output iterators, 399

overflows, 83

overloaded functions, 152-154

overloading

binary operators, 324

comparison operators, 330

constructors, 215-219

copy assignment operator,
335-338

hidden methods, 266-268

non-redefinable operators,
349-350

operators, 313, 332-335, 342

overridden methods, invoking,
263

P

parameters

for functions

with default values,
147-149

arrays as parameters,
154-155

multiple parameters,
programming, 145-146

templates, declaring, 383-384

How can we make this index more useful? Email us at indexes@samspublishing.com

parameters 737

ptg7987094

partitioning

algorithms, 547

ranges, 570-572

passing arguments by
reference, 156-157

performance

multicore processors,
660-661

multithreaded applications,
661

problems caused by,
664-665

programming, reasons
for, 662-663

performing compile-time
asserts, 388

pointed data, accessing with
dereference operator,
170-173

pointer operator (->), 206-208

pointers

addresses, storing, 168-170

arrays, similarity to, 184-186

best practices, 189-193

const keyword, 181-182

dangling pointers, 189

declaring, 166

incrementing/decrementing
operators, effect of,
179-181

invalid memory locations,
187-188

memory leaks, 187

passing to functions, 182-184

size of, 173-174

smart pointers, 607-608

COW, 613

deep copy, 611-612

destructive copy, 614-618

implementing, 609-610

libraries, 618

reference counted,
613-614

reference-linked, 614

this pointer, 241

polymorphism

abstract base classes,
296-298

implementing with virtual
functions, 286-288

need for, 284-286

virtual copy constructors,
304-307

virtual functions, 292-296

virtual inheritance, 299-303

pop operation, 158

pop() function, 583-589

pop_back() function, 434

postfix operators, 81-84

precedence, operator
precedence, 99-101,
679-680

predicates

binary, 512, 522-524

elements, removing from
linked lists, 458-462

elements, sorting in
linked lists, 458-462

lambda expressions,
537-540

unary, 517-519, 531-532

prefix operators, 81-84

preprocessor directives, 16

define, defining constants,
50, 368-372

macro functions, writing,
372-374

preventing multiple inclusion
with macros, 371-372

priority queues, 589-594

private copy constructors,
235-236

private destructors, 239-240

private inheritance, 271-273

private keyword, 208-212

processing elements, 557, 559

processors

cores, 660-661

Intel 8086, 660

multithreaded applications,
661

data transaction, 663-664

problems caused by,
664-665

reasons for programming,
662-663

thread synchronization, 664

program flow, controlling

if…else statement, 107-109

nested if statements, 111-114

switch-case statement,
115-117

programming

templates, 389

connecting, 400-402

STL algorithms, 400

STL containers, 394-398

STL iterators, 399

unary operators, 319-323

properties of STL container
classes, 396

protected inheritance,
256-258, 273-276

public inheritance, 253-254

public keyword, 208-210

push() function, 583-589

push back() method, 426,
448-453

push front() method, 448-453

push operation, 158

Q-R

queues, 580-581

inserting/removing elements,
587-589

instantiating, 585-586

RAM, 30

random access iterators, 399

ranges

elements, processing,
557-559

partitioning, 570-572

searching, 552

738 partitioning

ptg7987094

transforming, 560-562

values, replacing, 565-567

reading

binary files, 636-638

text files, 635-636

recursion, preventing multiple
inclusion with macros,
371-372

recursive functions, 149-150

reference-counted smart
pointers, 613-614

reference-linked smart
pointers, 614

references, 193

arguments, passing to
functions, 196-198

const keyword, 196

utility of, 194-196

reinterpret cast, applying, 360

relational operators, 85-87

removal algorithms, 546

remove function, 562-565

removing

elements from singly-linked
lists, 462-464

queue elements, 587-589

stack elements, 583-585

repeating code, loops

break statement, 128-129

continue statement, 128-129

do…while statement,
123-125

for statement, 125-128

goto statement, 119-121

infinite loops, 129-132

nested loops, 133-134

while statement, 121-123

replacement algorithms, 546

replacing elements, 565-567

reserved words, 52, 677-678

return statements, multiple,
151-152

returning values, 18, 23-24

reverse() function, 455-456

reversing

elements in linked lists,
455-456

STL string classes, 417-418

RTTI (Run Time Type
Identification), 296

runtime type identification,
357-360

S

