

Beginning C++
Through Game
Programming,
Third Edition

Michael Dawson

Course Technology PTR

A part of Cengage Learning

Australia . Brazil . Japan . Korea . Mexico . Singapore . Spain . United Kingdom . United States

Beginning C++ Through Game Programming,

Third Edition

Michael Dawson

Publisher and General Manager,

Course Technology PTR: Stacy L. Hiquet

Associate Director of Marketing:

Sarah Panella

Manager of Editorial Services:

Heather Talbot

Marketing Manager: Jordan Castellani

Senior Acquisitions Editor: Emi Smith

Project Editor: Jenny Davidson

Technical Reviewer: Maneesh Sethi

Interior Layout Tech: MPS Limited, a Macmillan

Company

Cover Designer: Mike Tanamachi

Indexer: Kevin Broccoli

Proofreader: Michael Beady

© 2011 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright

herein may be reproduced, transmitted, stored, or used in any form or

by any means graphic, electronic, or mechanical, including but not

limited to photocopying, recording, scanning, digitizing, taping, Web

distribution, information networks, or information storage and retrieval

systems, except as permitted under Section 107 or 108 of the 1976

United States Copyright Act, without the prior written permission of the

publisher.

For product information and technology assistance, contact us at

Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,

submit all requests online at www.cengage.com/permissions

Further permissions questions can be emailed to

permissionrequest@cengage.com

All trademarks are the property of their respective owners.

All images �C Cengage Learning unless otherwise noted.

Library of Congress Control Number: 2010928011

ISBN-13: 978-1-4354-5742-3

ISBN-10: 1-4354-5742-0

Course Technology, a part of Cengage Learning

20 Channel Center Street

Boston, MA 02210

USA

Cengage Learning is a leading provider of customized learning solutions

with office locations around the globe, including Singapore, the United

Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:

international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson

Education, Ltd.

For your lifelong learning solutions, visit courseptr.com

Visit our corporate website at cengage.com

Printed in the United States of America

1 2 3 4 5 6 7 12 11 10

eISBN-10:1-4354-5743-9

To my sweet, tough cookie—for all of the help, support, understanding
(and distractions) you offered.

And to Ariella Saraswati Dawson, a girl who’s even more impressive than her
name. I look forward to rediscovering the world with you, Monkey.

Every book you’ve ever read perpetuates a big fat lie. And I’m here to out the
publishing industry’s dirty little secret—books are not “by” only one person. Yes,
you see only one name on book covers (including this one), but it takes a team of
dedicated people to pull off the final product. Authors could not do it alone; I
certainly could not have done it alone. So I want to thank all those who helped
make this book a reality.

Thanks to Jenny Davidson for her dual role as Project Editor and Copy Editor.
Jenny kept me on schedule and my commas in place.

Thanks to Maneesh Sethi, my Technical Reviewer, who made sure my programs
worked the way I said they did.

Thanks to Michael Beady, my Proofreader. His work makes this book look
good—literally.

I also want to thank Emi Smith, my Senior Acquisitions Editor, for all of her
encouragement.

Finally, I want to thank all of the game programmers who created the games I
played while growing up. They inspired me to work in the industry and create
games of my own. I hope I can inspire a few readers to do the same.

Acknowledgments

Michael Dawson is a game programming author and instructor who teaches
students the art and science of writing their own games. Mike has developed and
taught game programming courses for UCLA Extension, The Digital Media
Academy, and The Los Angeles Film School. In addition, his books have been
required reading in colleges and universities around the country.

Mike got his start in the game industry as a producer and designer, but he also
“starred” in an adventure game in which the player controls the main character,
named Mike Dawson. In the game, the player directs the digitized images of
Dawson, who must stop an extraterrestrial invasion before an implanted alien
embryo is born from his head.

In real life, Mike is the author of Beginning Cþþ Through Game Programming,
Python Programming for the Absolute Beginner, Cþþ Projects: Programming with
Text-Based Games, and Guide to Programming with Python. He earned his
bachelor’s degree in Computer Science from the University of Southern
California. Visit his website at www.programgames.com to learn more or to get
support for any of his books.

About the Author

Introduction . xviii

Chapter 1 Types, Variables, and Standard I/O: Lost Fortune 1

Introducing Cþþ . 1

Using Cþþ for Games . 2

Creating an Executable File . 2

Dealing with Errors . 4

Understanding the ISO Standard . 5

Writing Your First Cþþ Program . 5

Introducing the Game Over Program . 5

Commenting Code . 7

Using Whitespace . 7

Including Other Files . 7

Defining the main() Function . 8

Displaying Text through the Standard Output 8

Terminating Statements . 9

Returning a Value from main() . 10

Working with the std Namespace . 10

Introducing the Game Over 2.0 Program 10

Employing a using Directive . 11

Introducing the Game Over 3.0 Program 11

Employing using Declarations . 12

Understanding When to Employ using . 12

Contents

vi

Contents vii

Using Arithmetic Operators . 13

Introducing the Expensive Calculator Program 13

Adding, Subtracting, and Multiplying . 14

Understanding Integer and Floating Point Division 14

Using the Modulus Operator . 15

Understanding Order of Operations . 15

Declaring and Initializing Variables . 16

Introducing the Game Stats Program . 16

Understanding Fundamental Types . 18

Understanding Type Modifiers . 18

Declaring Variables . 19

Naming Variables . 20

Assigning Values to Variables . 21

Initializing Variables . 22

Displaying Variable Values . 22

Getting User Input . 23

Defining New Names for Types . 23

Understanding Which Types to Use . 24

Performing Arithmetic Operations with Variables 24

Introducing the Game Stats 2.0 Program 24

Altering the Value of a Variable . 26

Using Combined Assignment Operators 26

Using Increment and Decrement Operators 27

Dealing with Integer Wrap Around . 28

Working with Constants . 29

Introducing the Game Stats 3.0 Program 29

Using Constants . 31

Using Enumerations . 31

Introducing Lost Fortune . 32

Setting Up the Program . 32

Getting Information from the Player . 33

Telling the Story . 34

Summary . 35

Questions and Answers . 36

Discussion Questions . 38

Exercises . 38

Chapter 2 Truth, Branching, and the Game Loop:

Guess My Number . 39

Understanding Truth . 39

Using the if Statement . 40

Introducing the Score Rater Program . 41

Testing true and false . 42

Interpreting a Value as true or false . 43

Using Relational Operators . 44

Nesting if Statements . 44

Using the else Clause . 45

Introducing the Score Rater 2.0 Program 46

Creating Two Ways to Branch . 47

Using a Sequence of if Statements with else Clauses 48

Introducing the Score Rater 3.0 Program 49

Creating a Sequence of if Statements with else Clauses 50

Using the switch Statement . 51

Introducing the Menu Chooser Program 52

Creating Multiple Ways to Branch . 54

Using while Loops . 54

Introducing the Play Again Program . 54

Looping with a while Loop . 55

Using do Loops . 56

Introducing the Play Again 2.0 Program 56

Looping with a do Loop . 57

Using break and continue Statements . 58

Introducing the Finicky Counter Program 58

Creating a while (true) Loop . 60

Using the break Statement to Exit a Loop 60

Using the continue Statement to Jump Back

to the Top of a Loop . 61

Understanding When to Use break and continue 61

Using Logical Operators . 61

Introducing the Designers Network Program 62

Using the Logical AND Operator . 65

Using the Logical OR Operator . 66

Using the Logical NOT Operator . 66

Understanding Order of Operations . 67

Generating Random Numbers . 68

Introducing the Die Roller Program . 68

Calling the rand() Function . 69

Seeding the Random Number Generator 70

Calculating a Number within a Range . 71

viii Contents

Understanding the Game Loop . 72

Introducing Guess My Number . 73

Applying the Game Loop . 74

Setting Up the Game . 74

Creating the Game Loop . 76

Wrapping Up the Game . 76

Summary . 76

Questions and Answers . 78

Discussion Questions . 80

Exercises . 80

Chapter 3 For Loops, Strings, and Arrays: Word Jumble 81

Using for Loops . 81

Introducing the Counter Program . 82

Counting with for Loops . 84

Using Empty Statements in for Loops . 85

Nesting for Loops . 86

Understanding Objects . 87

Using String Objects . 89

Introducing the String Tester Program . 89

Creating string Objects . 91

Concatenating string Objects . 92

Using the size() Member Function . 92

Indexing a string Object . 93

Iterating through string Objects . 93

Using the find() Member Function . 94

Using the erase() Member Function . 95

Using the empty() Member Function . 96

Using Arrays . 96

Introducing the Hero’s Inventory Program 96

Creating Arrays . 98

Indexing Arrays . 99

Accessing Member Functions of an Array Element 100

Being Aware of Array Bounds . 100

Understanding C-Style Strings . 101

Using Multidimensional Arrays . 103

Introducing the Tic-Tac-Toe Board Program 103

Creating Multidimensional Arrays . 105

Indexing Multidimensional Arrays . 105

Contents ix

Introducing Word Jumble . 106

Setting Up the Program . 107

Picking a Word to Jumble . 107

Jumbling the Word . 108

Welcoming the Player . 109

Entering the Game Loop . 109

Saying Goodbye . 110

Summary . 110

Questions and Answers . 111

Discussion Questions . 113

Exercises . 114

Chapter 4 The Standard Template Library: Hangman 115

Introducing the Standard Template Library 115

Using Vectors . 116

Introducing the Hero’s Inventory 2.0 Program 117

Preparing to Use Vectors . 119

Declaring a Vector . 119

Using the push_back() Member Function 120

Using the size() Member Function . 120

Indexing Vectors . 121

Calling Member Functions of an Element 121

Using the pop_back() Member Function 122

Using the clear() Member Function . 122

Using the empty() Member Function . 122

Using Iterators . 123

Introducing the Hero’s Inventory 3.0 Program 123

Declaring Iterators . 125

Looping through a Vector . 126

Changing the Value of a Vector Element 128

Accessing Member Functions of a Vector Element 129

Using the insert() Vector Member Function 130

Using the erase() Vector Member Function 130

Using Algorithms . 131

Introducing the High Scores Program 131

Preparing to Use Algorithms . 133

Using the find() Algorithm . 134

Using the random_shuffle() Algorithm 134

Using the sort() Algorithm . 135

x Contents

Understanding Vector Performance . 136

Examining Vector Growth . 136

Examining Element Insertion and Deletion 138

Examining Other STL Containers . 138

Planning Your Programs . 139

Using Pseudocode . 139

Using Stepwise Refinement . 140

Introducing Hangman . 141

Planning the Game . 141

Setting Up the Program . 142

Initializing Variables and Constants . 143

Entering the Main Loop . 143

Getting the Player’s Guess . 144

Ending the Game . 145

Summary . 145

Questions and Answers . 146

Discussion Questions . 148

Exercises . 148

Chapter 5 Functions: Mad Lib . 151

Creating Functions . 151

Introducing the Instructions Program . 152

Declaring Functions . 153

Defining Functions . 154

Calling Functions . 154

Understanding Abstraction . 155

Using Parameters and Return Values . 155

Introducing the Yes or No Program . 155

Returning a Value . 157

Accepting Values into Parameters . 158

Understanding Encapsulation . 160

Understanding Software Reuse . 161

Working with Scopes . 161

Introducing the Scoping Program . 161

Working with Separate Scopes . 163

Working with Nested Scopes . 165

Using Global Variables . 166

Introducing the Global Reach Program 166

Declaring Global Variables . 168

Accessing Global Variables . 168

Contents xi

Hiding Global Variables . 169

Altering Global Variables . 169

Minimizing the Use of Global Variables 170

Using Global Constants . 170

Using Default Arguments . 171

Introducing the Give Me a Number Program 171

Specifying Default Arguments . 173

Assigning Default Arguments to Parameters 173

Overriding Default Arguments . 174

Overloading Functions . 174

Introducing the Triple Program . 174

Creating Overloaded Functions . 176

Calling Overloaded Functions . 177

Inlining Functions . 177

Introducing the Taking Damage Program 177

Specifying Functions for Inlining . 179

Calling Inlined Functions . 179

Introducing the Mad Lib Game . 180

Setting Up the Program . 181

The main() Function . 181

The askText() Function . 182

The askNumber() Function . 182

The tellStory() Function . 183

Summary . 183

Questions and Answers . 184

Discussion Questions . 186

Exercises . 186

Chapter 6 References: Tic-Tac-Toe . 187

Using References . 187

Introducing the Referencing Program 187

Creating References . 189

Accessing Referenced Values . 190

Altering Referenced Values . 190

Passing References to Alter Arguments . 191

Introducing the Swap Program . 191

Passing by Value . 193

Passing by Reference . 194

Passing References for Efficiency . 195

Introducing the Inventory Displayer Program 195

xii Contents

Understanding the Pitfalls of Reference Passing 196

Declaring Parameters as Constant References 197

Passing a Constant Reference . 197

Deciding How to Pass Arguments . 198

Returning References . 198

Introducing the Inventory Referencer Program 199

Returning a Reference . 200

Displaying the Value of a Returned Reference 201

Assigning a Returned Reference to a Reference 202

Assigning a Returned Reference to a Variable 202

Altering an Object through a Returned Reference 202

Introducing the Tic-Tac-Toe Game . 203

Planning the Game . 203

Setting Up the Program . 205

The main() Function . 207

The instructions() Function . 208

The askYesNo() Function . 208

The askNumber() Function . 209

The humanPiece() Function . 209

The opponent() Function . 210

The displayBoard() Function . 210

The winner() Function . 211

The isLegal() Function . 212

The humanMove() Function . 213

The computerMove() Function . 213

The announceWinner() Function . 217

Summary . 217

Questions and Answers . 218

Discussion Questions . 220

Exercises . 221

Chapter 7 Pointers: Tic-Tac-Toe 2.0 . 223

Understanding Pointer Basics . 223

Introducing the Pointing Program . 224

Declaring Pointers . 226

Initializing Pointers . 227

Assigning Addresses to Pointers . 227

Dereferencing Pointers . 228

Reassigning Pointers . 229

Using Pointers to Objects . 230

Contents xiii

Understanding Pointers and Constants . 231

Using a Constant Pointer . 231

Using a Pointer to a Constant . 232

Using a Constant Pointer to a Constant 233

Summarizing Constants and Pointers . 234

Passing Pointers . 234

Introducing the Swap Pointer Version Program 234

Passing by Value . 236

Passing a Constant Pointer . 237

Returning Pointers . 238

Introducing the Inventory Pointer Program 239

Returning a Pointer . 240

Using a Returned Pointer to Display a Value 241

Assigning a Returned Pointer to a Pointer 242

Assigning to a Variable the Value Pointed

to by a Returned Pointer . 242

Altering an Object through a Returned Pointer 243

Understanding the Relationship between Pointers and Arrays 244

Introducing the Array Passer Program 244

Using an Array Name as a Constant Pointer 246

Passing and Returning Arrays . 247

Introducing the Tic-Tac-Toe 2.0 Game . 248

Summary . 248

Questions and Answers . 250

Discussion Questions . 252

Exercises . 252

Chapter 8 Classes: Critter Caretaker . 255

Defining New Types . 255

Introducing the Simple Critter Program 256

Defining a Class . 257

Defining Member Functions . 258

Instantiating Objects . 259

Accessing Data Members . 259

Calling Member Functions . 260

Using Constructors . 260

Introducing the Constructor Critter Program 261

Declaring and Defining a Constructor 262

Calling a Constructor Automatically . 263

xiv Contents

Setting Member Access Levels . 264

Introducing the Private Critter Program 264

Specifying Public and Private Access Levels 266

Defining Accessor Member Functions . 267

Defining Constant Member Functions 268

Using Static Data Members and Member Functions 269

Introducing the Static Critter Program 270

Declaring and Initializing Static Data Members 272

Accessing Static Data Members . 272

Declaring and Defining Static Member Functions 273

Calling Static Member Functions . 273

Introducing the Critter Caretaker Game . 274

Planning the Game . 275

Planning the Pseudocode . 276

The Critter Class . 277

The main() Function . 280

Summary . 281

Questions and Answers . 283

Discussion Questions . 285

Exercises . 285

Chapter 9 Advanced Classes and Dynamic Memory:

Game Lobby . 287

Using Aggregation . 287

Introducing the Critter Farm Program 288

Using Object Data Members . 290

Using Container Data Members . 291

Using Friend Functions and Operator Overloading 292

Introducing the Friend Critter Program 292

Creating Friend Functions . 295

Overloading Operators . 295

Dynamically Allocating Memory . 296

Introducing the Heap Program . 297

Using the new Operator . 299

Using the delete Operator . 300

Avoiding Memory Leaks . 301

Working with Data Members and the Heap 303

Introducing the Heap Data Member Program 303

Declaring Data Members that Point to

Values on the Heap . 307

Contents xv

Declaring and Defining Destructors . 308

Declaring and Defining Copy Constructors 309

Overloading the Assignment Operator 313

Introducing the Game Lobby Program . 315

The Player Class . 316

The Lobby Class . 318

The Lobby::AddPlayer() Member Function 320

The Lobby::RemovePlayer() Member Function 322

The Lobby::Clear() Member Function . 322

The operator<<() Member Function . 323

The main() Function . 324

Summary . 325

Questions and Answers . 326

Discussion Questions . 328

Exercises . 328

Chapter 10 Inheritance and Polymorphism: Blackjack 331

Introducing Inheritance . 331

Introducing the Simple Boss Program 333

Deriving from a Base Class . 335

Instantiating Objects from a Derived Class 336

Using Inherited Members . 337

Controlling Access under Inheritance . 337

Introducing the Simple Boss 2.0 Program 338

Using Access Modifiers with Class Members 339

Using Access Modifiers when Deriving Classes 340

Calling and Overriding Base Class Member Functions 340

Introducing the Overriding Boss Program 341

Calling Base Class Constructors . 343

Declaring Virtual Base Class Member Functions 344

Overriding Virtual Base Class Member Functions 344

Calling Base Class Member Functions . 345

Using Overloaded Assignment Operators and

Copy Constructors in Derived Classes . 346

Introducing Polymorphism . 347

Introducing the Polymorphic Bad Guy Program 347

Using Base Class Pointers to Derived Class Objects 350

Defining Virtual Destructors . 351

Using Abstract Classes . 352

Introducing the Abstract Creature Program 352

xvi Contents

Declaring Pure Virtual Functions . 354

Deriving a Class from an Abstract Class 355

Introducing the Blackjack Game . 356

Designing the Classes . 356

Planning the Game Logic . 360

The Card Class . 361

The Hand Class . 363

The GenericPlayer Class . 366

The Player Class . 368

The House Class . 369

The Deck Class . 370

The Game Class . 373

The main() Function . 376

Overloading the operator<<() Function 377

Summary . 379

Questions and Answers . 380

Discussion Questions . 382

Exercises . 382

Appendix A Creating Your First C++ Program 383

Appendix B Operator Precedence . 389

Appendix C Keywords . 391

Appendix D ASCII Chart . 393

Appendix E Escape Sequences . 397

Index . 399

Contents xvii

xviii

Cutting-edge computer games rival the best that Hollywood has to offer in visual
effects, musical score, and pure adrenaline rush. But games are a form of enter-
tainment unlike any other; they can keep players glued to their monitors for hours
on end. What sets games apart and makes them so engrossing is interactivity. In a
computer game, you don’t simply sit back and watch a hero fighting against all
odds, you become the hero.

The key to achieving this interactivity is programming. It’s programming that
allows an alien creature, an attack squadron, or an entire army to react differently
to a player in different situations. Through programming, a game’s story can
unfold in new ways. In fact, as the result of programming, a game can respond to a
player in ways that the game creators might never have imagined.

Although there are literally thousands of computer programming languages,
Cþþ is the game industry standard. If you were to wander the PC game section of
your favorite store and grab a title at random, the odds are overwhelming that the
game in your hand would be written largely or exclusively in Cþþ. The bottom
line is this: If you want to program computer games professionally, you must
know Cþþ.

The goal of this book is to introduce you to the Cþþ language from a game
programming perspective. Although no single book can make you the master of
two deep topics such as Cþþ and game programming, this book will start you on
your journey.

Introduction

Who This Book Is For

This book is for anyone who wants to program games. It’s aimed at the total
beginner and assumes no previous programming experience. If you’re comfor-
table using your computer, then you can start your game programming odyssey
right here. But just because this book is written for the beginner, that doesn’t
mean learning Cþþ and game programming will be easy. You’ll have to read,
work, and experiment. By the end of this book, you’ll have a solid foundation in
the game programming language of the professionals.

How This Book Is Organized

I start at the very beginning of Cþþ and game programming, assuming no
experience in either. As the chapters progress, I cover more advanced topics,
building on previous material.

In each chapter, I cover one or several related topics. I move through concepts one
step at a time by writing bite-sized, game-related programs to demonstrate each
idea. At the end of each chapter, I combine some of the most important concepts
in a single game. The last chapter of the book ends with the most ambitious
project—one that harnesses all of the major concepts presented throughout the
book.

In addition to learning about Cþþ and game programming, you’ll also learn how
to organize your work, break down problems into manageable chunks, and refine
your code. You’ll be challenged at times, but never overwhelmed. Most of all,
you’ll have fun while learning. In the process, you’ll create some cool computer
games and gain insight into the craft of game programming.

Chapter 1: Types, Variables, and Standard I/O: Lost Fortune. You’ll be
introduced to the fundamentals of Cþþ, the standard language of the game
industry. You’ll learn to display output in a console window, perform arithmetic
computations, use variables, and get player input from the keyboard.

Chapter 2: Truth, Branching, and the Game Loop: Guess My Number. You’ll
create more interesting games by writing programs that execute, skip, or repeat
sections of code based on some condition. You’ll learn how to generate random
numbers to add some unpredictability to your games. And you’ll learn about the
Game Loop—a fundamental way to organize your games to keep the action going.

Introduction xix

xx Introduction

Chapter 3: For Loops, Strings, and Arrays: Word Jumble. You’ll learn about
sequences and work with strings—sequences of characters that are perfect for
word games. You also learn about software objects—entities that can be used to
represent objects in your games, such as alien spacecrafts, healing potions, or even
the player himself.

Chapter 4: The Standard Template Library: Hangman. You’ll be introduced to
a powerful library—a toolbox that game programmers (and even non-game
programmers) rely on to hold collections of things, such as items in a player’s
inventory. You’ll also learn about techniques that can help you plan larger game
programs.

Chapter 5: Functions: Mad Lib. You’ll learn to break up your game programs
into smaller, more manageable chunks of code. You’ll accomplish this by dis-
covering functions, the fundamental units of logic in your game programs.

Chapter 6: References: Tic-Tac-Toe. You’ll learn how to share information with
different parts of your programs in an efficient and clear manner. You’ll also see a
brief example of AI (artificial intelligence) and you’ll learn how to give a computer
opponent a little bit of personality.

Chapter 7: Pointers: Tic-Tac-Toe 2.0. You’ll begin to discover some of the most
low-level and powerful features of Cþþ, such as how to directly address and
manipulate your computer’s memory.

Chapter 8: Classes: Critter Caretaker. You’ll learn how to create your own kinds
of objects and define the ways they’ll interact with each other through object-
oriented programming. In the process, you’ll create your very own critter to care
for.

Chapter 9: Advanced Classes and Dynamic Memory: Game Lobby. You’ll
expand on your direct connection with the computer and learn to acquire and free
memory as your game programs require. You’ll also see the pitfalls of using this
“dynamic” memory and how to avoid them.

Chapter 10: Inheritance and Polymorphism: Blackjack. You’ll learn how to
define objects in terms of other objects. Then you’ll pull everything you’ve learned
together into one big final game. You’ll see how a sizeable project is designed and
implemented by creating a version of the classic casino game of Blackjack (tacky
green felt not included).

Conventions Used in This Book

Throughout the book, I’ll throw in a few other tidbits. For example, I italicize any
new term and explain what it means. I also use a number of special elements,
including the following:

H i n t

These are good ideas that will help you become a better game programmer.

T r a p

These point out areas where it’s easy to make a mistake.

T r i c k

These suggest techniques and shortcuts that will make your life as a game programmer easier.

R e a l Wo r l d

These are facts about the real world of game programming.

Source Code for the Programs in this Book

All of the source code in this book is available online at www.courseptr.com/
downloads. You can search for the book by ISBN (the book’s identification
number), which is 1435457420.

A Word about Compilers

I might be getting a little ahead of myself here by talking about compilers, but
the issue is important because a compiler is what translates the source code you
write into a program that your computer can run. I recommend that you use
Microsoft’s Visual Cþþ 2010 Express Edition, if you’re running Windows, since
it includes a modern Cþþ compiler—and is free. Once you’ve installed the soft-
ware, check out Appendix A in this book, “Creating Your First Cþþ Program,”
which explains how to compile a Cþþ program using Visual Cþþ 2010 Express
Edition. If you’re using another compiler or IDE, check its documentation.

Introduction xxi

This page intentionally left blank

Types, Variables, and

Standard I/O: Lost

Fortune

Game programming is demanding. It pushes both programmer and hardware to
their limits. But it can also be extremely satisfying. In this chapter, you’ll be
introduced to the fundamentals of Cþþ, the standard language for AAA game
titles. Specifically, you’ll learn to:

n Display output in a console window

n Perform arithmetic computations

n Use variables to store, manipulate, and retrieve data

n Get user input

n Work with constants and enumerations

n Work with strings

Introducing Cþþ

Cþþ is leveraged by millions of programmers around the world. It’s one of the
most popular languages for writing computer applications—and the most
popular language for writing big-budget computer games.

Created by Bjarne Stroustrup, Cþþ is a direct descendant of the C language. In
fact, Cþþ retains almost all of C as a subset. However, Cþþ offers better ways
to do things and some brand-new capabilities, too.

chapter 1

1

Using Cþþ for Games

There are a variety of reasons why game programmers choose Cþþ. Here are a
few:

n It’s fast. Well-written Cþþ programs can be blazingly fast. One of
Cþþ’s design goals is performance. And if you need to squeeze out even
more performance from your programs, Cþþ allows you to use assembly
language—the lowest-level, human-readable programming language—to
communicate directly with the computer’s hardware.

n It’s flexible. Cþþ is a multi-paradigm language that supports different
styles of programming, including object-oriented programming. Unlike
some other modern languages, though, Cþþ doesn’t force one particular
style on a programmer.

n It’s well-supported. Because of its long history in the game industry,
there’s a large pool of assets available to the Cþþ game programmer,
including graphics APIs and 2D, 3D, physics, and sound engines. All of
this pre-exiting code can be leveraged by a Cþþ programmer to greatly
speed up the process of writing a new game.

Creating an Executable File

The file that you run to launch a program—whether you’re talking about a game
or a business application—is an executable file. There are several steps to
creating an executable file from Cþþ source code (a collection of instructions
in the Cþþ language). The process is illustrated in Figure 1.1.

1. First, the programmer uses an editor to write the Cþþ source code,
a file that usually has the extension .cpp. The editor is like a word
processor for programs; it allows a programmer to create, edit, and save
source code.

2. After the programmer saves a source file, he or she invokes a Cþþ

compiler—an application that reads source code and translates it into an
object file. Object files usually have the extension .obj.

3. Next, a linker links the object file to any external files as necessary, and
then creates the executable file, which generally ends with the extension

2 Chapter 1 n Types, Variables, and Standard I/O: Lost Fortune

.exe. At this point, a user (or gamer) can run the program by launching
the executable file.

H i n t

The process I’ve described is the simple case. Creating a complex application in Cþþ often
involves multiple source code files written by a programmer (or even a team of programmers).

To help automate this process, it’s common for a programmer to use an all-in-
one tool for development, called an IDE (Integrated Development Environment).
An IDE typically combines an editor, a compiler, and a linker, along with other

Figure 1.1
The creation of an executable file from Cþþ source code.

Introducing Cþþ 3

tools. A popular (and free) IDE for Windows is Microsoft’s Visual Cþþ Express
Edition. You can find out more about this IDE (and download a copy) at http://
www.microsoft.com/express/.

Dealing with Errors

When I described the process for creating an executable from Cþþ source, I left
out one minor detail—errors. If to err is human, then programmers are the most
human of us. Even the best programmers write code that generates errors the
first (or fifth) time through. Programmers must fix the errors and start the entire
process over. Here are the basic types of errors you’ll run into as you program in
Cþþ:

n Compile errors. These occur during code compilation. As a result, an
object file is not produced. These can be syntax errors, meaning that the
compiler doesn’t understand something. They’re often caused by some-
thing as simple as a typo. Compilers can issue warnings, too. Although
you usually don’t have to heed the warnings, you should treat them as
errors, fix them, and recompile.

n Link errors. These occur during the linking process and may indicate
that something the program references externally can’t be found. These
errors are usually solved by adjusting the offending reference and starting
the compile/link process again.

n Run-time errors. These occur when the executable is run. If the program
does something illegal, it can crash abruptly. But a more subtle form of
run-time error, a logical error, can make the program simply behave in
unintended ways. If you’ve ever played a game where a character walked
on air (that is, a character who shouldn’t be able to walk on air), then
you’ve seen a logical error in action.

R e a l Wo r l d

Like other software creators, game companies work hard to produce bug-free products. Their last
line of defense is the quality assurance personnel (the game testers). Game testers play games for a
living, but their jobs are not as fun as you might think. Testers must play the same parts of a game
over and over—perhaps hundreds of times—trying the unexpected and meticulously recording any
anomalies. On top of monotonous work, the pay ain’t great either. But being a tester is a terrific
way to get into a game company on the proverbial bottom rung.

4 Chapter 1 n Types, Variables, and Standard I/O: Lost Fortune

Understanding the ISO Standard

The ISO standard for Cþþ is a definition of Cþþ that describes exactly how the
language should work. It also defines a group of files, called the standard library,
that contain building blocks for common programming tasks, such as I/O—
getting input and displaying output. The standard library makes life easier for
programmers and provides fundamental code to save them from reinventing the
wheel. I’ll be using the standard library in all of the programs in this book.

H i n t

The ISO standard is often called the ANSI standard or ANSI/ISO standard. These different names
involve the acronyms of the various committees that have reviewed and established the standard.
The most common way to refer to Cþþ code that conforms to the ISO standard is simply Standard
Cþþ.

I used Microsoft’s Visual Cþþ 2010 Express Edition to develop the programs in
this book. The compiler that’s a part of this IDE is pretty faithful to the ISO
standard, so you should be able to compile, link, and run all of the programs
using some other modern compiler as well. However, if you’re using Windows, I
recommend using Visual Cþþ.

H i n t

For step-by-step instructions on how to create, save, compile, and run the Game Over program
using Microsoft Visual Cþþ 2010 Express Edition, check out Appendix A. If you’re using another
compiler or IDE, check its documentation.

Writing Your First Cþþ Program

Okay, enough theory. It’s time to get down to the nitty-gritty and write your first
Cþþ program. Although it is simple, the following program shows you the
basic anatomy of a program. It also demonstrates how to display text in a
console window.

Introducing the Game Over Program

The classic first task a programmer tackles in a new language is the Hello World
program, which displays Hello World on the screen. The Game Over program

Writing Your First Cþþ Program 5

puts a gaming twist on the classic and displays Game Over! instead. Figure 1.2
shows the program in action.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 1
folder; the filename is game_over.cpp.

H i n t

You can download all of the source code for the programs in this book by visiting www.
courseptr.com/downloads and searching for this book. One way to search is by ISBN (the
book's identification number), which is 1435457420.

// Game Over
// A first Cþþ program

#include <iostream>

int main()
{

std::cout << "Game Over!" << std::endl;
return 0;

}

Figure 1.2
Your first Cþþ program displays the two most infamous words in computer gaming.

6 Chapter 1 n Types, Variables, and Standard I/O: Lost Fortune

Commenting Code

The first two lines of the program are comments.

// Game Over
// A first Cþþ program

Comments are completely ignored by the compiler; they’re meant for humans.
They can help other programmers understand your intentions. But comments
can also help you. They can remind you how you accomplished something that
might not be clear at first glance.

You can create a comment using two forward slashes in a row (//). Anything after
this on the rest of the physical line is considered part of the comment. This means
you can also include a comment after a piece of Cþþ code, on the same line.

