

Spine: .912

Start with FREE Cheat Sheets
Cheat Sheets include
 • Checklists
 • Charts
 • Common Instructions
 • And Other Good Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
 • Videos
 • Illustrated Articles
 • Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
 • Digital Photography
 • Microsoft Windows & Office
 • Personal Finance & Investing
 • Health & Wellness
 • Computing, iPods & Cell Phones
 • eBay
 • Internet
 • Food, Home & Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/beginningprogrammingcplusplus Mobile Apps

There’s a Dummies App for This and That
With more than 200 million books in print and over 1,600 unique
titles, Dummies is a global leader in how-to information. Now
you can get the same great Dummies information in an App. With
topics such as Wine, Spanish, Digital Photography, Certification,
and more, you’ll have instant access to the topics you need to
know in a format you can trust.

To get information on all our Dummies apps, visit the following:

www.Dummies.com/go/mobile from your computer.

www.Dummies.com/go/iphone/apps from your phone.

www.dummies.com/cheatsheet/beginningprogrammingcplusplus

by Stephen R. Davis

Beginning
Programming with C++

FOR

DUMmIES
‰

01_617977-ffirs.indd i01_617977-ffirs.indd i 7/6/10 11:36 PM7/6/10 11:36 PM

Beginning Programming with C++ For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affi liates in the United States and other countries, and may not be used without written permission.
All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZA-
TION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE
OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES
THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS
WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND
WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2010930969

ISBN: 978-0-470-61797-7

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

01_617977-ffirs.indd ii01_617977-ffirs.indd ii 7/6/10 11:36 PM7/6/10 11:36 PM

Disclaimer: This eBook does not include ancillary media that was packaged with the
printed version of the book.

www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions

About the Author
Stephen R. Davis lives near Dallas, Texas. He has written numerous books
including C++ For Dummies and C++ Weekend Crash Course. Stephen works
for L-3 Communications in Homeland Security and is studying for a PhD in
Geospatial Information Sciences at University of Texas at Dallas.

01_617977-ffirs.indd iii01_617977-ffirs.indd iii 7/6/10 11:36 PM7/6/10 11:36 PM

01_617977-ffirs.indd iv01_617977-ffirs.indd iv 7/6/10 11:36 PM7/6/10 11:36 PM

Dedication
To Janet for helping me be the best Dummy that I can be.

Author’s Acknowledgments
I fi nd it very strange that only a single name appears on the cover of any
book, but especially a book like this. In reality, many people contribute to
the creation of a For Dummies book. From the beginning, acquisitions editor
Katie Feltman and my agent, Claudette Moore, were involved in guiding and
molding the book’s content. A number of editors work behind the scene to
make a book like this possible. However, I would like to call out for special
mention my project editor, Nicole Sholly. Also, the Technical Editor, Danny
Kalev, saved me from embarrassment on several occasions.

Finally, a summary of the animal activity around my house. For those of you
who have not read any of my other books, I should warn you that this has
become a regular feature of my For Dummies books.

My two dogs, Scooter and Trude, have been gone for almost 8 years now.
We moved to the “big city” about fi ve years ago which meant giving away
our dogs Chester and Sadie (both of which are doing quite well with other
families). We tried to keep the two Great Danes, Monty and Bonnie, but they
were just too much for the back yard. We were forced to give them away as
well. No sooner did I give away the two Danes than my son showed up with
his two smallish Catahoola-mix mutts from the pound, Lolli and Bodie. I kept
these two for several years until my son was settled enough in his own house
to take them off my hands (any day now).

If you are having problems getting started, I maintain a FAQ of common prob-
lems at www.stephendavis.com. You can e-mail me questions from there if
you don’t see your problem. I can’t write your program (you don’t know how
often I get asked to do people’s homework assignments), but I try to answer
most questions.

01_617977-ffirs.indd v01_617977-ffirs.indd v 7/6/10 11:36 PM7/6/10 11:36 PM

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments at http://dummies.custhelp.com.
For other comments, please contact our Customer Care Department within the U.S. at 877-762-2974,
outside the U.S. at 317-572-3993, or fax 317-572-4002.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Media

Development

Project Editor: Nicole Sholly

Senior Acquisitions Editor: Katie Feltman

Copy Editor: Melba Hopper

Technical Editor: Danny Kalev

Editorial Manager: Kevin Kirschner

Media Development Project Manager:
Laura Moss-Hollister

Media Development Assistant Project

Manager: Jenny Swisher

Media Development Associate Producer:
Shawn Patrick

Editorial Assistant: Leslie Saxman

Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Patrick Redmond

Layout and Graphics: Ashley Chamberlain,
Nikki Gately

Proofreaders: Rebecca Denoncour,
Christine Sabooni

Indexer: Valerie Haynes Perry

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Composition Services

Debbie Stailey, Director of Composition Services

01_617977-ffirs.indd vi01_617977-ffirs.indd vi 7/6/10 11:36 PM7/6/10 11:36 PM

Contents at a Glance
Introduction .. 1

Part I: Let’s Get Started ... 7
Chapter 1: What Is a Program? ... 9
Chapter 2: Installing Code::Blocks ... 21
Chapter 3: Writing Your First Program ... 33

Part II: Writing a Program: Decisions, Decisions 45
Chapter 4: Integer Expressions .. 47
Chapter 5: Character Expressions ... 59
Chapter 6: if I Could Make My Own Decisions ... 69
Chapter 7: Switching Paths ... 81
Chapter 8: Debugging Your Programs, Part I ... 89

Part III: Becoming a Functional Programmer 97
Chapter 9: while Running in Circles .. 99
Chapter 10: Looping for the Fun of It .. 109
Chapter 11: Functions, I Declare! ... 117
Chapter 12: Dividing Programs into Modules .. 129
Chapter 13: Debugging Your Programs, Part 2 .. 139

Part IV: Data Structures ... 149
Chapter 14: Other Numerical Variable Types .. 151
Chapter 15: Arrays ... 165
Chapter 16: Arrays with Character .. 173
Chapter 17: Pointing the Way to C++ Pointers ... 187
Chapter 18: Taking a Second Look at C++ Pointers ... 203
Chapter 19: Programming with Class .. 223
Chapter 20: Debugging Your Programs, Part 3 .. 235

Part V: Object-Oriented Programming 251
Chapter 21: What Is Object-Oriented Programming? .. 253
Chapter 22: Structured Play: Making Classes Do Things .. 259
Chapter 23: Pointers to Objects ... 269
Chapter 24: Do Not Disturb: Protected Members .. 281
Chapter 25: Getting Objects Off to a Good Start ... 289

02_617977-ftoc.indd vii02_617977-ftoc.indd vii 7/6/10 11:37 PM7/6/10 11:37 PM

Chapter 26: Making Constructive Arguments .. 303
Chapter 27: Coping with the Copy Constructor... 323

Part VI: Advanced Strokes .. 333
Chapter 28: Inheriting a Class .. 335
Chapter 29: Are Virtual Functions for Real? ... 343
Chapter 30: Overloading Assignment Operators ... 355
Chapter 31: Performing Streaming I/O .. 363
Chapter 32: I Take Exception! ... 387

Part VII: The Part of Tens ... 397
Chapter 33: Ten Ways to Avoid Bugs .. 399
Chapter 34: Ten Features Not Covered in This Book .. 405

Appendix: About the CD ... 411

Index .. 415

02_617977-ftoc.indd viii02_617977-ftoc.indd viii 7/6/10 11:37 PM7/6/10 11:37 PM

Table of Contents

Introduction ... 1
About Beginning Programming with C++ For Dummies 1
Foolish Assumptions ... 2
Conventions Used in This Book ... 2
What You Don’t Have to Read .. 3
How This Book Is Organized .. 3

Part I: Let’s Get Started ... 3
Part II: Writing a Program: Decisions, Decisions 4
Part III: Becoming a Functional Programmer 4
Part IV: Data Structures ... 4
Part V: Object-Oriented Programming ... 4
Part VI: Advanced Strokes ... 4
Part VII: The Part of Tens .. 5
The CD-ROM Appendix ... 5

Icons Used in This Book ... 5
Where to Go from Here ... 6

Part I: Let’s Get Started .. 7

Chapter 1: What Is a Program? .9

How Does My Son Differ from a Computer? ... 9
Programming a “Human Computer” ... 11

The algorithm ... 11
The Tire Changing Language .. 12
The program ... 13
Computer processors .. 16

Computer Languages .. 17
High level languages .. 18
The C++ language ... 19

Chapter 2: Installing Code::Blocks .21

Reviewing the Compilation Process .. 21
Installing Code::Blocks .. 23
Testing the Code::Blocks Installation ... 25

Creating the project ... 27
Testing your default project ... 30

Chapter 3: Writing Your First Program .33

Creating a New Project ... 33
Entering Your Program ... 35
Building the Program .. 38

02_617977-ftoc.indd ix02_617977-ftoc.indd ix 7/6/10 11:37 PM7/6/10 11:37 PM

Beginning Programming with C++ For Dummies x
Finding What Could Go Wrong .. 38

Misspelled commands ... 38
Missing semicolon ... 40

Using the Enclosed CD-ROM .. 41
Running the Program .. 42
How the Program Works ... 42

The template .. 42
The Conversion program .. 44

Part II: Writing a Program: Decisions, Decisions 45

Chapter 4: Integer Expressions .47

Declaring Variables ... 47
Variable names ... 48
Assigning a value to a variable ... 49
Initializing a variable at declaration .. 49

Integer Constants .. 50
Expressions .. 51

Binary operators .. 51
Decomposing compound expressions .. 53

Unary Operators .. 54
The Special Assignment Operators ... 56

Chapter 5: Character Expressions. .59

Defi ning Character Variables ... 59
Encoding characters .. 60
Example of character encoding ... 63

Encoding Strings of Characters ... 65
Special Character Constants .. 65

Chapter 6: if I Could Make My Own Decisions.69

The if Statement ... 69
Comparison operators .. 70
Say “No” to “No braces” .. 72

What else Is There? ... 73
Nesting if Statements .. 75
Compound Conditional Expressions ... 78

Chapter 7: Switching Paths .81

Controlling Flow with the switch Statement .. 81
Control Fell Through: Did I break It? ... 84
Implementing an Example Calculator with the switch Statement 85

02_617977-ftoc.indd x02_617977-ftoc.indd x 7/6/10 11:37 PM7/6/10 11:37 PM

xi Table of Contents

Chapter 8: Debugging Your Programs, Part I. .89

Identifying Types of Errors ... 89
Avoiding Introducing Errors .. 90

Coding with style ... 90
Establishing variable naming conventions 91

Finding the First Error with a Little Help .. 92
Finding the Run-Time Error .. 93

Formulating test data .. 93
Executing the test cases.. 94
Seeing what’s going on in your program .. 95

Part III: Becoming a Functional Programmer 97

Chapter 9: while Running in Circles .99

Creating a while Loop ... 99
Breaking out of the Middle of a Loop .. 102
Nested Loops ... 105

Chapter 10: Looping for the Fun of It .109

The for Parts of Every Loop ... 109
Looking at an Example .. 111
Getting More Done with the Comma Operator .. 113

Chapter 11: Functions, I Declare! .117

Breaking Your Problem Down into Functions ... 117
Understanding How Functions Are Useful ... 118
Writing and Using a Function ... 119

Returning things ... 120
Reviewing an example ... 121

Passing Arguments to Functions ... 123
Function with arguments .. 124
Functions with multiple arguments ... 125
Exposing main() ... 125

Defi ning Function Prototype Declarations ... 127

Chapter 12: Dividing Programs into Modules .129

Breaking Programs Apart ... 129
Breaking Up Isn’t That Hard to Do .. 130

Creating Factorial.cpp ... 131
Creating an #include fi le ... 133
Including #include fi les ... 134
Creating main.cpp .. 136
Building the result ... 137

02_617977-ftoc.indd xi02_617977-ftoc.indd xi 7/6/10 11:37 PM7/6/10 11:37 PM

Beginning Programming with C++ For Dummies xii
Using the Standard C++ Library ... 137
Variable Scope ... 137

Chapter 13: Debugging Your Programs, Part 2 139

Debugging a Dys-Functional Program ... 139
Performing unit level testing .. 141
Outfi tting a function for testing.. 143
Returning to unit test .. 146

Part IV: Data Structures ... 149

Chapter 14: Other Numerical Variable Types .151

The Limitations of Integers in C++ ... 151
Integer round-off .. 151
Limited range.. 152

A Type That “doubles” as a Real Number .. 153
Solving the truncation problem ... 153
When an integer is not an integer .. 154
Discovering the limits of double .. 155

Variable Size — the “long” and “short” of It ... 158
How far do numbers range? ... 159

Types of Constants .. 160
Passing Different Types to Functions ... 161

Overloading function names .. 162
Mixed mode overloading .. 162

Chapter 15: Arrays .165

What Is an Array? .. 165
Declaring an Array ... 166
Indexing into an Array .. 167
Looking at an Example .. 168
Initializing an Array ... 171

Chapter 16: Arrays with Character .173

The ASCII-Zero Character Array .. 173
Declaring and Initializing an ASCIIZ Array .. 174
Looking at an Example .. 175
Looking at a More Detailed Example ... 177

Foiling hackers ... 181
Do I Really Have to Do All That Work? .. 182

Chapter 17: Pointing the Way to C++ Pointers 187

What’s a Pointer? ... 187
Declaring a Pointer .. 188

02_617977-ftoc.indd xii02_617977-ftoc.indd xii 7/6/10 11:37 PM7/6/10 11:37 PM

xiii Table of Contents

Passing Arguments to a Function .. 190
Passing arguments by value ... 190
Passing arguments by reference .. 193
Putting it together .. 195

Playing with Heaps of Memory .. 197
Do you really need a new keyword? .. 197
Don’t forget to clean up after yourself .. 198
Looking at an example .. 199

Chapter 18: Taking a Second Look at C++ Pointers203

Pointers and Arrays .. 203
Operations on pointers ... 203
Pointer addition versus indexing into an array 205
Using the pointer increment operator .. 208
Why bother with array pointers?... 210

Operations on Different Pointer Types ... 212
Constant Nags .. 212
Differences Between Pointers and Arrays .. 214
My main() Arguments ... 214

Arrays of pointers .. 215
Arrays of arguments .. 216

Chapter 19: Programming with Class .223

Grouping Data .. 223
The Class .. 224
The Object .. 225
Arrays of Objects ... 226
Looking at an Example .. 227

Chapter 20: Debugging Your Programs, Part 3 235

A New Approach to Debugging ... 235
The solution .. 236

Entomology for Dummies ... 236
Starting the debugger .. 239
Navigating through a program with the debugger 241
Fixing the (fi rst) bug .. 245
Finding and fi xing the second bug ... 246

Part V: Object-Oriented Programming 251

Chapter 21: What Is Object-Oriented Programming? 253

Abstraction and Microwave Ovens ... 253
Functional nachos .. 254
Object-oriented nachos ... 255

Classifi cation and Microwave Ovens .. 256
Why Build Objects This Way? .. 256
Self-Contained Classes .. 257

02_617977-ftoc.indd xiii02_617977-ftoc.indd xiii 7/6/10 11:37 PM7/6/10 11:37 PM

Beginning Programming with C++ For Dummies xiv
Chapter 22: Structured Play: Making Classes Do Things259

Activating Our Objects ... 259
Creating a Member Function .. 261

Defi ning a member function ... 261
Naming class members ... 262
Calling a member function .. 263
Accessing other members from within a member function 264

Keeping a Member Function after Class ... 266
Overloading Member Functions .. 267

Chapter 23: Pointers to Objects .269

Pointers to Objects .. 269
Arrow syntax .. 270
Calling all member functions .. 271

Passing Objects to Functions ... 271
Calling a function with an object value ... 271
Calling a function with an object pointer 272
Looking at an example .. 274

Allocating Objects off the Heap ... 278

Chapter 24: Do Not Disturb: Protected Members281

Protecting Members .. 281
Why you need protected members ... 282
Making members protected ... 282
So what? .. 285

Who Needs Friends Anyway? ... 286

Chapter 25: Getting Objects Off to a Good Start289

The Constructor .. 289
Limitations on constructors ... 291
Can I see an example? ... 292
Constructing data members ... 294

Destructors ... 297
Looking at an example .. 297
Destructing data members ... 300

Chapter 26: Making Constructive Arguments .303

Constructors with Arguments ... 303
Looking at an example .. 304

Overloading the Constructor ... 307
The Default default Constructor .. 312
Constructing Data Members .. 313

Initializing data members with the default constructor 314
Initializing data members with a different constructor 315
Looking at an example .. 318
New with C++ 2009 ... 321

02_617977-ftoc.indd xiv02_617977-ftoc.indd xiv 7/6/10 11:37 PM7/6/10 11:37 PM

xv Table of Contents

Chapter 27: Coping with the Copy Constructor323

Copying an Object ... 323
The default copy constructor .. 324
Looking at an example .. 325

Creating a Copy Constructor ... 327
Avoiding Copies ... 330

Part VI: Advanced Strokes .. 333

Chapter 28: Inheriting a Class .335

Advantages of Inheritance .. 336
Learning the lingo .. 337

Implementing Inheritance in C++ ... 337
Looking at an example .. 338

Having a HAS_A Relationship ... 342

Chapter 29: Are Virtual Functions for Real? .343

Overriding Member Functions ... 343
Early binding .. 344
Ambiguous case ... 346
Enter late binding... 348

When Is Virtual Not? ... 351
Virtual Considerations .. 352

Chapter 30: Overloading Assignment Operators 355

Overloading an Operator .. 355
Overloading the Assignment Operator Is Critical 356
Looking at an Example .. 358
Writing Your Own (or Not) ... 361

Chapter 31: Performing Streaming I/O .363

How Stream I/O Works .. 363
Stream Input/Output ... 365

Creating an input object ... 365
Creating an output object ... 366
Open modes .. 367
What is binary mode? .. 368
Hey, fi le, what state are you in? ... 369

Other Member Functions of the fstream Classes 373
Reading and writing streams directly ... 375
Controlling format ... 378
What’s up with endl? ... 380

Manipulating Manipulators .. 380
Using the stringstream Classes .. 382

02_617977-ftoc.indd xv02_617977-ftoc.indd xv 7/6/10 11:37 PM7/6/10 11:37 PM

Beginning Programming with C++ For Dummies xvi
Chapter 32: I Take Exception! .387

The Exception Mechanism ... 387
Examining the exception mechanism in detail 390
Special considerations for throwing ... 391

Creating a Custom Exception Class .. 392
Restrictions on exception classes ... 395

Part VII: The Part of Tens .. 397

Chapter 33: Ten Ways to Avoid Bugs .399

Enable All Warnings and Error Messages ... 399
Adopt a Clear and Consistent Coding Style ... 400
Comment the Code While You Write It ... 401
Single-Step Every Path in the Debugger at Least Once 401
Limit the Visibility ... 402
Keep Track of Heap Memory .. 402
Zero Out Pointers after Deleting What They Point To 403
Use Exceptions to Handle Errors ... 403
Declare Destructors Virtual ... 403
Provide a Copy Constructor and Overloaded Assignment Operator ... 404

Chapter 34: Ten Features Not Covered in This Book405

The goto Command ... 405
The Ternary Operator ... 406
Binary Logic ... 407
Enumerated Types .. 407
Namespaces ... 407
Pure Virtual Functions .. 408
The string Class ... 408
Multiple Inheritance .. 409
Templates and the Standard Template Library 409
The 2009 C++ Standard ... 410

Appendix: About the CD .. 411

Index ... 415

02_617977-ftoc.indd xvi02_617977-ftoc.indd xvi 7/6/10 11:37 PM7/6/10 11:37 PM

Introduction

Welcome to Beginning Programming with C++ For Dummies. This book is
intended for the reader who wants to learn to program.

Somehow over the years, programming has become associated with math-
ematics and logic calculus and other complicated things. I never quite
understood that. Programming is a skill like writing advertising or drawing
or photography. It does require the ability to think a problem through, but
I’ve known some really good programmers who had zero math skills. Some
people are naturally good at it and pick it up quickly, others not so good
and not so quick. Nevertheless, anyone with enough patience and “stick-to-
itiveness” can learn to program a computer. Even me.

About Beginning Programming
with C++ For Dummies

Learning to program necessarily means learning a programming language.
This book is based upon the C++ programming language. A Windows ver-
sion of the suggested compiler is included on the CD-ROM accompanying
this book. Macintosh and Linux versions are available for download at www.
codeblocks.org. (Don’t worry: I include step-by-step instructions for how
to install the package and build your first program in the book.)

The goal of this book is to teach you the basics of programming in C++, not to
inundate you with every detail of the C++ programming language. At the end
of this book, you will be able to write a reasonably sophisticated program in
C++. You will also be in a position to quickly grasp a number of other similar
languages, such as Java and C#.NET.

In this book, you will discover what a program is, how it works, plus how to
do the following:

 ✓ Install the CodeBlocks C++ compiler and use it to build a program

 ✓ Create and evaluate expressions

 ✓ Direct the flow of control through your program

03_617977-intro.indd 103_617977-intro.indd 1 7/6/10 11:37 PM7/6/10 11:37 PM

2 Beginning Programming with C++ For Dummies

 ✓ Create data structures that better model the real world

 ✓ Define and use C++ pointers

 ✓ Manipulate character strings to generate the output the way you want to
see it

 ✓ Write to and read from files

Foolish Assumptions
I try to make very few assumptions in this book about the reader, but I do
assume the following:

 ✓ You have a computer. Most readers will have computers that run
Windows; however, the programs in this book run equally well on
Windows, Macintosh, Linux, and Unix. In fact, since C++ is a standard-
ized language, these programs should run on any computer that has a
C++ compiler.

 ✓ You know the basics of how to use your computer. For example, I
assume that you know how to run a program, copy a file, create a folder,
and so on.

 ✓ You know how to navigate through menus. I include lots of instructions
like “Click on File and then Open.” If you can follow that instruction, then
you’re good to go.

 ✓ You are new to programming. I don’t assume that you know anything
about programming. Heck, I don’t even assume that you know what pro-
gramming is.

Conventions Used in This Book
To help you navigate this book as efficiently as possible, I use a few
conventions:

 ✓ C++ terms are in monofont typeface, like this.

 ✓ New terms are emphasized with italics (and defined).

 ✓ Numbered steps that you need to follow and characters you need to
type are set in bold.

03_617977-intro.indd 203_617977-intro.indd 2 7/6/10 11:37 PM7/6/10 11:37 PM

3 Introduction

What You Don’t Have to Read
I encourage you to read one part of the book; then put the book away and
play for a while before moving to the next part. The book is organized so that
by the end of each part, you have mastered enough new material to go out
and write programs.

I’d like to add the following advice:

 ✓ If you already know what programming is but nothing about C++, you
can skip Chapter 1.

 ✓ I recommend that you use the CodeBlocks compiler that comes with the
book, even if you want to use a different C++ compiler after you finish
the book. However, if you insist and don’t want to use CodeBlocks, you
can skip Chapter 2.

 ✓ Skim through Chapter 3 if you’ve already done a little computer
programming.

 ✓ Start concentrating at Chapter 4, even if you have experience with other
languages such as BASIC.

 ✓ You can stop reading after Chapter 20 if you’re starting to feel saturated.
Chapter 21 opens up the new topic of object-oriented programming —
you don’t want to take that on until you feel really comfortable with
what you’ve learned so far.

 ✓ You can skip any of the TechnicalStuff icons.

How This Book Is Organized
Beginning Programming with C++ For Dummies is split into seven parts. You
don’t have to read it sequentially, and you don’t even have to read all the
sections in any particular chapter. You can use the Table of Contents and the
Index to find the information you need and quickly get your answer. In this
section, I briefly describe what you’ll find in each part.

Part I: Let’s Get Started
This part describes what programs are and how they work. Using a fictitious
tire-changing computer, I take you through several algorithms for removing
a tire from a car to give you a feel for how programs work. You’ll also get
CodeBlocks up and running on your computer before leaving this part.

03_617977-intro.indd 303_617977-intro.indd 3 7/6/10 11:37 PM7/6/10 11:37 PM

4 Beginning Programming with C++ For Dummies

Part II: Writing a Program:
Decisions, Decisions
This part introduces you to the basics of programming with C++. You will find
out how to declare integer variables and how to write simple expressions.
You’ll even discover how to make decisions within a program, but you won’t
be much of an expert by the time you finish this part.

Part III: Becoming a Functional
Programmer
Here you learn how to direct the flow of control within your programs.
You’ll find out how to loop, how to break your code into modules (and why),
and how to build these separate modules back into a single program. At the
end of this part, you’ll be able to write real programs that actually solve
problems.

Part IV: Data Structures
This part expands your knowledge of data types. Earlier sections of the book
are limited to integers; in this part, you work with characters, decimals, and
arrays; and you even get to define your own types. Finally, this is the part
where you master the most dreaded topic, the C++ pointer.

Part V: Object-Oriented Programming
This is where you expand your knowledge into object-oriented techniques,
the stuff that differentiates C++ from its predecessors, most notably C. (Don’t
worry if you don’t know what object-oriented programming is — you aren’t
supposed to yet.) You’ll want to be comfortable with the material in Parts I
through IV before jumping into this part, but you’ll be a much stronger pro-
grammer by the time you finish it.

Part VI: Advanced Strokes
This is a collection of topics that are important but that didn’t fit in the ear-
lier parts. For example, here’s where I discuss how to create, read to, and
write from files.

03_617977-intro.indd 403_617977-intro.indd 4 7/6/10 11:37 PM7/6/10 11:37 PM

5 Introduction

Part VII: The Part of Tens
This part includes lists of what to do (and what not to do) when program-
ming to avoid creating bugs needlessly. In addition, this part includes some
advice about what topics to study next, should you decide to expand your
knowledge of C++.

The CD-ROM Appendix
This part describes what’s on the enclosed CD-ROM and how to install it.

Icons Used in This Book
What’s a Dummies book without icons pointing you in the direction of really
great information that’s sure to help you along your way? In this section, I
briefly describe each icon I use in this book.

 The Tip icon points out helpful information that is likely to make your job
easier.

 This icon marks a generally interesting and useful fact — something that you
might want to remember for later use. I also use this icon to remind you of
some fact that you may have skipped over in an earlier chapter.

 The Warning icon highlights lurking danger. With this icon, I’m telling you to
pay attention and proceed with caution.

 When you see this icon, you know that there’s techie stuff nearby. If you’re not
feeling very techie, you can skip this info.

 This icon denotes the programs that are included on this book’s CD-ROM.

03_617977-intro.indd 503_617977-intro.indd 5 7/6/10 11:37 PM7/6/10 11:37 PM

6 Beginning Programming with C++ For Dummies

Where to Go from Here
You can find a set of errata and Frequently Asked Questions for this and all
my books at www.stephendavis.com. You will also find a link to my e-mail
address there. Feel free to send me your questions and comments (that’s
how I learn). It’s through reader input that these books can improve.

Now you’ve stalled long enough, it’s time to turn to Chapter 1 and start dis-
covering how to program!

03_617977-intro.indd 603_617977-intro.indd 6 7/6/10 11:37 PM7/6/10 11:37 PM

Part I

Let’s Get Started

04_617977-pp01.indd 704_617977-pp01.indd 7 7/6/10 11:37 PM7/6/10 11:37 PM

In this part . . .

You will learn what it means to program a computer.
You will also get your first taste of programming — I

take you through the steps to enter, build, and execute
your first program. It will all be a bit mysterious in this
part, but things will clear up soon, I promise.

04_617977-pp01.indd 804_617977-pp01.indd 8 7/6/10 11:37 PM7/6/10 11:37 PM

Chapter 1

What Is a Program?
In This Chapter
▶ Understanding programs

▶ Writing your first “program”

▶ Looking at computer languages

In this chapter, you will learn what a program is and what it means to write
a program. You’ll practice on a Human Computer. You’ll then see some

program snippets written for a real computer. Finally, you’ll see your first
code snippet written in C++.

Up until now all of the programs running on your computer were written by
someone else. Very soon now, that won’t be true anymore. You will be join-
ing the ranks of the few, the proud: the programmers.

How Does My Son Differ
from a Computer?

A computer is an amazingly fast but incredibly stupid machine. A computer
can do anything you tell it (within reason), but it does exactly what it’s told —
nothing more and nothing less.

In this respect, a computer is almost the exact opposite of a human: humans
respond intuitively. When I was learning a second language, I learned that it
wasn’t enough to understand what was being said — it’s just as important
and considerably more difficult to understand what was left unsaid. This is
information that the speaker shares with the listener through common expe-
rience or education — things that don’t need to be said.

05_617977-ch01.indd 905_617977-ch01.indd 9 7/6/10 11:38 PM7/6/10 11:38 PM

10 Part I: Let’s Get Started

For example, I say things to my son like, “Wash the dishes” (for all the good it
does me). This seems like clear enough instructions, but the vast majority of
the information contained in that sentence is implied and unspoken.

Let’s assume that my son knows what dishes are and that dirty dishes are nor-
mally in the sink. But what about knives and forks? After all, I only said dishes,
I didn’t say anything about eating utensils, and don’t even get me started on
glassware. And did I mean wash them manually, or is it okay to load them up
into the dishwasher to be washed, rinsed, and dried automatically?

But the fact is, “Wash the dishes” is sufficient instruction for my son. He
can decompose that sentence and combine it with information that we both
share, including an extensive working knowledge of dirty dishes, to come up
with a meaningful understanding of what I want him to do — whether he does
it or not is a different story. I would guess that he can perform all the mental
gymnastics necessary to understand that sentence in about the same amount
of time that it takes me to say it — about 1 to 2 seconds.

A computer can’t make heads or tails out of something as vague as “wash the
dishes.” You have to tell the computer exactly what to do with each different
type of dish, how to wash a fork, versus a spoon, versus a cup. When does
the program stop washing a dish (that is, how does it know when a dish is
clean)? When does it stop washing (that is, how does it know when it’s
finished)?

My son has gobs of memory — it isn’t clear exactly how much memory a
normal human has, but it’s boat loads. Unfortunately, human memory is
fuzzy. For example, witnesses to crimes are notoriously bad at recalling
details even a short time after the event. Two witnesses to the same event
often disagree radically on what transpired.

Computers also have gobs of memory, and that’s very good. Once stored, a
computer can retrieve a fact as often as you like without change. As expen-
sive as memory was back in the early 1980s, the original IBM PC had only
16K (that’s 16 thousand bytes). This could be expanded to a whopping 64K.
Compare this with the 1GB to 3GB of main storage available in most comput-
ers today (1GB is one billion bytes).

As expensive as memory was, however, the IBM PC included extra memory
chips and decoding hardware to detect a memory failure. If a memory chip
went bad, this circuitry was sure to find it and report it before the program
went haywire. This so-called Parity Memory was no longer offered after only
a few years, and as far as I know, it is unavailable today except in specific
applications where extreme reliability is required — because the memory
boards almost never fail.

05_617977-ch01.indd 1005_617977-ch01.indd 10 7/6/10 11:38 PM7/6/10 11:38 PM

11 Chapter 1: What Is a Program?

On the other hand, humans are very good at certain types of processing that
computers do poorly, if at all. For example, humans are very good at pulling
the meaning out of a sentence garbled by large amounts of background noise.
By contrast, digital cell phones have the infuriating habit of just going silent
whenever the noise level gets above a built-in threshold.

Programming a “Human Computer”
Before I dive into showing you how to write programs for computer con-
sumption, I start by showing you a program to guide human behavior so
that you can better see what you’re up against. Writing a program to guide a
human is much easier than writing programs for computer hardware because
we have a lot of familiarity with and understanding of humans and how they
work (I assume). We also share a common human language to start with. But
to make things fair, assume that the human computer has been instructed
to be particularly literal — so the program will have to be very specific. Our
guinea pig computer intends to take each instruction quite literally.

The problem I have chosen is to instruct our human computer in the chang-
ing of a flat tire.

The algorithm
The instructions for changing a flat tire are straightforward and go something
like the following:

 1. Raise the car.

 2. Remove the lug nuts that affix the faulty tire to the car.

 3. Remove the tire.

 4. Mount the new tire.

 5. Install the lug nuts.

 6. Lower the car.

(I know that technically the lug nuts hold the wheel onto the car and not the
tire, but that distinction isn’t important here. I use the terms “wheel” and
“tire” synonymously in this discussion.)

05_617977-ch01.indd 1105_617977-ch01.indd 11 7/6/10 11:38 PM7/6/10 11:38 PM

12 Part I: Let’s Get Started

As detailed as these instructions might seem to be, this is not a program.
This is called an algorithm. An algorithm is a description of the steps to be
performed, usually at a high level of abstraction. An algorithm is detailed but
general. I could use this algorithm to repair any of the flat tires that I have
experienced or ever will experience. But an algorithm does not contain suf-
ficient detail for even our intentionally obtuse human computer to perform
the task.

The Tire Changing Language
Before we can write a program, we need a language that we can all agree on.
For the remainder of this book, that language will be C++, but I use the newly
invented TCL (Tire Changing Language) for this example. I have specifically
adapted TCL to the problem of changing tires.

TCL includes a few nouns common in the tire-changing world:

 ✓ car

 ✓ tire

 ✓ nut

 ✓ jack

 ✓ toolbox

 ✓ spare tire

 ✓ wrench

TCL also includes the following verbs:

 ✓ grab

 ✓ move

 ✓ release

 ✓ turn

Finally, the TCL-executing processor will need the ability to count and to
make simple decisions.

This is all that the tire-changing robot understands. Any other command
that’s not part of Tire Changing Language generates a blank stare of incom-
prehension from the human tire-changing processor.

05_617977-ch01.indd 1205_617977-ch01.indd 12 7/6/10 11:38 PM7/6/10 11:38 PM

13 Chapter 1: What Is a Program?

The program
Now it’s time to convert the algorithm, written in everyday English, into a
program written in Tire Changing Language. Take the phrase, “Remove the
lug nuts.” Actually, quite a bit is left unstated in that sentence. The word
“remove” is not in the processor’s vocabulary. In addition, no mention is
made of the wrench at all.

The following steps implement the phrase “Remove a lug nut” using only the
verbs and nouns contained in Tire Changing Language:

 1. Grab wrench.

 2. Move wrench to lug nut.

 3. Turn wrench counterclockwise five times.

 4. Move wrench to toolbox.

 5. Release wrench.

I didn’t explain the syntax of Tire Changing Language. For example, the
fact that every command starts with a single verb or that the verb “grab”
requires a single noun as its object and that “turn” requires a noun, a direction,
and a count of the number of turns to make. Even so, the program snippet
should be easy enough to read (remember that this is not a book about Tire
Changing Language).

 You can skate by on Tire Changing Language, but you will have to learn the
grammar of each C++ command.

The program begins at Step 1 and continues through each step in turn until
reaching Step 5. In programming terminology, we say that the program flows
from Step 1 through Step 5. Of course, the program’s not going anywhere —
the processor is doing all the work, but the term “program flow” is a common
convention.

Even a cursory examination of this program reveals a problem: What if there
is no lug nut? I suppose it’s harmless to spin the wrench around a bolt with
no nut on it, but doing so wastes time and isn’t my idea of a good solution.
The Tire Changing Language needs a branching capability that allows the
program to take one path or another depending upon external conditions. We
need an IF statement like the following:

 1. Grab wrench.

 2. If lug nut is present

05_617977-ch01.indd 1305_617977-ch01.indd 13 7/6/10 11:38 PM7/6/10 11:38 PM

14 Part I: Let’s Get Started

 3. {

 4. Move wrench to lug nut.

 5. Turn wrench counterclockwise five times.

 6. }

 7. Move wrench to toolbox.

 8. Release wrench.

The program starts with Step 1 just as before and grabs a wrench. In the
second step, however, before the program waves the wrench uselessly
around an empty bolt, it checks to see if a lug nut is present. If so, flow con-
tinues on with Steps 3, 4, and 5 as before. If not, however, program flow skips
these unnecessary steps and goes straight on to Step 7 to return the wrench
to the toolbox.

In computerese, you say that the program executes the logical expression
“is lug nut present?” This expression returns either a true (yes, the lug nut is
present) or a false (no, there is no lug nut there).

 What I call steps, a programming language would normally call a statement.
An expression is a type of statement that returns a value, such as 1 + 2 is an
expression. A logical expression is an expression that returns a true or false
value, such as “is the author of this book handsome?” is true.

 The braces in Tire Changing Language are necessary to tell the program which
steps are to be skipped if the condition is not true. Steps 4 and 5 are executed
only if the condition is true.

I realize that there’s no need to grab a wrench if there’s no lug to remove, but
work with me here.

This improved program still has a problem: How do you know that 5 turns
of the wrench will be sufficient to remove the lug nut? It most certainly will
not be for most of the tires with which I am familiar. You could increase the
number of turns to something that seems likely to be more than enough, say
25 turns. If the lug nut comes loose after the twentieth turn, for example, the
wrench will turn an extra 5 times. This is a harmless but wasteful solution.

A better approach is to add some type of “loop and test” statement to the
Tire Changing Language:

 1. Grab wrench.

 2. If lug nut is present

05_617977-ch01.indd 1405_617977-ch01.indd 14 7/6/10 11:38 PM7/6/10 11:38 PM

15 Chapter 1: What Is a Program?

 3. {

 4. Move wrench to lug nut.

 5. While (lug nut attached to car)

 6. {

 7. Turn wrench counterclockwise one turn.

 8. }

 9. }

 10. Move wrench to toolbox.

 11. Release wrench.

Here the program flows from Step 1 through Step 4 just as before. In Step 5,
however, the processor must make a decision: Is the lug nut attached? On
the first pass, we will assume that the answer is yes so that the processor
will execute Step 7 and turn the wrench counterclockwise one turn. At this
point, the program returns to Step 5 and repeats the test. If the lug nut is
still attached, the processor repeats Step 7 before returning to Step 5 again.
Eventually, the lug nut will come loose and the condition in Step 5 will return
a false. At this point, control within the program will pass on to Step 9, and
the program will continue as before.

This solution is superior to its predecessor: It makes no assumptions about
the number of turns required to remove a lug nut. It is not wasteful by requir-
ing the processor to turn a lug nut that is no longer attached, nor does it fail
because the lug nut is only half removed.

As nice as this solution is, however, it still has a problem: It removes only
a single lug nut. Most medium-sized cars have five nuts on each wheel. We
could repeat Steps 2 through 9 five times, once for each lug nut. However,
this doesn’t work very well either. Most compact cars have only four lug
nuts, and large pickups have up to eight.

The following program expands our grammar to include the ability to loop
across lug nuts. This program works irrespective of the number of lug nuts
on the wheel:

 1. Grab wrench.

 2. For each lug bolt on wheel

 3. {

 4. If lug nut is present

 5. {

05_617977-ch01.indd 1505_617977-ch01.indd 15 7/6/10 11:38 PM7/6/10 11:38 PM

16 Part I: Let’s Get Started

 6. Move wrench to lug nut.

 7. While (lug nut attached to car)

 8. {

 9. Turn wrench counterclockwise one turn.

 10. }

 11. }

 12. }

 13. Move wrench to toolbox.

 14. Release wrench.

This program begins just as before with the grabbing of a wrench from the
toolbox. Beginning with Step 2, however, the program loops through Step 12
for each lug nut bolt on the wheel.

Notice how Steps 7 through 10 are still repeated for each wheel. This is
known as a nested loop. Steps 7 through 10 are called the inner loop, while
Steps 2 through 12 are the outer loop.

The complete program consists of the addition of similar implementations of
each of the steps in the algorithm.

Computer processors
Removing the wheel from a car seems like such a simple task, and yet it takes
11 instructions in a language designed specifically for tire changing just to
get the lug nuts off. Once completed, this program is likely to include over 60
or 70 steps with numerous loops. Even more if you add in logic to check for
error conditions like stripped or missing lug nuts.

Think of how many instructions have to be executed just to do something as
mundane as move a window about on the display screen (remember that a
typical screen may have 1280 x 1024 or a little over a million pixels or more
displayed). Fortunately, though stupid, a computer processor is very fast.
For example, the processor that’s in your PC can likely execute several billion
instructions per second. The instructions in your generic processor don’t do
very much — it takes several instructions just to move one pixel — but when
you can rip through a billion or so at a time, scrolling a mere million pixels
becomes child’s play.

05_617977-ch01.indd 1605_617977-ch01.indd 16 7/6/10 11:38 PM7/6/10 11:38 PM

17 Chapter 1: What Is a Program?

The computer will not do anything that it hasn’t already been programmed
for. The creation of a Tire Changing Language was not enough to replace
my flat tire — someone had to write the program instructions to map out
step by step what the computer will do. And writing a real-world program
designed to handle all of the special conditions that can arise is not an easy
task. Writing an industrial-strength program is probably the most challenging
enterprise you can undertake.

So the question becomes: “Why bother?” Because once the computer is prop-
erly programmed, it can perform the required function repeatedly, tirelessly,
and usually at a greater rate than is possible under human control.

Computer Languages
The Tire Changing Language isn’t a real computer language, of course. Real
computers don’t have machine instructions like “grab” or “turn.” Worse yet,
computers “think” using a series of ones and zeros. Each internal command
is nothing more than a sequence of binary numbers. Real computers have
instructions like 01011101, which might add 1 to a number contained in a spe-
cial purpose register. As difficult as programming in TCL might be, program-
ming by writing long strings of numbers is even harder.

 The native language of the computer is known as machine language and is usu-
ally represented as a sequence of numbers written either in binary (base 2)
or hexadecimal (base 16). The following represents the first 64 bytes from the
Conversion program in Chapter 3.

<main+0>: 01010101 10001001 11100101 10000011 11100100 11110000 10000011 11101100
<main+8>: 00100000 11101000 00011010 01000000 00000000 00000000 11000111 01000100
<main+16>:00100100 00000100 00100100 01110000 01000111 00000000 11000111 00000100
<main+24>:00100100 10000000 01011111 01000111 00000000 11101000 10100110 10001100
<main+32>:00000110 00000000 10001101 01000100 00100100 00010100 10001001 01000100

Fortunately, no one writes programs in machine language anymore. Very
early on, someone figured out that it is much easier for a human to under-
stand ADD 1,REG1 as “add 1 to the value contained in register 1,” rather than
01011101. In the “post-machine language era,” the programmer wrote her
programs in this so-called assembly language and then submitted it to a pro-
gram called an assembler that converted each of these instructions into their
machine-language equivalent.

05_617977-ch01.indd 1705_617977-ch01.indd 17 7/6/10 11:38 PM7/6/10 11:38 PM

18 Part I: Let’s Get Started

The programs that people write are known as source code because they are
the source of all evil. The ones and zeros that the computer actually executes
are called object code because they are the object of so much frustration.

 The following represents the first few assembler instructions from the
Conversion program when compiled to run on an Intel processor executing
Windows. This is the same information previously shown in binary form.

<main>: push %ebp
<main+1>: mov %esp,%ebp
<main+3>: and $0xfffffff0,%esp
<main+6>: sub $0x20,%esp
<main+9>: call 0x40530c <__main>
<main+14>: movl $0x477024,0x4(%esp)
<main+22>: movl $0x475f80,(%esp)
<main+29>: call 0x469fac <operator<<>
<main+34>: lea 0x14(%esp),%eax
<main+38>: mov %eax,0x4(%esp)

This is still not very intelligible, but it’s clearly a lot better than just a bunch
of ones and zeros. Don’t worry — you won’t have to write any assembly lan-
guage code in this book either.

 The computer does not actually ever execute the assembly language instruc-
tions. It executes the machine instructions that result from converting the
assembly instructions.

High level languages
Assembly language might be easier to remember, but there’s still a lot of dis-
tance between an algorithm like the tire-changing algorithm and a sequence
of MOVEs and ADDs. In the 1950s, people started devising progressively more
expressive languages that could be automatically converted into machine
language by a program called a compiler. These were called high level lan-
guages because they were written at a higher level of abstraction than assem-
bly language.

One of the first of these languages was COBOL (Common Business Oriented
Language). The idea behind COBOL was to allow the programmer to write
commands that were as much like English sentences as possible. Suddenly
programmers were writing sentences like the following to convert tempera-
ture from Celsius to Fahrenheit (believe it or not, this is exactly what the
machine and assembly language snippets shown earlier do):

05_617977-ch01.indd 1805_617977-ch01.indd 18 7/6/10 11:38 PM7/6/10 11:38 PM

19 Chapter 1: What Is a Program?

INPUT CELSIUS_TEMP
SET FAHRENHEIT_TEMP TO CELSIUS_TEMP * 9/5 + 32
WRITE FAHRENHEIT_TEMP

The first line of this program reads a number from the keyboard or a file
and stores it into the variable CELSIUS_TEMP. The next line multiplies this
number by 9⁄5 and adds 32 to the result to calculate the equivalent tempera-
ture in Fahrenheit. The program stores this result into a variable called
FAHRENHEIT_TEMP. The last line of the program writes this converted value
to the display.

People continued to create different programming languages, each with its
own strengths and weaknesses. Some languages, like COBOL, were very
wordy but easy to read. Other languages were designed for very specific
areas like database languages or the languages used to create interactive
Web pages. These languages include powerful constructs designed for one
specific problem area.

The C++ language
C++ (pronounced “C plus plus,” by the way) is a symbolically oriented high
level language. C++ started out life as simply C in the 1970s at Bell Labs. A
couple of guys were working on a new idea for an operating system known
as Unix (the predecessor to Linux and Mac OS and still used across industry
and academia today). The original C language created at Bell Labs was modi-
fied slightly and adopted as a worldwide ISO standard in early 1980. C++ was
created as an extension to the basic C language mostly by adding the features
that I discuss in Parts V and VI of this book.When I say that C++ is symbolic,
I mean that it isn’t very wordy, preferring to use symbols rather than long
words like in COBOL. However, C++ is easy to read once you are accustomed
to what all the symbols mean. The same Celsius to Fahrenheit conversion
code shown in COBOL earlier appears as follows in C++:

cin >> celsiusTemp;
fahrenheitTemp = celsiusTemp * 9 / 5 + 32;
cout << fahrenheitTemp;

The first line reads a value into the variable celsiusTemp. The subsequent
calculation converts this Celsius temperature to Fahrenheit like before, and
the third line outputs the result.

C++ has several other advantages compared with other high level languages.
For one, C++ is universal. There is a C++ compiler for almost every computer
in existence.

05_617977-ch01.indd 1905_617977-ch01.indd 19 7/6/10 11:38 PM7/6/10 11:38 PM

20 Part I: Let’s Get Started

In addition, C++ is efficient. The more things a high level language tries to
do automatically to make your programming job easier, the less efficient the
machine code generated tends to be. That doesn’t make much of a difference
for a small program like most of those in this book, but it can make a big dif-
ference when manipulating large amounts of data, like moving pixels around
on the screen, or when you want blazing real-time performance. It’s not an
accident that Unix and Windows are written in C++ and the Macintosh O/S is
written in a language very similar to C++.

05_617977-ch01.indd 2005_617977-ch01.indd 20 7/6/10 11:38 PM7/6/10 11:38 PM

Chapter 2

Installing Code::Blocks
In This Chapter
▶ Reviewing the compilation process

▶ Installing the Code::Blocks development environment

▶ Testing your installation with a default program

▶ Reviewing the common installation errors

In this chapter, you will review what it takes to create executable pro-
grams from C++ source code that you can run on the Windows, Linux, or

Macintosh computer. You will then install the Code::Blocks integrated devel-
opment environment used in the remainder of the book, and you will build
a default test program to check out your installation. If all is working, by the
time you reach the end of this chapter, you will be ready to start writing and
building C++ programs of your own — with a little help, of course!

Reviewing the Compilation Process
You need two programs to create your own C++ programs. First, you need a
text editor that you can use to enter your C++ instructions. Any editor capa-
ble of generating straight ASCII text letters will work. I have written programs
using the Notepad editor that comes with Windows. However, an editor that
knows something about the syntax of C++ is preferable since it can save you
a lot of typing and sometimes highlight mistakes that you might be making as
you type, in much the same way that a spelling checker highlights misspelled
words in a word processor.

The second program you will need is a compiler that converts your C++
source statements into machine language that the computer can understand
and interpret. This process of converting from source C++ statements to
object machine code is called building. Graphically, the process looks some-
thing like that shown in Figure 2-1.

06_617977-ch02.indd 2106_617977-ch02.indd 21 7/6/10 11:38 PM7/6/10 11:38 PM

22 Part I: Let’s Get Started

The process of building a program actually has two steps: The C++ compiler
first converts your C++ source code statements into a machine executable
format in a step known as compiling. It then combines the machine instruc-
tions from your program with instructions from a set of libraries that come
standard with C++ in a second step known as linking to create a complete
executable program.

Figure 2-1:
The C++
program
develop-

ment
process.

C++ Source
Code Statements

Machine Code
Version

C++
Library

Linking

Complete Machine
Executable Program

Compile Step

Most C++ compilers these days come in what is known as an Integrated
Development Environment or IDE. These IDEs include the editor, the com-
piler, and several other useful development programs together in a common
package. Not only does this save you from the need to purchase these pro-
grams separately, but combining them into a single package produces sev-
eral productivity benefits. First, the editor can invoke the compiler quickly
without the need for you to switch back and forth manually. In addition, the
editors in most IDEs provide quick and efficient means for finding and fixing
coding errors.

Some IDEs include visual programming tools that allow the programmer to
draw common windows such as dialog boxes on the display — the IDE gener-
ates the C++ code necessary to display these boxes automatically.

 As nice as that sounds, the automatically generated code only displays the
windows. A programmer still has to generate the real code that gets executed
whenever the operator selects buttons within those windows.

Invariably, these visual IDEs are tightly coupled into one or the other operat-
ing system. For example, the popular Visual Studio is strongly tied into the

06_617977-ch02.indd 2206_617977-ch02.indd 22 7/6/10 11:38 PM7/6/10 11:38 PM

23 Chapter 2: Installing Code::Blocks

.NET environment in Windows. It is not possible to use Visual Studio without
learning the .NET environment and something about Windows along with C++
(or one of the other .NET languages). In addition, the resulting programs only
run in a .NET environment.

 In this book, you will use a public domain C++ IDE known as Code::Blocks.
Versions of Code::Blocks exist for Windows, Linux, and MacOS — a version
for Windows is included on the CD-ROM accompanying this book. Versions of
Code::Blocks for Macintosh and Linux are available for free download at www.
codeblocks.org.

You will use Code::Blocks to generate the programs in this book. These
programs are known as Console Applications since they take input from and
display text back to a console window. While this isn’t as sexy as windowed
development, staying with Console Applications will allow you to focus on
C++ and not be distracted by the requirements of a windowed environment.
In addition, using Console Applications will allow the programs in the book to
run the same on all environments that are supported by Code::Blocks.

Installing Code::Blocks
 Beginning Programming with C++ For Dummies includes a version of Code::Blocks

for Windows on the CD-ROM. This section provides detailed installation
instructions for this version. The steps necessary to download and install
versions of Code::Blocks from www.codeblocks.org will be similar.

 1. Insert the enclosed CD-ROM into your computer.

 That’s straightforward enough.

 2. Read the End User License Agreement (EULA) and select Accept.

 3. Select the Software tab and then select Code::Blocks to install the
Code::Blocks environment.

 On some versions of Windows, you may see a message appear that “An
unidentified program wants access to your computer.” Of course, that
unidentified program is the Code::Blocks Setup program.

 4. Select Allow.

 Setup now unpacks the files it needs to start and run the Code::Blocks
Setup Wizard. This may take about a minute. Once it finishes, the
startup window shown in Figure 2-2 appears.

 5. Close any other programs that you may be executing and select Next.

 The Setup Wizard displays the generic End User License Agreement
(EULA). There’s nothing much here to get excited about.

06_617977-ch02.indd 2306_617977-ch02.indd 23 7/6/10 11:38 PM7/6/10 11:38 PM

24 Part I: Let’s Get Started

Figure 2-2:
The

Code::Blocks
Setup

Wizard
guides you

through the
installation

process.

 6. Select I Agree.

 The Setup Wizard then displays a list of the components that you may
choose to install. The defaults are okay, but you may want to also check
the Desktop Shortcut option as shown in Figure 2-3. Doing this provides
an icon on the desktop that you can use to start Code::Blocks without
going through the Program Files menu.

Figure 2-3:
Checking
Desktop
Shortcut

creates an
icon that
you can

use to start
Code::Blocks

more
quickly.

 7. Select Next.

 The next window asks you to choose the install location. This window
also tells you how much hard disk space Code::Blocks requires (about
150MB, depending upon the options you’ve selected) and how much
space is available on your hard drive. If you don’t have enough free disk
space, you’ll have to delete some of those YouTube videos you’ve cap-
tured to make room before you continue.

06_617977-ch02.indd 2406_617977-ch02.indd 24 7/6/10 11:38 PM7/6/10 11:38 PM

25 Chapter 2: Installing Code::Blocks

 8. The default install location is fine, so once you have enough disk
space, select Install.

 At this point, the Code::Blocks Setup Wizard really goes to work. It
extracts umpteen dozen files that it installs in a myriad of subdirectories
too complicated for mere mortals. This process may take several
minutes.

 9. When the installation is complete, a dialog box appears asking you
whether you want to run Code::Blocks now. Select No.

 If all has gone well so far, the Installation Complete window shown in
Figure 2-4 appears.

Figure 2-4:
The

Installation
Complete

window
signals that

Code::Blocks
has been

successfully
installed.

 10. Click Next.

 Finally, the Completing the Code::Blocks Setup Wizard window appears.
This final step creates the icons necessary to start the application.

 11. Click Finish.

You’ve done it! You’ve installed Code::Blocks. All that remains now is to test
whether it works, and then you’ll be ready to start programming.

Tes ting the Code::Blocks Installation
In this section, you will build a default program that comes with Code::Blocks.
This program does nothing more than display “Hello, world!” on the display,
but building and running this program successfully will verify that you’ve
installed Code::Blocks properly.

06_617977-ch02.indd 2506_617977-ch02.indd 25 7/6/10 11:38 PM7/6/10 11:38 PM

26 Part I: Let’s Get Started

 1. Start Code::Blocks by double-clicking on the Code::Blocks icon created
on the Desktop or selecting Programs➪Code::Blocks➪Code::Blocks.

 This should open a window like the one shown in Figure 2-5.

Across the top of the window are the usual menu options starting with File,
Edit, View, and so on. The window at the upper right, the one that says
“Start here,” is where the source code will go when you get that far. The
window at the lower right is where Code::Blocks displays messages to the
user. Compiler error messages appear in this space. The window on the left
labeled Management is where Code::Blocks keeps track of the files that make
up the programs. It should be empty now since you have yet to create a pro-
gram. The first thing you will need to do is create a project.

Figure 2-5:
The opening
screen of the
Code::Blocks

environ-
ment.

What’s a project?

You want Code::Blocks to create only Console Applications, but it can create
a lot of different types of programs. For Windows programmers, Code::Blocks
can create Dynamic Link Libraries (also known simply as DLLs). It can create
Windows applications. It can create both static and dynamically linked librar-
ies for Linux and MacOS.

In addition, Code::Blocks allows the programmer to set different options on
the ways each of these targets is built. I will show you how to adjust a few
of these settings in later chapters. And finally, Code::Blocks remembers how
you have your windows configured for each project. When you return to the
project, Code::Blocks restores the windows to their last configuration to save
you time.

06_617977-ch02.indd 2606_617977-ch02.indd 26 7/6/10 11:38 PM7/6/10 11:38 PM

27 Chapter 2: Installing Code::Blocks

Code::Blocks stores the information it needs about the type of program that
you are building, the optional settings, and the window layout in two project
files. The settings are stored in a file with the same name as the program but
carrying the extension .cbp. The window configuration is stored in a file with
the same name but with the extension .layout.

Creating the project
 1. Select File➪New➪Projects to open the window shown in Figure 2-6.

 This is a list of all of the types of applications that Code::Blocks knows
how to build.

Figure 2-6:
Select the

Console
Application

from the
many types

of targets
offered.

 Fortunately, you will be concentrating on just one, the Console
Application.

 2. Select Console Application and select Go.

 Code::Blocks responds with the display shown in Figure 2-7. Here
Code::Blocks is offering you the option to create either a C or a C++
program.

 3. Select C++ and click Next.

 Code::Blocks opens a dialog box where you will enter the name and
optional subfolder for your project. First, click on the little ... button to
create a folder to hold your Projects, navigate to the root of your work-
ing disk (on a Windows machine, it’ll be either C or D, most likely C).
Select the Make New Folder button at the bottom left of the window.
Name the new folder Beginning_Programming-CPP.

06_617977-ch02.indd 2706_617977-ch02.indd 27 7/6/10 11:38 PM7/6/10 11:38 PM

28 Part I: Let’s Get Started

Figure 2-7:
Select C++

as your
language of

choice.

 4. Click OK when your display looks like the one shown in Figure 2-8.

 The folder that you create to hold your project must not contain any spaces
in the name. In addition, none of the folders in the path should contain
spaces. That automatically eliminates placing your projects on the Desktop
since the path to the Desktop contains spaces. You should also avoid
spaces in the name of the Project. You can use underscores to separate
words instead. The Code::Blocks compiler gets confused with spaces in the
filenames and generates obscure and largely meaningless errors.

Figure 2-8:
Create

the folder
Begin
ning_

Program
ming-
CPP into

which you
will collect

your C++
projects.

 Now enter the name of the Project as HelloWorld. Notice that Code::Blocks
automatically creates a subfolder of the same name to contain the files
that make up the project.

 5. Click Next when your display looks like Figure 2-9.

06_617977-ch02.indd 2806_617977-ch02.indd 28 7/6/10 11:38 PM7/6/10 11:38 PM

29 Chapter 2: Installing Code::Blocks

Figure 2-9:
Call your

first project
HelloWorld.

 6. When Code::Blocks asks how you want your subfolders set up, you
can accept the default configuration, as shown in Figure 2-10. Select
Finish.

 You can select the Back button to back up to a previous menu in the preced-
ing steps if you screw something up. However, you may have to reenter any
data you entered when you go forward again. Once you select Finish, you can
no longer return and change your selections. If you screw up and want to redo
the project, you will first need to remove the Project: Right-click on HelloWorld
in the Management window and select Close Project. Now you can delete the
folder Beginning_Programming-CPP\HelloWorld and start over again.

Figure 2-10:
Select

Finish on the
final page

to complete
the cre-

ation of the
HelloWorld

Project.

06_617977-ch02.indd 2906_617977-ch02.indd 29 7/6/10 11:38 PM7/6/10 11:38 PM

30 Part I: Let’s Get Started

Testing your default project
Code::Blocks creates a Console Application project and even populates it
with a working program when you select Finish on the Project Wizard. To see
that program, click on the plus (+) sign next to Sources in the Management
window on the left side of the display. The drop-down list reveals one file,
main.cpp. Double-click on main.cpp to display the following simple pro-
gram in the source code entry window on the right:

#include <iostream>

using namespace std;

int main()
{
 cout << “Hello world!” << endl;
 return 0;
}

I’ll skip over what some of this stuff means for now, but the crux of the pro-
gram starts after the open brace following main(). This is where execution
begins. The line

cout << “Hello world!” << endl;

says output the line “Hello, world!” to the cout, which by default is the com-
mand line. The next line

return 0;

causes control to return to the operating system, which effectively termi-
nates the program.

 1. Select Build➪Build to build the C++ source statements into an execut-
able machine language program.

 (You can press Ctrl+F9 or click the Build icon if you prefer.) Immediately,
you should see the Build Log tab appear in the lower-right screen fol-
lowed by a series of lengthy commands, as shown in Figure 2-11. This
is Code::Blocks telling the C++ compiler how to build the test program
using the settings stored in the project file. The details aren’t important.
What is important, however, is that the final two lines of the Build Log
window should be

Process terminated with status 0 (0 minutes, 1 seconds)
0 errors, 0 warnings

06_617977-ch02.indd 3006_617977-ch02.indd 30 7/6/10 11:38 PM7/6/10 11:38 PM

31 Chapter 2: Installing Code::Blocks

 The terminated status of 0 means that the build process worked prop-
erly. The “0 errors, 0 warnings” means that the program compiled with-
out errors or warnings. (The build time of 1 second is not important.)

Figure 2-11:
Building the
default pro-

gram should
result in a

working
program
with no

errors
and no

warnings.

 If you don’t get a status of 0 with 0 errors and 0 warnings, then some-
thing is wrong with your installation or with the project. The most
common sources of error are

 • You already had a gcc compiler installed on your computer before
you installed Code::Blocks. Code::Blocks uses a special version of
the GNU gcc compiler, but it will use any other gcc compiler that
you may already have installed on your computer. Your safest bet
is to uninstall Code::Blocks, uninstall your other gcc compiler, and
reinstall Code::Blocks from scratch.

 • You built your project in a directory that contains a space in the
name; for example, you built your project on the Desktop. Be sure
to build your project in the folder Beginning_Programming-CPP in
the root of your user disk (most likely C on a Windows machine).

 • You built a project directly from the enclosed CD-ROM that came
with the book. (This doesn’t apply to the steps here, but it is a
common source of error anyway. You can’t build your program on
a read-only storage medium like a CD-ROM. You will have to copy
the files from the CD-ROM to the hard drive first.)

06_617977-ch02.indd 3106_617977-ch02.indd 31 7/6/10 11:38 PM7/6/10 11:38 PM

32 Part I: Let’s Get Started

 2. Select Build➪Run (Ctrl+F10) to execute the program.

 Immediately a window should pop open with the message “Hello, world!”
followed by the return code of zero and the message “Press any key to
continue,” as shown in Figure 2-12.

 3. Press Enter.

 The window will disappear and control returns to the Code::Blocks text
editor.

Figure 2-12:
The default

program
displays

“Hello,
world!” and

waits for
you to press

a key.

If you were able to see the “Hello, world!” message by executing the program,
then congratulations! You’ve installed your development environment and
built and executed your first C++ program successfully. If you did not, then
delete the Beginning_Programming_CPP folder, uninstall Code::Blocks,
and try again, carefully comparing your display to the figures shown in this
chapter. If you are still having problems, refer to www.stephendavis.com
for pointers as to what might be wrong, as well as a link to my e-mail where
you can send me questions and comments. I cannot do your programming
homework for you, but I can answer questions to get you started.

06_617977-ch02.indd 3206_617977-ch02.indd 32 7/6/10 11:38 PM7/6/10 11:38 PM

Chapter 3

Writing Your First Program
In This Chapter
▶ Entering your first C++ program

▶ Compiling and executing your program

▶ Examining some things that could go wrong

▶ Executing your program

▶ Reviewing how the program works

This chapter will guide you through the creation of your first program in
C++. You will be using the Code::Blocks C++ environment. It will all be a

bit “cookbookish” since this is your first time. I explain all of the parts that
make up this program in subsequent chapters beginning with Part II, but for
now you’ll be asked to accept a few things on faith. Soon all will be revealed,
and everything you do in this chapter will make perfect sense.

Creating a New Project
As always, you must create a new project to house your program. Follow the
abbreviated steps here (or you can use the detailed steps from Chapter 2):

 1. With Code::Blocks open, select File➪New➪Project.

 2. Select Console Applications and select Go (or double-click on the
Console Applications icon).

 3. Select C++ as your language of choice and select Next.

 4. Enter Conversion as the Project Title.

 If you followed the steps in Chapter 2, the “Folder to create project in”
should already be set to Beginning_Programming-CPP. If not, it’s not
too late to click the ... button and create the folder in the root of your
working disk. (This is described in detail in Chapter 2.) The Code::Blocks
Wizard fills in the name of the Project and the name of the resulting pro-
gram for you.

07_617977-ch03.indd 3307_617977-ch03.indd 33 7/6/10 11:39 PM7/6/10 11:39 PM

34 Part I: Let’s Get Started

 When you’re done, your window should look like that shown in Figure 3-1.

Figure 3-1:
The Project

window
for the

Conversion
program.

 5. Select Next.

 The next window allows you to change the target folders. The defaults
are fine.

 6. Select Finish.

Code::Blocks creates a new Project and adds it to the earlier HelloWorld
project. (See the “Organizing projects” sidebar for an explanation of why this
happens.) The resulting display should look like Figure 3-2.

Figure 3-2:
The initial

display after
creating the
Conversion

project.

07_617977-ch03.indd 3407_617977-ch03.indd 34 7/6/10 11:39 PM7/6/10 11:39 PM

35 Chapter 3: Writing Your First Program

Entering Your Program
It is now time to enter your first program using the following steps:

 1. Make sure that Conversion is bolded in the Management window
(refer to Figure 3-2).

 This indicates that it’s the active project. If it is not, right-click on
Conversion and select Activate Project from the drop-down menu.

 2. Close any source file windows that may be open by selecting File➪
Close all files.

 Alternatively, you can close just the source files you want by clicking on
the small X next to the name of the file in the editor tab. You don’t want
to inadvertently edit the wrong source file.

 3. Open the Sources folder by clicking on the small plus sign next to
Sources underneath Conversion in the Management window.

 The drop-down menu should reveal the single file main.cpp.

Organizing projects
You may be curious as to why Code::Blocks
added the new Conversion project to the exist-
ing HelloWorld project rather than replacing it.
A large effort involving multiple developers may
be broken up into a number of different pro-
grams that are all designed to work together.
To support this, Code::Blocks allows you to
have any number of different projects loaded
at once.

The collection of all projects is called a work-
space. Since you didn’t specify a workspace
when you started Code::Blocks, the projects
you’ve created so far have been going into
the default workspace. Only one project in the
workspace can be active at a time. This is the
project that appears in bold (refer to Figure 3-2
again, and you’ll notice that Conversion
is bolded while HelloWorld is not). Any
Code::Blocks commands you perform are
directed at the active project. By default, the
last project you created is the active project,

but you can change the active project by right-
clicking on it in the Management window and
selecting Activate Project (the first option in the
list).

If you were to take a peek in the Beginning_
Programming-CPP folder right now, you
would notice two subfolders: HelloWorld
and Conversion. Both of these subfolders
include a project file with the extension .cbp
that contains the compiler settings, a layout
file with the extension layout that describes
the way you want your windows set up when
working on this project, and the file main.cpp
that contains the C++ program created by the
application wizard. HelloWorld contains a
further subfolder named Debug.

C++ programs can have any name that you like,
but it should end in .cpp. You will see how to
create multiple C++ source files with different
names in Chapter 12.

07_617977-ch03.indd 3507_617977-ch03.indd 35 7/6/10 11:39 PM7/6/10 11:39 PM

36 Part I: Let’s Get Started

 4. Double-click main.cpp to open the file in the editor.

 5. Edit the contents of main.cpp by entering the following program
exactly as it appears here.

 The result is shown in Figure 3-3.

 This is definitely the hard part, so take your time and be patient:

//
// Conversion - Program to convert temperature from
// Celsius degrees into Fahrenheit:
// Fahrenheit = Celsius * (212 - 32)/100 + 32
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // enter the temperature in Celsius
 int celsius;
 cout << “Enter the temperature in Celsius:”;
 cin >> celsius;

 // convert Celsius into Fahrenheit values
 int fahrenheit;

Filename extensions
Windows has a bad habit of hiding the filename
extensions when displaying filenames. For
some applications this may be a good idea, but
this is almost never a good idea for a program-
mer. With extensions hidden, Windows may
display three or four files with the same name
HelloWorld. This confusing state of affairs
is easily cleared up when you display file exten-
sions and realize that they are all different.

You should disable the Windows Hide Extensions
feature. Exactly how you do this depends upon
what version of Windows you are using:

 ✓ Windows 2000: Select Start➪Settings➪
Control Panel➪Folder Options.

 ✓ Windows XP with Default View: Select
Start➪Control Panel➪Performance and
Maintenance➪File Types.

 ✓ Windows XP with Classic view: Select
Start➪Control Panel➪Folder options.

 ✓ Windows Vista with Default view: Select
Start➪Control Panel➪Appearance and
Personalization➪Show hidden files and
folders.

 ✓ Windows Vista with Classic view: Select
Start➪Settings➪Control Panel➪Folder
options.

Now navigate to the View tab of the Folder
Options dialog box that appears. Scroll down
until you find “Hide extensions for known file
types.” Make sure that this box is unchecked.
Select OK to close the dialog box.

07_617977-ch03.indd 3607_617977-ch03.indd 36 7/6/10 11:39 PM7/6/10 11:39 PM

37 Chapter 3: Writing Your First Program

 fahrenheit = celsius * 9/5 + 32;

 // output the results (followed by a NewLine)
 cout << “Fahrenheit value is:”;
 cout << fahrenheit << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

Figure 3-3:
The edited
main.
cpp file

of the
Conversion

program.

 What do I mean by “exactly as you see here”? C++ is very picky about
syntax. It frowns on missing semicolons or misspelled words. It doesn’t
care about extra spaces as long as they don’t appear in the middle of
a word. For example int fahren heit; is not the same as int
fahrenheit; but int fahrenheit; is okay. C++ treats tabs, spaces,
and newlines all the same, referring to them all as simply whitespace.

 Maybe it was just me, but it took me a long time to get used to the fact
that C++ differentiates between uppercase and lowercase. Thus, int
Fahrenheit; is not the same thing as int fahrenheit;. One final
hint: C++ ignores anything that appears after a //, so you don’t have to
worry about getting that stuff right.

 6. Save the file by selecting File➪Save all files.

07_617977-ch03.indd 3707_617977-ch03.indd 37 7/6/10 11:39 PM7/6/10 11:39 PM

38 Part I: Let’s Get Started

Building the Program
Now comes the most nerve-racking part of the entire software development
process: building your program. It’s during this step that C++ reviews your
handiwork to see if it can make any sense out of what you’ve written.

Programmers are eternal optimists. Somewhere, deep in our hearts, we truly
believe that every time we hit the Build button, everything is going to work, but
it almost never does. Invariably, a missing semicolon or a misspelled word will
disappoint C++ and bring a hail of error messages, like so much criticism from
our elementary school teachers, crashing down around our ears.

Actually building the program takes just one step: You select Build➪Build or
press Ctrl+F9 or click the little Build icon.

Finding What Could Go Wrong
No offense, but the Build step almost certainly did not come off without
error. A Gold Star program is one that works the first time you build and
execute it. You will almost never write a Gold Star program in your entire
programming career.

Fortunately, the Code::Blocks editor is so well integrated with the compiler
that it can automatically direct you very close to your errors. Most times, it
can place the cursor in the exact row that contains the error. To prove the
point, let me take you through a couple of example errors.

 These are just two of the myriad ways to screw up in C++. I can’t possibly
show you all of them. Learning how to interpret what the compiler is trying
to tell you with its error and warning messages is an important part of learn-
ing the language. It can come only from many months of practice and gaining
experience with the language. Hopefully, these two examples will get you
jump-started.

Misspelled commands
Misspelled commands are the easiest errors to identify and correct. To dem-
onstrate the point, I added an extra t to line 14 in the preceding code so that
it now reads

intt celsius;

07_617977-ch03.indd 3807_617977-ch03.indd 38 7/6/10 11:39 PM7/6/10 11:39 PM

39 Chapter 3: Writing Your First Program

Unlike int, the word intt has no meaning to C++. Building the resulting pro-
gram generated the display shown in Figure 3-4.

Figure 3-4:
The error

messages
resulting

from mis-
spelling
int.

Notice first the small, red block on Line 14 indicating that there is a problem
somewhere on this line. You can read all about it down in the Build Messages
tab in the lower-right window. Here you can see the following messages:

 In function ‘int main(int, char**)’:
14 error: ‘intt’ was not declared in this scope
14 error: expected ‘;’ before ‘celsius’
16 error: ‘celsius’ was not declared in this scope

The first line indicates the name of the function containing the error. I don’t
present functions until Chapter 12, but it’s easy to believe that all of the
code in this program is in a function called main. The next line is the key.
This says essentially that C++ didn’t understand what intt is on line 14 of
the program. The error message is a bit cryptic, but suffice it to say you’ll
get this same error message almost every time you misspell something. The
remaining error messages are just by-products of the original error.

 One C++ error can generate a cascade of error messages. It is possible to iden-
tify and fix multiple errors in a single build attempt, but it takes experience to
figure out which errors stem from which others. For now, focus on the first
error message. Fix it and rebuild the program.

07_617977-ch03.indd 3907_617977-ch03.indd 39 7/6/10 11:39 PM7/6/10 11:39 PM

40 Part I: Let’s Get Started

Missing semicolon
Another common error is to leave off a semicolon. The message that this
error generates can be a little confusing. To demonstrate, I removed the
semicolon from the declaration on line 14 so that it reads

int celsius
cout << “Enter the temperature in Celsius:”;

The error reported by C++ for this offense points not to line 14 but to the fol-
lowing line 15:

15 error: expected initialization before ‘cout’
16 error: ‘celsius’ was not declared in this scope

This is easier to understand when you consider that C++ considers newlines
as just a different form of space. Without the semicolon, C++ runs the two lines
together. There is no separate line 14 anymore. C++ can interpret the first part,
but it doesn’t understand the run-on sentence that starts with cout.

Why is C++ so picky?
You will quickly come to appreciate that C++
is about as picky as a judge at a spelling bee.
Everything has to be just so, or the compiler
won’t accept it. Interestingly enough, it doesn’t
have to be that way: Some languages choose
to try to make sense out of whatever you
give it. The most extreme version of this was
a language promulgated by IBM for its main-
frames in the 1970s known as PL/1 (this stood
for “Programming Language 1”). One version
of this compiler would try to make sense out
of whatever you threw at it. We nerds used to
get immense fun during late nights at the com-
puter center by torturing the compiler with a
program consisting of nothing but the word
“IF” or “WHILE.” Through some tortured logic,
PL/1 would construct an entire program out of
this one command.

The other camp in programming languages, the
camp to which C++ belongs, holds the opposite
view: These languages compel the programmer

to state exactly what she intends. Everything
must be spelled out. Each declaration is checked
against each and every usage to make sure that
everything matches. No missing semicolon or
incorrectly declared label goes unpunished.

It turns out that the tough love approach
adopted by C++ is actually more efficient. The
problem with the PL/1 “free love” approach is
that it was almost always wrong in its under-
standing of what I intended. PL/1 ended up cre-
ating a program that compiled but did something
other than what I intended when it executed.
C++ generates a compiler error if something
doesn’t check out to force me to express my
intentions clearly and unambiguously.

It turns out that it’s a lot easier to find and fix the
compile time errors generated by C++ than the
so-called runtime errors created by a compiler
that assumes it understands what I want but
gets it wrong.

07_617977-ch03.indd 4007_617977-ch03.indd 40 7/6/10 11:39 PM7/6/10 11:39 PM

41 Chapter 3: Writing Your First Program

 Missing semicolons often generate error messages that bear little resemblance
to the actual error message, and they are almost always on the next line after
the actual error. If you suspect a missing semicolon, start on the line with the
reported error and scan backwards.

Using the Enclosed CD-ROM
If you just can’t get the program entered correctly, you can always copy the
program from the enclosed CD-ROM. (If you have questions regarding using
the CD-ROM, see the Appendix; it details what you’ll find on the CD-ROM, as
well as troubleshooting tips, should you need them.)

 You should really try to enter the program by hand first before you give up
and resort to the CD-ROM. It’s only through working through your mistakes
that you develop a feel for how the language works.

You have several ways to use the enclosed CD-ROM. The most straightfor-
ward is to copy and paste the contents of the file on the CD into your own as
follows:

 1. Insert the enclosed CD-ROM into your computer.

 2. Select File➪Open from within Code::Blocks. Navigate to the X:\
Beginning_Programming-CPP\Conversion where X is the letter of
your CD-ROM drive.

 3. Select the file main.cpp.

 Code::Blocks will open the file (in ReadOnly mode) in a new tab in the
editor window.

 4. Select Edit➪Select All or press Ctrl+A.

 This will select the entire contents of the source file.

 5. Select Edit➪Copy or press Ctrl+C.

 This will copy the entire file to the clipboard.

 6. Select the main tab corresponding to your program.

 7. Select Edit➪Select All or press Ctrl+A again.

 8. Select Edit➪Paste or press Ctrl+V.

 This will overwrite the entire contents of the main.cpp that you’ve
been working on with the contents of the corresponding file on the
CD-ROM.

 9. Close the tab containing the CD-ROM version of the file by clicking on
the small X next to the filename.

07_617977-ch03.indd 4107_617977-ch03.indd 41 7/6/10 11:39 PM7/6/10 11:39 PM

42 Part I: Let’s Get Started

Running the Program
You can execute the program once you get a clean compile (that is, 0 errors
and 0 warnings) by following these steps:

 1. Select Build➪Run or press Ctrl+F10.

 This will execute the program without the debugger. (Don’t worry if you
don’t know what a debugger is; I teach you how to use it in Chapter 20.)

 The program opens an 80 column by 25 row window and prompts you to
enter a temperature in degrees Celsius.

 2. Enter a known temperature like 100 degrees. Press Enter.

 The program immediately responds with the equivalent temperature in
Fahrenheit of 212:

Enter the temperature in Celsius:100
Fahrenheit value is:212
Press any key to continue . . .

 3. Press Enter twice to exit the program and return to the editor.

How the Program Works
Even though this is your first program, I didn’t want to leave this chapter
without giving you some idea of how this program works.

The template
The first part of the program I call the “Beginning Programming Template.”
This will be the same magic incantation used for all programs in this book. It
goes like this:

//
// ProgramName - short explanation of what the
// program does
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])

07_617977-ch03.indd 4207_617977-ch03.indd 42 7/6/10 11:39 PM7/6/10 11:39 PM

43 Chapter 3: Writing Your First Program

{
 // program goes here

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

Comments
The first few lines in this template appear to be free-form text. Either this
“code” was meant for human consumption or the computer is a lot smarter
than anyone’s ever given it credit for. These first four lines are known as
comments. A comment is a line or portion of a line that is ignored by the C++
compiler. Comments enable the programmer to explain what she was doing
or thinking while writing a particular segment of code.

A C++ comment begins with double forward slashes and ends with a newline.
You can put any character you want in a comment, and comments can be as
long as you like, though it is customary to limit them to 80 characters or so
because that’s what fits within a normal screen width.

Note: You may think it odd to have a command in C++, or any other
programming language, that is specifically ignored by the compiler; yet,
all programming languages have some form of comment. It is critical that
the programmer be able to explain what was going through her mind when
a piece of code was written. It may not be obvious to the next person who
picks up the program and uses it or modifies it. In fact, it may not be obvious
to the programmer herself after only a few days working on something else.

Include files
The next few lines are called include statements because they cause the con-
tents of the named file to be included at that point in the program. Include
files always start with the statement #include in column 1 followed by the
name of the file to include. I’ll explain further in Chapter 12. Just consider
them magic for now.

main
Every program must have a main() somewhere in it. Program execution
begins at the open brace immediately following main() and terminates at
the return statement immediately prior to the closed brace. An explanation
of the exact format of the declaration for main() will have to wait.