scientific notation, displaying
integers in, 626-627

scope of variables, 33-34

sdefine (#define) statement,
string substitutions, 372

searching

algorithms, 544

elements, 550

in map template classes,
494-496

in multimap template
class, 496-497

set or multiset, 475

in containers, 481

ranges, 552

selecting containers, 396-398

semaphores, thread
synchronization, 664

sequential containers, 394

set template class, 467

advantages of, 480-484

elements

deleting, 475-480

inserting, 471-473

locating, 473-475

objects, instantiating,
469-471

shallow copying, 226-228

short int data type, 37

sign-bits, 38

signed integer types, 39

signed integers, 38

simple data types, displaying,
628-629

singletons, 236-238

singly-linked lists, 462-464

sizeof(), 40-42, 98-99

for classes, determining,
242-244

pointers, 173-174

sizing vectors, 436-437

slicing, 277

smart pointers, 607

COW, 613

deep copy, 611-612

destructive copy, 614-618

implementing, 609-610

libraries, 618

overview of, 608

reference counted, 613-614

reference-linked, 614

sort predicate (map/multimap
template classes),
customizing, 499-503

sort() function, 456-462

sorting

algorithms, 546

collections, 567-570

elements in linked lists,
456-462

specialization, templates, 383

stacks, 580

inserting/removing elements,
583-585

instantiating, 581-582

local exception object
destruction order, 650-652

member functions, 582

operations, 158

state, maintaining in lambda
expressions, 532-534

statements

#define, string substitutions,
372

break, 128-129

compound, 79

How can we make this index more useful? Email us at indexes@samspublishing.com

statements 739

ptg7987094

conditional statements,
if…else, 107-109

continue, 128-129

cout, 17

do…while, 123-125

for, 125-128

goto, 119-121

nested if statements, 111-114

switch-case, 115-117

syntax, 78

while, 121-123

static arrays, declaring, 59-60

static cast, applying, 356

static members of template
classes, 386-389

std namespace, 19-20

std::string, 72-74

STL (Standard Template
Library), 389

adaptive containers, 579

instantiating queues,
585-586

instantiating stacks,
581-582

priority queues, 589-594

queue member functions,
587

queues, 580-581

queues,
inserting/removing
elements, 587-589

stack member functions,
582

stack, inserting/removing
elements, 583-585

stacks, 580

algorithms, 400, 543

classification of, 544-547

copy and remove
operations, 562-565

counting and finding
elements, 550

initializing elements,
554-557

inserting elements,
572-574

overview of, 544

partitioning ranges,
570-572

processing elements,
557-559

replacing elements,
565-567

searching ranges, 552

sorting collections,
567-570

transforming ranges,
560-562

bit flags, 597-601

connecting, 400-402

container adapters, 398

container classes, 467

advantages of set and
multiset, 480

multiset, 480-484

searching elements, 475

set, 480-484

containers

associative, 395

selecting, 396-398

sequential, 394

deque class, 438-440

dynamic array class

accessing elements,
431-434

deleting elements,
434-435

inserting elements, 426

instantiating, 424-425

need for, 423

size and capacity,
436-437

vectors, 424

exception base class

catching exceptions, 652

custom exceptions,
throwing, 653-655

forward_list template class,
462-464

iterators, 399

linked lists, 445

list template class

elements, erasing,
453-454, 458-462

elements, inserting,
448-453

elements, reversing,
455-456

elements, sorting,
456-462

instantiating, 446-447

map and multimap, 487

deleting elements,
497-499

inserting elements,
491-494

instantiating, 489-490

locating elements,
494-497

sort predicate,
customizing, 499-503

multiset template class,
elements

deleting, 475-480

inserting, 471-473

locating, 473-475

set template class

elements, deleting,
475-480

elements, inserting,
471-473

elements, locating,
473-475

instantiating, 469-471

string class, 405

accessing, 410-411

applying, 407

case conversion, 418-419

concatenation, 412

find member function,
413-415

instantiating, 407-409

need for, 406-407

reversing, 417-418

template-based
implementation, 420

truncating, 415-417

740 statements

ptg7987094

unordered map class,
504-508

unordered multimap class,
504-508

vector {bool} class, 603-604

storing

addresses with pointers,
168-170

Boolean values, 37

character values, 38

stray pointers, 189

stream classes, 623

stream extraction operator,
622

streams, 18, 621