H i n t

You can also use what are called C-style comments, which can span multiple lines. All you have to
do is start the comment with /* and end it with */. Everything in between the two markers is part
of the comment.

Using Whitespace

The next line in the program is a blank line. The compiler ignores blank lines. In
fact, compilers ignore just about all whitespace—spaces, tabs, and newlines. Like
comments, whitespace is just for us humans.

Judicious use of whitespace helps make programs clearer. For example, you can
use blank lines to separate sections of code that belong together. I also use
whitespace (a tab, to be precise) at the beginning of the two lines between the
curly braces to set them off.

Including Other Files

The next line in the program is a preprocessor directive. You know this because
the line begins with the # symbol.

#include <iostream>

The preprocessor runs before the compiler does its thing and substitutes text
based on various directives. In this case, the line involves the #include directive,
which tells the preprocessor to include the contents of another file.

Writing Your First Cþþ Program 7

I include the file iostream, which is part of the standard library, because it
contains code to help me display output. I surround the filename with less than
(<) and greater than (>) characters to tell the compiler to find the file where it
keeps all the files that came with the compiler. A file that you include in your
programs like this is called a header file.

Defining the main() Function

The next non-blank line is the header of a function called main().

int main()

A function is a group of programming code that can do some work and return a
value. In this case, int indicates that the function will return an integer value. All
function headers have a pair of parentheses after the function name.

All Cþþ programs must have a function called main(), which is the starting
point of the program. The real action begins here.

The next line marks the beginning of the function.

{

And the very last line of the program marks the end of the function.

}

All functions are delimited by a pair of curly braces, and everything between
them is part of the function. Code between two curly braces is called a block and
is usually indented to show that it forms a unit. The block of code that makes up
an entire function is called the body of the function.

Displaying Text through the Standard Output

The first line in the body of main() displays Game Over!, followed by a newline, in
the console window.

std::cout << "Game Over!" << std::endl;

"Game Over!" is a string—a series of printable characters. Technically, it’s a string
literal, meaning it’s literally the characters between the quotes.

cout is an object, defined in the file iostream, that’s used to send data to the
standard output stream. In most programs (including this one), the standard
output stream simply means the console window on the computer screen.

8 Chapter 1 n Types, Variables, and Standard I/O: Lost Fortune

I use the output operator (<<) to send the string to cout. You can think of the
output operator like a funnel; it takes whatever’s on the open side and funnels it
to the pointy side. So the string is funneled to the standard output—the screen.

I use std to prefix cout to tell the compiler that I mean cout from the standard
library. std is a namespace. You can think of a namespace like an area code of a
phone number—it identifies the group to which something belongs. You prefix
a namespace using the scope resolution operator (::).

Finally, I send std::endl to the standard output. endl is defined in iostream and
is also an object in the std namespace. Sending endl to the standard output acts
like pressing the Enter key in the console window. In fact, if I were to send
another string to the console window, it would appear on the next line.

I understand this might be a lot to take in, so check out Figure 1.3 for a visual
representation of the relationship between all of the elements I’ve just described.

Terminating Statements

You’ll notice that the first line of the function ends with a semicolon (;). That’s
because the line is a statement—the basic unit controlling the execution flow. All
of your statements must end with a semicolon—otherwise, your compiler will
complain with an error message and your program won’t compile.

Figure 1.3
An implementation of Standard Cþþ includes a set of files called the standard library, which includes
the file iostream, which defines various things, including the object cout.

Writing Your First Cþþ Program 9

Returning a Value from main()

The last statement in the function returns 0 to the operating system.

return 0;

Returning 0 from main() is a way to indicate that the program ended without a
problem. The operating system doesn’t have to do anything with the return
value. In general, you can simply return 0 like I did here.

T r i c k

When you run the Game Over program, you might only see a console window appear and
disappear just as quickly. That’s because Cþþ is so fast that it opens a console window, displays
Game Over!, and closes the window all in a split second. However, in Windows, you can create a
batch file that runs your console program and pauses, keeping the console window open so you
can see the results of your program. Since the compiled program is named game_over.exe, you
can simply create a batch file comprised of the two lines

game_over.exe
pause

To create a batch file:

1. Open a text editor like Notepad (not Word or WordPad).

2. Type your text.

3. Save the file with a .bat extension, such as game_over.bat.

Finally, run the batch file by double-clicking its icon. You should see the results of the program
since the batch file keeps the console window open.

Working with the std Namespace

Because it’s so common to use elements from the std namespace, I’ll show you
two different methods for directly accessing these elements. This will save you
the effort of using the std:: prefix all the time.

Introducing the Game Over 2.0 Program

The Game Over 2.0 program produces the exact results of the original Game
Over program, illustrated in Figure 1.2. But there’s a difference in the way
elements from the std namespace are accessed. You can download the code for

10 Chapter 1 n Types, Variables, and Standard I/O: Lost Fortune

this program from the Course Technology website (www.courseptr.com/down-
loads). The program is in the Chapter 1 folder; the filename is game_over2.cpp.

// Game Over 2.0
// Demonstrates a using directive

#include <iostream>
using namespace std;

int main()
{

cout << "Game Over!" << endl;
return 0;

}

Employing a using Directive

The program starts in the same way. I use two opening comments and then
include iostream for output. But next, I have a new type of statement.

using namespace std;

This using directive gives me direct access to elements of the std namespace.
Again, if a namespace is like an area code, then this line says that all of the
elements in the std namespace should be like local phone numbers to me now.
That is, I don’t have to use their area code (the std:: prefix) to access them.

I can use cout and endl, without any kind of prefix. This might not seem like a
big deal to you now, but when you have dozens or even hundreds of references
to these objects, you’ll thank me.

Introducing the Game Over 3.0 Program

Okay, there’s another way to accomplish what I did in Game Over 2.0: set up the
file so that I don’t have to explicitly use the std:: prefix to access cout and endl.
And that’s exactly what I’m going to show you in the Game Over 3.0 program,
which displays the same text as its predecessors. You can download the code for
this program from the Course Technology website (www.courseptr.com/down-
loads). The program is in the Chapter 1 folder; the filename is game_over3.cpp.

// Game Over 3.0
// Demonstrates using declarations

Working with the std Namespace 11

#include <iostream>
using std::cout;
using std::endl;

int main()
{

cout << "Game Over!" << endl;
return 0;

}

Employing using Declarations

In this version, I write two using declarations.

using std::cout;
using std::endl;

By declaring exactly which elements from the std namespace I want local to my
program, I’m able to access them directly, just as in Game Over 2.0. Although it
requires more typing than a using directive, the advantage of this technique is
that it clearly spells out those elements I plan to use. Plus, it doesn’t make local a
bunch of other elements that I have no intention of using.

Understanding When to Employ using

Okay, you’ve seen two ways to make elements from a namespace local to your
program. But which is the best technique?

A language purist would say you shouldn’t employ either version of using and
that you should always prefix each and every element from a namespace with its
identifier. In my opinion, that’s like calling your best friend by his first and last
name all the time. It just seems a little too formal.

If you hate typing, you can employ the using directive. A decent compromise is
to employ using declarations. In this book, I’ll employ the using directive most
of the time for brevity’s sake.

R e a l Wo r l d

I’ve laid out a few different options for working with namespaces. I’ve also tried to explain the
advantages of each so you can decide which way to go in your own programs. Ultimately, though,
the decision may be out of your hands. When you’re working on a project, whether it’s in the
classroom or in the professional world, you’ll probably receive coding standards created by the

12 Chapter 1 n Types, Variables, and Standard I/O: Lost Fortune

person in charge. Regardless of your personal tastes, it’s always best to listen to those who hand
out grades or paychecks.

Using Arithmetic Operators

Whether you’re tallying up the number of enemies killed or decreasing a player’s
health level, you need your programs to do some math. As with other languages,
Cþþ has built-in arithmetic operators.

Introducing the Expensive Calculator Program

Most serious computer gamers invest heavily in a bleeding-edge, high-powered
gaming rig. This next program, Expensive Calculator, can turn that monster of a
machine into a simple calculator. The program demonstrates built-in arithmetic
operators. Figure 1.4 shows off the results.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 1
folder; the filename is expensive_calculator.cpp.

// Expensive Calculator
// Demonstrates built-in arithmetic operators

Figure 1.4
Cþþ can add, subtract, multiply, divide, and even calculate a remainder.

Using Arithmetic Operators 13

#include <iostream>

using namespace std;

int main()
{

cout << "7 + 3 = " << 7 + 3 << endl;
cout << "7 - 3 = " << 7 - 3 << endl;
cout << "7 * 3 = " << 7 * 3 << endl;

cout << "7 / 3 = " << 7 / 3 << endl;
cout << "7.0 / 3.0 = " << 7.0 / 3.0 << endl;

cout << "7 % 3 = " << 7 % 3 << endl;

cout << "7 + 3 * 5 = " << 7 + 3 * 5 << endl;
cout << "(7 + 3) * 5 = " << (7 + 3) * 5 << endl;

return 0;
}

Adding, Subtracting, and Multiplying

I use the built-in arithmetic operators for addition (the plus sign, þ), subtraction
(the minus sign, -), and multiplication (an asterisk, *). The results depicted in
Figure 1.4 are just what you’d expect.

Each arithmetic operator is part of an expression—something that evaluates to a
single value. So, for example, the expression 7þ 3 evaluates to 10, and that’s what
gets sent to cout.

Understanding Integer and Floating Point Division

The symbol for division is the forward slash (/), so that’s what I use in the next
line of code. However, the output might surprise you. According to Cþþ (and
that expensive gaming rig), 7 divided by 3 is 2. What’s going on? Well, the result
of any arithmetic calculation involving only integers (numbers without fractional
parts) is always another integer. And since 7 and 3 are both integers, the result
must be an integer. The fractional part of the result is thrown away.

To get a result that includes a fractional part, at least one of the values needs to
be a floating point (a number with a fractional part). I demonstrate this in the

14 Chapter 1 n Types, Variables, and Standard I/O: Lost Fortune

next line with the expression 7.0 / 3.0. This time the result is a more accurate
2.33333.

T r a p

You might notice that while the result of 7.0 / 3.0 (2.33333) includes a fractional part, it is still
truncated. (The true result would stretch out 3s after the decimal point forever.) It’s important to
know that computers generally store only a limited number of significant digits for floating point
numbers. However, Cþþ offers categories of floating point numbers to meet the most demanding
needs—even those of computationally intensive 3D games.

Using the Modulus Operator

In the next statement, I use an operator that might be unfamiliar to you—the
modulus operator (%). The modulus operator returns the remainder of integer
division. In this case, 7 % 3 produces the remainder of 7 / 3, which is 1.

Understanding Order of Operations

Just as in algebra, arithmetic expressions in Cþþ are evaluated from left to right.
But some operators have a higher precedence than others and are evaluated first,
regardless of position. Multiplication, division, and modulus have equal prece-
dence, which is higher than the precedence level that addition and subtraction
share.

The next line of code provides an example to help drive this home. Because
multiplication has higher precedence than addition, you calculate the results of
the multiplication first. So the expression 7 þ 3 * 5 is equivalent to 7 þ 15, which
evaluates to 22.

If you want an operation with lower precedence to occur first, you can use
parentheses, which have higher precedence than any arithmetic operator. So in
the next statement, the expression (7 þ 3) * 5 is equivalent to 10 * 5, which
evaluates to 50.

H i n t

For a list of Cþþ operators and their precedence levels, see Appendix B.

Using Arithmetic Operators 15

Declaring and Initializing Variables

A variable represents a particular piece of your computer’s memory that has
been set aside for you to use to store, retrieve, and manipulate data. So if you
wanted to keep track of a player’s score, you could create a variable for it, then
you could retrieve the score to display it. You could also update the score when
the player blasts an alien enemy from the sky.

Introducing the Game Stats Program

The Game Stats program displays information that you might want to keep track
of in a space shooter game, such as a player’s score, the number of enemies the
player has destroyed, and whether the player has his shields up. The program uses
a group of variables to accomplish all of this. Figure 1.5 illustrates the program.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 1
folder; the filename is game_stats.cpp.

// Game Stats
// Demonstrates declaring and initializing variables

Figure 1.5
Each game stat is stored in a variable.

16 Chapter 1 n Types, Variables, and Standard I/O: Lost Fortune

#include <iostream>
using namespace std;

int main()
{

int score;
double distance;
char playAgain;
bool shieldsUp;

short lives, aliensKilled;

score = 0;
distance = 1200.76;
playAgain = ’y’;
shieldsUp = true;
lives = 3;
aliensKilled = 10;

double engineTemp = 6572.89;

cout << "\nscore: " << score << endl;
cout << "distance: " << distance << endl;
cout << "playAgain: " << playAgain << endl;
//skipping shieldsUp since you don’t generally print Boolean values
cout << "lives: " << lives << endl;
cout << "aliensKilled: "<< aliensKilled << endl;
cout << "engineTemp: " << engineTemp << endl;

int fuel;
cout << "\nHow much fuel? ";
cin >> fuel;
cout << "fuel: " << fuel << endl;

typedef unsigned short int ushort;
ushort bonus = 10;
cout << "\nbonus: " << bonus << endl;

return 0;
}

Declaring and Initializing Variables 17

Understanding Fundamental Types

Every variable you create has a type, which represents the kind of information you
can store in the variable. It tells your compiler how much memory to set aside for
the variable and it defines exactly what you can legally do with the variable.

Fundamental types—those built into the language—include bool for Boolean
values (true or false), char for single character values, int for integers, float
for single-precision floating point numbers, and double for double-precision
floating point numbers.

Understanding Type Modifiers

You can use modifiers to alter a type. short is a modifier that can reduce the
total number of values a variable can hold. long is a modifier that can increase
the total number of values a variable can hold. short may decrease the storage
space required for a variable while long may increase it. short and long can
modify int. long can also modify double.

signed and unsigned are modifiers that work only with integer types. signed
means that a variable can store both positive and negative values, while unsigned

means that a variable can store only positive values. Neither signed nor
unsigned change the total number of values a variable can hold; they only
change the range of values. signed is the default for integer types.

Okay, confused with all of your type options? Well, don’t be. Table 1.1
summarizes commonly used types with some modifiers thrown in. The table
also provides a range of values for each.

T r a p

The range of values listed is based on my compiler. Yours might be different. Check your compiler’s
documentation.

H i n t

For brevity’s sake, short int can be written as just short and long int can be written as just
long.

18 Chapter 1 n Types, Variables, and Standard I/O: Lost Fortune

Declaring Variables

All right, now that you’ve got a basic understanding of types, it’s time to get back
to the program. One of the first things I do is declare a variable (request that it
be created) with the line:

int score;

In this code, I declare a variable of type int, which I name score. You use a
variable name to access the variable. You can see that to declare a variable you
specify its type followed by a name of your choosing. Because the declaration is a
statement, it must end with a semicolon.

I declare three more variables of yet three more types in the next three lines.
distance is a variable of type double. playAgain is a variable of type char. And
shieldsUp is a variable of type bool.

Games (and all major applications) usually require lots of variables. Fortunately,
Cþþ allows you to declare multiple variables of the same type in a single
statement. That’s just what I do next in the line.

short lives, aliensKilled;

This line establishes two short variables—lives and aliensKilled.

Table 1.1 Commonly Used Types

Type Values

short int �32,768 to 32,767

unsigned short int 0 to 65,535

int �2,147,483,648 to 2,147,483,647

unsigned int 0 to 4,294,967,295

long int �2,147,483,648 to 2,147,483,647

unsigned long int 0 to 4,294,967,295

float 3.4E þ/� 38 (seven significant digits)

double 1.7E þ/� 308 (15 significant digits)

long double 1.7E þ/� 308 (15 significant digits)

char 256 character values

bool true or false

Declaring and Initializing Variables 19

Even though I’ve defined a bunch of variables at the top of my main() function,
you don’t have to declare all of your variables in one place. As you’ll see later in
the program, I often define a new variable just before I use it.

Naming Variables

To declare a variable, you must provide a name, known as an identifier. There
are only a few rules you have to follow to create a legal identifier.

n An identifier can contain only numbers, letters, and underscores.

n An identifier can’t start with a number.

n An identifier can’t be a Cþþ keyword.

A keyword is a special word that Cþþ reserves for its own use. There aren’t
many, but to see a full list, check out Appendix C.

In addition to the rules for creating legal variable names, following are some
guidelines for creating good variable names.

n Choose descriptive names. Variable names should be clear to another
programmer. For example, use score instead of s. (One exception to this
rule involves variables used for a brief period. In that case, single-letter
variable names, such as x, are fine.)

n Be consistent. There are different schools of thought about how to write
multiword variable names. Is it high_score or highScore? In this book, I
use the second style, where the initial letter of the second word (and any
other words) is capitalized, known as camel case. But as long as you’re
consistent, it’s not important which method you use.

n Follow the traditions of the language. Some naming conventions are
just traditions. For example, in most languages (Cþþ included) variable
names start with a lowercase letter. Another tradition is to avoid using
an underscore as the first character of your variable names. Names that
begin with an underscore can have special meaning.

n Keep the length in check. Even though playerTwoBonusForRoundOne is
descriptive, it can make code hard to read. Plus, long names increase the
risk of a typo. As a guideline, try to limit your variable names to fewer

20 Chapter 1 n Types, Variables, and Standard I/O: Lost Fortune

than 15 characters. Ultimately, though, your compiler sets an actual
upper limit.

T r i c k

Self-documenting code is written in such a way that it’s easy to understand what is happening in
the program independent of any comments. Choosing good variable names is an excellent step
toward this kind of code.

Assigning Values to Variables

In the next group of statements, I assign values to the six variables I declared. I’ll
go through a few assignments and talk a little about each variable type.

Assigning Values to Integer Variables

In the following assignment statement I assign the value of 0 to score.

score = 0;

Now score stores 0.

You assign a value to a variable by writing the variable name followed by the
assignment operator (=) followed by an expression. (Yes, technically 0 is an
expression, which evaluates to, well, 0.)

Assigning Values to Floating Point Variables

In the statement I assign distance the value 1200.76.

distance = 1200.76;

Because distance is of type double, I can use it to store a number with a
fractional part, which is just what I do.

Assigning Values to Character Variables

In the following statement I assign playAgain the single-character value ’y’.

playAgain = ’y’;

As I did here, you can assign a character to a variable of type char by
surrounding the character with single quotes.

Declaring and Initializing Variables 21

Variables of type char can store the 128 ASCII character values (assuming that
your system uses the ASCII character set). ASCII, short for American Standard
Code for Information Interchange, is a code for representing characters. To see a
complete ASCII listing, check out Appendix D.

Assigning Values to Boolean Variables

In the following statement I assign shieldsUp the value true.

shieldsUp = true;

In my program, this means that the player’s shields are up.

shieldsUp is a bool variable, which means it’s a Boolean variable. As such, it can
represent either true or false. Although intriguing, you’ll have to wait until
Chapter 2, “Truth, Branching, and the Game Loop: Guess My Number,” to learn
more about this kind of variable.

Initializing Variables

You can both declare and assign a value to variables in a single initialization
statement. That’s exactly what I do next.

double engineTemp = 6572.89;

This line creates a variable of type double named engineTemp, which stores the
value 6572.89.

Just as you can declare multiple variables in one statement, you can initialize
more than one variable in a statement. You can even declare and initialize
different variables in a single statement. Mix and match as you choose!

H i n t

Although you can declare a variable without assigning it a value, it’s best to initialize a new
variable with a starting value whenever you can. This makes your code clearer, plus it eliminates
the chance of accessing an uninitialized variable, which may contain any value.

Displaying Variable Values

To display the value of a variable of one of the fundamental types, just send it to
cout. That’s what I do next in the program. Note that I don’t try to display
shieldsUp because you don’t normally display bool values.

22 Chapter 1 n Types, Variables, and Standard I/O: Lost Fortune

T r i c k

In the first statement of this section I use what’s called an escape sequence—a pair of characters
that begins with a backslash (\), which represents special printable characters.

cout << "\nscore: " << score << endl;

The escape sequence I used is \n, which represents a newline. When sent to cout as part of a
string, it’s like pressing the Enter key in the console window. Another useful escape sequence is \t,
which acts as a tab.

There are other escape sequences at your disposal. For a list of escape sequences, see Appendix E.

Getting User Input

Another way to assign a value to a variable is through user input. So next, I
assign the value of a new variable, fuel, based on what the user enters. To do so I
use the following line:

cin >> fuel;

Just like cout, cin is an object defined in iostream, which lives in the std

namespace. To store a value in the variable, I use cin followed by >> (the
extraction operator), followed by the variable name. You can use cin and the
extraction operator to get user input into variables of other fundamental types
too. To prove that everything worked, I display fuel to the user.

Defining New Names for Types

You can define a new name for an existing type. In fact, that’s what I do next in
the line:

typedef unsigned short int ushort;

This code defines the identifier ushort as another name for the type unsigned

short int. To define new names for existing types, use typedef followed by the
current type, followed by the new name. typedef is often used to create shorter
names for types with long names.

You can use your new type name just like the original type. I initialize a ushort

variable (which is really just an unsigned short int) named bonus and display its
value.

Declaring and Initializing Variables 23

Understanding Which Types to Use

You have many choices when it comes to the fundamental types. So how do you
know which type to use? Well, if you need an integer type, you’re probably best
off using int. That’s because int is generally implemented so that it occupies an
amount of memory that is most efficiently handled by the computer. If you need
to represent integer values greater than the maximum int or values that will
never be negative, feel free to use an unsigned int.

If you’re tight on memory, you can use a type that requires less storage.
However, on most computers, memory shouldn’t be much of an issue. (Pro-
gramming on game consoles or mobile devices is another story.)

Finally, if you need a floating point number, you’re probably best off using
float, which again is likely to be implemented so that it occupies an amount of
memory that is most efficiently handled by the computer.

Performing Arithmetic Operations

with Variables

Once you have variables with values, you’ll want to change their values during
the course of your game. You might want to add a bonus to a player’s score for
defeating a boss, increasing the score. Or you might want to decrease the oxygen
level in an airlock. By using operators you’ve already met (along with some new
ones), you can accomplish all of this.

Introducing the Game Stats 2.0 Program

The Game Stats 2.0 program manipulates variables that represent game stats and
displays the results. Figure 1.6 shows the program in action.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 1
folder; the filename is game_stats2.cpp.

// Game Stats 2.0
// Demonstrates arithmetic operations with variables

#include <iostream>
using namespace std;

24 Chapter 1 n Types, Variables, and Standard I/O: Lost Fortune

int main()
{

unsigned int score = 5000;
cout << "score: " << score << endl;

//altering the value of a variable
score = score + 100;
cout << "score: " << score << endl;

//combined assignment operator
score += 100;
cout << "score: " << score << endl;

//increment operators
int lives = 3;
þþlives;
cout << "lives: " << lives << endl;

lives = 3;
livesþþ;
cout << "lives: " << lives << endl;

Figure 1.6
Each variable is altered in a different way.

Performing Arithmetic Operations with Variables 25

lives = 3;
int bonus = þþlives * 10;
cout << "lives, bonus = " << lives << ", " << bonus << endl;

lives = 3;
bonus = livesþþ * 10;
cout << "lives, bonus = " << lives << ", " << bonus << endl;

//integer wrap around
score = 4294967295;
cout << "\nscore: " << score << endl;
þþscore;
cout << "score: " << score << endl;

return 0;
}

T r a p

When you compile this program, you may get a warning similar to, “[Warning] this decimal
constant is unsigned.” Fortunately, the warning does not stop the program from compiling and
being run. The warning is the result of something called integer wrap around that you’ll probably
want to avoid in your own programs; however, the wrap around is intentional in this program to
show the results of the event. You’ll learn about integer wrap around in the discussion of this
program, in the section “Dealing with Integer Wrap Around.”

Altering the Value of a Variable

After I create a variable to hold the player’s score and display it, I alter the score
by increasing it by 100.

score = score + 100;

This assignment statement says to take the current value of score, add 100, and
assign the result back to score. In effect, the line increases the value of score by 100.

Using Combined Assignment Operators

There’s an even shorter version of the preceding line, which I use next.

score += 100;

This statement produces the same results as score = score þ 100;. The þ=

operator is called a combined assignment operator because it combines an

26 Chapter 1 n Types, Variables, and Standard I/O: Lost Fortune

arithmetic operation (addition, in this case) with assignment. This operator is
shorthand for saying “add whatever’s on the right to what’s on the left and
assign the result back to what’s on the left.”

There are versions of the combined assignment operator for all of the arithmetic
operators you’ve met. To see a list, check out Table 1.2.

Using Increment and Decrement Operators

Next, I use the increment operator (þþ) which increases the value of a variable
by one. I use the operator to increase the value of lives twice. First I use it in the
following line:

þþlives;

Then I use it again in the following line:

livesþþ;

Each line has the same net effect; it increments lives from 3 to 4.

As you can see, you can place the operator before or after the variable you’re
incrementing. When you place the operator before the variable, the operator is
called the prefix increment operator; when you place it after the variable, it’s
called the postfix increment operator.

At this point, you might be thinking that there’s no difference between the
postfix and prefix versions, but you’d be wrong. In a situation where you only
increment a single variable (as you just saw), both operators produce the same
final result. But in a more complex expression, the results can be different.

To demonstrate this important difference, I perform a calculation that would be
appropriate for the end of a game level. I calculate a bonus based on the number

Table 1.2 Combined Assignment Operators

Operator Example Equivalent To

+= x += 5; x = x + 5;
-= x -= 5; x = x - 5;
*= x *= 5; x = x * 5;
/= x /= 5; x = x / 5;
%= x %= 5; x = x % 5;

Performing Arithmetic Operations with Variables 27

of lives a player has, and I also increment the number of lives. However, I
perform this calculation in two different ways. The first time, I use the prefix
increment operator.

int bonus = þþlives * 10;

The prefix increment operator increments a variable before the evaluation of a
larger expression involving the variable. þþlives * 10 is evaluated by first
incrementing lives, and then multiplying that result by 10. Therefore, the code
is equivalent to 4 * 10, which is 40, of course. This means that now lives is 4 and
bonus is 40.

After setting lives back to 3, I calculate bonus again, this time using the postfix
increment operator.

bonus = livesþþ * 10;

The postfix increment operator increments a variable after the evaluation of a
larger expression involving the variable. livesþþ * 10 is evaluated by multi-
plying the current value of lives by 10. Therefore, the code is equivalent to 3 *

10, which is 30, of course. Then, after this calculation, lives is incremented.
After the line is executed, lives is 4 and bonus is 30.

Cþþ also defines the decrement operator, –. It works just like the increment
operator, except it decrements a variable. It comes in the two flavors (prefix and
postfix) as well.

Dealing with Integer Wrap Around

What happens when you increase an integer variable beyond its maximum
value? It turns out you don’t generate an error. Instead, the value “wraps
around” to the type’s minimum value. Next up, I demonstrate this phenomenon.
First I assign score the largest value it can hold.

score = 4294967295;

Then I increment the variable.

þþscore;

As a result, score becomes 0 because the value wrapped around, much like a car
odometer does when it goes beyond its maximum value (see Figure 1.7).

Decrementing an integer variable beyond its minimum value “wraps it around”
to its maximum.

28 Chapter 1 n Types, Variables, and Standard I/O: Lost Fortune

H i n t

Make sure to pick an integer type that has a large enough range for its intended use.

Working with Constants

A constant is an unchangeable value that you name. Constants are useful if you
have an unchanging value that comes up frequently in your program. For
example, if you were writing a space shooter in which each alien blasted out of
the sky is worth 150 points, you could define a constant named ALIEN_POINTS

that is equal to 150. Then, any time you need the value of an alien, you could use
ALIEN_POINTS instead of the literal 150.

Constants provide two important benefits. First, they make programs clearer. As
soon as you see ALIEN_POINTS, you know what it means. If you were to look at
some code and see 150, you might not know what the value represents. Second,
constants make changes easy. For example, suppose you do some playtesting
with your game and you decide that each alien should really be worth 250
points. With constants, all you’d have to do is change the initialization of
ALIEN_POINTS in your program. Without constants, you’d have to hunt down
every occurrence of 150 and change it to 250.

Introducing the Game Stats 3.0 Program

The Game Stats 3.0 program uses constants to represent values. First the
program calculates a player’s score, and then it calculates the upgrade cost of
a unit in a strategy game. Figure 1.8 shows the results.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 1
folder; the filename is game_stats3.cpp.

Figure 1.7
A way to visualize an unsigned int variable “wrapping around” from its maximum value to its
minimum.

Working with Constants 29

// Game Stats 3.0
// Demonstrates constants

#include <iostream>
using namespace std;

int main()
{

const int ALIEN_POINTS = 150;
int aliensKilled = 10;
int score = aliensKilled * ALIEN_POINTS;
cout << "score: " << score << endl;

enum difficulty {NOVICE, EASY, NORMAL, HARD, UNBEATABLE};
difficulty myDifficulty = EASY;

enum shipCost {FIGHTER_COST = 25, BOMBER_COST, CRUISER_COST = 50};
shipCost myShipCost = BOMBER_COST;
cout << "\nTo upgrade my ship to a Cruiser will cost "

<< (CRUISER_COST - myShipCost) << " Resource Points.\n";

return 0;
}

Figure 1.8
Each calculation involves a constant, making the code behind the scenes clearer.

30 Chapter 1 n Types, Variables, and Standard I/O: Lost Fortune

Using Constants

I define a constant, ALIEN_POINTS, to represent the point value of an alien.

const int ALIEN_POINTS = 150;

I simply use the keyword const to modify the definition. Now I can use
ALIEN_POINTS just like any integer literal. Also, notice that the name I chose for
the constant is in all capital letters. This is just a convention, but it’s a common
one. An identifier in all caps tells a programmer that it represents a constant
value.

Next I put the constant to use in the following line:

int score = aliensKilled * ALIEN_POINTS;

I calculate a player’s score by multiplying the number of aliens killed by the
point value of an alien. Using a constant here makes the line of code quite clear.

T r a p

You can’t assign a new value to a constant. If you try, you’ll generate a compile error.

Using Enumerations

An enumeration is a set of unsigned int constants, called enumerators. Usually
the enumerators are related and have a particular order. Here’s an example of an
enumeration:

enum difficulty {NOVICE, EASY, NORMAL, HARD, UNBEATABLE};

This defines an enumeration named difficulty. By default, the value of
enumerators begins at zero and increases by one. So NOVICE is 0, EASY is 1,
NORMAL is 2, HARD is 3, and UNBEATABLE is 4. To define an enumeration of your
own, use the keyword enum followed by an identifier, followed by a list of
enumerators between curly braces.

Next I create a variable of this new enumeration type.

difficulty myDifficulty = EASY;

The variable myDifficulty is set to EASY (which is equal to 1). myDifficulty is of
type difficulty, so it can only hold one of the values defined in the
enumeration. That means myDifficulty can only be assigned NOVICE, EASY,
NORMAL, HARD, UNBEATABLE, 0, 1, 2, 3, or 4.

Working with Constants 31

Next I define another enumeration.

enum shipCost {FIGHTER_COST = 25, BOMBER_COST, CRUISER_COST = 50};

This line of code defines the enumeration shipCost, which represents the cost in
Resource Points for three kinds of ships in a strategy game. In it, I assign specific
integer values to some of the enumerators. The numbers represent the Resource
Point value of each ship. You can assign values to the enumerators if you want.
Any enumerators that are not assigned values get the value of the previous
enumerator plus one. Because I didn’t assign a value to BOMBER_COST, it’s
initialized to 26.

Next I define a variable of this new enumeration type.

shipCost myShipCost = BOMBER_COST;

Then I demonstrate how you can use enumerators in arithmetic calculations.

(CRUISER_COST - myShipCost)

This piece of code calculates the cost of upgrading a Bomber to a Cruiser. The
calculation is the same as 50 - 26, which evaluates to 24.

Introducing Lost Fortune

The final project for this chapter, Lost Fortune, is a personalized adventure game
in which the player enters a few pieces of information, which the computer uses
to enhance a basic adventure story. Figure 1.9 shows a sample run.

Instead of presenting all the code at once, I’ll go through it one section at a time.
You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 1
folder; the filename is lost_fortune.cpp.

Setting Up the Program

First I create some initial comments, include two necessary files, and write a few
using directives.

