

C++
FOR

DUMmIES
‰

5TH EDITION

by Stephen Randy Davis

C++
FOR

DUMmIES
‰

5TH EDITION

by Stephen Randy Davis

C++ For Dummies®, 5th Edition

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy
fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447,
e-mail: permcoordinator@wiley.com.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax
317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2004102365

ISBN: 0-7645-6852-3

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

5B/SW/QU/QU/IN

About the Author
Stephen R. Davis lives with his wife and son near Dallas, Texas. He and
his family have written numerous books including C++ For Dummies and
C++ Weekend Crash Course. Stephen works for L-3 Communications.

Dedication
To my friends and family, who help me be the best Dummy I can be.

Author’s Acknowledgments
I find it very strange that only a single name appears on the cover of any
book, but especially a book like this. In reality, many people contribute to
the creation of a For Dummies book. From the beginning, editorial director
Mary Corder and my agent, Claudette Moore, were involved in guiding and
molding the book’s content. During the development of the five editions of
this book, I found myself hip-deep in edits, corrections, and suggestions from
a group of project editors, copyeditors, and technical reviewers — this book
would have been a poorer work but for their involvement. And nothing would
have made it into print without the aid of the person who coordinated the
first and second editions of the project, Suzanne Thomas. Nevertheless, one
name does appear on the cover and that name must take responsibility for
any inaccuracies in the text.

I also have to thank my wife, Jenny, and son, Kinsey, for their patience and
devotion. I hope we manage to strike a reasonable balance.

Finally, a summary of the animal activity around my house. For those of you
who have not read any of my other books, I should warn you that this has
become a regular feature of my For Dummies books.

My two dogs, Scooter and Trude, continue to do well, although Trude is all
but blind now. Our two mini-Rex rabbits, Beavis and Butt-head, passed on to
the big meadow in the sky after living in our front yard for almost a year and
a half.

If you would like to contact me concerning C++ programming, semi-blind dogs,
or free-roaming rabbits, feel free to drop me a line at srdavis@acm.org.

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and

Media Development

Project Editor: Linda Morris

Acquisitions Editor: Katie Feltman

Copy Editor: Melba Hopper

Technical Editor: Wiley-Dreamtech India Pvt Ltd

Editorial Manager: Leah Cameron

Permissions Editor: Laura Moss

Media Development Specialist: Travis Silvers

Media Development Manager:
Laura VanWinkle

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant, www.the5thwave.com

Production

Project Coordinator: Adrienne Martinez

Layout and Graphics: Amanda Carter,
Andrea Dahl, Denny Hager, Michael Kruzil,
Lynsey Osborn, Jacque Schneider

Proofreaders: Andy Hollandbeck, Carl Pierce,
Dwight Ramsey, TECHBOOKS Production
Services

Indexer: TECHBOOKS Production Services

Special Help:

Barry Childs-Helton

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

Table of Contents
Introduction ..1

What’s in This Book ...1
What’s on the CD..2
What Is C++?..2
Conventions Used in This Book ...2
How This Book Is Organized...3
And There’s More...4
Part I: Introduction to C++ Programming ..4
Part II: Becoming a Functional C++ Programmer ...4
Part III: Introduction to Classes..5
Part IV: Inheritance ..5
Part V: Optional Features ..5
Part VI: The Part of Tens ...5
Icons Used in This Book..6
Where to Go from Here..6

Part I: Introduction to C++ Programming7

Chapter 1: Writing Your First C++ Program .9

Grasping C++ Concepts ...10
What’s a program?..10
How do I program? ...11

Installing Dev-C++...12
Setting the options ...15

Creating Your First C++ Program..16
Entering the C++ code..17
Building your program...18

Executing Your Program..20
Dev-C++ is not Windows ..21
Dev-C++ help ...21

Reviewing the Annotated Program ..21
Examining the framework for all C++ programs22
Clarifying source code with comments ...22
Basing programs on C++ statements ...23
Writing declarations...24
Generating output ..25

vi C++ For Dummies, 5th Edition

Calculating Expressions ..25
Storing the results of expression..26
Examining the remainder of Conversion.cpp26

Chapter 2: Declaring Variables Constantly .27

Declaring Variables ..27
Declaring Different Types of Variables ..28

Reviewing the limitations of integers in C++.....................................29
Solving the truncation problem..30
Looking at the limits of floating-point numbers31

Declaring Variable Types...33
Types of constants ...34
Special characters ..35

Are These Calculations Really Logical?...36
Mixed Mode Expressions ..36

Chapter 3: Performing Mathematical Operations 39

Performing Simple Binary Arithmetic ...40
Decomposing Expressions ..41
Determining the Order of Operations ...42
Performing Unary Operations ..43
Using Assignment Operators..45

Chapter 4: Performing Logical Operations .47

Why Mess with Logical Operations?..47
Using the Simple Logical Operators ..48

Storing logical values ...49
Using logical int variables ...51
Be careful performing logical operations

on floating-point variables...51
Expressing Binary Numbers ...53

The decimal number system ..54
Other number systems ..54
The binary number system...54

Performing Bitwise Logical Operations...56
The single bit operators ..57
Using the bitwise operators ..58
A simple test ...59
Do something logical with logical calculations60

Chapter 5: Controlling Program Flow .61

Controlling Program Flow with the Branch Commands61
Executing Loops in a Program..63

Looping while a condition is true...64
Using the autoincrement/autodecrement feature............................65
Using the for loop...67

Table of Contents vii
Avoiding the dreaded infinite loop...69
Applying special loop controls ...70

Nesting Control Commands..73
Switching to a Different Subject? ...74

Part II: Becoming a Functional C++ Programmer...........77

Chapter 6: Creating Functions .79

Writing and Using a Function ...79
Defining the sumSequence() function...81
Calling the function sumSequence() ...82
Divide and conquer ..82

Understanding the Details of Functions..83
Understanding simple functions ..84
Understanding functions with arguments...85

Overloading Function Names ...87
Defining Function Prototypes...89
Variable Storage Types ..91
Including Include Files...91

Chapter 7: Storing Sequences in Arrays .93

Considering the Need for Arrays ...93
Using an array ...95
Initializing an array...98
Accessing too far into an array...99
Using arrays ..99
Defining and using arrays of arrays ...100

Using Arrays of Characters...100
Creating an array of characters..100
Creating a string of characters ...101

Manipulating Strings with Character...103
String-ing Along Variables ...106

Chapter 8: Taking a First Look at C++ Pointers 109

Variable Size..109
What’s in an Address? ...110
Address Operators...111
Using Pointer Variables ...112

Comparing pointers and houses ..114
Using different types of pointers..114

Passing Pointers to Functions ..117
Passing by value ...117
Passing pointer values...118
Passing by reference ..119

viii C++ For Dummies, 5th Edition

Making Use of a Block of Memory Called the Heap119
Limiting scope ..120
Examining the scope problem ..121
Providing a solution using the heap ..122

Chapter 9: Taking a Second Look at C++ Pointers125

Defining Operations on Pointer Variables...125
Re-examining arrays in light of pointer variables126
Applying operators to the address of an array128
Expanding pointer operations to a string129
Justifying pointer-based string manipulation.................................131
Applying operators to pointer types other than char...................131
Contrasting a pointer with an array...132

Declaring and Using Arrays of Pointers ..133
Utilizing arrays of character strings ..134
Accessing the arguments to main()...136

Chapter 10: Debugging C++ .139

Identifying Types of Errors ...139
Choosing the WRITE Technique for the Problem140

Catching bug #1 ..142
Catching bug #2 ..143

Calling for the Debugger..146
Defining the debugger..147
Finding commonalities among us...147
Running a test program ...148
Single-stepping through a program..149

Part III: Introduction to Classes..................................155

Chapter 11: Examining Object-Oriented Programming 157

Abstracting Microwave Ovens ...157
Preparing functional nachos ...158
Preparing object-oriented nachos..159

Classifying Microwave Ovens ...159
Why Classify?..160

Chapter 12: Adding Class to C++ .161

Introducing the Class...161
The Format of a Class ..162
Accessing the Members of a Class...163

Table of Contents ix

Chapter 13: Making Classes Work .167

Activating Our Objects ..168
Simulating real-world objects ...168
Why bother with member functions? ..169

Adding a Member Function...169
Creating a member function ...170
Naming class members..171

Calling a Member Function ...171
Accessing a member function...172
Accessing other members from a member function174

Scope Resolution (And I Don’t Mean How Well
Your Microscope Works) ...175

Defining a Member Function in the Class ...177
Keeping a Member Function After Class ...179
Overloading Member Functions...181

Chapter 14: Point and Stare at Objects .183

Defining Arrays of and Pointers to Simple Things183
Declaring Arrays of Objects..184
Declaring Pointers to Objects...185

Dereferencing an object pointer...186
Pointing toward arrow pointers ...187

Passing Objects to Functions ...187
Calling a function with an object value ...188
Calling a function with an object pointer ..189
Calling a function by using the reference operator191

Why Bother with Either Pointers or References?192
Returning to the Heap ...192
Comparing Pointers to References ..193
Why Not Use References Rather Than Pointers?.....................................193
Linking Up with Linked Lists ..195

Performing other operations on a linked list..................................196
Hooking up with a LinkedListData program197

A Ray of Hope: A List of Containers Linked to the C++ Library200

Chapter 15: Protecting Members: Do Not Disturb 201

Protecting Members ..201
Why you need protected members..201
Discovering how protected members work....................................202

Making an Argument for Using Protected Members................................204
Protecting the internal state of the class ..204
Using a class with a limited interface ..205

Giving Non-Member Functions Access to Protected Members..............205

x C++ For Dummies, 5th Edition

Chapter 16: “Why Do You Build Me Up,
Just to Tear Me Down, Baby?” .209

Creating Objects...209
Using Constructors ..210

Why you need constructors..210
Making constructors work ..212

Dissecting a Destructor ...217
Why you need the destructor...217
Working with destructors..217

Chapter 17: Making Constructive Arguments .221

Outfitting Constructors with Arguments ..221
Justifying constructors..222
Using a constructor..222

Placing Too Many Demands on the Carpenter:
Overloading the Constructor..223

Defaulting Default Constructors...227
Constructing Class Members..228

Constructing a complex data member ..228
Constructing a constant data member ..232

Constructing the Order of Construction ...233
Local objects construct in order ..234
Static objects construct only once ..234
All global objects construct before main()235
Global objects construct in no particular order235
Members construct in the order in which they are declared.......236
Destructors destruct in the reverse order

of the constructors...237

Chapter 18: Copying the Copy Copy Copy Constructor 239

Copying an Object..239
Why you need the copy constructor ...239
Using the copy constructor ..240

The Automatic Copy Constructor..242
Creating Shallow Copies versus Deep Copies ..244
It’s a Long Way to Temporaries ..248

Avoiding temporaries, permanently ..249
Referring to the copy constructor’s referential argument250

Chapter 19: Static Members: Can Fabric Softener Help?251

Defining a Static Member ..251
Why you need static members ...251
Using static members ..252
Referencing static data members...253
Uses for static data members ...255

Table of Contents xi
Declaring Static Member Functions...255
What Is This About, Anyway?...258

Part IV: Inheritance...259

Chapter 20: Inheriting a Class .261

Do I Need My Inheritance? ..262
How Does a Class Inherit?...263

Using a subclass ...265
Constructing a subclass ..265
Destructing a subclass...267

Having a HAS_A Relationship ...267

Chapter 21: Examining Virtual Member Functions:
Are They for Real? .269

Why You Need Polymorphism..272
How Polymorphism Works ...274
When Is a Virtual Function Not?...276
Considering Virtual Considerations ..277

Chapter 22: Factoring Classes .279

Factoring ...279
Implementing Abstract Classes..284

Describing the abstract class concept ..286
Making an honest class out of an abstract class............................287
Passing abstract classes..289
Declaring pure virtual functions — is it really necessary?290

Factoring C++ Source Code ...291
Dividing the program — Student..292
Defining a namespace ..293
Implementing Student..294
Dividing the program — GraduateStudent295
Implementing an application ..296
Project file ...298
Creating a project file under Dev-C++ ..298

Part V: Optional Features...303

Chapter 23: A New Assignment Operator,
Should You Decide to Accept It .305

Comparing Operators with Functions ...305
Inserting a New Operator..306

xii C++ For Dummies, 5th Edition

Creating Shallow Copies Is a Deep Problem ...307
Overloading the Assignment Operator ...308
Protecting the Escape Hatch ..311

Chapter 24: Using Stream I/O .313

How Stream I/O Works...313
The fstream Subclasses...315
Reading Directly from a Stream..320
What’s Up with endl? ...322
Using the strstream Subclasses ...322
Manipulating Manipulators...325

Chapter 25: Handling Errors — Exceptions .329

Justifying a New Error Mechanism?...331
Examining the Exception Mechanism..332
What Kinds of Things Can I Throw? ..335

Chapter 26: Inheriting Multiple Inheritance .339

Describing the Multiple Inheritance Mechanism339
Straightening Out Inheritance Ambiguities ..341
Adding Virtual Inheritance..342
Constructing the Objects of Multiple Inheritance349
Voicing a Contrary Opinion ..349

Chapter 27: Tempting C++ Templates .351

Generalizing a Function into a Template...353
Template Classes..355
Do I Really Need Template Classes? ...358
Tips for Using Templates ..361

Chapter 28: Standardizing on the Standard Template Library363

The string Container..364
The list Containers...366
Iterators...368
Using Maps..371

Part VI: The Part of Tens..375

Chapter 29: Ten Ways to Avoid Adding Bugs to Your Program 377

Enabling All Warnings and Error Messages ..377
Insisting on Clean Compiles..378

Table of Contents xiii
Adopting a Clear and Consistent Coding Style...379
Limiting the Visibility ..379
Commenting Your Code While You Write It ..381
Single-Stepping Every Path at Least Once ..381
Avoid Overloading Operators...382
Heap Handling ..382
Using Exceptions to Handle Errors..382
Avoiding Multiple Inheritance ..383

Chapter 30: The Ten Most Important Optional Features
of Dev-C++ .385

Customize Editor Settings to Your Taste...385
Highlight Matching Braces/Parentheses ...386
Enable Exception Handling ...387
Include Debugging Information (Sometimes)...387
Create a Project File ...388
Customize the Help Menu ...388
Reset Breakpoints after Editing the File..388
Avoid Illegal Filenames ..389
Include #include Files in Your Project ...389
Executing the Profiler ..389

Appendix: About the CD ...393
System Requirements ..393
Using the CD with Microsoft Windows..394
Using the CD with Linux ..395
What You’ll Find ...396

Development tools ...396
Program source code...397

If You’ve Got Problems (Of the CD Kind) ..397

Bonus Chapters on the CD-ROM!CD

Bonus Chapter 1: A Functional Budget Program BC1

BUDGET1 ..BC1
BUDGET2 ..BC7
BUDGET3 ..BC16

Implementing a linked list module ..BC17
Taking savings and checking into account...................................BC19
The linked list classes...BC26
Assessing the budget ..BC28

xiv C++ For Dummies, 5th Edition

BUDGET4 ..BC28
Implementing linked list as a template classBC29
It’s easy to con-template...BC31
Balancing the template budget..BC37

BUDGET5 ..BC37
Listing containers ..BC38
Making a list of the accounts ...BC43

Bonus Chapter 2: Using Visual C++.NET .BC45

Building a Project ..BC45
Adding an Existing Program to an Existing ProjectBC47
Creating a New Program Project ...BC49

Index ..407

Introduction

Welcome to C++ For Dummies, 5th Edition. Think of this book as C++:
Reader’s Digest Edition, bringing you everything you need to know

without the boring stuff.

What’s in This Book
C++ For Dummies is an introduction to the C++ language. C++ For Dummies starts
from the beginning (where else?) and works its way from early concepts and
through more sophisticated techniques. It doesn’t assume that you have any
prior knowledge, at least, not of programming.

C++ For Dummies is rife with examples. Every concept is documented in numer-
ous snippets and several complete programs.

Unlike other C++ programming books, C++ For Dummies considers the “why”
just as important as the “how.” The features of C++ are like pieces of a jigsaw
puzzle. Rather than just present the features, I think it’s important that you
understand how they fit together.

If you don’t understand why a particular feature is in the language, you won’t
truly understand how it works. After you finish this book, you’ll be able to write
a reasonable C++ program, and, just as important, you’ll understand why and
how it works.

C++ For Dummies can also be used as a reference: If you want to understand
what’s going on with all the template stuff, just flip to Chapter 27, and you’re
there. Each chapter contains necessary references to other earlier chapters
in case you don’t read the chapters in sequence.

C++ For Dummies is not operating- or system-specific. It is just as useful to Unix
or Linux programmers as it is to Windows-based developers. C++ For Dummies
doesn’t cover Windows or .NET programming. You have to master C++ before
you can move on to Windows and .NET programming.

2 C++ For Dummies, 5th Edition

What’s on the CD
The CD-ROM included with C++ For Dummies contains the source code for the
examples in this book. This can spare you considerable typing.

Your computer can’t execute these or any other C++ program directly. You have
to run your C++ programs through a C++ development environment, which
spits out an executable program. (Don’t worry, this procedure is explained in
Chapter 1.)

The programs in C++ For Dummies are compatible with any standard C++ envi-
ronment, but don’t worry if you don’t already own one. A full-featured C++ envi-
ronment known as Dev-C++ is contained on the enclosed CD-ROM. You can use
this tool to write your own C++ programs as well as explore the programs from
the book.

No worries if you already own Visual Studio.NET. Some people need an intro-
duction to C++ before going into the many features offered by .NET. C++ For
Dummies is just as happy with Visual Studio as it is with its own Dev-C++. C++
For Dummies does not contain Visual Studio.NET. However, the programs in the
book have been tested for compatibility with the industry standard “unman-
aged C++” portion of Visual Studio.NET.

What Is C++?
C++ is an object-oriented, low-level ANSI and ISO standard programming lan-
guage. As a low-level language similar to and compatible with its predecessor
C, C++ can generate very efficient, very fast programs.

As an object-oriented language, C++ has the power and extensibility to write
large-scale programs. C++ is one of the most popular programming languages
for all types of programs. Most of the programs you use on your PC every day
are written in C++.

C++ has been certified as a 99.9 percent pure standard. This makes it a portable
language. There is a C++ compiler for every major operating system, and they
all support the same C++ language. (Some operating systems support exten-
sions to the basic language, but all support the C++ core.)

Conventions Used in This Book
When I describe a message or information that you see onscreen, it appears
like this:

3 Introduction

Hi mom!

In addition, code listings appear as follows:

// some program
void main()
{

...
}

If you are entering these programs by hand, you must enter the text exactly
as shown with one exception: The number of spaces is not critical, so don’t
worry if you enter one too many or one too few spaces.

C++ words are usually based on English words with similar meanings. This can
make reading a sentence containing both English and C++ difficult to make out
without a little help. To help out, C++ commands and function names appear
in a different font like this. In addition, function names are always followed
by an open and closed parenthesis like myFavoriteFunction(). The argu-
ments to the function are left off except when there’s a specific need to make
them easier to read. It’s a lot easier to say: “this is myFavoriteFunction()”
than “this is myFavoriteFunction(int, float).”

Sometimes, the book directs you to use specific keyboard commands. For exam-
ple, when the text instructs you to press Ctrl+C, it means that you should hold
down the Ctrl key while pressing the C key and then release both together.
Don’t type the plus sign.

Sometimes, I’ll tell you to use menu commands, such as File➪Open. This nota-
tion means to use the keyboard or mouse to open the File menu and then
choose the Open option. Finally, both Dev-C++ and Visual Studio.NET define
function keys for certain common operations — unfortunately, they don’t
use the same function keys. To avoid confusion, I rarely use function keys in
the book — I couldn’t have kept the two straight anyway.

How This Book Is Organized
Each new feature is introduced by answering the following three questions:

� What is this new feature?

� Why was it introduced into the language?

� How does it work?

4 C++ For Dummies, 5th Edition

Small pieces of code are sprinkled liberally throughout the chapters. Each
demonstrates some newly introduced feature or highlights some brilliant point
I’m making. These snippets may not be complete and certainly don’t do any-
thing meaningful. However, every concept is demonstrated in at least one
functional program.

Note: A good programmer doesn’t let lines of code extend too far because it
makes them hard to read. I have inserted newlines appropriately to limit my
programs to the width of the book page.

And There’s More
A real-world program can take up lots of pages. However, seeing such a pro-
gram is an important didactic tool for any reader. I have included a series
of programs along with an explanation of how these programs work on the
enclosed CD-ROM.

I use one simple example program that I call BUDGET. This program starts life
as a simple, functionally-oriented BUDGET1. This program maintains a set of
simple checking and savings accounts. The reader is encouraged to review this
program at the end of Part II. The subsequent version, BUDGET2, adds the
object-oriented concepts presented in Part III. The examples work their way
using ever more features of the language, culminating with BUDGET5, which
you should review after you master all the chapters in the book. The BUDGET
programs can be found on the book’s CD-ROM. For a complete overview of the
CD-ROM’s contents, see this book’s Appendix.

Part I: Introduction to C++ Programming
Part I starts you on your journey. You begin by examining what it means to
write a computer program. From there, you step through the syntax of the
language (the meaning of the C++ commands).

Part II: Becoming a Functional
C++ Programmer

In this part, you expand upon your newly gained knowledge of the basic com-
mands of C++ by adding the capability to bundle sections of C++ code into mod-
ules and reusing these modules in programs.

5 Introduction

In this section, I also introduce that most dreaded of all topics, the C++ pointer.
If you don’t know what that means, don’t worry — you’ll find out soon enough.

Part III: Introduction to Classes
The plot thickens in this part. Part III begins the discussion of object-oriented
programming. Object-oriented programming is really the reason for the exis-
tence of C++. Take the OO features out of C++, and you’re left with its prede-
cessor language, C. I discuss things such as classes, constructors, destructors,
and making nachos (I’m not kidding, by the way). Don’t worry if you don’t
know what these concepts are (except for nachos — if you don’t know what
nachos are, we’re in big trouble).

Part IV: Inheritance
Inheritance is where object-oriented programming really comes into its own.
Understanding this most important concept is the key to effective C++ pro-
gramming and the goal of Part IV. There’s no going back now — after you’ve
completed this part, you can call yourself an Object-Oriented Programmer,
First Class.

Part V: Optional Features
By the time you get to Part V, you know all you need to program effectively in
C++. I touch on the remaining features of the language. Features such as file
input/output, error-handling constructs, and templates are left to this part.

Part VI: The Part of Tens
What For Dummies book would be complete without The Part of Tens? Chap-
ter 29 shows you the top ten best ways to avoid introducing bugs into your
programs, bugs that you would otherwise have to ferret out on your own.

Chapter 30 takes you through the most important tools and options in the
Dev-C++ environment. Although Dev-C++ is not part of the C++ language, under-
standing these options enhances your programming experience.

6 C++ For Dummies, 5th Edition

Icons Used in This Book

Remember this, too. This one can sneak up on you when you least expect it
and generate one of those really hard-to-find bugs.

Where to Go from Here
Finding out about a programming language is not a spectator sport. I’ll try to
make it as painless as possible, but you have to power up the ol’ PC and get
down to some serious programming. Limber up the fingers, break the spine
on the book so that it lies flat next to the keyboard (and so that you can’t take
it back to the bookstore), and dive in.

This is technical stuff that you can skip on the first reading.

Tips highlight a point that can save you a lot of time and effort.

This icon alerts you to examples and software that appear on this book’s
CD-ROM.

Remember this. It’s important.

Introduction to C++
Programming

Part I

In this part . . .

Both the newest, hottest flight simulator and the

application.

simplest yet most powerful accounting programs
use the same basic building blocks. In this part, you dis-
cover the basic features you need to write your killer

Chapter 1

Writing Your First C++ Program
In This Chapter
� Finding out about C++

� Installing Dev-CPP from the accompanying CD-ROM

� Creating your first C++ program

� Executing your program

Okay, so here we are: No one here but just you and me. Nothing left to do
but get started. Might as well lay out a few fundamental concepts.

A computer is an amazingly fast but incredibly stupid machine. A computer
can do anything you tell it (within reason), but it does exactly what it’s told —
nothing more and nothing less.

Perhaps unfortunately for us, computers don’t understand any reasonable
human language — they don’t speak English either. Okay, I know what you’re
going to say: “I’ve seen computers that could understand English.” What you
really saw was a computer executing a program that could meaningfully under-
stand English. (I’m still a little unclear on this computer-understanding-language
concept, but then I don’t know that my son understands my advice, either, so
I’ll let it slide.)

Computers understand a language variously known as computer language or
machine language. It’s possible but extremely difficult for humans to speak
machine language. Therefore, computers and humans have agreed to sort of
meet in the middle, using intermediate languages such as C++. Humans can
speak C++ (sort of), and C++ is converted into machine language for the com-
puter to understand.

10 Part I: Introduction to C++ Programming

Grasping C++ Concepts
In the early 1970s, a consortium of really clever people worked on a computer
system called Multix. The goal of Multix was to give all houses inexpensive
computer access to graphics, e-mail, stock data, pornography (just kidding),
whatever. Of course, this was a completely crazy idea at the time, and the
entire concept failed.

A small team of engineers working for Bell Labs decided to save some portion
of Multix in a very small, lightweight operating system that they dubbed Unix
(Un-ix, the single task version of Mult-ix, get it?).

Unfortunately for these engineers, they didn’t have one large machine but a
number of smaller machines, each from a different manufacturer. The standard
development tricks of the day were all machine-dependent — they would have
to rewrite the same program for each of the available machines. Instead, these
engineers invented a small, powerful language named C.

C caught on like wildfire. Eventually, however, new programming techniques
(most notably object-oriented programming) left the C programming language
behind. Not to be outdone, the engineering community added equivalent new
features to the C language. The result was called C++.

The C++ language consists of two basic elements:

� Semantics: This is a vocabulary of commands that humans can under-
stand and that can be converted into machine language, fairly easily.

and

� Syntax: This is a language structure (or grammar) that allows humans to
combine these C++ commands into a program that actually does some-
thing (well, maybe does something).

Think of the semantics as the building blocks of your C++ program and the
syntax as the correct way to put them together.

What’s a program?
A C++ program is a text file containing a sequence of C++ commands put
together according to the laws of C++ grammar. This text file is known as the
source file (probably because it’s the source of all frustration). A C++ source
file carries the extension .CPP just as a Microsoft Word file ends in .DOC or
an MS-DOS (remember that?) batch file ends in .BAT. The concept extension
.CPP is just a convention.

Chapter 1: Writing Your First C++ Program 11
The point of programming in C++ is to write a sequence of commands that can
be converted into a machine-language program that actually does what we want
done. The resulting machineexecutable files carry the extension .EXE. The act
of creating an executable program from a C++ program is called compiling or
building (the subtle difference between the two is described in Chapter 22).

That sounds easy enough — so what’s the big deal? Keep going.

How do I program?
To write a program, you need two specialized computer programs. One (an
editor) is what you use to write your code as you build your .CPP source file.
The other (a compiler) converts your source file into a machine-executable
.EXE file that carries out your real-world commands (open spreadsheet, make
rude noise, deflect incoming asteroid, whatever).

Nowadays, tool developers generally combine compiler and editor into a single
package — a development environment. After you finish entering the commands
that make up your program, you need only click a button to create the exe-
cutable file.

The most popular of all C++ environments is a Microsoft product, Visual
C++.NET (pronounced “Visual-C-plus-plus-DOT-net”). All programs in this
book compile and execute with Visual C++.NET; however, many of you may
not already own Visual C++.NET — and at $250 bucks a pop, street price, this
may be a problem.

Fortunately, there are public-domain C++ environments. We use one of them
in this book — the Dev-CPP environment. A recent version of Dev-CPP envi-
ronment is included on CD-ROM enclosed at the back of this book (or you can
download the absolutely most recent version off the Web at www.bloodshed.
net).

You can download quite a range of public-domain programs from the Internet.
Some of these programs, however, are not free — you’re encouraged — or
required — to pay some (usually small) fee. You don’t have to pay to use Dev-
C++, but you can contribute to the cause if you like. See the Web site for details.

I have tested the programs in this book with Dev-C++ version 4.9.8.0; they
should work with other versions as well. You can check out my Web site at
www.stephendavis.com for a list of any problems that may arise with future
versions of Dev-C++ or Windows.

Dev-C++ is not some bug-ridden, limited edition C++ compiler from some fly-
by-night group of developers. Dev-C++ is a full-fledged C++ environment. Dev-
C++ supports the entire C++ language and executes all the programs in this
book (and any other C++ book) just fine, thank you.

12 Part I: Introduction to C++ Programming

Dev-C++ does generate Windows-compatible 32-bit programs, but it does not
easily support creating programs that have the classic Windows look. If you
want to do that, you’ll have to break open the wallet and go for a commercial
package like Visual Studio.NET. Having said that, I strongly recommend that
you work through the examples in this book first to learn C++ before you tackle
Windows development. They are two separate things and (for the sake of
sanity) should remain so in your mind.

Follow the steps in the next section to install Dev-C++ and build your first C++
program. This program’s task is to convert a temperature value entered by the
user from degrees Celsius to degrees Fahrenheit.

The programs in this book are compatible with Visual C++.NET and the C++
section of Visual Studio.NET (which are essentially the same thing). Use the
documentation in the Visual C++ .NET for instructions on installing C++. True,
the error messages generated by Visual C++.NET are different (and often just
as difficult to decipher), but the territory will seem mysteriously familiar. Even
though you’re using a different songbook, you shouldn’t have much trouble
following the tune.

Installing Dev-C++
The CD-ROM that accompanies this book includes the most recent version of
the Dev-C++ environment at the time of this writing.

The Dev-C++ environment comes in an easy-to-install, compressed executable
file. This executable file is contained in the DevCPP directory on the accom-
panying CD-ROM. Here’s the rundown on installing the environment:

1. Navigate to and double-click the file devcpp4980.exe, or (in Windows)
click Start➪Run.

• Double-clicking the file installs the environment automatically. (Note
that 4.9.8.0, the version number, will be different on any newer ver-
sion of Dev-C++ you downloaded off the Web.)

• If you clicked Start➪Run, type x:\devcpp\devcpp4980 in the Run
window that appears, where x is the letter designation for your
CD-ROM drive (normally D but perhaps E — if one doesn’t work,
try the other).

Dev-C++ begins with a warning (shown in Figure 1-1) that you’d better
uninstall any older version of Dev-C++ you may have hanging around,
and then reboot and start over. (Starting an installation with a threat
is an inauspicious way to begin a relationship, but everything gets
better from here.)

Chapter 1: Writing Your First C++ Program 13

Figure 1-1:

You must

uninstall

earlier

versions of

DevC++

before you

begin the

installation

process.

2. If you don’t have to uninstall an old version of Dev-C++, skip to Step 4;
if you do have to uninstall, abort the current installation process by
closing the Run window.

Don’t get upset if you’ve never even heard of Dev-C++ and you still get the
warning message. It’s just a reminder.

3. Okay, if you’re on this step, you’re uninstalling: Open the Dev-CPP
folder and double-click the Uninstall.exe file there.

The uninstall program does its thing, preparing the way for the new instal-
lation; the End User Legal Agreement (commonly known as the EULA)
appears.

4. Read the EULA and then click OK if you can live with its provisions.

Nope, the package really won’t install itself if you don’t accept. Assuming
you do click OK, Dev-C++ opens the window shown in Figure 1-2 and offers
you some installation options. The defaults are innocuous, with two
exceptions:

• You must leave the Mingw compiler system. . . option enabled.

• The Associate C and C++ Files to DevC++ option means that double-
clicking a .CPP file automatically opens Dev-C++ rather than some
other program (such as Visual C++ .NET, for example). It is possible,
but difficult, to undo this association.

Don’t check this option if you also have Visual Studio.NET installed. Dev-
C++ and Visual Studio.NET coexist peacefully on the same machine, but
what Visual Studio has done, let no man cast assunder. You can still open
your .CPP files with Dev-C++ by right-clicking on the file and selecting Open
With. Personally, I prefer to use this option, even with Visual Studio.NET
installed. It doesn’t cause any problems, and Dev-C++ starts a lot faster
than Visual Studio.

14 Part I: Introduction to C++ Programming

Figure 1-2:

The default

installation

options

should be

acceptable

to most

users.

5. Click the Next button.

The installation program asks where you want it to install Dev-C++, using
a message like that shown in Figure 1-3.

Figure 1-3:

The default

location for

the DevC++

environment

is provided.

6. Accept the default directory, c:\Dev-CPP.

Don’t install Dev-C++ in the directory \Program Files with all the other
executables. That’s because Dev-C++ doesn’t do well with directories that
contain spaces in their names. I haven’t experimented much along these
lines, but I believe you can use any other directory name without any
special characters other than ‘_’. It’s safer just to accept the default.

7. Make sure you have enough room for the program, wherever you
decide to put it.

The Dev-C++ environment uses only a paltry 45MB, but it’s always good
practice to check.

8. Click Install.

At first, nothing seems to happen. Then Dev-C++ gets going, copying a
whole passel of files to the Dev-CPP directory — putting absolutely noth-
ing in the Windows home directory. Figure 1-4 displays the eventual result.

Chapter 1: Writing Your First C++ Program 15

Figure 1-4:

The Dev

C++

installation

process

unzips a

large

number of

mostly small

files.

While the installation is going on, Dev-C++ presents a window that asks
whether you want to install for all users once it’s done copying files onto
your hard drive. That question boils down to this: If someone else logs
on to your computer, do you want her or him to be able to execute Dev-
C++? (The answer is “Yes” in my case.)

9. Choose whether you want to install for all users, and then click the
Close button to complete installation of the package.

Dev-C++ starts immediately, so you can set its options properly for your
needs. (Yep, there’s more work to do. But you knew that. Read on.)

Setting the options
As you probably know if you’ve spent more than a coffee break’s worth of time
installing software, setting options is a procedure unto itself. In this case, Dev-
C++ has two options that must be set before you can use it. Set ’em as follows:

1. Choose Tools➪Compiler Options.

You can change these settings at any time, but now is as good as any.

2. Choose the Settings tab.

3. Choose Code Generation from the menu on the left.

Make sure that the Enable Exception Handling is enabled, as shown in
Figure 1-5. (If it isn’t, click on the option box to display the two choices
and select Yes.)

4. Choose Linker and make sure the Generate Debugging Information
option is enabled.

Figure 1-6 shows you what to look for.

16 Part I: Introduction to C++ Programming

Figure 1-5:

The Enable

Exception

Handling

option must

be enabled.

Figure 1-6:

The

Generate

Debugging

Information

option must

be enabled.

5. Choose OK.

Installation is now complete! (Your options are saved automatically.)

Creating Your First C++ Program
In this section, you create your first C++ program. You first enter the C++ code
into a file called CONVERT.CPP, and then convert the C++ code into an exe-
cutable program.

Chapter 1: Writing Your First C++ Program 17

Entering the C++ code
The first step to creating any C++ program is to enter C++ instructions using a
text editor. The Dev-C++ user interface is built around a program editor specifi-
cally designed to create C++ programs.

1. Click Start➪Programs➪Bloodshed Dev-C++➪Dev-C++ to start up the
Dev-C++ tool.

The Dev-C++ interface looks fundamentally like that of any other Win-
dows program — perhaps a little clunkier, but a Windows application
nonetheless.

This is a lot of clicking. My personal preference is to create a shortcut
on the desktop. To create a shortcut, double-click My Computer. Now
double-click the Local Disk (C:). Finally, double-click Dev-CPP — whew!
Right-click the file devcpp.exe and choose Create Shortcut from the
drop down menu. Drag the Shortcut to devcpp.exe file onto your
desktop (or some other easily accessible place). From now on, you can
just double-click the shortcut to start Dev-C++.

2. Choose File➪New➪Source File.

Dev-C++ opens a blank window wherein you get to enter your new code.
Don’t worry if you find yourself wishing you knew what to enter right
now — that’s why you bought this book.

Conversion.cpp file contained on the
\CPP_Programs\Chap01.

//
// Program to convert temperature from Celsius degree
// units into Fahrenheit degree units:
// Fahrenheit = Celsius * (212 - 32)/100 + 32
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{

3. Enter the following program exactly as written.

Don’t worry too much about indentation or spacing — it isn’t critical
whether a given line is indented two or three spaces, or whether there
are one or two spaces between two words. C++ is case sensitive, how-
ever, so you need to make sure everything is lowercase.

You can cheat and copy the
enclosed CD-ROM in directory

18 Part I: Introduction to C++ Programming

// enter the temperature in Celsius
int celsius;
cout << “Enter the temperature in Celsius:”;
cin >> celsius;

// calculate conversion factor for Celsius
// to Fahrenheit
int factor;
factor = 212 - 32;

// use conversion factor to convert Celsius
// into Fahrenheit values
int fahrenheit;
fahrenheit = factor * celsius/100 + 32;

// output the results (followed by a NewLine)
cout << “Fahrenheit value is:”;
cout << fahrenheit << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

4. Choose Save As under the File menu. Then type in the program name
and press Enter.

I know that it may not seem all that exciting, but you’ve just created
your first C++ program!

For purposes of this book, I created a folder CPP_Programs. Within this,
I created Chap01. Finally, I saved the program with the name Conversion.
cpp. Note that Dev-C++ won’t work properly with directory names that
contain spaces. (It doesn’t have a problem with names longer than eight
characters in length — thank goodness!)

Building your program
After you’ve saved your Conversion.cpp C++ source file to disk, it’s time to
generate the executable machine instructions.

To build your Conversion.cpp program, you choose Execute➪Compile from
the menu or press F9 — or you can even click that cute little icon with four
colored squares on the menu bar (use the Tool Tips to see which one I’m talk-
ing about). In response, Dev-C++ opens a compiling window. Nothing will
happen at first (sshh . . . it’s thinking). After a second or two, Dev-C++ seems
to take off, compiling your program with gusto. If all goes well, a window like
that shown in Figure 1-7 appears.

Chapter 1: Writing Your First C++ Program 19

Figure 1-7:

The user is

rewarded

with a

simple Done

message if

his program

is error free.

Dev-C++ generates a message if it finds any type of error in your C++ program —
and coding errors are about as common as snow in Alaska. You’ll undoubtedly
encounter numerous warnings and error messages, probably even when enter-
ing the simple Conversion.cpp. To demonstrate the error-reporting process,
let’s change Line 17 from cin >> celsius; to cin >>> celsius;.

This seems an innocent enough offense — forgivable to you and me perhaps,
but not to C++. Dev-C++ opens a Compiler tab, as shown in Figure 1-8. The mes-
sage parse error before ‘> is perhaps a little terse, but descriptive. To get
rid of the message, remove the extra > and recompile.

Figure 1-8:

Bad little

programs

generate

error

messages in

the Compiler

window.

20 Part I: Introduction to C++ Programming

The term parse
.

Why is C++ so picky?
In the example given here, C++ could tell right
away — and without a doubt — that I had

lem and go on?

The answer is simple but profound. C++ thinks
that I mistyped the >> symbol, but it may be
mistaken. What could have been a mistyped

corrected the problem, C++ would have masked
the real problem.

Finding an error buried in a program that

the error for you if at all possible. Generating

time — forcing me to find a mistake that C++
could have caught is a waste of my time. Guess
which one I vote for?

means to convert the C++ commands into something that the
machine-code-generating part of the process can work with

There was once a language that tried to fix simple mistakes like this for you.

screwed up. However, if C++ can figure out
what I did wrong, why doesn’t it just fix the prob

command may actually be some other, com
pletely unrelated error. Had the compiler simply

builds without complaining is difficult and time
consuming. It’s far better to let the compiler find

a compiler error is a waste of the computer’s

From my personal experience, I can tell you it was a waste of time — because
(except for very simple cases) the compiler was almost always wrong. At
least it warned me of the problem so I could fix it myself.

Executing Your Program
It’s now time to execute your new creation . . . that is, to run your program. You
will run the CONVERT.EXE program file and give it input to see how well it works.

To execute the Conversion program, click Execute➪Run or press Ctrl+F10.
(I have no idea how they selected function keys. I would think that an action
as common as executing a program would warrant its own function key —
something without a Control or Shift key to hold down — but maybe that’s
just me.)

A window opens immediately, requesting a temperature in Celsius. Enter a
known temperature, such as 100 degrees. After you press Enter, the program
returns with the equivalent temperature of 212 degrees Fahrenheit as follows:

Enter the temperature in Celsius:100
Fahrenheit value is:212
Press any key to continue . . .

Chapter 1: Writing Your First C++ Program 21
The message Press any key gives you the opportunity to read what you’ve
entered before it goes away. Press Enter, and the window (along with its con-
tents) disappears. Congratulations! You just entered, built, and executed your
first C++ program.

Dev-C++ is not Windows
Notice that Dev-C++ is not truly intended for developing Windows programs.
In theory, you can write a Windows application by using Dev-C++, but it isn’t
easy. (That’s so much easier in Visual Studio.NET.)

Windows programs show the user a very visually oriented output, all nicely
arranged in onscreen windows. Convesion.exe is a 32-bit program that exe-
cutes under Windows, but it’s not a “Windows” program in the visual sense.

If you don’t know what 32bit program means, don’t worry about it. As I said
earlier, this book isn’t about writing Windows programs. The C++ programs
you write in this book have a command line interface executing within an MS-
DOS box.

Budding Windows programmers shouldn’t despair — you didn’t waste your
money. Learning C++ is a prerequisite to writing Windows programs. I think
that they should be mastered separately: C++ first, Windows second.

Dev-C++ help
Dev-C++ provides a Help menu item. Choose Help followed by Help on Dev
C++ to open up a typical Windows help box. Help is provided on various aspects
of the Dev-C++ development package but not much else. Noticeably lacking is
help on the C++ language itself. Click a topic of interest to display help.

Reviewing the Annotated Program
Entering data in someone else’s program is about as exciting as watching some-
one else drive a car. You really need to get behind the wheel itself. Programs
are a bit like cars as well. All cars are basically the same with small differences
and additions — OK, French cars are a lot different than other cars, but the
point is still valid. Cars follow the same basic pattern — steering wheel in front
of you, seat below you, roof above you and stuff like that.

22 Part I: Introduction to C++ Programming

Similarly, all C++ programs follow a common pattern. This pattern is already
present in this very first program. We can review the Conversion program by
looking for the elements that are common to all programs.

Examining the framework
for all C++ programs
Every C++ program you write for this book uses the same basic framework,
which looks a lot like this:

//
// Template - provides a template to be used as the starting
// point
//
// the following include files define the majority of
// functions that any given program will need
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{

// your C++ code starts here

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

Without going into all the boring details, execution begins with the code con-
tained in the open and closed braces immediately following the line begin-
ning main().

I have copied this code into a file called Template.cpp located in the main
CPP_Programs folder on the enclosed CD-ROM.

Clarifying source code with comments
The first few lines in Conversion.cpp appear to be freeform text. Either this
code was meant for human eyes or C++ is a lot smarter than I give it credit for.
These first six lines are known as comments. Comments are the programmer’s

Chapter 1: Writing Your First C++ Program 23
explanation of what he or she is doing or thinking when writing a particular
code segment. The compiler ignores comments. Programmers (good program-
mers, anyway) don’t.

A C++ comment begins with a double slash (//) and ends with a newline. You
can put any character you want in a comment. A comment may be as long as
you want, but it’s customary to keep comment lines to no more than 80 char-
acters across. Back in the old days — “old” is relative here — screens were
limited to 80 characters in width. Some printers still default to 80 characters
across when printing text. These days, keeping a single line to under 80 char-
acters is just a good practical idea (easier to read, less likely to cause eye-
strain, the usual).

A newline was known as a carriage return back in the days of typewriters —
when the act of entering characters into a machine was called typing and not
keyboarding. A newline is the character that terminates a command line.

C++ allows a second form of comment in which everything appearing after a
/* and before a */ is ignored; however, this form of comment isn’t normally
used in C++ anymore. (Later in this book, I describe the one case in which
this type of comment is applied.)

It may seem odd to have a command in C++ (or any other programming lan-
guage) that’s specifically ignored by the computer. However, all computer lan-
guages have some version of the comment. It’s critical that the programmer
explain what was going through her mind when she wrote the code. A pro-
grammer’s thoughts may not be obvious to the next colleague who picks up
her program and tries to use it or modify it. In fact, the programmer herself
may forget what her program meant if she looks at it months after writing the
original code and has left no clue.

Basing programs on C++ statements
All C++ programs are based on what are known as C++ statements. This sec-
tion reviews the statements that make up the program framework used by
the Conversion.cpp program.

A statement is a single set of commands. All statements other than comments
end with a semicolon. (There’s a reason that comments don’t end with a
semicolon, but it’s obscure. To my mind, comments should end in semicolons
as well, for consistency’s sake. Why nobody asked me about that remains a
mystery.)

24 Part I: Introduction to C++ Programming

Program execution begins with the first C++ statement after the open brace
and continues through the listing, one statement at a time.

As you look through the program, you can see that spaces, tabs, and newlines
appear throughout the program. In fact, I place a newline after every state-

white space

See wha

t I mean?

ment in this program. These characters are collectively known as
because you can’t see them on the monitor.

You may add white space anywhere you like in your program to enhance
readability — except in the middle of a word:

Although C++ may ignore white space, it doesn’t ignore case. In fact, it’s case
sensitive to the point of obsession. The variable fullspeed and the variable
FullSpeed have nothing to do with each other. While the command int may
be understood completely, C++ has no idea what INT means.

Writing declarations
The line int nCelsius; is a declaration statement. A declaration is a state-
ment that defines a variable. A variable is a “holding tank” for a value of some
type. A variable contains a value, such as a number or a character.

The term variable stems from algebra formulae of the following type:

x = 10
y = 3 * x

In the second expression, y is set equal to 3 times x, but what is x? The vari-
able x acts as a holding tank for a value. In this case, the value of x is 10, but
we could have just as well set the value of x to 20 or 30 or –1. The second for-
mula makes sense no matter what the value of x.

In algebra, you’re allowed to begin with a statement, such as x = 10. In C++,
the programmer must first define the variable x before she can use it.

In C++, a variable has a type and a name. The variable defined on Line 11 is
called celsius and declared to hold an integer. (Why they couldn’t have just
said integer instead of int, I’ll never know. It’s just one of those things you learn
to live with.)

Chapter 1: Writing Your First C++ Program 25
The name of a variable has no particular significance to C++. A variable must
begin with the letters A through Z or a through z. All subsequent characters
must be a letter, a digit 0 through 9 or an underscore (_). Variable names can
be as long as you want to make them.

It’s convention that variable names begin with a lowercase letter. Each new
word within a variable begins with a capital letter, as in myVariable.

Try to make variable names short but descriptive. Avoid names such as x
because x has no particular meaning. A variable name such as lengthOfLine
Segment is much more descriptive.

Generating output
The lines beginning with cout and cin are known as input/output statements,
often contracted to I/O statements. (Like all engineers, programmers love con-
tractions and acronyms.)

The first I/O statement says output the phrase Enter the temperature in Celsius
to cout (pronounced “see-out”). cout is the name of the standard C++ output
device. In this case, the standard C++ output device is your monitor.

The next line is exactly the opposite. It says, in effect, Extract a value from the
C++ input device and store it in the integer variable celsius. The C++ input
device is normally the keyboard. What we’ve got here is the C++ analog to the
algebra formula x = 10 just mentioned. For the remainder of the program, the
value of celsius is whatever the user enters there.

Calculating Expressions
All but the most basic programs perform calculations of one type or another.
In C++, an expression is a statement that performs a calculation. Said another
way, an expression is a statement that has a value. An operator is a command
that generates a value.

For example, in the Conversion example program — specifically in the two
lines marked as a calculation expression — the program declares a vari-
able factor and then assigns it the value resulting from a calculation. This par-
ticular command calculates the difference of 212 and 32; the operator is the
minus sign (–), and the expression is 212–32.

26 Part I: Introduction to C++ Programming

Storing the results of expression
The spoken language can be very ambiguous. The term equals is one of those
ambiguities. The word equals can mean that two things have the same value
as in “5 cents equals a nickel.” Equals can also imply assignment, as in math
when you say that “y equals 3 times x.”

To avoid ambiguity, C++ programmers call the assignment operator, which says
(in effect), Store the results of the expression to the right of the equal sign in
the variable to the left. Programmers say that “factor is assigned the value
212 minus 32.”

Never say “factor is equal to 212 minus 32.” You’ll hear this from some lazy
types, but you and I know better.

Examining the remainder of
Conversion.cpp
The second expression in Conversion.cpp presents a slightly more compli-
cated expression than the first. This expression uses the same mathematical
symbols: * for multiplication, / for division and, + for addition. In this case, how-
ever, the calculation is performed on variables and not simply on constants.

The value contained in the variable called factor (calculated immediately
prior, by the way) is multiplied by the value contained in celsius (which was
input from the keyboard). The result is divided by 100 and summed with 32. The
result of the total expression is assigned to the integer variable fahrenheit.

The final two commands output the string Fahrenheit value is: to the
display, followed by the value of fahrenheit — and all so fast that the user
scarcely knows it’s going on.

Chapter 2

Declaring Variables Constantly
In This Chapter
� Declaring variables

� Declaring different types of variables

� Using floating-point variables

� Declaring and using other variable types

The most fundamental of all concepts in C++ is the variable — a variable is
like a small box. You can store things in the box for later use, particularly

numbers. The concept of a variable is borrowed from mathematics. A state-
ment such as

x = 1

stores the value 1 in the variable x. From that point forward, the mathemati-
cian can use the variable x in place of the constant 1 — until she changes the
value of x to something else.

Variables work the same way in C++. You can make the assignment

x = 1;

From that point forward in the program, until the value of x is changed, any
references to x are the same as referencing 1. That is, the value of x is 1.

Unfortunately, C++ has a few more concerns about variables than the mathe-
matician does. This chapter deals with the care and feeding of variables in C++.

Declaring Variables
C++ saves numeric values in small storage boxes known as variables. Mathe-
maticians throw variables around with abandon. A mathematician might (for
example) write down something like the following:

28 Part I: Introduction to C++ Programming

(x + 2) = y / 2
x + 4 = y
solve for x and y

Any reader who’s had algebra realizes right off that the mathematician has
introduced the variables x and y. But C++ isn’t that smart (computers may be
fast, but they’re stupid).

You have to announce each variable to C++ before you can use it. You have to
say something soothing like this:

int x;
x = 10;

int y;
y = 5;

These lines of code declare that a variable x exists, that it is of type int, and
that a variable y of type int also exists. (The next section discusses vari-
able types.) You can declare variables (almost) anywhere you want in your
program — as long as you declare the variable before you use it.

Declaring Different Types of Variables
If you’re on friendly terms with math (hey, aren’t we all?), you probably think
of a variable in mathematics as an amorphous box capable of holding what-
ever you might choose to store in it. You might easily write something like the
following:

x = 1
x = 2.3
x = “this is a sentence”
x = Texas

Alas, C++ is not that flexible. (On the other hand, C++ can do things that people
can’t do, such as add a billion numbers or so in a second, so let’s not get too
uppity.) To C++, there are different types of variables just as there are different
types of storage bins. Some storage bins are so small that they can only handle
a single number. It takes a larger bin to handle a sentence. Of course, no bin is
large enough to hold Texas (maybe Rhode Island or Delaware).

You have to tell C++ what size bin you need before you can use a C++ variable.
In addition, different types of variables have different properties. So far, you
have only seen the int type of variable in this chapter:

Chapter 2: Declaring Variables Constantly 29

int x;
x = 1;

The variable type int is the C++ equivalent of an integer — a number that
has no fractional part. (Integers are also known as counting numbers or whole
numbers.)

Integers are great for most calculations. You can make it up through most (if
not all) of elementary school with integers. It isn’t until you reach age 11 or
so that they start mucking up the waters with fractions. The same is true in
C++: More than 90 percent of all variables in C++ are declared to be of type int.

Unfortunately, int variables don’t always work properly in a program. If (for
example) you worked through the temperature-conversion program in Chap-
ter 1, the program has a potential problem — it can only handle integer tem-
peratures — whole numbers that don’t have a fractional part. This limitation
of using only integers doesn’t affect daily use because it isn’t likely that some-
one (other than a meteorologist) would get all excited about entering a frac-
tional temperature (such as 10.5 degrees). The lurking problem is not at all
obvious: The conversion program lops off the fractional portion of tempera-
tures that it calculates, and just keeps going without complaint. This can result
in a lapse of accuracy that can be serious — for example, you wouldn’t want
to come up a half mile short of the runway on your next airplane trip due to a
navigational round-off.

Reviewing the limitations
of integers in C++
The int variable type is the C++ version of an integer. int variables suffer the
same limitations as their counting-number integer equivalents in math do.

Integer round-off
Consider the problem of calculating the average of three numbers. Given three
int variables — nValue1, nValue2, and nValue3 — an equation for calculat-
ing the average is

int nAverage; int nValue1; int nValue2; int nValue3;
nAverage =(nValue1 + nValue2 + nValue3) / 3;

Because all three values are integers, the sum is assumed to be an integer.
Given the values 1, 2, and 2, the sum is 5. Divide that by 3, and you get 12⁄3, or
1.666. Given that all three variables nValue1, nValue2, and nValue3 are inte-
gers, the sum is also assumed to be an integer. The result of the division is also
an integer. The resulting value of nAverage is unreasonable but logical: 1.

30 Part I: Introduction to C++ Programming

Lopping off the fractional part of a number is called truncation, or rounding
off. For many applications, truncation isn’t a big deal. Some folks might con-
sider its results reasonable (not mathematicians or bookies, of course), but
integer truncation can create math mayhem in computer programs. Consider
the following equivalent formulation:

int nAverage; int nValue1; int nValue2; int nValue3;
nAverage = nValue1/3 + nValue2/3 + nValue3/3;

Plugging in the same 1, 2, and 2 values, the resulting value of nAverage is (talk
about logical-but-unreasonable) 0. To see how this can occur, consider that
13 truncates to 0, 23 truncates to 0, and 23 truncates to 0. The sum of 0, 0, and
0 is zero. (Sort of like that old song: “Nothing from nothing leaves nothing, ya
gotta be something . . .”) You can see that integer truncation can be completely
unacceptable.

Limited range
A second problem with the int variable type is its limited range. A normal
int variable can store a maximum value of 2,147,483,647 and a minimum value
of –2,147,483,648 — roughly from positive 2 billion to negative 2 billion, for a
total range of about 4 billion.

Two billion is a very large number: plenty big enough for most uses. But it’s
not large enough for some applications — for example, computer technology.
In fact, your computer probably executes faster than 2 gigahertz, depending
upon how old your computer is. (Giga is the prefix meaning billion.) A single
strand of communications fiber — the kind that’s been strung from one end
of the country to the other — can handle way more than 2 billion bits per
second.

C++ offers a little help by allowing you declare an integer to be unsigned, mean-
ing that it cannot be negative. An unsigned int value type can represent a
number from 0 to 4,294,967,295, should the need arise for some unimaginable
reason.

You can declare a variable simply unsigned. The int is implied.

Solving the truncation problem
The limitations of int variables can be unacceptable in some applications.
Fortunately, C++ understands decimal numbers. A decimal number can have
a nonzero fractional part. (Mathematicians also call those real numbers.)
Decimal numbers avoid many of the limitations of int type integers. Notice
that a decimal number “can have” a nonzero fractional part. In C++, the
number 1.0 is just as much a decimal number as 1.5. The equivalent integer is
written simply as 1. Decimals numbers can also be negative, like –2.3.

Chapter 2: Declaring Variables Constantly 31
When you declare variables in C++ that are decimal numbers, you identify them
as double precision floating-point values. (Yes, there is such a critter as a
“single precision floating-point variable,” but stick with me here.) The term
floatingpoint means the decimal point is allowed to float back and forth, iden-
tifying as many “decimal places” as necessary to express the value. Floating-
point variables are declared in the same way as int variables:

double dValue1;

From this point forward, the variable dValue1 is declared to be a double. Once
declared, you cannot change the type of a variable. dValue1 is now a double
and will be a double for the remainder of its natural instructions. To see how
floating-point numbers fix the truncation problem inherent with integers, con-
vert all the int variables to double. Here’s what you get:

double dValue;
dValue = 1.0/3.0 + 2.0/3.0 + 2.0/3.0;

is equivalent to

dValue = 0.333... + 0.666... + 0.666...;

which results in the value

dValue = 1.666...;

I have written the value 1.6666 . . . as if the number of trailing 6s goes on
forever. This is (not necessarily) the case. There’s a limit to the number of digits
of accuracy of a double variable — but it’s a lot more than I can keep track of.

The programs IntAverage and FloatAverage are available on the enclosed
CD in the CPP_Programs\Chap02 directory to demonstrate this averaging
example.

Looking at the limits of
floating-point numbers
Although floating-point variables can solve many calculation problems such
as truncation, they have some limitations themselves — in effect, the reverse
of those associated with integer variables. double variables can’t be used as
counting numbers, they’re more difficult for the computer to handle, and they
also suffer from round-off error (though not nearly to the same degree as int
variables).

32 Part I: Introduction to C++ Programming

Counting
You cannot use floating-point variables in applications where counting is impor-
tant. This includes C++ constructs, which requires counting ability. C++ can’t
verify which whole number value is meant by a given floating-point number.

For example, it’s clear that 1.0 is 1. But what about 0.9 or 1.1? Should these also
be considered as 1? C++ simply avoids the problem by insisting on using int
values when counting is involved.

Calculation speed
Historically, a computer processor can process integer arithmetic quicker than
it can floating-point arithmetic. Thus, while a processor can add 1 million inte-
ger numbers in a given amount of time, the same processor may be able to
perform only 200,000 floating-point calculations during the same period. (Not
surprisingly, I couldn’t even get around to reading the first value.)

Calculation speed is becoming less of a problem as microprocessors increase
their capabilities. Most modern processors contain special calculation cir-
cuitry for performing floating-point calculations almost as fast as integer
calculations.

Loss of accuracy
Floating-point variables cannot solve all computational problems. Floating-
point variables have a limited precision of about 6 digits — an extra-economy
size, double-strength version of float can handle some 15 significant digits with
room left over for lunch.

To evaluate the problem, consider that 13 is expressed as 0.333 . . . in a con-
tinuing sequence. The concept of an infinite series makes sense in math, but
not to a computer. The computer has a finite accuracy. Average 1, 2, and 2
(for example), and you get 1.666667.

C++ can correct for many forms of round-off error. For example, in output, C++
can determine that instead of 0.999999, that the user really meant 1. In other
cases, even C++ cannot correct for round-off error.

Not-so-limited range
Although the double data type has a range much larger than that of an inte-
ger, it’s still limited. The maximum value for an int is a skosh more than 2 bil-
lion. The maximum value of a double variable is roughly 10 to the 38th power.
That’s 1 followed by 38 zeroes; it eats 2 billion for breakfast. (It’s even more
than the national debt, at least at the time of this writing.)

Only the first 13 digits or so have any meaning; the remaining 25 digits suffer
from floating-point round-off error.

Chapter 2: Declaring Variables Constantly 33

Declaring Variable Types
So far this chapter has been trumpeting that variables must be declared and
that they must be assigned a type. Fortunately (ta-dah!), C++ provides a num-
ber of different variable types. See Table 2-1 for a list of variables, their advan-
tages, and limitations.

Table 2-1 C++ Variables

Variable Example Purpose

int 1 A simple counting number, either positive or
negative.

unsigned int 1U A counting number that’s only nonnegative.

long 10L A potentially larger version of int. There is
no difference between long and int with
DevC++ and Microsoft Visual C++.NET.

unsigned long 10UL A nonnegative long integer.

float 1.0F A single precision real number. This smaller
version takes less memory than a double
but has less accuracy and a smaller range.

double 1.0 A standard floatingpoint variable.

char ‘c’ A single char variable stores a single alpha
betic or digital character. Not suitable for
arithmetic.

string “this is A string of characters forms a sentence or
a string” phrase.

bool true The only other value is false. No I mean, it’s
really false. Logically false. Not “false” as
in fake or ersatz or . . . never mind.

It may seem odd that the standard floating length variable is called double
while the “off size” is float. In days gone by, memory was an expensive asset —
you could reap significant space savings by using a float variable. This is no
longer the case. That, combined with the fact that modern processors perform
double precision calculations at the same speed as float, makes the double
the default. Bigger is better, after all.

34 Part I: Introduction to C++ Programming

The following statement declares a variable lVariable as type long and sets
it equal to the value 1, while dVariable is a double set to the value 1.0:

// declare a variable and set it to 1
long lVariable;
lVariable = 1;

// declare a variable of type double and set it to 1.0
double dVariable;
dVariable = 1.0;

int nVariable = 1; // declare a variable and
// initialize it to 1

You can declare a variable and initialize it in the same statement:

Although such declarations are common, the only benefit to initializing a vari-
able in the declaration is that it saves typing.

A char variable can hold a single character; a string (which isn’t really a vari-
able but works like one for most purposes) holds a string of characters. Thus,
‘C’ is a char that contains the character C, whereas “C” is a string with one
character in it. A rough analogy is that a ‘C’ corresponds to a nail in your hand,
whereas “C” corresponds to a nail gun with one nail left in the magazine. (Chap-
ter 9 describes strings in detail.)

If an application requires a string, you’ve gotta provide one, even if the string
contains only a single character. Providing nothing but the character just
won’t do the job.

Types of constants
A constant is an explicit number or character (such as 1, 0.5, or ‘c’) that doesn’t
change. As with variables, every constant has a type. In an expression such as
n = 1; (for example), the constant 1 is an int. To make 1 a long integer,
write the statement as n = 1L;. The analogy is as follows: 1 represents a single
ball in the bed of a pickup truck, whereas 1L is a single ball in the bed of a
dump truck. The ball is the same, but the capacity of its container is much
larger.

Following the int to long comparison, 1.0 represents the value 1, but in a
floating-point container. Notice, however, that the default for floating-point
constants is double. Thus, 1.0 is a double number and not a float.

true is a constant of type bool. However, “true” (note the quotation marks)
is a string of characters that spell out the word true. In addition, in keeping
with C++’s attention to case, true is a constant, but TRUE has no meaning.

Chapter 2: Declaring Variables Constantly 35

Special characters
You can store any printable character you want in a char or string vari-
able. You can also store a set of non-printable characters that is used as
character constants. See Table 2-2 for a description of these important non-
printable characters.

Table 2-2 Special Characters

Character Constant Action

‘\n’ newline

‘\t’ tab

‘\0’ null

‘\\’ backslash

You have already seen the newline character at the end of strings. This char-
acter breaks a string and puts the parts on separate lines. A newline charac-
ter may appear anywhere within a string. For example,

“This is line 1\nThis is line 2”

appears on the output as

This is line 1
This is line 2

Similarly, the \t tab character moves output to the next tab position. (This
position can vary, depending on the type of computer you’re using to run the
program.) Because the backslash character is used to signify special charac-
ters, a character pair for the backslash itself is required. The character pair
\\ represents the backslash.

C++ collision with file names
Windows uses the backslash character to sep
arate folder names in the path to a file. (This is
a remnant of MSDOS that Windows has not
been able to shake.) Thus, Root\FolderA\
File represents Filewithin FolderA, which
is a subdirectory of Root.

flicts with the use of backslash to indicate an
escape character in C++. The character \\ is a
backslash in C++. The MSDOS path Root\
FolderA\File is represented in C++ string as
Root\\FolderA\\File.

Unfortunately, MSDOS’s use of backslash con

36 Part I: Introduction to C++ Programming

Are These Calculations Really Logical?
C++ provides a logical variable called bool. The type bool comes from Boolean,
the last name of the inventor of the logical calculus. There are two values for a
boolean variable: true and false.

There are actually calculations that result in the value bool. For example, “x
is equal to y” is either true or false.

Mixed Mode Expressions
C++ allows you to mix variable types in a single expression. That is, you are
allowed to add an integer with a double precision floating-point value. In the
following expression, for example, nValue1 is allowed to be an int:

// in the following expression the value of nValue1
// is converted into a double before performing the
// assignment
int nValue1 = 1;
nValue1 + 1.0;

An expression in which the two operands are not the same type is called a
mixedmode expression. Mixed-mode expressions generate a value whose type
is equal to the more capable of the two operands. In this case, nValue1 is con-
verted to a double before the calculation proceeds. Similarly, an expression of
one type may be assigned to a variable of a different type, as in the following
statement:

// in the following assignment, the whole
// number part of fVariable is stored into nVariable
double dVariable = 1.0;
int nVariable;
nVariable = dVariable;

dVariable
nVariable.

You can lose precision or range if the variable on the left side of the assignment
is smaller. In the previous example, C++ truncates the value of
before storing it in

Converting a larger value type into a smaller value type is called demotion,
whereas converting values in the opposite direction is known as promotion.
Programmers say that the value of int variable nVariable1 is promoted to a
double as expressions such as the following:

int nVariable1 = 1;
double dVariable = nVariable1;

Chapter 2: Declaring Variables Constantly 37

Naming conventions

variable begins with a special character that
seems to have nothing to do with the name.
These special characters are shown in the fol

dVariable as a variable of type double by
using this convention.

Character

n int

l long

f float

d double

c character

sz string

These leading characters help the programmer
keep track of the variable type. Thus, you can
immediately identify the following as a mixed
mode assignment of a long variable to an int
variable:

nVariable = lVariable;

These leading characters have no significance

you get:

double myVariable;
int someIntValue;
double nThisDoesntEvenMatch;

chapter to simplify the discussion; many pro
grammers use this naming scheme all the time.

You may have noticed that the name of each

lowing table. You can immediately recognize

Type to C++. You don’t need to adopt any naming
scheme at all if you don’t want to. Here’s what

I used this firstletternaming convention in this

Mixed-mode expressions are not a good idea. Avoid forcing C++ to do your
conversions for you.

38 Part I: Introduction to C++ Programming

Chapter 3

Performing Mathematical
Operations

In This Chapter
� Defining mathematical operators in C++

� Using the C++ mathematical operators

� Identifying expressions

� Increasing clarity with special mathematical operators

Amathematician uses more than just the variables described in Chap-
ter 2. A mathematician must do something with those variables: She can

add them together, subtract them, multiply them, and perform an almost end-
less list of other operations.

C++ offers the same set of basic operations: C++ programs can multiply, add,
divide, and so forth. Programs have to be able to perform these operations in
order to get anything done. What good is an insurance program if it can’t cal-
culate how much you’re supposed to (over) pay?

C++ operations look like the arithmetic operations you would perform on a
piece of paper, except you have to declare any variables before you can use
them (as detailed in Chapter 2):

int var1;
int var2 = 1;
var1 = 2 * var2;

Two variables, var1 and var2, are declared. var2 is initialized to 1. var1 is
assigned the value resulting from the calculation two times the value of var2.

This chapter describes the complete set of C++ mathematical operators.

40 Part I: Introduction to C++ Programming

Performing Simple Binary Arithmetic
A binary operator is one that has two arguments. If you can say var1 op var2,
op must be a binary operator. The most common binary operators are the
simple operations you performed in grade school. The binary operators are
flagged in Table 3-1.

Table 3-1 Mathematical Operators in Order of Precedence

Precedence Operator Meaning

1 + (unary) Effectively does nothing

1 (unary) Returns the negative of its argument

2 ++ (unary) Increment

2 (unary) Decrement

3 * (binary) Multiplication

3 / (binary) Division

3 % (binary) Modulo

4 + (binary) Addition

4 (binary) Subtraction

5 =, *=,%=,+=,= (special) Assignment types

Multiplication, division, modulus, addition, and subtraction are the operators
used to perform arithmetic. In practice, they work just like the familiar arith-
metic operations as well. For example, using the binary operator for division
with a float variable looks like this:

float var = 133 / 12;

Each of the binary operators has the conventional meaning that you studied
in grammar school — with one exception. You may not have encountered
modulus in your studies.