binary files, reading, 636-638

files, opening and closing,
632-633

text files, creating, 634

text files, reading, 635-636

string classes, 74

string literals, 18

C-style strings, 70-72

null terminator, analyzing,
70-71

strings

conversion operations,
638-640

manipulating, 72-74

STL string class, 405

accessing, 410-411

applying, 407

case conversion, 418-419

concatenation, 412

find member function,
413-415

instantiating, 407-409

need for, 406-407

reversing, 417-418

template-based
implementation, 420

truncating, 415-417

substitutions, 372

text, inserting, 630-632

struct keyword, 244-245

styles, unpopular casting, 355

subclasses, 254

subscript operators ([]),
338-341

substituting types of variables,
44-45

subtract operator (-), 80-81,
325-327

subtraction assignment
operator (-=), 327-329

switch-case statement,
115-117

synchronization (threads), 664

syntax

inheritance, 254-256

lambda expressions, 534-535

macros, 374-375

statements, 78

templates, 378

T

template classes. See also
templates

bit flags, bitset class, 598

forward_list, 462-464

list

characteristics of, 446

elements, erasing,
453-454, 458-462

elements, inserting,
448-453

elements, reversing,
455-456

elements, sorting,
456-462

instantiating, 446-447

map, instantiating, 489-490

multimap, instantiating,
489-490

multiset container class

advantages of, 480-484

element, deleting,
475-480

element, inserting,
471-473

element, locating,
473-475

set container class

advantages of, 480-484

element, inserting,
471-473

element, locating,
473-475

elements, deleting,
475-480

instantiating, 469-471

vector {bool} class, 603-604

template functions, 379-381

templates

adaptive container, 579

instantiating stacks,
581-582

priority queues, 589-594

queues, instantiating,
580-581, 585-586

queues, member
functions, 587-589

stacks,
inserting/removing
elements, 583-585

stacks, member functions,
580-582

algorithms, 543

classification of, 544-547

copy and remove
operations, 562-565

counting and finding
elements, 550

initializing elements,
554-557

inserting elements,
572-574

overview of, 544

partitioning ranges,
570-572

How can we make this index more useful? Email us at indexes@samspublishing.com

templates 741

ptg7987094

processing elements,
557-559

replacing elements,
565-567

searching ranges, 552

sorting collections,
567-570

transforming ranges,
560-562

applying, 389

bit flags, 597-601

classes, 382, 385-389

container classes, 467

advantages of set and
multiset, 480

map and multimap, 487

searching elements, 475

default parameters, declaring
with, 384

defining, 378

instantiating, 383

linked lists, 445

multiple parameters,
declaring with, 383-384

overview of, 378

specialization, 383

STL

algorithms, 400

connecting, 400-402

containers, 394-398

iterators, 399

string classes, 420

types, declaring, 379

ternary operator, 118-119

text

aligning, 627-628

inserting into strings,
630-632

text files

creating, 634

reading, 635-636

this pointer, 241

threads

data transaction, 663-664

multithreaded applications,
661

problems caused by,
664-665

reasons for programming,
662-663

synchronization, 663-664

throwing custom exceptions,
648-649, 653-655

transforming, 560-562

troubleshooting

casting operators, 362-363

compiling errors, 448-450

truncating STL string classes,
415-417

try blocks, exception handling,
645-647

types

of operators, 312-313

binary, 323-329

programming deference,
319-323

subscript, 338-341

unary, 313-319

runtime identification,
357-360

of STL algorithms

mutating, 545-547

nonmutating, 544-545

of templates declaring, 379

of variables, 36

bool, 37

char, 38

determining with auto
keyword, 42-44

substituting, 44-45

U

unary functions, 512-516

lambda expressions, 529-530

predicates, 517-519

unary operators

conversion operators,
317-319

decrement operators,
314-317

increment operators, 314-317

programming, 319-323

types, 313

unary predicates in lambda
expressions, 531-532

unhandled exceptions, 644

unordered map class, 504-508

unordered multimap class,
504-508

unpopular casting styles, 355

unsigned integer types, 37-40

unsigned long int data
type, 37

unsigned short int data
type, 37

using namespace declaration,
19-20

V

validating expressions with
assert() macro, 376

values

containers, initializing
elements, 554-557

replacing, 565-567

returning, 18, 23-24

variables

auto keyword, 42-44

bool type, 37