// Lost Fortune
// A personalized adventure

#include <iostream>
#include <string>

32 Chapter 1 n Types, Variables, and Standard I/O: Lost Fortune

using std::cout;
using std::cin;
using std::endl;
using std::string;

I include the file string, part of the standard library, so I can use a string object
to access a string through a variable. There’s a lot more to string objects, but
I’m going to keep you in suspense. You’ll learn more about them in Chapter 3,
“For Loops, Strings, and Arrays: Word Jumble.”

Also, I employ using directives to spell out the objects in the std namespace that
I plan to access. As a result, you can clearly see that string is in namespace std.

Getting Information from the Player

Next I get some information from the player.

int main()
{

const int GOLD_PIECES = 900;
int adventurers, killed, survivors;
string leader;

Figure 1.9
The story incorporates details provided by the player.

Introducing Lost Fortune 33

//get the information
cout << "Welcome to Lost Fortune\n\n";
cout << "Please enter the following for your personalized adventure\n";

cout << "Enter a number: ";
cin >> adventurers;

cout << "Enter a number, smaller than the first: ";
cin >> killed;

survivors = adventurers - killed;

cout << "Enter your last name: ";
cin >> leader;

GOLD_PIECES is a constant that stores the number of gold pieces in the fortune
the adventurers seek. adventurers stores the number of adventurers on the
quest. killed stores the number that are killed on the journey. I calculate
survivors for the number of adventurers that remain. Finally, I get the player’s
last name, which I’ll be able to access through leader.

T r a p

This simple use of cin to get a string from the user only works with strings that have no
whitespace in them (such as tabs or spaces). There are ways to compensate for this, but that really
requires a discussion of something called streams, which is beyond the scope of this chapter. So,
use cin in this way, but be aware of its limitations.

Telling the Story

Next I use the variables to tell the story.

//tell the story
cout << "\nA brave group of " << adventurers << " set out on a quest ";
cout << "-– in search of the lost treasure of the Ancient Dwarves. ";
cout << "The group was led by that legendary rogue, " << leader << ".\n";

cout << "\nAlong the way, a band of marauding ogres ambushed the party. ";
cout << "All fought bravely under the command of " << leader;
cout << ", and the ogres were defeated, but at a cost. ";
cout << "Of the adventurers, " << killed << " were vanquished, ";
cout << "leaving just " << survivors << " in the group.\n";

34 Chapter 1 n Types, Variables, and Standard I/O: Lost Fortune

cout << "\nThe party was about to give up all hope. ";
cout << "But while laying the deceased to rest, ";
cout << "they stumbled upon the buried fortune. ";
cout << "So the adventurers split " << GOLD_PIECES << " gold pieces.";
cout << leader << " held on to the extra " << (GOLD_PIECES % survivors);
cout << " pieces to keep things fair of course.\n";

return 0;
}

The code and thrilling narrative are pretty clear. I will point out one thing,
though. To calculate the number of gold pieces that the leader keeps, I use the
modulus operator in the expression GOLD_PIECES % survivors. The expression
evaluates to the remainder of GOLD_PIECES / survivors, which is the number of
gold pieces that would be left after evenly dividing the stash among all of the
surviving adventurers.

Summary

In this chapter, you should have learned the following concepts:

n Cþþ is the primary language used in AAA game programming.

n A program is a series of Cþþ statements.

n The basic lifecycle of a Cþþ program is idea, plan, source code, object
file, executable.

n Programming errors tend to fall into three categories—compile errors,
link errors, and run-time errors.

n A function is a group of programming statements that can do some
work and return a value.

n Every program must contain a main() function, which is the starting
point of the program.

n The #include directive tells the preprocessor to include another file in
the current one.

n The standard library is a set of files that you can include in your
program files to handle basic functions like input and output.

Summary 35

n iostream, which is part of the standard library, is a file that contains
code to help with standard input and output.

n The std namespace includes elements from the standard library. To
access an element from the namespace, you need to prefix the element
with std:: or employ using.

n cout is an object, defined in the file iostream, that’s used to send data to
the standard output stream (generally the computer screen).

n cin is an object, defined in the file iostream, that’s used to get data from
the standard input stream (generally the keyboard).

n Cþþ has built-in arithmetic operators, such as the familiar addition,
subtraction, multiplication, and division—and even the unfamiliar
modulus.

n Cþþ defines fundamental types for Boolean, single-character, integer,
and floating point values.

n The Cþþ standard library provides a type of object (string) for strings.

n You can use typedef to create a new name for an existing type.

n A constant is a name for an unchangeable value.

n An enumeration is a sequence of unsigned int constants.

Questions and Answers

Q: Why do game companies use Cþþ?

A: Cþþ combines speed, low-level hardware access, and high-level constructs
better than just about any other language. In addition, most game companies
have a lot invested in Cþþ resources (both in reusable code and programmer
experience).

Q: How is Cþþ different than C?

A: Cþþ is the next iteration of the C programming language. To gain accept-
ance, Cþþ essentially retained all of C. However, Cþþ defines new ways to
do things that can replace some of the traditional C mechanisms. In addition,
Cþþ adds the ability to write object-oriented programs.

36 Chapter 1 n Types, Variables, and Standard I/O: Lost Fortune

Q: How should I use comments?

A: To explain code that is unusual or unclear. You should not comment the
obvious.

Q: What’s a programming block?

A: One or more statements surrounded by curly braces that form a single
unit.

Q: What’s a compiler warning?

A: A message from your compiler stating a potential problem. A warning will
not stop the compilation process.

Q: Can I ignore compiler warnings?

A: You can, but you shouldn’t. You should address the warning and fix the
offending code.

Q: What is whitespace?

A: A set of non-printing characters that create space in your source files,
including tabs, spaces, and newlines.

Q: What are literals?

A: Elements that represent explicit values. "Game Over!" is a string literal, while
32 and 98.6 are numeric literals.

Q: Why should I always try to initialize a new variable with a value?

A: Because the contents of an uninitialized variable could be any value—even
one that doesn’t make sense for your program.

Q: Why do programmers sometimes use variable names such as myInt or
myFloat?

A: To clearly spell out a variable’s type. This convention is used frequently in
programming instruction.

Q: What are variables of type bool for?

A: They can represent a condition that is true or false, such as whether a chest is
locked or a playing card is face up.

Questions and Answers 37

Q: How did the bool type get its name?

A: The type is named in honor of the English mathematician George Boole.

Q: Must the names of constants be in uppercase letters?

A: No. Using uppercase is just an accepted practice—but one you should use
because it’s what other programmers expect.

Q: How can I store more than one character with a single variable?

A: With a string object.

Discussion Questions

1. How does having a widely adopted Cþþ standard help game
programmers?

2. What are the advantages and disadvantages of employing the using

directive?

3. Why might you define a new name for an existing type?

4. Why are there two versions of the increment operator? What’s the
difference between them?

5. How can you use constants to improve your code?

Exercises

1. Create a list of six legal variable names—three good and three bad
choices. Explain why each name falls into the good or bad
category.

2. What’s displayed by each line in the following code snippet? Explain
each result.

cout << "Seven divided by three is " << 7 / 3 << endl;

cout << "Seven divided by three is " << 7.0 / 3 << endl;
cout << "Seven divided by three is " << 7.0 / 3.0 << endl;

3. Write a program that gets three game scores from the user and displays
the average.

38 Chapter 1 n Types, Variables, and Standard I/O: Lost Fortune

Truth, Branching, and the

Game Loop: Guess My

Number

So far, the programs you’ve seen have been linear—each statement executes, in
order, from top to bottom. However, to create interesting games, you need to
write programs that execute (or skip) sections of code based on some condition.
That’s the main topic of this chapter. Specifically, you’ll learn to:

n Understand truth (as C++ defines it)

n Use if statements to branch to sections of code

n Use switch statements to select a section of code to execute

n Use while and do loops to repeat sections of code

n Generate random numbers

Understanding Truth

Truth is black and white, at least as far as C++ is concerned. You can represent
true and false with their corresponding keywords, true and false. You can store
such a Boolean value with a bool variable, as you saw in Chapter 1. Here’s a
quick refresher:

bool fact = true, fiction = false;

This code creates two bool variables, fact and fiction. fact is true and fiction

is false. Although the keywords true and false are handy, any expression or

chapter 2

39

value can be interpreted as true or false, too. Any non-zero value can be
interpreted as true, while 0 can be interpreted as false.

A common kind of expression interpreted as true or false involves comparing
things. Comparisons are often made by using built-in relational operators.
Table 2.1 lists the operators and a few sample expressions.

Using the if Statement

Okay, it’s time to put the concepts of true and false to work. You can use an if

statement to test an expression for truth and execute some code based on it.
Here’s a simple form of the if statement:

if (expression)
statement;

If expression is true, then statement is executed. Otherwise, statement is
skipped and the program branches to the statement after the if suite.

H i n t

Whenever you see a generic statement like in the preceding code example, you can replace it
with a single statement or a block of statements because a block is treated as a single unit.

Table 2.1 Relational Operators

Operator Meaning Sample Expression Evaluates To

== equal to 5 == 5 true

5 == 8 false

!= not equal to 5 != 8 true

5 != 5 false

> greater than 8 > 5 true

5 > 8 false

< less than 5 < 8 true

8 < 5 false

>= greater than or equal to 8 >= 5 true

5 >= 8 false

<= less than or equal to 5 <= 8 true

8 <= 5 false

40 Chapter 2 n Truth, Branching, and the Game Loop: Guess My Number

Introducing the Score Rater Program

The Score Rater program comments on a player’s score using an if statement.
Figure 2.1 shows the program in action.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 2
folder; the filename is score_rater.cpp.

// Score Rater
// Demonstrates the if statement

#include <iostream>
using namespace std;

int main()
{

if (true)
{

cout << "This is always displayed.\n\n";
}

Figure 2.1
Messages are displayed (or not displayed) based on different if statements.

Using the if Statement 41

if (false)
{

cout << "This is never displayed.\n\n";
}

int score = 1000;

if (score)
{

cout << "At least you didn’t score zero.\n\n";
}

if (score >= 250)
{

cout << "You scored 250 or more. Decent.\n\n";
}

if (score >= 500)
{

cout << "You scored 500 or more. Nice.\n\n";

if (score >= 1000)
{

cout << "You scored 1000 or more. Impressive!\n";
}

}

return 0;
}

Testing true and false

In the first if statement I test true. Because true is, well, true, the program
displays the message, “This is always displayed.”

if (true)
{

cout << "This is always displayed.\n\n";
}

In the next if statement I test false. Because false isn’t true, the program
doesn’t display the message, “This is never displayed.”

42 Chapter 2 n Truth, Branching, and the Game Loop: Guess My Number

if (false)
{

cout << "This is never displayed.\n\n";
}

T r a p

Notice that you don’t use a semicolon after the closing parenthesis of the expression you test in an
if statement. If you were to do this, you’d create an empty statement that would be paired with
the if statement, essentially rendering the if statement useless. Here’s an example:

if (false);
{

cout << "This is never displayed.\n\n";
}

By adding the semicolon after (false), I create an empty statement that’s associated with the
if statement. The preceding code is equivalent to:

if (false)
; // an empty statement, which does nothing

{
cout << "This is never displayed.\n\n";

}

All I’ve done is play with the whitespace, which doesn’t change the meaning of the code. Now the
problem should be clear. The if statement sees the false value and skips the next statement
(the empty statement). Then the program goes on its merry way to the statement after the if
statement, which displays the message, “This is never displayed.”

Be on guard for this error. It’s an easy one to make and because it’s not illegal, it won’t produce a
compile error.

Interpreting a Value as true or false

You can interpret any value as true or false. Any non-zero value can be
interpreted as true, while 0 can be interpreted as false. I put this to the test in
the next if statement:

if (score)
{

cout << "At least you didn’t score zero.\n\n";
}

score is 1000, so it’s non-zero and interpreted as true. As a result, the message,
“Okay, at least you didn’t score zero,” is displayed.

Using the if Statement 43

Using Relational Operators

Probably the most common expression you’ll use with if statements involves
comparing values using the relational operators. That’s just what I’ll demon-
strate next. I test to see whether the score is greater than or equal to 250.

if (score >= 250)
{

cout << "You scored 250 or more. Decent.\n\n";
}

Because score is 1000, the block is executed, displaying the message that the
player earned a decent score. If score had been less than 1000, the block would
have been skipped and the program would have continued with the statement
following the block.

T r a p

The equal to relational operator is == (two equal signs in a row). Don’t confuse it with = (one
equal sign), which is the assignment operator.

While it’s not illegal to use the assignment operator instead of the equal to relational operator, the
results might not be what you expect. Take a look at this code:

int score = 500;
if (score = 1000)
{

cout << " You scored 1000 or more. Impressive!\n";
}

As a result of this code, score is set to 1000 and the message, “You scored 1000 or more.
Impressive!” is displayed. Here’s what happens: Although score is 500 before the if statement,
that changes. When the expression of the if statement, (score = 1000), is evaluated, score is
assigned 1000. The assignment statement evaluates to 1000, and because that’s a non-zero value,
the expression is interpreted as true. As a result, the string is displayed.

Be on guard for this type of mistake. It’s easy to make and in some cases (like this one), it won’t
cause a compile error.

Nesting if Statements

An if statement can cause a program to execute a statement or block of
statements, including other if statements. When you write one if statement

44 Chapter 2 n Truth, Branching, and the Game Loop: Guess My Number

inside another, it’s called nesting. In the following code, the if statement
that begins if (score >= 1000) is nested inside the if statement that begins if

(score > 500).

if (score >= 500)
{

cout << "You scored 500 or more. Nice.\n\n";

if (score >= 1000)
{

cout << "You scored 1000 or more. Impressive!\n";
}

}

Because score is greater than 500, the program enters the statement block and
displays the message, “You scored 500 or more. Nice.” Then, in the inner if

statement, the program compares score to 1000. Because score is greater than
or equal to 1000, the program displays the message, “You scored 1000 or more.
Impressive!”

H i n t

You can nest as many levels as you want. However, if you nest code too deeply, it gets hard to
read. In general, you should try to limit your nesting to a few levels at most.

Using the else Clause

You can add an else clause to an if statement to provide code that will only be
executed if the tested expression is false. Here’s the form of an if statement
that includes an else clause:

if (expression)
statement1;

else
statement2;

If expression is true, statement1 is executed. Then the program skips
statement2 and executes the statement following the if suite. If expression is
false, statement1 is skipped and statement2 is executed. After statement2

completes, the program executes the statement following the if suite.

Using the else Clause 45

Introducing the Score Rater 2.0 Program

The Score Rater 2.0 program also rates a score, which the user enters. But this
time, the program uses an if statement with an else clause. Figures 2.2 and 2.3
show the two different messages that the program can display based on the score
the user enters.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 2
folder; the filename is score_rater2.cpp.

// Score Rater 2.0
// Demonstrates an else clause

#include <iostream>
using namespace std;

int main()
{

int score;
cout << "Enter your score: ";

Figure 2.2
If the user enters a score that’s 1000 or more, he is congratulated.

46 Chapter 2 n Truth, Branching, and the Game Loop: Guess My Number

cin >> score;

if (score >= 1000)
{

cout << "You scored 1000 or more. Impressive!\n";
}
else
{

cout << "You scored less than 1000.\n";
}

return 0;
}

Creating Two Ways to Branch

You’ve seen the first part of the if statement already, and it works just as it did
before. If score is greater than 1000, the message, “You scored 1000 or more.
Impressive!” is displayed.

Figure 2.3
If the user enters a score that’s less than 1000, there’s no celebration.

Using the else Clause 47

if (score >= 1000)
{

cout << "You scored 1000 or more. Impressive!\n";
}

Here’s the twist. The else clause provides a statement for the program to branch
to if the expression is false. So if (score >= 1000) is false, then the program
skips the first message and instead displays the message, “You scored less than
1000.”

else
{

cout << "You scored less than 1000.\n";
}

Using a Sequence of if Statements

with else Clauses

You can chain if statements with else clauses together to create a sequence of
expressions that get tested in order. The statement associated with the first
expression to test true is executed; otherwise, the statement associated with the
final (and optional) else clause is run. Here’s the form such a series would take:

if (expression1)
statement1;

else if (expression2)
statement2;

. . .

else if (expressionN)
statementN;

else
statementN+1;

If expression1 is true, statement1 is executed and the rest of the code in the
sequence is skipped. Otherwise, expression2 is tested and if true, statement2 is
executed and the rest of the code in the sequence is skipped. The computer
continues to check each expression in order (through expressionN) and will
execute the statement associated with the first expression that is true. If no
expression is true, then the statement associated with the final else clause,
statementN+1, is executed.

48 Chapter 2 n Truth, Branching, and the Game Loop: Guess My Number

Introducing the Score Rater 3.0 Program

The Score Rater 3.0 program also rates a score, which the user enters. But this
time, the program uses a sequence of if statements with else clauses. Figure 2.4
shows the results of the program.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 2
folder; the filename is score_rater3.cpp.

// Score Rater 3.0
// Demonstrates if else-if else suite

#include <iostream>
using namespace std;

int main()
{

int score;
cout << "Enter your score: ";
cin >> score;

Figure 2.4
The user can get one of multiple messages, depending on his score.

Using a Sequence of if Statements with else Clauses 49

if (score >= 1000)
{

cout << "You scored 1000 or more. Impressive!\n";
}
else if (score >= 500)
{

cout << "You scored 500 or more. Nice.\n";
}
else if (score >= 250)
{

cout << "You scored 250 or more. Decent.\n";
}
else
{

cout << "You scored less than 250. Nothing to brag about.\n";
}

return 0;
}

Creating a Sequence of if Statements with else Clauses

You’ve seen the first part of this sequence twice already, and it works just the
same this time around. If score is greater than or equal to 1000, the message,
“You scored 1000 or more. Impressive!” is displayed and the computer branches
to the return statement.

if (score >= 1000)

However, if the expression is false, then we know that score is less than 1000
and the computer evaluates the next expression in the sequence:

else if (score >= 500)

If score is greater than or equal to 500, the message, “You scored 500 or more.
Nice.” is displayed and the computer branches to the return statement.
However, if that expression is false, then we know that score is less than 500
and the computer evaluates the next expression in the sequence:

else if (score >= 250)

If score is greater than or equal to 250, the message, “You scored 250 or more.
Decent.” is displayed and the computer branches to the return statement.

50 Chapter 2 n Truth, Branching, and the Game Loop: Guess My Number

However, if that expression is false, then we know that score is less than 250
and the statement associated with the final else clause is executed and the
message, “You scored less than 250. Nothing to brag about.” is displayed.

H i n t

While the final else clause in an if else-if suite isn’t required, you can use it as a way to
execute code if none of the expressions in the sequence are true.

Using the switch Statement

You can use a switch statement to create multiple branching points in your
code. Here’s a generic form of the switch statement:

switch (choice)
{
case value1: statement1;

break;
case value2: statement2;

break;
case value3: statement3;

break;
.
.
.

case valueN: statementN;
break;

default: statementN + 1;
}

The statement tests choice against the possible values—value1, value2, and
value3—in order. If choice is equal to a value, then the program executes the
corresponding statement. When the program hits a break statement, it exits the
switch structure. If choice doesn’t match any value, then the statement
associated with the optional default is executed.

The use of break and default are optional. If you leave out a break, however, the
program will continue through the remaining statements until it hits a break or
a default or until the switch statement ends. Usually you want one break

statement to end each case.

Using the switch Statement 51

H i n t

Although a default case isn’t required, it’s usually a good idea to have one as a catchall.

Here’s an example to cement the ideas. Suppose choice is equal to value2. The
program will first test choice against value1. Because they’re not equal, the
program will continue. Next, the program will test choice against value2.
Because they are equal, the program will execute statement2. Then the program
will hit the break statement and exit the switch structure.

T r a p

You can use the switch statement only to test an int (or a value that can be treated as an int,
such as a char or an enumerator). A switch statement won’t work with any other type.

Introducing the Menu Chooser Program

The Menu Chooser program presents the user with a menu that lists three
difficulty levels and asks him to make a choice. If the user enters a number that
corresponds to a listed choice, then he is shown a message confirming the
choice. If the user makes some other choice, he is told that the choice is invalid.
Figure 2.5 shows the program in action.

Figure 2.5
Looks like I took the easy way out.

52 Chapter 2 n Truth, Branching, and the Game Loop: Guess My Number

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 2
folder; the filename is menu_chooser.cpp.

// Menu Chooser
// Demonstrates the switch statement

#include <iostream>

using namespace std;

int main()
{

cout << "Difficulty Levels\n\n";
cout << "1 - Easy\n";
cout << "2 - Normal\n";
cout << "3 - Hard\n\n";

int choice;
cout << "Choice: ";
cin >> choice;

switch (choice)
{
case 1:

cout << "You picked Easy.\n";
break;

case 2:
cout << "You picked Normal.\n";
break;

case 3:
cout << "You picked Hard.\n";
break;

default:
cout << "You made an illegal choice.\n";

}

return 0;
}

Using the switch Statement 53

Creating Multiple Ways to Branch

The switch statement creates four possible branching points. If the user enters 1,
then code associated with case 1 is executed and “You picked Easy” is displayed.
If the user enters 2, then code associated with case 2 is executed and “You picked
Normal” is displayed. If the user enters 3, then code associated with case 3 is
executed and “You picked Hard” is displayed. If the user enters any other value,
then default kicks in and “You made an illegal choice” is displayed.

T r a p

You’ll almost always want to end each case with a break statement. Don’t forget them;
otherwise, your code might do things you never intended.

Using while Loops

while loops let you repeat sections of code as long as an expression is true.
Here’s a generic form of the while loop:

while (expression)
statement;

If expression is false, the program moves on to the statement after the loop. If
expression is true, the program executes statement and loops back to test
expression again. This cycle repeats until expression tests false, at which point
the loop ends.

Introducing the Play Again Program

The Play Again program simulates the play of an exciting game. (Okay, by
“simulates the play of an exciting game,” I mean the program displays the
message “**Played an exciting game**”.) Then the program asks the user if he
wants to play again. The user continues to play as long as he enters y. The
program accomplishes this repetition using a while loop. Figure 2.6 shows the
program in action.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 2
folder; the filename is play_again.cpp.

54 Chapter 2 n Truth, Branching, and the Game Loop: Guess My Number

// Play Again
// Demonstrates while loops

#include <iostream>
using namespace std;

int main()
{

char again = ’y’;
while (again == ’y’)
{

cout << "\n**Played an exciting game**";
cout << "\nDo you want to play again? (y/n): ";
cin >> again;

}

cout << "\nOkay, bye.";

return 0;
}

Looping with a while Loop

The first thing the program does in the main() function is declare the char

variable named again and initialize it to ’y’. Then the program begins the while

Figure 2.6
The repetition is accomplished using a while loop.

Using while Loops 55

loop by testing again to see whether it’s equal to ’y’. Because it is, the program
displays the message “**Played an exciting game**,” asks the user whether he
wants to play again, and stores the reply in again. The loop continues as long as
the user enters y.

You’ll notice that I had to initialize again before the loop because the variable is
used in the loop expression. Because a while loop evaluates its expressions
before its loop body (the group of statements that repeat), you have to make sure
that any variables in the expression have a value before the loop begins.

Using do Loops

Like while loops, do loops let you repeat a section of code based on an
expression. The difference is that a do loop tests its expression after each loop
iteration. This means that the loop body is always executed at least once. Here’s
a generic form of a do loop:

do
statement;

while (expression);

The program executes statement and then, as long as expression tests true, the
loop repeats. Once expression tests false, the loop ends.

Introducing the Play Again 2.0 Program

The Play Again 2.0 program looks exactly the same to the user as the original
Play Again program. Play Again 2.0, like its predecessor, simulates the play of an
exciting game by displaying the message “**Played an exciting game**” and
asking the user whether he wants to play again. The user continues to play as
long as he enters y. This time, though, the program accomplishes the repetition
using a do loop. Figure 2.7 shows off the program.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 2
folder; the filename is play_again2.cpp.

// Play Again 2.0
// Demonstrates do loops

#include <iostream>

56 Chapter 2 n Truth, Branching, and the Game Loop: Guess My Number

using namespace std;

int main()
{

char again;
do
{

cout << "\n**Played an exciting game**";
cout << "\nDo you want to play again? (y/n): ";
cin >> again;

} while (again == ’y’);

cout << "\nOkay, bye.";

return 0;
}

Looping with a do Loop

Before the do loop begins, I declare the character again. However, I don’t need to
initialize it because it’s not tested until after the first iteration of the loop. I get a

Figure 2.7
Each repetition is accomplished using a do loop.

Using do Loops 57

new value for again from the user in the loop body. Then I test again in the loop
expression. If again is equal to ’y’, the loop repeats; otherwise, the loop ends.

I RW

Even though you can use while and do loops pretty interchangeably, most programmers use the
while loop. Although a do loop might seem more natural in some cases, the advantage of a
while loop is that its expression appears right at the top of the loop; you don’t have to go hunting
to the bottom of the loop to find it.

T r a p

If you’ve ever had a game get stuck in the same endless cycle, you might have experienced an
infinite loop—a loop without end. Here’s a simple example of an infinite loop:

int test = 10;
while (test == 10)
{

cout << test;
}

In this case, the loop is entered because test is 10. But because test never changes, the loop
will never stop. As a result, the user will have to kill the running program to end it. The moral of
this story? Make sure that the expression of a loop can eventually become false or that there’s
another way for the loop to end, such as described in the following section, “Using break and
continue Statements.”

Using break and continue Statements

It’s possible to alter the behavior you’ve seen in loops. You can immediately exit
a loop with the break statement, and you can jump directly to the top of a loop
with a continue statement. Although you should use these powers sparingly,
they do come in handy sometimes.

Introducing the Finicky Counter Program

The Finicky Counter program counts from 1 to 10 through a while loop. It’s
finicky because it doesn’t like the number 5—it skips it. Figure 2.8 shows a run
of the program.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 2
folder; the filename is finicky_counter.cpp.

58 Chapter 2 n Truth, Branching, and the Game Loop: Guess My Number

// Finicky Counter
// Demonstrates break and continue statements

#include <iostream>

using namespace std;

int main()
{

int count = 0;
while (true)
{

count += 1;

//end loop if count is greater than 10
if (count > 10)
{

break;
}

Figure 2.8
The number 5 is skipped with a continue statement, and the loop ends with a break statement.

Using break and continue Statements 59

//skip the number 5
if (count == 5)
{

continue;
}

cout << count << endl;
}

return 0;
}

Creating a while (true) Loop

I set up the loop with the following line:

while (true)

Technically, this creates an infinite loop. This might seem odd coming so soon
after a warning to avoid infinite loops, but this particular loop isn’t really infinite
because I put an exit condition in the loop body.

H i n t

Although a while (true) loop sometimes can be clearer than a traditional loop, you should also
try to minimize your use of these loops.

Using the break Statement to Exit a Loop

This is the exit condition I put in the loop:

//end loop if count is greater than 10
if (count > 10)
{

break;
}

Because count is increased by 1 each time the loop body begins, it will eventually
reach 11. When it does, the break statement (which means “break out of the
loop”) is executed and the loop ends.

60 Chapter 2 n Truth, Branching, and the Game Loop: Guess My Number

Using the continue Statement to Jump Back
to the Top of a Loop

Just before count is displayed, I included the lines:

//skip the number 5
if (count == 5)
{

continue;
}

The continue statement means “jump back to the top of the loop.” At the top of
the loop, the while expression is tested and the loop is entered again if it’s true.
So when count is equal to 5, the program does not get to the cout << count <<

endl; statement. Instead, it goes right back to the top of the loop. As a result, 5 is
skipped and never displayed.

Understanding When to Use break and continue

You can use break and continue in any loop you create; they aren’t just for
while (true) loops. But you should use them sparingly. Both break and
continue can make it harder for programmers to see the flow of a loop.

Using Logical Operators

So far you’ve seen pretty simple expressions evaluated for their truth or falsity.
However, you can combine simpler expressions with logical operators to create
more complex expressions. Table 2.2 lists the logical operators.

Introducing the Designers Network Program

The Designers Network program simulates a computer network in which only a
select group of game designers are members. Like real-world computer systems,

Table 2.2 Logical Operators

Operator Description Sample Expression

! Logical NOT !expression
&& Logical AND expression1 && expression2
|| Logical OR expression1 || expression2

Using Logical Operators 61

each member must enter a username and a password to log in. With a successful
login, the member is personally greeted. To log in as a guest, all a user needs to
do is enter guest at either the username or password prompt. Figures 2.9
through 2.11 show the program.

Figure 2.9
If you’re not a member or a guest, you can’t get in.

Figure 2.10
You can log in as a guest.

62 Chapter 2 n Truth, Branching, and the Game Loop: Guess My Number

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 2
folder; the filename is designers_network.cpp.

// Designers Network
// Demonstrates logical operators

#include <iostream>
#include <string>
using namespace std;

int main()
{

string username;
string password;
bool success;

cout << "\tGame Designer’s Network\n";

do

Figure 2.11
Looks like one of the elite logged in today.

Using Logical Operators 63

{
cout << "\nUsername: ";
cin >> username;

cout << "Password: ";
cin >> password;

if (username == "S.Meier" && password == "civilization")
{

cout << "\nHey, Sid.";
success = true;

}

else if (username == "S.Miyamoto" && password == "mariobros")
{

cout << "\nWhat’s up, Shigeru?";
success = true;

}

else if (username == "W.Wright" && password == "thesims")
{

cout << "\nHow goes it, Will?";
success = true;

}

else if (username == "guest" || password == "guest")
{

cout << "\nWelcome, guest.";
success = true;

}

else
{

cout << "\nYour login failed.";
success = false;

}
} while (!success);

return 0;
}

64 Chapter 2 n Truth, Branching, and the Game Loop: Guess My Number

Using the Logical AND Operator

The logical AND operator, &&, lets you join two expressions to form a larger one,
which can be evaluated to true or false. The new expression is true only if the
two expressions it joins are true; otherwise, it is false. Just as in English, “and”
means both. Both original expressions must be true for the new expression to be
true. Here’s a concrete example from the Designers Network program:

if (username == "S.Meier" && password == "civilization")

The expression username == "S.Meier" && password == "civilization" is true

only if both username == "S.Meier" and password == "civilization" are true.
This works perfectly because I only want to grant Sid access if he enters both his
username and his password. Just one or the other won’t do.

Another way to understand how && works is to look at all of the possible
combinations of truth and falsity (see Table 2.3).

Of course, the Designers Network program works for other users besides Sid
Meier. Through a series of if statements with else clauses using the && operator,
the program checks three different username and password pairs. If a user enters
a recognized pair, he is personally greeted.

Using the Logical OR Operator

The logical OR operator, ||, lets you join two expressions to form a larger one,
which can be evaluated to true or false. The new expression is true if the first

Table 2.3 Possible Login Combinations Using the AND Operator

username ==
"S.Meier"

password ==
"civilization"

username == "S.Meier" &&
password == "civilization"

true true true
true false false
false true false
false false false

Using Logical Operators 65

expression or the second expression is true; otherwise, it is false. Just as in
English, “or” means either. If either the first or second expression is true, then
the new expression is true. (If both are true, then the larger expression is still
true.) Here’s a concrete example from the Designers Network program:

else if (username == "guest" || password == "guest")

The expression username == "guest" || password == "guest" is true if username ==

"guest" is true or if password == "guest" is true. This works perfectly because I
want to grant a user access as a guest as long as he enters guest for the username
or password. If the user enters guest for both, that’s fine too.

Another way to understand how || works is to look at all of the possible
combinations of truth and falsity (see Table 2.4).

Using the Logical NOT Operator

The logical NOT operator, !, lets you switch the truth or falsity of an expression.
The new expression is true if the original is false; the new expression is false if
the original is true. Just as in English, “not” means the opposite. The new
expression has the opposite value of the original.

I use the NOT operator in the Boolean expression of the do loop:

} while (!success);

The expression !success is true when success is false. That works perfectly
because success is false only when there has been a failed login. In that case,

Table 2.4 Possible Login Combinations Using the OR Operator

username ==
"guest"

password ==
"guest"

username == "guest" ||
password == "guest"

true true true
true false true
false true true
false false false

66 Chapter 2 n Truth, Branching, and the Game Loop: Guess My Number

the block associated with the do loop executes again and the user is asked for his
username and password once more.