The modulus operator (%) works much like division, except it produces the
remainder after division instead of the quotient. For example, 4 goes into 15
three times with a remainder of 3. Expressed in C++ terms, 15 modulus 4 is 3.

int var = 15 % 4; // var is initialized to 3

Chapter 3: Performing Mathematical Operations 41
Because programmers are always trying to impress nonprogrammers with the
simplest things, C++ programmers define modulus as follows:

IntValue % IntDivisor

This expression is equal to

IntValue - (IntValue / IntDivisor) * IntDivisor

Try it out on this example:

15 % 4 is equal to 15 - (15/4) * 4
15 - 3 * 4
15 - 12
3

Modulus is not defined for floating-point variable because it depends on the
round-off error inherent in integers. (I discuss round-off errors in Chapter 2.)

Decomposing Expressions
The most common type of statement in C++ is the expression. An expression
is a C++ statement with a value. Every expression has a type (such as int,
double, char, and so on). A statement involving any mathematical operator is
an expression since all these operators return a value. For example, 1 + 2
is an expression whose value is 3 and type is int. (Remember that constants
without decimal points are ints.)

Expressions can be complex or extremely simple. In fact, the statement 1 is an
expression because it has a value (1) and a type (int). There are five expres-
sions in the following statement:

z = x * y + w;

The expressions are

x * y + w
x * y
x
y
w

42 Part I: Introduction to C++ Programming

An unusual aspect of C++ is that an expression is a complete statement. Thus,
the following is a legal C++ statement:

1;

The type of the expression 1 is int.

Determining the Order of Operations
All operators perform some defined function. In addition, every operator has
a precedence — a specified place in the order in which the expressions are
evaluated. Consider, for example, how precedence affects solving the follow-
ing problem:

int var = 2 * 3 + 1;

If the addition is performed before the multiplication, the value of the expres-
sion is 2 times 4 or 8. If the multiplication is performed first, the value is 6 + 1
or 7.

The precedence of the operators determines who goes first. Table 3-1 shows
that multiplication has higher precedence than addition, so the result is 7.
(The concept of precedence is also present in arithmetic. C++ adheres to the
common arithmetic precedence.)

So what happens when we use two operators of the same precedence in the
same expression? Well, it looks like this:

int var = 8 / 4 / 2;

But is this 8 divided by 2 or 4, or is it 2 divided by 2 or 1? When operators of
the same precedence appear in the same expression, they are evaluated from
left to right (the same rule applied in arithmetic). Thus, the answer is 8 divided
by 4, which is 2 divided by 2 (which is 1).

The expression

x / 100 + 32

divides x by 100 before adding 32. But what if the programmer wanted to divide
x by 100 plus 32? The programmer can change the precedence by bundling
expressions together in parentheses (shades of algebra!), as follows:

x/(100 + 32)

Chapter 3: Performing Mathematical Operations 43
This expression has the same effect as dividing x by 132.

The original expression

x / 100 + 32

is identical to the expression

(x/100) + 32

In a given expression, C++ normally performs multiplication and division before
addition or subtraction. Multiplication and division have higher precedence
than addition and subtraction.

In summary: Precedence refers to the order in which operators are evaluated.
An operator with higher precedence is executed first. You can override the
precedence of an operator by using parentheses.

Performing Unary Operations
Arithmetic binary operators — those operators that take two arguments —
are familiar to a lot of us from school days. You’ve probably been doing binary
operations since the first grade in school. But consider the unary operators,
which take a single argument (for example, –a). Many unary operations are
not so well known.

The unary mathematical operators are plus, plus-plus, minus, and minus-minus
(respectively, +, –, ++, and – –). Thus

int var1 = 10;
int var2 = -var1;

The latter expression uses the minus unary operator (–) to calculate the value
negative 10.

The minus operator changes the sign of its argument. Positive numbers become
negative and vice versa. The plus operator does not change the sign of its
argument. It wouldn’t be weird to say the plus operator has no effect at all.

The ++ and the – – operators might be new to you. These operators (respec-
tively) add one to their arguments or subtract one from their arguments, so
they’re known (also respectively) as the increment and decrement operators.

44 Part I: Introduction to C++ Programming

Because they’re dependent upon numbers that can be counted, they’re lim-
ited to non-floating-point variables. For example, the value of var after exe-
cuting the following expression is 11.

int var = 10; // initalize var
var++; // now increment it

// value of var is now 11

The increment and decrement operators are peculiar in that both come in two
flavors: a prefix version and a postfix version (known as pre-increment and
post-increment, respectively). Consider, for example, the increment operator
(the decrement works in exactly the same way).

Suppose that the variable n has the value 5. Both ++n and n++ increment n to
the value 6. The difference between the two is that the value of ++n in an
expression is 6 while the value of n++ is 5. The following example illustrates
this difference:

// declare three integer variables
int n1, n2, n3;

// the value of both n1 and n2 is 6
n1 = 5;
n2 = ++n1;

// the value of n1 is 6 but the value of n3 is 5
n1 = 5;
n3 = n1++;

Thus n2 is given the value of n1 after n1 has been incremented (using the
pre-increment operator), whereas n3 gets the value of n1 before it is incre-
mented using the post-increment operator.

Why define a separate increment operator?
The authors of C++ noted that programmers add

some convenience, a special add 1 instruction
was added to the language.

In addition, most presentday computer proces
sors have an increment instruction that is faster

than the addition instruction. Back when C++
was created, however — with microprocessors
being what they were — saving a few instruc
tions was a big deal.

1 more than any other constant. To provide

Chapter 3: Performing Mathematical Operations 45

Using Assignment Operators
An assignment operator is a binary operator that changes the value of its left
argument. The equal sign (=), a simple assignment operator, is an absolute
necessity in any programming language. This operator puts the value of the
right-hand argument into the left argument. The other assignment operators
are odd enough that they seem to be someone’s whim.

The creators of C++ noticed that assignments often follow the form of

variable = variable # constant

where # is some binary operator. Thus, to increment an integer operator by
2, the programmer might write

nVariable = nVariable + 2;

This expression says, “add two to the value of nVariable and store the results
back into nVariable.” Doing so changes the value of nVariable to 2 more
than it was.

It’s common to see the same variable on both the right and left side of an
assignment.

Because the same variable appears on both sides of the = sign, the same
Fathers of the C++ Republic decided to create a version of the assignment
operator in which a binary operator is attached. This says, in effect, “Thou
shalt perform whatever operation on a variable and store the results right
back into the same variable.”

Every binary operator has one of these nifty assignment versions. Thus, the
assignment just given could have been written this way:

nVariable = nVariable + 2;
nVariable += 2;

Here the first line says (being very explicit now) “Take the value of nVariable,
add 2, and store the results back into nVariable.” The line is a second form
if the same expression, saying (a bit more abruptly), “Add 2 to the value of
nVariable.”

Other than assignment itself, these assignment operators are not used all
that often. However, as odd as they might look, sometimes they can actually
make the resulting program easier to read.

46 Part I: Introduction to C++ Programming

Chapter 4

Performing Logical Operations
In This Chapter
� Using sometimes-illogical logical operators

� Defining logical variables

� Operating with bitwise logical operators logically, a bit at a time

The most common statement in C++ is the expression. Most expressions
involve the arithmetic operators such as addition (+), subtraction (–) and

multiplication (*). This chapter describes these types of expressions.

There is a whole other class of operators known as the logical operators. In
comparison with the arithmetic operators, most people don’t think nearly as
much about operations.

It isn’t that people don’t deal with logical operations — after all, people
compute AND and OR constantly. I won’t eat cereal unless the bowl contains
cereal AND the bowl has milk in it AND the cereal is coated with sugar (lots
of sugar). I’ll have a Scotch IF it’s single-malt AND someone else paid for it.
People use such logical operations all the time, it’s just that they don’t write
them down as machine instructions (or think of them in that light).

Logical operators fall into two types. The AND and OR operators are what I
will call simple logical operators. There is a second type of logical operator
that people don’t use in their daily business — the bitwise operator — that’s
unique to the computer world. We’ll start with the simple and sneak up on
the bitwise here.

Why Mess with Logical Operations?
C++ programs have to make decisions. A program that can’t make decisions is
of limited use. The temperature-conversion program laid out in Chapter 1 is
about as complex you can get without some type of decision-making. Invariably
a computer program gets to the point where it has to figure out situations such
as “Do this if the a variable is less than some value, do that other thing if it’s
not.” That’s what makes a computer appear to be intelligent — that it can make

48 Part I: Introduction to C++ Programming

decisions. (By the same token, that same property makes a computer look
really stupid when the program makes the wrong decision.) Making deci-
sions, right or wrong, requires the use of logical operators.

Using the Simple Logical Operators
The simple logical operators, shown in Table 4-1, evaluate to true or false.

Table 4-1 Simple Operators Representing Daily Logic

Operator Meaning

== Equality; true if the lefthand argument has the same value as
the right

!= Inequality; opposite of equality

>, < Greater than, less than; true if the lefthand argument is greater
than or less than the righthand argument

>=, <= Greater than or equal to, less than or equal to; true if either > or
== is true, OR either < or == is true

&& AND; true if both the leftand righthand arguments are true

|| OR; true if either the leftor the righthand argument is true

! NOT; true if its argument is false

The first six entries in Table 4-1 are comparison operators. The equality opera-
tor is used to compare two numbers. For example, the following is true if the
value of n is 0, and is false otherwise:

n == 0;

Looks can be deceiving. Don’t confuse the equality operator (==) with the
assignment operator (=). Not only is this a common mistake, but it’s a mis-
take that the C++ compiler generally cannot catch — that makes it more than
twice as bad.

n = 0; // programmer meant to say n == 0

The greater-than (>) and less-than (<) operators are similarly common in
everyday life. The following expression logical comparison is true:

Chapter 4: Performing Logical Operations 49

int n1 = 1;
int n2 = 2;
n1 < n2;

true smaller of
the two.

It’s easy to forget which operator is “greater than” and which is “less than.”
Just remember that the operator is if the arrow points to the

You may think that n1 is greater than or less than n2; however, this ignores
the possibility that n1 and n2 are equal. The greater-than-or-equal-to opera-
tor (<=) and the less-than-or-equal-to operator (>=) include that bit of mathe-
matical nuance. They are similar to the less-than and greater-than operators,
with one major exception: They include equality; the other operators don’t.

The && (AND) and || (OR) can combine with the other logic operators, like
this:

// true if n2 is greater than n1 but n2 smaller than n3
// (this is the most common way determining that n2 is in
// the range of n1 to n3, exclusive)
(n1 < n2) && (n2 < n3);

Storing logical values
The result of a logical operation can be assigned to a variable of type bool:

int n1 = 1;
int n2 = 2;
bool b;
b = (n1 == n2);

This expression highlights the difference between the assignment operator =
and the comparison operator ==. The expression says, “Compare the vari-
ables n1 and n2. Store the results of this comparison in the variable b.”

of logical confusion:

b = n1 == n2; // compare n1 with n2; generate a true if n1
// if n1 has the same value as n2, false if not
// store the result, true or false, in b

The assignment operators are about as low down on the precedence totem
pole as you can get. The equality operator is executed before the assignment.
The parentheses are not required — so the following is an equally valid form

Whoa. Better look at that again. Note the difference between the operators.

50 Part I: Introduction to C++ Programming

The following program demonstrates the use of a bool variable:

// BoolTest - compare variables input from the
// keyboard and store the results off
// into a logical variable
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{

// set output format for bool variables
// to true and false instead
// of 1 and 0
cout.setf(cout.boolalpha);

// initialize two arguments
int nArg1;
cout << “Input value 1: “;
cin >> nArg1;

int nArg2;
cout << “Input value 2: “;
cin >> nArg2;

bool b;
b = nArg1 == nArg2;

cout << “The statement, “ << nArg1
<< “ equals “ << nArg2
<< “ is “ << b
<< endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

The first line cout.setf() makes sure that our bool variable b is output as
“true” or “false”. The next section explains why this is necessary.

The program inputs two values from the keyboard and displays the result of
the equality comparison:

Input value 1: 5
Input value 2: 5
The statement, 5 equals 5 is true
Press any key to continue . . .

Chapter 4: Performing Logical Operations 51
The special value endl inserts a newline. The difference between the value
endl and the character ‘\n’ as described in Chapter 2 is subtle and explained
in Chapter 24.

Using logical int variables
C++ hasn’t always had a bool type variable. Back in the old days (before that
guy on TV kept walking around saying “Can you hear me now?”), C++ used
int variables to store logical values. A value of 0 was considered false and
all other values true. By the same token, a logical operator generated a 0 for
false and a 1 for true. (Thus, 0 was false while 10 > 5 returned a 1.)

C++ retains a high degree of compatibility between bool and int in order
to support the older programs that still have that quirk. You get completely
different output from the BitTest program if you remove the line cout.
setf(cout.boolalpha):

Input value 1: 5
Input value 2: 5
The statement, 5 equals 5 is 1
Press any key to continue . . .

Variables of type int and bool can be mixed in expressions as well. For exam-
ple, Dev-C++ allows the following bizarre statement without batting an eyelid:

int n;
n = nArg1 == nArg2;

Continue to use type bool to hold logical values despite this wart that modern
C++ inherits from its forefathers. Other compilers may not be as forgiving.

Be careful performing logical operations
on floating-point variables
Real numbers are those numbers that can have a fractional part. Because of
this, real numbers cannot be counting numbers. That is, you can say the first
(1st), second (2nd), third, fourth, and so on because the relationship of 1, 2,
and 3 are known exactly. It does not make sense to speak of the 4.5th number
in a sequence. (This brings to mind the number between the fourth and fifth,
but it has no real meaning.)

Similarly the C++ type float, which is the C++ representation, is not a count-
ing number. Even worse (unlike a real number), a floating-point number can’t
have an infinite number of digits beyond the decimal point if a computer is

52 Part I: Introduction to C++ Programming

going to make any use of it. Because of this limitation, be careful when you
use comparison operators on floating-point numbers. Consider the following
example:

float f1 = 10.0;
float f2 = f1 / 3;
f1 == (f2 * 3.0); // are these two equal?

The comparison in the preceding example is not necessarily true. A floating-
point variable cannot hold an unlimited number of significant digits. Thus, f2
is not equal to the number we’d call “three-and-a-third,” but rather to 3.3333...,
stopping after some number of decimal places.

A float variable supports about 6 digits of accuracy while a double sup-
ports 13 digits. I say “about” because the computer is likely to generate a
number like 3.3333347 due to vagaries in floating point calculations.

Now, in pure math, the number of threes after the decimal point is infinite —
but no computer built can handle infinity. So, after multiplying 3.3333 by 3, you
get 9.9999 instead of the 10 you’d get if you multiplied “three-and-a-third” —
in effect, a roundoff error. Such small differences may be unnoticeable to a
person, but not to the computer. Equality means exactly that — exact equality.

Modern processors are very sophisticated in performing such calculations.
The processor may, in fact, accommodate the round-off error, but from inside
C++, you can’t predict exactly what any given processor will do.

Problems can arise even in a straightforward calculation, such as the following:

float f1 = 10.0;
float f2 = 100 % 30;
f1 == f2; // are these two equal?

Theoretically, f1 and f2 should be equal (after you apply that percentlike
operator that Chapter 3 identifies as modulus). There doesn’t appear to be
any problem with round off. So far. But you can’t be sure — you have no idea
how the computer that eventually runs your program is going to represent
floating-point numbers internally. To flatly claim that there’s no round-off
error lurking here makes unwarranted assumptions about CPU internals.

The safer comparison is as follows:

float f1 = 10.0;
float f2 = f1 / 3;
float f3 = f2 * 3.0;
(f1 - f3) < 0.0001 && (f3 - f1) < 0.0001;

Chapter 4: Performing Logical Operations 53
This comparison is true if f1 and f3 are within some small delta from each
other, which should still be true even if you take some small round-off error
into account.

Short circuits and C++
The& & and || perform what is called shortcircuit evaluation. Consider the
following:

condition1 && condition2

If condition1 is not true, the result is not true, no matter what the value
of condition2. (For example, condition2 could be true or false without
changing the result.) The same situation occurs in the following:

condition1 || condition2

If condition1 is true, the result is true, no matter what the value of
condition2.

To save time, C++ (wisely) cuts to the chase and evaluates condition1 first.
C++ does not evaluate condition2 if condition1 is false (in the case of &
&) or condition1 is true (in the case of ||). This is known as short circuit
evaluation.

Expressing Binary Numbers
C++ variables are stored internally as so-called binary numbers. Binary num-
bers are stored as a sequence of 1 and 0 values known as bits. Most of the
time, you don’t really need to deal with which particular bits you use to rep-
resent numbers. Sometimes, however, it’s actually practical and convenient
to tinker with numbers at the bit level — so C++ provides a set of operators
for that purpose.

Fortunately, you won’t have to deal too often with C++ variables at the bit
level, so it’s pretty safe to consider the remainder of this chapter a Deep
Techie excursion.

The so-called bitwise logical operators operate on their arguments at the bit
level. To understand how they work, let’s first examine how computers store
variables.

54 Part I: Introduction to C++ Programming

The decimal number system
The numbers we’ve been familiar with from the time we could first count
on our fingers are known as decimal numbers because they’re based on the
number 10. (Coincidence? I don’t think so . . .) In general, the programmer
expresses C++ variables as decimal numbers. Thus you could specify the
value of var as (say) 123 — but consider the implications.

A number such as 123 refers to 1 * 100 + 2 * 10 + 3 * 1. Each of these
base numbers — 100, 10, and 1 — are powers of 10.

123 = 1 * 100 + 2 * 10 + 3 * 1

Expressed in a slightly different (but equivalent) way, 123 looks like this:

123 = 1 * 102 + 2 * 101 + 3 * 100

Remember that any number to the zero power is 1.

Other number systems
Well, okay, using 10 as the basis (or base) of our counting system probably
stems from those 10 human fingers, the original counting tools. An alterna-
tive base for a counting system could just as easily have been 20 (maybe the
inventor of base 10 had shoes on at the time).

If our numbering scheme had been invented by dogs, it might well be based on
8 (one digit of each paw is out of sight on the back part of the leg). Mathemat-
ically, such an octal system would have worked just as well:

12310 = 1 * 8
2 + 7 * 81 + 3 * 80 = 1738

The small 10 and 8 here refer to the numbering system, 10 for decimal
(base 10) and 8 for octal (base 8). A counting system may use any positive
base.

The binary number system
Computers have essentially two fingers. (Maybe that’s why computers are so
stupid: without an opposing thumb, they can’t grasp anything. And then again,
maybe not.) Computers prefer counting using base 2. The number 12310 would
be expressed this way:

Chapter 4: Performing Logical Operations 55

12310 = 0*128 + 1*64 + 1*32 + 1*16 + 1*8 + 0*4 +1*2 + 1*1
= 011110112

Computer convention expresses binary numbers by using 4, 8, 16, 32 or even
64 binary digits even if the leading digits are zero. This is also because of the
way computers are built internally.

Because the term digit refers to a multiple of ten, a binary digit is called a bit
(an abbreviation of binary digit). Eight bits make up a byte. (Calling a binary
digit a byteit didn’t seem like a good idea.) A short word is two bytes; a long
word is four bytes.

With such a small base, you have to use a large number of bits to express
numbers. Human beings don’t want the hassle of using an expression such as
011110112 to express such a mundane value as 12310. Programmers prefer to
express numbers by using an even number of bits. The octal system — which
is based on 3 bits — has been almost completely replaced by the hexadeci-
mal system, which is based on 4-bit digits.

Hexadecimal uses the same digits for the numbers 0 through 9. For the digits
between 9 and 16, hexadecimal uses the first six letters of the alphabet: A for
10, B for 11, etc. Thus, 12310 becomes 7B16, like this:

123 = 7 * 161 + B (i.e. 11) * 160 = 7B16

Programmers prefer to express hexadecimal numbers in 2, 4, or 8 hexadeci-
mal digits even when the leading digit in each case is 0.

Finally, who wants to express a hexadecimal number such as 7B16 by using a
subscript? Terminals don’t even support subscripts. Even on a word proces-
sor such as the one I’m using now, it’s a drag to change fonts to and from sub-
script mode just to type two lousy digits. Therefore, programmers (no fools
they) use the convention of beginning a hexadecimal number with a 0x. (Why?
Well, the reason for such a strange convention goes back to the early days of
C, in a galaxy far, far, away . . . never mind.) Thus, 7B becomes 0x7B. Using
this convention, the hexadecimal number 0x7B is equal to 123 decimal while
0x123 hexadecimal is equal to 291 decimal.

You can use all the mathematical operators on hexadecimal numbers, in the
same way you’d apply them to decimal numbers. (Well, okay, most of us can’t
perform a multiplication such as 0xC * 0xE in our heads, but that has more
to do with the multiplication tables we learned in school than it has to do
with any limitation in the number system.)

56 Part I: Introduction to C++ Programming

Roman numeral expressions
On a historical note, I should mention that some
numbering systems actually hinder computa
tions. The Roman numeral system is a (so to
speak) classic example that greatly hindered
the development of math.

Think this one out:

a) IX + VI: The I after the V cancels out the I
before the X so the result is V carry the X.

b) X + XX: Plus the carry X is XXXX, which is
expressed as XL.

Subtraction is only slightly more difficult.

Ah, but multiplying two Roman numerals all but

X promotes the digits
on the right by 1 letter so that X –* IV becomes
XL.) Division practically required a Ph.D., and
higher operations such as integration would
have been completely impossible.

Love those Arabic numerals . . .

Adding two Roman numerals isn’t too difficult:

XIX + XXVI = XLV

requires a bachelor’s degree in mathematics.
(You end up with rules like

Performing Bitwise Logical Operations
All C++ numbers can be expressed in binary form. Binary numbers use only
the digits 1 and 0 to represent a value. The following Table 4-2 defines the set
of operations that work on numbers one bit at a time, hence the term bitwise
operators.

Table 4-2 Bitwise Operators

Operator Function

~ NOT: Toggle each bit from 1 to 0 and from 0 to 1

& AND each bit of the lefthand argument with that on the right

| OR each bit of the lefthand argument with that on the right

^ XOR (exclusive OR) each bit of the lefthand argument with that on
the right

Bitwise operations can potentially store a lot of information in a small amount
of memory. There are a lot of traits in the world that have only two (or, at
most, four) possibilities — that are either this way or that way. You are either
married or you’re not (you might be divorced but you are still not currently

Chapter 4: Performing Logical Operations 57
married). You are either male or female (at least that’s what my driver’s
license says). In C++, you can store each of these traits in a single bit —
in this way, you can pack 32 separate properties into a single 32-bit int.

In addition, bit operations can be extremely fast. There is no performance
penalty paid for that 32-to-1 saving.

Even though memory is cheap these days, it’s not unlimited. Sometimes,
when you’re storing large amounts of data, this ability to pack a whole lot
of properties into a single word is a big advantage.

The single bit operators
The bitwise operators — AND (&), OR (|) and NOT (~) — perform logic oper-
ations on single bits. If you consider 0 to be false and 1 to be true (it doesn’t
have to be this way, but it’s a common convention), you can say things like
the following for the NOT operator:

NOT 1 (true) is 0 (false)
NOT 0 (false) is 1 (true)

The AND operator is defined as following:

1 (true) AND 1 (true) is 1 (true)
1 (true) AND 0 (false) is 0 (false)

It’s a similar situation for the OR operator:

1 (true) OR 0 (false) is 1 (true)
0 (false) OR 0 (false) is 0 (false)

The definition of the AND operator appears in Table 4-3.

Table 4-3 Truth Table for the AND Operator

AND 1 0

1 1 0

0 0 0

You read this table as the column corresponding to the value of one of the
arguments while the row corresponds to the other. Thus, 1 & 0 is 0. (Column 1

58 Part I: Introduction to C++ Programming

and row 0.) The only combination that returns anything other than 0 is 1 & 1.
(This is known as a truth table.)

Similarly, the truth table for the OR operator is shown in Table 4-4.

Table 4-4 Truth Table for the OR Operator

XOR 1 0

1 1 1

0 1 0

One other logical operation that is not so commonly used in day-to-day living
is the OR ELSE operator commonly contracted to XOR. XOR is true if either
argument is true but not if both are true. The truth table for XOR is shown
in Table 4-5.

Table 4-5 Truth Table for the XOR Operator

XOR 1 0

1 0 1

0 1 0

Armed with these single bit operators, we can take on the C++ bitwise logical
operations.

Using the bitwise operators
The bitwise operators operate on each bit separately.

The bitwise operators are used much like any other binary arithmetic operator.
The NOT operator is the easiest to understand. To NOT a number is to NOT
each bit that makes up that number (and to a programmer, that sentence
makes perfect sense — honest). Consider this example:

~01102 (0x6)
10012 (0x9)

Thus we say that ~0x6 equals 0x9.

The following calculation demonstrates the & operator:

Chapter 4: Performing Logical Operations 59

01102

&
00112

00102

Beginning with the most significant bit, 0 AND 0 is 0. In the next bit, 1 AND 0
is 0. In bit 3, 1 AND 1 is 1. In the least significant bit, 0 AND 1 is 0.

The same calculation can be performed in hexadecimal by first converting
the number in binary, performing the operation and then converting the
result back.

0x6 01102

& &
0x3 00112

0x2 00102

In shorthand, we say that 0x6 & 0x3 equals 0x2.

(Try this test: What is the value of 0x6 | 0x3? Get this in 7 seconds, and you
can give yourself 7 pats on the back.)

A simple test
The following program illustrates the bitwise operators in action. The pro-
gram initializes two variables and outputs the result of ANDing, ORing, and
XORing them.

// BitTest - initialize two variables and output the
// results of applying the ~,& , | and ^
// operations
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{

// set output format to hexadecimal
cout.setf(cout.hex);

// initialize two arguments
int nArg1;
nArg1 = 0x1234;

int nArg2;
nArg2 = 0x00ff;

// now perform each operation in turn
// first the unary NOT operator

60 Part I: Introduction to C++ Programming

cout << “Arg1 = 0x” << nArg1 << “\n”;
cout << “Arg2 = 0x” << nArg2 << “\n”;
cout << “~nArg1 = 0x” << ~nArg1 << “\n”;
cout << “~nArg2 = 0x” << ~nArg2 << “\n”;

// now the binary operators
cout << “nArg1 & nArg2 = 0x”

<< (nArg1 & nArg2)
<< “\n”;

cout << “nArg1 | nArg2 = 0x”
<< (nArg1 | nArg2)
<< “\n”;

cout << “nArg1 ^ nArg2 = 0x”
<< (nArg1 ^ nArg2)
<< “\n”;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

The first expression in our program, cout.setf(ios::hex), sets the output
format from the default decimal to hexadecimal (you’ll have to trust me for
now that it works).

The remainder of the program is straightforward. The program assigns nArg1
the test value 0x1234 and nArg2 the value 0x00ff. The program then out-
puts all combinations of bitwise calculations. The process looks like this:

Arg1 = 0x1234
Arg2 = 0xff
~nArg1 = 0xffffedcb
~nArg2 = 0xffffff00
nArg1 & nArg2 = 0x34
nArg1 | nArg2 = 0x12ff
nArg1 ^ nArg2 = 0x12cb
Press any key to continue . . .

Do something logical with logical
calculations
Running through simple and bitwise logical calculations in your head at par-
ties is fun (well, okay, for some of us), but a program has to make actual, prac-
tical use of these values to make them worth the trouble. Coming right up:
Chapter 5 demonstrates how logical calculations are used to control program
flow.

Chapter 5

Controlling Program Flow
In This Chapter
� Controlling the flow through the program

� Executing a group of statements repetitively

� Avoiding infinite loops

The simple programs that appear in Chapters 1 through 4 process a fixed
number of inputs, output the result of that calculation, and quit. However,

these programs lack any form of flow control. They cannot make tests of any
sort. Computer programs are all about making decisions. If the user presses
a key, the computer responds to the command.

For example, if the user presses Ctrl+C, the computer copies the currently
selected area to the Clipboard. If the user moves the mouse, the pointer
moves on the screen. If the user clicks the right mouse button with the
Windows key depressed, the computer crashes. The list goes on and on.
Programs that don’t make decisions are necessarily pretty boring.

Flow-control commands allow the program to decide what action to take,
based on the results of the C++ logical operations performed (see Chapter 4).
There are basically three types of flow-control statements: the branch, the
loop, and the switch.

Controlling Program Flow with the
Branch Commands

The simplest form of flow control is the branch statement. This instruction
allows the program to decide which of two paths to take through C++ instruc-
tions, based on the results of a logical expression (see Chapter 4 for a descrip-
tion of logical expressions).

62 Part I: Introduction to C++ Programming

In C++, the branch statement is implemented using the if statement:

if (m > n)
{

// Path 1
// ...instructions to be executed if
// m is greater than n

}
else
{

// Path 2
// ...instructions to be executed if not

}

First, the logical expression m > n is evaluated. If the result of the expression
is true, control passes down the path marked Path 1 in the previous snip-
pet. If the expression is false, control passes to Path 2. The else clause is
optional. If it is not present, C++ acts as if it is present but empty.

Actually, the braces are optional (sort of) if there’s only one statement to exe-
cute as part of the if. If you lose the braces, however, it’s embarrassingly
easy to make a mistake that the C++ compiler can’t catch. The braces serve
as a guide marker; it’s much safer to include ’em. (If your friends try to entice
you into not using braces, “Just say No.”)

The following program demonstrates the if statement (note all the lovely
braces):

// BranchDemo - input two numbers. Go down one path of the
// program if the first argument is greater than
// the first or the other path if not
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{

// input the first argument...
int arg1;
cout << “Enter arg1: “;
cin >> arg1;

// ...and the second
int arg2;
cout << “Enter arg2: “;
cin >> arg2;

// now decide what to do:
if (arg1 > arg2)

Chapter 5: Controlling Program Flow 63

{
cout << “Argument 1 is greater than argument 2”

<< endl;
}
else
{

cout << “Argument 1 is not greater than argument 2”
<< endl;

}

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

Here the program reads two integers from the keyboard and compares them.
If the expression “arg1 is greater than arg2” is true, control flows to the
output statement cout << “Argument 1 is greater than argument 2”.
If arg1 is not greater than arg2, control flows to the else clause where the
statement cout << “Argument 1 is not greater than argument 2\n”
is executed. Here’s what that operation looks like:

Enter arg1: 5
Enter arg2: 6
Argument 1 is not greater than argument 2
Press any key to continue . . .

Executing Loops in a Program
Branch statements allow you to control the flow of a program’s execution from
one path of a program or another. This is a big improvement, but still not
enough to write full-strength programs.

Consider the problem of updating the computer display. On the typical PC
display, 1 million pixels are drawn to update the entire display. A program
that can’t execute the same code repetitively would need to include the same
set of instructions over and over 1,000 times.

What we really need is a way for the computer to execute the same sequence
of instructions thousands and millions of times. Executing the same command
multiple times requires some type of looping statements.

64 Part I: Introduction to C++ Programming

Looping while a condition is true
The simplest form of looping statement is the while loop. Here’s what the
while loop looks like:

while(condition)
{

// ... repeatedly executed as long as condition is true
}

The condition is tested. This condition could be if var > 10 or if
var1 == var2 or anything else you might think of. If it is true, the state-
ments within the braces are executed. Upon encountering the closed brace,
C++ returns control to the beginning, and the process starts over. The effect
is that the C++ code within the braces is executed repeatedly as long as the
condition is true. (Kind of reminds me of how I get to walk around the yard
with my dog until she . . . well, until we’re done.)

If the condition were true the first time, what would make it be false in the
future? Consider the following example program:

// WhileDemo - input a loop count. Loop while
// outputting astring arg number of times.
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{

// input the loop count
int loopCount;
cout << “Enter loopCount: “;
cin >> loopCount;

// now loop that many times
while (loopCount > 0)
{

loopCount = loopCount - 1;
cout << “Only “ << loopCount << “ loops to go\n”;

}

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

WhileDemo begins by retrieving a loop count from the user, which it stores in
the variable loopCount. The program then executes a while loop. The while
first tests loopCount. If loopCount is greater than zero, the program enters

Chapter 5: Controlling Program Flow 65
the body of the loop (the body is the code between the braces) where it decre-
ments loopCount by 1 and outputs the result to the display. The program
then returns to the top of the loop to test whether loopCount is still positive.

When executed, the program WhileDemo outputs the results shown in this
next snippet. Here I entered a loop count of 5. The result is that the program
loops 5 times, each time outputting a countdown.

Enter loopCount: 5
Only 4 loops to go
Only 3 loops to go
Only 2 loops to go
Only 1 loops to go
Only 0 loops to go
Press any key to continue . . .

If the user enters a negative loop count, the program skips the loop entirely.
That’s because the specified condition is never true, so control never enters
the loop. In addition, if the user enters a very large number, the program loops
for a long time before completing.

A separate, less frequently used version of the while loop known as the
do . . . while appears identical except the condition isn’t tested until
the bottom of the loop:

do
{

// ...the inside of the loop
} while (condition);

Because the condition isn’t tested until the end, the body of the do . . .
while is always executed at least once.

The condition is only checked at the beginning of the while loop or at the
end of the do . . . while loop. Even if the condition ceases to be true at
some time during the execution of the loop, control does not exit the loop
until the condition is retested.

Using the autoincrement/
autodecrement feature
Programmers very often use the autoincrement ++ or the autodecrement --
operators with loops that count something. Notice, from the following snip-
pet extracted from the WhileDemo example, that the program decrements the
loop count by using assignment and subtraction statements, like this:

66 Part I: Introduction to C++ Programming

// now loop that many times
while (loopCount > 0)
{

loopCount = loopCount - 1;
cout << “Only “ << loopCount << “ loops to go\n”;

}

A more compact version uses the autodecrement feature, which does what
you may well imagine:

while (loopCount > 0)
{

loopCount--;
cout << “Only “ << loopCount << “ loops to go\n”;

}

The logic in this version is the same as in the original. The only difference is
the way that loopCount is decremented.

Because the autodecrement both decrements its argument and returns its
value, the decrement operation can actually be combined with the while
loop. In particular, the following version is the smallest loop yet.

while (loopCount-- > 0)
{

cout << “Only “ << loopCount << “ loops to go\n”;
}

Believe it or not, the loopcount— > 0 is the version that most C++ program-
mers would use. It’s not that C++ programmers like being cute (although they
do). In fact, the more compact version (which embeds the autoincrement or
autodecrement feature in the logical comparison) is easier to read, especially
as you gain experience.

Both loopCount— and —loopCount expressions decrement loopCount. The
former expression, however, returns the value of loopCount before being
decremented; the latter expression does so after being decremented.

How often should the autodecrement version of WhileDemo execute when the
user enters a loop count of 1? If you use the pre-decrement version, the value
of —loopCount is 0, and the body of the loop is never entered. With the post-
decrement version, the value of loopCount— is 1, and control enters the loop.

Beware thinking that the version of the program with the autodecrement
command executes faster (since it contains fewer statements). It probably
executes exactly the same. Modern compilers are pretty good at getting the
number of machine-language instructions down to a minimum, no matter
which of the decrement instructions shown here you actually use.

Chapter 5: Controlling Program Flow 67

Using the for loop
The most common form of loop is the for loop. The for loop is preferred
over the more basic while loop because it’s generally easier to read (there’s
really no other advantage).

The for loop has the following format:

for (initialization; conditional; increment)
{

// ...body of the loop
}

Execution of the for loop begins with the initialization clause, which got its
name because it’s normally where counting variables are initialized. The ini-
tialization clause is only executed once when the for loop is first encountered.

Execution continues with the conditional clause. This clause works a lot like
the while loop: as long as the conditional clause is true, the for loop con-
tinues to execute.

After the code in the body of the loop finishes executing, control passes to
the increment clause before returning to check the conditional clause —
thereby repeating the process. The increment clause normally houses the
autoincrement or autodecrement statements used to update the counting
variables.

The following while loop is equivalent to the for loop:

{
initialization;
while(conditional)
{

{
// ...body of the loop

}
increment;

}
}

All three clauses are optional. If the initialization or increment clauses are
missing, C++ ignores them. If the conditional clause is missing, C++ performs
the for loop forever (or until something else passes control outside the loop).

The for loop is best understood by example. The following ForDemo program
is nothing more than the WhileDemo converted to use the for loop construct:

68 Part I: Introduction to C++ Programming

// ForDemo1 - input a loop count. Loop while
// outputting astring arg number of times.
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{

// input the loop count
int loopCount;
cout << “Enter loopCount: “;
cin >> loopCount;

// count up to the loop count limit
for (; loopCount > 0;)
{

loopCount = loopCount - 1;
cout << “Only “ << loopCount << “ loops to go\n”;

}

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

The program reads a value from the keyboard into the variable loopCount.
The for starts out comparing loopCount to zero. Control passes into the
for loop if loopCount is greater than zero. Once inside the for loop, the pro-
gram decrements loopCount and displays the result. That done, the program
returns to the for loop control. Control skips to the next line after the for
loop as soon as loopCount has been decremented to zero.

All three sections of a for loop may be empty. An empty initialization or
increment section does nothing. An empty comparison section is treated like
a comparison that returns true.

This for loop has two small problems. First, it’s destructive — not in the
sense of what my puppy does to a slipper, but in the sense that it changes
the value of loopCount, “destroying” the original value. Second, this for
loop counts “backward” from large values down to smaller values. These
two problems are addressed if you add a dedicated counting variable to the
for loop. Here’s what it looks like:

// ForDemo2 - input a loop count. Loop while
// outputting astring arg number of times.
#include <cstdio>
#include <cstdlib>

Chapter 5: Controlling Program Flow 69

#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{

// input the loop count
int loopCount;
cout << “Enter loopCount: “;
cin >> loopCount;

// count up to the loop count limit
for (int i = 1; i <= loopCount; i++)
{

cout << “We’ve finished “ << i << “ loops\n”;
}

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

This modified version of WhileDemo loops the same as it did before. Instead
of modifying the value of loopCount, however, this ForDemo2 version uses a
counter variable.

Control begins by declaring a variable and initializing it to the value contained
in loopCount. It then checks the variable i to make sure that it is positive. If
so, the program executes the output statement, decrements i and starts over.

When declared within the initialization portion of the for loop, the index
variable is only known within the for loop itself. Nerdy C++ programmers say
that the scope of the variable is the for loop. In the example just given, the
variable i is not accessible from the return statement because that state-
ment is not within the loop. Note, however, that not all compilers are strict
about sticking to this rule. The Dev-C++ compiler (for example) generates a
warning if you use i outside the for loop — but it uses the variable anyway.

Avoiding the dreaded infinite loop
An infinite loop is an execution path that continues forever. An infinite loop
occurs any time the condition that would otherwise terminate the loop can’t
occur — usually the result of a coding error.

Consider the following minor variation of the earlier loop:

70 Part I: Introduction to C++ Programming

while (loopCount > 0)
{

cout << “Only “ << loopCount << “ loops to go\n”;
}

The programmer forgot to decrement the variable loopCount as in the loop
example below. The result is a loop counter that never changes. The test con-
dition is either always false or always true. The program executes in a never-
ending (infinite) loop.

I realize that nothing’s infinite. Eventually the power will fail, the computer
will break, Microsoft will go bankrupt, and dogs will sleep with cats. . . . Either
the loop will stop executing, or you won’t care anymore.

You can create an infinite loop in many more ways than shown here, most of
which are much more difficult to spot than this one.

Applying special loop controls
C++ defines two special flow-control commands known as break and
continue. Sometimes the condition for terminating the loop occurs at
neither the beginning nor the end of the loop, but in the middle. Consider
a program that accumulates numbers of values entered by the user. The
loop terminates when the user enters a negative number.

The challenge with this problem is that the program can’t exit the loop
until the user has entered a value, but must exit before the value is added
to the sum.

For these cases, C++ defines the break command. When encountered, the
break causes control to exit the current loop immediately. Control passes
from the break statement to the statement immediately following the closed
brace at the end of the loop.

The format of the break commands is as follows:

while(condition) // break works equally well in for loop
{

if (some other condition)
{

break; // exit the loop
}

} // control passes here when the
// program encounters the break

Armed with this new break command, my solution to the accumulator prob-
lem appears as the program BreakDemo.

Chapter 5: Controlling Program Flow 71

// BreakDemo - input a series of numbers.
// Continue to accumulate the sum
// of these numbers until the user
// enters a negative number.
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{

// input the loop count
int accumulator = 0;
cout << “This program sums values entered”

<< “by the user\n”;
cout << “Terminate the loop by entering “

<< “a negative number\n”;

// loop “forever”
for(;;)
{

// fetch another number
int value = 0;
cout << “Enter next number: “;
cin >> value;

// if it’s negative...
if (value < 0)
{

// ...then exit
break;

}

// ...otherwise add the number to the
// accumulator
accumulator = accumulator + value;

}

// now that we’ve exited the loop
// output the accumulated result
cout << “\nThe total is “

<< accumulator
<< “\n”;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

After explaining the rules to the user (entering a negative number to termi-
nate, and so on), the program enters what looks like an infinite for loop.

72 Part I: Introduction to C++ Programming

Once within the loop, BreakDemo retrieves a number from the keyboard. Only
after the program has read a number can it test to see whether the number it
just read matches the exit criteria. If the input number is negative, control
passes to the break, causing the program to exit the loop. If the input number
is not negative, control skips over the break command to the expression that
sums the new value into the accumulator. After the program exits the loop, it
outputs the accumulated value and then exits.

When performing an operation on a variable repeatedly in a loop, make sure
that the variable is initialized properly before entering the loop. In this case,
the program zeros accumulator before entering the loop where value is
added to it.

The result of an example run appears as follows:

This program sums values entered by the user
Terminate the loop by entering a negative number
Enter next number: 1
Enter next number: 2
Enter next number: 3
Enter next number: -1

The total is 6
Press any key to continue . . .

The continue command is used less frequently. When the program encoun-
ters the continue command, it immediately moves back to the top of the loop.
The rest of the statements in the loop are ignored for the current iteration.

the CD-ROM as ContinueDemo):

{
// input a value
cout << “Input a value:”;
cin >> value;

// if the value is negative...
if (value < 0)
{

// ...output an error message...
cout << “Negative numbers are not allowed\n”;

// ...and go back to the top of the loop
continue;

}

// ...continue to process input like normal
}

The following example snippet ignores negative numbers that the user might
input. Only a zero terminates this version (the complete program appears on

while(true)// this while() has the same effect as for(;;)

Chapter 5: Controlling Program Flow 73

Nesting Control Commands
Return to our PC-screen-repaint problem. Surely it must need a loop struc-
ture of some type to write each pixel from left to right on a single line. (Do
Middle Eastern terminals scan from right to left? I have no idea.) What about
repeatedly repainting each scan line from top to bottom? (Do PC screens in
Australia scan from bottom to top? Beats me.) For this particular task, you
need to include the left-to-right scan loop within the top-to-bottom scan loop.

A loop command within another loop is known as a nested loop. As an exam-
ple, you can modify the BreakDemo program into a program that accumulates
any number of sequences. In this NestedDemo program, the inner loop sums
numbers entered from the keyboard until the user enters a negative number.
The outer loop continues accumulating sequences until the sum is 0. Here’s
what it looks like:

// NestedDemo - input a series of numbers.
// Continue to accumulate the sum
// of these numbers until the user
// enters a 0. Repeat the process
// until the sum is 0.
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{

// the outer loop
cout << “This program sums multiple series\n”

<< “of numbers. Terminate each sequence\n”
<< “by entering a negative number.\n”
<< “Terminate the series by entering two\n”
<< “negative numbers in a row\n”;

// continue to accumulate sequences
int accumulator;
do
{

// start entering the next sequence
// of numbers
accumulator = 0;
cout << “Start the next sequence\n”;

// loop forever
for(;;)
{

// fetch another number
int value = 0;

74 Part I: Introduction to C++ Programming

cout << “Enter next number: “;
cin >> value;

// if it’s negative...
if (value < 0)
{

// ...then exit
break;

}

// ...otherwise add the number to the
// accumulator
accumulator = accumulator + value;

}

// output the accumulated result...
cout << “The total for this sequence is “

<< accumulator
<< endl << endl;

// ...and start over with a new sequence
// if the accumulated sequence was not zero

} while (accumulator != 0);

// we’re about to quit
cout << “Thank you” << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

Switching to a Different Subject?
One last control statement is useful in a limited number of cases. The switch
statement resembles a compound if statement by including a number of dif-
ferent possibilities rather than a single test:

switch(expression)
{

case c1:
// go here if the expression == c1
break;

case c2:
// go here if expression == c2
break;

default:
// go here if there is no match

}

Chapter 5: Controlling Program Flow 75
The value of expression must be an integer (int, long, or char). The case
values c1, c2, and c3 must be constants. When the switch statement is
encountered, the expression is evaluated and compared to the various case
constants. Control branches to the case that matches. If none of the cases
match, control passes to the default clause.

Consider the following example code snippet:

int choice;
cout << “Enter a 1, 2 or 3:”;
cin >> choice;

switch(choice)
{

case 1:
// do “1” processing
break;

case 2:
// do “2” processing
break;

case 3:
// do “3” processing
break;

default:
cout << “You didn’t enter a 1, 2 or 3\n”;

}

Once again, the switch statement has an equivalent, in this case multiple if
statements; however, when there are more than two or three cases, the switch
structure is easier to understand.

The break statements are necessary to exit the switch command. Without
the break statements, control falls through from one case to the next. (Look
out below!)

76 Part I: Introduction to C++ Programming

Becoming a
Functional C++

Programmer

Part II

In this part . . .

It’s one thing to perform operations such as addition
and multiplication — even when we’re logical (AND

and OR or other operations). It’s another thing to write
real programs. This section introduces the features neces-
sary to make the leap into programmerdom.

You’ll find the program BUDGET1 on the enclosed
CD-ROM. This largish program demonstrates the concepts
of functional programming. You may want to visit this pro-
gram and its documentation once you’ve mastered func-
tional programming concepts.

Chapter 6

Creating Functions
In This Chapter
� Writing functions

� Passing data to functions

� Naming functions with different arguments

� Creating function prototypes

� Working with include files

The programs developed in prior chapters have been small enough that
they can be easily read as a single unit. Larger, real-world programs can

be many thousands (or millions!) of lines long. Developers need to break up
these monster programs into smaller chunks that are easier to conceive,
develop, and maintain.

C++ allows programmers to divide their code into exactly such chunks
(known as functions). As long as a function has a simple description and a
well-defined interface to the outside world, it can be written and debugged
without worrying about the code that surrounds it.

This divide-and-conquer approach reduces the difficulty of creating a work-
ing program of significant size. This is a simple form of encapsulation — see
Chapter 15 for more details on encapsulation.

Writing and Using a Function
Functions are best understood by example. This section starts with the
example program FunctionDemo, which simplifies the NestedDemo program
I discussed in Chapter 5 by defining a function to contain part of the logic.
Then this section explains how the function is defined and how it is invoked,
using FunctionDemo as a pattern for understanding both the problem and
the solution.

80 Part II: Becoming a Functional C++ Programmer

The NestedDemo program in Chapter 5 contains an inner loop (which accu-
mulates a sequence of numbers) surrounded by an outer loop (which repeats
the process until the user quits). Separating the two loops would simplify the
program by allowing the reader to concentrate on each loop independently.

The following FunctionDemo program shows how NestedDemo can be simpli-
fied by creating the function sumSequence().

Function names are normally written with a set of parentheses immediately
following the term, like this:

// FunctionDemo - demonstrate the use of functions
// by breaking the inner loop of the
// NestedDemo program off into its own
// function
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// sumSequence - add a sequence of numbers entered from
// the keyboard until the user enters a
// negative number.
// return - the summation of numbers entered
int sumSequence(void)
{

// loop forever
int accumulator = 0;
for(;;)
{

// fetch another number
int value = 0;
cout << “Enter next number: “;
cin >> value;

// if it’s negative...
if (value < 0)
{

// ...then exit from the loop
break;

}

// ...otherwise add the number to the
// accumulator
accumulator= accumulator + value;

}

// return the accumulated value
return accumulator;

}

int main(int nNumberofArgs, char* pszArgs[])
{

Chapter 6: Creating Functions 81

cout << “This program sums multiple series\n”
<< “of numbers. Terminate each sequence\n”
<< “by entering a negative number.\n”
<< “Terminate the series by entering two\n”
<< “negative numbers in a row\n”
<< endl;

// accumulate sequences of numbers...
int accumulatedValue;
for(;;)
{

// sum a sequence of numbers entered from
// the keyboard
cout << “Enter next sequence” << endl;
accumulatedValue = sumSequence();

// terminate the loop if sumSequence() returns
// a zero
if (accumulatedValue == 0)
{

break;
}

// now output the accumulated result
cout << “The total is “

<< accumulatedValue
<< “\n”
<< endl;

}

cout << “Thank you” << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

Defining the sumSequence() function
The statement int sumSequence(void) begins the definition of the
sumSequence() function. The block of code contained in the braces is the
function body. The function sumSequence() accumulates a sequence of
values entered from the keyboard. This code section is identical to that
found in the inner loop of NestedDemo.

82 Part II: Becoming a Functional C++ Programmer

Calling the function sumSequence()
Let’s concentrate on the main program contained in the braces following
main(). This section of code looks similar to the outer loop in NestedDemo.

The main difference is the expression accumulatedValue = sumSequence();
that appears where the inner loop would have been. The sumSequence()
statement invokes the function of that name. A value returned by the function
is stored in the variable accumulatedValue. Then this value is displayed.
The main program continues to loop until sumSequence() returns a sum of
zero, which indicates that the user has finished calculating sums.

Divide and conquer
The FunctionDemo program has split the outer loop in main() from the
inner loop into a function sumSequence(). This division wasn’t arbitrary:
sumSequence() performs a separate role — worth considering by itself —
apart from the control features within FunctionDemo.

A good function is easy to describe. You shouldn’t have to use more than a
single sentence, with a minimum of such words as and, or, unless, or but. For
example, here’s a simple, straightforward definition:

“The function sumSequence accumulates a sequence of integer values entered
by the user.”

This definition is concise and clear. It’s a world away from the ContinueDemo
program description:

“sums a sequence of positive values AND generates an error if the user enters
a negative number AND displays the sum AND starts over again until the user
enters two zero-length sums.”

The output of a sample run of this program appears much like that generated
by the NestedDemo program, as follows:

This program sums multiple series
of numbers. Terminate each sequence
by entering a negative number.
Terminate the series by entering two
negative numbers in a row

Enter next sequence
Enter next number: 1
Enter next number: 2

Chapter 6: Creating Functions 83

Enter next number: 3
Enter next number: -1
The total is 6

Enter next sequence
Enter next number: 1
Enter next number: 2
Enter next number: -1
The total is 3

Enter next sequence
Enter next number: -1
Thank you
Press any key to continue . . .

Understanding the Details of Functions
Functions are so fundamental to creating C++ programs that getting a handle
on the details of defining, creating, and testing them is critical. Armed with
the example FunctionDemo program, consider the following definition of
function:

A function is a logically separated block of C++ code. The function construct
has the following form:

<return type> name(<arguments to the function>)
{

// ...
return <expression>;

}

The arguments to a function are values that can be passed to the function to
be used as input information. The return value is a value that the function
returns. For example, in the call to the function square(10), the value 10 is
an argument to the function square(). The returned value is 100.

Both the arguments and the return value are optional. If either is absent, the
keyword void is used instead. That is, if a function has a void argument list,
the function does not take any arguments when called (this was the case with
the FunctionDemo program). If the return type is void, the function does not
return a value to the caller.

In the example FunctionDemo program, the name of the function is
sumSequence(), the return type is int, and no arguments exist.

84 Part II: Becoming a Functional C++ Programmer

The default argument type to a function is void, meaning that it takes no
arguments. A function int fn(void) may be declared as int fn().

The function construct made it possible for me to write two distinct parts of
the FunctionDemo program separately. I concentrated on creating the sum of
a sequence of numbers when writing the sumSequence() function. I didn’t
think about other code that may call the function.

Similarly, when writing main(), I concentrated on handling the summation
returned by sumSequence() while thinking only of what the function did —
not how it worked.

Understanding simple functions
The simple function sumSequence() returns an integer value that it calcu-
lates. Functions may return any of the regular types of variables. For exam-
ple, a function might return a double or a char (int, double, and char are a
few of the variable types discussed in Chapter 2).

If a function returns no value, the return type of the function is labeled void.

A function may be labeled by its return type — for example, a function that
returns an int is often known as an integer function. A function that
returns no value is known as a void function.

For example, the following void function performs an operation, but returns
no value:

void echoSquare()
{

int value;
cout << “Enter a value:”;
cin >> value;
cout << “\n The square is:” << (value * value) << “\n”;
return;

}

Control begins at the open brace and continues through to the return state-
ment. The return statement in a void function is not followed by a value.

The return statement in a void function is optional. If it isn’t present, execu-
tion returns to the calling function when control encounters the close brace.

Chapter 6: Creating Functions 85

Understanding functions with arguments
Simple functions are of limited use because the communication from such
functions is one-way — through the return value. Two-way communication
is through function arguments.

Functions with arguments
A function argument is a variable whose value is passed to the calling function
during the call operation. The following SquareDemo example program defines
and uses a function square() that returns the square of a double precision
float passed to it:

// SquareDemo - demonstrate the use of a function
// which processes arguments

#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// square - returns the square of its argument
// doubleVar - the value to be squared
// returns - square of doubleVar
double square(double doubleVar)
{

return doubleVar * doubleVar;
}

// sumSequence - accumulate the square of the number
// entered at the keyboard into a sequence
// until the user enters a negative number
double sumSequence(void)
{

// loop forever
double accumulator= 0.0;
for(;;)
{

// fetch another number
double dValue = 0;
cout << “Enter next number: “;
cin >> dValue;

// if it’s negative...

if (dValue < 0)
{

// ...then exit from the loop

86 Part II: Becoming a Functional C++ Programmer

break;
}

// ...otherwise calculate the square
double value = square(dValue);

// now add the square to the
// accumulator
accumulator= accumulator + value;

}

// return the accumulated value
return accumulator;

}

int main(int nNumberofArgs, char* pszArgs[])
{

cout << “This program sums multiple series\n”
<< “of numbers squared. Terminate each sequence\n”
<< “by entering a negative number.\n”
<< “Terminate the series by entering two\n”
<< “negative numbers in a row\n”
<< endl;

// Continue to accumulate numbers...
double accumulatedValue;
for(;;)
{

// sum a sequence of numbers entered from
// the keyboard
cout << “Enter next sequence” << endl;
accumulatedValue = sumSequence();

// terminate if the sequence is zero or negative
if (accumulatedValue <= 0.0)
{

break;
}

// now output the accumulated result
cout << “\nThe total of the values squared is “

<< accumulatedValue
<< endl;

}

cout << “Thank you” << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

Chapter 6: Creating Functions 87
This is the same FunctionDemo() program, except that SquareDemo()
accumulates the square of the values entered. The function square()
returns the value of its one argument multiplied by itself. The change to
the sumSequence() function is simple — rather than accumulate the value
entered, the function now accumulates the result returned from square().

Functions with multiple arguments
Functions may have multiple arguments that are separated by commas. Thus,
the following function returns the product of its two arguments:

int product(int arg1, int arg2)
{

return arg1 * arg2;
}

main() exposed
The “keyword” main() from our standard program template is nothing more
than a function — albeit a function with strange arguments — but a function
nonetheless.

When a program is built, C++ adds some boilerplate code that executes before
your program ever starts (you can’t see this code without digging into the
bowels of the C++ library functions). This code sets up the environment in
which your program operates. For example, this boilerplate code opens the
default input and output channels cin and cout.

After the environment has been established, the C++ boilerplate code calls
the function main(), thereby beginning execution of your code. When your
program finishes, it exits from main(). This enables the C++ boilerplate to
clean up a few things before turning control over to the operating system that
kills the program.

Overloading Function Names
C++ allows the programmer to assign the same name to two or more functions.
This multiple use of names is known as overloading functions.

In general, two functions in a single program cannot share the same name. If
they did, C++ would have no way to distinguish them. Note, however, that the
name of the function includes the number and type of its arguments — but
does not include its return argument. Thus the following are not the same
functions:

88 Part II: Becoming a Functional C++ Programmer

void someFunction(void)
{

//perform some function
}
void someFunction(int n)
{

// ...perform some different function
}
void someFunction(double d)
{

// ...perform some very different function
}
void someFunction(int n1, int n2)
{

//do something different yet
}

C++ still knows that the functions someFunction(void), someFunction(int),
someFunction(double), and someFunction(int, int) are not the same.
Like so many things that deal with computers, this has an analogy in the
human world.

void as an argument type is optional. sumFunction(void) and
sumFunction() are the same function. A function has a shorthand name,
such as someFunction(), in same way that I have the shorthand name
Stephen (actually, my nickname is Randy, but work with me on this one).
If there aren’t any other Stephens around, people can talk about Stephen
behind his back. If, however, there are other Stephens, no matter how hand-
some they might be, people have to use their full names — in my case,
Stephen Davis. As long as we use the entire name, no one gets confused —
however many Stephens might be milling around. Similarly, the full name for
one of the someFunctions() is someFunction(int). As long as this full
name is unique, no confusion occurs.

The analogies between the computer world (wherever that is) and the human
world are hardly surprising because humans build computers. (I wonder . . .
if dogs had built computers, would the standard unit of memory be a gnaw
instead of a byte? Would requests group in packs instead of queues?)

Here’s a typical application that uses overloaded functions with unique full
names:

int intVariable1, intVariable2; // equivalent to
// int Variable1;
// int Variable2;

double doubleVariable;

// functions are distinguished by the type of
// the argument passed

Chapter 6: Creating Functions 89

someFunction(); // calls someFunction(void)
someFunction(intVariable1); // calls someFunction(int)
someFunction(doubleVariable); // calls someFunction(double)
someFunction(intVariable1, intVariable2); // calls

// someFunction(int, int)

// this works for constants as well
someFunction(1); // calls someFunction(int)
someFunction(1.0); // calls someFunction(double)
someFunction(1, 2); // calls someFunction(int, int)

In each case, the type of the arguments matches the full name of the three
functions.

function signature) of the function. The following two functions have the same

int someFunction(int n); // full name of the function
// is someFunction(int)

double someFunction(int n); // same name

Thus an int
double. The following is acceptable:

int someFunction(int n);
double d = someFunction(10); // promote returned value

The return type is not part of the extended name (which is also known as the

name — so they can’t be part of the same program:

You’re allowed to mix variable types as long as the source variable type is
more restrictive than the target type. can be promoted to a

The int returned by someFunction() is promoted into a double. Thus the
following would be confusing:

int someFunction(int n);
double someFunction(int n);
double d = someFunction(10);// promote returned int?

// or use returned double as is

Here C++ does not know whether to use the value returned from the double
version of someFunction() or promote the value returned from int version.

Defining Function Prototypes
The programmer may provide the remainder of a C++ source file, or module,
the extended name (the name and functions) during the definition of the
function.

90 Part II: Becoming a Functional C++ Programmer

The target functions sumSequence() and square() — appearing earlier in
this chapter — are both defined in the code that appears before the actual
call. This doesn’t have to be the case: A function may be defined anywhere
in the module. (A module is another name for a C++ source file.)

However, something has to tell the calling function the full name of the func-
tion to be called. Consider the following code snippet:

int main(int nNumberofArgs, char* pszArgs[])
{

someFunc(1, 2);
}
int someFunc(double arg1, int arg2)
{

// ...do something
}

main() doesn’t know the full name of the function someFunc() at the time of
the call. It may surmise from the arguments that the name is someFunc(int,
int) and that its return type is void — but as you can see, this is incorrect.

I know, I know — C++ could be less lazy and look ahead to determine the full
name of someFunc()s on its own, but it doesn’t. It’s like my crummy car; it
gets me there, and I’ve learned to live with it.

What is needed is some way to inform main() of the full name of someFunc()
before it is used. This is handled by what we call a function prototype.

A prototype declaration appears the same as a function with no body. In use,
a prototype declaration looks like this:

int someFunc(double, int);
int main(int nNumberofArgs, char* pszArgs[])
{

someFunc(1, 2);
}
int someFunc(double arg1, int arg2)
{

// ...do something
}

The prototype declaration tells the world (at least that part of the
world after the declaration) that the extended name for someFunc() is
someFunction(double, int). The call in main() now knows to cast
the 1 to a double before making the call. In addition, main() knows that
the value returned by someFunc() is an int.

Chapter 6: Creating Functions 91

Variable Storage Types
Function variables are stored in three different places. Variables declared
within a function are said to be local. In the following example, the variable
localVariable is local to the function fn():

int globalVariable;
void fn()
{

int localVariable;
static int staticVariable;

}

The variable localVariable doesn’t exist until execution passes through
its declaration within the function fn(). localVariable ceases to exist
when the function returns. Upon return, whatever value that is stored in
localVariable is lost. In addition, only fn() has access to localVariable —
other functions cannot reach into the function to access it.

By comparison, the variable globalVariable is created when the program
begins execution — and exists as long as the program is running. All func-
tions have access to globalVariable all the time.

The static variable staticVariable is a sort of mix between a local and a
global variable. The variable staticVariable is created when execution
first reaches the declaration — at roughly when the function fn() is called.
The variable is not destroyed when program execution returns from the func-
tion. If fn() assigns a value to staticVariable once, it’ll still be there the
next time fn() is called. The declaration is ignored every subsequent time
execution passes through.

In case anyone asks, there is a fourth type, auto, but today it has the same
meaning as local, so you rarely (if ever) see that declaration type anymore.
So whoever asked you about it is probably just being a show off (or showing
his age).

Including Include Files
It’s common to place function prototypes in a separate file (called an include
file) that the programmer can then include in her C++ source files. Doing so
sets the stage for a C++ preprocessor program (which runs before the actual
compiler takes over) to insert the contents of a file such as filename, at the
point of a statement such as #include “filename”.

92 Part II: Becoming a Functional C++ Programmer

A definition for a typical math include file looks like this:

// math include file:
// provide prototypes for functions that might be useful
// in more than one program

// abs - return the absolute value of the argument
double abs(double d);

// square - return the square of the argument
double square(double d);

A program uses the math include file like this:

// MyProgram -
#include “math”

using namespace std;
// my code continues here

The #include directive says, in effect, Replace this directive with the contents
of the math file.

The #include directive doesn’t have the format of a C++ statement because
it’s interpreted by a separate interpreter that executes before the C++ com-
piler starts doing its thing. In particular, the # must be in column one and an
end-of-line terminates the include statement. The actual file name must be
enclosed in either quotes or brackets. Brackets are used for C++ library func-
tions. Use the quotes for any includes that you create.

The C++ environment provides include files such as cstdio and iostream. In
fact, it’s iostream that contains the prototype for the setf() function used
in Chapter 4 to set output to hex mode.

For years, programmers followed the custom of using the extension .h to
designate include files. In more recent years, the C++ ISO standard removed
the .h extension from standard include files. (For example, the include file
cstdio was previously known as stdio.h.) Many programmers still stub-
bornly cling to the “.h gold standard” for their own programs. (What’s in a
name? Evidence that even high-tech folks have traditions.)

Chapter 7

Storing Sequences in Arrays
In This Chapter
� Considering the need for something like an array

� Introducing the array data type

� Using an array

� Using the most common type of array — the character string

An array is a sequence of variables that shares the same name and that
is referenced using an index. Arrays are useful little critters that allow

you to store a large number of values of the same type and that are related in
some way — for example, the batting averages of all the players on the same
team might be a good candidate for storage within an array. Arrays can be
multidimensional, too, allowing you, for example, to store an array of batting
averages within an array of months, which allows you to work with the bat-
ting averages of the team as they occur by month. If you think about it long
enough, you get a headache.

In this chapter, you find out how to initialize and use arrays for fun and profit.
You also find out about an especially useful form of array, a string, which in
C++ is really just an array of type char.

Considering the Need for Arrays
Consider the following problem. You need a program that can read a sequence
of numbers from the keyboard. You guessed it — the program stops reading
in numbers as soon as you enter a negative number. Unlike similar programs
in Chapters 5 and 6, this program is to output all the numbers entered before
displaying the average.

94 Part II: Becoming a Functional C++ Programmer

You could try to store numbers in a set of independent variables, as in

cin >> value1;
if (value1 >= 0)
{

cin >> value2;
if (value2 >= 0)
{

...

You can see that this approach can’t handle sequences involving more than
just a few numbers. Besides, it’s ugly. What we need is some type of structure
that has a name like a variable but that can store more than one value. May I
present to you, Ms. A. Ray.

An array solves the problem of sequences nicely. For example, the following
snippet declares an array valueArray that has storage for up to 128 int
values. It then populates the array with numbers entered from the keyboard.

int value;

// declare an array capable of holding up to 128 ints
int valueArray[128];

// define an index used to access subsequent members of
// of the array; don’t exceed the 128 int limit
for (int i = 0; i < 128; i++)
{

cin >> value;

// exit the loop when the user enters a negative
// number
if (value < 0)
{

break;
}
valueArray[i] = value;

}

The second line of this snippet declares an array valueArray. Array declara-
tions begin with the type of the array members: in this case, int. This is fol-
lowed by the name of the array. The last element of an array declaration is an
open and closed bracket containing the maximum number of elements that the
array can hold. In this code snippet, valueArray can store up to 128 integers.

This snippet reads a number from the keyboard and stores it into each sub-
sequent member of the array valueArray. You access an individual element
of an array by providing the name of the array followed by brackets contain-
ing the index. The first integer in the array is valueArray[0], the second is
valueArray[1], and so on.

Chapter 7: Storing Sequences in Arrays 95
In use, valueArray[i] represents the ith element in the array. The index
variable i must be a counting variable — that is, i must be a char, an int,
or a long. If valueArray is an array of ints, valueArray[i] is an int.

Using an array
The following program inputs a sequence of integer values from the keyboard
until the user enters a negative number. The program then displays the num-
bers input and reports their sum.

// ArrayDemo - demonstrate the use of arrays
// by reading a sequence of integers
// and then displaying them in order
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// prototype declarations
int sumArray(int integerArray[], int sizeOfloatArray);
void displayArray(int integerArray[], int sizeOfloatArray);

int main(int nNumberofArgs, char* pszArgs[])
{

// input the loop count
int nAccumulator = 0;
cout << “This program sums values entered “

<< “by the user\n”;
cout << “Terminate the loop by entering “

<< “a negative number\n”;
cout << endl;

// store numbers into an array
int inputValues[128];

int numberOfValues;
for(numberOfValues = 0;

numberOfValues < 128;
numberOfValues++)

{
// fetch another number
int integerValue;
cout << “Enter next number: “;
cin >> integerValue;

// if it’s negative...
if (integerValue < 0)

96 Part II: Becoming a Functional C++ Programmer

{
// ...then exit
break;

}

// ... otherwise store the number
// into the storage array
inputValues[numberOfValues] = integerValue;

}

// now output the values and the sum of the values
displayArray(inputValues, numberOfValues);
cout << “The sum is “

<< sumArray(inputValues, numberOfValues)
<< endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

// displayArray - display the members of an
// array of length sizeOfloatArray
void displayArray(int integerArray[], int sizeOfArray)
{

cout << “The value of the array is:” << endl;
for (int i = 0; i < sizeOfArray; i++)
{

cout.width(3);
cout << i << “: “ << integerArray[i] << endl;

}
cout << endl;

}

// sumArray - return the sum of the members of an
// integer array
int sumArray(int integerArray[], int sizeOfArray)
{

int accumulator = 0;
for (int i = 0; i < sizeOfArray; i++)
{

accumulator += integerArray[i];
}
return accumulator;

}

The program ArrayDemo begins with a prototype declaration of the functions
sumArray() and displayArray() that it will need later. The main body of
the program contains an input loop (boring). This time, however, the input
values are stored off in the array inputValues.