07_617977-ch03.indd 4307_617977-ch03.indd 43 7/6/10 11:39 PM7/6/10 11:39 PM

44 Part I: Let’s Get Started

Notice that the standard template ends with the statement system(“PAUSE”)
prior to the return 0. This command causes the program to wait for the user
to enter a key before the program terminates.

 The call to system(“PAUSE”) isn’t necessary as long as you’re running your
programs from the Code::Blocks environment. Code::Blocks waits for the
user to enter a key before closing the console application window anyway.
However, not all environments are so understanding. Leave this off and very
often C++ will close the application window before you have a chance to read
the output from the program. I get lots of hate mail when that happens.

The Conversion program
The remainder of the Conversion program sans the template appears as
follows:

// enter the temperature in Celsius
int celsius;
cout << “Enter the temperature in Celsius:”;
cin >> celsius;

// convert Celsius into Fahrenheit values
int fahrenheit;
fahrenheit = celsius * 9/5 + 32;

// output the results (followed by a NewLine)
cout << “Fahrenheit value is:”;
cout << fahrenheit << endl;

Skipping over the comment lines, which C++ ignores anyway, this program
starts by declaring a variable called celsius. A variable is a place you can
use to store a number or character.

The next line displays the prompt to the user to “Enter the temperature
in Celsius:”. The object cout points to the console window by default.

The next line reads whatever number the operator enters and stores it into
the variable celsius declared earlier.

The next two lines declare a second variable fahrenheit, which it then sets
equal to the value of the variable celsius * 9 / 5 + 32, which is the
conversion formula from Celsius to Fahrenheit temperature.

The final two lines output the string “Fahrenheit value is:” and the
value calculated and stored into the variable fahrenheit immediately
above.

07_617977-ch03.indd 4407_617977-ch03.indd 44 7/6/10 11:39 PM7/6/10 11:39 PM

Part II

Writing a Program:
Decisions,
Decisions

08_617977-pp02.indd 4508_617977-pp02.indd 45 7/6/10 11:39 PM7/6/10 11:39 PM

In this part . . .

Now that you’re familiar with how to write and build
a program, you can start learning about C++ itself.

This part introduces you to the basic elements of C++: the
variable declaration and the expression. You’ll even find
out how to make a decision in your program if you can
stand it. Finally, you’ll see some beginning techniques for
finding errors in your programs.

08_617977-pp02.indd 4608_617977-pp02.indd 46 7/6/10 11:39 PM7/6/10 11:39 PM

Chapter 4

Integer Expressions
In This Chapter
▶ Declaring variables

▶ Creating expressions

▶ Decomposing compound expressions

▶ Analyzing the assignment operator

▶ Incrementing variables with the unary operator

In this chapter, you will be studying integer declarations and expressions.
Algebra class introduced you to the concepts of variables and expres-

sions. The teacher would write something on the board like

x = 1

This defines a variable x and sets it equal to the value 1 until some subse-
quent statement changes it for some reason. The term x becomes a replace-
ment for 1. The teacher would then write the following expression:

y = 2x

Because I know that x is 1, I now know that y is equal to 2. This was a real
breakthrough in the seventh grade. All conventional computer languages
follow this same pattern of creating and manipulating variables.

Declaring Variables
An integer variable declaration starts with the keyword int followed by the
name of a variable and a semicolon, as in the following example:

int n1; // declare a variable n1

09_617977-ch04.indd 4709_617977-ch04.indd 47 7/6/10 11:40 PM7/6/10 11:40 PM

48 Part II: Writing a Program: Decisions, Decisions

All variables in C++ must be declared before they can be used. A variable dec-
laration reserves a small amount of space in memory, just enough for a single
integer, and assigns it a name. You can declare more than one variable in the
same declaration, as in the following example, but it’s not a good idea for rea-
sons that will become clear as you work through subsequent chapters:

int n2, n3; // declare two variables n2 and n3

 A keyword is a word that has meaning to C++. You cannot name a variable the
same as a keyword. Thus, you cannot create a variable with the name int.
However, since keywords are case-sensitive, you could create a variable Int
or INT. You will be introduced to further keywords throughout the chapters.

The fact that the keyword int is used instead of integer is just a reflection
of the overall terseness of the C++ language. The creators of the language
must have been poor typists and wanted to minimize the amount of typing
they had to do.

 Unlike in algebra class, the range of an integer in C++ is not unlimited.
However, it is very large indeed. If you exceed the range of an int, you will
get the wrong answer. I will discuss variable size and range in Chapter 14.

Variable names
You can name a variable anything you like with the following restrictions:

 ✓ The first letter of the variable must be a character in the sequence a
through z, A through Z, or underscore (‘_’).

 ✓ Every letter after the first must be a character in the sequence a through
z, A through Z, underscore (‘_’), or the digits 0 through 9.

 ✓ A variable name can be of any length. All characters are significant.

The following are legal variable names:

int myVariable;
int MyVariable;
int myNumber2Variable;
int _myVariable;
int my_Variable;

The following are not legal variable names:

int myPercentage%; // contains illegal character
int 2ndVariable; // starts with a digit
int my Variable; // contains a space

Variable names should be descriptive. Variable names like x are discouraged.

09_617977-ch04.indd 4809_617977-ch04.indd 48 7/6/10 11:40 PM7/6/10 11:40 PM

49 Chapter 4: Integer Expressions

Assigning a value to a variable
Every variable has a value from the moment it’s declared. However, until you
assign it a value, a variable will just assume whatever garbage value happens to
be in that memory location when it’s allocated. That means that you don’t know
what the value is, and it’s likely to change every time you run the program.

You can assign a variable a value using the equals sign as in the following
example:

int n; // declare a variable n
n = 1; // set it to 1

This looks remarkably similar to the assignment statement in algebra class,
but the effect is not quite the same. In C++, the assignment statement says
“take the value on the right-hand side of the equals sign” (in this case 1) “and
store it into the location on the left-hand side, overwriting whatever was
there before” (in this case n).

You can see the difference in the following expression:

n = n + 1; // increment the variable n

This statement would make absolutely no sense in algebra class. How could
n be both equal to n and n + 1 at the same time? However, this statement
makes perfect sense in C++ if you follow the definition for assignment given
above: “Take the value stored in the variable n” (1) “add 1 and store the
result” (2) “into the variable n.” This is shown graphically in Figure 4-1.

Figure 4-1:
The effect

of executing
the expres-

sion n = n
+ 1 when
n starts out

as 1.

n = n + 1;

n = 1 + 1;

n = 2;

// say n starts out a 1

Steps to
evaluate
the expression

Initializing a variable at declaration
You can initialize your variable at the time that it’s declared by following it
with an equals sign and a value:

int n = 1; // declare and initialize variable

09_617977-ch04.indd 4909_617977-ch04.indd 49 7/6/10 11:40 PM7/6/10 11:40 PM

50 Part II: Writing a Program: Decisions, Decisions

 This initializes only the one variable, so if you write the following compound
declaration

int n1, n2 = 0;

you’ve initialized n2 but not n1. This is one reason it’s not a good idea to
declare multiple variables in a single declaration. (See the sidebar “Forgetting
to initialize a variable”.)

Integer Constants
C++ understands any symbol that begins with a digit and contains only digits
to be an integer constant. The following are legal constants:

123
1
256

A constant cannot contain any funny characters. The following is not legal:

Forgetting to initialize a variable
Forgetting to initialize a variable before using it is a very common error in C++. So much so that
the compiler actually goes to great pains to detect this case and warn you about it. Consider the
following statements:

int n1, n2 = 0;
n2 = n1 + 1;
cout << “n1 = “ << n1 << endl;
cout << “n2 = “ << n2 << endl;

CodeBlocks generates the following warning when building the program containing this snippet:

warning: “n1” is used uninitialized in this function

Though it’s a really bad idea, you are free to ignore warnings. Executing the program generates
the output:

n1 = 54
n2 = 55

It’s easy to see why n2 is equal to 55 given that n1 is 54, but why is n1 equal to 54 in the first
place? I could turn the question around and ask, “Why not?” This is an expression of the old adage,
“Everyone has to be somewhere.” The C++ equivalent is, “Every variable must have a value.” If you
don’t initialize a variable to something, it’ll get a random value from memory. In this case, the value
54 was left over from some previous usage.

09_617977-ch04.indd 5009_617977-ch04.indd 50 7/6/10 11:40 PM7/6/10 11:40 PM

51 Chapter 4: Integer Expressions

123Z456

The following is legal but doesn’t mean what you think:

123+456

This actually defines the sum of two constants 123 and 456, or the value 479.

 Normally C++ assumes that constants are decimal (base 10). However, for
historical reasons, a number that begins with a 0 is assumed to be octal (base
8). By the same token, a number that starts with 0x or 0X is assumed to be
hexadecimal. Hexadecimal uses the letters A through F or a through f for the
digits beyond 9. Thus, 0xFF, 0377, and 255 are all equivalent. Don’t worry if
you don’t know what octal or hexadecimal are — we won’t be using them in
this book.

 Don’t start a constant with 0 unless you mean it to be in octal.

An integer constant can have certain symbols appended to the end to change
its type. You will see the different types of integer constants in Chapter 14.

Expressions
Variables and constants are useful only if you can use them to perform cal-
culations. The term expression is C++ jargon for a calculation. You’ve already
seen the simplest expression:

int n; // declaration
n = 1; // expression

Expressions always involve variables, constants, and operators. An operator
performs some arithmetic operation on its arguments. Most operators take
two arguments — these are called binary operators. A few operators take a
single argument — these are the unary operators.

All expressions return a value and a type. (Note that int is the type of all the
expressions described in this chapter.)

Binary operators
A binary operator is an operator that takes two arguments. If you can say
var1 op var2, then op must be a binary operator. The most common
binary operators are the same simple operations that you learned in grade
school. The common binary operators appear in Table 4-1. (This table also
includes the unary operators that are described a little later in this chapter.)

09_617977-ch04.indd 5109_617977-ch04.indd 51 7/6/10 11:40 PM7/6/10 11:40 PM

52 Part II: Writing a Program: Decisions, Decisions

Table 4-1 Mathematical Operators in Order of Precedence

Precedence Operator Meaning

1 - (unary) Returns the negative of its
argument

2 ++ (unary) Increment

2 -- (unary) Decrement

3 * (binary) Multiplication

3 / (binary) Division

3 % (binary) Modulo

4 + (binary) Addition

4 - (binary) Subtraction

5 =, *=,%=,+=,-= (special) Assignment types

The simplest binary is the assignment operator noted by the equals sign. The
assignment operator says “take the value on the right-hand side and store
at the location on the left-hand side of the operator.” (I describe the special
assignment operators at the end of this chapter.)

Multiplication, division, addition, subtraction, and modulo are the operators
used to perform arithmetic. They work just like the arithmetic operators you
learned in grammar school with the following special considerations:

 ✓ Multiplication must always be expressly stated and is never implied as
it is in algebra. Consider the following example:

int n = 2; // declare a variable
int m = 2n; // this generates an error

 The expression above does not assign m the value of 2 times n. Instead,
C++ tries to interpret 2n as a variable name. Since variable names can’t
start with a digit, it generates an error during the build step.

 What the programmer meant was:

int n = 2;
int m = 2 * n; // this is OK

 ✓ Integer division throws away the remainder. Thus, the following:

int n = 13 / 7; // assigns the value 1 to n

 Fourteen divided by 7 is 2. Thirteen divided by seven is 1. (You will see
decimal variable types that can handle fractions in Chapter 14.)

09_617977-ch04.indd 5209_617977-ch04.indd 52 7/6/10 11:40 PM7/6/10 11:40 PM

53 Chapter 4: Integer Expressions

 ✓ The modulo operator returns the remainder after division (you might
not remember modulo):

int n = 13 % 7; // sets n to 6

 Fourteen modulo seven is zero. Thirteen modulo seven is six.

Decomposing compound expressions
A single expression can include multiple operators:

int n = 5 + 100 + 32;

When all the operators are the same, C++ evaluates the expression from left
to right:

5 + 100 + 32
105 + 32
137

When different operators are combined in a single expression, C++ uses a
property called precedence. Precedence is the order that operators are evalu-
ated in a compound expression. Consider the following example:

int n = 5 * 100 + 32;

What comes first, multiplication or addition? Or is this expression simply
evaluated from left to right? Refer back to Table 4-1, which tells you that
multiplication has a precedence of 3, which is higher than the precedence of
addition which is 4 (smaller values have higher precedence). Thus, multipli-
cation occurs first:

5 * 100 + 32
500 + 32
532

The order of the operations is overruled by the precedence of the operators.
As you can see

int n = 32 + 5 * 100;

generates the same result:

32 + 5 * 100
32 + 500
532

09_617977-ch04.indd 5309_617977-ch04.indd 53 7/6/10 11:40 PM7/6/10 11:40 PM

54 Part II: Writing a Program: Decisions, Decisions

But what if you really want 5 times the sum of 100 plus 32? You can override
the precedence of the operators by wrapping expressions that you want per-
formed first in parentheses as follows:

int n = 5 * (100 + 32);

Now the addition is performed before the multiplication:

5 * (100 + 32)
5 * 132
660

You can combine parentheses to make expressions as complicated as you
like. C++ always starts with the deepest nested parentheses it can find and
works its way out.

(3 + 2) * ((100 / 20) + (50 / 5))
(3 + 2) * (5 + 10)
5 * 15
75

 You can always divide complicated expressions using intermediate variables.
The following is safer:

int factor = 3 + 2;
int principal = (100 / 20) + (50 / 5);
int total = factor * principal;

Assigning a name to intermediate values also allows the programmer to
explain the parts of a complex equation, making it easier for the next guy to
understand.

Unary Operators
The unary operators are those operators that take a single argument. The
unary mathematical operators are -, ++, and --.

The minus operator changes the sign of its argument. A positive number
becomes negative, and a negative number becomes positive:

int n = 10;
int m = -n; // m is now -10

The ++ and the -- operators increment and decrement their arguments by one.

09_617977-ch04.indd 5409_617977-ch04.indd 54 7/6/10 11:40 PM7/6/10 11:40 PM

55 Chapter 4: Integer Expressions

The increment and decrement operators are unique in that they come in two
versions: a prefix and a postfix version.

 The prefix version of increment is written ++n, while the postfix is written n++.

Both the prefix and postfix increment operators increment their argument by
one. The difference is in the value returned. The prefix version returns the
value after the increment operation, while the postfix returns the value before
the increment. (The same is true of the decrement operator.) This is demon-
strated in the following IncrementOperator program:

// IncrementOperator - demonstrate the increment operator

#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // demonstrate the increment operator
 int n;

 // first the prefix
 n = 1;
 cout << “The value of n is “ << n << endl;
 cout << “The value of ++n is “ << ++n << endl;
 cout << “The value of n afterwards is “ << n << endl;
 cout << endl;

 // now the postfix
 n = 1;
 cout << “The value of n is “ << n << endl;
 cout << “The value of n++ is “ << n++ << endl;

 Why a separate increment operator?
Why did the authors of C++ think that an incre-
ment operator was called for? After all, this
operator does nothing more than add 1, which
can be done with an assignment expression.
The authors of C++ (and its predecessor C)
were obsessed with efficiency. They wanted
to generate the fastest machine code they pos-
sibly could. They knew that most processors
have an increment and decrement instruction,

and they wanted the C++ compiler to use that
instruction if at all possible. They reasoned that
n++ would get converted into an increment
instruction while n = n + 1; might not. This
type of thing makes very little difference today,
but the increment and decrement operators are
here to stay. As you will see in Chapters 9 and
10, they get a lot more use than you might think.

09_617977-ch04.indd 5509_617977-ch04.indd 55 7/6/10 11:40 PM7/6/10 11:40 PM

56 Part II: Writing a Program: Decisions, Decisions

 cout << “The value of n afterwards is “ << n << endl;
 cout << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

The output from this program appears as follows:

The value of n is 1
The value of ++n is 2
The value of n afterwards is 2

The value of n is 1
The value of n++ is 1
The value of n afterwards is 2

Press any key to continue . . .

This example demonstrates both the prefix and postfix increment. In both
cases, the variable n is initialized to 1. Notice that the value of n after execut-
ing both ++n and n++ is 2. However, the value of ++n was 2 (the value after the
increment), while the value of n++ was 1 (the value before the increment).

The Special Assignment Operators
The assignment operator is absolutely critical to any computer language.
How else can I store a computed value? However, C++ provides a complete
set of extra versions of the assignment operator that seems less critical.

The authors of C++ must have noticed that expressions of the following form
were very common:

x = x # value;

09_617977-ch04.indd 5609_617977-ch04.indd 56 7/6/10 11:40 PM7/6/10 11:40 PM

57 Chapter 4: Integer Expressions

Here # stands for some binary operator. In their perhaps overzealous pur-
suit of terseness, the authors created a separate assignment for each of the
binary operators of the form:

x #= value; // where # is any one of the binary operators

Thus, for example

n = n + 2;

can be written as

n += 2;

Note: You don’t see this all that often, and I present it here primarily for
completeness.

09_617977-ch04.indd 5709_617977-ch04.indd 57 7/6/10 11:40 PM7/6/10 11:40 PM

58 Part II: Writing a Program: Decisions, Decisions

09_617977-ch04.indd 5809_617977-ch04.indd 58 7/6/10 11:40 PM7/6/10 11:40 PM

Chapter 5

Character Expressions
In This Chapter
▶ Defining character variables and constants

▶ Encoding characters

▶ Declaring a string

▶ Outputting characters to the console

Chapter 4 introduces the concept of the integer variable. This chapter
introduces the integer’s smaller sibling, the character or char (pro-

nounced variously as care, chair, or as in the first syllable of charcoal) to us
insiders. I have used characters in programs appearing in earlier chapters —
now it’s time to introduce them formally.

Defining Character Variables
Character variables are declared just like integers except with the keyword
char in place of int:

char inputCharacter;

Character constants are defined as a single character enclosed in single
quotes, as in the following:

char letterA = ‘A’;

This may seem like a silly question, but what exactly is “A”? To answer that, I
need to explain what it means to encode characters.

10_617977-ch05.indd 5910_617977-ch05.indd 59 7/6/10 11:40 PM7/6/10 11:40 PM

60 Part II: Writing a Program: Decisions, Decisions

Encoding characters
As I mentioned in Chapter 1, everything in the computer is represented by
a pattern of ones and zeros that can be interpreted as numbers. Thus, the
bit pattern 0000 0001 is the number 1 when interpreted as an integer.
However, this same bit pattern means something completely different when
interpreted as an instruction by the processor. So it should come as no sur-
prise that the computer encodes the characters of the alphabet by assigning
each a number.

Consider the character ‘A’. You could assign it any value you want as long as
we all agree. For example, you could assign a value of 1 to ‘A’, if you wanted
to. Logically, you might then assign the value 2 to ‘B’, 3 to ‘C’, and so on. In
this scheme, ‘Z’ would get the value 26. You might then start over by assign-
ing the value 27 to ‘a’, 28 to ‘b’, right down to 52 for ‘z’. That still leaves the
digits ‘0’ through ‘9’ plus all the special symbols like space, period, comma,
slash, semicolon, and the funny characters you see when you press the
number keys while holding Shift down. Add to that the unprintable charac-
ters like tab and newline. When all is said and done, you could encode the
entire English keyboard using numbers between 1 and 127.

I say “you could” assign a value for ‘A’, ‘B’, and the remaining characters;
however, that wouldn’t be a very good idea because it has already been
done. Sometime around 1963, there was a general agreement on how charac-
ters should be encoded in English. The ASCII (American Standard Coding for
Information Interchange) character encoding shown in Table 5-1 was adopted
pretty much universally except for one company. IBM published its own stan-
dard in 1963 as well. The two encoding standards duked it out for about ten
years, but by the early 1970s when C and C++ were being created, ASCII had
just about won the battle. The char type was created with ASCII character
encoding in mind.

Table 5-1 The ASCII Character Set

Value Char Value Char

0 NULL 64 @

1 Start of Heading 65 A

2 Start of Text 66 B

3 End of Text 67 C

4 End of Transmission 68 D

5 Enquiry 69 E

10_617977-ch05.indd 6010_617977-ch05.indd 60 7/6/10 11:40 PM7/6/10 11:40 PM

61 Chapter 5: Character Expressions

Value Char Value Char

6 Acknowledge 70 F

7 Bell 71 G

8 Backspace 72 H

9 Tab 73 I

10 Newline 74 J

11 Vertical Tab 75 K

12 New Page; Form Feed 76 L

13 Carriage Return 77 M

14 Shift Out 78 N

15 Shift In 79 O

16 Data Link Escape 80 P

17 Device Control 1 81 Q

18 Device Control 2 82 R

19 Device Control 3 83 S

20 Device Control 4 84 T

21 Negative Acknowledge 85 U

22 Synchronous Idle 86 V

23 End of Transmission 87 W

24 Cancel 88 X

25 End of Medium 89 Y

26 Substitute 90 Z

27 Escape 91 [

28 File Separator 92 \

29 Group Separator 93]

30 Record Separator 94 ^

31 Unit Separator 95 _

32 Space 96 `

33 ! 97 a

34 “ 98 b

35 # 99 c

36 $ 100 d

37 % 101 e
(continued)

10_617977-ch05.indd 6110_617977-ch05.indd 61 7/6/10 11:40 PM7/6/10 11:40 PM

62 Part II: Writing a Program: Decisions, Decisions

Table 5-1 (continued)

Value Char Value Char

38 & 102 f

39 ‘ 103 g

40 (104 h

41) 105 i

42 * 106 j

43 + 107 k

44 , 108 l

45 = 109 m

46 . 110 n

47 / 111 o

48 0 112 p

49 1 113 q

50 2 114 r

51 3 115 s

52 4 116 t

53 5 117 u

54 6 118 v

55 7 119 w

56 8 120 x

57 9 121 y

58 : 122 z

59 ; 123 {

60 < 124 |

61 = 125 }

62 > 126 ~

63 ? 127 DEL

The first thing that you’ll notice is that the first 32 characters are the
“unprintable” characters. That doesn’t mean that these characters are so
naughty that the censor won’t allow them to be printed — it means that they
don’t display as a symbol when printed on the printer (or on the console
for that matter). Many of these characters are no longer used or only used

10_617977-ch05.indd 6210_617977-ch05.indd 62 7/6/10 11:40 PM7/6/10 11:40 PM

63 Chapter 5: Character Expressions

in obscure ways. For example, character 25 “End of Medium” was probably
printed as the last character before the end of a reel of magnetic tape. That
was a big deal in 1963, but today it has limited use. My favorite is character
7, the Bell — this used to ring the bell on the old teletype machines. (The
Code::Blocks C++ generates a beep when you display the bell character.)

The characters starting with 32 are all printable with the exception of the last
one, 127, which is the Delete character.

Example of character encoding
 The following simple program allows you to play with the ASCII character set:

// CharacterEncoding - allow the user to enter a
// numeric value then print that value
// out as a character

#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // Prompt the user for a value
 int nValue;
 cout << “Enter decimal value of char to print:”;
 cin >> nValue;

 // Now print that value back out as a character
 char cValue = (char)nValue;
 cout << “The char you entered was [“ << cValue
 << “]” << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

This program begins by prompting the user to “Enter decimal value of
a char to print”. The program then reads the value entered by the user
into the int variable nValue.

The program then assigns this value to a char variable cValue.

10_617977-ch05.indd 6310_617977-ch05.indd 63 7/6/10 11:40 PM7/6/10 11:40 PM

64 Part II: Writing a Program: Decisions, Decisions

 The (char) appearing in front of nValue is called a cast. In this case, it
casts the value of nValue from an int to a char. I could have performed the
assignment without the cast as in

cValue = nValue;

However, the type of the variables wouldn’t match: The value on the right of
the assignment is an int, while the value on the left is a char. C++ will per-
form the assignment anyway, but it will generally complain about such con-
versions by generating a warning during the build step. The cast converts the
value in nValue to a char before performing the assignment:

cValue = (char)nValue; // cast nValue to a char before
 // assigning the value to cValue

The final line outputs the character cValue within a set of square brackets.

The following shows a few sample runs of the program. In the first run, I
entered the value 65, which Table 5-1 shows as the character ‘A’:

Enter decimal value of char to print:65
The char you entered was [A]
Press any key to continue . . .

The second time I entered the value 97, which corresponds to the character ‘a’:

Enter decimal value of char to print:97
The char you entered was [a]
Press any key to continue . . .

On subsequent runs, I tried special characters:

Enter decimal value of char to print:36
The char you entered was [$]
Press any key to continue . . .

The value 7 didn’t print anything, but did cause my PC to issue a loud beep
that scared the heck out of me.

The value 10 generated the following odd output:

Enter decimal value of char to print:10
The char you entered was [
]
Press any key to continue . . .

Referring to Table 5-1, you can see that 10 is the newline character. This char-
acter doesn’t actually print anything but causes subsequent output to start

10_617977-ch05.indd 6410_617977-ch05.indd 64 7/6/10 11:40 PM7/6/10 11:40 PM

65 Chapter 5: Character Expressions

at the beginning of the next line, which is exactly what happened in this case:
The closed brace appears by itself at the beginning of the next line when fol-
lowing a newline character.

 The endl that appears at the end of many of the output commands that
you’ve seen so far generates a newline. It also does a few other things, which
you’ll see in Chapter 31.

Encoding Strings of Characters
Theoretically, you could print anything you want using individual charac-
ters. However, that could get really tedious as the following code snippet
demonstrates:

cout << ‘E’ << ‘n’ << ‘t’ << ‘e’ << ‘r’ << ‘ ‘
 << ‘d’ << ‘e’ << ‘c’ << ‘i’ << ‘m’ << ‘a’
 << ‘l’ << ‘ ‘ << ‘v’ << ‘a’ << ‘l’ << ‘u’
 << ‘e’ << ‘ ‘ << ‘o’ << ‘f’ << ‘ ‘ << ‘c’
 << ‘h’ << ‘a’ << ‘r’ << ‘ ‘ << ‘t’ << ‘o’
 << ‘ ‘ << ‘p’ << ‘r’ << ‘i’ << ‘n’ << ‘t’
 << ‘:’;

C++ allows you to encode a sequence of characters by enclosing the string in
double quotes:

cout << “Enter decimal value of char to print:”;

I’ll have a lot more to say about character strings in Chapter 16.

Special Character Constants
You can code a normal, printable character by placing it in single quotes:

char cSpace = ‘ ‘;

You can code any character you want, whether printable or not, by placing
its octal value after a backslash:

char cSpace = ‘\040’;

 A constant appearing with a leading zero is assumed to be octal, also known
as base 8.

10_617977-ch05.indd 6510_617977-ch05.indd 65 7/6/10 11:40 PM7/6/10 11:40 PM

66 Part II: Writing a Program: Decisions, Decisions

You can code characters in base 16, hexadecimal, by preceding the number
with a backslash followed by a small x as in the following example:

char cSpace = ‘\x20’;

 The decimal value 32 is equal to 40 in base 8 and 20 in base 16. Don’t worry if
you don’t feel comfortable with octal or hexadecimal. C++ provides shortcuts
for the most common characters.

C++ provides a name for some of the unprintable characters that are particu-
larly useful. Some of the more common ones are shown in Table 5-2.

Table 5-2 Some of the Special C++ Characters

Char Special Symbol Char Special Symbol

‘ \’ Newline \n

“ \” Carriage Return \r

\ \\ Tab \t

NULL \0 Bell \a

The most common is the newline character, which is nicknamed ‘\n’. In addi-
tion, you must use the backslash if you want to print the single quote character:

char cQuote = ‘\’’;

 Since C++ normally interprets a single quote mark as enclosing a character,
you have to precede a single quote mark with a backslash character to tell it,
“Hey, this single quote is not enclosing a character, this is the character.”

In addition, the character ‘\\’ is a single backslash.

 This leads to one of the more unfortunate coincidences in C++. In Windows,
the backslash is used in filenames as in the following:

C:\\Base Directory\Subdirectory\File Name

This is encoded in C++ with each backslash replaced by a pair of backslashes
as follows:

“C:\\\\Base Directory\\Subdirectory\\File Name”

10_617977-ch05.indd 6610_617977-ch05.indd 66 7/6/10 11:40 PM7/6/10 11:40 PM

67 Chapter 5: Character Expressions

Wide load ahead
By the early 1970s when C and C++ were
invented, the 128-character ASCII character
set had pretty much beat out all rivals. So it
was logical that the char type was defined
to accommodate the ASCII character set.
This character set was fine for English but
became overly restrictive when programmers
tried to write applications for other European
languages.

Fortunately, C and C++ had provided enough
room in the char for 256 different characters.
Standards committees got busy and used the
characters between 128 and 255 for charac-
ters that occur in European languages but not
English, such as umlauts and accented charac-
ters. You can see the results of their handy work
using the example CharacterEncoding
program from this chapter: Enter 142 and the
program prints out an Ä.

No matter what you do, the char variable is
just not large enough to handle all of the many
different alphabets, such as Cyrillic, Hebrew,
Arabic, and Korean — not to mention the many

thousands of Chinese kanji symbols. Something
had to give.

C++ responded first by introducing the “wide
character” of type wchar_t . This was
intended to implement whatever wide char-
acter set that is native to the host operating
system. On Windows, that would be the vari-
ant of Unicode known as UTF-2 or UTF-16.
(Here the 2 stands for two bytes, the size of
each wide character, whereas the 16 stands
for 16 bits.) However, Macintosh’s OS X uses
a different variant of Unicode known as UTF-8.
Unicode can display not only every alphabet on
the planet but also the kanjis used in Chinese
and Japanese. The 2009 update to the C++
standard added two further types, char16_t
and char32_t, which implement specifically
UTF-16 and UTF-32.

For almost every feature that I describe in this
book for handling character variables, there
is an equivalent feature for the wide charac-
ter types; programming Unicode, however, is
beyond the scope of a beginning text.

10_617977-ch05.indd 6710_617977-ch05.indd 67 7/6/10 11:40 PM7/6/10 11:40 PM

68 Part II: Writing a Program: Decisions, Decisions

10_617977-ch05.indd 6810_617977-ch05.indd 68 7/6/10 11:40 PM7/6/10 11:40 PM

Chapter 6

if I Could Make My Own Decisions
In This Chapter
▶ Defining character variables and constants

▶ Encoding characters

▶ Declaring a string

▶ Outputting characters to the console

Making decisions is a part of the everyday world. Should I get a drink
now or wait for the commercial? Should I take this highway exit to go

to the bathroom or else wait for the next? Should I take another step or stop
and smell the roses? If I am hungry or I need gas, then I should stop at the
convenience store. If it is a weekend and I feel like it, then I can sleep in. See
what I mean?

An assistant, even a stupid one, has to be able to make at least rudimentary
decisions. Consider the Tire Changing Language in Chapter 1. Even there, the
program had to be able to test for the presence of a lug nut to avoid waving a
wrench around uselessly in space over an empty bolt, thereby wasting every-
one’s time.

All computer languages provide some type of decision-making capability. In
C++, this is handled primarily by the if statement.

The if Statement
The format of the if statement is straightforward:

if (m > n) // if m is greater than n...
{
 // ...then do this stuff
}

11_617977-ch06.indd 6911_617977-ch06.indd 69 7/6/10 11:41 PM7/6/10 11:41 PM

70 Part II: Writing a Program: Decisions, Decisions

When encountering if, C++ first executes the logical expression contained
within the parentheses. In this case, the program evaluates the conditional
expression “is m greater than n.” If the expression is true, that is, if m truly is
greater than n, then control passes to the first statement after the { and con-
tinues from there. If the logical expression is not true, control passes to the
first statement after the }.

Comparison operators
Table 6-1 shows the different operators that can be used to compare values
in logical expressions.

 Binary operators have the format expr1 operator expr2.

Table 6-1 The Comparison Operators

Operator Meaning

== equality; true if the left-hand argument has the same value as the
expression on the right

!= inequality; opposite of equality

> greater than; true if the left-hand argument is greater than the right

< less than; true if the left-hand argument is less than the right

>= greater than or equal to; true if the left argument is greater than or
equal to the right

<= less than or equal to; true if the left argument is less than or equal to
the right

 Don’t confuse the equality operator (==) with the assignment operator (=).
This is a common mistake for beginners.

The following BranchDemo program shows how the operators shown in
Table 6-1 are used:

// BranchDemo - demonstrate the if statement

#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;

int main(int nNumberofArgs, char* pszArgs[])

11_617977-ch06.indd 7011_617977-ch06.indd 70 7/6/10 11:41 PM7/6/10 11:41 PM

71 Chapter 6: if I Could Make My Own Decisions

{
 // enter operand1 and operand2
 int nOperand1;
 int nOperand2;
 cout << “Enter argument 1:”;
 cin >> nOperand1;
 cout << “Enter argument 2:”;
 cin >> nOperand2;

 // now print the results
 if (nOperand1 > nOperand2)
 {
 cout << “Argument 1 is greater than argument 2”
 << endl;
 }
 if (nOperand1 < nOperand2)
 {
 cout << “Argument 1 is less than argument 2”
 << endl;
 }
 if (nOperand1 == nOperand2)
 {
 cout << “Argument 1 is equal to argument 2”
 << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

Program execution begins with main() as always. The program first declares
two int variables cleverly named nOperand1 and nOperand2. It then
prompts the user to “Enter argument 1”, which it reads into nOperand1.
The process is repeated for nOperand2.

The program then executes a sequence of three comparisons. It first checks
whether nOperand1 is less than nOperand2. If so, the program outputs the
notification “Argument 1 is less than argument 2”. The second if
statement displays a message if the two operands are equal in value. The
final comparison is true if nOperand1 is greater than nOperand2.

The following shows a sample run of the BranchDemo program:

Enter argument 1:5
Enter argument 2:10
Argument 1 is less than argument 2
Press any key to continue . . .

11_617977-ch06.indd 7111_617977-ch06.indd 71 7/6/10 11:41 PM7/6/10 11:41 PM

72 Part II: Writing a Program: Decisions, Decisions

Figure 6-1 shows the flow of control graphically for this particular run.

Figure 6-1:
The path

taken by the
BranchDemo

program
when the

user enters
5 for the first

argument
and 10 for

the second.

// enter operand1 and operand2
int nOperand1;
int nOperand2;
cout << "Enter argument 1:";
cin >> nOperand1;
cout << "Enter argument 2:";
cin >> nOperand2;

// now print the results
if (nOperand1 > nOperand2)
{
 cout << "Argument 1 is greater than argument 2"
 cout << end1;
}
if (nOperand1 < nOperand2)

{
 cout << "Argument 1 is less than argument 2"
 cout << end1;
}
if (nOperand1 == nOperand2)

{
 cout << "Argument 1 is equal to argument 2"
 cout << end1;
}

Entered 5

Entered 10

5 > 10 is false

5 < 10 is true

5 == 10 is false

The way the BranchDemo program is written, all three comparisons are per-
formed every time. This is slightly wasteful since the three conditions are
mutually exclusive. For example, nOperand1 > nOperand2 can’t possibly
be true if nOperand1 < nOperand2 has already been found to be true.
Later in this chapter, I show you how to avoid this waste.

Say “No” to “No braces”
Actually the braces are optional. Without braces, only the first expression
after the if statement is conditional. However, it is much too easy to make a
mistake this way, as demonstrated in the following snippet:

// Can’t have a negative age. If age is less than zero...
if (nAge < 0)
 cout << “Age can’t be negative; using 0” << endl;
 nAge = 0;

// program continues

11_617977-ch06.indd 7211_617977-ch06.indd 72 7/6/10 11:41 PM7/6/10 11:41 PM

73 Chapter 6: if I Could Make My Own Decisions

You may think that if nAge is less than 0, this program snippet outputs a mes-
sage and resets nAge to zero. In fact, the program sets nAge to zero no matter
what its original value. The preceding snippet is equivalent to the following:

// Can’t have a negative age. If age is less than zero...
if (nAge < 0)
{
 cout << “Age can’t be negative; using 0” << endl;
}
 nAge = 0;

// program continues

It’s clear from the comments and the indent that the programmer really
meant the following:

// Can’t have a negative age. If age is less than zero...
if (nAge < 0)
{
 cout << “Age can’t be negative; using 0” << endl;
 nAge = 0;
}

// program continues

The C++ compiler can’t catch this type of mistake. It’s safer just to always
supply the braces.

 C++ treats all white space the same. It ignores the alignment of expressions on
the page.

 Always use braces to enclose the statements after an if statement, even if
there is only one. You’ll generate a lot fewer errors that way.

What else Is There?
C++ allows the program to specify a clause after the keyword else that is
executed if the conditional expression is false, as in the following example:

if (m > n) // if m is greater than n...
{
 // ...then do this stuff;...
}
else // ...otherwise,...
{
 // ...do this stuff
}

11_617977-ch06.indd 7311_617977-ch06.indd 73 7/6/10 11:41 PM7/6/10 11:41 PM

74 Part II: Writing a Program: Decisions, Decisions

The else clause must appear immediately after the close brace of the if
clause. In use, the else appears as shown in the following snippet:

if (nAge < 0)
{
 cout << “Age can’t be negative; using 0.” << endl;
 nAge = 0;
}
else
{
 cout << “Age of “ << nAge << “ entered” << endl;
}

In this case, if nAge is less than zero, the program outputs the message “Age
can’t be negative; using 0.” and then sets nAge to 0. This corre-
sponds to the flow of control shown in the first image in Figure 6-2. If nAge is
not less than zero, the program outputs the message “Age of x entered”,
where x is the value of nAge. This is shown in the second image in Figure 6-2.

Figure 6-2:
Flow of con-
trol through
an if and
else for

two differ-
ent values
of nAge.

if (nAge < 0)
{
 cout << "Age can’t be negative; using 0."
 << end1;
 nAge = 0;
}
else
{
 cout << "Age of " << nAge
 << " entered" << end1;
}

For nAge = –1

if (nAge < 0)
{
 cout << "Age can’t be negative; using 0."
 << end1;
 nAge = 0;
}
else
{
 cout << "Age of " << nAge
 << " entered" << end1;
}

For nAge = 26

11_617977-ch06.indd 7411_617977-ch06.indd 74 7/6/10 11:41 PM7/6/10 11:41 PM

75 Chapter 6: if I Could Make My Own Decisions

Nesting if Statements
 The braces of an if or an else clause can contain another if statement.

These are known as nested if statements. The following NestedIf program
shows an example of a nested if statement in use.

// NestedIf - demonstrate a nested if statement
//
#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{

Logical expressions: Do they have any value?
At the beginning of this chapter, I called the comparison symbols < and > operators, and I described
statements containing these operators as expressions. But expressions have a value and a type.
What is the value and type of an expression like m > n? In C++, the type of this expression is bool
(named in honor of George Boole, the inventor of Logic Calculus). Expressions of type bool can
have only one of two values: true or else false. Thus, you can write the following:

bool bComparison = m > n;

For historical reasons, there is a conversion between the numerical types like int and char and
bool: A value of 0 is considered the same as false. Any non-zero value is considered the same
as true.

Thus, the if statement

if (cCharacter)
{
 // execute this code if cCharacter is not NULL
}

is the same as

if (cCharacter != ‘\0’)
{
 // execute this code if cCharacter is not NULL
}

Assigning a true/false value to a character may seem a bit obtuse, but you’ll see in Chapter 16 that
it has a very useful application.

11_617977-ch06.indd 7511_617977-ch06.indd 75 7/6/10 11:41 PM7/6/10 11:41 PM

76 Part II: Writing a Program: Decisions, Decisions

 // enter your birth year
 int nYear;
 cout << “Enter your birth year: “;
 cin >> nYear;

 // Make determination of century
 if (nYear > 2000)
 {
 cout << “You were born in the 21st century”
 << endl;
 }
 else
 {
 cout << “You were born in “;
 if (nYear < 1950)
 {
 cout << “the first half”;
 }
 else
 {
 cout << “the second half”;
 }
 cout << “ of the 20th century”
 << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

This program starts by asking the user for his birth year. If the birth year is
greater than 2000, then the program outputs the string “You were born in
the 21st century”.

 The year 2000 belongs to the 20th century, not the 21st.

If the birth year is not greater than 2000, then the program enters the else
clause of the outer if statement. This clause starts by outputting the string
“You were born in” before comparing the birth year to 1950. If the birth
year is less than 1950, then the program adds the first “the first half”.
If the birth year is not less than 1950, then the else clause of the inner if
statement is executed, which tacks on the phrase “the second half”.
Finally, the program adds the concluding phrase “of the 20th century”
to whatever has been output so far.

11_617977-ch06.indd 7611_617977-ch06.indd 76 7/6/10 11:41 PM7/6/10 11:41 PM

77 Chapter 6: if I Could Make My Own Decisions

In practice, the output of the program appears as follows for three possible
values for birth year. First, 2002 produces the following:

Enter your birth year: 2002
You were born in the 21st century
Press any key to continue . . .

My own birth year of 1956 generates the following:

Enter your birth year: 1956
You were born in the second half of the 20th century
Press any key to continue . . .

Finally, my father’s birth year of 1932 generates the third possibility:

Enter your birth year: 1932
You were born in the first half of the 20th century
Press any key to continue . . .

I could use a nested if to avoid the unnecessary comparisons in the
NestedBranchDemo program:

if (nOperand1 > nOperand2)
{
 cout << “Argument 1 is greater than argument 2”
 << endl;
}
else
{
 if (nOperand1 < nOperand2)
 {
 cout << “Argument 1 is less than argument 2”
 << endl;
 }
 else
 {
 cout << “Argument 1 is equal to argument 2”
 << endl;
 }
}

This version performs the first comparison just as before. If nOperand1 is
greater than nOperand2, this snippet outputs the string “Argument 1 is
greater than argument 2”. From here, however, control jumps to the
final closed brace, thereby skipping the remaining comparisons.

11_617977-ch06.indd 7711_617977-ch06.indd 77 7/6/10 11:41 PM7/6/10 11:41 PM

78 Part II: Writing a Program: Decisions, Decisions

If nOperand1 is not greater than nOperand2, then the snippet performs a
second test to differentiate the case that nOperand1 is less than nOperand2
from the case that they are equal in value.

Figure 6-3 shows graphically the flow of control for the NestedBranchDemo
program for the same input of 5 and 10 described earlier in the chapter.

Figure 6-3:
The path

taken by the
Nested-
Branch-

Demo
program

when the
user enters

5 and 10
as before.

// enter operand1 and operand2
int nOperand1;
int nOperand2;
cout << "Enter argument 1:";
cin >> nOperand1;
cout << "Enter argument 2:";
cin >> nOperand2;

// now print the results
if (nOperand1 > nOperand2)
{
 cout << "Argument 1 is greater than argument 2"
 << end1;
}
else
{
 if a(nOperand1 < nOperand2)
 {
 cout << "Argument 1 is less than argument 2"
 cout << end1;
 }
 else
 {
 cout << "Argument 1 is equal to argument 2"
 cout << end1;
 }
}

Entered 5

Entered 10

5 > 10 is false

5 < 10 is true

 Performing the test for equality is unnecessary: If nOperand1 is neither
greater than nor less than nOperand2, then it must be equal.

Compound Conditional Expressions
The three logical operators that can be used to create what are known as
compound conditional expressions are shown in Table 6-2.

11_617977-ch06.indd 7811_617977-ch06.indd 78 7/6/10 11:41 PM7/6/10 11:41 PM

79 Chapter 6: if I Could Make My Own Decisions

Table 6-2 The Logical Operators

Operator Meaning

&& AND; true if the left- and right-hand arguments are true; otherwise, false

|| OR; true if either the left- or right-hand arguments is true; otherwise, false

! NOT; true if the argument on the right is false; otherwise, false

The programmer is asking two or more questions in a conditional compound
expression, as in the following code snippet:

// make sure that nArgument is between 0 and 5
if (0 < nArgument && nArgument < 5)

Figure 6-4 shows how three different values of nArgument are evaluated by
this expression.

Figure 6-4:
The evalu-

ation of the
compound
expression
0 < n
&& n <
5 for three

different
values of n.

0 < nArgument && nArgument < 5
 where nArgument = –1
 0 < –1 && –1 < 5
 false && true
 false
 where nArgument = 7
 0 < 7 && 7 < 5
 true&&false
 false
 where nArgument = 2
 0 <2 && 2 < 5
 true && true
 true

By the way, the snippet

if (m < nArgument && nArgument < n)

is the normal way of coding the expression “if nArgument is between
m and n, exclusive”. This type of test does not include the end points —
that is, this test will fail if nArgument is equal to m or n. Use the <= compari-
son operator if you want to include the end points.

11_617977-ch06.indd 7911_617977-ch06.indd 79 7/6/10 11:41 PM7/6/10 11:41 PM

80 Part II: Writing a Program: Decisions, Decisions

Short circuit evaluation
Look carefully at a compound expression involving a logical AND like

if (expr1 && expr2)

If expr1 is false, then the overall result of the compound expression is false, irrespective of
the value of expr2. In fact, C++ doesn’t even evaluate expr2 if expr1 is false — false &&
anything is false. This is known as short circuit evaluation because it short circuits around
executing unnecessary code in order to save time.

The situation is exactly the opposite for the logical OR:

if (expr1 || expr2)

If expr1 is true, then the overall expression is true, irrespective of the value of expr2.

Short circuit evaluation is a good thing since the resulting programs execute more quickly;
however, it can lead to unexpected results in a few cases. Consider the following admittedly con-
trived case:

if (m <= nArgument && nArgument++ <= n)

The intent is to test whether nArgument falls into the range [m, n] and to increment
nArgument as part of the test. However, short circuit evaluation means that the second test
doesn’t get executed if m <= nArgument is not true. If the second test is never evaluated,
then nArgument doesn’t get incremented.

Remember: If you didn’t follow that, just remember the following: Don’t put an expression that has
a side effect like incrementing a variable in a conditional.

11_617977-ch06.indd 8011_617977-ch06.indd 80 7/6/10 11:41 PM7/6/10 11:41 PM

Chapter 7

Switching Paths
In This Chapter
▶ Using the switch keyword to choose between multiple paths

▶ Taking a default path

▶ Falling through from one case to another

Often programs have to decide between a very limited number of
options: Either m is greater than n or it’s not; either the lug nut is pres-

ent or it’s not. Sometimes, however, a program has to decide between a large
number of possible legal inputs. This could be handled by a series of if
statements, each of which tests for one of the legal inputs. However, C++ pro-
vides a more convenient control mechanism for selecting among a number of
options known as the switch statement.

Controlling Flow with
the switch Statement

The switch statement has the following format:

switch(expression)
{
 case const1:
 // go here if expression == const1
 break;

 case const2:
 // go here if expression == const2
 break;

 case const3: // repeat as often as you like
 // go here if expression == const3
 break;

 default:
 // go here if none of the other cases match
}

12_617977-ch07.indd 8112_617977-ch07.indd 81 7/6/10 11:41 PM7/6/10 11:41 PM

82 Part II: Writing a Program: Decisions, Decisions

Upon encountering the switch statement, C++ evaluates expression. It
then passes control to the case with the same value as expression. Control
continues from there to the break statement. The break transfers control to
the } at the end of the switch statement. If none of the cases match, control
passes to the default case.

The default case is optional. If the expression doesn’t match any case and no
default case is provided, control passes immediately to the }.

Consider the following example code snippet:

int nMonth;
cout << “Enter the number of the month: “;
cin >> nMonth;

switch (nMonth)
{
 case 1:
 cout << “It’s January” << endl;
 break;
 case 2:
 cout << “It’s February” << endl;;
 break;
 case 3:
 cout << “It’s March” << endl;;
 break;
 case 4:
 cout << “It’s April” << endl;;
 break;
 case 5:
 cout << “It’s May” << endl;;
 break;
 case 6:
 cout << “It’s June” << endl;;
 break;
 case 7:
 cout << “It’s July” << endl;;
 break;
 case 8:
 cout << “It’s August” << endl;;
 break;
 case 9:
 cout << “It’s September”<< endl;;
 break;
 case 10:
 cout << “It’s October” << endl;;
 break;
 case 11:
 cout << “It’s November” << endl;;
 break;

12_617977-ch07.indd 8212_617977-ch07.indd 82 7/6/10 11:41 PM7/6/10 11:41 PM

83 Chapter 7: Switching Paths

 case 12:
 cout << “It’s December” << endl;;
 break;
 default:
 cout << “That’s not a valid month” << endl;;

}

I got the following output from the program when inputting a value of 3:

Enter the number of the month: 3
It’s March
Press any key to continue . . .

Figure 7-1 shows how control flowed through the switch statement to gener-
ate the earlier result of “March.”

Figure 7-1:
Flow

through a
switch
statement
listing the
months of

the year
where the

operator
enters

month 3.

int nMonth;
cout << “Enter the number of the month: ”;
cin >> nMonth;

switch (nMonth)
{
 case 1:
 cout << “It’s January” << end1;;
 break;
 case 2:
 cout << “It’s February” << end1;;
 break;
 case 3:
 cout << “It’s March” << end1;;
 break;
 case 4:
 cout << “It’s April” << end1;;
 break;
 case 5:
 cout << “It’s January” << end1;
 break;
 case 12:
 cout << “It’s December” << end1;;
 break;
 default:
 cout << “That’s not a valid month” << end1;;
}

For nMonth = 3

12_617977-ch07.indd 8312_617977-ch07.indd 83 7/6/10 11:41 PM7/6/10 11:41 PM

84 Part II: Writing a Program: Decisions, Decisions

 A switch statement is not like a series of if statements. For example, only
constants are allowed after the case keyword (or expressions that can be
completely evaluated at build time). You cannot supply an expression after a
case. Thus, the following is not legal:

// cases cannot be expressions; in general, the
// following is not legal
switch(n)
{
 case m:
 cout << “n is equal to m” << endl;
 break;
 case 2 * m:
 cout << “n is equal to 2m” << endl;
 break;
 case 3 * m:
 cout << “n is equal to 3m” << endl;
}

Each of the cases must have a value at build time. The value of m is not
known until the program executes.

Control Fell Through: Did I break It?
Just as the default case is optional, the break at the end of each case is also
optional. Without the break statement, however, control simply continues
on from one case to the next. Programmers say that control falls through.
This is most useful when two or more cases are handled in the same way.

For example, C++ may differentiate between upper- and lowercase, but most
humans do not. The following code snippet prompts the user to enter a C to
create a checking account and an S to create a savings account. However, by
providing extra case statements, the snippet handles lowercase c and s the
same way:

cout << “Enter C to create checking account, “
 << “S to create a saving account, “
 << “and X to exit: “;
cin >> cAccountType;
switch(cAccountType)
{
 case ‘S’: // upper case S
 case ‘s’: // lower case s
 // creating savings account
 break;

 case ‘C’: // upper case C
 case ‘c’: // lower case c

12_617977-ch07.indd 8412_617977-ch07.indd 84 7/6/10 11:41 PM7/6/10 11:41 PM

85 Chapter 7: Switching Paths

 // create checking account
 break;

 case ‘X’: // upper case X
 case ‘x’: // lower case x
 // exit code goes here
 break;

 default:
 cout << “I didn’t understand that” << endl;
}

Implementing an Example Calculator
with the switch Statement

The following SwitchCalculator program uses the switch statement to imple-
ment a simple calculator:

// SwitchCalculator - use the switch statement to
// implement a calculator

#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // enter operand1 op operand2
 int nOperand1;
 int nOperand2;
 char cOperator;
 cout << “Enter ‘value1 op value2’\n”
 << “where op is +, -, *, / or %:” << endl;
 cin >> nOperand1 >> cOperator >> nOperand2;

 // echo what the operator entered
 cout << nOperand1 << “ “
 << cOperator << “ “
 << nOperand2 << “ = “;

 // now calculate the result; remember that the
 // user might enter something unexpected
 switch (cOperator)
 {

12_617977-ch07.indd 8512_617977-ch07.indd 85 7/6/10 11:41 PM7/6/10 11:41 PM

86 Part II: Writing a Program: Decisions, Decisions

 case ‘+’:
 cout << nOperand1 + nOperand2;
 break;
 case ‘-’:
 cout << nOperand1 - nOperand2;
 break;
 case ‘*’:
 case ‘x’:
 case ‘X’:
 cout << nOperand1 * nOperand2;
 break;
 case ‘/’:
 cout << nOperand1 / nOperand2;
 break;
 case ‘%’:
 cout << nOperand1 % nOperand2;
 break;
 default:
 // didn’t understand the operator
 cout << “ is not understood”;
 }
 cout << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

This program begins by prompting the user to enter “value1 op value2”
where op is one of the common arithmetic operators +, -, *, / or %. The pro-
gram then reads the variables nOperand1, cOperator, and nOperand2.

The program starts by echoing back to the user what it read from the key-
board. It follows this with the result of the calculation.

 Echoing the input back to the user is always a good programming practice. It
gives the user confirmation that the program read his input correctly.

The switch on cOperator differentiates between the operations that this
calculator implements. For example, in the case that cOperator is ‘+’, the
program reports the sum of nOperand1 and nOperand2.

Because ‘X’ is another common symbol for multiply, the program accepts
‘*’, ‘X’, and ‘x’ all as synonyms for multiply using the case “fall through”
feature. The program outputs an error message if cOperator doesn’t match
any of the known operators.

12_617977-ch07.indd 8612_617977-ch07.indd 86 7/6/10 11:41 PM7/6/10 11:41 PM

87 Chapter 7: Switching Paths

The output from a few sample runs appears as follows:

Enter ‘value1 op value2’
where op is +, -, *, / or %:
22 x 6
22 x 6 = 132
Press any key to continue . . .

Enter ‘value1 op value2’
where op is +, -, *, / or %:
22 / 6
22 / 6 = 3
Press any key to continue . . .

Enter ‘value1 op value2’
where op is +, -, *, / or %:
22 % 6
22 % 6 = 4
Press any key to continue . . .

Enter ‘value1 op value2’
where op is +, -, *, / or %:
22 $ 6
22 $ 6 = is not understood
Press any key to continue . . .

Notice that the final run executes the default case of the switch statement
since the character ‘$’ did not match any of the cases.

12_617977-ch07.indd 8712_617977-ch07.indd 87 7/6/10 11:41 PM7/6/10 11:41 PM

88 Part II: Writing a Program: Decisions, Decisions

12_617977-ch07.indd 8812_617977-ch07.indd 88 7/6/10 11:41 PM7/6/10 11:41 PM

Chapter 8

Debugging Your Programs, Part I
In This Chapter
▶ Avoiding introducing errors needlessly

▶ Creating test cases

▶ Peeking into the inner workings of your program

▶ Fixing and retesting your programs

You may have noticed that your programs often don’t work the first time
you run them. In fact, I have seldom, if ever, written a nontrivial C++ pro-

gram that didn’t have some type of error the first time I tried to execute it.

This leaves you with two alternatives: You can abandon a program that has
an error, or you can find and fix the error. I assume that you want to take the
latter approach. In this chapter, I first help you distinguish between types
of errors and how to avoid errors in the first place. Then you get to find
and eradicate two bugs that originally plagued the Conversion program in
Chapter 3.

Identifying Types of Errors
Two types of errors exist — those that C++ can catch on its own and those
that the compiler can’t catch. Errors that C++ can catch are known as
compile-time or build-time errors. Build-time errors are generally easier to
fix because the compiler points you to the problem, if you can understand
what the compiler’s telling you. Sometimes the description of the problem
isn’t quite right (it’s easy to confuse a compiler), but you start to understand
better how the compiler thinks as you gain experience.

Errors that C++ can’t catch don’t show up until you try to execute the pro-
gram during the process known as unit testing. During unit testing, you exe-
cute your program with a series of different inputs, trying to find inputs that
make it crash. (You don’t want your program to crash, of course, but better
that you — rather than your user — find and correct these cases.)

13_617977-ch08.indd 8913_617977-ch08.indd 89 7/6/10 11:42 PM7/6/10 11:42 PM

90 Part II: Writing a Program: Decisions, Decisions

The errors that you find by executing the program are known as run-time
errors. Run-time errors are harder to find than build-time errors because you
have no hint of what’s gone wrong except for whatever errant output the pro-
gram might generate.

The output isn’t always so straightforward. For example, suppose that the
program lost its way and began executing instructions that aren’t even part
of the program you wrote. (That happens a lot more often than you might
think.) An errant program is like a train that’s jumped the track — the pro-
gram doesn’t stop executing until it hits something really big. For example,
the CPU may just happen to execute a divide by zero — this generates an
alarm that the operating system intercepts and uses as an excuse to termi-
nate your program.

 An errant program is like a derailed train in another way — once the program
starts heading down the wrong path, it never jumps back onto the track.

Not all run-time errors are quite so dramatic. Some errant programs stay on
the tracks but generate the wrong output (almost universally known as “gar-
bage output”). These are even harder to catch since the output may seem
reasonable until you examine it closely.

In this chapter, you will debug a program that has both a compile time and a
run-time error — not the “jump off the track and start executing randomly”
variety but more of the generate garbage kind.

Avoiding Introducing Errors
The easiest and best way to fix errors is to avoid introducing them into your
programs in the first place. Part of this is just a matter of experience, but
adopting a clear and consistent programming style helps.

Coding with style
We humans have a limited amount of CPU power between our ears. We need
to direct what CPU cycles we do have toward the act of creating a working
program. We shouldn’t get distracted by things like indentation.

This makes it important that you be consistent in how you name your vari-
ables, where you place open and close braces, how much you indent, and
so on. This is called your coding style. Develop a style and stick to it. After a
while your coding style will become second nature. You’ll find that you can
code your programs in less time and you can read the resulting programs

13_617977-ch08.indd 9013_617977-ch08.indd 90 7/6/10 11:42 PM7/6/10 11:42 PM

91 Chapter 8: Debugging Your Programs, Part I

with less effort if your coding style is clear and consistent. This translates
into fewer coding errors.

 I recommend that as a beginner you mimic the style you see in this book. You
can change it later when you’ve gained some experience of your own.

When working on a program with several programmers, it’s just as important
that you all use the same style to avoid a Tower of Babel effect with conflict-
ing and confusing styles. Every project that I’ve ever worked on had a coding
manual that articulated sometimes in excruciating detail exactly how an if
statement was to be laid out, how far to indent for case, and whether to put
a blank line after the break statements, to name just a few examples.

Fortunately, Code::Blocks can help. The Code::Blocks editor understands
C++. It will automatically indent the proper number of spaces for you after
an open brace, and it will outdent when you type in the closed brace to align
statements properly.

 You can run the ‘Source code formatter’ plug-in that comes with Code::Blocks.
With the file you are working on open and the project active, select Plugins➪
Source Code Formatter (AStyle). This will reformat the current file using the
standard indention rules.

 C++ doesn’t care about indention. All whitespace is the same to it. Indention is
there to make the resulting program easier to read and understand.

Establishing variable naming conventions
There is more debate about the naming of variables than about how many
angels would fit on the head of a pin. I use the following rules when naming
variables:

 ✓ The first letter is lowercase and indicates the type of the variable. n for
int, c for char, b for bool. You’ll see others in later chapters. This is very
helpful when using the variable because you immediately know its type.

 ✓ Names of variables are descriptive. No variables names like x or y. I’m
too old — I need something that I can recognize when I try to read my
own program tomorrow or next week or next year.

 ✓ Multiple word names use uppercase at the beginning of each word
with no underscores between words. I save underscores for a particu-
lar application, which I describe in Chapter 12.

I expand on these rules in chapters involving other types of C++ objects
(such as functions in Chapter 11 and classes in Chapter 19).

13_617977-ch08.indd 9113_617977-ch08.indd 91 7/6/10 11:42 PM7/6/10 11:42 PM

92 Part II: Writing a Program: Decisions, Decisions

Finding the First Error with a Little Help
 My first version of the Conversion program appeared as follows (it appears on

the enclosed CD-ROM as ConversionError1):

//
// Conversion - Program to convert temperature from
// Celsius degrees into Fahrenheit:
// Fahrenheit = Celsius * (212 - 32)/100 + 32
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // enter the temperature in Celsius
 int nCelsius;
 cout << “Enter the temperature in Celsius: “;

 // convert Celsius into Fahrenheit values
 int nFahrenheit;
 nFahrenheit = 9/5 * nCelsius + 32;

 // output the results (followed by a NewLine)
 cout << “Fahrenheit value is: “;
 cout << nFahrenheit << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

During the build step, I get my first indication that there’s a problem —
Code::Blocks generates the following warning message:

In function ‘int main(int char**)’:
warning: ‘nCelsius’ is used uninitialized in this function
=== Build finished: 0 errors, 1 warnings ===

How bad can this be? After all, it’s just a warning, right? So I decide to push
forward and execute the program anyway.

Sure enough, I get the following meaningless output without giving me a
chance to enter the Celsius temperature:

13_617977-ch08.indd 9213_617977-ch08.indd 92 7/6/10 11:42 PM7/6/10 11:42 PM

93 Chapter 8: Debugging Your Programs, Part I

Enter the temperature in Celsius:
Fahrenheit value is:110
Press any key to continue . . .

Referring to the prompt, I can see that I have forgotten to input a value for
nCelsius. The program proceeded forward calculating a Fahrenheit tem-
perature based upon whatever garbage happened to be in nCelsius when it
was declared.

Adding the following line immediately after the prompt gets rid of the warn-
ing and solves the first problem:

cin >> nCelsius;

 The moral to this story is “Pay attention to warnings!” A warning almost
always indicates a problem in your program. You shouldn’t even start to test
your programs until you get a clean build: no errors and no warnings. If that’s
not possible, at least convince yourself that you understand the reason for
every warning generated.

Finding the Run-Time Error
Once all the warnings are gone, it’s time to start testing. Good testing
requires an organized approach. First, you decide the test data that you’re
going to use. Next, you determine what output you expect for each of the
given test inputs. Then you run the program and compare the actual results
with the expected results. What could be so hard?

Formulating test data
Determining what test data to use is part engineering and part black art. The
engineering part is that you want to select data such that every statement in
your program gets executed at least once. That means every branch of every
if statement and every case of every switch statement gets executed at
least once.

 Having every statement execute at least once is called full statement coverage
and is considered the minimum acceptable testing criteria. The chance of pro-
gramming mistakes making it into the field is just too high without executing
every statement at least once under test conditions.

13_617977-ch08.indd 9313_617977-ch08.indd 93 7/6/10 11:42 PM7/6/10 11:42 PM

94 Part II: Writing a Program: Decisions, Decisions

This simple program has only one path and contains no branches.

The black art is looking at the program and determining where errors might
lie in the calculation. For some reason, I just assume that every test should
include the key values of 0 and 100 degrees Celsius. To that, I will add one
negative value and one value in the middle between 0 and 100. Before I start,
I use a handy-dandy conversion program to look up the equivalent tempera-
ture in Fahrenheit, as shown in Table 8-1.

Table 8-1 Test Data for the Conversion Program

Input Celsius Resulting Fahrenheit

0 32

100 212

-40 -40

50 122

Executing the test cases
Running the tests is simply a matter of executing the program and supplying
the input values from Table 8-1. The first case generates the following results:

Enter the temperature in Celsius: 0
Fahrenheit value is: 32
Press any key to continue . . .

So far, so good. The second data case generates the following output:

Enter the temperature in Celsius: 100
Fahrenheit value is: 132
Press any key to continue . . .

This doesn’t match the expected value. Houston, we have a problem.

 The value of 132 degrees is not completely unreasonable. That’s why it’s
important to decide what the expected results are before you start. Otherwise,
reasonable but incorrect results can slip by undetected.

13_617977-ch08.indd 9413_617977-ch08.indd 94 7/6/10 11:42 PM7/6/10 11:42 PM

95 Chapter 8: Debugging Your Programs, Part I

Seeing what’s going on in your program
What could be wrong? I check over the calculations and everything looks
fine. I need to get a peek at what’s going on in the calculation. A way to get
at the internals of your program is to add output statements. I want to print
the values going into each of the calculations. I also need to see the interme-
diate results. To do so, I break the calculation into its parts that I can print.
Keep the original expression as a comment so you don’t forget where you
came from.

 This version of the program is included on the enclosed CD-ROM as
ConversionError2.

This version of the program includes the following changes:

// nFahrenheit = 9/5 * nCelsius + 32;
cout << “nCelsius = “ << nCelsius << endl;
int nFactor = 9 / 5;
cout << “nFactor = “ << nFactor << endl;
int nIntermediate = nFactor * nCelsius;
cout << “nIntermediate = “ << nIntermediate << endl;
nFahrenheit = nIntermediate + 32;
cout << “nFahrenheit = “ << nFahrenheit << endl;

I display the value of nCelsius to make sure that it got read properly from
the user input. Next, I try to display the intermediate results of the conver-
sion calculation in the same order that C++ will. First to go is the calculation
9 / 5, which I save into a variable I name nFactor (the name isn’t impor-
tant). This value is multiplied by nCelsius, the results of which I save into
nIntermediate. Finally, this value will get added to 32 to generate the
result, which is stored into nFahrenheit.

By displaying each of these intermediate values, I can see what’s going on in
my calculation. Repeating the error case, I get the following results:

Enter the temperature in Celsius: 100
nCelsius = 100
nFactor = 1
nIntermediate = 100
nFahrenheit = 132
Fahrenheit value is: 132
Press any key to continue . . .

13_617977-ch08.indd 9513_617977-ch08.indd 95 7/6/10 11:42 PM7/6/10 11:42 PM

96 Part II: Writing a Program: Decisions, Decisions

Right away I see a problem: nFactor is equal to 1 and not 9 / 5. Then the
problem occurs to me; integer division rounds down to the nearest integer
value. Integer 9 divided by integer 5 is 1.

I can avoid this problem by performing the multiply before the divide. There
will still be a small amount of integer round-off, but it will only amount to a
single degree.

 Another solution would be to use decimal variables that can retain fractional
values. You’ll see that solution in Chapter 14.

The resulting formula appears as follows:

nFahrenheit = nCelsius * 9/5 + 32;

 This is the version of the calculation that appears on the CD-ROM in the origi-
nal Conversion program.

Now rerunning the tests, I get the following:

Enter the temperature in Celsius: 0
Fahrenheit value is: 32
Press any key to continue . . .

Enter the temperature in Celsius: 100
Fahrenheit value is: 212
Press any key to continue . . .

Enter the temperature in Celsius: -40
Fahrenheit value is: -40
Press any key to continue . . .

Enter the temperature in Celsius: 50
Fahrenheit value is: 122
Press any key to continue . . .

This matches the expected values from Table 8-1.

 Notice that, after making the change, I started over from the beginning, sup-
plying all four test cases — not just the values that didn’t work properly the
first time. Any changes to the calculation invalidate all previous tests.

13_617977-ch08.indd 9613_617977-ch08.indd 96 7/6/10 11:42 PM7/6/10 11:42 PM

Part III

Becoming a
Functional

Programmer

14_617977-pp03.indd 9714_617977-pp03.indd 97 7/6/10 11:42 PM7/6/10 11:42 PM

In this part . . .

Now that you’ve mastered the basics of simple
expressions, it’s time for you to learn about loops,

how to get into them, and, even more importantly, how to
get out of them. You’ll also see how to break a large pro-
gram into smaller components that are easier to program.
In the last chapter of this part, you’ll see some more tech-
niques for debugging your programs.

14_617977-pp03.indd 9814_617977-pp03.indd 98 7/6/10 11:42 PM7/6/10 11:42 PM

Chapter 9

while Running in Circles
In This Chapter
▶ Looping using the while statement

▶ Breaking out of the middle of a loop

▶ Avoiding the deadly infinite loop

▶ Nesting loops within loops

Decision making is a fundamental part of almost every program you
write, which I initially emphasize in Chapter 1. However, another funda-

mental feature that is clear — even in the simple Lug Nut Removal algorithm —
is the ability to loop. That program turned the wrench in a loop until the lug
nut fell off, and it looped from one lug nut to the other until the entire wheel
came off. This chapter introduces you to two of the three looping constructs
in C++.

Creating a while Loop
The while loop has the following format:

while (expression)
{
 // stuff to do in a loop
}

// continue here once expression is false

When a program comes upon a while loop, it first evaluates the expression
in the parentheses. If this expression is true, then control passes to the first
line inside the {. When control reaches the }, the program returns back to
the expression and starts over. Control continues to cycle through the code
in the braces until expression evaluates to false (or until something else
breaks the loop — more on that a little later in this chapter).

15_617977-ch09.indd 9915_617977-ch09.indd 99 7/6/10 11:42 PM7/6/10 11:42 PM

100 Part III: Becoming a Functional Programmer

The following Factorial program demonstrates the while loop:

 Factorial(N) = N * (N-1) * (N-2) * ... * 1

//
 // Factorial - calculate factorial using the while

// construct.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // enter the number to calculate the factorial of
 int nTarget;
 cout << “This program calculates factorial.\n”
 << “Enter a number to take factorial of: “;
 cin >> nTarget;

 // start with an accumulator that’s initialized to 1
 int nAccumulator = 1;
 int nValue = 1;
 while (nValue <= nTarget)
 {
 cout << nAccumulator << “ * “
 << nValue << “ equals “;
 nAccumulator = nAccumulator * nValue;
 cout << nAccumulator << endl;
 nValue++;
 }

 // display the result
 cout << nTarget << “ factorial is “
 << nAccumulator << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

The program starts by prompting the user for a target value. The program reads
this value into nTarget. The program then initializes both nAccumulator
and nValue to 1 before entering the loop.

(Pay attention — this is the interesting part.) The program compares nValue
to nTarget. Assume that the user had entered a target value of 5. On the
first loop, the question becomes, “Is 1 less than or equal to 5?” The answer is

15_617977-ch09.indd 10015_617977-ch09.indd 100 7/6/10 11:42 PM7/6/10 11:42 PM

101 Chapter 9: while Running in Circles

obviously true, so control flows into the loop. The program outputs
the value of nAccumulator (1) and nValue (also 1) before multiplying
nAccumulator by nValue and storing the result back into nAccumulator.

The last statement in the loop increments nValue from 1 to 2.

That done, control passes back up to the while statement where nValue
(now 2) is compared to nTarget (still 5). “Is 2 less than or equal to 5?”
Clearly, yes; so control flows back into the loop. nAccumulator is now set to
the result of nAccumulator (1) times nValue (2). The last statement incre-
ments nValue to 3.

This cycle of fun continues until nValue reaches the value 6, which is no
longer less than or equal to 5. At that point, control passes to the first state-
ment beyond the closed brace }. This is shown graphically in Figure 9-1.

Figure 9-1:
Control

continues
to cycle
through

the body of
a while
loop until
the con-
ditional

expression
evaluates to

false.

while (nValue <= nTarget)
{
 cout << nAccumulator << " * "
 << nValue << " equals ";
 nAccumulator = nAccumulator * nValue;
 cout << nAccumulator << endl;
 nValue++;
}

For nValue <= nTarget is true

while (nValue <= nTarget)
{
 cout << nAccumulator << " * "
 << nValue << " equals ";
 nAccumulator = nAccumulator * nValue;
 cout << nAccumulator << endl;
 nValue++;
}

For nValue <= nTarget is false

The actual output from the program appears as follows for an input value of 5:

This program calculates factorial.
Enter a number to take factorial of: 5
1 * 1 equals 1
1 * 2 equals 2
2 * 3 equals 6
6 * 4 equals 24
24 * 5 equals 120
5 factorial is 120
Press any key to continue . . .

15_617977-ch09.indd 10115_617977-ch09.indd 101 7/6/10 11:42 PM7/6/10 11:42 PM

102 Part III: Becoming a Functional Programmer

 You are not guaranteed that the code within the braces of a while loop is
executed at all: If the conditional expression is false the first time it’s evalu-
ated, control passes around the braces without ever diving in. Consider, for
example, the output from the Factorial program when the user enters a target
value of 0:

This program calculates factorial.
Enter a number to take factorial of: 0
0 factorial is 1
Press any key to continue . . .

No lines of output are generated from within the loop because the condition
“Is nValue less than or equal to 0” was false even for the initial value of 1.
The body of the while loop was never executed.

Breaking out of the Middle of a Loop
Sometimes the condition that causes you to terminate a loop doesn’t occur
until somewhere in the middle of the loop. This is especially true when test-
ing user input for some termination character. C++ provides these two con-
trol commands to handle this case:

 ✓ break exits the inner most loop immediately.

 ✓ continue passes control back to the top of the loop.

The following Product program demonstrates both break and continue.
This program multiplies positive values entered by the user until the user
enters a negative number. The program ignores zero.

//
// Product - demonstrate the use of break and continue.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // enter the number to calculate the factorial of
 cout << “This program multiplies the numbers\n”
 << “entered by the user. Enter a negative\n”
 << “number to exit. Zeroes are ignored.\n”
 << endl;

 int nProduct = 1;
 while (true)
 {

15_617977-ch09.indd 10215_617977-ch09.indd 102 7/6/10 11:42 PM7/6/10 11:42 PM

103 Chapter 9: while Running in Circles

 int nValue;
 cout << “Enter a number to multiply: “;
 cin >> nValue;
 if (nValue < 0)
 {
 cout << “Exiting.” << endl;
 break;
 }
 if (nValue == 0)
 {
 cout << “Ignoring zero.” << endl;
 continue;
 }

 // multiply accumulator by this value and
 // output the result
 cout << nProduct << “ * “ << nValue;
 nProduct *= nValue;
 cout << “ is “ << nProduct << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

The program starts out with an initial value of nProduct of 1. The program
then evaluates the logical expression true to see if it’s true. It is.

 There aren’t too many rules that hold in C++ without exception, but here’s
one: true is always true.

The program then enters the loop to prompt the user for another value to
multiply times nProduct, the accumulated product of all numbers entered
so far. If the value entered is negative, then the program outputs the phrase
“Exiting.” before executing the break, which passes control out of the loop.

If the value entered is not negative, control passes to the second if statement.
If nValue is equal to zero, then the program outputs the messages “Ignoring
zero.” before executing the continue statement which passes control back
to the top of the loop to allow the user to enter another value.

If nValue is neither less than zero nor zero, then control flows down to
where nValue is multiplied by nProduct using the special assignment oper-
ator (see Chapter 4 if you don’t remember this one):

nProduct *= nValue;

15_617977-ch09.indd 10315_617977-ch09.indd 103 7/6/10 11:42 PM7/6/10 11:42 PM

104 Part III: Becoming a Functional Programmer

This expression is the same as:

nProduct = nProduct * nValue;

The output from a sample run from this program appears as follows:

This program multiplies the numbers
entered by the user. Enter a negative
number to exit. Zeroes are ignored.

Enter a number to multiply: 2
1 * 2 is 2
Enter a number to multiply: 5
2 * 5 is 10
Enter a number to multiply: 0
Ignoring zero.
Enter a number to multiply: 3
10 * 3 is 30
Enter a number to multiply: -1
Exiting.
Press any key to continue . . .

Why is “break” necessary?
You might be tempted to wonder why break is really necessary. What if I had coded the loop in
the Product example program as

int nProduct = 1;
int nValue = 1;
while (nValue > 0)
{
 cout << “Enter a number to multiply: “;
 cin >> nValue;

 cout << nProduct << “ * “ << nValue;
 nProduct *= nValue;
 cout << “ is “ << nProduct << endl;
}

You might think that as soon as the user enters a negative value for nValue, the expression
nValue > 0 is no longer true and control immediately exits the loop — unfortunately, this is
not the case.

The problem is that the logical expression is only evaluated at the beginning of each pass through
the loop. Control doesn’t immediately fly out of the body of the loop as soon as the condition ceases
to be true. An if statement followed by a break allows me to move the conditional expression
into the body of the loop where the value of nValue is assigned.

15_617977-ch09.indd 10415_617977-ch09.indd 104 7/6/10 11:42 PM7/6/10 11:42 PM

105 Chapter 9: while Running in Circles

Nested Loops
The body of a loop can itself contain a loop in what is known as nested loops. The
inner loop must execute to completion during each time through the outer loop.

I have created a program that uses nested loops to create a multiplication
table of the form:

 0 1 2 3 4 5 6 7 8 9
0 0*0 0*1 0*2 0*3 0*4 0*5 0*6 0*7 0*8 0*9
1 1*0 1*1 1*2 1*3 1*4 1*5 1*6 1*7 1*8 1*9
2 2*0 2*1 2*2 2*3 2*4 2*5 2*6 2*7 2*8 2*9
//... and so on...

You can see that for row 0, the program will need to iterate from column 0
through column 9. The program will repeat the process for row 1 and again for
row 2 and so on right down to row 9. This implies the need for two loops: an inner
loop to iterate over the columns and a second outer loop to iterate over the rows.
Each position in the table is simply the row number times the column number.

This is exactly how the following NestedLoops program works:

//
// NestedLoops - this program uses a nested loop to
// calculate the multiplication table.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // display the column headings
 int nColumn = 0;
 cout << “ “;
 while (nColumn < 10)
 {
 // set the display width to two characters
 // (even for one digit numbers)
 cout.width(2);

 // now display the column number
 cout << nColumn << “ “;

 // increment to the next column
 nColumn++;
 }
 cout << endl;

 // now go loop through the rows
 int nRow = 0;

15_617977-ch09.indd 10515_617977-ch09.indd 105 7/6/10 11:42 PM7/6/10 11:42 PM

106 Part III: Becoming a Functional Programmer

 while (nRow < 10)
 {
 // start with the row value
 cout << nRow << “ - “;

 // now for each row, start with column 0 and
 // go through column 9
 nColumn = 0;
 while(nColumn < 10)
 {
 // display the product of the column*row
 // (use 2 characters even when product is
 // a single digit)
 cout.width(2);
 cout << nRow * nColumn << “ “;

 // go to next column
 nColumn++;
 }

 // go to next row
 nRow++;
 cout << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

The first section creates the column headings. This section initializes nColumn
to 0. It then iterates through nColumn printing out its value separated by
a space until nColumn reaches 10. At this point, the program exits the first
loop and then tacks a new line on the end to finish the row. This is shown
graphically in Figure 9-2.

Executing just this section alone generates the following output:

 0 1 2 3 4 5 6 7 8 9

This program demonstrates an unfair advantage that I have. The expression
cout.width(2) sets the display width to two columns — C++ will pad a
space on the left for single-digit numbers. I know it’s cheating to make use of
a feature that I don’t present to the reader until Chapter 31, but it’s very dif-
ficult to get the columns to line up without resorting to fixed-width output.