The expression !success is false when success is true. That works perfectly
because when success is true, the user has successfully logged in and the loop
ends.

Another way to understand how ! works is to look at all of the possible
combinations of truth and falsity (see Table 2.5).

Understanding Order of Operations

Just like arithmetic operators, logical operators have precedence levels that affect
the order in which an expression is evaluated. Logical NOT, !, has a higher
level of precedence than logical AND, &&, which has a higher precedence than
logical OR, ||.

Just as with arithmetic operators, if you want an operation with lower
precedence to be evaluated first, you can use parentheses. You can create
complex expressions that involve arithmetic operators, relational operators,
and logical operators. Operator precedence will define the exact order in
which elements of the expression are evaluated. However, it’s best to try to
create expressions that are clear and simple, not ones that require a mastery of
the operator precedence list to decipher.

For a list of C++ operators and their precedence levels, see Appendix B.

Table 2.5 Possible Login Combinations Using
the NOT Operator

security !security

true false
false true

Using Logical Operators 67

H i n t

Although you can use parentheses in a larger expression to change the way in which it’s evaluated,
you can also use redundant parentheses—parentheses that don’t change the value of the
expressions—to make the expression clearer. Let me give you a simple example. Check out the
following expression from the Designers Network program:

(username == "S.Meier" && password == "civilization")

Now, here’s the expression with some redundant parentheses:

((username == "S.Meier") && (password == "civilization"))

While the extra parentheses don’t change the meaning of the expression, they really help the two
smaller expressions, joined by the && operator, stand out.

Using redundant parentheses is a bit of an art form. Are they helpful or just plain redundant? That’s
a call you as the programmer have to make.

Generating Random Numbers

A sense of unpredictability can add excitement to a game.Whether it’s the sudden
change in a computer opponent’s strategy in an RTS or an alien creature bursting
from an arbitrary door in an FPS, players thrive on a certain level of surprise.
Generating random numbers is one way to achieve this kind of surprise.

Introducing the Die Roller Program

The Die Roller program simulates the roll of a six-sided die. The computer
calculates the roll by generating a random number. Figure 2.12 shows the results
of the program.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 2
folder; the filename is die_roller.cpp.

// Die Roller
// Demonstrates generating random numbers

#include <iostream>
#include <cstdlib>
#include <ctime>

using namespace std;

68 Chapter 2 n Truth, Branching, and the Game Loop: Guess My Number

int main()
{

srand(static_cast<unsigned int>(time(0))); //seed random number generator

int randomNumber = rand(); //generate random number

int die = (randomNumber % 6) + 1; // get a number between 1 and 6
cout << "You rolled a " << die << endl;

return 0;
}

Calling the rand() Function

One of the first things I do in the program is include a new file:

#include <cstdlib>

The file cstdlib contains (among other things) functions that deal with
generating random numbers. Because I’ve included the file, I’m free to call

Figure 2.12
The die roll is based on a random number generated by the program.

Generating Random Numbers 69

the functions it contains, including the function rand(), which is exactly what I
do in main():

int randomNumber = rand(); //generate random number

As you learned in Chapter 1, functions are pieces of code that can do some work
and return a value. You call or invoke a function by using its name followed by a
pair of parentheses. If a function returns a value, you can assign that value to a
variable. That’s what I do here with my use of the assignment statement. I assign
the value returned by rand() (a random number) to randomNumber.

H i n t

The rand() function generates a random number between 0 and at least 32767. The exact upper
limit depends on your implementation of C++. The upper limit is stored in the constant
RAND_MAX, which is defined in cstdlib. So if you want to know the maximum random number
rand() can generate, just send RAND_MAX to cout.

Functions can also take values to use in their work. You provide these values by
placing them between the parentheses after the function name, separated by
commas. These values are called arguments, and when you provide them, you
pass them to the function. I didn’t pass any values to rand() because the
function doesn’t take any arguments.

Seeding the Random Number Generator

Computers generate pseudorandom numbers—not truly random numbers—
based on a formula. One way to think about this is to imagine that the computer
reads from a huge book of predetermined numbers. By reading from this book,
the computer can appear to produce a sequence of random numbers.

But there’s a problem: The computer always starts reading the book from the
beginning. Because of this, the computer will always produce the same series of
“random” numbers in a program. In games, this isn’t something we’d want. We
wouldn’t, for example, want the same series of dice rolls in a game of craps every
time we played.

A solution to this problem is to tell the computer to start reading from some
arbitrary place in the book when a game program begins. This process is called

70 Chapter 2 n Truth, Branching, and the Game Loop: Guess My Number

seeding the random number generator. Game programmers give the random
number generator a number, called a seed, to determine the starting place in this
sequence of pseudorandom numbers.

The following code seeds the random number generator:

srand(static_cast<unsigned int>(time(0))); //seed random number generator

Wow, that’s a pretty cryptic looking line, but what it does is simple. It seeds
the random number generator based on the current date and time, which is
perfect since the current date and time will be different for each run of the
program.

In terms of the actual code, the srand() function seeds the random number
generator—you just have to pass it an unsigned int as a seed. What gets passed
to the function here is the return value of time(0)—a number based on the
current system date and time. The code static_cast<unsigned int> just
converts (or casts) this value to an unsigned int. Now, you don’t have to
understand all the nuances of this line; the least you need to know is that if you
want a program to generate a series of random numbers that are different each
time the program is run, your program should execute this line once before calls
to rand().

H i n t

A comprehensive explanation of the various forms of casting a value from one type to another is
beyond the scope of this book.

Calculating a Number within a Range

After generating a random number, randomNumber holds a value between 0 and
32767 (based on my implementation of C++). But I need a number between
1 and 6, so next I use the modulus operator to produce a number in that range.

int die = (randomNumber % 6) + 1; // get a number between 1 and 6

Any positive number divided by 6 will give a remainder between 0 and 5. In the
preceding code, I take this remainder and add 1, giving me the possible range of
1 through 6—exactly what I wanted. You can use this technique to convert a
random number to a number within a range you’re looking for.

Generating Random Numbers 71

T r a p

Using the modulus operator to create a number within a range from a random number might not
always produce uniform results. Some numbers in the range might be more likely to appear than
others. However, this isn’t a problem for simple games.

Understanding the Game Loop

The game loop is a generalized representation of the flow of events in a game.
The core of the events repeats, which is why it’s called a loop. Although the
implementation might be quite different from game to game, the fundamental
structure is the same for almost all games across genres. Whether you’re talking
about a simple space shooter or a complex role-playing game (RPG), you can
usually break the game down into the same repeating components of the game
loop. Figure 2.13 provides a visual representation of the game loop.

Here’s an explanation of the parts of the game loop:

n Setup. This often involves accepting initial settings or loading game
assets, such as sound, music, and graphics. The player might also be pre-
sented with the game backstory and his objectives.

n Getting player input. Whether it comes from the keyboard, mouse, joy-
stick, trackball, or some other device, input from the player is captured.

n Updating game internals. The game logic and rules are applied to the
game world, taking into account player input. This might take the shape
of a physics system determining the interaction of objects or it might
involve calculations of enemy AI, for example.

n Updating the display. In the majority of games, this process is the most
taxing on the computer hardware because it often involves drawing
graphics. However, this process can be as simple as displaying a line of text.

n Checking whether the game is over. If the game isn’t over (if the play-
er’s character is still alive and the player hasn’t quit, for example), con-
trol branches back to the getting player input stage. If the game is over,
control falls through to the shutting down stage.

n Shutting down. At this point, the game is over. The player is often given
some final information, such as his score. The program frees any resources,
if necessary, and exits.

72 Chapter 2 n Truth, Branching, and the Game Loop: Guess My Number

Introducing Guess My Number

The final project for this chapter, Guess My Number, is the classic number-
guessing game. For those who missed out on this game in their childhood, it
goes like this: The computer chooses a random number between 1 and 100, and
the player tries to guess the number in as few attempts as possible. Each time the
player enters a guess, the computer tells him whether the guess is too high, too
low, or right on the money. Once the player guesses the number, the game is
over. Figure 2.14 shows Guess My Number in action. You can download the
code for this program from the Course Technology website (www.courseptr.
com/downloads). The program is in the Chapter 2 folder; the filename is
guess_my_number.cpp.

Figure 2.13
The game loop describes a basic flow of events that fits just about any game.

Introducing Guess My Number 73

Applying the Game Loop

It’s possible to examine even this simple game through the construct of the game
loop. Figure 2.15 shows how nicely the game loop paradigm fits the flow of the
game.

Setting Up the Game

As always, I start off with some comments and include the necessary files.

// Guess My Number
// The classic number guessing game

#include <iostream>
#include <cstdlib>
#include <ctime>

using namespace std;

I include cstdlib because I plan to generate a random number. I include ctime

because I want to seed the random number generator with the current time.

Figure 2.14
I guessed the computer’s number in just three tries.

74 Chapter 2 n Truth, Branching, and the Game Loop: Guess My Number

Next, I start the main() function by picking a random number, setting the
number of tries to 0, and establishing a variable for the player’s guess:

int main()
{

srand(static_cast<unsigned int>(time(0))); //seed random number generator

int secretNumber = rand() % 100 + 1; // random number between 1 and 100
int tries = 0;
int guess;

cout << "\tWelcome to Guess My Number\n\n";

Figure 2.15
The game loop applied to Guess My Number.

Introducing Guess My Number 75

Creating the Game Loop

Next, I write the game loop.

do
{

cout << "Enter a guess: ";
cin >> guess;
++tries;

if (guess > secretNumber)
{

cout << "Too high!\n\n";
}
else if (guess < secretNumber)
{

cout << "Too low!\n\n";
}
else
{

cout << "\nThat’s it! You got it in " << tries << " guesses!\n";
}

} while (guess != secretNumber);

I get the player’s guess, increment the number of tries, and then tell the player if
his guess is too high, too low, or right on the money. If the player’s guess is
correct, the loop ends. Notice that the if statements are nested inside the while

loop.

Wrapping Up the Game

Once the player has guessed the secret number, the loop and game are over. All
that’s left to do is end the program.

return 0;
}

Summary

In this chapter, you learned the following concepts:

n You can use the truth or falsity of an expression to branch to (or skip)
sections of code.

76 Chapter 2 n Truth, Branching, and the Game Loop: Guess My Number

n You can represent truth or falsity with the keywords, true and false.

n You can evaluate any value or expression for truth or falsity.

n Any non-zero value can be interpreted as true, while 0 can be inter-
preted as false.

n A common way to create an expression to be evaluated as true or false

is to compare values with the relational operators.

n The if statement tests an expression and executes a section of code only
if the expression is true.

n The else clause of an if statement specifies code that should be executed
only if the expression tested in the if statement is false.

n The switch statement tests a value that can be treated as an int and exe-
cutes a section of code labeled with the corresponding value.

n The default keyword, when used in a switch statement, specifies code to
be executed if the value tested in the switch statement matches no listed
values.

n The while loop executes a section of code if an expression is true and
repeats the code as long as the expression is true.

n A do loop executes a section of code and then repeats the code as long
as the expression is true.

n Used in a loop, the break statement immediately ends the loop.

n Used in a loop, the continue statement immediately causes the control of
the program to branch to the top of the loop.

n The && (AND) operator combines two simpler expressions to create a
new expression that is true only if both simpler expressions are true.

n The || (OR) operator combines two simpler expressions to create a new
expression that is true if either simpler expression is true.

n The ! (NOT) operator creates a new expression that is the opposite truth
value of the original.

n The game loop is a generalized representation of the flow of events in a
game, the core of which repeats.

Summary 77

n The file cstdlib contains functions that deal with generating random
numbers.

n The function srand(), defined in cstdlib, seeds the random number
generator.

n The function rand(), defined in cstdlib, returns a random number.

Questions and Answers

Q: Do you have to use the keywords true and false?

A: No, but it’s a good idea. Before the advent of the keywords true and false,
programmers often used 1 to represent true and 0 to represent false.
However, now that true and false are available, it’s best to use them instead
of the old-fashioned 1 and 0.

Q: Can you assign a bool variable something other than true or false?

A: Yes. You can assign an expression to a bool variable, which will store the
truth or falsity of the expression.

Q: Can you use a switch statement to test some non-integer value?

A: No. switch statements only work with values that can be interpreted as
integers (including char values).

Q: How can you test a single non-integer value against multiple values if you
can’t use a switch statement?

A: You can use a series of if statements.

Q: What’s an infinite loop?

A: A loop that will never end, regardless of user input.

Q: Why are infinite loops considered bad?

A: Because a program stuck in an infinite loop will never end on its own. It has
to be shut down by the operating system. In the worst case, a user will have to
shut his computer off to end a program stuck in an infinite loop.

Q: Won’t a compiler catch an infinite loop and flag it as an error?

A: No. An infinite loop is a logical error—the kind of error a programmer must
track down.

78 Chapter 2 n Truth, Branching, and the Game Loop: Guess My Number

Q: If infinite loops are a bad thing, then isn’t a while (true) loop a bad
thing?

A: No. When a programmer creates a while (true) loop, he should provide a
way for the loop to end (usually through a break statement).

Q: Why would a programmer create a while (true) loop?

A: while (true) loops are often used for the main loop of a program, like the
game loop.

Q: Why do some people feel that using a break statement to exit a loop is poor
programming?

A: Because indiscriminate use of break statements can make it hard to under-
stand the conditions under which a loop ends. However, sometimes the use
of a while (true) loop along with a break statement can be clearer than
creating the same loop in a more traditional way.

Q: What’s a pseudorandom number?

A: A random number that’s usually generated by a formula. As a result, a series
of pseudorandom numbers is not truly random, but good enough for most
purposes.

Q: What’s seeding a random number generator?

A: It’s giving the random number generator a seed, such as an integer, which
affects the way the generator produces random numbers. If you don’t seed a
random number generator, it will produce the same series of numbers each
time its run from the beginning of a program.

Q: Don’t you always want to seed the random number generator before using it?

A: Not necessarily. You might want a program to produce the exact same
sequence of “random” numbers each time it runs for testing purposes, for
example.

Q: How can I generate more truly random numbers?

A: There are third-party libraries that produce better pseudorandom numbers
than the ones that typically come with C++ compilers.

Questions and Answers 79

Q: Do all games use the game loop?

A: The game loop is just a way of looking at a typical game’s flow of events. And
just because this paradigm fits a particular game, that doesn’t necessarily
mean that the game is implemented with a loop around the bulk of its code.

Discussion Questions

1. What kinds of things would be difficult to program without loops?

2. What are the advantages and disadvantages of the switch statement ver-
sus a series of if statements?

3. When might you omit a break statement from the end of a case in a
switch statement?

4. When should you use a while loop over a do loop?

5. Describe your favorite game in terms of the game loop. Is the game loop
a good fit?

Exercises

1. Rewrite the Menu Chooser program from this chapter using an enumera-
tion to represent difficulty levels. The variable choice will still be of type
int.

2. What’s wrong with the following loop?

int x = 0;
while (x)
{

++x;
cout << x << endl;

}

3. Write a new version of the Guess My Number program in which the
player and the computer switch roles. That is, the player picks a number
and the computer must guess what it is.

80 Chapter 2 n Truth, Branching, and the Game Loop: Guess My Number

For Loops, Strings, and

Arrays: Word Jumble

You’ve seen how to work with single values, but in this chapter you’ll learn how
to work with sequences of data. You’ll learn more about strings—objects for
sequences of characters. You’ll also see how to work with sequences of any type.
And you’ll discover a new type of loop that’s perfect for use with these
sequences. Specifically, you’ll learn to:

n Use for loops to iterate over sequences

n Use objects, which combine data and functions

n Use string objects and their member functions to work with sequences
of characters

n Use arrays to store, access, and manipulate sequences of any type

n Use multidimensional arrays to better represent certain collections of
data

Using for Loops

You met one type of loop in Chapter 2—the while loop. Well, it’s time to meet
another—the for loop. Like its cousin the while loop, the for loop lets you
repeat a section of code, but for loops are particularly suited for counting and
moving through a sequence of things (like the items in an RPG character’s
inventory).

chapter 3

81

Here’s the generic form of for loop:

for (initialization; test; action)
statement;

initialization is a statement that sets up some initial condition for the loop.
(For example, it might set a counter variable to 0.) The expression test is tested
each time before the loop body executes, just as in a while loop. If test is false,
the program moves on to the statement after the loop. If test is true, the
program executes statement. Next, action is executed (which often involves
incrementing a counter variable). The cycle repeats until test is false, at which
point the loop ends.

Introducing the Counter Program

The Counter program counts forward, backward, and by fives. It even counts
out a grid with rows and columns. It accomplishes all of this through the use of
for loops. Figure 3.1 shows the program in action.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 3
folder; the filename is counter.cpp.

Figure 3.1
for loops do all of the counting, while a pair of nested for loops displays the grid.

82 Chapter 3 n For Loops, Strings, and Arrays: Word Jumble

// Counter
// Demonstrates for loops

#include <iostream>

using namespace std;

int main()
{

cout << "Counting forward:\n";
for (int i = 0; i < 10; ++i)
{

cout << i << " ";
}

cout << "\n\nCounting backward:\n";
for (int i = 9; i >= 0; --i)
{

cout << i << " ";
}

cout << "\n\nCounting by fives:\n";
for (int i = 0; i <= 50; i += 5)
{

cout << i << " ";
}

cout << "\n\nCounting with null statements:\n";
int count = 0;
for (; count < 10;)
{

cout << count << " ";
++count;

}

cout << "\n\nCounting with nested for loops:\n";
const int ROWS = 5;
const int COLUMNS = 3;
for (int i = 0; i < ROWS; ++i)
{

Using for Loops 83

for (int j = 0; j < COLUMNS; ++j)
{

cout << i << "," << j << " ";
}

cout << endl;
}

return 0;
}

T r a p

If you’re using an older compiler that doesn’t fully implement the current C++ standard, when you
try to compile this program, you might get an error that says something like: error: ’i’ :
redefinition; multiple initialization.

The best solution is to use a modern, compliant compiler. Luckily, you can download the popular
(and free) Microsoft Visual C++ Express Edition IDE, which includes a modern compiler, from
http://www.microsoft.com/express/.

If you must use your old compiler, you should declare any for loop counter variables just once for
all for loops in a scope. I cover the topic of scopes in Chapter 5, “Functions: Mad Lib.”

Counting with for Loops

The first for loop counts from 0 to 9. The loop begins:

for (int i = 0; i < 10; ++i)

The initialization statement, int i = 0, declares i and initializes it to 0. The
expression i < 10 says that the loop will continue as long as i is less than 10.
Lastly, the action statement, ++i, says i is to be incremented each time the loop
body finishes. As a result, the loop iterates 10 times—once for each of the values
0 through 9. And during each iteration, the loop body displays the value of i.

The next for loop counts from 9 down to 0. The loop begins:

for (int i = 9; i >= 0; --i)

Here, i is initialized to 9, and the loop continues as long as i is greater than or
equal to 0. Each time the loop body finishes, i is decremented. As a result, the
loop displays the values 9 through 0.

84 Chapter 3 n For Loops, Strings, and Arrays: Word Jumble

The next loop counts from 0 to 50, by fives. The loop begins:

for (int i = 0; i <= 50; i += 5)

Here, i is initialized to 0, and the loop continues as long as i is less than or equal
to 50. But notice the action statement, i += 5. This statement increases i by five
each time the loop body finishes. As a result, the loop displays the values 0, 5, 10,
15, and so on. The expression i <= 50 says to execute the loop body as long as i is
less than or equal to 50.

You can initialize a counter variable, create a test condition, and update the
counter variable with any values you want. However, the most common thing to
do is to start the counter at 0 and increment it by 1 after each loop iteration.

Finally, the caveats regarding infinite loops that you learned about while
studying while loops apply equally well to for loops. Make sure you create
loops that can end; otherwise, you’ll have a very unhappy gamer on your
hands.

Using Empty Statements in for Loops

You can use empty statements in creating your for loop, as I did in the following
loop:

for (; count < 10;)

I used an empty statement for the initialization and action statements. That’s
fine because I declared and initialized count before the loop and incremented it
inside the loop body. This loop displays the same sequence of integers as the
very first loop in the program. Although the loop might look odd, it’s perfectly
legal.

H i n t

Different game programmers have different traditions. In the last chapter, you saw that you can
create a loop that continues until it reaches an exit statement—such as a break—using while
(true). Well, some programmers prefer to create these kinds of loops using a for statement that
begins for (;;). Because the test expression in this loop is the empty statement, the loop will
continue until it encounters some exit statement.

Using for Loops 85

Nesting for Loops

You can nest for loops by putting one inside the other. That’s what I did in the
following section of code, which counts out the elements of a grid. The outer
loop, which begins:

for (int i = 0; i < ROWS; ++i)

simply executes its loop body ROWS (five) times. But it just so happens that there’s
another for loop inside this loop, which begins:

for (int j = 0; j < COLUMNS; ++j)

As a result, the inner loop executes in full for each iteration of the outer loop. In
this case, that means the inner loop executes COLUMNS (three) times, for the ROWS

(five) times the outer loop iterates, for a total of 15 times. Specifically, here’s
what happens:

1. The outer for loop declares i and initializes it to 0. Since i is less than
ROWS (5), the program enters the outer loop’s body.

2. The inner loop declares j and initializes it to 0. Since j is less than
COLUMNS (3), the program enters its loop body, sending the values of
i and j to cout, which displays 0, 0.

3. The program reaches the end of the body of the inner loop and
increments j to 1. Since j is still less than COLUMNS (3), the program
executes the inner loop’s body again, displaying 0, 1.

4. The program reaches the end of the inner loop’s body and increments j

to 2. Since j is still less than COLUMNS (3), the program executes the inner
loop’s body again, displaying 0, 2.

5. The program reaches the end of the inner loop’s body and increments j

to 3. This time, however, j is not less than COLUMNS (3) and the inner
loop ends.

6. The program finishes the first iteration of the outer loop by sending endl

to cout, ending the first row.

7. The program reaches the end of the outer loop’s body and increments i

to 1. Since i is less than ROWS (5), the program enters the outer loop’s
body again.

86 Chapter 3 n For Loops, Strings, and Arrays: Word Jumble

8. The program reaches the inner loop, which starts from the beginning
once again, by declaring and initializing j to 0. The program goes
through the process I described in Steps 2 through 7, displaying the sec-
ond row of the grid. This process continues until all five rows have been
displayed.

Again, the important thing to remember is that the inner loop is executed in full
for each iteration of the outer loop.

Understanding Objects

So far you’ve seen how to store individual pieces of information in variables and
how to manipulate those variables using operators and functions. But most of
the things you want to represent in games—such as, say, an alien spacecraft—
are objects. They’re encapsulated, cohesive things that combine qualities (such as
an energy level) and abilities (for example, firing weapons). Often it makes no
sense to talk about the individual qualities and abilities in isolation from each
other.

Fortunately, most modern programming languages let you work with software
objects (often just called objects) that combine data and functions. A data
element of an object is called a data member, while a function of an object is
called a member function. As a concrete example, think about that alien
spacecraft. An alien spacecraft object might be of a new type called Spacecraft,
defined by a game programmer, and might have a data member for its energy
level and a member function to fire its weapons. In practice, an object’s energy
level might be stored in its data member energy as an int, and its ability to fire
its weapons might be defined in a member function called fireWeapons().

Every object of the same type has the same basic structure, so each object will
have the same set of data members and member functions. However, as an
individual, each object will have its own values for its data members. If you had a
squadron of five alien spacecrafts, each would have its own energy level. One
might have an energy level of 75, while another might have a level of only 10,
and so on. Even if two crafts have the same energy level, each would belong to a
unique spacecraft. Each craft could also fire its own weapons with a call to its
member function, fireWeapons(). Figure 3.2 illustrates the concept of an alien
spacecraft.

Understanding Objects 87

The cool thing about objects is that you don’t need to know the implementation
details to use them—just as you don’t need to know how to build a car in order
to drive one. You only have to know the object’s data members and member
functions—just as you only need to know where a car’s steering wheel, gas pedal,
and brake pedal are located.

You can store objects in variables, just like with built-in types. Therefore, you
could store an alien spacecraft object in a variable of the Spacecraft type. You
can access data members and member functions using the member selection
operator (.), by placing the operator after the variable name of the object. So if
you want your alien spacecraft, ship, to fire its weapons only if its energy level is
greater than 10, you could write:

// ship is an object of Spacecraft type
if (ship.energy > 10)
{

ship.fireWeapons()
}

Figure 3.2
This representation of the definition of an alien spacecraft says that each object will have a data
member called energy and a member function called fireWeapons().

88 Chapter 3 n For Loops, Strings, and Arrays: Word Jumble

ship.energy accesses the object’s energy data member, while ship.fireWeapons()
calls the object’s fireWeapons() member function.

Although you can’t make your own new types (like for an alien spacecraft) just yet,
you can work with previously defined object types. And that’s next on the agenda.

Using String Objects

string objects, which you met briefly in Chapter 1, are the perfect way to work
with sequences of characters, whether you’re writing a complete word puzzle
game or simply storing a player’s name. A string is actually an object, and it
provides its own set of member functions that allow you to do a range of things
with the string object—everything from simply getting its length to performing
complex character substitutions. In addition, strings are defined so that they
work intuitively with a few of the operators you already know.

Introducing the String Tester Program

The String Tester program uses the string object equal to "Game Over!!!" and
tells you its length, the index (position number) of each character, and whether
or not certain substrings can be found in it. In addition, the program erases parts
of the string object. Figure 3.3 shows the results of the program.

Figure 3.3
String objects are combined, changed, and erased through familiar operators and string member
functions.

Using String Objects 89

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 3
folder; the filename is string_tester.cpp.

// String Tester
// Demonstrates string objects

#include <iostream>
#include <string>

using namespace std;

int main()
{

string word1 = "Game";
string word2("Over");
string word3(3, ’!’);

string phrase = word1 + " " + word2 + word3;
cout << "The phrase is: " << phrase << "\n\n";

cout << "The phrase has " << phrase.size() << " characters in it.\n\n";

cout << "The character at position 0 is: " << phrase[0] << "\n\n";

cout << "Changing the character at position 0.\n";
phrase[0] = ’L’;
cout << "The phrase is now: " << phrase << "\n\n";

for (unsigned int i = 0; i < phrase.size(); ++i)
{

cout << "Character at position " << i << " is: " << phrase[i] << endl;
}

cout << "\nThe sequence ’Over’ begins at location ";
cout << phrase.find("Over") << endl;

90 Chapter 3 n For Loops, Strings, and Arrays: Word Jumble

if (phrase.find("eggplant") == string::npos)
{

cout << "’eggplant’ is not in the phrase.\n\n";
}

phrase.erase(4, 5);
cout << "The phrase is now: " << phrase << endl;

phrase.erase(4);
cout << "The phrase is now: " << phrase << endl;

phrase.erase();
cout << "The phrase is now: " << phrase << endl;

if (phrase.empty())
{

cout << "\nThe phrase is no more.\n";
}

return 0;
}

Creating string Objects

The first thing I do in main() is create three strings in three different ways:

string word1 = "Game";
string word2("Over");
string word3(3, ’!’);

In the first line of this group, I simply create the string object word1 using the
assignment operator, the same way you’ve seen for other variables. As a result,
word1 is "Game".

Next, I create word2 by placing the string object to which I want the variable set
between a pair of parentheses. As a result, word2 is "Over".

Finally, I create word3 by supplying between a pair of parentheses a number
followed by a single character. This produces a string object made up of the
provided character, which has a length equal to the number. As a result, word3
is "!!!".

Using String Objects 91

Concatenating string Objects

Next, I create a new string object, phrase, by concatenating the first three
string objects:

string phrase = word1 + " " + word2 + word3;

As a result, phrase is "Game Over!!!".

Notice that the + operator, which you’ve seen work only with numbers, also
concatenates string objects. That’s because the + operator has been overloaded.
Now, when you first hear the term overloaded, you might think it’s a bad
thing—the operator is about to blow! But it’s a good thing. Operator over-
loading redefines a familiar operator so it works differently when used in a new,
previously undefined context. In this case, I use the + operator not to add
numbers, but to join string objects. I’m able to do this only because the string

type specifically overloads the + operator and defines it so the operator means
string object concatenation when used with strings.

Using the size() Member Function

Okay, it’s time to take a look at a string member function. Next, I use the
member function size():

cout << "The phrase has " << phrase.size() << " characters in it.\n\n";

phrase.size() calls the member function size() of the string object phrase

through the member selection operator . (the dot). The size() member
function simply returns an unsigned integer value of the size of the string

object—its number of characters. Because the string object is "Lame Over!!!",
the member function returns 12. (Every character counts, including spaces.)
Of course, calling size() for another string object might return a different
result based on the number of characters in the string object.

H i n t

string objects also have a member function length(), which, just like size(), returns the
number of characters in the string object.

92 Chapter 3 n For Loops, Strings, and Arrays: Word Jumble

Indexing a string Object

A string object stores a sequence of char values. You can access any individual
char value by providing an index number with the subscripting operator ([]).
That’s what I do next:

cout << "The character at position 0 is: " << phrase[0] << "\n\n";

The first element in a sequence is at position 0. In the previous statement, phrase
[0] is the character G. And because counting begins at 0, the last character in the
string object is phrase[11], even though the string object has 12 characters
in it.

T r a p

It’s a common mistake to forget that indexing begins at position 0. Remember, a string object
with n characters in it can be indexed from position 0 to position n � 1.

Not only can you access characters in a string object with the subscripting
operator, but you can also reassign them. That’s what I do next:

phrase[0] = ’L’;

I change the first character of phrase to the character L, which means phrase

becomes "Lame Over!!!"

T r a p

Cþþ compilers do not perform bounds checking when working with string objects and the
subscripting operator. This means that the compiler doesn’t check to see whether you’re
attempting to access an element that doesn’t exist. Accessing an invalid sequence element can
lead to disastrous results because it’s possible to write over critical data in your computer’s
memory. By doing this, you can crash your program, so take care when using the subscripting
operator.

Iterating through string Objects

Given your new knowledge of for loops and string objects, it’s a snap to iterate
through the individual characters of a string object. That’s what I do next:

for (unsigned int i = 0; i < phrase.size(); ++i)
{

cout << "Character at position " << i << " is: " << phrase[i] << endl;
}

Using String Objects 93

The loop iterates through all of the valid positions of phrase. It starts with 0 and
goes through 11. During each iteration, a character of the string object is
displayed with phrase[i]. Note that I made the loop variable, i, an unsigned int

because the value returned by size() is an unsigned integral type.

R e a l Wo r l d

Iterating through a sequence is a powerful and often-used technique in games. You might, for
example, iterate through hundreds of individual units in a strategy game, updating their status and
order. Or you might iterate through the list of vertices of a 3D model to apply some geometric
transformation.

Using the find() Member Function

Next I use the member function find() to check whether either of two string
literals are contained in phrase. First, I check for the string literal "Over":

cout << "\nThe sequence ’Over’ begins at location ";
cout << phrase.find("Over") << endl;

The find() member function searches the calling string object for the string
supplied as an argument. The member function returns the position number of
the first occurrence where the string object for which you are searching begins
in the calling string object. This means that phrase.find("Over") returns the
position number where the first occurrence of "Over" begins in phrase. Since
phrase is "Lame Over!!!", find() returns 5. (Remember, position numbers begin
at 0, so 5 means the sixth character.)

But what if the string for which you are searching doesn’t exist in the calling
string? I tackle that situation next:

if (phrase.find("eggplant") == string::npos)
{

cout << "’eggplant’ is not in the phrase.\n\n";
}

Because "eggplant" does not exist in phrase, find() returns a special constant
defined in the file string, which I access with string::npos. As a result, the
screen displays the message, “’eggplant’ is not in the phrase.”

94 Chapter 3 n For Loops, Strings, and Arrays: Word Jumble

The constant I access through string::npos represents the largest possible size
of a string object, so it is greater than any possible valid position number in a
string object. Informally, it means “a position number that can’t exist.” It’s
the perfect return value to indicate that one string couldn’t be found in
another.