Chapter 7: Storing Sequences in Arrays 97
If the input value is negative, control exits the loop by executing the break. If
not, integerValue is copied into the array. The int variable numberOfValues
is used as an index into the array. numberOfValues was initialized to 0 up
at the beginning of the for loop. The index is incremented on each iteration
of the loop. The test in the for loop keeps the program from storing more
than the 128 integers allocated by the program. (The program goes immedi-
ately to the output portion after 128 entries whether or not the user enters a
negative number.)

The array inputValues is declared as 128 integers long. If you’re thinking
that this is enough, don’t count on it. Writing more data than an array causes
your program to perform erratically and often to crash. No matter how large
you make the array, always put a check to make sure that you do not exceed
the limits of the array.

The main function ends by calling displayArray() to print the contents of
the array and the sum.

The Dev-C++ environment can help keep you and your functions straight.
Figure 7-1 shows the contents of the Classes tab. The name and prototype
of each function appear there. Double-clicking a function name takes you
straight to the function in the .CPP source file.

Figure 7-1:

The Classes

tab displays

information

about the

functions

that make

up the

program.

The displayArray() function contains the typical for loop used to traverse
an array. Each entry in the array is added to the variable accumulator. The
sizeOfArray passed to the function indicates the number of values contained
in integerArray.

Notice, yet again, that the index is initialized to 0 and not to 1. In addition,
notice how the for loop terminates before i is equal to sizeOfArray. None
of the elements after the sizeOfArray element contains valid data. The output
appears as follows:

98 Part II: Becoming a Functional C++ Programmer

This program sums values entered by the user
Terminate the loop by entering a negative number

Enter next number: 1
Enter next number: 2
Enter next number: 3
Enter next number: -1
The value of the array is:
0: 1
1: 2
2: 3

The sum is 6
Press any key to continue . . .

iterate means to tra-

the sumArray()

Just to keep nonprogrammers guessing, the term
verse through a set of objects such as an array. Programmers say that

function iterates through the array. In a similar fashion,
I “get irate” when my dog iterates from one piece of furniture to another.

Initializing an array
A local variable does not start life with a valid value, not even the value 0.
Said another way, a local variable contains garbage until you actually store
something in it. Locally declared arrays are the same — each element con-
tains garbage until you actually assign something to it. You should initialize
local variables when you declare them. This rule is even truer for arrays. It
is far too easy to access uninitialized array elements thinking that they are
valid values.

Fortunately, a small array may be initialized at the time it is declared. The fol-
lowing code snippet demonstrates how this is done:

float floatArray[5] = {0.0, 1.0, 2.0, 3.0, 4.0};

This initializes floatArray[0] to 0, floatArray[1] to 1, floatArray[2]
to 2, and so on.

The number of initialization constants can determine the size of the array.
For example, you could have determined that floatArray has five elements
just by counting the values within the braces. C++ can count as well (here’s
at least one thing C++ can do for itself).

The following declaration is identical to the preceding one.

float floatArray[] = {0.0, 1.0, 2.0, 3.0, 4.0};

Chapter 7: Storing Sequences in Arrays 99
You may initialize all the elements in an array to a common value by listing
only that value. For example, the following initializes all 25 locations in
floatArray to 1.0.

float floatArray[25] = {1.0};

Accessing too far into an array
Mathematicians start counting arrays with 1. Most program languages start
with an offset of 1 as well. C++ arrays begin counting at 0. The first member of
a C++ array is valueArray[0]. That makes the last element of a 128-integer
array integerArray[127] and not integerArray[128].

Unfortunately for the programmer, C++ does not check to see whether the
index you are using is within the range of the array. C++ is perfectly happy
giving you access to integerArray[200]. Our yard is only 128 integers long —
that’s 72 integers into someone else’s yard. No telling who lives there and
what he’s storing at that location. Reading from integerArray[200] will
return some unknown and unpredictable value. Writing to that location gen-
erates unpredictable results. It may do nothing — the house may be aban-
doned and the yard unused. On the other hand, it might overwrite some data,
thereby confusing the neighbor and making the program act in a seemingly
random fashion. Or it might crash the program.

The most common wrong way to access an array is to read or write loca-
tion integerArray[128]. This is one integer beyond the end of the array.
Although it’s only one element beyond the end of the array, reading or writ-
ing this location is just as dangerous as using any other incorrect address.

Using arrays
On the surface, the ArrayDemo program doesn’t do anything more than our
earlier, non-array-based programs did. True, this version can replay its input
by displaying the set of input numbers before calculating their sum, but this
feature hardly seems earth shattering.

Yet, the ability to redisplay the input values hints at a significant advantage
to using arrays. Arrays allow the program to process a series of numbers
multiple times. The main program was able to pass the array of input values
to displayArray() for display and then repass the same numbers to
sumArray() for addition.

100 Part II: Becoming a Functional C++ Programmer

Defining and using arrays of arrays
Arrays are adept at storing sequences of numbers. Some applications require
sequences of sequences. A classic example of this matrix configuration is the
spreadsheet. Laid out like a chessboard, each element in the spreadsheet has
both an x and a y offset.

C++ implements the matrix as follows:

int intMatrix[10][5];

This matrix is 10 elements in 1 dimension, and 5 in another, for a total of 50
elements. In other words, intMatrix is a 10-element array, each element of
which is a 5-int array. As you might expect, one corner of the matrix is in
intMatrix[0][0], while the other corner is intMatrix[9][4].

Whether you consider intMatrix to be 10 elements long in the x dimension
and in the y dimension is a matter of taste. A matrix can be initialized in the
same way that an array is

int intMatrix[2][3] = {{1, 2, 3}, {4, 5, 6}};

This line initializes the 3-element array intMatrix[0] to 1, 2, and 3 and the
3-element array intMatrix[1] to 4, 5, and 6, respectively.

Using Arrays of Characters
The elements of an array are of any type. Arrays of floats, doubles, and longs
are all possible; however, arrays of characters have particular significance.

Creating an array of characters
Human words and sentences can be expressed as an array of characters. An
array of characters containing my first name would appear as

char sMyName[] = {‘S’, ‘t’, ‘e’, ‘p’, ‘h’, ‘e’, ‘n’};

The following small program displays my name:

// CharDisplay - output a character array to
// standard output, the MS-DOS window

Chapter 7: Storing Sequences in Arrays 101

#include <stdio.h>
#include <iostream.h>

// prototype declarations
void displayCharArray(char stringArray[],

int sizeOfloatArray);

int main(int nArg, char* pszArgs[])
{

char charMyName[] = {‘S’, ‘t’, ‘e’, ‘p’, ‘h’, ‘e’, ‘n’};
displayCharArray(charMyName, 7);
cout << “\n”;
return 0;

}

// displayCharArray - display an array of characters
// by outputing one character at
// a time
void displayCharArray(char stringArray[],

int sizeOfloatArray)
{

for(int i = 0; i< sizeOfloatArray; i++)
{

cout << stringArray[i];
}

}

The program declares a fixed array of characters charMyName containing —
you guessed it — my name (what better name?). This array is passed to the
function displayCharArray() along with its length. The displayCharArray()
function is identical to the displayArray() function in the earlier example
program except that this version displays chars rather than ints.

This program works fine; however, it is inconvenient to pass the length of the
array around with the array itself. If we could come up with a rule for deter-
mining the end of the array, we wouldn’t need to pass its length — you would
know that the array was complete when you encountered the special rule that
told you so.

Creating a string of characters
In many cases, all values for each element are possible. However, C++
reserves the special “character” 0 as the non-character. We can use ‘\0’ to
mark the end of a character array. (The numeric value of ‘\0’ is zero; how-
ever, the type of ‘\0’ is char.)

102 Part II: Becoming a Functional C++ Programmer

The character \y is the character whose numeric value is y. The character \0
is the character with a value of 0, otherwise known as the null character.
Using that rule, the previous small program becomes

// DisplayString - output a character array to
// standard output, the MS-DOS window
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <string>
using namespace std;

// prototype declarations
void displayString(char stringArray[]);

int main(int nNumberofArgs, char* pszArgs[])
{

char charMyName[] =
{‘S’, ‘t’, ‘e’, ‘p’, ‘h’, ‘e’, ‘n’, 0};

displayString(charMyName);

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

// displayString - display a character string
// one character at a time
void displayString(char stringArray[])
{

for(int i = 0; stringArray[i] != ‘\0’; i++)
{

cout << stringArray[i];
}

}

The declaration of charMyName declares the character array with the extra
null character \0 on the end. The displayString program iterates through
the character array until a null character is encountered.

The function displayString() is simpler to use than its displayCharArray()
predecessor because it is no longer necessary to pass along the length of the
character array. This secret handshake of terminating a character array with
a null is so convenient that it is used throughout C++ language. C++ even gives
such an array a special name.

A string of characters is a null terminated character array. Confusingly enough,
this is often shortened to simply string, even though C++ defines the separate
type string.

Chapter 7: Storing Sequences in Arrays 103
The choice of ‘\0’ as the terminating character was not random. Remember
that zero is the only numeric value that converts to false; all other values
translate to true. This means that the for loop could (and usually is) writ-
ten as:

for(int i = 0; stringArray[i]; i++)

This whole business of null terminated character strings is so ingrained into
the C++ language psyche that C++ uses a string of characters surrounded by
double quotes to be an array of characters automatically terminated with a
‘\0’ character. The following are identical declarations:

char szMyName[] = “Stephen”;
char szAlsoMyName[] =

{‘S’, ‘t’, ‘e’, ‘p’, ‘h’, ‘e’, ‘n’, ‘\0’};

The naming convention used here is exactly that, a convention. C++ does not
care. The prefix sz stands for zeroterminated string.

The string Stephen is eight characters long and not seven — the null charac-
ter after the n is assumed. The string “” is one character long consisting of
just the null character.

Manipulating Strings with Character
The C++ programmer is often required to manipulate strings. C++ provides a
number of standard string-manipulation functions to make the job easier. A
few of these functions are listed in Table 7-1.

Table 7-1 String-Handling Functions

Name Operation

int strlen(string) Returns the number of characters
in a string.

void strcpy(target, source, n) Copies the source string into a
target array.

void strcat(target, source, n) Concatenates the source string
onto the end of the target string.

void strncpy(target, source, n) Copies a string up to n characters
from the source string into a target
array.

(continued)

104 Part II: Becoming a Functional C++ Programmer

Table 7-1 (continued)

Name Operation

void strncat(target, source, n) Concatenates the source string
onto the end of the target string or
‘n’ characters, whichever comes
first.

int strnstr(string, pattern, n) Finds the first occurrence of one
pattern string in another.

int strncmp(source1, source2, n) Compares the first n characters in
two strings. Returns a zero if the
two strings match exactly.

int strnicmp(source1, source2) Compares up to n characters in
two strings without regard to
case.

You need to add the statement #include <strings.h> to the beginning of
any program that uses a str... function.

The current ANSI C++ standard suggests that you avoid the str...() func-
tions. ANSI C++ says that these functions are deprecated, meaning that ANSI
will leave them alone for now, but don’t be surprised if they go away some
day. That’s why strings.h uses the older standard of ending all include files
with a “.h”. The ANSI standard suggests that you use the string type as
defined in the next section. However, you will see a large number of programs
that continue to use these functions.

The following Concatenate program inputs two strings from the keyboard
and concatenates them into a single string.

// Concatenate - concatenate two strings
// with a “ - “ in the middle
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// the following include file is deprecated;
// however, it is required for the str functions
#include <strings.h>

int main(int nNumberofArgs, char* pszArgs[])
{

// read first string...
char szString1[256];
cout << “Enter string #1:”;
cin >> szString1;

Chapter 7: Storing Sequences in Arrays 105

// safer alternative
// cin.getline(szString1, 128);

// ...now the second string...
char szString2[128];
cout << “Enter string #2:”;
cin >> szString2;
// safer alternative
// cin.getline(szString1, 128);

// accumulate both strings into a single buffer
char szString[260];

// copy the first string into the buffer...
strncpy(szString, szString1, 128);

// ...concatenate a “ - “ onto the first...
strncat(szString, “ - “, 4);

// ...now add the second string...
strncat(szString, szString2, 128);

// ...and display the result
cout << “\n” << szString << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

The Concatenate program reads two character strings and appends them
together with a “ - “ in the middle.

The arguments to the str...() functions appear backward to any reason-
able individual (you might consider this an acid test for “reasonable”). For
example, the function strncat(target, source, count) tacks the second
string source onto the end of the first argument target.

An example output from the program appears as follows:

Enter string #1:Chester
Enter string #2:Dog

Chester - Dog
Press any key to continue . . .

The program begins by reading a string from the keyboard. cin >>
szString1 stops when any type of whitespace is encountered. Characters
up to the first whitespace are read, the whitespace character is tossed, and

106 Part II: Becoming a Functional C++ Programmer

the remaining characters are left in the input hopper for the next cin>>
statement. Thus, if I were to enter “the Dog”, szString2 would be filled
with “the”, and the word “Dog” would be left in the input buffer.

The cin >> extractor knows nothing about the length of the string. cin
is perfectly willing to read thousands of characters and stuff them into
szString1, even though it is declared 256 characters long. This causes a
dangerous overflow condition that hackers can (and will) exploit to put a
virus in your program.

C++ provides work-arounds for many of the string overflow problems. For
example, the function getline() inputs a line of text; however, this function
accepts the length of the string as one of its arguments:

cin.getline(string, lengthOfTheString);

(Ignore the strange looking cin. format for now.)

The strncpy() and strncat() functions accept the length of the target
buffer as one of their arguments. The call strncpy(szString, szString1,
128) says “copy the characters in szString1 into szString until you copy
a null character or until you’ve copied 128 characters, whichever comes
first.” The call specifically does not mean copy 128 characters every time.

There are both “counting” and “noncounting” versions of most of the
str...() functions. The noncounting versions don’t require the maximum
number of characters to process as an argument. You can use these when
you don’t know the buffer size, but be aware that they are perfectly happy
to write beyond the end of the target string.

String-ing Along Variables
ANSI C++ includes a type string designed to make it easier to manipulate
strings of text.

I use the term string to refer to an array of characters terminated by a null
and string type to refer to the type string. The string type includes opera-
tions for copying, concatenating, capitalizing, knotting, and simple magic
tricks. string avoids the overrun problems inherent with null terminated
strings. The functions that manipulate string objects are defined in the
include file <string>.

The string type based StringConcatenate program appears as follows:

Chapter 7: Storing Sequences in Arrays 107

// StringConcatenate - concatenate two string type
// variables with a “ - “ in the middle
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <string>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{

// read first string...
string string1;
cout << “Enter string #1:”;
cin >> string1;

// ...now the second string...
string string2;
cout << “Enter string #2:”;
cin >> string2;

// accumulate both strings into a single buffer
string buffer;
string divider = “ - “;
buffer = string1 + divider + string2;

// ...and display the result
cout << “\n” << buffer << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

This concatenate function defines two variables, string1 and string2
(clever, no?). A string type variable is not defined of any specified length —
it can grow and shrink to fit the number of characters it contains (up to avail-
able memory, of course, or the cows come home, whichever is first). Not only
do you not have to guess how big to make a target character array, but some
nefarious user can’t crash your program by inputting too many characters.
The StringConcatenate program manipulates the string type variables as it
would any other.

Notice that some operations have to be understood in a slightly different way
from their arithmetic equivalent. For example, to add two string type vari-
ables together means to concatenate them. In addition, notice how C++ can
convert a null terminated character string into a string type variable with-
out being told to.

108 Part II: Becoming a Functional C++ Programmer

The string type is not intrinsic to C++ like int or float, meaning that its
operations are not built into the syntax of the language. Operations on
string type variables are defined in the string include file. The string
class is discussed further in Chapter 27. I mention string here to demon-
strate that it is often easier to use than manipulating null terminated charac-
ter arrays yourself.

Chapter 8

Taking a First Look at C++ Pointers
In This Chapter
� Addressing variables in memory

� Declaring and using pointer variables

� Recognizing the inherent dangers of pointers

� Passing pointers to functions

� Allocating objects off the heap (whatever that is)

So far, the C++ language has been fairly conventional compared with other
programming languages. Sure, some computer languages lack (il-)logical

operators (see Chapter 4 for more) and C++ has its own unique symbols, but
there’s nothing new in the way of concepts. C++ really separates itself from the
crowd in definition and use of pointer variables. A pointer is a variable that
“points at” other variables. I realize that’s a circular argument, but let me put
it this way: A pointer variable contains the address of a variable in memory.

This chapter introduces the pointer variable type. It begins with some con-
cept definitions, flows through pointer syntax, and then introduces some of
the reasons for the pointer mania that grips the C++ programming world.

Variable Size
My weight goes up and down all the time, but here I’m really referring to the
size of a variable, not my own variable size. Memory is measured in bytes or
bits. The following program gives you the size of the different variable types:

// VariableSize - output the size of each type of
// variable
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])

110 Part II: Becoming a Functional C++ Programmer

{
bool b;
char c;
int n;
long l;
float f;
double d;

cout << “sizeof a bool = “ << sizeof b << endl;
cout << “sizeof a char = “ << sizeof c << endl;
cout << “sizeof an int = “ << sizeof n << endl;
cout << “sizeof a long = “ << sizeof l << endl;
cout << “sizeof a float = “ << sizeof f << endl;
cout << “sizeof a double= “ << sizeof d << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

sizeof is actually a C++ construct that returns the size of its argument in
bytes. The variable size program generates the following output:

Don’t be concerned if the compiler that you’re using generates different results.
For example, you may find that an int is smaller than a long. C++ doesn’t say
exactly how big a variable type must be; it just says that a long is the same
size as or larger than an int and that a double is the same size as or larger
than a float. The sizes output by the VariableSize program are typical for a
32-bit processor such as the Pentium class processors.

sizeof a bool = 1
sizeof a char = 1
sizeof an int = 4
sizeof a long = 4
sizeof a float = 4
sizeof a double= 8
Press any key to continue . . .

What’s in an Address?
Like the saying goes: “Everyone has to be somewhere.” Every C++ variable is
stored somewhere in the computer’s memory. Memory is broken into individ-
ual bytes with each byte carrying its own address numbered 0, 1, 2, and so on.

A variable intReader might be at address 0x100, whereas floatReader
might be over at location 0x180. (By convention, memory addresses are
expressed in hexadecimal.) Of course, intReader and floatReader might

Chapter 8: Taking a First Look at C++ Pointers 111
be somewhere else in memory entirely — only the computer knows for sure
and only at the time that the program is executed.

This is somewhat analogous to a hotel. When you make your reservation, you
may be assigned room 0x100. (I know that suite numbers are normally not
expressed in hexadecimal, but bear with me.) Your buddy may be assigned
80 doors down in room 0x180. Each variable is assigned an address when it
is created (more on that later in this chapter when we talk about scope).

Address Operators
The two pointer-related operators are shown in Table 8-1. The & operator
says “tell me your hotel address,” and * says “his address is.”

Table 8-1 Pointer Operators

Operator Meaning

& (unary) The address of

* (unary) (In an expression) the thing pointed at by

* (unary) (In a declaration) pointer to

The following Layout program demonstrates how the & operator displays the
layout of memory variables in memory:

// Layout - this program tries to give the
// reader an idea of the layout of
// local memory in her compiler
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{

int end;
int n;
long l;
float f;
double d;

// set output to hex mode
cout.setf(ios::hex);
cout.unsetf(ios::dec);

112 Part II: Becoming a Functional C++ Programmer

// output the address of each variable
// in order to get an idea of how variables are
// laid out in memory
cout << “--- = 0x” << &end << “\n”;
cout << “&n = 0x” << &n << “\n”;
cout << “&l = 0x” << &l << “\n”;
cout << “&f = 0x” << &f << “\n”;
cout << “&d = 0x” << &d << “\n”;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

The program declares a set of variables. It then applies the & operator to
each one to find out where it lies in memory. The results of one execution of
this program with Dev-C++ appear as follows:

Your results may vary. The absolute address of program variables depends
on a lot of factors. In general, it may even vary from one execution of the pro-
gram to the next.

--- = 0x0x22ff6c
&n = 0x0x22ff68
&l = 0x0x22ff64
&f = 0x0x22ff60
&d = 0x0x22ff58
Press any key to continue . . .

Notice how the variable n is exactly 4 bytes from the first variable declared
(m2). The variable l appears 4 bytes down from that. The double variable d
is a full 8 bytes from its neighboring variable f. Each variable has been allo-
cated just the space needed for its type.

There is no requirement that the C++ compiler pack variables in memory
with no spaces between them. Dev-C++ could have laid out the variables in
memory in any other reasonable fashion.

Using Pointer Variables
A pointer variable is a variable that contains an address, usually the address
of another variable. Returning to my hotel analogy for a moment, I might tell
my son that I will be in room 0x100 on my trip. My son is a pointer variable of
sorts. Anyone can ask him at any time, “Where’s your father staying?” and
he’ll spill his guts without hesitation.

Chapter 8: Taking a First Look at C++ Pointers 113
The following pseudo-C++ demonstrates how the two address operators
shown in Table 8-1 are used:

mySon = &DadsRoom; // tell mySon the address of Dad’s Room
room = *mySon; // “Dad’s room number is”

The following C++ code snippet shows these operators used correctly:

void fn()
{

int intVar;
int* pintVar;

pintVar = &intVar; // pintVar now points to intVar
*pintVar = 10; // stores 10 into int location

// pointed at by pintVar
}

The function fn() begins with the declaration of intVar. The next statement
declares the variable pintVar to be a variable of type pointer to an int. (By
the way, pintVar is pronounced pee-int-Var, not pint-Var.)

Pointer variables are declared like normal variables except for the addition of
the unary * character. This * character can appear anywhere between the
base type name — in this case int — and the variable name; however, it is
becoming increasingly common to add the * to the end of the type.

The * character is called the asterisk character (that’s logical enough), but
because asterisk is hard to say, many programmers have come to call it the
splat character. Thus, they would say splat pintVar.

Many programmers adopt a naming convention in which the first character
of the variable name indicates the type of the variable, such as n for int, d
for double, and so on. A further aspect of this naming convention is to place
a p at the beginning of a pointer variable name.

In an expression, the unary operator & means the address of. Thus, we would
read the first assignment as store the address of intVar in pintVar.

To make this more concrete, assume that the memory for function fn()
starts at location 0x100. In addition, assume that intVar is at address 0x102
and that pintVar is at 0x106. The layout here is simpler than the actual
results from the Layout program; however, the concepts are identical.

The first assignment stores the value of & intVar (0x102) in the pointer vari-
able pintVar. The second assignment in the small program snippet says
“store 10 in the location pointed at by pintVar.” The value 10 is stored in the
address contained in pintVar, which is 0x102 (the address of intVar).

114 Part II: Becoming a Functional C++ Programmer

Comparing pointers and houses
A pointer is much like a house address. Your house has a unique address.
Each byte in memory has an address that is unique. A house address is made
up of both numbers and letters. For example, my address is 123 Main Street.

You can store a couch in the house at 123 Main Street — you can store a
number in the byte located at 0x123456. Alternatively, you can take a piece of
paper and write an address — I don’t know, say, 123 Main Street. You can now
store a couch at the house with the address written on the piece of paper. In
fact, this is the way delivery people work — their job is to deliver a couch to
the address written down on the shipping orders whether it’s 123 Main Street
or not. (I’m not maligning delivery people — they have brains — it’s just that
this is more or less the way things work.)

In C++, the following code snippet finds the address of myHouse and stores a
couch at that houseAddress (loosely speaking):

House myHouse;
House* houseAddress;
houseAddress = &myHouse;
*houseAddress = couch;

In humanspeak, you would say myHouse is a House. houseAddress is the
address of a House. Assign the address of myHouse to the House pointer,
houseAddress. Now store a couch at the house located at the address stored
in houseAddress.

Having said all that, take a look at the int and int* version of the earlier
example code snippet:

int myInt;
int* intAddress;
intAddress = &myInt;
*intAddress = 10;

That is, myInt is an int. intAddress is a pointer to an int. Assign the
address of myInt to the pointer intAddress. Finally, assign 10 to the int
that intAddress points to.

Using different types of pointers
Every expression has a type as well as a value. The type of the expression
intVar is pointer to an integer, written as int*. Comparing this with the dec-
laration of pintVar, you see that the types match exactly:

int* pintVar = &intVar; // both sides of the assignment are
// of type int*

Chapter 8: Taking a First Look at C++ Pointers 115
Similarly, because pintVar is of type int*, the type of *pintVar is int:

*pintVar = 10; // both sides of the assignment are
// of type int

The type of the thing pointed to by pintVar is int. This is equivalent to
saying that, if houseAddress is the address of a house, the thing pointed at
by houseAddress must be a house. Amazing, but true.

Pointers to other types of variables are expressed the same way:

double doubleVar;
double* pdoubleVar = &doubleVar;
*pdoubleVar = 10.0;

A pointer on a Pentium class machine takes 4 bytes no matter what it points
to. That is, an address on a Pentium is 4 bytes long, period.

Matching pointer types is extremely important. Consider what might happen
if the following were allowed:

int n1;
int* pintVar;
pintVar = &n1;
*pintVar = 100.0;

The second assignment attempts to store the 8-byte double value 100.0 into
the 4-byte space allocated for n1. Actually, this isn’t as bad as it looks — C++
is smart enough to demote the constant 100.0 to an int before making the
assignment.

It is possible to cast one type of variable into another:

int iVar;
double dVar = 10.0;
iVar = (int)dVar;

Similarly, it is possible to cast one pointer type into another.

int* piVar;
double dVar = 10.0;
double* pdVar;
piVar = (int*)pdVar;

Consider, however, what catastrophes can arise if this type of casting about
of pointers were to get loose. Save a variable into an area of the wrong size,
and nearby variables can be wiped out. This is demonstrated graphically in
the following LayoutError program.

116 Part II: Becoming a Functional C++ Programmer

// LayoutError - demonstrate the results of
// a messing up a pointer usage
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{

int upper = 0;
int n = 0;
int lower = 0;

// output the values of the three variables before...
cout << “the initial values are” << endl;
cout << “upper = “ << upper << endl;
cout << “n = “ << n << endl;
cout << “lower = “ << lower << endl;

// now store a double into the space
// allocated for an int
cout << “\nStoring 13.0 into the location &n” << endl;
double* pD = (double*)&n;
*pD = 13.0;

// display the results
cout << “\nThe final results are:” << endl;
cout << “upper = “ << upper << endl;
cout << “n = “ << n << endl;
cout << “lower = “ << lower << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

The first three lines in main() declare three integers in the normal fashion.
The assumption made here is that these three variables are laid out next to
each other.

The next three executable lines output the value of the three variables. Not
surprisingly, all three variables display as 0. The assignment *pD = 13.0;
stores the double value 13.0 in the integer variable n. The three output state-
ments display the values of all three variables after the assignment.

After assigning the double value 13.0 in the integer variable n, n is not modi-
fied at all; however, the nearby variable upper is filled with a garbage value.
This is not good, as the output from the program shows:

the initial values are
upper = 0

Chapter 8: Taking a First Look at C++ Pointers 117

n = 0
lower = 0

Storing 13.0 into the location &n

The final results are:
upper = 1076494336
n = 0
lower = 0
Press any key to continue . . .

The house equivalent goes something like this:

House* houseAddress = &”123 Main Street”;
Hotel* hotelAddress;
hotelAddress = (Hotel*)houseAddress;
*hotelAddress = TheRitz;

houseAddress is initialized to point to my house. The variable hotelAddress
is a pointer to a hotel. Now, the house address is cast into the address of a
hotel and saved off into the variable hotelAddress. Finally, TheRitz is
plopped down on top of my house. Because TheRitz is slightly bigger than
my house (okay, a lot bigger than my house), it isn’t surprising that TheRitz
wipes out my neighbors’ houses as well.

The type of pointer saves the programmer from stuffing an object into a
space that is too big or too small. The assignment *pintVar = 100.0; actu-
ally causes no problem — because C++ knows that pintVar points to an int,
C++ knows to demote the 100.0 to an int before making the assignment.

Passing Pointers to Functions
One of the uses of pointer variables is in passing arguments to functions. To
understand why this is important, you need to understand how arguments
are passed to a function.

Passing by value
You may have noticed that it is not normally possible to change the value of a
variable passed to a function from within the function. Consider the following
example code segment:

118 Part II: Becoming a Functional C++ Programmer

void fn(int intArg)
{

intArg = 10;
// value of intArg at this point is 10

}

void parent(void)
{

int n1 = 0;
fn(n1);
// value of n1 at this point is 0

}

Here the parent() function initializes the integer variable n1 to zero. The
value of n1 is then passed to fn(). Upon entering the function, intArg is
equal to 10, the value passed. fn() changes the value of intArg before
returning to parent(). Perhaps surprisingly, upon returning to parent(),
the value of n1 is still 0.

The reason is that C++ doesn’t pass a variable to a function. Instead, C++
passes the value contained in the variable at the time of the call. That is, the
expression is evaluated, even if it is just a variable name, and the result is
passed.

It is easy for a speaker to get lazy and say something like, “Pass the variable x
to the function fn().” This really means to pass the value of the expression x.

Passing pointer values
Like any other intrinsic type, a pointer may be passed as an argument to a
function:

void fn(int* pintArg)
{
*pintArg = 10;

}

void parent(void)
{

int n = 0;

fn(&n); // this passes the address of i
// now the value of n is 10

}

In this case, the address of n is passed to the function fn() rather than the
value of n. The significance of this difference is apparent when you consider
the assignment within fn().

Chapter 8: Taking a First Look at C++ Pointers 119
Suppose n is located at address 0x102. Rather than the value 10, the call
fn(&n) passes the value 0x102. Within fn(), the assignment *pintArg = 10
stores the value 10 into the int variable located at location 0x102, thereby
overwriting the value 0. Upon returning to parent(), the value of n is 10
because n is just another name for 0x102.

Passing by reference
C++ provides a shorthand for passing arguments by address — a shorthand
that enables you to avoid having to hassle with pointers. In the following
example, the variable n is passed by reference.

void fn(int& intArg)
{

intArg = 10;
}

void parent(void)
{

int n = 0;
fn(n);

// here the value of n is 10
}

In this case, a reference to n rather than its value is passed to fn(). The fn()
function stores the value 10 into int location referenced by intArg.

Notice that reference is not an actual type. Thus, the function’s full name is
fn(int) and not fn(int&).

Making Use of a Block of
Memory Called the Heap

The heap is an amorphous block of memory that your program can access as
necessary. This section describes why it exists and how to use it.

Visual C++.NET allows the programmer to write code in what is known as
managed mode in addition to the conventional, “unmanaged mode.” In man-
aged mode, the compiler handles the allocation and deallocation of memory.
Managed programs rely upon the .NET framework. Only Visual C++.NET cur-
rently supports managed mode. This book only covers unmanaged mode
programming.

120 Part II: Becoming a Functional C++ Programmer

Just as it is possible to pass a pointer to a function, it is possible for a func-
tion to return a pointer. A function that returns the address of a double is
declared as follows:

double* fn(void);

However, you must be very careful when returning a pointer. In order to
understand the dangers, you must know something about variable scope.
(No, I don’t mean a variable zoom rifle scope.)

Limiting scope
C++ variables have a property in addition to their value and type known as
scope. Besides being a mouthwash, scope is the range over which a variable
is defined.

Consider the following code snippet:

// the following variable is accessible to
// all functions and defined as long as the
// program is running(global scope)
int intGlobal;

// the following variable intChild is accessible
// only to the function and is defined only
// as long as C++ is executing child() or a
// function which child() calls (function scope)
void child(void)
{

int intChild;
}

// the following variable intParent has function
// scope
void parent(void)
{

int intParent = 0;
child();

int intLater = 0;
intParent = intLater;

}

int main(int nArgs, char* pArgs[])
{

parent();
}

Chapter 8: Taking a First Look at C++ Pointers 121
Execution begins with main(). The function main() immediately invokes
parent(). The first thing that the processor sees in parent() is the declara-
tion of intParent. At that point, intParent goes into scope — that is,
intParent is defined and available for the remainder of the function
parent().

The second statement in parent() is the call to child(). Once again, the
function child() declares a local variable, this time intChild. The variable
intChild is within the scope of child(). Technically, intParent is not
within the scope of child() because child() doesn’t have access to
intParent; however, the variable intParent continues to exist.

When child() exits, the variable intChild goes out of scope. Not only is
intChild no longer accessible, but it no longer even exists. (The memory
occupied by intChild is returned to the general pool to be used for other
things.)

As parent() continues executing, the variable intLater goes into scope at
the declaration. At the point that parent() returns to main(), both intParent
and intLater go out of scope. The programmer may declare a variable outside
of any function. This type of variable, known as a global variable, remains in
scope for the duration of the program.

Because intGlobal is declared globally in this example, it is available to all
three functions and remains available for the life of the program.

Examining the scope problem
The following code segment compiles without error but doesn’t work (don’t
you just hate that):

double* child(void)
{

double dLocalVariable;
return &dLocalVariable;

}

void parent(void)
{

double* pdLocal;
pdLocal = child();
*pdLocal = 1.0;

}

The problem with this function is that dLocalVariable is defined only within
the scope of the function child(). Thus, by the time the memory address

122 Part II: Becoming a Functional C++ Programmer

of dLocalVariable is returned from child(), it refers to a variable that no
longer exists. The memory that dLocalVariable formerly occupied is proba-
bly being used for something else.

This error is very common because it can creep up in a number of different
ways. Unfortunately, this error does not cause the program to instantly stop.
In fact, the program may work fine most of the time — that is, the program
continues to work as long as the memory formerly occupied by
dLocalVariable is not reused immediately. Such intermittent problems are
the most difficult ones to solve.

Providing a solution using the heap
The scope problem originated because C++ took back the locally defined
memory before the programmer was ready. What is needed is a block of
memory controlled by the programmer. She can allocate the memory and
put it back when she wants to — not because C++ thinks it’s a good idea.
Such a block of memory is called the heap.

Heap memory is allocated using the new command followed by the type of
object to allocate. For example, the following allocates a double variable off
the heap.

double* child(void)
{

double* pdLocalVariable = new double;
return pdLocalVariable;

}

Although the variable pdLocalVariable goes out of scope when the func-
tion child() returns, the memory to which pdLocalVariable refers does
not. A memory location returned by new does not go out of scope until it is
explicitly returned to the heap using a delete command:

void parent(void)
{

// child() returns the address of a block
// of heap memory
double* pdMyDouble = child();

// store a value there
*pdMyDouble = 1.1;

// ...

Chapter 8: Taking a First Look at C++ Pointers 123

// now return the memory to the heap
delete pdMyDouble;
pdMyDouble = 0;

// ...
}

Here the pointer returned by child() is used to store a double value. After
the function is finished with the memory location, it is returned to the heap.
The function parent() sets the pointer to zero after the heap memory has
been returned — this is not a requirement, but a very good idea. If the pro-
grammer mistakenly attempts to store something in * pdMyDouble after the
delete, the program will crash immediately.

A program that crashes immediately upon encountering an error is much
easier to fix than one that is intermittent in its behavior.

The whole problem of allocating and returning heap memory goes away in
Visual C++.NET–managed mode. Managed refers to the fact that C++ handles
the allocation and deallocation of memory references. This book deals only
with unmanaged mode Visual C++.NET programs.

124 Part II: Becoming a Functional C++ Programmer

Chapter 9

Taking a Second Look
at C++ Pointers

In This Chapter
� Performing arithmetic operations on character pointers

� Examining the relationship between pointers and arrays

� Applying this relationship to increase program performance

� Extending pointer operations to different pointer types

� Explaining the arguments to main() in our C++ program template

C++ allows the programmer to operate on pointer variables much as she
would on simple types of variables. (The concept of pointer variables is

introduced in Chapter 8.) How and why this is done along with its implica-
tions are the subjects of this chapter.

Defining Operations on Pointer Variables
Some of the same operators I cover in Chapter 3 can be applied to pointer
types. This section examines the implications of applying these operators to
both to pointers and to the array types (I discuss arrays in Chapter 7). Table
9-1 lists the three fundamental operations that are defined on pointers.

Table 9-1 The Three Operations Defined on Pointer Types

Operation Result Meaning

pointer pointer Calculate the address of the object
+ offset integer entries from pointer

pointer - offset pointer The opposite of addition

pointer2 offset Calculate the number of entries
- pointer1 between pointer2 and pointer1

126 Part II: Becoming a Functional C++ Programmer

In this case, offset is of type long. (Although not listed in Table 9-1, C++ also
supports operators related to addition and subtraction, such as ++ and +=.)

The real estate memory model (which I use so effectively in Chapter 8, if I do
say so myself) is useful to explain how pointer arithmetic works. Consider a
city block in which all houses are numbered sequentially. The house next to
123 Main Street has the address 124 Main Street (or 122 if you go backward,
like Hebrew and Arabic).

Now it’s pretty clear that the house four houses down from 123 Main Street
must be 127 Main Street; thus, you can say 123 Main + 4 = 127 Main.
Similarly, if I were to ask how many houses are there from 123 Main to 127
Main, the answer would be four — 127 Main - 123 Main = 4. (Just as
an aside, a house is zero houses from itself: 123 Main - 123 Main = 0.)

Extending this concept one step further, it makes no sense to add 123 Main
Street to 127 Main Street. In similar fashion, you can’t add two addresses, nor
can you multiply an address, divide an address, square an address, or take
the square root — you get the idea.

Re-examining arrays in light
of pointer variables
Now return to the wonderful array for just a moment. Once again, my neigh-
borhood comes to mind. An array is just like my city block. Each element of
the array corresponds to a house on that block. Here, however, the array ele-
ments are measured by the number of houses from the beginning of the block
(the street corner). Say that the house right on the corner is 123 Main Street,
which means that the house one house from the corner is 124 Main Street,
and so on. Using array terminology, you would say cityBlock[0] is 123 Main
Street, cityBlock[1] is 124 Main Street, and so on.

Take that same model back to the world of computer memory. Consider the
case of an array of 32 1-byte characters called charArray. If the first byte of
this array is stored at address 0x110, the array will extend over the range
0x110 through 0x12f. charArray[0] is located at address 0x110,
charArray[1] is at 0x111, charArray[2] at 0x112, and so on.

Take this model one step further to the world of pointer variables. After exe-
cuting the expression

ptr = &charArray[0];

the pointer ptr contains the address 0x110. The addition of an integer offset
to a pointer is defined such that the relationships shown in Table 9-2 are true.
Table 9-2 also demonstrates why adding an offset n to ptr calculates the
address of the nth element in charArray.

Chapter 9: Taking a Second Look at C++ Pointers 127

Table 9-2 Adding Offsets

Offset Result Is the Address of

+ 0 0x110 charArray[0]

+ 1 0x111 charArray[1]

+ 2 0x112 charArray[2]

...

+ n 0x110 + n charArray[n]

The addition of an offset to a pointer is similar to applying an index to an
array.

Thus, if

char* ptr = &charArray[0];

then

*(ptr + n) ← corresponds with → charArray[n]

Because * has higher precedence than addition, * ptr + n adds n to the
character that ptr points to. The parentheses are needed to force the addi-
tion to occur before the indirection. The expression *(ptr + n) retrieves
the character pointed at by the pointer ptr plus the offset n.

In fact, the correspondence between the two forms of expression is so strong
that C++ considers array[n] nothing more than a simplified version of *(ptr
+ n), where ptr points to the first element in array.

array[n] -- C++ interprets as → *(&array[0] + n)

In order to complete the association, C++ takes a second shortcut. If given

char charArray[20];

charArray is defined as &charArray[0];.

That is, the name of an array without a subscript present is the address of
the array itself. Thus, you can further simplify the association to

array[n] --> C++ interprets as --> *(array + n)

128 Part II: Becoming a Functional C++ Programmer

Applying operators to the
address of an array
The correspondence between indexing an array and pointer arithmetic is
useful.

For example, a displayArray() function used to display the contents of an
array of integers can be written as follows:

// displayArray - display the members of an
// array of length nSize
void displayArray(int intArray[], int nSize)
{

cout << “The value of the array is:\n”;

for(int n; n < nSize; n++)
{

cout << n << “: “ << intArray[n] << “\n”;
}
cout << “\n”;

}

This version uses the array operations with which you are familiar. A pointer
version of the same appears as follows:

// displayArray - display the members of an
// array of length nSize
void displayArray(int intArray[], int nSize)
{

cout << “The value of the array is:\n”;

int* pArray = intArray;
for(int n = 0; n < nSize; n++, pArray++)
{

cout << n << “: “ << *pArray << “\n”;
}
cout << “\n”;

}

The new displayArray() begins by creating a pointer to an integer pArray
that points at the first element of intArray.

The p in the variable name indicates that the variable is a pointer, but this is
just a convention, not a part of the C++ language.

The function then loops through each element of the array. On each loop,
displayArray() outputs the current integer (that is, the integer pointed at
by pArray) before incrementing the pointer to the next entry in intArray.
displayArray() can be tested using the following version of main():

Chapter 9: Taking a Second Look at C++ Pointers 129

int main(int nNumberofArgs, char* pszArgs[])
{

int array[] = {4, 3, 2, 1};
displayArray(array, 4);

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

The output from this program is

The value of the array is:
0: 4
1: 3
2: 2
3: 1

Press any key to continue . . .

You may think this pointer conversion is silly; however, the pointer version of
displayArray() is actually more common among C++ programmers in the
know than the array version. For some reason, C++ programmers don’t seem
to like arrays.

The use of pointers to access arrays is nowhere more common than in the
accessing of character arrays.

Expanding pointer operations to a string
A null terminated string is simply a character array whose last character is a
null. C++ uses the null character at the end to serve as a terminator. This null
terminated array serves as a quasi-variable type of its own. (See Chapter 7 for
an explanation of string arrays.) Often C++ programmers use character point-
ers to manipulate such strings. The following code examples compare this
technique to the earlier technique of indexing in the array.

Character pointers enjoy the same relationship with a character array that any
other pointer and array share. However, the fact that strings end in a terminat-
ing null makes them especially amenable to pointer-based manipulation, as
shown in the following DisplayString() program:

// DisplayString - display an array of characters both
// using a pointer and an array index
#include <cstdio>
#include <cstdlib>
#include <iostream>

130 Part II: Becoming a Functional C++ Programmer

using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{

// declare a string
char* szString = “Randy”;
cout << “The array is ‘“ << szString << “‘“ << endl;

// display szString as an array
cout << “Display the string as an array: “;
for(int i = 0; i < 5; i++)
{
cout << szString[i];

}
cout << endl;

// now using typical pointer arithmetic
cout << “Display string using a pointer: “;
char* pszString = szString;
while(*pszString)
{
cout << *pszString;
pszString++;

}
cout << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

The program first makes its way through the array szString by indexing into
the array of characters. The for loop chosen stops when the index reaches 5,
the length of the string.

The second loop displays the same string using a pointer. The program sets
the variable pszString equal to the address of the first character in the
array. It then enters a loop that will continue until the char pointed at by
pszString is equal to false — in other words, until the character is a null.

The integer value 0 is interpreted as false — all other values are true.

The program outputs the character pointed at by pszString and then incre-
ments the pointer so that it points to the next character in the string before
being returned to the top of the loop.

The dereference and increment can be (and usually are) combined into a
single expression as follows:

cout << *pszString++;

Chapter 9: Taking a Second Look at C++ Pointers 131
The output of the program appears as follows:

The array is ‘Randy’
Display the string as an array: Randy
Display string using a pointer: Randy
Press any key to continue . . .

Justifying pointer-based
string manipulation
The sometimes-cryptic nature of pointer-based manipulation of character
strings might lead the reader to wonder, “Why?” That is, what advantage
does the char* pointer version have over the easier-to-read index version?

The answer is partially (pre-)historic and partially human nature. When C,
the progenitor to C++, was invented, compilers were pretty simplistic. These
compilers could not perform the complicated optimizations that modern
compilers can. As complicated as it might appear to the human reader, a
statement such as *pszString++ could be converted into an amazingly
small number of machine level instructions even by a stupid compiler.

Older computer processors were not very fast by today’s standards. In the
old days of C, saving a few computer instructions was a big deal. This gave C
a big advantage over other languages of the day, notably Fortran, which did
not offer pointer arithmetic.

In addition to the efficiency factor, programmers like to generate clever pro-
gram statements. After C++ programmers learn how to write compact and
cryptic but efficient statements, there is no getting them back to accessing
arrays with indices.

Do not generate complex C++ expressions in order to create a more efficient
program. There is no obvious relationship between the number of C++ state-
ments and the number of machine instructions generated.

Applying operators to pointer
types other than char
It is not too hard to convince yourself that szTarget + n points to
szTarget [n] when szTarget is an array of chars. After all, a char occupies
a single byte. If szTarget is stored at 0x100, the sixth element is located at
0x105.

132 Part II: Becoming a Functional C++ Programmer

It is not so obvious that pointer addition works in exactly the same way for
an int array because an int takes 4 bytes for each char’s 1 byte (at least it
does on a 32-bit Intel processor). If the first element in intArray were
located at 0x100, the sixth element would be located at 0x114 (0x100 + (5 *
4) = 0x114) and not 0x104.

Fortunately for us, array + n points at array[n] no matter how large a
single element of array might be. C++ takes care of the element size for us —
it’s clever that way.

Once again, the dusty old house analogy works here as well. (I mean dusty
analogy, not dusty house.) The third house down from 123 Main is 126 Main,
no matter how large the building might be, even if it’s a hotel.

Contrasting a pointer with an array
There are some differences between indexing into an array and using a
pointer. For one, the array allocates space for the data, whereas the pointer
does not, as shown here:

void arrayVsPointer()
{

// allocate storage for 128 characters
char charArray[128];

// allocate space for a pointer but not for
// the thing pointed at
char* pArray;

}

Here charArray allocates room for 128 characters. pArray allocates only 4
bytes — the amount of storage required by a pointer.

The following function does not work:

void arrayVsPointer()
{

// this works fine
char charArray[128];
charArray[10] = ‘0’;
*(charArray + 10) = ‘0’;

// this does not work
char* pArray;
pArray[10] = ‘0’;
*(pArray + 10) = ‘0’;

}

Chapter 9: Taking a Second Look at C++ Pointers 133
The expressions charArray[10] and *(charArray + 10) are equivalent
and legal. The two expressions involving pArray are syntactically equivalent
but don’t make sense. Although they are both legal to C++, the uninitialized
pointer pArray contains a random value. pArray has not been initialized to
point to an array such as charArray so both pArray[10] and the equivalent
*(pArray + 10) reference garbage.

The mistake of referencing memory with an uninitialized pointer variable is gen-
erally caught by the CPU when the program executes, resulting in the dreaded
segment violation error that from time to time issues from your favorite applica-
tions under your favorite, or not-so-favorite, operating system. This problem is
not generally a problem of the processor or the operating system but of the
application.

A second difference between a pointer and the address of an array is the fact
that charArray is a constant, whereas pArray is not. Thus, the following for
loop used to initialize the array charArray does not work:

void arrayVsPointer()
{
char charArray[10];
for (int i = 0; i < 10; i++)
{

*charArray = ‘\0’; // this makes sense...
charArray++; // ...this does not

}
}

The expression charArray++ makes no more sense than 10++. The following
version is correct:

void arrayVsPointer()
{
char charArray[10];
char* pArray = charArray;
for (int i = 0; i < 10; i++)
{

*pArray = ‘\0’; // this works great
pArray++;

}
}

Declaring and Using Arrays of Pointers
If pointers can point to arrays, it seems only fitting that the reverse should be
true. Arrays of pointers are a type of array of particular interest.

Just as arrays may contain other data types, an array may contain pointers.
The following declares an array of pointers to ints:

134 Part II: Becoming a Functional C++ Programmer

int* pInts[10];

Given the preceding declaration, pnInt[0] is a pointer to an int value. Thus,
the following is true:

void fn()
{

int n1;
int* pInts[3];
pInts[0] = &n1;
*pInts[0] = 1;

}

or

void fn()
{

int n1, n2, n3;
int* pInts[3] = {&n1,&n2,&n3};
for (int i = 0; i < 3; i++)
{

*pInts[i] = 0;
}

}

or even

void fn()
{

int* pInts[3] = {(new int),
(new int),
(new int)};

for (int i = 0; i < 3; i++)
{

*pInts[i] = 0;
}

}

The latter declares three int objects off the heap.

This type of declaration isn’t used very often except in the case of an array of
pointers to character strings. The following two examples show why arrays
of character strings are useful.

Utilizing arrays of character strings
Suppose I need a function that returns the name of the month corresponding to
an integer argument passed to it. For example, if the program is passed a 1, it
returns a pointer to the string “January”; if 2, it reports “February”, and so
on. The month 0 is assumed to be invalid as are any numbers greater than 12.

Chapter 9: Taking a Second Look at C++ Pointers 135
I could write the function as follows:

// int2month() - return the name of the month
char* int2month(int nMonth)
{

char* pszReturnValue;

switch(nMonth)
{

case 1: pszReturnValue = “January”;
break;

case 2: pszReturnValue = “February”;
break;

case 3: pszReturnValue = “March”;
break;

// ...and so forth...
default: pszReturnValue = “invalid”;

}
return pszReturnValue;

}

The switch() if statements.control command is like a sequence of

A more elegant solution uses the integer value for the month as an index into
an array of pointers to the names of the months. In use, this appears as follows:

// int2month() - return the name of the month
char* int2month(int nMonth)
{

// first check for a value out of range
if (nMonth < 1 || nMonth > 12)
{

return “invalid”;
}

// nMonth is valid - return the name of the month
char* pszMonths[] = {“invalid”,

“January”,
“February”,
“March”,
“April”,
“May”,
“June”,
“July”,
“August”,
“September”,
“October”,
“November”,
“December”};

return pszMonths[nMonth];
}

136 Part II: Becoming a Functional C++ Programmer

Here int2month() first checks to make sure that nMonth is a number
between 1 and 12, inclusive (the default clause of the switch statement
handled that in the previous example). If nMonth is valid, the function uses it
as an offset into an array containing the names of the months.

This technique of referring to character strings by index is especially useful
when writing your program to work in different languages. For example, a
program may declare a ptrMonths of pointers to Julian months in different
languages. The program would initialize ptrMonth to the proper names, be
they in English, French or German (for example) at execution time. In that
way, ptrMonth[1] points to the correct name of the first Julian month, irre-
spective of the language.

Accessing the arguments to main()
The first argument to main() is an array of pointers to null terminated char-
acter strings. These strings contain the arguments to the program. The argu-
ments to a program are the strings that appear with the program name when
you launch it. These arguments are also known as parameters. For example,
suppose that I entered the following command at the MS-DOS prompt:

MyProgram file.txt /w

MS-DOS executes the program contained in the file MyProgram.exe, passing
it the arguments file.txt, and /w.

If you have never seen an MS-DOS prompt, please bear with me. There is an
exact Windows analog that will appear here in just a second.

The variable pszArgs passed to main() is an array of pointers to the argu-
ments to the program, whereas nArg is the number of arguments.

Consider the following simple program:

// PrintArgs - write the arguments to the program
// to the standard output
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{

// print a warning banner
cout << “The arguments to “ << pszArgs[0] << “are:\n”;

// now write out the remaining arguments
for (int i = 1; i < nNumberofArgs; i++)

Chapter 9: Taking a Second Look at C++ Pointers 137

{
cout << i << “:” << pszArgs[i] << “\n”;

}

// that’s it
cout << “That’s it\n”;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

As always, the function main() accepts two arguments. The first argument
is an int that I have been calling (quite descriptively, as it turns out)
nNumberofArgs. This variable is the number of arguments passed to the pro-
gram. The second argument is an array of pointers of type char[]*, which I
have been calling pszArgs. Each one of these char* elements points to an
argument passed to the program.

Accessing program arguments DOS style
If I were to execute the PrintArgs program as

PrintArgs arg1 arg2 arg3 /w

from the command line of an MS-DOS window, nArgs would be 5 (one for
each argument). The first argument is the name of the program. Thus,
pszArgs[0] points to PrintArgs. The remaining elements in pszArgs point
to the program arguments. The element pszArgs[1] points to arg1, and
pszArgs[2] to arg2, for example. Because MS-DOS does not place any signif-
icance on /w, this string is also passed as an argument to be processed by
the program.

Accessing program arguments Dev-C++ style
You can add arguments to your program when you execute it from Dev-C++ as
well. Select Parameters under the Debug menu. Type whatever you like and
then run the program by choosing Execute➪Run or pressing Ctrl+F10 as
usual. The program output appears as it would from the DOS prompt.

Accessing program arguments Windows-style
Windows passes arguments as a means of communicating with your program
as well. Try the following experiment. Build your program as you would nor-
mally. Find the executable file using Windows Explorer. For example, the
PrintArgs program should appear as X:\CPP_Programs\Chap09\PrintArgs.
exe. Now grab a file and drop it onto the filename (it doesn’t matter what file
you choose because the program won’t hurt it anyway). Bam! The PrintArgs
program starts right up, and the name of the file that you dropped on the pro-
gram appears.

138 Part II: Becoming a Functional C++ Programmer

Now try again, but drop several files at once. Select multiple file names by
clicking several files while pressing the Ctrl key or by using the Shift key to
select a group. The name of each file appears as output.

I dropped a few of the files that appear in my \Program Files\WinZip
folder onto PrintsArgs as an example:

The arguments to C:\PrintArgs.exe
1:C:\Program Files\WinZip\WZINST.HLP
2:C:\Program Files\WinZip\WZCAB.DLL
3:C:\Program Files\WinZip\WZCAB3.DLL
4:C:\Program Files\WinZip\WZ32.DLL
5:C:\Program Files\WinZip\WZQKPICK.EXE
6:C:\Program Files\WinZip\WZQKSTRT.RTF
That’s it
Press any key to continue . . .

Notice that the name of each file appears as a single argument, even though
the file name may include spaces. Also note that Windows passes the full
pathname of the file.

Using the drag-and-drop feature is an easy way to pass arguments to your
program at startup.

Chapter 10

Debugging C++
In This Chapter
� Differentiating the types of errors

� Understanding “crash messages”

� Choosing the WRITE statement debugging technique

� Mastering the debugger tool

You may have noticed that your programs often don’t work the first time.
In fact, I have seldom, if ever, written a nontrivial C++ program that didn’t

have some type of error the first time I tried to execute it.

That leaves you with two alternatives: You can give up on programming now
while you still have a chance, or you can find and fix your errors. This chap-
ter assumes you’ll use the latter approach. In this chapter, you find out how
to track down and eradicate software bugs.

Identifying Types of Errors
Two types of errors exist — those that the C++ compiler can catch on its own
and those that the compiler can’t catch. Errors that C++ can catch are known
as compiletime errors. Compile-time errors are relatively easy to fix because
the compiler generally points you to the problem. Sometimes the description
of the problem isn’t quite correct. Sometimes the description isn’t even close
(it’s easy to confuse a compiler), but after you learn the quirks of your own
C++ environment, understanding its complaints isn’t too difficult.

Errors that C++ can’t catch show up as you try to execute the program. These
are known as runtime errors. Run-time errors are harder to find than compile-
time errors because you have no hint of what’s gone wrong except for what-
ever errant output the program might generate. “Errant” being the key word
here.

You can use two different techniques for finding bugs. You can add output
statements at key points. You can get an idea of what’s gone wrong with your

140 Part II: Becoming a Functional C++ Programmer

program as these different output statements are executed. A second approach
is to use a separate program called a debugger. A debugger enables you to con-
trol your program as it executes.

I cover both of these debugging techniques in this chapter.

Choosing the WRITE Technique
for the Problem

Adding output statements to the C++ source code to find out what’s going on
within the program is known as using the WRITE statement approach. It
gained this name back in the days of early programs when programs were
written mostly in COBOL and FORTRAN. Fortran’s output is through the
WRITE command.

The following “buggy” program shows how the WRITE approach works.

The following program is supposed to read a series of numbers from the key-
board and return their average. Unfortunately, the program contains two
errors, one that makes the program crash and one that causes the program
to generate incorrect results.

The following steps route out the problem. First, enter the program as writ-
ten (or copy the program ErrorProgram1.cpp from the CD-ROM).

// ErrorProgram - this program averages a series
// of numbers, except that it contains
// at least one fatal bug
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{

cout << “This program is designed to crash!”
<< endl;

int nSum;
int nNums;

// accumulate input numbers until the
// user enters a negative number, then
// return the average
nNums = 0;
while(true)
{

// enter another number to add

Chapter 10: Debugging C++ 141

int nValue;
cout << “Enter another number:”;
cin >> nValue;
cout << endl;

// if the input number is negative...
if (nValue < 0)
{

// ...then output the average
cout << “Average is: “

<< nSum/nNums
<< endl;

break;

}

// not negative, add the value to
// the accumulator
nSum += nValue;

}

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

Build and execute the program as normal. I enter my trusty 1, 2, and 3 followed
by –1, but get quite a shock when the nasty message shown in Figure 10-1
appears instead of the expected average.

Figure 10-1 appeared using Dev-C++ 4.9.8.0. User results may differ with differ-
ent C++ compilers, but the general idea that you did something really bad
should stay the same.

Figure 10-1:

The initial

version of

Error

Program

terminates

suddenly

instead of

generating

the

expected

output.

142 Part II: Becoming a Functional C++ Programmer

Catching bug #1
Though unexpected, the error message shown in Figure 10-1 contains some
useful information. However, don’t let the Cancel button get your hopes up.
Despite the message, clicking on Cancel doesn’t bring you any closer to find-
ing the problem than does the OK button. Windows simply says that it can’t
really help you find the problem.

Fortunately, the first line of the error message is descriptive of the problem.
“Application error” means that someone tapped Windows on the back with
an important message that Windows wasn’t expecting and didn’t know what
to do with. The message is “Integer division by zero.” Apparently, someone
divided a number by zero (pretty astute, huh?). The message also spits out
the memory address where the division occurred, but this is of little use
because you have no idea where in the program that address may be.

The divide by zero error message isn’t always so straightforward. For exam-
ple, suppose that the program lost its way and began executing instructions
that aren’t part of the program? (That happens a lot more often than you
might think.) The CPU may just happen to execute a divide instruction with a
denominator of zero, thereby generating a divide by zero error message and
masking the source of the problem. (An errant program is like a train that’s
jumped the track — the program doesn’t stop executing until it hits some-
thing really big.)

A review of the program reveals only one obvious division:

cout << “Average is: “
<< nSum/nNums
<< endl;

Just because division appears only once, it doesn’t meant that this is the only
place where division occurs. The compiler may have generated a division on
its own as a result of some other C++ instruction that you wrote. In addition,
the Standard C++ Library is just full of divisions.

I feel reasonably certain that at the time of the division, nNums must have
been equal to zero. nNums is supposed to be a count of the number of values
entered. You can add a cout statement to track the value of nNums within the
while loop as follows:

while(true)
{

// output
cout << “nNums = “ << nNums << endl;

// ...the rest of program unchanged...

Chapter 10: Debugging C++ 143
This addition generates the following output:

This program is designed to crash!
nNums = 0
Enter another number:1

nNums = 0
Enter another number:2

nNums = 0
Enter another number:3

nNums = 0
Enter another number:

You can see where nNums is initialized to 0, but where is it incremented? It
isn’t, and this is the bug. Clearly nNums should have been incremented during
each loop of the input section. I edit the while loop into a for loop as follows:

for (int nNums = 0; ;nNums++)

Catching bug #2
Having fixed a bug, execute the program using the same 1, 2, 3, and –1 input
that crashed the program earlier. This time, the program doesn’t crash, but it
doesn’t work either. The output shown here includes a ridiculous value for
average:

This program generates incorrect results
Enter another number:1

Enter another number:2

Enter another number:3

Enter another number:-1

Average is: 1456814
Press any key to continue...

Apparently, either nSum or nNums (or both) isn’t being calculated properly. To
get any farther, you need to know the value of these variables. In fact, it
would help to know the value of nValue as well because nValue is used to
calculate nSum.

Now you modify the for loop as follows to learn the values of the nSum,
nNums, and nValue (this version of the program appears on the CD-ROM as
ErrorProgram2.cpp):

144 Part II: Becoming a Functional C++ Programmer

// ErrorProgram - this program averages a series
// of numbers, except that it contains
// at least one fatal bug
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{

cout << “This program generates incorrect results”
<< endl;

// accumulate input numbers until the
// user enters a negative number, then
// return the average
int nSum;

for (int nNums = 0; ;nNums++)
{

// enter another number to add
int nValue;
cout << “Enter another number:”;
cin >> nValue;
cout << endl;

// if the input number is negative...
if (nValue < 0)
{

// ...then output the average
cout << “\nAverage is: “

<< nSum/nNums
<< “\n”;

break;

}
// output critical information
cout << “nSum = “ << nSum << “\n”;
cout << “nNums= “ << nNums << “\n”;
cout << “nValue= “<< nValue << “\n”;
cout << endl;

// not negative, add the value to
// the accumulator
nSum += nValue;

}

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

Chapter 10: Debugging C++ 145
Notice the addition of the output statements to display nSum, nNums, and
nValue on each iteration through the loop.

The result of executing the program with the now standard 1, 2, 3, and –1
input is shown next. Even on the first loop, the value of nSum is unreasonable.
In fact, at this point during the first loop, the program has yet to add a new
value to nSum. You would think that the value of nSum should be 0.

This program generates incorrect results
Enter another number:1

nSum = 4370436
nNums= 0
nValue= 1

Enter another number:2

nSum = 4370437
nNums= 1
nValue= 2

Enter another number:3

nSum = 4370439
nNums= 2
nValue= 3

Enter another number:-1

Average is: 1456814
Press any key to continue . . .

On careful examination of the program, nSum is declared, but it isn’t initial-
ized to anything. The solution is to change the declaration of nSum to the
following:

int nSum = 0;

Note: Until a variable has been initialized, the value of that variable is
indeterminate.

enclosed CD-ROM):

// ErrorProgram - this program averages a series
// of numbers
#include <cstdio>
#include <cstdlib>
#include <iostream>

When you have convinced yourself that you have found the problem, “clean
up” the program as follows (this version is ErrorProgram3.cpp on the

146 Part II: Becoming a Functional C++ Programmer

using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{

// accumulate input numbers until the
// user enters a negative number, then
// return the average
int nSum = 0;

for (int nNums = 0; ;nNums++)
{

// enter another number to add
int nValue;
cout << “Enter another number:”;
cin >> nValue;
cout << endl;

// if the input number is negative...
if (nValue < 0)
{

// ...then output the average
cout << “\nAverage is: “

<< nSum/nNums
<< “\n”;

break;

}
// not negative, add the value to
// the accumulator
nSum += nValue;

}

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

Now rebuild the program and retest with the 1, 2, 3, and –1 sequence. This
time you see the expected average value of 2. After testing the program with
a number of other inputs, you convince yourself that the program is now exe-
cuting properly.

Calling for the Debugger
For small programs, the WRITE technique works reasonably well. Adding
output statements is simple enough, and the programs rebuild quickly so the
cycle time is short enough. Problems with this approach don’t really become
obvious until the programs become large and complex.

Chapter 10: Debugging C++ 147
In large programs, the programmer often generally doesn’t know where to begin
adding output statements. The constant cycle of adding write statements, exe-
cuting the program, adding write statements, and on and on becomes tedious.
Further, in order to change an output statement, the programmer must rebuild
the entire program. For a large program, this rebuild time can be significant.
(I have worked on programs that took most of the night to rebuild.)

Finally, finding pointer problems with the WRITE approach is almost impossi-
ble. A pointer written to the display in hex means nothing, and as soon as
you attempt to dereference the pointer, the program blows.

A second, more sophisticated technique is based on a separate utility known
as a debugger. This approach avoids the disadvantages of the WRITE state-
ment approach. However, this approach involves learning to use a debugger.

Defining the debugger
A debugger is actually a tool built into Dev-C++, Microsoft Visual Studio.NET,
and most other development environments (though they differ, most debug-
gers work on the same principles).

The programmer controls the debugger through commands by means of the
same interface as the editor. You can access these commands in menu items
or by using hot keys.

The debugger allows the programmer to control the execution of her pro-
gram. She can execute one step at a time in the program, she can stop the
program at any point, and she can examine the value of variables. To appreci-
ate the power of the debugger, you need to see it in action.

Finding commonalities among us
Unlike the C++ language, which is standardized across manufacturers, each
debugger has its own command set. Fortunately, most debuggers offer the
same basic commands. The commands you need are available in both the
ubiquitous Microsoft Visual C++.NET and the Dev-C++ environments. In addi-
tion, in both environments, you can access debugger commands via menu
items or function keys. Table 10-1 lists the command hot keys you use in both
environments.

148 Part II: Becoming a Functional C++ Programmer

Table 10-1 Debugger Commands for Microsoft
Visual C++.NET and Dev-C++

Command Visual C++ Dev-C++

Start executing in debugger F5 F8

Step in F11 ShiftF7

Step over (Next Step) F10 F7

Continue F5 CtlF7

View variable Menu only <Add Watch>

Set breakpoint* Crl+B or click Ctl+F5

Add watch Menu only F4

Program reset Shift+F5 Ctl+Alt+F2

*Clicking in the trough to the left of the C++ source code listing is an alternate way to set a break-
point in both environments.

Running a test program

CD-ROM as Concatenate1.cpp.

// Concatenate - concatenate two strings
// with a “ - “ in the middle
// (this version crashes)
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <string.h>

using namespace std;
void stringEmUp(char* szTarget,

char* szSource1,
char* szSource2,
int nLength);

int main(int nNumberofArgs, char* pszArgs[])
{

cout << “This program concatenates two strings\n”
<< “(This version may crash.)” << endl;

char szStrBuffer[256];

The best way to learn how to fix a program using the debugger is to go
through the steps to fix a buggy program. The following program has several
problems that need to be discovered and fixed. This version is found on the

Chapter 10: Debugging C++ 149

// create two strings of equal length...
char szString1[16];
strncpy(szString1, “This is a string”, 16);
char szString2[16];
strncpy(szString2, “THIS IS A STRING”, 16);

// ...now string them together
stringEmUp(szStrBuffer,

szString1,
szString2,
16);

// output the result
cout << “<” << szStrBuffer << “>” << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

void stringEmUp(char* szTarget,
char* szSource1,
char* szSource2,
int nLength)

{
strcpy(szTarget, szSource1);
strcat(szTarget, “ - “);
strcat(szTarget, szSource2);

}

The program compiles uneventfully. Execute the program. Rather than gener-
ate the proper output, the program may return with almost anything. The
first time I tried it, the program opened a console window and then immedi-
ately went away, without giving me any idea of what might be wrong. You’ll
need to dive into the program using the debugger if you’re to have any hope
of tracking down the problem.

Single-stepping through a program
The best first step when tracking down a program problem is to execute the
program in debugger mode. Sometimes, the debugger can give you more
information about the problem. The first time I executed the program under
Dev-C++ using the debugger (by pressing F8), I received the error message
“An Access Violation (Segmentation Fault) raised in your program.”

This is a little help, but you’ll need more information in order to track down
the problem.

150 Part II: Becoming a Functional C++ Programmer

A Segmentation Fault usually indicates an errant pointer of some type.

You’ll have to reset the program back to the beginning before trying again.
Click OK to acknowledge the error and then the Program Reset from the
Debug menu or the Stop Execution command from the Debug toolbar to make
sure that everything within the debugger is reset back to the beginning. It’s
always a good idea to reset the debugger before starting again — doing so is
necessary if the program is not at the starting point, and resetting the debug-
ger won’t hurt anything if the program is already at the beginning.

To see exactly where the problem occurs, execute just a part of the program.
The debugger lets you do this through what is known as a breakpoint. The
debugger stops the program if execution ever passes through a breakpoint.
The debugger then gives control back to the programmer.

Now set a breakpoint at the first executable statement by clicking in the
trough just to the left of the reference to cout immediately after main() or
pressing F5 as shown in Table 10-1. A small red circle with a check appears.
The display now appears like the one shown in Figure 10-2.