The second set of loops, the nested loops, starts at nRow equal to 0. The pro-
gram prints out the row number followed by a dash before launching into a

15_617977-ch09.indd 10615_617977-ch09.indd 106 7/6/10 11:42 PM7/6/10 11:42 PM

107 Chapter 9: while Running in Circles

second loop that starts nColumn at 0 again and iterates it back up to 9. For
each pass through this inner loop, the program sets the output width to two
spaces and then displays nRow * nColumn followed by a space.

Figure 9-2:
The first

loop outputs
the column

headings.

// display the column headings
int nColumn = 0;
while (nColumn < 10)
{
 // now display the column number
 cout << nColumn << " ";

 // increment to the next column
 nColumn++;
}
//go to the next row
cout << end1;

0 1 2 3 4 5 6 7 8 9Output:

 The display width resets itself each time you output something, so it’s neces-
sary to set it back to two each time before outputting a number.

The program outputs a newline to move output to the next row each time it
increments nRow. This is shown graphically in Figure 9-3.

The output from this program appears as follows:

 0 1 2 3 4 5 6 7 8 9
0 - 0 0 0 0 0 0 0 0 0 0
1 - 0 1 2 3 4 5 6 7 8 9
2 - 0 2 4 6 8 10 12 14 16 18
3 - 0 3 6 9 12 15 18 21 24 27
4 - 0 4 8 12 16 20 24 28 32 36
5 - 0 5 10 15 20 25 30 35 40 45
6 - 0 6 12 18 24 30 36 42 48 54
7 - 0 7 14 21 28 35 42 49 56 63
8 - 0 8 16 24 32 40 48 56 64 72
9 - 0 9 18 27 36 45 54 63 72 81
Press any key to continue . . .

There is nothing magic about 0 through 9 in this table. I could just have easily
created a 12 x 12 multiplication table (or any other combination) by changing
the comparison expression in the three while loops. However, for anything
larger than 10 x 10, you will need to increase the minimum width to accom-
modate the three-digit products. Use cout.width(3).

15_617977-ch09.indd 10715_617977-ch09.indd 107 7/6/10 11:42 PM7/6/10 11:42 PM

108 Part III: Becoming a Functional Programmer

Figure 9-3:
The inner

loop iterates
from left to

right across
the col-

umns, while
the outer

loop iterates
from top

to bottom
down the

rows.

// now go loop through the rows
int nRow = 0;
while (nRow < 10)
{
 // start with the row value
 cout << nRow << " – ";

 // now for each row, start with column 0 and
 // go through column 9
 nColumn = 0;
 while(nColumn < 10)
 {
 cout << nRow * nColumn << " ";

 // go to next column
 nColumn++;
 }

 // go to next row
 nRow++;
 cout << end1;
}

0 * 0 0 * 1 0 * 2 0 * 3 0 * 4 0 * 5 0 * 6 0 * 7 0 * 8 0 * 9

1 * 0 1* 1 1 * 2 1 * 3 1 * 4 1 * 5 1 * 6 1 * 7 1 * 8 1 * 9

2 * 0 2 * 1 2 * 2 2 * 3 2 * 4 2 * 5 2 * 6 2 * 7 2 * 8 2 * 9

Output:
Inner loop

Outer
loop

15_617977-ch09.indd 10815_617977-ch09.indd 108 7/6/10 11:42 PM7/6/10 11:42 PM

Chapter 10

Looping for the Fun of It
In This Chapter
▶ Introducing the for loop

▶ Reviewing an example ForFactorial program

▶ Using the comma operator to get more done in a single for loop

The most basic of all control structures is the while loop, which is the
topic of Chapter 9. This chapter introduces you its sibling, the for loop.

Though not quite as flexible, the for loop is actually the more popular of the
two — it has a certain elegance that is hard to ignore.

The for Parts of Every Loop
If you look again at the examples in Chapter 9, you’ll notice that most loops
have four essential parts. (This feels like breaking down a golf swing into its
constituent parts.)

 ✓ The setup: Usually the setup involves declaring and initializing an
increment variable. This generally occurs immediately before the
while.

 ✓ The test expression: The expression within the while loop that will
cause the program to either execute the loop or exit and continue
on. This always occurs within the parentheses following the keyword
while.

 ✓ The body: This is the code within the braces.

 ✓ The increment: This is where the increment variable is incremented.
This usually occurs at the end of the body.

In the case of the Factorial program, the four parts looked like this:

int nValue = 1; // the setup
while (nValue <= nTarget) // the test expression
{ // the body
 cout << nAccumulator << “ * “

16_617977-ch10.indd 10916_617977-ch10.indd 109 7/6/10 11:43 PM7/6/10 11:43 PM

110 Part III: Becoming a Functional Programmer

 << nValue << “ equals “;
 nAccumulator = nAccumulator * nValue;
 cout << nAccumulator << endl;
 nValue++; // the increment
}

The for loop incorporates these four parts into a single structure using the
keyword for:

for(setup; test expression; increment)
{
 body;
}

The flow is shown graphically in Figure 10-1.

 1. As the CPU comes innocently upon the for keyword, control is diverted
to the setup clause.

 2. Once the setup has been performed, control moves over to the test
expression.

 3. (a) If the test expression is true, control passes to the body of the
for loop.

 (b) If the test expression is false, control passes to the next state-
ment after the closed brace.

 4. Once control has passed through the body of the loop, the CPU is forced
to perform a U-turn back up to the increment section of the loop.

 That done, control returns to the test expression and back to Step 3.

Figure 10-1:
The flow in
and around

the for
loop.

for(setup; test expression; increment)
{ 3a - if test expression is true
 3b - if test expression is false
 body;

}

1 2

4

5

16_617977-ch10.indd 11016_617977-ch10.indd 110 7/6/10 11:43 PM7/6/10 11:43 PM

111 Chapter 10: Looping for the Fun of It

 This for loop is completely equivalent to the following while loop:

setup;
while(test expression)
{
 body;

 increment;
}

Looking at an Example
 The following example program is the Factorial program written as a for loop

(this program appears on the enclosed CD-ROM as ForFactorial):

//
// ForFactorial - calculate factorial using the for
// construct.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // enter the number to calculate the factorial of
 int nTarget;
 cout << “This program calculates factorial.\n”
 << “Enter a number to take factorial of: “;
 cin >> nTarget;

 // start with an accumulator that’s initialized to 1
 int nAccumulator = 1;
 for(int nValue = 1; nValue <= nTarget; nValue++)
 {
 cout << nAccumulator << “ * “
 << nValue << “ equals “;
 nAccumulator = nAccumulator * nValue;
 cout << nAccumulator << endl;
 }

 // display the result
 cout << nTarget << “ factorial is “

16_617977-ch10.indd 11116_617977-ch10.indd 111 7/6/10 11:43 PM7/6/10 11:43 PM

112 Part III: Becoming a Functional Programmer

 << nAccumulator << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

The logic of this ForFactorial program is virtually identical to its older
Factorial twin: The program prompts the user to enter a number to take the
factorial of. It then initializes nAccumulator to 1 before entering the loop
that calculates the factorial.

ForFactorial creates an increment variable, nValue, that it initializes to 1
in the setup clause of the for statement. That done, the program compares
nValue to nTarget, the value entered by the user in the test expression
section of the for. If nValue is less than or equal to nTarget, control enters
the body of the loop where nAccumulator is multiplied by nValue.

That done, control flows back up to the increment section of the for loop.
This expression, nValue++, increments nValue by 1. Flow then moves to
the test expression, where nValue is compared with nTarget and the
process repeated until eventually nValue exceeds the value of nTarget. At
that point, control passes to the next statement after the closed brace.

The output from this program appears as follows:

This program calculates factorials of user input.
Enter a negative number to exit
Enter number: 5
5 factorial is 120
Enter number: 6
6 factorial is 720
Enter number: -1
Press any key to continue . . .

 All four sections of the for loop are optional. An empty setup, body, or
increment section has no effect; that is, it does nothing. (That makes sense.)
An empty test expression is the same as true. (This is the only thing that
would make sense — if it evaluated to false, then the body of the for loop
would never get executed, and the result would be useless.)

 A variable defined within the setup section of a for loop is only defined within
the for loop. It is no longer defined once control exits the loop.

16_617977-ch10.indd 11216_617977-ch10.indd 112 7/6/10 11:43 PM7/6/10 11:43 PM

113 Chapter 10: Looping for the Fun of It

Getting More Done with
the Comma Operator

 There is a seemingly useless operator that I haven’t mentioned (up until now,
that is) known as the comma operator. It appears as follows:

expression1, expression2;

This says execute expression1 and then execute expression2. The resulting
value and type of the overall expression is the same as that of expression2.
Thus, I could say something like the following:

int i;
int j;
i = 1, j = 2;

Why would I ever want to do such a thing, you ask? Answer: You wouldn’t
except when writing for loops.

The following CommaOperator program demonstrates the comma operator in
combat. This program calculates the products of pairs of numbers. If the oper-
ator enters N, the program outputs 1 * N, 2 * N-1, 3 * N-2, and so on, all the
way up to N * 1. (This program doesn’t do anything particularly useful. You’ll
see the comma operator used to effect when discussing arrays in Chapter 15.)

//
// CommaOperator - demonstrate how the comma operator
// is used within a for loop.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // enter a target number
 int nTarget;
 cout << “Enter maximum value: “;
 cin >> nTarget;

16_617977-ch10.indd 11316_617977-ch10.indd 113 7/6/10 11:43 PM7/6/10 11:43 PM

114 Part III: Becoming a Functional Programmer

 for(int nLower = 1, nUpper = nTarget;

 nLower <= nTarget; nLower++, nUpper--)
 {
 cout << nLower << “ * “
 << nUpper << “ equals “
 << nLower * nUpper << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

The program first prompts the operator for a target value, which is read into
nTarget. It then moves to the for loop. However, this time not only do you
want to increment a variable from 1 to nTarget, you also want to decrement
a second variable from nTarget down to 1.

Here the setup clause of the for loop declares a variable nLower that it ini-
tializes to 1 and a second variable nTarget that gets initialized to nTarget.
The body of the loop displays nLower, nUpper, and the product nLower
* nTarget. The increment section increments nLower and decrements
nUpper.

The output from the program appears as follows:

Enter maximum value: 15
1 * 15 equals 15
2 * 14 equals 28
3 * 13 equals 39
4 * 12 equals 48
5 * 11 equals 55
6 * 10 equals 60
7 * 9 equals 63
8 * 8 equals 64
9 * 7 equals 63
10 * 6 equals 60
11 * 5 equals 55
12 * 4 equals 48
13 * 3 equals 39
14 * 2 equals 28
15 * 1 equals 15
Press any key to continue . . .

16_617977-ch10.indd 11416_617977-ch10.indd 114 7/6/10 11:43 PM7/6/10 11:43 PM

115 Chapter 10: Looping for the Fun of It

In this example run, I entered 15 as the target value. You can see how nLower
increments in a straight line from 1 to 15, while nUpper makes its way from
15 down to 1.

Actually, the output from this program is mildly interesting: No matter what
you enter, the value of the product increases rapidly at first as nLower incre-
ments from 1. Fairly quickly, however, the curve flattens out and asymp-
totically approaches the maximum value in the middle of the range before
heading back down. The maximum value for the product always occurs when
nLower and nUpper are equal.

Could I have made the earlier for loop work without using the comma opera-
tor? Absolutely. I could have taken either variable, nLower or nUpper, out of
the for loop and handled them as separate variables. Consider the following
code snippet:

nUpper = nTarget;
for(int nLower = 1; nLower <= nTarget; nLower++)
{
 cout << nLower << “ * “
 << nUpper << “ equals “
 << nLower * nUpper << endl;
 nUpper--;
}

This version would have worked just as well.

 The for loop can’t do anything that a while loop cannot do. In fact, any for
loop can be converted into an equivalent while loop. However, because of its
compactness, you will see the for loop a lot more often.

Up to and including this chapter, all of the programs have been one mono-
lithic whole stretching from the opening brace after main() to the cor-
responding closing brace. This is okay for small programs, but it would be
really cool if you could divide your program into smaller bites that could be
digested separately. That is the goal of the next chapter on functions.

16_617977-ch10.indd 11516_617977-ch10.indd 115 7/6/10 11:43 PM7/6/10 11:43 PM

116 Part III: Becoming a Functional Programmer

16_617977-ch10.indd 11616_617977-ch10.indd 116 7/6/10 11:43 PM7/6/10 11:43 PM

Chapter 11

Functions, I Declare!
In This Chapter
▶ Breaking programs down into functions

▶ Writing and using functions

▶ Returning values from a function

▶ Passing values to a function

▶ Providing a function prototype declaration

The programs you see prior to this chapter are small enough and simple
enough to write in one sequence of instructions. Sure, there have been

branches using if statements and looping with while and for loops, but
the entire program was in one place for all to see.

Real-world programs aren’t usually that way. Programs that are big enough
to deal with the complexities of the real world are generally too large to write
in one single block of C++ instructions. Real-world programs are broken into
modules called functions in C++. This chapter introduces you to the wonder-
ful world of functions.

Breaking Your Problem
Down into Functions

Even the Tire Changing Program from Chapter 1 was too big to write in a
single block. I only tackled the problem of removing the lug nuts. I didn’t
even touch the problem of jacking up the car, removing the wheel, getting the
spare out, and so on.

In fact, suppose that I were to take the lug nut removing code and put it into
a module that I call something fiendishly clever, like RemoveLugNuts(). (I add
the parentheses to follow C++ grammar.) I could bundle up similar modules
for the other functions.

17_617977-ch11.indd 11717_617977-ch11.indd 117 7/6/10 11:43 PM7/6/10 11:43 PM

118 Part III: Becoming a Functional Programmer

The resulting top-level module for changing a tire might look like the following:

1. Grab spare tire;
2. RaiseCar();
3. RemoveLugNuts(); // we know what this does
4. ReplaceWheel();
5. AttachLugNuts(); // inverse of RemoveLugNuts()
6. LowerCar();

Only the first statement is actually an instruction written in Tire Changing
Language. Each of the remaining statements is a reference to a module
somewhere. These modules consist of sequences of statements written in
Tire Changing Language (including possible references to other, simpler
modules).

Imagine how this program is executed: The tire changing processor starts
at statement 1. First it sees the simple instruction Grab spare tire, which it
executes without complaint (it always does exactly what you tell it to do). It
then continues on to statement 2.

Statement 2, however, says, “Remember where you’re at and go find the set
of instructions called RaiseCar(). Once you’ve finished there, come back
here for further instructions.” In similar fashion, Statements 3 through 6 also
direct the friendly mechanically inclined processor off to separate sets of
instructions.

Understanding How Functions
Are Useful

There are several reasons for breaking complex problems up into simpler
functions. The original reason that a function mechanism was added to early
programming languages was the Holy Grail of reuse. The idea was to create
functions that could be reused in multiple programs. For example, factorial
is a common mathematical procedure. If I rewrote the Factorial program as a
function, I could invoke it from any program in the future that needs to calcu-
late a factorial. This form of reuse allows code to be easily reused from differ-
ent programs as well as from different areas within the same program.

Once a function mechanism was introduced, however, people discovered
that breaking up large problems into simpler, smaller problems brought with
it further advantages. The biggest advantage has to do with the number of
things that a person can think about at one time. This is often referred to
as the “Seven Plus or Minus Two” Rule. That’s the number of things that a
person can keep active in his mind at one time. Almost everyone can keep at

17_617977-ch11.indd 11817_617977-ch11.indd 118 7/6/10 11:43 PM7/6/10 11:43 PM

119 Chapter 11: Functions, I Declare!

least five objects in their active memory, but very few can keep more than
nine objects active in their consciousness at one time.

You will have no doubt noticed that there are a lot of details to worry about
when writing C++ code. A C++ module quickly exceeds the nine-object upper
limit as it increases in size. Such functions are hard to understand and there-
fore to write and to get working properly.

It turns out to be much easier to think of the top-level program in terms of
high-level functionality, much as I did in the tire changing example at the
beginning of this chapter. This example divided the act of changing a tire into
six steps, implemented in five functions.

Of course, I still have to implement each of these functions, but these are much
smaller problems than the entire problem of changing a tire. For example, when
implementing RaiseCar(), I don’t have to worry about tires or spares, and I cer-
tainly don’t have to deal with the intricacies of loosening and tightening lug nuts.
All I have to think about in that function is how to get the car off the ground.

 In computer nerd-speak, we say that these different functions are written at
different levels of abstraction. The Tire Changing program is written at a very
high level of abstraction; the RemoveLugNuts() function in Chapter 1 is writ-
ten at a low level of abstraction.

Writing and Using a Function
Like so many things, functions are best understood by example. The follow-
ing code snippet shows the simplest possible example of creating and invok-
ing a function:

void someFunction()
{
 // do stuff
 return;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // do something

 // now invoke someFunction()
 someFunction();

 // keep going here once control returns
}

17_617977-ch11.indd 11917_617977-ch11.indd 119 7/6/10 11:43 PM7/6/10 11:43 PM

120 Part III: Becoming a Functional Programmer

This example contains all the critical elements necessary to create and
invoke a function:

 1. The declaration: The first thing is the declaration of the function. This
appears as the name of the function with a type in front followed by a
set of open and closed parentheses. In this case, the name of the func-
tion is someFunction(), and its return type is void. (I’ll explain what
that last part means in the “Returning things” section of this chapter.)

 2. The definition: The declaration of the function is followed by the defi-
nition of what it does. This is also called the body of the function. The
body of a function always starts with an open brace and ends with a
closed brace. The statements inside the body are just like those within a
loop or an if statement.

 3. The return: The body of the function contains zero or more return
statements. A return returns control to immediately after the point
where the function was invoked. Control returns automatically if it ever
reaches the final closed brace of the function body.

 4. The call: A function is called by invoking the name of the function fol-
lowed by open and closed parentheses.

The flow of control is shown in Figure 11-1.

Figure 11-1:
Invoking

a function
passes

control to
the module.

Control
returns to

immediately
after

the call.

void someFunction()
{
 // do stuff
 return;
}

int main(int nArgs, char* pArgs[])
{
 // do something

 // now invoke someFunction()
 someFunction();

 // keep going where once control returns
}

1

3

2

Returning things
Functions often return a value to the caller. Sometimes this is a calculated
value — a function like factorial() might return the factorial of a number.
Sometimes this value is an indication of how things went — this is usually known
as an error return. So the function might return a zero if everything went OK, and
a non-zero if something went wrong during the execution of the function.

17_617977-ch11.indd 12017_617977-ch11.indd 120 7/6/10 11:43 PM7/6/10 11:43 PM

121 Chapter 11: Functions, I Declare!

To return a value from a function, you need to make two changes:

 1. Replace void with the type of value you intend to return.

 2. Place the value to return after the keyword return. C++ does not allow
you to return from a function by running into the final closed brace if the
return type is other than void.

 The keyword void is C++-ese for “nothing.” Thus a function declared with a
return type of int returns an integer. A function declared with a return type
of void returns nothing.

Reviewing an example

The following FunctionDemo program uses the function sumSequence() to
sum a series of numbers entered by the user at the keyboard. This function is
invoked repeatedly until the user enters a zero length sequence.

//
// FunctionDemo - demonstrate how to use a function
// to simplify the logic of the program.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

//
// sumSequence() - return the sum of a series of numbers
// entered by the user. Exit the loop
// when the user enters a negative
// number.
int sumSequence()
{
 // create a variable into which we will add the
 // numbers entered by the user
 int nAccumulator = 0;

 for(;;)
 {
 // read another value from the user
 int nValue;
 cout << “Next: “;
 cin >> nValue;

 // exit if nValue is negative
 if (nValue < 0)
 {
 break;
 }

17_617977-ch11.indd 12117_617977-ch11.indd 121 7/6/10 11:43 PM7/6/10 11:43 PM

122 Part III: Becoming a Functional Programmer

 // add the value entered to the accumulated value
 nAccumulator += nValue;
 }

 // return the accumulated value to the caller
 return nAccumulator;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 cout << “This program sums sequences of numbers.\n”
 << “Enter a series of numbers. Entering a\n”
 << “negative number causes the program to\n”
 << “print the sum and start over with a new\n”
 << “sequence. “
 << “Enter two negatives in a row to end the\n”
 << “program.” << endl;

 // stay in a loop getting input from the user
 // until he enters a negative number
 for(;;)
 {
 // accumulate a sequence
 int nSum = sumSequence();

 // if the sum is zero...
 if (nSum == 0)
 {
 // ...then exit the program
 break;
 }

 // display the result
 cout << “Sum = “ << nSum << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

First, concentrate on the main() program. After outputting rather verbose
instructions to the user, the program enters a for loop.

 A for loop whose conditional expression is empty (as in for(;;)) will loop
forever unless something within the body of the loop causes control to exit
the loop (or until Hell freezes over).

17_617977-ch11.indd 12217_617977-ch11.indd 122 7/6/10 11:43 PM7/6/10 11:43 PM

123 Chapter 11: Functions, I Declare!

The first non-comment line within this loop is the following:

int nSum = sumSequence();

This expression passes control to the sumSequence() function. Once con-
trol returns, the declaration uses the value returned by sumSequence() to
initialize nSum.

The function sumSequence() first initializes nAccumulator to zero. It then
prompts the user for value from the keyboard. If the number entered is not
negative, it is added to the value in nAccumulator, and the user is prompted
for another value in a loop. As soon as the user enters a negative number, the
function breaks out of the loop and returns the value accumulated in nAccu-
mulator to the caller.

The following is a sample run from the FunctionDemo program:

This program sums sequences of numbers.
Enter a series of numbers. Entering a
negative number causes the program to
print the sum and start over with a new
sequence. Enter two negatives in a row to end the
program.
Next: 5
Next: 15
Next: 20
Next: -1
Sum = 40
Next: 1
Next: 2
Next: 3
Next: 4
Next: -1
Sum = 10
Next: -1
Press any key to continue . . .

Passing Arguments to Functions
Functions that do nothing but return a value are of limited value because the
communication is one-way — from the function to the caller. Two-way com-
munication requires function arguments, which I discuss next.

17_617977-ch11.indd 12317_617977-ch11.indd 123 7/6/10 11:43 PM7/6/10 11:43 PM

124 Part III: Becoming a Functional Programmer

Function with arguments

A function argument is a variable whose value is passed to the function during
the call. The following FactorialFunction converts the previous factorial opera-
tion into a function:

//
// FactorialFunction - rewrite the factorial code as
// a separate function.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

//
// factorial - return the factorial of the argument
// provided. Returns a 1 for invalid arguments
// such as negative numbers.
int factorial(int nTarget)
{
 // start with an accumulator that’s initialized to 1
 int nAccumulator = 1;
 for (int nValue = 1; nValue <= nTarget; nValue++)
 {
 nAccumulator *= nValue;
 }

 return nAccumulator;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 cout << “This program calculates factorials”
 << “ of user input.\n”
 << “Enter a negative number to exit” << endl;

 // stay in a loop getting input from the user
 // until he enters a negative number
 for (;;)
 {
 // enter the number to calculate the factorial of
 int nValue;

 cout << “Enter number: “;
 cin >> nValue;

 // exit if the number is negative
 if (nValue < 0)

17_617977-ch11.indd 12417_617977-ch11.indd 124 7/6/10 11:43 PM7/6/10 11:43 PM

125 Chapter 11: Functions, I Declare!

 {
 break;
 }

 // display the result
 int nFactorial = factorial(nValue);
 cout << nValue << “ factorial is “
 << nFactorial << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

The declaration of factorial() includes an argument nTarget of int.
Looking ahead, you can see that this is intended to be the value to calculate
the factorial of. The return value of the function is the calculated factorial.

In main(), the program prompts the user for a value, which it stores in
nValue. If the value is negative, the program terminates. If not, it calls
factorial() passing the value of nValue. The program stores the returned
value in nFactorial. It then outputs both values before returning to prompt
the user for a new value.

Functions with multiple arguments
A function can have multiple arguments by separating them by commas.
Thus, the following function returns the product of two integer arguments:

int product(int nValue1, int nValue2)
{
 return nValue1 * nValue2;
}

Exposing main()
Now the truth can be told: The “keyword” main() from our standard tem-
plate is nothing more than a function — albeit a function with strange argu-
ments, but a function nonetheless.

17_617977-ch11.indd 12517_617977-ch11.indd 125 7/6/10 11:43 PM7/6/10 11:43 PM

126 Part III: Becoming a Functional Programmer

Overloading function names
C++ allows the programmer to assign the same name to two or more functions if the func-
tions can be distinguished by either the number or types of arguments. This is called function
overloading. Consider the following example functions:

void someFunction()
{
 // ...perform some function
}
void someFunction(int nValue)
{
 // ...perform some other function
}
void someFunction(char cValue)
{
 // ...perform a function on characters
}

int main(int nNumberofArgs, char* pszArgs[])
{
 someFunction(); // call the first function
 someFunction(10); // call the second function
 someFunction(‘a’); // now the third function
 return 0;
}

By comparing each of the preceding calls with the declarations, it is clear which function is meant
by each call. Because of this, C++ aficionados include the type of arguments with the name of the
function in what is called the function’s extended name or signature. Thus, the extended names
of the three functions are, in fact, different: someFunction(), someFunction(int), and
someFunction(char).

Warning: Notice that the return type is not part of the extended name and cannot be used to dif-
ferentiate functions.

When a program is built, C++ adds some boilerplate code that executes
before your program ever gains control. This code sets up the environment
in which your program will operate. For example, this boilerplate code opens
the default input and output channels and attaches them to cin and cout.

After the environment has been established, the C++ boilerplate code calls
the function main(), thereby beginning execution of your code. When your
program finishes, it returns from main(). This enables the C++ boilerplate
to clean up a few things before terminating the program and handing control
back over to the operating system.

17_617977-ch11.indd 12617_617977-ch11.indd 126 7/6/10 11:43 PM7/6/10 11:43 PM

127 Chapter 11: Functions, I Declare!

Defining Function Prototype Declarations
There’s a little more to the previous program examples than meets the eye.
Consider the second program, FactorialFunction, for example. During the
build process, the C++ compiler scanned through the file. As soon as it came
upon the factorial() function, it made a note in an internal table some-
where in the function’s extended name and its return type. This is how the
compiler was able to understand what I was talking about when I invoked the
factorial() function later on in main() — it saw that I was trying to call
a function, and it said, “Let me look in my table of defined functions for one
called factorial(). Aha, here’s one!”

In this case, the function was defined and the types and number of arguments
matched perfectly, but that isn’t always the case. What if I had invoked the
function not with an integer but with something that could be converted into
an integer? Suppose I had called the function as follows:

factorial(1.1);

That’s not a perfect match, 1.1 is not an integer, but C++ knows how
to convert 1.1 into an integer. So it could make the conversion and use
factorial(int) to complete the call. The question is, does it?

The answer is “Yes.” C++ will generate a warning in some cases to let you
know what it’s doing, but it will generally make the necessary type conver-
sions to the arguments to use the functions that it knows about.

Note: I know that I haven’t discussed the different variable types and won’t until
Chapter 14, but the argument I am making is fairly generic. You will also see in
Chapter 14 how to avoid warnings caused by automatic type conversions.

What about a call like the following:

factorial(1, 2);

There is no conversion that would allow C++ to lop off an argument and use
the factorial(int) function to satisfy this call, so C++ generates an error
in this case.

The only way C++ can sort out this type of thing is if it sees the function dec-
laration before it sees the attempt to invoke the function. This means each
function must be declared before it is used.

I know what you’re thinking (I think): C++ could be a little less lazy and look
ahead for function declarations that occur later on before it gives up and
starts generating errors, but the fact is that it doesn’t. It’s just one of those
things, like my crummy car; you learn to live with it.

17_617977-ch11.indd 12717_617977-ch11.indd 127 7/6/10 11:43 PM7/6/10 11:43 PM

128 Part III: Becoming a Functional Programmer

So does that mean you have to define all of your functions before you can
use them? No. C++ allows you to declare a function without a body in what is
known as a prototype declaration.

A prototype declaration creates an entry for the function in the table I was
talking about. It fills in the extended name, inc luding the number and type of
the arguments, and the return type. C++ leaves the definition of the function,
the function body, empty until later.

In practice, a prototype declaration appears as follows:

// the prototype declaration
int factorial(int nTarget);

int main(int nNumberofArgs, char* pszArgs[])
{
 cout << “The factorial of 10 is “
 << factorial(10) << endl;

 return 0;
}

// the definition of the factorial(int) function;
// this satisfies our promise to provide a definition
// for the prototype function declaration above
int factorial(int nTarget)
{
 // start with an accumulator that’s initialized to 1
 int nAccumulator = 1;
 for (int nValue = 1; nValue <= nTarget; nValue++)
 {
 nAccumulator *= nValue;
 }

 return nAccumulator;
}

The prototype declaration tells the world (or at least that part of the world
after the declaration) that factorial() takes a single integer argument
and returns an integer. That way, C++ can check the call in main() against
the declaration to see whether any type conversions need to take place or
whether the call is even possible.

The prototype declaration also represents a promise to C++ to provide a
complete definition of factorial(int) somewhere else in the program. In
this case, the full definition of factorial(int) follows right after main().

 It is common practice to provide prototype declarations for all functions defined
within a module. That way, you don’t have to worry about the order in which
they are defined. I’ll have more to say about this topic in the next chapter.

17_617977-ch11.indd 12817_617977-ch11.indd 128 7/6/10 11:43 PM7/6/10 11:43 PM

Chapter 12

Dividing Programs into Modules
In This Chapter
▶ Breaking programs down into functions

▶ Writing and using functions

▶ Returning values from a function

▶ Passing values to a function

▶ Providing a function prototype declaration

In Chapter 11, I show you how to divide a complex problem into a number
of separate functions; it is much easier to write and get a number of

smaller functions to work than one large, monolithic program. Oftentimes,
however, you may want to reuse the functions you create in other applica-
tions. For example, I could imagine reusing the factorial() function I cre-
ated in Chapter 11 in the future.

One way to reuse such functions is to copy-and-paste the source code for
the factorial() function into my new program. However, it would be a lot
easier if I could put the function in a separate file that I could then link into
future applications. Breaking programs into separate source code modules is
the subject of this chapter.

Breaking Programs Apart
The programmer can break a single program into separate source files gener-
ally known as modules. These modules are compiled into machine code by
the C++ compiler separately and then combined during the build process to
generate a single program.

The process of combining separately compiled modules into a single pro-
gram is called linking.

18_617977-ch12.indd 12918_617977-ch12.indd 129 7/6/10 11:43 PM7/6/10 11:43 PM

130 Part III: Becoming a Functional Programmer

Breaking programs into smaller, more manageable pieces has several advan-
tages. First, breaking a program into smaller modules reduces the compile
time. Code::Blocks takes only a few seconds to gobble up and digest the pro-
grams that appear in this book. Very large programs can take quite a while,
however. I have worked on projects that took most of the night to rebuild.

In addition, recompiling all of the source code in the project just because one
or two lines change is extremely wasteful. It’s much better to recompile just
the module containing the change and then relink it into all of the unchanged
modules to create a new executable with the change. (The updated module
may contain more than just the one changed function but not that many more.)

Second, it’s easier to comprehend and, therefore, easier to write and debug
a program that consists of a number of well thought out but quasi-indepen-
dent modules, each of which represents a logical grouping of functions. A
large, single source module full of all the functions that a program might use
quickly becomes hard to keep straight.

Third is the much vaunted specter of reuse. A module full of reusable func-
tions that can be linked into future programs is easier to document and
maintain. A change in the module to fix some bug is quickly incorporated into
other executables that use that module.

Finally, there’s the issue of working together as a team. Two programmers
can’t work on the same module (at least not very well). An easier approach
is to assign one set of functions contained in one module to a programmer
while assigning a different set of functions in a different module to a second
programmer. The modules can be linked together when ready for testing.

Breaking Up Isn’t That Hard to Do
I can’t really include a large program in a book like this . . . well, I could, but
there wouldn’t be enough left for anything else. I will use the FactorialFunction
demo from Chapter 11 as my example large-scale program. In this section, I
will create the FactorialModule project that separates the program into sev-
eral source modules. To do this, I will perform the following steps:

 1. Create the FactorialModule project.

 This is no different than creating any of the other project files up to this
point in the book.

 2. Create the Factorial.cpp file to contain the factorial function.

 3. Create the Factorial.h include file (whatever that is) to be used by all
modules that want to call.

 4. Update main.cpp to use the factorial() function.

18_617977-ch12.indd 13018_617977-ch12.indd 130 7/6/10 11:43 PM7/6/10 11:43 PM

131 Chapter 12: Dividing Programs into Modules

Creating Factorial.cpp
The initial console application project created by Code::Blocks has only one
source file, main.cpp. The next step is to create a second source file that
will contain the factorial function.

Follow these steps to create factorial.cpp containing the factorial()
function:

 1. Select File➪New➪File.

 Code::Blocks responds by opening the window shown in Figure 12-1
showing the different types of files you can add.

Figure 12-1:
The New

File wizard
provides
you help

in adding
source files

to your
project.

 2. Select C/C++ Source and then click Go.

 This opens up a box warning that you are about to enter the mysterious
and dangerous Source File Wizard.

 3. Click Next.

 This will open the Source File Wizard.

 4. Click the ... next to the Filename with Full Path prompt.

 A File Open dialog box appears, allowing you to navigate to a different
folder if you want to keep your source files in different directories. But
don’t make it any more complicated than it has to be.

 5. Enter factorial.cpp as the name of the source file and click Save.

18_617977-ch12.indd 13118_617977-ch12.indd 131 7/6/10 11:43 PM7/6/10 11:43 PM

132 Part III: Becoming a Functional Programmer

 6. You want this file added to all executables that you create, so select
All for the build targets.

 When you are finished, the dialog box should look like Figure 12-2.

Figure 12-2:
The C/C++

Source
File dialog

box lets
you enter
the name

of the new
module,

facto-
rial.
cpp.

 7. Click Finish to create Factorial.cpp and add it to the Project.

 The project file includes the list of all source files that it takes to build
your program.

 8. Update factorial.cpp as follows:

//
// factorial - this module includes the factorial function
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;
#include “factorial.h”
//
// factorial - return the factorial of the argument
// provided. Returns a 1 for invalid arguments
// such as negative numbers.
int factorial(int nTarget)
{
 // start with an accumulator that’s initialized to 1
 int nAccumulator = 1;
 for (int nValue = 1; nValue <= nTarget; nValue++)
 {

18_617977-ch12.indd 13218_617977-ch12.indd 132 7/6/10 11:43 PM7/6/10 11:43 PM

133 Chapter 12: Dividing Programs into Modules

 nAccumulator *= nValue;
 }

 return nAccumulator;
}

The first four lines are part of the standard template used for all C++ source
files in this book. The next line is the factorial.h include file, which I dis-
cuss further later in this chapter. This is followed by the factorial() func-
tion much as it appeared in Chapter 11.

 Include files don’t follow the same grammar rules as C++. For example, unlike
other statements in C++, the #include must start in column 1 and doesn’t
require a semicolon at the end.

 Don’t try to compile factorial.cpp, as you haven’t created factorial.h
yet.

Creating an #include file
The next step in the process is to create an include file. Okay, what’s an
include file?

As I discuss in Chapter 11, the prototype declaration describes the functions
to be called by providing the number and types of arguments and the type of
the return value. Every function that you invoke must have a prototype decla-
ration somewhere before the call.

It is possible to list out the prototype declarations manually for each function
you intend to use, but fortunately that isn’t necessary. Instead C++ allows the
same dummy who created the function to create an include file that contains
the function’s prototype declarations. This file can then be included in the
source files of the modules where the functions are called.

There are (at least) two ways to include these prototypes. One way is to copy
the contents of the include file and paste them into the module where the
calls are made. This isn’t a very good idea, however. For one thing, it is really
laborious. For another, if the prototype declaration for any one of the functions
in the include file is changed, the programmer will have to go through every
place the include file is used, delete the old one, and repaste in the new file.

Rather than do that, C++ includes a preprocessor that understands very
few instructions. Each of these instructions starts with a pound sign (#) in
column 1 followed immediately by a command. (Preprocessor commands
also end at the end of the line and don’t require a semicolon.)

18_617977-ch12.indd 13318_617977-ch12.indd 133 7/6/10 11:43 PM7/6/10 11:43 PM

134 Part III: Becoming a Functional Programmer

The most common preprocessor command is #include “filename.h”.
This command copies and pastes the contents of filename.h at the point of
the #include to create what is known as an intermediate source file. The pre-
processor then passes this intermediate source file on to the C++ compiler
for processing. This process is shown graphically in Figure 12-3.

Figure 12-3:
The pre-

processor
inserts the

contents of
an include

file at the
point of the
#include

command
before

passing
the results
to the C++
compiler.

factorial.h:

Preprocessor

main.cpp:

int factorial(int nTarget);
Intermediate file sent to C++ compiler

using namespace std;

int factorial(int nTarget);

int main(int nNumberofArgs, char* pszArgs[])
{
 for (;;)
 {
 // ,,,file continues...using namespace std;

#include "factorial.h"

int main(int nNumberofArgs, char* pszArgs{})
{
 for (;;)
 {
 // ,,,file continues...

Including #include files
The Code::Blocks wizard makes creating an include file painless. Just execute
the following steps:

 1. Select File➪New➪File.

 Code::Blocks responds by opening the window shown in Figure 12-1 just
as before. This time you’re creating an include file.

 2. Select Include File and then click Go.

 3. In the next window that warns you’re about to enter the Include File
Wizard, click Next.

 4. Click the ... next to the Filename with Full Path prompt.

 A File Open dialog box appears.

 5. Enter factorial.h as the name of the include file and click Save.

 6. You want this file added to all executables that you create, so select
All for the build targets.

 When you are finished, the dialog box should look like Figure 12-4.

18_617977-ch12.indd 13418_617977-ch12.indd 134 7/6/10 11:43 PM7/6/10 11:43 PM

135 Chapter 12: Dividing Programs into Modules

Figure 12-4:
The C/C++

Header File
dialog box

lets you
enter the

name of the
new include
file module,
facto-
rial.h.

 7. Click Finish to create an empty include file that looks like the following:

#ifndef FACTORIAL_H_INCLUDED
#define FACTORIAL_H_INCLUDED

#endif // FACTORIAL_H_INCLUDED

 8. Edit the include file by adding the prototype for the factorial()
function as follows:

#ifndef FACTORIAL_H_INCLUDED
#define FACTORIAL_H_INCLUDED

int factorial(int nTarget);

#endif // FACTORIAL_H_INCLUDED

 9. Click File Save.

 You’re done!

Notice that the include file has been added to the project description in the
Management tab of Code::Blocks. This indicates that Code::Blocks will auto-
matically rebuild the application if the include file changes.

 Why include factorial.h in factorial.cpp? After all, factorial()
doesn’t require a prototype of itself. You do this as a form of error checking.
C++ will generate an error message when compiling factorial.cpp if the
prototype declaration in factorial.h does not match the definition of the
function. This ensures that the prototype declaration being used by other
source code modules matches the function definition.

18_617977-ch12.indd 13518_617977-ch12.indd 135 7/6/10 11:43 PM7/6/10 11:43 PM

136 Part III: Becoming a Functional Programmer

Creating main.cpp

You’re almost there: Open main.cpp and edit it to look like the following:

//
// FactorialModule - rewrite the factorial code as
// a separate function in its own module.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

#include “factorial.h”

int main(int nNumberofArgs, char* pszArgs[])
{
 cout << “This program calculates factorials”
 << “ of user input.\n”
 << “Enter a negative number to exit” << endl;

 // stay in a loop getting input from the user
 // until he enters a negative number
 for (;;)
 {
 // enter the number to calculate the factorial of
 int nValue;

 cout << “Enter number: “;
 cin >> nValue;

 // exit if the number is negative
 if (nValue < 0)
 {
 break;
 }

 // display the result
 int nFactorial = factorial(nValue);
 cout << nValue << “ factorial is “
 << nFactorial << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

This version of main.cpp looks identical to the FactorialFunction version
except that the definition of the factorial() function has been removed
and the #include “factorial.h” added.

18_617977-ch12.indd 13618_617977-ch12.indd 136 7/6/10 11:43 PM7/6/10 11:43 PM

137 Chapter 12: Dividing Programs into Modules

Building the result
Now you can build the program (by selecting Build➪Build). Notice in the
output messages that the compiler now compiles two files, main.cpp and
factorial.cpp. This is then followed by a single link step.

When executed, the output from this version is indistinguishable from earlier
versions as demonstrated by the following test output:

This program calculates factorials of user input.
Enter a negative number to exit
Enter number: 5
5 factorial is 120
Enter number: 6
6 factorial is 720
Enter number: -1
Press any key to continue . . .

Using the Standard C++ Library
Now you can see why the standard C++ template includes the directives

#include <cstdio>
#include <cstdlib>
#include <iostream>

These include files contain the prototype declarations for functions provided
by C++ as part of its standard library of routines (like cin >>, for example).

Notice that the standard C++ library include files are included in angle brack-
ets (<>), while I included my user-defined include file in quotes (“”). The only
difference between the two is that C++ looks for files contained in quotes
starting with the “current” directory (the directory containing the project
file), while C++ begins searching for bracketed files in the C++ include file
directories.

 The online help files (at www.cppreference.com/wiki/) are a good source
of information about the functions that make up the Standard C++ Library.

Variable Scope
Variables are also assigned a storage type depending upon where and how
they are defined, as shown in the following snippet:

18_617977-ch12.indd 13718_617977-ch12.indd 137 7/6/10 11:43 PM7/6/10 11:43 PM

138 Part III: Becoming a Functional Programmer

int nGlobalVariable;
void fn()
{
 int nLocalVariable;
 static int nStaticVariable = 1;

 nStaticVariable = 2;
}

Variables defined within a function like nLocalVariable don’t exist until
control passes through the declaration. In addition, nLocalVariable is only
defined within fn() — the variable ceases to exist when control exits the
fn() function.

By comparison, the variable nGlobalVariable is created when the pro-
gram begins execution and exists as long as the program is running. All func-
tions have access to nGlobalVariable all the time.

 We say that nLocalVariable has local scope, and nGlobalVariable has
global scope.

The keyword static can be used to create a sort of mishling — something
between a global and a local variable. The static variable nStaticVariable
is created when execution reaches the declaration the first time that function
fn() is called. Unlike nLocalVariable, however, nStaticVariable is
not destroyed when program execution returns from the function. Instead, it
retains its value from one call to the next.

In this example, nStaticVariable is initialized to 1 the first time that fn()
is called. The function changes its value to 2. nStaticVariable retains the
value 2 on every subsequent call — it is not reinitialized once it has been cre-
ated. The initialization portion of the declaration is ignored every subsequent
time that fn() is called after the first time.

However, the scope of nStaticVariable is still local to the function. Code
outside of fn() does not have access to nStaticVariable.

Global variables are useful for holding values that you want all functions to
have access to. Static variables are most useful for counters — for example,
if you want to know how many times a function is called. However, most vari-
ables are of the plain ol’ local variety.

18_617977-ch12.indd 13818_617977-ch12.indd 138 7/6/10 11:43 PM7/6/10 11:43 PM

Chapter 13

Debugging Your Programs, Part 2
In This Chapter
▶ Debugging a multifunction program

▶ Performing a unit test

▶ Using predefined preprocessor commands during debug

This chapter expands upon the debugging techniques introduced in
Chapter 8 by showing you how to create debugging functions that allow

you to navigate your errors more quickly.

C++ functions represent further opportunities both to excel and to screw up.
On the downside are the errors that are possible only when your program is
divided into multiple functions. However, dividing your programs into func-
tions allows you to examine, test, and debug each function without regard
to how the function is being used in the outside program. This allows you to
create a much more solid program.

Debugging a Dys-Functional Program
To demonstrate how dividing a program into functions can make the result
easier to read and maintain, I created a version of the SwitchCalculator pro-
gram in which the calculator operation has been split off as a separate func-
tion (which it would have been in the first place if I had only known about
functions back then). Unfortunately, I introduced an error during the process
that didn’t show up until performing testing.

 The following listing appears on the enclosed CD-ROM as CalculatorError1:

// CalculatorError1 - the SwitchCalculator program
// but with a subtle error in it
//
#include <cstdio>
#include <cstdlib>

19_617977-ch13.indd 13919_617977-ch13.indd 139 7/6/10 11:44 PM7/6/10 11:44 PM

140 Part III: Becoming a Functional Programmer

#include <iostream>
using namespace std;
// prototype declarations
int calculator(char cOperator, int nOper1, int nOper2);

int main(int nNumberofArgs, char* pszArgs[])
{
 // enter operand1 op operand2
 int nOper1;
 int nOper2;
 char cOperator;
 cout << “Enter ‘value1 op value2’\n”
 << “where op is +, -, *, / or %:” << endl;
 cin >> nOper1 >> cOperator >> nOper2;

 // echo what the user entered followed by the
 // results of the operation
 cout << nOper1 << “ “
 << cOperator << “ “
 << nOper2 << “ = “
 << calculator(cOperator, nOper1, nOper2)
 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

// calculator -return the result of the cOperator
// operation performed on nOper1 and nOper2
int calculator(char cOperator, int nOper1, int nOper2)
{
 int nResult = 0;
 switch (cOperator)
 {
 case ‘+’:
 nResult = nOper1 + nOper2;
 case ‘-’:
 nResult = nOper1 - nOper2;
 break;
 case ‘*’:
 case ‘x’:
 case ‘X’:
 nResult = nOper1 * nOper2;
 break;
 case ‘/’:
 nResult = nOper1 / nOper2;
 break;

19_617977-ch13.indd 14019_617977-ch13.indd 140 7/6/10 11:44 PM7/6/10 11:44 PM

141 Chapter 13: Debugging Your Programs, Part 2

 case ‘%’:
 nResult = nOper1 % nOper2;
 break;
 default:
 // didn’t understand the operator
 cout << “ is not understood”;
 }
 return nResult;
}

The beginning of this program starts the same as its SwitchCalculator precur-
sor except for the addition of the prototype declaration for the newly cre-
ated calculator() function. Notice how much cleaner main() is here: It
prompts the user for input and then echoes the output along with the results
from calculator(). Very clean.

The calculator() function is also simpler than before since all it does is
perform the computation specified by cOperator. Gone is the irrelevant
code that prompts the user for input and displays the results.

All that’s left to do is test the results.

Performing unit level testing
Breaking a program down into functions not only allows you to write your
program in pieces, but also it allows you to test each function in your pro-
gram separately. In this functional version of the SwitchCalculator program,
I need to test the calculator() function by providing all possible inputs
(both legal and illegal) to the function.

First, I generate a set of test cases for calculator(). Clearly, I need a test
for each case in the switch statement. I will also need some boundary condi-
tions, like “how does the function respond when asked to divide by zero?”
Table 13-1 outlines some of the cases I need to test.

Table 13-1 Test Cases for calculator() Showing
 Expected and Actual Results

Operator Operand1 Operand2 Expected
Result

Actual
Result

Explanation

+ 10 20 30 Simple case

- 20 10 10 Simple case
(continued)

19_617977-ch13.indd 14119_617977-ch13.indd 141 7/6/10 11:44 PM7/6/10 11:44 PM

142 Part III: Becoming a Functional Programmer

Table 13-1 (continued)

Operator Operand1 Operand2 Expected
Result

Actual
Result

Explanation

- 10 20 −10 Generate
a negative
number

* 10 20 200 Simple case

* 10 −5 −50 Try with a
negative
argument

X 10 20 200 Use the
other form
of multiply
operator

/ 20 10 2 Simple case

/ 10 0 Don’t
care
as long
error
gener-
ated and
program
doesn’t
crash

Try divide
by zero

% 23 10 3 Simple case

% 20 10 0 Generate a
zero result

% 23 −10 3 Try modulo
with a nega-
tive number

y 20 10 Don’t
care as
long as
error
gener-
ated and
program
doesn’t
crash

Illegal input

19_617977-ch13.indd 14219_617977-ch13.indd 142 7/6/10 11:44 PM7/6/10 11:44 PM

143 Chapter 13: Debugging Your Programs, Part 2

It turns out that I’m lucky in this case — the calling function main() allows
me to provide any input to the function that I want. I can send each of these
test cases to calculator() without modifying the program. That isn’t usu-
ally the case — very often the function is only invoked from the main pro-
gram in certain ways. In these cases, I must write a special test module that
puts the function under test through its paces by passing it the various test
cases and recording the results.

 Why do you need to write extra debug code? What do you care if the function
doesn’t handle a case properly if that case never occurs in the program? You
care because you don’t know how the function will be used in the future. Once
written, a function tends to take on a life of its own beyond the program that
it was written for. A useful function might be used in dozens of different pro-
grams that invoke the function in all sorts of different ways that you may not
have thought of when you first wrote the function.

The following shows the results for the first test case:

Enter ‘value1 op value2’
where op is +, -, *, / or %:
10 + 20
10 + 20 = -10
Press any key to continue . . .

Already something seems to be wrong. What now?

Outfitting a function for testing
Like most functions, calculator() doesn’t perform any I/O of its own. This
makes it impossible to know for sure what’s going on within the function.
I addressed this problem in Chapter 8 by adding output statements in key
places within the program. Of course, in Chapter 8, you didn’t know about
functions, but now you do.

It turns out that it’s easier to create an error function that prints out every-
thing you might want to know. You can then just copy and paste calls to this
test function in key spots. This is quicker and less error prone than making
up a unique output statement for each different location.

C++ provides some help in creating and calling such debug functions. The
preprocessor defines several special symbols shown in Table 13-2.

19_617977-ch13.indd 14319_617977-ch13.indd 143 7/6/10 11:44 PM7/6/10 11:44 PM

144 Part III: Becoming a Functional Programmer

Table 13-2 Predefined Symbols Useful in
 Creating Debug Functions

Symbol Type Value

__LINE__ int The line number within
the current source code
module

__FILE__ const char* The name of the current
module

__DATE__ const char* The date that the module
was compiled (not the
current date)

__TIME__ const char* The time that the module
was compiled (not the
current time)

__FUNCTION__ const char* The name of the current
function (GCC only)

__PRETTY_FUNCTION__ const char* The extended name of
the current function
(GCC only)

 You haven’t seen the type const char*. You will in Chapter 16. You’ll have
to take my word for now that this is the type of a character string contained in
double quotes like “Stephen Davis is a great guy”.

 You can see how the predefined preprocessor commands from Table 13-2 are
used in the following version of the calculator() function outfitted with
calls to a newly created debugger function printErr() (the following code
segment is taken from the program CalculatorError2, which is on the enclosed
CD-ROM):

void printErr(int nLN, char cOperator, int nOp1, int nOp2)
{
 cout << “On line “ << nLN
 << “: \’” << cOperator
 << “\’ operand 1 = “ << nOp1
 << “ and operand 2 = “ << nOp2
 << endl;
}

// calculator -return the result of the cOperator
// operation performed on nOper1 and nOper2
int calculator(char cOperator, int nOper1, int nOper2)
{

19_617977-ch13.indd 14419_617977-ch13.indd 144 7/6/10 11:44 PM7/6/10 11:44 PM

145 Chapter 13: Debugging Your Programs, Part 2

 printErr(__LINE__, cOperator, nOper1, nOper2);
 int nResult = 0;
 switch (cOperator)
 {
 case ‘+’:
 printErr(__LINE__, cOperator, nOper1, nOper2);
 nResult = nOper1 + nOper2;
 case ‘-’:
 printErr(__LINE__, cOperator, nOper1, nOper2);
 nResult = nOper1 - nOper2;
 break;
 case ‘*’:
 case ‘x’:
 case ‘X’:
 printErr(__LINE__, cOperator, nOper1, nOper2);
 nResult = nOper1 * nOper2;
 break;
 case ‘/’:
 printErr(__LINE__, cOperator, nOper1, nOper2);
 nResult = nOper1 / nOper2;
 break;
 case ‘%’:
 printErr(__LINE__, cOperator, nOper1, nOper2);
 nResult = nOper1 % nOper2;
 break;
 default:
 // didn’t understand the operator
 cout << “ is not understood”;
 }
 return nResult;
}

The printErr() function displays the value of the operator and the two
operands. It also displays the line number that it was called from. The line
number is provided by the C++ preprocessor in the form of the __LINE__
symbol. Printing the line number with the error messages tells me how to dif-
ferentiate the debug output from the program’s normal output.

You can see how this works in practice by examining the output from this
newly outfitted version of the program:

Enter ‘value1 op value2’
where op is +, -, *, / or %:
10 + 20
On line 50: ‘+’ operand 1 = 10 and operand 2 = 20
On line 55: ‘+’ operand 1 = 10 and operand 2 = 20
On line 58: ‘+’ operand 1 = 10 and operand 2 = 20
10 + 20 = -10
Press any key to continue . . .

19_617977-ch13.indd 14519_617977-ch13.indd 145 7/6/10 11:44 PM7/6/10 11:44 PM

146 Part III: Becoming a Functional Programmer

Figure 13-1 shows the display of the program within the CodeBlocks editor
including the line numbers along the left side of the display.

Figure 13-1:
The view of

the calcu-
lator()

function
in the

CodeBlocks
editor show-

ing the line
numbers.

Immediately after I input “10 + 20” followed by the Enter key, the program calls
the printErr() function from line 50. That’s correct since this is the first line
of the function. Checking the values, you can see that the input appears to be
correct: cOperator is ‘+’, nOper1 is 10, and nOper2 is 20 just as you expect.

The next call to printErr() occurred from line 55, which is the first line
of the addition case, again just as expected. The values haven’t changed, so
everything seems okay.

The next line is completely unexpected. For some reason, printErr() is
being called from line 58. This is the first line of the subtraction case. For
some reason, control is falling through from the addition case directly into
the subtraction case.

And then I see it! The break statement is missing at the end of the addition
case. The program is calculating the sum correctly but then falling through
into the next case and overwriting that value with the difference.

First, I add the missing break statement. I do not remove the calls to print-
Err() — there may be other bugs in the function, and I’ll just end up putting
them back. There’s no point in removing these calls until I am convinced that
the function is working properly.

Returning to unit test
The updated program generates the following output for the addition test case:

Enter ‘value1 op value2’
where op is +, -, *, / or %:
10 + 20

19_617977-ch13.indd 14619_617977-ch13.indd 146 7/6/10 11:44 PM7/6/10 11:44 PM

147 Chapter 13: Debugging Your Programs, Part 2

On line 49: ‘+’ operand 1 = 10 and operand 2 = 20
On line 54: ‘+’ operand 1 = 10 and operand 2 = 20
10 + 20 = 30
Press any key to continue . . .

This matches the expected results from Table 13-1. Continuing through the
test cases identified in this table, everything matches until I get to the case of
10 / 0 to which I get the output shown in Figure 13-2. The output from the
printErr() shows that the input is being read properly, but the program
crashes soon after line 68.

It’s pretty clear that the program is, in fact, dying on line 69 when it performs
division by zero. I need to add a test to intercept that case and not perform
the division if the value of nOper2 is zero.

Figure 13-2:
The

Calculator-
Error

program
terminates

with a mys-
terious error

message
when I enter

‘10 / 0’.

Of course, this begs the question: What value should I return from the func-
tion if nOper2 is zero? The “Expected Result” case in Table 13-1 says that we
don’t care what gets returned when dividing by zero as long as the program
doesn’t crash. That being the case, I decide to return 0. However, I need to
document this case in the comments to the function.

With that addition to the function, I start testing again from the top.

19_617977-ch13.indd 14719_617977-ch13.indd 147 7/6/10 11:44 PM7/6/10 11:44 PM

148 Part III: Becoming a Functional Programmer

 You need to restart back at the beginning of your test cases each time you
modify the function.

 The function generates the expected results in every case. Now I can remove
the printErr() functions. The completed calculator() function
(included in the CalculatorError4 program on the enclosed CD-ROM)
appears as follows:

// calculator -return the result of the cOperator
// operation performed on nOper1 and nOper2
// (In the case of division by zero or if it
// cannot understand the operator, the
// function returns a zero.)
int calculator(char cOperator, int nOper1, int nOper2)
{
 int nResult = 0;
 switch (cOperator)
 {
 case ‘+’:
 nResult = nOper1 + nOper2;
 break;
 case ‘-’:
 nResult = nOper1 - nOper2;
 break;
 case ‘*’:
 case ‘x’:
 case ‘X’:
 nResult = nOper1 * nOper2;
 break;
 case ‘/’:
 if (nOper2 != 0)
 {
 nResult = nOper1 / nOper2;
 }
 break;
 case ‘%’:
 nResult = nOper1 % nOper2;
 break;
 default:
 // didn’t understand the operator
 cout << “ is not understood”;
 }
 return nResult;
}

This version of the calculator() function does not suffer from the error
that made the original version incapable of adding properly. In addition, this
updated version includes a test in the division case: If nOper2, the divisor, is
zero, the function does not perform a division that would cause the program
to crash but leaves the value of nResult its initial value of 0.

19_617977-ch13.indd 14819_617977-ch13.indd 148 7/6/10 11:44 PM7/6/10 11:44 PM

Part IV

Data Structures

20_617977-pp04.indd 14920_617977-pp04.indd 149 7/6/10 11:44 PM7/6/10 11:44 PM

In this part . . .

So far you’ve been limited to just integer and character
variables. Fortunately, C++ defines a rich set of vari-

able types, including that most feared of concepts, the
C++ pointer. (Don’t worry if you don’t know what I’m talk-
ing about, you will soon.) I wrap up this part with another
discussion of debugging.

20_617977-pp04.indd 15020_617977-pp04.indd 150 7/6/10 11:44 PM7/6/10 11:44 PM

Chapter 14

Other Numerical Variable Types
In This Chapter
▶ Reviewing the limitations of integers

▶ Introducing real numbers to C++

▶ Examining the limitations of real numbers

▶ Looking at some variable types in C++

▶ Overloading function names

The programs so far have limited themselves to variables of type int with
just a few chars thrown in. Integers are great for most calculations —

more than 90 percent of all variables in C++ are of type int. Unfortunately,
int variables aren’t adapted to every problem. In this chapter, you will see
both variations of the basic int as well as other types of intrinsic variables.
An intrinsic type is one that’s built into the language. In Chapter 19, you will
see how the programmer can define her own variable types.

 Some programming languages allow you to store different types of data in the
same variable. These are called weakly typed languages. C++, by contrast, is a
strongly typed language — it requires you to declare the type of data the vari-
able is to store. A variable, once declared, cannot change its type.

The Limitations of Integers in C++
The int variable type is the C++ version of an integer. As such, int variables
suffer the same limitations as their counting integer equivalents in mathemat-
ics do.

Integer round-off
It isn’t that an integer expression can’t result in a fractional value. It’s just
that an int has no way of storing the fractional piece. The processor lops off

21_617977-ch14.indd 15121_617977-ch14.indd 151 7/6/10 11:45 PM7/6/10 11:45 PM

152 Part IV: Data Structures

the part to the right of the decimal point before storing the result. (This lop-
ping off of the fractional part of a number is called truncation.)

Consider the problem of calculating the average of three numbers. Given
three int variables — nValue1, nValue2, and nValue3 — their average is
given by the following expression:

int nAverage = (nValue1 + nValue2 + nValue3)/3;

Suppose that nValue1 equals 1, nValue2 equals 2, and nValue3 equals 2 —
the sum of this expression is 5. This means that the average is 5 /3 or either 1
2/3 or 1.666, depending upon your personal preference. But that’s not using
integer math.

Because all three variables are integers, the sum is assumed to be an integer
as well. And because 3 is also an integer, you guessed it, the entire expres-
sion is taken to be an integer. Thus, given the same values of 1, 2, and 2, C++
will calculate to the unreasonable but logical result of 1 for the value of nAv-
erage (3, 4, and 5 divided by 3 are all 1; 6 divided by 3 is 2).

The problem is much worse in the following mathematically equivalent
formulation:

int nAverage = nValue1/3 + nValue2/3 + nValue3/3;

Plugging in the same values of 1, 2, and 2, the resulting value of nAverage is
now 0 (talking about logical but unreasonable). To see how this can occur,
consider that 1/2 truncates to 0, 2/3 truncates to 0, and 2/3 truncates to 0.
The sum of 0, 0, and 0 is (surprise!) 0.

You can see that there are times when integer truncation is completely
unacceptable.

Limited range
A second problem with the int variable type is its limited range. A normal
int can store a maximum value of 2,147,483,647 and a minimum value of
−2,147,483,648 — that’s roughly from positive 2 billion to negative 2 billion
for a total range of 4 billion.

 That’s on a modern PC, Mac, or other common processor. If you have a much
older machine, the int may not be nearly so expansive in its range. I will have
a little more to say about that later in this chapter.

21_617977-ch14.indd 15221_617977-ch14.indd 152 7/6/10 11:45 PM7/6/10 11:45 PM

153 Chapter 14: Other Numerical Variable Types

 Two billion is a very large number — plenty big enough for most applications.
That’s why the int is useful. But it’s not large enough for some applications,
including computer technology. In fact, your computer probably executes faster
than 2 GHz (gigahertz), depending on how old your computer is (2 GHz is two bil-
lion cycles per second). A single strand of fiber cable (the kind that’s strung back
and forth from one side of the country to the other) can carry way more than 2
billion bits per second. I won’t even start on the number of stars in the Milky Way.

A Type That “doubles” as a Real Number
The limitations of the int variable are unacceptable in some applications.
Fortunately, C++ understands decimal numbers that have a fractional part.
(Mathematicians call these real numbers.) In C++, decimal numbers are called
floating point numbers or simply floats. This is because the decimal point can
float around from left to right to handle fractional values.

Floating point variables come in two basic flavors in C++. The small variety is
declared using the keyword float as follows:

float fValue1; // declare a floating point
float fValue2 = 1.5; // initialize it at declaration

Oddly enough, the standard floating point variable in C++ is its larger sibling,
the double precision floating point or simply double. You declare a double
precision floating point as follows:

double dValue1;
double dValue2 = 1.5;

 Because the native floating point type for C++ is the double, I generally avoid
using float. The float does take up less memory, but this is not an issue for
most applications. I will stick with double for the remainder of this book. In
addition, when I say “floating point variable,” you can assume that I’m talking
about a variable of type double.

Solving the truncation problem
To see how the double fixes our truncation problem, consider the average of
three floating point variables dValue1, dValue2, and dValue3 given by the
formula

double dAverage = dValue1/3.0 + dValue2/3.0 + dValue3/3.0;

21_617977-ch14.indd 15321_617977-ch14.indd 153 7/6/10 11:45 PM7/6/10 11:45 PM

154 Part IV: Data Structures

Assume, once again, the initial values of 1.0, 2.0, and 2.0. This renders the
above expression equivalent to

double dAverage = 1.0/3.0 + 2.0/3.0 + 2.0/3.0;

which is, in turn, equivalent to

double dAverage = 0.333... + 0.6666... + 0.6666...;

resulting in a final value of

double dAverage = 1.666...;

 I have written the preceding expressions as though there were an infinite
number of sixes after the decimal point. In fact, this isn’t the case. The
accuracy of a double is limited to about 14 significant digits. The difference
between 1.666666666666 and 1 2/3 is small, but not zero. I will have more to
say about this a little later in this chapter.

When an integer is not an integer
C++ assumes that a number followed by a decimal point is a floating point
constant. Thus, it takes 2.5 to be a floating point. This decimal point rule
is true even if the value to the right of the decimal point is zero. Thus, 3.0
is also a floating point. The distinction to you and me between 3 and 3.0 is
small, but not to C++.

 Actually, you don’t have to put anything on the right of the decimal point.
Thus 3. is also a double. However, it’s considered good style to include the 0
after the decimal point for floating point constants.

Computer geeks will be interested to know that the internal representations
of 3 and 3.0 are totally different (yawn). More importantly, the constant int
3 is subject to int rules, whereas 3.0 is subject to the rules of floating point
arithmetic.

Thus, you should try to avoid expressions like the following:

double dValue = 1.0;
double dOneThird = dValue/3;

Technically this is what is known as a mixed mode expression because
dValue is a double, while 3 is an int. C++ is not a total idiot — it knows
what you want in a case like this, so it will convert the 3 to a double and per-
form floating point arithmetic.

 We say that C++ promotes the int 3 to a double.

21_617977-ch14.indd 15421_617977-ch14.indd 154 7/6/10 11:45 PM7/6/10 11:45 PM

155 Chapter 14: Other Numerical Variable Types

C++ will also allow you to assign a floating point result to an int variable:

int nValue = dValue / 3.0;

 Assigning a double to an int is known as a demotion.

 Some C++ compilers generate a warning when promoting a variable, but
Code::Blocks/gcc does not. All C++ compilers generate a warning (or error)
when demoting a result due to the loss of precision.

You should get in the habit of avoiding mixed mode arithmetic. If you have to
change the type of an expression, do it explicitly using a caste as in the fol-
lowing example:

void fn(int nArg)
{
 // calculate one third of nArg; use a caste to
 // promote it to a floating point
 double dOneThird = (double)nArg / 3.0;

 // ...function continues on

 I am using the naming convention of starting double precision double vari-
ables with the letter d. That is merely a convention. You can name your vari-
ables any way you like — C++ doesn’t care.

D iscovering the limits of double
Floating point variables come with their own limitations. They cannot be
used to count things, they take longer to process, they consume more
memory, and they also suffer from round-off error (though not nearly as bad
as int). Now, consider each one of these problems in turn.

Counting
You can’t use a floating point variable in an application where counting is
important. In C++, you can’t say that there are 7.0 characters in my first
name. Operators involved in counting don’t work on floating point variables.
In particular, the auto-increment (++) and auto-decrement (--) operators are
strictly verboten on double.

Calculation speed
Computers can perform integer arithmetic faster than floating point arithme-
tic. Historically, this difference was significant. In the 1980s, a CPU without a
floating point processor to help it along took about 1,000 times longer to per-
form a floating point division than it did to perform an integer division.

21_617977-ch14.indd 15521_617977-ch14.indd 155 7/6/10 11:45 PM7/6/10 11:45 PM

156 Part IV: Data Structures

Fortunately, floating point processors have been built into CPUs for many
years now, so the difference in performance is not nearly so significant. I wrote
the following loop just as a simple example, first using integer arithmetic:

int nValue1 = 1, nValue2 = 2, nValue3 = 2;
for (int i = 0; i < 1000000000; i++)
{
 int nAverage = (nValue1 + nValue2 + nValue3) / 3;
}

This loop took about 5 seconds to execute on my laptop. I then executed the
same loop in floating point:

double dValue1 = 1, dValue2 = 2, dValue3 = 2;
for (int i = 0; i < 1000000000; i++)
{
 double dAverage = (dValue1 + dValue2 + dValue3) / 3.0;
}

This look took about 21 seconds to execute on the same laptop. Calculating
an average 1 billion times in a little over 20 seconds ain’t shabby, but it’s still
four times slower than its integer equivalent.

Consume more memory
Table 14-2 shows the amount of memory consumed by a single variable
of each type. On a PC or Macintosh, an int consumes 4 bytes, whereas a
double takes up 8 bytes. That doesn’t sound like much and, in fact, it isn’t;
but if you had a few million of these things you needed to keep in memory . .
. well, it still would be a great number. But if you had a few hundred million,
then the difference would be considerable.

This is another way of saying, unless you need to store a heck of a lot of
objects, don’t worry about the difference in memory taken by one type
versus another. Instead, pick the variable type based upon your needs.

If you do just happen to be programming an application that needs to manip-
ulate the age of every human on the planet at one time, then you may want
to lean toward the smaller int (or one of the other integer types I discuss in
this chapter) based upon the amount of memory it consumes.

Loss of accuracy
A double variable has about 16 significant digits of accuracy. Consider that a
mathematician would express the number 1/3 as 0.333..., where the ellipses
indicate that the threes go on forever. The concept of an infinite series makes
sense in mathematics, but not in computing. A computer only has a finite
amount of memory and a finite amount of accuracy.

21_617977-ch14.indd 15621_617977-ch14.indd 156 7/6/10 11:45 PM7/6/10 11:45 PM

157 Chapter 14: Other Numerical Variable Types

C++ can correct for round-off error in a lot of cases. For example, on output
if a variable is 0.99999999999999, C++ will just assume that it’s really 1.0 and
display it accordingly. However, C++ can’t correct for all floating point round-
off errors, so you need to be careful. For example, you can’t be sure that 1/3 +
1/3 + 1/3 is equal to 1.0:

double d1 = 23.0;
double d2 = d1 / 7.0;
if (d1 == (d2 * 7.0))
{
 cout << “Did we get here?” << endl;
}

You might think that this code snippet would always display the “Did we
get here?” string, but surprisingly it does not. The problem is that 23 / 7
cannot be expressed exactly in a floating point number. Something is lost.
Thus, d2 * 7 is very close to 23, but is not exactly equal.

Rather than looking for exact equality between two floating point numbers,
you should be asking, “Is d2 * 7 vanishingly close to d1 in value?” You can do
that as follows:

double d1 = 23.0;
double d2 = d1 / 7.0;

// Is d2 * 7.0 within delta of d1?
double difference = (d2 * 7.0) - d1;
double delta = 0.00001;
if (difference < delta && difference > -delta)
{
 cout << “Did we get here?” << endl;
}

This code snippet calculates the difference between d1 and d2 * 7.0. If this
difference is less than some small delta, the code calls it a day and says that
d1 and d2 * 7 are essentially equal.

Not so limited range
The largest number that a double can store is roughly 10 to the 38th power.
That’s a 1 with 38 zeroes after it; that eats the puny 2 billion maximum size
for an int for breakfast. That’s even more than the national debt (at least, at
the time of this writing). I’m almost embarrassed to call this a limit, but I sup-
pose there are applications where 38 zeroes aren’t enough.

 Remember that only the first 16 digits are significant. The remaining 22 digits
are noise having already succumbed to standard floating point round-off
error.

21_617977-ch14.indd 15721_617977-ch14.indd 157 7/6/10 11:45 PM7/6/10 11:45 PM

158 Part IV: Data Structures

Variable Size — the “long”
and “short” of It

C++ allows you to expand on integer variable types by adding the following
descriptors on the front: const, unsigned, short, or else long. Thus, you
could declare something like the following:

unsigned long int ulnVariable;

A const variable cannot be modified. All numbers are implicitly const.
Thus, 3 is of type const int, while 3.0 is a const double, and ‘3’ is a
const char.

An unsigned variable can take on non-negative values only; however, it
can handle a number roughly twice as large as its signed sibling. Thus,
an unsigned int has a range of 0 to 4 billion (as opposed to the regular
signed int’s range of −2 billion to 2 billion).

C++ allows you to declare a short int and a long int. For example, a
short int takes less space but has a more limited range than a regular int,
whereas a long int takes more storage and has a significantly larger range.

 The int is assumed. Thus, the following two declarations are both accepted
and completely equivalent:

long int lnVar1; // declare a long int
long lnVar2; // also a long int; int is assumed

 The C++ 2009 Standard even defines a long long int and a long double.
The Code::Blocks/gcc that comes on the enclosed CD-ROM understands what
these are, but not all compilers do. These are just like long int and double,
respectively, only more so — more accuracy and larger range.

Not all combinations are allowed. For example, unsigned can be applied
only to the counting types int and char. Table 14-1 shows the legal combi-
nations and their meaning along with how to declare a constant of that type.

Table 14-1 The Common C++ Variable Types

Type Declaring
a Constant

What It Is

int 1 A simple counting number, either positive or
negative.

unsigned
int

1U A non-negative counting number.

21_617977-ch14.indd 15821_617977-ch14.indd 158 7/6/10 11:45 PM7/6/10 11:45 PM

159 Chapter 14: Other Numerical Variable Types

Type Declaring
a Constant

What It Is

short int --- A potentially smaller version of the int. It uses
less memory but has a more limited range.

long int 1L A potentially larger version of the int. It may
use more memory but has a larger range. There
is no difference between long and int on the
Code::Blocks/gcc compiler.

long long
int

1LL A potentially even larger version of the int.

float 1.0F A single precision real number.

double 1.0 A double precision real number.

long
double

--- A potentially larger floating point number. On
the PC, long double is the native size for
numbers internally to the numeric processor.

char ‘c’ A single char variable stores a single character.
Not suitable for arithmetic.

wchar_t L’c’ A wide character. Used to store larger char-
acter sets such as Chinese kanji symbols. Also
known as UTF or Unicode.

How far do numbers range?
It may seem odd, but the C++ standard doesn’t actually say exactly how big
a number each of the data types can accommodate. The standard addresses
only the relative size of each variable type. For example, it says that the maxi-
mum long int is at least as large as the maximum int.

The authors of C++ weren’t trying to be mysterious. They wanted to allow
the compiler to implement the absolute fastest code possible for the base
machine. The standard was designed to work for all different types of proces-
sors running different operating systems.

In fact, the standard size of an int has changed over the past decades.
Before 2000, the standard int on most PCs was 2 bytes and had a range of
plus or minus 64,000. Some time around 2000, the basic word size on the Intel
processors changed to 32 bits. Most compilers changed to the default int of
today that’s 4 bytes and has a range of plus or minus 2 billion.

 Table 14-2 provides the size and range of each variable type on the Code::Blocks/
gcc compiler provided on the enclosed CD-ROM (and most other compilers
meant for an Intel processor running on a 32-bit operating system).

21_617977-ch14.indd 15921_617977-ch14.indd 159 7/6/10 11:45 PM7/6/10 11:45 PM

160 Part IV: Data Structures

Table 14-2 Range of Numeric Types in Code::Blocks/gcc

Type Size [bytes] Accuracy Range

short int 2 exact −32,768 to 32,767

int 4 exact −2,147,483,648 to 2,147,483,647

long int 4 exact −2,147,483,648 to 2,147,483,647

long long
int

8 exact −9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

float 4 7 digits +/− 3.4028 * 10+/-38

double 8 16 digits +/− 1.7977 * 10+/-308

long double 12 19 digits +/−1.1897 * 10+/-4932

Attempting to calculate a number that is beyond the range of a variable’s
type is known as an overflow. The C++ standard generally leaves the results of
an overflow undefined. That’s another way that the inventors of C++ wanted
to leave the language flexible so that the machine code generated would be
as fast as possible.

 On the PC, a floating point overflow generates an exception that, if not han-
dled, will cause your program to crash. (I don’t discuss exception handling
until Chapter 32.) As bad as that sounds, an integer overflow is even worse —
C++ generates an incorrect result without complaint.

Types of Constants
I mentioned the const declaration earlier in this chapter and again in Table
14-1, but I would like to take a minute to expand upon constants now.

A constant value is an explicit number or character such as 1 or 0.5 or ‘c’.
Constant values cannot be changed, that is, they cannot appear on the left-
hand side of an assignment statement. Every constant value has a type.
The type of 1 is const int. The type of 0.5 is const double. Table 14-1
explains how to declare constant values with different types. For example, 1L
is of type const long.

A variable can be declared constant using the const keyword:

const double PI = 3.14159; // declare a constant variable

21_617977-ch14.indd 16021_617977-ch14.indd 160 7/6/10 11:45 PM7/6/10 11:45 PM

161 Chapter 14: Other Numerical Variable Types

A const variable must be initialized when it is declared since you will not get
another chance in the future — just like a constant value, a const variable
cannot appear on the left-hand side of an assignment statement.

 It is common practice to declare const variables using all capitals. Multiple
words within a variable name are divided by an underscore as in TWO_PI. As
always, this is just convention — C++ doesn’t care.

It may seem odd to declare a variable and then say that it can’t be changed.
Why bother? Largely because a carefully named constant can make a pro-
gram a lot easier to understand. Consider the following two equivalent
expressions:

double dC = 6.28318 * dR; // what does this mean?
double dCircumference = TWO_PI * dRadius; // this is a lot
 // easier to understand

It should be a lot clearer to the reader of this code that the second expres-
sion is multiplying the radius by 2π to calculate the circumference.

Passing Different Types to Functions
Floating point variables and variables of different size are passed to function
in the same way that int variables are as demonstrated in the following code
snippet. This example snippet passes the value of the variable dArg along
with the const double 0.0 to the function maximumFloat().

// maximumFloat - return the larger of two floating
// point arguments
double maximumFloat(double d1, double d2)
{
 if (d1 > d2)
 {
 return d1;
 }
 return d2;
}

void otherFunction()
{
 double dArg = 1.0;
 double dNonNegative = maximumFloat(dArg, 0.0);
 // ...function continues...

I discuss functions in Chapter 11.

21_617977-ch14.indd 16121_617977-ch14.indd 161 7/6/10 11:45 PM7/6/10 11:45 PM

162 Part IV: Data Structures

Overloading function names
The type of the arguments are part of the extended name of the function.
Thus, the full name of the earlier example function is maximumFloat
(double, double). In Chapter 11, you see how to differentiate between two
functions by the number of arguments. You can also differentiate between two
functions by the type of the arguments, as shown in the following example:

double maximum(double d1, double2);
int maximum(int n1, int n2);

When declared this way, it’s clear that the call maximum(1, 2) refers
to maximum(int, int), while the call maximum(3.0, 4.0) refers to
maximum(double, double).

 Defining functions that have the same name but different arguments is called
function overloading.

Sometimes the programmer’s intentions start to get a little obscure, but you
can even differentiate by the signedness and length as well:

int maximum(int n1, int n2);
long maximum(long l1, long l2);
unsigned maximum(unsigned un1, unsigned un2);

Fortunately, this is rarely necessary in practice.

Mixed mode overloading
The rules can get really weird when the arguments don’t line up exactly.
Consider the following example code snippet:

double maximum(double d1, double d2);
int maximum(int n1, int n2);

void otherFunction()
{
 // which function is invoked by the following?
 double dNonNegative = maximum(dArg, 0);
 // ...function continues...

21_617977-ch14.indd 16221_617977-ch14.indd 162 7/6/10 11:45 PM7/6/10 11:45 PM

163 Chapter 14: Other Numerical Variable Types

const arguments are a constant problem
Since C++ passes the value of the argument, you cannot differentiate by const-ness. Consider
the following call to see why:

double maximum(double d1, double d2);

void otherFunction()
{
 double dArg = 2.0;
 double dNonNegative = maximum(dArg, 0.0);

What actually gets passed to maximum() are the values 2.0 and 0.0. The maximum() function
can’t tell whether these values came from a variable like dArg or a constant like 0.0.

You can declare the arguments of a function to be const. Such a declaration means that you cannot
change the argument’s value within the function. This is demonstrated in the following implementation
of maximum(double, double):

double maximum(const double d1, const double d2)
{
 double dResult = d1;
 if (d2 > dResult)
 {
 dResult = d2;
 }

 // the following would be illegal
 d1 = 0.0; d2 = 0.0

 return dResult;
}

The assignment to d1 and d2 is not allowed because both have been declared const and there-
fore are not changeable.