H i n t

When using find(), you can supply an optional argument that specifies a character number for
the program to start looking for the substring. The following line will start looking for the string
literal "eggplant" beginning at position 5 in the string object phrase.

location = phrase.find("eggplant", 5);

Using the erase() Member Function

The erase() member function removes a specified substring from a string

object. One way to call the member function is to specify the beginning position
and the length of the substring, as I did in this code:

phrase.erase(4, 5);

The previous line removes the five-character substring starting at position 4.
Because phrase is "Lame Over!!!", the member function removes the substring
Over and, as a result, phrase becomes "Lame!!!".

Another way to call erase() is to supply just the beginning position of the
substring. This removes all of the characters starting at that position number to
the end of the string object. That’s what I do next:

phrase.erase(4);

This line removes all of the characters of the string object starting at position 4.
Since phrase is "Lame!!!", the member function removes the substring !!! and,
as a result, phrase becomes "Lame".

Yet another way to call erase() is to supply no arguments, as I did in this code:

phrase.erase();

Using String Objects 95

The previous line erases every character in phrase. As a result, phrase becomes
the empty string, which is equal to "".

Using the empty() Member Function

The empty() member function returns a bool value—true if the string object is
empty and false otherwise. I use empty() in the following code:

if (phrase.empty())
{

cout << "\nThe phrase is no more.\n";
}

Because phrase is equal to the empty string, phrase().empty returns true, and
the screen displays the message, “The phrase is no more.”

Using Arrays

While string objects provide a great way to work with a sequence of characters,
arrays provide a way to work with elements of any type. That means you can use
an array to store a sequence of integers for, say, a high-score list. But it also
means that you can use arrays to store elements of programmer-defined types,
such as a sequence of items that an RPG character might carry.

Introducing the Hero’s Inventory Program

The Hero’s Inventory program maintains the inventory of a hero from a typical
RPG. Like in most RPGs, the hero is from a small, insignificant village,
and his father was killed by an evil warlord. (What’s a quest without a dead
father?) Now that the hero has come of age, it’s time for him to seek his
revenge.

In this program, the hero’s inventory is represented by an array. The array is a
sequence of string objects—one for each item in the hero’s possession. The
hero trades and even finds new items. Figure 3.4 shows the program in action.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 3
folder; the filename is heros_inventory.cpp.

96 Chapter 3 n For Loops, Strings, and Arrays: Word Jumble

// Hero’s Inventory
// Demonstrates arrays

#include <iostream>
#include <string>

using namespace std;

int main()
{

const int MAX_ITEMS = 10;
string inventory[MAX_ITEMS];

int numItems = 0;
inventory[numItems++] = "sword";
inventory[numItems++] = "armor";
inventory[numItems++] = "shield";

cout << "Your items:\n";
for (int i = 0; i < numItems; ++i)
{

cout << inventory[i] << endl;
}

Figure 3.4
The hero’s inventory is a sequence of string objects stored in an array.

Using Arrays 97

cout << "\nYou trade your sword for a battle axe.";
inventory[0] = "battle axe";
cout << "\nYour items:\n";
for (int i = 0; i < numItems; ++i)
{

cout << inventory[i] << endl;
}

cout << "\nThe item name ’" << inventory[0] << "’ has ";
cout << inventory[0].size() << " letters in it.\n";

cout << "\nYou find a healing potion.";
if (numItems < MAX_ITEMS)
{

inventory[numItems++] = "healing potion";
}
else
{

cout << "You have too many items and can’t carry another.";
}
cout << "\nYour items:\n";
for (int i = 0; i < numItems; ++i)
{

cout << inventory[i] << endl;
}

return 0;
}

Creating Arrays

It’s often a good idea to define a constant for the number of elements in an
array. That’s what I did with MAX_ITEMS, which represents the maximum number
of items the hero can carry:

const int MAX_ITEMS = 10;

You declare an array much the same way you would declare any variable you’ve
seen so far: You provide a type followed by a name. In addition, your compiler
must know the size of the array so it can reserve the necessary memory space.
You can provide that information following the array name, surrounded by
square brackets. Here’s how I declare the array for the hero’s inventory:

string inventory[MAX_ITEMS];

98 Chapter 3 n For Loops, Strings, and Arrays: Word Jumble

The preceding code declares an array inventory of MAX_ITEMS string objects.
(Because MAX_ITEMS is 10, that means 10 string objects.)

T r i c k

You can initialize an array with values when you declare it by providing an initializer list—a
sequence of elements separated by commas and surrounded by curly braces. Here’s an example:

string inventory[MAX_ITEMS] = {"sword", "armor", "shield"};

The preceding code declares an array of string objects, inventory, that has a size of
MAX_ITEMS. The first three elements of the array are initialized to "sword", "armor", and
"shield".

If you omit the number of elements when using an initializer list, the array will be created with a
size equal to the number of elements in the list. Here’s an example:

string inventory[] = {"sword", "armor", "shield"};

Because there are three elements in the initializer list, the preceding line creates an array,
inventory, that is three elements in size. Its elements are "sword", "armor", and
"shield".

Indexing Arrays

You index arrays much like you index string objects. You can access any
individual element by providing an index number with the subscripting operator
([]).

Next, I add three items to the hero’s inventory using the subscripting operator:

int numItems = 0;
inventory[numItems++] = "sword";
inventory[numItems++] = "armor";
inventory[numItems++] = "shield";

I start by defining numItems for the number of items the hero is carrying at the
moment. Next I assign "sword" to position 0 of the array. Because I use the
postfix increment operator, numItems is incremented after the assignment to the
array. The next two lines add "armor" and "shield" to the array, leaving
numItems at the correct value of 3 when the code finishes.

Now that the hero is stocked with some items, I display his inventory:

cout << "Your items:\n";
for (int i = 0; i < numItems; ++i)

Using Arrays 99

{
cout << inventory[i] << endl;

}

This should remind you of string indexing. The code loops through the first
three elements of inventory, displaying each string object in order.

Next, the hero trades his sword for a battle axe. I accomplish this through the
following line:

inventory[0] = "battle axe";

The previous code reassigns the element at position 0 in inventory with the
string object "battle axe". Now the first three elements of inventory are
"battle axe", "armor", and "shield".

T r a p

Array indexing begins at 0, just as you saw with string objects. This means that the following
code defines a five-element array:

int highScores[5];

Valid position numbers are 0 through 4, inclusive. There is no element highScores[5]! An
attempt to access highScores[5] could lead to disastrous results, including a program crash.

Accessing Member Functions of an Array Element

You can access the member functions of an array element by writing the array
element, followed by the member selection operator, followed by the member
function name. This sounds a bit complicated, but it’s not. Here’s an example:

cout << inventory[0].size() << " letters in it.\n";

The code inventory[0].size() means the program should call the size()

member function of the element inventory[0]. In this case, because
inventory[0] is "battle axe", the call returns 10, the number of characters in
the string object.

Being Aware of Array Bounds

As you learned, you have to be careful when you index an array. Because an
array has a fixed size, you can create an integer constant to store the size of an
array. Again, that’s just what I did in the beginning of the program:

const int MAX_ITEMS = 10;

100 Chapter 3 n For Loops, Strings, and Arrays: Word Jumble

In the following lines, I use MAX_ITEMS to protect myself before adding another
item to the hero’s inventory:

if (numItems < MAX_ITEMS)
{

inventory[numItems++] = "healing potion";
}
else
{

cout << "You have too many items and can’t carry another.";
}

In the preceding code, I first checked to see whether numItems is less than
MAX_ITEMS. If it is, then I can safely use numItems as an index and assign a new
string object to the array. In this case numItems is 3, so I assign the string
"healing potion" to array position 3. If this hadn’t been the case, then I would
have displayed the message, “You have too many items and can’t carry another.”

So what happens if you do attempt to access an array element outside the
bounds of the array? It depends, because you’d be accessing some unknown part
of the computer’s memory. At worst, if you attempt to assign some value to an
element outside the bounds of an array you could cause your program to do
unpredictable things and it might even crash.

Testing to make sure that an index number is a valid array position before using
it is called bounds checking. It’s critical for you to perform bounds checking
when there’s a chance that an index you want to use might not be valid.

Understanding C-Style Strings

Before string objects came along, C++ programmers represented strings with
arrays of characters terminated by a null character. These arrays of characters
are now called C-style strings because the practice began in C programs. You can
declare and initialize a C-style string like you would any other array:

char phrase[] = "Game Over!!!";

C-style strings terminate with a character called the null character to signify
their end. You can write the null character as ’\0’. I didn’t need to use the null
character in the previous code because it is stored at the end of the string for me.
So technically, phrase has 13 elements. (However, functions that work with

Understanding C-Style Strings 101

C-style strings will say that phrase has a length of 12, which makes sense and is
in line with how string objects work.)

As with any other type of array, you can specify the array size when you define
it. So another way to declare and initialize a C-style string is

char phrase[81] = "Game Over!!!";

The previous code creates a C-style string that can hold 80 printable characters
(plus its terminating null character).

C-style strings don’t have member functions. But the cstring file, which is part of
the standard library, contains a variety of functions for workingwith C-style strings.

A nice thing about string objects is that they’re designed to work seamlessly
with C-style strings. For example, all of the following are completely valid uses of
C-style strings with string objects:

string word1 = "Game";
char word2[] = " Over";

string phrase = word1 + word2;

if (word1 != word2)
{

cout << "word1 and word2 are not equal.\n";
}

if (phrase.find(word2) != string::npos)
{

cout << "word2 is contained in phrase.\n";
}

You can concatenate string objects and C-style strings, but the result is always a
string object (so the code char phrase2[] = word1 + word2; would produce an
error). You can compare string objects and C-style strings using the relational
operators. And you can even use C-style strings as arguments in string object
member functions.

C-style strings have the same shortcomings as arrays. One of the biggest is that
their lengths are fixed. So the moral is: Use string objects whenever possible,
but be prepared to work with C-style strings if necessary.

102 Chapter 3 n For Loops, Strings, and Arrays: Word Jumble

Using Multidimensional Arrays

As you’ve seen, sequences are great for games. You can use them in the form of a
string to store a player’s name, or you can use them in the form of an array to
store a list of items in an RPG. But sometimes part of a game cries out for more
than a linear list of things. Sometimes part of a game literally requires
more dimension. For example, while you could represent a chessboard with a
64-element array, it really is much more intuitive to work with it as a two-
dimensional entity of 8� 8 elements. Fortunately, you can create an array of two
or three (or even more) dimensions to best fit your game’s needs.

Introducing the Tic-Tac-Toe Board Program

The Tic-Tac-Toe Board program displays a tic-tac-toe board. The program
displays the board and declares X the winner. Although the program could have
been written using a one-dimensional array, it uses a two-dimensional array to
represent the board. Figure 3.5 illustrates the program.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 3
folder; the filename is tic-tac-toe_board.cpp.

Figure 3.5
The tic-tac-toe board is represented by a two-dimensional array.

Using Multidimensional Arrays 103

// Tic-Tac-Toe Board
// Demonstrates multidimensional arrays

#include <iostream>

using namespace std;

int main()
{

const int ROWS = 3;
const int COLUMNS = 3;
char board[ROWS][COLUMNS] = { {’O’, ’X’, ’O’},

{’ ’, ’X’, ’X’},
{’X’, ’O’, ’O’} };

cout << "Here’s the tic-tac-toe board:\n";
for (int i = 0; i < ROWS; ++i)
{

for (int j = 0; j < COLUMNS; ++j)
{

cout << board[i][j];
}

cout << endl;
}

cout << "\n’X’ moves to the empty location.\n\n";
board[1][0] = ’X’;

cout << "Now the tic-tac-toe board is:\n";
for (int i = 0; i < ROWS; ++i)
{

for (int j = 0; j < COLUMNS; ++j)
{

cout << board[i][j];
}

cout << endl;
}

104 Chapter 3 n For Loops, Strings, and Arrays: Word Jumble

cout << "\n’X’ wins!";

return 0;
}

Creating Multidimensional Arrays

One of the first things I do in the program is declare and initialize an array for
the tic-tac-toe board.

char board[ROWS][COLUMNS] = { {’O’, ’X’, ’O’},
{’ ’, ’X’, ’X’},
{’X’, ’O’, ’O’} };

The preceding code declares a 3� 3 (since ROWS and COLUMNS are both 3) two-
dimensional character array. It also initializes all of the elements.

H i n t

It’s possible to simply declare a multidimensional array without initializing it. Here’s an example:

char chessBoard[8][8];

The preceding code declares an 8� 8, two-dimensional character array, chessBoard. By the
way, multidimensional arrays aren’t required to have the same size for each dimension. The
following is a perfectly valid declaration for a game map represented by individual characters:

char map[12][20];

Indexing Multidimensional Arrays

The next thing I do in the program is display the tic-tac-toe board. But before I
get into the details of that, I want to explain how to index an individual array
element. You index an individual element of a multidimensional array by
supplying a value for each dimension of the array. That’s what I do to place
an X in the array where a space was:

board[1][0] = ’X’;

The previous code assigns the character to the element at board[1][0] (which
was ’ ’). Then I display the tic-tac-toe board after the move the same way I
displayed it before the move.

for (int i = 0; i < ROWS; ++i)
{

Using Multidimensional Arrays 105

for (int j = 0; j < COLUMNS; ++j)
{

cout << board[i][j];
}

cout << endl;
}

By using a pair of nested for loops, I move through the two-dimensional array
and display the character elements as I go, forming a tic-tac-toe board.

Introducing Word Jumble

Word Jumble is a puzzle game in which the computer creates a version of a
word where the letters are in random order. The player has to guess the word to
win the game. If the player is stuck, he or she can ask for a hint. Figure 3.6 shows
the game.

Figure 3.6
Hmm. . .the word looks “jumbled.”

106 Chapter 3 n For Loops, Strings, and Arrays: Word Jumble

R e a l Wo r l d

Even though puzzle games don’t usually break into the top-ten list of games, major companies still
publish them year after year. Why? For one simple reason: They’re profitable. Puzzle games, while
not usually blockbusters, can still sell well. There are many gamers out there (casual and hardcore)
who are drawn to the Zen of a well-designed puzzle game. And puzzle games cost much less to
produce than the high-profile games that require large production teams and years of development
time.

Setting Up the Program

As usual, I start with some comments and include the files I need. You can
download the code for this program from the Course Technology website (www.
courseptr.com/downloads). The program is in the Chapter 3 folder; the filename
is word_jumble.cpp.

// Word Jumble
// The classic word jumble game where the player can ask for a hint

#include <iostream>
#include <string>
#include <cstdlib>
#include <ctime>

using namespace std;

Picking a Word to Jumble

My next task is to pick a word to jumble—the word the player will try to guess.
First, I create a list of words and hints:

int main()
{

enum fields {WORD, HINT, NUM_FIELDS};
const int NUM_WORDS = 5;
const string WORDS[NUM_WORDS][NUM_FIELDS] =
{

{"wall", "Do you feel you’re banging your head against something?"},
{"glasses", "These might help you see the answer."},
{"labored", "Going slowly, is it?"},
{"persistent", "Keep at it."},
{"jumble", "It’s what the game is all about."}

};

Introducing Word Jumble 107

I declare and initialize a two-dimensional array with words and corresponding
hints. The enumeration defines enumerators for accessing the array. For
example, WORDS[x][WORD] is always a string object that is one of the words,
while WORDS[x][HINT] is the corresponding hint.

T r i c k

You can list a final enumerator in an enumeration as a convenient way to store the number of
elements. Here’s an example:

enum difficulty {EASY, MEDIUM, HARD, NUM_DIFF_LEVELS};
cout << "There are " << NUM_DIFF_LEVELS << " difficulty levels.";

In the previous code, NUM_DIFF_LEVELS is 3, the exact number of difficulty levels in the
enumeration. As a result, the second line of code displays the message, "There are 3 difficulty
levels."

Next, I pick a random word from my choices.

srand(static_cast<unsigned int>(time(0)));
int choice = (rand() % NUM_WORDS);
string theWord = WORDS[choice][WORD]; // word to guess
string theHint = WORDS[choice][HINT]; // hint for word

I generate a random index based on the number of words in the array. Then I
assign both the random word at that index and it’s corresponding hint to the
variables theWord and theHint.

Jumbling the Word

Now that I have the word for the player to guess, I need to create a jumbled
version of it.

string jumble = theWord; // jumbled version of word
int length = jumble.size();
for (int i = 0; i < length; ++i)
{

int index1 = (rand() % length);
int index2 = (rand() % length);
char temp = jumble[index1];
jumble[index1] = jumble[index2];
jumble[index2] = temp;

}

108 Chapter 3 n For Loops, Strings, and Arrays: Word Jumble

In the preceding code, I created a copy of the word jumble to. . .well, jumble. I
generated two random positions in the string object and swapped the
characters at those positions. I did this a number of times equal to the length
of the word.

Welcoming the Player

Now it’s time to welcome the player, which is what I do next.

cout << "\t\t\tWelcome to Word Jumble!\n\n";
cout << "Unscramble the letters to make a word.\n";
cout << "Enter ’hint’ for a hint.\n";
cout << "Enter ’quit’ to quit the game.\n\n";
cout << "The jumble is: " << jumble;

string guess;
cout << "\n\nYour guess: ";
cin >> guess;

I gave the player instructions on how to play, including how to quit and how to
ask for a hint.

H i n t

As enthralling as you think your game is, you should always provide a way for the player to exit it.

Entering the Game Loop

Next, I enter the game loop.

while ((guess != theWord) && (guess != "quit"))
{

if (guess == "hint")
{

cout << theHint;
}
else
{

cout << "Sorry, that’s not it.";
}

cout <<"\n\nYour guess: ";

Introducing Word Jumble 109

cin >> guess;
}

The loop continues to ask the player for a guess until the player either guesses
the word or asks to quit.

Saying Goodbye

When the loop ends, the player has either won or quit, so it’s time to say
goodbye.

if (guess == theWord)
{

cout << "\nThat’s it! You guessed it!\n";
}

cout << "\nThanks for playing.\n";

return 0;
}

If the player has guessed the word, I congratulate him or her. Finally, I thank the
player for playing.

Summary

In this chapter, you learned the following concepts:

n The for loop lets you repeat a section of code. In a for loop, you can
provide an initialization statement, an expression to test, and an action
to take after each loop iteration.

n for loops are often used for counting or looping through a sequence.

n Objects are encapsulated, cohesive entities that combine data (called data
members) and functions (called member functions).

n string objects (often just called strings) are defined in the file string,
which is part of the standard library. string objects allow you to store a
sequence of characters and also have member functions.

n string objects are defined so that they work intuitively with familiar
operators, such as the concatenation operator and the relational operators.

110 Chapter 3 n For Loops, Strings, and Arrays: Word Jumble

n All string objects have member functions, including those for
determining a string object’s length, determining whether or not a
string object is empty, finding substrings, and removing substrings.

n Arrays provide a way to store and access sequences of any type.

n A limitation of arrays is that they have a fixed length.

n You can access individual elements of string objects and arrays through
the subscripting operator.

n Bounds checking is not enforced when attempts are made to access
individual elements of string objects or arrays. Therefore, bounds
checking is up to the programmer.

n C-style strings are character arrays terminated with the null character.
They are the standard way to represent strings in the C language. And
even though C-style strings are perfectly legal in Cþþ, string objects
are the preferred way to work with sequences of characters.

n Multidimensional arrays allow for access to array elements using
multiple subscripts. For example, a chessboard can be represented as a
two-dimensional array, 8� 8 elements.

Questions and Answers

Q: Which is better, a while loop or a for loop?

A: Neither is inherently better than the other. Use the loop that best fits your
needs.

Q: When might it be better to use a for loop than a while loop?

A: You can create a while loop to do the job of any for loop; however, there are
some cases that cry out for a for loop. Those include counting and iterating
through a sequence.

Q: Can I use break and continue statements with for loops?

A: Sure. And they behave just like they do in while loops: break ends the loop
and continue jumps control back to the top of the loop.

Q: Why do programmers tend to use variable names such as i, j, and k as
counters in for loops?

Questions and Answers 111

A: Believe it or not, programmers use i, j, and k mainly out of tradition. The
practice started in early versions of the FORTRAN language, in which integer
variables had to start with certain letters, including i, j, and k.

Q: I don’t have to include a file to use int or char types, so why do I have to
include the string file to use strings?

A: int and char are built-in types. They’re always accessible in any Cþþ

program. The string type, on the other hand, is not a built-in type. It’s
defined as part of the standard library in the file string.

Q: How did C-style strings get their name?

A: In the C programming language, programmers represent strings with arrays
of characters terminated by a null character. This practice carried over to
Cþþ. After the new string type was introduced in Cþþ, programmers
needed a way to differentiate between the two. Therefore, the old method was
dubbed C-style strings.

Q: Why should I use string objects instead of C-style strings?

A: string objects have advantages over C-style strings. The most obvious is that
they are dynamically sizeable. You don’t have to specify a length limit when
you create one.

Q: Should I ever use C-style strings?

A: You should opt for string objects whenever possible. If you’re working on
an existing project that uses C-style strings, then you might have to work
with C-style strings.

Q: What is operator overloading?

A: It’s a process that allows you to define the use of familiar operators in
different contexts with different but predictable results. For example, the +

operator that is used to add numbers is overloaded by the string type to join
strings.

Q: Can’t operator overloading be confusing?

A: It’s true that by overloading an operator you give it another meaning. But the
new meaning applies only in a specific new context. For example, it’s clear in

112 Chapter 3 n For Loops, Strings, and Arrays: Word Jumble

the expression 4 + 6 that the + operator adds numbers, while in the expression
myString1 + myString2, the + operator joins strings.

Q: Can I use the += operator to concatenate strings?

A: Yes, the += operator is overloaded so it works with strings.

Q: To get the number of characters in a string object, should I use the length()

member function or the size() member function?

A: Both length() and size() return the same value, so you can use either.

Q: What’s a predicate function?

A: A function that returns either true or false. The string object member
function empty() is an example of a predicate function.

Q: What happens if I try to assign a value to an element beyond the bounds of
an array?

A: Cþþ will allow you to make the assignment. However, the results are
unpredictable and might cause your program to crash. That’s because you’re
altering some unknown part of your computer’s memory.

Q: Why should I use multidimensional arrays?

A: To make working with a group of elements more intuitive. For example,
you could represent a chessboard with a one-dimensional array, as in
chessBoard[64], or you could represent it with a more intuitive, two-
dimensional array, as in chessBoard[8][8].

Discussion Questions

1. What are some of the things from your favorite game that you could
represent as objects? What might their data members and member
functions be?

2. What are the advantages of using an array over a group of individual
variables?

3. What are some limitations imposed by a fixed array size?

Discussion Questions 113

4. What are the advantages and disadvantages of operator overloading?

5. What kinds of games could you create using string objects, arrays, and
for loops as your main tools?

Exercises

1. Improve the Word Jumble game by adding a scoring system. Make the
point value for a word based on its length. Deduct points if the player
asks for a hint.

2. What’s wrong with the following code?

for (int i = 0; i <= phrase.size(); ++i)

{
cout << "Character at position " << i << " is: " << phrase[i] << endl;

}

3. What’s wrong with the following code?

const int ROWS = 2;

const int COLUMNS = 3;
char board[COLUMNS][ROWS] = { {’O’, ’X’, ’O’},

{’ ’, ’X’, ’X’} };

114 Chapter 3 n For Loops, Strings, and Arrays: Word Jumble

The Standard Template

Library: Hangman

So far you’ve seen how to work with sequences of values using arrays. But there
are more sophisticated ways to work with collections of values. In fact, working
with collections is so common that part of standard C++ is dedicated to doing
just that. In this chapter, you’ll get an introduction to this important library.
Specifically, you’ll learn to:

n Use vector objects to work with sequences of values

n Use vector member functions to manipulate sequence elements

n Use iterators to move through sequences

n Use library algorithms to work with groups of elements

n Plan your programs with pseudocode

Introducing the Standard Template Library

Good game programmers are lazy. It’s not that they don’t want to work; it’s just
that they don’t want to redo work that’s already been done—especially if it has
been done well. The STL (Standard Template Library) represents a powerful
collection of programming work that’s been done well. It provides a group of
containers, algorithms, and iterators, among other things.

So what’s a container and how can it help you write games? Well, containers let
you store and access collections of values of the same type. Yes, arrays let you do

chapter 4

115

the same thing, but the STL containers offer more flexibility and power than a
simple but trusty array. The STL defines a variety of container types; each works
in a different way to meet different needs.

The algorithms defined in the STL work with its containers. The algorithms are
common functions that game programmers find themselves repeatedly applying
to groups of values. They include algorithms for sorting, searching, copying,
merging, inserting, and removing container elements. The cool thing is that the
same algorithm can work its magic on many different container types.

Iterators are objects that identify elements in containers and can be manipulated
to move among elements. They’re great for, well, iterating through containers. In
addition, iterators are required by the STL algorithms.

All of this makes a lot more sense when you see an actual implementation of one
of the container types, so that’s up next.

Using Vectors

The vector class defines one kind of container provided by the STL. It meets the
general description of a dynamic array—an array that can grow and shrink in
size as needed. In addition, vector defines member functions to manipulate
vector elements. This means that the vector has all of the functionality of the
array plus more.

At this point, you may be thinking to yourself: Why learn to use these fancy new
vectors when I can already use arrays? Well, vectors have certain advantages
over arrays, including:

n Vectors can grow as needed while arrays cannot. This means that if you
use a vector to store objects for enemies in a game, the vector will grow
to accommodate the number of enemies that get created. If you use an
array, you have to create one that can store some maximum number of
enemies. And if, during play, you need more room in the array than you
thought, you’re out of luck.

n Vectors can be used with the STL algorithms while arrays cannot. This
means that by using vectors you get complex functionality like searching
and sorting, built-in. If you use arrays, you have to write your own code
to achieve this same functionality.

116 Chapter 4 n The Standard Template Library: Hangman

There are a few disadvantages to vectors when compared to arrays, including:

n Vectors require a bit of extra memory as overhead.

n There can be a performance cost when a vector grows in size.

n Vectors may not be available on some game console systems.

Overall, vectors (and the STL) can be a welcome tool in most any project.

Introducing the Hero’s Inventory 2.0 Program

From the user’s point of view, the Hero’s Inventory 2.0 program is similar to its
predecessor, the Hero’s Inventory program from Chapter 3. The new version
stores and works with a collection of string objects that represent a hero’s
inventory. However, from the programmer’s perspective the program is quite
different. That’s because the new program uses a vector instead of an array to
represent the inventory. Figure 4.1 shows the results of the program.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 4
folder; the filename is heros_inventory2.cpp.

Figure 4.1
This time the hero’s inventory is represented by a vector.

Using Vectors 117

// Hero’s Inventory 2.0
// Demonstrates vectors

#include <iostream>
#include <string>
#include <vector>

using namespace std;

int main()
{

vector<string> inventory;
inventory.push_back("sword");
inventory.push_back("armor");
inventory.push_back("shield");

cout << "You have " << inventory.size() << " items.\n";

cout << "\nYour items:\n";
for (unsigned int i = 0; i < inventory.size(); ++i)
{

cout << inventory[i] << endl;
}

cout << "\nYou trade your sword for a battle axe.";
inventory[0] = "battle axe";
cout << "\nYour items:\n";
for (unsigned int i = 0; i < inventory.size(); ++i)
{

cout << inventory[i] << endl;
}

cout << "\nThe item name ’" << inventory[0] << "’ has ";
cout << inventory[0].size() << " letters in it.\n";

cout << "\nYour shield is destroyed in a fierce battle.";
inventory.pop_back();
cout << "\nYour items:\n";
for (unsigned int i = 0; i < inventory.size(); ++i)
{

118 Chapter 4 n The Standard Template Library: Hangman

cout << inventory[i] << endl;
}

cout << "\nYou were robbed of all of your possessions by a thief.";
inventory.clear();
if (inventory.empty())
{

cout << "\nYou have nothing.\n";
}
else
{

cout << "\nYou have at least one item.\n";
}

return 0;
}

Preparing to Use Vectors

Before I can declare a vector, I have to include the file that contains its
definition:

#include <vector>

All STL components live in the std namespace, so by using the following code
(as I typically do) I can refer to a vector without having to precede it with std::.

using namespace std;

Declaring a Vector

Okay, the first thing I do in main() is declare a new vector.

vector<string> inventory;

The preceding line declared an empty vector named inventory, which can
contain string object elements. Declaring an empty vector is fine because it
grows in size when you add new elements.

To declare a vector of your own, write vector followed by the type of objects you
want to use with the vector (surrounded by the < and > symbols), followed by
the vector name.

Using Vectors 119

H i n t

There are additional ways to declare a vector. You can declare one with a starting size by specifying
a number in parentheses after the vector name.

vector<string> inventory(10);

The preceding code declared a vector to hold string object elements with a starting size of 10.
You can also initialize all of a vector’s elements to the same value when you declare it. You simply
supply the number of elements followed by the starting value, as in:

vector<string> inventory(10, "nothing");

The preceding code declared a vector with a size of 10 and initialized all 10 elements to
"nothing". Finally, you can declare a vector and initialize it with the contents of another vector.

vector<string> inventory(myStuff);

The preceding code created a new vector with the same contents as the vector myStuff.

Using the push_back() Member Function

Next I give the hero the same three starting items as in the previous version of
the program.

inventory.push_back("sword");
inventory.push_back("armor");
inventory.push_back("shield");

The push_back() member function adds a new element to the end of a vector. In
the preceding lines I added "sword", "armor", and "shield" to inventory. As a
result, inventory[0] is equal to "sword", inventory[1] is equal to "armor", and
inventory[2] is equal to "shield".

Using the size() Member Function

Next I display the number of items the hero has in his possession.

cout << "You have " << inventory.size() << " items.\n";

I get the size of inventory by calling the size() member function with
inventory.size(). The size() member function simply returns the size of a
vector. In this case, it returns 3.

120 Chapter 4 n The Standard Template Library: Hangman

Indexing Vectors

Next I display all of the hero’s items.

cout << "\nYour items:\n";
for (unsigned int i = 0; i < inventory.size(); ++i)
{

cout << inventory[i] << endl;
}

Just as with arrays, you can index vectors by using the subscripting operator. In
fact, the preceding code is nearly identical to the same section of code from the
original Hero’s Inventory program. The only difference is that I used inventory.

size() to specify when the loop should end. Note that I made the loop variable i

an unsigned int because the value returned by size() is an unsigned integral type.

Next I replace the hero’s first item.

inventory[0] = "battle axe";

Again, just as with arrays, I use the subscripting operator to assign a new value
to an existing element position.

T r a p

Although vectors are dynamic, you can’t increase a vector’s size by applying the subscripting
operator. For example, the following highly dangerous code snippet does not increase the size of
the vector inventory:

vector<string> inventory; //creating an empty vector
inventory[0] = "sword"; //may cause your program to crash!

Just as with arrays, you can attempt to access a nonexistent element position—but with potentially
disastrous results. The preceding code changed some unknown section of your computer’s memory
and could cause your program to crash. To add a new element at the end of a vector, use the
push_back() member function.

Calling Member Functions of an Element

Next I show the number of letters in the name of the first item in the hero’s
inventory.

cout << inventory[0].size() << " letters in it.\n";

Using Vectors 121

Just as with arrays, you can access the member functions of a vector element by
writing the element, followed by the member selection operator, followed by
the member function name. Because inventory[0] is equal to "battle axe",
inventory[0].size() returns 10.

Using the pop_back() Member Function

I remove the hero’s shield using

inventory.pop_back();

The pop_back() member function removes the last element of a vector and
reduces the vector size by one. In this case, inventory.pop_back() removes
"shield" from inventory because that was the last element in the vector. Also,
the size of inventory is reduced from 3 to 2.

Using the clear() Member Function

Next I simulate the act of a thief robbing the hero of all of his items.

inventory.clear();

The clear() member function removes all of the items of a vector and sets its
size to 0. After the previous line of code executes, inventory is an empty vector.

Using the empty() Member Function

Finally, I check to see whether the hero has any items in his inventory.

if (inventory.empty())
{

cout << "\nYou have nothing.\n";
}
else
{

cout << "\nYou have at least one item.\n";
}

The vector member function empty() works just like the string member
function empty(). It returns true if the vector object is empty; otherwise, it
returns false. Because inventory is empty in this case, the program displays the
message, “You have nothing.”