Now execute the program under the debugger again, either by selecting the
Debug item under the Debug menu, by clicking the blue check mark on the
debug toolbar, or by pressing F8. Program execution starts like normal but
immediately stops on the first line. The line containing the breakpoint turns
from red to blue, indicating that execution has halted at that point.

Figure 10-2:

A

breakpoint

shows up as

a small red

circle with a

check.

Chapter 10: Debugging C++ 151
You can now select Next Step either from the Debug menu, from the debug
toolbar, or by pressing F7 to execute one line at a time in the program. The
blue marking moves to the next executable statement, skipping over both
declarations. (A declaration is not a command and is not executed. A declara-
tion simply allocates space for a variable.) Executing a single C++ statement
is also known as single stepping. You can switch to the Console window to see
that the single output statement has executed, as shown in Figure 10-3.

Figure 10-3:

click the

Console

window at

any time to

see any

program

output.

You can

Execute the Next Step two more times to move the point of execution to the
call to StringEmUp(). So far, so good. When you select Next Step one more
time, however, the program crashes ignominiously just as before. You now
know that the problem is encountered somewhere within the StringEmUp()
function.

When the program crashes within a function, either the function contains a
bug, or the arguments passed to the function are incorrect.

The Next Step command treats a function call like a single command. This is
known as stepping over the function. However, a function consists of a number
of C++ statements of its own. You need to execute each of the statements
within the function in order to better see what’s going on. I need a different
type of single step command, one that steps into the function. This functional-
ity is provided by the Step Into debugger command.

Restart the program by selecting the Program Reset menu item from the
Debug menu, by clicking on Stop Execution from the debug toolbar, or by
pressing Alt+F2. This time, you want to save a little time executing right up to
function call before stopping. Click the existing red circle to toggle the exist-
ing breakpoint off. The dot disappears. Next click in the trough across from
the call to the function to set a new breakpoint, as shown in Figure 10-4.

152 Part II: Becoming a Functional C++ Programmer

Figure 10-4:

A

breakpoint

on the

function call

allows the

programmer

to execute

up to the

call.

You can have as many breakpoints active in a program at one time as you
like. There is no (reasonable) limit.

Now start the program over again. This time, execution stops on the function
call. Step into the function. The display appears like the one shown in
Figure 10-5.

Figure 10-5:

Stepping

into a

function

moves

control to

the first

executable

statement

within the

function.

Chapter 10: Debugging C++ 153
You know that the program is about to crash. You could understand better
what’s going on in the program if you could see the value of the arguments to
the function. This is the function of Add Watch. A watch displays the value of
a variable each time execution is halted. The easiest way to set a watch is to
select the variable on the display and press F4. Figure 10-6 shows a watch set
on all four arguments to the function.

Figure 10-6:

Setting a

watch

allows the

programmer

to monitor

the value of

a variable.

The numbers next to each name in the watch window are that variable’s
address, which aren’t of much use in this case. szTarget appears to be an
empty string — this makes sense because you’ve yet to copy anything there.
The value of szSource1 looks okay, but the value of szSource2 includes
both the “this is a string” and the “THIS IS A STRING” messages. Something
seems to be amiss.

The answer actually lies in the final argument. The length of the two strings is
not 16 characters but 17! The main program has failed to allocate room for
the terminating null. The program terminates as soon as you execute the first
statement within stringEmUp(), the call to strcpy().

The length of a string always includes the terminating null.

Now you update the program. This time, let C++ calculate the size of the
string because it just naturally includes sufficient space. The resulting pro-
gram Concatenate2 works properly:

// Concatenate - concatenate two strings
// with a “ - “ in the middle
// (this version crashes)
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <string.h>

using namespace std;
void stringEmUp(char* szTarget,

154 Part II: Becoming a Functional C++ Programmer

char* szSource1,
char* szSource2);

int main(int nNumberofArgs, char* pszArgs[])
{

cout << “This program concatenates two strings\n”
<< “(This version shouldn’t crash.)” << endl;

char szStrBuffer[256];

// define two strings...
char szString1[] = “This is a string”;
char szString2[] = “THIS IS A STRING”;

// ...now string them together
stringEmUp(szStrBuffer,

szString1,
szString2);

// output the result
cout << “<” << szStrBuffer << “>” << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

void stringEmUp(char* szTarget,
char* szSource1,
char* szSource2)

{
strcpy(szTarget, szSource1);
strcat(szTarget, “ - “);
strcat(szTarget, szSource2);

}

This version of the program generates the expected result:

This program concatenates two strings
(This version shouldn’t crash.)
<This is a string - THIS IS A STRING>
Press any key to continue . . .

Congratulations! You’re now a debugging expert.

Introduction to
Classes

Part III

In this part . . .

T
Objectoriented is about the most hyped term in the com-

.com has it beat). Computer
languages, editors, and databases all claim to be object-
oriented, sometimes with justification, but most of the
time without.

of object-oriented concepts.

What is it about being object-oriented that makes it so

he feature that differentiates C++ from other languages
is C++’s support for object-oriented programming.

puter world (okay, maybe

Check out the BUDGET2 program on the enclosed CD-ROM
to see an example program that can help you orient objects

desired around the world? Read on to find out.

Chapter 11

Examining Object-Oriented
Programming

In This Chapter
� Making nachos

� Reviewing object-oriented programming

� Introducing abstraction and classification

� Discovering why object-oriented programming is important

What, exactly, is object-oriented programming? Object-oriented pro-
gramming, or OOP as those in the know prefer to call it, relies on two

principles you learned before you ever got out of Pampers: abstraction and
classification. To explain, let me tell you a little story.

Abstracting Microwave Ovens
Sometimes when my son and I are watching football (which only happens
when my wife can’t find the switcher), I whip up a terribly unhealthy batch of
nachos. I dump some chips on a plate, throw on some beans, cheese, and lots
of jalapeños, and nuke the whole mess in the microwave oven for five minutes.

To use my microwave, I open the door, throw the stuff in, and punch a few
buttons. After a few minutes, the nachos are done. (I try not to stand in front
of the microwave while it’s working lest my eyes start glowing in the dark.)

Now think for a minute about all the things I don’t do to use my microwave:

� I don’t rewire or change anything inside the microwave to get it to work.
The microwave has an interface — the front panel with all the buttons
and the little time display — that lets me do everything I need.

� I don’t have to reprogram the software used to drive the little processor
inside my microwave, even if I cooked a different dish the last time I used
the microwave.

158 Part III: Introduction to Classes

� I don’t look inside my microwave’s case.

� Even if I were a microwave designer and knew all about the inner work-
ings of a microwave, including its software, I would still use it to heat my
nachos without thinking about all that stuff.

These are not profound observations. You can deal with only so much stress
in your life. To reduce the number of things that you deal with, you work at a
certain level of detail. In object-oriented (OO) computerese, the level of detail
at which you are working is called the level of abstraction. To introduce
another OO term while I have the chance, I abstract away the details of the
microwave’s innards.

When I’m working on nachos, I view my microwave oven as a box. (As I’m
trying to knock out a snack, I can’t worry about the innards of the microwave
oven and still follow the Cowboys on the tube.) As long as I operate the
microwave only through its interface (the keypad), there should be nothing
I can do to

� Cause the microwave to enter an inconsistent state and crash.

� Turn my nachos into a blackened, flaming mass.

� Burst into flames!

Preparing functional nachos
Suppose that I were to ask my son to write an algorithm for how Dad makes
nachos. After he understood what I wanted, he would probably write “open a
can of beans, grate some cheese, cut the jalapeños,” and so on. When it came
to the part about microwaving the concoction, he would write something like
“cook in the microwave for five minutes.”

That description is straightforward and complete. But it’s not the way a func-
tional programmer would code a program to make nachos. Functional pro-
grammers live in a world devoid of objects such as microwave ovens and
other appliances. They tend to worry about flow charts with their myriad
functional paths. In a functional solution to the nachos problem, the flow of
control would pass through my finger to the front panel and then to the inter-
nals of the microwave. Pretty soon, flow would be wiggling around through
complex logic paths about how long to turn on the microwave tube and
whether to sound the “come and get it” tone.

In a world like this, it’s difficult to think in terms of levels of abstraction. There
are no objects, no abstractions behind which to hide inherent complexity.

Chapter 11: Examining Object-Oriented Programming 159

Preparing object-oriented nachos
In an object-oriented approach to making nachos, I would first identify the
types of objects in the problem: chips, beans, cheese, and an oven. Then I
would begin the task of modeling these objects in software, without regard to
the details of how they will be used in the final program.

While I am doing this, I’m said to be working (and thinking) at the level of the
basic objects. I need to think about making a useful oven, but I don’t have to
think about the logical process of making nachos yet. After all, the microwave
designers didn’t think about the specific problem of my making a snack. Rather,
they set about the problem of designing and building a useful microwave.

After the objects I need have been successfully coded and tested, I can ratchet
up to the next level of abstraction. I can start thinking at the nacho-making
level, rather than the microwave-making level. At this point, I can pretty much
translate my son’s instructions directly into C++ code.

Classifying Microwave Ovens
Critical to the concept of abstraction is that of classification. If I were to ask
my son, “What’s a microwave?” he would probably say, “It’s an oven that . . .”
If I then asked, “What’s an oven?” he might reply, “It’s a kitchen appliance that
. . .” (If I then asked, “What’s a kitchen appliance?” he would probably say,
“Why are you asking so many stupid questions?”)

The answers my son gave to my questions stem from his understanding of
our particular microwave as an example of the type of things called microwave
ovens. In addition, my son sees microwave ovens as just a special type of oven,
which itself is just a special type of kitchen appliance.

In object-oriented computerese, my microwave is an instance of the class
microwave. The class microwave is a subclass of the class oven, and the
class oven is a subclass of the class kitchen appliances.

Humans classify. Everything about our world is ordered into taxonomies. We
do this to reduce the number of things we have to remember. Take, for exam-
ple, the first time you saw an SUV. The advertisement probably called the SUV
“revolutionary, the likes of which have never been seen.” But you and I know
that that just isn’t so. I like the looks of some SUVs (others need to go back to
take another crack at it), but, hey, an SUV is a car. As such, it shares all of (or
at least most of) the properties of other cars. It has a steering wheel, seats, a
motor, brakes, and so on. I bet I could even drive one without first reading the
owner’s manual.

160 Part III: Introduction to Classes

I don’t have to clutter my limited storage with all the things that an SUV has in
common with other cars. All I have to remember is “an SUV is a car that . . .”
and tack on those few things that are unique to an SUV (like the price tag). I
can go further. Cars are a subclass of wheeled vehicles along with other mem-
bers, such as trucks and pickups. Maybe wheeled vehicles are a subclass of
vehicles, which includes boats and planes. And on and on and on.

Why Classify?
Why do we classify? It sounds like a lot of trouble. Besides, people have been
using the functional approach for so long, why change now?

It may seem easier to design and build a microwave oven specifically for this
one problem, rather than build a separate, more generic oven object. Suppose,
for example, that I want to build a microwave to cook nachos and nachos only.
I wouldn’t need to put a front panel on it, other than a START button. I always
cook nachos the same amount of time, so I could dispense with all that
DEFROST and TEMP COOK nonsense. My nachos-only microwave needs to hold
only one flat little plate. Three cubic feet of space would be wasted on nachos.

For that matter, I can dispense with the concept of “microwave oven” alto-
gether. All I really need is the guts of the oven. Then, in the recipe, I put the
instructions to make it work: “Put nachos in the box. Connect the red wire to
the black wire. Bring the radar tube up to about 3,000 volts. Notice a slight
hum. Try not to stand too close if you intend to have children.” Stuff like that.

But the functional approach has some problems:

� Too complex. I don’t want the details of oven building mixed into the
details of nacho building. If I can’t define the objects and pull them out
of the morass of details to deal with separately, I must deal with all the
complexities of the problem at the same time.

� Not flexible. Someday I may need to replace the microwave oven with
some other type of oven. I should be able to do so as long as its inter-
face is the same. Without being clearly delineated and developed sepa-
rately, it becomes impossible to cleanly remove an object type and
replace it with another.

� Not reusable. Ovens are used to make lots of different dishes. I don’t
want to create a new oven every time I encounter a new recipe. Having
solved a problem once, it would be nice to be able to reuse the solution
in future programs.

The remaining chapters in this Part demonstrate how object-oriented lan-
guage features address these problems.

Chapter 12

Adding Class to C++
In This Chapter
� Grouping data into classes

� Declaring and defining class members

� Accessing class members

Programs often deal with groups of data: a person’s name, rank, and serial
number, stuff like that. Any one of these values is not sufficient to describe

a person — only in the aggregate do the values make any sense. A simple
structure such as an array is great for holding stand-alone values; however, it
doesn’t work very well for data groups. This makes good ol’ arrays inadequate
for storing complex data (such as personal credit records that the Web compa-
nies maintain so they can lose them to hackers).

For reasons that will become clear shortly, I’ll call such a grouping of data an
object. A microwave oven is an object (see Chapter 11 if that doesn’t make
sense). You are an object. Your name, rank, and credit card number in a data-
base are objects.

Introducing the Class
What you need is a structure that can hold all the different types of data nec-
essary to describe a single object. In my simple example, a single object can
hold both a first name and a last name along with a credit card number.

C++ calls the structure that combines multiples pieces of data into a single
object a class.

162 Part III: Introduction to Classes

The Format of a Class
A class used to describe a name and credit card grouping might appear as
follows:

// the dataset class
class NameDataSet
{

public:
char firstName[128];
char lastName [128];
int creditCard;

};

// a single instance of a dataset
NameDataSet nds;

A class definition starts with the keyword class followed by the name of the
class and an open-close brace pair.

The statement after the open brace is the keyword public. (Hold off asking
about the meaning of the public keyword. I’ll make its meaning public a little
later. Later chapters describe options to public, such as private. Thus, the
public must stay private until I can make the private public.)

The alternative keyword struct can be used. The keywords struct and
class are identical except that the public declaration is assumed in the struct
and can be omitted. You should stick with class for most programs for rea-
sons that will become clear later in this chapter.

Following the public keyword are the entries it takes to describe the object.
The NameDataSet class contains the first and last name entries along with
the credit card number. As you would expect, the first and last names are
both character arrays — the credit card number is shown here as a simple
integer (“the better to steal you with, my dear”).

A class declaration includes the data necessary to describe a single object.

The last line of the snippet declares the variable nds to be a single entry of
class NameDataSet. Thus, nds might be an entry that describes a single
person.

We say that nds is an instance of the class NameDataSet. You instantiate the
class NameDataSet to create nds. Finally, we say that firstName and the
others are members or properties of the class. We say a whole lot of silly
things.

Chapter 12: Adding Class to C++ 163

Accessing the Members of a Class
The following syntax is used to access the property of a particular object:

NameDataSet nds;
nds.creditCard = 10;
cin >> nds.firstName;
cin >> nds.lastName;

Here, nds is an instance of the class NameDataSet (for example, a particular
NameDataSet object). The integer nds.creditCard is a property of the nds
object. The type of nds.creditCard is int, whereas that of nds.firstName
is char[].

Okay, that’s computerspeak. What has actually happened here? The program
snippet declares an object nds, which it will use to describe a customer. For
some reason, the program assigns the person the credit card number 10
(obviously bogus, but it’s not like I’m going to include one of my credit card
numbers).

Next, the program reads the person’s first and last names from the default
input.

I am using an array of characters rather than the class string to handle the
name.

From now on, the program can refer to the single object nds without dealing
with the separate parts (the first name, last name, and credit card number)
until it needs to.

The following program demonstrates the NameDataSet class:

// DataSet - store associated data in
// an array of objects
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <string.h>
using namespace std;

// NameDataSet - store name and credit card
// information
class NameDataSet
{
public:
char firstName[128];
char lastName [128];
int creditCard;

};

164 Part III: Introduction to Classes

// function prototypes:
bool getData(NameDataSet& nds);
void displayData(NameDataSet& nds);

int main(int nNumberofArgs, char* pszArgs[])
{

// allocate space for 25 name data sets
const int MAX = 25;
NameDataSet nds[MAX];

// load first names, last names and social
// security numbers
cout << “Read name/credit card information\n”

<< “Enter ‘exit’ to quit”
<< endl;

int index = 0;
while (getData(nds[index]) && index < MAX)
{

index++;
}

// display the names and numbers entered
cout << “\nEntries:” << endl;
for (int i = 0; i < index; i++)
{

displayData(nds[i]);
}

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

// getData - populate a NameDataSet object
bool getData(NameDataSet& nds)
{

cout << “\nEnter first name:”;
cin >> nds.firstName;

// compare the name input irrespective of case
if (stricmp(nds.firstName, “exit”) == 0)
{

return false;
}

cout << “Enter last name:”;
cin >> nds.lastName;

cout << “Enter credit card number:”;
cin >> nds.creditCard;

return true;

Chapter 12: Adding Class to C++ 165

}

// displayData - display a data set
void displayData(NameDataSet& nds)
{

cout << nds.firstName
<< “ “
<< nds.lastName
<< “/”
<< nds.creditCard
<< endl;

}

The main() function allocates 25 objects of class NameDataSet. main(),
prompts the user as to what is expected of her, and then enters a loop in
which entries are read from the keyboard using the function getData(). The
loop terminates when either getData() returns a false or the maximum
number of objects (25) have been created. The same objects read are next
passed to displayData(NameDataSet) for display.

The getData() function accepts a NameDataSet object as its input argu-
ment, which it assigns the name nds.

Ignore the ampersand for now — I explain it in Chapter 14.

getData() then reads a string from standard input into the entry firstName.
If the stricmp() function can find no difference between the name entered and
“exit,” the function returns a false to main() indicating that it’s time to quit.
(The function stricmp() compares two strings without regard to their case.
This function considers “exit” and “EXIT” plus any other combination of upper-
case and lowercase letters to be identical.) Otherwise, the function pushes on,
reading the last name and the credit card number into the object nds.

The displayData() function outputs each of the members of the
NameDataSet object nds separated by delimiters.

A simple run of this program appears as follows:

Read name/credit card information
Enter ‘exit’ for first name to exit

Enter first name:Stephen
Enter last name:Davis
Enter credit card number:123456

Enter first name:Marshall
Enter last name:Smith
Enter credit card number:567890

Enter first name:exit

166 Part III: Introduction to Classes

Entries:
Stephen Davis/123456
Marshall Smith/567890
Press any key to continue

The program begins with an explanatory banner. I enter my own glorious
name at the first prompt (I’m modest that way). Because the name entered
does not rhyme with “exit,” the program continues, and I add a last name and
a pretend credit card number. On the next pass, I tack on the name Marshall
Smith and his real credit card number (have fun, Marshall). On the final path,
I enter “exit”, which terminated the input loop. The program does nothing
more than spit back at me the names I just entered.

Chapter 13

Making Classes Work
In This Chapter
� Adding active properties to the class

� Declaring and defining a member function

� Accessing class member functions

� Overloading member functions

Programmers use classes to group related data elements into a single
object. The following Savings class associates an account balance with

a unique account number:

class Savings
{

public:
unsigned accountNumber;
float balance;

};

Every instance of Savings contains the same two data elements:

void fn(void)
{

Savings a;
Savings b;
a.accountNumber = 1; // this is not the same as...
b.accountNumber = 2; // ...this one

}

The variable a.accountNumber is different from the variable
b.accountNumber, just as the balance in my bank account is different from
the balance in yours, even though they’re both called balance (or, in the case
of my account, lack of balance).

168 Part III: Introduction to Classes

Activating Our Objects
You use classes to simulate real-world objects. The Savings class tries to
represent a savings account. This allows you to think in terms of objects
rather than simply lines of code. The closer C++ objects are to the real world,
the easier it is to deal with them in programs. This sounds simple enough.
However, the Savings class doesn’t do a very good job of simulating a sav-
ings account.

Simulating real-world objects
Real-world objects have data-type properties such as account numbers and
balances, the same as the Savings class. This makes Savings a good start-
ing point for describing a real object. But real-world objects do things. Ovens
cook. Savings accounts accumulate interest, CDs charge a substantial penalty
for early withdrawal — stuff like that.

Functional programs “do things” via functions. A C++ program might call
strcmp() to compare two strings or max() to return the maximum of two
values. In fact, Chapter 24 explains that even stream I/O (cin >> and cout
<<) is a special form of function call.

The Savings class needs active properties of its own if its to do a good job of
representing a real concept:

class Savings
{

public:
float deposit(float amount)
{

balance += amount;
return balance;

}

unsigned int accountNumber;
float balance;

};

In addition to the account number and balance, this version of Savings
includes the function deposit(). This gives Savings the ability to control
its own future. A class MicrowaveOven has the function cook(), the class
Savings has the function accumulateInterest(), and the class CD has the
function penalizeForEarlyWithdrawal().

Functions defined in a class are called member functions.

Chapter 13: Making Classes Work 169

Why bother with member functions?
Why should you bother with member functions? What’s wrong with the good
ol’ days:

class Savings
{

public:
unsigned accountNumber;
float balance;

};
float deposit(Savings& s, unsigned amount)
{

s.balance += amount;
return s.balance;

}

Here, deposit() implements the “deposit into savings account” function.
This functional solution relies on an outside function, deposit(), to imple-
ment an activity that savings accounts perform but that Savings lacks. This
gets the job done, but it does so by breaking the object-oriented (OO) rules.

The microwave oven has internal components that it “knows” how to use to
cook, defrost, and burn to a crisp. Class data members are similar to the
parts of a microwave — the member functions of a class perform cook-like
functions.

When I make nachos, I don’t have to start hooking up the internal compo-
nents of the oven in a certain way to make it work. Nor do I rely on some
external device to reach into a mess of wiring for me. I want my classes to
work the same way my microwave does (and, no, I don’t mean “not very
well”). I want my classes to know how to manipulate their internals without
outside intervention.

Member functions of Savings such as deposit() can be written as external
functions. I can put all of the functions necessary to make a savings account
work in one place. Microwave ovens can be made to work by soldering and
cutting wires. I don’t want my classes or my microwave ovens to work that
way. I want a Savings class that I can use in my banking program without
considering how it might work on the inside.

Adding a Member Function
There are two aspects to adding a member function to a class: creating the
member function and naming it (sounds silly, doesn’t it?).

170 Part III: Introduction to Classes

Creating a member function
To demonstrate member functions, start by defining a class Student. One
possible representation of such a class follows (taken from the program
CallMemberFunction):

class Student
{

public:
// add a completed course to the record
float addCourse(int hours, float grade)
{

// calculate the sum of all courses times
// the average grade
float weightedGPA;
weightedGPA = semesterHours * gpa;

// now add in the new course
semesterHours += hours;
weightedGPA += grade * hours;
gpa = weightedGPA / semesterHours;

// return the new gpa
return gpa;

}

int semesterHours;
float gpa;

};

The function addCourse(int, float) is called a member function of the
class Student. In principle, it’s a property of the class like the data members
semesterHours and gpa.

There isn’t a special name for functions or data that are not members of a
class, but I’ll refer to them as nonmembers.

The member functions do not have to precede the data members as in this
example. The members of a class can be listed in any order — I just prefer to
put the functions first.

For historical reasons, member functions are also called methods. This term
originated in one of the original object-oriented languages. The name made
sense there, but it makes no sense in C++. Nevertheless, the term has gained
popularity in OO circles because it’s easier to say than “member function.”
(The fact that it sounds more impressive probably doesn’t hurt either.) So, if
your friends start spouting off at a dinner party about “methods of the class,”
just replace methods with member functions and reparse anything they say.

Chapter 13: Making Classes Work 171

Naming class members
A member function is a lot like a member of a family. The full name of the
function addCourse(int, float) is Student::addCourse(int, float),
just as my full name is Stephen Davis. The short name of the function is
addCourse(int, float), just as my short name is Stephen. The class name
at the beginning of the full name indicates that the function is a member of
the class Student. (The :: between the class name and the function name is
simply a separator.) The name Davis on the end of my name indicates that I
am a member of the Davis family.

Another name for a full name is extended name.

You can define an addCourse(int, float) function that has nothing to do
with Student — there are Stephens out there who have nothing to do with
my family. (I mean this literally: I know several Stephens who want nothing to
do with my family.)

You could have a function Teacher::addCourse(int, float) or even
Golf::addCourse(). A function addCourse(int, float) without a class
name is just a plain ol’ conventional non-member function.

The extended name for the non-member function is ::addCourse(int,
float). (Note the colon without a family name in front.)

Calling a Member Function
Before you look at how to call a member function, remember how to access a
data member:

class Student
{
public:
int semesterHours;
float gpa;

};

Student s;
void fn(void)
{

// access data members of s
s.semesterHours = 10;
s.gpa = 3.0;

}

172 Part III: Introduction to Classes

Notice that you have to specify an object along with the member name. In
other words, the following makes no sense:

Student s;
void fn(void)
{

// neither of these is legal
semesterHours = 10; // member of what object of what

// class?
Student::semesterHours = 10; // okay, I know the class

// but I still don’t know
// the object

}

Accessing a member function
Remember that member functions function like data members functionally.
The following CallMemberFunction shows how to invoke the member func-
tion addCourse():

//
// CallMemberFunction - define and invoke a function that’s
// a member of the class Student
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{

public:
// add a completed course to the record
float addCourse(int hours, float grade)
{

// calculate the sum of all courses times
// the average grade
float weightedGPA;
weightedGPA = semesterHours * gpa;

// now add in the new course
semesterHours += hours;
weightedGPA += grade * hours;
gpa = weightedGPA / semesterHours;

// return the new gpa
return gpa;

Chapter 13: Making Classes Work 173

}

int semesterHours;
float gpa;

};

int main(int nNumberofArgs, char* pszArgs[])
{

Student s;
s.semesterHours = 10;
s.gpa = 3.0;

// the values before the call
cout << “Before: s = (“ << s.semesterHours

<< “, “ << s. gpa
<< endl;

// the following subjects the data members of the s
// object to the member function addCourse()
s.addCourse(3, 4.0); // call the member function

// the values are now changed
cout << “After: s = (“ << s.semesterHours

<< “, “ << s. gpa
<< “)” << endl;

// access another object just for the heck of it
Student t;
t.semesterHours = 6;
t.gpa = 1.0; // not doing so good
t.addCourse(3, 1.5); // things aren’t getting any better

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

The syntax for calling a member function looks like a cross between the
syntax for accessing a data member and that used for calling a function. The
right side of the dot looks like a conventional function call, but an object is
on the left of the dot.

We say that “addCourse() operates on the object s” or, said another way, s is
the student to which the course is to be added. You can’t fetch the number of
semester hours without knowing from which student — you can’t add a stu-
dent to a course without knowing which student to add. Calling a member func-
tion without an object makes no more sense than referencing a data member
without an object.

174 Part III: Introduction to Classes

Accessing other members
from a member function
I can see it clearly: You repeat to yourself, “Accessing a member without an
object makes no sense. Accessing a member without an object. Accessing . . .”
Just about the time you’ve accepted this, you look at the member function
Student::addCourse() and Wham! It hits you: addCourse() accesses other
class members without reference to an object. Just like the TV show: “How
Do They Do That?”

Okay, which is it, can you or can’t you? Believe me, you can’t. When you ref-
erence a member of Student from addCourse(), that reference is against the
Student object with which the call to addCourse() was made. Huh? Go back
to the CallMemberFunction example. The critical subsections appear here:

int main(int nNumberofArgs, char* pszArgs[])
{

Student s;
s.semesterHours = 10;
s.gpa = 3.0;
s.addCourse(3, 4.0); // call the member function

Student t;
t.semesterHours = 6;
t.gpa = 1.0; // not doing so good
t.addCourse(3, 1.5); // things aren’t getting any better

system(“PAUSE”);
return 0;

}

When addCourse() is invoked with the object s, all of the otherwise unquali-
fied member references in addCourse() refer to s as well. Thus, the refer-
ence to semesterHours in addCourse() refers to s.semesterHours, and
gpa refers to s.gpa. But when addCourse() is invoked with the Student t
object, these same references are to t.semesterHours and t.gpa instead.

The object with which the member function was invoked is the “current”
object, and all unqualified references to class members refer to this object.
Put another way, unqualified references to class members made from a
member function are always against the current object.

Chapter 13: Making Classes Work 175

Naming the current object
How does the member function know what the

of the object is passed to the member function
as an implicit and hidden first argument. In other
words, the following conversion is taking place:

s.addCourse(3, 2.5)
is like
Student::addCourse(&s, 3, 2.5)

the right; this is just the way C++ sees it.)

Inside the function, this implicit pointer to the
current object has a name, in case you need to
refer to it. It is called this, as in “Which
object? This object.” Get it? The type of this is
always a pointer to an object of the appropriate
class.

Anytime a member function refers to another
member of the same class without providing an

have written Student::addCourse() as
follows:

float Student::addCourse(int
hours, float grade)

{
float weightedGPA;
weightedGPA = this-
>semesterHours * this->gpa;

// now add in the new
course
this->semesterHours +=
hours;
weightedGPA += hours *
grade;
this->gpa = weightedGPA /
this->semesterHours;
return this->gpa;

}

The effect is the same whether you explicitly
include “this,” as in the preceding example, or
leave it implicit, as you did before.

current object is? It’s not magic — the address

(Note that you can’t actually use the syntax on

object explicitly, C++ assumes “this.” You also
can refer to this explicitly, if you like. You could

Scope Resolution (And I Don’t Mean
How Well Your Microscope Works)

The :: between a member and its class name is called the scope resolution
operator because it indicates the scope to which class a member belongs.
The class name before the colon is like the family last name, while the func-
tion name after the colons is like the first name — the order is similar to an
oriental name, family name first.

You use the :: operator to describe a non-member function by using a null
class name. The non-member function addCourse, for example, can be
referred to as ::addCourse(int, float), if you prefer. This is like a func-
tion without a home.

176 Part III: Introduction to Classes

Normally the :: operator is optional, but there are a few occasions when this
is not so, as illustrated here:

// addCourse - combine the hours and grade into
// a weighted grade
float addCourse(int hours, float grade)
{

return hours * grade;
}

class Student
{
public:
int semesterHours;
float gpa;

// add a completed course to the record
float addCourse(int hours, float grade)
{

// call some external function to calculate the
// weighted grade
float weightedGPA = addCourse(semesterHours, gpa);

// now add in the new course
semesterHours += hours;

// use the same function to calculate the weighted
// grade of this new course
weightedGPA += addCourse(hours, grade);
gpa = weightedGPA / semesterHours;

// return the new gpa
return gpa;

}
};

Here, I want the member function Student::addCourse() to call the non-
member function ::addCourse(). Without the :: operator, however, a call
to addCourse() from Student refers to Student::addCourse().

One member of the family can use the short name when referring to another
member of the same family. The family . . . I mean class name . . . is understood.

Not indicating the class name in this case results in the function calling itself,
which is generally not a good thing. Adding the :: operator to the front
directs the call to the global version, as desired:

Chapter 13: Making Classes Work 177

class Student
{
public:
int semesterHours;
float gpa;
// add a completed course to the record
float addCourse(int hours, float grade)
{

// call some external function to calculate the
// weighted grade
float weightedGPA = ::addCourse(semesterHours, gpa);

// now add in the new course
semesterHours += hours;

// use the same function to calculate the
// weighted grade of this new course
weightedGPA += ::addCourse(hours, grade);
gpa = weightedGPA / semesterHours;

// return the new gpa
return gpa;

}
};

This is just like when I call out the name “Stephen” in my own home; every-
one assumes that I mean me — they default the Davis onto my name. If I
mean some other Stephen out there outside my family, I need to say “Stephen
Smith,” or “Stephen Jones,” or whatever. That’s what the scope resolution
operator does.

The extended name of a function includes its arguments. Now you’ve added
the class name to which the function belongs.

Defining a Member Function in the Class
A member function can be defined either in the class or separately. When
defined in the class definition, the function looks like the following contained
in the include file Savings.h.

// Savings - define a class that includes the ability
// to make a deposit
class Savings
{
public:

178 Part III: Introduction to Classes

// declare but don’t define member function
float deposit(float amount);
unsigned int accountNumber;
float balance;

};

Using an include like this is pretty slick. Now a program can include the class
definition (along with the definition for the member function), as follows in
the venerable SavingsClass_inline program:

//
// SavingsClassInline - invoke a member function that’s
// both declared and defined within
// the class Student
//
#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;
#include “Savings.h”

int main(int nNumberofArgs, char* pszArgs[])
{

Savings s;
s.accountNumber = 123456;
s.balance = 0.0;

// now add something to the account
cout << “Depositing 10 to account “ << s.accountNumber <<

endl;
s.deposit(10);
cout << “Balance is “ << s.balance << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

This is cool because everyone other than the programmer of the Savings
class can concentrate on the act of performing a deposit rather the details of
banking. These have been neatly tucked away in their own include files.

The #include directive inserts the contents of the file during the compila-
tion process. The C++ compiler actually “sees” your source file with the
Savings.h file included.

Chapter 13: Making Classes Work 179

Inlining member functions
Member functions defined in the class default
to inline (unless they have been specifically out
lined by a compiler switch or because they con

function defined in the class is usually very
small, and small functions are prime candidates
for inlining.

The content of an inline function is inserted
wherever it is invoked. An inline function exe

have to jump over to where the function is
defined — inline functions take up more
memory because they are copied into every call
instead of being defined just once.

There is another good but more technical
reason to inline member functions defined
within a class. Remember that C structures are
normally defined in include files, which are then
included in the .C source files that need them.
Such include files should not contain data or
functions because these files are compiled mul

place in the source file. The same applies to C++
classes. By defaulting member functions
defined in classes inline, the preceding problem
is avoided.

tain a loop). Mostly, this is because a member

cutes faster because the processor doesn’t

tiple times. Including an inline function is okay,
however, because it (like a macro) expands in

Keeping a Member Function After Class
For larger functions, putting the code directly in the class definition can lead
to some very large, unwieldy class definitions. To prevent this, C++ lets you
define member functions outside the class.

A function that is defined outside the class is said to be an outline function.
This term is meant to be the opposite of an inline function that has been
defined within the class.

When written outside the class declaration, the Savings.h file declares the
deposit() function without defining it as follows:

// Savings - define a class that includes the ability
// to make a deposit
class Savings
{
public:
// declare but don’t define member function
float deposit(float amount);
unsigned int accountNumber;
float balance;

};

180 Part III: Introduction to Classes

The definition of the deposit() function must be included in one of the
source files that make up the program. For simplicity, I define the functions
within the same SavingsClassOutline.cpp file that contains main().

You would not normally combine the member function definition with the rest
of your program. It is more convenient to collect the outlined member function
definitions into a source file with an appropriate name (like Savings.cpp).
This source file is combined with other source files as part of building the exe-
cutable program. I describe this in Chapter 22.

//
// SavingsClassOutline - invoke a member function that’s
// declared within a class but defined
// in a separate file
//
#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;
#include “Savings.h”

// define the member function Savings::deposit()
// (normally this is contained in a separate file that is
// then combined with a different file that is combined)
float Savings::deposit(float amount)
{

balance += amount;
return balance;

}

// the main program
int main(int nNumberofArgs, char* pszArgs[])
{

Savings s;
s.accountNumber = 123456;
s.balance = 0.0;

// now add something to the account
cout << “Depositing 10 to account “ << s.accountNumber <<

endl;
s.deposit(10);
cout << “Balance is “ << s.balance << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

Chapter 13: Making Classes Work 181
This class definition contains nothing more than a prototype declaration for
the function deposit(). The function definition appears separately. The
member function prototype declaration in the structure is analogous to any
other prototype declaration and, like all prototype declarations, is required.

Notice how the function nickname deposit() was good enough when the
function was defined within the class. When defined outside the class, how-
ever, the function requires its extended name.

Overloading Member Functions
Member functions can be overloaded in the same way that conventional func-
tions are overloaded (see Chapter 6 if you don’t remember what that means).
Remember, however, that the class name is part of the extended name. Thus,
the following functions are all legal:

class Student
{
public:
// grade -- return the current grade point average
float grade();
// grade -- set the grade and return previous value
float grade(float newGPA);
// ...data members and other stuff...

};
class Slope
{
public:
// grade -- return the percentage grade of the slope
float grade();
// ...stuff goes here too...

};

// grade -- return the letter equivalent of a numerical grade
char grade(float value);

int main(int argcs, char* pArgs[])
{

Student s;
s.grade(3.5); // Student::grade(float)
float v = s.grade(); // Student::grade()

char c = grade(v); // ::grade(float)

Slope o;
float m = o.grade(); // Slope::grade()
return 0;

}

182 Part III: Introduction to Classes

Each call made from main() is noted in the comments with the extended
name of the function called.

When calling overloaded functions, not only the arguments of the function
but also the type of the object (if any) with which the function is invoked are
used to disambiguate the call. (The term disambiguate is object-oriented talk
for “decide at compile time which overloaded function to call.” A mere mortal
might say “differentiate.”)

In the example, the first two calls to the member functions,
Student::grade(float) and Student::grade(), are differentiated by
their argument lists and the type of object used. The call to s.grade() calls
Student::grade() because s is of type Student.

The third call has no object, so it unambiguously denotes the non-member
function ::grade(float).

The final call is made with an object of type Slope; it must refer to the
member function Slope::grade().

Chapter 14

Point and Stare at Objects
In This Chapter
� Examining the object of arrays of objects

� Getting a few pointers on object pointers

� Strong typing — getting picky about our pointers

� Navigating through lists of objects

C++ programmers are forever generating arrays of things — arrays of
ints, arrays of floats, so why not arrays of students? Students stand in

line all the time — a lot more than they care to. The concept of Student
objects all lined up quietly awaiting their name to jump up to perform some
mundane task is just too attractive to pass up.

Defining Arrays of and Pointers
to Simple Things

An array is a sequence of identical objects much like the identical houses on
a street that make up one of those starter neighborhoods. Each element in
the array carries an index, which corresponds to the number of elements
from the beginning of the array — the first element in the array carries an
offset of 0.

C++ arrays are declared by using the bracket symbols containing the number
of elements in the array:

int array[10]; // declare an array of 10 elements

The individual elements of the array can be accessed by counting the offset
from the beginning of the array:

array[0] = 10; // assign 10 to the first element
array[9] = 20; // assign 20 to the last element

184 Part III: Introduction to Classes

The program first assigns the value 10 to the first element in the array — the
element at the beginning of the array. The program then assigns 20 to the last
element in the array — element at offset nine from the beginning.

Always remember that C++ indices start at 0 and go through the size of the
array minus 1.

I like to use the analogy of a street with houses. The array name represents the
name of the street, and the house number in that street represents the array
index. Similarly, variables can be identified by their unique address in com-
puter memory. These addresses can be calculated and stored for later use.

int variable; // declare an int object
int* pVariable = &variable; // store its address

// in pVariable
*pVariable = 10; // assign 10 into the int

// pointed at by pVariable

The pointer pVariable is declared to contain the address of variable. The
assignment stores 10 into the int pointed at by pVariable.

If you apply the house analogy one last time (I promise):

� variable is a house.

� pVariable is like a piece of paper containing the address of the house.

� The final assignment delivers the message 10 to the house whose
address is written on pVariable just like a postman might (except
unlike my postman, computers don’t deliver mail to the wrong address).

Chapter 7 goes into the care and feeding of arrays of simple (intrinsic) vari-
ables, and Chapter 8 and Chapter 9 describe simple pointers in detail.

Declaring Arrays of Objects
Arrays of objects work the same way arrays of simple variables work. Take,
for example, the following snippet from ArrayOfStudents.cpp:

// ArrayOfStudents - define an array of Student objects
// and access an element in it. This
// program doesn’t do anything
class Student
{
public:
int semesterHours;
float gpa;
float addCourse(int hours, float grade);

};

Chapter 14: Point and Stare at Objects 185

void someFn()
{

// declare an array of 10 students
Student s[10];

// assign the 5th student a gpa of 5.0 (lucky guy)
s[4].gpa = 5.0;

// add another course to the 5th student;
// this time he failed - serves him right
s[4].addCourse(3, 0.0);

}

Here s is an array of Student objects. s[4] refers to the fifth Student object
in the array. By extension, s[4].gpa refers to the GPA of the 5th student.
Further, s[4].addCourse() adds a course to the 5th Student object.

Declaring Pointers to Objects
Pointers to objects work like pointers to simple types, as you can see in the
example program ObjPtr:

// ObjPtr - define and use a pointer to a Student object
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
public:
int semesterHours;
float gpa;
float addCourse(int hours, float grade){return 0.0;};

};

int main(int argc, char* pArgs[])
{

// create a Student object
Student s;
s.gpa = 3.0;

// now create a pointer to a Student object
Student* pS;

// make the Student pointer point to our Student object
pS = &s;
cout << “s.gpa = “ << s.gpa << “\n”

<< “pS->gpa = “ << pS->gpa << endl;

186 Part III: Introduction to Classes

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

The program declares a variable s of type Student. It then goes on to declare
a pointer variable pS of type pointer to a Student object, also written
as Student*. The program initializes the value of one of the data members in
s. It then precedes to assign the address of s to the variable pS. Finally, it
refers to the same Student object, first using the object’s name, s, and then
using the pointer to the object, pS. I explain the strange notation pS->gpa; in
the next section of this chapter.

Dereferencing an object pointer
By analogy of pointers to simple variables, you might think that the following
refers to the GPA of student s:

int main(int argc, char* pArgs[])
{

// the following is incorrect
Student s;
Student* pS = &s; // create a pointer to s

// access the gpa member of the object pointed at by pS
// (this doesn’t work)
*pS.gpa = 3.5;

return 0;
}

As the comments indicate, this doesn’t work. The problem is that the dot
operator (.) is evaluated before the pointer (*).

Note: The * operator is often referred to as the splat operator — not a popu-
lar term with insects.

C++ programmers use parentheses to override the order in which operations
are performed. For example, the parentheses force addition to be performed
before multiplication in the following expression:

int i = 2 * (1 + 3); // addition performed
// before multiplication

Parentheses have the same effect when applied to pointer variables:

int main(int argc, char* pArgs[])
{

Chapter 14: Point and Stare at Objects 187

Student s;
Student* pS = &s; // create a pointer to s

// access the gpa member of the object pointed at by pS
// (this works as expected)
(*pS).gpa = 3.5;

return 0;
}

The *pS evaluates to the pointer’s Student object pointed at by pS. The
.gpa refers to the gpa member of that object.

Pointing toward arrow pointers
Using the splat operator together with parentheses works just fine for deref-
erencing pointers to objects; however, even the most hardened techies would
admit that this mixing of asterisks and parentheses is a bit tortured.

C++ offers a more convenient operator for accessing members of an object to
avoid clumsy object pointer expressions. The -> operator is defined as follows:

ps->gpa is equivalent to(*pS).gpa

This leads to the following:

int main(int argc, char* pArgs[])
{

Student s;
Student* pS = &s; // create a pointer to s

// access the gpa member of the object pointed at by pS
pS->gpa = 3.5;

return 0;
}

The arrow operator is used almost exclusively because it is easier to read;
however, the two forms are completely equivalent.

Passing Objects to Functions
Passing pointers to functions is just one of the ways to entertain yourself
with pointer variables.

188 Part III: Introduction to Classes

Calling a function with an object value
As you know, C++ passes arguments to functions by reference when the argu-
ment type is flagged with the squiggly ‘&’ property (see Chapter 8). However,
by default, C++ passes arguments to functions by value (you can check
Chapter 6, on this one, if you insist).

Complex, user-defined class objects are passed the same as simple int
values as shown in the following PassObjVal program:

// PassObjVal - attempts to change the value of an object
// in a function fail when the object is
// passed by value
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
public:
int semesterHours;
float gpa;

};

void someFn(Student copyS)
{

copyS.semesterHours = 10;
copyS.gpa = 3.0;
cout << “The value of copyS.gpa = “

<< copyS.gpa << “\n”;
}

int main(int argc, char* pArgs[])
{

Student s;
s.gpa = 0.0;

// display the value of s.gpa before calling someFn()
cout << “The value of s.gpa = “ << s.gpa << “\n”;

// pass the address of the existing object
cout << “Calling someFn(Student)\n”;
someFn(s);
cout << “Returned from someFn(Student)\n”;

// the value of s.gpa remains 0
cout << “The value of s.gpa = “ << s.gpa << “\n”;

Chapter 14: Point and Stare at Objects 189

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

The function main() creates an object s and then passes s to the function
someFn().

It is not the object s itself that is passed, but a copy of s.

The object copyS in someFn() begins life as an exact copy of the variable s in
main(). Any change to copyS made within someFn() has no effect on s back
in main(). Executing this program generates the following understandable
but disappointing response:

The value of s.gpa = 0
Calling someFn(Student)
The value of copyS.gpa = 3
Returned from someFn(Student)
The value of s.gpa = 0
Press any key to continue . . .

Calling a function with an object pointer
Most of the time, the programmer wants any changes made in the function to
be reflected in the calling function as well. For this, the C++ programmer must
pass either the address of an object or a reference to the object rather than
the object itself. The following PassObjPtr program uses the address
approach.

// PassObjPtr - change the contents of an object in
// a function by passing a pointer to the
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
public:
int semesterHours;
float gpa;

};

190 Part III: Introduction to Classes

void someFn(Student* pS)
{

pS->semesterHours = 10;
pS->gpa = 3.0;
cout << “The value of pS->gpa = “

<< pS->gpa << “\n”;
}

int main(int nNumberofArgs, char* pszArgs[])
{

Student s;
s.gpa = 0.0;

// display the value of s.gpa before calling someFn()
cout << “The value of s.gpa = “ << s.gpa << “\n”;

// pass the address of the existing object
cout << “Calling someFn(Student*)\n”;
someFn(&s);
cout << “Returned from someFn(Student*)\n”;

// the value of s.gpa is now 3.0
cout << “The value of s.gpa = “ << s.gpa << “\n”;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

The type of the argument to someFn() is a pointer to a Student object (oth-
erwise known as Student*). This is reflected in the way that the program
calls someFn(), passing the address of s rather than the value of s. Giving
someFn() the address of s allows him to modify whatever value that is
stored there. Conceptually, this is akin to writing down the address of the
house s on the piece of paper pS and then passing that paper to someFn().
The function someFn() uses the arrow syntax for dereferencing the pS
pointer.

The output from PassObjPtr is much more satisfying (to me anyway):

The value of s.gpa = 0
Calling someFn(Student*)
The value of pS->gpa = 3
Returned from someFn(Student*)
The value of s.gpa = 3
Press any key to continue . . .

Chapter 14: Point and Stare at Objects 191

Calling a function by using
the reference operator
The reference operator described in Chapter 9 works for user-defined
objects. The following PassObjRef demonstrates references to user-defined
objects:

// PassObjRef - change the contents of an object in
// a function by using a reference
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
public:
int semesterHours;
float gpa;

};

// same as before, but this time using references
void someFn(Student& refS)
{

refS.semesterHours = 10;
refS.gpa = 3.0;
cout << “The value of refS.gpa = “

<< refS.gpa << “\n”;
}

int main(int nNumberofArgs, char* pszArgs[])
{

Student s;
s.gpa = 0.0;

// display the value of s.gpa before calling someFn()
cout << “The value of s.gpa = “ << s.gpa << “\n”;

// pass the address of the existing object
cout << “Calling someFn(Student*)\n”;
someFn(s);
cout << “Returned from someFn(Student&)\n”;

// the value of s.gpa is now 3.0
cout << “The value of s.gpa = “ << s.gpa << “\n”;

// wait until user is ready before terminating program
// to allow the user to see the program results

192 Part III: Introduction to Classes

system(“PAUSE”);
return 0;

}

In this example, C++ passes a reference to s rather than a copy. Changes
made in someFn() are retained in main().

Passing by reference is just another way of passing the address of the object.
C++ keeps track of the address of a reference, whereas you manipulate the
address in a pointer.

Why Bother with Either
Pointers or References?

Okay, so both pointers and references provide relative advantages, but why
bother with either one? Why not just always pass the object?

I discussed one obvious answer earlier in this chapter: You can’t modify the
object from a function that gets nothing but a copy of the structure object.

Here’s a second reason: Some objects are large — I mean really large. Passing
such an object by value means copying the entire thing into the function’s
memory.

The area used to pass arguments to a function is called the call stack.

The object will need to be copied again should that function call another, and
so on. After a while, you can end up with dozens of copies of this object. That
consumes memory, and copying all the objects can make execution of your
program slower than booting up Windows.

The problem of copying objects actually gets worse. You see in Chapter 18
that making a copy of an object can be even more painful than simply copy-
ing some memory around.

Returning to the Heap
The problems that exist for simple types of pointers plague class object
pointers as well. In particular, you must make sure that the pointer you’re
using actually points to a valid object. For example, don’t return a reference
to an object defined local to the function:

Chapter 14: Point and Stare at Objects 193

MyClass* myFunc()
{

// the following does not work
MyClass mc;
MyClass* pMC = &mc;
return pMC;

}

Upon return from myFunc(), the mc object goes out of scope. The pointer
returned by myFunc() is not valid in the calling function.

The problem of returning memory that’s about to go out of scope is dis-
cussed in Chapter 9.

Allocating the object off the heap solves the problem:

MyClass* myFunc()
{

MyClass* pMC = new MyClass;
return pMC;

}

The heap is used to allocate objects in a number of different situations.

Comparing Pointers to References
I hate to keep referencing pointers and pointing to references, but new pro-
grammers often wonder why both are needed.

Actually, you could argue that you don’t need both. C# and most other lan-
guages don’t use pointers. However, pointer variables are an ingrained part of
good ol’ standard non-Visual Studio.NET–specific C++.

Why Not Use References
Rather Than Pointers?

The syntax for manipulating a reference is similar to that used with normal
objects. So why not just stick with references and never look back at pointers?

Objects and their addresses aren’t the same thing. Many times, the syntax for
a reference actually becomes more complicated than that for pointers.
Consider the following examples:

194 Part III: Introduction to Classes

class Student
{
public:
int semesterHours;
float gpa;
Student valFriend;
Student& refFriend;
Student* ptrFriend;

};

int main(int nNumberofArgs, char* pszArgs[])
{

// the following declares a reference off of the heap
// (simple enough)
Student& student = *new Student;
student.gpa = 10;

// ditto
Student& studentFriend = *new Student;
studentFriend.gpa = 20;

// the following copies the value of one Student
// object into the second
student.valFriend = studentFriend;

// this doesn’t work at all
Student& refFriend;
refFriend = studentFriend;

// this does work
student.pFriend = &studentFriend;

return 0;
}

As you can see, I modified that Student class so that one Student can refer-
ence her best buddy. I tried to use the reference variable type to do so. I cre-
ated two students in main() in an attempt to link the one student object to
its studentFriend.

The first assignment in the body of the program copies the contents of the
friend into the data member — Student object contains a body double. The
second assignment doesn’t work at all — C++ can’t differentiate assigning an
object to a reference variable from assignment to an object itself. Only the
third assignment works. The student object points to the address of the
studentFriend, which is exactly what you want.

Chapter 14: Point and Stare at Objects 195

Linking Up with Linked Lists
The second most common structure after the array is called a list. Lists come
in different sizes and types; however, the most common one is the linked list.
In the linked list, each object points to the next member in a sort of chain
that extends through memory. The program can simply point the last element
in the list to an object to add it to the list. This means that the user doesn’t
have to declare the size of the linked list at the beginning of the program —
you can cause the linked list to grow (and shrink) as necessary by adding
(and removing) objects.

The cost of such flexibility is speed of access. You can’t just reach in and
grab the tenth element, for example, like you would in the case of an array.
Now, you have to start at the beginning of the list and link ten times from one
object to the next.

A linked list has one other feature besides its run-time expandability (that’s
good) and its difficulty in accessing an object at random (that’s bad) — a
linked list makes significant use of pointers. This makes linked lists a great
tool for giving you experience in manipulating pointer variables.

Not every class can be used to create a linked list. You declare a linkable
class as follows:

class LinkableClass
{

public:
LinkableClass* pNext;

// other members of the class
};

The key is using the pNext pointer to an object of class LinkableClass.
At first blush, this seems odd indeed — a class contains a pointer to itself?
Actually, this says that the class Linkable contains a pointer to another
object also of class Linkable.

The pNext pointer is similar to the appendage used to form a chain of chil-
dren crossing the street. The list of children consists of a number of objects,
all of type child. Each child holds onto another child.

The head pointer is simply a pointer of type LinkableClass*: To keep tor-
turing the child chain analogy, the teacher points to an object of class child.
(It’s interesting to note that the teacher is not a child — the head pointer is
not of type LinkableClass*.)

LinkableClass* pHead = (LinkableClass*)0;

196 Part III: Introduction to Classes

Always initialize any pointer to 0. Zero, generally known as null when used in
the context of pointers, is universally known as the nonpointer. In any case,
referring to address 0 always causes the program to halt immediately. The
cast from the int 0 to LinkableClass* is not necessary. C++ understands 0
to be of all types, sort of the “universal pointer.” However, I find the use of
explicit casts a good practice.

The pointer to the first member in a linked list is called the head pointer. The
pointer to the last member, if there is one, is called the tail pointer — hence,
the name pHead in this example. (I also like the name because it sounds like
you’re insulting someone by calling them a “pea head.” Don’t even get me
started on a pointer to a pHead.)

To see how linked lists work in practice, consider the following function,
which adds the argument passed it to the beginning of a list:

void addHead(LinkableClass* pLC)
{

pLC->pNext = pHead;
pHead = pLC;

}

Here, the pNext pointer of the object is set to point to the first member of the
list. This is akin to grabbing the hand of the first kid in the chain. The second
line points the head pointer to the object, sort of like having the teacher let
go of the kid we’re holding onto and grabbing us. That makes us the first kid
in the chain.

Performing other operations
on a linked list
Adding an object to the head of a list is the simplest operation on a linked
list. Moving through the elements in a list gives you a better idea about how a
linked list works:

// navigate through a linked list
LinkableClass* pL = pHead;
while(pL)
{

// perform some operation here

// get the next entry
pL = pL->pNext;

}

The program initializes the pL pointer to the first object of a list of
LinkableClass objects through the pointer pHead. (Grab the first kid’s hand.)

Chapter 14: Point and Stare at Objects 197
The program then enters the while loop. If the pL pointer is not null, it points
to some LinkableClass object. Control enters the loop, where the program
can then perform whatever operations it wants on the object pointed at by pL.

The assignment pL = pL->pNext “moves” the pL pointer over to the next
kid in the list of objects. The program checks to see if pL is null, meaning that
we’ve exhausted the list . . . I mean run out of kids, not exhausted all the kids
in the list.

Hooking up with a LinkedListData
program
The LinkedListData program shown here implements a linked list of objects
containing a person’s name. The program could easily contain whatever
other data you might like, such as social security number, grade point aver-
age, height, weight, and bank account balance. I’ve limited the information to
just a name to keep the program as simple as possible.

// LinkedListData - store data in a linked list of objects
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <string.h>
using namespace std;

// NameDataSet - stores a person’s name (these objects
// could easily store any other information
// desired).
class NameDataSet
{
public:
char szName[128];

// the link to the next entry in the list
NameDataSet* pNext;

};

// the pointer to the first entry in the list
NameDataSet* pHead = 0;

// add - add a new member to the linked list
void add(NameDataSet* pNDS)
{

// point the current entry to the beginning of
// the list...
pNDS->pNext = pHead;

// point the head pointer to the current entry
pHead = pNDS;

198 Part III: Introduction to Classes

}

// getData - read a name and social security
// number; return null if no more to
// read
NameDataSet* getData()
{

// read the first name
char nameBuffer[128];
cout << “\nEnter name:”;
cin >> nameBuffer;

// if the name entered is ‘exit’...
if ((stricmp(nameBuffer, “exit”) == 0))
{

// ...return a null to terminate input
return 0;

}

// get a new entry to fill
NameDataSet* pNDS = new NameDataSet;

// fill in the name and zero the link pointer
strncpy(pNDS->szName, nameBuffer, 128);
pNDS->szName[127] = ‘\0’; // ensure string is terminated
pNDS->pNext = 0;

// return the address of the object created
return pNDS;

}

int main(int nNumberofArgs, char* pszArgs[])
{

cout << “Read names of people\n”
<< “Enter ‘exit’ for first name to exit\n”;

// create (another) NameDataSet object
NameDataSet* pNDS;
while (pNDS = getData())
{

// add it onto the end of the list of
// NameDataSet objects
add(pNDS);

}

// to display the objects, iterate through the
// list (stop when the next address is NULL)
cout << “Entries:\n”;
pNDS = pHead;
while(pNDS)
{

// display current entry
cout << pNDS->szName << “\n”;

Chapter 14: Point and Stare at Objects 199

// get the next entry
pNDS = pNDS->pNext;

}

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

Although somewhat lengthy, the LinkedListData program is simple if you take
it in parts. The NameDataSet structure has room for a person’s name and a
link to the next NameDataSet object in a linked list. I mentioned earlier that
this class would have other members in a real-world application.

The main() function starts looping, calling getData() on each iteration to
fetch another NameDataSet entry from the user. The program exits the loop
if getData() returns a null, the “non-address,” for an address.

The getData() function prompts the user for a name and reads in whatever
the user enters. The program just hopes that the number of characters is less
than 128, since it makes no checks. If the string entered is equal to exit, the
function returns a null to the caller, thereby exiting the while loop. The
stricmp() compares two strings without regard to case. If the string entered
is not exit, the program creates a new NameDataSet object, populates the
name, and zeroes out the pNext pointer.

Never leave link pointers uninitialized. Use the old programmer’s wives’ tale:
“When in doubt, zero it out.” (I mean “old tale,” not “tale of an old wife.”)

Finally, getData() returns the object’s address to main().

main() adds each object returned from getData() to the beginning of the
linked list pointed at by the global variable pHead. Control exits the initial
while loop when the getData() returns a null. main() then enters a second
section that iterates through the completed list, displaying each object. The
second while loop terminates when it reaches the last object, the object
with a pNext pointer whose value is null.

The program outputs the names entered in the opposite order. This is
because each new object is added to the beginning of the list. Alternatively,
the program could have added each object to the end of the list — doing so
just takes a little more code.

200 Part III: Introduction to Classes

A Ray of Hope: A List of Containers
Linked to the C++ Library

I believe everyone should walk before they run, should figure out how to per-
form arithmetic in their head before using a calculator, and should write a
linked list program before using a list class written by someone else. That
being said, in Chapter 27, I describe other list classes provided by the C++
environment. These classes are known more generically as container classes
because they contain other objects — array and linked list are just two exam-
ples of container classes.

Chapter 15

Protecting Members:
Do Not Disturb

In This Chapter
� Declaring members protected

� Accessing protected members from within the class

� Accessing protected members from outside the class

Chapter 12 introduces the concept of the class. That chapter describes the
public keyword as though it were part of the class declaration — just

something you do. In this chapter, you find out about an alternative to public.

Protecting Members
The members of a class can be marked protected, which makes them inac-
cessible outside the class. The alternative is to make the members public.
Public members are accessible to all.

Please understand the term “inaccessible” in a weak sense. Any programmer
can go into the source code, remove the protected keyword and do what-
ever she wants. Further, any hacker worth his salt can code into a protected
section of code. The protected keyword is designed to protect a program-
mer from herself by preventing inadvertent access.

Why you need protected members
To understand the role of protected, think about the goals of object-oriented
programming:

202 Part III: Introduction to Classes

� To protect the internals of the class from outside functions. Suppose, for
example, that you have a plan to build a software microwave (or what-
ever), provide it with a simple interface to the outside world, and then
put a box around it to keep others from messing with the insides. The
protected keyword is that box.

� To make the class responsible for maintaining its internal state. It’s not
fair to ask the class to be responsible if others can reach in and manipu-
late its internals (any more than it’s fair to ask a microwave designer to
be responsible for the consequences of my mucking with a microwave’s
internal wiring).

� To limit the interface of the class to the outside world. It’s easier to
figure out and use a class that has a limited interface (the public mem-
bers). Protected members are hidden from the user and need not be
learned. The interface becomes the class; this is called abstraction (see
Chapter 11 for more on abstraction).

� To reduce the level of interconnection between the class and other code.
By limiting interconnection, you can more easily replace one class with
another or use the class in other programs.

Now, I know what you functional types out there are saying: “You don’t need
some fancy feature to do all that. Just make a rule that says certain members
are publicly accessible, and others are not.”

Although that is true in theory, it doesn’t work. People start out with all kinds
of good intentions, but as long as the language doesn’t at least discourage
direct access of protected members, these good intentions get crushed under
the pressure to get the product out the door.

Discovering how protected members work
Adding the keyword public to a class makes subsequent members public,
which means that they are accessible by non-member functions. Adding the
keyword protected makes subsequent members of the class protected,
which means they are not accessible by non-members of the class. You can
switch between public and protected as often as you like.

Suppose you have a class named Student. In this example, the following
capabilities are all that a fully functional, upstanding Student needs (notice
the absence of spendMoney() and drinkBeer() — this is a highly stylized
student):

addCourse(inthours, float grade) — adds a course

grade() — returns the current grade point average

hours() — returns the number of hours earned toward graduation

Chapter 15: Protecting Members: Do Not Disturb 203
The remaining members of Student can be declared protected to keep other
functions’ prying expressions out of Student’s business.

class Student
{
public:

float grade()
{

return gpa;
}

int hours()
{

return semesterHours;
}
// addCourse - add another course to the student’s record
float addCourse(int hours, float grade);

// the following members are off-limits to others
protected:
int semesterHours; // hours earned toward graduation
float gpa; // grade point average

};

// grade - return the current grade point average

// hours - return the number of semester hours

Now the members semester hours and gpa are accessible only to other
members of Student. Thus, the following doesn’t work:

Student s;
int main(int argcs, char* pArgs[])
{
// raise my grade (don’t make it too high; otherwise, no
// one would believe it)
s.gpa = 3.5; // <- generates compiler error
float gpa = s.grade(); // <- this public function reads

// a copy of the value, but you
// can’t change it from here

return 0;
}

The application’s attempt to change the value of gpa is flagged with a com-
piler error.

It’s considered good form not to rely on the default and specify either public
or private at the beginning of the class. Most of the time, people start with the
public members because they make up the interface of the class. Protected
members are saved until later.

204 Part III: Introduction to Classes

A class member can also be protected by declaring it private. In this book,
I use the protected keyword exclusively since it expresses the more generic
concept.

Making an Argument for Using
Protected Members

Now that you know a little more about how to use protected members in an
actual class, I can replay the arguments for using protected members.

Protecting the internal state of the class
Making the gpa member protected precludes the application from setting the
grade point average to some arbitrary value. The application can add courses,
but it can’t change the grade point average.

If the application has a legitimate need to set the grade point average directly,
the class can provide a member function for that purpose, as follows:

class Student
{
public:
// same as before
float grade()
{

return gpa;
}
// here we allow the grade to be changed
float grade(float newGPA)
{

float oldGPA = gpa;
// only if the new value is valid
if (newGPA > 0 && newGPA <= 4.0)
{

gpa = newGPA;
}
return oldGPA;

}
// ...other stuff is the same including the data members:

protected:
int semesterHours; // hours earned toward graduation
float gpa;

};

Chapter 15: Protecting Members: Do Not Disturb 205
The addition of the member function grade(float) allows the application
to set the gpa. Notice, however, that the class still hasn’t given up control
completely. The application can’t set gpa to any old value; only a gpa in the
legal range of values (from 0 through 4.0) is accepted.

Thus, Student class has provided access to an internal data member without
abdicating its responsibility to make sure that the internal state of the class is
valid.

Using a class with a limited interface
A class provides a limited interface. To use a class, all you need (or want) to
know are its public members, what they do, and what their arguments are.
This can drastically reduce the number of things you need to master — and
remember to use the class.

As conditions change or as bugs are found, you want to be able to change the
internal workings of a class. Changes to those details are less likely to require
changes in the external application code if you can hide the internal workings
of the class.

A second, perhaps more important reason, lies in the limited ability of humans
(I can’t speak for dogs and cats) to keep a large number of things in their minds
at any given instant. Using a strictly defined class interface allows the pro-
grammer to forget the details that go on behind it. Likewise, a programmer
building the class need not concentrate to quite the same degree on exactly
how each of the functions is being used.

Giving Non-Member Functions
Access to Protected Members

Occasionally, you want a non-member function to have access to the pro-
tected members of a class. You do so by declaring the function to be a friend
of the class by using the keyword friend.

Sometimes, an external function can use direct access to a data member. I
know this appears to break the strictly defined, well-sealed-off class interface
position that I’ve been advocating, but just consider the following. First,
including a friend function is, in effect, adding that function to the interface
(that’s why a class shouldn’t have too many friends). You’re okay as long as
you attempt to treat this function as a normal function that, oh yeah, happens
to have direct access. Second, providing a public access method that acts as

206 Part III: Introduction to Classes

a thin veil over a data member doesn’t do anything to abstract away class
details. Such a thin veneer function fulfills the letter of the law, but not the
spirit.

The friend declaration appears in the class that contains the protected
member. The friend declaration is like a prototype declaration in that it
includes the extended name and the return type. In the following example,
the function initialize() can now access anything it wants in Student:

class Student
{

friend void initialize(Student*);
public:
// same public members as before...

protected:
int semesterHours; // hours earned toward graduation
float gpa;

};
// the following function is a friend of Student
// so it can access the protected members
void initialize(Student *pS)
{

pS->gpa = 0; // this is now legal...
pS->semesterHours = 0; // ...when it wasn’t before

}

A single function can be declared a friend of two classes at the same time.
Although this can be convenient, it tends to bind the two classes together.
This binding of classes is normally considered bad because it makes one
class dependent on the other. If the two classes naturally belong together,
however, it’s not all bad, as shown here:

class Student; // forward declaration
class Teacher
{

friend void registration(Teacher& t, Student& s);
public:
void assignGrades();

protected:
int noStudents;
Student *pList[100];

};
class Student
{

friend void registration(Teacher& t, Student& s);
public:
// same public members as before...

protected:
Teacher *pT;
int semesterHours; // hours earned toward graduation
float gpa;

};

Chapter 15: Protecting Members: Do Not Disturb 207

void registration(Teacher& t, Student& s)
{

// initialize the Student object
s.semesterHours = 0;
s.gpa = 0;

// if there’s room...
if (t.noStudents < 100)
{

// ...add it onto the end of the list
t.pList[t.noStudents] = &s;
t.noStudents++;

}
}

In this example, the registration() function can reach into both the
Student and Teacher classes to tie them together at registration time, with-
out being a member function of either one.

The first line in the example declares the class Student, but none of its mem-
bers. This is called a forward declaration and just defines the name of the
class so that other classes, such as Teacher, can define a pointer to it.
Forward references are necessary when two classes refer to each other.

A member function of one class may be declared a friend of another class, as
shown here:

class Teacher
{

// ...other members as well...
public:
void assignGrades();

};
class Student
{

friend void Teacher::assignGrades();
public:
// same public members as before...

protected:
int semesterHours; // hours earned toward graduation
float gpa;

};
void Teacher::assignGrades()
{

// can access protected members of Teacher from here
}

Unlike in the non-member example, the member function assignGrades()
must be declared before the class Student can declare it to be a friend.

208 Part III: Introduction to Classes

An entire class can be named a friend of another. This has the effect of
making every member function of the class a friend:

class Student; // forward declaration
class Teacher
{
protected:
int noStudents;
Student *pList[100];
public:
void assignGrades();

};
class Student
{
friend class Teacher; // make entire class a friend
public:
// same public members as before...
protected:
int semesterHours; // hours earned toward graduation
float gpa;

};

Now, any member function of Teacher has access to the protected members
of Student. Declaring one class a friend of the other inseparably binds the
two classes together.

Chapter 16

“Why Do You Build Me Up, Just to
Tear Me Down, Baby?”

In This Chapter
� Creating and destroying objects

� Declaring constructors and destructors

� Invoking constructors and destructors

O bjects in programs are built and scrapped just like objects in the real
world. If the class is to be responsible for its well-being, it must have

some control over this process. As luck would have it (I suppose some pre-
planning was involved as well), C++ provides just the right mechanism. But,
first, a discussion of what it means to create an object.