What is not legal is the following:

// these two functions are not different enough to be
distinguished

double maximum(double d1, double d2);
double maximum(const double d1, const double d2);

void otherFunction()
{
 double dArg = 2.0;

 // C++ doesn’t know which one of the above functions to call
 double dNonNegative = maximum(dArg, 0.0);

C++ has no way of differentiating between the two when you make the call. I have more to say
about const arguments in Chapter 17.

21_617977-ch14.indd 16321_617977-ch14.indd 163 7/6/10 11:45 PM7/6/10 11:45 PM

164 Part IV: Data Structures

Here, the arguments don’t line up exactly with either declaration. There is no
maximum(double, int). C++ could reasonably take any one of the follow-
ing three options:

 ✓ Promote the 0 to a double and call maximum(double, double).

 ✓ Demote the double to an int and invoke maximum(int, int).

 ✓ Throw up its electronic hands and report a compiler error.

The general rule is that C++ will promote arguments in order to find a match
but will not automatically demote an argument. However, you can’t always
count on this rule. In this case, Code::Blocks generates an error that the call
is ambiguous. That is, the third option wins.

My advice is to not rely on C++ to figure out what you mean by making the
necessary conversions explicit:

void otherFunction(int nArg1, double dArg2)
{
 // use an explicit cast to make sure that the
 // proper function is called
 double dNonNegative = maximum((double)nArg1, dArg2);

Now it is clear that I mean to call maximum(double, double).

21_617977-ch14.indd 16421_617977-ch14.indd 164 7/6/10 11:45 PM7/6/10 11:45 PM

Chapter 15

Arrays
In This Chapter
▶ Expanding simple variables into an array

▶ Comparing the array to a rental car lot

▶ Indexing into an array

▶ Initializing an array

The variables declared so far have been of different types with different
sizes and capabilities. Even so, each variable has been capable of hold-

ing only a single value at a time. If I wanted to hold three numbers, I had to
declare three different variables. The problem is that there are times when
I want to hold a set of numbers that are somehow closely related. Storing
them in variables with names that bear some similarity of spelling like nArg1,
nArg2, and so on may create associations in my mind but not for poor, igno-
rant C++.

There is another class of variable known as the array that can hold a series
of values. Arrays are the subject of this chapter and the next chapter. (Here I
present arrays in general. In the next chapter, I look at the particular case of
the character array.)

What Is an Array?
 If you are mathematically inclined and were introduced to the concept of the

array in high school or college, you may want to skim this section.

You may think of a variable as a truck. There are small trucks, like a short
int, capable of holding only a small value; and there are larger trucks, like
a long double, capable of holding astoundingly large numbers. However,
each of these trucks can hold only a single value.

22_617977-ch15.indd 16522_617977-ch15.indd 165 7/6/10 11:45 PM7/6/10 11:45 PM

166 Part IV: Data Structures

Each truck has a unique designator. Perhaps you give your vehicles names,
but even if you don’t, each has a license plate that uniquely describes each of
your vehicles, at least within a given state.

This works fine for a single family. Even the largest families don’t have so
many cars that this arrangement gets confusing. But think about an auto
rental agency. What if they referred to their cars solely by a license plate
number or some other ID? (Boy, just thinking about that Hertz!)

After filling out the myriad forms — including deciding whether I want the
full insurance coverage and whether I’m too lazy to fill it up with gas before I
bring it back — the guy behind the counter says, “Your car is QZX123.” Upon
leaving the building and walking to the parking lot, I look over a sea of cars
that rival a Wal-Mart parking lot. Exactly where is QZX123?

That’s why the guy behind the counter actually says something quite differ-
ent. He says something to the effect, “Your car is in slot B11.” This means
that I am to skip past row A directly to row B and then start scanning down
the line for the eleventh car from the end. The numbers are generally painted
on the pavement to help me out, but even if they weren’t, I could probably
figure out which car he meant.

Several things have to be true in order for this system to work:

 ✓ The slots have to be numbered in order (B2 follows B1 and comes imme-
diately before B3), ideally with no breaks or jumps in the sequence.

 ✓ Each slot is designed to hold a car (a given parking slot may be empty,
but the point is that I would never find a house in a parking slot).

 ✓ The slots are equally spaced (being equally spaced means that I can
jump ahead and guess about where B50 is without walking along from B1
through B49, checking each one).

That’s pretty much the way arrays work. I can give a series of numbers a
single name. I refer to individual numbers within the series by index. So the
variable x may refer to a whole series of whole numbers, x(1) would be the
first number in the series, x(2) the second, and so on, just like the cars at the
rental agency.

Declaring an Array
To declare an array in C++, you must provide the name, type, and number of
elements in the array. The syntax is as follows:

int nScores[100];

22_617977-ch15.indd 16622_617977-ch15.indd 166 7/6/10 11:45 PM7/6/10 11:45 PM

167 Chapter 15: Arrays

This declares an array of 100 integers and gives them the name nScores.

 It is common practice to use the same naming convention for arrays as for
non-arrays but to use the plural form. That makes sense because nScores
refers to 100 integer values.

Indexing into an Array
You must provide an index to access a specific element within the array. An
index must be a counting type (like int), as demonstrated here:

nScores[11] = 10;

This is akin to the way that rental cars are numbered. However, unlike
humans, C++ numbers its arrays starting with 0. Thus, the first score in the
array nScores is nScores[0].

So how does this work exactly? I will return to the rental car lot one more
time (for the last time, I promise). Figure 15-1 shows how rental cars typically
number their parking lots. The first car in row B carries the designation B1.
To find B11, I simply move my gaze ten cars to the right.

Figure 15-1:
Cars in a

rental car lot
are typically

numbered
sequentially
starting with

1 to make
them easier

to find.

Row B

B1 +10

C++ does a similar thing. To execute the statement nScores[11] = 10, C++
starts with the address of the first element in nScores. It then moves to the
right 11 spaces and stores a 10 at that location. This is shown graphically in
Figure 15-2. (I say a lot more about what it means to “take the address of the
first element” in the next three chapters. Please just accept the statement for
now.)

22_617977-ch15.indd 16722_617977-ch15.indd 167 7/6/10 11:45 PM7/6/10 11:45 PM

168 Part IV: Data Structures

Figure 15-2:
C++ calcu-

lates the
location of
nScores
[11] by

moving over
11 int

slots from
the begin-
ning of the
nScores

array.

nScores[11] = 10;

nScores:

10

+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11 +12

+11

 The fact that C++ starts counting at zero leads to a point that always confuses
beginners. The statement

int nScores[100];

declares 100 scores, which are numbered from 0 to 99. The expression

nScores[100] = 0; // this is an error

zeroes out the first element beyond the end of the array. The last element in
the array is nScores[99]. The C++ compiler will not catch this error and
will happily access this non-element, which very often leads to the program
accessing some other variable by mistake. This type of error is very hard to
find because the results are so unpredictable.

Looking at an Example

The following example averages a set of scores and then displays that aver-
age. However, unlike earlier demonstrations, this program retains the scores’
input in an array that it can then output along with the average.

//
// ArrayDemo - demonstrate the use of an array
// to accumulate a sequence of numbers
//
#include <cstdio>
#include <cstdlib>

22_617977-ch15.indd 16822_617977-ch15.indd 168 7/6/10 11:45 PM7/6/10 11:45 PM

169 Chapter 15: Arrays

#include <iostream>

using namespace std;

// displayArray - displays the contents of the array
// of values of length nCount
void displayArray(int nValues[100], int nCount)
{
 for(int i = 0; i < nCount; i++)
 {
 cout.width(3);
 cout << i << “ - “ << nValues[i] << endl;
 }
}

// averageArray - averages the contents of an array
// of values of length nCount
int averageArray(int nValues[100], int nCount)
{
 int nSum = 0;
 for(int i = 0; i < nCount; i++)
 {
 nSum += nValues[i];
 }
 return nSum / nCount;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 int nScores[100];
 int nCount;

 // prompt the user for input
 cout << “This program averages a set of scores\n”
 << “Enter scores to average\n”
 << “(enter a negative value to terminate input”
 << endl;
 for(nCount = 0; nCount < 100; nCount++)
 {
 cout << “Next: “;
 cin >> nScores[nCount];
 if (nScores[nCount] < 0)
 {
 break;
 }
 }

 // now output the results
 cout << “Input terminated.” << endl;
 cout << “Input data:” << endl;

22_617977-ch15.indd 16922_617977-ch15.indd 169 7/6/10 11:45 PM7/6/10 11:45 PM

170 Part IV: Data Structures

 displayArray(nScores, nCount);
 cout << “The average is “
 << averageArray(nScores, nCount)
 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

This program starts at the beginning of main() by prompting the user for
a series of integer values. The program saves each of the numbers that the
user inputs into the array nScores in a loop. The program exits the loop as
soon as the user enters a negative number.

 Notice that this program keeps track of the number of values entered in the
variable nCount. The program will exit the loop after 100 entries whether or
not the user enters a negative number — because that’s all the room the pro-
gram has for storing values. You should always make sure that you don’t over-
run the end of an array.

Once the user has either entered a negative value or 100 values in a row,
the program exits the loop. Now the nScores array contains all of the num-
bers entered, and nCount contains a count of the number of values that are
stored in the array.

The program then calls the function displayArray() to echo to the user
the values entered. Finally, the function averageArray() returns the inte-
ger average of the numbers entered.

The displayAverage() function iterates through the values in the array
passed it, displaying each value in turn. The averageArray() function
works by also iterating through the array nValues, accumulating the sum of
each element in a local variable nSum. The function returns nSum / nCount,
which is the average of the values in nValues.

In practice, the output of the program appears as follows:

This program averages a set of scores
Enter scores to average
(enter a negative value to terminate input
Next: 10
Next: 20
Next: 30
Next: 40
Next: 50

22_617977-ch15.indd 17022_617977-ch15.indd 170 7/6/10 11:45 PM7/6/10 11:45 PM

171 Chapter 15: Arrays

Next: -1
Input terminated.
Input data:
 0 - 10
 1 - 20
 2 - 30
 3 - 40
 4 - 50
The average is 30
Press any key to continue . . .

Initializing an Array
Like any other variable, an array starts out with an indeterminate value if you
don’t initialize it. The only difference is that unlike a simple variable, which
contains only one undetermined value, an array starts out with a whole lot of
unknown values:

int nScores[100]; // none of the values in nScores
 // known until you initialize them

You can initialize the elements of an array with a loop as follows:

int nScores[100]; // declare the array and then...
for (int i = 0; i < 100; i++) // ...initialize it
{
 nScores[i] = 0;
}

You can also initialize an array when you declare it by including the initial
values in braces after the declaration. For a small array, this is easy:

int nCount[5] = {0, 1, 2, 3, 4};

Here I initialized the value of nCount[0] to 0, nCount[1] to 1, nCount[2]
to 2, and so on. If there are more elements than numbers in the list, C++ pads
the list with zeros. Thus, in the following case:

int nCount[5] = {1};

the first element (nCount[0]) is set to 1. Every other element gets initialized
to zero. You can use this to initialize a large array to zero as well:

int nScores[100] = {0};

This not only declares the array but initializes every element in the array to zero.

22_617977-ch15.indd 17122_617977-ch15.indd 171 7/6/10 11:45 PM7/6/10 11:45 PM

172 Part IV: Data Structures

By the same token, you don’t have to provide an array size if you have an ini-
tializer list — C++ will just count the number of elements in the list and make
the array that size:

int nCount[] = {1, 2, 3, 4, 5};

This declares nCount to be 5 elements large because that’s how many values
there are in the initializer list.

 Arrays are useful for holding small to moderate amounts of data. (Really large
amounts of data require a database of some sort.) By far, the most common
type of array is the character array, which is the subject of the next chapter.

22_617977-ch15.indd 17222_617977-ch15.indd 172 7/6/10 11:45 PM7/6/10 11:45 PM

Chapter 16

Arrays with Character
In This Chapter
▶ Introducing the null terminated character array

▶ Creating an ASCIIZ array variable

▶ Examining two example ASCIIZ manipulation programs

▶ Reviewing some of the most common built-in ASCIIZ library functions

Chapter 15 introduced the concept of arrays. The example program col-
lected values into an integer array, which was then passed to a function

to display and a separate function to average. However, as useful as an array
of integers might be, far and away the most common type of array is the
character array. Specifically something known as the ASCIIZ character array,
which is the subject of this chapter.

The ASCII-Zero Character Array
Arrays have an inherent problem: You can never know by just looking at the
array how many values are actually stored in it. Knowing the size of an array
is not enough. That tells you how many values the array can hold, not how
many it actually does hold. The difference is like the difference between how
much gas your car’s tank can hold and how much gas it actually has. Even if
your tank holds 20 gallons, you still need a gas gauge to tell you how much is
in it.

For a specific example, the ArrayDemo program in Chapter 15 allocated
enough room in nScores for 100 integers, but that doesn’t mean the user
actually entered that many. He might have entered a lot fewer.

23_617977-ch16.indd 17323_617977-ch16.indd 173 7/6/10 11:46 PM7/6/10 11:46 PM

174 Part IV: Data Structures

There are essentially two ways of keeping track of the amount of data in an
array:

 ✓ Keep a count of the number of values in a separate int variable. This
is the technique used by the ArrayDemo program. The code that read
the user input kept track of the number of entries in nCount. The only
problem is that the program had to pass nCount along to every function
to which it passed the nScores array. The array was not useful without
knowing how many values it stored.

 ✓ Use a special value in the array as an indicator of the last element
used. By convention, this is the technique used for character arrays in
C++.

Look back at the table of legal ASCII characters in Chapter 5. You’ll notice
that one character in particular is not a legal character: ‘\0’. This character is
also known as the null character. It is the character with a numerical value
of zero. A program can use the null character as the end of a string of char-
acters since it can never be entered by the user. This means that you don’t
have to pass a separate count variable around — you can always tell the end
of the string by looking for a null.

The designers of C and C++ liked this feature so well that they settled on it as
the standard for character strings. They even gave it a name: the ASCII-zero
array or ASCIIZ for short.

The null character has another advantageous property. It is the only char-
acter whose value is considered false in a comparison expression (such as
in a loop or an if statement).

Remember from Chapter 9 that 0 or null is considered false. All other
values evaluate to true.

This makes writing loops that manipulate ASCIIZ strings even easier, as you
will see in the following examples.

Declaring and Initializing
an ASCIIZ Array

I could declare an ASCIIZ character array containing my first name as follows:

char szMyName[8] = {‘S’, ‘t’, ‘e’, ‘p’,
 ‘h’, ‘e’, ‘n’, ‘\0’};

23_617977-ch16.indd 17423_617977-ch16.indd 174 7/6/10 11:46 PM7/6/10 11:46 PM

175 Chapter 16: Arrays with Character

Actually, the 8 is redundant. C++ is smart enough to count the number of
characters in the initialization string and just make the array that big. Thus,
the following is completely equivalent to the previous example:

char szMyName[] = {‘S’, ‘t’, ‘e’, ‘p’,
 ‘h’, ‘e’, ‘n’, ‘\0’};

The only problem with this is that it’s awfully clumsy. I have to type a lot
more than just the seven characters that make up my name. (I had to type
about five keystrokes for every character in my name — that’s a lot of over-
head.) ASCIIZ strings are so common in C++ that the language provides a
shorthand option:

char szMyName[] = “Stephen”;

These two initialization statements are completely equivalent. In fact, a string
contained in double quotes is nothing more than an array of constant charac-
ters terminated with a null.

The string “Stephen” consists of eight characters — don’t forget to count
the terminating null.

Looking at an Example

Let’s take the simple case of displaying a string. You know by now that C++
understands how to display ASCIIZ strings just fine, but suppose it didn’t.
What would a function designed to display a string look like? The following
DisplayASCIIZ program shows one example:

//
// DisplayASCIIZ - display an ASCIIZ string one character
// at a time as an example of ASCIIZ
// manipulation
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// displayString - display an ASCIIZ string one character
// at a time
void displayString(char szString[])
{

23_617977-ch16.indd 17523_617977-ch16.indd 175 7/6/10 11:46 PM7/6/10 11:46 PM

176 Part IV: Data Structures

 for(int index = 0; szString[index] != ‘\0’; index++)
 {
 cout << szString[index];
 }
}

int main(int nNumberofArgs, char* pszArgs[])
{
 char szName1[] = {‘S’, ‘t’, ‘e’, ‘p’,
 ‘h’, ‘e’, ‘n’, ‘\0’};
 char szName2[] = “Stephen”;

 cout << “Output szName1: “;
 displayString(szName1);
 cout << endl;

 cout << “Output szName2: “;
 displayString(szName2);
 cout << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

The displayString() function is the key to this demonstration program.
This function iterates through the array of characters passed to it using the
variable index. However, rather than rely on a separate variable containing
the number of characters in the array, this function loops until the character
at szString[index] is the null character, ‘\0’. As long as the current
character is not a null character, the loop outputs it to the display.

The main() function creates two versions of my name, first using dis-
crete characters for szName1 and then a second time using the shortcut
“Stephen” for szName2. The function then displays both strings using the
displayString() function both to show that the function works and to
demonstrate the equivalence of the two strings.

The output from the program appears as follows:

Output szName1: Stephen
Output szName2: Stephen
Press any key to continue . . .

Notice that szName1 and szName2 display identically (since they are the
same).

23_617977-ch16.indd 17623_617977-ch16.indd 176 7/6/10 11:46 PM7/6/10 11:46 PM

177 Chapter 16: Arrays with Character

Looking at a More Detailed Example
Displaying a string of characters is fairly simple. What about a little bit
tougher example? The following program concatenates two strings that it
reads from the keyboard.

To concatenate two strings means to tack one onto the end of the other. For
example, the result of concatenating “abc” with “DEF” is “abcDEF”.

Before you examine the program, think about how you could go about con-
catenating a string, call it szSource, onto the end of another one called
szTarget.

First, you need to find the end of the szTarget string (see the top of Figure
16-1). Once you’ve done that, you copy characters from szSource one at a
time into szTarget until you reach the end of the szSource string (as dem-
onstrated at the bottom of Figure 16-1). Make sure that the result has a final
null on the end, and you’re done.

Constant character problems
Technically “Stephen” is not of type char[], that is, “array of characters” — it’s of type
const char[], that is “array of const characters.” The difference is that you cannot modify the
characters in an array of constant characters. Thus, you could do the following:

char cT = “Stephen”[1]; // fetch the second character, the ‘t’

But you could not modify it by putting it on the left-hand side of an equal sign:

“Stephen”[1] = ‘x’; // replace the ‘t’ with an ‘x’

This pickiness about const doesn’t normally make a difference, but it can cause C++ consterna-
tion when declaring arguments to a function. For example, in the DisplayASCIIZ demo program, I
could not say displayString(“Stephen”) because displayString() is declared to
accept an array of characters (char[]), where “Stephen” is an array of const characters
(const char[]).

I can solve this problem by simply declaring displayString() as follows:

void displayString(const char szString[]);

The function works because displayString() never tries to modify the szString array
passed to it.

Don’t worry if this discussion of const versus non-const variables leaves you confused — you’ll
get another chance to see this in action in Chapter 18.

23_617977-ch16.indd 17723_617977-ch16.indd 177 7/6/10 11:46 PM7/6/10 11:46 PM

178 Part IV: Data Structures

Figure 16-1:
To concat-
enate, the

function
must do the

following:
(a) First,
find the

terminating
null of

the target
string; (b)

Then copy
characters

from the
source to
the target

until the
terminating
null on

the source
is encoun-

tered.

szTarget:

nT
After the first loop, nT contains the index of the NULL that terminates String 1.

S t r i n g 1 ∅ ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

szTarget:

S t r i n g 1 S T R I N ? ? ? ? ? ? ? ? ? ? ?

szSource:

nS
The following assignment transfers a character from szSource to szTarget
starting at the terminating NULL:
 szTarget[nT] = szSource[nS];

S T R I N G 2 ∅ ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

nT

That’s exactly how the concatenateString() function works in the
ConcatenateString example program.

//
// ConcatenateString - demonstrate the manipulation of
// ASCIIZ strings by implementing a
// concatenate function
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// concatenateString - concatenate one string onto the
// end of another
void concatenateString(char szTarget[],
 const char szSource[])
{
 // first find the end of the target string
 int nT;
 for(nT = 0; szTarget[nT] != ‘\0’; nT++)
 {
 }

23_617977-ch16.indd 17823_617977-ch16.indd 178 7/6/10 11:46 PM7/6/10 11:46 PM

179 Chapter 16: Arrays with Character

 // now copy the contents of the source string into
 // the target string, beginning at ‘nT’
 for(int nS = 0; szSource[nS] != ‘\0’; nT++, nS++)
 {
 szTarget[nT] = szSource[nS];
 }

 // add the terminator to szTarget
 szTarget[nT] = ‘\0’;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // Prompt user
 cout << “This program accepts two strings\n”
 << “from the keyboard and outputs them\n”
 << “concatenated together.\n” << endl;

 // input two strings
 cout << “Enter first string: “;
 char szString1[256];
 cin.getline(szString1, 256);

 cout << “Enter the second string: “;
 char szString2[256];
 cin.getline(szString2, 256);

 // now concatenate one onto the end of the other
 cout << “Concatenate first string onto the second”
 << endl;
 concatenateString(szString1, szString2);

 // and display the result
 cout << “Result: <”
 << szString1
 << “>” << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

The concatenateString() function accepts two strings, szTarget and
szSource. Its goal is to tack szSource onto the end of szTarget.

The function assumes that the szTarget array is large enough to hold both
strings tacked together. It has no way of checking to make sure that there is
enough room. More on that a little later in this chapter

23_617977-ch16.indd 17923_617977-ch16.indd 179 7/6/10 11:46 PM7/6/10 11:46 PM

180 Part IV: Data Structures

 Notice that the target argument is passed first and the source second. This
may seem backwards, but it really doesn’t matter — either argument can be
the source or the target. It’s just a C++ convention that the target goes first.

In the first for loop, the function iterates through szTarget by increment-
ing the index nT until szTarget[nT] == ‘\0’, that is, until nT points to
the terminating null character. This corresponds to the situation at the top
of Figure 16-1.

The function then enters a second loop in which it copies each character
from szSource into szTarget starting at nT and moving forward. This cor-
responds to the bottom of Figure 16-1.

This example shows a situation when using the comma operator in a for
loop is justified.

Since the for loop terminates before it copies the terminating null from
szSource, the function must add the terminating null onto the result
before returning.

The main() program prompts the user to enter two strings, each terminated
with a newline. The program then concatenates the two strings by calling the
new concatenateString() function and displays the results.

The expression cin >> string; stops inputting at the first white space.
The getline() function used in the example program reads input from the
keyboard just like cin >> string;, but it reads an entire line up to the
newline at the end. It does not include the newline in the character string that
it returns. Don’t worry about the strange syntax of the call to getline() — I
cover that in Chapter 23.

The results of a sample run of the program appear as follows:

This program accepts two strings
from the keyboard and outputs them
concatenated together.

Enter first string: String 1
Enter the second string: STRING 2
Concatenate first string onto the second
Result: <String 1STRING 2>
Press any key to continue . . .

Note that the second argument to concatenateString() is actually
declared to be a const char[] (pronounced “array of constant characters”).
That’s because the function does not modify the source string. Declaring it to
be an array of constant characters allows you to call the function passing it a
constant string as in the following call:

concatenateString(szString, “The End”);

23_617977-ch16.indd 18023_617977-ch16.indd 180 7/6/10 11:46 PM7/6/10 11:46 PM

181 Chapter 16: Arrays with Character

Foiling hackers
How does the concatenateString() function in the earlier example
program know whether there is enough room in szTarget to hold both
the source and target strings concatenated together? The answer is that it
doesn’t.

This is a serious bug. If a user entered enough characters before pressing
Enter, he could overwrite large sections of data or even code. In fact, this
type of fixed buffer overwrite bug is one of the ways that hackers gain control
of PCs through a browser to plant virus code.

In the following corrected version, concatenateString() accepts an addi-
tional argument: the size of the szTarget array. The function checks the
index nT against this number to make sure that it does not write beyond the
end of the target array.

The program appears as ConcatenateNString on the enclosed CD-ROM:

 // concatenateString - concatenate one string onto the
// end of another (don’t write beyond
// nTargetSize)
void concatenateString(char szTarget[],
 int nTargetSize,
 const char szSource[])
{
 // first find the end of the target string
 int nT;
 for(nT = 0; szTarget[nT] != ‘\0’; nT++)
 {
 }

 // now copy the contents of the source string into
 // the target string, beginning at ‘nT’ but don’t
 // write beyond the nTargetSize’th element (- 1 to
 // leave room for the terminating null)
 for(int nS = 0;
 nT < (nTargetSize - 1) && szSource[nS] != ‘\0’;
 nT++, nS++)
 {
 szTarget[nT] = szSource[nS];
 }

 // add the terminator to szTarget
 szTarget[nT] = ‘\0’;
}

The first part of the function starts out exactly the same, incrementing
through szTarget looking for the terminating null. The difference is in the
second loop. This for loop includes two terminating conditions. Control
exits the loop if either of the following is true:

23_617977-ch16.indd 18123_617977-ch16.indd 181 7/6/10 11:46 PM7/6/10 11:46 PM

182 Part IV: Data Structures

 ✓ szSource[nS] is the null character, meaning that you’ve gotten to the
final character in szSource.

 ✓ nT is greater than or equal to nTargetSize - 1 meaning that you’ve
exhausted the space available in szTarget (- 1 because you have to
leave room for the terminating null at the end).

This extra check is irritating but necessary to avoid overrunning the array
and producing a program that can crash in strange and mysterious ways.

Do I Really Have to Do All That Work?
C++ doesn’t provide much help with manipulating strings in the language
itself. Fortunately, the standard library includes a number of functions for
manipulating these strings that save you the trouble of writing them yourself.
Table 16-1 shows the most common of these functions.

Table 16-1 Common ASCIIZ String Manipulation Functions

Function Description

isalpha(char c) Returns a true if the character is alpha-
betic (‘A’ through ‘Z’ or ‘a’ through ‘z’).

isdigit(char c) Returns a true if the character is a digit (‘0’
through ‘9’).

isupper(char c) Returns a true if the character is an upper-
case alphabetic.

islower(char c) Returns a true if the character is a lower-
case alphabetic.

isprint(char c) Returns a true if the character is printable.

isspace(char c) Returns a true if the character is a form of
white space (space, tab, newline, and so on).

strlen(char s[]) Returns the number of characters in a string
(not including the terminating null).

strcmp(char s1[],
 char s2[])

Compares two strings. Returns 0 if the
strings are identical. Returns a 1 if the first
string occurs later in the dictionary than the
second. Returns a −1 otherwise.

strncpy(char target[],
 char source[],
 int size)

Copies the source string into the target string
but not more than ‘size’ characters.

23_617977-ch16.indd 18223_617977-ch16.indd 182 7/6/10 11:46 PM7/6/10 11:46 PM

183 Chapter 16: Arrays with Character

Function Description

strncat(char target[],
 char source[],
 int size)

Concatenates the source string onto the end
of the target string for a total of not more
than ‘size’ characters.

tolower(char c) Returns the lowercase version of the
character passed to it. Returns the current
character if it is already lowercase or has no
uppercase equivalent (such as a digit).

toupper(char c) Returns the uppercase version of the char-
acter passed to it.

The following example program uses the toupper() function to convert a
string entered by the user into all caps:

//
// ToUpper - convert a string input by the user to all
// upper case.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// toUpper - convert every character in an ASCIIZ string
// to uppercase
void toUpper(char szTarget[], int nTargetSize)
{
 for(int nT = 0;
 nT < (nTargetSize - 1) && szTarget[nT] != ‘\0’;
 nT++)
 {
 szTarget[nT] = toupper(szTarget[nT]);
 }
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // Prompt user
 cout << “This program accepts a string\n”
 << “from the keyboard and echoes the\n”
 << “string in all caps.\n” << endl;

 // input two strings
 cout << “Enter string: “;
 char szString[256];
 cin.getline(szString, 256);

23_617977-ch16.indd 18323_617977-ch16.indd 183 7/6/10 11:46 PM7/6/10 11:46 PM

184 Part IV: Data Structures

 // now convert the string to all uppercase
 toUpper(szString, 256);

 // and display the result
 cout << “All caps version: <”
 << szString
 << “>” << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

The toUpper() function follows a pattern that will quickly become old hat
for you: It loops through each element in the ASCIIZ string using a for loop.
The loop terminates if either the size of the string is exhausted or the pro-
gram reaches the terminating null character.

The function passes each character in the string to the standard C++ library
toupper() function. It stores the character returned by the function back
into the character array.

It is not necessary to first test to make sure that the character is lowercase
using islower() — both the tolower() and the toupper() functions
return the character passed to them if the character has no lower- or upper-
case equivalent.

The main() function simply prompts the user to enter a string. The program
reads the input string by calling getline(). It then converts whatever it
reads to uppercase by calling toUpper() and then displays the results.

The following shows the results of a sample run:

This program accepts a string
from the keyboard and echoes the
string in all caps.

Enter string: This is a string 123!@#.
All caps version: <THIS IS A STRING 123!@#.>
Press any key to continue . . .

Notice that the input string includes uppercase characters, lowercase charac-
ters, digits, and symbols. The lowercase characters are converted to upper-
case in the output string, but the uppercase characters, digits, and symbols
are unchanged.

23_617977-ch16.indd 18423_617977-ch16.indd 184 7/6/10 11:46 PM7/6/10 11:46 PM

185 Chapter 16: Arrays with Character

In this chapter, you’ve seen how to handle ASCIIZ strings as a special case of
character arrays. In practice, many of the standard functions rely on some-
thing known as a pointer. In the next two chapters, you’ll see how pointers
work. I will then return to these same example functions and implement them
using pointers to demonstrate the elegance of the pointer solution.

23_617977-ch16.indd 18523_617977-ch16.indd 185 7/6/10 11:46 PM7/6/10 11:46 PM

186 Part IV: Data Structures

23_617977-ch16.indd 18623_617977-ch16.indd 186 7/6/10 11:46 PM7/6/10 11:46 PM

Chapter 17

Pointing the Way to C++ Pointers
In This Chapter
▶ Introducing the concept of pointer variables

▶ Declaring and initializing a pointer

▶ Using pointers to pass arguments by reference

▶ Allocating variable-sized arrays from the heap

This chapter introduces the powerful concept of pointers. By that I don’t
mean specially trained dogs that point at birds but rather variables that

point at other variables in memory. I start with an explanation of computer
addressing before getting into the details of declaring and using pointer vari-
ables. This chapter wraps up with a discussion of something known as the
heap and how we can use it to solve a problem that I slyly introduced in the
last chapter.

But don’t think the fun is over when this chapter ends. The next chapter
takes the concept of pointers one step further. In fact, in one way or another,
pointers will reappear in almost every remaining chapter of this book.

It may take you a while before you get comfortable with the concept of pointer
variables. Don’t get discouraged. You may have to read through this chapter
and the next a few times before you grasp all of the subtleties.

What’s a Pointer?
A pointer is a variable that contains the address of another variable in the
computer’s internal memory. Before you can get a handle on that statement,
you need to understand how computers address memory.

The details of computer addressing on the Intel processor in your PC or
Macintosh are quite complicated and much more involved than you need to
worry about in this book. I will use a very simple memory model in these
discussions.

24_617977-ch17.indd 18724_617977-ch17.indd 187 7/6/10 11:46 PM7/6/10 11:46 PM

188 Part IV: Data Structures

Every piece of random access memory (RAM) has its own, unique address.
For most computers, including Macintoshes and PCs, the smallest address-
able piece of memory is a byte.

A byte is 8 bits and corresponds to a variable of type char.

An address in memory is exactly like an address of a house, or would be if
the following conditions were true:

 ✓ Every house is numbered in order.

 ✓ There are no skipped or duplicated numbers.

 ✓ The entire city consists of one long street.

So, for example, the address of a particular byte of memory might be 0x1000.
The next byte after that would have an address of 0x1001. The byte before
would be at 0x0FFF.

I don’t know why, but, by convention, memory addresses are always
expressed in hexadecimal. Maybe it’s so that non-programmers will think that
computer addressing is really complicated.

Declaring a Pointer
A char variable is designed to hold an ASCII character, an int an integer
number, and a double a floating point number. Similarly, a pointer variable
is designed to hold a memory address. You declare a pointer variable by
adding an asterisk (*) to the end of the type of the object that the pointer
points at, as in the following example:

char* pChar; // pointer to a character
int* pInt; // pointer to an int

A pointer variable that has not otherwise been initialized contains an
unknown value. You can initialize a pointer variable with the address of a
variable of the same type using the ampersand (&) operator:

char cSomeChar = ‘a’;
char* pChar;
pChar = &cSomeChar;

In this snippet, the variable cSomeChar has some address. For argument’s
sake, let’s say that C++ assigned it the address 0x1000. (C++ also initialized
that location with the character ‘a’.) The variable pChar also has a location of

24_617977-ch17.indd 18824_617977-ch17.indd 188 7/6/10 11:46 PM7/6/10 11:46 PM

189 Chapter 17: Pointing the Way to C++ Pointers

its own, perhaps 0x1004. The value of the expression &cSomeChar is 0x1000,
and its type is char* (read “pointer to char”). So the assignment on the third
line of the snippet example stores the value 0x1000 in the variable pChar.
This is shown graphically in Figure 17-1.

Figure 17-1:
The layout
of cSome
Char and
pChar in

memory
after their

declaration
and initial-
ization, as

described in
the text.

0FFF 0x1000

a

cSomeChar = ‘a’;
pChar = &cSomeChar;

0x1001 0x1002 0x1003 0x1004 0x1005 0x1006 0x1007 0x1008 0x1000

0x1000

Take a minute to really understand the relationship between the figure and
the three lines of C++ code in the snippet. The first declaration says, “go out
and find a 1-byte location in memory, assign it the name cSomeChar, and ini-
tialize it to ‘a’.” In this example, C++ picked the location 0x1000.

The next line says, “go out and find a location large enough to hold the
address of a char variable and assign it the name pChar.” In this example,
C++ assigned pChar to the location 0x1004.

In Code::Blocks, all addresses are 4 bytes in length irrespective of the size of
the object being pointed at — a pointer to a char is the same size as a pointer
to a double. The real world is similar — the address of a house looks the
same no matter how large the house is.

The third line says, “assign the address of cSomeChar (0x1000) to the vari-
able pChar.” Figure 17-1 represents the state of the program after these three
statements.

“So what?” you say. Here comes the really cool part demonstrated in the fol-
lowing expression:

*pChar = ‘b’;

24_617977-ch17.indd 18924_617977-ch17.indd 189 7/6/10 11:46 PM7/6/10 11:46 PM

190 Part IV: Data Structures

This line says, “store a ‘b’ at the char location pointed at by pChar.” This
is demonstrated in Figure 17-2. To execute this expression, C++ first retrieves
the value stored in pChar (that would be 0x1000). It then stores the charac-
ter ‘b’ at that location.

Figure 17-2:
The steps

involved in
executing
*pChar
= ‘b’.

0FFF 0x1000

b

*pChar = 'b';

0x1001 0x1002 0x1003 0x1004 0x1005 0x1006 0x1007 0x1008 0x1000

0x1000

The * when used as a binary operator means “multiply”; when used as a unary
operator, * means “find the thing pointed at by.” Similarly & has a meaning
as a binary operator (though I didn’t discuss it), but as a unary operator, it
means “take the address of.”

So what’s so exciting about that? After all, I could achieve the same effect by
simply assigning a ‘b’ to cSomeChar directly:

cSomeChar = ‘b’;

Why go through the intermediate step of retrieving its address in memory?
Because there are several problems that can be solved only with pointers. I
discuss two common ones in this chapter. I’ll describe a number of problems
that are most easily solved with pointers in subsequent chapters.

Passing Arguments to a Function
There are two ways to pass arguments to a function: either by value or by ref-
erence. Now, consider both in turn.

Passing arguments by value
In Chapter 11, I write that arguments are passed to functions by value, mean-
ing that it is the value of the variable that gets passed to the function and not
the variable itself.

24_617977-ch17.indd 19024_617977-ch17.indd 190 7/6/10 11:46 PM7/6/10 11:46 PM

191 Chapter 17: Pointing the Way to C++ Pointers

 The implications of this become clear in the following snippet (taken from the
PassByReference example program on the enclosed CD-ROM):

void fn(int nArg1, int nArg2)
{
 // modify the value of the arguments
 nArg1 = 10;
 nArg2 = 20;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // initialize two variables and display their values
 int nValue1 = 1;
 int nValue2 = 2;

 // now try to modify them by calling a function
 fn(nValue1, nValue2);

 // what is the value of nValue1 and nValue2 now?
 cout << “nValue1 = “ << nValue1 << endl;
 cout << “nValue2 = “ << nValue2 << endl;

 return 0;
}

This program declares two variables, nValue1 and nValue2, initializes them
to some known value, and then passes their value to a function fn(). This
function changes the value of its arguments and simply returns.

Question: What is the value of nValue1 and nValue2 in main() after
the control returns from fn()?

Answer: The value of nValue1 and nValue2 remain unchanged at 1 and
2, respectively.

To understand why, examine carefully how C++ handles memory in the call
to fn(). C++ stores local variables (like nValue1 and nValue2) in a special
area of memory known as the stack. Upon entry into the function, C++ figures
out how much stack memory the function will require and then reserves that
amount. Say, for argument’s sake, that in this example, the stack memory
carved out for main() starts at location 0x1000 and extends to 0x101F. In
this case, nValue1 might be at location 0x1000 and nValue2 at location
0x1004.

An int takes up 4 bytes in Code::Blocks. See Chapter 14 for details.

24_617977-ch17.indd 19124_617977-ch17.indd 191 7/6/10 11:46 PM7/6/10 11:46 PM

192 Part IV: Data Structures

As part of making the call to fn(), C++ first stores the values of each argu-
ment on the stack starting at the rightmost argument and working its way to
the left.

The last thing that C++ stores as part of making the call is the return address
so that the function knows where to return to after it is complete.

For reasons that have more to do with the internal workings of the CPU, the
stack “grows downward,” meaning that the memory used by fn() will have
addresses smaller than 0x1000. Figure 17-3 shows the state of memory at the
point that the computer processor reaches the first statement in fn(). C++
stored the second argument to the function at location 0x0FF4 and the first
argument at 0x0FF0.

Remember that this is just a possible layout of memory. I don’t know (or care)
that any of these are in fact the actual addresses used by C++ in this or any
other function call.

Figure 17-3:
A possible

layout of
memory
immedi-

ately after
entering

the function
fn(int,

int).

Layout in memory immediately after making the call:
fn(nValue1, nValue2)

0FFF 0x1000

b

nValue1

0x1001 0x1002 0x1003 0x1004 0x1005 0x1006 0x1007 0x1008 0x1000

1 2

nValue2

0FEF 0x0FF0

b

nArg1

0x0FF1 0x0FF2 0x0FF3 0x0FF4 0x0FF5 0x0FF6 0x0FF7 0x0FF8 0x1000

1 2

nArg2

The function fn(int, int) contains two statements:

nArg1 = 10;
nArg2 = 20;

24_617977-ch17.indd 19224_617977-ch17.indd 192 7/6/10 11:46 PM7/6/10 11:46 PM

193 Chapter 17: Pointing the Way to C++ Pointers

Figure 17-4 shows the contents of memory immediately after these two state-
ments are executed. Pretty simple, really — the value of nArg1 has changed
to 10 and nArg2 to 20 just as you would expect. The main point of this dem-
onstration, however, is the fact that changing the value of nArg1 and nArg2
has no effect on the original variables back at nValue1 and nValue2.

Figure 17-4:
The same

memory
locations

immediately
prior to
return-

ing from
fn(int,

int).

Contents of memory after executing the two assigning statements:
fn(int nArg1, int nArg2)
{
 nArg1 = 10;
 nArg2 = 20;
}

0FFF 0x1000

b

nValue1

0x1001 0x1002 0x1003 0x1004 0x1005 0x1006 0x1007 0x1008 0x1000

1 2

nValue2

0FEF 0x0FF0

b

nArg1

0x0FF1 0x0FF2 0x0FF3 0x0FF4 0x0FF5 0x0FF6 0x0FF7 0x0FF8 0x1000

10 20

nArg2

Passing arguments by reference

So what if I wanted the changes made by fn() to be permanent? I could do
this by passing not the value of the variables but their address. This is dem-
onstrated by the following snippet (also taken from the PassByReference
example program):

// fn(int*, int*) - this function takes its arguments
// by reference
void fn(int* pnArg1, int* pnArg2)
{
 // modify the value of the arguments
 *pnArg1 = 10;
 *pnArg2 = 20;
}

24_617977-ch17.indd 19324_617977-ch17.indd 193 7/6/10 11:46 PM7/6/10 11:46 PM

194 Part IV: Data Structures

int main(int nNumberofArgs, char* pszArgs[])
{
 // initialize two variables and display their values
 int nValue1 = 1;
 int nValue2 = 2;

 fn(&nValue1, &nValue2);

 return 0;
}

Notice first that the arguments to fn() are now declared not to be integers
but pointers to integers. The call to fn(int*, int*) passes not the value
of the variables nValue1 and nValue2 but their address.

In this example, the value of the expression &nValue1 is 0x1000, and the type
is int* (which is pronounced “pointer to int”).

The state of memory upon entry into this function is shown in Figure 17-5.

Figure 17-5:
The content

of memory
after the call

to fn
(int*,
int*).

Layout in memory immediately after making the call:
fn(&nValue1, &nValue2)

0FFF 0x1000

b

nValue1

0x1001 0x1002 0x1003 0x1004 0x1005 0x1006 0x1007 0x1008 0x1000

1 2

nValue2

0FEF 0x0FF0

b

pnArg1

0x0FF1 0x0FF2 0x0FF3 0x0FF4 0x0FF5 0x0FF6 0x0FF7 0x0FF8 0x1000

0x1000 0x1004

pnArg2

The function fn(int*, int*) now stores its values at the locations pointed
at by its arguments:

*pnArg1 = 10;
*pnArg2 = 20;

24_617977-ch17.indd 19424_617977-ch17.indd 194 7/6/10 11:46 PM7/6/10 11:46 PM

195 Chapter 17: Pointing the Way to C++ Pointers

This first statement says “store the value 10 at the int location passed to me
in the argument pnArg1.” This stores a 10 at location 0x1000, which happens
to be the variable nValue1. This is demonstrated graphically in Figure 17-6.

Figure 17-6:
The content

memory
immediately

prior to
returning
from fn
(int*,
int*).

Contents of memory after executing the two assignment statements:
fn(int* pnArg1,int* pnArg2)
{
 *pnArg1 = 10;
 *pnArg2 = 20;
}

0FFF 0x1000

b

nValue1

0x1001 0x1002 0x1003 0x1004 0x1005 0x1006 0x1007 0x1008 0x1000

10 20

nValue2

0FEF 0x0FF0

b

pnArg1

0x0FF1 0x0FF2 0x0FF3 0x0FF4 0x0FF5 0x0FF6 0x0FF7 0x0FF8 0x1000

0x1000 0x1004

pnArg2

Putting it together

The complete PassByReference program appears as follows:

//
// PassByReference - demonstrate passing arguments to a
// function both by value and by
// reference.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// fn(int, int) - demonstrate a function that takes two
// arguments and modifies their value
void fn(int nArg1, int nArg2)
{

24_617977-ch17.indd 19524_617977-ch17.indd 195 7/6/10 11:46 PM7/6/10 11:46 PM

196 Part IV: Data Structures

 // modify the value of the arguments
 nArg1 = 10;
 nArg2 = 20;
}

// fn(int*, int*) - this function takes its arguments
// by reference
void fn(int* pnArg1, int* pnArg2)
{
 // modify the value of the arguments
 *pnArg1 = 10;
 *pnArg2 = 20;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // initialize two variables and display their values
 int nValue1 = 1;
 int nValue2 = 2;
 cout << “The value of nArg1 is “ << nValue1 << endl;
 cout << “The value of nArg2 is “ << nValue2 << endl;

 // now try to modify them by calling a function
 cout << “Calling fn(int, int)” << endl;
 fn(nValue1, nValue2);
 cout << “Returned from fn(int, int)” << endl;
 cout << “The value of nArg1 is “ << nValue1 << endl;
 cout << “The value of nArg2 is “ << nValue2 << endl;

 // try again by calling a function that takes
 // addresses as arguments
 cout << “Calling fn(int*, int*)” << endl;
 fn(&nValue1, &nValue2);
 cout << “Returned from fn(int*, int*)” << endl;
 cout << “The value of nArg1 is “ << nValue1 << endl;
 cout << “The value of nArg2 is “ << nValue2 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

The following is the output from this program:

The value of nArg1 is 1
The value of nArg2 is 2
Calling fn(int, int)
Returned from fn(int, int)
The value of nArg1 is 1

24_617977-ch17.indd 19624_617977-ch17.indd 196 7/6/10 11:46 PM7/6/10 11:46 PM

197 Chapter 17: Pointing the Way to C++ Pointers

The value of nArg2 is 2
Calling fn(int*, int*)
Returned from fn(int*, int*)
The value of nArg1 is 10
The value of nArg2 is 20
Press any key to continue . . .

This program declares the variables nValue1 and nValue2 and initializes
them to 1 and 2, respectively. The program then displays their value just to
make sure. Next, the program calls the fn(int, int), passing the value of
the two variables. That function modifies the value of its arguments, but this
has no effect on nValue1 and nValue2 as demonstrated by the fact that
their value is unchanged after control returns to main().

The second call passes not the value of nValue1 and nValue2 but their
address to the function fn(int*, int*). This time, the changes to pnArg1
and pnArg2 are retained even after control returns to main().

Notice that there is no confusion between the overloaded functions fn(int,
int) and fn(int*, int*). The types of the arguments are easily
distinguished.

Playing with Heaps of Memory
One of the problems addressed in Chapter 16 was that of fixed-size arrays.
For example, the concatenate() function concatenated two ASCIIZ strings
into a single string. However, the function had to be careful not to overrun
the target array in the event that there wasn’t enough room to hold the com-
bined string. This problem would have gone away if concatenate() could
have allocated a new array that was guaranteed to be large enough to hold
the concatenated string.

That’s a great idea, but how big should I make this target array — 256 bytes,
512 bytes? There’s no right answer since there’s no way to know at compile
time how big to make the target array so that it has enough room to hold all
possible concatenated strings. You can’t know for sure until runtime how
much memory you will need.

Do you really need a new keyword?
C++ provides an extra area in memory just for this purpose, known by the
somewhat cryptic name of the heap. A programmer can allocate any amount
of memory off of the heap using the keyword new, as in the following example
snippet:

24_617977-ch17.indd 19724_617977-ch17.indd 197 7/6/10 11:46 PM7/6/10 11:46 PM

198 Part IV: Data Structures

char* pArray = new char[256];

This example carves a block of memory large enough to hold 256 characters
off of the heap. The new keyword returns a pointer to the newly created
array. Unlike other variables, heap memory is not allocated until runtime,
which means the array size is not limited to constants that are determined at
compile time — they can also be variables that are computed at runtime.

It may seem odd that the argument to new is an array while what is returned is
a pointer. I will have a lot more to say about the relationship between pointers
and arrays in the next chapter.

Thus, I could have said something like the following:

int nSizeOfArray = someFunction();
char* pArray = new char[nSizeOfArray];

Here the size of the array is computed by someFunction(). Obviously this
computation can’t occur until the program is actually executing. Whatever
value someFunction() returns is used as the size of the array to be allo-
cated in the next statement.

A more practical example is the following code snippet that makes a copy of
an ASCIIZ string (assuming you consider copying a string as practical):

int nLength = strlen(pszString) + 1;
char* pszCopy = new char[nLength];
strncpy(pszCopy, nLength, pszString);

The first statement calls the string function strlen(), which returns the
length of the string passed it not including the terminating NULL character.
The + 1 adds room for the terminating NULL. The next statement allocates
room for the copy off of the heap. Finally, the third string uses the string
function strncpy() to copy the contents of pszString into pszCopy. By
calculating how big an array you need to store the copy, you are guaranteed
that pszCopy is large enough to hold the entire string.

Don’t forget to clean up after yourself
Allocating memory off of the heap is a neat feature, but it has one very big
danger in C++: If you allocate memory off of the heap, you must remember to
return it.

You return memory to the heap using the delete keyword as in the following:

24_617977-ch17.indd 19824_617977-ch17.indd 198 7/6/10 11:46 PM7/6/10 11:46 PM

199 Chapter 17: Pointing the Way to C++ Pointers

char* pArray = new char[256];

// ...use the memory all you want...

// now return the memory block to the heap
delete[] pArray;
pArray = NULL;

The delete[] keyword accepts a pointer that has been passed to you from
the new keyword and restores that memory to the heap.

 Use delete[] to return an array. Use delete (without the open and closed
brackets) when returning a single object to the heap.

If you don’t return heap memory when you are done with it, your program
will slowly consume memory and eventually slow down more and more
as the operating system tries to fulfill its apparently insatiable gluttony.
Eventually, the program will come to a halt when the O/S can no longer sat-
isfy its requests for memory.

Returning the same memory to the heap twice is not quite as bad. That
causes the program to crash almost immediately. It is considered good pro-
gramming practice to zero out a pointer once you have deleted the memory
block that it points to for two very good reasons:

 ✓ Deleting a pointer that contains a NULL has no effect.

 ✓ NULL is never a valid address. Trying to access memory at the NULL
location will always cause your program to crash immediately, which
will tip you off that there is a problem and make it a lot easier to find.

 You don’t have to delete memory if your program will exit soon — all heap
memory is restored to the operating system when a program terminates.
However, returning memory that you allocate off the heap is a good habit to
get into.

Looking at an example

The following ConcatenateHeap program is a version of the concatenate()
function that allocates its memory off of the heap:

//
// ConcatenateHeap - similar to ConcatenateString except
// this version stores the concatenated
// string in memory allocated from the
// heap so that we are guaranteed
// that the target array is always
// large enough
//

24_617977-ch17.indd 19924_617977-ch17.indd 199 7/6/10 11:46 PM7/6/10 11:46 PM

200 Part IV: Data Structures

#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

// concatenateString - concatenate two strings together
// into an array allocated off of the
// heap
char* concatenateString(const char szSrc1[],
 const char szSrc2[])
{
 // allocate an array of sufficient length
 int nTargetSize = strlen(szSrc1) + strlen(szSrc2) + 1;
 char* pszTarget = new char[nTargetSize];

 // first copy the first string into the target
 int nT;
 for(nT = 0; szSrc1[nT] != ‘\0’; nT++)
 {
 pszTarget[nT] = szSrc1[nT];
 }

 // now copy the contents of the second string onto
 // the end of the first
 for(int nS = 0; szSrc2[nS] != ‘\0’; nT++, nS++)
 {
 pszTarget[nT] = szSrc2[nS];
 }

 // add the terminator to szTarget
 pszTarget[nT] = ‘\0’;

 // return the results to the caller
 return pszTarget;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // Prompt user
 cout << “This program accepts two strings\n”
 << “from the keyboard and outputs them\n”
 << “concatenated together.\n” << endl;

 // input two strings
 cout << “Enter first string: “;
 char szString1[256];
 cin.getline(szString1, 256);

 cout << “Enter the second string: “;
 char szString2[256];
 cin.getline(szString2, 256);

24_617977-ch17.indd 20024_617977-ch17.indd 200 7/6/10 11:46 PM7/6/10 11:46 PM

201 Chapter 17: Pointing the Way to C++ Pointers

 // now concatenate one onto the end of the other
 cout << “Concatentate second string onto the first”
 << endl;
 char* pszT = concatenateString(szString1, szString2);

 // and display the result
 cout << “Result: <”
 << pszT
 << “>” << endl;

 // return the memory to the heap
 delete[] pszT;
 pszT = NULL;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

This program includes the #include file cstring to gain access to the
strlen() function. The concatenateString() function is similar to the
earlier versions, except that it returns the address of a block of heap memory
containing the concatenated string rather than modify either of the strings
passed to it.

Declaring the arguments as const means that the function promises not to
modify them. This allows the function to be called with a const string as in
the following snippet:

char* pFullName = concatenateString(“Mr. “, pszName);

The string “Mr. “ is a const character array in the same sense that 1 is a
const integer.

The first statement within concatenateString() calculates the size of the
target array by calling strlen() on both source strings and adding 1 for the
terminating null.

The next statement allocates an array of that size off of the heap using the
new keyword.

The two for loops work exactly like those in the earlier concatenate exam-
ples by copying first szSrc1 into the pszTarget array and then szSrc2
before tacking on the final terminating null.

The function then returns the address of the pszTarget array to the caller.

24_617977-ch17.indd 20124_617977-ch17.indd 201 7/6/10 11:46 PM7/6/10 11:46 PM

202 Part IV: Data Structures

The main() function works the same as in the earlier Concatenate program
by prompting the user for two strings and then displaying the concatenated
result. The only difference is that this version returns the pointer returned
by concatenateString() to the heap before terminating by executing the
following snippet:

delete pszT;
pszT = NULL;

The output from running this program is indistinguishable from its earlier
cousins:

This program accepts two strings
from the keyboard and outputs them
concatenated together.

Enter first string: this is a string
Enter the second string: THIS IS ALSO A STRING
Concatentate second string onto the first
Result: <this is a stringTHIS IS ALSO A STRING>
Press any key to continue . . .

The subject of C++ pointers is too vast to be handled in a single chapter. The
next chapter examines the relationship between arrays and pointers, a topic I
glossed over in the final example programs in this chapter.

24_617977-ch17.indd 20224_617977-ch17.indd 202 7/6/10 11:46 PM7/6/10 11:46 PM

Chapter 18

Taking a Second Look
at C++ Pointers

In This Chapter
▶ Defining operations on a pointer

▶ Comparing pointer addition with indexing an array

▶ Extending arithmetic to different types of pointers

▶ Sorting out constant pointers from pointers to constants

▶ Reading the arguments to a program

Chapter 17 introduced the concept of a pointer variable as a variable
designed to contain the address of another variable. I even went so far

as to suggest a couple of uses for pointer variables. However, you’ve only
begun to see the myriad ways that pointer variables can be used to do some
pretty cool stuff and really confuse you at times as well.

This chapter examines carefully the relationship between pointers and
arrays, a topic that I brushed over in the last chapter.

Pointers and Arrays
Some of the same operators applicable to integers are applicable to pointer
types. This section examines the implications of this to both pointers and the
array types studied so far.

Operations on pointers
Table 18-1 lists the three fundamental operations that are defined on pointers.

25_617977-ch18.indd 20325_617977-ch18.indd 203 7/6/10 11:47 PM7/6/10 11:47 PM

204 Part IV: Data Structures

Table 18-1 Three Operations Defined on Pointer Type Variables

Operation Result Meaning

pointer +
offset

pointer Calculate the address of the object offset entries
from the pointer

pointer++ pointer Move the pointer over one entry

pointer2 -
pointer1

offset Calculate the number of entries between pointer2
and ponter1

Although not listed in Table 18-1, operations that are related to addition,
such as pointer += offset, are also defined. Subtraction is defined as
well, since it is merely a variation on addition.

The simple memory model used to explain pointers in Chapter 17 will work
here to explain how these operations work. Consider an array of 32 one-byte
characters called cArray. If the first byte of this array is stored at address
0x1000, then the last location will be at 0x101F. While cArray[0] will be at
0x1000, cArray[1] will be at 0x1001, cArray[2] at 0x1002, and so forth.

Now assume a pointer pArray is located at location 0x1100. After executing
the expression

pArray = &cArray[0];

the pointer pArray will contain the value 0x1000 (see Figure 18-1). By the
way, you read this as “pArray gets the address of cArray sub 0.”

Adding a value n to pArray generates the address of cArray[n]. For exam-
ple, consider the case where n equals 2. In that case, pArray + 2 generates
the address 0x1002, which is the address of cArray[2]. This correspon-
dence is demonstrated in Table 18-2. Figure 18-2 shows this graphically.

Table 18-2 The Correspondence between Pointer Offsets
 and Array Elements

Offset Result Corresponds to...

+ 0 0x1000 cArray[0]

+ 1 0x1001 cArray[1]

+ 2 0x1002 cArray[2]

...

+ n 0x1000 + n cArray[n]

25_617977-ch18.indd 20425_617977-ch18.indd 204 7/6/10 11:47 PM7/6/10 11:47 PM

205 Chapter 18: Taking a Second Look at C++ Pointers

Figure 18-1:
After the

assignment
pArray =
&cArray
[0] the

pointer
pArray

points to the
beginning

of the array
cArray.

0x1000

0x1001

0x1002

0x1003

0x1004

0x1005

0x1100

0x1101

0x1102

0x1103

0x1104

0x1000
pArray = &cArray[0];

cArray [0]

cArray [1]

cArray [2]

cArray [3]

cArray [4]

Pointer addition versus
indexing into an array
The claim

pArray = &cArray[0];
*(pArray + 2) = ‘c’;

is the same as

cArray[2] = ‘c’;

Before you can respond to this claim, I need to explain how to read the first
code snippet. Take it one step at a time. You already know to read the first
expression: pArray = &cArray[0] means “pArray gets the address of
cArray sub 0.”

25_617977-ch18.indd 20525_617977-ch18.indd 205 7/6/10 11:47 PM7/6/10 11:47 PM

206 Part IV: Data Structures

Figure 18-2:
If pArray

points to the
beginning of
cArray,

then
pArray

+ 2 points
to

cArray
[2].

0x1000

0x1001

0x1002

0x1003

0x1004

0x1005

0x1100

0x1101

0x1102

0x1103

0x1104

0x1000
pArray + 2

cArray [0]

cArray [1]

cArray [2]

cArray [3]

cArray [4]

To interpret the second expression, remember that pArray + 2 generates
the value 0x1002, and it is of type char*. *(pArray + 2) on the left-hand
side of an assignment operator says, “store a ‘c’ in the char pointed at by
pArray + 2.” This is demonstrated graphically in Figure 18-3.

 The parentheses around *(pArray + 2) are necessary because unary * has
higher precedence than addition. The expression *pArray + 2 retrieves
the character pointed at by pArray and adds 2 to it. Adding the parentheses
forces the addition to occur first and the unary operator to be applied to the
result.

In fact (here comes the kicker), the correspondence between the two forms
of expression is so strong that C++ considers cArray[n] nothing more than
a shorthand for *(pArray + n) where pArray points to the first element in
cArray:

cArray[n] is interpreted as *(&cArray[0] + n)

25_617977-ch18.indd 20625_617977-ch18.indd 206 7/6/10 11:47 PM7/6/10 11:47 PM

207 Chapter 18: Taking a Second Look at C++ Pointers

Figure 18-3:
The

expression
*(pAr-

ray
+ 2) =

‘c’ stores
a ‘c’ in
cArray

[2].

0x1000

0x1001

0x1002

0x1003

0x1004

0x1005

0x1100

0x1101

0x1102

0x1103

0x1104

0x1000

c

*(pArray + 2) = `c´

cArray [0]

cArray [1]

cArray [2]

cArray [3]

cArray [4]

To complete this association, C++ takes another shortcut by making the
second, following interpretation:

cArray is interpreted as &cArray[0]

That is, an array name when it appears without a subscript is interpreted as
the address of the first element of the array; thus the following:

cArray[n] is interpreted as *(cArray + n)

In fact, the C++ compiler considers the expression on the left nothing more
than some human shorthand for the expression on the right.

So, if I can treat the name of an array as though it were a pointer (which it is,
by the way), can I use the index operator on pointer variables? Absolutely.
Thus, the following is perfectly legal:

char cArray[256];
char* pArray = cArray;
pArray[2] = ‘c’;

25_617977-ch18.indd 20725_617977-ch18.indd 207 7/6/10 11:47 PM7/6/10 11:47 PM

208 Part IV: Data Structures

That is how I was able to write expressions like the following in Chapter 17:

int nTargetSize = strlen(szSrc1) + strlen(szSrc2) + 1;
char* pszTarget = new char[nTargetSize];

// first copy the first string into the target
int nT;
for(nT = 0; szSrc1[nT] != ‘\0’; nT++)
{
 pszTarget[nT] = szSrc1[nT];
}

The variable pszTarget is declared as char* (read “pointer to a char”)
because that’s what new char[nTargetSize] returns. The subsequent
for loop assigns values to elements in this array using the expression
pszTarget[nT], which is the same as accessing char elements pointed at
by pszTarget + nT.

 By the way, the psz prefix is the naming convention for “pointer to an ASCIIZ
string.” An ASCIIZ string is a character array that ends with a terminating
null character.

Using the pointer increment operator
 The following is what you might call the pointer arithmetic version of the
concatenateString() function from the ConcatenateHeap program
from Chapter 17. This version is part of the program ConcatenatePtr on the
enclosed CD-ROM.

 In fact, you were dealing with pointer arithmetic in Chapter 17 as well, but the
pointer arithmetic was written using array indexing.

C++ programmers love their pointers. The following explicit pointer version
of concatenateString() is much more common than the array index ver-
sion in Chapter 17.

// concatenateString - concatenate two strings together
// into an array allocated off of the
// heap
char* concatenateString(const char* pszSrc1,
 const char* pszSrc2)
{
 // allocate an array of sufficient length
 int nTargetSize = strlen(pszSrc1)+strlen(pszSrc2)+1;

25_617977-ch18.indd 20825_617977-ch18.indd 208 7/6/10 11:47 PM7/6/10 11:47 PM

209 Chapter 18: Taking a Second Look at C++ Pointers

 char* pszTarget = new char[nTargetSize];

 // first copy the first string into the target
 char* pszT = pszTarget;
 for(; *pszSrc1 != ‘\0’; pszT++, pszSrc1++)
 {
 *pszT = *pszSrc1;
 }

 // now copy the contents of the second string onto
 // the end of the first
 for(; *pszSrc2 != ‘\0’; pszT++, pszSrc2++)
 {
 *pszT = *pszSrc2;
 }

 // add the terminator to szTarget
 *pszT = ‘\0’;

 // return the unmodified address of the array
 // to the caller
 return pszTarget;
}

This version of concatenateString() starts out exactly like the earlier
ConcatenateHeap version from Chapter 17. The difference between this ver-
sion and its predecessor lies in the two for loops. The version in Chapter 17
left the pointer to the target array, pszTarget, unchanged and incremented
an index into that array.

The version that appears here skips the intermediate step of incrementing an
index and simply increments the pointer itself. First, it checks to make sure
that pszSrc1 doesn’t already point to the null character that indicates the
end of the source character string. If not, the assignment within the for loop

*pszT = *pszSrc1;

says retrieve the character pointed at by pszSrc1 and store it into the loca-
tion pointed at by pszT. This is demonstrated graphically in Figure 18-4.

The increment clause of the for loop

pszT++, pszSrc1++

increments both the source pointer, pszSrc1, and target pointer, pszT, to
the next character in the source and destination arrays. This is demonstrated
by Figure 18-5.

25_617977-ch18.indd 20925_617977-ch18.indd 209 7/6/10 11:47 PM7/6/10 11:47 PM

210 Part IV: Data Structures

Figure 18-4:
The expres-

sion *pszT
= *psz
Src1

copies the
character
pointed at

by psz
Src1 to

the location
pointed at
by pszT.

c

b

a

c

d

e

b

a

pszT

pszTarget

pszSrc1

*pszT = *pszSrc1;

The remainder of the program is identical to its Chapter 17 predecessor, and
the results from executing the program are identical as well:

This program accepts two strings
from the keyboard and outputs them
concatenated together.

Enter first string: this is a string
Enter the second string: SO IS THIS
Concatentate first string onto the second
Result: <this is a stringSO IS THIS>
Press any key to continue . . .

Why bother with array pointers?
The sometimes cryptic nature of pointer-based manipulation of character
strings might lead the reader to wonder why. That is, what advantage does
the char* pointer version of concatenateString() have over the easier-
to-read index version?

25_617977-ch18.indd 21025_617977-ch18.indd 210 7/6/10 11:47 PM7/6/10 11:47 PM

211 Chapter 18: Taking a Second Look at C++ Pointers

Figure 18-5:
The incre-

ment clause
of the for
loop incre-
ments both
source and
destination

pointers
to the next
location in
the array.

c

b

a

c

d

e

b

a

pszT

pszTarget

pszSrc1
pszSrc1++

pszT++

Note: “Easier-to-read” is a matter of taste. To a seasoned C++ programmer,
the pointer version is just as easy to fathom as the index version.

The answer is partially historic and partially human nature. As compli-
cated as it might appear to the human reader, a statement such as *pszT =
*pszSrc1 can be converted into an amazingly small number of machine
instructions. Older computer processors were not very fast by today’s stan-
dards. When C, the progenitor of C++, was introduced to the world some
40 years ago, saving a few computer instructions was a big deal. Pointer
arithmetic gave C a big advantage over other languages of the day, notably
Fortran, which did not offer pointer arithmetic. This, more than any other
single feature, did more to advance C and later C++ over its competitors.

In addition, programmers like to generate clever program statements to
combat what can be a repetitively boring job. Once C++ programmers learn
how to write compact and cryptic but efficient statements, there is no getting
them back to scanning arrays with indices.

25_617977-ch18.indd 21125_617977-ch18.indd 211 7/6/10 11:47 PM7/6/10 11:47 PM

212 Part IV: Data Structures

 Don’t fall into the trap of cramming as much as you can into a single C++ state-
ment, thinking that a few C++ source statements will generate fewer machine
instructions that will, therefore, execute faster. In the old days, when compil-
ers were simpler, that may have worked, but today there is no obvious rela-
tionship between the number of C++ instructions and the number of machine
instructions generated. For example, the expression

*pszT++ = ‘\0’;

does not necessarily generate machine instructions that are any different
from the following expression that is both easier to read and easier to debug:

*pszT = ‘\0’;
pszT++;

Today’s optimizing compilers generate minimal amounts of code.

Operations on Different Pointer Types
It’s not too hard to convince yourself that pszTarget + n points to
pszTarget[n] when each element in the array is 1 byte in length as is
the case for char strings. After all, if cArray is located at 0x1000, then
cArray[5] must be at 0x1005.

It is not so obvious that pointer addition works for arrays of objects other
than 1-byte characters. Consider an array nArray of ints. Since an int
occupies 4 bytes in Code::Blocks/gcc, if nArray is located at 0x1000, then
nArray[5] will be located at 0x1000 + (5 * 4) or 0x1014.

 Hexadecimal 0x14 is equal to 20 decimal.

Fortunately for us, in C++, array + n points to array[n] no matter how
large a single element of array might be. C++ makes the necessary conver-
sions to ensure that this relationship is true.

Constant Nags
Chapter 14 introduced the concept of const variables. For example, the
following

const double PI = 3.14159;

25_617977-ch18.indd 21225_617977-ch18.indd 212 7/6/10 11:47 PM7/6/10 11:47 PM

213 Chapter 18: Taking a Second Look at C++ Pointers

declares a constant variable PI. Constant variables must be initialized when
created and cannot be changed later just like numbers like 2 and 3.14159.

The concept of const-ness can be applied to pointers as well, but the ques-
tion is, where does the const keyword go? Consider the following three dec-
larations. Which of these are legal?

const char* pszArray1;
char const* pszArray2;
char* const pszArray3;

It turns out all three are legal, but one of them has a different meaning than
the other two. The first two variables, pszArray1 and pszArray2, are both
pointers to constant char arrays. This means that you can modify the point-
ers, but you cannot modify the characters that they point at. Thus, the fol-
lowing is legal:

pszArray1 = new char[128]; // this is OK

But the following is not:

(*pszArray1) = ‘a’; // not legal

By comparison, pszArray3 is a constant pointer to a char array. In this
case, you cannot change the pointer once it has been declared. Therefore,
you must initialize it when declared since you won’t get a chance later as in
the following:

char* const pszArray3 = new char[128];

Once declared, the following is not legal:

pszArray3 = pszArray1; // not legal - you
 // can’t change pszArray3

But you can change the characters that it points to, like this:

char* const pszArray3 = new char[128];
(*pszArray3) = ‘a’; // legal

A single pointer can be both constant and point to constant characters:

const char* const pszMyName = “Stephen”;

The value of this pointer cannot be changed nor can the characters that it
points to.

25_617977-ch18.indd 21325_617977-ch18.indd 213 7/6/10 11:47 PM7/6/10 11:47 PM

214 Part IV: Data Structures

 As a beginning programmer, do you really need to worry about all these con-
stant declarations? The answer is, “Sometimes.” You will get a warning if you
do the following:

char* pszMyName = “Stephen”;

Because you could conceivably try to modify my name by putting *pszMyName
(or the equivalent pszMyName[n]) on the left-hand side of an assignment
operator. The proper declaration is

const char* pszMyName = “Stephen”;

Differences Between Pointers and Arrays
With all the similarities, one might be tempted to turn the question around
and ask, “What’s the difference between a pointer and the address of an
array?” There are basically two differences:

 ✓ An array allocates space for the objects; a pointer does not.

 ✓ A pointer allocates space for the address; an array does not.

Consider these two declarations:

int nArray[128];
int* pnPtr;

Both nArray and pnPtr are of type pointer to int, but nArray also allo-
cates space for 128 int objects, whereas pnPtr does not. You can consider
nArray to be a constant address in the same way that 3 is a constant int.
You can no more put nArray on the left-hand side of an assignment than you
can 3. The following is not allowed:

nArray = pnPtr; // not allowed

Thus, pnPtr is of type int*, whereas nArray is actually of type int* const.

My main() Arguments
Now you’ve come far enough to learn the last secret of the program template
that you’ve been using: What are the arguments to main()?

25_617977-ch18.indd 21425_617977-ch18.indd 214 7/6/10 11:47 PM7/6/10 11:47 PM

215 Chapter 18: Taking a Second Look at C++ Pointers

int main(int nNumberOfArgs, char* pszArgs[])

These point to the arguments of the program. The first argument is the
number of arguments to the program, including the name of the program
itself. The second argument is an array of pointers to character strings repre-
senting the arguments themselves. Arrays of pointers? What?

Arrays of pointers
If a pointer can point to an array, then it seems only fitting that the reverse
should be true as well. Arrays of pointers are a type of array of particular
interest.

The following declares an array of ten pointers to integers:

int* pInt[10];

Given this declaration, then pInt[0] is a pointer to an integer. The follow-
ing snippet declares an array of three pointers to integers and assigns them
values:

void fn()
{
 int n1, n2, n3;
 int* pInts[3] = {&n1, &n2, &n3};

 for(int n = 0; n < 3; n++)
 {
 // initialize the integers
 *pInts[n] = n * 10;
 }
}

After the declaration, pInts[0] points to the variable n1, pInts[1] points
to n2, and pInts[2] points to n3. Thus, an expression like

*pInts[1] = 10;

sets the int pointed at by pInts[1] (that would be n2) to 10. The effect of
the for loop in the prior snippet is to initialize n1, n2, and n3 to 0, 10, and
20, respectively. This is shown graphically in Figure 18-6.

25_617977-ch18.indd 21525_617977-ch18.indd 215 7/6/10 11:47 PM7/6/10 11:47 PM

216 Part IV: Data Structures

Figure 18-6:
The effects

of setting up
and using

an array
of three

pointers to
integers.

The effects of executing the following:

int n1, n2, n3;

int* pInt[3] = {&n1, &n2, &n3};
for(int n = 0; n < 3, n++)
{
 *pInt[n] = n * 10;
}

10

0

20

n2

n1

n3

pInt[1]

pInt[2]

pInt[0]

Arrays of arguments
Returning to the main() example, the arguments to the program are the
strings that are passed to the program when it is executed. Thus, if I execute
MyProgram as

MyProgram file1 file2 /w

the arguments to the program are file1, file2, and /w.

Although technically not an argument, C++ includes the name of the program
as the first “argument.”

 Switches are not interpreted, so /w is passed to the program as an argument.
However, the special symbols <”, “> and | are interpreted by the command
line interpreter and are not passed to the program.

The following simple PrintArgs program displays the arguments passed to it
by the command line interpreter:

25_617977-ch18.indd 21625_617977-ch18.indd 216 7/6/10 11:47 PM7/6/10 11:47 PM

217 Chapter 18: Taking a Second Look at C++ Pointers

// PrintArgs - print the arguments to the program
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 for(int n = 0; n < nNumberofArgs; n++)
 {
 cout << “Argument “ << n
 << “ is <” << pszArgs[n]
 << “>” << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

Now the trick is how to pass arguments to the program.

Passing arguments to your program through the command line
The easiest and most straightforward way is to simply type the arguments
when executing the program from the command line prompt:

PrintArgs file1 file2 /w

Doing so generates the following output:

C:\Beginning_Programming-CPP\PrintArgs\bin\Debug>PrintArgs file1 file2 /w
Argument 0 is <printargs>
Argument 1 is <file1>
Argument 2 is <file2>
Argument 3 is </w>
Press any key to continue . . .

The difficulty to this approach is knowing where the executable is stored.
Code::Blocks creates the executable program during the Build step in a
sub directory of the directory containing the project. Whether you used
the default installation location shown in the preceding code or not, you
can always find the project directory by selecting Project➪Properties. The
default Project Settings tab of the dialog box that pops up displays the path
to the project file, as shown in Figure 18-7.

25_617977-ch18.indd 21725_617977-ch18.indd 217 7/6/10 11:47 PM7/6/10 11:47 PM

218 Part IV: Data Structures

Figure 18-7:
The Code::

Blocks
Project

Settings
tab of the

Project/
Target

Options
dialog box

contains the
path to the
project file.

Select the Build Targets tab to find the path to the executable file, as shown
in Figure 18-8.

Figure 18-8:
The Build

Targets tab
indicates
the name
and loca-
tion of the

executable.

25_617977-ch18.indd 21825_617977-ch18.indd 218 7/6/10 11:47 PM7/6/10 11:47 PM

219 Chapter 18: Taking a Second Look at C++ Pointers

If you are using Windows, open an MS-DOS window by selecting Start➪
Programs➪Accessories➪Command Prompt (this is for Windows XP and
Vista; the details differ slightly depending upon which version of Windows
you are using). Navigate to the proper window using the CD command (“CD”
stands for Change Directory).

Using the directory path provided in Figure 18-7, I would enter the following:

CD \Beginning_Programming-CPP\PrintArgs\bin\Debug
PrintArgs file1 file2 /w

The details for Linux and Macintosh will be slightly different but similar.

Passing arguments to your program from
the Code::Blocks environment
You can pass arguments to your program from within Code::Blocks itself by
selecting Project➪Set Projects’ Arguments. This opens the dialog box shown
in Figure 18-9. Enter the arguments into the Program Arguments entry field.

Figure 18-9:
You can set
up the proj-
ect to pass
arguments
to the pro-

gram when
executed

from Code::
Blocks.

Executing the program from Code::Blocks opens a command line window
with the following contents:

Argument 0 is <C:\Beginning_Programming-CPP\PrintArgs\bin\Debug\PrintArgs.exe>
Argument 1 is <file1>
Argument 2 is <file2>
Argument 3 is </w>
Press any key to continue . . .

25_617977-ch18.indd 21925_617977-ch18.indd 219 7/6/10 11:47 PM7/6/10 11:47 PM

220 Part IV: Data Structures

This technique is a lot easier, but it works only from within the Code::Blocks
environment. However, this is the only way to pass arguments to your pro-
gram when using the Code::Blocks debugger. I talk about the debugger in
Chapter 20.

Passing arguments to your program through Windows
In Windows, there is one final way of passing arguments to a program.
Windows executes a program with no arguments if you double-click the name
of the executable file. However, if you drag a set of files and drop them on the
program’s executable filename, Windows executes the program, passing it
the name of the files as its arguments.

To demonstrate, I created a couple of dummy files in the same directory
as the PrintArg.exe file called file1.txt and file2.txt, as shown in
Figure 18-10.

Figure 18-10:
I created

two dummy
files in the

same direc-
tory as the

PrintArgs.exe
executable.

I then selected both files and dragged and dropped them onto the PrintArgs.
exe filename. Figure 18-11 shows the result.

 Windows does not pass the filenames to the program in any particular order.
In particular, it does not necessarily pass them in the order that they appear
in the directory list or the order that you selected them.

25_617977-ch18.indd 22025_617977-ch18.indd 220 7/6/10 11:47 PM7/6/10 11:47 PM

221 Chapter 18: Taking a Second Look at C++ Pointers

Figure 18-11:
Dropping

the two
filenames

on the
PrintArgs.

exe filename
instructs

Windows
to launch

the program
and pass the
name of the

files as argu-
ments to the

program.

 This chapter and its predecessor are not easy for a beginner. Don’t despair if
you are feeling a little uncertain right now. You may need to reread this sec-
tion. Make sure that you understand the examples and the demonstration pro-
grams. You should find yourself growing more and more comfortable with the
concept of pointer variables as you make your way through the remainder of
the book.

25_617977-ch18.indd 22125_617977-ch18.indd 221 7/6/10 11:47 PM7/6/10 11:47 PM

222 Part IV: Data Structures

25_617977-ch18.indd 22225_617977-ch18.indd 222 7/6/10 11:47 PM7/6/10 11:47 PM

Chapter 19

Programming with Class
In This Chapter
▶ Grouping data using parallel arrays

▶ Grouping data in a class

▶ Declaring an object

▶ Creating arrays of objects

Arrays are great at handling sequences of objects of the same type, such
as ints or doubles. Arrays do not work well, however, when group-

ing different types of data such as when we try to combine a Social Security
number with the name of a person into a single record. C++ provides a struc-
ture called the class (or struct) to handle this problem.

Grouping Data
Many of the programs in earlier chapters read a series of numbers, some-
times into an array, before processing. A simple array is great for standalone
values. However, many times (if not most of the time), data comes in groups
of information. For example, a program may ask the user for his first name,
last name, and Social Security number. Alone, any one of these values is not
sufficient — only in the aggregate do the values make any sense.

You can store associated data of different types in what are known as parallel
arrays. For example, I might use an array of strings called pszFirstNames to
hold people’s first names, a second pszLastNames to hold the last names,
and a third nSocialSecurities to hold the corresponding Social Security
number. I would store the data such that any given index n points to the data
for a given individual.

Thus, my personal data might be at offset 3. In that case, szFirstNames[3]
would point to “Stephen,” szLastNames[3] would point to “Davis,” and
nSocialSecurityNumbers[3] would contain . . . well, you get the idea.
This is shown in Figure 19-1.

26_617977-ch19.indd 22326_617977-ch19.indd 223 7/6/10 11:47 PM7/6/10 11:47 PM

224 Part IV: Data Structures

Figure 19-1:
Parallel

arrays are
sometimes

used to hold
collections

of related
but dissimi-

lar data in
languages
that don’t

support
classes.

pszFirstNames pszLastNames nSocialSecurityNumbers

0
1
2
3
4

“Adam”
“Kinsey“
“Janet“
“Stephen“
“Tiffany“

0
1
2
3
4

“Laskowski“
“Davis“
“Eddins“
“Davis“
“Amrich“

123456789
234567890
345678901
456789012
567890123

0
1
2
3
4

This method works, but it’s prone to errors since there’s nothing that
directly associates the first name with the last name and the Social Security
number other than an index. You could easily imagine that a missing instruc-
tion here or there, and I would become “Stephen Eddins” or any other
random combination of first and last names.