122 Chapter 4 n The Standard Template Library: Hangman

Using Iterators

Iterators are the key to using containers to their fullest potential. With iterators
you can, well, iterate through a sequence container. In addition, important parts
of the STL require iterators. Many container member functions and STL
algorithms take iterators as arguments. So if you want to reap the benefits of
these member functions and algorithms, you’ve got to use iterators.

Introducing the Hero’s Inventory 3.0 Program

The Hero’s Inventory 3.0 program acts like its two predecessors, at least at the
start. The program shows off a list of items, replaces the first item, and displays
the number of letters in the name of an item. But then the program does
something new: It inserts an item at the beginning of the group, and then it
removes an item from the middle of the group. The program accomplishes all of
this by working with iterators. Figure 4.2 shows the program in action.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 4
folder; the filename is heros_inventory3.cpp.

Figure 4.2
The program performs a few vector manipulations that you can accomplish only with iterators.

Using Iterators 123

// Hero’s Inventory 3.0
// Demonstrates iterators

#include <iostream>
#include <string>
#include <vector>

using namespace std;

int main()
{

vector<string> inventory;
inventory.push_back("sword");
inventory.push_back("armor");
inventory.push_back("shield");

vector<string>::iterator myIterator;
vector<string>::const_iterator iter;

cout << "Your items:\n";
for (iter = inventory.begin(); iter != inventory.end(); ++iter)
{

cout << *iter << endl;
}

cout << "\nYou trade your sword for a battle axe.";
myIterator = inventory.begin();
*myIterator = "battle axe";
cout << "\nYour items:\n";
for (iter = inventory.begin(); iter != inventory.end(); ++iter)
{

cout << *iter << endl;
}

cout << "\nThe item name ’" << *myIterator << "’ has ";
cout << (*myIterator).size() << " letters in it.\n";

cout << "\nThe item name ’" << *myIterator << "’ has ";
cout << myIterator->size() << " letters in it.\n";

124 Chapter 4 n The Standard Template Library: Hangman

cout << "\nYou recover a crossbow from a slain enemy.";
inventory.insert(inventory.begin(), "crossbow");
cout << "\nYour items:\n";
for (iter = inventory.begin(); iter != inventory.end(); ++iter)
{

cout << *iter << endl;
}

cout << "\nYour armor is destroyed in a fierce battle.";
inventory.erase((inventory.begin() + 2));
cout << "\nYour items:\n";
for (iter = inventory.begin(); iter != inventory.end(); ++iter)
{

cout << *iter << endl;
}

return 0;
}

Declaring Iterators

After I declare a vector for the hero’s inventory and add the same three string

objects from the previous incarnations of the program, I declare an iterator.

vector<string>::iterator myIterator;

The preceding line declares an iterator named myIterator for a vector that contains
string objects. To declare an iterator of you own, follow the same pattern. Write
the container type, followed by the type of objects the container will hold
(surrounded by the < and > symbols), followed by the scope resolution operator
(the :: symbol), followed by iterator, followed by a name for your new iterator.

So what are iterators? Iterators are values that identify a particular element in a
container. Given an iterator, you can access the value of the element. Given the
right kind of iterator, you can change the value. Iterators can also move among
elements via familiar arithmetic operators.

A way to think about iterators is to imagine them as Post-it notes that you can
stick on a specific element in a container. An iterator is not one of the elements,
but a way to refer to one. Specifically, I can use myIterator to refer to a
particular element of the vector inventory. That is, I can stick the myIterator

Using Iterators 125

Post-it note on a specific element in inventory. Once I’ve done that, I can access
the element or even change it through the iterator.

Next, I declare another iterator.

vector<string>::const_iterator iter;

The preceding line of code creates a constant iterator named iter for a vector
that contains string objects. A constant iterator is just like a regular iterator
except that you can’t use it to change the element to which it refers; the element
must remain constant. You can think of a constant iterator as providing read-
only access. However, the iterator itself can change. This means you can move
iter all around the vector inventory as you see fit. You can’t, however, change
the value of any of the elements through iter. With a constant iterator the Post-
it can change, but the thing it’s stuck to can’t.

Why would you want to use a constant iterator if it’s a limited version of a
regular iterator? First, it makes your intentions clearer. When you use a constant
iterator, it’s clear that you won’t be changing any element to which it refers.
Second, it’s safer. You can use a constant iterator to avoid accidentally changing
a container element. (If you attempt to change an element through a constant
iterator, you’ll generate a compile error.)

T r a p

Using push_back() might invalidate all iterators referencing the vector.

Is all of this iterator talk a little too abstract for you? Are you tired of analogies
about Post-it notes? Fear not—next, I put an actual iterator to work.

Looping through a Vector

Next, I loop through the contents of the vector and display the hero’s inventory.

cout << "Your items:\n";
for (iter = inventory.begin(); iter != inventory.end(); ++iter)
{

cout << *iter << endl;
}

In the preceding code, I use a for loop to move from the first to the last element
of inventory. At this general level, this is exactly how I looped through the

126 Chapter 4 n The Standard Template Library: Hangman

contents of the vector in Hero’s Inventory 2.0. But instead of using an integer
and the subscripting operator to access each element, I used an iterator.
Basically, I moved the Post-it note through the entire sequence of elements
and displayed the value of each element to which the note was stuck. There are a
lot of new ideas in this little loop, so I’ll tackle them one at a time.

Calling the begin() Vector Member Function

In the initialization statement of the loop, I assign the return value of inventory.
begin() to iter. The begin() member function returns an iterator that refers to
a container’s first element. So in this case, the statement assigns an iterator that
refers to the first element of inventory (the string object equal to "sword") to
iter. Figure 4.3 shows an abstract view of the iterator returned by a call to
inventory.begin(). (Note that the figure is abstract because the vector
inventory doesn’t contain the string literals "sword", "armor", and "shield"; it
contains string objects.)

Calling the end() Vector Member Function

In the test statement of the loop, I test the return value of inventory.end()

against iter to make sure the two are not equal. The end() member function
returns an iterator one past the last element in a container. This means the loop
will continue until iter has moved through all of the elements in inventory.
Figure 4.4 shows an abstract view of the iterator returned by a call to this
member function. (Note that the figure is abstract because the vector inventory

doesn’t contain the string literals "sword", "armor", and "shield"; it contains
string objects.)

Figure 4.3
A call to inventory.begin() returns an iterator that refers to the first element in the vector.

Using Iterators 127

T r a p

The end() vector member function returns an iterator that’s one past the last element in
the vector—not the last element. Therefore, you can’t get a value from the iterator returned by
end(). This might seem counter-intuitive, but it works well for loops that move through a
container.

Altering an Iterator

The action statement in the loop, ++iter, increments iter, which moves it to the
next element in the vector. Depending upon the iterator, you can perform other
mathematical operations on iterators to move them around a container. Most
often, though, you’ll find that you simply want to increment an iterator.

Dereferencing an Iterator

In the loop body, I send *iter to cout. By placing the dereference operator (*) in
front of iter, I display the value of the element to which the iterator refers (not
the iterator itself). By placing the dereference operator in front of an iterator,
you’re saying, “Treat this as the thing that the iterator references, not as the
iterator itself.”

Changing the Value of a Vector Element

Next, I change the first element in the vector from the string object equal to
"sword" to the string object equal to "battle axe". First I set myIterator to
reference the first element of inventory.

myIterator = inventory.begin();

Then I change the value of the first element.

Figure 4.4
A call to inventory.end() returns an iterator one past the last element of the vector.

128 Chapter 4 n The Standard Template Library: Hangman

*myIterator = "battle axe";

Remember, by dereferencing myIterator with *, the preceding assignment
statement says, “Assign "battle axe" to the element that myIterator references.”
It does not change myIterator. After the assignment statement, myIterator still
refers to the first element in the vector.

Just to prove that the assignment worked, I then display all of the elements in
inventory.

Accessing Member Functions of a Vector Element

Next I display the number of characters in the name of the first item in the
hero’s inventory.

cout << "\nThe item name ’" << *myIterator << "’ has ";
cout << (*myIterator).size() << " letters in it.\n";

The code (*myIterator).size() says, “Take the result of dereferencing
myIterator and call that object’s size() member function.” Because myIterator

refers to the string object equal to "battle axe", the code returns 10.

H i n t

Whenever you dereference an iterator to access a data member or member function, surround the
dereferenced iterator by a pair of parentheses. This ensures that the dot operator will be applied to
the object the iterator references.

The code (*myIterator).size() is not the prettiest, so C++ offers an alternative,
more intuitive way to express the same thing, which I demonstrate in the next
two lines of the program.

cout << "\nThe item name ’" << *myIterator << "’ has ";
cout << myIterator->size() << " letters in it.\n";

The preceding code does exactly the same thing the first pair of lines I presented
in this section do; it displays the number of characters in "battle axe". However,
notice that I substitute myIterator->size() for (*myIterator).size(). You can
see that this version (with the -> symbol) is more readable. The two pieces of
code mean exactly the same thing to the computer, but this new version is easier
for humans to use. In general, you can use the -> operator to access the member
functions or data members of an object that an iterator references.

Using Iterators 129

H i n t

Syntactic sugar is a nicer, alternative syntax. It replaces harsh syntax with something that’s a bit
easier to swallow. As an example, instead of writing the code (*myIterator).size(), I can
use the syntactic sugar provided by the -> operator and write myIterator->size().

Using the insert() Vector Member Function

Next I add a new item to the hero’s inventory. This time, though, I don’t add the
item to the end of the sequence; instead, I insert it at the beginning.

inventory.insert(inventory.begin(), "crossbow");

One form of the insert() member function inserts a new element into a vector
just before the element referred to by a given iterator. You supply two arguments to
this version of insert()—the first is an iterator, and the second is the element to
be inserted. In this case, I inserted "crossbow" into inventory just before the first
element. As a result, all of the other elements will move down by one. This version
of the insert() member function returns an iterator that references the newly
inserted element. In this case, I don’t assign the returned iterator to a variable.

T r a p

Calling the insert() member function on a vector invalidates all of the iterators that reference
elements after the insertion point because all of the elements after the insertion point are shifted
down by one.

Next I show the contents of the vector to prove the insertion worked.

Using the erase() Vector Member Function

Next I remove an item from the hero’s inventory. However, this time I don’t
remove the item at the end of the sequence; instead, I remove one from the middle.

inventory.erase((inventory.begin() + 2));

One form of the erase() member function removes an element from a vector.
You supply one argument to this version of erase()—the iterator that references
the element you want to remove. In this case, I passed (inventory.begin() + 2),
which is equal to the iterator that references the third element in inventory. This
removes the string object equal to "armor". As a result, all of the following
elements will move up by one. This version of the erase() member function

130 Chapter 4 n The Standard Template Library: Hangman

returns an iterator that references the element after the element that was
removed. In this case, I don’t assign the returned iterator to a variable.

T r a p

Calling the erase() member function on a vector invalidates all of the iterators that reference
elements after the removal point because all of the elements after the removal point are shifted up
by one.

Next I show the contents of the vector to prove the removal worked.

Using Algorithms

The STL defines a group of algorithms that allow you to manipulate elements in
containers through iterators. Algorithms exist for common tasks such as searching,
randomizing, and sorting. These algorithms are your built-in arsenal of flexible and
efficient weapons. By using them, you can leave the mundane task of manipulating
container elements in common ways to the STL so you can concentrate on writing
your game. The powerful thing about these algorithms is that they are generic—the
same algorithm can work with elements of different container types.

Introducing the High Scores Program

The High Scores program creates a vector of high scores. It uses STL algorithms
to search, shuffle, and sort the scores. Figure 4.5 illustrates the program.

Figure 4.5
STL algorithms search, shuffle, and sort elements of a vector of high scores.

Using Algorithms 131

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 4
folder; the filename is high_scores.cpp.

// High Scores
// Demonstrates algorithms

#include <iostream>
#include <vector>
#include <algorithm>
#include <ctime>
#include <cstdlib>

using namespace std;

int main()
{

vector<int>::const_iterator iter;

cout << "Creating a list of scores.";
vector<int> scores;
scores.push_back(1500);
scores.push_back(3500);
scores.push_back(7500);

cout << "\nHigh Scores:\n";
for (iter = scores.begin(); iter != scores.end(); ++iter)
{

cout << *iter << endl;
}

cout << "\nFinding a score.";
int score;
cout << "\nEnter a score to find: ";
cin >> score;
iter = find(scores.begin(), scores.end(), score);
if (iter != scores.end())

132 Chapter 4 n The Standard Template Library: Hangman

{
cout << "Score found.\n";

}
else
{

cout << "Score not found.\n";
}

cout << "\nRandomizing scores.";
srand(static_cast<unsigned int>(time(0)));
random_shuffle(scores.begin(), scores.end());
cout << "\nHigh Scores:\n";
for (iter = scores.begin(); iter != scores.end(); ++iter)
{

cout << *iter << endl;
}

cout << "\nSorting scores.";
sort(scores.begin(), scores.end());
cout << "\nHigh Scores:\n";
for (iter = scores.begin(); iter != scores.end(); ++iter)
{

cout << *iter << endl;
}

return 0;
}

Preparing to Use Algorithms

So that I can use the STL algorithms, I include the file with their definitions.

#include <algorithm>

As you know, all STL components live in the std namespace. By using the
following code (as I typically do), I can refer to algorithms without having to
precede them with std::.

using namespace std;

Using Algorithms 133

Using the find() Algorithm

After I display the contents of the vector scores, I get a value from the user to
find and store it in the variable score. Then I use the find() algorithm to search
the vector for the value:

iter = find(scores.begin(), scores.end(), score);

The find() STL algorithm searches a specified range of a container’s elements
for a value. It returns an iterator that references the first matching element. If no
match is found, it returns an iterator to the end of the range. You must pass the
starting point as an iterator, the ending point as an iterator, and a value to find.
The algorithm searches from the starting iterator up to but not including the
ending iterator. In this case, I passed scores.begin() and scores.end() as the
first and second arguments to search the entire vector. I passed score as the
third argument to search for the value the user entered.

Next I check to see if the value score was found:

if (iter != scores.end())
{

cout << "Score found.\n";
}
else
{

cout << "Score not found.\n";
}

Remember, iter will reference the first occurrence of score in the vector, if the
value was found. So, as long as iter is not equal to scores.end(), I know that
score was found and I display a message saying so. Otherwise, iter will be equal
to scores.end() and I know score was not found.

Using the random_shuffle() Algorithm

Next I prepare to randomize the scores using the random_shuffle() algorithm.
Just as when I generate a single random number, I seed the random number
generator before I call random_shuffle(), so the order of the scores might be
different each time I run the program.

srand(static_cast<unsigned int>(time(0)));

Then I reorder the scores in a random way.

random_shuffle(scores.begin(), scores.end());

134 Chapter 4 n The Standard Template Library: Hangman

The random_shuffle() algorithm randomizes the elements of a sequence. You
must supply as iterators the starting and ending points of the sequence to
shuffle. In this case, I passed the iterators returned by scores.begin() and
scores.end(). These two iterators indicate that I want to shuffle all of the
elements in scores. As a result, scores contains the same scores, but in some
random order.

Then I display the scores to prove the randomization worked.

T r i c k

Although you might not want to randomize a list of high scores, random_shuffle() is a
valuable algorithm for games. You can use it for everything from shuffling a deck of cards to mixing
up the order of the enemies a player will encounter in a game level.

Using the sort() Algorithm

Next I sort the scores.

sort(scores.begin(), scores.end());

The sort() algorithm sorts the elements of a sequence in ascending order. You
must supply as iterators the starting and ending points of the sequence to sort.
In this particular case, I passed the iterators returned by scores.begin() and
scores.end(). These two iterators indicate that I want to sort all of the elements
in scores. As a result, scores contains all of the scores in ascending order.

Finally, I display the scores to prove the sorting worked.

T r i c k

A very cool property of STL algorithms is that they can work with containers defined outside of the
STL. These containers only have to meet certain requirements. For example, even though string
objects are not part of the STL, you can use appropriate STL algorithms on them. The following
code snippet demonstrates this:

string word = "High Scores";
random_shuffle(word.begin(), word.end());

The preceding code randomly shuffles the characters in word. As you can see, string objects
have both begin() and end() member functions, which return iterators to the first character
and one past the last character, respectively. That’s part of the reason why STL algorithms work
with strings—because they’re designed to.

Using Algorithms 135

Understanding Vector Performance

Like all STL containers, vectors provide game programmers with sophisticated
ways to work with information, but this level of sophistication can come at a
performance cost. And if there’s one thing game programmers obsess about, it’s
performance. But fear not, vectors and other STL containers are incredibly
efficient. In fact, they’ve already been used in published PC and console games.
However, these containers have their strengths and weaknesses; a game
programmer needs to understand the performance characteristics of the various
container types so that he can choose the right one for the job.

Examining Vector Growth

Although vectors grow dynamically as needed, every vector has a specific size.
When a new element added to a vector pushes the vector beyond its current size,
the computer reallocates memory and might even copy all of the vector elements
to this newly seized chunk of memory real estate. This can cause a performance
hit.

The most important thing to keep in mind about program performance is
whether or not you need to care. For example, vector memory reallocation
might not occur at a performance-critical part of your program. In that case, you
can safely ignore the cost of reallocation. Also, with small vectors, the
reallocation cost might be insignificant so, again, you can safely ignore it.
However, if you need greater control over when these memory reallocations
occur, you have it.

Using the capacity() Member Function

The capacity() vector member function returns the capacity of a vector—in
other words, the number of elements that a vector can hold before a program
must reallocate more memory for it. A vector’s capacity is not the same thing as
its size (the number of elements a vector currently holds). Here’s a code snippet
to help drive this point home:

cout << "Creating a 10 element vector to hold scores.\n";
vector<int> scores(10, 0); //initialize all 10 elements to 0
cout << "Vector size is :" << scores.size() << endl;
cout << "Vector capacity is:" << scores.capacity() << endl;

136 Chapter 4 n The Standard Template Library: Hangman

cout << "Adding a score.\n";
scores.push_back(0); //memory is reallocated to accommodate growth
cout << "Vector size is :" << scores.size() << endl;
cout << "Vector capacity is:" << scores.capacity() << endl;

Right after I declare and initialize the vector, this code reports that its size and
capacity are both 10. However, after an element is added, the code reports that
the vector’s size is 11 while its capacity is 20. That’s because the capacity of a
vector doubles every time a program reallocates additional memory for it. In this
case, when a new score was added, memory was reallocated, and the capacity of
the vector doubled from 10 to 20.

Using the reserve() Member Function

The reserve() member function increases the capacity of a vector to the
number supplied as an argument. Using reserve() gives you control over
when a reallocation of additional memory occurs. Here’s an example:

cout << "Creating a list of scores.\n";
vector<int> scores(10, 0); //initialize all 10 elements to 0
cout << "Vector size is :" << scores.size() << endl;
cout << "Vector capacity is:" << scores.capacity() << endl;

cout << "Reserving more memory.\n";
scores.reserve(20); //reserve memory for 10 additional elements
cout << "Vector size is :" << scores.size() << endl;
cout << "Vector capacity is:" << scores.capacity() << endl;

Right after I declare and initialize the vector, this code reports that its size and
capacity are both 10. However, after I reserve memory for 10 additional
elements, the code reports that the vector’s size is still 10 while its capacity is 20.

By using reserve() to keep a vector’s capacity large enough for your purposes,
you can delay memory reallocation to a time of your choosing.

H i n t

As a beginning game programmer, it’s good to be aware of how vector memory allocation works;
however, don’t obsess over it. The first game programs you’ll write probably won’t benefit from a
more manual process of vector memory allocation.

Understanding Vector Performance 137

Examining Element Insertion and Deletion

Adding or removing an element from the end of a vector using the push_back()

or pop_back() member functions is extremely efficient. However, adding or
removing an element at any other point in a vector (for example, using insert()

or erase()) can require more work because you might have to move multiple
elements to accommodate the insertion or deletion. With small vectors the
overhead is usually insignificant, but with larger vectors (with, say, thousands of
elements), inserting or erasing elements from the middle of a vector can cause a
performance hit.

Fortunately, the STL offers another sequence container type, list, which allows
for efficient insertion and deletion regardless of the sequence size. The important
thing to remember is that one container type isn’t the solution for every problem.
Although vector is versatile and perhaps the most popular STL container type,
there are times when another container type might make more sense.

T r a p

Just because you want to insert or delete elements from the middle of a sequence, that doesn’t
mean you should abandon the vector. It might still be a good choice for your game program. It
really depends on how you use the sequence. If your sequence is small or there are only a few
insertion and deletions, then a vector might still be your best bet.

Examining Other STL Containers

The STL defines a variety of container types that fall into two basic categories—
sequential and associative. With a sequential container, you can retrieve values in
sequence, while an associative container lets you retrieve values based on keys.
vector is an example of a sequential container.

How might you use these different container types? Consider an online, turned-
based strategy game. You could use a sequential container to store a group of
players that you want to cycle through in, well, sequence. On the other hand, you
could use an associative container to retrieve player information in a random-
access fashion by looking up a unique identifier, such as a player’s IP address.

Finally, the STL defines container adaptors that adapt one of the sequence
containers. Container adaptors represent standard computer science data

138 Chapter 4 n The Standard Template Library: Hangman

structures. Although they are not official containers, they look and feel just like
them. Table 4.1 lists the container types offered by the STL.

Planning Your Programs

So far, all the programs you’ve seen have been pretty simple. The idea of
formally planning any of them on paper probably seems like overkill. It’s not—
planning your programs (even the small ones) will almost always result in time
(and frustration) saved.

Programming is a lot like construction. Imagine a contractor building a house
for you without a blueprint. Yikes! You might end up with a house that has
12 bathrooms, no windows, and a front door on the second floor. Plus, it
probably would cost you 10 times the estimated price. Programming is the same
way. Without a plan, you’ll likely struggle through the process and waste time.
You might even end up with a program that doesn’t quite work.

Using Pseudocode

Many programmers sketch out their programs using pseudocode—a language
that falls somewhere between English and a formal programming language.
Anyone who understands English should be able to follow pseudocode. Here’s

Table 4.1 STL Containers

Container Type Description

deque Sequential Double-ended queue

list Sequential Linear list

map Associative Collection of key/value pairs in which each key is associated with
exactly one value

multimap Associative Collection of key/value pairs in which each key may be
associated with more than one value

multiset Associative Collection in which each element is not necessarily unique

priority_queue Adaptor Priority queue

queue Adaptor Queue

set Associative Collection in which each element is unique

stack Adaptor Stack

vector Sequential Dynamic array

Planning Your Programs 139

an example: Suppose I want to make a million dollars. A worthy goal, but what
do I do to achieve it? I need a plan. So I come up with one and put it in
pseudocode.

If you can think of a new and useful product
Then that’s your product

Otherwise
Repackage an existing product as your product

Make an infomercial about your product
Show the infomercial on TV
Charge $100 per unit of your product
Sell 10,000 units of your product

Even though anyone, even a non-programmer, can understand my plan, my
pseudocode feels vaguely like a program. The first four lines resemble an if

statement with an else clause, and that’s intentional. When you write your plan,
you should try to incorporate the feel of the code that you’re representing with
pseudocode.

Using Stepwise Refinement

Your programming plan might not be finished after only one draft. Often,
pseudocode needs multiple passes before it can be implemented in programming
code. Stepwise refinement is one process used to rewrite pseudocode to make it
ready for implementation. Stepwise refinement is pretty simple. Basically, it
means, “Make it more detailed.” By taking each step described in pseudocode
and breaking it down into a series of simpler steps, the plan becomes closer to
programming code. Using stepwise refinement, you keep breaking down each
step until you feel the entire plan could be fairly easily translated into a program.
As an example, take a step from my master plan to make a million dollars:

Create an infomercial about your product

This might seem like too vague of a task. How do you create an infomercial?
Using stepwise refinement, you can break down the single step into several
others. So it becomes

Write a script for an infomercial about your product
Rent a TV studio for a day
Hire a production crew
Hire an enthusiastic audience
Film the infomercial

140 Chapter 4 n The Standard Template Library: Hangman

If you feel these five steps are clear and achievable, then that part of the
pseudocode has been thoroughly refined. If you’re still unclear about a step,
refine it some more. Continue with this process and you will have a complete
plan—and a million dollars.

Introducing Hangman

In the Hangman program, the computer picks a secret word and the player tries
to guess it one letter at a time. The player is allowed eight incorrect guesses. If he
or she fails to guess the word in time, the player is hanged and the game is over.
Figure 4.6 shows the game.

Planning the Game

Before I write a single line in C++, I plan the game program using pseudocode.

Create a group of words
Pick a random word from the group as the secret word
While player hasn’t made too many incorrect guesses and hasn’t guessed the secret
word

Tell player how many incorrect guesses he or she has left
Show player the letters he or she has guessed

Figure 4.6
The Hangman game in action

Introducing Hangman 141

Show player how much of the secret word he or she has guessed
Get player’s next guess
While player has entered a letter that he or she has already guessed

Get player’s guess
Add the new guess to the group of used letters
If the guess is in the secret word

Tell the player the guess is correct
Update the word guessed so far with the new letter

Otherwise
Tell the player the guess is incorrect
Increment the number of incorrect guesses the player has made

If the player has made too many incorrect guesses
Tell the player that he or she has been hanged

Otherwise
Congratulate the player on guessing the secret word

Although the pseudocode doesn’t account for every line of C++ I’ll write, I think
it does a good job describing what I need to do. Then I begin writing the
program.

Setting Up the Program

As usual, I start with some comments and include the files I need.

// Hangman
// The classic game of hangman

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <ctime>
#include <cctype>

using namespace std;

Notice that I include a new file—cctype. It’s part of the standard library and it
includes functions for converting characters to uppercase, which I use so I can
compare apples to apples (uppercase to uppercase) when I compare individual
characters.

142 Chapter 4 n The Standard Template Library: Hangman

Initializing Variables and Constants

Next I start the main() function and initialize variables and constants for the
game.

int main()
{

//setup
const int MAX_WRONG = 8; //maximum number of incorrect guesses allowed

vector<string> words; //collection of possible words to guess
words.push_back("GUESS");
words.push_back("HANGMAN");
words.push_back("DIFFICULT");

srand(static_cast<unsigned int>(time(0)));
random_shuffle(words.begin(), words.end());
const string THE_WORD = words[0]; //word to guess
int wrong = 0; //number of incorrect guesses
string soFar(THE_WORD.size(), ’-’); //word guessed so far
string used = ""; //letters already guessed

cout << "Welcome to Hangman. Good luck!\n";

MAX_WRONG is the maximum number of incorrect guesses the player can make.
words is a vector of possible words to guess. I randomize words using the
random_shuffle() algorithm, and then I assign the first word in the vector to
THE_WORD, which is the secret word the player must guess. wrong is the number of
incorrect guesses the player has made. soFar is the word guessed so far by the
player. soFar starts out as a series of dashes—one for each letter in the secret
word. When the player guesses a letter that’s in the secret word, I replace the
dash at the corresponding position with the letter.

Entering the Main Loop

Next I enter the main loop, which continues until the player has made too many
incorrect guesses or has guessed the word.

//main loop
while ((wrong < MAX_WRONG) && (soFar != THE_WORD))
{

Introducing Hangman 143

cout << "\n\nYou have " << (MAX_WRONG - wrong);
cout << " incorrect guesses left.\n";
cout << "\nYou’ve used the following letters:\n" << used << endl;
cout << "\nSo far, the word is:\n" << soFar << endl;

Getting the Player’s Guess

Next I get the player’s guess.

char guess;
cout << "\n\nEnter your guess: ";
cin >> guess;
guess = toupper(guess); //make uppercase since secret word in uppercase
while (used.find(guess) != string::npos)
{

cout << "\nYou’ve already guessed " << guess << endl;
cout << "Enter your guess: ";
cin >> guess;
guess = toupper(guess);

}

used += guess;

if (THE_WORD.find(guess) != string::npos)
{

cout << "That’s right! " << guess << " is in the word.\n";

//update soFar to include newly guessed letter
for (int i = 0; i < THE_WORD.length(); ++i)
{

if (THE_WORD[i] == guess)
{

soFar[i] = guess;
}

}
}
else
{

cout << "Sorry, " << guess << " isn’t in the word.\n";
++wrong;

}
}

144 Chapter 4 n The Standard Template Library: Hangman

I convert the guess to uppercase using the function uppercase(), which is defined
in the file cctype. I do this so I can compare uppercase letters to uppercase letters
when I’m checking a guess against the letters of the secret word.

If the player guesses a letter that he or she has already guessed, I make the player
guess again. If the player guesses a letter correctly, I update the word guessed so
far. Otherwise, I tell the player the guess is not in the secret word and I increase
the number of incorrect guesses the player has made.

Ending the Game

At this point, the player has guessed the word or has made one too many
incorrect guesses. Either way, the game is over.

//shut down
if (wrong == MAX_WRONG)
{

cout << "\nYou’ve been hanged!";
}
else
{

cout << "\nYou guessed it!";
}

cout << "\nThe word was " << THE_WORD << endl;

return 0;
}

I congratulate the player or break the bad news that he or she has been hanged.
Then I reveal the secret word.

Summary

In this chapter, you learned the following concepts:

n The Standard Template Library (STL) is a powerful collection of
programming code that provides containers, algorithms, and iterators.

n Containers are objects that let you store and access collections of values
of the same type.

Summary 145

n Algorithms defined in the STL can be used with its containers and
provide common functions for working with groups of objects.

n Iterators are objects that identify elements in containers and can be
manipulated to move among elements.

n Iterators are the key to using containers to their fullest. Many of the
container member functions require iterators, and the STL algorithms
require them too.

n To get the value referenced by an iterator, you must dereference the
iterator using the dereference operator (*).

n A vector is one kind of sequential container provided by the STL. It acts
like a dynamic array.

n It’s very efficient to iterate through a vector. It’s also very efficient to
insert or remove an element from the end of a vector.

n It can be inefficient to insert or delete elements from the middle of a
vector, especially if the vector is large.

n Pseudocode, which falls somewhere between English and a programming
language, is used to plan programs.

n Stepwise refinement is a process used to rewrite pseudocode to make it
ready for implementation.

Questions and Answers

Q: Why is the STL important?

A: Because it saves game programmers time and effort. The STL provides
commonly used container types and algorithms.

Q: Is the STL fast?

A: Definitely. The STL has been honed by hundreds of programmers to eke out
as much performance as possible on each supported platform.

Q: When should I use a vector instead of an array?

A: Almost always. Vectors are efficient and flexible. They do require a little more
memory than arrays, but this tradeoff is almost always worth the benefits.

146 Chapter 4 n The Standard Template Library: Hangman

Q: Is a vector as fast as an array?

A: Accessing a vector element can be just as fast as accessing an array element.
Also, iterating though a vector can be just as fast as iterating through an array.

Q: If I can use the subscripting operator with vectors, why would I ever need
iterators?

A: There are several reasons. First, many of the vector member functions
require iterators. (insert() and erase() are two examples.) Second, STL
algorithms require iterators. And third, you can’t use the subscripting
operator with most of the STL containers, so you’re going to have to learn
to use iterators sooner or later.

Q: Which is the best way to access elements of a vector—through iterators or
through the subscripting operator?

A: It depends. If you need random-element access, then the subscripting
operator is a natural fit. If you need to use STL algorithms, then you must
use iterators.

Q: What about iterating through the elements of a vector? Should I use the
subscripting operator or an iterator?

A: You can use either method. However, an advantage of using an iterator is that
it gives you the flexibility to substitute a different STL container in place of a
vector (such as a list) without much code changing.

Q: Why does the STL define more than one sequential container type?

A: Different sequential container types have different performance properties.
They’re like tools in a toolbox; each tool is best suited for a different job.

Q: What are container adaptors?

A: Container adaptors are based on one of the STL sequence containers; they
represent standard computer data structures. Although they are not official
containers, they look and feel just like them.

Q: What’s a stack?

A: A data structure in which elements are removed in the reverse order from
how they were added. This means that the last element added is the first one

Questions and Answers 147

removed. This is just like a real-life stack, from which you remove the last
item you placed on the top of the stack.