Creating Objects
Some people get a little sloppy in using the terms class and object. What’s the
difference? What’s the relationship?

I can create a class Dog that describes the relevant properties of man’s best
friend. At my house, we have two dogs. Thus, my class Dog has two instances,
Trude (pronounced “Troo-duh”) and Scooter (well, I think there are two
instances — I haven’t seen Scooter in a few days).

A class describes a type of thing. An object is one of those things. An object
is an instance of a class. There is only one class Dog, no matter how many
dogs I have.

Objects are created and destroyed, but classes simply exist. My pets, Trude
and Scooter, come and go, but the class Dog (evolution aside) is perpetual.

210 Part III: Introduction to Classes

Different types of objects are created at different times. Global objects are cre-
ated when the program first begins execution. Local objects are created when
the program encounters their declaration.

In the following example, the variable me is global, and the variable notMe is
local to the function pickOne():

int me = 0;
void pickOne()
{
int notMe;

}

initial value. Having all data members have a random state may not be a valid
condition for all classes.

A global object is one that is declared outside of a function. A local object is
one that is declared within a function and is, therefore, local to the function.

According to the rules, global objects are initialized to all zeros when the pro-
gram starts executing. Objects declared local to a function have no particular

C++ allows the class to define a special member function that is invoked auto-
matically when an object of that class is created. This member function,
called the constructor, must initialize the object to a valid initial state. In addi-
tion, the class can define a destructor to handle the destruction of the object.
These two functions are the topics of this chapter.

Using Constructors
The constructor is a member function that is called automatically when an
object is created. Its primary job is to initialize the object to a legal initial
value for the class. (It’s the job of the remaining member functions to ensure
that the state of the object stays legal.)

Why you need constructors
You could initialize an object as part of the declaration — that’s the way the
C programmer would do it — for example:

struct Student
{

int semesterHours;
float gpa;

};

Chapter 16: “Why Do You Build Me Up, Just to Tear Me Down, Baby?” 211

void fn()
{

Student s1 = {0, 0.0};

// or
Student s2;

s2.semesterHours = 0;
s2.gpa = 0.0;

// ...function continues...
}

You could outfit the class with an initialization function that the application
calls as soon as the object is created. Because this initialization function is a
member of the class, it would have access to the protected members. This
solution appears as follows:

class Student
{
public:
void init()
{

semesterHours = 0;
gpa = 0.0;

}
// ...other public members...

protected:
int semesterHours;
float gpa;

};
void fn()
{

Student s; // create the object...
s.init(); // ...then initialize it
// ...function continues...

}

The only problem with this solution is that it abrogates the responsibility of
the class to look after its own data members. In other words, the class must
rely on the application to call the init() function. If it does not, the object is
full of garbage, and who knows what might happen.

What is needed is a way to take the responsibility for calling the init() func-
tion away from the application code and give it to the compiler. Every time an
object is created, the compiler can insert a call to the special init() function
to initialize it. That’s a constructor!

212 Part III: Introduction to Classes

Making constructors work
The constructor is a special member function that’s called automatically when
an object is created. It carries the same name as the class to differentiate it
from the other members of the class. The designers of C++ could have made
up a different rule, such as: “The constructor must be called init().” It
wouldn’t have made any difference, as long as the compiler could recognize
the constructor. In addition, the constructor has no return type, not even
void, because it is only called automatically — if the constructor did return
something, there would be no place to put it. A constructor cannot be
invoked manually.

Constructing a single object
With a constructor, the class Student appears as follows:

//
// Constructor - example that invokes a constructor
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
public:
Student()
{

cout << “constructing student” << endl;
semesterHours = 0;
gpa = 0.0;

}
protected:
int semesterHours;
float gpa;

};

int main(int nNumberofArgs, char* pszArgs[])
{

cout << “Creating a new Student object” << endl;
Student s;

cout << “Creating a new object off the heap” << endl;
Student* pS = new Student;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

Chapter 16: “Why Do You Build Me Up, Just to Tear Me Down, Baby?” 213
At the point of the declaration of s, the compiler inserts a call to the con-
structor Student::Student(). Allocating a new Student object from the
heap has the same effect as demonstrated by the output from the program:

Creating a new Student object
constructing student
Creating a new object off the heap
constructing student
Press any key to continue . . .

This simple constructor was written as an inline member function.
Constructors can be written also as outline functions, as shown here:

class Student
{
public:
Student();
// ...other public members...

protected:
int semesterHours;
float gpa;

};
Student::Student()
{

cout << “constructing student” << endl;
semesterHours = 0;
gpa = 0.0;

}

The output from this program can “prove” to you that constructors work as
advertised, but to get the real effect, you really should single-step this simple
program in your debugger. (See Chapter 10 for instructions on using the
debugger.)

Single-step through this example until control comes to rest at the Student’s
declaration. Select Step Into and control magically jumps to Student::
Student(). Continue single-stepping through the constructor. When the
function has finished, control returns to the statement after the declaration.

In some cases, Step Into will actually execute the entire constructor without
stopping. You may have to set a breakpoint in the constructor to get the
effect. Setting a breakpoint always works.

Constructing multiple objects
Each element of an array must be constructed on its own. Making the follow-
ing simple change to the Constructor program contained in ConstructArray:

214 Part III: Introduction to Classes

//
// ConstructArray - example that invokes a constructor
// on an array of objects
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
public:
Student()

{
cout << “constructing student” << endl;
semesterHours = 0;
gpa = 0.0;

}
// ...other public members...

protected:
int semesterHours;
float gpa;

};

int main(int nNumberofArgs, char* pszArgs[])
{

cout << “Creating an array of 5 Student objects” << endl;
Student s[5];

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

generates the following output:

Creating an array of 5 Student objects
constructing student
constructing student
constructing student
constructing student
constructing student
Press any key to continue . . .

Constructing a duplex
If a class contains a data member that is an object of another class, the con-
structor for that class is called automatically as well. Consider the following
ConstructMembers example program. I added output statements so that you
can see the order in which the objects are invoked.

Chapter 16: “Why Do You Build Me Up, Just to Tear Me Down, Baby?” 215

//
// ConstructMembers - the member objects of a class
// are each constructed before the
// container class constructor gets
// a shot at it
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Course
{
public:
Course()
{

cout << “constructing course” << endl;
}

};

class Student
{
public:
Student()
{

cout << “constructing student” << endl;
semesterHours = 0;
gpa = 0.0;

}
protected:
int semesterHours;
float gpa;

};
class Teacher
{
public:
Teacher()
{

cout << “constructing teacher” << endl;
}

protected:
Course c;

};
class TutorPair
{
public:
TutorPair()
{

cout << “constructing tutorpair” << endl;
noMeetings = 0;

}

216 Part III: Introduction to Classes

protected:
Student student;
Teacher teacher;
int noMeetings;

};

int main(int nNumberofArgs, char* pszArgs[])
{

cout << “Creating TutorPair object” << endl;
TutorPair tp;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

Executing this program generates the following output:

Creating TutorPair object
constructing student
constructing course
constructing teacher
constructing tutorpair
Press any key to continue . . .

Creating the object tp in main automatically invokes the constructor for
TutorPair. Before control passes into the body of the TutorPair construc-
tor, however, the constructors for the two-member objects, student and
teacher, are invoked.

The constructor for Student is called first because it is declared first. Then
the constructor for Teacher is called.

The member Teacher.c of class Course is constructed as part of building
the Teacher object. The Course constructor gets a shot first. Each object
within a class must construct itself before the class constructor can be
invoked. Otherwise, the main constructor would not know the state of its
data members.

After all member data objects have been constructed, control returns to the
open brace, and the constructor for TutorPair is allowed to construct the
remainder of the object.

It would not do for TutorPair to be responsible for initializing Student and
Teacher. Each class is responsible for initializing its own objects.

Chapter 16: “Why Do You Build Me Up, Just to Tear Me Down, Baby?” 217

Dissecting a Destructor
Just as objects are created, so are they destroyed (ashes to ashes, dust to
dust). If a class can have a constructor to set things up, it should also have a
special member function to take the object apart. This member is called the
destructor.

Why you need the destructor
A class may allocate resources in the constructor; these resources need to be
deallocated before the object ceases to exist. For example, if the constructor
opens a file, the file needs to be closed before leaving that class or the pro-
gram. Or, if the constructor allocates memory from the heap, this memory
must be freed before the object goes away. The destructor allows the class to
do these cleanup tasks automatically without relying on the application to
call the proper member functions.

Working with destructors
The destructor member has the same name as the class, but with a tilde (~)
added at the front. (C++ is being cute again — the tilde is the symbol for the
logical NOT operator. Get it? A destructor is a “not constructor.” Très clever.)
Like a constructor, the destructor has no return type. For example, the class
Student with a destructor added appears as follows:

class Student
{
public:
Student()
{

semesterHours = 0;
gpa = 0.0;

}
~Student()
{

// ...whatever assets are returned here...
}

protected:
int semesterHours;
float gpa;

};

218 Part III: Introduction to Classes

The destructor is invoked automatically when an object is destroyed, or in
C++ parlance, when an object is destructed. That sounds sort of circular (“the
destructor is invoked when an object is destructed”), so I’ve avoided the term
until now. For non-heap memory, you can also say, “when the object goes out
of scope.” A local object goes out of scope when the function returns. A global
or static object goes out of scope when the program terminates.

But what about heap memory? A pointer may go out of scope, but heap
memory doesn’t. By definition, it’s memory that is not part of a given function.
An object that has been allocated off the heap is destructed when it’s returned
to the heap using the delete command. This is demonstrated in the following
DestructMembers program:

//
// DestructMembers - this program both constructs and
// destructs a set of data members
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Course
{
public:
Course() { cout << “constructing course” << endl; }
~Course() { cout << “destructing course” << endl; }

};

class Student
{
public:
Student()
{

cout << “constructing student” << endl;
semesterHours = 0;
gpa = 0.0;

}
~Student() { cout << “destructing student” << endl; }

protected:
int semesterHours;
float gpa;

};
class Teacher
{
public:
Teacher()
{

cout << “constructing teacher” << endl;
pC = new Course;

Chapter 16: “Why Do You Build Me Up, Just to Tear Me Down, Baby?” 219

}
~Teacher()
{

cout << “ destructing teacher” << endl;
delete pC;

}
protected:
Course* pC;

};
class TutorPair
{
public:
TutorPair()
{

cout << “constructing tutorpair” << endl;
noMeetings = 0;

}
~TutorPair() { cout << “ destructing tutorpair” << endl;

}
protected:
Student student;
Teacher teacher;
int noMeetings;

};

TutorPair* fn()
{

cout << “Creating TutorPair object in function fn()”
<< endl;

TutorPair tp;

cout << “Allocating TutorPair off the heap” << endl;
TutorPair* pTP = new TutorPair;

cout << “Returning from fn()” << endl;
return pTP;

}

int main(int nNumberofArgs, char* pszArgs[])
{

// call function fn() and then return the
// TutorPair object returned to the heap
TutorPair* pTPReturned = fn();
cout << “Return heap object to the heap” << endl;
delete pTPReturned;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

220 Part III: Introduction to Classes

The function main() invokes a function fn() that defines the object tp —
this is to allow you to watch the variable go out of scope when control exits
the function. fn() also allocates heap memory that it returns to main()
where the memory is returned to the heap.

If you execute this program, it generates the following output:

Creating TutorPair object in function fn()
constructing student
constructing teacher
constructing course
constructing tutorpair
Allocating TutorPair off the heap
constructing student
constructing teacher
constructing course
constructing tutorpair
Returning from fn()
destructing tutorpair
destructing teacher
destructing course
destructing student
Return heap object to the heap
destructing tutorpair
destructing teacher
destructing course
destructing student
Press any key to continue . . .

Each constructor is called in turn as the TutorPair object is built up, start-
ing from the smallest data member and working its way up to the TutorPair
::TutorPair() constructor function.

Two TutorPair objects are created. The first, tp, is defined locally to the
function fn(), the second, pTP, is allocated off the heap. tp goes out of scope
and is destructed when control passes out of the function. The heap memory
whose address is returned from fn() is not destructed until main() deletes it.

The sequence of destructors invoked when an object is destructed is invoked
in the reverse order in which the constructors were called.

Chapter 17

Making Constructive Arguments
In This Chapter
� Making argumentative constructors

� Overloading the constructor

� Creating objects by using constructors

� Invoking member constructors

� Constructing the order of construction and destruction

A class represents a type of object in the real world. For example, in ear-
lier chapters, I use the class Student to represent the properties of a

student. Just like students, classes are autonomous. Unlike a student, a class
is responsible for its own care and feeding — a class must keep itself in a
valid state at all times.

The default constructor presented in Chapter 16 isn’t always enough. For
example, a default constructor can initialize the student ID to zero so that it
doesn’t contain a random value; however, a Student ID of 0 is probably not
valid. It’s up to the class to make sure that the ID is initialized to a legal value
when the object is created.

C++ programmers require a constructor that accepts some type of argument
in order to initialize an object to other than its default value. This chapter
examines constructors with arguments.

Outfitting Constructors with Arguments
C++ enables programmers to define a constructor with arguments, as shown
here:

class Student
{
public:
Student(char *pName);

// ...class continues...
};

222 Part III: Introduction to Classes

Justifying constructors
Something as straightforward as adding arguments to the constructor
shouldn’t require much justification, but let me take a shot at it anyway. First,
allowing arguments to constructors is convenient. It’s a bit silly to make pro-
grammers construct a default object and then immediately call an initializa-
tion function to store data in it. A constructor with arguments is like one-stop
shopping — sort of a full-service constructor.

Another more important reason to provide arguments to constructors is that
it may not be possible to construct a reasonable default object. Remember
that a constructor’s job is to construct a legal object (legal as defined by the
class). If some default object is not legal, the constructor isn’t doing its job.

For example, a bank account without an account number is probably not legal.
(C++ doesn’t care one way or the other, but the bank might get snippy.) You
could construct a numberless BankAccount object and then require that the
application use some other member function to initialize the account number
before it’s used. This “create now/initialize later” approach breaks the rules,
however, because it forces the class to rely on the application for initialization.

Using a constructor
Conceptually, the idea of adding an argument is simple. A constructor is a
member function, and member functions can have arguments. Therefore,
constructors can have arguments.

Remember, though, that you don’t call the constructor like a normal function.
Therefore, the only time to pass arguments to the constructor is when the
object is created. For example, the following program creates an object s of
the class Student by calling the Student(char*) constructor. The object s
is destructed when the function main() returns.

//
// ConstructorWArg - provide a constructor with arguments
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;
const int MAXNAMESIZE = 40;
class Student
{
public:
Student(char* pName)
{

strncpy(name, pName, MAXNAMESIZE);
name[MAXNAMESIZE - 1] = ‘\0’;

Chapter 17: Making Constructive Arguments 223

semesterHours = 0;
gpa = 0.0;

}

// ...other public members...
protected:
char name[MAXNAMESIZE];
int semesterHours;
float gpa;

};

int main(int argcs, char* pArgs[])
{

Student s(“O. Danny Boy”);
Student* pS = new Student(“E. Z. Rider”);

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

The constructor looks like the constructors shown in Chapter 16 except for
the addition of the char* argument pName. The constructor initializes the
data members to their empty start-up values, except for the data member
name, which gets its initial value from pName.

The object s is created in main(). The argument to be passed to the con-
structor appears in the declaration of s, right next to the name of the object.
Thus, the student s is given the name Danny in this declaration. The closed
brace invokes the destructor on poor little Danny.

The arguments to the constructor appear next to the name of the class when
the object is allocated off the heap.

Many of the constructors in this chapter violate the “functions with more than
three lines shouldn’t be inlined” rule. I decided to make them inline anyway
because I think they’re easier for you to read that way. Aren’t I a nice guy?

Placing Too Many Demands on
the Carpenter: Overloading
the Constructor

I can draw one more parallel between constructors and other, more normal
member functions in this chapter: Constructors can be overloaded.

224 Part III: Introduction to Classes

Overloading a function means to define two functions with the same short
name but with different types of arguments. See Chapter 6 for the latest news
on function overloading.

C++ chooses the proper constructor based on the arguments in the declara-
tion of the object. For example, the class Student can have all three con-
structors shown in the following snippet at the same time:

//
// OverloadConstructor - provide the class multiple
// ways to create objects by
// overloading the constructor
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <strings.h>

using namespace std;
const int MAXNAMESIZE = 40;
class Student
{
public:
Student()
{

cout << “constructing student no name” << endl;
semesterHours = 0;
gpa = 0.0;
name[0] = ‘\0’;

}
Student(char *pName)
{

cout << “constructing student “ << pName << endl;
strncpy(name, pName, MAXNAMESIZE);
name[MAXNAMESIZE - 1] = ‘\0’;
semesterHours = 0;
gpa = 0;

}
Student(char *pName, int xfrHours, float xfrGPA)
{

cout << “constructing student “ << pName << endl;
strncpy(name, pName, MAXNAMESIZE);
name[MAXNAMESIZE - 1] = ‘\0’;
semesterHours = xfrHours;
gpa = xfrGPA;

}
~Student()
{

cout << “destructing student” << endl;
}

Chapter 17: Making Constructive Arguments 225

protected:
char name[40];
int semesterHours;
float gpa;

};

int main(int argcs, char* pArgs[])
{

// the following invokes three different constructors
Student noName;
Student freshman(“Marian Haste”);
Student xferStudent(“Pikumup Andropov”, 80, 2.5);

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

Because the object noName appears with no arguments, it’s constructed using
the constructor Student::Student(). This constructor is called the default,
or void, constructor. (I prefer the latter name, but the former is the more
common one, so I use it in this book — I’m a slave to fashion.) The freshMan
is constructed using the constructor that has only a char* argument, and the
xferStudent uses the constructor with three arguments.

Notice how similar all three constructors are. The number of semester hours
and the GPA default to zero if only the name is provided. Otherwise, there is
no difference between the two constructors. You wouldn’t need both con-
structors if you could just specify a default value for the two arguments.

C++ enables you to specify a default value for a function argument in the dec-
laration to be used in the event that the argument is not present. By adding
defaults to the last constructor, all three constructors can be combined into
one. For example, the following class combines all three constructors into a
single, clever constructor:

//
// ConstructorWDefaults - multiple constructors can often
// be combined with the definition
// of default arguments
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <strings.h>
using namespace std;

226 Part III: Introduction to Classes

const int MAXNAMESIZE = 40;
class Student

{
public:
Student(char *pName = “no name”,

int xfrHours = 0,
float xfrGPA = 0.0)

{
cout << “constructing student “ << pName << endl;
strncpy(name, pName, MAXNAMESIZE);
name[MAXNAMESIZE - 1] = ‘\0’;
semesterHours = xfrHours;
gpa = xfrGPA;

}
~Student()
{

cout << “destructing student “ << endl;
}

// ...other public members...
protected:
char name[MAXNAMESIZE];
int semesterHours;
float gpa;

};

int main(int argcs, char* pArgs[])
{

// the following invokes three different constructors
Student noName;
Student freshman(“Marian Haste”);
Student xferStudent(“Pikumup Andropov”, 80, 2.5);

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

Now all three objects are constructed using the same constructor; defaults
are provided for nonexistent arguments in noName and freshMan.

In earlier versions of C++, you couldn’t create a default constructor by pro-
viding defaults for all the arguments. The default constructor had to be a
separate explicit constructor. Although this restriction was lifted in the stan-
dard (it seems to have had no good basis), some older compilers may still
impose it.

Chapter 17: Making Constructive Arguments 227

Defaulting Default Constructors
As far as C++ is concerned, every class must have a constructor; otherwise,
you can’t create objects of that class. If you don’t provide a constructor for
your class, C++ should probably just generate an error, but it doesn’t. To pro-
vide compatibility with existing C code, which knows nothing about con-
structors, C++ automatically provides a default constructor (sort of a default
default constructor) that sets all the data members of the object to binary
zero. Sometimes I call this a Miranda constructor — you know, “if you cannot
afford a constructor, a constructor will be provided for you.”

If you define a constructor for your class, any constructor, C++ doesn’t pro-
vide the automatic default constructor. (Having tipped your hand that this
isn’t a C program, C++ doesn’t feel obliged to do any extra work to ensure
compatibility.)

The result is that if you define a constructor for your class but you also want
a default constructor, you must define it yourself. Some code snippets help
demonstrate this point. The following is legal:

class Student
{

// ...all the same stuff as before but no constructors
};

int main(int argcs, char* pArgs[])
{

Student noName;
return 0;

}

The following code snippet does not compile properly:

class Student
{
public:
Student(char *pName);

};

int main(int argcs, char* pArgs[])
{

Student noName;
return 0;

}

The seemingly innocuous addition of the Student(char*) constructor pre-
cludes C++ from automatically providing a Student() constructor with
which to build object noName.

228 Part III: Introduction to Classes

Look again at the way the Student objects
were declared in the ConstructorWDefaults
example:

Student noName;
Student freshMan(“Smell E. Fish”);
Student xfer(“Upp R. Classman”, 80, 2.5);

All Student objects except noName are
declared with parentheses surrounding the

noName
declared without parentheses?

could have declared noName as follows:

Student noName();

Instead of declaring an object noName of class
Student to be constructed with the default

an object of class Student by value. Surprise!

The following two declarations demonstrate
how similar the new C++ format for declaring an
object is to that of declaring a function. (I think
this was a mistake, but what do I know?) The
only difference is that the function declaration
contains types in the parentheses, whereas the
object declaration contains objects:

Student thisIsAFunc(int);
Student thisIsAnObject(10);

retain compatibility with C, C++ chose to make a
declaration with empty parentheses a function.
(A safer alternative would have been to force
the keyword void in the function case, but that
would not have been compatible with existing

Avoiding the “object declaration trap”

arguments to the constructor. Why is

To be neat and consistent, you may think you

Unfortunately, C++ allows a declaration with
only an open and close parentheses. However,
it doesn’t mean what you think it does at all.

constructor, it declares a function that returns

If the parentheses are empty, nothing can dif
ferentiate between an object and a function. To

C programs.)

Constructing Class Members
In the preceding examples, all data members are of simple types, such as int
and float. With simple types, it’s sufficient to assign a value to the variable
within the constructor. Problems arise when initializing certain types of data
members, however.

Constructing a complex data member
Members of a class have the same problems as any other variable. It makes
no sense for a Student object to have some default ID of zero. This is true
even if the object is a member of a class. Consider the following example:

//
// ConstructingMembers - a class may pass along arguments
// to the members’ constructors
//
#include <cstdio>
#include <cstdlib>

Chapter 17: Making Constructive Arguments 229

#include <iostream>
#include <strings.h>
using namespace std;
const int MAXNAMESIZE = 40;

int nextStudentId = 0;
class StudentId
{
public:
StudentId()
{

value = ++nextStudentId;
cout << “Assigning student id “ << value << endl;

}
protected:
int value;

};

class Student
{
public:
Student(char* pName)
{

strncpy(name, pName, MAXNAMESIZE);
name[MAXNAMESIZE - 1] = ‘\0’;
semesterHours = 0;
gpa = 0.0;

}

// ...other public members...
protected:
char name[MAXNAMESIZE];
int semesterHours;
float gpa;
StudentId id;

};

int main(int argcs, char* pArgs[])
{

Student s(“Chester”);

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

A student ID is assigned to each student as the student object is constructed.
In this example, IDs are handed out sequentially using the global variable
nextStudentId to keep track.

This Student class contains a member id of class StudentId. The constructor
for Student can’t assign a value to this id member because Student does not

230 Part III: Introduction to Classes

have access to the protected members of StudentId. You could make Student
a friend of StudentId, but that violates the “you take care of your business,
I’ll take care of mine” philosophy. Somehow, you need to invoke the construc-
tor for StudentId when Student is constructed.

C++ does this for you automatically in this case, invoking the default con-
structor StudentId::StudentId() on id. This occurs after the Student
constructor is called, but before control passes to the first statement in the
constructor. (Single-step the preceding program in the debugger to see what I
mean. As always, be sure that inline functions are forced outline.) Following
is the output that results from executing this program:

assigning student id 1
constructing Student Chester
Press any key to continue . . .

Notice that the message from the StudentId constructor appears before the
output from the Student constructor. (By the way, with all these construc-
tors performing output, you may think that constructors must output some-
thing. Most constructors don’t output a bloody thing.)

If the programmer does not provide a constructor, the default constructor
provided by C++ automatically invokes the default constructors for data
members. The same is true come harvesting time. The destructor for the
class automatically invokes the destructor for data members that have
destructors. The C++-provided destructor does the same.

Okay, this is all great for the default constructor. But what if you want to
invoke a constructor other than the default? Where do you put the object?
For example, assume that a student ID is provided to the Student construc-
tor, which passes the ID to the constructor for class StudentId.

ConstructSeparateID, is on the CD-ROM that accompanies this book):

class Student
{
public:
Student(char *pName = “no name”, int ssId = 0)
{

cout << “constructing student “ << pName << endl;
strncpy(name, pName, MAXNAMESIZE);
name[MAXNAMESIZE - 1] = ‘\0’;
// don’t try this at home kids. It doesn’t work
StudentId id(ssId); // construct a student id

}
protected:
char name[MAXNAMESIZE];
StudentId id;

};

Let me first show you what doesn’t work. Consider the following program
segment (only the relevant parts are included here — the entire program,

Chapter 17: Making Constructive Arguments 231
The constructor for StudentId has been changed to accept a value exter-
nally (the default value is necessary to get the example to compile, for rea-
sons that will become clear shortly). Within the constructor for Student, the
programmer (that’s me) has (cleverly) attempted to construct a StudentId
object named id.

If you look at the output from this program, you notice a problem:

assigning student id 0
constructing student Chester
assigning student id 1234
This message from main
Press any key to continue . . .

The first problem is that the constructor for StudentId appears to be
invoked twice, once with zero and a second time with the expected 1234. Then
you can see that the 1234 object is destructed before the output string in
main(). Apparently the StudentId object is destructed within the Student
constructor.

The explanation for this rather bizarre behavior is clear. The data member id
already exists by the time the body of the constructor is entered. Instead of
constructing the existing data member id, the declaration provided in the
constructor creates a local object of the same name. This local object is
destructed upon returning from the constructor.

//
// ConstructDataMember - construct a data member
// to a value other than the default
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <strings.h>

using namespace std;
const int MAXNAMESIZE = 40;
class StudentId
{
public:
StudentId(int id = 0)
{

value = id;
cout << “assigning student id “ << value << endl;

}

Somehow, you need a different mechanism to indicate “construct the existing
member; don’t create a new one.” This mechanism needs to appear before
the open brace, before the data members are declared. C++ provides a con-
struct for this, as shown in the following ConstructDataMembers program:

232 Part III: Introduction to Classes

protected:
int value;

};

class Student
{
public:
Student(char *pName = “no name”, int ssId = 0)
: id(ssId)

{
cout << “constructing student “ << pName << endl;
strncpy(name, pName, MAXNAMESIZE);
name[MAXNAMESIZE - 1] = ‘\0’;

}
protected:
char name[40];
StudentId id;

};

int main(int argcs, char* pArgs[])
{

Student s(“Chester”, 1234);
cout << “This message from main” << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

Notice in particular the first line of the constructor. Here’s something you
haven’t seen before. The : means that what follows are calls to the construc-
tors of data members of the current class. To the C++ compiler, this line
reads: “Construct the member id using the argument ssId of the Student
constructor. Whatever data members are not called out in this fashion are
constructed using the default constructor.”

This new program generates the expected result:

assigning student id 1234
constructing student Chester
This message from main
Press any key to continue . . .

Constructing a constant data member
A problem also arises when initializing a member that has been declared const.
Remember that a const variable is initialized when it is declared and cannot

Chapter 17: Making Constructive Arguments 233
be changed thereafter. How can the constructor assign a const data member
a value? The problem is solved with the same “colon syntax” used to initialize
complex objects.

class Mammal
{
public:
Mammal(int nof) : numberOfFeet(nof) {}

protected:
const int numberOfFeet;

};

Ostensibly, a given Mammal has a fixed number of feet (barring amputation).
The number of feet can, and should, be declared const. This declaration
assigns a value to the variable numberOfFeet when the object is created. The
numberOfFeet cannot be modified once it’s been declared and initialized.

Programmers commonly use the “colon syntax” to initialize even non-const
data members. Doing so isn’t necessary, but it’s common practice.

Constructing the Order of Construction
When there are multiple objects, all with constructors, programmers usually
don’t care about the order in which things are built. If one or more of the con-
structors has side effects, however, the order can make a difference.

The rules for the order of construction are as follows:

� Local and static objects are constructed in the order in which their dec-
larations are invoked.

� Static objects are constructed only once.

� All global objects are constructed before main().

� Global objects are constructed in no particular order.

� Members are constructed in the order in which they are declared in the
class.

� Destructors are invoked in the reverse order from constructors.

A static variable is a variable that is local to a function but retains its value
from one function invocation to the next. A global variable is a variable
declared outside a function.

Now, consider each of the preceding rules in turn.

234 Part III: Introduction to Classes

Local objects construct in order
Local objects are constructed in the order in which the program encounters
their declaration. Normally, this is the same as the order in which the objects
appear in the function, unless the function jumps around particular declara-
tions. (By the way, jumping around declarations is a bad thing. It confuses the
reader and the compiler.)

Static objects construct only once
Static objects are similar to local variables, except that they are constructed
only once. C++ must wait until the first time control passes through the
static’s before constructing the object. Consider the following trivial
ConstructStatic program:

//
// ConstructStatic - demonstrate that statics are only
// constructed once
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class DoNothing
{
public:

DoNothing(int initial)
{

cout << “DoNothing constructed with a value of “
<< initial
<< endl;

}
};
void fn(int i)
{

cout << “Function fn passed a value of “ << i << endl;
static DoNothing dn(i);

}

int main(int argcs, char* pArgs[])
{

fn(10);
fn(20);
system(“PAUSE”);
return 0;

}

Chapter 17: Making Constructive Arguments 235
Executing this program generates the following results:

Function fn passed a value of 10
DoNothing constructed with a value of 10
Function fn passed a value of 20
Press any key to continue . . .

Notice that the message from the function fn() appears twice, but the mes-
sage from the constructor for DoNothing appears only the first time fn() is
called. This indicates that the object is constructed the first time that fn() is
called, but not thereafter.

All global objects construct before main()
All global variables go into scope as soon as the program starts. Thus, all
global objects are constructed before control is passed to main().

Initializing global variables can cause real debugging headaches. Some debug-
gers try to execute up to main() as soon as the program is loaded and before
they hand over control to the user. This can be a problem because the con-
structor code for all global objects has already been executed by the time
you can wrest control of your program. If one of these constructors has a
fatal bug, you never even get a chance to find the problem. In this case, the
program appears to die before it even starts!

You can approach this problem in several ways. One is to test each construc-
tor on local objects before using it on globals. If that doesn’t solve the prob-
lem, you can try adding output statements to the beginning of all suspected
constructors. The last output statement you see probably came from the
flawed constructor.

Global objects construct
in no particular order
Figuring out the order of construction of local objects is easy. An order is
implied by the flow of control. With globals, no such flow is available to give
order. All globals go into scope simultaneously — remember? Okay, you
argue, why can’t the compiler just start at the top of the file and work its way
down the list of global objects?

That would work fine for a single file (and I presume that’s what most compil-
ers do). Unfortunately, most programs in the real world consist of several files
that are compiled separately and then linked. Because the compiler has no
control over the order in which these files are linked, it cannot affect the order
in which global objects are constructed from file to file.

236 Part III: Introduction to Classes

Most of the time, the order of global construction is pretty ho-hum stuff. Once
in a while, though, global variables generate bugs that are extremely difficult
to track down. (It happens just often enough to make it worth mentioning in
a book.)

Consider the following example:

class Student
{
public:
Student (int id) : studentId(id) {}
const int studentId;

};
class Tutor
{
public:
Tutor(Student& s) : tutoredId(s.studentId) {}
int tutoredId;

};

// set up a student
Student randy(1234);

// assign that student a tutor
Tutor jenny(randy);

Here the constructor for Student assigns a student ID. The constructor for
Tutor records the ID of the student to help. The program declares a student
randy and then assigns that student a tutor jenny.

The problem is that the program makes the implicit assumption that randy is
constructed before jenny. Suppose that it were the other way around. Then
jenny would be constructed with a block of memory that had not yet been
turned into a Student object and, therefore, had garbage for a student ID.

The preceding example is not too difficult to figure out and more than a little
contrived. Nevertheless, problems deriving from global objects being con-
structed in no particular order can appear in subtle ways. To avoid this prob-
lem, don’t allow the constructor for one global object to refer to the contents
of another global object.

Members construct in the order
in which they are declared
Members of a class are constructed according to the order in which they’re
declared within the class. This isn’t quite as obvious as it may sound. Consider
the following example:

Chapter 17: Making Constructive Arguments 237

class Student
{
public:
Student (int id, int age) : sAge(age), sId(id){}
const int sId;
const int sAge;

};

In this example, sId is constructed before sAge, even though sId appears
second in the constructor’s initialization list. The only time you might detect
a difference in the construction order is when both data members are an
instance of a class that has a constructor that has some mutual side effect.

Destructors destruct in the reverse
order of the constructors
Finally, no matter in what order the constructors kick off, you can be assured
that the destructors are invoked in the reverse order. (It’s nice to know that
at least one rule in C++ has no ifs, ands, or buts.)

238 Part III: Introduction to Classes

Chapter 18

Copying the Copy Copy Copy
Constructor

In This Chapter
� Introducing the copy constructor

� Making copies

� Having copies made for you automatically

� Creating shallow copies versus deep copies

� Avoiding all those copies

The constructor is a special function that C++ invokes automatically when
an object is created to allow the object to initialize itself. Chapter 16

introduces the concept of the constructor, whereas Chapter 17 describes
other types of constructors. This chapter examines a particular variation of
the constructor known as the copy constructor.

Copying an Object
A copy constructor is the constructor that C++ uses to make copies of objects.
It carries the name X::X(X&), where X is the name of the class. That is, it’s the
constructor of class X, which takes as its argument a reference to an object of
class X. Now, I know that this sounds really useless, but just give me a chance
to explain why C++ needs such a beastie.

Why you need the copy constructor
Think for a moment about what happens when you call a function like the
following:

void fn(Student fs)
{

// ...same scenario; different argument...

240 Part III: Introduction to Classes

}
int main(int argcs, char* pArgs[])
{

Student ms;
fn(ms);
return 0;

}

In the call to fn(), C++ passes a copy of the object ms and not the object itself.

C++ passes arguments to functions by value.

Now consider what it means to create a copy of an object. First, it takes a
constructor to create an object, even a copy of an existing object. C++ could
copy the object into the new object one byte at a time. That’s what older lan-
guages like C would have done. But what if you don’t want a simple copy of
the object? What if something else is required? (Ignore the “why?” for a little
while.) You need to be able to specify how the copy should be constructed.

Thus, the copy constructor is necessary in the preceding example to create a
copy of the object ms on the stack during the call of function fn(). This par-
ticular copy constructor would be Student::Student(Student&) — say
that three times quickly.

Using the copy constructor
The best way to understand how the copy constructor works is to see one in
action. Consider the following CopyConstructor program:

//
// CopyConstructor - demonstrate an example copy constructor
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

const int MAXNAMESIZE = 40;
class Student
{
public:
// conventional constructor
Student(char *pName = “no name”, int ssId = 0)
{

strcpy(name, pName);
id = ssId;
cout << “constructed “ << name << endl;

}

Chapter 18: Copying the Copy Copy Copy Constructor 241

// copy constructor
Student(Student& s)
{

strcpy(name, “Copy of “);
strcat(name, s.name);
id = s.id;
cout << “constructed “ << name << endl;

}

~Student()
{

cout << “destructing “ << name << endl;
}

protected:
char name[MAXNAMESIZE];
int id;

};

// fn - receives its argument by value
void fn(Student copy)
{

cout << “In function fn()” << endl;
}

int main(int nNumberofArgs, char* pszArgs[])
{

Student chester(“Chester”, 1234);
cout << “Calling fn()” << endl;
fn(chester);
cout << “Returned from fn()” << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

The output from executing this program follows:

constructed Chester
Calling fn()
constructed Copy of Chester
In function fn()
destructing Copy of Chester
Returned from fn()
Press any key to continue . . .

The normal constructor generates the first message from the declaration on
the first line of main(). main() then ouputs the calling... message before
calling fn(). As part of the function call process, C++ invokes the copy con-
structor to make a copy of chester to pass to fn(). The function fn() outputs

242 Part III: Introduction to Classes

the In function... message. The copied Student object copy is destruc-
ted at the return from fn(). The original object, randy, is destructed at the
end of main().

The copy constructor here is flagged with comments to allow you to see the
process. This copy constructor first copies the string Copy of into its name
field. It then copies the name string from the source object s into the current
object. The constructor outputs the resulting name field before returning.

The first line of output shows the chester object being created. The third
line demonstrates the copy Student being generated from the copy con-
structor. Once within the function, it does nothing more than output a mes-
sage. The copy is destructed as part of the return, which generates the
destructing... message.

The Automatic Copy Constructor
Like the default constructor, the copy constructor is important, important
enough that C++ thinks no class should be without one. If you don’t provide
your own copy constructor, C++ generates one for you. (This differs from the
default constructor that C++ provides unless your class has constructors
defined for it.)

The copy constructor provided by C++ performs a member-by-member copy
of each data member. The copy constructor that early versions of C++ pro-
vided performed a bit-wise copy. The difference is that a member-by-member
copy invokes all copy constructors that might exist for the members of the
class, whereas a bit-wise copy does not. You can see the effects of this differ-
ence in the following DefaultCopyConstructor sample program. (I left out the
definition of the Student class to save space — it’s identical to that shown in
the CopyConstructor program. The entire DefaultCopyConstructor program
is included on this book’s CD-ROM.)

//
// DefaultCopyConstructor - demonstrate that the default
// copy constructor invokes the
// copy constructor for any member
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Tutor
{
public:
Tutor(Student& s) : student(s) // invoke copy
{ // constructor on member student

Chapter 18: Copying the Copy Copy Copy Constructor 243

cout << “constructing Tutor object” << endl;
id = 0;

}
protected:
Student student;
int id;

};

void fn(Tutor tutor)
{

cout << “In function fn()” << endl;
}

int main(int argcs, char* pArgs[])
{

Student chester(“Chester”);
Tutor tutor(chester);
cout << “Calling fn()” << endl;
fn(tutor);
cout << “Returned from fn()” << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

Executing this program generates the following output:

constructed Chester
constructed Copy of Chester
constructing Tutor object
Calling fn()
constructed Copy of Copy of Chester
In function fn()
destructing Copy of Copy of Chester
Returned from fn()
Press any key to continue . . .

Constructing the chester object generates the first output message from the
“plain Jane” constructor. The constructor for the tutor object invokes the
Student copy constructor in order to generate its own student data member.
This accounts for the next two lines of output.

The program then passes a copy of the Tutor object to the function fn()
(pronounced “fun,” by the way). Because the Tutor class does not define a
copy constructor, the program invokes the default copy constructor to make
a copy to pass to fn().

The default Tutor copy constructor invokes the copy constructor for each
data member. The copy constructor for the int “class” does nothing more
than copy the value. However, you’ve already seen how the Student copy

244 Part III: Introduction to Classes

constructor works. This is what generates the constructed Copy of Copy
of Chester message. The destructor for the copy is invoked as part of the
return from function fn().

Creating Shallow Copies
versus Deep Copies

Performing a member-by-member copy seems the obvious thing to do in a
copy constructor. Other than adding the capability to tack on silly things
such as “Copy of “ to the front of students’ names, when would you ever
want to do anything but a member-by-member copy?

Consider what happens if the constructor allocates an asset, such as memory
off the heap. If the copy constructor simply makes a copy of that asset with-
out allocating its own, you end up with a troublesome situation: two objects
thinking they have exclusive access to the same asset. This becomes nastier
when the destructor is invoked for both objects and they both try to put the
same asset back. To make this more concrete, consider the following example
class:

//
// ShallowCopy - performing a byte-by-byte (shallow) copy
// is not correct when the class holds assets
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <strings.h>
using namespace std;

class Person
{
public:
Person(char *pN)
{

cout << “constructing “ << pN << endl;
pName = new char[strlen(pN) + 1];
if (pName != 0)
{

strcpy(pName, pN);
}

}
~Person()
{

cout << “destructing “ << pName << endl;
strcpy(pName, “already destructed memory”);
// delete pName;

}

Chapter 18: Copying the Copy Copy Copy Constructor 245

protected:
char *pName;

};

void fn()
{

// create a new object
Person p1(“This_is_a_very_long_name”);

// copy the contents of p1 into p2
Person p2(p1);

}

int main(int argcs, char* pArgs[])
{

cout << “Calling fn()” << endl;
fn();
cout << “Returned from fn()” << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

This program generates the following output:

Calling fn()
constructing This_is_a_very_long_name
destructing This_is_a_very_long_name
destructing already destructed memory
Returned from fn()
Press any key to continue . . .

The constructor for Person allocates memory off the heap to store the
person’s name, rather than put up with some arbitrary limit imposed by a
fixed-length array. However, the destructor copies a message into this memory
buffer rather than put it back on the heap. The main program calls the function
fn(), which creates one person, p1, and then makes a copy of that person, p2.
Both objects are destructed automatically when the program returns from the
function.

Only one constructor output message appears when this program is executed.
That’s not too surprising because the C++ provided copy constructor used to
build p2 performs no output. As p1 and p2 go out of scope, you don’t receive
the two output messages that you might have expected. The first destructor
outputs the expected This_is_a_very_long_name. However, the second
destructor indicates that the memory has already been deleted.

If you really were to delete the name, the program would become unstable after
the second delete and might not even complete properly without crashing.

246 Part III: Introduction to Classes

The constructor is called once and allocates a block of memory off the heap
to hold the person’s name. The copy constructor provided by C++ copies that
address into the new object without allocating a new block.

The problem is shown in Figure 18-1. The object p1 is copied into the new
object p2, but the assets are not. Thus, p1 and p2 end up pointing to the
same assets (in this case, heap memory). This is known as a shallow copy
because it just “skims the surface,” copying the members themselves.

pName pName

pName

heap

memory

heap

memory

p1 p1

p2

Before copy After copy

Figure 18-1:

Shallow

copy of

p1 to p2.

The solution to this problem is demonstrated visually in Figure 18-2. This
figure represents a copy constructor that allocates its own assets to the new
object. The following shows an appropriate copy constructor for class Person,
the type you’ve seen up until now. (This class is embodied in the program
DeepCopy, which is on this book’s CD-ROM.)

class Person
{
public:
Person(char *pN)
{

cout << “constructing “ << pN << endl;
pName = new char[strlen(pN) + 1];
if (pName != 0)
{

strcpy(pName, pN);
}

}
// copy constructor allocates a new heap block

// from the heap
Person(Person& p)
{

cout << “copying “ << p.pName
<< “ into its own block” << endl;

pName = new char[strlen(p.pName) + 1];

Chapter 18: Copying the Copy Copy Copy Constructor 247

if (pName != 0)
{

strcpy(pName, p.pName);
}

}

~Person()
{

cout << “destructing “ << pName << endl;
strcpy(pName, “already destructed memory”);
// delete pName;

}
protected:
char *pName;

};

Here you see that the copy constructor allocates its own memory block for
the name and then copies the contents of the source object name into this
new name block. This is a situation similar to that shown in Figure 18-2. Deep
copy is so named because it reaches down and copies all the assets. (Okay,
the analogy is pretty strained, but that’s what they call it.)

The output from this program is as follows:

Calling fn()
constructing This_is_a_very_long_name
copying This_is_a_very_long_name into its own block
destructing This_is_a_very_long_name
destructing This_is_a_very_long_name
Returned from fn()
Press any key to continue . . .

pName pName

pName

heap

memory

heap

memory

heap

memory

p1 p1

p2

Before copy After copy

Figure 18-2:

Deep copy

of p1 to p2.

248 Part III: Introduction to Classes

The destructor for Person now indicates that the string pointers in p1 and
p2 don’t point to common block of data. (Note, again, that the destructor out-
puts the most helpful “destructing...” message for debug purposes instead of
actually doing anything.

It’s a Long Way to Temporaries
C++ generates a copy of an object to pass to a function by value. (This is
described in the earlier sections of this chapter.) This is the most obvious but
not the only example. C++ creates a copy of an object under other conditions
as well.

Consider a function that returns an object by value. In this case, C++ must
create a copy using the copy constructor. This situation is demonstrated in
the following code snippet:

Student fn(); // returns object by value
int main(int argcs, char* pArgs[])
{
Student s;
s = fn(); // call to fn() creates temporary

// how long does the temporary returned by fn()last?
return 0;

}

The function fn() returns an object by value. Eventually, the returned object
is copied to s, but where does it reside until then?

C++ creates a temporary object into which it stuffs the returned object. “Okay,”
you say. “C++ creates the temporary, but how does it know when to destruct
it?” Good question. In this example, it doesn’t make much difference, because
you’ll be through with the temporary when the copy constructor copies it
into s. But what if s is defined as a reference:

int main(int argcs, char* pArgs[])
{

Student& refS = fn();
// ...now what?...
return 0;

}

It makes a big difference how long temporaries live because refS exists for the
entire function. Temporaries created by the compiler are valid throughout the
extended expression in which they were created and no further.

In the following function, I mark the point at which the temporary is no longer
valid:

Chapter 18: Copying the Copy Copy Copy Constructor 249

Student fn1();
int fn2(Student&);
int main(int argcs, char* pArgs[])
{

int x;
// create a Student object by calling fn1().
// Pass that object to the function fn2().
// fn2() returns an integer that is used in some
// silly calculation.
// All this time the temporary returned from fn1()
// remains valid.
x = 3 * fn2(fn1()) + 10;

// the temporary returned from fn1() is now no longer
valid

// ...other stuff...
return 0;

}

This makes the reference example invalid because the object may go away
before refS does, leaving refS referring to a non-object.

Avoiding temporaries, permanently
It may have occurred to you that all this copying of objects hither and yon
can be a bit time-consuming. What if you don’t want to make copies of every-
thing? The most straightforward solution is to pass objects to functions and
return objects from functions by reference. Doing so avoids the majority of
temporaries.

But what if you’re still not convinced that C++ isn’t out there craftily con-
structing temporaries that you know nothing about? Or what if your class
allocates unique assets that you don’t want copied? What do you do then?

You can add an output statement to your copy constructor. The presence of
this message when you execute the program warns you that a copy has just
been made.

A more crafty approach is to declare the copy constructor protected, as
follows:

class Student
{
protected:
Student(Student&s){}

public:
// ...everything else normal...

};

250 Part III: Introduction to Classes

This precludes any external functions, including C++, from constructing a
copy of your Student objects. (This does not affect the capability of member
functions to create copies.) If no one can invoke the copy constructor, no
copies are being generated. Voilà.

Referring to the copy constructor’s
referential argument
The fact that the copy constructor is used to create temporaries and copies
on the stack answers one pesky detail that may have occurred to you.
Consider the following program:

class Student
{
public:
Student(Student s)
{

// ...whatever...
}

};

void fn(Student fs) {}

void fn()
{

Student ms;
fn(ms);

}

Notice how the argument to the copy constructor is no longer referential. In
fact, such a declaration isn’t even legal. The Dev-C++ compiler generates a hor-
rible list of meaningless error messages in this case. Another public domain
C++ compiler generates the following, much more meaningful error message:

Error: invalid constructor; you probably meant ‘Student
(const Student&)’

Why must the argument to the copy constructor be referential? Consider the
program carefully: When main() calls the function fn(), the C++ compiler uses
the copy constructor to create a copy of the Student object on the stack.
However, the copy constructor itself requires an object of class Student. No
problem, the compiler can invoke the copy constructor to create a Student
object for the copy constructor. But, of course, that requires another call
to the copy constructor, and so it goes until eventually the compiler collapses
in a confused heap of exhaustion.

Chapter 19

Static Members: Can Fabric
Softener Help?

In This Chapter
� How do I declare static member data?

� What about static member functions?

� Why can’t my static member function call my other member functions?

By default, data members are allocated on a “per object” basis. For exam-
ple, each person has his or her own name.

You can also declare a member to be shared by all objects of a class by
declaring that member static. The term static applies to both data members
and member functions, although the meaning is slightly different. This chap-
ter describes these differences, beginning with static data members.

Defining a Static Member
The programmer can make a data member common to all objects of the class
by adding the keyword static to the declaration. Such members are called static
data members (I would be a little upset if they were called something else).

Why you need static members
Most properties are properties of the object. Using the well-worn (one might
say, threadbare) student example, properties such as name, ID number, and
courses are specific to the individual student. However, all students share
some properties — for example, the number of students currently enrolled,
the highest grade of all students, or a pointer to the first student in a linked
list.

252 Part III: Introduction to Classes

It’s easy enough to store this type of information in a common, ordinary,
garden-variety global variable. For example, you could use a lowly int vari-
able to keep track of the number of Student objects. The problem with this
solution is that global variables are outside the class. It’s like putting the volt-
age regulator for my microwave outside the enclosure. Sure, it could be done,
and it would probably work — the only problem is that I wouldn’t be too
happy if my dog got into the wires, and I had to peel him off the ceiling (the
dog wouldn’t be thrilled about it, either).

If a class is going to be held responsible for its own state, objects such as
global variables must be brought inside the class, just as the voltage regula-
tor must be inside the microwave lid, away from prying paws. This is the idea
behind static members.

You may hear static members referred to as class members; this is because all
objects in the class share them. By comparison, normal members are referred
to as instance members, or object members, because each object receives its
own copy of these members.

Using static members
A static data member is one that has been declared with the static storage
class, as shown here:

class Student
{
public:
Student(char *pName = “no name”) : name(pName)
{

noOfStudents++;
}

~Student()
{

noOfStudents--;
}

static int noOfStudents;
string name;

};

Student s1;
Student s2;

The data member noOfStudents is part of the class Student but is not part of
either s1 or s2. That is, for every object of class Student, there is a separate
name, but there is only one noOfStudents, which all Students must share.

Chapter 19: Static Members: Can Fabric Softener Help? 253
“Well then,” you ask, “if the space for noOfStudents is not allocated in any of
the objects of class Student, where is it allocated?” The answer is, “It isn’t.”
You have to specifically allocate space for it, as follows:

int Student::noOfStudents = 0;

This somewhat peculiar-looking syntax allocates space for the static data
member and initializes it to zero. Static data members must be global — a
static variable cannot be local to a function.

The name of the class is required for any member when it appears outside its
class boundaries.

This business of allocating space manually is somewhat confusing until you
consider that class definitions are designed to go into files that are included
by multiple source code modules. C++ has to know in which of those .cpp
source files to allocate space for the static variable. This is not a problem
with non-static variables because space is allocated in each and every object
created.

Referencing static data members
The access rules for static members are the same as the access rules for
normal members. From within the class, static members are referenced like
any other class member. Public static members can be referenced from out-
side the class, whereas well-protected static members can’t. Both types of
reference are shown in the following code snippet:

class Student
{
public:
Student()
{

noOfStudents++; // reference from inside the class
// ...other stuff...

}

static int noOfStudents;
// ...other stuff like before...

};

void fn(Student& s1, Student& s2)
{

// reference public static
cout << “No of students “

<< s1.noOfStudents // reference from outside
<< endl; // of the class

}

254 Part III: Introduction to Classes

In fn(), noOfStudents is referenced using the object s1. But s1 and s2
share the same member noOfStudents. How did I know to choose s1? Why
didn’t I use s2 instead? It doesn’t make any difference. You can reference a
static member using any object of that class, as illustrated here:

// ...class defined the same as before...
void fn(Student& s1, Student& s2)
{

// the following produce identical results
cout << “ Number of students “

<< s1.noOfStudents
<< endl;

cout << “ Number of students “
<< s2.noOfStudents
<< endl;

}

In fact, you don’t need an object at all. You can use the class name directly
instead, if you prefer, as in the following:

// ...class defined the same as before...
void fn(Student& s1, Student& s2)
{
// the following produce identical results
cout << “Number of students “

<< Student::noOfStudents
<< endl;

}

If you do use an object name when accessing a static member, C++ uses only
the declared class of the object.

For example, consider the following case:

class Student
{
public:
static int noOfStudents;
Student& nextStudent();
// ...other stuff the same...

};

void fn(Student& s)
{

cout << s.nextStudent().noOfStudents << “\n”
}

This is a minor technicality, but in the interest of full disclosure: the object
used to reference a static member is not evaluated even if it’s an expression.

The member function nextStudent() is not actually called. All C++ needs to
access noOfStudents is the return type, and it can get that without bothering

Chapter 19: Static Members: Can Fabric Softener Help? 255
to evaluate the expression. This is true even if nextStudent() should do other
things, such as wash windows or shine your shoes. None of those things will
be done. Although the example is obscure, it does happen. That’s what you
get for trying to cram too much stuff into one expression.

Uses for static data members
Static data members have umpteen uses, but let me touch on a few here.
First, you can use static members to keep count of the number of objects
floating about. In the Student class, for example, the count is initialized to
zero, the constructor increments it, and the destructor decrements it. At any
given instant, the static member contains the count of the number of existing
Student objects. Remember, however, that this count reflects the number of
Student objects (including any temporaries) and not necessarily the number
of students.

A closely related use for a static member is as a flag to indicate whether a
particular action has occurred. For example, a class Radio may need to ini-
tialize hardware before sending the first tune command but not before subse-
quent tunes. A flag indicating that this is the first tune is just the ticket. This
includes flagging when an error has occurred.

Another common use is to provide space for the pointer to the first member
of a list — the so-called head pointer (see Chapter 14 if this doesn’t sound
familiar). Static members can allocate bits of common data that all objects in
all functions share (overuse of this common memory is a really bad idea
because doing so makes tracking errors difficult).

Declaring Static Member Functions
Member functions can be declared static as well. Static member functions are
useful when you want to associate an action to a class but you don’t need to
associate that action with a particular object. For example, the member func-
tion Duck::fly() is associated with a particular duck, whereas the rather
more drastic member function Duck::goExtinct() is not.

Like static data members, static member functions are associated with a
class and not with a particular object of that class. This means that, like a ref-
erence to a static data member, a reference to a static member function does
not require an object. If an object is present, only its type is used.

Thus, both calls to the static member function number() in the following
example are legal. This brings us to our first static program — I mean our
first program using static members — CallStaticMember:

256 Part III: Introduction to Classes

//
// CallStaticMember - demonstrate two ways to call a static
// member function
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
public:
Student(char* pN = “no name”)
{

pName = new char[strlen(pN) + 1];
if (pName)
{

strcpy(pName, pN);
}
noOfStudents++;

}
~Student() { noOfStudents--; }
static int number() { return noOfStudents; }

// ...other stuff the same...
protected:
char* pName;
static int noOfStudents;

};
int Student::noOfStudents = 0;

int main(int argcs, char* pArgs[])
{

Student s1(“Chester”);
Student s2(“Scooter”);
cout << “Number of students is “

<< s1.number() << endl;
cout << “Number of students is “

<< Student::number() << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

Notice how the static member function can access the static data member.
On the other hand, a static member function is not directly associated with
an object, so it doesn’t have default access to non-static members. Thus, the
following would not be legal:

Chapter 19: Static Members: Can Fabric Softener Help? 257

class Student
{
public:
// the following is not legal
static char* sName()
{

return pName; // which pName? there’s no object
}

// ...other stuff the same...
protected:
char* pName;
static int noOfStudents;

};

That’s not to say that static member functions have no access to non-static
data members. Consider the following useful function findName() that finds
a specific object in a linked list (see Chapter 14 for an explanation of how
linked lists work). The majority of the code necessary to make the linked list
work is left as an exercise for the reader. Don’t you just hate that phrase? But,
seriously, the linked list code is already in Chapter 14:

class Student
{
public:
Student(char *pName)
{

// ...construct the object and add it to a
// list of Student objects...

}

// findName - return student w/specified name
static Student *findName(char *pName)
{

// ...starting from the first object in the list
// which is pointed at by pHead link through
// the list using pNext until the correct
// object is found...

}

protected:
static Student *pHead;
Student *pNext;
char* pName;

};
Student* Student::pHead = 0;

The function findName() has access to pHead because all objects share it.
Being a member of class Student, findName() also has access to pNext.

258 Part III: Introduction to Classes

This access allows the function to navigate through the list until the matching
object is found. The following shows how such static member functions might
be used:

int main(int argcs, char* pArgs[])
{
Student s1(“Randy”);
Student s2(“Jenny”);
Student s3(“Kinsey”);
Student *pS = Student::findName(“Jenny”);
return 0;

}

What Is This About, Anyway?
It’s time to discuss the this keyword, just for grins. this is a pointer to the
current object within a member function. It’s used when no other object
name is specified. In a normal member function, this is the implied first
argument to the function, as illustrated here:

class SC
{
public:
void nFn(int a); // like SC::nFn(SC *this, int a)
static void sFn(int a); // like SC::sFn(int a)

};

void fn(SC& s)
{

s.nFn(10); // -converts to-> SC::nFn(&s, 10);
s.sFn(10); // -converts to-> SC::sFn(10);

}

That is, the function nFn() is interpreted almost as though it were declared
void SC::nFn(SC *this, int a). The call to nFn() is converted by the
compiler as shown, with the address of s passed as the first argument. (You
can’t actually write the call this way; this is only what the compiler is doing.)

References to other non-static members within SC::nFn() automatically use
the this argument as the pointer to the current object. When SC::sFn() was
called, no object address was passed. Thus, it has no this pointer to use
when referencing non-static functions, which is why I say that a static member
function is not associated with any current object.

Inheritance
Part IV

In this part . . .

In the discussions of object-oriented philosophy in

solutions.

know all about how the darn thing works (which I don’t).

cept known as inheritance, which extends classes.

CD-ROM.

Part III, two main features of real-world solutions
are seemingly not shared by functional programming

The first is the capability of treating objects separately.
I present the example of using a microwave oven to whip
up a snack. The microwave oven provides an interface
(the front panel) that I use to control the oven, without
worrying about its internal workings. This is true even if I

A second aspect of real-world solutions is the capability of
categorizing like objects — recognizing and exploiting
their similarities. If my recipe calls for an oven of any
type, I should be okay because a microwave is an oven.

I already presented the mechanism that C++ uses to imple-
ment the first feature, the class. To support the second
aspect of object-oriented programming, C++ uses a con-

Inheritance is the central topic of this part and the central
message of the BUDGET3 program on the enclosed

Chapter 20

Inheriting a Class
In This Chapter
� Defining inheritance

� Inheriting a base class

� Constructing the base class

� Exploring meaningful relationships: The IS_A versus the HAS_A relationship

This chapter discusses inheritance, the ability of one class to inherit capa-
bilities or properties from another class.

Inheritance is a common concept. I am a human (except when I first wake up
in the morning). I inherit certain properties from the class Human, such as my
ability to converse (more or less) intelligently and my dependence on air,
water, and carbohydrate-based nourishment (a little too dependent on the
latter, I’m afraid). These properties are not unique to humans. The class
Human inherits the dependencies on air, water, and nourishment from the
class Mammal, which inherited it from the class Animal.

The capability of passing down properties is a powerful one. It enables you to
describe things in an economical way. For example, if my son asks, “What’s a
duck?” I can say, “It’s a bird that goes quack.” Despite what you may think,
that answer conveys a considerable amount of information. He knows what a
bird is, and now he knows all those same things about a duck plus the duck’s
additional property of “quackness.” (Refer to Chapter 12 for a further discus-
sion of this and other profound observations.)

Object-oriented (OO) languages express this inheritance relationship by
allowing one class to inherit from another. Thus, OO languages can generate
a model that’s closer to the real world (remember that real-world stuff!) than
the model generated by languages that don’t support inheritance.

C++ allows one class to inherit another class as follows:

class Student
{
};

262 Part IV: Inheritance

class GraduateStudent : public Student
{
};

Here, a GraduateStudent inherits all the members of Student. Thus, a
GraduateStudent IS_A Student. (The capitalization of IS_A stresses the
importance of this relationship.) Of course, GraduateStudent may also con-
tain other members that are unique to a GraduateStudent.

Do I Need My Inheritance?
Inheritance was introduced into C++ for several reasons. Of course, the major
reason is the capability of expressing the inheritance relationship. (I’ll return to
that in a moment.) A minor reason is to reduce the amount of typing. Suppose
that you have a class Student, and you’re asked to add a new class called
GraduateStudent. Inheritance can drastically reduce the number of things
you have to put in the class. All you really need in the class GraduateStudent
are things that describe the differences between students and graduate
students.

This IS_A-mazing

build extensive taxonomies. Fido is a special
case of dog, which is a special case of canine,
which is a special case of mammal, and so it
goes. This shapes our understanding of the
world.

type of) person. Having said this, I already know
a lot of things about students (American stu
dents, anyway). I know they have social secu

daydream about the opposite sex (the male
ones, anyway). I know all these things because
these are properties of all people.

In C++, we say that the class Student inherits
from the class Person. Also, we say that
Person is a of Student, and
Student is a subclass of Person
say that a Student IS_A Person (using all
caps is a common way of expressing this

shares this terminology with other object
oriented languages.

Notice that although Student IS_A Person,
the reverse is not true. A Person IS not a
Student. (A statement like this always refers
to the general case. It could be that a particular
Person is, in fact, a Student.) A lot of people
who are members of class Person are not
members of class Student. In addition, class
Student has properties it does not share with
class Person. For example, Student has a
grade point average, but Person does not.

The inheritance property is transitive. For exam
ple, if I define a new class GraduateStudent
as a subclass of Student, GraduateStudent
must also be Person. It has to be that way:

GraduateStudent IS_A Student and a
Student IS_A Person, a GraduateStudent
IS_A Person.

To make sense of our surroundings, humans

To use another example, a student is a (special

rity numbers, they watch too much TV, and they

base class
. Finally, we

unique relationship — I didn’t make it up). C++

If a

Chapter 20: Inheriting a Class 263
Another minor side effect has to do with software modification. Suppose you
inherit from some existing class. Later, you find that the base class doesn’t do
exactly what the subclass needs. Or, perhaps, the class has a bug. Modifying
the base class might break any code that uses that base class. Creating and
using a new subclass that overloads the incorrect feature solves your prob-
lem without causing someone else further problems.

How Does a Class Inherit?
Here’s the GraduateStudent example filled out into a program
InheritanceExample:

//
// InheritanceExample - demonstrate an inheritance
// relationship in which the subclass
// constructor passes argument information
// to the constructor in the base class
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <strings.h>
using namespace std;

// Advisor - empty class
class Advisor {};

const int MAXNAMESIZE = 40;
class Student
{
public:
Student(char *pName = “no name”)

: average(0.0), semesterHours(0)
{

strncpy(name, pName, MAXNAMESIZE);
name[MAXNAMESIZE - 1] = ‘\0’;
cout << “constructing student “

<< name
<< endl;

}

void addCourse(int hours, float grade)
{

cout << “adding grade to “ << name << endl;
average = (semesterHours * average + grade);
semesterHours += hours;
average = average / semesterHours;

}

264 Part IV: Inheritance

int hours() { return semesterHours;}
float gpa() { return average;}

protected:
char name[MAXNAMESIZE];
int semesterHours;
float average;

};

class GraduateStudent : public Student
{
public:
GraduateStudent(char *pName, Advisor& adv, float qG =

0.0)
: Student(pName), advisor(adv), qualifierGrade(qG)

{
cout << “constructing graduate student “

<< pName
<< endl;

}

float qualifier() { return qualifierGrade; }

protected:
Advisor advisor;
float qualifierGrade;

};

int main(int nNumberofArgs, char* pszArgs[])
{

Advisor advisor;

// create two Student types
Student llu(“Cy N Sense”);
GraduateStudent gs(“Matt Madox”, advisor, 1.5);

// now add a grade to their grade point average
llu.addCourse(3, 2.5);
gs.addCourse(3, 3.0);

// display the graduate student’s qualifier grade
cout << “Matt’s qualifier grade = “

<< gs.qualifier()
<< endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

This program demonstrates the creation and use of two objects, one of class
Student and a second of GraduateStudent. The output of this program is as
follows:

Chapter 20: Inheriting a Class 265

constructing student Cy N Sense
constructing student Matt Madox
constructing graduate student Matt Madox
adding grade to Cy N Sense
adding grade to Matt Madox
Matt’s qualifier grade = 1.5
Press any key to continue . . .

Using a subclass
The class Student has been defined in the conventional fashion. The class
GraduateStudent is a bit different, however; the colon followed by the
phrase public Student at the beginning of the class definition declares
GraduateStudent to be a subclass of Student.

The appearance of the keyword public implies that there is probably pro-
tected inheritance as well. All right, it’s true, but protected inheritance is
beyond the scope of this book.

Programmers love inventing new terms or giving new meaning to existing
terms. Heck, programmers even invent new terms and then give them a
second meaning. Here is a set of equivalent expressions that describes the
same relationship:

� GraduateStudent is a subclass of Student.

� Student is the base class or is the parent class of GraduateStudent.

� GraduateStudent inherits from Student.

� GraduateStudent extends Student.

As a subclass of Student, GraduateStudent inherits all of its members. For
example, a GraduateStudent has a name even though that member is
declared up in the base class. However, a subclass can add its own members,
for example qualifierGrade. After all, gs quite literally IS_A Student plus a
little bit more than a Student.

The main() function declares two objects, llu of type Student and gs of
type GraduateStudent. It then proceeds to access the addCourse() member
function for both types of students. main() then accesses the qualifier()
function that is only a member of the subclass.

Constructing a subclass
Even though a subclass has access to the protected members of the base class
and could initialize them, each subclass is responsible for initializing itself.

266 Part IV: Inheritance

Before control passes beyond the open brace of the constructor for
GraduateStudent, control passes to the proper constructor of Student. If
Student were based on another class, such as Person, the constructor for
that class would be invoked before the Student constructor got control. Like
a skyscraper, the object is constructed starting at the “base”-ment class and
working its way up the class structure one story at a time.

Just as with member objects, you often need to be able to pass arguments to
the base class constructor. The example program declares the subclass con-
structor as follows:

GraduateStudent(char *pName, Advisor& adv, float qG = 0.0)
: Student(pName), advisor(adv), qualifierGrade(qG)

{
// whatever construction code goes here

}

Here the constructor for GraduateStudent invokes the Student construc-
tor, passing it the argument pName. C++ then initializes the members advisor
and qualifierGrade before executing the statements within the construc-
tor’s open and close braces.

The default constructor for the base class is executed if the subclass makes
no explicit reference to a different constructor. Thus, in the following code
snippet the Pig base class is constructed before any members of LittlePig,
even though LittlePig makes no explicit reference to that constructor:

class Pig
{
public:
Pig() : pHouse(null)
{}

protected:
House* pHouse;

};
class LittlePig : public Pig
{
public:
LittlePig(float volStraw, int numSticks, int numBricks)
: straw(volStraw), sticks(numSticks), bricks(numBricks)

{ }

protected:
float straw;
int sticks;
int bricks;

};

Similarly, the copy constructor for a base class is invoked automatically.

Chapter 20: Inheriting a Class 267

Destructing a subclass
Following the rule that destructors are invoked in the reverse order of the
constructors, the destructor for GraduateStudent is given control first. After
it’s given its last full measure of devotion, control passes to the destructor for
Advisor and then to the destructor for Student. If Student were based on a
class Person, the destructor for Person would get control after Student.

This is logical. The blob of memory is first converted to a Student object.
Only then is it the job of the GraduateStudent constructor to transform this
simple Student into a GraduateStudent. The destructor simply reverses
the process.

Having a HAS_A Relationship
Notice that the class GraduateStudent includes the members of class
Student and Advisor, but in a different way. By defining a data member of
class Advisor, you know that a Student has all the data members of an
Advisor within it; however you can’t say that a GraduateStudent is an
Advisor — instead you say that a GraduateStudent HAS_A Advisor.
What’s the difference between this and inheritance?