char type, 38

declaring as constants, 46-47

destructors, virtual
destructors, 288-292

global, 35-36

initializing, 31

memory

accessing, 30-32

address, determining,
167-168

usage, determining,
98-99

multiple, declaring, 32-33

742 templates

ptg7987094

names, reserved words, 52,
677-678

naming, 32, 51

pointers

addresses, storing,
168-170

arrays, similarity to,
184-186

best practices, 189-193

const keyword, 181-182

dangling pointers, 189

declaring, 166

incrementing/
decrementing
operators, effect
on, 179-181

invalid memory
locations, 187-188

memory leaks, 187

passing to functions,
182-184

size of, 173-174

this pointer, 241

references, 193

arguments, passing to
functions, 196-198

const keyword, 196

utility of, 194-196

scope, 33-34

size of, determining, 40-42

types, 36

floating point types, 40

signed integer types, 39

substituting, 44-45

unsigned integer types,
39-40

vector {bool} class

instantiating, 603-604

operators, 604

vectors

characteristics of, 424

elements

accessing, 431-434

deleting, 434-435

inserting, 426

instantiating, 424-425

size and capacity of, 436-437

virtual copy constructors,
304-307

virtual destructors, 288-292

virtual functions, 292-296

polymorphic behavior,
implementing, 286-288

virtual inheritance, 299-303

W

websites

“C++11 Core Language
Feature Support” blog, 667

CodeGuru, 668

MSDN, online
documentation, 667

while statement, 121-123

width of fields, setting, 627-
628

wild pointers, 189

writing

code, best practices, 665-666

executables, 8

Hello World application,
9-11

macro functions, 372-374

to binary files, 636-638

to C-style string buffer,
629-630

X-Y-Z

XOR operator, 87-88

zero-based index, 61-62

How can we make this index more useful? Email us at indexes@samspublishing.com

zero-based index 743

ptg7987094

This page intentionally left blank

	Table of Contents
	Introduction
	PART I: The Basics
	LESSON 1: Getting Started
	A Brief History of C++
	Programming a C++ Application
	What’s New in C++11
	Summary
	Q&A
	Workshop

	LESSON 2: The Anatomy of a C++ Program
	Part of the Hello World Program
	The Concept of Namespaces
	Comments in C++ Code
	Functions in C++
	Basic Input Using std::cin and Output Using std::cout
	Summary
	Q&A
	Workshop

	LESSON 3: Using Variables, Declaring Constants
	What Is a Variable?
	Common Compiler-Supported C++ Variable Types
	Determining the Size of a Variable Using sizeof
	Using typedef to Substitute a Variable’s Type
	What Is a Constant?
	Naming Variables and Constants
	Keywords You Cannot Use as Variable or Constant Names
	Summary
	Q&A
	Workshop

	LESSON 4: Managing Arrays and Strings
	What Is an Array?
	Multidimensional Arrays
	Dynamic Arrays
	C-style Strings
	C++ Strings: Using std::string
	Summary
	Q&A
	Workshop

	LESSON 5: Working with Expressions, Statements, and Operators
	Statements
	Compound Statements or Blocks
	Using Operators
	Summary
	Q&A
	Workshop

	LESSON 6: Controlling Program Flow
	Conditional Execution Using if … else
	Getting Code to Execute in Loops
	Modifying Loop Behavior Using continue and break
	Programming Nested Loops
	Summary
	Q&A
	Workshop

	LESSON 7: Organizing Code with Functions
	The Need for Functions
	Using Functions to Work with Different Forms of Data
	How Function Calls Are Handled by the Microprocessor
	Summary
	Q&A
	Workshop

	LESSON 8: Pointers and References Explained
	What Is a Pointer?
	Dynamic Memory Allocation
	Common Programming Mistakes When Using Pointers
	Pointer Programming Best-Practices
	What Is a Reference?
	Summary
	Q&A
	Workshop

	PART II: Fundamentals of Object-Oriented C++ Programming
	LESSON 9: Classes and Objects
	The Concept of Classes and Objects
	Keywords public and private
	Constructors
	Destructor
	Copy Constructor
	Different Uses of Constructors and Destructor
	This Pointer
	Sizeof() a Class
	How struct Differs from class
	Declaring a friend of a class
	Summary
	Q&A
	Workshop

	LESSON 10: Implementing Inheritance
	Basics of Inheritance
	Private Inheritance
	Protected Inheritance
	The Problem of Slicing
	Multiple Inheritance
	Summary
	Q&A
	Workshop

	LESSON 11: Polymorphism
	Basics of Polymorphism
	Using virtual Inheritance to Solve the Diamond Problem
	Virtual Copy Constructors?
	Summary
	Q&A
	Workshop

	LESSON 12: Operator Types and Operator Overloading
	What Are Operators in C++?
	Unary Operators
	Binary Operators
	Function Operator ()
	Operators That Cannot Be Overloaded
	Summary
	Q&A
	Workshop