Q: What’s a queue?

A: A data structure in which elements are removed in the same order they were
added. This is just like a real-life queue, such as a line of people in which the
first person in line gets served first.

Q: What’s a double-ended queue?

A: A queue in which elements can be added or removed from either end.

Q: What’s a priority queue?

A: A data structure that supports finding and removing the element with the
highest priority.

Q: When would I use pseudocode?

A: Any time you want to plan a program or section of code.

Q: When would I use stepwise refinement?

A: When you want to get even more detailed with your pseudocode.

Discussion Questions

1. Why should a game programmer use the STL?

2. What are the advantages of a vector over an array?

3. What types of game objects might you store with a vector?

4. How do performance characteristics of a container type affect the
decision to use it?

5. Why is program planning important?

Exercises

1. Write a program using vectors and iterators that allows a user to main-
tain a list of his or her favorite games. The program should allow the
user to list all game titles, add a game title, and remove a game title.

148 Chapter 4 n The Standard Template Library: Hangman

2. Assuming that scores is a vector that holds elements of type int,
what’s wrong with the following code snippet (meant to increment
each element)?

vector<int>::iterator iter;
//increment each score
for (iter = scores.begin(); iter != scores.end(); ++iter)
{

iter++;
}

3. Write pseudocode for the Word Jumble game from Chapter 3.

Exercises 149

This page intentionally left blank

Functions: Mad Lib

Every program you’ve seen so far has consisted of one function—main().
However, once your programs reach a certain size or level of complexity, it
becomes hard to work with them like this. Fortunately, there are ways to break
up big programs into smaller, bite-sized chunks of code. In this chapter, you’ll
learn about one way—creating new functions. Specifically, you’ll learn to:

n Write new functions

n Accept values into your new functions through parameters

n Return information from your new functions through return values

n Work with global variables and constants

n Overload functions

n Inline functions

Creating Functions

C++ lets you write programs with multiple functions. Your new functions work
just like the ones that are part of the standard language—they go off and
perform a task and then return control to your program. A big advantage of
writing new functions is it allows you to break up your code into manageable
pieces. Just like the functions you’ve already learned about from the standard
library, your new functions should do one job well.

chapter 5

151

Introducing the Instructions Program

The results of the Instructions program are pretty basic—a few lines of text that
are the beginning of some game instructions. From the looks of the output,
Instructions seems like a program you could have written way back in Chapter 1.
But this program has a fresh element working behind the scenes—a new
function. Take a look at Figure 5.1 to see the modest results of the code.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 5
folder; the filename is instructions.cpp.

// Instructions
// Demonstrates writing new functions

#include <iostream>

using namespace std;

// function prototype (declaration)
void instructions();

Figure 5.1
The instructions are displayed by a function.

152 Chapter 5 n Functions: Mad Lib

int main()
{

instructions();
return 0;

}

// function definition
void instructions()
{

cout << "Welcome to the most fun you’ve ever had with text!\n\n";
cout << "Here’s how to play the game. . .\n";

}

Declaring Functions

Before you can call a function you’ve written, you have to declare it. One way to
declare a function is to write a function prototype—code that describes the
function. You write a prototype by listing the return value of the function (or
void if the function returns no value), followed by the name of the function,
followed by a list of parameters between a set of parentheses. Parameters receive
the values sent as arguments in a function call.

Just before the main() function, I write a function prototype:

void instructions();

In the preceding code, I declared a function named instructions that doesn’t
return a value. (You can tell this because I used void as the return type.) The
function also takes no values so it has no parameters. (You can tell this because
there’s nothing between the parentheses.)

Prototypes are not the only way to declare a function. Another way to
accomplish the same thing is to let the function definition act as its own
declaration. To do that, you simply have to put your function definition before
the call to the function.

H i n t

Although you don’t have to use prototypes, they offer a lot of benefits—not the least of which is
making your code clearer.

Creating Functions 153

Defining Functions

Defining functions means writing all the code that makes the function tick. You
define a function by listing the return value of the function (or void if the
function returns no value), followed by the name of the function, followed by a
list of parameters between a set of parentheses—just like a function prototype
(except you don’t end the line with a semicolon). This is called the function
header. Then you create a block with curly braces that contains the instructions
to be executed when the function is executed. This is called the function body.

At the end of the Instructions program, I define my simple instructions()

function, which displays some game instructions. Because the function doesn’t
return any value, I don’t need to use a return statement like I do in main().
I simply end the function definition with a closing curly brace.

void instructions()
{

cout << "Welcome to the most fun you’ve ever had with text!\n\n";
cout << "Here’s how to play the game. . .\n";

}

T r a p

A function definition must match its prototype on return type and function name; otherwise, you’ll
generate a compile error.

Calling Functions

You call your own functions the same way you call any other function—by
writing the function’s name followed by a pair of parentheses that encloses a
valid list of arguments. In main(), I call my newly minted function simply with:

instructions();

This line invokes instructions(). Whenever you call a function, control of the
program jumps to that function. In this case, it means control jumps to
instructions() and the program executes the function’s code, which displays
the game instructions. When a function finishes, control returns to the calling
code. In this case, it means control returns to main(). The next statement in main

() (return 0;) is executed and the program ends.

154 Chapter 5 n Functions: Mad Lib

Understanding Abstraction

By writing and calling functions, you practice what’s known as abstraction.
Abstraction lets you think about the big picture without worrying about the
details. In this program, I can simply use the function instructions() without
worrying about the details of displaying the text. All I have to do is call the
function with one line of code, and it gets the job done.

You might be surprised where you find abstraction, but people use it all the time.
For example, consider two employees at a fast-food restaurant. If one tells the
other that he just filled a Number 3 and “sized it,” the other employee knows
that the first employee took a customer’s order, went to the heat lamps, grabbed
a burger, went over to the deep fryer, filled their biggest cardboard container
with french fries, went to the soda fountain, grabbed their biggest cup, filled it
with soda, gave it all to the customer, took the customer’s money, and gave the
customer change. Not only would this level of detail make for a boring
conversation, but it’s unnecessary. Both employees understand what it means
to fill a Number 3 and “size it.” They don’t have to concern themselves with all
the details because they’re using abstraction.

Using Parameters and Return Values

As you’ve seen with standard library functions, you can provide a function value
and get a value back. For example, with the toupper() function, you provide a
character, and the function returns the uppercase version of it. Your own
functions can also receive values and return a value. This allows your functions
to communicate with the rest of your program.

Introducing the Yes or No Program

The Yes or No program asks the user typical questions a gamer might have to
answer. First, the program asks the user to indicate yes or no. Then the program
gets more specific and asks whether the user wants to save his game. Again, the
results of the program are not remarkable; it’s their implementation that’s
interesting. Each question is posed by a different function that communicates
with main(). Figure 5.2 shows a sample run of the program.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 5
folder; the filename is yes_or_no.cpp.

Using Parameters and Return Values 155

// Yes or No
// Demonstrates return values and parameters

#include <iostream>
#include <string>

using namespace std;

char askYesNo1();
char askYesNo2(string question);

int main()
{

char answer1 = askYesNo1();
cout << "Thanks for answering: " << answer1 << "\n\n";

char answer2 = askYesNo2("Do you wish to save your game?");
cout << "Thanks for answering: " << answer2 << "\n";

return 0;
}

Figure 5.2
Each question is asked by a separate function, and information is passed between these functions and
main().

156 Chapter 5 n Functions: Mad Lib

char askYesNo1()
{

char response1;
do
{

cout << "Please enter ’y’ or ’n’: ";
cin >> response1;

} while (response1 != ’y’ && response1 != ’n’);

return response1;
}

char askYesNo2(string question)
{

char response2;
do
{

cout << question << " (y/n): ";
cin >> response2;

} while (response2 != ’y’ && response2 != ’n’);

return response2;
}

Returning a Value

You can return a value from a function to send information back to the calling
code. To return a value, you need to specify a return type and then return a value
of that type from the function.

Specifying a Return Type

The first function I declare, askYesNo1(), returns a char value. You can tell this
from the function prototype before main():

char askYesNo1();

You can also see this from the function definition after main():

char askYesNo1()

Using Parameters and Return Values 157

Using the return Statement

askYesNo1() asks the user to enter y or n and keeps asking until he does. Once
the user enters a valid character, the function wraps up with the following line,
which returns the value of response1.

return response1;

Notice that response1 is a char value. It has to be because that’s what I promised
to return in both the function prototype and function definition.

A function ends whenever it hits a return statement. It’s perfectly acceptable for
a function to have more than one return. This just means that the function has
several points at which it can end.

T r i c k

You don’t have to return a value with a return statement. You can use return by itself in a
function that returns no value (one that indicates void as its return type) to end the function.

Using a Returned Value

In main(), I call the function with the following line, which assigns the return
value of the function to answer1.

char answer1 = askYesNo1();

This means that answer1 is assigned either ’y’ or ’n’—whichever character the
user entered when prompted by askYesNo1().

Next in main(), I display the value of answer1 for all to see.

Accepting Values into Parameters

You can send a function values that it accepts into its parameters. This is the
most common way to get information into a function.

Specifying Parameters

The second function I declare, askYesNo2(), accepts a value into a parameter.
Specifically, it accepts a value of type string. You can tell this from the function
prototype before main():

char askYesNo2(string question);

158 Chapter 5 n Functions: Mad Lib

H i n t

You don’t have to use parameter names in a prototype; all you have to include are the parameter
types. For example, the following is a perfectly valid prototype that declares askYesNo2(), a
function with one string parameter that returns a char.

char askYesNo2(string);

Even though you don’t have to use parameter names in prototypes, it’s a good idea to do so. It
makes your code clearer, and it’s worth the minor effort.

From the header of askYesNo2(), you can see that the function accepts a string

object as a parameter and names that parameter question.

char askYesNo2(string question)

Unlike prototypes, you must specify parameter names in a function definition.
You use a parameter name inside a function to access the parameter value.

T r a p

The parameter types specified in a function prototype must match the parameter types listed in the
function definition. If they don’t, you’ll generate a nasty compile error.

Passing Values to Parameters

The askYesNo2() function is an improvement over askYesNo1(). The new
function allows you to ask your own personalized question by passing a string
prompt to the function. In main(), I call askYesNo2() with:

char answer2 = askYesNo2("Do you wish to save your game?");

This statement calls askYesNo2() and passes the string literal argument "Do you

wish to save your game?" to the function.

Using Parameter Values

askYesNo2() accepts "Do you wish to save your game?" into its parameter
question, which acts like any other variable in the function. In fact, I display
question with:

cout << question << " (y/n): ";

Using Parameters and Return Values 159

H i n t

Actually, there’s a little more going on behind the scenes here. When the string literal "Do you
wish to save your game?" is passed to question, a string object equal to the string
literal is created and the string object gets assigned to question.

Just like askYesNo1(), askYesNo2() continues to prompt the user until he enters
y or n. Then the function returns that value and ends.

Back in main(), the returned char value is assigned to answer2, which I then
display.

Understanding Encapsulation

You might not see the need for return values when you are using your own
functions. Why not just use the variables response1 and response2 back in the
main()? Because you can’t; response1 and response2 don’t exist outside of the
functions in which they were defined. In fact, no variable you create in a
function, including its parameters, can be directly accessed outside its function.
This is a good thing, and it is called encapsulation. Encapsulation helps keep
independent code truly separate by hiding or encapsulating the details. That’s
why you use parameters and return values—to communicate only the informa-
tion that needs to be exchanged. Plus, you don’t have to keep track of variables
you create within a function in the rest of your program. As your programs get
large, this is a great benefit.

Encapsulation might sound a lot like abstraction. That’s because they’re closely
related. Encapsulation is a principal of abstraction. Abstraction saves you from
worrying about the details, while encapsulation hides the details from you. As an
example, consider a television remote control with volume up and down
buttons. When you use a TV remote to change the volume, you’re employing
abstraction because you don’t need to know what happens inside the TV for it to
work. Now suppose the TV remote has 10 volume levels. You can get to them all
through the remote, but you can’t directly access them. That is, you can’t get a
specific volume number directly. You can only press the up volume and down
volume buttons to eventually get to the level you want. The actual volume
number is encapsulated and not directly available to you.

160 Chapter 5 n Functions: Mad Lib

Understanding Software Reuse

You can reuse functions in other programs. For example, since asking the user a
yes or no question is such a common thing to do in a game, you could create an
askYesNo() function and use it in all of your future game programs. So writing
good functions not only saves you time and energy in your current game project,
but it can save you effort in future ones, too.

R e a l Wo r l d

It’s always a waste of time to reinvent the wheel, so software reuse—employing existing software
and other elements in new projects—is a technique that game companies take to heart. The
benefits of software reuse include:

n Increased company productivity. By reusing code and other elements that already
exist, such as a graphics engine, game companies can get their projects done with less
effort.

n Improved software quality. If a game company already has a tested piece of code,
such as a networking module, then the company can reuse the code with the knowledge
that it’s bug-free.

n Improved software performance. Once a game company has a high-performance piece
of code, using it again not only saves the company the trouble of reinventing the wheel,
it saves them from reinventing a less efficient one.

You can reuse code you’ve written by copying from one program and pasting it
into another, but there is a better way. You can divide up a big game project into
multiple files. You’ll learn about this technique in Chapter 10, “Inheritance and
Polymorphism: Blackjack.”

Working with Scopes

A variable’s scope determines where the variable can be seen in your program.
Scopes allow you to limit the accessibility of variables and are the key to
encapsulation, helping keep separate parts of your program, such as functions,
apart from each other.

Introducing the Scoping Program

The Scoping program demonstrates scopes. The program creates three variables
with the same name in three separate scopes. The program displays the values of

Working with Scopes 161

these variables, and you can see that even though they all have the same name,
the variables are completely separate entities. Figure 5.3 shows the results of the
program.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 5
folder; the filename is scoping.cpp.

// Scoping
// Demonstrates scopes

#include <iostream>

using namespace std;

void func();

int main()
{

int var = 5; // local variable in main()
cout << "In main() var is: " << var << "\n\n";

Figure 5.3
Even though they have the same name, all three variables have a unique existence in their own scopes.

162 Chapter 5 n Functions: Mad Lib

func();

cout << "Back in main() var is: " << var << "\n\n";

{
cout << "In main() in a new scope var is: " << var << "\n\n";

cout << "Creating new var in new scope.\n";
int var = 10; // variable in new scope, hides other variable named var
cout << "In main() in a new scope var is: " << var << "\n\n";

}

cout << "At end of main() var created in new scope no longer exists.\n";
cout << "At end of main() var is: " << var << "\n";

return 0;
}

void func()
{

int var = -5; // local variable in func()
cout << "In func() var is: " << var << "\n\n";

}

Working with Separate Scopes

Every time you use curly braces to create a block, you create a scope. Functions
are one example of this. Variables declared in a scope aren’t visible outside of
that scope. This means that variables declared in a function aren’t visible outside
of that function.

Variables declared inside a function are considered local variables—they’re local
to the function. This is what makes functions encapsulated.

You’ve seen many local variables in action already. I define yet another local
variable in main() with:

int var = 5; // local variable in main()

This line declares and initializes a local variable named var. I send the variable to
cout in the next line of code:

cout << "In main() var is: " << var << "\n\n";

Working with Scopes 163

This works just as you’d expect—5 is displayed.

Next I call func(). Once I enter the function, I’m in a separate scope outside of
the scope defined by main(). As a result, I can’t access the variable var that I
defined in main(). This means that when I next define a variable named var in
func() with the following line, this new variable is completely separate from the
variable named var in main().

int var = -5; // local variable in func()

The two have no effect on each other, and that’s the beauty of scopes. When you
write a function, you don’t have to worry if another function uses the same
variable names.

Then, when I display the value of var in func() with the following line, the
computer displays �5.

cout << "In func() var is: " << var << "\n\n";

That’s because, as far as the computer can see in this scope, there’s only one
variable named var—the local variable I declared in this function.

Once a scope ends, all of the variables declared in that scope cease to exist.
They’re said to go out of scope. So next, when func() ends, its scope ends. This
means all of the variables declared in func() are destroyed. As a result, the var I
declared in func() with a value of �5 is destroyed.

After func() ends, control returns to main() and picks up right where it left off.
Next, the following line is executed, which sends var to cout.

cout << "Back in main() var is: " << var << "\n\n";

The value of the var local to main() (5) is displayed again.

You might be wondering what happened to the var I created in main() while I
was in func(). Well, the variable wasn’t destroyed because main() hadn’t yet
ended. (Program control simply took a small detour to func().) When a
program momentarily exits one function to enter another, the computer saves
its place in the first function, keeping safe the values of all of its local variables,
which are reinstated when control returns to the first function.

H i n t

Parameters act just like local variables in functions.

164 Chapter 5 n Functions: Mad Lib

Working with Nested Scopes

You can create a nested scope with a pair of curly braces in an existing scope.
That’s what I do next in main(), with:

{
cout << "In main() in a new scope var is: " << var << "\n\n";

cout << "Creating new var in new scope.\n";
int var = 10; // variable in new scope, hides other variable named var
cout << "In main() in a new scope var is: " << var << "\n\n";

}

This new scope is a nested scope in main(). The first thing I do in this nested
scope is display var. If a variable hasn’t been declared in a scope, the computer
looks up the levels of nested scopes one at a time to find the variable you
requested. In this case, because var hasn’t been declared in this nested scope, the
computer looks one level up to the scope that defines main() and finds var. As a
result, the program displays that variable’s value—5.

However, the next thing I do in this nested scope is declare a new variable
named var and initialize it to 10. Now when I send var to cout, 10 is displayed.
This time the computer doesn’t have to look up any levels of nested scopes to
find var; there’s a var local to this scope. And don’t worry, the var I first
declared in main() still exists; it’s simply hidden in this nested scope by the
new var.

T r a p

Although you can declare variables with the same name in a series of nested scopes, it’s not a good
idea because it can lead to confusion.

Next, when the nested scope ends, the var that was equal to 10 goes out of scope
and ceases to exist. However, the first var I created is still around, so when I
display var for the last time in main() with the following line, the program
displays 5.

cout << "At end of main() var is: " << var << "\n";

Working with Scopes 165

H i n t

When you define variables inside for loops, while loops, if statements, and switch
statements, these variables don’t exist outside their structures. They act like variables declared
in a nested scope. For example, in the following code, the variable i doesn’t exist outside the loop.

for(int i = 0; i < 10; ++i)
{

cout << i;
}
// i doesn’t exist outside the loop

But beware—some older compilers don’t properly implement this functionality of standard C++. I
recommend that you use an IDE with a modern compiler, such as Microsoft Visual C++ 2010
Express Edition. For step-by-step instructions on how to create your first project with this IDE, check
out Appendix A.

Using Global Variables

Through the magic of encapsulation, the functions you’ve seen are all totally
sealed off and independent from each other. The only way to get information
into them is through their parameters, and the only way to get information out
of them is from their return values. Well, that’s not completely true. There is
another way to share information among parts of your program—through
global variables (variables that are accessible from any part of your program).

Introducing the Global Reach Program

The Global Reach program demonstrates global variables. The program shows
how you can access a global variable from anywhere in your program. It also
shows how you can hide a global variable in a scope. Finally, it shows that you
can change a global variable from anywhere in your program. Figure 5.4 shows
the results of the program.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 5
folder; the filename is global_reach.cpp.

// Global Reach
// Demonstrates global variables

#include <iostream>

166 Chapter 5 n Functions: Mad Lib

using namespace std;

int glob = 10; // global variable

void access_global();
void hide_global();
void change_global();

int main()
{

cout << "In main() glob is: " << glob << "\n\n";
access_global();

hide_global();
cout << "In main() glob is: " << glob << "\n\n";

change_global();
cout << "In main() glob is: " << glob << "\n\n";

return 0;
}

Figure 5.4
You can access and change global variables from anywhere in a program—but they can also be hidden
in a scope as well.

Using Global Variables 167

void access_global()
{

cout << "In access_global() glob is: " << glob << "\n\n";
}

void hide_global()
{

int glob = 0; // hide global variable glob
cout << "In hide_global() glob is: " << glob << "\n\n";

}

void change_global()
{

glob = -10; // change global variable glob
cout << "In change_global() glob is: " << glob << "\n\n";

}

Declaring Global Variables

You declare global variables outside of any function in your program file. That’s
what I do in the following line, which creates a global variable named glob

initialized to 10.

int glob = 10; // global variable

Accessing Global Variables

You can access a global variable from anywhere in your program. To prove it, I
display glob in main() with:

cout << "In main() glob is: " << glob << "\n\n";

The program displays 10 because as a global variable, glob is available to any
part of the program. To show this again, I next call access_global(), and the
computer executes the following code in that function:

cout << "In access_global() glob is: " << glob << "\n\n";

Again, 10 is displayed. That makes sense because I’m displaying the exact same
variable in each function.

168 Chapter 5 n Functions: Mad Lib

Hiding Global Variables

You can hide a global variable like any other variable in a scope; you simply declare
a new variable with the same name. That’s exactly what I do next, when I call
hide_global(). The key line in that function doesn’t change the global variable
glob; instead, it creates a new variable named glob, local to hide_global(), that
hides the global variable.

int glob = 0; // hide global variable glob

As a result, when I send glob to cout next in hide_global() with the following
line, 0 is displayed.

cout << "In hide_global() glob is: " << glob << "\n\n";

The global variable glob remains hidden in the scope of hide_global() until the
function ends.

To prove that the global variable was only hidden and not changed, next I
display glob back in main() with:

cout << "In main() glob is: " << glob << "\n\n";

Once again, 10 is displayed.

T r a p

Although you can declare variables in a function with the same name as a global variable, it’s not a
good idea because it can lead to confusion.

Altering Global Variables

Just as you can access a global variable from anywhere in your program, you can
alter one from anywhere in your program, too. That’s what I do next, when I call
the change_global() function. The key line of the function assigns �10 to the
global variable glob.

glob = -10; // change global variable glob

To show that it worked, I display the variable in change_global() with:

cout << "In change_global() glob is: " << glob << "\n\n";

Then, back in main(), I send glob to cout with:

cout << "In main() glob is: " << glob << "\n\n";

Because the global variable glob was changed, �10 is displayed.

Using Global Variables 169

Minimizing the Use of Global Variables

Just because you can doesn’t mean you should. This is a good programming
motto. Sometimes things are technically possible, but not a good idea. Using
global variables is an example of this. In general, global variables make programs
confusing because it can be difficult to keep track of their changing values. You
should limit your use of global variables as much as possible.

Using Global Constants

Unlike global variables, which can make your programs confusing, global
constants—constants that can be accessed from anywhere in your program—

can help make programs clearer. You declare a global constant much like you
declare a global variable—by declaring it outside of any function. And because
you’re declaring a constant, you need to use the const keyword. For example, the
following line defines a global constant (assuming the declaration is outside of
any function) named MAX_ENEMIES with a value of 10 that can be accessed
anywhere in the program.

const int MAX_ENEMIES = 10;

T r a p

Just like with global variables, you can hide a global constant by declaring a local constant with the
same name. However, you should avoid this because it can lead to confusion.

How exactly can global constants make game programming code clearer? Well,
suppose you’re writing an action game in which you want to limit the total
number of enemies that can blast the poor player at once. Instead of using a
numeric literal everywhere, such as 10, you could define a global constant
MAX_ENEMIES that’s equal to 10. Then whenever you see that global constant
name, you know exactly what it stands for.

One caveat: You should only use global constants if you need a constant value in
more than one part of your program. If you only need a constant value in a
specific scope (such as in a single function), use a local constant instead.

170 Chapter 5 n Functions: Mad Lib

Using Default Arguments

When you write a function in which a parameter almost always gets passed the
same value, you can save the caller the effort of constantly specifying this value by
using a default argument—a value assigned to a parameter if none is specified.
Here’s a concrete example. Suppose you have a function that sets the graphics
display. One of your parameters might be bool fullScreen, which tells the function
whether to display the game in full-screen or windowed mode. Now, if you think
the function will often be called with true for fullScreen, you could give that
parameter a default argument of true, saving the caller the effort of passing true to
fullScreen whenever the caller invokes this display-setting function.

Introducing the Give Me a Number Program

The Give Me a Number program asks the user for two different numbers in two
different ranges. The same function is called each time the user is prompted for a
number. However, each call to this function uses a different number of arguments
because this function has a default argument for the lower limit. This means the
caller can omit an argument for the lower limit, and the function will use a default
value automatically. Figure 5.5 shows the results of the program.

Figure 5.5
A default argument is used for the lower limit the first time the user is prompted for a number.

Using Default Arguments 171

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 5
folder; the filename is give_me_a_number.cpp.

// Give Me a Number
// Demonstrates default function arguments

#include <iostream>
#include <string>

using namespace std;

int askNumber(int high, int low = 1);

int main()
{

int number = askNumber(5);
cout << "Thanks for entering: " << number << "\n\n";

number = askNumber(10, 5);
cout << "Thanks for entering: " << number << "\n\n";

return 0;
}

int askNumber(int high, int low)
{

int num;
do
{

cout << "Please enter a number" << " (" << low << " - " << high << "): ";
cin >> num;

} while (num > high || num < low);

return num;
}

172 Chapter 5 n Functions: Mad Lib

Specifying Default Arguments

The function askNumber() has two parameters—high and low. You can tell this
from the function prototype:

int askNumber(int high, int low = 1);

Notice that the second parameter, low, looks like it’s assigned a value. In a way, it
is. The 1 is a default argument meaning that if a value isn’t passed to low when
the function is called, low is assigned 1. You specify default arguments by using =

followed by a value after a parameter name.

T r a p

Once you specify a default argument in a list of parameters, you must specify default arguments for
all remaining parameters. So the following prototype is valid:

void setDisplay(int height, int width, int depth = 32, bool fullScreen = true);

while this one is illegal:

void setDisplay(int width, int height, int depth = 32, bool fullScreen);

By the way, you don’t repeat the default argument in the function definition, as
you can see in the function definition of askNumber().

int askNumber(int high, int low)

Assigning Default Arguments to Parameters

The askNumber() function asks the user for a number between an upper and a
lower limit. The function keeps asking until the user enters a number within the
range, and then it returns the number. I first call the function in main() with:

int number = askNumber(5);

As a result of this code, the parameter high in askNumber() is assigned 5. Because I
don’t provide any value for the second parameter, low, it gets assigned the default
value of 1. This means the function prompts the user for a number between 1 and 5.

T r a p

When you are calling a function with default arguments, once you omit an argument, you must
omit arguments for all remaining parameters. For example, given the prototype

void setDisplay(int height, int width, int depth = 32, bool fullScreen = true);

Using Default Arguments 173

a valid call to the function would be

setDisplay(1680, 1050);

while an illegal call would be

setDisplay(1680, 1050, false);

Once the user enters a valid number, askNumber() returns that value and ends.
Back in main(), the value is assigned to number and displayed.

Overriding Default Arguments

Next I call askNumber() again with:

number = askNumber(10, 5);

This time I pass a value for low—5. This is perfectly fine; you can pass an
argument for any parameter with a default argument, and the value you pass will
override the default. In this case, it means that low is assigned 5.

As a result, the user is prompted for a number between 5 and 10. Once the user
enters a valid number, askNumber() returns that value and ends. Back in main(),
the value is assigned to number and displayed.

Overloading Functions

You’ve seen how you must specify a parameter list and a single return type for
each function you write. But what if you want a function that’s more versatile—
one that can accept different sets of arguments? For example, suppose you want
to write a function that performs a 3D transformation on a set of vertices that
are represented as floats, but you want the function to work with ints as well.
Instead of writing two separate functions with two different names, you could
use function overloading so that a single function could handle the different
parameter lists. This way, you could call one function and pass vertices as either
floats or ints.

Introducing the Triple Program

The Triple program triples the value 5, and “gamer”. The program triples these
values using a single function that’s been overloaded to work with an argument
of two different types: int and string. Figure 5.6 shows a sample run of the
program.

174 Chapter 5 n Functions: Mad Lib

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 5
folder; the filename is triple.cpp.

// Triple
// Demonstrates function overloading

#include <iostream>
#include <string>

using namespace std;

int triple(int number);
string triple(string text);

int main()
{

Figure 5.6
Function overloading allows you to triple the values of two different types using the same function
name.

Overloading Functions 175

cout << "Tripling 5: " << triple(5) << "\n\n";
cout << "Tripling ’gamer’: " << triple("gamer");

return 0;
}

int triple(int number)
{

return (number * 3);
}

string triple(string text)
{

return (text + text + text);
}

Creating Overloaded Functions

To create an overloaded function, you simply need to write multiple function
definitions with the same name and different parameter lists. In the Triple
program, I write two definitions for the function triple(), each of which
specifies a different type as its single argument. Here are the function prototypes:

int triple(int number);
string triple(string text);

The first takes an int argument and returns an int. The second takes a string

object and returns a string object.

In each function definition, you can see that I return triple the value sent. In the
first function, I return the int sent, tripled. In the second function, I return the
string sent, repeated three times.

T r a p

To implement function overloading, you need to write multiple definitions for the same function
with different parameter lists. Notice that I didn’t mention anything about return types. That’s
because if you write two function definitions in which only the return type is different, you’ll
generate a compile error. For example, you cannot have both of the following prototypes in a
program:

int Bonus(int);
float Bonus(int);

176 Chapter 5 n Functions: Mad Lib

Calling Overloaded Functions

You can call an overloaded function the same way you call any other function,
by using its name with a set of valid arguments. But with overloaded functions,
the compiler (based on the argument values) determines which definition to
invoke. For example, when I call triple() with the following line and use an int

as the argument, the compiler knows to invoke the definition that takes an int.
As a result, the function returns the int 15.

cout << "Tripling 5: " << triple(5) << "\n\n";

I call triple() again with:

cout << "Tripling ’gamer’: " << triple("gamer");

Because I use a string literal as the argument, the compiler knows to invoke the
definition of the function that takes a string object. As a result, the function
returns the string object equal to gamergamergamer.

Inlining Functions

There’s a small performance cost associated with calling a function. Normally,
this isn’t a big deal because the cost is relatively minor. However, for tiny
functions (such as one or two lines), it’s sometimes possible to speed up program
performance by inlining them. By inlining a function, you ask the compiler
to make a copy of the function everywhere it’s called. As a result, program
control doesn’t have to jump to a different location each time the function is
called.

Introducing the Taking Damage Program

The Taking Damage program simulates what happens to a character’s health as
the character takes radiation damage. The character loses half of his health each
round. Fortunately, the program only runs three rounds, so we’re spared the sad
end of the character. The program inlines the tiny function that calculates the
character’s new health. Figure 5.7 shows the program results.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 5
folder; the filename is taking_damage.cpp.

Inlining Functions 177

// Taking Damage
// Demonstrates function inlining

#include <iostream>

int radiation(int health);

using namespace std;

int main()
{

int health = 80;
cout << "Your health is " << health << "\n\n";

health = radiation(health);
cout << "After radiation exposure your health is " << health << "\n\n";

health = radiation(health);
cout << "After radiation exposure your health is " << health << "\n\n";

health = radiation(health);
cout << "After radiation exposure your health is " << health << "\n\n";

Figure 5.7
The character approaches his demise quite efficiently as his health decreases through an inlined
function.

178 Chapter 5 n Functions: Mad Lib

return 0;
}

inline int radiation(int health)
{

return (health / 2);
}

Specifying Functions for Inlining

To mark a function for inlining, simply put inline before the function
definition. That’s what I do when I define the following function:

inline int radiation(int health)

Note that you don’t use inline in the function declaration:

int radiation(int health);

By flagging the function with inline, you ask the compiler to copy the function
directly into the calling code. This saves the overhead of making the function
call. That is, program control doesn’t have to jump to another part of your code.
For small functions, this can result in a performance boost.

However, inlining is not a silver bullet for performance. In fact, indiscriminate
inlining can lead to worse performance because inlining a function creates extra
copies of it, which can dramatically increase memory consumption.

H i n t

When you inline a function, you really make a request to the compiler, which has the ultimate
decision on whether to inline the function. If your compiler thinks that inlining won’t boost
performance, it won’t inline the function.

Calling Inlined Functions

Calling an inlined function is no different than calling a non-inlined function, as
you see with my first call to radiation().

health = radiation(health);

This line of code assigns health one half of its original value.