Fortunately for us, C++ provides a better way.

The Class
A first name or a Social Security number doesn’t make any sense except in
the context of the person to whom they belong — data like that must have a
context created by its association with other, related data. What we would
like is to be able to create a structure, say Person, that contains all of the
relevant properties that make up a person (in this case, first name, last name,
and social security number).

C++ uses a structure known as the class that has the following format:

class Person
{
 public:
 char szFirstName[128];
 char szLastName[128];
 int nSocialSecurityNumber;
};

A class definition starts with the keyword class followed by the name of the
class and an open brace.

26_617977-ch19.indd 22426_617977-ch19.indd 224 7/6/10 11:47 PM7/6/10 11:47 PM

225 Chapter 19: Programming with Class

 The naming rules for class names are the same as for variable names: The first
letter must be one of the letters ‘a’ through ‘z’ or ‘A’ through ‘Z’ or underscore.
Every subsequent character in the name must be one of these or the digits ‘0’
through ‘9’. By convention, class names always start with an uppercase letter.
Class names normally consist of multiple words jammed together, with each
word starting with an uppercase letter.

The first keyword within the open brace in the early examples will always
be public. I’ll describe the alternatives to public in Chapter 24, but just
accept it as part of the declaration for now.

 You can also use the keyword struct instead of class. A struct is identical
to a class in every respect except that the public is assumed in a struct.
For historical reasons, the term class is more popular in C++, while the term
struct is used more often in C programs.

Following the public keyword are the declarations for the entries it takes to
describe the class. The Person class contains two arrays for the first and
last names and a third entry to hold the Social Security number.

 The entries within a class are known as members or properties of the class.

The Object
Declaring a class in C++ is like defining a new variable type. You can create a
new instance of a class as follows:

Person me;

An instance of a class is called an object.

 People get confused about the difference between a class and an object; some-
times people even use the terms interchangeably. Actually, the difference is
easy to explain with an example. Dog is a class. My dog, Lollie, is an instance
of a dog. My other dog, Jack, is a separate, independent instance of a dog. Dog
is a class; lollie and jack are objects.

You can access the members of an object by including their name after the
name of the object followed by a dot, as in the following:

Person me;
me.nSocialSecurityNumber = 456789012;
cin >> me.szLastName;

26_617977-ch19.indd 22526_617977-ch19.indd 225 7/6/10 11:47 PM7/6/10 11:47 PM

226 Part IV: Data Structures

Here me is an object of class Person. The element me.nSocialSecurity
 Number is a member or property of the me object. The type of me is Person.
The type of me.nSocialSecurityNumber is int, and its value is set to 456-
78-9012. The type of me.szLastName is char[] (pronounced “array of char”).

A class object can be initialized when it is created as follows:

Person me = {“Stephen”, “Davis”, 456789012};

Assignment is the only operation defined for user-defined classes by default.
Its use is shown here:

Person copyOfMe;
copyOfMe = me; // copy each member of me to copyOfMe

The default assignment operator copies the members of the object on the
right to the members on the left. The objects on the right and left of the
assignment operator must be exactly the same type.

 You can define what the other operators might mean when applied to an
object of a class that you define. That is considered advanced strokes, how-
ever, and is beyond the scope of this book.

Arrays of Objects
You can declare and initialize arrays of objects as follows:

Person people[5] = {{ “Adam”, “Laskowski”, 123456789},
 { “Kinsey”, “Davis”, 234567890},
 { “Janet”, “Eddins”, 345678901},
 {“Stephen”, “Davis”, 456789012},
 {“Tiffany”, “Amrich”, 567890123}};

The layout of people in memory is shown in Figure 19-2. Compare this with
the parallel array equivalent in Figure 19-1.

In this example, each one of the elements of the array people is an object.
Thus, people[0] is the first object in the array. My information appears
as people[3]. You can access the members of an individual member of an
array of objects using the same “dot-member” syntax as that used for simple
objects:

// change my social security number
people[3].nSocialSecurityNumber = 456789012;

26_617977-ch19.indd 22626_617977-ch19.indd 226 7/6/10 11:47 PM7/6/10 11:47 PM

227 Chapter 19: Programming with Class

Figure 19-2:
The

arrange-
ment in

memory of
an array of
5 Person

objects.

szFirstName

szLastName

nSocialSecurityNumber

“Adam”

”Laskowski”

123456789

”Kinsey”

”Davis”

234567890

”Janet”

”Eddins”

345678901

”Stephen”

”Davis”

456789012

class Person people[0]

people[1]

people[2]

people[3]

”Stephen”

”Davis”

456789012

me

”TiffanyTiffany”

”AmrichAmrich”

567890123567890123

people[4]people[4]

 The type of people is Person[], which is read “array of Person” (some-
times programmers use the plural of the class name as in “array of Persons”).
The type of people[3] is Person.

Looking at an Example
I’ve gone far enough without an example program to demonstrate how class
objects appear in a program. The following InputPerson program inputs the
data for an array of people. It then sorts the array by Social Security number
and outputs the sorted list.

 The sorting algorithm I used is known as a Bubble Sort. It isn’t particularly
efficient, but it’s very simple to code. I explain how it works in a sidebar, but
don’t get wrapped up in the details of the Bubble Sort. Focus instead on how
the program inputs the critical elements of a Person into a single element of
an array that it can then manipulate as a single entity.

26_617977-ch19.indd 22726_617977-ch19.indd 227 7/6/10 11:47 PM7/6/10 11:47 PM

228 Part IV: Data Structures

 // InputPerson - create objects of class Person and
// display their data
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// Person - stores the name and social security number
class Person
{
 public:
 char szFirstName[128];
 char szLastName[128];
 int nSocialSecurityNumber;
};

// getPerson - read a Person object from the keyboard
// and return a copy to the caller
Person getPerson()
{
 Person person;

 cout << “\nEnter another Person\n”
 << “First name: “;
 cin >> person.szFirstName;

 cout << “Last name: “;
 cin >> person.szLastName;

 cout << “Social Security number: “;
 cin >> person.nSocialSecurityNumber;

 return person;
}

// getPeople - read an array of Person objects;
// return the number read
int getPeople(Person people[], int nMaxSize)
{
 // keep going until operator says he’s done or
 // until we’re out of space
 int index;
 for(index = 0; index < nMaxSize; index++)
 {
 char cAnswer;
 cout << “Enter another name? (Y or N):”;
 cin >> cAnswer;

 if (cAnswer != ‘Y’ && cAnswer != ‘y’)
 {

26_617977-ch19.indd 22826_617977-ch19.indd 228 7/6/10 11:47 PM7/6/10 11:47 PM

229 Chapter 19: Programming with Class

 break;
 }

 people[index] = getPerson();
 }
 return index;
}

// displayPerson - display a person on the default display
void displayPerson(Person person)
{
 cout << “First name: “ << person.szFirstName << endl;
 cout << “Last name : “ << person.szLastName << endl;
 cout << “Social Security number : “
 << person.nSocialSecurityNumber << endl;
}

// displayPeople - display an array of Person objects
void displayPeople(Person people[], int nCount)
{
 for(int index = 0; index < nCount; index++)
 {
 displayPerson(people[index]);
 }
}

// sortPeople - sort an array of nCount Person objects
// by Social Security Number
// (this uses a binary sort)
void sortPeople(Person people[], int nCount)
{
 // keep going until the list is in order
 int nSwaps = 1;
 while(nSwaps != 0)
 {
 // we can tell if the list is in order by
 // the number of records we have to swap
 nSwaps = 0;

 // iterate through the list...
 for(int n = 0; n < (nCount - 1); n++)
 {
 // ...if the current entry is greater than
 // the following entry...
 if (people[n].nSocialSecurityNumber >
 people[n+1].nSocialSecurityNumber)
 {
 // ...then swap them...
 Person temp = people[n+1];
 people[n+1] = people[n];

26_617977-ch19.indd 22926_617977-ch19.indd 229 7/6/10 11:47 PM7/6/10 11:47 PM

230 Part IV: Data Structures

 people[n] = temp;

 // ...and count it.
 nSwaps++;
 }
 }
 }
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // allocate room for some names
 Person people[128];

 // prompt the user for input
 cout << “Read name/social security information\n”;
 int nCount = getPeople(people, 128);

 // sort the list
 sortPeople(people, nCount);

 // now display the results
 cout << “\nHere is the list sorted by “
 << “social security number” << endl;
 displayPeople(people, nCount);

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

The program starts by declaring class Person with data members for the
first name, last name, and Social Security number. Contrary to good program-
ming practice, this program uses fixed-length arrays for the name strings.
(If I were writing this for a commercial package, I would use variable length
arrays, or I would include a test to make sure that input from the keyboard
did not overflow the buffer. See Chapter 17 if you don’t know what I’m talking
about.)

The first function, getPerson(), prompts the user for the data necessary to
describe a single Person object. It then returns a copy of that Person to the
caller.

The second function, getPeople(), invokes the getPerson() function
repeatedly to retrieve the data for a number of individuals. It stores the
Person objects retrieved into the array people. This function accepts as
an argument the maximum size of the people array and returns to the caller
the actual number of elements stored there.

26_617977-ch19.indd 23026_617977-ch19.indd 230 7/6/10 11:47 PM7/6/10 11:47 PM

231 Chapter 19: Programming with Class

The displayPerson() and displayPeople() functions are the output
analogs to the getPerson() and getPeople() functions. display
Person() outputs the information for a single individual, whereas display
People() calls that function on each element defined in the people array.

The sortPeople() function sorts the elements of the people array in
order of increasing Social Security number. This function is described in the
“Bubble Sort” sidebar. Don’t worry too much about how this function works.
You’re way ahead of the game if you can follow the rest of the program.

The output from a test run of this program appears as follows:

Read name/social security information
Enter another name? (Y or N):y

Enter another Person
First name: Adam
Last name: Laskowski
Social Security number: 123456789
Enter another name? (Y or N):y

Enter another Person
First name: Stephen
Last name: Davis
Social Security number: 456789012
Enter another name? (Y or N):y

Enter another Person
First name: Janet
Last name: Eddins
Social Security number: 345678901
Enter another name? (Y or N):n

Here is the list sorted by social security number.
First name: Adam
Last name : Laskowski
Social Security number : 123456789
First name: Janet
Last name : Eddins
Social Security number : 345678901
First name: Stephen
Last name : Davis
Social Security number : 456789012
Press any key to continue . . .

You’ve seen most of the non–object-oriented features of C++. The next chap-
ter introduces you to the Code::Blocks debugger, which wraps up the sec-
tions dedicated to what I call functional programming. After that, I jump into
object-oriented programming in Part V.

26_617977-ch19.indd 23126_617977-ch19.indd 231 7/6/10 11:47 PM7/6/10 11:47 PM

232 Part IV: Data Structures

Bubble Sort
Most of this book is dedicated to the syntax of C++. However, in addition to the details of the lan-
guage, you will also need to learn common programming algorithms in order to become a proficient
programmer. The Bubble Sort is one of those algorithms that every programmer should master.

There are a number of common algorithms for sorting fields. Each has its own advantages. In gen-
eral, the simpler algorithms take longer to execute, whereas the really fast algorithms are more
difficult to program. The Bubble Sort is very easy to program but isn’t particularly fast. This is not a
problem for small data sets; arrays up to several thousand entries in length can be sorted in very
much less than a second on modern high-speed processors. For small to moderate amounts of
data, the simplicity of the Bubble Sort far outweighs any performance penalty.

In the Bubble Sort, the program makes multiple passes through the data set. On each pass, it compares
each element with the next element in the list. If element N is less than N+1, then these two are in the
proper order so the Bubble Sort takes no action. However, if element N is greater than N+1, then the
Bubble Sort swaps the two elements and then moves on to the next element. In practice, this looks
like the following:

// if the current entry is greater than
// the following entry...
if (people[n].nSocialSecurityNumber >
 people[n+1].nSocialSecurityNumber)
{
 // ...then swap them...
 Person temp = people[n+1];
 people[n+1] = people[n];
 people[n] = temp;

 // ...and count it.
 nSwaps++;
}

At the end of the first pass through the entire array, the largest element will have moved to the
end of the list, but the rest of the array will still not be in order. However, repeated passes through
the array cause each element to “bubble” up to its proper place in the array. The Bubble Sort sets
the number of elements that were swapped on each pass by zeroing the counter nSwaps before
iterating through the list and incrementing the number of elements swapped on each pass. The
algorithm doesn’t really care how many swaps were executed; if any swaps were executed, then
the array was not in order. However, once the Bubble Sort can make it all the way through the list
without executing any swaps, then it knows that the array is in order.

The figure demonstrates how the Bubble Sort sorts an array of five integers. During the first pass
through the list, two swaps are executed. On the second pass, the algorithm executes only a single
swap. The resulting list is in order, but the algorithm doesn’t know this until it makes its way all
the way through the array without making any swaps, as shown in the third pass. At this point, the
Bubble Sort is finished.

26_617977-ch19.indd 23226_617977-ch19.indd 232 7/6/10 11:47 PM7/6/10 11:47 PM

233 Chapter 19: Programming with Class

1

4

2

6

3

N

N+1

nSwaps = 0

1

2

4

6

3

N

N+1

nSwaps = 1

1

2

4

6

3

N

N+1

nSwaps = 1

1

2

4

3

6

nSwaps = 2

1

4

2

6

3

N

N+1

nSwaps = 0

First Pass

1

2

4

3

6

N

N+1

nSwaps = 0

1

2

4

3

6

N

N+1

nSwaps = 1

1

2

3

4

6

N

N+1

nSwaps = 1

1

2

3

4

6

nSwaps = 1

1

2

4

3

6

N

N+1

nSwaps = 0

Second Pass

1

2

3

4

6

N

N+1

nSwaps = 0

1

2

3

4

6

N

N+1

nSwaps = 0

1

2

3

4

6

N

N+1

nSwaps = 0

1

2

3

4

6

nSwaps = 0

1

2

3

4

6

N

N+1

nSwaps = 0

Third Pass

26_617977-ch19.indd 23326_617977-ch19.indd 233 7/6/10 11:47 PM7/6/10 11:47 PM

234 Part IV: Data Structures

26_617977-ch19.indd 23426_617977-ch19.indd 234 7/6/10 11:47 PM7/6/10 11:47 PM

Chapter 20

Debugging Your Programs, Part 3
In This Chapter
▶ Debugging using the built-in debugger

▶ Building your application with debugger information

▶ Setting a breakpoint

▶ Single-stepping your program

▶ Fixing a sample problem

I introduced a few techniques for finding errors at the end of Parts II
(Chapter 8) and III (Chapter 13). Now that you are nearing the end of

Part IV, I want to touch on debugging techniques one final time.

In this chapter, I introduce you to the debugging tools built into the Code::Blocks
development environment (similar tools exist for most other environments).
Learning to use the debugger will give you clear insight into what your pro-
gram is doing (and what it’s not doing, at times).

A New Approach to Debugging
Chapters 8 and 13 demonstrated how to find problems by adding output
statements in key positions. Outputting key variables lets you see what inter-
mediate values your program is calculating and what path it’s taking through
your C++ code.

However, the output technique has several distinct disadvantages. The first
is that it’s difficult to know what to display. In a small program, such as most
of the programs in this book, you can display almost everything — there
just aren’t that many variables to slug through. However, in a major league
program, there may be many hundreds of variables, especially if you include
all of the elements in the arrays. Knowing which variables to display can be
problematic.

27_617977-ch20.indd 23527_617977-ch20.indd 235 7/6/10 11:48 PM7/6/10 11:48 PM

236 Part IV: Data Structures

A second problem is the time it takes to rebuild the program. Once again, this
isn’t a problem with small programs. Code::Blocks can rebuild a small program
in just a few seconds. In these cases, adding or changing output statements
doesn’t take more than a few minutes. However, I have been on projects where
rebuilding the entire program took many hours. In a big program, adding new
output statements as you zero in on a bug can take a long time.

Finally, it’s very difficult to debug a pointer problem using the output
approach. If a pointer is invalid, any attempt to use it will cause the program
to abort, and knowing a valid pointer from an invalid one simply by display-
ing its value on cout is almost impossible.

The solution
What you need is a way to stop the program in the middle of its execution
and query the value of key variables. That’s exactly what the debugger does.

The debugger is actually a utility built into the Code::Blocks environment.
Every environment has some type of debugger, and they all offer the same
basic features though the specific commands may be different. The debug-
ger allows the programmer to control the execution of her program. She can
execute one step in the program at a time, she can stop the program at any
point, and she can examine the value of variables.

 Unlike the C++ language, which is standardized, every debugger has its own
command set. Fortunately, once you’ve learned how to use the Code::Blocks
debugger, you won’t have any trouble learning to use the debugger that comes
with your favorite C++ environment.

The programmer controls the debugger through commands entered from the
keyboard within the Code::Blocks environment exactly as she would use the
edit commands to modify the C++ source code or build commands to create
the executable program. The debug commands are available from both menu
items and hot keys.

The best way to learn how to use the Code::Blocks debugger is to use it to
find a couple of nasty problems in a buggy version of one of the programs
you’ve already seen.

Entomology for Dummies
 The following version of the Concatenate program (which you’ll find on the

enclosed CD-ROM as ConcatenateError1) represents my first attempt at the
ConcatenateHeap program from Chapter 18.

27_617977-ch20.indd 23627_617977-ch20.indd 236 7/6/10 11:48 PM7/6/10 11:48 PM

237 Chapter 20: Debugging Your Programs, Part 3

 This version has at least two serious bugs, both of which are in the
concatenateString() function.

//
// ConcatenateError1 - similar to ConcatenatePtr except
// this version has several bugs in it
// that can be easily found with the
// debugger
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

// concatenateString - concatenate two strings together
// into an array allocated off of the
// heap
char* concatenateString(const char* pszSrc1,
 const char* pszSrc2)
{
 // allocate an array of sufficient length
 int nTargetSize = strlen(pszSrc1)+strlen(pszSrc2)+1;
 char* pszTarget = new char[nTargetSize];

 // first copy the first string into the target
 while(*pszSrc1 != ‘\0’)
 {
 *pszTarget++ = *pszSrc1++;
 }

 // now copy the contents of the second string onto
 // the end of the first
 while(*pszSrc2 != ‘\0’)
 {
 *pszTarget++ = *pszSrc2++;
 }

 // return the resulting string to the caller
 return pszTarget;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // Prompt user
 cout << “This program accepts two strings\n”
 << “from the keyboard and outputs them\n”
 << “concatenated together.\n” << endl;

 // input two strings

27_617977-ch20.indd 23727_617977-ch20.indd 237 7/6/10 11:48 PM7/6/10 11:48 PM

238 Part IV: Data Structures

 cout << “Enter first string: “;
 char szString1[256];
 cin.getline(szString1, 256);

 cout << “Enter the second string: “;
 char szString2[256];
 cin.getline(szString2, 256);

 // now concatenate one onto the end of the other
 cout << “Concatentate first string onto the second”
 << endl;
 char* pszT = concatenateString(szString1, szString2);

 // and display the result
 cout << “Result: <”
 << pszT
 << “>” << endl;

 // return the memory to the heap
 delete pszT;
 pszT = NULL;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

The following shows the results of executing the program:

This program accepts two strings
from the keyboard and outputs them
concatenated together.

Enter first string: this is a string
Enter the second string: THIS IS ALSO A STRING
Concatentate first string onto the second
Result: <OF_ƒdT D>
Press any key to continue . . .

Clearly, the result is not correct, so something must be wrong. Rather than
start inserting output statements, I will use the debugger to find the problems
this time.

 I suggest that you follow along with me and take the same steps I do in the fol-
lowing section. You can start with the ConcatenateError1 program from the
CD-ROM.

27_617977-ch20.indd 23827_617977-ch20.indd 238 7/6/10 11:48 PM7/6/10 11:48 PM

239 Chapter 20: Debugging Your Programs, Part 3

Starting the debugger
I can tell the debugger that I want to execute the program up to a certain line or
view a particular variable. In order to do that, however, the debugger has to
know exactly where each C++ line of code is stored and where each variable
is kept. It does this by attaching extra information onto the executable —
actually, quite a bit of extra information. Because this information can get
really lengthy and because I don’t need it for the release version that I ship
to the public, including debug information is optional.

I decided whether to include debug information in the executable when I
created the project. Figure 20-1 shows the next to last dialog box presented
by the Project Wizard, the Console Application dialog box. The default is to
generate debug information as shown here. The Release configuration is the
version of the executable without the extra debug information. I cannot use
the debugger if I do not create a Debug configuration version.

Figure 20-1:
The Console
Application

dialog box of
the Project

Wizard
allows you

to select
whether

to build a
debug ver-
sion of the

executable
or not.

 I can turn debugger information on at any time by selecting Settings➪Compiler
and Debugger and then making sure that the Produce Debugging Symbols
[-g] check box is checked in the Compiler Flags subwindow of the Compiler
Settings window. I have to rebuild the executable by selecting Build➪Rebuild
for the change to have any effect.

So assume that I did tell Code::Blocks to include debug information in the
executable.

27_617977-ch20.indd 23927_617977-ch20.indd 239 7/6/10 11:48 PM7/6/10 11:48 PM

240 Part IV: Data Structures

I am reasonably certain that the problem is in the concatenateString()
function itself. So I decide that I want to stop executing the program at the
call to concatenateString(). To do this, I need to do what’s called setting
a breakpoint.

A breakpoint is a command to the debugger that says stop execution of the
program if you get to this spot. There are at least four ways to set a break-
point, all of which are equivalent:

 ✓ Click with the cursor just to the right of the line number on line 60 (see
Figure 20-2).

 ✓ Right-click on line 60 and select Toggle Breakpoint from the menu that
appears (it’s the first option).

 ✓ Put the cursor on line 60 and select F5 (Toggle Breakpoint).

 ✓ Put the cursor on line 60 and select Debug➪Toggle Breakpoint.

Multiple methods exist for entering almost every other debugger command
that I describe in this chapter, but in the interest of brevity, I describe only
one. You can experiment to find the others.

A small stop sign appears just to the right of the line number, as shown in
Figure 20-2.

Figure 20-2:
A small, red

stop sign
indicates

that a
breakpoint

has been
set at the
specified
location.

27_617977-ch20.indd 24027_617977-ch20.indd 240 7/6/10 11:48 PM7/6/10 11:48 PM

241 Chapter 20: Debugging Your Programs, Part 3

To start the program, I select Debug➪Start. At first the program seems to
execute like normal. It first prompts me for the first string. It follows that by
prompting me for a second string. As soon as I enter that string, however,
the program appears to stop, and a small, yellow arrow appears inside the
stop sign on the source code display. This is shown in Figure 20-3. This little,
yellow arrow is the current location indicator. This points to the next C++ line
to be executed.

Figure 20-3:
The pro-

gram stops
execut-

ing, and a
small, yel-
low arrow
appears at

the next line
to be exe-

cuted when
the program
encounters

a break-
point.

Red stop sign Start/resume Next Line

Step Into

Reset Program

Yellow arrow indicating current location pointer.

You will also notice from Figure 20-3 that another toolbar appears. The
Debugger toolbar includes the most common debug commands, including
most of the commands that I demonstrate in this chapter. (I have added call-
outs for the commands I will describe later in this chapter.)

Navigating through a program
with the debugger
Okay, so I’ve managed to stop the execution of my program in the middle
with the debugger. What can I do now?

27_617977-ch20.indd 24127_617977-ch20.indd 241 7/6/10 11:48 PM7/6/10 11:48 PM

242 Part IV: Data Structures

I’ll start by executing the concatenateString() function one statement
at a time. I could set a new breakpoint at the first instruction in the func-
tion, but setting a new breakpoint on every line is tedious. Fortunately, the
Code::Blocks debugger offers a more convenient choice: the Step Into
command.

 On the Debug toolbar, this is the fifth command from the left. However, if
you get confused, this menu has Tool Tips — just point at the command in
the toolbar and leave the arrow motionless. After a few seconds, the name of
the command will pop up. Or you can select Debug➪Step Into from the main
menu.

The Step Into command executes a single C++ statement; in this case, the
command steps into the function call. Execution stops immediately before
the first executable statement in concatenateString(). Next, I select
Debug➪Debugging Windows➪Watches to display the window shown in
Figure 20-4. From this window, I can see that the two arguments to the func-
tion, pszSrc1 and pszSrc2, appear to be correct.

 The values of nTargetSize and pszTarget have no meaning at this point
since they have yet to be initialized.

Figure 20-4:
The

Watches
window

shows both
the argu-
ments to
the func-
tions and

any locally
defined

variables.

I could select Step Into again to move forward, but this will step me into
the strlen() functions. Since these are C++ library routines, I’m willing to
accept that these are working fine.

27_617977-ch20.indd 24227_617977-ch20.indd 242 7/6/10 11:48 PM7/6/10 11:48 PM

243 Chapter 20: Debugging Your Programs, Part 3

The other option is known as Next Line. Next Line steps to the next line
of C++ code in the current function, treating function calls just like any other
C++ command.

 Together, Step Into and Next Line are known as single-step commands. For
commands other than function calls, the two commands are equivalent. Many
debuggers use the term Step Over rather than Next Line to highlight the dis-
tinction from Step Into.

I select Next Line from the Debug toolbar. Notice how the Current location
pointer moves from line 21 to line 22, as shown in Figure 20-5. In addition, the
nTargetSize variable is highlighted red in the Watch window to indicate
that its value has changed. The value of nTargetSize is now 38, the correct
length of the sum of the two strings.

Figure 20-5:
Selecting
Next Line

moves the
current

location
pointer to

line 22 and
initializes

nTarget
Size.

 You need to be absolutely clear about what just happened. All you see is that
the screen blinks and the current location pointer moves down one line. What
actually happened is that the debugger set a temporary breakpoint at line 22
and then restarted the program at line 21. The program executed the two calls
to strlen() and then performed the addition, storing the results in nTarget
Size. You may have seen only the one line of code get executed, but in fact
many lines of C++ code were executed within the strlen() functions (exe-
cuted twice, actually).

27_617977-ch20.indd 24327_617977-ch20.indd 243 7/6/10 11:48 PM7/6/10 11:48 PM

244 Part IV: Data Structures

So far, so good, so I select Next Line a few more times until I enter the while
loop.

 This while loop is structured a little differently than what you’ve seen before.
Here, I increment the pointer as part of the assignment itself, rather than in
the increment clause of a for loop, as follows:

while(*pszSrc1 != ‘\0’)
{
 *pszTarget++ = *pszSrc1++; // Line 27
}

Line 27 of the program says, “store the value of the char pointed at by
pszSrc1 into the char location pointed at by pszTarget and then incre-
ment pszSrc1 and pszTarget.”

Figure 20-6 shows the debug display after I execute the loop a few times.
Notice after each execution that, since their value is modified, both pszSrc1
and pszTarget are highlighted in the Watches window.

Figure 20-6:
The while

loop
increments
pszSrc1

and psz
Target on

each pass.

Also notice that the string pointed at by pszSrc1 seems to be shrinking.
This is because as pszSrc1 is incremented, it is effectively moving down
the string until eventually it will point to nothing more than the terminating
null. That’s when control will leave the while loop and continue on to the
next loop.

27_617977-ch20.indd 24427_617977-ch20.indd 244 7/6/10 11:48 PM7/6/10 11:48 PM

245 Chapter 20: Debugging Your Programs, Part 3

But wait! The string pointed at by pszTarget is not growing. Remember
that the intent is to copy the contents of pszSrc1 into pszTarget. What’s
happening?

After a moment’s reflection, the answer is obvious: I’m also changing the
value of pszTarget and leaving the characters I’ve copied behind. That’s
what was wrong with my function in the first place. I need to keep a copy of
the original pointer unmodified to return to the caller!

Now that I know the problem (or, at least, a problem — there may be
more) I stop the debugger by clicking Stop Debugger on the Debug tool-
bar. The Console Application dialog box disappears immediately, and the
Code::Blocks display returns to that used for editing.

Fix ing the (first) bug
 To solve the problem that I noted, I only need to save the value returned by
new and return it rather than the modified pszTarget pointer from the func-
tion. I include only the modified concatenateString() function here (the
rest of the program is unchanged — the entire program is included on the
enclosed CD-ROM as ConcatenateError2):

char* concatenateString(const char* pszSrc1,
 const char* pszSrc2)
{
 // allocate an array of sufficient length
 int nTargetSize = strlen(pszSrc1)+strlen(pszSrc2)+1;
 char* pszTarget = new char[nTargetSize];
 char* pszT = pszTarget; // save a pointer to return

 // first copy the first string into the target
 while(*pszSrc1 != ‘\0’)
 {
 *pszTarget++ = *pszSrc1++;
 }

 // now copy the contents of the second string onto
 // the end of the first
 while(*pszSrc2 != ‘\0’)
 {
 *pszTarget++ = *pszSrc2++;
 }

 // return the original pointer to the caller
 return pszT;
}

27_617977-ch20.indd 24527_617977-ch20.indd 245 7/6/10 11:48 PM7/6/10 11:48 PM

246 Part IV: Data Structures

Here, I save the pointer returned by new into both pszTarget, which I
intend to increment, and pszT, which will stay unmodified. The function
returns the latter, unmodified pointer to the caller.

I rebuild the application, and then I repeat my earlier steps to single-step
through the first loop within concatenateString(). Figure 20-7 shows the
display after executing the loop seven times.

Figure 20-7:
The Watches

window of
the updated

con-
catenate
String()

function
shows

the string
being built

in the array
pointed at
by pszT.

Notice how pszT points to an array containing the first seven characters
of the source string this is. Also notice that the value of pszTarget is 7
larger than pszT.

But also notice all the garbage characters in the pszT string that appear after
this is. Code::Blocks displays extra garbage because the target string has
no terminating null. It doesn’t need one yet, since I haven’t completed con-
structing it.

Finding and fixing the second bug
The two source strings aren’t all that long, so I use the Next Line command
to single-step through the entire loop. Figure 20-8 shows the Debug window
after executing the second loop for the last time. Here, pszT points to the
completed target string with both source strings concatenated together.
Without a terminating null, however, the string still displays garbage after
the final character.

27_617977-ch20.indd 24627_617977-ch20.indd 246 7/6/10 11:48 PM7/6/10 11:48 PM

247 Chapter 20: Debugging Your Programs, Part 3

Figure 20-8:
The Debug

window
after exe-
cuting the

second loop
for the last

time.

Because I’m now done with the function, I select Debug➪Continue from the
Code::Blocks menu. This causes the debugger to resume the program where
it left off and to continue to the next breakpoint or to the end of the program,
whichever comes first.

Sure enough, the displayed concatenated array includes the same garbage
that I saw in the debugger:

This program accepts two strings
from the keyboard and outputs them
concatenated together.

Enter first string: this is a string
Enter the second string: THIS IS ALSO A STRING
Concatentate first string onto the second
Result: <this is a stringTHIS IS ALSO A STRING >
Press any key to continue . . .

 If I didn’t include a terminating null, then what caused the string returned
by concatenateString() to terminate at all? Why didn’t the string con-
tinue on for pages? The short answer is, “Nothing.” It could be that C++ had
to display many thousands of characters before eventually hitting a character
containing a null. In practice, this rarely happens, however. Zero is by far
the most common value in memory. You generally don’t have to look too far
before you find a byte containing a zero that terminates the string.

27_617977-ch20.indd 24727_617977-ch20.indd 247 7/6/10 11:48 PM7/6/10 11:48 PM

248 Part IV: Data Structures

All I need to do to fix this problem is add a terminating null after the final
while loop:

char* concatenateString(const char* pszSrc1,
 const char* pszSrc2)
{
 // allocate an array of sufficient length
 int nTargetSize = strlen(pszSrc1)+strlen(pszSrc2)+1;
 char* pszTarget = new char[nTargetSize];
 char* pszT = pszTarget; // save a pointer to return

 // first copy the first string into the target
 while(*pszSrc1 != ‘\0’)
 {
 *pszTarget++ = *pszSrc1++;
 }

 // now copy the contents of the second string onto
 // the end of the first
 while(*pszSrc2 != ‘\0’)
 {
 *pszTarget++ = *pszSrc2++;
 }

 // add a terminating NULL
 *pszTarget = ‘\0’;

 // return the unmodified pointer to the caller
 return pszT;
}

Executing this version in the debugger creates the display shown in Figure 20-9.
Notice that once the terminating null has been added, the string pointed at
by pszT magically “cleans up,” losing all the garbage that strings on after the
data that I put there.

 Let me be clear: Those garbage characters are still there. It’s just that the ter-
minating null causes C++ to not display them.The output from the program is
the predictable string that you’ve come to love and admire:

This program accepts two strings
from the keyboard and outputs them
concatenated together.

Enter first string: this is a string
Enter the second string: THIS IS ALSO A STRING
Concatentate first string onto the second
Result: <this is a stringTHIS IS ALSO A STRING>
Press any key to continue . . .

27_617977-ch20.indd 24827_617977-ch20.indd 248 7/6/10 11:48 PM7/6/10 11:48 PM

249 Chapter 20: Debugging Your Programs, Part 3

Figure 20-9:
Adding the

terminat-
ing null

removes
all of the
garbage

characters
at the end

of the con-
catenated

string.

It’s possible to find problems in small programs by adding output statements
at key locations. However, the debugger is a much more elegant and power-
ful tool for finding problems. Single-stepping your way through a program in
the debugger gives you a real feel for what the computer is doing with your
source code. You develop an understanding for how the computer works
that I don’t think you can get any other way. The debugger that comes with
Code::Blocks is about as easy to use as any that I’ve seen. I recommend that
you use it early and often.

27_617977-ch20.indd 24927_617977-ch20.indd 249 7/6/10 11:48 PM7/6/10 11:48 PM

250 Part IV: Data Structures

27_617977-ch20.indd 25027_617977-ch20.indd 250 7/6/10 11:48 PM7/6/10 11:48 PM

Part V

Object-Oriented
Programming

28_617977-pp05.indd 25128_617977-pp05.indd 251 7/6/10 11:48 PM7/6/10 11:48 PM

In this part . . .

Parts I through IV describe C++ as just another func-
tional language, not very different from its predeces-

sor, C. This part introduces you to the concepts behind
object-oriented programming. These concepts revolution-
ized the programming world when they became widely
adopted in the late 1980s. This is the part that describes
what makes C++ the truly powerful language that it is.

28_617977-pp05.indd 25228_617977-pp05.indd 252 7/6/10 11:48 PM7/6/10 11:48 PM

Chapter 21

What Is Object-Oriented
Programming?

In This Chapter
▶ Abstracting away the details

▶ Contrasting the object-oriented approach with the functional approach

▶ Classifying things

Examples of objects abound in everyday life. Right in front of me is a
chair, a table, a computer, and a red Starbucks mug. I have no trouble

grouping these objects into taxonomies based upon their properties. For
example, the mug is a container, it’s also a thermal insulator, so I can use it to
hold hot or cold things, and it has mass, so that I can use it as a paperweight
or to throw at the dog. Object-oriented programming applies this view of the
world to that of programming. To explain what I mean, let me start with a
story.

Abstraction and Microwave Ovens
Sometimes when my son and I are watching football, I whip up a batch of
nachos. Nothing fancy, mind you — I dump some chips on a plate, throw
on refried beans, cheese, and a batch of jalapenos, and nuke the lot in the
microwave oven for five minutes. To use the oven, I open the door, place the
nachos inside, punch some buttons on the front, and hit start. After a few
minutes, the bell rings to tell me they’re done. If I do something wrong, the
oven beeps at me and doesn’t start. Sometimes it displays an error message
on the little display.

This doesn’t sound very profound, and it isn’t really until you consider all the
things that I don’t do to use my microwave oven:

29_617977-ch21.indd 25329_617977-ch21.indd 253 7/6/10 11:48 PM7/6/10 11:48 PM

254 Part V: Object-Oriented Programming

 ✓ I limit myself to the front panel of the microwave. I don’t look inside the
case. I don’t look at the listings of the code that tells the processor unit
what to do. I don’t study the wiring diagram that’s pasted on the inside
wall of the case.

 ✓ I don’t rewrite or change anything inside the microwave to get it to
work. The microwave oven that I use to make nachos is the exact same
microwave that I used earlier to heat up chili dogs (nothing but health
food at my house). And it will be the same microwave I use to heat up
my Malt-O-Meal tomorrow (assuming it doesn’t break).

 ✓ I don’t think about what might be going on inside my microwave oven in
order to use it. Even if I designed microwaves for a living, I’m not likely
to think about how it works when I make nachos before the big game.

These are not profound observations. Humans can think about only so much
at any one time. We tend to reduce the number of things that we have to deal
with by abstracting away all the little details. This allows us to work at the
level of detail appropriate to the problem we’re trying to solve.

Note: In object-oriented (OO) terms, this level of detail is known as the level
of abstraction.

When I’m working on nachos, I view my microwave oven as a black box. I
don’t concern myself with what’s going on inside that box unless, of course,
it breaks. Then I might take the top off and see if I can figure out what’s
wrong with it; then I am working at a different level of abstraction. I still don’t
take the tops off the chips on the circuit board or try to take apart the indi-
vidual components. (I’m not that crazy.)

As long as the microwave is heating food, I limit myself to the interface that
it exposes to the outside world: the keypad and LCD display. It is very impor-
tant that from this interface there is nothing that I can do that will cause the
microwave to:

 ✓ Enter an inconsistent state and crash (causing me to have to reboot my
microwave)

 ✓ Worse, turn my nachos into a blackened, flaming mass

 ✓ Worse yet, catch on fire and burn down the house

Functional nachos
Suppose I were to ask my son to write an algorithm for making nachos using
the same basic approach used for changing tires in Chapter 1. He would

29_617977-ch21.indd 25429_617977-ch21.indd 254 7/6/10 11:48 PM7/6/10 11:48 PM

255 Chapter 21: What Is Object-Oriented Programming?

probably write something like, “Open a can of beans, grate some cheese, cut
the jalapenos,” and so on. For the part about heating the nachos, he would
write something similar to, “Cook in the oven until cheese is melted.”

That description is straightforward and complete, but it’s not how a func-
tional programmer would code a program to make nachos. Functional pro-
grammers live in a world devoid of objects such as microwave ovens. They
tend to worry about flowcharts with their myriad functional paths. In a func-
tional solution, the flow of control would pass from my finger through the
microwave’s front panel and on into the interior of the thing. Soon, the flow
would be wiggling through complex logic paths concerned with how long to
charge up some capacitor and whether it’s time to sound the “come and get
it” tone.

In a world like this, it’s hard to think in terms of levels of abstraction. There
are no objects, no abstractions behind which to hide inherent complexity.

Object-oriented nachos
In an object-oriented approach to making nachos, I would start by identifying
the types of objects in the problem: chips, beans, cheese, and an oven. These
are the nouns that I have to work with. That done, I would identify the verbs
relevant to each object. Next, I would solve the problem using nothing but
the nouns and verbs identified before. Finally, then, and only then, I would
implement each of these objects in software.

 I identified the nouns and verbs relevant to tire changing for you in Chapter 1.
You were left with the job of implementing the solution using the nouns and
verbs I gave you.

While I am writing object-level code, I am said to be working (and thinking)
at the level of abstraction of the basic objects. I need to think about making a
useful oven, but I don’t have to think about the process of making nachos yet.
After all, the designers of my microwave didn’t think about the specific prob-
lem of my making a snack. Rather, they set about the problem of designing
and building a useful microwave oven.

After I have successfully coded and tested the objects I need, I can ratchet up
to the next level of abstraction. I can start thinking at the nacho-making level,
rather than at the microwave-making level. At this point, I can pretty much
translate my son’s instructions directly into C++ code.

29_617977-ch21.indd 25529_617977-ch21.indd 255 7/6/10 11:48 PM7/6/10 11:48 PM

256 Part V: Object-Oriented Programming

Classification and Microwave Ovens
Critical to the concept of abstraction is that of classification. If I were to ask
my son, “What’s a microwave oven?” he would probably say, “It’s an oven
that. . . .” If I then ask, “What’s an oven?” he might reply, “It’s a kitchen appli-
ance that. . . .” I could keep asking this question, ratcheting myself up the
abstraction ladder until I ended up with, “It’s a thing,” which is another way
of saying, “It’s an object.”

My son understands that our particular microwave is an instance of the type
of things called microwave ovens. In addition, he sees microwave ovens as
just a special kind of oven, which is, in turn, a special type of kitchen appli-
ance, and so on.

The technical way of saying this is that our oven is an instance of the class
microwave. The class microwave is a subclass of the class oven, and the class
oven is a superclass of the class microwave.

Humans classify. Everything about our world is ordered into taxonomies. We
do this to reduce the number of things that we have to remember. Consider,
for example, the first time that you saw a hybrid car. The advertisement
called it a “revolutionary automobile, unlike any car you’ve ever seen,” but
you and I know that this just isn’t so. Sure, its propulsion system is different
from conventional cars, but it’s still a car and as such does the same things
that all cars do: convey you and your kin from one place to another. It has a
steering wheel, seats, a motor, brakes, and so on. I bet I could even drive one
without help.

I don’t have to clutter my limited storage with all the things that a hybrid card
has in common with other cars. All I have to remember is that “a hybrid car
is a car that. . . .” and tack on those few things that are unique to a hybrid.
Cars are a subclass of wheeled vehicles, of which there are other members,
such as trucks and pickups. Maybe wheeled vehicles are a subclass of vehi-
cles, which includes boats and planes. And on and on and on.

Why Build Objects This Way?
It may seem easier to design and build a microwave oven specifically for
this one problem, rather than to build a separate, more generic oven object.
Suppose, for example, that I were to build a microwave to cook nachos and
nachos only. I wouldn’t need to put a front panel on it, other than a START
button. I always cook nachos the same amount of time. I could dispense with
all that DEFROST and TEMP COOK nonsense. The microwave could be tiny. It
would need to hold only one fat, little plate. The cubic feet of space would be
completely wasted on nachos.

29_617977-ch21.indd 25629_617977-ch21.indd 256 7/6/10 11:48 PM7/6/10 11:48 PM

257 Chapter 21: What Is Object-Oriented Programming?

For that matter, suppose I just dispense with the concept of “microwave
oven” altogether. All I really need is the guts of the oven. Then in the recipe, I
can put the instructions to make it work: “Put nachos in the box. Connect the
red wire to the black wire. Notice a slight hum. Don’t stand too close if you
intend to have children.” Stuff like that.

Nevertheless, the functional approach does have some problems:

 ✓ Too complex. You don’t want the details of oven building mixed in with
the details of nacho building. If you can’t define the objects and pull
them out of the morass of details to deal with separately, you must deal
with all the complexities of the problem at the same time.

 ✓ Not flexible. If you need to replace the microwave oven with some other
type of oven, you should be able to do so as long as the interface to the
new oven is about the same as the old one. Without a simple and clearly
delineated interface, it becomes impossible to cleanly remove an object
type and replace it with another.

 ✓ Not reusable. Ovens are used to make many different dishes. You don’t
want to create a new oven each time you encounter a new recipe. Having
solved a problem once, it would be nice to reuse the solution in future
programs.

It does cost more to write a generic object. It would be cheaper to build a
microwave made specifically for nachos. You could dispense with expensive
timers, buttons, and the like that aren’t needed to make nachos. After you
have used a generic object in more than one application, however, the costs
of a slightly more expensive class more than outweigh the repeated costs of
building cheaper, less flexible classes for every new application.

Self-Contained Classes
Now, it’s time to reflect on what you’ve learned. In an object-oriented
approach to programming:

 ✓ The programmer identifies the classes necessary to solve the prob-
lem. (I knew right off that I was going to need an oven to make decent
nachos.)

 ✓ The programmer creates self-contained classes that fit the requirements
of the problem and doesn’t worry about the details of the overall
application.

 ✓ The programmer writes the application using the classes just created
without thinking about how they work internally.

29_617977-ch21.indd 25729_617977-ch21.indd 257 7/6/10 11:48 PM7/6/10 11:48 PM

258 Part V: Object-Oriented Programming

An integral part of this programming model is that each class is responsible
for itself. A class should be in a defined state at all times. It should not be
possible to crash the program by calling a class with illegal data or with an
illegal sequence of correct data.

Many of the features of C++ that are shown in subsequent chapters deal with
giving the class the capability to protect itself from errant programs just wait-
ing to trip it up.

29_617977-ch21.indd 25829_617977-ch21.indd 258 7/6/10 11:48 PM7/6/10 11:48 PM

Chapter 22

Structured Play: Making
Classes Do Things

In This Chapter
▶ Adding member functions to a class

▶ Defining the member function

▶ Invoking the member function

▶ Accessing one member from another member

▶ Overloading member functions

Classes were introduced to the C language as a convenient way to group
unalike but related data elements — for example, the Social Security

number and name of the same person. That’s the way I introduce them in
Chapter 19. C++ expanded the concept of classes to give them the ability to
mimic objects in the real world. That’s the essence of the difference between
C and C++.

In the previous chapter, I review at a high level the concept of object-oriented
programming. In this chapter, I make it more concrete by examining the active
features of a class that allow them to better mimic the object-oriented world
we live in.

Activating Our Objects
C++ uses classes to simulate real-world objects. However, the classes in
Chapter 19 are lacking in that regard because classes do things. (The classes
in Chapter 19 don’t have any verbs associated with them — they don’t
do anything.) Consider for example, a savings account. It is necessary for
a Savings class to save the owner’s name, probably her Social Security
number, certainly her account number and balance. But this isn’t sufficient.

30_617977-ch22.indd 25930_617977-ch22.indd 259 7/6/10 11:49 PM7/6/10 11:49 PM

260 Part V: Object-Oriented Programming

Objects in the real world do things. Ovens cook. Savings accounts accumu-
late interest. CDs charge a substantial penalty for early withdrawal. Stuff
like that.

Consider the problem of handling deposits in a Savings account class.
Functional programs do things via functions. Thus, a function program might
create a separate function that takes as its argument a pointer to a Savings
account object that it wants to update followed by the amount to deposit.

 Never mind for now exactly how to pass a pointer to a Savings account
object. You’ll see more about that in the next chapter.

But that’s not the way that savings accounts work in the real world. When
I drive up to the bank window and tell them I want to make a deposit to my
savings account, the teller doesn’t hand me a ledger into which I note the
deposit and write the new balance. She doesn’t do it herself either. Instead,
she types in the amount of the deposit at some terminal and then places that
amount in the till. The machine spits out a deposit slip with the new balance
on it that she hands me, and it’s all done. Neither of us touches the bank’s
books directly.

This may seem like a silly exercise but consider why the bank doesn’t do
things “the functional way.” Ignore for a minute the temptation I might have
to add a few extra zeros to the end of my deposit before adding it up. The
bank doesn’t do things this way for the same reason that I don’t energize my
microwave oven by connecting and disconnecting wires inside the box — the
bank wants to maintain tight controls on what happens to its balances.

If something screws up and my savings account balance gets incremented
by a million dollars or so (“My gosh, how did that happen?”), the bank has a
vested interest in being able to figure out exactly what happened and make
sure that it doesn’t happen again. A simple arithmetic error made by me or
the teller is not sufficient justification for a mistake like that. The bank has a
legal and fiduciary responsibility for maintaining its accounts in good order.
It can’t do that if every person who sallies up to the teller window has direct
access to the books.

This care extends to programmers as well. You can rest easy at night know-
ing that not every programmer gets direct access to the bank balances either.
Only the most trusted of programmers get to write the code that increments
and decrements bank balances.

I use the term “trusted” here in two senses. First, the bank trusts these indi-
viduals not to intentionally steal. However, the bank also trusts these pro-
grammers to take all of the necessary process steps to fully vet and test the
deposit() and withdraw() functions to make sure that they are bug-free
and implement the bank’s rules accurately.

30_617977-ch22.indd 26030_617977-ch22.indd 260 7/6/10 11:49 PM7/6/10 11:49 PM

261 Chapter 22: Structured Play: Making Classes Do Things

To make the Savings class mimic a real-world savings account, it needs
active properties of its own, like deposit() and withdrawal() (and
chargePenalty() for who knows why, in my case). Only in this way can a
Savings class be held responsible for its state.

Creating a Member Function
A function that is part of a class definition is known as a member function. The
data within the class is known as data members. Member functions are the
verbs of the class, whereas data members are the nouns.

 Member functions are also known as methods because that’s what they were
called in the original object-oriented language, Smalltalk. The term methods
had meaning to Smalltalk, but it has no special meaning in C++, except that
it’s easier to say and sounds more impressive in a conversation. I’ll try not to
bore you with this trivia, but you will hear the term method bandied about at
object-oriented parties, so you might as well get used to it. I’ll try to stick with
the term member functions, but even I slip into technical jargon from time
to time.

Note: Functions that you have seen so far that are not members of a class
don’t have a special name. I refer to them as non-member functions when I
need to differentiate them from their member cousins.

There are three aspects to adding a member function to a class: defining the
function, naming the function, and calling the function. Sounds pretty obvi-
ous when you say it that way.

Defining a member function
 The following class demonstrates how to define two key member functions,

deposit() and withdraw(), in a class Savings account:

// Savings - a simple savings account class
class Savings
{
 public:
 int nAccountNumber;
 double dBalance;

 // deposit - deposit an amount to the balance;
 // deposits must be positive number; return
 // the resulting balance or zero on error
 double deposit(double dAmount)

30_617977-ch22.indd 26130_617977-ch22.indd 261 7/6/10 11:49 PM7/6/10 11:49 PM

262 Part V: Object-Oriented Programming

 {
 // no negative deposits - that’s a withdrawal
 if (dAmount < 0)
 {
 return 0.0;
 }

 // okay - add to the balance and return the total
 dBalance += dAmount;
 return dBalance;
 }

 // withdraw - execute a withdrawal if sufficient funds
 // are available
 double withdraw(double dAmount)
 {
 if (dBalance < dAmount)
 {
 return 0.0;
 }

 dBalance -= dAmount;
 return dBalance;
 }
};

 A real savings account class would have a lot of other information like the
customer’s name. Adding that extra stuff doesn’t help explain the concepts,
however, so I’ve left it off to keep the listings as short as possible.

You can see that the definition of the deposit() and withdraw() member
functions look just like those of any other function except that they appear
within the definition of the class itself. There are some other subtle differ-
ences that I address later in this chapter.

 It is possible to define a member function outside of the class, as you will see a
little later in this chapter.

Naming class members
A member function is a lot like a member of a family. The full name of
the deposit function is Savings::deposit(double) just like my name
is Stephen Davis. My mother doesn’t call me that unless I’m in trouble.
Normally, members of my family just call me by my first name, Stephen.

30_617977-ch22.indd 26230_617977-ch22.indd 262 7/6/10 11:49 PM7/6/10 11:49 PM

263 Chapter 22: Structured Play: Making Classes Do Things

Similarly, from within the Savings class, the deposit function is known
simply as deposit(double).

The class name at the beginning indicates that this is a reference to the
deposit() function that is a member of the class Savings. The :: is simply
a separator between the class name and the member name. The name of the
class is part of the extended name of the member function just like Stephen
Davis is my extended name. (See Chapter 11 if you don’t remember about
extended names.)

 Classes are normally named using nouns that describe concepts like Savings
or SavingsAccount. Member functions are normally named with the associ-
ated verbs like deposit() or withdraw(). Other than that, member func-
tions follow the same naming convention as other functions. Data members
are normally named using nouns that describe specific properties like szName
or nSocialSecurityNumber.

You can define a different deposit() function that has nothing to do with
the Savings class — there are Stephens out there who have nothing to do
with my family. (I mean this literally: I know several Stephens who want noth-
ing to do with my family.) For example, Checking::deposit(double)
or River::deposit() are easily distinguishable from
Savings::deposit(double).

 A non-member function can appear with a null class name. For example, if
there were a deposit function that was not a member of any class, its name
would be ::deposit() or simply deposit().

Calling a member function
Before I show you how to invoke a member function, let me quickly refresh
you on how to access a data member of an object. Given the earlier definition
of the Savings class, you could write the following:

void fn()
{
 Savings s;

 s.nAccountNumber = 0;
 s.dBalance = 0.0;
}

The function fn() creates a Savings object s and then zeros the data mem-
bers nAccountNumber and dBalance of that object.

30_617977-ch22.indd 26330_617977-ch22.indd 263 7/6/10 11:49 PM7/6/10 11:49 PM

264 Part V: Object-Oriented Programming

Notice that the following does not make sense:

void fn()
{
 Savings s1, s2;

 nAccountNumber = 0; // doesn’t work
 dBalance = 0.0;
}

Which nAccountNumber and dBalance are you talking about? The account
number and balance of s1 or s2. Or some other object entirely? A reference
to a data member makes sense only in the context of an object.

Invoking a member function is the same. You must first create an object and
then you can invoke the member function on that object:

void fn()
{
 // create and initialize an object s
 Savings s = {0, 0.0};

 // now make a deposit of $100
 s.deposit(100.0);

 // or a withdrawal
 s.withdraw(50.0);
}

The syntax for calling a member function looks like a cross between the
syntax for accessing a data member and that used for calling functions. The
right side of the dot looks like a conventional function call, but an object
appears on the left side of the dot.

This syntax makes sense when you think about it. In the call s.deposit(), s
is the savings object to which the deposit() is to be made. You can’t make
a deposit without knowing to which account. Calling a member function with-
out an object makes no more sense than referencing a data member without
an object.

Accessing other members from
within a member function
I can see it now: You repeat to yourself, “You can’t access a member without
reference to an object. You can’t access a member without reference to an
object. You can’t. . . .” And then, wham, it hits you. Savings::deposit()
appears to do exactly that:

30_617977-ch22.indd 26430_617977-ch22.indd 264 7/6/10 11:49 PM7/6/10 11:49 PM

265 Chapter 22: Structured Play: Making Classes Do Things

double deposit(double dAmount)
{
 // no negative deposits - that’s a withdrawal
 if (dAmount < 0)
 {
 return 0.0;
 }

 // okay - add to the balance and return the total
 dBalance += dAmount;
 return dBalance;
}

The Savings::deposit() function references dBalance without an
explicit reference to any object. It’s like that TV show: “How Do They Do It?”

 So, okay, which is it? Can you or can you not reference a member without an
object? Believe me, the answer is no. When you reference one member from
within another member of the same class without explicitly referring to an
object, the reference is implicitly against the “current object.”

What is the current object? Go back and look at the example in greater detail.
I am pulling out just the key elements of the example here for brevity’s sake:

class Savings
{
 public:
 int nAccountNumber;
 double dBalance;

 double deposit(double dAmount)
 {
 dBalance += dAmount;
 return dBalance;
 }
};

void fn()
{
 // create and initialize two objects
 Savings s1 = {0, 0.0};
 Savings s2 = {1, 0.0};

 // now make a deposit of $100 to one account
 s1.deposit(100.0);

 // and then the other
 s2.deposit(50.0);
}

30_617977-ch22.indd 26530_617977-ch22.indd 265 7/6/10 11:49 PM7/6/10 11:49 PM

266 Part V: Object-Oriented Programming

When deposit() is invoked with s1, the unqualified reference to
dBalance refers to s1.dBalance. At that moment in time, s1 is the
“current object.” During the call to s2.deposit(50.0), s2 becomes the
current object. During this call, the unqualified reference to dBalance
refers to s2.dBalance.

 The “current object” has a name. It’s called this as in “this object.” Clever,
no? Its type is “pointer to an object of the current class.” I say more about this
in Chapter 23 when I talk about pointers to objects.

Keeping a Member Function after Class
One of the things that I don’t like about C++ is that it provides multiple
ways of doing most things. Keeping with that penchant for flexibility, C++
allows you to define member functions outside the class as long as they are
declared within the class.

The following is an example of the withdraw() function written outside the
class declaration (once again, I’ve left out the error checking to make the
example as short as possible):

// this part normally goes in the Savings.h include file
class Savings
{
 public:
 int nAccountNumber;
 double dBalance;

 double deposit(double dAmount);
};

// this part appears in a separate Savings.cpp file
double Savings::deposit(double dAmount)
{
 dBalance += dAmount;
 return dBalance;
}

Now the definition of Savings contains nothing more than the prototype
declaration of the member function deposit(). The actual definition of the
function appears later. Notice, however, that when it does appear, it appears
with its full extended name, including the class name — there is no default
class name outside of the class definition.

30_617977-ch22.indd 26630_617977-ch22.indd 266 7/6/10 11:49 PM7/6/10 11:49 PM

267 Chapter 22: Structured Play: Making Classes Do Things

This form is ideal for larger member functions. In these cases, the number of
lines of code within the member functions can get so large that it obscures
the definition of the class itself. In addition, this form is useful when defin-
ing classes in their own C++ source modules. The definition of the class can
appear in an include file, Savings.h, while the definition of the function
appears in a separately compiled Savings.cpp.

Overloading Member Functions
You can overload member functions just like you overload any other func-
tions. Remember, however, that the class name is part of the extended name.
That means that the following is completely legal:

class Student
{
 public:
 double grade(); // return Student’s grade
 double grade(double dNewGPA); // set Student’s grade
};

class Hill
{
 public:
 double grade(double dSlope); // set the slope
};
 void grade(double);

void fn()
{
 Student s;
 Hill h;

 // set the student’s grade
 s.grade(3.0);

 // now query the grade
 double dGPA = s.grade();

 // now grade a hill to 3 degrees slope
 h.grade(3.0);

 // call the non-member function
 grade(3.0);
}

30_617977-ch22.indd 26730_617977-ch22.indd 267 7/6/10 11:49 PM7/6/10 11:49 PM

268 Part V: Object-Oriented Programming

When calling a member function, the type of the object is just as important as
the number and type of the arguments. The first call to grade() invokes the
function Student::grade(double) to set the student’s grade point aver-
age. The second call is to Student::grade(), which returns the student’s
grade point average without changing it.

The third call is to a completely unrelated function, Hill::grade(double),
that sets the slope on the side of the hill. And the final call is to the non-
member function ::grade(double).

30_617977-ch22.indd 26830_617977-ch22.indd 268 7/6/10 11:49 PM7/6/10 11:49 PM

Chapter 23

Pointers to Objects
In This Chapter
▶ Adding member functions to a class

▶ Defining the member function

▶ Invoking the member function

▶ Accessing one member from another member

▶ Overloading member functions

Chapters 17 and 18 focus on various aspects of the care and feeding of
pointers. Surely, you think, nothing more can be said on the subject. But

I hadn’t introduced the concept classes before those chapters. In this chap-
ter, I describe the intersection of pointer variables and object-oriented pro-
gramming. This chapter deals with the concept of pointers to class objects.
I’ll describe how to create one, how to use it, and how to delete it once you’re
finished with it.

Pointers to Objects
A pointer to a programmer-defined type such as a class works essentially the
same as a pointer to an intrinsic type:

int nInt;
int* pInt = &nInt;

class Savings
{
 public:
 int nAccountNumber;
 double dBalance;
};
Savings s;
Savings* pS = &s;

31_617977-ch23.indd 26931_617977-ch23.indd 269 7/6/10 11:49 PM7/6/10 11:49 PM

270 Part V: Object-Oriented Programming

The first pair of declarations defines an integer, nInt, and a pointer to an
integer, pInt. The pointer pInt is initialized to point to the integer nInt.

Similarly, the second pair of declarations creates a Savings object s. It then
declares a pointer to a Savings object, pS, and initializes it to the address of s.

The type of pS is “pointer to Savings” which is written Savings*.

I feel like the late Billy Mays when I say, “But wait! There’s more!” The similar-
ities continue. The following statement assigns the value 1 to the int pointed
at by pInt:

*pInt = 1;

Similarly, the following assigns values to the account number and balance of
the Savings object pointed at by pS.

(*pS).nAccountNumber = 1234;
(*pS).dBalance = 0.0;

 The parentheses are required because the precedence of . is higher than *.
Without the parentheses, *pS.nAccountNumber = 1234 would be inter-
preted as *(pS.nAccountNumber) = 1234, which means “store 1234 at
the location pointed at by pS.nAccountNumber.” This generates a compiler
error because nAccountNumber isn’t a pointer (nor is pS a Savings).

 Arrow syntax
The only thing that I can figure is that the authors of the C language couldn’t
type very well. They wasted no efforts in finding shorthand ways of saying
things. Here is another case where they made up a shorthand to save key-
strokes, inventing a new operator -> to stand for *():

pS->dBalance = 0.0; // same as (*pS).dBalance = 0.0

Even though the two are equivalent, the arrow operator is used almost exclu-
sively because it’s easier to read (and type). Don’t lose sight of the fact, how-
ever, that the two forms are completely equivalent.

31_617977-ch23.indd 27031_617977-ch23.indd 270 7/6/10 11:49 PM7/6/10 11:49 PM

271 Chapter 23: Pointers to Objects

Calling all member functions
The syntax for invoking a member function with a pointer is similar to access-
ing a data member:

class Savings
{
 public:
 int nAccountNumber;
 double dBalance;

 double withdraw(double dAmount);
 double deposit(double dAmount);
};

void fn()
{
 Savings s = {1234, 0.0};
 Savings* pS = &s;

 // deposit money into the account pointed at by pS
 pS->deposit(100.0);
}

The last statement in this snippet says “invoke the deposit() member func-
tion on the object pointed at by pS.”

Passing Objects to Functions
Passing pointers to functions is just one of the many ways to entertain your-
self with pointers.

Calling a function with an object value
As you know, C++ passes arguments to functions by value by default. If you
don’t know that, refer to Chapter 11. Complex, user-defined objects are
passed by value as well:

class Savings
{
 public:
 int nAccountNumber;
 double dBalance;

 double withdraw(double dAmount);
 double deposit(double dAmount);

31_617977-ch23.indd 27131_617977-ch23.indd 271 7/6/10 11:49 PM7/6/10 11:49 PM

272 Part V: Object-Oriented Programming

};

void someOtherFunction(Savings s)
{
 s.deposit(100.0);
}

void someFunction()
{
 Savings s = {1234, 0.0};

 someOtherFunction(s);
}

Here the function someFunction() creates and initializes a Savings
object s. It then passes a copy of that object to someOtherFunction(). The
fact that it’s a copy is important for two reasons:

 ✓ Making copies of large objects can be very inefficient, causing your pro-
gram to run slower.

 ✓ Changes made to copies don’t have any effect on the original object in
the calling function.

In this case, the second problem is much worse than the former. I can stand a
little bit of inefficiency since a Savings object isn’t very big anyway, but the
deposit made in someOtherFunction() got booked against a copy of the
original account. My Savings account back in someFunction() still has a
balance of zero. This is shown graphically in Figure 23-1.

Calling a function with an object pointer
The programmer can pass the address of an object rather than the object
itself as demonstrated in the following example:

class Savings
{
 public:
 int nAccountNumber;
 double dBalance;

 double withdraw(double dAmount);
 double deposit(double dAmount);

31_617977-ch23.indd 27231_617977-ch23.indd 272 7/6/10 11:49 PM7/6/10 11:49 PM

273 Chapter 23: Pointers to Objects

};

void someOtherFunction(Savings* pS)
{
 pS->deposit(100.0);
}

void someFunction()
{
 Savings s = {1234, 0.0};

 someOtherFunction(&s);
}

The type of the argument to someOtherFunction() is “pointer to
Savings.” This is reflected in the way that someFunction() performs the
call, passing not the object s but the address of the object, &s. This is shown
graphically in Figure 23-2.

Figure 23-1:
By default,

C++ passes
a copy
of the

Student
object s to

some
Other
Func-

tion().

1234s

Arguments to
someOtherfunc()

nAccountNumber

dBalance

someOtherFunc(s);

1234

0.0

0.0

31_617977-ch23.indd 27331_617977-ch23.indd 273 7/6/10 11:49 PM7/6/10 11:49 PM

274 Part V: Object-Oriented Programming

Figure 23-2:
By pass-

ing the
address of

the original
Savings
object, the

programmer
can avoid

creating
a copy of

the original
object.

1234s

Arguments to
someOtherfunc()

nAccountNumber

dBalance

someOtherFunc(&s);

0.0

&s

This addresses both of the problems with passing a copy:

 ✓ No matter how large and complicated the object might be, the call
passes only a single address.

 ✓ Changes made in someOtherFunction() are permanent because they
refer to the original object and not a copy.

Looking at an example
 The following program demonstrates the difference between passing an object

by value versus passing the address of an object:

//
// PassObjects - this program demonstrates passing an
// object by value versus passing the
// address of the object
//
#include <cstdio>

31_617977-ch23.indd 27431_617977-ch23.indd 274 7/6/10 11:49 PM7/6/10 11:49 PM

275 Chapter 23: Pointers to Objects

#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

// Savings - a simple savings account class
class Savings
{
 public:
 int nAccountNumber;
 double dBalance;

 // deposit - deposit an amount to the balance;
 // deposits must be positive number; return
 // the resulting balance or zero on error
 double deposit(double dAmount)
 {
 // no negative deposits - that’s a withdrawal
 if (dAmount < 0)
 {
 return 0.0;
 }

 // okay - add to the balance and return the total
 dBalance += dAmount;
 return dBalance;
 }

 // withdraw - execute a withdrawal if sufficient funds
 // are available
 double withdraw(double dAmount)
 {
 if (dBalance < dAmount)
 {
 return 0.0;
 }

 dBalance -= dAmount;
 return dBalance;
 }

 // balance - return the balance of the current object
 double balance()
 {
 return dBalance;
 }
};

// someFunction(Savings) - accept object by value

31_617977-ch23.indd 27531_617977-ch23.indd 275 7/6/10 11:49 PM7/6/10 11:49 PM

276 Part V: Object-Oriented Programming

void someFunction(Savings s)
{
 cout << “In someFunction(Savings)” << endl;

 cout << “Depositing $100” << endl;
 s.deposit(100.0);

 cout << “Balance in someFunction(Savings) is “
 << s.balance() << endl;
}

// someFunction(Savings*) - accept address of object
void someFunction(Savings* pS)
{
 cout << “In someFunction(Savings*)” << endl;

 cout << “Depositing $100” << endl;
 pS->deposit(100.0);

 cout << “Balance in someFunction(Savings) is “
 << pS->balance() << endl;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 Savings s = {0, 0.0};

 // first, pass by value
 someFunction(s);
 cout << “Balance back in main() is “
 << s.balance() << endl;

 // now pass the address
 someFunction(&s);
 cout << “Balance back in main() is “
 << s.balance() << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

This program starts by defining a conventional Savings class with
deposit(), withdrawal(), and balance() member functions (the last
one just returns the current balance).

The program then defines two overloaded functions someFunction(), one
of which accepts as its argument an object of type Savings and the second a
pointer to an object of type Savings (written Savings*). Both functions do
the same things, first outputting a “Here I am” message and then depositing
$100 to the account.

31_617977-ch23.indd 27631_617977-ch23.indd 276 7/6/10 11:49 PM7/6/10 11:49 PM

277 Chapter 23: Pointers to Objects

The main() program creates a Savings object s, which it first passes to
someFunction(Savings). It then passes the address of the s object to
someFunction(Savings*).

The output from this program appears as follows:

In someFunction(Savings)
Depositing $100
Balance in someFunction(Savings) is 100
Balance back in main() is 0
In someFunction(Savings*)
Depositing $100
Balance in someFunction(Savings) is 100
Balance back in main() is 100
Press any key to continue . . .

Passing by reference
In an attempt to make things simpler, C++ added a level of complexity by allowing the programmer
to declare a function that accepts its argument by reference as follows:

// pass by reference
void someFunction(Savings& refS)
{
 refS.deposit(100.0); // this deposits back into the original
 // object in fn() even though it looks
 // copy semantics
}
void fn()
{
 Savings s;
 someFunction(s); // this passes a reference, not a copy
}

This causes C++ to pass the address of s to the function someFunction(Savings). Within
the function, C++ automatically dereferences the address for you. The effect is exactly the same
as if you had passed the address yourself except that C++ handles the pointer grammar. You
might think that this makes things simpler. (I suspect the authors of C++ thought it would.) In prac-
tice, however, it makes things more complicated since it becomes difficult to tell a value from a
reference.

I mention pass by reference not to encourage its use, but because you are likely to see others that
aren’t as comfortable as you with pointer manipulation using it. I would encourage you to avoid use
of references until you are really comfortable with pointers.

31_617977-ch23.indd 27731_617977-ch23.indd 277 7/6/10 11:49 PM7/6/10 11:49 PM

278 Part V: Object-Oriented Programming

Notice how both functions deposit $100 into a Savings account object.
However, since someFunction(Savings) makes the deposit into a copy,
the original s object back in main() is left unchanged as demonstrated by
the zero balance.

By passing the address of s to someFunction(Savings*), the program
allows that function to modify the original object so the value “stays modi-
fied” in main() as demonstrated by the fact that the balance is $100 after
control returns.

Allocating Objects off the Heap
You can allocate objects off of the heap using the new keyword as shown in
the following example:

Savings* newSavings(int nAccountNum)
{
 Savings* pS = new Savings;
 pS->nAccountNumber = nAccountNum;
 pS->dBalance = 0.0;
 return pS;
}

The function allocates a new object of class Savings and then initializes it
with the account number passed as an argument and a zero balance.

This is useful when you don’t know how many objects you are going to need,
like in the case of dynamically sized character arrays in Chapter 18. Then, I
first counted how many characters I needed room for and then allocated an
array of the appropriate size off of the heap.

In this case, I can determine how many Savings accounts I need in memory
at one time and allocate them dynamically off of the heap.

 Of course, there is the little matter of how do you store an unknown quantity
of objects. C++ provides several variable-sized data structures in addition to
the fixed-sized array as part of the Standard Template Library. A general dis-
cussion of the STL is beyond the scope of a beginner book

 You must return every object that you allocate off of the heap by passing the
unmodified address of that object to the keyword delete. Otherwise, your
program will slowly run out of memory and die a horrible death.

31_617977-ch23.indd 27831_617977-ch23.indd 278 7/6/10 11:49 PM7/6/10 11:49 PM

279 Chapter 23: Pointers to Objects

What is this anyway?
In Chapter 22, I mention that an otherwise unqualified reference to a member made from within
a member function always refers to the “current object.” I even mention that the current object
has a name: this. You can reference this explicitly. I could have written the Savings class
as follows:

class Savings
{
 public:
 int nAccountNumber;
 double dBalance;

 double withdraw(double dAmount)
 {
 this->dBalance -= dAmount;
 return this->dBalance;
 }
 double deposit(double dAmount)
 {
 this->dBalance += dAmount;
 return this->dBalance;
 }
 double balance()
 {
 return this->dBalance;
 }
}

In fact, even without explicitly referring to it, you use this all the time. If you don’t specify an
object within a member function, C++ assumes a reference to this. Thus, the preceding is what
C++ actually “sees” even if you don’t mention this.

31_617977-ch23.indd 27931_617977-ch23.indd 279 7/6/10 11:49 PM7/6/10 11:49 PM

280 Part V: Object-Oriented Programming

31_617977-ch23.indd 28031_617977-ch23.indd 280 7/6/10 11:49 PM7/6/10 11:49 PM

Chapter 24

Do Not Disturb: Protected
Members

In This Chapter
▶ Protecting members of a class

▶ Why do that?

▶ Declaring friends of the class

My goal with this part of the book, starting with Chapter 21, has been to
model real-world objects in C++ using the class structure. In Chapter 22, I

introduce the concept of member functions in order to assign classes’ active
properties. Returning to the microwave oven example in Chapter 21, assign-
ing active properties allows me to give my Oven class properties like cook()
and defrost().

However, that’s only part of the story. I still haven’t put a box around the
insides of my classes. I can’t very well hold someone responsible if the micro-
wave catches on fire as long as the insides are exposed to anyone who wants
to mess with them.

This chapter “puts a box” around the classes by declaring certain members
off limits to user functions.

Protecting Members
Members of a class can be flagged as inaccessible from outside the class with
the keyword protected. This is in direct opposition to the public key-
word, which designates those members that are accessible to all functions.
The public members of a class form the interface to the class (think of the
keypad on the front of the microwave oven) while the protected members
form the inner workings.

32_617977-ch24.indd 28132_617977-ch24.indd 281 7/6/10 11:50 PM7/6/10 11:50 PM

282 Part V: Object-Oriented Programming

 There is a third category called private. The only difference between private
and protected members is the way they react to inheritance, which I don’t
present until Chapter 28.

Why you need protected members
Declaring a member protected allows a class to put a protective box
around the class. This makes the class responsible for its own internal state.
If something in the class gets screwed up, the class, rather the author of the
class, has nowhere to look except herself. It’s not fair, however, to ask the
programmer to take responsibility for the state of the class if any ol’ function
can reach in and muck with it.

In addition, limiting the interface to a class makes the class easier to learn
for programmers that use that interface in their programs. In general, I don’t
really care how my microwave works inside as long as I know how to use the
controls. In a similar fashion, I don’t generally worry about the inner work-
ings of library classes as long as I understand the arguments to the public
member functions.

Finally, limiting the class interface to just some choice public functions
reduces the level of coupling between the class and the application code.

Note: Coupling refers to how much knowledge the application has of how
the class works internally and vice versa. A tightly coupled class has inti-
mate knowledge of the surrounding application and uses that knowledge. A
loosely coupled class works only through a simple, generic public interface.
A loosely coupled class knows little about its surroundings and hides most of
its own internal details as well. Loosely coupled classes are easier to test and
debug and easier to replace when the application changes.

I know what you functional types out there are saying: “You don’t need some
fancy feature to do all that. Just make a rule that says certain members are
publicly accessible and others are not.” This is true in theory, and I’ve even
been on projects that employed such rules, but in practice it doesn’t work.
People start out with good intentions, but as long as the language doesn’t at
least discourage direct access of protected members, these good intentions
get crushed under the pressure to get the product out the door.

Making members protected
Adding the keyword public: to a class makes subsequent members publicly
accessible. Adding the keyword protected: makes subsequent members

32_617977-ch24.indd 28232_617977-ch24.indd 282 7/6/10 11:50 PM7/6/10 11:50 PM

283 Chapter 24: Do Not Disturb: Protected Members

protected, which means they are accessible only to other members of the
same class or functions that are specifically declared friends (more on that
later in this chapter). They act as toggles — one overrides the other. You can
switch back and forth between protected and public as often as you like.

Take, for example, a class Student that describes the salient features of a
college student. This class has the following public member functions:

 ✓ addGrade(int nHours, double dGrade) — add a grade to the
student.

 ✓ grade() — return the student’s grade point average (GPA).

 ✓ hours() — return the number of semester hours toward graduation.

The remaining members of Student should be declared protected to keep
prying expressions out of his business.

 The following SimpleStudent program defines such a Student class and
includes a simple main() that exercises the functions:

//
// SimpleStudent - this program demonstrates how the
// protected keyword is used to protect
// key internal members
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 protected:
 double dGrade; // the student’s GPA
 int nSemesterHours;

 public:
 // init() - initialize the student to a legal state
 void init()
 {
 dGrade = 0.0;
 nSemesterHours = 0;
 }

 // getGrade() - return the current grade
 double getGrade()
 {
 return dGrade;

32_617977-ch24.indd 28332_617977-ch24.indd 283 7/6/10 11:50 PM7/6/10 11:50 PM

284 Part V: Object-Oriented Programming

 }

 // getHours() - get the class hours towards graduation
 int getHours()
 {
 return nSemesterHours;
 }

 // addGrade - add a grade to the GPA and total hours
 double addGrade(double dNewGrade, int nHours)
 {
 double dWtdHrs = dGrade * nSemesterHours;
 dWtdHrs += dNewGrade * nHours;
 nSemesterHours += nHours;
 dGrade = dWtdHrs / nSemesterHours;
 return dGrade;
 }
};

int main(int nNumberofArgs, char* pszArgs[])
{
 // create a student and initialize it
 Student s;
 s.init();

 // add the grades for three classes
 s.addGrade(3.0, 3); // a B
 s.addGrade(4.0, 3); // an A
 s.addGrade(2.0, 3); // a C (average should be a B)

 // now print the results
 cout << “Total # hours = “ << s.getHours()
 << “, GPA = “ << s.getGrade()
 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

This Student protects its members dGrade and nSemesterHours. Outside
functions can’t surreptitiously set their own GPA high by slipping in the
following:

void MyFunction(Student* pS)
{
 // set my grade to A+
 pS->dGrade = 3.9; // generates a compiler error
}

This assignment generates a compiler error.

32_617977-ch24.indd 28432_617977-ch24.indd 284 7/6/10 11:50 PM7/6/10 11:50 PM

285 Chapter 24: Do Not Disturb: Protected Members

 You can start with either the protected or public members; it doesn’t matter.
In fact, you can switch back and forth as often as you like.

Any function can read a student’s GPA through the function getGrade().
This is known as an access function. However, though external functions can
read a value, they cannot change the value via this access function.

 An access function is also known as a getter function (as in “get the value”).
A function that sets the value is also known as a setter function.

The main() function in this program creates a Student object s. It cannot ini-
tialize s to some legal state since the data members are protected. Fortunately,
the Student class has provided an init() function for main() to call that
initializes the data members to their proper starting state.

After initializing s, main() calls addGrade() to add three different courses
and prints out the results using the access member functions. The results
appear as follows:

Total # hours = 9, GPA = 3
Press any key to continue . . .

So what?
So what’s the big deal? “Okay,” you say, “I see the point about not letting
other functions set the GPA to some arbitrary value, but is that it?” No. A
finer point lies behind this loose coupling. I chose to implement the algo-
rithms for calculating the GPA as simply as I possibly could. With no more
than five minutes’ thought, I can imagine at least three different ways I could
have chosen to store the grades and semester hours internally, each with
their own advantages and disadvantages.

For example, I could save off each grade along with the number of semester
hours in an internal array. This would allow the student to review the grades
that are going into his GPA.

The point is that the application programmer shouldn’t care. As long as the
member functions getGrade() and getHours() calculate the GPA and
total number of semester hours accurately, no application is going to care.

Now suppose the school changes the rules for how to calculate the GPA.
Suppose, for example, that it declares certain classes to be Pass/Fail, mean-
ing that you get credit toward graduation but the grade in the class doesn’t
go into the GPA calculation. This may require a total rewrite of the Student
class. That, in turn, would require modification to any functions that rely

32_617977-ch24.indd 28532_617977-ch24.indd 285 7/6/10 11:50 PM7/6/10 11:50 PM

286 Part V: Object-Oriented Programming

upon the way that the information is stored internally — that is, any func-
tions that have access to the protected members. However, functions that
limit themselves to the public members are unaffected by the change.