	LESSON 13: Casting Operators
	The Need for Casting
	Why C-Style Casts Are Not Popular with Some C++ Programmers
	The C++ Casting Operators
	Problems with the C++ Casting Operators
	Summary
	Q&A
	Workshop

	LESSON 14: An Introduction to Macros and Templates
	The Preprocessor and the Compiler
	Using #define Macros to Define Constants
	Using #define To Write Macro Functions
	An Introduction to Templates
	Summary
	Q&A
	Workshop

	PART III: Learning the Standard Template Library (STL)
	LESSON 15: An Introduction to the Standard Template Library
	STL Containers
	STL Iterators
	STL Algorithms
	The Interaction Between Containers and Algorithms Using Iterators
	STL String Classes
	Summary
	Q&A
	Workshop

	LESSON 16: The STL String Class
	The Need for String Manipulation Classes
	Working with the STL String Class
	Template-Based Implementation of an STL String
	Summary
	Q&A
	Workshop

	LESSON 17: STL Dynamic Array Classes
	The Characteristics of std::vector
	Typical Vector Operations
	Understanding the Concepts of Size and Capacity
	The STL deque Class
	Summary
	Q&A
	Workshop

	LESSON 18: STL list and forward_list
	The Characteristics of a std::list
	Basic list Operations
	Reversing and Sorting Elements in a List
	Summary
	Q&A
	Workshop

	LESSON 19: STL Set Classes
	An Introduction to STL Set Classes
	Basic STL set and multiset Operations
	Pros and Cons of Using STL set and multiset
	Summary
	Q&A
	Workshop

	LESSON 20: STL Map Classes
	An Introduction to STL Map Classes
	Basic std::map and std::multimap Operations
	Supplying a Custom Sort Predicate
	Summary
	Q&A
	Workshop

	PART IV: More STL
	LESSON 21: Understanding Function Objects
	The Concept of Function Objects and Predicates
	Typical Applications of Function Objects
	Summary
	Q&A
	Workshop

	LESSON 22: C++11 Lambda Expressions
	What Is a Lambda Expression?
	How to Define a Lambda Expression
	Lambda Expression for a Unary Function
	Lambda Expression for a Unary Predicate
	Lambda Expression with State via Capture Lists [...]
	The Generic Syntax of Lambda Expressions
	Lambda Expression for a Binary Function
	Lambda Expression for a Binary Predicate
	Summary
	Q&A
	Workshop

	LESSON 23: STL Algorithms
	What Are STL Algorithms?
	Classification of STL Algorithms
	Usage of STL Algorithms
	Summary
	Q&A
	Workshop

	LESSON 24: Adaptive Containers: Stack and Queue
	The Behavioral Characteristics of Stacks and Queues
	Using the STL stack Class
	Using the STL queue Class
	Using the STL Priority Queue
	Summary
	Q&A
	Workshop

	LESSON 25: Working with Bit Flags Using STL
	The bitset Class
	Using std::bitset and Its Members
	The vector<bool>
	Summary
	Q&A
	Workshop

	PART V: Advanced C++ Concepts
	LESSON 26: Understanding Smart Pointers
	What Are Smart Pointers?
	How Are Smart Pointers Implemented?
	Types of Smart Pointers
	Popular Smart Pointer Libraries
	Summary
	Q&A
	Workshop

	LESSON 27: Using Streams for Input and Output
	Concept of Streams
	Important C++ Stream Classes and Objects
	Using std::cout for Writing Formatted Data to Console
	Using std::cin for Input
	Using std::fstream for File Handling
	Using std::stringstream for String Conversions
	Summary
	Q&A
	Workshop

	LESSON 28: Exception Handling
	What Is an Exception?
	What Causes Exceptions?
	Implementing Exception Safety via try and catch
	How Exception Handling Works
	Summary
	Q&A
	Workshop

	LESSON 29: Going Forward
	What’s Different in Today’s Processors?
	How to Better Use Multiple Cores
	Writing Great C++ Code
	Learning C++ Doesn’t Stop Here!
	Summary
	Q&A
	Workshop

	Appendixes
	APPENDIX A: Working with Numbers: Binary and Hexadecimal
	Decimal Numeral System
	Binary Numeral System
	Hexadecimal Numeral System
	Converting to a Different Base

	APPENDIX B: C++ Keywords
	APPENDIX C: Operator Precedence
	APPENDIX D: Answers
	APPENDIX E: ASCII Codes
	ASCII Table of Printable Characters

	Index
	A
	B
	C
	D
	E
	F
	G-H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Y-Z