Use a car as an example. You could logically define a car as being a subclass
of vehicle, so it inherits the properties of other vehicles. At the same time, a
car has a motor. If you buy a car, you can logically assume that you are buying
a motor as well. (Unless you go to the used-car lot where I got my last junk
heap.)

If friends ask you to show up at a rally on Saturday with your vehicle of choice
and you go in your car, they can’t complain (even if someone else shows up
on a bicycle) because a car IS_A vehicle. But, if you appear on foot carrying a
motor, your friends will have reason to laugh at you because a motor is not a
vehicle. A motor is missing certain critical properties that vehicles share —
such as electric clocks that don’t work.

From a programming standpoint, the HAS_A relationship is just as straight-
forward. Consider the following:

class Vehicle {};
class Motor {};
class Car : public Vehicle
{
public:
Motor motor;

};

268 Part IV: Inheritance

void VehicleFn(Vehicle& v);
void MotorFn(Motor& m);

int main(int nNumberofArgs, char* pszArgs[])
{

Car car;
VehicleFn(car); // this is allowed
MotorFn(car); // this is not allowed
MotorFn(car.motor);// this is, however
return 0;

}

The call VehicleFn(c) is allowed because car IS_A vehicle. The call
MotorFn(car) is not because car is not a Motor, even though it contains a
Motor. If the intention was to pass the Motor portion of c to the function, this
must be expressed explicitly, as in the call MotorFn(car.motor).

Chapter 21

Examining Virtual Member
Functions: Are They for Real?

In This Chapter
� Discovering how polymorphism (a.k.a. late binding) works

� Finding out how safe polymorphic nachos are

� Overriding member functions in a subclass

� Checking out special considerations with polymorphism

The number and type of a function’s arguments are included in its full, or
extended, name. This enables you to give two functions the same name as

long as the extended name is different:

void someFn(int);
void someFn(char*);
void someFn(char*, double);

In all three cases the short name for these functions is someFn() (hey! this is
some fun). The extended names for all three differ: someFn(int) versus
someFn(char*), and so on. C++ is left to figure out which function is meant
by the arguments during the call.

The return type is not part of the extended name, so you can’t have two func-
tions with the same extended name that differ only in the type of object they
return.

Member functions can be overloaded. The number of arguments, the type of
arguments and the class name are all part of the extended name.

Inheritance introduces a whole new wrinkle, however. What if a function in a
base class has the same name as a function in the subclass? Consider, for
example, the following simple code snippet:

270 Part IV: Inheritance

class Student
{
public:
float calcTuition();

};
class GraduateStudent : public Student
{
public:
float calcTuition();

};

int main(int argcs, char* pArgs[])
{

Student s;
GraduateStudent gs;
s.calcTuition(); // calls Student::calcTuition()
gs.calcTuition();// calls GraduateStudent::calcTuition()
return 0;

}

As with any overloading situation, when the programmer refers to
calcTuition(), C++ has to decide which calcTuition() is intended.
Obviously, if the two functions differed in the type of arguments, there’s no
problem. Even if the arguments were the same, the class name should be suf-
ficient to resolve the call, and this example is no different. The call
s.calcTuition() refers to Student::calcTuition() because s is
declared locally as a Student, whereas gs.calcTuition() refers to
GraduateStudent::calcTuition().

But what if the exact class of the object can’t be determined at compile time?
To demonstrate how this can occur, change the preceding program in a seem-
ingly trivial way:

//
// OverloadOverride - demonstrate when a function is
// declare-time overloaded vs. runtime
// overridden
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
public:
float calcTuition()
{

cout << “We’re in Student::calcTuition” << endl;
return 0;

}
};

Chapter 21: Examining Virtual Member Functions: Are They for Real? 271

class GraduateStudent : public Student
{
public:
float calcTuition()
{

cout << “We’re in GraduateStudent::calcTuition”
<< endl;

return 0;
}

};

void fn(Student& x)
{

x.calcTuition(); // to which calcTuition() does
// this refer?

}

int main(int nNumberofArgs, char* pszArgs[])
{

// pass a base class object to function
// (to match the declaration)
Student s;
fn(s);

// pass a specialization of the base class instead
GraduateStudent gs;
fn(gs);

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

This program generates the following output:

We’re in Student::calcTuition
We’re in Student::calcTuition
Press any key to continue . . .

Instead of calling calcTuition() directly, the call is now made through an
intermediate function, fn(). Depending on how fn() is called, x can be a
Student or a GraduateStudent. A GraduateStudent IS_A Student.

Refer to Chapter 20 if you don’t remember why a GraduateStudent IS_A
Student.

The argument x passed to fn() is declared to be a reference to Student.

Passing an object by reference can be a lot more efficient than passing it by
value. See Chapter 18 for a treatise on making copies of objects.

272 Part IV: Inheritance

You might want x.calcTuition() to call Student::calcTuition() when x
is a Student but to call GraduateStudent::calcTuition() when x is a
GraduateStudent. It would be really cool if C++ were that smart.

Normally, the compiler decides which function a call refers to at compile
time. When you click the button to tell the C++ compiler to rebuild your exe-
cutable program, the compiler snoops around in your program to decide
which function you mean with every call based on the arguments used.

In the case described here, the declared type of the argument to fn() is not
completely descriptive. Although the argument is declared Student, it may
actually be a GraduateStudent. A decision can’t be made until you’re actu-
ally executing the program (this is known as runtime). Only when the function
is actually called can C++ look at the type of the argument and decide
whether it’s a plain old student or a graduate student.

The type that you’ve been accustomed to until now is called the declared or
compiletime type. The declared type of x is Student in both cases because
that’s what the declaration in fn() says. The other kind is the runtime type.
In the case of the example function fn(), the runtime type of x is Student
when fn() is called with s and GraduateStudent when fn() is called with
gs. Aren’t we having fun?

The capability of deciding at runtime which of several overloaded member
functions to call based on the runtime type is called polymorphism, or late
binding. Deciding which overloaded to call at compile time is called early
binding because that sounds like the opposite of late binding.

Overloading a base class function polymorphically is called overriding the
base class function. This new name is used in order to differentiate this more
complicated case from the normal overload case.

Why You Need Polymorphism
Polymorphism is key to the power of object-oriented programming. It’s so
important that languages that don’t support polymorphism can’t advertise
themselves as OO languages. (I think it’s an FDA regulation — you can’t label
a language that doesn’t support OO unless you add a disclaimer from the
Surgeon General, or something like that.)

Languages that support classes but not polymorphism are called object-based
languages.

Without polymorphism, inheritance has little meaning. Let me spring yet
another example on you to show why. Suppose that I had written a really fab-
ulous program that used some class called, just to pick a name out of the air,

Chapter 21: Examining Virtual Member Functions: Are They for Real? 273
Student. After months of design, coding, and testing, I release this application
to rave reviews from colleagues and critics alike. (There’s even talk of starting
a new Nobel Prize category for software, but I modestly brush such talk aside.)

Time passes and my boss asks me to add to this program the capability
of handling graduate students who are similar but not identical to normal
students. (The graduate students probably claim that they’re not similar
at all.) Now, my boss doesn’t know or care that deep within the program,
someFunction() calls the member function calcTuition(). (There’s a lot
that he doesn’t know or care about, by the way, and that’s a good thing if you
ask me.)

void someFunction(Student& s)
{

// ...whatever it might do...
s.calcTuition();
// ...continues on...

}

If C++ didn’t support late binding, I would need to edit someFunction() to
something like the following to add class GraduateStudent:

#define STUDENT 1
#define GRADUATESTUDENT 2
void someFunction(Student& s)
{

// ...whatever it might do...
// add some member type that indicates
// the actual type of the object
switch (s.type)
{
case STUDENT:
s.Student::calcTuition();
break;

case GRADUATESTUDENT:
s.GraduateStudent::calcTuition();
break;

}
// ...continues on...

}

I would have to add the variable type to the class. I would then add the
assignment type = STUDENT to the constructor for Student and type =
GRADUATESTUDENT to the constructor for GraduateStudent. The value of
type would then indicate the runtime type of s. I would then add the test
shown in the preceding code snippet to every place where an overridden
member function is called.

That doesn’t seem so bad, except for three things. First, this is only one func-
tion. Suppose that calcTuition() is called from a lot of places and suppose

274 Part IV: Inheritance

that calcTuition() is not the only difference between the two classes. The
chances are not good that I will find all the places that need to be changed.

Second, I must edit (read “break”) code that was debugged and working,
introducing opportunities for screwing up. Edits can be time-consuming and
boring, which usually makes my attention drift. Any one of my edits may be
wrong or may not fit in with the existing code. Who knows?

Finally, after I’ve finished editing, redebugging, and retesting everything, I
now have two versions to keep track of (unless I can drop support for the
original version). This means two sources to edit when bugs are found
(perish the thought) and some type of accounting system to keep them
straight.

Then what happens when my boss wants yet another class added? (My boss
is like that.) Not only do I get to repeat the process, but I’ll have three copies
to keep track of.

With polymorphism, there’s a good chance that all I need to do is add the
new subclass and recompile. I may need to modify the base class itself, but at
least it’s all in one place. Modifications to the application code are minimized.

At some philosophical level, there’s an even more important reason for poly-
morphism. Remember how I made nachos in the oven? In this sense, I was
acting as the late binder. The recipe read: Heat the nachos in the oven. It
didn’t read: If the type of oven is microwave, do this; if the type of oven is
conventional, do that; if the type of oven is convection, do this other thing.
The recipe (the code) relied on me (the late binder) to decide what the action
(member function) heat means when applied to the oven (the particular
instance of class Oven) or any of its variations (subclasses), such as a
microwave oven (Microwave). This is the way people think, and designing a
language along the lines of the way people think allows the programming
model to more accurately describe the real world.

How Polymorphism Works
Any given language could support early or late binding upon its whim. Older
languages like C tend to support early binding alone. Recent languages like
Java only support late binding. As a fence straddler between the two, C++
supports both early and late binding.

You may be surprised that the default for C++ is early binding. The reason is
simple, if a little dated. First, C++ has to act as much like C as possible by
default to retain upward compatibility with its predecessor. Second, polymor-
phism adds a small amount of overhead to each and every function call both

Chapter 21: Examining Virtual Member Functions: Are They for Real? 275
in terms of data storage and code needed to perform the call. The founders of
C++ were concerned that any additional overhead would be used as a reason
not to adopt C++ as the system’s language of choice, so they made the more
efficient early binding the default.

One final reason is that it can be useful as a programmer of a given class to
decide whether you want a given member function to be overridden at some
time in the future. This argument is strong enough that Microsoft’s new C#
language also allows the programmer to flag a function as not overridable
(however, the default is overridable).

To make a member function polymorphic, the programmer must flag the
function with the C++ keyword virtual, as shown in the following modifica-
tion to the declaration in the OverloadOveride program:

class Student
{
public:
virtual float calcTuition()
{

cout << “We’re in Student::calcTuition” << endl;
return 0;

}
};

The keyword virtual that tells C++ that calcTuition() is a polymorphic
member function. That is to say, declaring calcTuition() virtual means
that calls to it will be bound late if there is any doubt as to the runtime type
of the object with which calcTuition() is called.

In the example OverloadOverride program at the beginning of this chapter,
fn() is called through the intermediate function test(). When test() is
passed a Base class object, b.fn() calls Base::fn(). But when test() is
passed a SubClass object, the same call invokes SubClass::fn().

Executing the OverloadOveride program with calcTuition() declared vir-
tual generates the following output:

We’re in Student::calcTuition
We’re in GraduateStudent::calcTuition
Press any key to continue . . .

If you’re comfortable with the debugger that comes with your C++ environ-
ment, you really should single-step through this example.

You only need to declare the function virtual in the base class. The “virtual-
ness” is carried down to the subclass automatically. In this book, however,
I follow the coding standard of declaring the function virtual everywhere
(virtually).

276 Part IV: Inheritance

You can also review the program PolymorphicNachos on the enclosed
CD-ROM for a further example of polymorphism.

When Is a Virtual Function Not?
Just because you think that a particular function call is bound late doesn’t
mean that it is. If not declared with the same arguments in the subclasses, the
member functions are not overridden polymorphically, whether or not they
are declared virtual.

One exception to the identical declaration rule is that if the member function
in the base class returns a pointer or reference to a base class object, an
overridden member function in a subclass may return a pointer or reference
to an object of the subclass. In other words, the function makeACopy() is
polymorphic even though the return type of the two functions have a differ-
ent return type:

class Base
{
public:
// return a copy of the current object
Base* makeACopy()
{

// ...do whatever it takes to make a copy
}

};

class SubClass : public Base
{
public:
// return a copy of the current object
SubClass* makeACopy()
{

// ...do whatever it takes to make a copy
};

};

void fn(Base& bc)
{

BaseClass* pCopy = bc.makeACopy();

// proceed on...
}

In practice, this is quite natural. A makeACopy() function should return an
object of type SubClass, even though it might override
BaseClass::makeACopy().

Chapter 21: Examining Virtual Member Functions: Are They for Real? 277

Considering Virtual Considerations
You need to keep in mind a few things when using virtual functions.

First, static member functions cannot be declared virtual. Because static
member functions are not called with an object, there is no runtime object
upon which to base a binding decision.

Second, specifying the class name in the call forces a call to bind early,
whether or not the function is virtual. For example, the following call is to
Base::fn() because that’s what the programmer indicated, even if fn() is
declared virtual:

void test(Base& b)
{
b.Base::fn(); // this call is not bound late

}

Finally, constructors cannot be virtual because there is no (completed)
object to use to determine the type. At the time the constructor is called, the
memory that the object occupies is just an amorphous mass. It’s only after
the constructor has finished that the object is a member of the class in good
standing.

By comparison, the destructor should almost always be declared virtual. If
not, you run the risk of improperly destructing the object, as in the following
circumstance:

class Base
{
public:
~Base();

};

class SubClass : public Base
{
public:
~SubClass();

};

void finishWithObject(Base* pHeapObject)
{

// ...work with object...
// now return it to the heap
delete pHeapObject; // this calls ~Base() no matter

} // the runtime type of
// pHeapObject

278 Part IV: Inheritance

If the pointer passed to finishWithObject() really points to a SubClass,
the SubClass destructor is not invoked properly — because the destructor
has been not been declared virtual, it’s always bound early. Declaring the
destructor virtual solves the problem.

So when would you not want to declare the destructor virtual? There’s only
one case. Virtual functions introduce a “little” overhead. Let me be more spe-
cific. When the programmer defines the first virtual function in a class, C++
adds an additional, hidden pointer — not one pointer per virtual function,
just one pointer if the class has any virtual functions. A class that has no vir-
tual functions (and does not inherit any virtual functions from base classes)
does not have this pointer.

Now, one pointer doesn’t sound like much, and it isn’t unless the following
two conditions are true:

� The class doesn’t have many data members (so that one pointer repre-
sents a lot compared to what’s there already).

� You intend to create a lot of objects of this class (otherwise, the over-
head doesn’t make any difference).

If these two conditions are met and your class doesn’t already have virtual
member functions, you may not want to declare the destructor virtual.

Except for this one case, always declare destructors to be virtual, even if a
class is not subclassed (yet) — you never know when someone will come
along and use your class as the base class for her own. If you don’t declare
the destructor virtual, document it!

Chapter 22

Factoring Classes
In This Chapter
� Factoring common properties into a base class

� Using abstract classes to hold factored information

� Declaring abstract classes

� Inheriting from an abstract class

� Dividing a program into multiple modules using a project file

The concept of inheritance allows one class to inherit the properties of a
base class. Inheritance has a number of purposes, including paying for

my son’s college. It can save programming time by avoiding needless code
repetition. Inheritance allows the program to reuse existing classes in new
applications by overriding functions.

The main benefit of inheritance is the ability to point out the relationship
between classes. This is the so-called IS_A relationship — a MicrowaveOven
IS_A Oven and stuff like that.

Factoring is great stuff if you make the correct correlations. For example, the
microwave versus conventional oven relationship seems natural. Claim that
microwave is a special kind of toaster, and you’re headed for trouble. True,
they both make things hot, they both use electricity, and they’re both found
in the kitchen, but the similarity ends there — a microwave can’t make toast.

Identifying the classes inherent in a problem and drawing the correct rela-
tionships among these classes is a process known as factoring. (The word is
related to the arithmetic that you were forced to do in grade school: factoring
out the Least Common Denominators; for example, 12 is equal to 2 times 2
times 3.)

Factoring
This section describes how you can use inheritance to simplify your programs
using a simple bank account example.

280 Part IV: Inheritance

Suppose that you were asked to a write a simple bank program that imple-
mented the concept of a savings account and a checking account.

Bonus Chapter 1 on the enclosed CD-ROM features the BUDGET programs,
which implement just such a simple bank application.

I can talk until I’m blue in the face about these classes; however, object-
oriented programmers have come up with a concise way to describe the
salient points of a class in a drawing. The Checking and Savings classes
are shown in Figure 22-1. (This is only one of several ways to graphically
express the same thing.)

pFirst

pNext

count

accountNumber

balance

pFirst

pNext

count

accountNumber

balance

noWithdrawals

withdrawal()

deposit()

accountNo()

first()

next()

noAccounts()

withdrawal()

deposit()

accountNo()

first()

next()

noAccounts()

Checking Savings

Figure 22-1:

Independent

classes

Checking

and

Savings.

To read this figure and the other figures, remember the following:

� The big box is the class, with the class name at the top.

� The names in boxes are member functions.

� The names not in boxes are data members.

� The names that extend partway out of the boxes are publicly accessible
members; that is, these members can be accessed by functions that are
not part of the class or any of its descendents. Those members that are
completely within the box are not accessible from outside the class.

� A thick arrow represents the IS_A relationship.

� A thin arrow represents the HAS_A relationship.

A Car IS_A Vehicle, but a Car HAS_A Motor.

You can see in Figure 22-1 that the Checking and Savings classes have a lot
in common. For example, both classes have a withdrawal() and deposit()
member function. Because the two classes aren’t identical, however, they must

Chapter 22: Factoring Classes 281
remain as separate classes. (In a real-life bank application, the two classes
would be a good deal more different than in this example.) Still, there should
be a way to avoid this repetition.

You could have one of these classes inherit from the other. Savings has more
members than Checking, so you could let Savings inherit from Checking.
This arrangement is shown in Figure 22-2. The Savings class inherits all the
members. The class is completed with the addition of the data member
noWithdrawals and by overriding the function withdrawal(). You have to
override withdrawal() because the rules for withdrawing money from a sav-
ings account are different from those for withdrawing money from a checking
account. (These rules don’t apply to me because I don’t have any money to
withdraw anyway.)

pFirst

pNext

count

accountNumber

balance

withdrawal()

deposit()

accountNo()

first()

next()

noAccounts()

Checking

noWithdrawalswithdrawal()

Savings

Figure 22-2:

Savings

imple-

mented as a

subclass of

checking.

Although letting Savings inherit from Checking is laborsaving, it’s not com-
pletely satisfying. The main problem is that it, like the weight listed on my
driver’s license, misrepresents the truth. This inheritance relationship
implies that a savings account is a special type of checking account, which it
is not.

“So what?” you say. “Inheriting works, and it saves effort.” True, but my reser-
vations are more than stylistic trivialities — my reservations are at some of the
best restaurants in town (at least that’s what all the truckers say). Such misrep-
resentations are confusing to the programmer, both today’s and tomorrow’s.

282 Part IV: Inheritance

Someday, a programmer unfamiliar with our programming tricks will have to
read and understand what our code does. Misleading representations are dif-
ficult to reconcile and understand.

In addition, such misrepresentations can lead to problems down the road.
Suppose, for example, that the bank changes its policies with respect to
checking accounts. Say it decides to charge a service fee on checking
accounts only if the minimum balance dips below a given value during the
month.

A change like this can be easily handled with minimal changes to the class
Checking. You’ll have to add a new data member to the class Checking to
keep track of the minimum balance during the month. Let’s go out on a limb
and call it minimumBalance.

But now you have a problem. Because Savings inherits from Checking,
Savings gets this new data member as well. It has no use for this member
because the minimum balance does not affect savings accounts, so it just sits
there. Remember that every checking account object has this extra
minimumBalance member. One extra data member may not be a big deal, but
it adds further confusion.

Changes like this accumulate. Today it’s an extra data member — tomorrow
it’s a changed member function. Eventually, the savings account class is car-
rying a lot of extra baggage that is applicable only to checking accounts.

Now the bank comes back and decides to change some savings account
policy. This requires you to modify some function in Checking. Changes like
this in the base class automatically propagate down to the subclass unless
the function is already overridden in the subclass Savings. For example, sup-
pose that the bank decides to give away toasters for every deposit into the
checking account. (Hey — it could happen!) Without the bank (or its pro-
grammers) knowing it, deposits to checking accounts would automatically
result in toaster donations. Unless you’re very careful, changes to Checking
may unexpectedly appear in Savings.

How can you avoid these problems? Claiming that Checking is a special case
of Savings changes but doesn’t solve our problem. What you need is a third
class (call it Account, just for grins) that embodies the things that are common
between Checking and Savings. This relationship is shown in Figure 22-3.

How does building a new account solve the problems? First, creating a new
account is a more accurate description of the real world (whatever that is). In
our concept of things (or at least in mine), there really is something known as
an account. Savings accounts and checking accounts are special cases of this
more fundamental concept.

Chapter 22: Factoring Classes 283

Figure 22-3:

Basing

Checking

and Savings

on a

common

Account

class.

pFirst

pNext

count

accountNumber

balance

withdrawal()

deposit()

accountNo()

first()

next()

noAccounts()

Account

noWithdrawalswithdrawal()

Savings

minimumBalancewithdrawal()

Checking

In addition, the class Savings is insulated from changes to the class Checking
(and vice versa). If the bank institutes a fundamental change to all accounts,
you can modify Account, and all subclasses will automatically inherit the
change. But, if the bank changes its policy only for checking accounts, you
can modify just the checking account class without modifying Savings.

This process of culling out common properties from similar classes is called
factoring.

Factoring is legitimate only if the inheritance relationship corresponds to
reality. Factoring together a class Mouse and Joystick because they’re both
hardware pointing devices is legitimate. Factoring together a class Mouse and
Display because they both make low-level operating system calls is not.

Factoring can and usually does result in multiple levels of abstraction. For
example, a program written for a more developed bank may have a class
structure such as that shown in Figure 22-4.

Here you see that another class has been inserted between Checking and
Savings and the most general class Account. This class, called Conventional,
incorporates features common to conventional accounts. Other account types,
such as stock market accounts, are also foreseen.

Such multitiered class structures are common and desirable as long as the
relationships they express correspond to reality. Note, however, that no one
correct class hierarchy exists for any given set of classes.

284 Part IV: Inheritance

Figure 22-4:

A more

developed

bank

account

hierarchy.

Account

Conventional

Savings Checking CD 501K

Market

Stock MutualFunds

SpecialChecking

Timed

Suppose that the bank allows account holders to access checking and stock
market accounts remotely. Withdrawals from other account types can be
made only at the bank. Although the class structure in Figure 22-4 seems nat-
ural, the one shown in Figure 22-5 is also justifiable given this information.
The programmer must decide which class structure best fits the data and
leads to the cleanest, most natural implementation.

Account

Figure 22-5:

An alternate

class

hierarchy to

the one in

RemotelyAccessible LocallyAccessible

Stock Checking Market Savings

Figure 224. SpecialChecking CD MutualFunds 501K

Implementing Abstract Classes
As intellectually satisfying as factoring is, it introduces a problem of its own.
Return one more time to the bank account classes, specifically the common
base class Account. Think for a minute about how you might go about defin-
ing the different member functions defined in Account.

Most Account member functions are no problem because both account types
implement them in the same way. Implementing those common functions with
Account::withdrawal() is different, however. The rules for withdrawing from

Chapter 22: Factoring Classes 285
a savings account are different than those for withdrawing from a checking
account. You’ll have to implement Savings::withdrawal() differently than
you do Checking::withdrawal(). But how are you supposed to implement
Account::withdrawal()?

Let’s ask the bank manager for help. I imagine the conversation going some-
thing like the following:

“What are the rules for making a withdrawal from an account?” you ask
expectantly.

“What type of account? Savings or checking?” comes the reply.

“From an account,” you say. “Just an account.”

Blank look. (One might say a “blank bank look” . . . then again, maybe not.)

The problem is that the question doesn’t make sense. There’s no such thing as
“just an account.” All accounts (in this example) are either checking accounts
or savings accounts. The concept of an account is an abstract one that factors
out properties common to the two concrete classes. It is incomplete because
it lacks the critical property withdrawal(). (After you get further into the
details, you may find other properties that a simple account lacks.)

An abstract class is one that only exists in subclasses. A concrete class is a
class that is not abstract. Hardly an abstract concept.

Let me borrow an example from the animal kingdom. You can observe the dif-
ferent species of warm-blooded, baby-bearing animals and conclude that
there is a concept called mammal. You can derive classes from mammal, such
as canine, feline, and hominid. It is impossible, however, to find anywhere on
earth a pure mammal, that is, a mammal that isn’t a member of some sub-
species of mammal. Mammal is a high-level concept that man has created —
no instances of mammal exist.

Note that I can make this assertion confidently although time has passed since
I first wrote this (it took you only a few seconds to get from there to here — I
hope). Scientists discover new animals all the time. One scientist even dis-
covered a new phylum in the 1990s (if you’re a biologist, that’s a big deal).
Not once has a scientist come back and said, “This new thing is a mammal
and nothing more . . . just a mammal.” The problem with a statement like this
is that this animal surely has properties that other mammals don’t share and,
even if doesn’t, there’s a distinct possibility that someone will find such a
property in the future.

C++ supports a concept known as an abstract class to describe an incomplete
concept such as mammal.

286 Part IV: Inheritance

Describing the abstract class concept
An abstract class is a class with one or more pure virtual functions. Oh, great!
That helps a lot.

Okay, a pure virtual function is a virtual member function that is marked as
having no implementation. Most likely it has no implementation because
no implementation is possible with the information provided in the class,
including any base classes.

It doesn’t make sense to ask exactly how to implement the withdrawal()
function in the class Account. However, the concept of a withdrawal from
an account does make sense. The C++ programmer can write a function
withdrawal() that is impossible to implement. Such a function is called
a pure virtual function. (Don’t ask me how they came up with that name.)

The syntax for declaring a function pure virtual is demonstrated in the follow-
ing class Account:

class Account
{
protected:
Account(Account& c); // avoid making any copies

public:
Account(unsigned accNo, float initialBalance = 0.0F);

// access functions
unsigned int accountNo();
float acntBalance();
static int noAccounts();

// transaction functions
void deposit(float amount);

// the following is a pure virtual function
virtual void withdrawal(float amount) = 0;

protected:
// keep accounts in a linked list so there’s no limit
// to the number of accounts
static int count; // number of accounts
unsigned accountNumber;
float balance;

};

// Account - this class is an abstract class

The = 0 after the declaration of withdrawal() indicates that the programmer
does not intend to define this function. The declaration is a placeholder for the
subclasses. The subclasses of Account are expected to override this function

Chapter 22: Factoring Classes 287
with a concrete function. The programmer must provide an implementation
for each member function not declared pure virtual.

I think this notation is silly, and I don’t like it any more than you do. But it’s
here to stay, so you just have to learn to live with it. There is a reason, if not
exactly a justification, for this notation. Every virtual function must have an
entry in a special table. This entry contains the address of the function. The
entry for a pure virtual function is zero. Some other languages define an
abstract keyword — no, I mean a keyword abstract.

An abstract class cannot be instanced with an object; that is, you can’t make
an object out of an abstract class. For example, the following declaration is
not legal:

void fn()
{

// declare an account with 100 dollars
Account acnt(1234, 100.00);// this is not legal
acnt.withdrawal(50); // what would you expect

// this call to do?
}

If the declaration were allowed, the resulting object would be incomplete,
lacking in some capability. For example, what should the preceding call do?
Remember, there is no Account::withdrawal().

Abstract classes serve as base classes for other classes. An Account con-
tains all the properties associated with a generic bank account. You can
create other types of bank accounts by inheriting from Account, but they
can’t be instanced with an object.

Making an honest class out of
an abstract class
The subclass of an abstract class remains abstract until all pure virtual func-
tions have been overridden. The class Savings is not abstract because it
overrides the pure virtual function withdrawal() with a perfectly good defi-
nition. An object of class Savings knows how to perform withdrawal()
when called on to do so. The same is true of class Checking. The class is not
virtual because the function withdrawal() overrides the pure virtual func-
tion in the base class.

A subclass of an abstract class can remain abstract, however. Consider the
following classes:

288 Part IV: Inheritance

class Display
{
public:
virtual void initialize() = 0;
virtual void write(char *pString) = 0;

};

class SVGA : public Display
{
// override both member functions with “real” functions
virtual void initialize();
virtual void write(char *pString);

};

class HWVGA : public Display
{
// override the only function we know how to up until now
virtual void write(char *pString);

};

class ThreedVGA : public HWVGA
{
virtual void initialize();

};

void fn()
{
SVGA mc;
ThreedVGA vga;
// ...what the function chooses to do from here...

}

The class Display, intended to represent video PC displays, has two pure
virtual functions: initialize() and write(). You can’t implement either
function for adapters in general. The different types of video cards do not ini-
tialize or write in the same way.

One of the subclasses, SVGA, is not abstract. This is a particular type of video
adapter that the programmer knows how to program. Therefore, the class
SVGA has overridden both initialize() and write() appropriately for this
adapter.

HWVGA, another one of the subclasses, is also not abstract. Here again, the
programmer knows how to program the accelerated VGA adapter hardware.
In this case, however, a level of abstraction is between the generic Display
and the specific case of the ThreedVGA display, which represents the special
3-D hardware display cards.

For this discussion, assume that all hardware-accelerated VGA cards are writ-
ten to in the same way, but that each must be initialized in its own way. (This

Chapter 22: Factoring Classes 289
isn’t necessarily true, but assume that it is.) To express the common write()
property, introduce the class HWVGA to implement the write() function (along
with any other properties that all HWVGA have in common). Don’t override
the member function initialize(), however, because the different HWVGAs
do not have this property in common.

Therefore, although the function write() has been overridden, the class
HWVGA is still abstract because the initialize() function has yet to be
overridden.

Because ThreedVGA inherits from HWVGA, it has to override only the one miss-
ing member function, initialize(), to complete the definition of Display
adapter. The function fn() is therefore free to instance and use a ThreedVGA
object.

Overriding the last pure virtual function with a normal member function
makes the class complete (that is, non-abstract). Only non-abstract classes
can be instanced with an object.

Passing abstract classes
Because you can’t instance an abstract class, it may sound odd that it’s possi-
ble to declare a pointer or a reference to an abstract class. With polymor-
phism, however, this isn’t as crazy as it sounds. Consider the following code
snippet:

void fn(Account *pAccount); // this is legal
void otherFn()
{

Savings s;
Checking c;

// this is legitimate because Savings IS_A Account
fn(&s);
// same here
fn(&c);

}

Here, pAccount is declared as a pointer to an Account. However, it’s under-
stood that when the function is called, it will be passed the address of some
non-abstract subclass object such as Savings or Checking.

All objects received by fn() will be of either class Savings or class Checking
(or some future non-abstract subclass of Account). The function is assured
that you will never pass an actual object of class Account because you could
never create one to pass in the first place.

290 Part IV: Inheritance

Declaring pure virtual functions —
is it really necessary?
If withdrawal() can’t be defined, why not leave it out? Why not declare the
function in Savings and Checking where it can also be defined and keep it
out of Account? In many object-oriented languages, you can do just that. But
C++ wants to be able to check that you really know what you’re doing.

Remember that declaring a function establishes its extended name including
arguments, whereas a definition includes the code to execute when the func-
tion is called.

I can make the following minor changes to Account to demonstrate the
problem:

class Account
{

// just like before but without
// the declaration of withdrawal()

};

class Savings : public Account
{
public:
virtual void withdrawal(float amnt);

};

void fn(Account *pAcc)
{

// withdraw some money
pAcc->withdrawal(100.00F);

// this call is not allowed
// withdrawal() is not a member
// of class Account

};

int main()
{

Savings s; // open an account
fn(&s);

// ...continues on...
}

Suppose that you open a savings account s. You then pass the address of
that account to the function fn(), which attempts to make a withdrawal.
Because the function withdrawal() is not a member of Account, however,
the compiler generates an error.

Chapter 22: Factoring Classes 291
See how pure virtual functions correct the problem. Here’s the same situation
with Account declared as an abstract class:

class Account
{
public:
// just like preceding
// declare withdrawal pure virtual
virtual void withdrawal(float amnt) = 0;

};

class Savings : public Account
{
public:
virtual void withdrawal(float amnt);

};

void fn(Account *pAcc)
{

// withdraw some money
pAcc->withdrawal(100.00F); // now it works

};

int main()
{

Savings s; // open an account
fn(&s);
// ...same as before...

}

The situation is the same except the class Account includes the member
function withdrawal(). Now when the compiler checks to see whether
pAcc->withdrawal() is defined, it sees the definition of Account::
withdrawal() just as it expects. The compiler is happy. You’re happy.
That makes me happy, too. (Frankly, a football game and a cold beer are
enough to make me happy.)

The pure virtual function is a placeholder in the base class for the subclass
to override with its own implementation. Without that placeholder in the
base class, there is no overriding.

Factoring C++ Source Code
Factoring a problem has a physical side. Classes that have been factored out
of the jumble of separate concepts that make up a program should be moved
into their own “space.”

292 Part IV: Inheritance

The programmer can divide a single program into separate files known as
modules. These individual source files are compiled separately and then com-
bined during the build process to generate a single program. Modules can then
be allocated to separate groups known as namespaces.

The process of combining separately compiled modules into a single exe-
cutable is called linking.

There are a number of reasons to divide programs into more manageable
pieces. First, dividing a program into modules results in a higher level of
encapsulation. Classes wall off their internal members in order to provide a
certain degree of safety. Programs can wall off functions to do the same thing.

Encapsulation is one of the advantages of object-oriented programming.

Second, it is easier to comprehend and, therefore, easier to write and debug a
program that consists of a number of well-thought-out modules than a single
source file full of all of the classes and functions that the program uses.

Next comes reuse. I used the reuse argument to help sell object-based pro-
gramming. It is extremely difficult to keep track of a single class reused
among multiple programs when a separate copy of the class is kept in each
program. It is much better if a single class module is automatically shared
among programs.

Finally, there is the argument of time. A compiler such as Visual C++ or Dev-
C++ doesn’t need very long to build the examples contained in this book using
a high-speed computer like yours. Commercial programs sometimes consist of
millions of source lines of code. Rebuilding a program of that size can take more
than 24 hours. A programmer would not tolerate rebuilding a program like that
for every single change. However, the majority of the time is spent compiling
source files that haven’t changed. It is much faster to recompile just those
modules that have changed and then quickly link all modules together.

Separate namespaces allow a further level of encapsulation. A namespace
should consist of a set of modules that perform a single capability. For example,
all of the mathematical functions might be combined into a Math namespace.

This lesson builds a simplistic program, called SeparateModules, that con-
sists of a Student class, a GraduateStudent subclass, and a main() module
to test both.

Dividing the program — Student
You begin by deciding what the logical divisions of SeparateModules should
be. First, you notice that Student is an entity of its own. It does not depend

Chapter 22: Factoring Classes 293
on any other functions (besides C++ functions). Thus, it would make sense to
put Student in a module by itself. Because the class will be used in several
places, you break the declaration into a student.h file and a separate imple-
mentation file, Student.cpp. By convention, the include file carries the
name of the primary class it defines, but in lowercase letters. Ideally, the
include file defines only one class. This allows the user program to include
just the files that it needs.

Historically, all include files carried the extension .h. This was changed in the
current C++ standard. System include files such as iostream now have no
extension at all. However, many programmers stick with the .h convention
for include files they write. This allows such include files to be easily differen-
tiated by the reader of the program.

The resulting student.h file appears as follows:

// Student - basic student
#ifndef _STUDENT_
#define _STUDENT_

namespace Schools
{

class Student
{
public:
Student(char* pszName, int nID);
virtual char* display();

protected:
// student’s name
char* pszName;
int nID;

};
}
#endif

The #ifndef is a preprocessor control much like #include. #ifndef _
STUDENT_ says to include only the following lines if the argument _STUDENT_
is defined. The first time that student.h is included, _STUDENT_ is not
defined. However, the #define immediately following the #ifndef then
defines it. This has the effect that student.h is processed only once, no
matter how many times it is included in a given file.

Defining a namespace
The second feature of the Student class is the creation of the Schools
namespace.

294 Part IV: Inheritance

A namespace is a collection of loosely coupled classes that are somehow logi-
cally similar. In this case, I intend to throw all classes that I create concerning
students, graduate students, classes, course schedules, and so forth into the
Schools namespace.

The classes that make up the Schools namespace are like members of a
family. One class within a namespace may refer to other members of the
same namespace directly. However, external classes must specify the name-
space. You will see the ways of specifying a class’s namespace in the follow-
ing SeparatedMain application.

Another reason for dividing modules into namespaces is to avoid “name colli-
sion.” For example, the class Grade within the namespace Schools does not
interfere with the class Grade in the namespace FoodProduction.

Implementing Student
I put the implementation of the Student class in the file Student.cpp:

// Student - implement the methods of the Student class
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <string>
#include “student.h”

namespace Schools
{

Student::Student(char* pszNameArg, int nIDArg)
: nID(nIDArg)

{
pszName = new char[strlen(pszNameArg) + 1];
strcpy(pszName, pszNameArg);

}

// display - return a description of student
char* Student::display()
{

// copy the student’s name into a block of heap
// memory that we can return to the caller
char* pReturn = new char[strlen(pszName) + 1];
strcpy(pReturn, pszName);
return pReturn;

}
}

The constructor for Student copies off the name and id provided it. The vir-
tual display() method returns a string that describes the Student object.

Chapter 22: Factoring Classes 295
Compiling the Student.cpp file generates an intermediate file. This interme-
diate file can be combined quickly with other intermediate files to form a
completed executable program.

For historical reasons, this intermediate file carries the extension .o (for
“object file”) in most C++ environments.

Dividing the program — GraduateStudent
The next module that seems quasi-independent is GraduateStudent.
Logically, one could fold the GraduateStudent class into Student.cpp;
however, some programs may want to deal with Student as an abstraction
and not worry about students versus graduate students.

I made the GraduateStudent class as simple as possible. The include file
appears as follows:

// GraduateStudent - a special type of Student
#ifndef _GRADUATE_STUDENT_
#define _GRADUATE_STUDENT_

#include “student.h”
namespace Schools
{

class GraduateStudent : public Student
{
public:
// trivial constructors
GraduateStudent(char* pszName, int nID)

: Student(pszName, nID){}
// demonstration virtual function
virtual char* display();

};
}

#endif

Notice that the graduateStudent.h file includes student.h. This is because
the GraduateStudent class is dependent upon the definition of Student.

The resulting source file implements the display() method, the only
member function that is yet to be implemented:

// GraduateStudent - a special type of Student
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include “graduateStudent.h”

296 Part IV: Inheritance

namespace Schools
{

char* GraduateStudent::display()
{

// get description of basic student
char* pFirst = Student::display();

// we’ll add this text
char* pSecond = “-G”;

// get a new string and tack second onto first
char* pName = new char[strlen(pFirst) +

strlen(pSecond) + 1];
strcpy(pName, pFirst);
strcat(pName, pSecond);

// don’t forget to return the string returned by
// Student::display() to the heap before passing
// our new string to the caller
delete pFirst;
return pName;

}
}

The GraduateStudent version of display() concatenates a “-G” onto the
end of whatever Student returns. It begins by allocating a new character
array that’s large enough to handle the extra information.

Never assume that there’s enough room in the original buffer for any extra
characters to be tacked onto the end.

The program copies the contents of the original string into the newly allo-
cated array. It then appends the “- G”. The display() function must return
the buffer allocated by Student::display() to the heap before continuing.

Forgetting to return buffers to the heap is known as a memory leak. A pro-
gram with memory leaks executes properly at first; however, the program
slows more and more as the available memory is lost to the leaks. The pro-
gram eventually grinds to a halt. Memory leaks are very difficult to find.

Implementing an application
The two classes, Student and GraduateStudent, have been separated into
independent source files and included in the Schools namespace. I wrote the
following very simple application to invoke the two classes:

Chapter 22: Factoring Classes 297

// SeparatedMain - demonstrated an application separated
// into two parts - the main() part
#include <cstdio>
#include <cstdlib>
#include <iostream>

#include “graduateStudent.h”
#include “student.h”

using namespace std;
//using namespace Schools;
using Schools::GraduateStudent;

int main(int nArgc, char* pszArgs[])
{

Schools::Student s(“Sophie Moore”, 1234);
cout << “Student = “ << s.display() << endl;

GraduateStudent gs(“Greg U. Waite”, 5678);
cout << “Student = “ << gs.display() << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

The application includes both the student.h and graduateStudent.h
include files. This gives the application access to the definition of the two
classes.

You might notice that including graduatestudent.h automatically includes
student.h. However, you shouldn’t take it for granted; include student.h if
you access the Student class directly, whether or not you include
graduateStudent.h. The #ifndef, which you installed in student.h, will
make sure that the contents of student.h are not processed twice by the
C++ compiler.

SeparatedMain is not a member of the Schools namespace. When main()
refers to the Student class, C++ does not know whether the programmer
intends to use the Student found in the Schools namespace or a similarly
named class in some other namespace.

main() can completely specify a class without any possibility of ambiguity
because Schools::Student refers specifically to the namespace and class.
Alternatively, the programmer can specify her intentions at the beginning of
the module: The phrase using Schools::GraduateStudent; tells C++ that
any mention to GraduateStudent refers to the Schools namespace.

298 Part IV: Inheritance

The programmer can gain access to all members of the Schools namespace
by adding the command using namespace Schools. The following version of
main() builds successfully:

using namespace Schools;

int main(int nArgc, char* pszArgs[])
{

Student s(“Sophie Moore”, 1234);
cout << “Student = “ << s.display() << endl;

GraduateStudent gs(“Greg U. Waite”, 5678);
cout << “Student = “ << gs.display() << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

statement at the beginning of the

the std namespace.

You began using the using namespace std
book. The modules that make up the Standard C++ Library are members of

Project file
Full of expectation, I open the SeparatedMain.cpp file in the compiler and
click Build. The module compiles properly, but an error occurs during the
linking process. C++ does not know what a Student is. Somehow you have to
tell C++ that the Student.cpp and GraduateStudent.cpp files need to be
linked together with SeparatedMain.cpp to create the program. Most C++
environments, including both Dev-C++ and Visual C++.NET, combine multiple
modules together via a project file.

Dev-C++ and Visual C++ use their own project file formats. The directions for
creating a C++ console application project within Visual Studio.NET is pro-
vided on the enclosed CD-ROM in Bonus Chapter 2.

Creating a project file under Dev-C++
Execute the following steps to create a Dev-C++ project:

1. Choose File➪New➪Project. Select Console Application and type the
name SeparateModules.

You should see the window in Figure 22-6.

Chapter 22: Factoring Classes 299

Figure 22-6:

The New

Project

window

allows the

user to

enter the

name and

type of

project.

2. Click OK.

Dev-C++ opens a file window.

3. Select the directory into which to store the project.

I selected \CPP_Programs\Chap22. Dev-C++ creates a project with a
default initial module main.cpp.

4. Remove main.cpp from the project because you already have a
main() module.

5. Choose Project➪Remove From Project.

6. Select main.cpp and click OK.

7. Copy the files main.cpp, Student.cpp, GraduateStudent.cpp,
student.h, and graduateStudent.h to the Chap22 folder if they
aren’t there already.

8. Choose Project➪Add to Project.

9. Select the entire list of source modules and click OK.

10. Choose Execute➪Rebuild All to compile the modules in the project
and create an executable program.

11. Click the Classes tab in the left window to see a detailed description
of each class in the program, as shown in Figure 22-7.

Make sure that the class browser is enabled and configured properly.

300 Part IV: Inheritance

Figure 22-7:

The classes

tab displays

the

members of

each class.

12. Choose Tools➪Editor options and click the Class browsing tab.

13. Click the Enable Class Browser browser and the options shown in
Figure 22-8.

Notice how the class browser displays each member. Functions display
with their argument types as well as the type of object returned. Notice
also that the class browser shows two display() member functions
under the GraduateStudent class.

Figure 22-8:

The class

browser

options tab

determines

the type of

information

available in

the class

browser.

Chapter 22: Factoring Classes 301
14. Select the first display() entry in the list, the one with the small dia-

mond in front of it.

This opens the Student.cpp file and places the cursor on the display()
member function. Selecting the second display() entry in the class
browser takes the editor to the GraduateStudent::display() member
function.

The properties of the project are initially set to the default. You can
change the settings as follows.

15. Select Project➪Project Options.

For example, select the Linker options under the Compiler tab. Now
make sure that Generate Debugging Information is set to Yes if you
intend to use the Dev-C++ debugger.

I encourage you to break your programs into multiple source files. It simpli-
fies the editing, modifying, and debugging process.

302 Part IV: Inheritance

Optional Features
Part V

In this part . . .

The goal of this book is not to turn you into a C++ lan-
guage lawyer; it’s to give you a solid understanding of

the fundamentals of C++ and object-oriented programming.

The earlier parts in this book cover the essential features
you need to know to produce a well-written, object-oriented
C++ program. C++, however, is a big language (it has a seri-
ous case of feature-itis, if you ask me), and I have yet to
discuss many features such as file input/output and the
Standard Template Library. Part V rights this wrong.

C++ programmers have increasingly come to exploit the
features of this library in the past few years. The BUDGET4
and BUDGET5 programs on the enclosed CD-ROM demon-
strate how.

Chapter 23

A New Assignment Operator,
Should You Decide to Accept It

In This Chapter
� Introduction to the assignment operator

� Why and when the assignment operator is necessary

� Similarities between the assignment operator and the copy constructor

The intrinsic data types are those that are built in the language, such as
int, float, double, and so on, plus the various pointer types. Chapter 3

and Chapter 4 describe the operators that C++ defines for the intrinsic data
types. C++ enables the programmer to define the operators for classes that
the programmer has created in addition to these intrinsic operators. This is
called operator overloading.

Normally, operator overloading is optional and not attempted by beginning
C++ programmers. A lot of experienced C++ programmers (including me)
don’t think operator overloading is such a great idea either. However, you
must figure out how to overload one operator: the assignment operator.

Comparing Operators with Functions
An operator is nothing more than a built-in function with a peculiar syntax.
The following addition

a + b

could be understood as though it were written

operator+(a, b)

306 Part V: Optional Features

C++ gives each operator a function-style name. The functional name of an
operator is the operator symbol preceded by the keyword operator and fol-
lowed by the appropriate argument types. For example, the + operator that
adds an int to an int generating an int is called int operator+(int, int).

Any operator can be defined for a user-defined class. Thus, I could create a
Complex operator*(Complex&, Complex&) that would allow me to multi-
ply two objects of type Complex. The new operator may have the same
semantics as the operator it overloads, but it doesn’t have to. The following
rules apply when overloading operators:

� The programmer cannot overload the ., ::, * (dereference), and &
operators.

� The programmer cannot invent new operators. You cannot invent the
operation x $ y.

� The format of the operators cannot be changed. Thus, you cannot define
an operation %i because % is a binary operator.

� The operator precedence cannot change. A program cannot force
operator+ to be evaluated before operator*.

� The operators cannot be redefined when applied to intrinsic types —
you can’t change the meaning of 1 + 2. Existing operators can be over-
loaded only for newly defined types.

Overloading operators is one of those things that seems like a much better
idea than it really is. In my experience, operator overloading introduces more
problems than it solves, with two notable exceptions that are the subject of
this chapter.

Inserting a New Operator
The insertion and extraction operators << and >> are nothing more than the
left and right shift operators overloaded for a set of input/output classes.
These definitions are found in the include file iostream (which is why
every program includes that file). Thus, cout << “some string” becomes
operator<<(cout, “some string”). Our old friends cout and cin are
predefined objects that are tied to the console and keyboard, respectively.
I discuss this relationship in Chapter 24.

Chapter 23: A New Assignment Operator, Should You Decide to Accept It 307

Creating Shallow Copies
Is a Deep Problem

No matter what anyone may think of operator overloading, you will need to
overload the assignment operator for many classes that you generate. C++
provides a default definition for operator=() for all classes. This default def-
inition performs a member-by-member copy. This works great for an intrinsic
type like an int.

int i;
i = 10; // “member by member” copy

This same default definition is applied to user-defined classes. In the follow-
ing example, each member of source is copied over the corresponding
member in destination.

void fn()
{

MyStruct source, destination;
destination = source;

}

The default assignment operator works for most classes; however, it is not
correct for classes that allocate resources, such as heap memory. The pro-
grammer must overload operator=() to handle the transfer of resources.

The assignment operator is much like the copy constructor. In use, the two
look almost identical:

void fn(MyClass &mc)
{

MyClass newMC(mc); // of course, this uses the
// copy constructor

MyClass newerMC = mc;// less obvious, this also invokes
// the copy constructor

MyClass newestMC; // this creates a default object
newestMC = mc; // and then overwrites it with

// the argument passed
}

The creation of newMC follows the standard pattern of creating a new object as
a mirror image of the original using the copy constructor MyClass(MyClass&).
Not so obvious is that newerMC is also created using the copy constructor.

308 Part V: Optional Features

MyClass a = b is just another way of writing MyClass a(b) — in particular,
this declaration does not involve the assignment operator despite its appear-
ance. However, newestMC is created using the default (void) constructor and
then overwritten by mc using the assignment operator.

Like the copy constructor, an assignment operator should be provided when-
ever a shallow copy is not appropriate. (Chapter 18 discusses shallow versus
deep constructors.) A simple rule is to provide an assignment operator for
classes that have a user-defined copy constructor.

The rule is this: The copy constructor is used when a new object is being cre-
ated. The assignment operator is used if the left-hand object already exists.

Overloading the Assignment Operator
The DemoAssignmentOperator program demonstrates how to provide an
assignment operator. The program also includes a copy constructor to pro-
vide a comparison.

//DemoAssignmentOperator - demonstrate the assignment
// operator on a user defined class
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <string>
using namespace std;

// Name - a generic class used to demonstrate
// the assignment and copy constructor
// operators
class Name
{
public:
Name(char *pszN = 0)
{

copyName(pszN, “”);
}
Name(Name& s)
{

copyName(s.pszName, “ (copy)”);
}
~Name()
{

deleteName();
}

//assignment operator
Name& operator=(Name& s)
{

Chapter 23: A New Assignment Operator, Should You Decide to Accept It 309

//delete existing stuff...
deleteName();
//...before replacing with new stuff
copyName(s.pszName, “ (replaced)”);
//return reference to existing object
return *this;

}

// very simple access function
char* out() { return pszName; }

protected:
void copyName(char* pszN, char* pszAdd);
void deleteName();
char *pszName;

};

//copyName() - allocate heap memory to store name
void Name::copyName(char* pszN, char* pszAdd)
{

pszName = 0;
if (pszN)
{

pszName = new char[strlen(pszN) +
strlen(pszAdd) + 1];

strcpy(pszName, pszN);
strcat(pszName, pszAdd);

}
}

//deleteName() - return heap memory
void Name::deleteName()
{

if (pszName)
{

delete pszName;
pszName = 0;

}
}

int main(int nNumberofArgs, char* pszArgs[])
{

// create two objects
Name n1(“Claudette”);
Name n2(“Greg”);
cout << n1.out() << “ and “

<< n2.out() << “ are newly created objects”
<< endl;

// now make a copy of an object
Name n3(n1);
cout << n3.out() << “ is a copy of “

<< n1.out() << endl;

310 Part V: Optional Features

// create a new object using the “=” format
// for accessing the copy constructor
Name n4 = n1;
cout << n4.out() << “ is also a copy of “

<< n1.out() << endl;

// overwrite n2 with n1
n2 = n1;
cout << n1.out() << “ was assigned to “

<< n2.out() << endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

The class Name contains a pointer to a person’s name, which it allocates from
the heap in the constructor. The constructors and destructor for class Name
are similar to those presented in Chapters 17 and 18. The constructor
Name(char*) copies the name given it to the pszName data member. This
constructor also serves as the default constructor. The copy constructor
Name(&Name) copies the name of the object passed to the name stored in the
current object by calling copyName(). The destructor returns the pszName
character string to the heap by calling deleteName().

The assignment operator=() is a method of the class. It looks to all the world
like a destructor immediately followed by a copy constructor. This is typical.
Consider the assignment in the example n2 = n1. The object n2 already has a
name associated with it (“Greg”). In the assignment, the memory that the orig-
inal name occupies must be returned to the heap by calling deleteName(),
just like a destructor. The assignment operator then invokes copyName() to
copy the new information into the object, much like a copy constructor.

The copy constructor did not need to call deleteName() because the object
didn’t already exist. Therefore, memory had not already been assigned to the
object when the constructor was invoked. The destructor didn’t perform the
copy function.

There are two more details about the assignment operator. First, the return
type of operator=() is Name&. Expressions involving the assignment opera-
tor have a value and a type, both of which are taken from the final value of
the left-hand argument. In the following example, the value of operator=() is
2.0, and the type is double.

double d1, d2;
void fn(double);
d1 = 2.0; // the value of this expression is 2.0

Chapter 23: A New Assignment Operator, Should You Decide to Accept It 311
This is what enables the programmer to write the following:

d2 = d1 = 2.0
fn(d2 = 3.0); // performs the assignment and passes the

// resulting value to fn()

The value of the assignment d1 = 2.0 (2.0) and the type (double) are
passed to the assignment to d2. In the second example, the value of the
assignment d2 = 3.0 is passed to the function fn().

The second detail is that operator=() was written as a member function.
The left-hand argument is taken to be the current object (this). Unlike other
operators, the assignment operator cannot be overloaded with a nonmember
function.

Protecting the Escape Hatch
Providing your class with an assignment operator can add considerable flexi-
bility to the application code. However, if this is too much work or if you don’t
want C++ to make copies of your object, overloading the assignment operator
with a protected function will keep anyone from accidentally making an unau-
thorized member-by-member shallow copy, as illustrated here:

class Name
{
//...just like before...
protected:
// copy constructor
Name(Name&) {}
//assignment operator
Name& operator=(Name& s) { return *this; }

};

With this definition, assignments such as the following are precluded:

void fn(Name &n)
{

Name newN;
newN = n; //generates a compiler error -

//function has no access to op=()
}

This copy protection for classes saves you the trouble of overloading the
assignment operator but reduces the flexibility of your class.

If your class allocates resources such as memory off the heap, you must either
write a satisfactory assignment operator and copy constructor or make both
protected to preclude the default provided by C++ from being used.

312 Part V: Optional Features

Chapter 24

Using Stream I/O
In This Chapter
� Performing input/output

� Rediscovering stream I/O as an overloaded operator

� Using stream file I/O

� Using stream buffer I/O

� Going behind the scenes with manipulators

Programs appearing before this chapter read from the cin input object
and output through the cout output object. Perhaps you haven’t really

thought about it much, but this input/output technique is a subset of what is
known as stream I/O.

In this chapter, I describe stream I/O in more detail. I must warn you that
stream I/O is too large a topic to be covered completely in a single chapter —
entire books are devoted to this one topic. Fortunately for both of us, there
isn’t all that much that you need to know about stream I/O in order to write
the vast majority of programs.

How Stream I/O Works
Stream I/O is based on overloaded versions of operator>>() and
operator<<(). The declaration of these overloaded operators is found in the
include file iostream, which are included in all the programs beginning in
Chapter 1. The code for these functions is included in the standard library,
which your C++ program links with.

The following code shows just a few of the prototypes appearing in
iostream:

//for input we have:
istream& operator>>(istream& source, char *pDest);
istream& operator>>(istream& source, int &dest);
istream& operator>>(istream& source, char &dest);

314 Part V: Optional Features

//...and so forth...

//for output we have:
ostream& operator<<(ostream& dest, char *pSource);
ostream& operator<<(ostream& dest, int source);
ostream& operator<<(ostream& dest, char source);
//...and so it goes...

When overloaded to perform I/O, operator>>() is called the extractor, and
operator<<() is called the inserter. The class istream is the basic class for
input from a file or a device like the keyboard. C++ opens the istream object
cin when the program starts. Similarly, ostream is the basis for file output.
cout is a default ostream object.

// DefaultStreamOutput
#include <iostream>
using namespace std;

void fn(ostream& out)
{

out << “My name is Stephen\n”;
}
int main(int nNumberofArgs, char* pszArgs[])
{

fn(cout);
system(“PAUSE”);
return 0;

}

Take a detailed look at what happens when you write the following code,
which is named DefaultStreamOutput and found on this book’s CD-ROM:

The program passes cout to the function fn(). fn() applies the << operator,
otherwise known as operator<<(). Thus, C++ determines that the best match
is the operator<<(ostream&, char*) function. C++ generates a call to this
function, the so-called char* inserter, passing the function the ostream object
cout and the string “My name is Randy\n” as arguments. That is, it makes
the call operator<<(cout, “My name is Randy\n”). The char* inserter func-
tion, which is part of the standard C++ library, performs the requested output.

The ostream and istream classes form the base of a set of classes that con-
nects the application code with the outside world, including input from and
output to the file system. How did the compiler know that cout is of class
ostream? This and a few other global objects are also declared in iostream.
h. A list is shown in Table 24-1. These objects are constructed automatically
at program startup, before main() gets control. Subclasses of ostream and
istream are used for input and output to files and internal buffers.

Chapter 24: Using Stream I/O 315

Table 24-1 Standard Stream I/O Objects

Object Class Purpose

cin istream Standard input

cout ostream Standard output

cerr ostream Standard error output

clog ostream Standard printer output

The fstream Subclasses
The subclasses ofstream, ifstream, and fstream are defined in the include
file fstream.h to perform stream input and output to a disk file. These three
classes offer a large number of member functions. A complete list is provided
with your compiler documentation, but let me get you started.

Class ofstream, which is used to perform file output, has several construc-
tors, the most useful of which is the following:

ofstream::ofstream(char *pszFileName,
int mode = ios::out,
int prot = filebuff::openprot);

The first argument is a pointer to the name of the file to open. The second
and third arguments specify how the file will be opened. The legal values for
mode are listed in Table 24-2, and those for prot are in Table 24-3. These
values are bit fields that are ORed together (the classes ios and filebuff
are both parent classes of ostream). (See Chapter 4 for an explanation of the
ORing of bit fields.)

The expression ios::out refers to a static data member of the class ios.

Table 24-2 Constants Defined in ios to Control
How Files Are Opened

Flag Meaning

ios::app Append to the end of the line. Generate an error if
the file doesn’t already exist.

ios::ate Append to the end of the file, if it exists.

ios::in Open file for input (implied for istream).

(continued)

316 Part V: Optional Features

Table 24-2 (continued)

Flag Meaning

ios::out Open file for output (implied for ostream).

ios::trunc Truncate file if it exists (default).

ios::noreplace If file does exist, return error.

ios::binary Open file in binary mode (alternative is text mode).

Table 24-3 Values for prot in the ofstream Constructor

Flag Meaning

filebuf::openprot Compatibility sharing mode

filebuf::sh_none Exclusive; no sharing

filebuf::sh_read Read sharing allowed

filebuf::sh_write Write sharing allowed

For example, the following StreamOutput program opens the file MyName.txt
and then writes some important and absolutely true information to that file:

// StreamOutput - simple output to a file
#include <fstream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{

ofstream my(“MyName.txt”);
my << “Stephen Davis is suave and handsome\n”

<< “and definitely not balding prematurely”
<< endl;

system(“PAUSE”);
return 0;

}

The constructor ofstream::ofstream(char*) expects only a filename and
provides defaults for the other file modes. If the file MyName.txt already
exists, it is truncated; otherwise, MyName.txt is created. In addition, the file
is opened in compatibility sharing mode.

Referring to Table 24-2, if I wanted to open the file in binary mode and
append to the end of the file if the file already exists, I would create the

Chapter 24: Using Stream I/O 317
ostream object as follows. (In binary mode, newlines are not converted to
carriage returns and line feeds on output, nor are carriage returns and line
feeds converted back to newlines on input.)

void fn()
{

//open the binary file BINFILE for writing; if it
//exists, append to end of whatever’s already there

ofstream bfile(“BINFILE”, ios::binary | ios::ate);
//...continue on as before...

}

The stream objects maintain state information about the I/O process. The
member function bad() returns a TRUE if something “bad” happens. That neb-
ulous term means that the file couldn’t be opened, some internal object was
messed up, or things are just generally hosed. A lesser error fail() indicates
that either something bad() happened or the last read failed — for example, if
you try to read an int and all the program can find is a character that rates a
fail() but not a bad(). The member function good() returns TRUE if both
bad() and fail() are FALSE. The member function clear() zeros out the
error flag to give you another chance. The following program adds basic error
checking to the StreamOutput program:

// StreamOutputWithErrorChecking - simple output to a file
#include <fstream>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{

const static char fileName[] = “MyName.txt”;
ofstream my(fileName);
if (my.bad()) //if the open didn’t work...
{

cerr << “Error opening file “
<< fileName
<< endl;

return 0; //...output error and quit
}
my << “Stephen Davis is suave and handsome\n”

<< “and definitely not balding prematurely”
<< endl;

if (my.bad())
{

cerr << “Error writing to file “
<< fileName
<< endl;

}
system(“PAUSE”);
return 0;

}

318 Part V: Optional Features

All attempts to output to an ofstream object that has an error have no effect
if my.bad() is true.

This last paragraph is meant quite literally — no output is possible as long as
the internal error state is non-zero. The program won’t even try until you call
clear() to clear the error flags.

The destructor for class ofstream automatically closes the file. In the pre-
ceding example, the file was closed when the function exited.

Class ifstream works much the same way for input, as the following exam-
ple demonstrates:

// StreamInput - simple input from a file using fstream
#include <fstream>
#include <iostream>
using namespace std;

ifstream* openFile()
{

ifstream* pFileStream = 0;
for(;;)
{

// open the file specified by the user
char fileName[80];
cout << “Enter the name of a file with integers” <<

endl;
cin >> fileName;

//open file for reading; don’t create the file
//if it isn’t there
pFileStream = new ifstream(fileName);
if (pFileStream->good())
{

break;
}
cerr << “Couldn’t open “ << fileName << endl;
delete pFileStream;

}
return pFileStream;

}

int main(int nNumberofArgs, char* pszArgs[])
{

// get a file stream
ifstream* pFileStream = openFile();

// stop when no more data in file
while (!pFileStream->eof())
{

// read a value
int nValue = 0;

Chapter 24: Using Stream I/O 319

(*pFileStream) >> nValue;

// stop if the file read failed (probably because
// we ran upon something that’s not an int or
// because we found a new line with nothing after it)
if (pFileStream->fail())
{

break;
}

// output the value just read
cout << nValue << endl;

}

system(“PAUSE”);
return 0;

}

The function openFile() prompts the user for the name of a file to open.
The function creates an ifstream() object with the specified name. Creating
an ifstream object automatically opens the file for input. If the file is opened
properly, the function returns a pointer to the ifstream object to use for
reading. Otherwise, the program deletes the object and tries again. The only
way to get out of the loop is to enter a valid filename or abort the program.

Don’t forget to delete the pFileStream object if the open fails. These are the
sneaky ways that memory leaks creep in.

The program reads integer values from the object pointed at by pFileStream
until either fail() or the program reaches the End-Of-File as indicated by the
member function eof(). An attempt to read an ifstream object that has the
error flag set, indicating a previous error, returns immediately without reading
anything.

Let me warn you one more time: Not only is nothing returned from reading
an input stream that has an error, but also the buffer comes back unchanged.
This program can easily come to the false conclusion that it has just read the
same value it previously read. Furthermore, eof() will never return a true on
an input stream that has an error.

The output from this program appears as follows (I added boldface to my
input):

Enter the name of a file with integers
chicken
Couldn’t open chicken
Enter the name of a file with integers
integers.txt
1
2
3

320 Part V: Optional Features

4
5
6
Press any key to continue . . .

Reading Directly from a Stream
The inserter and extracter operators provide a convenient mechanism for
reading formatted input. However, there are times when you just want to say,
“give it to me, I don’t care what the format is.” There are two methods that are
useful in this context. The function getline() returns a string of characters
up until some terminator — the default is a newline. getline() strips off the
terminator but makes no other attempt to reformat or otherwise interpret the
input.

The member function read() is even more fundamental. This function reads
the number of characters that you specify, or less if the program encounters
an end-of-file. The function gcount() always returns the actual number of
characters read.

The following program uses both getLine() and read() to open a file with
random contents and spit them out to the display.

// FileInput - read blocks of data from a file
#include <fstream>
#include <iostream>
using namespace std;

ifstream* openFile(istream& input)
{

for(;;)
{

// open the file specified by the user
char fileName[80];
cout << “Enter the name of a file” << endl;

// read input from the user in such a way
// that the input can’t overflow the buffer
input.getline(fileName, 80);

//open file for reading; don’t create the file
//if it isn’t there
ifstream* pFileStream = new ifstream(fileName);
if (pFileStream->good())
{

return pFileStream;
}
cerr << “Couldn’t find “ << fileName << endl;

}

Chapter 24: Using Stream I/O 321

return 0;
}

int main(int nNumberofArgs, char* pszArgs[])
{

// get a file stream
ifstream* pFileStream = openFile(cin);

// read blocks of data 80 bytes at a time
char buffer[80];
while (!pFileStream->eof() && pFileStream->good())
{

// read a block - 80 is the max but gcount() returns
// the actual number of bytes read
pFileStream->read(buffer, 80);
int noBytes = pFileStream->gcount();

// do something with the block
for(int i = 0; i < noBytes; i++)
{

cout << buffer[i];
}

}

system(“PAUSE”);
return 0;

}

The FileInput program first invokes openFile() to open a file. This version
demonstrates two interesting aspects. First, the function reads from an
istream object in the same way that it would read from cin. In fact, the
main() function passes the cin object. However, a function that uses an
arbitrary istream object can read from input files without modification.

The openFile() uses the getline() member function to read a string. One
of the arguments to the function is the size of the buffer. getline() will not
read beyond this point. Thus, getline(fileName, 80) reads up to the end
of the line but not more than 80 characters and stores the result into the
character buffer fileName.

Using the getline() function to read keyboard input is safer than using the
extractor when reading into a simple character array — the extractor can
read beyond the end of the array. The getline() function will not read more
than the number of characters you specify.

The main() function reads 80 byte blocks from the file stream object returned
from openFile(). The program checks the actual number of characters read
using the gcount() function. The number returned from gcount() will never
be more than the 80 bytes specified in the call to read() and will only be less
when the program reaches the end-of-file. The program uses the conventional
inserter to display the characters read.

322 Part V: Optional Features

The FileInput program simply outputs the contents of the file that you specify
as shown in the following sample run:

Enter the name of a file
MyName.txt
Stephen Davis is suave and handsome
and definitely not balding prematurely
Press any key to continue . . .

What’s Up with endl?
Most programs in this book terminate an output stream by inserting the
object endl. However, some programs include a \n within the text to output
a newline. What’s the deal?

The \n is, in fact, the newline character. The expression cout << “First
line\nSecond line; outputs two lines. The endl object outputs a newline,
but continues one step further.

Disks are slow devices. Writing to disk more often than necessary will slow
your program down considerably. To avoid this, the fstream class collects
up output into an internal buffer. The class writes the contents to disk when
the buffer is full (this is known as flushing the buffer). The endl object auto-
matically flushes the output buffer. The member function flush() flushes
the output buffer without tacking a newline onto the end.

Using the strstream Subclasses
The stream classes give the programmer mechanisms for easily breaking input
among int, float, and char array variables (among others). A set of so-called
“string stream” classes allow the program to “read” from an array of characters
in memory. The classes istringstream and ostringstream are defined in the
include file sstream.