That is the true advantage of loose coupling: tolerance to change.

Who Needs Friends Anyway?
Occasionally, you need to give a non-member function access to the pro-
tected members of a class. You can do this by declaring the function to be a
friend. Declaring a function to be a friend means you don’t have to expose the
protected member to everyone by declaring it public.

It’s like giving your neighbor a key to check on your house during your vaca-
tion. Giving non–family members keys to the house is not normally a good
idea, but it beats the alternative of leaving the house unlocked.

The friend declaration appears in the class that contains the protected
member. The friend declaration consists of the keyword friend followed by
a prototype declaration. In the following example, the initialize() func-
tion is declared as a non-member. However, initialize() clearly needs
access to all the data members of the class, protected or not:

class Student
{
 friend void initialize(Student*);
 protected:
 double dGrade; // the student’s GPA
 int nSemesterHours;

 public:
 double grade();
 int hours();
 double addGrade(double dNewGrade, int nHours);
};

void initialize(Student* pS)
{
 pS->dGrade = 0.0;
 pS->nSemesterHours = 0;
}

32_617977-ch24.indd 28632_617977-ch24.indd 286 7/6/10 11:50 PM7/6/10 11:50 PM

287 Chapter 24: Do Not Disturb: Protected Members

A single function can be declared to be a friend of two different classes at
the same time. Although this may seem convenient, it tends to bind the two
classes together. However, sometimes the classes are bound together by
their very nature, as in the following teacher-student example:

class Student; // forward declaration
class Teacher
{
 friend void registration(Teacher*, Student*);
 protected:
 int noStudents;
 Student *pList[128];

 public:
 void assignGrades();
};

class Student
{
 friend void registration(Teacher*, Student*);
 protected:
 Teacher *pTeacher;
 int nSemesterHours;
 double dGrade;
};

In this example, the registration() function can reach into both the
Student object to set the pTeacher pointer and into the Teacher object to
add to the teacher’s list of students.

 Notice how the class Student first appears by itself with no body. This is
called a forward declaration and declares the intention of the programmer
to define a class Student somewhere within the module. This is a little bit
like the prototype declaration for a function. This is generally necessary only
when two or more classes reference each other; in this case, Teacher con-
tains a reference to Student and Student to Teacher.

Without the forward declaration to Student, the declaration within Teacher
of Student *pList[100] generates a compiler error because the compiler
doesn’t yet know what a Student is. Swap the order of the definitions, and
the declaration Teacher *pTeacher within Student generates a compiler
error because Teacher has not been defined yet.

The forward declaration solves the problem by informing the compiler to be
patient — a definition for this new class is coming very soon.

32_617977-ch24.indd 28732_617977-ch24.indd 287 7/6/10 11:50 PM7/6/10 11:50 PM

288 Part V: Object-Oriented Programming

A member of one class can be declared a friend of another class:

class Student;

class Teacher
{
 // ...other members...
 public:
 void assignGrade(Student*, int nHours, double dGrade);
};

class Student
{
 friend void Teacher::assignGrade(Student*,
 int, double);
 // ...other members...
};

An entire class can be declared a friend of another class. This has the effect
of making every member function of the class a friend. For example:

class Student;

class Teacher
{
 protected:
 int noStudents;
 Student* pList[128];

 public:
 void assignGrade(Student*, int nHours, double dGrade);
};

class Student
{
 friend class Teacher;

 // ...other members...
};

Now every member of Teacher can access the protected members of
Student (but not the other way around). Declaring one class to be a friend
of another binds the classes together inseparably.

32_617977-ch24.indd 28832_617977-ch24.indd 288 7/6/10 11:50 PM7/6/10 11:50 PM

Chapter 25

Getting Objects Off to a Good Start
In This Chapter
▶ Creating a constructor

▶ Examining limitations on how constructors are invoked

▶ Reviewing an example constructor

▶ Constructing data members

▶ Introducing the “not constructor” — the destructor

Normally an object is initialized when it is created as in the following:

double PI = 3.14159;

This is true of class objects as well:

class Student
{
 public:
 int nHours;
 double dGrade;
};

Student s = {0, 0.0};

However, this is no longer possible when the data elements are declared pro-
tected if the function that’s creating the objects is not a friend or member of
the class (which, in most cases it would not be).

Some other mechanism is required to initialize objects when they are cre-
ated, and that’s where the constructor comes in.

The Constructor
One approach to initializing objects with protected members would be to
create an init() member function that the application could call when the

33_617977-ch25.indd 28933_617977-ch25.indd 289 7/6/10 11:50 PM7/6/10 11:50 PM

290 Part V: Object-Oriented Programming

object is created. This init() function would initialize the object to some
legal starting point. In fact, that’s exactly what I do in Chapter 24.

This approach would work, but it doesn’t exactly fit the “microwave oven”
rules of object-oriented programming because it’s akin to building a micro-
wave oven that requires you to hit the Reset button before you could do
anything with it. It’s as if the manufacturer put some big disclaimer in the
manual: “DO NOT start any sequence of commands without FIRST depress-
ing the RESET button. Failure to do so may cause the oven to explode and kill
everyone in the vicinity or WORSE.” (What could be worse than that?)

Now I’m no lawyer, but even I know that putting a disclaimer like that in your
manual is not going to save your butt when you end up in court because
someone got cut with shrapnel from an exploding microwave, even though
you say very clearly to hit reset first.

Fortunately, C++ takes the responsibility for calling the initialization function
away from the applications programmer and calls the function automatically
whenever an object is created.

You could call this initialization function anything you want as long as there
is a rule for everyone to follow. (I’m kind of partial to init() myself, but
I didn’t get a vote.) The rule is that this initialization function is called a
constructor, and it has the same name as the name of the class.

Outfitted with a constructor, the Student class appears as follows:

class Student
{
 protected:
 int nSemesterHours;
 double dGrade;

 public:
 Student()
 {
 nSemesterHours = 0;
 dGrade = 0.0;
 }

 // ...other public member functions...
};
void fn()
{
 Student s; // create an object and invoke the
 // constructor on it
}

33_617977-ch25.indd 29033_617977-ch25.indd 290 7/6/10 11:50 PM7/6/10 11:50 PM

291 Chapter 25: Getting Objects Off to a Good Start

At the point of the declaration of s, C++ embeds a call to
Student::Student().

Notice that the constructor is called once for every object created. Thus, the
following declaration calls the constructor five times in a row:

void fn()
{
 Student s[5];
}

It first calls the constructor for s[0], then for s[1], and so forth.

Limitations on constructors
The constructor can only be invoked automatically by C++. You cannot call a
constructor like a normal member function. That is, you cannot do something
like the following:

void fn()
{
 Student s;

 // ...do stuff...

 // now reinitialize s back to its initial state
 s.Student(); // this doesn’t work
}

The constructor is not just any ol’ function.

In addition, the constructor has no return type, not even void. The default
constructor has no arguments either.

 The next chapter shows you how to declare and use a constructor with
arguments.

Finally, the constructor must be declared public, or else you will be able to
create objects only from within other member functions.

The constructor can call other functions. Thus, your constructor could
invoke a publicly available init() function that could then be used by
anyone to reset the object to its initial state.

33_617977-ch25.indd 29133_617977-ch25.indd 291 7/6/10 11:50 PM7/6/10 11:50 PM

292 Part V: Object-Oriented Programming

Can I see an example?
 The following StudentConstructor program looks a lot like the SimpleStudent

program from Chapter 24, except that this version includes a constructor that
outputs every time it’s creating an object. The interesting part to this program
is seeing the cases during which the constructor is invoked.

 I highly encourage you to single-step this program in the debugger using the
Step-Into debugger command from Chapter 20. Use the Step Into debugger
command near the declaration of the Student objects to step into the con-
structor automatically.

//
// StudentConstructor - this program demonstrates the use
// of a default constructor to initialize
// objects when they are created
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 protected:
 double dGrade; // the student’s GPA
 int nSemesterHours;

 public:
 // constructor - init the student to a legal state
 Student()
 {
 cout << “Constructing a Student object” << endl;
 dGrade = 0.0;
 nSemesterHours = 0;
 }

 // getGrade() - return the current grade
 double getGrade()
 {
 return dGrade;
 }

 // getHours() - get the class hours towards graduation
 int getHours()
 {
 return nSemesterHours;
 }

 // addGrade - add a grade to the GPA and total hours
 double addGrade(double dNewGrade, int nHours)
 {

33_617977-ch25.indd 29233_617977-ch25.indd 292 7/6/10 11:50 PM7/6/10 11:50 PM

293 Chapter 25: Getting Objects Off to a Good Start

 double dWtdHrs = dGrade * nSemesterHours;
 dWtdHrs += dNewGrade * nHours;
 nSemesterHours += nHours;
 dGrade = dWtdHrs / nSemesterHours;
 return dGrade;
 }
};

int main(int nNumberofArgs, char* pszArgs[])
{
 // create a student and initialize it
 cout << “Creating the Student s” << endl;
 Student s;

 // add the grades for three classes
 s.addGrade(3.0, 3); // a B
 s.addGrade(4.0, 3); // an A
 s.addGrade(2.0, 3); // a C (average should be a B)

 // now print the results
 cout << “Total # hours = “ << s.getHours()
 << “, GPA = “ << s.getGrade()
 << endl;

 // create an array of Students
 cout << “Create an array of 5 Students” << endl;
 Student sArray[5];

 // now allocate one off of the heap
 cout << “Allocating a Student from the heap” << endl;
 Student *pS = new Student;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

The output from this program appears as follows:

Creating the Student s
Constructing a Student object
Total # hours = 9, GPA = 3
Create an array of 5 Students
Constructing a Student object
Constructing a Student object
Constructing a Student object
Constructing a Student object
Constructing a Student object
Allocating a Student from the heap
Constructing a Student object
Press any key to continue . . .

33_617977-ch25.indd 29333_617977-ch25.indd 293 7/6/10 11:50 PM7/6/10 11:50 PM

294 Part V: Object-Oriented Programming

The Student class has been outfitted with a constructor that not only initial-
izes the number of semester hours and grade point average to zero but also
outputs a message to the console to announce that a Student object is being
created.

The main() program then simply creates Student objects in various ways:

 ✓ The first declaration creates a single Student object s resulting in C++
invoking the constructor.

 ✓ The second declaration creates an array of five Student objects. C++
calls the constructor five times, once for each object in the array.

 ✓ The program allocates a Student object from the heap. C++ invokes the
constructor again to initialize the object.

Constructing data members
The data members of a class are created at the same time as the object itself.
Consider the following simple class TutorPair consisting of a Student and
a Teacher:

class TutorPair
{
 protected:
 Student s;
 Teacher t;

 int nNumberOfMeetings;

 public:
 TutorPair()
 {
 nNumberOfMeetings = 0;
 }

 // ...other stuff...
};

It’s not the responsibility of the TutorPair class to initialize the member
Student or the member Teacher; these objects should be initialized by
constructors in their respective classes. The constructor for TutorPair is
responsible only for initializing the non-class members of the class.

Thus, when a TutorPair is created, C++ does the following (in the order
shown):

33_617977-ch25.indd 29433_617977-ch25.indd 294 7/6/10 11:50 PM7/6/10 11:50 PM

295 Chapter 25: Getting Objects Off to a Good Start

 ✓ It invokes the constructor for the Student s.

 ✓ It invokes the constructor for the Teacher t.

 ✓ It enters the constructor for TutorPair itself.

 The constructors for the data members are invoked in the order that they
appear in the class.

 The following TutorPairConstructor program demonstrates:

//
// TutorPairConstructor - this program demonstrates
// how data members are constructed automatically
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 protected:
 double dGrade; // the student’s GPA
 int nSemesterHours;

 public:
 // constructor - init the student to a legal state
 Student()
 {
 cout << “Constructing a Student object” << endl;
 dGrade = 0.0;
 nSemesterHours = 0;
 }
};

class Teacher
{
 public:
 // constructor - init the student to a legal state
 Teacher()
 {
 cout << “Constructing a Teacher object” << endl;
 }
};

class TutorPair
{
 protected:
 Student s;

33_617977-ch25.indd 29533_617977-ch25.indd 295 7/6/10 11:50 PM7/6/10 11:50 PM

296 Part V: Object-Oriented Programming

 Teacher t;

 int nNumberOfMeetings;

 public:
 TutorPair()
 {
 cout << “Constructing the TutorPair members”
 << endl;
 nNumberOfMeetings = 0;
 }
};

int main(int nNumberofArgs, char* pszArgs[])
{
 // create a TutorPair and initialize it
 cout << “Creating the TutorPair tp” << endl;
 TutorPair tp;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

The main() program does nothing more than output a message and then
creates an object tp of class TutorPair. This causes C++ to invoke the
constructor for TutorPair. However, before the first line of that function is
executed, C++ goes through the data members and constructs any objects
that it finds there.

 The first object C++ sees is the Student object s. This constructor outputs
the first message that you see on the output. The second object that C++
finds is the Teacher member t. This constructor generates the next line of
output.

With all the data members out of the way, C++ passes control to the body of
the TutorPair constructor that outputs the final line of output:

Creating the TutorPair tp
Constructing a Student object
Constructing a Teacher object
Constructing the TutorPair members
Press any key to continue . . .

33_617977-ch25.indd 29633_617977-ch25.indd 296 7/6/10 11:50 PM7/6/10 11:50 PM

297 Chapter 25: Getting Objects Off to a Good Start

Destructors
Just as objects are created, so they are destroyed. (I think there’s a Biblical
passage to that effect.) If a class can have a constructor to set things up, it
should also have a special member function to take the object apart and put
back any resources that the constructor may have allocated. This function is
known as the destructor.

A destructor has the name of the class preceded by a tilde (~). Like a con-
structor, the destructor has no return type (not even void), and it cannot be
invoked like a normal function.

 Technically, you can call the destructor explicitly: s.~Student(). However,
this is rarely done, and it’s needed only in advanced programming techniques,
such as allocating an object on a predetermined memory address.

 In logic, the tilde is sometimes used to mean “NOT” so the destructor is the
“NOT constructor.” Get it? Cute.

C++ automatically invokes the destructor in the following three cases:

 ✓ A local object is passed to the destructor when it goes out of scope.

 ✓ An object allocated off the heap is passed to the destructor when it is
passed to delete.

 ✓ A global object is passed to the destructor when the program terminates.

Looking at an example
 The following StudentDestructor program features a Student class that allo-

cates memory off of the heap in the constructor. Therefore, this class needs a
destructor to return that memory to the heap.

 Any class whose constructor allocates resources, in particular, a class that
allocates memory off of the heap, requires a destructor to put that memory
back.

The program creates a few objects within a function fn() and then allows
those objects to go out of scope and get destructed when the function
returns. The function returns a pointer to an object that fn() allocates off of
the heap. This object is returned to the heap back in main().

33_617977-ch25.indd 29733_617977-ch25.indd 297 7/6/10 11:50 PM7/6/10 11:50 PM

298 Part V: Object-Oriented Programming

//
// StudentDestructor - this program demonstrates the use
// of the destructor to return resources
// allocated by the constructor
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 protected:
 double* pdGrades;
 int* pnHours;

 public:
 // constructor - init the student to a legal state
 Student()
 {
 cout << “Constructing a Student object” << endl;
 pdGrades = new double[128];
 pnHours = new int[128];
 }
 ~Student()
 {
 cout << “Destructing a Student object” << endl;
 delete[] pdGrades;
 pdGrades = 0;

 delete[] pnHours;
 pnHours = 0;
 }
};

Student* fn()
{
 cout << “Entering fn()” << endl;

 // create a student and initialize it
 cout << “Creating the Student s” << endl;
 Student s;

 // create an array of Students
 cout << “Create an array of 5 Students” << endl;
 Student sArray[5];

 // now allocate one off of the heap
 cout << “Allocating a Student from the heap” << endl;

33_617977-ch25.indd 29833_617977-ch25.indd 298 7/6/10 11:50 PM7/6/10 11:50 PM

299 Chapter 25: Getting Objects Off to a Good Start

 Student *pS = new Student;

 cout << “Returning from fn()” << endl;
 return pS;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // now allocate one off of the heap
 Student *pS = fn();

 // delete the pointer returned by fn()
 cout << “Deleting the pointer returned by fn()”
 << endl;
 delete pS;
 pS = 0;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

The output from the program appears as follows:

Entering fn()
Creating the Student s
Constructing a Student object
Create an array of 5 Students
Constructing a Student object
Constructing a Student object
Constructing a Student object
Constructing a Student object
Constructing a Student object
Allocating a Student from the heap
Constructing a Student object
Returning from fn()
Destructing a Student object
Destructing a Student object
Destructing a Student object
Destructing a Student object
Destructing a Student object
Destructing a Student object
Deleting the pointer returned by fn()
Destructing a Student object
Press any key to continue . . .

The first message is from fn() itself as it displays an opening banner to let us
know that control has entered the function. The fn() function then creates

33_617977-ch25.indd 29933_617977-ch25.indd 299 7/6/10 11:50 PM7/6/10 11:50 PM

300 Part V: Object-Oriented Programming

an object s that causes the constructor to output a message. It then creates
an array of five Student objects, which causes five more messages from the
Student constructor. And finally fn() allocates one more Student object
from the heap using the new keyword.

The last thing fn() does before returning is output an exit banner message.
C++ automatically calls the destructor six times: five times for the elements of
the array and once for the s object created at the beginning of the function.

 You can’t tell from the output, but the objects are destructed in the reverse
order that they are constructed.

The destructor is not invoked for the object allocated off of the heap until
main() deletes the pointer returned by fn().

 A memory block allocated off of the heap does not go out of scope when the
pointer to it goes out of scope. It is the programmer’s responsibility to make
sure that the object is returned to the heap using the delete command.

 Return a pointer to a non-array with delete. Return an array using
delete[].

Destructing data members
Data members are also destructed automatically. Destruction occurs in the
reverse order to the order of construction: The body of the destructor is
invoked first, and then the destructor for each data member in the reverse
order that the data members were constructed.

 To demonstrate this, I added a destructor to the TutorPairConstructor pro-
gram. The entire listing is a bit lengthy to include here, but it is contained on
the enclosed CD-ROM as TutorPairDestructor. I include just the TutorPair
class here:

class TutorPair
{
 protected:
 Student s;
 Teacher t;

 int nNumberOfMeetings;

 public:

33_617977-ch25.indd 30033_617977-ch25.indd 300 7/6/10 11:50 PM7/6/10 11:50 PM

301 Chapter 25: Getting Objects Off to a Good Start

 TutorPair()
 {
 cout << “Constructing the TutorPair members”
 << endl;
 nNumberOfMeetings = 0;
 }
 ~TutorPair()
 {
 cout << “Destructing the TutorPair object”
 << endl;
 }
};

void fn()
{
 // create a TutorPair and initialize it
 cout << “Creating the TutorPair tp” << endl;
 TutorPair tp;

 cout << “Returning from fn()” << endl;
}

The output from this program appears as follows:

Creating the TutorPair tp
Constructing a Student object
Constructing a Teacher object
Constructing the TutorPair members
Returning from fn()
Destructing the TutorPair object
Destructing a Teacher object
Destructing a Student object
Press any key to continue . . .

This program creates the TutorPair object within the function fn(). The
messages from the constructors are identical to the TutorPairConstructor
program. The messages from the TutorPair destructor appear as control is
returning to main, and they appear in the exact reverse of the order of mes-
sages from the constructors, coming first from ~TutorPair itself, then from
~Teacher, and finally from ~Student.

33_617977-ch25.indd 30133_617977-ch25.indd 301 7/6/10 11:50 PM7/6/10 11:50 PM

302 Part V: Object-Oriented Programming

Static data members
A special type of data member that deserves separate mention is known as a class member or
static member because it is flagged with the keyword static:

class Student
{
 protected:
 static int nNumberOfStudents;
 int nSemesterHours;
 double dGrade;

 public:
 Student()
 {
 nSemesterHours = 0;
 dGrade = 0.0;

 // count how many Students
 nNumberOfStudents++;
 }
 ~Student()
 {
 nNumberOfStudents--;
 }
};

// allocate space for the static member; be sure to
// initialize it here (when the program starts) because
// the class constructor will not initialize it
int Student::nNumberOfStudents = 0;

Static members are a property of the class and not of each object. In this example, a single
variable Student::nNumberOfStudents is shared by all Student objects. This
example demonstrates exactly what such members are good for: In this case, nNumberOf
Students keeps a running count of the number of Student objects that currently exist.

Static members are initialized when the program starts. You can manipulate them from the con-
structor for each object — in this case, I increment the counter in the Student constructor and
decrement it in the destructor. In general, you do not want to initialize a static member in the class
constructor since it will get reinitialized every time an object is created.

33_617977-ch25.indd 30233_617977-ch25.indd 302 7/6/10 11:50 PM7/6/10 11:50 PM

Chapter 26

Making Constructive Arguments
In This Chapter
▶ Creating and invoking a constructor with arguments

▶ Overloading the constructor

▶ Constructing data members with arguments

▶ Looking forward to a new format of constructor in the 2009 standard

The Student class in Chapter 25 was extremely simple — almost unrea-
sonably so. After all, a student has a name and a student ID as well as a

grade point average and other miscellaneous data. I chose GPA as the data
to model in Chapter 25 because I knew how to initialize it without someone
telling me — I could just zero out this field. But I can’t just zero out the name
and ID fields; a no-named student with a null ID probably does not represent
a valid student. Somehow I need to pass arguments to the constructor to
tell it how to initialize fields that start out with a value that’s not otherwise
predictable.

Constructors with Arguments
C++ allows the program to define a constructor with arguments as shown
here:

class Student
{
 public:
 Student(const char* pszNewName, int nNewID)
 {
 int nLength = strlen(pszNewName) + 1;
 pszName = new char[nLength];
 strcpy(pszName, pszNewName);
 nID = nNewID;
 }

34_617977-ch26.indd 30334_617977-ch26.indd 303 7/6/10 11:51 PM7/6/10 11:51 PM

304 Part V: Object-Oriented Programming

 ~Student()
 {
 delete[] pszName;
 pszName = 0;
 }

 protected:
 char* pszName;
 int nID;
};

Here the arguments to the constructor are a pointer to an ASCIIZ string that
contains the name of the new student and the student’s ID. The constructor
first allocates space for the student’s name. It then copies the new name into
the pszName data member. Finally, it copies over the student ID.

 A destructor is required to return the memory to the heap once the object is
destroyed. Any class that allocates a resource like memory in the constructor
must return that memory in the destructor.

Remember, you can’t call a constructor like you call a function, so you have
to somehow associate the arguments to the constructor with the object when
it is declared. The following code snippets show how this is done:

void fn()
{
 // put arguments next to object normally
 Student s1(“Stephen Davis”, 1234);

 // or next to the class name when allocating
 // an object from the heap
 Student* pS2 = new Student(“Kinsey Davis”, 5678);
}

The arguments appear next to the object normally and next to the class name
when allocating an object off of the heap.

Looking at an example
 The following NamedStudent program uses a constructor similar to the one

shown in the snippets to create a Student object and display my, I mean his,
name:

//
// NamedStudent - this program demonstrates the use
// of a constructors with arguments
//

34_617977-ch26.indd 30434_617977-ch26.indd 304 7/6/10 11:51 PM7/6/10 11:51 PM

305 Chapter 26: Making Constructive Arguments

#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

class Student
{
 protected:
 char* pszName;
 int nID;

 public:
 Student(const char* pszNewName, int nNewID)
 {
 cout << “Constructing “ << pszNewName << endl;
 int nLength = strlen(pszNewName) + 1;
 pszName = new char[nLength];
 strcpy(pszName, pszNewName);
 nID = nNewID;
 }
 ~Student()
 {
 cout << “Destructing “ << pszName << endl;
 delete[] pszName;
 pszName = 0;
 }

 // getName() - return the student’s name
 const char* getName()
 {
 return pszName;
 }

 // getID() - get the student’s ID
 int getID()
 {
 return nID;
 }
};

Student* fn()
{
 // create a student and initialize it
 cout << “Constructing a local student in fn()” <<endl;
 Student student(“Stephen Davis”, 1234);

 // display the student’s name
 cout << “The student’s name is “
 << student.getName() << endl;

 // now allocate one off of the heap

34_617977-ch26.indd 30534_617977-ch26.indd 305 7/6/10 11:51 PM7/6/10 11:51 PM

306 Part V: Object-Oriented Programming

 cout << “Allocating a Student from the heap” << endl;
 Student *pS = new Student(“Kinsey Davis”, 5678);

 // display this student’s name
 cout << “The second student’s name is “
 << pS->getName() << endl;

 cout << “Returning from fn()” << endl;
 return pS;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // call the function that creates student objects
 cout << “Calling fn()” << endl;
 Student* pS = fn();
 cout << “Back in main()” << endl;

 // delete the object returned by fn()
 delete pS;
 pS = 0;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

The main() program starts by outputting a message and then calling the
function fn(). This function creates a student with the unlikely name
“Stephen Davis” and an ID of 1234. The function then asks the object for its
name just to prove that the name was accurately noted in the object. The
function goes on to create another Student object, this time off of the heap,
and similarly asks it to display its name.

 The fn() function then returns control to main(); this causes the student
object to go out of scope, which causes C++ to invoke the destructor. main()
restores the memory returned from fn() to the heap using the keyword
delete. This invokes the destructor for that object.

The constructor for class Student accepts a pointer to an ASCIIZ string and
an int student ID. The constructor allocates a new character array from the
heap and then copies the string passed it into that array. It then copies the
value of the student ID.

 Refer to Chapter 16 if you don’t remember what an ASCIIZ string is or what
strlen() does.

34_617977-ch26.indd 30634_617977-ch26.indd 306 7/6/10 11:51 PM7/6/10 11:51 PM

307 Chapter 26: Making Constructive Arguments

The destructor for class Student simply restores the memory allocated by
the constructor to the heap by passing the address in pszName to delete[].

 Use delete[] when restoring an array to the heap and delete when restor-
ing a single object.

The getName() and getID() member functions are access functions for
the name and ID. Declaring the return type of getName() as const char*
(read “pointer to constant char”) — as opposed to simply char* — means
that the caller cannot change the name using the address returned by
getName().

 Refer to Chapter 18 if you don’t remember the difference between a const
char* and a char * const (or if you have no idea what I’m talking about).

The output from this program appears as follows:

Calling fn()
Constructing a local student in fn()
Constructing Stephen Davis
The student’s name is Stephen Davis
Allocating a Student from the heap
Constructing Kinsey Davis
The second student’s name is Kinsey Davis
Returning from fn()
Destructing Stephen Davis
Back in main()
Destructing Kinsey Davis
Press any key to continue . . .

 I’ve said it before (and you probably ignored me), but I really must insist this
time: You need to invoke the preceding constructor in the debugger to get a
feel for what C++ is doing with your declaration.

But what if you need both a named constructor and a default constructor?
Keep reading.

Overloading the Constructor
You can have two or more constructors as long as they can be differentiated
by the number and types of their arguments. This is called overloading the
constructor.

 Overloading a function means to define two or more functions with the same
short name but with different arguments. Refer to Chapter 11 for a discussion
of function overloading.

34_617977-ch26.indd 30734_617977-ch26.indd 307 7/6/10 11:51 PM7/6/10 11:51 PM

308 Part V: Object-Oriented Programming

 Thus, the following Student class from the OverloadedStudent program has
three constructors:

//
// OverloadedStudent - this program overloads the Student
// constructor with 3 different choices
// that vary by number of arguments
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

class Student
{
 protected:
 char* pszName;
 int nID;
 double dGrade; // the student’s GPA
 int nSemesterHours;

 public:
 Student(const char* pszNewName, int nNewID,
 double dXferGrade, int nXferHours)
 {
 cout << “Constructing “ << pszNewName
 << “ as a transfer student.” << endl;
 int nLength = strlen(pszNewName) + 1;
 pszName = new char[nLength];
 strcpy(pszName, pszNewName);
 nID = nNewID;
 dGrade = dXferGrade;
 nSemesterHours = nXferHours;
 }
 Student(const char* pszNewName, int nNewID)
 {
 cout << “Constructing “ << pszNewName
 << “ as a new student.” << endl;
 int nLength = strlen(pszNewName) + 1;
 pszName = new char[nLength];
 strcpy(pszName, pszNewName);
 nID = nNewID;
 dGrade = 0.0;
 nSemesterHours = 0;
 }
 Student()
 {
 pszName = 0;

34_617977-ch26.indd 30834_617977-ch26.indd 308 7/6/10 11:51 PM7/6/10 11:51 PM

309 Chapter 26: Making Constructive Arguments

 nID = 0;
 dGrade = 0.0;
 nSemesterHours = 0;
 }
 ~Student()
 {
 cout << “Destructing “ << pszName << endl;
 delete[] pszName;
 pszName = 0;
 }

 // access functions
 const char* getName()
 {
 return pszName;
 }
 int getID()
 {
 return nID;
 }
 double getGrade()
 {
 return dGrade;
 }
 int getHours()
 {
 return nSemesterHours;
 }

 // addGrade - add a grade to the GPA and total hours
 double addGrade(double dNewGrade, int nHours)
 {
 double dWtdHrs = dGrade * nSemesterHours;
 dWtdHrs += dNewGrade * nHours;
 nSemesterHours += nHours;
 dGrade = dWtdHrs / nSemesterHours;
 return dGrade;
 }
};

int main(int nNumberofArgs, char* pszArgs[])
{
 // create a student and initialize it
 Student student(“Stephen Davis”, 1234);

 // now create a transfer student with an initial grade
 Student xfer(“Kinsey Davis”, 5678, 3.5, 12);

 // give both students a B in the current class
 student.addGrade(3.0, 3);

34_617977-ch26.indd 30934_617977-ch26.indd 309 7/6/10 11:51 PM7/6/10 11:51 PM

310 Part V: Object-Oriented Programming

 xfer.addGrade(3.0, 3);

 // display the student’s name and grades
 cout << “Student “
 << student.getName()
 << “ has a grade of “
 << student.getGrade()
 << endl;

 cout << “Student “
 << xfer.getName()
 << “ has a grade of “
 << xfer.getGrade()
 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

Starting with the Student class, you can see that the first constructor within
Student accepts a name, a student ID, and transfer credit in the form of an
initial grade point average (GPA) and number of semester hours. The second
constructor accepts only a name and ID; this constructor is intended for new
students as it initializes the GPA and hours to zero. It’s unclear what the third
constructor is for — this default constructor initializes everything to zero.

The main() function creates a new student using the second constructor
with the name “Stephen Davis”; then it creates a transfer student with the
name “Kinsey Davis” using the second constructor. The program adds three
hours of credit to both (just to show that this still works) and displays the
resulting GPA.

The output from this program appears as follows:

Constructing Stephen Davis as a new student.
Constructing Kinsey Davis as a transfer student.
Student Stephen Davis has a grade of 3
Student Kinsey Davis has a grade of 3.4
Press any key to continue . . .

Notice how similar the first two Student constructors are. This is not
uncommon. This case is one in which you can create an init() function that
both constructors call (only the constructors are shown in this example for
brevity’s sake):

34_617977-ch26.indd 31034_617977-ch26.indd 310 7/6/10 11:51 PM7/6/10 11:51 PM

311 Chapter 26: Making Constructive Arguments

class Student
{
 protected:
 void init(const char* pszNewName, int nNewID,
 double dXferGrade, int nXferHours)
 {
 cout << “Constructing “ << pszNewName
 << “ as a transfer student.” << endl;
 int nLength = strlen(pszNewName) + 1;
 pszName = new char[nLength];
 strcpy(pszName, pszNewName);
 nID = nNewID;
 dGrade = dXferGrade;
 nSemesterHours = nXferHours;
 }
 public:
 Student(const char* pszNewName, int nNewID,
 double dXferGrade, int nXferHours)
 {
 init(pszNewName, nNewID, dXferGrade, nXferHours);
 }
 Student(const char* pszNewName, int nNewID)
 {
 init(pszNewName, nNewID, 0.0, 0);
 }

 // ...class continues as before...
};

In general, the init() function will look like the most complicated construc-
tor. All simpler constructors call init() passing default values for some of
the arguments, such as a 0 for transfer grade and credit for new students.

 You can also default the arguments to the constructor (or any function for
that matter) as follows:

class Student
{
 public:
 Student(const char* pszNewName, int nNewID,
 double dXferGrade = 0.0, int nXferHours = 0);

 // ...and so it goes...
};

C++ will supply the defaulted arguments if they are not provided in the decla-
ration. However, default arguments can generate strange error messages and
are beyond the scope of this book.

34_617977-ch26.indd 31134_617977-ch26.indd 311 7/6/10 11:51 PM7/6/10 11:51 PM

312 Part V: Object-Oriented Programming

 You can also invoke one constructor from another starting with the C++ 2009
standard. However, as of this writing, no compiler that I know of supports this
feature.

The Default default Constructor
As far as C++ is concerned, every class must have a constructor; otherwise,
you can’t create any objects of that class. If you don’t provide a constructor
for your class, C++ should probably just generate an error, but it doesn’t. To
provide compatibility with existing C code, which knows nothing about con-
structors, C++ automatically provides an implicitly defined default construc-
tor (sort of a default default constructor) that invokes the default constructor
for any data members. Sometimes I call this a Miranda constructor. You
know, “If you cannot afford a constructor, a constructor will be provided
for you.”

If your class already has a constructor, however, C++ doesn’t provide the
automatic default constructor. (Having tipped your hand that this isn’t a C pro-
gram, C++ doesn’t feel obliged to do any extra work to ensure compatibility.)

 The result is: If you define a constructor for your class but you also want a
default constructor, you must define it yourself.

The following code snippets help demonstrate this principle. The following is
legal:

class Student
{
 // ...all the same stuff but no constructors...
};

void fn()
{
 Student s; // create Student using default constructor
}

Here, the object s is built using the default constructor. Because the pro-
grammer has not provided a constructor, C++ provides a default constructor
that doesn’t really do anything in this case.

34_617977-ch26.indd 31234_617977-ch26.indd 312 7/6/10 11:51 PM7/6/10 11:51 PM

313 Chapter 26: Making Constructive Arguments

However, the following snippet does not compile properly:

class Student
{
 public:
 Student(const char* pszName);

 // ...all the same stuff...
};

void fn()
{
 Student s; // doesn’t compile
}

The seemingly innocuous addition of the Student(const char*) construc-
tor precludes C++ from automatically providing a Student() constructor
with which to build the s object. Now the compiler complains that it can no
longer find Student::Student() with which to build s. Adding a default
constructor solves the problem:

class Student
{
 public:
 Student(const char* pszName);
 Student();

 // ...all the same stuff...
};

void fn()
{
 Student s; // this does compile
}

It’s just this type of illogic that explains why C++ programmers make the
really big bucks.

Constructing Data Members
In the preceding examples, all of the data members have been simple types,
like int and double and arrays of char. With these simple types it’s suf-
ficient to just assign the variable a value within the constructor. But what if
the class contains data members of a user-defined class? There are two cases
to consider here.

34_617977-ch26.indd 31334_617977-ch26.indd 313 7/6/10 11:51 PM7/6/10 11:51 PM

314 Part V: Object-Oriented Programming

Initializing data members with
the default constructor
Consider the following example:

class StudentID
{
 protected:
 static int nBaseValue;
 int nValue;

 public:
 StudentID()
 {
 nValue = nBaseValue++;
 }

 int getID()
 {
 return nValue;
 }
};

// allocate space for the class property
int StudentID::nBaseValue = 1000;

class Student
{
 protected:
 char* pszName;
 StudentID sID;

 public:
 Student(const char* pszNewName)
 {
 int nLength = strlen(pszNewName) + 1;
 pszName = new char[nLength];
 strcpy(pszName, pszNewName);
 }
 ~Student()
 {
 delete pszName;
 pszName = 0;
 }

 // getName() - return the student’s name
 const char* getName()
 {

34_617977-ch26.indd 31434_617977-ch26.indd 314 7/6/10 11:51 PM7/6/10 11:51 PM

315 Chapter 26: Making Constructive Arguments

 return pszName;
 }

 // getID() - get the student’s ID
 int getID()
 {
 return sID.getID();
 }
};

The class StudentID is designed to allocate student IDs sequentially. The
class retains the “next value” in a static variable StudentID::nBaseValue.

 Static data members, also known as class members, are shared among all
objects.

Each time a StudentID is created, the constructor assigns nValue the “next
value” from nBaseValue and then increments nBaseValue in preparation
for the next time the constructor is called.

The Student class has been updated so that the sID field is now of type
StudentID. The constructor now accepts the name of the student but relies
on StudentID to assign the next sequential ID each time a new Student
object is created.

 The constructor for each data member, including StudentID, is invoked
before control is passed to the body of the Student constructor.

All the Student constructor has to do is make a copy of the student’s
name — the sID field takes care of itself.

Initializing data members with
a different constructor
So now the boss comes in and wants an addition to the program. Now she
wants to update the program so that it can assign a new student ID instead of
always accepting the default value handed over by the StudentID class.

Accordingly, I make the following changes:

class StudentID
{
 protected:
 static int nBaseValue;
 int nValue;

34_617977-ch26.indd 31534_617977-ch26.indd 315 7/6/10 11:51 PM7/6/10 11:51 PM

316 Part V: Object-Oriented Programming

 public:
 StudentID(int nNewID)
 {
 nValue = nNewID;
 }
 StudentID()
 {
 nValue = nBaseValue++;
 }

 int getID()
 {
 return nValue;
 }
};

// allocate space for the class property
int StudentID::nBaseValue = 1000;

class Student
{
 protected:
 char* pszName;
 StudentID sID;

 void initName(const char* pszNewName)
 {
 int nLength = strlen(pszNewName) + 1;
 pszName = new char[nLength];
 strcpy(pszName, pszNewName);
 }

 public:
 Student(const char* pszNewName, int nNewID)
 {
 initName(pszNewName);
 StudentID sID(nNewID);
 }
 Student(const char* pszNewName)
 {
 initName(pszNewName);
 }
 ~Student()
 {
 delete[] pszName;
 pszName = 0;
 }

 // getName() - return the student’s name
 const char* getName()
 {
 return pszName;
 }

34_617977-ch26.indd 31634_617977-ch26.indd 316 7/6/10 11:51 PM7/6/10 11:51 PM

317 Chapter 26: Making Constructive Arguments

 // getID() - get the student’s ID
 int getID()
 {
 return sID.getID();
 }
};

I added a constructor to StudentID to allow the caller to pass a value to use
for the student ID rather than accept the default. Now, if the program doesn’t
provide an ID, the student is assigned the next sequential ID. If the program
does provide an ID, however, then it is used instead, and the static counter is
left untouched.

I also added a constructor to Student to allow the program to provide a
studentID when the student is created. This Student(const char*,
int) constructor first initializes the student’s name and then invokes the
StudentID(int) constructor on sID.

When I execute the program, however, I am disappointed to find that this
seems to have made no apparent difference. Students are still assigned
sequential student IDs whether or not they are passed a value to use instead.

The problem, I quickly realize, is that the Student(const char*, int)
constructor is not invoking the new StudentID(int) constructor on the
data member sID. Instead, it is creating a new local object called sID within
the constructor, which it then immediately discards without any effect on the
data member of the same name.

Remember that the constructor for the data members is called before con-
trol is passed to the body of the constructor. Rather than create a new value
locally, I need some way to tell C++ to use a constructor other than the
default constructor when creating the data member sID.C++ uses the follow-
ing syntax to initialize a data member with a specific constructor:

class Student
{
 public:
 Student(const char* pszName,
 int nNewID) : sID(nNewID)
 {
 initName(pszName);
 }

 // ...remainder of class unchanged...
};

34_617977-ch26.indd 31734_617977-ch26.indd 317 7/6/10 11:51 PM7/6/10 11:51 PM

318 Part V: Object-Oriented Programming

The data member appears to the right of a colon used to separate such dec-
larations from the arguments to the function but before the open brace of the
function itself. This causes the StudentID(int) constructor to be invoked,
passing the nNewID value to be used as the new student ID.

Looking at an example
 The following CompoundStudent program creates one Student object with

the default, sequential student ID, while assigning a specific student ID to a
second Student object:

//
// CompoundStudent - this version of the Student class
// includes a data member that’s also
// of a user defined type
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

class StudentID
{
 protected:
 static int nBaseValue;
 int nValue;

 public:
 StudentID()
 {
 nValue = nBaseValue++;
 }

 StudentID(int nNewValue)
 {
 nValue = nNewValue;
 }

 int getID()
 {
 return nValue;
 }
};

// allocate space for the class property
int StudentID::nBaseValue = 1000;

34_617977-ch26.indd 31834_617977-ch26.indd 318 7/6/10 11:51 PM7/6/10 11:51 PM

319 Chapter 26: Making Constructive Arguments

class Student
{
 protected:
 char* pszName;
 StudentID sID;

 void initName(const char* pszNewName)
 {
 int nLength = strlen(pszNewName) + 1;
 pszName = new char[nLength];
 strcpy(pszName, pszNewName);
 }

 public:
 Student(const char* pszNewName,
 int nNewID) : sID(nNewID)
 {
 initName(pszNewName);
 }
 Student(const char* pszNewName)
 {
 initName(pszNewName);
 }
 ~Student()
 {
 delete[] pszName;
 pszName = 0;
 }

 // getName() - return the student’s name
 const char* getName()
 {
 return pszName;
 }

 // getID() - get the student’s ID
 int getID()
 {
 return sID.getID();
 }
};

int main(int nNumberofArgs, char* pszArgs[])
{
 // create a student and initialize it
 Student student1(“Stephen Davis”);

34_617977-ch26.indd 31934_617977-ch26.indd 319 7/6/10 11:51 PM7/6/10 11:51 PM

320 Part V: Object-Oriented Programming

 // display the student’s name and ID
 cout << “The first student’s name is “
 << student1.getName()
 << “, ID is “
 << student1.getID()
 << endl;

 // do the same for a second student
 Student student2(“Janet Eddins”);
 cout << “The second student’s name is “
 << student2.getName()
 << “, ID is “
 << student2.getID()
 << endl;

 // now create a transfer student with a unique ID
 Student student3(“Tiffany Amrich”, 1234);
 cout << “The third student’s name is “
 << student3.getName()
 << “, ID is “
 << student3.getID()
 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

The Student and StudentID classes are similar to those shown ear-
lier. The main() function creates three students, the first two using the
Student(const char*) constructor that allocates the default student
ID. The third student is created using the Student(const char*, int)
constructor and passed an ID of 1234. The resulting display confirms that the
default IDs are being allocated sequentially and that the third student has a
unique ID.

The first student’s name is Stephen Davis, ID is 1000
The second student’s name is Janet Eddins, ID is 1001
The third student’s name is Tiffany Amrich, ID is 1234
Press any key to continue . . .

The : syntax here can also be used to initialize simple variables if you prefer:

class SomeClass
{
 protected:
 int nValue;
 const double PI;

 public:
 SomeClass(int n) : nValue(n), PI(3.14159) {}
};

34_617977-ch26.indd 32034_617977-ch26.indd 320 7/6/10 11:51 PM7/6/10 11:51 PM

321 Chapter 26: Making Constructive Arguments

Here, the data member nValue is initialized to n, and the constant double is
initialized to 3.14159.

In fact, this is the only way to initialize a data member flagged as const. You
can’t put a const variable on the left-hand side of an assignment operator.

N otice that the body of the constructor is now empty since all the work is
done in the header; however, the empty body is still required (otherwise, the
definition would look like a prototype declaration).

New with C++ 2009
Starting with the 2009 standard, you can initialize data members to a con-
stant value in the declaration itself, as in the following:

class SomeClass
{
 protected:
 int nValue;
 const double PI = 3.14159;
 char* pSomeString = new char[128];

 public:
 SomeClass(int n) : nValue(n) {}
};

The effect is the same as if you had written the constructor as follows:

class SomeClass
{
 protected:
 int nValue;
 const double PI;
 char* pSomeString;

 public:
 SomeClass(int n)
 : nValue(n), PI(3.14159), pSomeString(new char[128])
 {}
};

The earlier assignment format is easier to read and just seems more natural
(it is accepted by other C++–like programming languages such as Java and
C#). However, as of this writing, this format is not yet accepted by any C++
compiler, including the one enclosed in this book.

34_617977-ch26.indd 32134_617977-ch26.indd 321 7/6/10 11:51 PM7/6/10 11:51 PM

322 Part V: Object-Oriented Programming

34_617977-ch26.indd 32234_617977-ch26.indd 322 7/6/10 11:51 PM7/6/10 11:51 PM

Chapter 27

Coping with the Copy Constructor
In This Chapter
▶ Letting C++ make copies of an object

▶ Creating your own copy constructor

▶ Making copies of data members

▶ Avoiding making copies completely

The constructor is a special function that C++ invokes when an object is
created in order to allow the class to initialize the object to a legal state.

Chapter 25 introduces the concept of the constructor. Chapter 26 demon-
strates how to create constructors that take arguments. This chapter con-
cludes the discussion of constructors by examining a particular constructor
known as the copy constructor.

Copying an Object
A copy constructor is the constructor that C++ uses to make copies of objects.
It carries the name X::X(const X&), where X is the name of the class. That
is, it’s the constructor of class X that takes as its argument a reference to an
object of class X. I know that sounds pretty useless, but let me explain why
you need a constructor like that on your team.

A reference argument type like fn(X&) says, “pass a reference to the object”
rather than “pass a copy of the object.” I discuss reference arguments in
Chapter 23.

Think for a minute about the following function call:

35_617977-ch27.indd 32335_617977-ch27.indd 323 7/6/10 11:51 PM7/6/10 11:51 PM

324 Part V: Object-Oriented Programming

void fn(Student s)
{
 // ...whatever fn() does...
}

void someOtherFn()
{
 Student s;
 fn(s);
};

Here the function someOtherFn() creates a Student object and passes a
copy of that object to fn().

By default, C++ passes objects by value, meaning that it must make a copy of
the object to pass to the functions it calls (refer to Chapter 23 for more).

Consider that creating a copy of an object means creating a new object and,
by definition, means invoking a constructor. But what would the arguments
to that constructor be? Why, a reference to the original object. That, by defi-
nition, is the copy constructor.

The default copy constructor
C++ provides a default copy constructor that works most of the time. This
copy constructor does a member-by-member copy of the source object to
the destination object.

A member-by-member copy is also known as a shallow copy for reasons that
soon will become clear.

There are times when copying one member at a time is not a good thing,
however. Consider the Student class from Chapter 26:

class Student
{
 protected:
 char* pszName;
 int nID;

 // ...other stuff...
};

Copying the int data member nID from one object to another is no problem.
However, copying the pointer pszName from the source to the destination
object could cause problems.

35_617977-ch27.indd 32435_617977-ch27.indd 324 7/6/10 11:51 PM7/6/10 11:51 PM

325 Chapter 27: Coping with the Copy Constructor

For example, what if pszName points to heap memory (which it almost
surely does)? Now you have two objects that both point to the same block of
memory on the heap. This is shown in Figure 27-1.

Figure 27-1:
By default,

C++ per-
forms a

member-
by-member,

“shallow”
copy to cre-

ate copies
of objects,

such as
when

passing an
object to a

function.

s1

pszName

Heap
Memory

Before copy

s1

pszName

Heap
Memory

After copy

s2

pszName

When the copy of the Student object goes out of scope, the destructor for
that class will likely delete the pszName pointer, thereby returning the block
of memory to the heap, even though the original object is still using that
memory. When the original object deletes the same pointer again, the heap
gets messed up, and the program is sure to crash with a bizarre and largely
misleading error message.

Looking at an example
 The following ShallowStudent program demonstrates how making a shallow

copy can cause serious problems:

//
// ShallowStudent - this program demonstrates why the
// default shallow copy constructor
// isn’t always the right choice.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

35_617977-ch27.indd 32535_617977-ch27.indd 325 7/6/10 11:51 PM7/6/10 11:51 PM

326 Part V: Object-Oriented Programming

class Student
{
 protected:
 char* pszName;
 int nID;

 public:
 Student(const char* pszNewName, int nNewID)
 {
 cout << “Constructing “ << pszNewName << endl;
 int nLength = strlen(pszNewName) + 1;
 pszName = new char[nLength];
 strcpy(pszName, pszNewName);
 nID = nNewID;
 }
 ~Student()
 {
 cout << “Destructing “ << pszName << endl;
 delete[] pszName;
 pszName = 0;
 }

 // access functions
 const char* getName()
 {
 return pszName;
 }
 int getID()
 {
 return nID;
 }
};

void someOtherFn(Student s)
{
 // we don’t need to do anything here
}

void someFn()
{
 Student student(“Adam Laskowski”, 1234);
 someOtherFn(student);

 cout << “The student’s name is now “
 << student.getName() << endl;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 someFn();

35_617977-ch27.indd 32635_617977-ch27.indd 326 7/6/10 11:51 PM7/6/10 11:51 PM

327 Chapter 27: Coping with the Copy Constructor

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

This deceptively simple program contains a serious problem. The function
main() does nothing more than call the function someFn(). This function
creates a local student object and passes it by value to the function some
OtherFn(). This second function does nothing except return to the caller.
The someFn() function then displays the name of the student and returns
to main().

The output from the program shows some interesting results:

Constructing Adam Laskowski
Destructing Adam Laskowski
The student’s name is now X$±
Destructing X$±
Press any key to continue . . .

The first message comes from the Student constructor as the student
object is created at the beginning of someFn(). No message is generated by
the default copy constructor that’s called to create the copy of Student for
someOtherFn(). The destructor message is invoked at the end of some
OtherFn() when the local object s goes out of scope.

The output message in someFn() shows that the object is now messed up
as the memory allocated by the Student constructor to hold the student’s
name has been returned to the heap. The subsequent destructor that’s
invoked at the end of someFn() verifies that things are amiss.

This type of error is normally fatal (to the program, not the programmer). The
only reason this program didn’t crash is that it was about to stop anyway.

Creating a Copy Constructor
Classes that allocate resources in their constructor should normally include
a copy constructor to create copies of these resources. For example, the
Student copy constructor should allocate another block of memory off the
heap for the name and copy the original object’s name into this new block.
This is shown in Figure 27-2.

35_617977-ch27.indd 32735_617977-ch27.indd 327 7/6/10 11:51 PM7/6/10 11:51 PM

328 Part V: Object-Oriented Programming

Figure 27-2:
A class that

allocates
resources
in the con-

structor
requires a
copy con-

structor that
performs a

so-called
deep copy

of the
source
object.

s1

pszName

Heap
Memory

Before copy

s1

pszName

Memory

After copy

s2

pszName

Heap

Heap
Memory

Allocating a new block of memory and copying the contents of the original
into this new block is known as creating a deep copy (as opposed to the
default shallow copy).

 The following DeepStudent program includes a copy constructor that per-
forms a deep copy of the student object:

//
// DeepStudent - this program demonstrates how a copy
// constructor that performs a deep copy
// can be used to solve copy problems
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

class Student
{
 protected:
 char* pszName;
 int nID;

 public:
 Student(const char* pszNewName, int nNewID)
 {
 cout << “Constructing “ << pszNewName << endl;
 int nLength = strlen(pszNewName) + 1;
 pszName = new char[nLength];
 strcpy(pszName, pszNewName);
 nID = nNewID;
 }

35_617977-ch27.indd 32835_617977-ch27.indd 328 7/6/10 11:51 PM7/6/10 11:51 PM

329 Chapter 27: Coping with the Copy Constructor

 Student(const Student& s)
 {
 cout<<”Constructing copy of “<< s.pszName << endl;

 int nLength = strlen(s.pszName) + 25;
 this->pszName = new char[nLength];
 strcpy(this->pszName, “Copy of “);
 strcat(this->pszName, s.pszName);
 this->nID = s.nID;
 }

 ~Student()
 {
 cout << “Destructing “ << pszName << endl;
 delete[] pszName;
 pszName = 0;
 }

 // access functions
 const char* getName()
 {
 return pszName;
 }
 int getID()
 {
 return nID;
 }
};

void someOtherFn(Student s)
{
 // we don’t need to do anything here
}

void someFn()
{
 Student student(“Adam Laskowski”, 1234);
 someOtherFn(student);

 cout << “The student’s name is now “
 << student.getName() << endl;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 someFn();

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

35_617977-ch27.indd 32935_617977-ch27.indd 329 7/6/10 11:51 PM7/6/10 11:51 PM

330 Part V: Object-Oriented Programming

This program is identical to its ShallowStudent cousin except for the addition
of the copy constructor Student(const Student&), but what a difference
it makes in the output from the program:

Constructing Adam Laskowski
Constructing copy of Adam Laskowski
Destructing Copy of Adam Laskowski
The student’s name is now Adam Laskowski
Destructing Adam Laskowski
Press any key to continue . . .

The first message is output by the Student(const char*, int) con-
structor that’s invoked when the student object is created at the begin-
n ing of someFn(). The second message comes from the copy constructor
Student(const Student&) that’s invoked to create the copy of student
as part of the call to SomeOtherFn().

This constructor first allocates a new block of heap memory for the pszName
of the copy. It then copies the string Copy of into this field before concat-
enating the student’s name in the next line.

 You would normally make a true copy of the name and not tack Copy of onto
the front; I do so for instructional reasons.

The destructor that’s invoked as s goes out of scope at the end of some
OtherFn() is now clearly returning the copy of the name to the heap and
not the original string. This is verified back in someFn() when the student’s
name is intact (as you would expect). Finally, the destructor at the end of
someFn() returns the original string to the heap.

Avoiding Copies
Passing arguments by value is just one of several reasons that C++ invokes
a copy constructor to create temporary copies of your object. You may be
wondering, “Doesn’t all this creating and deleting copies of objects take
time?” The obvious answer is, “You bet!” Is there some way to avoid creating
copies?

One way is not to pass objects by value but to pass the address of the object.
There wouldn’t be a problem if someOtherFn() were declared as follows:

35_617977-ch27.indd 33035_617977-ch27.indd 330 7/6/10 11:51 PM7/6/10 11:51 PM

331 Chapter 27: Coping with the Copy Constructor

// the following does not cause a copy to be created
void someOtherFn(const Student *pS)
{
 // ...whatever goes here...
}
void someFn()
{
 Student student(“Adam Laskowski”, 1234);
 someOtherFn(&student);
}

This is faster because a single address is smaller than an entire Student
object, but it also avoids the need to allocate memory off the heap for hold-
ing copies of the student’s name.

You can get the same effect using reference arguments as in the following:

// the following function doesn’t create a copy either
void someOtherFn(const Student& s)
{
 // ...whatever you want to do...
}

void someFn()
{
 Student student(“Adam Laskowski”, 1234);
 someOtherFn(student);
}

See Chapter 23 if you don’t remember about referential arguments.

35_617977-ch27.indd 33135_617977-ch27.indd 331 7/6/10 11:51 PM7/6/10 11:51 PM

332 Part V: Object-Oriented Programming

35_617977-ch27.indd 33235_617977-ch27.indd 332 7/6/10 11:51 PM7/6/10 11:51 PM

Part VI

Advanced Strokes

36_617977-pp06.indd 33336_617977-pp06.indd 333 7/6/10 11:51 PM7/6/10 11:51 PM

In this part . . .

Here you pick up a few loose ends that are neverthe-
less important to any C++ programmer: You’ll learn

to overload the assignment operator, you’ll learn how to
perform file I/O, and you’ll discover how to throw error
exceptions.

36_617977-pp06.indd 33436_617977-pp06.indd 334 7/6/10 11:51 PM7/6/10 11:51 PM

Chapter 28

Inheriting a Class
In This Chapter
▶ Introducing inheritance

▶ Implementing inheritance in C++

▶ Reviewing an example program

▶ Comparing HAS_A to IS_A

Inheritance occurs all around us every day. I am a human. I inherit certain
properties from the class Human, such as my ability to converse intel-

ligently (more or less) and my dependence on air, water, and carbohydrate-
based nourishment like Twinkies. These latter properties are not unique
to humans. The class Human inherits these from class Mammal (along with
something about bearing live young), which inherited them from class
Animal, and so on.

The capability to pass down properties is a powerful one. It enables you
to describe things in an economical way. For example, if my son asks me,
“What’s a duck?” I might say, “It’s a bird that floats and goes quack.” Despite
your first reaction, that answer actually conveys a significant amount of
knowledge. My son knows what a bird is. He knows that birds have wings,
that birds can fly (he doesn’t know about ostriches yet), and that birds lay
eggs. Now, he knows all those same things about a duck plus the facts that
ducks can float and make a quacking sound. (This might be a good time to
refer to Chapter 21 for a discussion about Microwave ovens and their rela-
tionship to ovens and kitchen appliances.)

Object-oriented languages express this relationship by allowing one class
to inherit from another. Thus, in C++ the class Duck might well inherit from
Bird, and that class might also inherit from Animal. Exactly how C++ does
this is the topic of this chapter.

37_617977-ch28.indd 33537_617977-ch28.indd 335 7/6/10 11:52 PM7/6/10 11:52 PM

336 Part VI: Advanced Strokes

Advantages of Inheritance
Inheritance was added to C++ for several reasons. Of course, the major
reason is the capability to express the inheritance relationship: that
MicrowaveOven is an Oven is a KitchenAppliance thing. More on the IS_A
relationship a little later in this and the next chapter.

A minor reason is to reduce the amount of typing and the number of lines of
code that you and I have to write. You may have noticed that the commands
in C++ may be short, but you need a lot of them to do anything. C++ programs
tend to get pretty lengthy, so anything that reduces typing is a good thing.

To see how inheritance can reduce typing, consider the Duck example. I
don’t have to document all the properties about Duck that have to do with
flying and landing and eating and laying eggs. It inherits all that stuff from
Bird. I just need to add Duck’s quackness property and its ability to float.
That’s a considerable savings.

A more important and related issue is the major buzzword, reuse. Software
scientists realized some time ago that starting from scratch with each new
project and rebuilding the same software components doesn’t make much
sense.

Compare the situation in the software industry to that in other industries.
How many car manufacturers start from scratch each time they want to
design a new car? None. Practitioners in other industries have found it makes
more sense to start from screws, bolts, nuts, and even larger existing off-the-
shelf components such as motors and transmissions when designing a car.

Unfortunately, except for very small functions like those found in the
Standard C++ Library, it’s rare to find much reuse of software components.
One problem is that it’s virtually impossible to find a component from an ear-
lier program that does exactly what you want. Generally, these components
require “tweaking.” Inheritance allows you to adopt the major functionality of
an existing class and tweak the smaller features to adapt an existing class to
a new application.

This carries with it another benefit that’s more subtle but just as important:
adaptability. It never fails that as soon as users see your most recent pro-
gram, they like it but want just one more fix or addition. Consider checking
accounts for a moment. How long after I finish the program that handles
checking accounts for a bank will it be before the bank comes out with a new
“special” checking account that earns interest on the balance?

Not everyone gets this checking account, of course (that would be too
easy) — only certain customers get InterestChecking accounts. With
inheritance, however, I don’t need to go through the entire program and
recode all the checking account functions. All I need to do is create a new

37_617977-ch28.indd 33637_617977-ch28.indd 336 7/6/10 11:52 PM7/6/10 11:52 PM

337 Chapter 28: Inheriting a Class

subclass InterestChecking that inherits from Checking but has the one
additional property of accumulatesInterest() and, voilà, the feature is
implemented. (It isn’t quite that easy, of course, but it’s not much more dif-
ficult than that. I actually show you how to do this in Chapter 29.)

Learning the lingo
You need to get some terms straight before going much further. The class
Dog inherits properties from class Mammal. This is called inheritance. We also
say that Dog is a subclass of Mammal. Turning that sentence around, we say
that Mammal is a base class of Dog. We can also say that Dog IS_A Mammal. (I
use all caps as a way of expressing this unique relationship.) C++ shares this
terminology with other object-oriented languages.

 The term is adopted from other languages, but you will also find C++ program-
mers saying things like, “the class Dog extends Mammal with its barkiness and
tail wagging properties.” Well, maybe not in those exact words, but a subclass
extends a base class by adding properties.

Notice that although Dog IS_A Mammal, the reverse is not true. A Mammal is
not a Dog. (A statement like this always refers to the general case. It could be
that a particular mammal is, in fact, a dog, but in general a mammal is not a
dog.) This is because a Dog shares all the properties of other Mammals, but a
Mammal does not have all the properties of a Dog. Not all Mammals can bark,
for example, or wag their tails.

Implementing Inheritance in C++
The following is an outline of how to inherit one class from another:

class Student
{
 // ...whatever goes here...
};

class GraduateStudent : public Student
{
 // ...graduate student unique stuff goes here...
};

The class Student is declared the usual way. The class appears with the
name followed by a colon, the keyword public, and the name of the base
class, Student.

37_617977-ch28.indd 33737_617977-ch28.indd 337 7/6/10 11:52 PM7/6/10 11:52 PM

338 Part VI: Advanced Strokes

 The keyword public implies that there’s probably something called pro-
tected inheritance. It’s true, there is; but protected inheritance is very uncom-
mon, and I don’t discuss it in this book.

Now, I can say that a GraduateStudent IS_A Student. More to the point, I
can use a GraduateStudent object anywhere that a Student is required,
including as arguments to functions. That is, the following is allowed:

void fn(Student* pS);
void someOtherFn()
{
 GraduateStudent gs;
 fn(&gs);
}

This is allowed because a gs object has all the properties of Student. Why?
Because a GraduateStudent IS_A Student!

Looking at an example
 The following GSInherit program makes this more concrete by creating a

Student class and a GraduateStudent class and invoking functions of
each:

//
// GSInherit - demonstrate inheritance by creating
// a class GraduateStudent that inherits
// from Student.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

class Student
{
 protected:
 char* pszName;
 int nID;
 double dGrade; // the student’s GPA
 int nSemesterHours;

 public:
 Student(const char* pszNewName, int nNewID)
 {
 cout << “Constructing student “

37_617977-ch28.indd 33837_617977-ch28.indd 338 7/6/10 11:52 PM7/6/10 11:52 PM

339 Chapter 28: Inheriting a Class

 << pszNewName << endl;
 pszName = new char[strlen(pszNewName) + 1];
 strcpy(pszName, pszNewName);
 nID = nNewID;
 dGrade = 0.0;
 nSemesterHours = 0;
 }
 ~Student()
 {
 cout << “Destructing “ << pszName << endl;
 delete[] pszName;
 pszName = 0;
 }

 // access functions
 const char* getName()
 {
 return pszName;
 }
 int getID()
 {
 return nID;
 }
 double getGrade()
 {
 return dGrade;
 }
 int getHours()
 {
 return nSemesterHours;
 }

 // addGrade - add a grade to the GPA and total hours
 double addGrade(double dNewGrade, int nHours)
 {
 double dWtdHrs = dGrade * nSemesterHours;
 dWtdHrs += dNewGrade * nHours;
 nSemesterHours += nHours;
 dGrade = dWtdHrs / nSemesterHours;
 return dGrade;
 }
};

class Advisor
{
 public:
 Advisor() { cout << “Advisor constructed” << endl;}
};

class GraduateStudent : public Student

37_617977-ch28.indd 33937_617977-ch28.indd 339 7/6/10 11:52 PM7/6/10 11:52 PM

340 Part VI: Advanced Strokes

{
 protected:
 double dQualifierGrade;
 Advisor advisor;

 public:
 GraduateStudent(const char* pszName, int nID) :
 Student(pszName, nID)
 {
 cout << “Constructing GraduateStudent” << endl;
 dQualifierGrade = 0.0;
 }
};

void someOtherFn(Student* pS)
{
 cout << “Passed student “ << pS->getName() << endl;
}

void someFn()
{
 Student student(“Lo Lee Undergrad”, 1234);
 someOtherFn(&student);

 GraduateStudent gs(“Upp R. Class”, 5678);
 someOtherFn(&gs);
}

int main(int nNumberofArgs, char* pszArgs[])
{
 someFn();

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

This example appears lengthy at first blush. Fortunately, however, the
Student class is identical to its predecessors in earlier chapters.

 The fact that the Student class hasn’t changed is an important point: You
don’t have to modify a class in order to inherit from it. I did not have to make
any changes to Student in order to create the subclass GraduateStudent.

The GraduateStudent class extends Student by adding the data
member dQualifierGrade. In addition, I provided GraduateStudent
with a constructor that accepts the student name and ID. Of course,
GraduateStudent doesn’t need to manipulate the student’s name and ID on
its own — it calls the perfectly serviceable Student constructor to do that
instead, as the following small excerpt demonstrates:

37_617977-ch28.indd 34037_617977-ch28.indd 340 7/6/10 11:52 PM7/6/10 11:52 PM

341 Chapter 28: Inheriting a Class

GraduateStudent(const char* pszName, int nID) :
 Student(pszName, nID)
{
 cout << “Constructing GraduateStudent” << endl;
 dQualifierGrade = 0.0;
}

The constructor for the base class is invoked before any part of the current
class is constructed. Next to be invoked are the constructors for any data
members — this accounts for the message from Advisor. Control passes
into the body of the GraduateStudent constructor last.

The output from this program appears as follows:

Constructing student Lo Lee Undergrad
Passed student Lo Lee Undergrad
Constructing student Upp R. Class
Advisor constructed
Constructing GraduateStudent
Passed student Upp R. Class
Destructing Upp R. Class
Destructing Lo Lee Undergrad
Press any key to continue . . .

You can follow the chain of events by starting with main(). The main()
function does nothing more than call someFn(). The someFn() function
first creates a Student object Lo Lee Undergrad. The constructor for
Student generates the first line of output.

someFn() then passes the address of “Lo Lee” to
someOtherFn(Student*). someOtherFn() does nothing more than dis-
play the student’s name, which accounts for the second line of output.

The someFn() function then creates a GraduateStudent “Upp R. Class.”
Returning to the output for a minute, you can see that this invokes the
Student(const char*, int) constructor first with the name Upp R.
Class. Once that constructor has completed building the Student founda-
tion, the GraduateStudent constructor gets a chance to output its message
and build on the graduate student floor.

The someFn() function then does something rather curious: It passes the
address of the GraduateStudent object to someOtherFn(Student*).
This apparent mismatch of object types is easily explained by the fact that
(here it comes) a GraduateStudent IS_A Student and can be used any-
where a Student is required. (Similarly a GraduateStudent* can be used
in place of a Student*.)

The remainder of the output is generated when both student and gs go out
of scope at the return from someFn(). The objects are destructe d in the

37_617977-ch28.indd 34137_617977-ch28.indd 341 7/6/10 11:52 PM7/6/10 11:52 PM

342 Part VI: Advanced Strokes

reverse order of their construction, so gs goes first and then student. In
addition, the destructor for GraduateStudent is called before the destruc-
tor for Student().

 The destructor for the subclass should destruct only those fields that are
unique to the subclass. Leave the destructing of the base class data members
to the subclass’s destructor.

Having a HAS_A Relationship
Notice that the class GraduateStudent includes the members of class
Student and Advisor but in a different way. By defining a data member of
class Advisor, a GraduateStudent contains all the members of Advisor
within it. However, you can’t say that a GraduateStudent IS_AN Advisor.
Rather, a GraduateStudent HAS_AN Advisor.

The analogy is like a car with a motor. Logically, you can say that car is a
subclass of vehicle, so it inherits the properties of all vehicles. At the same
time, a car has a motor. If you buy a car, you can logically assume that you
are buying a motor as well (unless you go to the used car lot where I got my
last junk heap).

If some friends ask you to show up at a rally on Saturday with your vehicle
of choice, and you arrive in your car, they can’t complain and kick you out.
But if you were to appear on foot carrying a motor, your friends would have
reason to laugh you off the premises, because a motor is not a vehicle.

These assertions appear as follows when written in C++:

class Vehicle {};
class Motor {};
class Car : public Vehicle
{
 public:
 Motor motor;
};

void vehicleFn(Vehicle* pV);
void motorFn(Motor* pM);

void someFn()
{
 Car c;

 vehicleFn(&c); // this is allowed
 motorFn(&c.motor); // so is this

 motorFn(&c); // this is not allowed
}

37_617977-ch28.indd 34237_617977-ch28.indd 342 7/6/10 11:52 PM7/6/10 11:52 PM

Chapter 29

Are Virtual Functions for Real?
In This Chapter
▶ Overriding between functions that are members of a class

▶ Introducing virtual member functions

▶ Some special considerations for virtual functions

▶ Declaring your destructor virtual — when to and when not to do it

Inheritance gives users the ability to describe one class in terms of
another. Just as important, it highlights the relationship between classes.

I describe a duck as “a bird that . . .”, and that description points out the rela-
tionship between duck and bird. From a C++ standpoint, however, a piece of
the puzzle is still missing.

You have probably noticed this, but a microwave oven looks nothing like a
conventional oven and nor does it work the same internally. Nevertheless,
when I say “cook,” I don’t want to worry about the details of how each oven
works internally. This chapter describes this problem in C++ terms and then
goes on to describe the solution as well.

Overriding Member Functions
It has always been possible to overload a member function with another
member function in the same class as long as the arguments differ:

class Student
{
 public:
 double grade(); // return the student’s gpa
 double grade(double); // set the student’s gpa

 // ...other stuff...
};

38_617977-ch29.indd 34338_617977-ch29.indd 343 7/6/10 11:52 PM7/6/10 11:52 PM

344 Part VI: Advanced Strokes

You see this in spades in Chapters 26 and 27 where I overload the construc-
tor with a number of different types of constructors. It is also possible to
overload a function in one class with a function in another class even if the
arguments are the same, because the class is not the same:

class Student
{
 public:
 double grade(double); // set the student’s gpa
};

class Hill
{
 public:
 double grade(double); // set the slope of the hill
};

Inheritance offers another way to confuse things: A member function in a
subclass can overload a member function in the base class.

Overloading a base class member function is called overriding.

Early binding
 Overriding is fairly straightforward. Consider, for example, the following

EarlyBinding demonstration program:

//
// EarlyBinding - demonstrates early binding in
// overriding one member function with
// another in a subclass.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 double calcTuition() { return 0.0; }
};

class GraduateStudent : public Student
{
 public:
 double calcTuition() { return 1.0; }

38_617977-ch29.indd 34438_617977-ch29.indd 344 7/6/10 11:52 PM7/6/10 11:52 PM

345 Chapter 29: Are Virtual Functions for Real?

};

int main(int nNumberofArgs, char* pszArgs[])
{
 // the following calls Student::calcTuition()
 Student s;
 cout << “The value of s.calcTuition() is “
 << s.calcTuition()
 << endl;

 // the following calls GraduateStudent::calcTuition()
 GraduateStudent gs;
 cout << “The value of gs.calcTuition() is “
 << gs.calcTuition()
 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

Here both the Student and GraduateStudent classes include a
calcTuition() member function (and nothing else, just to keep the
listings short). Presumably, the university calculates tuition for gradu-
ate and undergraduate students differently, but for this demonstra-
tion, determining which function is being called is the only important
thing. Therefore, Student::calcTuition() returns a 0, while
GraduateStudent::calcTuition() returns a 1 — can’t get much simpler
than that!

The main() function first creates a Student object s and then
invokes s.calcTuition(). Not surprisingly, this call is passed to
Student::calcTuition() as is clear from the output of the pro-
gram as quoted here. The main() function then does the same for
GraduateStudent with predictable results:

The value of s.calcTuition() is 0
The value of gs.calcTuition() is 1
Press any key to continue . . .

In this program, the C++ compiler is able to decide at compile time which
member function to call based upon the declared type of s and gs.

 Resolving calls to overridden member functions based on the declared type of
the object is called compile-time or early binding.

38_617977-ch29.indd 34538_617977-ch29.indd 345 7/6/10 11:52 PM7/6/10 11:52 PM

346 Part VI: Advanced Strokes

This simple example is not too surprising so far, but let me put a wrinkle in
this simple fabric.

Ambiguous case
 The following AmbiguousBinding program is virtually identical to the earlier

EarlyBinding program. The only difference is that instead of invoking calcTu-
ition() directly, this version of the program calls the function through a
pointer passed to a function:

//
// AmbiguousBindng - demonstrates a case where it’s not
// clear what should happen. In this
// case, C++ goes with early binding
// while languages like Java and C#
// use late binding.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 double calcTuition() { return 0.0; }
};

class GraduateStudent : public Student
{
 public:
 double calcTuition() { return 1.0; }
};

double someFn(Student* pS)
{
 return pS->calcTuition();
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // the following calls Student::calcTuition()
 Student s;
 cout << “The value of someFn(&s) is “
 << someFn(&s)
 << endl;

 // the following calls GraduateStudent::calcTuition()

38_617977-ch29.indd 34638_617977-ch29.indd 346 7/6/10 11:52 PM7/6/10 11:52 PM

347 Chapter 29: Are Virtual Functions for Real?

 GraduateStudent gs;
 cout << “The value of someFn(&gs) is “
 << someFn(&gs)
 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

Just as in the EarlyBinding example, this program starts by creating a
Student object s. Rather than invoke s.calcTuition() directly, however,
this version passes the address of the s to someFn() and that function does
the honors. The program repeats the process with a GraduateStudent
object gs.

Now without looking ahead, I have a question: Which calcTuition()
will pS->calcTuition() call when main() passes the address
of a GraduateStudent to someFn()? You could argue that it will
call Student::calcTuition() because the declared type of pS is
Student*. On the other hand, you could argue that the same call will
invoke GraduateStudent::calcTuition() because the “real type” is
GraduateStudent*.

 The “real type” of an object is known as the run-time type (as opposed to the
declared type). These are also known as dynamic type and static type, respectively.

The output from this program appears as follows:

The value of someFn(&s) is 0
The value of someFn(&gs) is 0
Press any key to continue . . .

You can see that, by default, C++ bases its decision on the declared type of
the object. Therefore, someFn() calls Student::calcTuition() because
that’s the way the object is declared irrespective of the run-time type of the
object provided in the call.

 The alternative to early binding is to decide which member function to call
based on the run-time type of the object. This is known as late binding.

Thus, we say that C++ prefers early binding.

38_617977-ch29.indd 34738_617977-ch29.indd 347 7/6/10 11:52 PM7/6/10 11:52 PM

348 Part VI: Advanced Strokes

Enter late binding
Early binding does not capture the essence of object-oriented programming.
Let’s return to how I made nachos in Chapter 21. In a sense, I acted as the
late binder. The recipe said, “Heat the nachos in the oven.” It didn’t say, “If
the type of oven is microwave, do this; if the type is convection oven, do
this; if the type is conventional oven, do this; if using a campfire, do this.”
The recipe (the code) relied on me (the late binder) to decide what the
action (member function) heat means when applied to the oven (the par-
ticular instance of class Oven) or any of its variations (subclasses), such
as a microwave (MicrowaveOven). People think this way, and designing a
language along these lines enables the software model to more accurately
describe a real-world solution a person might think up.

There are also mundane reasons of maintainability and reusability to justify
late binding. Suppose I write a great program around the class Student.
This program, cool as it is, does lots of things, and one of the things it does is
calculate the student’s tuition for the upcoming year. After months of design,
coding, and testing, I release the program to great acclaim and accolades
from my peers.

Time passes and my boss asks me to change the rules for calculating the
tuition on graduate students. I’m to leave the rules for students untouched,
but I’m to give graduate students some type of break on their tuition so that
the university can attract more and better postgraduate candidates. Deep
within the program, someFunction() calls the calcTuition() member
function as follows:

void someFunction(Student* pS)
{
 pS->calcTuition();

 // ...function continues on...
}

 This should look familiar. If not, refer to the beginning of this chapter.

If C++ did not support late binding, I would need to edit someFunction() to
do something similar to the following:

void someFunction(Student* pS)
{
 if (pS->type() == STUDENT)
 {
 pS->Student::calcTuition();
 }

38_617977-ch29.indd 34838_617977-ch29.indd 348 7/6/10 11:52 PM7/6/10 11:52 PM

349 Chapter 29: Are Virtual Functions for Real?

 if (pS->type() == GRADUATESTUDENT)
 {
 pS->GraduateStudent::calcTuition();
 }

 // ...function continues on...
}

Using the extended name of the function, including the class name, forces the
compiler to use the specific version of calcTuition().

I would add a member type() to the class that would return some constant.
I could establish the value of this constant in the constructor.

This change doesn’t seem so bad until you consider that calcTuition()
isn’t called in just one place; it’s called throughout the program. The chances
are not good that I will find all the places that it’s called.

And even if I do find them all, I’m editing (read “breaking”) previously debugged,
tested, checked in, and certified code. Edits can be time-consuming and
boring, and they introduce opportunities for error. Any one of my edits
could be wrong. At the very least, I will have to retest and recertify every
path involving calcTuition().

What happens when my boss wants another change? (My boss, like all
bosses, is like that.) I get to repeat the entire process.

What I really want is for C++ to keep track of the real-time type of the object
and to perform the call using late binding.

 The ability to perform late binding is called polymorphism (“poly” meaning
“varied” and “morph” meaning “form”). Thus, a single object may take varied
actions based upon its run-time type.

 All I need to do is add the keyword virtual to the declaration of the member
function in the base class as demonstrated in the following LateBinding exam-
ple program:

//
// LateBinding - addition of the keyword ‘virtual’
// changes C++ from early binding to late
// binding.
//
#include <cstdio>
#include <cstdlib>
#include <iostream>

38_617977-ch29.indd 34938_617977-ch29.indd 349 7/6/10 11:52 PM7/6/10 11:52 PM

350 Part VI: Advanced Strokes

using namespace std;

class Student
{
 public:
 virtual double calcTuition() { return 0.0; }
};

class GraduateStudent : public Student
{
 public:
 virtual double calcTuition() { return 1.0; }
};

double someFn(Student* pS)
{
 return pS->calcTuition();
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // the following calls Student::calcTuition()
 Student s;
 cout << “The value of someFn(&s) is “
 << someFn(&s)
 << endl;

 // the following calls GraduateStudent::calcTuition()
 GraduateStudent gs;
 cout << “The value of someFn(&gs) is “
 << someFn(&gs)
 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

 It’s not necessary to add the virtual keyword to the subclass as well, but
doing so is common practice. A member function that is bound late is known
as a virtual member function.

Other than the virtual keyword, there is no other difference between the
LateBinding program and its AmbiguousBinding predecessor, but the results
are strikingly different:

The value of someFn(&s) is 0
The value of someFn(&gs) is 1
Press any key to continue . . .

38_617977-ch29.indd 35038_617977-ch29.indd 350 7/6/10 11:52 PM7/6/10 11:52 PM

351 Chapter 29: Are Virtual Functions for Real?

This is exactly what I want: C++ is now deciding which version of
calcTuition() to call, not based upon its declared type but based
upon its run-time type.

It may seem surprising that the default for C++ is early binding, but the
reason is simple. Late binding adds a small amount of overhead to every call
to virtual member functions. The inventors of C++ did not want to give critics
any reasons to reject the language, so, by default, C++ does not include the
overhead of late binding with functions that are not virtual.

When Is Virtual Not?
Just because you think a particular function call is bound late doesn’t mean
that it is. C++ generates no indication at compile time which calls it thinks are
bound early and which are bound late.

The most critical thing to watch for is that all of the member functions in
question are declared identically, including the return type. If they aren’t
declared with the same arguments in the subclass, the member functions
aren’t overridden; without overriding, there can’t be late binding. Consider
the following code snippet:

class Base
{
 public:
 virtual void fn(int x);
};

class Subclass : public Base
{
 public:
 virtual void fn(double x);
};
void test(Base* pB)
{
 pB->fn(1);

 pB->fn(2.0);
};

The function fn() is not bound late because the arguments don’t match. Not
surprisingly, the first call to fn() within test() goes to Base::fn(int)
even if test() is passed to an object of class Subclass. Somewhat surpris-
ingly, the second call goes to Base::fn(int) as well after converting the
double to an int. Again, no overriding, no late binding.

38_617977-ch29.indd 35138_617977-ch29.indd 351 7/6/10 11:52 PM7/6/10 11:52 PM

352 Part VI: Advanced Strokes

The only exception to this rule is best explained by the following example:

class Base
{
 public:
 virtual Base* fn();
};

class Subclass : public Base
{
 public:
 virtual Subclass* fn();
};

Here, the function fn() is bound late, even though the return type doesn’t
match exactly. In practice, this is quite natural. If a function is dealing with
Subclass objects, it seems natural that it should return a Subclass object
as well.

Virtual Considerations
Specifying the class name in the call forces the call to find out early whether
the function is declared virtual or not. For example, the following call is
to Base::fn() because that’s what the programmer indicated that she
intended:

void test(Base* pB)
{
 pB->Base::fn(); // this call is not bound late
}

Constructors cannot be declared virtual because there is no completed
object at the time the constructor is invoked to use as the basis for late
binding.

On the other hand, destructors should almost always be declared virtual.
If not, you run the risk of not completely destructing the object, as demon-
strated in the following snippet:

class Base
{
 public:
 ~Base() {} // this should be declared virtual
};

class Subclass

38_617977-ch29.indd 35238_617977-ch29.indd 352 7/6/10 11:52 PM7/6/10 11:52 PM

353 Chapter 29: Are Virtual Functions for Real?

{
 protected:
 MyObject* pMO;

 public:
 Subclass()
 {
 pMO = new MyObject;
 }
 ~Subclass()
 {
 delete pMO;
 pMO = 0;
 }
};

Base* someOtherFn()
{
 return new Subclass;
}

void someFn()
{
 Base* pB = someOtherFn();
 delete pB;
}

The program has a subtle but devastating bug. When someFn() is called,
it immediately calls someOtherFn(), which creates an object of class
Subclass. The constructor for Subclass allocates an object of class
MyObject off the heap. Ostensibly, all is well because the destructor for
Subclass returns MyObject to the heap when the Subclass object is
destructed.

However, when someFn() calls delete, it passes a pointer of type Base*. If
this call is allowed to bind early, it will invoke the destructor for Base, which
knows nothing about MyObject. The memory will not be returned to the
heap.

 I realize that technically delete is a keyword and not a function call, but the
semantics are the same.

Declaring the destructor for Base virtual solves the problem. Now the call
to delete is bound late — realizing that the pointer passed to delete actually
points to a Subclass object, delete invokes the Subclass destructor, and
the memory is returned, as it’s supposed to be.

38_617977-ch29.indd 35338_617977-ch29.indd 353 7/6/10 11:52 PM7/6/10 11:52 PM

354 Part VI: Advanced Strokes

So is there a case in which you don’t want to declare the destructor virtual?
Only one. Earlier I said that virtual functions introduce a “little” overhead. Let
me be more specific. One thing they add is an additional hidden pointer to
every object — not one pointer per virtual function, just one pointer, period.
A class with no virtual functions does not have this pointer.

Now, one pointer doesn’t sound like much, and it isn’t, unless the following
two conditions are true:

 ✓ The class doesn’t have many data members (so that one pointer is a lot
compared with what’s there already).

 ✓ You create a lot of objects of this class (otherwise, the overhead doesn’t
matter).

 If either of these two conditions is not true, always declare your destructors
virtual.

38_617977-ch29.indd 35438_617977-ch29.indd 354 7/6/10 11:52 PM7/6/10 11:52 PM

Chapter 30

Overloading Assignment Operators
In This Chapter
▶ Overloading operators — in general, a bad idea

▶ Overloading the assignment operator — why that one is critical

▶ What to do when you just can’t be bothered with writing an assignment operator

The little symbols like +, −, =, and so on are called operators. These opera-
tors are already defined for the intrinsic types like int and double.

However, C++ allows you to define the existing operators for classes that you
create. This is called operator overloading.

Operator overloading sounds like a great idea. The examples that are com-
monly named are classes like Complex that represent a complex number.
(Don’t worry if you don’t know what a complex number is. Just know that C++
doesn’t handle them intrinsically.) Having defined the class Complex, you
can then define the addition, multiplication, subtraction, and division opera-
tors (all of these operations are defined for complex numbers). Then you
write cool stuff like:

Complex c1(1, 0), c2(0, 1);
Complex c3 = c1 + c2;

Overloading operators turns out to be much more difficult in practice than
in theory. So much so that I consider operator overloading beyond the scope
of this book with two exceptions, one of which is the subject of this chapter:
overloading the assignment operator. The second operator worth overload-
ing is the subject of the next chapter.

Overloading an Operator
C++ considers an operator as a special case of a function call. It considers
the + operator to be shorthand for the function operator+(). In fact, for

39_617977-ch30.indd 35539_617977-ch30.indd 355 7/6/10 11:53 PM7/6/10 11:53 PM

356 Part VI: Advanced Strokes

any operator %, the function version is known as operator%(). So to define
what addition means when applied to a Complex object, for example, you
need merely to define the following function:

Complex& operator+(Complex& c1, Complex& c2);

You can define what existing operators mean when applied to objects of your
making, but there are a lot of things you can’t do when overloading opera-
tors. Here are just a few:

 ✓ You can’t define a new operator, only redefine what an existing operator
means when applied to your user-defined class.

 ✓ You can’t overload the intrinsic operators like operator+(int, int).

 ✓ You can’t affect the precedence of the operators.

In addition, the assignment operator must be a member function — it cannot
be a non-member function like the addition operator just defined.

Overloading the Assignment
Operator Is Critical

The C++ language does provide a default assignment operator. That’s why
you can write things like the following:

Student s1(“Stephen Davis”, 1234);
Student s2;
s2 = s1; // use the default assignment operator

The default assignment operator does a member-by-member copy of each
data member from the object on the right into the object on the left. This is
completely analogous to the default copy constructor. Remember that this
member-by-member copy is called a shallow copy. (Refer to Chapter 27 for
more on copy constructors and shallow copies.)

The problems inherent in the default assignment operator are similar to the
copy constructor, only worse. Consider the following example snippet:

class Student
{
 protected:
 char* pszName;
 int nID;

 public:

39_617977-ch30.indd 35639_617977-ch30.indd 356 7/6/10 11:53 PM7/6/10 11:53 PM

357 Chapter 30: Overloading Assignment Operators

 Student(const char* pszNewName, int nNewID)
 {
 cout << “Constructing “ << pszNewName << endl;
 int nLength = strlen(pszNewName) + 1;
 pszName = new char[nLength];
 strcpy(pszName, pszNewName);
 nID = nNewID;
 }
 ~Student()
 {
 cout << “Destructing “ << pszName << endl;
 delete[] pszName;
 pszName = 0;
 }

 // ...other members...
};

void someFn()
{
 Student s1(“Stephen Davis”, 1234);
 Student s2(“Cayden Amrich”, 5678);

 s2 = s1; // this is legal but very bad
}

The function someFn() first creates an object s1. The Student(const
char*, int) constructor for Student allocates memory from the heap to
use to store the student’s name. The process is repeated for s2.

The function then assigns s1 to s2. This does two things, both of which
are bad:

 ✓ Copies the s1.pszName pointer into s2.pszName so that both objects
now point to the same block of heap memory.

 ✓ Wipes out the previous value of s2.pszName so that the block of
memory used to store the student name Cayden Amrich is lost.

Here’s what the assignment operator for Student needs to do:

 ✓ Delete the memory block pointed at by s2.pszName (like a destructor).

 ✓ Perform a deep copy of the string from s1.pszName into a newly
allocated array in s2.pszName (like a copy constructor). (Again, see
Chapter 27 for a description of deep copying.)

39_617977-ch30.indd 35739_617977-ch30.indd 357 7/6/10 11:53 PM7/6/10 11:53 PM

358 Part VI: Advanced Strokes

 In fact, you can make this general statement: An assignment operator acts like
a destructor to wipe out the current values in the object followed by a copy
constructor that copies new values into the object.

Looking at an Example
 The following StudentAssignment program contains a Student class that has

a constructor and a destructor along with a copy constructor and an assign-
ment operator — everything a self-respecting class needs!

//
// StudentAssignment - this program demonstrates how to
// create an assignment operator that
// performs the same deep copy as the copy
// constructor
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

class Student
{
 protected:
 char* pszName;
 int nID;

 void init(const char* pszNewName, int nNewID)
 {
 int nLength = strlen(pszNewName) + 1;
 pszName = new char[nLength];
 strcpy(pszName, pszNewName);
 nID = nNewID;
 }

 void destruct()
 {
 delete[] pszName;
 pszName = 0;
 }

 public:
 Student(const char* pszNewName, int nNewID)
 {
 cout << “Constructing “ << pszNewName << endl;
 init(pszNewName, nNewID);

39_617977-ch30.indd 35839_617977-ch30.indd 358 7/6/10 11:53 PM7/6/10 11:53 PM

359 Chapter 30: Overloading Assignment Operators

 }
 Student(Student& s)
 {
 cout<<”Constructing copy of “<< s.pszName << endl;
 init(s.pszName, s.nID);
 }

 virtual ~Student()
 {
 cout << “Destructing “ << pszName << endl;
 destruct();
 }

 // overload the assignment operator
 Student& operator=(Student& source)
 {
 // don’t do anything if we are assigned to
 // ourselves
 if (this != &source)
 {
 cout << “Assigning “ << source.pszName
 << “ to “ << pszName << endl;

 // first destruct the existing object
 destruct();

 // now copy the source object
 init(source.pszName, source.nID);
 }

 return *this;
 }

 // access functions
 const char* getName()
 {
 return pszName;
 }
 int getID()
 {
 return nID;
 }
};

void someFn()
{
 Student s1(“Adam Laskowski”, 1234);
 Student s2(“Vanessa Barbossa”, 5678);

39_617977-ch30.indd 35939_617977-ch30.indd 359 7/6/10 11:53 PM7/6/10 11:53 PM

360 Part VI: Advanced Strokes

 s2 = s1;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 someFn();

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

The data members of this Student class are the same as the versions from
earlier chapters. The constructor and copy constructor are the same as
well, except that the actual work is performed in an init() function that
is invoked from both constructors. The assignment operator can reuse the
same init() function as well to perform its construction function.

The code that implements the destruct sequence has also been transferred
from ~Student() to a protected destruct() member function.

F ollowing the destructor is the assignment operator operator=(). This
function first tests to see if the address of the object passed is the same as
the current object. This is to detect the following case:

s1 = s1;

In this case, the assignment operator does nothing. If the source and current
objects are not the same, the function first destructs the current object and
then copies the contents of the source object into the current object. Finally,
it returns a reference to the current object.

The someFn() function shows how this works in practice. After first declar-
ing two Student objects s1 and s2, someFn() executes the assignment

s2 = s1;

which is interpreted as if it had been written as

s2.operator=(s1);

That is, the assignment operator destructs s2 and then copies the contents
of s1 into s2.

39_617977-ch30.indd 36039_617977-ch30.indd 360 7/6/10 11:53 PM7/6/10 11:53 PM

361 Chapter 30: Overloading Assignment Operators

The destructor invoked at the end of someFn() demonstrates that the two
objects, s1 and s2, don’t both refer to the same piece of heap memory. The
output from the program appears as follows:

Constructing Adam Laskowski
Constructing Vanessa Barbossa
Assigning Adam Laskowski to Vanessa Barbossa
Destructing Adam Laskowski
Destructing Adam Laskowski
Press any key to continue . . .

 The reason that the assignment operator returns a reference to the current
object is to allow the following:

s3 = s1 = s2;

Writing Your Own (or Not)
I don’t expect you to learn all the ins and outs of overloading operators; how-
ever, you can’t go too wrong if you follow the pattern set out by the Student
example:

 1. Check to make sure that the left-hand and right-hand objects aren’t the
same — if so, return without taking any action.

 2. Destruct the left-hand object (the current object which is the same
object referred to by this).

 3. Copy construct the left-hand object using the right-hand object as the
source.

 4. Return a reference to the left-hand object (that is, return *this;).

If this is too much, you can always do the following:

class Student
{
 protected:
 Student& operator=(Student&)
 {
 return *this;
 }

 // ...whatever else...
};

39_617977-ch30.indd 36139_617977-ch30.indd 361 7/6/10 11:53 PM7/6/10 11:53 PM

362 Part VI: Advanced Strokes

This assignment operator doesn’t do anything, but by being declared pro-
tected, it precludes any application software from trying to use the default
assignment operator. Now

s1 = s2;

will generate a compiler error.

39_617977-ch30.indd 36239_617977-ch30.indd 362 7/6/10 11:53 PM7/6/10 11:53 PM

Chapter 31

Performing Streaming I/O
In This Chapter
▶ Using stream I/O — an overview

▶ Opening an object for file input and output

▶ Detecting errors when performing file I/O

▶ Formatting output to a file

▶ Using the stream classes on internal buffers for easy string formatting

I gave you a template to follow when generating new programs in Chapter 2.
Since you were just starting the journey to C++, I asked you to take a lot of

what was in that template on faith; then throughout subsequent chapters, I
explained each of the features of the template. There’s just one item remain-
ing: stream input/output (commonly shortened to just I/O).

 I must warn you that stream I/O can’t be covered completely in a single
chapter — entire books are devoted to this one topic. Fortunately, however,
you don’t need to know too much about stream I/O in order to write the vast
majority of programs.

How Stream I/O Works
Stream I/O is based on overloaded versions of operator>>() and opera-
tor<<() (known as the right-shift and left-shift operators, respectively)

Note: I don’t cover the << (left-shift) and >> (right-shift) operators in my dis-
cussion of arithmetic operators in Chapter 4, as these perform bit operations
that are beyond the scope of a beginning programmer.

The prototype declarations for the stream operators are found in the include
file iostream. The code for these functions is part of the Standard C++
Library that your programs link with by default. That’s why the standard

40_617977-ch31.indd 36340_617977-ch31.indd 363 7/6/10 11:53 PM7/6/10 11:53 PM

364 Part VI: Advanced Strokes

template starts out with #include <iostream> — without it, you can’t
perform stream I/O. The following excerpt shows just a few of the prototype
declarations that appear in iostream:

//for input we have:
istream& operator>>(istream& source, int &dest);
istream& operator>>(istream& source, double &dest);
istream& operator>>(istream& source, char *pDest);
//...and so forth...

//for output we have:
ostream& operator<<(ostream& dest, const char *pSource);
ostream& operator<<(ostream& dest, int source);
ostream& operator<<(ostream& dest, double source);
//...and so it goes...

When overloaded to perform stream input, operator<<() is called the
extractor. The class istream is the basic class for performing input from a
file. C++ creates an istream object cin and associates it with the keyboard
when your program first starts and before main() is executed.

The first prototype in the earlier extract from the iostream include file
refers to the function that is invoked when you enter the following C++ code:

int i;
cin >> i;

As you’ve seen, extracting from cin is the standard way of performing key-
board input.

When overloaded to perform stream output, operator<<() is called the
inserter. C++ uses the ostream class for performing formatted output from a
file. C++ creates an ostream object cout at program start and associates it
with the console display.

The first prototype among the output functions is called when you enter the
following:

cout << “C++ programming is fn()”;

Inserting to cout is the standard means for displaying stuff to the operator.

Both cin and cout are declared in the iostream include file. That’s how
your program knows what they are.

 C++ opens a second ostream object at program startup. This object, cerr, is
also associated with the display by default, but it is used as a standard error
output. If you’ve used Linux, Unix, or the Windows console window much,
you know that you can redirect standard input and output. For example, the
command

40_617977-ch31.indd 36440_617977-ch31.indd 364 7/6/10 11:53 PM7/6/10 11:53 PM

365 Chapter 31: Performing Streaming I/O

myprogram <file1.txt >file2.txt

says, “Execute myprogram.exe, but read from file1.txt rather than the
keyboard, and output to file2.txt rather than the display.” That is, cin is
associated with file1.txt and cout with file2.txt. In this case, if you
send error messages to cout, the operator will never see them because they
will be sent to the file. However, messages sent to cerr will continue to go to
the display since it is not redirected with cout.

 Always send error messages to cerr rather than cout just in case cout has
been redirected.

Stream Input/Output
C++ provides separate classes for performing input and output to files. These
classes, ifstream and ofstream, are defined in the include file fstream.

 Collectively both ifstream and ofstream are known as fstream classes.

Creating an input object
The class ifstream provides a constructor used to open a file for input:

ifstream(const char* pszFileName,
 ios_base::openmode mode);

This constructor opens a file, creates an object of class ifstream, and asso-
ciates that object with the opened file to be used for input. The first argu-
ment to the constructor is a pointer to the name of the file to open. You can
provide a full pathname or just the filename.

If you provide the filename without a path, C++ will look in the current directory
for the file to read. When executing from your program from within Code::Blocks,
the current directory is the directory that contains the project file.

 Don’t forget that a Windows/DOS backslash is written “\\” in C++. Refer to
Chapter 5 for details.

The second argument directs some details about how the file is to be opened
when the object is created. The type openmode is a user-defined type within
the class ios_base. The legal values of mode are defined in Table 31-1. If
mode is not provided, the default value is ios_base::in, which means open
the file for input. (Pretty logical for a file called ifstream.)

40_617977-ch31.indd 36540_617977-ch31.indd 365 7/6/10 11:53 PM7/6/10 11:53 PM

366 Part VI: Advanced Strokes

The following example code snippet opens the text file MyData.txt and
reads a few integers from it:

void someFn()
{
 // open the file MyData.txt in the current directory
 ifstream input(“MyData.txt”);

 int a, b, c;

 input >> a >> b >> c;
 cout << “a = “ << a
 << “, b = “ << b
 << “, c = “ << c << endl;
}

To specify the full path, I could write something like the following:

ifstream input(“C:\\\\MyFolder\\MyData.txt”);

This opens the “C:\\MyFolder\MyData.txt” file.

The destructor for class ifstream closes the file. In the preceding snippet,
the file “MyData.txt” is closed when control exits someFn() and the input
object goes out of scope.

Table 31-1 Constants That Control How
 Files Are Opened for Input

Flag Meaning

ios_
base::binary

Open file in binary mode (alternative is text mode)

ios_base::in Open file for input (implied for istream)

Creating an output object
The class ofstream is the output counterpart to ifstream. The constructor
for this class opens a file for output using the inserter operator:

ofstream(const char* pszFileName,
 ios_base::openmode mode);

40_617977-ch31.indd 36640_617977-ch31.indd 366 7/6/10 11:53 PM7/6/10 11:53 PM

367 Chapter 31: Performing Streaming I/O

This constructor opens a file for output. Here again, pszFileName points
to the name of the file, whereas mode controls some aspects about how the
file is to be opened. Table 31-2 lists the possible values for mode. If you don’t
provide a mode, the default value is out + trunc, which means “open the
file for output and truncate whatever is already in the file” (the alternative is
to append whatever you output to the end of the existing file).

The following example code snippet opens the text file MyData.txt and
writes some absolutely true information into it:

void someFn()
{
 // open the file MyData.txt in the current directory
 ofstream output(“MyData.txt”);

 output << “Stephen is suave and handsome\n”
 << “and definitely not balding prematurely”
 << endl;
}

The destructor for class ofstream flushes any buffers to disk and closes the
file before destructing the object and returning any local memory buffers to
the heap when the output object goes out of scope at the end of someFn().

Table 31-2 Constants That Control How Files Are
 Opened for Output

Flag Meaning

ios_base::app Seek to End of File before each write

ios_base::ate Seek to End of File immediately after opening the file

ios_
base::binary

Open file in binary mode (alternative is text mode)

ios_base::out Open file for output (implied for ostream)

ios_
base::trunc

Truncate file, if it exists (default for ostream)

Open modes
Tables 31-1 and 31-2 show the different modes that are possible when open-
ing a file. To set these values properly, you need to answer the following
three questions:

40_617977-ch31.indd 36740_617977-ch31.indd 367 7/6/10 11:53 PM7/6/10 11:53 PM

368 Part VI: Advanced Strokes

 ✓ Do you want to read from the file or write to the file? Use ifstream to
read and ofstream to write. If you intend to both read and write to the
same file, then use the class fstream and set the mode to in | out,
which opens the file for both input and output. Good luck, however,
because getting this to work properly is difficult. It’s much better to
write to a file with one object and read from the file with another object.

 ✓ If you are writing to the file and it already exists, do you want to add to
the existing contents (in which case, open with mode set to out | ate)
or delete the contents and start over (in which case, open with mode set
to out | trunc)?

 ✓ Are you reading or writing text or binary data? Both ifstream and
ofstream default to text mode. Use binary mode if you are reading
or writing raw, nontext data. (See the next section in this chapter for a
short explanation of binary mode.)

 The | is the “binary OR” operator. The result of in | out is an int with the
in bit set and the out bit set. You can OR any of the mode flags together.

If the file does not exist when you create the ofstream object, C++ will
create an empty output file.

What is binary mode?
You can open a file for input or output in either binary or text mode. The
primary difference between binary and text mode lies in the way that new-
lines are handled. The Unix operating system was written in the days when
typewriters were still fashionable (when it was called “typing” instead of
“keyboarding” or the soon to become fashionable “iPhoning”). Unix ends sen-
tences with a carriage return followed by a line feed.

Subsequent operating systems saw no reason to continue using two charac-
ters to end a sentence, but they couldn’t agree on which character to use.
Some used the carriage return and others the line feed, now renamed new-
line. The C++ standard is the single newline.

When a file is opened in text mode, the C++ library converts the single new-
line character into what is appropriate for your operating system on output,
whether it’s a carriage return plus line feed, a single carriage return, or a
line feed (or something else entirely). C++ performs the opposite conver-
sion when reading a file. The C++ library does no such conversions for a file
opened in binary mode.

40_617977-ch31.indd 36840_617977-ch31.indd 368 7/6/10 11:53 PM7/6/10 11:53 PM

369 Chapter 31: Performing Streaming I/O

 Always use binary mode when manipulating a file that’s not in human-readable
format. If you don’t, the C++ library will modify any byte in the data stream
that happens to be the same as a carriage return or linefeed.

Hey, file, what state are you in?
A properly constructed ifstream or ofstream object becomes a stand-in
for the file that it’s associated with.

The programmer tends to think of operations on the fstream objects as
being the same as operations on the file itself. However, this is only true
so long as the object is properly constructed. If an fstream object fails to
construct properly, it might not be associated with a file — for example, if
an ifstream object is created for a file that doesn’t exist. In this case, C++
rejects stream operations without taking any action at all.

Fortunately, C++ tells you when something is wrong — the member function
bad() returns a true if something is wrong with the fstream object and if
it cannot be used for input or output. This usually happens when the object
cannot be constructed for input because the file doesn’t exist or for output
because the program doesn’t have permission to write to the disk or direc-
tory. Other system errors can also cause the bad() state to become true.

The term “bad” is descriptive, if a bit excessive (I don’t like to think of com-
puter programs as being bad or good). A lesser state called fail() is set to
true if the last read or write operation failed. For example, if you try to read
an int and the stream operator can find only characters, then C++ will set
the fail() flag. You can call the member function clear() to clear the fail
flag and try again — the next call may or may not work. You cannot clear the
bad() flag — just like wine, an object gone bad is not recoverable.

 Attempts to perform input from or output to an object with either the bad()
or fail() flag set are ignored.

I mean this literally — no input or output is possible as long as the internal
state of the fstream object has an error. The program won’t even try to
perform I/O, which isn’t so bad on output — it’s pretty obvious when your
program isn’t performing output the way it’s supposed to. This situation can
lead to some tricky bugs in programs that perform input, however. It’s very
easy to mistake garbage left in the variable, perhaps from a previous read, for
valid input from the file.

40_617977-ch31.indd 36940_617977-ch31.indd 369 7/6/10 11:53 PM7/6/10 11:53 PM

370 Part VI: Advanced Strokes

 Consider the following ReadIntegers program, which contains an unsafeFn()
that reads values from an input file:

//
// ReadIntegers - this program reads integers from
// an input file MyFile.txt contained
// in the current directory.
//
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <iostream>
using namespace std;

void unsafeFn()
{
 ifstream myFile(“MyFile.txt”);
 int nInputValue;

 for(int n = 1; n <= 10; n++)
 {
 // read a value
 myFile >> nInputValue;

 // value successfully read - output it
 cout << n << “ - “ << nInputValue << endl;
 }
}

int main(int nNumberofArgs, char* pszArgs[])
{
 unsafeFn();

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

The preceding unsafeFn() function reads ten values from MyFile.txt
and displays them on the console. That sounds okay, but what if there aren’t
ten values in MyFile.txt — what if there are only nine (or five or none!)?
This version of the program generated the following output when provided a
sample MyFile.txt:

1 - 1
2 - 2
3 - 3
4 - 4
5 - 5
6 - 6
7 - 7
8 - 7

40_617977-ch31.indd 37040_617977-ch31.indd 370 7/6/10 11:53 PM7/6/10 11:53 PM

371 Chapter 31: Performing Streaming I/O

9 - 7
10 - 7
Press any key to continue . . .

The question is, did the file really contain the value 7 four times, or did
an error occur after the seventh read? There is no way for the user to tell
because once the program gets to the End of File, all subsequent read
requests fail. The value of nInputValue is not set to zero or some other
“special value.” It retains whatever value it had on the last successful read
request, which in this case is 7.

 The most flexible means to avoid this problem is to exit the loop as soon as an
error occurs using the member function fail(), as demonstrated by the fol-
lowing safeFn() version of the same function (also part of the ReadIntegers
program on the enclosed CD-ROM):

//
// ReadIntegers - this program reads integers from
// an input file MyFile.txt contained
// in the current directory.
//
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <iostream>
using namespace std;

void safeFn()
{
 ifstream myFile(“MyFile.txt”);
 int nInputValue;

 for(int n = 0; n < 10; n++)
 {
 // read a value
 myFile >> nInputValue;

 // exit the loop on read error
 if (myFile.fail())
 {
 break;
 }

 // value successfully read - output it
 cout << n << “ - “ << nInputValue << endl;
 }
}

int main(int nNumberofArgs, char* pszArgs[])

40_617977-ch31.indd 37140_617977-ch31.indd 371 7/6/10 11:53 PM7/6/10 11:53 PM

372 Part VI: Advanced Strokes

{
 safeFn();

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

This version generated the following output when reading the same MyFile.
txt file:

1 - 1
2 - 2
3 - 3
4 - 4
5 - 5
6 - 6
7 - 7
Press any key to continue . . .

Now it’s obvious that there are only seven values in the file rather than the
expected ten and that the number seven isn’t repeated.

 Always check the value of fail() after extracting data from an input file to
make sure that you’ve actually read a new value.

Notice that the preceding ReadIntegers program adds the line #include
<fstream> to the standard template I’ve used for all programs in earlier
chapters. This extra include file is necessary to gain access to the ifstream
and ofstream classes.

Don’t overflow that buffer
If you look closely at some of the earlier programs in this book, you’ll see C++ statements like the
following:

char szStudentName[80];
cin >> szStudentName;

This snippet allocates 80 characters for the student’s name (surely that’s enough for anyone’s
name) and then extracts a string into that array. The problem is that the extractor doesn’t know
how large the array is — if the user types more than 80 characters before entering a return or
whitespace, then the C++ library function will overflow the end of the array and overwrite memory.
Hackers use this overflow capability in programs that interface directly to the Internet to overwrite
the machine instructions in the program, thereby taking over control of your computer.

40_617977-ch31.indd 37240_617977-ch31.indd 372 7/6/10 11:53 PM7/6/10 11:53 PM

373 Chapter 31: Performing Streaming I/O

Other Member Functions of
the fstream Classes

The fstream classes provide a number of member functions, as shown in
Table 31-3 (the list isn’t a complete list of all the functions in these very large
classes). The prototype declarations for these member functions reside in
the fstream include file. They are described in the remainder of this section.

Table 31-3 Major Methods of the I/O Stream Classes

Method Meaning

bool bad() Returns true if a serious error has
occurred.

void clear(iostate flags =
 ios_base::goodbit)

Clears (or sets) the I/O state flags.

void close() Closes the file associated with a
stream object.

bool eof() Returns true if there are no more char-
acters in the read pointer at the End
of File.

char fill()
char fill(char newFill)

Returns or sets the fill character.

(continued)

You can avoid this problem two ways. One way is to use the member function getline(). This
function allows you to specify the length of the array as in the following:

char szStudentName[80];
cin.getline(szStudentName, 80);

This call reads input until the first newline or until 80 characters have been read, whichever comes
first. Any characters not read are left in cin for the next read to pick up.

A second approach is to use the string class. This class acts like a char array except that it
dynamically resizes to fit the amount of data. Thus, the following is safe:

string sStudentName;
cin >> sStudentName;

The string class will automatically allocate an array off the heap that’s large enough to hold what-
ever data is input. Unfortunately, the string class is beyond the scope of a beginning book on
programming.

40_617977-ch31.indd 37340_617977-ch31.indd 373 7/6/10 11:53 PM7/6/10 11:53 PM

374 Part VI: Advanced Strokes

Table 31-3 (continued)

Method Meaning

fmtflags flags()
fmtflags flags(fmtflags f)

Returns or sets format flags. (See next
section on format flags.)

void flush() Flushes the output buffer to the disk.

int gcount() Returns the number of bytes read
during the last input.

char get() Reads individual characters from file.

char getline(
 char* buffer,
 int count,
 char delimiter = ‘\n’)

Reads multiple characters up until
either End of File, until delimiter
encountered, or until count - 1
characters read. Tacks a null onto the
end of the line read. Does not store the
delimiter read into the buffer. The delim-
iter defaults to newline, but you can
provide a different one if you like.

bool good() Returns true if no error conditions
are set.

void open(
 const char* filename,
 openmode mode)

Same arguments as the constructor.
Performs the same file open on an
existing object that the constructor
performs when creating a new object.

streamsize precision()
streamsize precision(
 streamsize s)

Reads or sets the number of digits dis-
played for floating point variables.

ostream& put(char ch) Writes a single character to the
stream.

istream& read(
 char* buffer,
 streamsize num)

Reads a block of data. Reads either
num bytes or until an End of File is
encountered, whichever occurs first.

fmtflags setf(fmtflags) Sets specific format flags. Returns old
value.

fmtflags unsetf(fmtflags) Clears specific format flags. Returns
old value.

int width()
int width(int w)

Reads or sets the number of charac-
ters to be displayed by the next format-
ted output statement.

ostream& write(
 const char* buffer,
 streamsize num)

Writes a block of data to the output
file.

40_617977-ch31.indd 37440_617977-ch31.indd 374 7/6/10 11:53 PM7/6/10 11:53 PM

375 Chapter 31: Performing Streaming I/O

Reading and writing streams directly
The inserter and extractor operators provide a convenient mechanism for
reading formatted input. However, sometimes you just want to say, “Give it to
me; I don’t care what the format is.” Several member functions are useful in
this case.

The simplest function, get(), returns the next character in an input file. Its
output equivalent is put(), which writes a single character to an output file.
The function getline() returns a string of characters up to some termi-
nator — the default terminator is a newline, but you can specify any other
character you like as the third argument to the function. The getline()
function strips off the terminator but makes no other attempt to reformat or
otherwise interpret the input.

The member function read() is even more basic. This function reads the
number of bytes that you specify, or less if the program encounters the End
of File. The function gcount() always returns the actual number of bytes
read. The output equivalent is write().

 The following FileCopy program uses the read() and write() functions
to create a backup of any file you give it by making a copy with the string
“.backup” appended to the name:

//
// CopyFiles - make backup copies of whatever files
// are passed to the program by creating
// a file with the same name plus the name
// “.backup” appended.
//
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <cstring>
using namespace std;

void copyFile(const char* pszSrcFileName)
{
 // create a copy of the specified filename with
 // “,backup” added to the end
 int nTargetNameLength = strlen(pszSrcFileName) + 10;
 char *pszTargetFileName = new char[nTargetNameLength];
 strcpy(pszTargetFileName, pszSrcFileName);
 strcat(pszTargetFileName, “.backup”);

 // now open the source file for input and

40_617977-ch31.indd 37540_617977-ch31.indd 375 7/6/10 11:53 PM7/6/10 11:53 PM

376 Part VI: Advanced Strokes

 // the target file for output
 ifstream input(pszSrcFileName,
 ios_base::in | ios_base::binary);
 if (input.good())
 {
 ofstream output(pszTargetFileName,
 ios_base::out | ios_base::binary | ios_base::trunc);
 if (output.good())
 {

 while (!input.eof() && input.good())
 {
 char buffer[4096];
 input.read(buffer, 4096);
 output.write(buffer, input.gcount());
 }
 }
 }

 // restore memory to the heap
 delete pszTargetFileName;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // pass every file name provided to main() to
 // the copyFile() function, one name at a time
 for (int i = 1; i < nNumberofArgs; i++)
 {
 cout << “Copying “ << pszArgs[i] << endl;
 copyFile(pszArgs[i]);
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

The program iterates through the arguments passed to it, remembering that
pszArgs[0] points to the name of the program itself. The program passes
each argument, one at a time, to the function copyFile().

The copyFile() function first creates a copy of the name passed it in the
array pszTargetFileName. It then concatenates the string “.backup” to
that name. Finally, you get to the good part: copyFile() opens the source
file whose name was passed as the argument to the copyFile() function for
binary input.

40_617977-ch31.indd 37640_617977-ch31.indd 376 7/6/10 11:53 PM7/6/10 11:53 PM

377 Chapter 31: Performing Streaming I/O

Note: The ios_base:: is necessary when using the in, out, binary, and
trunc flags as these are const static members of the ios_base class.

 Use binary mode if you are working with non-text files or you don’t intend to
display the contents. In this case, I did not limit the program to work only with
text files.

The function only continues executing if input.good() is true, indicating
that the input object was created successfully, since it will be impossible to
read from the file if the open did not work properly.

 In a real-world program, I would have displayed some useful error message
before returning to the caller.

If the input object is created okay, copyFile() creates an output object
using the pszTargetFileName created earlier. This file is opened for binary
output. The mode flag is also set to truncate to delete the contents of the
target file if it already exists. If output.good() is true, the function exe-
cutes the next section of the function; otherwise, control jumps to the end.

The function is now ready to copy the contents of one file to the other: it
enters a loop in which it reads 4K blocks from the input file and writes them
to the output file.

Notice in the call to write(), copyFile() uses the value returned from
input.gcount() rather than a hardcoded 4096. This is because unless the
source file just happens to be an integer multiple of 4096 bytes in length (not
very likely), the last call to read() will fetch less than the requested number
of bytes before encountering the End of File.

The loop terminates when either input reaches the End of File or the input
object is no longer good.

 The ! operator (pronounced “the NOT operator”) inverts the sense of a
Boolean expression. In other words, !true is false and !false is true.
(You read that last phrase as “NOT true is false and NOT false is true.”)

Immediately before exiting, the function returns the pszTargetFileName
array to the heap. Exiting the function causes the destructor for both input
and output to be called, which closes both the input and output files.

To execute the program within the Code::Blocks environment, I first selected
Project➪Set Programs’ Arguments to open the Select target dialog box. In
the Program arguments field, I entered main.cpp and clicked OK. I could
just as well have selected and dropped several files onto the name of the
CopyFiles executable file or entered the command name followed by the
names of the files to “backup” at the command prompt.

Chapter 18 discusses the various ways to pass arguments to your program.

40_617977-ch31.indd 37740_617977-ch31.indd 377 7/6/10 11:53 PM7/6/10 11:53 PM

378 Part VI: Advanced Strokes

When I run the program, I get the following output:

Copying main.cpp
Press any key to continue . . .

Looking into the folder containing the main.cpp source file, I now see a
second main.cpp.backup file that has the identical size and contents as the
original.

Controlling format
The flags(), setf(), and unsetf() member functions are all used to set
or retrieve a set of format flags used to control the format of input extracted
from an ifstream or inserted into an ofstream object. The flags get set to
some default value that makes sense most of the time when the object is cre-
ated. However, you can change these flags to control the format of input and/
or output. Table 31-4 describes the flags that can be used with the flags(),
setf(), and unsetf() member functions.

Table 31-4 I/O Stream Format Flags Used
 with setf(), unsetf(), and flags()

Flag If Flag Is True Then . . .

boolalpha Displays variables of type bool as either true or false
rather than 1 or 0

dec Reads or writes integers in decimal format (default)

fixed Displays floating point in fixed point as opposed to scien-
tific (default)

hex Reads or writes integers in hexadecimal

left Displays output left-justified (that is, pads on the right)

oct Reads or writes integers in octal

right Displays output right-justified (that is, pads on the left)

scientific Displays floating point in scientific format

showbase Displays a leading 0 for octal output and leading 0x for
hexadecimal output

showpoint Displays a decimal point for floating point output even if
the fractional portion is zero

skipws Skips over whitespace when reading using the extractor

unitbuf Flushes output after each output operation

uppercase Replaces lowercase letters with their uppercase equiva-
lents on output

40_617977-ch31.indd 37840_617977-ch31.indd 378 7/6/10 11:53 PM7/6/10 11:53 PM

379 Chapter 31: Performing Streaming I/O

For example, the following code segment displays integer values in hexadeci-
mal (rather than the default, decimal):

// fetch the previous value so we can restore it
ios_base::fmtflags prevValue = cout.flags();

// clear the decimal flag
cout.unsetf(cout.dec);

// now set the hexadecimal flag
cout.setf(cout.hex);

// ...do stuff...

// restore output to previous state
cout.flags(prevValue);

This example first queries the cout object for the current value of the format
flags using the flags() member function. The type of the value returned is
ios_base::fmtflags.

I didn’t discuss user-defined types defined within classes — that’s an
advanced topic — so just trust me that this type makes sense.

 It’s always a good idea to record the format flags of an input or output object
before changing them so that you can restore them to their previous value
once you’re finished.

The program then clears the decimal flag using the unsetf() function (it
does this because hexadecimal, octal, and decimal are mutually exclusive
format modes) before setting the hex mode using setf(). The setf() sets
the hexadecimal flag without changing the value of any other format flags
that may be set. Every time an integer is inserted into the cout object for the
remainder of the function, C++ will display the value in hexadecimal.

Once the function finishes displaying values in hexadecimal format, it
restores the previous value by calling flags(fmtflags). This member
function overwrites the current flags without whatever value you pass it.

Further format control is provided by the width(int) member function that
sets the minimum width of the next output operation. In the event that the
field doesn’t take up the full width specified, the inserter adds the requisite
number of fill characters. The default fill character is a space, but you change
this by calling fill(char). Whether C++ adds the fill characters on the left
or right is determined by whether the left or right format flag is set.

40_617977-ch31.indd 37940_617977-ch31.indd 379 7/6/10 11:53 PM7/6/10 11:53 PM

380 Part VI: Advanced Strokes

For example, the code snippet

int i = 123;
cout.setf(cout.right);
cout.unsetf(cout.left);
cout.fill(‘+’);
cout << “i = [“;
cout.width(10);
cout << i;
cout << “]” << endl;

generates the following output:

i = [+++++++123]

 Notice that the call to width(int) appears immediately before cout << i.
Unlike the other formatting flags, the width(int) call applies only to the
very next value that you insert. It must be reset after every value that you
output.

What’s up with endl?
Most programs in this book terminate an output stream by inserting the
object endl. However, some programs include \n within the text to output a
newline. What’s the deal?

The endl object inserts a newline into the output stream, but it takes one
more step. Disks are slow devices (compared to computer processors).
Writing to disk more often than necessary will slow your program consid-
erably. To avoid this, the ofstream class collects output into an internal
buffer. The class writes the contents to disk when the buffer is full.

 A memory buffer used to speed up output to a slow device like a disk is known
as a cache — pronounced “cash.” Writing the contents of the buffer to disk is
known as flushing the cache.

The endl object adds a newline to the buffer and then flushes the cache to
disk. You can also flush the cache manually by calling the member function
flush().

Note that C++ does not cache output to the standard error object, cerr.

Manipulating Manipulators
The span of some formatting member functions is fairly short. The best
example of this is the width(n) member function — this function is good

40_617977-ch31.indd 38040_617977-ch31.indd 380 7/6/10 11:53 PM7/6/10 11:53 PM

381 Chapter 31: Performing Streaming I/O

only for the next value output. After that it must be reset. You saw this impli-
cation in the preceding snippet — the call to cout.width(n) had to appear
right in the middle of the inserters:

cout << “i = [“;
cout.width(10);
cout << i;
cout << “]” << endl;

The call to cout.width(10) is good only for the very next output cout <<
i; it has no effect on the following output cout << “]”.

Other functions have a short span, usually because you need to change
their value often. For example, switching back and forth between decimal
and hexadecimal mode while performing output requires multiple calls to
setf(hex) and setf(dec) throughout the program.

Since this process can be a bit clumsy, C++ defines a more convenient means
to invoke these common member functions. Table 31-5 defines a set of so-
called manipulators that can be inserted directly in the output stream. These
manipulators defined in the include file iomanip have the same effect as call-
ing the corresponding member function.

Table 31-5 Common Manipulators and Their Equivalent
 Member Functions

Manipulator Member Function Description

dec setf(dec) Set display radix to decimal

hex setf(hex) Set display radix to
hexadecimal

oct setf(oct) Set display radix to octal

setfill(c) fill(c) Set the fill character to c

setprecision(n) precision(n) Set the display precision to n

setw(n) width(n) Set the minimum field width
for the next output to n

For example, the earlier snippet can be written as follows:

cout << “i = [“ << setw(10) << i << “]” << endl;

I/O manipulators are nothing more than a labor-saving device — they don’t
add any new capability.

 You must include iomanip if you intend to use I/O manipulators.

40_617977-ch31.indd 38140_617977-ch31.indd 381 7/6/10 11:53 PM7/6/10 11:53 PM

382 Part VI: Advanced Strokes

Using the stringstream Classes
After some practice, you get pretty good at parsing input from a file using
the extractors and generating attractive output using the format controls
provided with the inserter. It’s a shame that you can’t use that skill to parse
character strings that are already in memory.

Well, of course, C++ provides just such a capability (I wouldn’t have
mentioned it otherwise). C++ provides two pairs of classes that allow
you to parse a string in memory using the same member functions that
you’re accustomed to using for file I/O. An object of class istrstream or
istringstream “looks and feels” like an ifstream object. Similarly, an
object of class ostrstream or ostringstream responds to the same com-
mands as an ofstream object.

The difference between the two sets of classes is not how they operate but
how they are constructed. The istrstream class must be constructed
with an ASCIIZ array as its base. All input is performed from this array. The
istringstream class takes an object of class string as its base.

I don’t discuss the string class in this book since in practice it’s a little
beyond the scope of a beginning programmer. However, the string class
acts like an ASCIIZ array whose size changes automatically to conform to the
size of the string it’s asked to hold.

Similarly, the class ostrstream writes into an ASCIIZ array that is provided
in the constructor, whereas the ostringstream class creates a string
object for output.

The istrstream and ostrstream classes are defined in the strstream
include file. The istringstream and ostringstream classes are defined
in the sstream include file.

The following StringStream program parses Student information from an
input file by first reading in a line using getline() before parsing it with
istrstream.

 The strstream classes are being phased out of the language in favor of the
stringstream classes; however, I used the strstream classes here since
they are based on the ASCIIZ character arrays that you are already familiar
with. You will want to convert over to using the stringstream classes
once you become familiar with the string class. The Code::Blocks compiler
generates a warning when building the StringStream program that the
strstream classes are deprecated, meaning that they are subject to removal.

40_617977-ch31.indd 38240_617977-ch31.indd 382 7/6/10 11:53 PM7/6/10 11:53 PM

383 Chapter 31: Performing Streaming I/O

 // StringStream - demonstrate the use of string stream

// classes for parsing input safely
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <strstream>
#include <cstring>
using namespace std;

struct Student
{
 protected:
 char szFirstName[128];
 char szLastName[128];
 int nStudentID;

 public:
 Student(const char* pszFN, const char* pszLN,int nSID)
 {
 strncpy(szFirstName, pszFN, 128);
 strncpy(szLastName, pszLN, 128);
 nStudentID = nSID;
 }

 // display - write the student’s data into the
 // array provided; don’t exceed the size
 // of the array set by nLength
 void display(char* pszBuffer, int nLength)
 {
 ostrstream out(pszBuffer, nLength);

 out << szFirstName << “ “ << szLastName
 << “ [“ << nStudentID << “]” << ends;
 }
};

int main(int nNumberofArgs, char* pszArgs[])
{
 Student *pStudents[128];
 int nCount = 0;

 cout << “Input student <last name, first name ID>\n”
 << “(Input a blank line to stop input)” << endl;

 for(;;)
 {
 // get another line to parse

40_617977-ch31.indd 38340_617977-ch31.indd 383 7/6/10 11:53 PM7/6/10 11:53 PM

384 Part VI: Advanced Strokes

 char szLine[256];
 cin.getline(szLine, 256);

 // terminate if line is blank
 if (strlen(szLine) == 0)
 {
 break;
 }

 // associate an istrstream object with the
 // array that we just read
 istrstream input(szLine, 256);

 // now try to parse the buffer read
 char szLastName[256];
 char szFirstName[256];
 int nSSID;

 // read the last name up to a comma separator
 input.getline(szLastName, 256, ‘,’);

 // read the first name until encountering white
 // space
 input >> szFirstName;

 // now read the student id
 input >> nSSID;

 // skip this line if anything didn’t work
 if (input.fail())
 {
 cerr << “Bad input: “ << szLine << endl;
 continue;
 }

 // create a Student object with the data
 // input and store it in the array of pointers
 pStudents[nCount++] = new Student(szFirstName,
 szLastName, nSSID);
 }

 // display the students input - use the Student’s
 // output function to format the student data
 for(int n = 0; n < nCount; n++)
 {
 char szBuffer[256];
 pStudents[n]->display(szBuffer, 256);
 cout << szBuffer << endl;
 }

40_617977-ch31.indd 38440_617977-ch31.indd 384 7/6/10 11:53 PM7/6/10 11:53 PM

385 Chapter 31: Performing Streaming I/O

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

The program starts by creating an array of pointers that it will use to store
the Student objects that it creates. It then prompts the user for the format
that it expects for the student data to be read.

The program then enters a loop in which it first reads an entire line of input
up to and including the terminating newline. If the length of the line read is
zero, meaning that nothing was entered but a newline, the program breaks
out of the input loop.

If something was input, the program associates an istrstream object input
with the buffer. Subsequent read requests will be from this szLine buffer.
The istrstream buffer must also tell the constructor how long the buffer is
so that it doesn’t read beyond the end.

The next section reads the last name, first name, and Social Security number.

These reads are safe — they cannot overflow the szLastName and
szFirstName buffers because the extractor cannot possibly return more
than 256 characters in any single read — that’s how long the szLine array is.

 Notice how the program calls getline() passing a ‘,’ as the terminator. This
reads characters up to and including the comma that separates the last name
and first name.

Once the program has read the three student fields, it checks the input
object to see if everything worked by calling input.fail() . If fail() is
true, the program throws away whatever it read and spits back out the line
to the user with an error message.

The Student constructor is typical of those you’ve seen elsewhere in the
book. The program uses the Student::display() function to display
the contents of a Student object. It does this in a fairly elegant fashion by
simply associating an ostrstream object with the array provided and then
inserting to the object. All main() has to do is output the result.

This is much more flexible than the alternative of inserting output directly to
cout — the program can do anything it wants with the szBuffer array con-
taining the Student data. It can write it to a file, send it to cout, or put it in a
table, to name just three possibilities.

40_617977-ch31.indd 38540_617977-ch31.indd 385 7/6/10 11:53 PM7/6/10 11:53 PM

386 Part VI: Advanced Strokes

Notice that the last object display() inserts is the object ends. This is sort
of the strstream version of endl; however, ends does not insert a newline.
Instead, it inserts a null to terminate the ASCIIZ string within the buffer.

 Always insert an ends last to terminate the ASCIIZ string that you build.

The output from the program appears as follows:

Input student <last name, first name ID>
(Input a blank line to stop input)
Davis, Stephen 12345678
Ashley 23456789
Bad input: Ashley 23456789
Webb, Jessalyn 34567890

Stephen Davis [12345678]
Jessalyn Webb [34567890]
Press any key to continue . . .

Notice how the second line is rejected since it doesn’t follow the specified
input format, but the program recovers gracefully to accept input again on
the third line. This graceful recovery is very difficult to do any other way.

40_617977-ch31.indd 38640_617977-ch31.indd 386 7/6/10 11:53 PM7/6/10 11:53 PM

Chapter 32

I Take Exception!
In This Chapter
▶ Introducing the exception mechanism for handling program errors

▶ Examining the mechanism in detail

▶ Creating your own custom exception class

I know it’s hard to accept, but occasionally programs don’t work properly —
not even mine. The traditional means of reporting a failure within a func-

tion is to return some indication to the caller, usually as a return value.
Historically, C and C++ programmers have used 0 as the “all clear” indicator
and anything else as meaning an error occurred — the exact value returned
indicates the nature of the error.

The problem with this approach is that people generally don’t check all of
the possible error returns. It’s too much trouble. And if you were to check all
of the possible error returns, pretty soon you wouldn’t see the “real code”
because of all the error paths that are almost never executed.

Finally, you can embed just so much information in a single return value. For
example, the factorial() function could return a −1 for “negative argu-
ment” (the factorial of a negative number is not defined) and a −2 for “argu-
ment too large” (factorials get large very quickly — factorial(100) is well
beyond the range of an int). But if the program were to return a −2, wouldn’t
you like to know the value of that “too large argument”? There’s no easy way
to embed that information in the return.

The fathers (and mothers) of C++ decided that the language needed a better
way of handling errors, so they invented the exception mechanism that has
since been duplicated in many similar languages. Exceptions are the subject
of this chapter.

The Exception Mechanism
The exception mechanism is a way for functions to report errors so that the
error is handled even if the calling function does nothing. It’s based on three

41_617977-ch32.indd 38741_617977-ch32.indd 387 7/6/10 11:53 PM7/6/10 11:53 PM

388 Part VI: Advanced Strokes

new keywords: try, catch, and throw (that’s right, more variable names
that you can’t use). The exception mechanism works like this: A function trys
to make it through a block of code without error. If the program does detect
a problem, it throws an error indicator that a calling function can catch for
processing.

 The following FactorialException demonstrates how this works in ones and
zeros:

// FactorialException - demonstrate the Exception error
// handling mechanism with a
// factorial function.
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// factorial - compute factorial
int factorial(int n)
{
 // argument must be positive; throw exception if
 // n is negative
 if (n < 0)
 {
 throw “Argument for factorial is negative”;
 }

 // anything over 100 will overflow
 if (n > 100)
 {
 throw “Argument too large”;
 }

 // go ahead and calculate factorial
 int nAccum = 1;
 while(n > 1)
 {
 nAccum *= n--;
 }
 return nAccum;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 try
 {
 cout << “Factorial of 3 is “
 << factorial(3)
 << endl;

 cout << “Factorial of -1 is “

41_617977-ch32.indd 38841_617977-ch32.indd 388 7/6/10 11:53 PM7/6/10 11:53 PM

389 Chapter 32: I Take Exception!

 << factorial(-1)
 << endl;

 cout << “Factorial of 5 is “
 << factorial(5)
 << endl;
 }
 catch(const char* pMsg)
 {
 cerr << “Error occurred: “ << pMsg << endl;
 }
 catch(...)
 {
 cerr << “Unexpected error thrown” << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

The main() function starts with the keyword try followed by an open brace
and, eventually, a closed brace. Everything within the braces is said to be
within a try block. The function then proceeds to display the factorial of
three values: 3, −1, and 5. The only problem is that the factorial of a negative
number is not defined.

You can see this within the factorial() function. This version of the func-
tion now contains a check for a negative argument and for an argument that
is so large that it will overflow the int. In the event that either condition is
true, control passes to a statement consisting of the keyword throw followed
by an ASCIIZ string containing a description of the error.

Back in main(), at the end of the try block are two catch phrases. Each con-
sists of the keyword catch followed by an argument. These catch phrases
are designed to catch any exceptions thrown from within the try block. The
first catch phrase will catch a pointer to an ASCIIZ string. This catch phrase
displays the string. The second catch phrase, the one with the ellipses for
an argument, is designed to catch anything. This wild-card catch phrase also
displays a message, but since the catch phrase is so generic, it has no idea
from where the exception was thrown or how to interpret the exception, so it
just outputs a generic error message.

In practice, the program works like this: The first call to factorial(3)
skips over both error conditions and returns the value 6. No problem so far.

The second call, factorial(-1) causes control to pass to the statement
thro w “Argument for factorial is negative”. This command

41_617977-ch32.indd 38941_617977-ch32.indd 389 7/6/10 11:53 PM7/6/10 11:53 PM

390 Part VI: Advanced Strokes

passes control immediately out of factorial() and to the end of the try
block where C++ starts comparing the type of “Argument for factorial
is negative” (which is const char* by the way — but you knew that) to
each of the catch arguments.

Fortunately, the type of object thrown matches the type of the first catch
phrase. This displays the string “Error occurred:” followed by the string
thrown from within factorial(). Control then passes to the first statement
after the last catch phrase, which is the usual call to system(“PAUSE”).

In execution, the output from the program appears as follows:

Factorial of 3 is 6
Error occurred: Argument for factorial is negative
Press any key to continue . . .

Notice that the call to factorial(5) never gets executed. There is no way
to return from a catch.

Examining the exception
mechanism in detail
Now, take a closer look at how C++ processes an exception.

When C++ encounters a throw, it first copies the object thrown to some
neutral place other than the local memory of the function. It then starts look-
ing in the current function for the end of the current try block. If it does not
encounter one, it then executes a return from the function and continues the
search. C++ continues to return and search, return and search until it finds
the end of the current try block. This is known as unwinding the stack.

An important feature of stack unwinding is that as each stack is unwound,
objects that go out of scope are destructed just as though the function had
executed a return statement. This keeps the program from losing assets or
leaving objects dangling.

When an enclosing try block is found, the code searches the first catch
phrase to see if the argument type matches the object thrown. If not, it
checks the next catch phrase and so on until a match is found.

If no matching catch phrase is found, then C++ resumes looking for the next
higher try block in an ever outward spiral until an appropriate catch can be
found. If no matching catch phrase is found, the program terminates.

41_617977-ch32.indd 39041_617977-ch32.indd 390 7/6/10 11:53 PM7/6/10 11:53 PM

391 Chapter 32: I Take Exception!

Once a catch phrase is found, the exception is said to be handled and control
passes to the statement following the last catch phrase.

The phrase catch(...) catches all exceptions.

Special considerations for throwing
I need to mention a few special considerations in regard to throwing excep-
tions. You need to be careful not to throw a pointer to an object in local
memory. As the stack is unwound, all local variables are destroyed. C++ will
copy the object into a safe memory location to keep it from being destroyed,
but there’s no way that C++ can tell what a pointer might be pointing to.

Note that I avoided this problem in the earlier example by throwing a pointer
to a const string — these are kept in a different memory area and not on the
stack. You’ll see a better way to avoid this problem in the next section.

Don’t catch an exception if you don’t know what to do with the error. That
may sound obvious, but it isn’t really. The exception mechanism allows pro-
grammers to handle errors at a level at which they can truly do something
about them. For example, if you are writing a data storage function and you
get an exception from a write to the disk, there’s not much point in catching
it. The destructor for the output object should close the file, and C++ calls
that automagically. Better to let the error propagate up to a level where the
program knows what it’s trying to do.

A catch phrase can rethrow an exception by executing the keyword throw;
alone (without an argument). This allows the programmer to partially pro-
cess an error. For example, a database function might catch an exception,
close any open tables or databases, and rethrow the exception to the applica-
tion software to be handled there for good. (Assuming that the destructors
haven’t done that stuff already.)

Finally, a function can declare the types of objects that it will throw as part
of the declaration. In other words, I could have declared factorial() as
follows:

int factorial(int n) throw(const char*);

I say “could” because, though some people consider exception declarations
good form, they aren’t mandatory. It isn’t even clear, if exception declara-
tions are a good idea. (Personally, I don’t think so.)

41_617977-ch32.indd 39141_617977-ch32.indd 391 7/6/10 11:53 PM7/6/10 11:53 PM

392 Part VI: Advanced Strokes

If you declare the types of object that a function throws, then each of the
throws is compared to that list, and an error is generated if the function tries
to throw something else. If you do not include a throw in the declaration,
then the function can throw anything it likes.

Creating a Custom Exception Class
The thing following a throw is actually an expression that creates an object of
some kind. In the earlier example, the object was a pointer, but it could have
been any object that you like (with one exception that I’ll mention a little
later in this section).

For example, I could have created my own class specifically for the purpose
of holding information about errors. For the factorial() example, I could
have created a class ArgOutOfRange that included everything you need to
know about out-of-range arguments. In this way, I could store as much infor-
mation as needed to debug the error (if it is an error), process the exception,
and report the problem accurately to the user.

 The following CustomExceptionClass program creates an ArgOutOfRange
class and uses it to provide an accurate description of the error encountered
in factorial():

// CustomExceptionClass - demonstrate the flexibility of
// the exception mechanism by creating
// a custom exception class.
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
#include <exception>
#include <strstream>
using namespace std;

class ArgOutOfRange : public exception
{
 protected:
 char szMsg[256];
 int nValue;
 int nMaxLegal;
 int nMinLegal;

 public:
 ArgOutOfRange(const char* pszFName, int nVal,
 int nMin = 0, int nMax = 0)
 {

41_617977-ch32.indd 39241_617977-ch32.indd 392 7/6/10 11:53 PM7/6/10 11:53 PM

393 Chapter 32: I Take Exception!

 nValue = nVal;
 nMinLegal = nMin;
 nMaxLegal = nMax;

 ostrstream out(szMsg, 256);
 out << “Argument out of range in “ << pszFName
 << “, arg is “ << nValue;
 if (nMin != nMax)
 {
 out << “, legal range is “
 << nMin << “ to “ << nMax;
 }
 out << ends;
 }

 virtual const char* what()
 {
 return szMsg;
 }
};

// factorial - compute factorial
int factorial(int n)
{
 // argument must be positive; throw exception if
 // n is negative
 if (n < 0)
 {
 throw ArgOutOfRange(“factorial()”, n, 0, 100);
 }

 // anything over 100 will overflow
 if (n > 100)
 {
 throw ArgOutOfRange(“factorial()”, n, 0, 100);
 }

 // go ahead and calculate factorial
 int nAccum = 1;
 while(n > 1)
 {
 nAccum *= n--;
 }
 return nAccum;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 try

41_617977-ch32.indd 39341_617977-ch32.indd 393 7/6/10 11:53 PM7/6/10 11:53 PM

394 Part VI: Advanced Strokes

 {
 cout << “Factorial of 3 is “
 << factorial(3)
 << endl;

 cout << “Factorial of -1 is “
 << factorial(-1)
 << endl;

 cout << “Factorial of 5 is “
 << factorial(5)
 << endl;
 }
 catch(ArgOutOfRange e)
 {
 cerr << “Error occurred:\n” << e.what() << endl;
 }
 catch(...)
 {
 cerr << “Unexpected error thrown” << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 system(“PAUSE”);
 return 0;
}

The main() program starts just like the previous example. The factorial()
function contains the same tests. Rather than throw a simple character string,
however, this version of factorial() throws an object of class ArgOutRange.
The constructor for ArgOutOfRange provides room for the name of the func-
tion, the value of the offending argument, and the range of legal values for the
argument.

All the real work is done in the ArgOutOfRange class. First, this class
extends the class exception, which is defined in the exception include
file. The exception class defines the virtual member function what() that
you must override with a version that outputs your message. Everything else
is optional.

 User-defined exception classes should extend exception so that C++ will
know what to do with your exception should you fail to catch it.

The constructor to ArgOutOfRange accepts the name of the function, the
value of the argument, and the minimum and maximum legal argument
values. Providing a default value for these arguments makes them optional.

41_617977-ch32.indd 39441_617977-ch32.indd 394 7/6/10 11:53 PM7/6/10 11:53 PM

395 Chapter 32: I Take Exception!

The constructor uses the ostrstream class (discussed in Chapter 31) to
create a complex description of the problem in the internal array szMsg. It
also saves off the arguments themselves.

A complete version of ArgOutOfRange would provide access functions to
allow each of these values to be queried from the application code, if desired.
I have to leave these details out in order to keep the programs as short as
possible.

Back in factorial(), the two throws now throw ArgOutOfRange objects
with the appropriate information. The catch back in main() is for an
ArgOutOfRange object. This block does nothing more than display an error
message along with the description returned by ArgOutRange::what().

Since all the real work was done in the constructor, the what() function
doesn’t have to do anything except return a pointer to the message stored
within the object.

The output from the program is now very descriptive:

Factorial of 3 is 6
Error occurred:
Argument out of range in factorial(), arg is -1, legal

range is 0 to 100
Press any key to continue . . .

Restrictions on exception classes
I mentioned that the exception mechanism can throw almost any type of
object. The only real restriction is that the class must be copyable. That
means either the default copy constructor provided by C++ is sufficient (that
was the case for ArgOutOfRange) or the class provides its own copy
constructor.

This restriction is because C++ has to copy the exception object out of local
storage and to some “safe place” before unwinding the stack. C++ uses the
copy constructor again to copy the object to the catch’s storage area.

41_617977-ch32.indd 39541_617977-ch32.indd 395 7/6/10 11:53 PM7/6/10 11:53 PM

396 Part VI: Advanced Strokes

41_617977-ch32.indd 39641_617977-ch32.indd 396 7/6/10 11:53 PM7/6/10 11:53 PM

Part VII

The Part of Tens

42_617977-pp07.indd 39742_617977-pp07.indd 397 7/6/10 11:54 PM7/6/10 11:54 PM

In this part . . .

No For Dummies book would be complete without its
Part of Tens. In this part, you’ll see ten ways to

avoid the most common coding mistakes and ten
advanced language features you may want to tackle when
you’re a little more experienced with the C++ language.

42_617977-pp07.indd 39842_617977-pp07.indd 398 7/6/10 11:54 PM7/6/10 11:54 PM

Chapter 33

Ten Ways to Avoid Bugs
In This Chapter
▶ Enable all compiler warning messages

▶ Adopt a clear and consistent coding style

▶ Comment your code while you write it

▶ Single-step every path in the debugger at least once

▶ Limit the visibility of members

▶ Keep track of heap memory

▶ Zero out pointers after deleting what they point to

▶ Use exceptions to handle errors

▶ Declare destructors virtual

▶ Provide a copy constructor and overloaded assignment operator

It’s an unfortunate fact that you will spend more time searching for and
removing bugs than you will spend actually writing your programs in

the first place. The suggestions in this section may help you minimize the
number of errors you introduce into your programs to make programming a
more enjoyable experience.

Enable All Warnings and Error Messages
The syntax of C++ allows for a lot of error checking. When the compiler
encounters a construct that it just can’t decipher, it has no choice but to
output a message. It tries to sync back up with the source code (sometimes
less than successfully), but it will not generate an executable. This forces the
programmer to fix all error messages — she has no choice.

However, when C++ comes across a structure that it can figure out but the
structure smells fishy anyway, C++ generates a warning message. Because
C++ is pretty sure that it understands what you want, it goes ahead and cre-
ates an executable file so you can ignore warnings if you like. In fact, if you
really don’t want to be bothered, you can disable warnings.

43_617977-ch33.indd 39943_617977-ch33.indd 399 7/6/10 11:54 PM7/6/10 11:54 PM

400 Part VII: The Part of Tens

 Disabling or otherwise ignoring warnings is an extraordinarily bad idea. It’s a
bit like unplugging the check engine light on your car’s dashboard because it
bothers you. Ignoring the problem doesn’t make it go away. It doesn’t mean
that you can always fix the problem — for example, I chose to overlook the
warnings in Chapter 31 about strstream being deprecated — but you need
to at least understand the warning. What you don’t know will hurt you.

If your compiler has a Syntax Check from Hell mode, enable it.

Adopt a Clear and Consistent
Coding Style

Writing your C++ code in a clear and consistent style not only enhances the read-
ability of your program, but also it results in fewer coding mistakes. This some-
what surprising state of affairs results from the fact that our brains have only a
limited amount of computing power. When you read code that is clean and neat
and that follows a style you’re familiar with, you spend very little brain power
parsing the syntax of the C++ statements. This leaves more brain CPU power to
decode what the program is trying to do and not how it’s doing it.

A good coding style lets you do the following with ease:

 ✓ Differentiate between class names, object names, and function names

 ✓ Understand what the class, function, or object is used for based on its
name

 ✓ Differentiate preprocessor symbols from C++ symbols (that is, #define
objects should stand out)

 ✓ Identify blocks of C++ code at the same level (this is the result of consis-
tent indentation)

In addition, you need to establish a standard module header format that pro-
vides information about the functions or classes in the module, the author
(presumably, that’s you), the date, the version, and something about the
modification history.

 All programmers involved in a single project should use the same coding
style. A program written in a patchwork of different coding styles is confusing
and looks unprofessional.

43_617977-ch33.indd 40043_617977-ch33.indd 400 7/6/10 11:54 PM7/6/10 11:54 PM

401 Chapter 33: Ten Ways to Avoid Bugs

Comment the Code While You Write It
You can avoid errors if you comment your code while you write it rather than
wait until everything works and then go back and add comments. I can under-
stand not taking the time to write voluminous headers and function descrip-
tions until later, but I have never understood not writing short comments as
you are coding.

Have you ever had the experience of asking someone a question, and even as
you got to the end of the question you knew the answer? Somehow formulat-
ing the question forced you to organize your thoughts sufficiently so that the
answer became clear.

Writing comments is like that. Formulating comments forces you to take
stock of what it is you’re trying to do. Short comments are enlightening, both
when you read them later and as you’re writing them.

Write comments like you’re talking to another, knowledgeable programmer.
You can assume that the reader understands the basics of the program, so
please don’t explain how C++ works. There’s no point in writing comments
that explain how a switch statement works unless you’re relying on some
obscure point of the language (like the fall-through capability of the switch
statement).

Single-Step Every Path in
the Debugger at Least Once

It may seem like an obvious statement, but I’ll say it anyway: As a program-
mer, it’s important that you understand what your program is doing. It isn’t
sufficient that the program outputs the expected value. You need to under-
stand everything your program is doing. Nothing gives you a better feel for
what’s going on under the hood than single-stepping the program with a
good debugger (like the one that comes with Code::Blocks).

Beyond that, as you debug a program, you sometimes need raw material to
figure out some bizarre behavior. Nothing gives you that material better than
single-stepping through each function as it comes into service.

Finally, when a function is finished and ready to be added to the program,
every logical path needs to be traveled at least once. Bugs are much easier
to find when the function is examined by itself rather than after it has been
thrown into the pot with the rest of the functions — and your attention has
gone on to new programming challenges.

43_617977-ch33.indd 40143_617977-ch33.indd 401 7/6/10 11:54 PM7/6/10 11:54 PM

402 Part VII: The Part of Tens

Limit the Visibility
Limiting the visibility of class internals to the outside world is a cornerstone
of object-oriented programming. The class should be responsible for its
internal state — if something gets screwed up in the class, then it’s the class
programmer’s fault. The application programmer should worry about solving
the problem at hand.

Specifically, limited visibility means that data members should not be acces-
sible outside of the class — that is, they should be marked as protected. In
addition, member functions that the application software does not need to
know about should also be marked protected. Don’t expose any more of the
class internals than necessary to get the job done.

A related rule is that public member functions should trust application code
as little as possible, even if the class programmer and the application pro-
grammer are the same person. The class programmer should act like it’s a
fact that the application programmer is a felonious hacker; if your program-
mer is accessible over the Internet, all too often this assumption is true.

Keep Track of Heap Memory
Losing track of heap memory is the most common source of fatal errors in
programs that have been released into the field and, at the same time, the
hardest problem to track down and remove (because this class of error is so
hard to find and remove, it’s prevalent in programs that you buy). You may
have to run a program for hours before problems start to arise (depending
upon how big the memory leak is).

As a general rule, programmers should always allocate and release heap
memory at the same “level.” If a member function MyClass::create() allo-
cates a block of heap memory and returns it to the caller, then there should
be a member MyClass::release() that returns it to the heap. Specifically,
MyClass::create() should not require the parent function to release the
memory.

If at all possible, MyClass should keep track of such memory pointers on its
own and delete them in the destructor.

Certainly, this doesn’t avoid all memory problems, but it does reduce their
prevalence somewhat.

43_617977-ch33.indd 40243_617977-ch33.indd 402 7/6/10 11:54 PM7/6/10 11:54 PM

403 Chapter 33: Ten Ways to Avoid Bugs

Zero Out Pointers after Deleting
What They Point To

Sort of a corollary to the warning in the preceding section is to make sure
that you zero out pointers after they are no longer valid. The reasons for this
become clear with experience: you can often continue to use a memory block
that has been returned to the heap and not even know it. A program might
run fine 99 percent of the time, making it very difficult to find the 1 percent of
cases where the block gets reallocated and the program doesn’t work.

If you zero out pointers that are no longer valid and you attempt to use them
to store a value (you can’t store anything at or near location 0), your pro-
gram will crash immediately. Crashing sounds bad, but it’s not. The problem
is there; it’s merely a question of whether you find it or not before putting it
into production.

It’s like finding a tumor at an early stage in an x-ray. Finding a tumor early
when it’s easy to treat is a good thing. Given that the tumor is there either
way, not finding it is much worse.

Use Exceptions to Handle Errors
The exception mechanism in C++ is designed to handle errors conveniently
and efficiently. In general, you should throw an error indicator rather than
return an error flag. The resulting code is easier to write, read, and maintain.
Besides, other programmers have come to expect it, and you wouldn’t want
to disappoint them, would you?

Having said that, limit your use of exceptions to true errors. It is not neces-
sary to throw an exception from a function that returns a “didn’t work” indi-
cator if this is a part of everyday life for that function. Consider a function
lcd() that returns the least common denominator of its two arguments.
That function will not return any values when presented with two mutually
prime numbers. This is not an error and should not result in an exception.

Declare Destructors Virtual
Don’t forget to create a destructor for your class if the constructor allocates
resources such as heap memory that need to be returned when the object

43_617977-ch33.indd 40343_617977-ch33.indd 403 7/6/10 11:54 PM7/6/10 11:54 PM

404 Part VII: The Part of Tens

reaches its ultimate demise. This rule is pretty easy to teach. What’s a little
harder for students to remember is this: Having created a destructor, don’t
forget to declare it virtual.

“But,” you say, “My class doesn’t inherit from anything, and it’s not sub-
classed by another class.” Yes, but it could become a base class in the future.
Unless you have some good reason for not declaring the destructor virtual,
then do so when you first create the class. (See Chapter 29 for a detailed dis-
cussion of virtual destructors.)

Provide a Copy Constructor and
Overloaded Assignment Operator

Here’s another rule to live by: If your class needs a destructor, it almost
surely needs a copy constructor and an overloaded assignment operator. If
your constructor allocates resources such as heap memory, the default copy
constructor and assignment operator will do nothing but create havoc by
generating multiple pointers to the same resources. When the destructor for
one of these objects is invoked, it will restore the assets. When the destruc-
tor for the other copy comes along, it will screw things up.

If you are too lazy or too confused or you just don’t need a copy construc-
tor and assignment operator, then declare “do nothing” versions, but make
them protected so that application software doesn’t try to invoke them by
accident. See Chapter 30 for more details. (The 2009 C++ standard allows you
to delete both the default copy constructor and assignment operator, but
declaring them protected works almost as well.)

43_617977-ch33.indd 40443_617977-ch33.indd 404 7/6/10 11:54 PM7/6/10 11:54 PM

Chapter 34

Ten Features Not
Covered in This Book

In This Chapter
▶ The goto command

▶ The ternary operator

▶ Binary logic

▶ Enumerated types

▶ Namespaces

▶ Pure virtual functions

▶ The string class

▶ Multiple inheritance

▶ Templates and the Standard Template Library

▶ The 2009 C++ Standard

The C++ language contains so many features that covering every one in a
single book — especially a book intended for beginning programmers —

is impossible. Fortunately, you don’t need to master all of the features of the
language in order to write big, real-world programs.

Nevertheless, you may want to look ahead at some of the features that didn’t
make the cut for this beginner’s book, just in case you see them in other
people’s programs.

The goto Command
This command goes all the way back to C, the progenitor of C++. In principle,
using this command is easy. You can place goto label; anywhere you

44_617977-ch34.indd 40544_617977-ch34.indd 405 7/6/10 11:55 PM7/6/10 11:55 PM

406 Part VII: The Part of Tens

want. When C++ comes across this command, control passes immediately to
the label, as demonstrated in this code snippet:

 for(;;)
 {
 if (conditional expression)
 {
 goto outahere;
 }
 // ...whatever you want...
 }
outahere:
 // ...program continues here...

In practice, however, goto introduces a lot of ways to screw up — many
more than I can go into here. In any case, it didn’t take long before program-
mers noticed that the two most common uses of the goto were to exit loops
and to go to the next case within a loop. The C Standards Committee intro-
duced break and continue and almost completely removed the need for
the goto command. I can say that I’ve been programming in C and C++ for
almost 20 years, and I’ve never had an application for a goto that I couldn’t
handle in some other way more clearly.

The Ternary Operator
The ternary operator is an operator unique to C and C++. It works as follows:

int n = (conditional) ? expression1 : expression2;

The ? operator first evaluates the conditional. If the condition is true, then
the value of the expression is equal to the value of expression1; otherwise,
it’s equal to the value of expression2.

For example, you could implement a maximum() function as follows:

int max(int n1, int n2)
{
 return (n1 > n2) ? n1 : n2;
}

The ternary operator can be applied to any type of numeric but cannot be
overloaded. The ternary operator is truly an expression and not a control
statement like an if.

44_617977-ch34.indd 40644_617977-ch34.indd 406 7/6/10 11:55 PM7/6/10 11:55 PM

407 Chapter 34: Ten Features Not Covered in This Book

Binary Logic
I chose to skip entirely the topic of binary arithmetic. Some readers will con-
sider this scandalous. After all, how can you talk about programming without
getting down to ones and zeros? It’s not that I don’t consider the topic worth-
while — it’s just that I find explaining the topic properly takes many pages
of text and leaves readers somewhat confused, when in practice it’s rarely
used. Google the topic once you feel comfortable with the basics of C++
programming.

Enumerated Types
This is a topic that barely missed the cut for inclusion in the book. The
simple idea is that you can define constants and let C++ assign them values,
as shown here:

enum Colors {BLACK, BLUE, GREEN, YELLOW, RED};
Colors myColor = BLACK;

The problem with enumerated types lies in the implementation: Rather than
create a true type, C++ uses integers. In this case, BLACK is assigned the
value 0, BLUE is assigned 1, GREEN 2, and so on. This leads to special cases
that make the topic not worth the trouble.

 The 2009 Standard Library for C++ “fixed” this problem by creating true enu-
merated types, but it didn’t do away with the integer version in order to retain
compatibility with existing programs. The result is even more confusing than
before.

Namespaces
It’s possible to give different entities in two different libraries the same name.
For example, the grade() function within the Student library probably
assigns a grade, whereas the grade() function within the Civil Engineering
library might set the slope on the side of a hill. To avoid this problem, C++
allows the programmer to place her code in a separate namespace. Thus,
the grade within the Student namespace is different from the grade within
CivilEngineering.

44_617977-ch34.indd 40744_617977-ch34.indd 407 7/6/10 11:55 PM7/6/10 11:55 PM

408 Part VII: The Part of Tens

The namespace is above and beyond the class name. The grade() member
function of the class BullDozer in the CivilEngineering namespace has
the extended name CivilEngineering::BullDozer::grade().

 All library objects and functions are in the namespace std. The statement at
the beginning of the program template using namespace std; says if you
don’t see the specified object in the default namespace, then go look in std.
Without this I would have to include the namespace explicitly, as in the follow-
ing snippet:

std::cout << “Hello, world!” << std::endl;

Pure Virtual Functions
You saw how to declare functions virtual in Chapter 29. What I didn’t men-
tion there is that you don’t have to define a function declared virtual. Such
an undefined function is known as a pure virtual member function. However,
things get complicated. For example, a class with one or more pure virtual
functions is said to be abstract and cannot be used to create an object (see
what I mean?). Tackle this subject after you feel comfortable with virtual
functions and late binding.

The string Class
This is another topic that barely missed the cut. Most languages include a
string class as an intrinsic type for handling strings of characters easily. In
theory, the string class should do the same for C++. In practice, however, it’s
not that simple. Because string is not an intrinsic type, the error messages
that the compiler generates when something goes wrong are more like those
associated with user-defined classes. For a beginner, these messages can be
very difficult to interpret.

 It’s actually worse than I’m describing here — string isn’t even a class. It’s
an instance of a template class. The error messages can be breathtaking.

44_617977-ch34.indd 40844_617977-ch34.indd 408 7/6/10 11:55 PM7/6/10 11:55 PM

409 Chapter 34: Ten Features Not Covered in This Book

Multiple Inheritance
I describe how to base one class on another using inheritance in Chapter 28.
What I didn’t mention there is that one class can actually extend more than
one base class. This sounds simple but can get quite complicated when the
two base classes contain member functions with the same name. Or worse,
when both base classes are themselves subclasses of some common class.
In fact, there are so many problems that arise that C++ is the only C-like
language that supports multiple inheritance. Java and C#, both languages
derived from C++, decided to drop support for multiple inheritance. I recom-
mend that beginning programmers avoid the subject.