The older versions of these are classes are istrstream and ostrstream
defined in the include file strstream.

The string stream classes have the same semantics as the corresponding file
based classes. This is demonstrated in the following StringStream program
that parses account information from a file:

// StringStream - read and parse the contents of a file
#include <fstream>
#include <sstream>
#include <iostream>

Chapter 24: Using Stream I/O 323

using namespace std;

// parseAccountInfo - read a passed buffer as if it were
// an actual file - read the following
// format:
// name, account balance
// return true if all worked well
bool parseString(char* pString, char* pName, int arraySize,

long& accountNum, double& balance)
{

// associate an istrstream object with the input
// character string
istringstream inp(pString);

// read up to the comma separator
inp.getline(pName, arraySize, ‘,’);

// now the account number
inp >> accountNum;

// and the balance
inp >> balance;

// return the error status
return !inp.fail();

}

int main(int nNumberofArgs, char* pszArgs[])
{

// get a file stream
ifstream* pFileStream = new ifstream(“Accounts.txt”);
if (!pFileStream->good())
{

cout << “Can’t open Accounts.txt” << endl;
return 0;

}

// read a line out of file, parse it and display results
for(;;)
{

// add a divider
cout << “=============================” << endl;
// read a buffer
char buffer[256];
pFileStream->getline(buffer, 256);
if (pFileStream->fail())
{

break;
}

// parse the individual fields
char name[80];
long accountNum;

324 Part V: Optional Features

double balance;
bool result = parseString(buffer, name, 80,

accountNum, balance);

// output the result
cout << buffer << “\n”;
if (result == false)
{

cout << “Error parsing string\n”;
continue;

}
cout << “name = “ << name << “,”

<< “account = “ << accountNum << “, “
<< “balance = “ << balance << endl;

// put the fields back together in a different
// order (inserting the ‘ends’ makes sure the
// buffer is null terminated
ostringstream out;
out << name << “, “

<< balance << “ “
<< accountNum << ends;

// output the result - istringstream also works with
// the string class but I have been staying with
// character arrays until the discussion of the

templates
string oString = out.str();
cout << oString << “\n” << endl;

}

system(“PAUSE”);
return 0;

}

This program begins by opening a file called Accounts.txt containing
account information in the format of: name, accountNumber, balance,\n.
Assuming that the file was opened successfully, the program enters a loop,
reading lines until the contents of the file are exhausted. The call to get-
line() reads up to the default newline terminator. The program passes the
line just read to the function parseString().

parseString() associates an istringstream object with the character
string. The program reads characters up to the ‘,’ (or the end of the string
buffer) using the getline() member function. The program then uses the
conventional extractors to read accountNum and balance. The reads from
inp will have worked if inp.fail() returns a false.

After the call to parseString(), main() outputs the buffer read from the file
followed by the parsed values. It then uses the ostringstream class to
reconstruct a string object with the same data but a different format.

Chapter 24: Using Stream I/O 325
The result from a sample execution appears as follows:

=============================
Chester, 12345 56.60
name = Chester,account = 12345, balance = 56.6
Chester, 56.6 12345

=============================
Arthur, 34567 67.50
name = Arthur,account = 34567, balance = 67.5
Arthur, 67.5 34567

=============================
Trudie, 56x78 78.90
Error parsing string
=============================
Valerie, 78901 89.10
name = Valerie,account = 78901, balance = 89.1
Valerie, 89.1 78901

=============================
Press any key to continue . . .

Reflect a second before continuing. Notice how the program was able to
resynch itself after the error in the input file. Notice, also, the simplicity of
the heart of the program, the parseString() function. Consider what this
function would look like without the benefit of the istringstream class.

Manipulating Manipulators
You can use stream I/O to output numbers and character strings by using
default formats. Usually the defaults are fine, but sometimes they don’t cut it.

For example, I was less than tickled when the total from the result of a financial
calculation from a recent program appeared as 249.600006 rather than 249.6
(or, better yet, 249.60). There must be a way to bend the defaults to my desires.
True to form, C++ provides not one but two ways to control the format of
output.

Depending on the default settings of your compiler, you may get 249.6 as your
output. Nevertheless, you really want 249.60.

First, you can control the format by invoking a series of member functions on
the stream object. For example, the number of significant digits to display is
set by using the function precision() as follows:

326 Part V: Optional Features

#include <iostream.h>
void fn(float interest, float dollarAmount)
{

cout << “Dollar amount = “;
cout.precision(2);
cout << dollarAmount;
cout.precision(4);
cout << interest
<< “\n”;

}

In this example, the function precision() sets the precision to 2 immedi-
ately before outputting the value dollarAmount. This gives you a number
such as 249.60, the type of result you want. It then sets the precision to 4
before outputting the interest.

A second approach uses what are called manipulators. (Sounds like someone
behind the scenes of the New York Stock Exchange, doesn’t it? Well, manipula-
tors are every bit as sneaky.) Manipulators are objects defined in the include
file iomanip.h to have the same effect as the member function calls. (You must
include iomanip.h to have access to the manipulators.) The only advantage to
manipulators is that the program can insert them directly into the stream
rather than resort to a separate function call.

If you rewrite the preceding example to use manipulators, the program
appears as follows:

#include <iostream.h>
#include <iomanip.h>
void fn(float interest, float dollarAmount)
{

cout << “Dollar amount = “
<< setprecision(2) << dollarAmount
<< setprecision(4) << interest
<< “\n”;

}

The most common manipulators and their corresponding meanings are
shown in Table 24-4.

Table 24-4 Common Manipulators and Stream
Format Control Functions

Manipulator Member Function Description

dec flags(10) Set radix to 10

hex flags(16) Set radix to 16

Chapter 24: Using Stream I/O 327

Manipulator Member Function Description

oct flags(8) Set radix to 8

setfill(c) fill(c) Set the fill character to c

setprecision(c) precision(c) Set display precision to c

setw(n) width(n) Set width of field to n characters*

*This returns to its default value after the next field is output.

Watch out for the width parameter (width() function and setw() manipula-
tor). Most parameters retain their value until they are specifically reset by a
subsequent call, but the width parameter does not. The width parameter is
reset to its default value as soon as the next output is performed. For exam-
ple, you might expect the following to produce two eight-character integers:

#include <iostream.h>
#include <iomanip.h>
void fn()
{

cout << setw(8) // width is 8...
<< 10 //...for the 10, but...
<< 20 //...default for the 20
<< “\n”;

}

What you get, however, is an eight-character integer followed by a two-
character integer. To get two eight-character output fields, the following is
necessary:

#include <iostream.h>
#include <iomanip.h>
void fn()
{

cout << setw(8) // set the width...
<< 10
<< setw(8) //...now reset it
<< 20
<< “\n”;

}

Thus, if you have several objects to output and the default width is not good
enough, you must include a setw() call for each object.

Which way is better, manipulators or member function calls? Member func-
tions provide a bit more control because there are more of them. In addition,
the member functions always return the previous setting so you know how to
restore it (if you want to). Finally, a query version of each member function
exists to enable you to just ask what the current setting is without changing
it, as shown in the following example:

328 Part V: Optional Features

#include <iostream.h>
void fn(float value)
{

int previousPrecision;
// ...doing stuff here...
// you can ask what the current precision is:
previousPrecision = cout.precision();

// or you can save the old value when you change it
previousPrecision = cout.precision(2);
cout << value;

// now restore the precision to previous value
cout.precision(previousPrecision);

//...do more neat stuff...

}

Even with all these features, the manipulators are more common than
member function calls, probably because they look neat. Use whatever you
prefer, but be prepared to see both in other peoples’ code.

Chapter 25

Handling Errors — Exceptions
In This Chapter
� Introducing an exceptional way of handling program errors

� Finding what’s wrong with good ol’ error returns

� Examining throwing and catching exceptions

� Packing more heat into that throw

I know that it’s hard to accept, but occasionally functions don’t work prop-
erly — not even mine. The traditional means of reporting failure is to return

some indication to the caller. C++ includes a new, improved mechanism for cap-
turing and handling errors called exceptions. An exception is “a case in which
a rule or principle does not apply.” Exception is also defined as an objection
to something. Either definition works: An exception is an unexpected (and
presumably objectionable) condition that occurs during the execution of the
program.

The exception mechanism is based on the keywords try, catch, and throw
(that’s right, more variable names that you can’t use). In outline, it works like
this: A function trys to get through a piece of code. If the code detects a prob-
lem, it throws an error indication that the calling function must catch.

The following code snippet demonstrates how that works in 1s and 0s:

//
// FactorialException - demonstrate exceptions using
// a factorial function
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// factorial - compute factorial
int factorial(int n)
{

// you can’t handle negative values of n;
// better check for that condition first
if (n < 0)

330 Part V: Optional Features

{
throw string(“Argument for factorial negative”);

}

// go ahead and calculate factorial
int accum = 1;
while(n > 0)
{

accum *= n;
n--;

}
return accum;

}

int main(int nNumberofArgs, char* pszArgs[])
{

try
{

// this will work
cout << “Factorial of 3 is “ << factorial(3) << endl;

// this will generate an exception
cout << “Factorial of -1 is “ << factorial(-1) <<

endl;

// control will never get here
cout << “Factorial of 5 is “ << factorial(5) << endl;

}
// control passes here
catch(string error)
{

cout << “Error occurred: “ << error << endl;

}
catch(...)
{

cout << “Default catch “ << endl;
}

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

main() starts out by creating a block outfitted with the try keyword. Within
this block, it can proceed on the way it would if the block were not present.
In this case, main() attempts to calculate the factorial of a negative number.
Not to be hoodwinked, the clever factorial() function detects the bogus
request and throws an error indication using the throw keyword. Control
passes to the catch phrase, which immediately follows the closing brace of
the try block. The second call to factorial() is not performed.

Chapter 25: Handling Errors — Exceptions 331

Justifying a New Error Mechanism?
What’s wrong with error returns like FORTRAN used to make? Factorials cannot
be negative, so I could have said something like “Okay, if factorial() detects
an error, it returns a negative number. The actual value indicates the source of
the problem.” What’s wrong with that? That’s how it’s been accomplished for
ages.

Unfortunately, several problems arise. First, although it’s true that the result
of a factorial can’t be negative, other functions aren’t so lucky. For example,
you can’t take the log of a negative number either, but the negative return
value trick won’t work here — logarithms can be either negative or positive.

Second, there’s just so much information that you can store in an integer.
Maybe you can have –1 for “argument is negative” and –2 for “argument is too
large.” But, if the argument is too large, you want to know what the argument
is, because that information might help you debug the problem. There’s no
place to store that type of information.

Third, the processing of error returns is optional. Suppose someone writes
factorial() so that it dutifully checks the argument and returns a negative
number if the argument is out of range. If a function that calls factorial()
doesn’t check the error return, returning an error value doesn’t do any good.
Sure, you can make all kinds of menacing threats, such as “You will check
your error returns or else,” and the programmer may have the best of inten-
tions, but you all know that people get lazy and return to their old, non-error-
checking ways.

Even if you do check the error return from factorial() or any other func-
tion, what can the function do with the error? It can probably do nothing
more than output an error message of your own and return another error
indication to the caller, which probably does the same. Pretty soon, all code
begins to have the following appearance:

// call some function, check the error return, handle it,
// and return
errRtn = someFunc();
if (errRtn)
{
errorOut(“Error on call to someFunc()”);
return MY_ERROR_1;

}
errRtn = someOtherFunc();
if (errRtn)
{
errorOut(“Error on call to someOtherFunc()”);
return MY_ERROR_1;

}

332 Part V: Optional Features

This mechanism has several problems:

� It’s highly repetitive.

� It forces the user to invent and keep track of numerous error return
indications.

� It mixes the error-handling code into the normal code flow, thereby
obscuring the normal, non-error path.

These problems don’t seem so bad in this simple example, but they become
increasingly worse as the calling code becomes more complex. The result is
that error-handling code doesn’t get written to handle all the conditions that
it should.

The exception mechanism addresses these problems by removing the error
path from the normal code path. Furthermore, exceptions make error han-
dling obligatory. If your function doesn’t handle the thrown exception, control
passes up the chain of called functions until C++ finds a function to handle the
error. This also gives you the flexibility to ignore errors that you can’t do any-
thing about anyway. Only the functions that can actually correct the problem
need to catch the exception.

Examining the Exception Mechanism
Take a closer look at the steps that the code goes through to handle an excep-
tion. When the throw occurs, C++ first copies the thrown object to some neu-
tral place. It then begins looking for the end of the current try block.

If a try block is not found in the current function, control passes to the calling
function. A search is then made of that function. If no try block is found there,
control passes to the function that called it, and so on up the stack of calling
functions. This process is called unwinding the stack.

An important feature of stack unwinding is that as each stack is unwound,
objects that go out of scope are destructed just as though the function had
executed a return statement. This keeps the program from losing assets or
leaving objects dangling.

When the encasing try block is found, the code searches the first catch phrase
immediately following the closing brace of the catch block. If the object thrown
matches the type of argument specified in the catch statement, control passes
to that catch phrase. If not, a check is made of the next catch phrase. If no
matching catch phrases are found, the code searches for the next higher level
try block in an ever-outward spiral until an appropriate catch can be found. If
no catch phrase is found, the program is terminated.

Chapter 25: Handling Errors — Exceptions 333
Consider the following example:

// CascadingException - note that the following program
// may generate warnings because the
// variables f, i and pMsg
// are not used for anything - the
// compiler is trying to give you a
// hint that maybe you don’t
// need the arguments at all
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Obj
{
public:
Obj(char c)
{

label = c;
cout << “Constructing object “ << label << endl;

}
~Obj()
{

cout << “Destructing object “ << label << endl;
}

protected:
char label;

};

void f1();
void f2();
int f3()
{

Obj a(‘a’);
try
{

Obj b(‘b’);
f1();

}
catch(float f)
{

cout << “Float catch” << endl;
}
catch(int i)
{

cout << “Int catch” << endl;
}
catch(...)
{

cout << string(“Generic catch”) << endl;
}

}

334 Part V: Optional Features

int main(int nNumberofArgs, char* pszArgs[])
{

f3();

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

void f1()
{

try
{

Obj c(‘c’);
f2();

}
catch(string msg)
{

cout << “String catch” << endl;
}

}
void f2()
{

Obj d(‘d’);
throw 10;

}

The output from executing this program appears as follows:

Constructing object a
Constructing object b
Constructing object c
Constructing object d
Destructing object d
Destructing object c
Destructing object b
Int catch
Destructing object a
Press any key to continue . . .

First, you see the four objects a, b, c, and d being constructed as control
passes through each declaration before f2() throws the int 10. Because no
try block is defined in f2(), C++ unwinds f2()’s stack, causing object d to be
destructed. f1() defines a try block, but its only catch phrase is designed to
handle char*, which doesn’t match the int thrown. Therefore, C++ continues
looking. This unwinds f1()’s stack, resulting in object c being destructed.

Back in f3(), C++ finds another try block. Exiting that block causes object b to
go out of scope. The first catch phrase is designed to catch floats that don’t

Chapter 25: Handling Errors — Exceptions 335
match the int, so it’s skipped. The next catch phrase matches the int exactly,
so control stops there. The final catch phrase, which would catch any object
thrown, is skipped because a matching catch phrase was already found.

What Kinds of Things Can I Throw?
The thing following the throw keyword is actually an expression that creates
an object of some kind. In the examples so far, I’ve thrown an int and a string
object, but throw can handle any type of object. This means that you can
throw almost as much information as you want. Consider the following update
to the factorial program, CustomExceptionClass:

//
// CustomExceptionClass - demonstrate exceptions using
// a factorial function
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <sstream>
using namespace std;

// Exception - generic exception handling class
class Exception
{
public:
Exception(char* pMsg, int n, char* pFile, int nLine)
: msg(pMsg), errorValue(n), file(pFile), lineNum(nLine)

{}

virtual string display()
{

ostringstream out;
out << “Error <” << msg

<< “ - value is “ << errorValue
<< “>\n”;

out << “ @” << file << “-” << lineNum << endl;
return out.str();

}
protected:
// error message
string msg;
int errorValue;

// file name and line number where error occurred
string file;
int lineNum;

};

// factorial - compute factorial

336 Part V: Optional Features

int factorial(int n)
{

// you can’t handle negative values of n;
// better check for that condition first
if (n < 0)
{

throw Exception(“Argument for factorial negative”,
n, __FILE__, __LINE__);

}

// go ahead and calculate factorial
int accum = 1;
while(n > 0)
{

accum *= n;
n--;

}
return accum;

}

int main(int nNumberofArgs, char* pszArgs[])
{

try
{

// this will work
cout << “Factorial of 3 is “ << factorial(3) << endl;

// this will generate an exception
cout << “Factorial of -1 is “ << factorial(-1) <<

endl;
}
// control passes here
catch(Exception e)
{

cout << “Error occurred: \n” << e.display() << endl;
}

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

This program appears much the same as the factorial program at the beginning
of this chapter. The difference is the use of a user-defined Exception class that
contains more information concerning the nature of the error than a simple
string contains. The factorial program is able to throw the error message, the
illegal value, and the exact location where the error occurred.

__FILE__ and __LINE__ are intrinsic #defines that are set to the name of the
source file and the current line number in that file, respectively.

Chapter 25: Handling Errors — Exceptions 337
The catch snags the Exception object and then uses the built-in display()
member function to display the error message. The output from this program
appears as follows:

Factorial of 3 is 6
Error occurred:
Error <Argument for factorial negative - value is -1>
@//cpp_programs/Chap25/CustomExceptionClass.cpp-46

Press any key to continue . . .

The Exception class represents a generic error-reporting class. However,
you can inherit from this class to provide further detail for a particular type
of error. For example, I can define an InvalidArgumentException class that
stores the value of the invalid argument in addition to the message and loca-
tion of the error:

class InvalidArgumentException : public Exception
{
public:
InvalidArgumentException(int arg,

char* pFile,
int nLine)

: Exception(“Invalid argument”, pFile, nLine)
{

invArg = arg;
}

virtual void display(ostream& out)
{

Exception::display(out);
out << “Argument was “ << invArg << endl;

}

protected:
int invArg;

};

The calling function automatically handles the new InvalidArgument
Exception because an InvalidArgumentException is an Exception and
the display() member function is polymorphic.

338 Part V: Optional Features

Chapter 26

Inheriting Multiple Inheritance
In This Chapter
� Introducing multiple inheritance

� Avoiding ambiguities with multiple inheritance

� Avoiding ambiguities with virtual inheritance

� Figuring out the ordering rules for multiple constructors

� Getting a handle on problems with multiple inheritance

In the class hierarchies discussed in other chapters, each class has inher-
ited from a single parent. Such single inheritance is sufficient to describe

most real-world relationships. Some classes, however, represent the blending
of two classes into one. (Sounds sort of romantic, doesn’t it.)

An example of such a class is the sleeper sofa. As the name implies, it is a sofa
and a bed (although not a very comfortable bed). Thus, the sleeper sofa should
be allowed to inherit bed-like properties. To address this situation, C++ allows a
derived class to inherit from more than one base class. This is called multiple
inheritance.

Describing the Multiple
Inheritance Mechanism

To see how multiple inheritance works, look at the sleeper sofa example.
Figure 26-1 shows the inheritance graph for class SleeperSofa. Notice how
this class inherits from class Sofa and from class Bed. In this way, it inherits
the properties of both.

340 Part V: Optional Features

weightwatchTV()

Sofa

foldOut()

SleeperSofa

weightsleep()

Bed

Figure 26-1:

Class

hierarchy of

a sleeper

sofa.

The code to implement class SleeperSofa looks like the following:

//
// MultipleInheritance - a single class can inherit from
// more than one base class
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Bed
{
public:
Bed(){}
void sleep(){ cout << “Sleep” << endl; }
int weight;

};

class Sofa
{
public:
Sofa(){}
void watchTV(){ cout << “Watch TV” << endl; }
int weight;

};

// SleeperSofa - is both a Bed and a Sofa
class SleeperSofa : public Bed, public Sofa
{
public:
SleeperSofa(){}
void foldOut(){ cout << “Fold out” << endl; }

};

Chapter 26: Inheriting Multiple Inheritance 341

int main(int nNumberofArgs, char* pszArgs[])
{

SleeperSofa ss;

// you can watch TV on a sleeper sofa like a sofa...
ss.watchTV(); // Sofa::watchTV()

//...and then you can fold it out...
ss.foldOut(); // SleeperSofa::foldOut()

// ...and sleep on it
ss.sleep();

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

Here the class SleeperSofa inherits from both Bed and Sofa. This is
apparent from the appearance of both classes in the class declaration.
SleeperSofa inherits all the members of both base classes. Thus, both of the
calls ss.sleep() and ss.watchTV() are legal. You can use a SleeperSofa as
a Bed or a Sofa. Plus the class SleeperSofa can have members of its own,
such as foldOut(). The output of this program appears as follows:

Watch TV
Fold out
Sleep
Press any key to continue . . .

Is this a great country or what?

Straightening Out Inheritance
Ambiguities

Although multiple inheritance is a powerful feature, it introduces several possi-
ble problems. One is apparent in the preceding example. Notice that both Bed
and Sofa contain a member weight. This is logical because both have a mea-
surable weight. The question is, “Which weight does SleeperSofa inherit?”

The answer is “both.” SleeperSofa inherits a member Bed::weight and a
separate member Sofa::weight. Because they have the same name, unqual-
ified references to weight are now ambiguous. This is demonstrated in the
following snippet:

342 Part V: Optional Features

#include <iostream.h>

void fn()
{

SleeperSofa ss;
cout << “weight = “

<< ss.weight // illegal - which weight?
<< “\n”;

}

The program must now indicate one of the two weights by specifying the
desired base class. The following code snippet is correct:

#include <iostream.h>
void fn()
{

SleeperSofa ss;
cout << “sofa weight = “

<< ss.Sofa::weight // specify which weight
<< “\n”;

}

Although this solution corrects the problem, specifying the base class in the
application function isn’t desirable because it forces class information to leak
outside the class into application code. In this case, fn() has to know that
SleeperSofa inherits from Sofa. These types of so-called name collisions
weren’t possible with single inheritance but are a constant danger with multi-
ple inheritance.

Adding Virtual Inheritance
In the case of SleeperSofa, the name collision on weight was more than a
mere accident. A SleeperSofa doesn’t have a bed weight separate from its
sofa weight. The collision occurred because this class hierarchy does not
completely describe the real world. Specifically, the classes have not been
completely factored.

Thinking about it a little more, it becomes clear that both beds and sofas are
special cases of a more fundamental concept: furniture. (I suppose I could get
even more fundamental and use something like object with mass, but furni-
ture is fundamental enough.) Weight is a property of all furniture. This rela-
tionship is shown in Figure 26-2.

Chapter 26: Inheriting Multiple Inheritance 343

watchTV()

Sofa

foldOut()

SleeperSofa

Furniture

sleep()

Bed

weight

Figure 26-2:

Further

factoring of

beds and

sofas (by

weight).

Factoring out the class Furniture should relieve the name collision. With
much relief and great anticipation of success, I generate the C++ class hierar-
chy shown in the following program, MultipleInheritanceFactoring:

//
// MultipleInheritanceFactoring - a single class can
// inherit from more than one base class
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// Furniture - more fundamental concept; this class
// has “weight” as a property
class Furniture
{
public:
Furniture(int w) : weight(w) {}
int weight;

};

class Bed : public Furniture

344 Part V: Optional Features

{
public:
Bed(int weight) : Furniture(weight) {}
void sleep(){ cout << “Sleep” << endl; }

};

class Sofa : public Furniture
{
public:
Sofa(int weight) : Furniture(weight) {}
void watchTV(){ cout << “Watch TV” << endl; }

};

// SleeperSofa - is both a Bed and a Sofa
class SleeperSofa : public Bed, public Sofa
{
public:
SleeperSofa(int weight) : Sofa(weight), Bed(weight) {}
void foldOut(){ cout << “Fold out” << endl; }

};

int main(int nNumberofArgs, char* pszArgs[])
{

SleeperSofa ss(10);

// Section 1 -
// the following is ambiguous; is this a
// Furniture::Sofa or a Furniture::Bed?
/*
cout << “Weight = “

<< ss.weight
<< endl;

*/

// Section 2 -
// the following specifies the inheritance path
// unambiguously - sort of ruins the effect
SleeperSofa* pSS = &ss;
Sofa* pSofa = (Sofa*)pSS;
Furniture* pFurniture = (Furniture*)pSofa;
cout << “Weight = “

<< pFurniture->weight
<< endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

Chapter 26: Inheriting Multiple Inheritance 345
Imagine my dismay when I find that this doesn’t help at all — the reference to
weight in Section 1 of main() is still ambiguous. (I wish my weight were as
ambiguous!) “Okay,” I say (not really understanding why weight is still ambigu-
ous), “I’ll try casting ss to a Furniture.”

#include <iostream.h>

void fn()
{
SleeperSofa ss;
Furniture* pF;
pF = (Furniture*)&ss; // use a Furniture pointer...
cout << “weight = “ // ...to get at the weight

<< pF->weight
<< “\n”;

};

Casting ss to a Furniture doesn’t work either. Now, I get some strange mes-
sage that the cast of SleeperSofa* to Furniture* is ambiguous. What’s
going on?

The explanation is straightforward. SleeperSofa doesn’t inherit from
Furniture directly. Both Bed and Sofa inherit from Furniture and then
SleeperSofa inherits from them. In memory, a SleeperSofa looks like
Figure 26-3.

You can see that a SleeperSofa consists of a complete Bed followed by a
complete Sofa followed by some SleeperSofa unique stuff. Each of these
subobjects in SleeperSofa has its own Furniture part, because each inher-
its from Furniture. Thus, a SleeperSofa contains two Furniture objects!

Bed stuff
(without Furniture)

Sofa stuff
(without Furniture)

SleeperSofa
unique stuff

Furniture

Furniture

the Bed part

the Sofa part

a complete
SleeperSofa
object

Figure 26-3:

Memory

layout of a

SleeperSofa.

346 Part V: Optional Features

I haven’t created the hierarchy shown in Figure 26-2 after all. The inheritance
hierarchy I have actually created is the one shown in Figure 26-4.

watchTV()

Sofa

foldOut()

SleeperSofa

sleep()

Bed

Furniture

weight

Furniture

weight

Figure 26-4:

Actual

result of my

first attempt.

The MultipleInheritanceFactoring program demonstrates this duplication of
the base class. Section 2 specifies exactly which weight object by recasting
the pointer SleeperSofa first to a Sofa* and then to a Furniture*.

But SleeperSofa containing two Furniture objects is nonsense.
SleeperSofa needs only one copy of Furniture. I want SleeperSofa
to inherit only one copy of Furniture, and I want Bed and Sofa to share
that one copy. C++ calls this virtual inheritance because it uses the virtual
keyword.

I hate this overloading of the term virtual because virtual inheritance has
nothing to do with virtual functions.

Armed with this new knowledge, I return to class SleeperSofa and imple-
ment it as follows:

//
// VirtualInheritance - using virtual inheritance the
// Bed and Sofa classes can share a common base
//
#include <cstdio>

Chapter 26: Inheriting Multiple Inheritance 347

#include <cstdlib>
#include <iostream>
using namespace std;

// Furniture - more fundamental concept; this class
// has “weight” as a property
class Furniture
{
public:
Furniture(int w = 0) : weight(w) {}
int weight;

};

class Bed : virtual public Furniture
{
public:
Bed() {}
void sleep(){ cout << “Sleep” << endl; }

};

class Sofa : virtual public Furniture
{
public:
Sofa(){}
void watchTV(){ cout << “Watch TV” << endl; }

};

// SleeperSofa - is both a Bed and a Sofa
class SleeperSofa : public Bed, public Sofa
{
public:
SleeperSofa(int weight) : Furniture(weight) {}
void foldOut(){ cout << “Fold out” << endl; }

};

int main(int nNumberofArgs, char* pszArgs[])
{

SleeperSofa ss(10);

// Section 1 -
// the following is no longer ambiguous;
// there’s only one weight shared between Sofa and Bed
// Furniture::Sofa or a Furniture::Bed?
cout << “Weight = “

<< ss.weight
<< endl;

// Section 2 -
// the following specifies the inheritance path
// unambiguously - sort of ruins the effect
SleeperSofa* pSS = &ss;
Sofa* pSofa = (Sofa*)pSS;
Furniture* pFurniture = (Furniture*)pSofa;

348 Part V: Optional Features

cout << “Weight = “
<< pFurniture->weight
<< endl;

// wait until user is ready before terminating program
// to allow the user to see the program results
system(“PAUSE”);
return 0;

}

Notice the addition of the keyword virtual in the inheritance of Furniture
in Bed and Sofa. This says, “Give me a copy of Furniture unless you already
have one somehow, in which case I’ll just use that one.” A SleeperSofa ends
up looking like Figure 26-5 in memory.

Figure 26-5:

Memory

layout of

SleeperSofa

with virtual

inheritance.

Furniture
stuff

Sofa stuff
(without Furniture)

SleeperSofa
unique stuff

a complete
SleeperSofa
object

Bed stuff
(without Furniture)

Here you can see that a SleeperSofa inherits Furniture, and then Bed
minus the Furniture part, followed by Sofa minus the Furniture part.
Bringing up the rear are the members unique to SleeperSofa. (Note that this
may not be the order of the elements in memory, but that’s not important for
the purpose of this discussion.)

Now the reference in fn() to weight is not ambiguous because a SleeperSofa
contains only one copy of Furniture. By inheriting Furniture virtually, you
get the desired inheritance relationship as expressed in Figure 26-2.

If virtual inheritance solves this problem so nicely, why isn’t it the norm? The
first reason is that virtually inherited base classes are handled internally
much differently than normally inherited base classes, and these differences
involve extra overhead. The second reason is that sometimes you want two
copies of the base class (although this is unusual).

Chapter 26: Inheriting Multiple Inheritance 349
As an example of the latter, consider a TeacherAssistant who is both a
Student and a Teacher, both of which are subclasses of Academician. If the
university gives its teaching assistants two IDs — a student ID and a separate
teacher ID — the class TeacherAssistant will need to contain two copies of
class Academician.

Constructing the Objects
of Multiple Inheritance

The rules for constructing objects need to be expanded to handle multiple
inheritance. The constructors are invoked in the following order:

1. First, the constructor for any virtual base classes is called in the order in
which the classes are inherited.

2. Then the constructor for all nonvirtual base classes is called in the
order in which the classes are inherited.

3. Next, the constructor for all member objects is called in the order in
which the member objects appear in the class.

4. Finally, the constructor for the class itself is called.

Notice that base classes are constructed in the order in which they are inher-
ited and not in the order in which they appear on the constructor line.

Voicing a Contrary Opinion
I should point out that not all object-oriented practitioners think that multi-
ple inheritance is a good idea. In addition, many object-oriented languages
don’t support multiple inheritance.

Multiple inheritance is not an easy thing for the language to implement. This
is mostly the compiler’s problem (or the compiler writer’s problem). But mul-
tiple inheritance adds overhead to the code when compared to single inheri-
tance, and this overhead can become the programmer’s problem.

More importantly, multiple inheritance opens the door to additional errors.
First, ambiguities such as those mentioned in the earlier section “Straightening
Out Inheritance Ambiguities” pop up. Second, in the presence of multiple inher-
itance, casting a pointer from a subclass to a base class often involves chang-
ing the value of the pointer in sophisticated and mysterious ways. Let me leave
the details to the language lawyers and compiler writers.

350 Part V: Optional Features

I suggest that you avoid using multiple inheritance until you’re comfortable
with C++. Single inheritance provides enough expressive power to get used
to. Later, you can study the manuals until you’re sure that you understand
exactly what’s going on when you use multiple inheritance. One exception is
the use of commercial libraries such as Microsoft’s Foundation Classes
(MFC), which use multiple inheritance quite a bit. These classes have been
checked out and are safe.

Don’t get me wrong. I’m not out and out against multiple inheritance. The fact
that Microsoft and others use multiple inheritance effectively in their class
libraries proves that it can be done. However, multiple inheritance is a fea-
ture that you want to hold off on using until you’re ready for it.

Chapter 27

Tempting C++ Templates
In This Chapter
� Examining how templates can be applied to functions

� Combining common functions into a single template definition

� Defining a template or class

� Reviewing the advantages of a template over the more generic “void” approach

The Standard C++ Library provides a set of basic functions. The C++ library
presents a complete set of math, time, input/output, and DOS operations,

to name just a few. Many of the earlier programs in this book use the so-called
character string functions defined in the include file strings.h. The argument
types for many of these functions are fixed. For example, both of the arguments
to strcpy(char*, char*) must be a pointer to a null-terminated character
string — nothing else makes sense.

There are functions that are applicable to multiple types. Consider the example
of the lowly max() function, which returns the maximum of two arguments.
The function declarations in Table 27-1 all make sense.

Table 27-1 Possible Variants of maximum() Function

Function Name Operation Performed

maximum(int, int): Returns the maximum of two integers.

maximum (unsigned Returns the maximum of two unsigned values.
int, unsigned int) Because there are no negative numbers, the

expression (0 1) “rolls over” to become a very
large unsigned value, rather than the “normal” or
signed value –1.

Maximum Performs the same comparison operation but on
(double, double) floating numbers.

Maximum Returns the character that occurs later in the alpha
(char, char) bet (including all special characters).

352 Part V: Optional Features

I would like to implement maximum() for all four cases. Of course, C++ can pro-
mote all of the types specified into double. Thus, you could argue that the
maximum(double, double) version is all that is actually needed. Consider,
however, what that would mean to the following expression:

// prototype a max() function
double maximum(double, double);

// user function
void fn(int nArg1, int nArg2)
{
int nLarger = (int)maximum((double)nArg1, (double)nArg2);

// ...continue...
}

In this case, both nArg1 and nArg2 must be promoted to double with the
accompanying loss of accuracy. This maximum() function returns a double.
This value must be demoted from double back to an int via the cast before
it can be assigned to nLarger. The function might work without loss of accu-
racy, but the numerous conversions take much more computer time than a
silly maximum() function should. In any case, the function doesn’t work the
way the user would expect or hope.

Of course, you could overload maximum() with all the possible versions:

double maximum(double d1, double d2)
{

if (d1 > d2)
{

return d1;
}
return d2;

}
int maximum(int n1, int n2)
{

if (n1 > n2)
{

return n1;
}
return n2;

}
char maximum(char c1, char c2)
{

if (c1 > c2)
{

return c1;
}
return c2;

}

// ...repeat for all other numeric types...

Chapter 27: Tempting C++ Templates 353
This approach works. Now C++ selects the best match, maximum(int, int),
for a reference such as maximum(1, 2). However, creating the same function
for each type of variable is a gross waste of time.

The source code for all the maximum(T, T) functions follows the same pat-
tern, where T is one of the numeric types. It would be so convenient if you
could write the function once and let C++ supply the type T as needed when
the function is used. In fact, C++ lets you write the maximum() function in
exactly this way and provides an actual type for T as needed.

Generalizing a Function into a Template
A template function enables you to write what looks like a function but that
uses one or more type holders that C++ converts into a true type at compile
time.

The following MaxTemple program defines a template for a generic maximum()
function:

// MaxTemplate - create a template max() function
// that returns the greater of two types
#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;

// simplistic exception class for this example only
template <class T>
T maximum(T t1, T t2)
{

if (t1 > t2)
{

return t1;
}
return t2;

};

int main(int argc, char* pArgs[])
{

// find the maximum of two int’s
cout << “The maximum of 1 and 2 is “

<< maximum(1, 2)
<< endl;

// repeat for two doubles
cout << “The maximum of 1.5 and 2.5 is “

354 Part V: Optional Features

<< maximum(1.5, 2.5)
<< endl;

system(“PAUSE”);
return 0;

}

The keyword template is followed by angle brackets containing one or more
type holders, each preceded by the keyword class, a constant, or both. In
this case, the definition of maximum<T>(T, T) will call the “unknown type” T.
Following the angle brackets is what looks like a normal function definition.
In this case, the template function T maximum<T>(T t1, T t2) returns the
larger of two objects t1 and t2, each of which is of type T, where T is a class
to be defined later.

A template function is useless until it is converted into a real function. C++
replaces T with an actual type. The main() function implicitly causes C++ to
create two versions of maximum() in the MaxTemplate program example.

Creating a function from a template is called instantiating the template.

The first call maximum(1, 2) causes C++ to create a version of the function
where T is replaced by int. The second call creates a separate function
maximum(double, double). The output from this program appears as
follows:

The maximum of 1 and 2 is 2
The maximum of 1.5 and 2.5 is 2.5
Press any key to continue . . .

T is int is
the function (not template function)

Be very careful about terminology. For example, I’m a hip, bad bicyclist,
which is not the same thing as a bad hip bicyclist. Here’s another example: A
template function is not a function. The prototype for a template function is
maximum<T>(T, T). The function that this template creates when

maximum(int, int). Your life will be
easier if you remember to keep the terms straight.

Notice that the following won’t work:

double d = max(1, 2.0);

The problem is that the type of the first argument and that of the second
don’t match. The type of the arguments must match the template function
maximum<T>(T, T) declaration exactly. The example expression would
match a template function maximum<T1, T2>(T1, T2). C++ could replace
type T1 with int and T2 with double.

You can force the instantiation of a template by providing a prototype decla-
ration. In general, this is safer anyway:

Chapter 27: Tempting C++ Templates 355

float maximum(float, float); // creates an instance of
// maximum<T>(T, T) where T =

float

C++ can’t compile a template function until the template is expanded into

won’t know it until you instantiate the template function.
a real function. If your template function has compile errors, you probably

Template Classes
C++ also allows the programmer to define template classes. A template class
follows the same principle of using a conventional class definition with a
placeholder for some unknown support classes. For example, the following
TemplateVector program creates a vector for any class that the user provides
(a vector is a type of container in which the objects are stored in a row; an
array is the classic vector example).

// TemplateVector - implement a vector that uses a template
// type
#include <cstdlib>
#include <cstdio>
#include <iostream>
#include <sstream>
#include <string>
using namespace std;

// TemplateVector - a simple templatized array
template <class T>
class TemplateVector
{
public:

TemplateVector(int nArraySize)
{

// store off the number of elements
nSize = nArraySize;
array = new T[nArraySize];

reset();
}
int size() { return nWriteIndex; }
void reset() { nWriteIndex = 0; nReadIndex = 0; }
void add(T object)
{

if (nWriteIndex < nSize)
{

array[nWriteIndex++] = object;
}

}
T get()
{

356 Part V: Optional Features

return array[nReadIndex++];
}

protected:
int nSize;
int nWriteIndex;
int nReadIndex;
T* array;

};

// exercise two vectors, one of integers and another of names
void intFn();
void nameFn();

int main(int argc, char* pArgs[])
{

intFn();
nameFn();

system(“PAUSE”);
return 0;

}

// Integers - manipulate a collection of integers
void intFn()
{

// create a vector
TemplateVector<int> integers(10);

// add values to the vector
cout << “Give me a series integer values to add to a

vector\n”
<< “(Enter a negative number to terminate):” <<

endl;
for(;;)
{

int n;
cin >> n;

if (n < 0) { break; }
integers.add(n);

}

cout << “\nHere are the numbers you entered” << endl;
for(int i = 0; i < integers.size(); i++)
{

cout << i << “:” << integers.get() << endl;
}

}

// Names - create and manipulate a vector of names
class Name
{

Chapter 27: Tempting C++ Templates 357

public:
Name(char* n = “”) : name(n) {}
string display() { return name; }

protected:
string name;

};

void nameFn()
{

// create a vector
TemplateVector<Name> names(10);

// add values to the vector
cout << “Enter names\n”

<< “(Enter an ‘x’ to quit):” << endl;
for(;;)
{

char buffer[80];
do
{

cin.getline(buffer, 80);
} while(strlen(buffer) == 0);
if (stricmp(buffer, “x”) == 0)
{

break;
}
names.add(Name(buffer));

}

cout << “\nHere are the names you entered” << endl;
for(int i = 0; i < names.size(); i++)
{

Name name = names.get();
cout << i << “:” << name.display() << endl;

}
}

The template class TemplateVector<T> contains an array of objects of class
T. The template class presents two member functions: add() and get(). The
add() function adds an object of class T into the next empty spot in the array.
The corresponding function get() returns the next object in the array.

The TemplateVector program instantiates this vector class once for simple
ints and a second time for the user-defined class Name.

The intFn() function creates a vector of integers with room for 10. The pro-
gram reads integer values from the keyboard, saves them off and then spits
the values back out using the functions provided by TemplateVector.

The second function, nameFn(), creates a vector of Name objects. Again, the
function reads in names and then displays them back to the user.

358 Part V: Optional Features

Notice that the TemplateVector handles both int values and Name objects
with equal ease. Notice also how similar the nameFn() and intFn() functions
are, even though integers and names have nothing to do with each other.

A sample session appears as follows:

Give me a series integer values to add to a vector
(Enter a negative number to terminate):
5
10
15
-1

Here are the numbers you entered
0:5
1:10
2:15
Enter names
(Enter an ‘x’ to quit):
Chester
Fox
Penny
x

Here are the names you entered
0:Chester
1:Fox
2:Penny
Press any key to continue . . .

Do I Really Need Template Classes?
“But,” you say, “can’t I just create a simple Array class? Why mess with
templates?”

Sure you can, if you know a priori what types of things you need arrays for.
For example, if all you ever need is arrays of integers, you have no reason to
create a template Vector<T>; you could just create the class IntArray and
be finished.

The only other alternative is to use void*, which can point to any type of
object. The following VoidVector program is based upon the use of void
pointers:

// VoidVector - implement a vector that relies on void*
// as the storage element
#include <cstdlib>
#include <cstdio>
#include <iostream>

Chapter 27: Tempting C++ Templates 359

using namespace std;

typedef void* VoidPtr;

class VoidVector
{
public:

VoidVector(int nArraySize)
{

// store off the number of elements
nSize = nArraySize;
ptr = new VoidPtr[nArraySize];
reset();

}
int size() { return nWriteIndex; }
void reset() { nWriteIndex = 0; nReadIndex = 0; }
void add(void* pValue)
{

if (nWriteIndex < nSize)
{

ptr[nWriteIndex++] = pValue;
}

}
VoidPtr get(){ return ptr[nReadIndex++]; }

protected:
int nSize;
int nWriteIndex;
int nReadIndex;
VoidPtr* ptr;

};

int main(int argc, char* pArgs[])
{

// create a vector
VoidVector vv(10);

// add values to the vector
cout << “Give me a series integer values to add to a

vector\n”
<< “(Enter a negative number to terminate):” <<

endl;
for(;;)
{

int* p = new int;
cin >> *p;

if (*p < 0)
{

delete p;
break;

}

360 Part V: Optional Features

vv.add((void*)p);
}

cout << “\nHere are the numbers you entered” << endl;
for(int i = 0; i < vv.size(); i++)
{

int* p = (int*)vv.get();
cout << i << “:” << *p << endl;

}

system(“PAUSE”);
return 0;

}

This program defines a type VoidPtr to be equivalent to a void*.

The typedef keyword does nothing more than create a new name for an
existing class. You can mentally insert void* everywhere you see VoidPtr.
typedefs can make reading a function easier, and they also improve the
syntax of a statement. It is sometimes not possible to get an existing template
class to work properly when the type is a pointer. Wrapping a complex type
like a pointer in a typedef solves the problem.

VoidVector provides the same add() and get() methods provided by the
TemplateVector template class in the previous program.

This solution has (at least) three problems. First, it is somewhat clumsy to
use, as demonstrated in main(). It is not possible to store a value, such as 10;
you can pass only the address of an object. This means that you must allocate
an int* off the heap to use as a storage place for the value read from the
keyboard.

The second problem is the serious opportunity for screw up. You may have
been tempted to simply add an int to the collection as follows:

int n;
cin >> n;
vv.add((void*)&n);

That would not work. The variable n has local scope. Its address will “go
away” once control exits the for loop. At that point, the addresses in the
vector will make no sense.

Actually, the problem is slightly worse — the address of n is the same for
every iteration through the for loop.

The third problem is more serious. In order to retrieve a value from a
VoidVector, you must know the type of object stored there. C++ cannot

Chapter 27: Tempting C++ Templates 361
check the types to make sure that your assumption is correct. Suppose, for
example, you thought that double variables were stored in vv instead of int
values. The following code would have stored garbage into dValue:

double dValue = *(double*)get();

The program would certainly go astray; the casts to and from void* defeat
the strong typing built into C++.

Tips for Using Templates
You should remember a few things when using templates. First, no code is gen-
erated for a template. (Code is generated after the template is converted into a
concrete class or function.) This implies that a .cpp source file is almost never
associated with a template class. The entire template class definition, including
all the member functions, is contained in the include file so that it can be
available for the compiler to expand.

Second, a template class does not consume memory. Therefore, there is no
penalty for creating template classes if they are never instanced. On the other
hand, a template class uses memory every time it is instanced. Thus, the code
for Array<Student> consumes memory even if Array<int> already exists.

Finally, a template class cannot be compiled and checked for errors until it
is converted into a real class. Thus, a program that references the template
class Array<T> might compile even though Array<T> contains obvious
syntax errors. The errors won’t appear until a class such as Array<int> or
Array<Student> is created.

362 Part V: Optional Features

Chapter 28

Standardizing on the Standard
Template Library

In This Chapter
� Using the string class

� Maintaining entries in a Standard Template Library list

� Accessing container elements from an iterator

� Using a map container

Some programs can deal with data as it arrives and dispense with it. Most
programs, however, must store data for later processing. A structure that

is used to store data is known generically as a container or a collection (I use
the terms interchangeably). This book has relied heavily on the array for data
storage so far. The array container has a couple of very nice properties: It
stores and retrieves things very quickly. In addition, the array can be declared
to hold any type of object in a type-safe way. Weighed against that, however,
are two very large negatives.

First, you must know the size of the array at the time it is created. This require-
ment is generally not achievable, although you will sometimes know that the
number of elements cannot exceed some “large value.” Viruses, however, com-
monly exploit this type of “it can’t be larger than this” assumption, which turns
out to be incorrect. There is no real way to “grow” an array except to declare a
new array and copy the contents of the old array into the newer, larger version.

Second, inserting elements anywhere within the array involves copying ele-
ments within the array. This is costly in terms of both memory and comput-
ing time. Sorting the elements within an array is even more expensive.

C++ now comes with the Standard Template Library or STL, which includes
many different types of containers, each with its own set of advantages (and
disadvantages).

The C++ Standard Template Library is a very large library of sometimes-
complex containers. This session is considered just an overview of the
power of the STL.

364 Part V: Optional Features

The string Container
The most common form of array is the zero-terminated character string used
to display text, which clearly shows both the advantages and disadvantages
of the array. Consider how easy the following appears:

cout << “This is a string”;

But things go sour quickly when you try to perform an operation even as
simple as concatenating two strings:

char* concatCharString(char* s1, char* s2)
{

int length = strlen(s1) + strlen(s2) + 1;
char* s = new char[length];
strcpy(s, s1);
strcat(s, s2);
return s;

}

The STL provides a string container to handle display strings. The string
class provides a number of operations (including overloaded operators) to
simplify the manipulation of character strings. The same concat() operation
is performed as follows using string objects:

string concat(string s1, string s2)
{

return s1 + s2;
}

I tried to avoid using string class in other chapters in this book because I don’t

often than they use null terminated character arrays.
explain it until here. However, most programmers use the string class more

The following STLString program demonstrates just a few of the capabilities
of the string class:

// STLString - demonstrates just a few of the features
// of the string class which is part of the
// Standard Template Library
#include <string>
#include <cstdlib>
#include <iostream>
using namespace std;

// concat - return the concatenation of two strings
string concat(string s1, string s2)
{

return s1 + s2;
}

Chapter 28: Standardizing on the Standard Template Library 365

// removeSpaces - remove any spaces within a string
string removeSpaces(string s)
{

// find the offset of the first space;
// keep searching the string until no more spaces found
size_t offset;
while((offset = s.find(“ “)) != -1)
{

// remove the space just discovered
s.erase(offset, 1);

}
return s;

}

// insertPhrase - insert a phrase in the position of
// <ip> for insertion point
string insertPhrase(string source)
{

size_t offset = source.find(“<ip>”);
if (offset != -1)
{

source.erase(offset, 4);
source.insert(offset, “Randall”);

}
return source;

}

int main(int argc, char* pArgs[])
{

// create a string that is the sum of two smaller strings
cout << “string1 + string2 = “

<< concat(“string1 “, “string2”)
<< endl;

// create a test string and then remove all spaces from
// it using simple string methods
string s2(“The phrase”);
cout << “<” << s2 << “> minus spaces = <”

<< removeSpaces(s2) << “>” << endl;

// insert a phrase within the middle of an existing
// sentence (at the location of “<ip>”)
string s3 = “Stephen <ip> Davis”;
cout << s3 + “ -> “ + insertPhrase(s3) << endl;

system(“PAUSE”);
return 0;

}

The operator+() operation performs the concatenation function that earlier
sessions implemented using the concatCharacterString() method.

366 Part V: Optional Features

The removeSpaces() method removes any spaces found within the string
provided. It does this by using the string.find() operation to return the
offset of the first “ ” that it finds. Once found, removeSpaces() uses the
erase() method to remove the space. The find() method returns an offset
of –1 when no more spaces are left.

The type size_t is defined within the STL include files as an integer that can
handle the largest array index possible on your machine. This is typically a
long of some type; however, the size_t is used to further source code porta-
bility between computers. Visual Studio C++.NET will generate a warning if
you use int instead.

The insertPhrase() method uses the find() method to find the insertion
point. It then calls erase to remove the “<ip>” flag and the string.insert()
to insert a new string within the middle of an existing string.

The resulting output is as follows:

string1 + string2 = string1 string2
<this is a test string> minus spaces = <thisisateststring>
Stephen <ip> Davis -> Stephen Randall Davis
Press any key to continue . . .

The list Containers
The Standard Template Library provides a large number of containers —
many more than I can describe in a single session. However, I provide here a
description of two of the more useful families of containers.

The STL list container retains objects by linking them together like Lego
blocks. Objects can be snapped apart and snapped back together in any
order. This makes the list ideal for inserting objects, sorting, merging, and
otherwise rearranging objects. The following example STLList program uses
the list container to sort a set of names:

// STLList - use the list container of the
// Standard Template Library to input
// and sort a string of names
#include <list>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <iostream>

// declare a list of string objects
using namespace std;
list<string> names;

Chapter 28: Standardizing on the Standard Template Library 367

int main(int argc, char* pArgs[])
{

// input a string of names
cout << “Input a name (input a null to terminate list)”

<< endl;
while(true)
{

string name;
cin >> name;
if ((name.compare(“x”) == 0) ||

(name.compare(“X”) == 0))
{

break;
}
names.push_back(name);

}

// sort the list
// (this works since String implements a comparison

operator)
names.sort();

// display the sorted list
// keep displaying names until the collection is empty
cout << “\nSorted output:” << endl;
while(!names.empty())
{

// get the first name in the list
string name = names.front();
cout << name << endl;

// remove that name from the list
names.pop_front();

}

system(“PAUSE”);
return 0;

}

This example defines the variable names to be a list of string objects. The
program starts by reading names from the keyboard. Each name is added to
the end of the list names using the push_back() method. The program exits
the loop when the user enters the name “x”. The list of names is sorted by
invoking the single list method sort().

The program displays the sorted list of names by removing objects from the
front of the list until the list is empty.

The following is an example output from the program:

368 Part V: Optional Features

Input a name (input an x to terminate list)
Adams
Davis
Valentine
Smith
Wilson
x

Sorted output:
Adams
Davis
Smith
Valentine
Wilson
Press any key to continue . . .

The list container provides a large set of operators. Simple operations
include insert, swap, and erase. This same container also gives the pro-
grammer the ability to automatically iterate through the list invoking the
same user-defined function on each object.

The operation that the list cannot provide is random access. Because
objects can be snapped together in any order, there is no quick way for the
list class to return the nth object.

Iterators
The STLList sample program presented in the prior section uses a destruc-
tive approach to iterating through the list. The pop_front() method moves
the user through the list by removing the first object in each case.

The programmer iterates through an array by providing the index of each ele-
ment. However, this technique doesn’t work for containers like list that don’t
allow for random access. One could imagine a solution based upon methods
such as getFirst() and getNext(); however, the designers of the STL wanted
to provide a common method for traversing any type of container. For this, the
STL defines the iterator.

An iterator is an object that points to the members of a container. In general,
every iterator supports the following functions:

� A class can return an iterator that points to the first member of the
collection.

� The iterator can be moved from one member to the next.

� The program can retrieve the element pointed to by the iterator.

Chapter 28: Standardizing on the Standard Template Library 369
The code necessary to iterate through a list is different from that necessary
to traverse a vector (to name just two examples). However, the iterator
hides these details.

The following STLListUserClass program uses an iterator to traverse an STL
list in a non-destructive way:

// STLListUserClass - use a list to contain and sort a
// user defined class
#include <list>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;

// Student - some example user defined class
class Student
{
public:
Student(char* pszName, int id)
{

name = new string(pszName);
ssID = id;

}
string* name;
int ssID;

};

// the following function is required to support the
// sort operation
bool operator<(Student& s1, Student& s2)
{

return s1.ssID < s2.ssID;
}

// define the collection of students
list<Student> students;

int main(int argc, char* pArgs[])
{

// add three student objects to the list
students.push_back(*new Student(“Marion Haste”, 10));
students.push_back(*new Student(“Dewie Cheatum”, 5));
students.push_back(*new Student(“Stew Dent, Sr.”, 15));

// now sort the list
students.sort();

// and iterate through the list:
// 1) allocate an iterator that points to the first
// element in the list

370 Part V: Optional Features

list<Student>::iterator iter = students.begin();

// 2) continue to loop through the list until the
iterator

// hits the end of the list
while(iter != students.end())
{

// 3) retrieve the Student that the iterator points at
Student& s = *iter;
cout << s.ssID << “ - “ << *s.name << endl;

// 4) now move the iterator over to the next element
// int the list
iter++;

}

system(“PAUSE”);
return 0;

}

This program defines a list of user-defined Student objects (rather than
simple names). Three calls to push_back() add elements to the list (hard-
coding these calls keeps the program smaller). The call to sort() is the
same as that used in the STLList program.

The sort() function within the Standard Template Library classes
requires the user to overload the “less than” operator. (This is one of the few
places where a user-defined operator other than assignment is required.)
operator<(Student&, Student&) is invoked by the expression s1 < s2
when both s1 and s2 are of type Student.

The program allocates an iterator iter to navigate its way through the list.
Look carefully at the iterator declaration: list<Student>::iterator is an
iterator to a list container of Student objects. The strong typing is demon-
strated clearly by the assignment (see Step 3 in preceding code): *iter
returns a reference to a Student object.

The output of this program appears as follows:

5 - Dewie Cheatum
10 - Marion Haste
15 - Stew Dent, Sr.
Press any key to continue . . .

Chapter 28: Standardizing on the Standard Template Library 371

How a sort() sorts
I have glossed over an interesting point: How
does the sort() method know which of two
elements in the list is “bigger”? In other words,
what determines the sort order? C++ defines its
own sorting order for some types. For example,
C++ knows which of two int
tion, the STL sorted the collection of ASCII
strings contained in the name collection using
the same rules that a dictionary uses.

The STLList program did not need to take any
special measures when sorting names. C++
does not know which of two Student objects

is larger — the global function ::operator
serves this pur

pose. The sort()method invokes this function
as it makes its way through the list to determine

As an experiment, reverse the sense of the
operator<() function as follows:

return s1.ssID > s2.ssID;

The result is a list sorted in the exact opposite
direction.

s is larger. In addi

<(Student&, Student&)

the proper sort order.

Using Maps
Maps are one other class of collection. There are a number of different types
of maps, but they all share a common property: Maps are designed to allow
elements to be stored and retrieved quickly according to some key or index.
The following next program demonstrates the principle.

For example, a school may register students by a unique identification
number. This ID is used in every facet of school life. This ID is used to
retrieve student information, check out books from the library, and assign
grades in courses. It is important that any program be able to retrieve a stu-
dent by his or her student ID quickly and efficiently.

The following STLMap program creates and uses a collection of Student
objects, which are keyed by ID:

// STLMap - use a map container to retain a collection of
// objects ordered by a key
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <sstream>
#include <string>
#include <map>

372 Part V: Optional Features

using namespace std;

// SC - Student comparison function; designed to determine
// the sorting order of the students
struct SC
{

bool operator()(const int id1, const int id2) const
{

return id1 < id2;
}

};
// the map actually contains a Pair; the left element
// being the key while the right element is the data (in
// this case Student)
class Student;
typedef Student* SP;
typedef pair<const int, Student*> Pair;
typedef map<int, SP, SC> Map;
typedef map<int, SP, SC>::iterator MapIterator;

// collection of Students
Map students;

// Student - define the important properties of a student
// including the key use when looking him/her up
// from the student rolls(student id)
class Student
{
public:
Student(char* pszName, int id)

: studentIDKey(id), name(pszName) {}

// getKey - the key is used as an index into the map
const int getKey() { return studentIDKey; }

// display - create a meaningful output
// for a Student object
string display()
{

ostringstream out;
out << studentIDKey << “ - “ << name;
return out.str();

}

protected:
// Student elements are keyed by student id
const int studentIDKey;

// the name of the student (plus any other data)
string name;

};

int main(int argc, char* pArgs[])

Chapter 28: Standardizing on the Standard Template Library 373

{
// add a few of students to the students collection -
// a map actually stores objects as “pairs” with the
// left member being the key and the right the actual

object
Student* pS;
pS = new Student(“Sean Yours”, 3456);
Pair* ptr = new Pair(pS->getKey(), pS);
students.insert(*ptr);

// a map overloads the index operator to create the Pair
// and insert it into the map for us
students[1234] = new Student(“Fresch Man”, 1234);
students[5678] = new Student(“Student, Jr.”, 5678);

// iterate through the collection of students;
// a map is always retained in the sorted order
// determined by the SC class
cout << “Sorted list of students:” << endl;
MapIterator iter = students.begin();
while(iter != students.end())
{

Pair p = *iter;
Student* s = p.second;
cout << s->display() << endl;
iter++;

}

// the increment and decrement operator can also be used
// to find the successor and predecessor
cout << “\nLook up student 3456” << endl;
MapIterator p = students.find(3456);
cout << “Found student “ << p->second->display() << endl;

MapIterator p1 = p;
MapIterator prior = --p1; // <- predecessor
cout << “Predecessor = “

<< prior->second->display() << endl;

MapIterator p2 = p;
MapIterator successor = ++p2; // <-successor
cout << “Successor = “

<< successor->second->display() << endl;

// find() returns the end iterator when it can’t find the
// object in question; operator[] returns a NULL
if (students.find(0123) == students.end())
{

cout << “The call students.find(0123) returns “
<< “students.end() since student 0123 doesn’t

exist”
<< endl;

}

374 Part V: Optional Features

// output using index
cout << “To test index: students[3456] = “

<< students[3456]->display() << endl;

if (students[0123] == NULL)
{

cout << “but students[0123] returns a NULL”
<< endl;

}

system(“PAUSE”);
return 0;

}

The key to the program (if you can pardon the pun) is found in the initial three
typedefs. A map contains a set of Pair objects, each of which contains a first
and second element. The first element is the student ID key, and the second is
the Student object. The Map class adds an object of class SC. This class con-
tains a single method that compares two Student objects to determine which
is larger. (This is slightly more complicated than the global function used with
the list collection, but the effect is the same.)

The STLMap program begins by creating three Student Pair objects and
adding them to the list. The iteration through the container displays the
Student objects in order by student ID. There is no need to invoke a sort()
method because map classes already retain objects sorted by key.

The second section of the STLMap program looks up a student by ID using the
find() method. The program also demonstrates how easy it is to retrieve the
prior and next objects in the list using the decrement and increment operators.

The output from the program appears as follows:

Sorted list of students:
1234 - Fresch Man
3456 - Sean Yours
5678 - Student, Jr.

Look up student 3456
Found student 3456 - Sean Yours
Predecessor = 1234 - Fresch Man
Successor = 5678 - Student, Jr.
The call students.find(0123) returns students.end() since

student 0123 doesn’t exist
To test index: students[3456] = 3456 - Sean Yours
but students[0123] returns a NULL
Press any key to continue . . .

Part VI

The Part of Tens

In this part . . .

What For Dummies book would be complete without
a Part of Tens? In Chapter 29, I cover ten ways to

avoid adding bugs to your C++ program. (Most of these
suggestions work for C programs too, at no extra charge.)
Chapter 30 lists the ten most important compiler options
available in the Dev-C++ compiler, which is available to
the reader on the enclosed CD-ROM.

Chapter 29

Ten Ways to Avoid Adding
Bugs to Your Program

In This Chapter
� Enabling all warnings and error messages

� Insisting on clean compiles

� Using a clear and consistent coding style

� Limiting the visibility

� Adding comments to your code while you write it

� Single-stepping every path at least once

� Avoiding overloaded operators

� Heap handling

� Using exceptions to handle errors

� Avoiding multiple inheritance

In this chapter, I look at several ways to minimize errors, as well as ways to
make debugging the errors that are introduced easier.

Enabling All Warnings
and Error Messages

The syntax of C++ allows for a lot of error checking. When the compiler
encounters a construct that it cannot decipher, it has no choice but to gener-
ate an error message. Although the compiler attempts to sync back up with
the next statement, it does not attempt to generate an executable program.

378 Part VI: The Part of Tens

Disabling warning and error messages is a bit like unplugging the Check
Engine light on your car dashboard because it bothers you: Ignoring the
problem doesn’t make it go away. If your compiler has a Syntax Check from
Hell mode, enable it. Both Visual Studio.NET and Dev-C++ have an Enable All
Messages option — set it. You save time in the end.

During all its digging around in your source code, a good C++ compiler also
looks for suspicious-looking syntactical constructs, such as the following
code snippet:

#include “student.h”
#include “MyClass.h”
Student* addNewStudent(MyClass myObject,

char *pName,
SSNumber ss)

{
Student* pS;
if (pName != 0)
{

pS = new Student(pName, ss);
myObject.addStudent(pS);

}
return pS;

}

Here you see that the function first creates a new Student object that it then
adds to the MyClass object provided. (Presumably addStudent() is a
member function of MyClass.)

If a name is provided (that is, pName is not 0), a new Student object is created
and added to the class. With that done, the function returns the Student cre-
ated to the caller. The problem is that if pName is 0, pS is never initialized to
anything. A good C++ compiler can detect this path and generate a warning
that “pS might not be initialized when it’s returned to the caller and maybe
you should look into the problem,” or words to that effect.

Insisting on Clean Compiles
Don’t start debugging your code until you remove or at least understand all
the warnings generated during compilation. Enabling all the warning mes-
sages if you then ignore them does you no good. If you don’t understand the
warning, look it up. What you don’t know will hurt you.

Chapter 29: Ten Ways to Avoid Adding Bugs to Your Program 379

Adopting a Clear and Consistent
Coding Style

Coding in a clear and consistent style not only enhances the readability of
the program but also results in fewer coding mistakes. Remember, the less
brain power you have to spend deciphering C++ syntax, the more you have
left over for thinking about the logic of the program at hand. A good coding
style enables you to do the following with ease:

� Differentiate class names, object names, and function names

� Know something about the object based on its name

� Differentiate preprocessor symbols from C++ symbols (that is, #defined
objects should stand out)

� Identify blocks of C++ code at the same level (this is the result of consis-
tent indentation)

In addition, you need to establish a standard module header that provides
information about the functions or classes in the module, the author (pre-
sumably, that’s you), the date, the version of the compiler you’re using, and
a modification history.

Finally, all programmers involved in a single project should use the same style.
Trying to decipher a program with a patchwork of different coding styles is
confusing.

Limiting the Visibility
Limiting the visibility of class internals to the outside world is a cornerstone
of object-oriented programming. The class is responsible for its own internals;
the application is responsible for using the class to solve the problem at hand.

Specifically, limited visibility means that data members should not be acces-
sible outside the class — that is, they should be marked as protected. (There
is another storage class, private, that is not discussed in this book.) In addi-
tion, member functions that the application software does not need to know
about should also be marked protected. Don’t expose any more of the class
internals than necessary.

A related rule is that public member functions should trust application code
as little as possible. Any argument passed to a public member function
should be treated as though it might cause bugs until it has been proven safe.
A function such as the following is an accident waiting to happen:

380 Part VI: The Part of Tens

class Array
{
public:
Array(int s)
{

size = 0;
pData = new int[s];
if (pData)
{

size = s;
}

}
~Array()
{

delete pData;
size = 0;
pData = 0;

}
//either return or set the array data
int data(int index)
{

return pData[index];
}
int data(int index, int newValue)
{

int oldValue = pData[index];
pData[index] = newValue;
return oldValue;

}
protected:
int size;
int *pData;

};

The function data(int) allows the application software to read data out of
Array. This function is too trusting; it assumes that the index provided is
within the data range. What if the index is not? The function data(int,
int) is even worse because it overwrites an unknown location.

What’s needed is a check to make sure that the index is in range. In the fol-
lowing, only the data(int) function is shown for brevity:

int data(unsigned int index)
{

if (index >= size)
{

throw Exception(“Array index out of range”);
}
return pData[index];

}

Chapter 29: Ten Ways to Avoid Adding Bugs to Your Program 381
Now an out-of-range index will be caught by the check. (Making index
unsigned precludes the necessity of adding a check for negative index
values.)

Commenting Your Code
While You Write It

You can avoid errors if you comment your code as you write it rather than
waiting until everything works and then go back and add comments. I can
understand not taking the time to write voluminous headers and function
descriptions until later, but you always have time to add short comments
while writing the code.

Short comments should be enlightening. If they’re not, they aren’t worth
much. You need all the enlightenment you can get while you’re trying to make
your program work. When you look at a piece of code you wrote a few days
ago, comments that are short, descriptive, and to the point can make a dra-
matic contribution to helping you figure out exactly what it was you were
trying to do.

In addition, consistent code indentation and naming conventions make the
code easier to understand. It’s all very nice when the code is easy to read
after you’re finished with it, but it’s just as important that the code be easy to
read while you’re writing it. That’s when you need the help.

Single-Stepping Every
Path at Least Once

It may seem like an obvious statement, but I’ll say it anyway: As a program-
mer, it’s important for you to understand what your program is doing.
Nothing gives you a better feel for what’s going on under the hood than
single-stepping the program with a good debugger. (The debugger in both
Dev-C++ and Visual Studio.NET work just fine.)

Beyond that, as you write a program, you sometimes need raw material in
order to figure out some bizarre behavior. Nothing gives you that material
better than single-stepping new functions as they come into service.

Finally, when a function is finished and ready to be added to the program,
every logical path needs to be traveled at least once. Bugs are much easier to

382 Part VI: The Part of Tens

find when the function is examined by itself rather than after it has been
thrown into the pot with the rest of the functions — and your attention has
gone on to new programming challenges.

Avoid Overloading Operators
Other than using the assignment operator operator=(), you should hold off
overloading operators until you feel comfortable with C++. Overloading oper-
ators other than assignment is almost never necessary and can significantly
add to your debugging woes as a new programmer. You can get the same
effect by defining and using the proper public member functions instead.

After you’ve been C-plus-plussing for a few months, feel free to return and
start overloading operators to your heart’s content.

Heap Handling
As a general rule, programmers should allocate and release heap memory at
the same “level.” If a member function MyClass::create() allocates a block
of heap memory and returns it to the caller, there should be a member func-
tion MyClass::release() that returns the memory to the heap. Specifically,
MyClass::create() should not require the parent function to release the
memory. This certainly doesn’t avoid all memory problems — the parent
function may forget to call MyClass::release() — but it does reduce the
possibility somewhat.