Templates and the Standard
Template Library

The makers of C++ noticed how similar functions like the following are:

int max(int n1, int n2)
{
 if (n1 > n2)
 {
 return n1;
 }
 return n2;
}
double max(double n1, double n2)
{
 if (n1 > n2)
 {
 return n1;
 }
 return n2;
}
char max(char n1, char n2)
{
 if (n1 > n2)
 {
 return n1;
 }
 return n2;
}

44_617977-ch34.indd 40944_617977-ch34.indd 409 7/6/10 11:55 PM7/6/10 11:55 PM

410 Part VII: The Part of Tens

I can almost imagine the scene: “Wouldn’t it be cool,” one said to another, “if
we could replace the type with a pseudo-type T that we could define at com-
pile time?” Before you knew it, templates were a part of C++:

template <class T> T max(T t1, T t2)
{
 if (t1 > t2)
 {
 return t1;
 }
 return t2;
}

Now the programmer can create a max(int, int) by replacing T with int
and compiling the result, create a max(double, double) by replacing T
with double, and so forth. The Standards Committee even released an entire
library of classes, known as the Standard Template Library (STL for short),
based upon template classes.

For a beginner, however, the subject of template classes starts to get syntac-
tically very complicated. In addition, the errors that the compiler generates
when you get a template instantiation wrong are bewildering to an expert,
never mind a beginner. This is definitely a topic that needs to wait until you
feel comfortable with the basic language.

 The 2009 C++ Standard
The C++ Standard was released and agreed to in the late 1990s. Things
changed relatively little in the ensuing years, but the demand for additions
to the language grew until finally the 2009 Standard was released for com-
ment in late 2008. The problem with this standard is that it introduces a lot of
new features for which there seems to be very little demand. The standard is
more than 1,400 pages. (Admittedly, it includes a lot of very dry, very repeti-
tive library definitions, but even so, that C++ is not a small language any
more.) As of this writing (early 2010), no compilers implement the full 2009
standard.

44_617977-ch34.indd 41044_617977-ch34.indd 410 7/6/10 11:55 PM7/6/10 11:55 PM

Appendix

About the CD
In This Appendix
▶ System requirements

▶ Using the CD with Windows, Linux, and Mac

▶ What you’ll find on the CD

▶ Troubleshooting

This section describes the CD-ROM enclosed in the back of Beginning
Programs with C++ for Dummies. All readers will appreciate the source

code to the programs that appear in the book — using this code can save
you a lot of typing. In addition, 32-bit Windows users will welcome the
Code::Blocks C++ development environment coupled with the GNU C++ com-
piler ready to be installed on Windows 2000, Windows XP, Windows Vista,
or Windows 7. (Macintosh, Linux, and 64-bit Windows users can download
Code::Blocks from www.codeblocks.org.)

System Requirements
Make sure that your computer meets the minimum system requirements
shown in the following list. If your computer doesn’t match up to most of
these requirements, you may have problems using the software and files on
the CD. For the latest and greatest information, please refer to the ReadMe
file located at the root of the CD-ROM.

 ✓ A PC running Microsoft Windows or Linux with kernel 2.4 or later

 ✓ A Macintosh running Apple OS X or later

 ✓ An Internet connection (only required for downloading versions of
Code::Blocks for Macintosh or Linux)

 ✓ A CD-ROM drive

If you need more information on the basics, check out these books published
by Wiley Publishing, Inc.: PCs For Dummies by Dan Gookin; Macs For Dummies
by Edward C. Baig; iMacs For Dummies by Mark L. Chambers; and Windows XP

45_617977-bapp01.indd 41145_617977-bapp01.indd 411 7/6/10 11:55 PM7/6/10 11:55 PM

412 Beginning Programming with C++ For Dummies

For Dummies, Windows Vista For Dummies, and Windows 7 For Dummies, all
by Andy Rathbone.

Using the CD
These steps will help you install the items from the CD to your hard drive:

 1. Insert the CD into your computer’s CD-ROM drive.

 The license agreement appears.

 Note to Windows users: The interface won’t launch if you have autorun
disabled. In that case, choose Start➪Run. (For Windows Vista, choose
Start➪All Programs➪Accessories➪Run.) In the dialog box that appears,
type D:\Start.exe. (Replace D with the proper letter if your CD drive
uses a different letter. If you don’t know the letter, see how your CD
drive is listed under My Computer.) Click OK.

 Note for Mac Users: When the CD icon appears on your desktop, double-
click the icon to open the CD and double-click the Start icon.

 Note for Linux Users: The specifics of mounting and using CDs vary greatly
between different versions of Linux. Please see the manual or help informa-
tion for your specific system if you experience trouble using this CD.

 2. Read through the license agreement and then click the Accept button
if you want to use the CD.

 The CD interface appears. The interface allows you to browse the con-
tents and install the programs with just a click of a button (or two).

 3. Copy the C++ source code onto your hard disk.

 You can view the source code on the CD-ROM but you cannot build or
execute programs there.

 4. Windows users will want to install the Code::Blocks environment.

 Chapter 2 takes you through step-by-step instructions on how to install
Code::Blocks and how to create your first program.

What You’ll Find on the CD
The following sections are arranged by category and provide a summary of
the software and other goodies you’ll find on the CD. If you need help with
installing the items provided on the CD, refer to the installation instructions
in the preceding section.

45_617977-bapp01.indd 41245_617977-bapp01.indd 412 7/6/10 11:55 PM7/6/10 11:55 PM

413 Appendix: About the CD

For each program listed, I provide the program platform (Windows or Mac) plus
the type of software. The programs fall into one of the following categories:

 ✓ Shareware programs are fully functional, free, trial versions of copyrighted
programs. If you like particular programs, register with their authors for a
nominal fee and receive licenses, enhanced versions, and technical support.

 ✓ Freeware programs are free, copyrighted games, applications, and utili-
ties. You can copy them to as many computers as you like — for free —
but they offer no technical support.

 ✓ GNU software is governed by its own license, which is included inside the
folder of the GNU software. There are no restrictions on distribution of
GNU software. See the GNU license at the root of the CD for more details.

 ✓ Trial, demo, or evaluation versions of software are usually limited either
by time or functionality (such as not letting you save a project after you
create it).

CPP programs
For all environments. All the examples provided in this book are located
in the Beginning_Programming-CPP directory on the CD and work with
Macintosh, Linux, Unix, and Windows and later computers. These files con-
tain the sample code from the book. Each example program is in its own
folder. For example, the Conversion program is in:

Beginning_Programming-CPP\Conversion

For Windows. I have built a set of workspace and set of project files for
Code::Blocks that allows you to recompile all the programs in the book
with a single mouse click. The AllPrograms.workspace file is located in the
Beginning_Programming-CPP folder. (See Chapter 2 for an explanation of
Code::Blocks Project files.) You must copy the source code from the CD-ROM
onto your hard disk before you use it.

Code::Blocks development environment
For Windows. Code::Blocks is an “open source, cross platform” freeware envi-
ronment designed to work with a number of different compilers. The version
included on the CD-ROM is bundled with the GNU gcc C++ compiler (version
4.4) for 32-bit versions of Windows (if you don’t know whether your Windows
is 32-bit or not, it almost certainly is). Code::Blocks is supported by “The
Code::Blocks Team/” You can find more information at www.codeblocks.org.

For non-Windows. You can download a version of Code::Blocks that works for
your operating system at www.codeblocks.org. They’ve got versions of
Code::Blocks for just about every environment short of the iPhone.

45_617977-bapp01.indd 41345_617977-bapp01.indd 413 7/6/10 11:55 PM7/6/10 11:55 PM

414 Beginning Programming with C++ For Dummies

Troubleshooting
I tried my best to compile programs that work on most computers with the
minimum system requirements. Alas, your computer may differ, and some
programs may not work properly for some reason.

I include Code::Blocks workspace and project files for the included C++ source.
This allows you to recompile all the programs with literally a single click.
However, these project files assume that the programs are installed in the direc-
tory C:\\Beginning_Programming-CPP. You’ll have to set up your own proj-
ect files if you decide to install the source code in a different directory.

Other common problems are that you don’t have enough memory (RAM) for
the programs you want to use, or you have other programs running that are
affecting installation or running of a program. If you get an error message
such as Not enough memory or Setup cannot continue, try one or
more of the following suggestions and then try using the software again:

 ✓ Turn off any antivirus software running on your computer. Installation
programs sometimes mimic virus activity and may make your computer
incorrectly believe that it’s being infected by a virus.

 ✓ Close all running programs. The more programs you have running, the
less memory is available to other programs. Installation programs typi-
cally update files and programs; so if you keep other programs running,
installation may not work properly.

 ✓ Have your local computer store add more RAM to your computer. This
is, admittedly, a drastic and somewhat expensive step. However, adding
more memory can really help the speed of your computer and allow
more programs to run at the same time.

Customer Care
If you have trouble with the CD-ROM, please call Wiley Product Technical
Support at 800-762-2974. Outside the United States, call 317-572-3993. You can
also contact Wiley Product Technical Support at http://support.wiley.
com. Wiley Publishing will provide technical support only for installation
and other general quality control items. For technical support on the
applications themselves, consult the program’s vendor or the author at
www.stephendavis.com.

To place additional orders or to request information about other Wiley prod-
ucts, please call 877-762-2974.

45_617977-bapp01.indd 41445_617977-bapp01.indd 414 7/6/10 11:55 PM7/6/10 11:55 PM

Index

• Numbers •
0 (zero)

importance in debugging, 247
using with decimal point, 154

1GB, measurement of, 10

• Symbols •
+ (addition) operator, order of precedence,

52
&& (AND) logical operator, explained, 79
-> (arrow) operator, using, 270
%= (assignment) operator, order of

precedence, 52
*= (assignment) operator, order of

precedence, 52
+= (assignment) operator, order of

precedence, 52
= (assignment) operator, order of

precedence, 52
-= (assignment) operator, order of

precedence, 52
* (asterisk), using with pointer variable, 188
\ (backslash)

special symbol for, 66
use with fi lenames, 66

\ \ (backslash), indicating in Windows/
DOS, 365

| (binary OR) operator, using, 368
{} (braces)

using, 72–73
using with classes, 224–225

: (colon) syntax, using with variables, 320
, (comma) operator, using, 113–115
-- (decrement) operator

order of precedence, 52
prefi x and postfi x versions, 55–56
using, 54–55

/ (division) operator, order of precedence, 52
" (double quotes)

special symbol for, 66
using with characters, 65

== (equality) operator, explained, 70

= (equals sign), using with variables, 49–50
> (greater than) operator, meaning of, 70
>= (greater than or equal to) operator,

meaning of, 70
++ (increment) operator

order of precedence, 52
prefi x and postfi x versions, 55–56
using, 54–55

!= (inequality) operator, meaning of, 70
<< (left-shift) operator, role in stream I/O, 363
< (less than) operator, meaning of, 70
<= (less than or equal to) operator,

meaning of, 70
% (modulo) operator, order of

precedence, 52–53
* (multiplication) operator, order of

precedence, 52
— (negative) operator

order of precedence, 52
using, 54–55

! (NOT) operator
explained, 79
using with streams, 377

|| (OR) logical operator, explained, 79
() (parentheses)

combining for operators, 54
using with pointers and arrays, 206
using with pointers to objects, 270

(pound sign)
use with binary operators, 56–57
using with include fi les, 133

>> (right-shift) operator, role in stream I/O,
363

; (semicolon), missing, 40–41
' (single quotes)

interpreting, 66
special symbol for, 66
using with characters, 65

— (subtraction) operator, order of
precedence, 52

? (ternary operator), using, 406
~ (tilde), using with destructors, 297
_ (underscore), using with variable

names, 48

46_617977-bindex.indd 41546_617977-bindex.indd 415 7/6/10 11:55 PM7/6/10 11:55 PM

416 Beginning Programming with C++ For Dummies

• A •
abstraction

level of, 254–255
relationship to classifi cation, 256

access function, example of, 285
addition (+) operator, order of precedence,

52
algorithm

converting into program, 13–16
creating for “human computer,” 11–12

AmbiguousBinding program, 346–347,
350–351

AND (&&) logical operator, explained, 79
applications. See programs
ArgOutOfRange class, creating, 392–394
arguments

arrays of, 216–221
defaulting to constructors, 311
defi ning constructors with, 303–307
passing by reference, 193–195
passing by values, 190–193
passing from Code::Blocks, 219–220
passing through command line, 217–219
passing through Windows, 220–221
passing to functions, 123–126
promoting, 163

arithmetic, calculation speeds, 155–156.
See also mathematical operators

array length, specifying, 372–373
array pointers, using, 210–212
ArrayDemo program, 168–170
arrays. See also ASCIIZ array; parallel

arrays; pointers; variables
of arguments, 216–221
ASCII-zero character array, 173–174
computing size of, 198
declaring, 166–167
destroying to heap, 307
fi xed-size, 197
indexing into, 167–168
initializing, 171–172
of objects, 226–227
overview of, 165–166
performing Bubble Sort on, 232–233
versus pointers, 214
of pointers, 215–216
retaining scores’ input in, 168–171
tracking amount of data in, 174

use of, 172
using displayAverage() function with,

170
using for loop with, 171

arrow syntax, using with pointers to
objects, 270

ASCII character set, 60–62
ASCIIZ array. See also arrays

declaring and initializing, 174–175
string manipulation functions, 182–183

ASCIIZ string
copying, 198
terminating, 386

ASCII-zero character array, 173–174
assembler instructions, example from

Conversion program, 18
assembly language, explained, 17
assignment operators

as destructors, 358
orders of precedence, 52
overloading, 356–358, 362
overloading to avoid bugs, 404
in StudentAssignment program, 361
using, 56–57
using with classes, 226

asterisk (*), using with pointer variable, 188

• B •
backslash (\)

special symbol for, 66
use with fi lenames, 66

backslash (\ \), indicating in Windows/
DOS, 365

backup fi le, creating, 375–376
bad() function, returning for fstream

object, 369
base 8, explained, 65
base 16, coding characters in, 66
Beginning_Programming-CPP folder

accessing, 33
subfolders in, 35

bell, special symbol for, 66
binary data, writing, 368
binary logic, omission of, 407
binary mode, using, 369, 377
binary operators

format of, 70
order of precedence, 52

46_617977-bindex.indd 41646_617977-bindex.indd 416 7/6/10 11:55 PM7/6/10 11:55 PM

417417 Index

using # (pound sign) with, 56–57
using in expressions, 51–53

binary OR (|) operator, using, 368
binary versus text mode, 368
binding. See EarlyBinding program;

LateBinding program
birth year, using nested if statement with,

76–78
bits, defi ned, 188
bool methods, using with fstream

classes, 373–374
bool type, using in expressions, 75
boolalpha fl ag, explained, 378
braces ({})

using, 72–73
using with classes, 224–225

BranchDemo program, executing, 70–72
break statement

adding during debugging, 146
necessity of, 104
using, 84–85
using with loops, 102–104

breakpoints, setting in debugger, 240
Bubble Sort. See also class objects

performing, 232–233
using with class objects, 227

buffer
adding newline to, 380
avoiding overfl ow of, 372–373

bug avoidance. See also debugging; errors;
exceptions

commenting code while writing, 401
declaring destructors virtual, 403–404
enabling error messages, 399–400
enabling warnings, 399–400
limiting visibility of class internals, 402
providing copy constructor, 404
providing overloaded assignment

operator, 404
single-stepping paths in debugger, 401
tracking heap memory, 402
using exceptions to handle errors, 403
using good coding style, 400
zeroing out pointers, 403

Build step, performing, 38
byte, defi ned, 188

• C •
C++

as high level language, 19–20
managing compile time errors, 40
rules, 40
syntax, 37
uppercase versus lowercase, 37, 84

C++ programs, programs required for, 21.
See also programs

C++ Standard, release of, 410
cache, fl ushing, 380
calculator, implementing via switch

statement, 85–87
calculator() function

debugging, 148
displaying line numbers for, 146
testing, 141–143

CalculatorError program, error message
in, 147. See also SwitchCalculator
program

CalculatorError1 program, debugging,
139–141

CalculatorError2 program, 144–145
carriage return, special symbol for, 66
casts, using in character encoding, 64
catch keyword, using in exception

mechanism, 387–389
catch(...) phrase, using, 391
.cbp extension, use in Code::Blocks, 27, 35
CD-ROM

Code::Blocks IDE, 413
CPP programs, 413
demo software, 413
evaluation software, 413
freeware programs, 413
GNU software, 413
shareware programs, 413
trial software, 413
troubleshooting, 414
using, 41, 412

Celsius to Fahrenheit conversion code, 18–19
cerr object

versus cout, 365
use of, 364–365

char keyword, using, 59

46_617977-bindex.indd 41746_617977-bindex.indd 417 7/6/10 11:55 PM7/6/10 11:55 PM

418 Beginning Programming with C++ For Dummies

char methods, using with fstream
classes, 373–374

char type, number of bits in, 188
char variable

contents of, 188
explained, 159
limitations of, 67

char versus int values, 64
character encoding

example of, 63–65
using casts in, 64

character variables, defi ning, 59. See also
variables

characters. See also garbage characters
applying true/false values to, 75
encoding, 60–63
encoding strings of, 65
printable versus unprintable, 62–63
using double quotes (") with, 65
using single quotes (') with, 65

cin, extracting from, 364
class internals, limiting visibility of, 402
class members

declaring as friends, 288
naming, 262–263

class objects, initializing, 226, 289. See also
Bubble Sort

classes
assignment operators, 226
creating instances of, 225
declaring, 225
defi nition, 224
format of, 224
inheriting from, 340
naming rules for, 225
versus objects, 225
public keyword, 224–225
struct keyword, 225
use of open brace ({), 224–225

clear() function, calling for fail() fl ag,
369

COBOL (Common Business Oriented
Language), 18–19

code, commenting while writing, 401
CodeBlocks, lengths of addresses in, 189
Code::Blocks IDE

availability on CD-ROM, 413
Beginning_Programming-CPP folder,

27, 32

Build command, 30
.cbp extension, 27, 35
command line, 30
Console Application, 27
cout, 30
creating folders, 28
creating projects, 27–29
downloading, 23, 413
environment, 26
“Hello, world!” message, 32
HelloWorld project, 28–29
installing, 23–25
.layout extension, 27
main.cpp fi le, 30
organizing projects in, 35
passing arguments from, 219–220
Run command, 32
selecting C++ as language choice, 27–28
setting up subfolders, 29
starting, 26
Step Into command, 242
terminated status of process, 30–31
testing default project, 30–32
types of programs created by, 26–27
use of gcc compiler, 31
using to create include fi les, 134–135

coding style
avoiding errors in, 90–91, 400
being consistent in, 90–91, 400
variable naming conventions, 91

colon (:) syntax, using with variables, 320
comma (,) operator, using, 113–115
command line, passing arguments from,

217–219
commands, misspelling, 38–39
CommaOperator program, 113
comments, examples of, 43
Common Business Oriented Language

(COBOL), 18–19
comparison operators

binary format, 70
using in BranchDemo program, 71

compile time errors, managing, 40
compiler

function of, 22
requirement of, 21

compound expressions
conditional, 78–80
decomposing, 53–54

46_617977-bindex.indd 41846_617977-bindex.indd 418 7/6/10 11:55 PM7/6/10 11:55 PM

419419 Index

CompoundStudent program, 318–320
computer languages

assembly language, 17
C++, 19–20
high-level, 18–19
machine language, 17

ConcatenateError2 program, 245
ConcatenateHeap program, 199–201, 236–238
ConcatenateNString program, 181–182
concatenateString() function

bug in, 181
debugging, 245–249
executing in debugger, 242
pointer version of, 208–211

ConcatenateString program, 178–179
concatenating strings, 177–180
conditional expressions, compound, 78–80.

See also expressions
Console Application

defi ned, 23
selecting in Code::Blocks, 27

const arguments, problems with, 163
const char[] type, using, 177
const descriptor, using with variables, 158
const keyword, using to declare variables,

160
const string, throwing pointer to, 391
const variable, initializing, 161
constant characters, modifying, 177
constant values, initializing data members

to, 321
constants

managing, 212–214
for opening fi les, 366
types of, 51, 160–161

constructors. See also copy constructors
defaulting arguments to, 311
defaults, 312–313
defi ning with arguments, 303–307
versus destructors, 297
versus functions, 304
initializing data members with, 315–318
limitations on, 291
for opening fi les for output, 367
overloading, 307–311
in StudentAssignment program, 358–360
using, 289–291
using defaults with data members, 314–315

continue command, using with loops,
102–104

Conversion program
assembler instructions in, 18
building, 38
entering, 35–37
fi nding error in, 92–93
fi rst version of, 92
running, 42
templates, 42–44
test data for, 94
without template, 44

Conversion project
addition to HelloWorld project, 35
creating, 33–34

ConversionError2 program, examining, 95
copies

avoiding, 330–331
deep versus shallow, 328
shallow, 356

copy constructors. See also constructors
creating, 327–330
default, 324–325
invoking, 330
making shallow copies, 325–327
overview of, 323–324
providing to avoid bugs, 404
in StudentAssignment program, 358–360

CopyFiles program, 375–376
copying objects, 323–327
counting, using fl oating point variables in,

155
coupling, reducing, 282, 285–286
cout

versus cerr, 365
declaration of, 364

CPP programs, availability on CD-ROM, 413
customer care, accessing, 414
CustomExceptionClass program, 392–395

• D •
data, grouping, 223–224
data members

constructing, 294–296
destructing, 300–301
fl agging with keyword static, 302
initializing to constant values, 321

46_617977-bindex.indd 41946_617977-bindex.indd 419 7/6/10 11:55 PM7/6/10 11:55 PM

420 Beginning Programming with C++ For Dummies

data members (continued)

initializing with constructors, 315–318
initializing with default constructor, 314–315

data types, limit of number size in, 159–160
debug code, writing for calculator()

function, 143
debug functions, creating, 143–144
debugger utility

components of, 241
Continue option, 247
Debug window, 246–247
executing concatenateString()

function, 242
features of, 236
fi xing bugs, 245–249
Next Line option, 243–244, 246
rebuilding executable, 239
setting breakpoints, 240
single-step commands, 243
single-stepping paths in, 401
starting, 239–241
Tool Tips, 242
turning on information, 239
using to navigate through programs, 241–245
Watches window, 242, 246
while loop structure, 244

debugging. See also bug avoidance; errors;
exceptions

CalculatorError1 program, 139–141
ConcatenateHeap, 236–238
dividing programs into functions, 139–141
importance of 0 (zero) in, 247
outfi tting functions for testing, 143–146
performing unit level testing, 141–143
unit testing, 146–148

dec
fl ag, 378
manipulator, 381

decimal point, using 0 with, 154
decrement (--) operator

order of precedence, 52
prefi x and postfi x versions, 55–56
using, 54–55

deep copy, performing for source object, 328
DeepStudent program, 328–330
delete keyword

using with memory heap, 198–199
using with objects allocated off heap, 277

delete[] versus delete, 307
demotion, defi ned, 155
deposit() member function, defi ning,

261–262
destructors

assignment operators as, 358
versus constructors, 297
declaring virtual, 352–354, 403–404
invoking, 297
in StudentAssignment program, 358–361
for subclasses in inheritance, 342
using with constructors and arguments, 304
using with data members, 300–301

DisplayASCIIZ program, 175–176
division (/) operator, order of precedence, 52
DOS/Windows, indicating backslash in, 365
double limitations

calculation speed, 155–156
counting, 155
loss of accuracy, 156–157
memory consumption, 156
range, 157

double quotes (")
special symbol for, 66
using with characters, 65

double variable
assigning to int, 155
digits of accuracy, 156–157
explained, 159
largest number stored by, 157
memory consumption, 156
promoting int to, 154
size and range of, 160
using to fi x truncation, 153–154

• E •
EarlyBinding program, 344–345
else keyword, using, 73–74
endl object
strstream version, 386
using with output streams, 380

endl value, explained, 65
ends object, inserting, 386
enumerated types, problem with, 407
equality (==) operator, explained, 70
equals sign (=), using with variables, 49–50
error checking programs, 95–96

46_617977-bindex.indd 42046_617977-bindex.indd 420 7/6/10 11:55 PM7/6/10 11:55 PM

421421 Index

error messages, enabling to avoid bugs,
399–400

error return, defi ned, 120
errors. See also bug avoidance; debugging;

exceptions; run-time errors
avoiding introduction of, 90–91
build- versus compile-time, 89–90
fi nding, 92–93
forgetting to initialize variables, 50
handling, 391
handling via exceptions, 403
identifying types of, 89–90
missing semicolon, 40–41
misspelled commands, 38–39
run-time, 90, 93–96
shallow copies, 327

example programs. See program examples
exception classes

customizing, 392–395
restrictions on, 395

exception mechanism
catch keyword, 387–388
throw keyword, 387–388
try keyword, 387–388

exceptions. See also bug avoidance;
debugging; errors

catching, 391
processing, 390–391
rethrowing, 391
throwing, 391–392
using to handle errors, 403

executable fi le, fi nding path to, 218
expressions. See also conditional

expressions; mixed mode expression,
defi ned

binary operators, 51–53
compound, 53–54
decomposing compound, 53–54
defi ned, 14
example, 51
multiple operators in, 53–54
operators, 51
values and types of, 75
versus variables, 47

extensions, unhiding, 36
extractor, operator>>() as, 364

• F •
factorial(), error encountered in, 392–394
Factorial program
for loop in, 111–112
parts of loop in, 109–110
while loop in, 100–101

factorial.cpp, creating, 131–133
FactorialException program, 388–389
FactorialFunction program, 124–128
FactorialModule project

building result, 137
creating factorial.cpp, 131–133
#include fi le, 133–134
including #include fi les, 134–135
main.cpp, 136
steps for creation of, 130

fail() fl ag, setting and clearing, 369
fail() member function, using, 371–372
fi elds, sorting algorithms for, 232
FileCopy program, 375–376
fi lename extensions, unhiding, 36
fi les. See also input fi les; output fi les

adding to contents of, 368
open modes for, 367–368
opening in binary mode, 368
opening in text mode, 368
reading from, 368
saving, 37
writing to, 368

fill(char), calling, 379
fixed fl ag, explained, 378
fi xed-size arrays, problem with, 197
flags() member function

format fl ags for, 378–379
using, 379

fl at tire, changing, 11–17
float variable

explained, 159
size and range of, 160

fl oating point constant, assumption
about, 154

fl oating point result, assigning to int
variable, 155

fl oating point variables
overfl ow of, 160
types of, 153
using for counting, 155

46_617977-bindex.indd 42146_617977-bindex.indd 421 7/6/10 11:55 PM7/6/10 11:55 PM

422 Beginning Programming with C++ For Dummies

fl ow, controlling via switch statement, 81–84
flush() member function, calling, 380
fmtflags methods, using with fstream

classes, 374
fn() function

calling in NamedStudent program, 306
late-binding, 352
making changes permanent, 192–193
statements in, 192–193
using in StudentDestructor program,

299–300
folders, creating for projects, 33
for loop. See also loops

in arrays of pointers, 215–216
in Factorial program, 111–112
fl ow of, 110
sections of, 112
setup section, 112, 114
using in ConcatenateHeap program, 201
using in ConcatenateString program, 180
using with arrays, 171
using with main() program, 122–123
versus while loop, 111, 115

format of input, controlling, 378–380
formatting member functions, span of,

380–381. See also member functions
friend declaration, using with functions,

286–288
fstream classes

destructor for, 367
explained, 365
member functions of, 373–374

fstream objects
constructing, 369
errors related to, 369
returning bad() function for, 369

function arguments, using, 123–126
function names, overloading, 126, 162
function overloading, explained, 126
function prototype declarations, defi ning,

127–128
FunctionDemo program, 121–123
functions. See also getter function,

example of; member functions; setter
function, defi ned

call, 120
calling with object pointers, 272–274
calling with object values, 271–272
versus constructors, 304

declaration, 120
defi nition, 120
dividing programs into, 139–143
elements of, 120
fl ow of control, 120
friend declaration, 286–288
with multiple arguments, 125
outfi tting for testing, 143–146
overloading, 307
overview of, 118–119
passing variables to, 161–164
return, 120
returning values to callers, 120–121
similarities between, 409–410
testing separately, 141–143
writing and invoking, 119–120

• G •
garbage characters, displaying in

debugging, 247–249. See also
characters

gcc compiler, using with Code::Blocks, 31
get() method, using with input fi les, 375
getline() member function, using,

372–373, 375, 382–385
getter function, example of, 285. See also

functions
goto command, using, 405–406
greater than (>) operator, meaning of, 70
greater than or equal to (>=) operator,

meaning of, 70
GSInherit example, 338–340

• H •
HAS_A relationship, using in inheritance, 342
heap

allocating memory from, 197
allocating objects off, 278
returning memory to, 198–199

heap memory, keeping track of, 402
HelloWorld project, creating in

Code::Blocks, 28–29
hex

fl ag, 378
manipulator, 381

hexadecimal, coding characters in, 66

46_617977-bindex.indd 42246_617977-bindex.indd 422 7/6/10 11:55 PM7/6/10 11:55 PM

423423 Index

high level languages, overview of, 18–19
“human computer”

algorithm, 11–12
processors, 16–17
program, 13–16
tire changing language, 12

• I •
IDE (Integrated Development

Environment), 22–23
if clause, using with else, 74
IF statement in TCL (Tire Changing

Language), 13–14
if statements

encountering, 70
format of, 69
nesting, 75–78
versus switch statements, 84

ifstream class
constructor for, 365
defi nition of, 365
destructor for, 366
using with input objects, 365

#include directives, inclusion in standard
template, 137

#include fi les
creating for FactorialModule, 133–134
including, 134–135

include statements, examples of, 43
increment (++) operator

order of precedence, 52
prefi x and postfi x versions, 55–56
using, 54–55

indentation, use of, 91
index, providing for arrays, 167–168
index operator, using on pointer variables,

207–208
inequality (!=) operator, meaning of, 70
inheritance. See also object-oriented

programming, model for
advantages of, 336–337
from classes, 340
defi ned, 337
implementing, 337–342
multiple, 409
subclasses, 337
terminology, 337

init() function
in OverloadedStudent program, 310–311
using with protected members, 289–291

input fi les, using get() method with, 375.
See also fi les

input objects, creating, 365–366. See also
objects

input/output (I/O), errors related to, 369
InputPerson program, 227–230
inserter, operator>>() as, 364
inserter operator, using with output

objects, 366–367
int gcount() method, using with

fstream classes, 374
int keyword, using with variables, 47–48
int variable

assigning double to, 155
assigning fl oating point result to, 155
bytes taken up by, 191
explained, 151, 158
HAS_A relationship, 342
limited range of, 152–153
maximum value, 152–153
memory consumption, 156
promoting to double, 154
round-off limitation, 151–152
size and range of, 160
standard size of, 159

int versus char values, 64
int width() methods, using with

fstream classes, 374
integer constants, legal versus illegal, 50–51
integers

interpreting, 60
limited range of, 152–153
round-off limitation, 151–152
truncation of, 152

Integrated Development Environment
(IDE), 22–23

intrinsic type, explained, 151
I/O (input/output), errors related to, 369
I/O manipulators, member functions for, 381
I/O stream format fl ags, 378
iomanip, including for manipulators, 381
ios_base: :, using, 377
iostream include

declaration of, 364
prototype declarations in, 363–364

46_617977-bindex.indd 42346_617977-bindex.indd 423 7/6/10 11:55 PM7/6/10 11:55 PM

424 Beginning Programming with C++ For Dummies

isalppha(char c) function, described,
182

isdigit(char c) function, described, 182
islower(char c) function, described, 182
isprint(char c) function, described, 182
isspace(char c) function, described, 182
istream& put() method, using with

fstream classes, 374
istrstream versus istringstream

classes, 382
isupper(char c) function, described, 182

• K •
keyboard input, performing, 364
keystrokes, saving, 270
keywords, using with variables, 48

• L •
languages. See computer languages
LateBinding program, 349–351
.layout extension, use in Code::Blocks, 27
left fl ag, explained, 378
left-shift (<<) operator, role in stream I/O, 363
less than (<) operator, meaning of, 70
less than or equal to (<=) operator,

meaning of, 70
levels of abstraction, explained, 119
logical expressions

comparing values in, 70–72
defi ned, 14
values of, 75

logical operators, explained, 79
long double descriptor, using with

variables, 158
long double variable

explained, 159
size and range of, 160

long int descriptor, using with variables,
158

long int variable
explained, 159
size and range of, 160

long long int descriptor, using with
variables, 158

long long int variable
explained, 159
size and range of, 160

“loop and test” statement, including in
TCL, 14–16

loops. See also for loop; while loop
body, 109
increment, 109
nesting, 105–108
setup, 109
test expression, 109

lowercase versus uppercase, 37, 84

• M •
machine language, representing, 17
Macintosh, system requirements for, 411
main()

as function, 125–126
requirement of, 43

main() arguments
arrays of arguments, 216–221
arrays of pointers, 215–216
in program template, 214–215

main() program, using for loop with,
122–123

main.cpp fi le
creating for FactorialModule, 136
displaying, 35
editing contents of, 36–37
opening, 36

main.cpp.backup fi le, creating, 378
manipulators, member functions for, 381
mathematical operators. See also

arithmetic, calculation speeds;
operators, overloading

combining parentheses, 54
order of precedence, 52–53

member functions. See also formatting
member functions, span of; functions;
overriding member functions; protected
members, initializing objects with

accessing members from, 264–266
adding keyword protected:, 282–285
binding considerations, 351
calling, 263–264, 268
defi ning, 261–262

46_617977-bindex.indd 42446_617977-bindex.indd 424 7/6/10 11:55 PM7/6/10 11:55 PM

425425 Index

defi ning outside classes, 266–267
invoking for pointers to objects, 271
for manipulators, 381
overloading, 267–268, 343–344
protected keyword, 281
protecting, 282
virtual, 350

memory
address in, 188
arrangement for arrays of objects, 227
handling, 191
returning to heap, 198–199

memory address, including in pointer
variable, 188

memory heap. See heap
memory layout, example of, 192
memory model, applying for pointers, 204
mixed mode expression, defi ned, 154. See

also expressions
mixed mode overloading, 162–164
modules

breaking programs into, 129–130
linking, 129
naming, 132

modulo (%) operator, order of precedence,
52–53

MS-DOS window, opening in Windows, 219
multiplication (*) operator, order of

precedence, 52
multiplication table, creating, 105–108
MyData.txt fi le

opening and reading, 366
opening and writing to, 367
using with ReadIntegers program, 370–372

• N •
NamedStudent program, 304–307
namespaces, using, 407–408
negative (—) operator

order of precedence, 52
using, 54–55

nested if statements, using, 75–78
nested loops

explained, 16
using, 105–108

new keyword
using to allocate objects off heap, 277
using with memory heap, 197

newline
adding to buffer, 380
special symbol for, 66

NOT (!) operator
explained, 79
using with streams, 377

null character
adding after fi nal while loop, 248–249
using in string concatenation, 178
using with arrays, 174

NULL character, special symbol for, 66

• O •
object code, explained, 18
object pointers, calling functions with,

272–274
object-oriented programming, model for,

257–258. See also inheritance
objects. See also input objects, creating;

output objects, creating; pointers to
objects; source object, performing
deep copy of

accessing members of, 225–226
activating, 259–261
allocating off heap, 278
arrays of, 226–227
avoiding creating copies of, 274
versus classes, 225
copying, 323–327
initializing, 289
passing addresses of, 274–276, 330–331
passing by reference, 277
passing by values, 271–272, 274–276
“real types” of, 347

oct
fl ag, 378
manipulator, 381

octal, identifying, 65
ofstream class

constructor for, 366–367
defi nition of, 365

open modes, using with fi les, 367–368

46_617977-bindex.indd 42546_617977-bindex.indd 425 7/6/10 11:55 PM7/6/10 11:55 PM

426 Beginning Programming with C++ For Dummies

operator>>()
as inserter, 364
use as extractor, 364

operators, overloading, 355–356, 361–362.
See also mathematical operators

OR (|) operator, using, 368
OR (||) operator, explained, 79
ostream object, use of, 364
ostream& () methods, using with

fstream classes, 374
ostrstream versus ostringstream

classes, 382, 395
output and input. See I/O (input/output),

errors related to
output fi les, using put() method with,

375. See also fi les
output objects, creating, 366–367. See also

objects
output statements, using to fi nd errors, 95
output streams, terminating, 380
overfl ow, defi ned, 160
OverloadedStudent program, 308–310
overriding member functions. See also

member functions
AmbiguousBinding program, 346–347
EarlyBinding program, 344–345
late binding, 348–351

• P •
parallel arrays, storing data in, 223–224.

See also arrays
parentheses (())

combining for operators, 54
using with pointers and arrays, 206
using with pointers to objects, 270

PassByReference program, 191, 193–197
PassObjects program, 274–276
PC, system requirements for, 411
PL/1 language, 40
pointer increment operator, using, 208–210
pointer types, operations on, 212
pointer variables, using index operator on,

207–208
pointers. See also arrays

addition versus indexing, 205–208
applying memory model for, 204
versus arrays, 214
arrays of, 215–216

declaring, 188–190
operations on, 203–205
overview of, 187–188
using constants with, 213
zeroing out, 403

pointers to objects. See also objects
arrow syntax, 270
example of, 269–270
invoking member functions, 271
using parentheses (()) with, 270

pound sign (#)
use with binary operators, 56–57
using with include fi les, 133

precedence, order of, 52–53
PrintArgs program, 216–217
printErr() function, using, 144–146
Product program, break and continue

in, 102–103
program examples

AmbiguousBinding, 346–347
ArrayDemo, 168–170
BranchDemo, 70–72
CalculatorError1, 139–141
CalculatorError2, 144–145
CommaOperator, 113
CompoundStudent, 318–320
ConcatenateError2, 245
ConcatenateHeap, 199–201
ConcatenateNString, 181–182
ConcatenateString, 178–179
Conversion, 44, 92
ConversionError2, 95
CopyFiles, 375–376
CustomExceptionClass, 392–395
debugging ConcatenateHeap, 236–238
DeepStudent, 328–330
DisplayASCIIZ, 175–176
EarlyBinding, 344–345
Factorial, 100, 109–112
factorial.cpp, 131–133
FactorialException, 388–389
FactorialFunction, 124–128
FileCopy, 375–376
FunctionDemo, 121–123
GSInherit, 338–340
InputPerson, 227–230
LateBinding, 349–350
NamedStudent, 304–307
NestedLoops, 105–106

46_617977-bindex.indd 42646_617977-bindex.indd 426 7/6/10 11:55 PM7/6/10 11:55 PM

427427 Index

OverloadedStudent, 308–310
PassByReference, 191, 193–197
PassObjects, 274–276
pointer version of

concatenateString(), 208–211
PrintArgs, 216–217
Product, 102–103
prototype declaration, 128
ReadIntegers, 370
ShallowStudent, 325–327
SimpleStudent, 283–284
StringStream, 382–385
StudentAssignment, 358–360
StudentConstructor, 292–293
StudentDestructor, 298–299
StudentID class, 314–315
SwitchCalculator, 85–86
toupper() function, 183–184
TutorPairConstructor, 295–296, 300–301

programs. See also C++ programs,
programs required for

breaking into modules, 129–130
building, 21–22
development process, 22
dividing into functions, 139–143
error checking, 95–96
linking step, 22

project fi le, fi nding path to, 217–218
projects

activating, 35
adding source fi les to, 131
creating, 33–34
organizing, 35

protected: keyword adding, 282–285
protected keyword versus public

keyword, 281
protected members, initializing objects

with, 289–291. See also member
functions

prototype declaration, explained, 127–128
psz prefi x, using with pointers, 208
public keyword

versus protected keyword, 281
using in inheritance, 337–338
using with classes, 224–225

pure virtual member function, explained, 408
put() method, using with output fi les, 375

• R •
read() member function, using, 375–376
ReadIntegers program, 370
real numbers, defi ned, 153
right fl ag, explained, 378
right-shift (>>) operator, role in stream I/O,

363
run-time errors. See also errors

adding output statements, 94
versus compile-time errors, 40
executing test cases, 94
fi nding, 93–96
formulating test data, 93–94

run-time type, defi ned, 347

• S •
safeFn() function, using in ReadIntegers

program, 371–372
saving fi les, 37
Savings account class

calling member function in, 263–264
current object in, 265–266
deposits in, 260
functions in, 261–262

scientific fl ag, explained, 378
scores, averaging, 168–171
semicolon (;), missing, 40–41
setf() member function, format fl ags for,

378–379
setfill(c) manipulator, described, 381
setprecision(n) manipulator,

described, 381
setter function, defi ned, 285. See also

functions
setw(n) manipulator, described, 381
shallow copy, defi ned, 356
ShallowStudent program, 325–327
short int descriptor, using with

variables, 158
short int variable

explained, 159
size and range of, 160

showbase fl ag, explained, 378
showpoint fl ag, explained, 378
SimpleStudent program, 283–284

46_617977-bindex.indd 42746_617977-bindex.indd 427 7/6/10 11:55 PM7/6/10 11:55 PM

428 Beginning Programming with C++ For Dummies

single quotes (')
interpreting, 66
special symbol for, 66
using with characters, 65

skipws fl ag, explained, 378
SomeClass class example, 321
sorting algorithm. See Bubble Sort
source code, explained, 18
source fi le windows, closing, 35
source fi les, adding to projects, 131
source object, performing deep copy of,

328. See also objects
Sources folder, opening, 35
special characters, examples of, 66
stack unwinding, role in exceptions, 390
statements

adding to fi nd errors, 95
avoiding cramming of, 212
defi ned, 14
executing once, 93

static data members, overview of, 302
static keyword, using with variables, 138
strcmp() function, described, 182
stream I/O, overview of, 363–365
streams, reading and writing directly, 375–378
streamsize precision() methods,

using with fstream classes, 374
string class

behavior of, 382
omission of, 408
resizing, 373

strings
ASCIIZ manipulation functions, 182–183
concatenating, 177–180
displaying, 175–176

strlen() function, calling, 198
strlen(char s[]) function, described, 182
strncat() function, described, 183
strncpy() function, described, 182
strstream classes, deprecation of, 382
strstream versus stringstream

classes, 382–386
struct keyword, using with classes, 225
Student class

constructor with arguments, 303–304
default copy constructor, 324
default default constructor, 312
inheritance in, 337

initializing data member with
constructor, 317–318

from OverloadedStudent program, 308–310
public member functions, 283
using constructor with, 290–291

student object, performing deep copy of,
328–330

StudentAssignment program, 358–360
StudentConstructor program, 292–293
StudentDestructor program, 298–299
StudentID class example

with default constructor, 314–315
with different constructor, 315–318

subtraction (—) operator, order of
precedence, 52

sumSequence() function, using, 121–123
switch statement

calculator example, 84
versus if statements, 84
using to control fl ow, 81–84

SwitchCalculator program, 85–86, 139–141.
See also CalculatorError program

syntax requirements, 37
system requirements, 411–412

• T •
tab, special symbol for, 66
TCL (Tire Changing Language)

IF statement, 13–14
logical expression, 14
“loop and test” statement, 14–16
syntax, 13
verbs and nouns, 13

Technical Support, contacting, 414
templates

comments, 43
example, 42–43
features of, 409–410
include fi les, 43
main(), 43
system(“PAUSE”), 44

ternary operator (?), using, 406
test cases. See also unit testing

executing, 94
generating for calculator() function,

141–143

46_617977-bindex.indd 42846_617977-bindex.indd 428 7/6/10 11:55 PM7/6/10 11:55 PM

429429 Index

test data
for Conversion program, 94
deciding on, 93

text data, writing, 368
text editors, requirement of, 21
text versus binary mode, 368
this object, overview of, 279
throw, encountering, 390
throw; keyword, executing, 391
throw keyword, using in exception

mechanism, 387–389
throwing exceptions, 391–392
tilde (~), using with destructors, 297
Tire Changing Language (TCL). See TCL

(Tire Changing Language)
tire-changing module, components of, 118
tolower(char c) function, described, 183
toupper() function

described, 183
program example, 183–184

truncation, defi ned, 152
truncation problem, fi xing via double

variable type, 153–154
try block, fi nding end of, 390
try keyword, using in exception

mechanism, 387–389
TutorPairConstructor program, 295–296
types

dynamic versus static, 347
run-time versus declared, 347

typing, reducing via inheritance, 336

• U •
unary operators

order of precedence, 52
using, 54–56

underscore (_), using with variable names, 48
Unicode, variants of, 67
unit level testing, performing, 141–143
unit testing. See also test cases

defi ned, 89
performing, 146–148

unitbuf fl ag, explained, 378
unsafeFn() function, using in

ReadIntegers program, 370
unsetf() member function, format fl ags

for, 378–379
unsigned descriptor, using with variables, 158

unsigned int variable, explained, 158
unwinding the stack, role in exceptions, 390
uppercase fl ag, explained, 378
uppercase versus lowercase, 37, 84
UTF variants, explained, 67

• V •
variable types, size and range of, 159–160
variables. See also arrays; character variables

assigning values to, 49
const descriptor, 158
declaring, 47–48
declaring constant, 160
establishing naming conventions for, 91
versus expressions, 47
forgetting to initialize, 50
initializing at declaration, 49–50
legal combinations of, 158–159
local versus global scope, 137–138
long double descriptor, 158
long int descriptor, 158
long long int descriptor, 158
memory consumption, 156, 160
naming conventions, 48, 155
passing to functions, 161–164
promoting versus demoting, 155
short int descriptor, 158
unsigned descriptor, 158
using : (colon) syntax with, 320
using equals sign (=) with, 49–50
using static keyword with, 138

virtual declarations, using with
destructors, 352–354, 403–404

virtual keyword, using in late binding,
349–350

virtual member function, defi ned, 350
void keyword, using with functions, 121
void methods, using with fstream

classes, 373–374

• W •
warnings, enabling to avoid bugs, 399–400
wchar_t variable, explained, 159
wchar_t “wide character,” 67
while loop. See also loops

adding terminating null after, 248
creating, 99–102

46_617977-bindex.indd 42946_617977-bindex.indd 429 7/6/10 11:55 PM7/6/10 11:55 PM

430 Beginning Programming with C++ For Dummies

while loop (continued)

versus for loop, 111, 115
structure in debugger, 244

“wide character” of type wchar_t, 67
width(int) member function, using, 379–380
width(n) member function, using, 380–381
Wiley Product Technical Support,

contacting, 414
Windows

opening MS-DOS window in, 219
passing arguments from, 220–221
unhiding fi lename extensions in, 36

Windows/DOS, indicating backslash in, 365
withdraw() function, 266
withdraw() member function, defi ning,

261–262
workspace, defi ned, 35
write() member function, using, 375–376

• X •
X: :X(const X&) format, explained, 323

• Z •
zero (0)

importance in debugging, 247
using with decimal point, 154

46_617977-bindex.indd 43046_617977-bindex.indd 430 7/6/10 11:55 PM7/6/10 11:55 PM

Wiley Publishing, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening the software packet(s)
included with this book “Book”. This is a license agreement “Agreement” between you and Wiley
Publishing, Inc. “WPI”. By opening the accompanying software packet(s), you acknowledge that you have
read and accept the following terms and conditions. If you do not agree and do not want to be bound by
such terms and conditions, promptly return the Book and the unopened software packet(s) to the place
you obtained them for a full refund.

1. License Grant. WPI grants to you (either an individual or entity) a nonexclusive license to use one
copy of the enclosed software program(s) (collectively, the “Software”) solely for your own per-
sonal or business purposes on a single computer (whether a standard computer or a workstation
component of a multi-user network). The Software is in use on a computer when it is loaded into
temporary memory (RAM) or installed into permanent memory (hard disk, CD-ROM, or other stor-
age device). WPI reserves all rights not expressly granted herein.

2. Ownership. WPI is the owner of all right, title, and interest, including copyright, in and to the com-
pilation of the Software recorded on the physical packet included with this Book “Software Media”.
Copyright to the individual programs recorded on the Software Media is owned by the author or
other authorized copyright owner of each program. Ownership of the Software and all proprietary
rights relating thereto remain with WPI and its licensers.

3. Restrictions on Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival purposes, or (ii) transfer
the Software to a single hard disk, provided that you keep the original for backup or archival
purposes. You may not (i) rent or lease the Software, (ii) copy or reproduce the Software
through a LAN or other network system or through any computer subscriber system or bulle-
tin-board system, or (iii) modify, adapt, or create derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software. You may transfer the
Software and user documentation on a permanent basis, provided that the transferee agrees to
accept the terms and conditions of this Agreement and you retain no copies. If the Software is
an update or has been updated, any transfer must include the most recent update and all prior
versions.

4. Restrictions on Use of Individual Programs. You must follow the individual requirements and
restrictions detailed for each individual program in the “About the CD” appendix of this Book or
on the Software Media. These limitations are also contained in the individual license agreements
recorded on the Software Media. These limitations may include a requirement that after using the
program for a specifi ed period of time, the user must pay a registration fee or discontinue use. By
opening the Software packet(s), you agree to abide by the licenses and restrictions for these indi-
vidual programs that are detailed in the “About the CD” appendix and/or on the Software Media.
None of the material on this Software Media or listed in this Book may ever be redistributed, in
original or modifi ed form, for commercial purposes.

5. Limited Warranty.

(a) WPI warrants that the Software and Software Media are free from defects in materials and
workmanship under normal use for a period of sixty (60) days from the date of purchase of this
Book. If WPI receives notifi cation within the warranty period of defects in materials or work-
manship, WPI will replace the defective Software Media.

47_617977-blicense.indd 43147_617977-blicense.indd 431 7/6/10 11:56 PM7/6/10 11:56 PM

(b) WPI AND THE AUTHOR(S) OF THE BOOK DISCLAIM ALL OTHER WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO THE SOFTWARE, THE
PROGRAMS, THE SOURCE CODE CONTAINED THEREIN, AND/OR THE TECHNIQUES DESCRIBED
IN THIS BOOK. WPI DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE
SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE SOFTWARE
WILL BE ERROR FREE.

(c) This limited warranty gives you specifi c legal rights, and you may have other rights that vary
from jurisdiction to jurisdiction.

6. Remedies.

(a) WPI’s entire liability and your exclusive remedy for defects in materials and workmanship shall
be limited to replacement of the Software Media, which may be returned to WPI with a copy of
your receipt at the following address: Software Media Fulfi llment Department, Attn.: Beginning
Programming with C++ For Dummies, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis,
IN 46256, or call 1-800-762-2974. Please allow four to six weeks for delivery. This Limited
Warranty is void if failure of the Software Media has resulted from accident, abuse, or misap-
plication. Any replacement Software Media will be warranted for the remainder of the original
warranty period or thirty (30) days, whichever is longer.

(b) In no event shall WPI or the author be liable for any damages whatsoever (including without
limitation damages for loss of business profi ts, business interruption, loss of business informa-
tion, or any other pecuniary loss) arising from the use of or inability to use the Book or the
Software, even if WPI has been advised of the possibility of such damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of liability for consequential
or incidental damages, the above limitation or exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software for or on behalf
of the United States of America, its agencies and/or instrumentalities “U.S. Government” is sub-
ject to restrictions as stated in paragraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause of DFARS 252.227-7013, or subparagraphs (c) (1) and (2) of the Commercial
Computer Software - Restricted Rights clause at FAR 52.227-19, and in similar clauses in the NASA
FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties and revokes
and supersedes all prior agreements, oral or written, between them and may not be modifi ed
or amended except in a writing signed by both parties hereto that specifi cally refers to this
Agreement. This Agreement shall take precedence over any other documents that may be in con-
fl ict herewith. If any one or more provisions contained in this Agreement are held by any court
or tribunal to be invalid, illegal, or otherwise unenforceable, each and every other provision shall
remain in full force and effect.

47_617977-blicense.indd 43247_617977-blicense.indd 432 7/6/10 11:56 PM7/6/10 11:56 PM

GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007
Copyright © 2007 Free Software Foundation, Inc.
<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Pr eamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to
share and change the works. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change all versions of a program--to make sure it remains free software for all its
users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it
applies also to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you want it, that you can change the soft-
ware or use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surren-
der the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to
the recipients the same freedoms that you received. You must make sure that they, too, receive or can
get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the soft-
ware, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this
free software. For both users’ and authors’ sake, the GPL requires that modifi ed versions be marked as
changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modifi ed versions of the software inside
them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protect-
ing users’ freedom to change the software. The systematic pattern of such abuse occurs in the area of
products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have
designed this version of the GPL to prohibit the practice for those products. If such problems arise sub-
stantially in other domains, we stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to
restrict development and use of software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could make it effectively proprietary. To
prevent this, the GPL assures that patents cannot be used to render the program non-free.

47_617977-blicense.indd 43347_617977-blicense.indd 433 7/6/10 11:56 PM7/6/10 11:56 PM

The precise terms and conditions for copying, distribution and modifi cation follow.

TE RMS AND CONDITIONS

0 . Defi nitions. “This License” refers to version 3 of the GNU General Public License. “Copyright” also
means copyright-like laws that apply to other kinds of works, such as semiconductor masks. “The
Program” refers to any copyrightable work licensed under this License. Each licensee is addressed
as “you”. “Licensees” and “recipients” may be individuals or organizations. To “modify” a work
means to copy from or adapt all or part of the work in a fashion requiring copyright permission,
other than the making of an exact copy. The resulting work is called a “modifi ed version” of the
earlier work or a work “based on” the earlier work. A “covered work” means either the unmodifi ed
Program or a work based on the Program.

 To “propagate” a work means to do anything with it that, without permission, would make you
directly or secondarily liable for infringement under applicable copyright law, except executing
it on a computer or modifying a private copy. Propagation includes copying, distribution (with or
without modifi cation), making available to the public, and in some countries other activities as well.

 To “convey” a work means any kind of propagation that enables other parties to make or receive
copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not
conveying.

 An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a
convenient and prominently visible feature that (1) displays an appropriate copyright notice, and
(2) tells the user that there is no warranty for the work (except to the extent that warranties are
provided), that licensees may convey the work under this License, and how to view a copy of this
License. If the interface presents a list of user commands or options, such as a menu, a prominent
item in the list meets this criterion.

1 . Source Code. T he “source code” for a work means the preferred form of the work for making modi-
fi cations to it. “Object code” means any non-source form of a work. A “Standard Interface” means an
interface that either is an offi cial standard defi ned by a recognized standards body, or, in the case
of interfaces specifi ed for a particular programming language, one that is widely used among devel-
opers working in that language.

 The “System Libraries” of an executable work include anything, other than the work as a whole,
that (a) is included in the normal form of packaging a Major Component, but which is not part of
that Major Component, and (b) serves only to enable use of the work with that Major Component,
or to implement a Standard Interface for which an implementation is available to the public in
source code form. A “Major Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specifi c operating system (if any) on which the execut-
able work runs, or a compiler used to produce the work, or an object code interpreter used to run it.

 The “Corresponding Source” for a work in object code form means all the source code needed to
generate, install, and (for an executable work) run the object code and to modify the work, includ-
ing scripts to control those activities. However, it does not include the work’s System Libraries, or
general-purpose tools or generally available free programs which are used unmodifi ed in perform-
ing those activities but which are not part of the work. For example, Corresponding Source includes
interface defi nition fi les associated with source fi les for the work, and the source code for shared
libraries and dynamically linked subprograms that the work is specifi cally designed to require, such
as by intimate data communication or control fl ow between those subprograms and other parts of
the work.

 The Corresponding Source need not include anything that users can regenerate automatically from
other parts of the Corresponding Source.

 The Corresponding Source for a work in source code form is that same work.

47_617977-blicense.indd 43447_617977-blicense.indd 434 7/6/10 11:56 PM7/6/10 11:56 PM

2 . Basic Permissions. All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License explicitly affi rms
your unlimited permission to run the unmodifi ed Program. The output from running a covered work
is covered by this License only if the output, given its content, constitutes a covered work. This
License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

 You may make, run and propagate covered works that you do not convey, without conditions so
long as your license otherwise remains in force. You may convey covered works to others for the
sole purpose of having them make modifi cations exclusively for you, or provide you with facilities
for running those works, provided that you comply with the terms of this License in conveying all
material for which you do not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction and control, on terms that pro-
hibit them from making any copies of your copyrighted material outside their relationship with you.

 Conveying under any other circumstances is permitted solely under the conditions stated below.
Sublicensing is not allowed; section 10 makes it unnecessary.

3 . Protecting Users’ Legal Rights From Anti-Circumvention Law. No covered work shall be deemed
part of an effective technological measure under any applicable law fulfi lling obligations under
article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or
restricting circumvention of such measures.

 When you convey a covered work, you waive any legal power to forbid circumvention of technologi-
cal measures to the extent such circumvention is effected by exercising rights under this License
with respect to the covered work, and you disclaim any intention to limit operation or modifi cation
of the work as a means of enforcing, against the work’s users, your or third parties’ legal rights to
forbid circumvention of technological measures.

4 . Conveying Verbatim Copies. You may convey verbatim copies of the Program’s source code as
you receive it, in any medium, provided that you conspicuously and appropriately publish on each
copy an appropriate copyright notice; keep intact all notices stating that this License and any non-
permissive terms added in accord with section 7 apply to the code; keep intact all notices of the
absence of any warranty; and give all recipients a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey, and you may offer support or
warranty protection for a fee.

5 . Conveying Modifi ed Source Versions. You may convey a work based on the Program, or the modi-
fi cations to produce it from the Program, in the form of source code under the terms of section 4,
provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modifi ed it, and giving a relevant date.

b) The work must carry prominent notices stating that it is released under this License and any
conditions added under section 7. This requirement modifi es the requirement in section 4 to
“keep intact all notices”.

c) You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts, regardless of how they are pack-
aged. This License gives no permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; how-
ever, if the Program has interactive interfaces that do not display Appropriate Legal Notices,
your work need not make them do so.

47_617977-blicense.indd 43547_617977-blicense.indd 435 7/6/10 11:56 PM7/6/10 11:56 PM

 A compilation of a covered work with other separate and independent works, which are not by
their nature extensions of the covered work, and which are not combined with it such as to form a
larger program, in or on a volume of a storage or distribution medium, is called an “aggregate” if the
compilation and its resulting copyright are not used to limit the access or legal rights of the compi-
lation’s users beyond what the individual works permit. Inclusion of a covered work in an aggregate
does not cause this License to apply to the other parts of the aggregate.

6 . Conveying Non-Source Forms. You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source
under the terms of this License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including a physical distribution
medium), accompanied by the Corresponding Source fi xed on a durable physical medium cus-
tomarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product (including a physical distribu-
tion medium), accompanied by a written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product model, to give anyone who
possesses the object code either (1) a copy of the Corresponding Source for all the software in
the product that is covered by this License, on a durable physical medium customarily used
for software interchange, for a price no more than your reasonable cost of physically perform-
ing this conveying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord with subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or for a charge),
and offer equivalent access to the Corresponding Source in the same way through the same
place at no further charge. You need not require recipients to copy the Corresponding Source
along with the object code. If the place to copy the object code is a network server, the
Corresponding Source may be on a different server (operated by you or a third party) that sup-
ports equivalent copying facilities, provided you maintain clear directions next to the object
code saying where to fi nd the Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is available for as long as needed
to satisfy these requir

e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded from the Corresponding
Source as a System Library, need not be included in conveying the object code work.

 A “User Product” is either (1) a “consumer product”, which means any tangible personal property
which is normally used for personal, family, or household purposes, or (2) anything designed or
sold for incorporation into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular product received by a partic-
ular user, “normally used” refers to a typical or common use of that class of product, regardless of
the status of the particular user or of the way in which the particular user actually uses, or expects
or is expected to use, the product. A product is a consumer product regardless of whether the
product has substantial commercial, industrial or non-consumer uses, unless such uses represent
the only signifi cant mode of use of the product.

47_617977-blicense.indd 43647_617977-blicense.indd 436 7/6/10 11:56 PM7/6/10 11:56 PM

 “Installation Information” for a User Product means any methods, procedures, authorization keys,
or other information required to install and execute modifi ed versions of a covered work in that
User Product from a modifi ed version of its Corresponding Source. The information must suffi ce to
ensure that the continued functioning of the modifi ed object code is in no case prevented or inter-
fered with solely because modifi cation has been made.

 If you convey an object code work under this section in, or with, or specifi cally for use in, a User
Product, and the conveying occurs as part of a transaction in which the right of possession and
use of the User Product is transferred to the recipient in perpetuity or for a fi xed term (regardless
of how the transaction is characterized), the Corresponding Source conveyed under this section
must be accompanied by the Installation Information. But this requirement does not apply if neither
you nor any third party retains the ability to install modifi ed object code on the User Product (for
example, the work has been installed in ROM).

 The requirement to provide Installation Information does not include a requirement to continue to
provide support service, warranty, or updates for a work that has been modifi ed or installed by the
recipient, or for the User Product in which it has been modifi ed or installed. Access to a network
may be denied when the modifi cation itself materially and adversely affects the operation of the
network or violates the rules and protocols for communication across the network.

 Corresponding Source conveyed, and Installation Information provided, in accord with this section
must be in a format that is publicly documented (and with an implementation available to the public
in source code form), and must require no special password or key for unpacking, reading or copying.

7. Addit ional Terms. “Additional permissions” are terms that supplement the terms of this License by
making exceptions from one or more of its conditions. Additional permissions that are applicable to
the entire Program shall be treated as though they were included in this License, to the extent that
they are valid under applicable law. If additional permissions apply only to part of the Program,
that part may be used separately under those permissions, but the entire Program remains gov-
erned by this License without regard to the additional permissions.

 When you convey a copy of a covered work, you may at your option remove any additional permis-
sions from that copy, or from any part of it. (Additional permissions may be written to require their
own removal in certain cases when you modify the work.) You may place additional permissions
on material, added by you to a covered work, for which you have or can give appropriate copyright
permission.

 Notwithstanding any other provision of this License, for material you add to a covered work, you
may (if authorized by the copyright holders of that material) supplement the terms of this License
with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this
License; or

b) Requiring preservation of specifi ed reasonable legal notices or author attributions in that mate-
rial or in the Appropriate Legal Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that modifi ed versions
of such material be marked in reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

e) Declining to grant rights under trademark law for use of some trade names, trademarks, or
service marks; or

f) Requiring indemnifi cation of licensors and authors of that material by anyone who conveys
the material (or modifi ed versions of it) with contractual assumptions of liability to the recipi-
ent, for any liability that these contractual assumptions directly impose on those licensors and
authors.

47_617977-blicense.indd 43747_617977-blicense.indd 437 7/6/10 11:56 PM7/6/10 11:56 PM

 All other non-permissive additional terms are considered “further restrictions” within the meaning
of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further restriction, you may remove that term.
If a license document contains a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms of that license document,
provided that the further restriction does not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you must place, in the relevant
source fi les, a statement of the additional terms that apply to those fi les, or a notice indicating
where to fi nd the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in the form of a separately written
license, or stated as exceptions; the above requirements apply either way.

8. Term ination. You may not propagate or modify a covered work except as expressly provided
under this License. Any attempt otherwise to propagate or modify it is void, and will automatically
terminate your rights under this License (including any patent licenses granted under the third
paragraph of section 11).

 However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and fi nally ter-
minates your license, and (b) permanently, if the copyright holder fails to notify you of the violation
by some reasonable means prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is reinstated permanently if the copy-
right holder notifi es you of the violation by some reasonable means, this is the fi rst time you have
received notice of violation of this License (for any work) from that copyright holder, and you cure
the violation prior to 30 days after your receipt of the notice.

 Termination of your rights under this section does not terminate the licenses of parties who have
received copies or rights from you under this License. If your rights have been terminated and not
permanently reinstated, you do not qualify to receive new licenses for the same material under
section 10.

9. Accep tance Not Required for Having Copies. You are not required to accept this License in order to
receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a
consequence of using peer-to-peer transmission to receive a copy likewise does not require accep-
tance. However, nothing other than this License grants you permission to propagate or modify any
covered work. These actions infringe copyright if you do not accept this License. Therefore, by
modifying or propagating a covered work, you indicate your acceptance of this License to do so.

10. Auto matic Licensing of Downstream Recipients. Each time you convey a covered work, the recipi-
ent automatically receives a license from the original licensors, to run, modify and propagate that
work, subject to this License. You are not responsible for enforcing compliance by third parties
with this License.

 An “entity transaction” is a transaction transferring control of an organization, or substantially all
assets of one, or subdividing an organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that transaction who receives a copy of the
work also receives whatever licenses to the work the party’s predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the Corresponding Source of the
work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the rights granted or affi rmed under
this License. For example, you may not impose a license fee, royalty, or other charge for exercise
of rights granted under this License, and you may not initiate litigation (including a cross-claim or
counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offer-
ing for sale, or importing the Program or any portion of it.

47_617977-blicense.indd 43847_617977-blicense.indd 438 7/6/10 11:56 PM7/6/10 11:56 PM

11. Pate nts. A “contributor” is a copyright holder who authorizes use under this License of the Program
or a work on which the Program is based. The work thus licensed is called the contributor’s “con-
tributor version”.

 A contributor’s “essential patent claims” are all patent claims owned or controlled by the contribu-
tor, whether already acquired or hereafter acquired, that would be infringed by some manner,
permitted by this License, of making, using, or selling its contributor version, but do not include
claims that would be infringed only as a consequence of further modifi cation of the contributor
version. For purposes of this defi nition, “control” includes the right to grant patent sublicenses in a
manner consistent with the requirements of this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the con-
tributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify
and propagate the contents of its contributor version.

 In the following three paragraphs, a “patent license” is any express agreement or commitment, how-
ever denominated, not to enforce a patent (such as an express permission to practice a patent or
covenant not to sue for patent infringement). To “grant” such a patent license to a party means to
make such an agreement or commitment not to enforce a patent against the party.

 If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source
of the work is not available for anyone to copy, free of charge and under the terms of this License,
through a publicly available network server or other readily accessible means, then you must either
(1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the
benefi t of the patent license for this particular work, or (3) arrange, in a manner consistent with the
requirements of this License, to extend the patent license to downstream recipients. “Knowingly
relying” means you have actual knowledge that, but for the patent license, your conveying the cov-
ered work in a country, or your recipient’s use of the covered work in a country, would infringe one
or more identifi able patents in that country that you have reason to believe are valid.

 If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate
by procuring conveyance of, a covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify or convey a specifi c copy
of the covered work, then the patent license you grant is automatically extended to all recipients of
the covered work and works based on it.

 A patent license is “discriminatory” if it does not include within the scope of its coverage, pro-
hibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are
specifi cally granted under this License. You may not convey a covered work if you are a party to
an arrangement with a third party that is in the business of distributing software, under which you
make payment to the third party based on the extent of your activity of conveying the work, and
under which the third party grants, to any of the parties who would receive the covered work from
you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by
you (or copies made from those copies), or (b) primarily for and in connection with specifi c prod-
ucts or compilations that contain the covered work, unless you entered into that arrangement, or
that patent license was granted, prior to 28 March 2007.

 Nothing in this License shall be construed as excluding or limiting any implied license or other
defenses to infringement that may otherwise be available to you under applicable patent law.

12. No S urrender of Others’ Freedom. If conditions are imposed on you (whether by court order, agree-
ment or otherwise) that contradict the conditions of this License, they do not excuse you from the
conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for fur-
ther conveying from those to whom you convey the Program, the only way you could satisfy both
those terms and this License would be to refrain entirely from conveying the Program.

47_617977-blicense.indd 43947_617977-blicense.indd 439 7/6/10 11:56 PM7/6/10 11:56 PM

13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this
License, you have permission to link or combine any covered work with a work licensed under
version 3 of the GNU Affero General Public License into a single combined work, and to convey the
resulting work. The terms of this License will continue to apply to the part which is the covered
work, but the special requirements of the GNU Affero General Public License, section 13, concern-
ing interaction through a network will apply to the combination as such.

14. Revi sed Versions of this License. The Free Software Foundation may publish revised and/or new
versions of the GNU General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or concerns.

 Each version is given a distinguishing version number. If the Program specifi es that a certain num-
bered version of the GNU General Public License “or any later version” applies to it, you have the
option of following the terms and conditions either of that numbered version or of any later version
published by the Free Software Foundation. If the Program does not specify a version number of
the GNU General Public License, you may choose any version ever published by the Free Software
Foundation.

 If the Program specifi es that a proxy can decide which future versions of the GNU General Public
License can be used, that proxy’s public statement of acceptance of a version permanently autho-
rizes you to choose that version for the Program.

 Later license versions may give you additional or different permissions. However, no additional
obligations are imposed on any author or copyright holder as a result of your choosing to follow a
later version.

15. Disc laimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

16. Limi tation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING
ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Inte rpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms, reviewing courts shall apply local
law that most closely approximates an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a copy of the Program in return
for a fee.

END OF TERMS AND CONDITIONS

47_617977-blicense.indd 44047_617977-blicense.indd 440 7/6/10 11:56 PM7/6/10 11:56 PM

Spine: .912

Start with FREE Cheat Sheets
Cheat Sheets include
 • Checklists
 • Charts
 • Common Instructions
 • And Other Good Stuff!

Get Smart at Dummies.com
Dummies.com makes your life easier with 1,000s
of answers on everything from removing wallpaper
to using the latest version of Windows.

Check out our
 • Videos
 • Illustrated Articles
 • Step-by-Step Instructions

Plus, each month you can win valuable prizes by entering
our Dummies.com sweepstakes. *

Want a weekly dose of Dummies? Sign up for Newsletters on
 • Digital Photography
 • Microsoft Windows & Office
 • Personal Finance & Investing
 • Health & Wellness
 • Computing, iPods & Cell Phones
 • eBay
 • Internet
 • Food, Home & Garden

Find out “HOW” at Dummies.com

*Sweepstakes not currently available in all countries; visit Dummies.com for official rules.

Get More and Do More at Dummies.com®

To access the Cheat Sheet created specifically for this book, go to
www.dummies.com/cheatsheet/beginningprogrammingcplusplus Mobile Apps

There’s a Dummies App for This and That
With more than 200 million books in print and over 1,600 unique
titles, Dummies is a global leader in how-to information. Now
you can get the same great Dummies information in an App. With
topics such as Wine, Spanish, Digital Photography, Certification,
and more, you’ll have instant access to the topics you need to
know in a format you can trust.

To get information on all our Dummies apps, visit the following:

www.Dummies.com/go/mobile from your computer.

www.Dummies.com/go/iphone/apps from your phone.

Stephen R. Davis
Author of C++ For Dummies

• Think like a programmer and understand
how C++ works

• Create programs and get bugs out
of your code

• Master basic development concepts
and techniques in C++

Find source code from the book
and the Code::Blocks C++ compiler
on the companion CD-ROM

Learn to:

Beginning
Programming with C++

Making Everything Easier!™

Bonus CD Includes
Source code for the programs explained in the book

Code::Blocks C++ development environment for Windows

GNU C++ Compiler for Windows

Please see the CD-ROM Appendix for complete system requirements.

 Open the book and find:

• What a programming language
must do

• How to work with integer
expressions and character
expressions

• Tips for keeping errors out of
your code

• Four essential parts of a loop

• Different numerical variable
types

• Why C++ pointers are important

• How to use constructors and
destructors

• Advanced language features
you’ll want to know

Stephen R. Davis is a programmer and the bestselling author of several
books on the C languages, including C# For Dummies, C++ Weekend
Crash Course, and all editions of C++ For Dummies. He currently works for
L-3 Communications in the area of Homeland Defense.

$29.99 US / $35.99 CN / £21.99 UK

ISBN 978-0-470-61797-7

Programming Languages/C++

Go to Dummies.com®

for videos, step-by-step examples,
how-to articles, or to shop!

Here’s programming made easy
(and fun!) with this guide
to the popular C++ language
So you’re dreaming of the exciting life of a programmer?
You can make it happen with this book! Even if you barely
know what programming is, you can learn to “speak” the
C++ language, install and use the compiler, work with loops,
understand objects and classes, get rid of bugs, and write
real programs that work. It’s all in these pages!

• How the thing thinks — understand what a
computer needs to work, what an algorithm is, and how
programming languages function

• Tools of the trade — install Code::Blocks, use the integrated
development environment, and write your first program

• Express yourself — learn to write simple expressions, declare
integer variables, and make decisions within a program

• Love loops — use loops and functions, divide your code
into modules, eliminate bugs, and master the C++ pointer

• Think objectively — grasp object-oriented programming
concepts and work with classes and objects

Compiler and
more on
CD-ROM

Beginning Program
m

ing w
ith C++

Davis

Spine: .912

	Beginning Programming with C++ For Dummies®
	About the Author
	Dedication
	Author’s Acknowledgments
	Contents at a Glance
	Table of Contents
	Introduction
	About Beginning Programming with C++ For Dummies
	Foolish Assumptions
	Conventions Used in This Book
	What You Don’t Have to Read
	How This Book Is Organized
	Icons Used in This Book
	Where to Go from Here

	Part I: Let’s Get Started
	Chapter 1: What Is a Program?
	How Does My Son Differ from a Computer?
	Programming a “Human Computer”
	Computer Languages

	Chapter 2: Installing Code::Blocks
	Reviewing the Compilation Process
	Installing Code::Blocks
	Tes ting the Code::Blocks Installation

	Chapter 3: Writing Your First Program
	Creating a New Project
	Entering Your Program
	Building the Program
	Finding What Could Go Wrong
	Using the Enclosed CD-ROM
	Running the Program
	How the Program Works

	Part II: Writing a Program: Decisions, Decisions
	Chapter 4: Integer Expressions
	Declaring Variables
	Integer Constants
	Expressions
	Unary Operators
	The Special Assignment Operators

	Chapter 5: Character Expressions
	Defining Character Variables
	Encoding Strings of Characters
	Special Character Constants

	Chapter 6: if I Could Make My Own Decisions
	The if Statement
	What else Is There?
	Nesting if Statements
	Compound Conditional Expressions

	Chapter 7: Switching Paths
	Controlling Flow with the switch Statement
	Control Fell Through: Did I break It?
	Implementing an Example Calculator with the switch Statement

	Chapter 8: Debugging Your Programs, Part I
	Identifying Types of Errors
	Avoiding Introducing Errors
	Finding the First Error with a Little Help
	Finding the Run-Time Error

	Part III: Becoming a Functional Programmer
	Chapter 9: while Running in Circles
	Creating a while Loop
	Breaking out of the Middle of a Loop
	Nested Loops

	Chapter 10: Looping for the Fun of It
	The for Parts of Every Loop
	Looking at an Example
	Getting More Done with the Comma Operator

	Chapter 11: Functions, I Declare!
	Breaking Your Problem Down into Functions
	Understanding How Functions Are Useful
	Writing and Using a Function
	Passing Arguments to Functions
	Defining Function Prototype Declarations

	Chapter 12: Dividing Programs into Modules
	Breaking Programs Apart
	Breaking Up Isn’t That Hard to Do
	Using the Standard C++ Library
	Variable Scope

	Chapter 13: Debugging Your Programs, Part 2
	Debugging a Dys-Functional Program

	Part IV: Data Structures
	Chapter 14: Other Numerical Variable Types
	The Limitations of Integers in C++
	A Type That “doubles” as a Real Number
	Variable Size — the “long” and “short” of It
	Types of Constants
	Passing Different Types to Functions

	Chapter 15: Arrays
	What Is an Array?
	Declaring an Array
	Indexing into an Array
	Looking at an Example
	Initializing an Array

	Chapter 16: Arrays with Character
	The ASCII-Zero Character Array
	Declaring and Initializing an ASCIIZ Array
	Looking at an Example
	Looking at a More Detailed Example

	Chapter 17: Pointing the Way to C++ Pointers
	What’s a Pointer?
	Declaring a Pointer
	Passing Arguments to a Function
	Playing with Heaps of Memory

	Chapter 18: Taking a Second Look at C++ Pointers
	Pointers and Arrays
	Operations on Different Pointer Types
	Constant Nags
	Differences Between Pointers and Arrays
	My main() Arguments

	Chapter 19: Programming with Class
	Grouping Data
	The Class
	The Object
	Arrays of Objects
	Looking at an Example

	Chapter 20: Debugging Your Programs, Part 3
	A New Approach to Debugging
	Entomology for Dummies

	Part V: Object-Oriented Programming
	Chapter 21: What Is Object-Oriented Programming?
	Abstraction and Microwave Ovens
	Classification and Microwave Ovens
	Why Build Objects This Way?
	Self-Contained Classes

	Chapter 22: Structured Play: Making Classes Do Things
	Activating Our Objects
	Creating a Member Function
	Keeping a Member Function after Class
	Overloading Member Functions

	Chapter 23: Pointers to Objects
	Pointers to Objects
	Passing Objects to Functions
	Allocating Objects off the Heap

	Chapter 24: Do Not Disturb: Protected Members
	Protecting Members
	Who Needs Friends Anyway?

	Chapter 25: Getting Objects Off to a Good Start
	The Constructor
	Destructors

	Chapter 26: Making Constructive Arguments
	Constructors with Arguments
	Overloading the Constructor
	The Default default Constructor
	Constructing Data Members

	Chapter 27: Coping with the Copy Constructor
	Copying an Object
	Creating a Copy Constructor
	Avoiding Copies

	Part VI: Advanced Strokes
	Chapter 28: Inheriting a Class
	Advantages of Inheritance
	Implementing Inheritance in C++
	Having a HAS_A Relationship

	Chapter 29: Are Virtual Functions for Real?
	Overriding Member Functions
	When Is Virtual Not?
	Virtual Considerations

	Chapter 30: Overloading Assignment Operators
	Overloading an Operator
	Overloading the Assignment Operator Is Critical
	Looking at an Example
	Writing Your Own (or Not)

	Chapter 31: Performing Streaming I/O
	How Stream I/O Works
	Stream Input/Output
	Other Member Functions of the fstream Classes
	Manipulating Manipulators
	Using the stringstream Classes

	Chapter 32: I Take Exception!
	The Exception Mechanism
	Creating a Custom Exception Class

	Part VII: The Part of Tens
	Chapter 33: Ten Ways to Avoid Bugs
	Enable All Warnings and Error Messages
	Adopt a Clear and Consistent Coding Style
	Comment the Code While You Write It
	Single-Step Every Path in the Debugger at Least Once
	Limit the Visibility
	Keep Track of Heap Memory
	Zero Out Pointers after Deleting What They Point To
	Use Exceptions to Handle Errors
	Declare Destructors Virtual
	Provide a Copy Constructor and Overloaded Assignment Operator

	Chapter 34: Ten Features Not Covered in This Book
	The goto Command
	The Ternary Operator
	Binary Logic
	Enumerated Types
	Namespaces
	Pure Virtual Functions
	The string Class
	Multiple Inheritance
	Templates and the Standard Template Library
	The 2009 C++ Standard

	Appendix: About the CD
	System Requirements
	Using the CD
	What You’ll Find on the CD
	Troubleshooting
	Customer Care

	Index