Using Exceptions to Handle Errors
The exception mechanism in C++ is designed to handle errors conveniently
and efficiently. In general, you should throw an error indicator rather than
return an error flag. The resulting code is easier to write, read, and maintain.
Besides, other programmers have come to expect it — you wouldn’t want to
disappoint them, would you?

It is not necessary to throw an exception from a function that returns a
“didn’t work” indicator if this is a part of everyday life for that function.
Consider a function lcd() that returns the least common denominators of a
number passed to it as an argument. That function will not return any values
when presented a prime number (a prime number cannot be evenly divided
by any other number). This is not an error — the lcd() function has nothing
to say when given a prime.

Chapter 29: Ten Ways to Avoid Adding Bugs to Your Program 383

Avoiding Multiple Inheritance
Multiple inheritance, like operator overloading, adds another level of com-
plexity that you don’t need to deal with when you’re just starting out.
Fortunately, most real-world relationships can be described with single inher-
itance. (Some people claim that multiple inheritance is not necessary at all —
I’m not sure that I’m not one of them.)

Feel free to use multiple-inherited classes from commercial libraries. For
example, the Microsoft MFC classes that are key to Visual Studio 6 make
heavy use of multiple inheritance. Microsoft has spent a considerable amount
of time setting up its classes, and it knows what it’s doing.

After you feel comfortable with your level of understanding of C++, experi-
ment with setting up some multiple inheritance hierarchies. That way, you’ll
be ready when the unusual situation that requires multiple inheritance to
describe it accurately arises.

384 Part VI: The Part of Tens

Chapter 30

The Ten Most Important Optional
Features of Dev-C++

In This Chapter
� Customize editor general settings to your taste

� Highlight matching braces and parentheses

� Enable exception handling

� Include debugging information (sometimes)

� Create a project file

� Customize the help menu

� Reset breakpoints after editing a file

� Avoid illegal filenames

� Include #include files in your project

� Executing the profiler

This chapter reviews some of the settings within the Dev-C++ environment
that might affect you on a normal day of C++ programming. This chapter

also touches on the Dev-C++ profiler.

Customize Editor Settings to Your Taste
Programming should be a pleasant experience. C++ has enough unpleasant
things to deal with, so you don’t need an editor that doesn’t think like you do.
Fortunately, Dev-C++ allows you to “have it your way.” Choose Tools➪Editor
Options to change editor settings.

Let me start with a few settings that don’t make much difference. For example,
I prefer four spaces for a tab — you might prefer another amount. In addition,
I have the editor draw a line down column 60 on the display to keep a single
line of code from extending so far that I can’t see the rest of my program.

386 Part VI: The Part of Tens

Checking Use Syntax Highlighting tells the editor to color words within your
program to indicate their type. The editor flags comment lines with one color,
keywords such as switch another, variable names yet another, and so on.
The myriad of colors is a little nauseating at first, but it’s very useful once
you get used to it. You can change the colors used, but I don’t see much point
in doing so.

The Auto Indent feature is intended to be a labor saving device: The editor tabs
the cursor over the “appropriate” column when you press Return. Normally,
the appropriate column is the same as the previous line that isn’t a comment
or blank. The cursor automatically indents after an open brace. Unfortunately,
it doesn’t unindent upon seeing a close brace (nothing’s perfect). Backspace
Unindents is a related and corresponding setting.

I deselected Use Tab Character. This forces the editor to use spaces, and
spaces only, to position the cursor. I did this primarily because I cut and pasted
programs from Dev-C++ into my word processor when writing this book.

The Highlight matching braces/parenthesis setting has a serious implication
that gets its own Top 10 listing.

Highlight Matching Braces/Parentheses
The Highlight matching braces/parenthesis setting appears in the Editor
Options window that is accessible from the Tools menu. When set, the Dev-
C++ editor looks for the corresponding opening brace whenever you enter a
closed brace. In addition, when you select either an open or closed brace,
Dev-C++ changes the corresponding brace to Bold. The same rules apply for
parentheses.

This feature helps you keep your braces matched. You can easily forget a
closed brace when you’re entering your program. It’s just as easy to get the
braces screwed up when editing your program.

There is, however, a serious downside when using Dev-C++ Version 4.9.8.0:
You can’t open a module in which there are more open braces than closed
braces. It seems that the editor scans your .cpp file when you open it to
figure out which closed brace goes with which open brace. The editor hangs
up if it runs out of program before it finds enough closed braces.

Thus, if Dev-C++ appears to just go away when you open your C++ source
code module, try the following:

1. Kill Dev-C++ — it’s not going to return anyway. Press Control-Alt-Delete.
Select the Task Manager option. Select Dev-C++ from the list of active
programs that appear. Finally, select End Task.

Chapter 30: The Ten Most Important Optional Features of Dev-C++ 387
2. Start Dev-C++ from the Start menu without a file.

3. Uncheck the Highlight matching flag.

4. Open your file.

If that doesn’t work, punt and download the most recent version from the
www.bloodshed.net Web site, because something is wrong.

Enable Exception Handling
Exception handling is the flexible error handling mechanism discussed in
Chapter 25. Choose Tools➪Compiler Options. Select the Settings tab. Work
your way through the tree of compiler options in the left window until you
find Code Generation. Make sure that the Enable exception handling flag is
set to Yes — the default for this setting is No.

Adding exception handling code makes your program slightly larger and
slightly slower. However, that’s a small price to pay for the exception error
handling mechanism. See Chapter 25 if you don’t believe me.

Include Debugging Information
(Sometimes)

The Generate debugging information flag is also one of the compiler options.
Choose Tools➪Compiler Options. Select the Settings tab. Click Linker in the
options tree. The Generate debugging information flag should be set to Yes
during the debug process. The debugger doesn’t work if this flag isn’t set. In
addition, Dev-C++ has only limited information to fall back on if your program
crashes.

When the debugging flag is set to Yes, Dev-C++ includes the location within
the program of every label and every line of code. (That’s how the debugger
knows where to set breakpoints.) Even lines of code from library routines,
code that you didn’t write, are included. All this location information can add
up. This information adds to the executable file.

I compiled one of my programs first with the debug flag turned on and a
second time with it turned off. The executable was a whopping 1.2MB. The
same program generated a 440K executable file.

The moral is: Be sure that the Generate debugging information flag is acti-
vated during the entire development period, but clear the flag for the final
release version.

388 Part VI: The Part of Tens

Create a Project File
You can generate a program from a single .cpp file without using a project
file. This is fine for small programs. However, you should break larger pro-
grams into smaller modules that can be understood more easily. Building
multiple .cpp modules into a single program requires a Project file. I describe
this in Chapter 22.

Customize the Help Menu
Dev-C++’s help default topics are limited to the compiler, and don’t include
the C++ language or any of its libraries. Fortunately, Dev-C++ allows you cus-
tomize the Help options. You can add files in Microsoft Help (.hlp) and
Compiled HTML (.chm) formats to Help. (Note: You’ll have to find extra .hlp
and .chm files. You can find these on the Web if you look hard enough.
Neither Dev-C++ nor www.bloodshed.net provide an extra Help file.)

As an example, I downloaded the freely available Help file Win32.hlp. This file
lists the Windows operating system Application Program Interface (API) calls.
Choose Help➪Customize Help Menu to access the Help Menu Editor.

Click the Add button along the top of the window. Dev-C++ opens a browse
window. Navigate to the help file that you want to add. Select the file and
click OK. Finally, check the appropriate boxes at the bottom of the window.
Here I included the Win32.hlp file in the Help search. Click OK. The contents
of the new help file are now available from the Help menu.

You can add as many help files as you like.

Reset Breakpoints after Editing the File
Dev-C++ sets breakpoints based on line number. Unfortunately, it does not
move the breakpoint when a line is inserted or removed from the source file.
For example, suppose that I set a breakpoint on line 10 within my program. If
I then add a comment between lines 9 and 10, the breakpoint now points to
the comment. Obviously, comments are not executed, so the breakpoint
becomes meaningless.

Remember to recheck your breakpoints to be sure they still make sense after
you edit the .cpp source file.

Chapter 30: The Ten Most Important Optional Features of Dev-C++ 389

Avoid Illegal Filenames
Dev-C++ isn’t very good at identifying illegal filenames. Rather than generat-
ing a meaningful message (such as maybe, “Illegal Filename”), the compiler
generates a string of misleading error messages.

Dev-C++ can’t handle filenames that contain spaces. The filename My
Program.cpp is not allowed. Nor can it handle folder names containing
spaces. The filename C:\My Folder\MyProgram.cpp is not legal either.

Dev-C++ can handle network files, but the Console window cannot. Thus, you
can compile the program \\Randy\MyFolder\MyProgram.cpp, but you can’t
debug resulting executable. In addition, the program executes normally at
first but generates some obscure operating system error message before it
completes.

Include #include Files in Your Project
C++ allows you to collect statements into separate files that you can #include
in multiple source files. C++ puts no restrictions on the type of things that you
can put in an include file. However, you should put only the following types of
statements in an include file:

� Function prototypes

� Class definitions

� Template definitions of all types

� Definition of all global variables

You should not include executable statements (except for functions within
the class definition itself) in an include file. Remember to add the include file-
name to the project list, even though it contains no source code. Doing so
tells Dev-C++ to rebuild the C++ source whenever an include file changes.

Executing the Profiler
You shouldn’t be overly concerned with how fast your program will run when
you’re writing. (By this, I’m not suggesting that you do really stupid things
that take up lots of computer time.) It’s hard enough to write a working pro-
gram without worrying about writing tricky “efficient” C++ code statements.
In addition, it’s an odd fact that, if you ask a programmer where she spends
most of her programming time, she’s almost always wrong!

390 Part VI: The Part of Tens

But what if your program is too slow and you want to spiff it up? Fortunately,
Dev-C++ (and most other C++ environments) offers something known as a
profiler. This nifty little tool watches your program to determine where it’s
spending its time. Once you know that, you can decide where to spend your
valuable coding time.

To enable Profiling, I chose Tools➪Compiler Options. Then I selected Settings
and Code profiling to set Generate Profiling Info for Analysis.

I then added the following edited version of the DeepCopy program from
Chapter 18:

//
// DeepCopy - provide a program to profile
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <strings.h>

#include <profile.h>
using namespace std;

class Person
{
public:
Person(char *pN)
{

pName = new char[strlen(pN) + 1];
if (pName != 0)
{

strcpy(pName, pN);
}

}

Person(Person& p)
{

pName = new char[strlen(p.pName) + 1];
if (pName != 0)
{

strcpy(pName, p.pName);
}

}

~Person()
{

if (pName != 0)
{

delete pName;
pName = 0;

}
}

Chapter 30: The Ten Most Important Optional Features of Dev-C++ 391

char *pName;
};

void fn1(Person& p)
{

// create a new object
// Person* p1 = new Person(p.pName);
Person p1(p);

}
void fn2(Person p)
{

// create a new object
Person* p1 = new Person(p);
delete p1;

}

int main(int nNumberofArgs, char* pszArgs[])
{

Person p(“This_is_a_very_long_name”);

for(int i = 0; i < 1000000; i++)
{

fn1(p);
fn2(p);

}
return 0;

}

This program does nothing more than call fn1() and fn2() millions of
times — you can’t get an accurate picture of a program that executes in less
than one second. That’s okay because you don’t need to worry about making
a program that executes in a second or two any faster anyway. Adding the
loop causes the program to take a few seconds to complete.

In addition, I removed the output statements. You quickly discover that output
is a very slow process. The time spent outputting information to the screen
would have swamped everything else.

When executed, the program opened a Console window for a few minutes
and then closed the window. Not very exciting so far. I then selected
Execute➪Profile Analysis. The window shown in Figure 30-1 appeared.

392 Part VI: The Part of Tens

Figure 30-1:

A profile

analysis

shows you

where a

program is

spending

its time.

Interpreting a profile takes a certain amount of practice. This window shows
the functions invoked during the execution of the program (there may be other
functions in the program, but they were never called). The first column lists the
names of the function followed by the percentage of time spent in that function
in the second column. In this case, just more than 24 percent of the program’s
execution time was spent in the copy constructor Person::Person(Person&).
The Self Secs column refers to the total amount of time spent within the func-
tion — an entire 0.14 second was spent in the copy constructor (almost one-
fifth of a second — shocking!).

Does this mean that the copy constructor is the slowest function in the pro-
gram? Not necessarily. In reality, the program spent more time in this func-
tion because it was called more often than any other — the copy constructor
is invoked from both fn1() and fn2().

Skipping down to these two functions, you can see that fn2() took more time
than fn1(). In fact, fn2() took twice as much time as fn1() — 0.04 second
versus 0.02 second. fn1() creates a new copy of the Person object passed to
it. However, fn1() receives its argument by reference from main().

By comparison, main() passes the Person object to fn2() by value. This
causes C++ to invoke the copy constructor. The fn2() function then makes a
copy of the copy. Finally, fn2() creates the copy from heap memory using the
new keyword. Allocating memory off the heap takes a certain amount of time.

Appendix

About the CD
On the CD-ROM
� Dev-C++, a full featured, integrated C++ compiler and editor

� The source code for the programs in this book (your typing fingers will thank you)

� Example programs too large for the book

� Online C++ help files

System Requirements
Be sure that your computer meets the minimum system requirements in the
following list. If your computer doesn’t match up to most of these require-
ments, you may have problems using the contents of the CD.

� PC with a Pentium or faster processor

� Microsoft Windows Me, NT4, 2000, or later; or Linux

� At least 64MB of RAM installed on your computer

� At least 30MB of available hard disk space

� CD-ROM drive

Additional requirements apply if you will be using Visual Studio.NET or Visual
C++.NET rather than the Dev-C++ development environment included on the
enclosed CD-ROM. See the Visual Studio installation documentation for
details.

If you need more information on the basics, check out these books published
by Wiley: PCs For Dummies, by Dan Gookin; Windows 98 For Dummies,
Windows 2000 Professional For Dummies, and Microsoft Windows Me
Millennium Edition For Dummies, all by Andy Rathbone.

394 C++ For Dummies, 5th Edition

Using the CD with Microsoft Windows
To install the items from the CD to your hard drive, follow these steps:

1. Insert the CD into your computer’s CD-ROM drive.

2. Click the Start button and choose Run from the menu.

3. Type D:\, where D is the letter for your CD-ROM drive, and click OK.

4. Double-click the file License.txt.

This file contains the end-user license that you agree to by using the CD.
When you finish reading the license, close the program, most likely
NotePad, that displayed the file.

5. Double-click the file Readme.txt.

This file contains instructions about installing the software from this CD.
It might be helpful to leave this text file open while you are using the CD.

To install Dev-C++ from the CD to your computer, continue with these
steps:

6. Double-click the folder devcpp.

7. Find the file named devcppdddd.exe, where dddd are digits (for
example, devcpp4980.exe).

This is the setup file for the Dev-C++ environment. Follow the installation
instructions in Chapter 1.

To copy the source code from the book onto your hard disk, continue
with these steps:

8. Double-click the My Computer icon located on your desktop.

The My Computer window opens.

9. Drag the folder CPP_Programs from the CD-ROM to your computer’s C
drive.

This step copies the source files to your hard drive where you can edit
them as described in Chapter 1. The source files are grouped by chapter.
Each program is described within the book.

You will find five folders, Budget1 through Budget5. These folders con-
tain example programs too large to fit in the book. Bonus Chapter 1, in
Adobe Acrobat format, describes the program.

10. Double-click the file STL_doc\index.html to start the Standard
Template Library documentation.

The Standard Template Library documentation is a hierarchical and
descriptive, but highly technical, description of the STL.

Appendix: About the CD 395
11. Drag the STL_doc folder to your computer’s hard drive (optional).

You may prefer to copy the STL_doc to your hard drive so that it is avail-
able even when you’re catching a few tunes from your newest Willie
Nelson CD.

Using the CD with Linux
To install the items from the CD to your hard drive, follow these steps:

1. Log in as root.

2. Insert the CD into your computer’s CD-ROM drive.

3. If your computer has Auto-Mount enabled, wait for the CD to mount;
otherwise, follow these steps:

a. Command line instructions:

At the command prompt type

mount /dev/cdrom /mnt/cdrom

(This mounts the cdrom device to the mnt/cdrom directory. If your
device has a different name, change cdrom to that device name —
for example, cdrom1.)

b. Graphical:

Right-click the CD-ROM icon on the desktop and choose Mount
CD-ROM. This mounts your CD-ROM.

4. Copy the CPP_Program directory to /src. Refer to Chapter 1 for
instructions on how best to use these source files.

The version of Dev-C++ contained on the CD-ROM is not compatible with
Linux; however, you can download a version for your operating system
at www.bloodshed.net. Installation instructions are included at that site.

5. To remove the CD from your CD-ROM drive, follow these steps:

a. Command line instructions:

At the command prompt type

umount /mnt/cdrom

b. Graphical:

Right-click the CD-ROM icon on the desktop and choose UMount
CD-ROM. This unmounts your CD-ROM.

After you have installed the programs you want, you can eject the CD.
Carefully place it back in the plastic jacket of the book for safekeeping.

396 C++ For Dummies, 5th Edition

What You’ll Find
This section provides a summary of the software on this CD.

Shareware programs are fully functional, free trial versions of copyrighted
programs. If you like particular programs, register with their authors for a
nominal fee and receive licenses, enhanced versions, and technical support.
Freeware programs are free copyrighted games, applications, and utilities.
You can copy them to as many PCs as you like — free — but they have no
technical support. GNU software is governed by its own license, which is
included in the folder of the GNU software. There are no restrictions on distri-
bution of this software. See the GNU license for more details. Trial, demo, or
evaluation versions are usually limited either by time or functionality (such
as no capability for saving projects).

Development tools
Here are the development tools included on the accompanying CD-ROM:

� Dev-C++, from Bloodshed Software: For Windows 98, Me, NT 4 or later,
2000 or XP. GNU software. This integrated development environment
includes C++ compiler, editor, and debugger. All the programs in this book
have been tested with the version of Dev-C++ found on the CD-ROM.

Bloodshed Software works on Dev-C++ constantly. You can download the
most recent version of Dev-C++ from www.bloodshed.net; however, it is
possible, though unlikely, that some inconsistency will result in an error
when compiling one or more of the .CPP program files.

Dev-C++ is not compatible with the older 8.3 filenames. Dev-C++ requires
support for extended filenames.

� Documentation for the Standard Template Library (STL_doc), Copyright
the Hewlett-Packard Company, 1994, and Silicon Graphics Computer
Systems, Inc., 1996-1999: The following conditions govern its use:

Permission to use, copy, modify, distribute and sell this software and its
documentation for any purpose is hereby granted without fee, provided
that the above copyright notice appears in all copies and that both that
copyright notice and this permission notice appear in supporting docu-
mentation. Silicon Graphics makes no representations about the suitabil-
ity of this software for any purpose. It is provided “as is” without
express or implied warranty.

The STL docs are an HTML-based set of documentation to the Standard
Template Library. An ISO-compliant implementation of the STL is already
present in the Dev-C++ package.

Appendix: About the CD 397

Program source code
Source code for the following programs are included on the CD-ROM:

� CPP_Programs, copyright Wiley: The CPP_Programs folder contains the
.CPP programs that appear in this book. The programs are further orga-
nized into chapter subfolders within the main CPP_Programs folder.

� BUDGET, copyright Wiley Publications: The BUDGET folder contains
a set of programs that demonstrate some of the principles of C++ pro-
gramming but that are too large to include within the book’s pages. All
the BUDGET programs implement a set of simple checking and savings
accounts. BUDGET1, which is meant to be read at the end of Part II, uses
basic programming techniques. BUDGET2 implements some of the
object-based programming techniques presented in Part III. BUDGET3 is
a fully object-oriented program that you expect to find at the end of Part
IV. BUDGET4 and BUDGET5 implement features common to the Standard
Template Library as described in Chapters 27 and 28. These programs
are further described in Bonus Chapter 1, which can be found on this
CD-ROM.

If You’ve Got Problems (Of the CD Kind)
I tried my best to compile programs that work on most computers with the
minimum system requirements. Alas, your computer may differ, and some
programs may not work properly for some reason.

The two likeliest problems are that you don’t have enough memory (RAM)
for the programs you want to use or that you have other programs running
that are affecting installation or the running of a program. If you receive error
messages like Not enough memory or Setup cannot continue, try one or
more of these methods and then try using the software again:

� Turn off any anti-virus software that you have on your computer.
Installers sometimes mimic virus activity and may make your computer
incorrectly believe that it is being infected by a virus.

� Close all running programs. The more programs running, the less
memory available to other programs. Installers also typically update
files and programs. So, if you keep other programs running, installation
may not work properly.

398 C++ For Dummies, 5th Edition

If you still have trouble with the CD-ROM, please call the Wiley Product
Technical Support phone number: 800-762-2974. Outside the United States,
call 317-572-3994. You can also contact Wiley Product Technical Support
through the Internet at www.wiley.com/techsupport. Wiley Publishing will
provide technical support only for installation and other general quality con-
trol items; for technical support on the applications themselves, consult the
program’s vendor or author of this book at www.stephendavis.com.

To place additional orders or to request information about other Wiley prod-
ucts, please call 800-225-5945.

Wiley Publishing, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening the software
packet(s) included with this book “Book”. This is a license agreement “Agreement” between you
and Wiley Publishing, Inc. “WPI”. By opening the accompanying software packet(s), you acknowl-
edge that you have read and accept the following terms and conditions. If you do not agree and do
not want to be bound by such terms and conditions, promptly return the Book and the unopened
software packet(s) to the place you obtained them for a full refund.

1. License Grant. WPI grants to you (either an individual or entity) a nonexclusive license to
use one copy of the enclosed software program(s) (collectively, the “Software”) solely for
your own personal or business purposes on a single computer (whether a standard com-
puter or a workstation component of a multi-user network). The Software is in use on a
computer when it is loaded into temporary memory (RAM) or installed into permanent
memory (hard disk, CD-ROM, or other storage device). WPI reserves all rights not expressly
granted herein.

2. Ownership. WPI is the owner of all right, title, and interest, including copyright, in and to the
compilation of the Software recorded on the disk(s) or CD-ROM “Software Media”. Copyright
to the individual programs recorded on the Software Media is owned by the author or other
authorized copyright owner of each program. Ownership of the Software and all proprietary
rights relating thereto remain with WPI and its licensers.

3. Restrictions on Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival purposes, or (ii)
transfer the Software to a single hard disk, provided that you keep the original for
backup or archival purposes. You may not (i) rent or lease the Software, (ii) copy or
reproduce the Software through a LAN or other network system or through any com-
puter subscriber system or bulletin-board system, or (iii) modify, adapt, or create
derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software. You may transfer
the Software and user documentation on a permanent basis, provided that the transferee
agrees to accept the terms and conditions of this Agreement and you retain no copies. If
the Software is an update or has been updated, any transfer must include the most
recent update and all prior versions.

4. Restrictions on Use of Individual Programs. You must follow the individual requirements
and restrictions detailed for each individual program in the About the CD-ROM appendix of
this Book. These limitations are also contained in the individual license agreements recorded
on the Software Media. These limitations may include a requirement that after using the pro-
gram for a specified period of time, the user must pay a registration fee or discontinue use.
By opening the Software packet(s), you will be agreeing to abide by the licenses and restric-
tions for these individual programs that are detailed in the About the CD-ROM appendix and
on the Software Media. None of the material on this Software Media or listed in this Book
may ever be redistributed, in original or modified form, for commercial purposes.

5. Limited Warranty.

(a) WPI warrants that the Software and Software Media are free from defects in materials
and workmanship under normal use for a period of sixty (60) days from the date of pur-
chase of this Book. If WPI receives notification within the warranty period of defects in
materials or workmanship, WPI will replace the defective Software Media.

(b) WPI AND THE AUTHOR(S) OF THE BOOK DISCLAIM ALL OTHER WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO THE
SOFTWARE, THE PROGRAMS, THE SOURCE CODE CONTAINED THEREIN, AND/OR THE
TECHNIQUES DESCRIBED IN THIS BOOK. WPI DOES NOT WARRANT THAT THE FUNC-
TIONS CONTAINED IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT THE
OPERATION OF THE SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have other rights that
vary from jurisdiction to jurisdiction.

6. Remedies.

(a) WPI’s entire liability and your exclusive remedy for defects in materials and workman-
ship shall be limited to replacement of the Software Media, which may be returned to
WPI with a copy of your receipt at the following address: Software Media Fulfillment
Department, Attn.: C++ For Dummies, 5th Edition, Wiley Publishing, Inc., 10475
Crosspoint Blvd., Indianapolis, IN 46256, or call 1-800-762-2974. Please allow four to six
weeks for delivery. This Limited Warranty is void if failure of the Software Media has
resulted from accident, abuse, or misapplication. Any replacement Software Media will
be warranted for the remainder of the original warranty period or thirty (30) days,
whichever is longer.

(b) In no event shall WPI or the author be liable for any damages whatsoever (including
without limitation damages for loss of business profits, business interruption, loss of
business information, or any other pecuniary loss) arising from the use of or inability to
use the Book or the Software, even if WPI has been advised of the possibility of such
damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of liability for conse-
quential or incidental damages, the above limitation or exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software for or on
behalf of the United States of America, its agencies and/or instrumentalities “U.S. Government”
is subject to restrictions as stated in paragraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause of DFARS 252.227-7013, or subparagraphs (c) (1) and (2) of the
Commercial Computer Software - Restricted Rights clause at FAR 52.227-19, and in similar
clauses in the NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties and revokes
and supersedes all prior agreements, oral or written, between them and may not be modified
or amended except in a writing signed by both parties hereto that specifically refers to this
Agreement. This Agreement shall take precedence over any other documents that may be in
conflict herewith. If any one or more provisions contained in this Agreement are held by any
court or tribunal to be invalid, illegal, or otherwise unenforceable, each and every other pro-
vision shall remain in full force and effect.

GNU General Public License

Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and
change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free soft-
ware (and charge for this service if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new free programs; and that you
know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give
the recipients all the rights that you have. You must make sure that they, too, receive or can get
the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have is not the original, so that any prob-
lems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must be
licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License.
The “Program”, below, refers to any such program or work, and a “work based on the
Program” means either the Program or any derivative work under copyright law: that is to
say, a work containing the Program or a portion of it, either verbatim or with modifications
and/or translated into another language. (Hereinafter, translation is included without limita-
tion in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it,
in any medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of the
Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms
of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole at no
charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print
or display an announcement including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user how to view a copy
of this License. (Exception: if the Program itself is interactive but does not normally print
such an announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sec-
tions when you distribute them as separate works. But when you distribute the same
sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend to
the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of deriva-
tive or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium
does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also
do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a com-
plete machine-readable copy of the corresponding source code, to be distributed under
the terms of Sections 1 and 2 above on a medium customarily used for software inter-
change; or,

c) Accompany it with the information you received as to the offer to distribute correspond-
ing source code. (This alternative is allowed only for noncommercial distribution and
only if you received the program in object code or executable form with such an offer, in
accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all mod-
ules it contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the executable. However, as a special exception, the source
code distributed need not include anything that is normally distributed (in either source or
binary form) with the major components (compiler, kernel, and so on) of the operating
system on which the executable runs, unless that component itself accompanies the exe-
cutable.

If distribution of executable or object code is made by offering access to copy from a desig-
nated place, then offering equivalent access to copy the source code from the same place
counts as distribution of the source code, even though third parties are not compelled to
copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works.
These actions are prohibited by law if you do not accept this License. Therefore, by modify-
ing or distributing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distributing
or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court
order, agreement or otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then
as a consequence you may not distribute the Program at all. For example, if a patent license
would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended
to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range
of software distributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of fol-
lowing the terms and conditions either of that version or of any later version published by
the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserv-
ing the free status of all derivatives of our free software and of promoting the sharing and
reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFOR-
MANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIB-
UTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING
ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA
OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES
OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

• Symbols •
+ (addition operator),

26, 40
& (AND bitwise operator),

56, 57, 58–60
&& (AND logical operator),

48, 49, 53
= (assignment operator)

confusion with equality
operator (==),
48, 49–50

described, 45
overloading, 307, 308–311

* (asterisk character)
described, 111, 113–116
precedence, 186

-- (autodecrement
operator), 65–66

++ (autoincrement
operator), 65–66

\ (backslash character), 35
: (colon), 233
, (commas), 87
{} (curly braces)

described, 62–63
highlighting matching,

386–387
-- (decrement operator)

binary arithmetic, 40
unary arithmetic, 43–44

/ (division operator), 26, 40
. (dot operator), 186
// (double slash), 23
‘0’ (end of character

array), 101
== (equality logical

operator), 48
= (equals sign), 26, 45
> (extraction operator), 306
/* (forward slash, asterisk

commenting), 23

Index
> (greater than logical

operator), 48–49, 63
>= (greater than or equal to

logical operator), 48, 49
++ (increment operator)

binary arithmetic, 40
pointers to strings,

combining with
dereferencing, 130–131

unary arithmetic, 43–44
!= (inequality logical

operator), 48
<< (insertion operator), 306
< (less than logical

operator), 48–49,
63, 370

<= (less than or equal to
logical operator), 48, 49

- (minus unary operator),
40, 43

% (modulus operator),
40–41

* (multiplication operator),
26, 40

- (negative operator), 40
‘n’ (newline character)

entering, 23, 24, 35
inserting (endl), 51
output stream,

terminating, 322
~ (NOT bitwise operator)

with destructors, 217–218
logical operations, 56, 57
simple test, 59–60

! (NOT logical operator), 48
‘0’ (null character), 35
| (OR bitwise operator),

56, 57, 58, 59–60
|| (OR logical operator)

short-circuit evaluation, 53
simple comparison, 48, 49

() (parentheses)
function names, writing,

80–81
object declaration trap,

228
operator precedence,

forcing, 127, 186
:: (scope resolution

operator), 175–177
; (semicolon), 23
(splat character). See

asterisk character (*)
[] (square brackets)
arrays, declaring, 183–184
class definition, 162

‘t’ (tab character),
35, 385–386

& (“tell me your address”
pointer operator),
111–113

+ unary operator, 40
^ XOR bitwise operator,

56, 58

• A •
abstract classes

declaring pure virtual
functions, 290–291

described, 284–287
passing, 289
subclasses, 287–289

An Access Violation
(Segmentation Fault)
raised in your program
error message, 149

accounts, financial. See
bank account sample
programs

accuracy, floating-point
numbers, 32

active classes, object-based
solution to, BC7–BC16

408 C++ For Dummies, 5th Edition

addition operator (+),
26, 40

address
of array, applying

operators to, 128–129
of object, passing to

member function, 175
passing arguments by, 119
pointers, 111–112

ambiguities, multiple
inheritance, 341–342

AND bitwise operator (&),
56, 57, 58–60

AND logical operator (&&),
48, 49, 53

annotated programming,
21–25

ANSI
deprecated functions, 104
string type, 106–108

application error, 142
argument

constructor with, 221–223
defined, 83
functions with, 85–87
to main(), accessing

(parameters), 136–138
passing pointer as,

118–119
array

accessing too far into, 99
address, applying

operators to, 128–129
of arrays, defining and

using, 100
BUDGET program, BC5
character strings,

utilizing, 134–136
of characters, 100–103
characters, manipulating

strings with, 103–106
contrasting with pointers,

132–133
declaring and using

pointers, 133–138
defined, 93
initializing, 98–99
iterating through, 368–370
need for, 93–95

objects, declaring,
184–185

pointer variables and,
126–127

string variables, 106–108
template classes versus,

358
using, 95–98, 99

arrow pointers, 187
assignment operator (=)

confusion with equality
operator (==), 48, 49–50

described, 45
overloading, 307, 308–311

asterisk character (*)
described, 111, 113–116
precedence, 186

author’s Web site, 11
auto variable, 91
autodecrement operator

(--), 65–66
autoincrement operator

(++), 65–66
automatic copy

constructor, 242–244
average, ridiculous value

for, 143–146

• B •
backslash character (\), 35
balancing budget, sample

program, BC37
bank account sample

programs
account classes,

rationalizing into one,
BC16–BC17

active classes, object-
based solution to,
BC7–BC16

assessing, BC28
balance and number,

associating, 167–169,
177–178

balancing budget, BC37
bonds, breaking linked

list, BC28–BC29

checking and savings
classes, 280–284

containers, BC37–BC44
described, BC1–BC7
functions, 284–291
linked list classes,

BC26–BC28
module, BC17–BC19
rationalizing classes into

one, BC16–BC17
saving and checking,

considering,
BC19–BC26

template class,
implementing linked
list as, BC29–BC37

base, counting system, 54
Bell Labs, 10
binary arithmetic, 40–41
bitwise logical operators

binary number system,
54–55

decimal number
system, 54

described, 53
logical calculations, 60
operations, performing,

56–57
other number systems, 54
Roman numeral

expressions, 56
simple test, 59–60
single bit operators, 57–58
using, 58–59

body, function, 81
books, recommended

reading
Microsoft Windows Me

Millennium Edition
For Dummies
(Rathbone), 393

PCs For Dummies
(Gookin), 393

Windows 98 For Dummies
(Rathbone), 393

Windows 2000 Professional
For Dummies
(Rathbone), 393

Index 409
boolean variable (bool)

compatibility with int, 51
constants, 34
described, 33, 36
use of, shown, 50

braces/bracket symbols.
See curly braces;
square brackets

branch commands, 61–63
break command

loops, exiting, 70–72
switch, 75

breakpoints
debugger, described, 150
Dev-C++, resetting after

editing file, 388
BUDGET programs. See

bank account sample
programs

building programs,
11, 18–20

byte, 55

• C •
C++

described, 2
as intermediary

language, 9
C programming language, 10
calculating

expressions, 25–26
integer value, sample

function, 84
speed, floating-point

numbers, 32
call stack, 192
calling function

described, 82
member functions,

171–172
with object value, 188–189
with pointer, 189–190
with reference operator,

191–192
carriage return, 23
CD, back-of-the-book

development tools, 396
Linux, using with, 395

program source code, 397
system requirements, 393
troubleshooting, 397–398
Windows, using with,

394–395
Celsius temperature

conversion sample
program, 17–21, 26

char
described, 33, 34
pointer variables other

than, 131–132
character

arrays, 100–103
number read, returning

(gcount()), 320
pointers, 129–131
reading specified number

(read()), 320–321
character string

creating, 101–103
manipulating, 103–106
to terminator, returning

(getline()), 320–321
utilizing, 134–136

class
described, 161
format, 162
inheriting, 261–268
internals, protecting,

379–381
with limited interface,

using, 205
member functions,

169–174
members, accessing,

163–166
naming current object, 175
objects versus, 209
overloading member

functions, 181–182
real-world objects,

simulating, 168
related data elements,

grouping into single
object, 167

scope resolution, 175–177
class members. See static

objects

classification, 159–160
code

coding style, BC6
commenting as you

write, 381
code, dividing into chunks.

See functions
colon (:), 233
commands

converting into machine-
readable language, 20

sequence of, 11
single set of, 23–24

commas (,), 87
comments

benefits of using, 381
copy constructor, 242
writing, 22–23

commonalities, finding with
debugger, 147–148

comparing
functions, 305–306
integers (int variable), 63
with simple operators,

48–49
compiler

illegal filenames and, 389
managed mode handling

allocation and
deallocation of
memory, 119

options, setting, 15, BC6
pointer-based string

manipulation and, 131
compiling

defined, 11
errors caught during,

139, 377–378
importance of clean, 378
template functions, 355

complex data member,
constructing, 228–232

computer language, 9
concatenating strings,

104–105, 364–366
concrete class, 285
conditional clause,

for loop, 67

410 C++ For Dummies, 5th Edition

constant data member,
constructing, 232–233

constant, declaring
variables, 34

constructor
with arguments, 221–223
benefits of using, 210–211
class members, 228–233
default, 227
defined, 210
duplex, constructing,

214–216
multiple objects,

constructing, 213–214
object declaration trap,

228
order of construction,

233–237
overloading, 223–226
single object,

constructing, 212–213
subclass, 265–266
virtual functions, 277

containers
classes linked to library,

200
iterators, 368–370
list, 366–368
listing, BC38–BC43
maps, 371–374
objects stored in row

(vector), 355
reason to use, BC37–BC38
Standard Template

Library, described, 363
string, 364–366

continue command,
breaking loops, 72

copies
objects, 192
shallow versus deep,

244–248
template files, BC49

copy constructor
assignment operator

versus, 307–308
automatic, 242–244
benefits of using, 239–240

shallow versus deep
copies, 244–248

temporaries, 248–250
using, 240–242

counting
arrays, 99
floating-point numbers, 32
loops with autoincrement/

autodecrement
operators, 65–66

while loops, 64–65
counting numbers. See

integers
.CPP file. See source file
credit card and name

grouping sample class,
162–166

curly braces ({})
described, 62–63
highlighting matching,

386–387

• D •
data

protecting, 379–381
static members,

referencing, 253–255
debugger

commonalities, finding,
147–148

described, 140, 147
single-stepping through

program, 149–154,
381–382

test program, running,
148–149

debugging
with Debugger, 147–154
errors, identifying types

of, 139–140
information, including, 387
initializing global

variables, 235
options, setting, 15–16
with WRITE technique,

140–147

decimal number system
(double precision
floating-point
variables)

bitwise logical
operators, 54

described, 30–31
declaration

order of construction,
236–237

pure virtual functions,
290–291

variables, 34
writing, 24–25

declaring variables
constants, 34
described, 27–28
file name problems, 35
floating-point numbers,

limitations of, 31–32
integers, limitations of,

29–30
mixed-mode expressions,

36–37
special characters, 35
truncation problem,

solving, 30–31
types, 28–29, 33–34

decomposing expressions,
41–42

decrement operator (--)
binary arithmetic, 40
unary arithmetic, 43–44

default constructors, 227
deprecated functions, 104
dereferencing pointers to

objects
combining with increment

operator, 130–131
declaring, 186–187

destructor
benefits of using, 217
order of construction, 237
subclass, 267
virtual functions, 277–278
working with, 217–220

details, functions, 83–84

Index 411
Dev-C++ environment

(Bloodshed Software)
breakpoints, resetting after

editing file, 388
building (generating

executable machine
instructions), 18–20

debugger, 148, 387
downloading, 11, 396
editor settings,

customizing, 385–386
exception handling,

enabling, 387
filenames, illegal, 389
functions, organizing, 97
help menu, customizing,

388
highlighting matching

braces/parentheses,
386–387

include files, 389
installing, 12–16
instructions, entering with

text editor, 17–18
profiler, executing, 389–392
program arguments,

accessing, 137
project file, creating, 388
reviewing annotated code,

21–25
source code project file,

creating, 298–301
development tools, back-of-

the-book CD, 396
digit, 55
directory, storing

Dev-C++, 14
disambiguate, 182
divide by zero problem,

142–143
dividing functions, 82–83
division operator (/), 26, 40
division, producing

remainder, 40–41
Documentation for the

Standard Template
Library (STL_doc), 396

DOS. See MS-DOS

dot operator (.), 186
double slash (//), 23
do...while loop, 65
downloading Dev-C++

environment, 11, 396
duplex, constructing,

214–216

• E •
early binding, 272, 274
editor, customizing, 385–386
encapsulation, 292
end of character array

(‘0’), 101
endl, terminating stream

I/O, 322
equality logical operator

(==), 48
equals sign (=), 26, 45
error handling. See

exceptions
error messages

An Access Violation
(Segmentation Fault)
raised in your program,
149

application error, 142
demonstrating, 19
enabling, 377–378

errors
minimizing, 377–383
stream I/O, 317–320
types, identifying, 139–140
uninitialized pointer

variables
(segment violation
error), 133

Visual C++.NET,
BC49–BC50

exceptions
benefits of using, 382
described, 329–330
Dev-C++, enabling, 387
FORTRAN error returns

versus, 331–332
mechanics of, 332–335
objects, handling, 335–337

.EXE files, 11
executing programming,

20–21
expanding pointer variables

to string, 129–131
expressions

calculating, 25–26
decomposing, 41–42
storing results of, 26

extended name, 171, 269
extraction operator (>), 306
extractor, 314

• F •
factor, declaring, 25
factoring classes

abstract classes,
implementing, 284–291

C++ source code, 291–301
described, 279–284

Fahrenheit temperature
conversion sample
program, 17–21, 26

file output, 315–316
filenames

Dev-C++, illegal, 389
variables, problem

declaring, 35
floating-point numbers. See

also decimal number
system

calculation speed, 32
counting, 32
defined, 31
limitations, described,

31, 44
loss of accuracy, 32
modulus and, 41
not-so-limited range, 32
simple operators, 51–53

for loop
arrays, 97
executing, 67–69
infinite, escaping from,

71–72
format, class, 162

412 C++ For Dummies, 5th Edition

FORTRAN error returns,
331–332. See also
WRITE debugging
technique

forward declaration, 207
forward slash, asterisk (/*)

commenting, 23
freeware programs, 396
fstream I/O subclasses,

315–320
functional programming,

158
functions

with arguments, 85–87
class, defined in

(member), 168–174
described, 79
details, 83–84
include files, 91–92
main() keyword, 87
with multiple

arguments, 87
names, overloading, 87–89
objects, passing to,

187–192
operators, comparing,

305–306
pointers, passing to,

117–119
prototypes, defining,

89–90
single-stepping,

151, 381–382
static members, declaring,

255–258
templates, generalizing

into, 353–355
understanding, 84
variable storage types, 91
writing and using, 79–83

• G •
global variable/object

before main(), order of
construction, 235

defined, 91, 210, 233
order of construction,

235–236

Gookin, Dan (PCs For
Dummies), 393

greater than logical
operator (>), 48–49, 63

greater than or equal to
logical operator (>=),
48, 49

• H •
.h include file designation,

92, 293
HAS_A relationship, class

inheritance, 267–268
head pointer

defined, 196, BC27
space, leaving, 255

heap memory
allocating (new

command), 122, 311
buffers, failure to

return, 296
constructor, allocating,

244–246
described, 119–120
destructing, 218–219
handling, 382
object, allocating off, 193
scope, limiting, 120–123

help menu
Dev-C++, customizing, 388
opening box, 21

hexadecimal system
AND calculation, 59
described, 55

highlighting
matching braces/

parentheses, 386–387
types of words, 386

“his address is” pointer
operator (*). See
asterisk character

• I •
ID number, maps and,

371–374
identical declaration rule,

exception to, 276

if statement,
implementing, 62

implementing source code,
294–295, 296–298

include files
BUDGET5 sample

program, BC43
contents, inserting during

compilation, 178
described, 389
functions, 91–92
syntax, 293

increment operator (++)
binary arithmetic, 40
pointers to strings,

combining with
dereferencing, 130–131

unary arithmetic, 43–44
index

to character strings,
135–136

start of, 184
inequality logical operator

(!=), 48
infinite loops, avoiding,

69–70
inheritance

described, 261–262
HAS_A relationship,

267–268
mechanics, 263–267
reasons for, 262–263

inheritance, multiple
ambiguities, straightening

out, 341–342
avoiding, 383
described, 339–341
negative aspects of using,

349–350
objects, constructing, 349
virtual, adding, 342–349

initializing
arrays, 98–99
for loop, 67
object as part of

declaration, 210–211
variables, 34

inlining member functions,
179

Index 413
input/output statements.

See I/O statements,
stream I/O

inserter, 314
insertion operator (<<), 306
installing DevC++

environment, 12–16
instance, 159, 162. See also

object
instantiating the template,

354
instructions, entering with

text editor, 17–18
integers (int variable)

comparing, 63
in counting, 32
defined, 29
limited range of, 30
mixing with double

precision floating-point
variable, 36–37

round-off, 29–30
interface class, 205
internal state of class,

protecting, 204–205
intrinsic data types, 305
I/O (input/output)

statements, 25. See also
stream I/O

iterate, 98
iterators, 368–370, BC44

• K •
keyboard input, programs

reading, 93–98,
104–106, 140–146, 321

• L •
late binding. See

polymorphism
leading characters, variable

names, 37
less than logical operator

(<), 48–49, 63, 370
less than or equal to logical

operator (<=), 48, 49

level of abstraction
microwave example,

157–158
object-oriented

programming, 159
library. See template library
linked list

bonds, breaking,
BC28–BC29

classes, BC26–BC28
described, 195–196
LinkedListData program,

197–199
module, BC17–BC19
other operations,

performing, 196–197
template class,

implementing as,
BC29–BC37

Linker options, setting, 15
linking, 292
Linux, using with back-of-

the-book CD, 395
list. See linked list
list containers

BUDGET5, BC38–BC44
described, 366–368
iterating through, 368–370

listing
accounts, BC43–BC44
containers, BC38–BC43

local objects
defined, 210
order of construction, 234

local variables, 91
logical calculations, 60
logical int variables

operator, 51
logical operations

binary numbers,
expressing, 53–56

need for, 47–48
simple operators, 48–53

logical values, storing,
49–51

loops, executing
autoincrement/autodecre

ment feature, 65–66
described, 63

infinite, avoiding, 69–70
for loop, 67–69
special controls, applying,

70–72
while condition is true,

64–65
lowercase, importance of

using, 17

• M •
machine instructions,

generating executable,
11, 18–20

machine language, 9
main() keyword

functions, 87
managed mode, 119, 123
manipulators, stream I/O,

325–328
maps, template library,

371–374
matching, 386–387
mathematical operations

assignment, 45
binary arithmetic, 40–41
decomposing expressions,

41–42
described, 39
operators listed, 26
order, determining, 42–43
unary, 43–44

matrix, 100
maximum() functions,

351–353
member function

accessing, 172–173
adding, 169
benefits of using, 169
calling, 171–172
classes, 169–174
creating, 170
defining in classes,

177–179
described, 168
naming class members,

171
other members, accessing

from, 174

414 C++ For Dummies, 5th Edition

members of class
accessing, 163–166
described, 162

memory heap. See heap
memory

memory leak, 296
method. See member

function
Microsoft Windows Me

Millennium Edition
For Dummies
(Rathbone), 393

minus unary operator (-),
40, 43

mixed-mode expressions,
declaring variables,
36–37

modules. See source file
modulus operator (%),

40–41
MS-DOS

arguments to main,
accessing, 136–137

backslash character (\)
naming conflict, 35

command-line
interface, 21

program arguments,
accessing, 137

multiple objects,
constructing, 213–214

multiplication operator (*),
26, 40

Multix computer system, 10

• N •
name and credit card

grouping sample class,
162–166

name, sample linked list of
objects associating,
197–199

names
collision, 343
organizing functions

by, 97
overloading functions,

87–89

namespace, dividing source
code, 292, 293–294

naming
class members, 171
consistency, importance

of, 381
current object, 175
variables, 25

negative operator (-), 40
nesting program flow

commands, 73–74
network files, 389
new operators, inserting,

306
new program project,

creating, BC49–BC50
newline character (‘n’)

entering, 23, 24, 35
inserting (endl), 51
output stream,

terminating, 322
non-member functions,

permitting access to
(friend keyword),
205–208

non-pointer, 196
NOT bitwise operator (~)

with destructors, 217–218
logical operations, 56, 57
simple test, 59–60

NOT logical operator (!), 48
not-so-limited range,

floating-point
numbers, 32

null character (‘0’), 35
null terminated array, 129

• O •
.o file, 295
object

arrays, declaring, 184–185
classes versus, 209
constructor declaration

trap, 228
container classes linked to

C++ library, 200
creating, 209–210
defined, 161

exceptions, handling,
335–337

inserting and rearranging,
366–368

linked lists, 195–199
multiple inheritance,

constructing with, 349
naming current, 175
passing to functions,

187–192
pointers to, declaring,

185–187
references versus

pointers, 193–194
simple things, arrays of

and pointers to,
183–184

value, calling function
with, 188–189

object-oriented
programming

classification, 159–160
functional programming

versus, 158
inheritance, 261–262
level of abstraction,

157–158, 159
polymorphism and, 272

octal system, 55
operators

assignment, overloading,
308–311

defined, 25
functions, comparing,

305–306
new, inserting, 306
overloading, 305, 307–311,

382
pointer variables, 125–126
protected function,

overloading with, 311
shallow copies, problem

with, 307–308
OR bitwise operator (|), 56,

57, 58, 59–60
OR ELSE bitwise operator.

See XOR bitwise
operator (^)

Index 415
OR logical operator (||)

short-circuit evaluation, 53
simple comparison, 48, 49

order, mathematical
operations, 42–43

order of construction
declaration, 236–237
destructors, 237
global objects, 235–236
local objects, 234
before main(), 235
rules, 233
static objects, 234–235

output, generating, 25. See
also I/O statements;
stream I/O

overloading
assignment operators,

308–311
constructors, 223–226
function names, 87–89
functions, generally, 224
member functions,

181–182
operators, 305, 382
protected function with

operators, 311
stream I/O, operators

for, 313
overriding the base class

function, 272

• P •
parameters, 136–138
parentheses (())

function names, writing,
80–81

highlighting matching,
386–387

object declaration trap,
228

operator precedence,
forcing, 127, 186

parse, 20
passing

abstract classes, 289
objects to functions,

187–192

pointers to functions,
117–119

paths, single-stepping,
381–382

PCs For Dummies (Gookin),
393

PC-screen-repaint sample
problem, 73–74

pointer
address operators,

111–112
array, declaring and using,

133–138
arrow pointers, 187
benefits of using, 192
calling function with,

189–190
contrasting with array,

132–133
to current object within

member function
(this keyword), 258

defined, 109
dereferencing, 186–187
described, 185–186
different types, using,

114–117
errors, finding,

147, 149–150
and houses, comparing,

114
memory heap, 119–123
passing to functions,

117–119
pointer variables, defined

and using, 112–113
references versus,

193–194
variable size, 109–110

pointer variables
address of array, applying

operators to, 128–129
arrays and, 126–127
defining and using,

112–113
expanding to string,

129–131
operators, 125–126

other than char, 131–132
string manipulation,

justifying, 131
polymorphism

benefits of, 272–274
mechanics of, 274–276

postfix increment
operator, 44

precedence
binary arithmetic

operators, 40
defined, 42–43

prefix increment
operator, 44

preprocessor program, 91
profiler, 389–392
program

defined, 10–11
source code, dividing,

292–293, 295–296
source code on back-of-

the-book CD, 397
Visual C++.NET, adding to

project, BC47–BC49
writing, 11–12

program flow
branch commands,

controlling with, 61–63
loops, executing, 63–72
nesting control

commands, 73–74
switch statement, 74–75

programming
building (generating

executable machine
instructions), 18–20

calculating expressions,
25–26

executing, 20–21
instructions, entering with

text editor, 17–18
reviewing annotated,

21–25
project

Visual C++.NET, building,
BC45–BC47

Visual C++.NET program,
adding, BC47–BC49

416 C++ For Dummies, 5th Edition

project file
Dev-C++, creating, 388
source code, 298

properties of class
accessing, 163
defined, 162

properties, shared. See
inheritance

protecting members
benefits of using, 201–202,

379–381
class with limited

interface, using, 205
internal state of class,

protecting, 204–205
mechanics, 202–204
non-member functions,

permitting access to,
205–208

operators, overloading,
311

prototype functions,
defining, 89–90

public declaration, 162
pure virtual functions

declaring, 290–291
defined, 286

• R •
range, limited for

integers, 30
Rathbone, Andy (Microsoft

Windows Me
Millennium Edition
For Dummies, Windows
98 For Dummies, and
Windows 2000
Professional For
Dummies), 393

reading directly from
stream I/O, 320–322

real-world objects,
simulating with
classes, 168

reference
benefits of using, 192
objects, passing by, 271

pointers, passing by, 119
pointers versus, 193–194
static data members,

253–255
reference operator, calling

function by, 191–192
referential argument,

referring to temporary
object, 250

related data elements,
grouping into single
object, 167

results of expressions,
storing, 26

return value, 83
reviewing annotated

programming, 21–25
Roman numerals, 56
round-off

decimals, 32, 52
integers, 29–30

runtime arguments,
declaring, 272

• S •
scope

examining, 121–122
memory heap, limiting,

120–121
scope resolution operator

(::), 175–177
segment violation error, 133
semantics, 10
semicolon (;), 23
sequences, storing. See

array
shallow copies

copy constructor, 244–248
operators, 307–308

shareware programs, 396
short-circuit evaluation, 53
shortcut to start Dev-C++,

creating, 17
signature, function, 89
simple operators

comparison, 48–49
floating-point variables,

51–53

logical int variables, 51
logical values, storing,

49–51
simple test, bitwise logical

operators, 59–60
simple things, arrays of and

pointers to, 183–184
single bit operators, 57–58
single object, constructing,

212–213
single-stepping

debugger through
program, 149–154

paths, recommended,
381–382

software modification,
inheritance and, 263

sort() method, 370, 371
source code

comments, clarifying with,
22–23

Dev-C++ project file,
creating, 298–301

implementing, 294–295,
296–298

modules, 291–292
namespace, dividing,

293–294
program, dividing,

292–293, 295–296
project file, 298

source file
breakpoints, resetting

after editing, 388
class definitions,

allocating manually, 253
defined, 10
factoring, 291–292
Visual C++.NET,

associating, 13
spaces, in filenames, 389
special characters, 35
special controls, applying

to loops, 70–72
splat character (*). See

asterisk character (*)
square brackets ([])

arrays, declaring, 183–184
class definition, 162

Index 417
starting Dev-C++, 17
statement, executing single.

See
single-stepping

statements, basing
programs on, 23–24

static objects
complex data member,

constructing, 228–232
constant data member,

constructing, 232–233
data, referencing, 253–255
functions, declaring,

255–258, 277
naming, 171
order of construction,

234–235
protecting, 204
reasons for using, 251–252
this keyword, 258
using, 252–253

static variable, 91, 233
STL (Standard Template

Library). See template
library

storing
Dev-C++, 14
logical values with simple

operators, 49–51
results of expressions, 26

stream I/O
endl, terminating with,

322
fstream subclasses,

315–320
manipulators, 325–328
mechanics, 313–315
reading directly from,

320–322
subclasses (strstream),

322–325
string

arrays, manipulating with
characters, 103–106

characters, arrays of,
101–103

container, template
library, 364–366

expanding pointer
variables to, 129–131

length of, 153
manipulation, justifying,

131
variable, described, 33, 34
variables, 106–108

students, sample programs
about

courses, associating,
170–177, 182

GPA, 186–192, 193
graduate school, 263–268,

292–298
ID number, maps and,

371–374
needs with protected

members, 202–208,
217–220

tuition calculation,
269–275

style, importance of clear
and consistent, 379

subclass
abstract classes, 287–289
constructing, 265–266
described, 159
destructing, 267
stream I/O (strstream),

322–325
using, 265

subscripts, 55
switch statement,

74–75, 135
syntax, defined, 10
system requirements back-

of-the-book CD, 393

• T •
tab character (‘t’), 35,

385–386
tail pointer, 196
“tell me your address”

pointer operator (&),
111–113

temperature conversion
sample program,
17–21, 26

template library
container classes objects

linked to, 200
described, 363
iterators, 368–370
list containers, 366–368
maps, 371–374
sort() method, 371
string container, 364–366

templates
BUDGET4, BC31–BC37
BUDGET5, BC37–BC44
classes, 355–361
function, generalizing

into, 353–355
limitations, 361
maximum() functions,

variants of, 351–353
sample, 22

temporary object
avoiding, 249–250
described, 248–249
referential argument,

referring to, 250
terminator

character string to,
returning (getline()),
320–321

endl, 322
newline character (‘n’),

322
null terminated array, 129
string, 103

test program, running
debugger, 148–149

text editor, entering
instructions with, 17–18

text, string displaying,
364–366

this keyword, 258
throw keyword, 335–337
true/false. See boolean

variable (bool)
truncation problem

integers (int variable),
29–30

solving, 30–31
try block, 332–335
typing errors, 20

418 C++ For Dummies, 5th Edition

• U •
unary mathematical

operators, 43–44
unary operator (+), 40
Unix, origins of, 10
unwinding the stack, 332
user-defined objects

operators, 306, 307
prompting for, 199
references, passing,

191–192

• V •
value

container for, 24
passing pointers to

functions by, 117–118
variable. See also array;

pointer
functions returning, 84
mixing in functions, 89
scope, limiting, 120–121
storage types,

functions, 91
variable declaring. See

declaring variables
variable size, 109–110
vector, 355
virtual inheritance, 346–348
virtual member functions

described, 269–272
exception to identical

declaration rule, 276

limitations, 277–278
polymorphism, 272–276

visibility, limiting access to
class internals, 379–381

Visual C++.NET (Microsoft)
coexisting on same

machine as
Dev-C++, 13

debugger commands,
listed, 148

described, 11, BC45
Dev-C++ programs,

compatibility with, 12
managed mode, 119, 123
new program project,

creating, BC49–BC50
program, adding to

project, BC47–BC49
project, building,

BC45–BC47
void return type of

function, 84

• W •
warnings. See error

messages
while condition is true

(while loop), 64–65
whitespace, 24
whole numbers. See

integers (int variable)
width parameter stream

manipulator, 327
Windows 98 For Dummies

(Rathbone), 393

Windows 2000 Professional
For Dummies
(Rathbone), 393

Windows (Microsoft)
CD, back-of-the-book,

394–395
Dev-C++ development

and, 12, 21
program arguments,

accessing, 137–138
versions other than 9x

and ME (Win32), BC46
WRITE debugging

technique
average, ridiculous value

for, 143–146
divide by zero problem,

142–143
limitations, 146–147

writing
declarations, 24–25
functions, 79–83
program, 11–12

• X •
XOR bitwise operator (^),

56, 58

• Z •
zero

division error, 142–143
as non-pointer, 196
string terminated by, 103

	C++ for Dummies
	Cover

	Table of Contents
	Introduction
	What's in This Book
	What's on the CD
	What Is C++?
	Conventions Used in This Book
	How This Book Is Organized
	And There's More
	Part I: Introduction to C++ Programming
	Part II: Becoming a Functional C++ Programmer
	Part III: Introduction to Classes
	Part IV: Inheritance
	Part V: Optional Features
	Part VI: The Part of Tens
	Icons Used in This Book
	Where to Go from Here

	Part I: Introduction to C++ Programming
	Chapter 1: Writing Your First C++ Program
	Grasping C++ Concepts
	What's a program?
	How do I program?

	Installing Dev-C++
	Setting the options

	Creating Your First C++ Program
	Entering the C++ code
	Building your program

	Executing Your Program
	Dev-C++ is not Windows
	Dev-C++ help

	Reviewing the Annotated Program
	Examining the framework for all C++ programs
	Clarifying source code with comments
	Basing programs on C++ statements
	Writing declarations
	Generating output

	Calculating Expressions
	Storing the results of expression
	Examining the remainder of Conversion.cpp

	Chapter 2: Declaring Variables Constantly
	Declaring Variables
	Declaring Different Types of Variables
	Reviewing the limitations of integers in C++
	Solving the truncation problem
	Looking at the limits of floating-point numbers

	Declaring Variable Types
	Types of constants
	Special characters

	Are These Calculations Really Logical?
	Mixed Mode Expressions

	Chapter 3: Performing Mathematical Operations
	Performing Simple Binary Arithmetic
	Decomposing Expressions
	Determining the Order of Operations
	Performing Unary Operations
	Using Assignment Operators

	Chapter 4: Performing Logical Operations
	Why Mess with Logical Operations?
	Using the Simple Logical Operators
	Storing logical values
	Using logical int variables
	Be careful performing logical operations on floating-point variables

	Expressing Binary Numbers
	The decimal number system
	Other number systems
	The binary number system

	Performing Bitwise Logical Operations
	The single bit operators
	Using the bitwise operators
	A simple test
	Do something logical with logical calculations

	Chapter 5: Controlling Program Flow
	Controlling Program Flow with the Branch Commands
	Executing Loops in a Program
	Looping while a condition is true
	Using the autoincrement/autodecrement feature
	Using the for loop
	Avoiding the dreaded infinite loop
	Applying special loop controls

	Nesting Control Commands
	Switching to a Different Subject?

	Part II: Becoming a Functional C++ Programmer
	Chapter 6: Creating Functions
	Writing and Using a Function
	Defining the sumSequence() function
	Calling the function sumSequence()
	Divide and conquer

	Understanding the Details of Functions
	Understanding simple functions
	Understanding functions with arguments

	Overloading Function Names
	Defining Function Prototypes
	Variable Storage Types
	Including Include Files

	Chapter 7: Storing Sequences in Arrays
	Considering the Need for Arrays
	Using an array
	Initializing an array
	Accessing too far into an array
	Using arrays
	Defining and using arrays of arrays

	Using Arrays of Characters
	Creating an array of characters
	Creating a string of characters

	Manipulating Strings with Character
	String-ing Along Variables

	Chapter 8: Taking a First Look at C++ Pointers
	Variable Size
	What's in an Address?
	Address Operators
	Using Pointer Variables
	Comparing pointers and houses
	Using different types of pointers

	Passing Pointers to Functions
	Passing by value
	Passing pointer values
	Passing by reference

	Making Use of a Block of Memory Called the Heap
	Limiting scope
	Examining the scope problem
	Providing a solution using the heap

	Chapter 9: Taking a Second Look at C++ Pointers
	Defining Operations on Pointer Variables
	Re-examining arrays in light of pointer variables
	Applying operators to the address of an array
	Expanding pointer operations to a string
	Justifying pointer-based string manipulation
	Applying operators to pointer types other than char
	Contrasting a pointer with an array

	Declaring and Using Arrays of Pointers
	Utilizing arrays of character strings
	Accessing the arguments to main()

	Chapter 10: Debugging C++
	Identifying Types of Errors
	Choosing the WRITE Technique for the Problem
	Catching bug #1
	Catching bug #2

	Calling for the Debugger
	Defining the debugger
	Finding commonalities among us
	Running a test program
	Single-stepping through a program

	Part III: Introduction to Classes
	Chapter 11: Examining Object-Oriented Programming
	Abstracting Microwave Ovens
	Preparing functional nachos
	Preparing object-oriented nachos

	Classifying Microwave Ovens
	Why Classify?

	Chapter 12: Adding Class to C++
	Introducing the Class
	The Format of a Class
	Accessing the Members of a Class

	Chapter 13: Making Classes Work
	Activating Our Objects
	Simulating real-world objects
	Why bother with member functions?

	Adding a Member Function
	Creating a member function
	Naming class members

	Calling a Member Function
	Accessing a member function
	Accessing other members from a member function

	Scope Resolution (And I Don't Mean How Well Your Microscope Works)
	Defining a Member Function in the Class
	Keeping a Member Function After Class
	Overloading Member Functions

	Chapter 14: Point and Stare at Objects
	Defining Arrays of and Pointers to Simple Things
	Declaring Arrays of Objects
	Declaring Pointers to Objects
	Dereferencing an object pointer
	Pointing toward arrow pointers

	Passing Objects to Functions
	Calling a function with an object value
	Calling a function with an object pointer
	Calling a function by using the reference operator

	Why Bother with Either Pointers or References?
	Returning to the Heap
	Comparing Pointers to References
	Why Not Use References Rather Than Pointers?
	Linking Up with Linked Lists
	Performing other operations on a linked list
	Hooking up with a LinkedListData program

	A Ray of Hope: A List of Containers Linked to the C++ Library

	Chapter 15: Protecting Members: Do Not Disturb
	Protecting Members
	Why you need protected members
	Discovering how protected members work

	Making an Argument for Using Protected Members
	Protecting the internal state of the class
	Using a class with a limited interface

	Giving Non-Member Functions Access to Protected Members

	Chapter 16: "Why Do You Build Me Up,Just to Tear Me Down, Baby?"
	Creating Objects
	Using Constructors
	Why you need constructors
	Making constructors work

	Dissecting a Destructor
	Why you need the destructor
	Working with destructors

	Chapter 17: Making Constructive Arguments
	Outfitting Constructors with Arguments
	Justifying constructors
	Using a constructor

	Placing Too Many Demands on the Carpenter:Overloading the Constructor
	Defaulting Default Constructors
	Constructing Class Members
	Constructing a complex data member
	Constructing a constant data member

	Constructing the Order of Construction
	Local objects construct in order
	Static objects construct only once
	All global objects construct before main()
	Global objects construct in no particular order
	Members construct in the order in which they are declared
	Destructors destruct in the reverse order of the constructors

	Chapter 18: Copying the Copy Copy Copy Constructor
	Copying an Object
	Why you need the copy constructor
	Using the copy constructor

	The Automatic Copy Constructor
	Creating Shallow Copies versus Deep Copies
	It's a Long Way to Temporaries
	Avoiding temporaries, permanently
	Referring to the copy constructor's referential argument

	Chapter 19: Static Members: Can Fabric Softener Help?
	Defining a Static Member
	Why you need static members
	Using static members
	Referencing static data members
	Uses for static data members

	Declaring Static Member Functions
	What Is This About, Anyway?

	Part IV: Inheritance
	Chapter 20: Inheriting a Class
	Do I Need My Inheritance?
	How Does a Class Inherit?
	Using a subclass
	Constructing a subclass
	Destructing a subclass

	Having a HAS_A Relationship

	Chapter 21: Examining Virtual Member Functions: Are They for Real?
	Why You Need Polymorphism
	How Polymorphism Works
	When Is a Virtual Function Not?
	Considering Virtual Considerations

	Chapter 22: Factoring Classes
	Factoring
	Implementing Abstract Classes
	Describing the abstract class concept
	Making an honest class out of an abstract class
	Passing abstract classes
	Declaring pure virtual functions - is it really necessary?

	Factoring C++ Source Code
	Dividing the program - Student
	Defining a namespace
	Implementing Student
	Dividing the program - GraduateStudent
	Implementing an application
	Project file
	Creating a project file under Dev-C++

	Part V: Optional Features
	Chapter 23: A New Assignment Operator, Should You Decide to Accept It
	Comparing Operators with Functions
	Inserting a New Operator
	Creating Shallow Copies Is a Deep Problem
	Overloading the Assignment Operator
	Protecting the Escape Hatch

	Chapter 24: Using Stream I/O
	How Stream I/O Works
	The fstream Subclasses
	Reading Directly from a Stream
	What's Up with endl?
	Using the strstream Subclasses
	Manipulating Manipulators

	Chapter 25: Handling Errors - Exceptions
	Justifying a New Error Mechanism?
	Examining the Exception Mechanism
	What Kinds of Things Can I Throw?

	Chapter 26: Inheriting Multiple Inheritance
	Describing the Multiple Inheritance Mechanism
	Straightening Out Inheritance Ambiguities
	Adding Virtual Inheritance
	Constructing the Objects of Multiple Inheritance
	Voicing a Contrary Opinion

	Chapter 27: Tempting C++ Templates
	Generalizing a Function into a Template
	Template Classes
	Do I Really Need Template Classes?
	Tips for Using Templates

	Chapter 28: Standardizing on the Standard Template Library
	The string Container
	The list Containers
	Iterators
	Using Maps

	Part VI: The Part of Tens
	Chapter 29: Ten Ways to Avoid Adding Bugs to Your Program
	Enabling All Warnings and Error Messages
	Insisting on Clean Compiles
	Adopting a Clear and Consistent Coding Style
	Limiting the Visibility
	Commenting Your Code While You Write It
	Single-Stepping Every Path at Least Once
	Avoid Overloading Operators
	Heap Handling
	Using Exceptions to Handle Errors
	Avoiding Multiple Inheritance

	Chapter 30: The Ten Most Important Optional Features of Dev-C++
	Customize Editor Settings to Your Taste
	Highlight Matching Braces/Parentheses
	Enable Exception Handling
	Include Debugging Information (Sometimes)
	Create a Project File
	Customize the Help Menu
	Reset Breakpoints after Editing the File
	Avoid Illegal Filenames
	Include #include Files in Your Project
	Executing the Profiler

	Appendix: About the CD
	System Requirements
	Using the CD with Microsoft Windows
	Using the CD with Linux
	What You'll Find
	Development tools
	Program source code

	If You've Got Problems (Of the CD Kind)

	Index
	Team DDU