Assuming that the compiler grants my request for inlining, this code doesn’t
result in a function call. Instead, the compiler places the code to halve health

Inlining Functions 179

right at this place in the program. In fact, the compiler does this for all three calls
to the function.

R e a l Wo r l d

Although obsessing about performance is a game programmer’s favorite hobby, there’s a danger in
focusing too much on speed. In fact, the approach many developers take is to first get their game
programs working well before they tweak for small performance gains. At that point, programmers
will profile their code by running a utility (a profiler) that analyzes where the game program spends
its time. If a programmer sees bottlenecks, he or she might consider hand optimizations such as
function inlining.

Introducing the Mad Lib Game

The Mad Lib game asks for the user’s help in creating a story. The user supplies
the name of a person, a plural noun, a number, and a verb. The program takes
all of this information and uses it to create a personalized story. Figure 5.8 shows
a sample run of the program.

Figure 5.8
After the user provides all of the necessary information, the program displays the literary masterpiece.

180 Chapter 5 n Functions: Mad Lib

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 5
folder; the filename is mad_lib.cpp.

Setting Up the Program

As usual, I start the program with some comments and include the necessary
files.

// Mad-Lib
// Creates a story based on user input

#include <iostream>
#include <string>

using namespace std;

string askText(string prompt);
int askNumber(string prompt);
void tellStory(string name, string noun, int number, string bodyPart,

string verb);

You can tell from my function prototypes that I have three functions in addition
to main()—askText(), askNumber(), and tellStory().

The main() Function

The main() function calls all of the other functions. It calls the function askText()

to get a name, plural noun, body part, and verb from the user. It calls askNumber()
to get a number from the user. It calls tellStory() with all of the user-supplied
information to generate and display the story.

int main()
{

cout << "Welcome to Mad Lib.\n\n";
cout << "Answer the following questions to help create a new story.\n";

string name = askText("Please enter a name: ");
string noun = askText("Please enter a plural noun: ");
int number = askNumber("Please enter a number: ");
string bodyPart = askText("Please enter a body part: ");
string verb = askText("Please enter a verb: ");

Introducing the Mad Lib Game 181

tellStory(name, noun, number, bodyPart, verb);

return 0;
}

The askText() Function

The askText() function gets a string from the user. The function is versatile and
takes a parameter of type string, which it uses to prompt the user. Because of
this, I’m able to call this single function to ask the user for a variety of different
pieces of information, including a name, plural noun, body part, and verb.

string askText(string prompt)
{

string text;
cout << prompt;
cin >> text;
return text;

}

T r a p

Remember that this simple use of cin only works with strings that have no white space in them
(such as tabs or spaces). So when a user is prompted for a body part, he can enter bellybutton,
but medulla oblongata will cause a problem for the program.

There are ways to compensate for this, but that really requires a discussion of something called
streams, which is beyond the scope of this book. So use cin in this way, but just be aware of its
limitations.

The askNumber() Function

The askNumber() function gets an integer from the user. Although I only call it
once in the program, it’s versatile because it takes a parameter of type string

that it uses to prompt the user.

int askNumber(string prompt)
{

int num;
cout << prompt;
cin >> num;
return num;

}

182 Chapter 5 n Functions: Mad Lib

The tellStory() Function

The tellStory() function takes all of the information entered by the user and
uses it to display a personalized story.

void tellStory(string name, string noun, int number, string bodyPart,
string verb)

{
cout << "\nHere’s your story:\n";
cout << "The famous explorer ";
cout << name;
cout << " had nearly given up a life-long quest to find\n";
cout << "The Lost City of ";
cout << noun;
cout << " when one day, the ";
cout << noun;
cout << " found the explorer.\n";
cout << "Surrounded by ";
cout << number;
cout << " " << noun;
cout << ", a tear came to ";
cout << name << "’s ";
cout << bodyPart << ".\n";
cout << "After all this time, the quest was finally over. ";
cout << "And then, the ";
cout << noun << "\n";
cout << "promptly devoured ";
cout << name << ". ";
cout << "The moral of the story? Be careful what you ";
cout << verb;
cout << " for.";

}

Summary

In this chapter, you should have learned the following concepts:

n Functions allow you to break up your programs into manageable chunks.

n One way to declare a function is to write a function prototype—code
that lists the return value, name, and parameter types of a function.

n Defining a function means writing all the code that makes the function tick.

Summary 183

n You can use the return statement to return a value from a function. You
can also use return to end a function that has void as its return type.

n A variable’s scope determines where the variable can be seen in your
program.

n Global variables are accessible from any part of your program. In general,
you should try to limit your use of global variables.

n Global constants are accessible from any part of your program. Using
global constants can make your program code clearer.

n Default arguments are assigned to a parameter if no value for the param-
eter is specified in the function call.

n Function overloading is the process of creating multiple definitions for
the same function, each of which has a different set of parameters.

n Function inlining is the process of asking the compiler to inline a
function—meaning that the compiler should make a copy of the function
everywhere in the code where the function is called. Inlining very small
functions can sometimes yield a performance boost.

Questions and Answers

Q: Why should I write functions?

A: Functions allow you to break up your programs into logical pieces. These
pieces result in smaller, more manageable chunks of code, which are easier to
work with than a single monolithic program.

Q: What’s encapsulation?

A: At its core, encapsulation is about keeping things separate. Function
encapsulation provides that variables declared in a function are not accessible
outside the function, for example.

Q: What’s the difference between an argument and a parameter?

A: An argument is what you use in a function call to pass a value to a function. A
parameter is what you use in a function definition to accept values passed to a
function.

184 Chapter 5 n Functions: Mad Lib

Q: Can I have more than one return statement in a function?

A: Sure. In fact, you might want multiple return statements to specify different
end points of a function.

Q: What’s a local variable?

A: A variable that’s defined in a scope. All variables defined in a function are
local variables; they’re local to that function.

Q: What does it mean to hide a variable?

A: A variable is hidden when you declare it inside a new scope with the same
name as a variable in an outer scope. As a result, you can’t get to the variable
in the outer scope by using its variable name in the inner scope.

Q: When does a variable go out of scope?

A: A variable goes out of scope when the scope in which it was created ends.

Q: What does it mean when a variable goes out of scope?

A: It means the variable ceases to exist.

Q: What’s a nested scope?

A: A scope created within an existing scope.

Q: Must an argument have the same name as the parameter to which it’s passed?

A: No. You’re free to use different names. It’s only the value that’s passed from a
function call to a function.

Q: Can I write one function that calls another?

A: Of course. In fact, whenever you write a function that you call from main(),
you’re doing just that. In addition, you can write a function (other than
main()) that calls another function.

Q: What is code profiling?

A: It’s the process of recording how much CPU time various parts of a program
use.

Questions and Answers 185

Q: Why profile code?

A: To determine any bottlenecks in a program. Sometimes it makes sense to
revisit these sections of code in an attempt to optimize them.

Q: When do programmers profile code?

A: Usually toward the end of the programming of a game project.

Q: What’s premature optimization?

A: An attempt to optimize code too early in the development process. Code
optimization usually makes sense near the end of programming a game
project.

Discussion Questions

1. How does function encapsulation help you write better programs?

2. How can global variables make code confusing?

3. How can global constants make code clearer?

4. What are the pros and cons of optimizing code?

5. How can software reuse benefit the game industry?

Exercises

1. What’s wrong with the following prototype?
int askNumber(int low = 1, int high);

2. Rewrite the Hangman game from Chapter 4 using functions. Include a
function to get the player’s guess and another function to determine
whether the player’s guess is in the secret word.

3. Using default arguments, write a function that asks the user for a
number and returns that number. The function should accept a string
prompt from the calling code. If the caller doesn’t supply a string for the
prompt, the function should use a generic prompt. Next, using function
overloading, write a function that achieves the same results.

186 Chapter 5 n Functions: Mad Lib

References: Tic-Tac-Toe

The concept of references is simple, but its implications are profound. In this
chapter, you’ll learn about references and how they can help you write more
efficient game code. Specifically, you’ll learn to:

n Create references

n Access and change referenced values

n Pass references to functions to alter argument values or for efficiency

n Return references from a function for efficiency or to alter values

Using References

A reference provides another name for a variable. Whatever you do to a
reference is done to the variable to which it refers. You can think of a reference
as a nickname for a variable—another name that the variable goes by. In the first
program in this chapter, I’ll show you how to create references. Then, in the next
few programs, I’ll show you why you’d want to use references and how they can
improve your game programs.

Introducing the Referencing Program

The Referencing program demonstrates references. The program declares and
initializes a variable to hold a score and then creates a reference that refers to the
variable. The program displays the score using the variable and the reference to

chapter 6

187

show that they access the same single value. Next, the program shows that this
single value can be altered through either the variable or the reference. Figure 6.1
illustrates the program.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 6
folder; the filename is referencing.cpp.

// Referencing
// Demonstrates using references

#include <iostream>

using namespace std;

int main()
{

int myScore = 1000;
int& mikesScore = myScore; //create a reference

cout << "myScore is: " << myScore << "\n";
cout << "mikesScore is: " << mikesScore << "\n\n";

Figure 6.1
The variable myScore and the reference mikesScore are both names for the single score value.

188 Chapter 6 n References: Tic-Tac-Toe

cout << "Adding 500 to myScore\n";
myScore += 500;
cout << "myScore is: " << myScore << "\n";
cout << "mikesScore is: " << mikesScore << "\n\n";

cout << "Adding 500 to mikesScore\n";
mikesScore += 500;
cout << "myScore is: " << myScore << "\n";
cout << "mikesScore is: " << mikesScore << "\n\n";

return 0;
}

Creating References

The first thing I do in main() is create a variable to hold my score.

int myScore = 1000;

Then I create a reference that refers to myScore.

int& mikesScore = myScore; //create a reference

The preceding line declares and initializes mikesScore, a reference that refers to
myScore. mikesScore is an alias for myScore. mikesScore does not hold its own
int value; it’s simply another way to get at the int value that myScore holds.

To declare and initialize a reference, start with the type of value to which the
reference will refer, followed by the reference operator (&), followed by the
reference name, followed by =, followed by the variable to which the reference
will refer.

T r i c k

Sometimes programmers prefix a reference name with the letter “r” to remind them that they’re
working with a reference. A programmer might include the following lines:

int playerScore = 1000;
int& rScore = playerScore;

One way to understand references is to think of them as nicknames. For example,
suppose you’ve got a friend named Eugene, and he (understandably) asks to be
called by a nickname—Gibby (not much of an improvement, but it’s what Eugene

Using References 189

wants). So when you’re at a party with your friend, you can call him over using
either Eugene or Gibby. Your friend is only one person, but you can call him using
either his name or a nickname. This is the same way a variable and a reference to
that variable work. You can get to a single value stored in a variable by using its
variable name or the name of a reference to that variable. Finally, whatever you do,
try not to name your variables Eugene—for their sakes.

T r a p

Because a reference must always refer to another value, you must initialize the reference when you
declare it. If you don’t, you’ll get a compile error. The following line is quite illegal:

int& mikesScore; //don’t try this at home!

Accessing Referenced Values

Next I send both myScore and mikesScore to cout.

cout << "myScore is: " << myScore << "\n";
cout << "mikesScore is: " << mikesScore << "\n\n";

Both lines of code display 1000 because they each access the same single chunk
of memory that stores the number 1000. Remember, there is only one value, and
it is stored in the variable myScore. mikesScore simply provides another way to
get to that value.

Altering Referenced Values

Next I increase the value of myScore by 500.

myScore += 500;

When I send myScore to cout, 1500 is displayed, just as you’d expect. When I
send mikesScore to cout, 1500 is also displayed. Again, that’s because mikesScore

is just another name for the variable myScore. In essence, I’m sending the same
variable to cout both times.

Next I increase mikesScore by 500.

mikesScore += 500;

Because mikesScore is just another name for myScore, the preceding line of code
increases the value of myScore by 500. So when I next send myScore to cout, 2000
is displayed. When I send mikesScore to cout, 2000 is displayed again.

190 Chapter 6 n References: Tic-Tac-Toe

T r a p

A reference always refers to the variable with which it was initialized. You can’t reassign a
reference to refer to another variable so, for example, the results of the following code might not
be obvious.

int myScore = 1000;
int& mikesScore = myScore;
int larrysScore = 2500;
mikesScore = larrysScore; //may not do what you think!

The line mikesScore = larrysScore; does not reassign the reference mikesScore so
it refers to larrysScore because a reference can’t be reassigned. However, because
mikesScore is just another name for myScore, the code mikesScore = larrysScore;
is equivalent to myScore = larrysScore;, which assigns 2500 to myScore. And after all is
said and done, myScore becomes 2500 and mikesScore still refers to myScore.

Passing References to Alter Arguments

Now that you’ve seen how references work, you might be wondering why you’d
ever use them. Well, references come in quite handy when you are passing
variables to functions because when you pass a variable to a function, the
function gets a copy of the variable. This means that the original variable you
passed (called the argument variable) can’t be changed. Sometimes this might be
exactly what you want because it keeps the argument variable safe and
unalterable. But other times you might want to change an argument variable
from inside the function to which it was passed. You can accomplish this by
using references.

Introducing the Swap Program

The Swap program defines two variables—one that holds my pitifully low score
and another that holds your impressively high score. After displaying the scores,
the program calls a function meant to swap the scores. But because only copies
of the score values are sent to the function, the argument variables that hold the
scores are unchanged. Next, the program calls another swap function. This time,
through the use of references, the argument variables’ values are successfully
exchanged—giving me the great big score and leaving you with the small one.
Figure 6.2 shows the program in action.

Passing References to Alter Arguments 191

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 6
folder; the filename is swap.cpp.

// Swap
// Demonstrates passing references to alter argument variables

#include <iostream>

using namespace std;

void badSwap(int x, int y);
void goodSwap(int& x, int& y);

int main()
{

int myScore = 150;
int yourScore = 1000;
cout << "Original values\n";
cout << "myScore: " << myScore << "\n";
cout << "yourScore: " << yourScore << "\n\n";

Figure 6.2
Passing references allows goodSwap() to alter the argument variables.

192 Chapter 6 n References: Tic-Tac-Toe

cout << "Calling badSwap()\n";
badSwap(myScore, yourScore);
cout << "myScore: " << myScore << "\n";
cout << "yourScore: " << yourScore << "\n\n";

cout << "Calling goodSwap()\n";
goodSwap(myScore, yourScore);
cout << "myScore: " << myScore << "\n";
cout << "yourScore: " << yourScore << "\n";

return 0;
}

void badSwap(int x, int y)
{

int temp = x;
x = y;
y = temp;

}

void goodSwap(int& x, int& y)
{

int temp = x;
x = y;
y = temp;

}

Passing by Value

After declaring and initializing myScore and yourScore, I send them to cout. As
you’d expect, 150 and 1000 are displayed. Next I call badSwap().

When you specify a parameter the way you’ve seen so far (as an ordinary
variable, not as a reference), you’re indicating that the argument for that
parameter will be passed by value, meaning that the parameter will get a copy
of the argument variable and not access to the argument variable itself. By
looking at the function header of badSwap(), you can tell that a call to the
function passes both arguments by value.

void badSwap(int x, int y)

Passing References to Alter Arguments 193

This means that when I call badSwap() with the following line, copies of myScore
and yourScore are sent to the parameters, x and y.

badSwap(myScore, yourScore);

Specifically, x is assigned 150 and y is assigned 1000. As a result, nothing I do
with x and y in the function badSwap() will have any effect on myScore and
yourScore.

When the guts of badSwap() execute, x and y do exchange values—x becomes
1000 and y becomes 150. However, when the function ends, both x and y go out
of scope and cease to exist. Control then returns to main(), where myScore and
yourScore haven’t changed. Then, when I send myScore and yourScore to cout,
150 and 1000 are displayed again. Sadly, I still have the small score and you still
have the large one.

Passing by Reference

It’s possible to give a function access to an argument variable by passing a
parameter a reference to the argument variable. As a result, anything done to the
parameter will be done to the argument variable. To pass by reference, you must
first declare the parameter as a reference.

You can tell that a call to goodSwap() passes both arguments by reference by
looking at the function header.

void goodSwap(int& x, int& y)

This means that when I call goodSwap() with the following line, the parameter x

will refer to myScore and the parameter y will refer to yourScore.

goodSwap(myScore, yourScore);

This means that x is just another name for myScore and y is just another name
for yourScore. When goodSwap() executes and x and y exchange values, what
really happens is that myScore and yourScore exchange values.

After the function ends, control returns to main(), where I send myScore and
yourScore to cout. This time 1000 and 150 are displayed. The variables have
exchanged values. I’ve taken the large score and left you with the small one.
Success at last!

194 Chapter 6 n References: Tic-Tac-Toe

Passing References for Efficiency

Passing a variable by value creates some overhead because you must copy the
variable before you assign it to a parameter. When we’re talking about variables
of simple, built-in types, such as an int or a float, the overhead is negligible.
But a large object, such as one that represents an entire 3D world, could be
expensive to copy. Passing by reference, on the other hand, is efficient because
you don’t make a copy of an argument variable. Instead, you simply provide
access to the existing object through a reference.

Introducing the Inventory Displayer Program

The Inventory Displayer program creates a vector of strings that represents a
hero’s inventory. The program then calls a function that displays the inventory.
The program passes the displayer function the vector of items as a reference, so
it’s an efficient call; the vector isn’t copied. However, there’s a new wrinkle. The
program passes the vector as a special kind of reference that prohibits the
displayer function from changing the vector. Figure 6.3 shows you the program.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 6
folder; the filename is inventory_displayer.cpp.

Figure 6.3
The vector inventory is passed in a safe and efficient way to the function that displays the hero’s
items.

Passing References for Efficiency 195

// Inventory Displayer
// Demonstrates constant references

#include <iostream>
#include <string>
#include <vector>

using namespace std;

//parameter vec is a constant reference to a vector of strings
void display(const vector<string>& inventory);

int main()
{

vector<string> inventory;
inventory.push_back("sword");
inventory.push_back("armor");
inventory.push_back("shield");

display(inventory);

return 0;
}

//parameter vec is a constant reference to a vector of strings
void display(const vector<string>& vec)
{

cout << "Your items:\n";
for (vector<string>::const_iterator iter = vec.begin();

iter != vec.end(); ++iter)
{

cout << *iter << endl;
}

}

Understanding the Pitfalls of Reference Passing

One way to efficiently give a function access to a large object is to pass it by
reference. However, this introduces a potential problem. As you saw in the Swap
program, it opens up an argument variable to being changed. But what if you

196 Chapter 6 n References: Tic-Tac-Toe

don’t want to change the argument variable? Is there a way to take advantage of
the efficiency of passing by reference while protecting an argument variable’s
integrity? Yes, there is. The answer is to pass a constant reference.

H i n t

In general, you should avoid changing an argument variable. Try to write functions that send back
new information to the calling code through a return value.

Declaring Parameters as Constant References

The function display() shows the contents of the hero’s inventory. In the
function’s header I specify one parameter—a constant reference to a vector of
string objects named vec.

void display(const vector<string>& vec)

A constant reference is a restricted reference. It acts like any other reference, except
you can’t use it to change the value to which it refers. To create a constant reference,
simply put the keyword const before the type in the reference declaration.

What does this all mean for the function display()? Because the parameter vec

is a constant reference, it means display() can’t change vec. In turn, this means
that inventory is safe; it can’t be changed by display(). In general, you can
efficiently pass an argument to a function as a constant reference so it’s
accessible, but not changeable. It’s like providing the function read-only access
to the argument. Although constant references are very useful for specifying
function parameters, you can use them anywhere in your program.

H i n t

A constant reference comes in handy in another way. If you need to assign a constant value to a
reference, you have to assign it to a constant reference. (A non-constant reference won’t do.)

Passing a Constant Reference

Back in main(), I create inventory and then call display() with the following
line, which passes the vector as a constant reference.

display(inventory);

Passing References for Efficiency 197

This results in an efficient and safe function call. It’s efficient because only a
reference is passed; the vector is not copied. It’s safe because the reference to the
vector is a constant reference; inventory can’t be changed by display().

T r a p

You can’t modify a parameter marked as a constant reference. If you try, you’ll generate a compile
error.

Next, display() lists the elements in the vector using a constant reference to
inventory. Then control returns to main() and the program ends.

Deciding How to Pass Arguments

At this point you’ve seen three different ways to pass arguments—by value, as a
reference, and as a constant reference. So how do you decide which method to
use? Here are some guidelines:

n By value. Pass by value when an argument variable is one of the funda-
mental built-in types, such as bool, int, or float. Objects of these types
are so small that passing by reference doesn’t result in any gain in effi-
ciency. You should also pass by value when you want the computer to
make a copy of a variable. You might want to use a copy if you plan to
alter a parameter in a function, but you don’t want the actual argument
variable to be affected.

n As a constant reference. Pass a constant reference when you want to
efficiently pass a value that you don’t need to change.

n As a reference. Pass a reference only when you want to alter the value
of the argument variable. However, you should try to avoid changing
argument variables whenever possible.

Returning References

Just like when you pass a value, when you return a value from a function, you’re
really returning a copy of the value. Again, for values of the basic built-in types,
this isn’t a big deal. However, it can be an expensive operation if you’re
returning a large object. Returning a reference is an efficient alternative.

198 Chapter 6 n References: Tic-Tac-Toe

Introducing the Inventory Referencer Program

The Inventory Referencer program demonstrates returning references. The
program displays the elements of a vector that holds a hero’s inventory by
using returned references. Then the program changes one of the items through a
returned reference. Figure 6.4 shows the results of the program.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 6
folder; the filename is inventory_referencer.cpp.

// Inventory Referencer
// Demonstrates returning a reference

#include <iostream>
#include <string>
#include <vector>

using namespace std;

//returns a reference to a string
string& refToElement(vector<string>& inventory, int i);

Figure 6.4
The items in the hero’s inventory are displayed and changed by using returned references.

Returning References 199

int main()
{

vector<string> inventory;
inventory.push_back("sword");
inventory.push_back("armor");
inventory.push_back("shield");

//displays string that the returned reference refers to
cout << "Sending the returned reference to cout:\n";
cout << refToElement(inventory, 0) << "\n\n";

//assigns one reference to another -- inexpensive assignment
cout << "Assigning the returned reference to another reference.\n";
string& rStr = refToElement(inventory, 1);
cout << "Sending the new reference to cout:\n";
cout << rStr << "\n\n";

//copies a string object -- expensive assignment
cout << "Assigning the returned reference to a string object.\n";
string str = refToElement(inventory, 2);
cout << "Sending the new string object to cout:\n";
cout << str << "\n\n";

//altering the string object through a returned reference
cout << "Altering an object through a returned reference.\n";
rStr = "Healing Potion";
cout << "Sending the altered object to cout:\n";
cout << inventory[1] << endl;

return 0;
}

//returns a reference to a string
string& refToElement(vector<string>& vec, int i)
{

return vec[i];
}

Returning a Reference

Before you can return a reference from a function, you must specify that you’re
returning one. That’s what I do in the refToElement() function header.

string& refToElement(vector<string>& inventory, int i)

200 Chapter 6 n References: Tic-Tac-Toe

By using the reference operator in string& when I specify the return type, I’m
saying that the function will return a reference to a string object (not a string

object itself). You can use the reference operator like I did to specify that a
function returns a reference to an object of a particular type. Simply put the
reference operator after the type name.

The body of the function refToElement() contains only one statement, which
returns a reference to the element at position i in the vector.

return vec[i];

Notice that there’s nothing in the return statement to indicate that the function
returns a reference. The function header and prototype determine whether a
function returns an object or a reference to an object.

T r a p

Although returning a reference can be an efficient way to send information back to a calling
function, you have to be careful not to return a reference to an out-of-scope object—an object that
ceases to exist. For example, the following function returns a reference to a string object that no
longer exists after the function ends—and that’s illegal.

string& badReference()
{

string local = "This string will cease to exist once the function ends.";
return local;

}

One way to avoid this type of problem is to never return a reference to a local variable.

Displaying the Value of a Returned Reference

After creating inventory, a vector of items, I display the first item through a
returned reference.

cout << refToElement(inventory, 0) << "\n\n";

The preceding code calls refToElement(), which returns a reference to the
element at position 0 of inventory and then sends that reference to cout. As a
result, sword is displayed.

Returning References 201

Assigning a Returned Reference to a Reference

Next I assign a returned reference to another reference with the following line,
which takes a reference to the element in position 1 of inventory and assigns it
to rStr.

string& rStr = refToElement(inventory, 1);

This is an efficient assignment because assigning a reference to a reference does not
involve the copying of an object. Then I send rStr to cout, and armor is displayed.

Assigning a Returned Reference to a Variable

Next I assign a returned reference to a variable.

string str = refToElement(inventory, 2);

The preceding code doesn’t assign a reference to str. It can’t, because str is a
string object. Instead, the code copies the element to which the returned
reference refers (the element in position 2 of inventory) and assigns that new
copy of the string object to str. Because this kind of assignment involves
copying an object, it’s more expensive than assigning one reference to another.
Sometimes the cost of copying an object this way is perfectly acceptable, but you
should be aware of the extra overhead associated with this kind of assignment
and avoid it when necessary.

Next I send the new string object, str, to cout, and shield is displayed.

Altering an Object through a Returned Reference

You can also alter the object to which a returned reference refers. This means you
can change the hero’s inventory through rStr, as in the following line of code.

rStr = "Healing Potion";

Because rStr refers to the element in position 1 of inventory, this code changes
inventory[1] so it’s equal to "Healing Potion". To prove it, I display the element
using the following line, which does indeed show Healing Potion.

cout << inventory[1] << endl;

If I want to protect inventory so a reference returned by refToElement() can’t be
used to change the vector, I should specify the return type of the function as a
constant reference.

202 Chapter 6 n References: Tic-Tac-Toe

Introducing the Tic-Tac-Toe Game

In this chapter project, you’ll learn how to create a computer opponent using a
dash of AI (Artificial Intelligence). In the game, the player and computer square
off in a high-stakes, man-versus-machine showdown of Tic-Tac-Toe. The
computer plays a formidable (although not perfect) game and comes with
enough attitude to make any match fun. Figure 6.5 shows the start of a match.

Planning the Game

This game is your most ambitious project yet. You certainly have all the skills
you need to create it, but I’m going to go through a longer planning section to
help you get the big picture and understand how to create a larger program.
Remember, the most important part of programming is planning to program.
Without a roadmap, you’ll never get to where you want to go (or it’ll take you a
lot longer as you travel the scenic route).

R e a l Wo r l d

Game designers work countless hours on concept papers, design documents, and prototypes before
programmers write any game code. Once the design work is done, the programmers start their work—
more planning. It’s only after programmers write their own technical designs that they then begin
coding in earnest. The moral of this story? Plan. It’s easier to scrap a blueprint than a 50-story building.

Figure 6.5
The computer is full of. . .confidence.

Introducing the Tic-Tac-Toe Game 203

Writing the Pseudocode

It’s back to your favorite language that’s not really a language—pseudocode.
Because I’ll be using functions for most of the tasks in the program, I can afford
to think about the code at a pretty abstract level. Each line of pseudocode should
feel like one function call. Later, all I’ll have to do is write the functions that the
plan implies. Here’s the pseudocode:

Create an empty Tic-Tac-Toe board
Display the game instructions
Determine who goes first
Display the board
While nobody’s won and it’s not a tie

If it’s the human’s turn
Get the human’s move
Update the board with the human’s move

Otherwise
Calculate the computer’s move
Update the board with the computer’s move

Display the board
Switch turns

Congratulate the winner or declare a tie

Representing the Data

All right, I’ve got a good plan, but it is pretty abstract and talks about throwing
around different elements that aren’t really defined in my mind yet. I see the
idea of making a move as placing a piece on a game board. But how exactly am I
going to represent the game board? Or a piece? Or a move?

Since I’m going to display the game board on the screen, why not just represent
a piece as a single character—an X or an O? An empty piece could just be a
space. Therefore, the board itself could be a vector of chars. There are nine
squares on a Tic-Tac-Toe board, so the vector should have nine elements. Each
square on the board will correspond to an element in the vector. Figure 6.6
illustrates what I mean.

Each square or position on the board is represented by a number, 0–8. That
means the vector will have nine elements, giving it position numbers 0–8.
Because each move indicates a square where a piece should be placed, a move is
also just a number, 0–8. That means a move could be represented as an int.

204 Chapter 6 n References: Tic-Tac-Toe

The side the player and computer play could also be represented by a char—

either an ’X’ or an ’O’, just like a game piece. A variable to represent the side of
the current turn would also be a char, either an ’X’ or an ’O’.

Creating a List of Functions

The pseudocode inspires the different functions I’ll need. I created a list of them,
thinking about what each will do, what parameters they’ll have, and what values
they’ll return. Table 6.1 shows the results of my efforts.

Setting Up the Program

You can download the code for this program from the Course Technology website
(www.courseptr.com/downloads). The program is in the Chapter 6 folder; the
filename is tic-tac-toe.cpp. I’ll go over the code here, section by section.

The first thing I do in the program is include the files I need, define some global
constants, and write my function prototypes.

// Tic-Tac-Toe
// Plays the game of tic-tac-toe against a human opponent

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>

using namespace std;

Figure 6.6
Each square number corresponds to a position in the vector that represents the board.

Introducing the Tic-Tac-Toe Game 205

// global constants
const char X = ’X’;
const char O = ’O’;
const char EMPTY = ’ ’;
const char TIE = ’T’;
const char NO_ONE = ’N’;

// function prototypes
void instructions();
char askYesNo(string question);

Table 6.1 Tic-Tac-Toe Functions

Function Description

void instructions() Displays the game instructions.

char askYesNo(string question) Asks a yes or no question. Receives a question. Returns
either a ’y’ or an ’n’.

int askNumber(string question, int
high, int low = 0)

Asks for a number within a range. Receives a question,
a low number, and a high number. Returns a number in
the range from low to high.

char humanPiece() Determines the human’s piece. Returns either an ’X’ or
an ’O’.

char opponent(char piece) Calculates the opposing piece given a piece. Receives
either an ’X’ or an ’O’. Returns either an ’X’ or an
’O’.

void displayBoard(const
vector<char>& board)

Displays the board on the screen. Receives a board.

char winner(const vector<char>&
board)

Determines the game winner. Receives a board. Returns
an ’X’, ’O’, ’T’ (to indicate a tie), or ’N’ (to indicate
that no one has won yet).

bool isLegal(const vector<char>&
board, int move)

Determines whether a move is legal. Receives a board
and a move. Returns either true or false.

int humanMove(const vector<char>&
board, char human)

Gets the human’s move. Receives a board and the
human’s piece. Returns the human’s move.

int computerMove(vector<char> board,
char computer)

Calculates the computer’s move. Receives a board and
the computer’s piece. Returns the computer’s move.

void announceWinner(char winner,
char computer, char human)

Congratulates the winner or declares a tie. Receives the
winning side, the computer’s piece, and the human’s
piece.

206 Chapter 6 n References: Tic-Tac-Toe

int askNumber(string question, int high, int low = 0);
char humanPiece();
char opponent(char piece);
void displayBoard(const vector<char>& board);
char winner(const vector<char>& board);
bool isLegal(const vector<char>& board, int move);
int humanMove(const vector<char>& board, char human);
int computerMove(vector<char> board, char computer);
void announceWinner(char winner, char computer, char human);

In the global constants section, X is shorthand for the char ’X’, one of the two
pieces in the game. O represents the char ’O’, the other piece in the game. EMPTY,
also a char, represents an empty square on the board. It’s a space because when
it’s displayed, it will look like an empty square. TIE is a char that represents a tie
game. And NO_ONE is a char used to represent neither side of the game, which I
use to indicate that no one has won yet.

The main() Function

As you can see, the main() function is almost exactly the pseudocode I created
earlier.

// main function
int main()
{

int move;
const int NUM_SQUARES = 9;
vector<char> board(NUM_SQUARES, EMPTY);

instructions();
char human = humanPiece();
char computer = opponent(human);
char turn = X;
displayBoard(board);

while (winner(board) == NO_ONE)
{

if (turn == human)
{

move = humanMove(board, human);
board[move] = human;

Introducing the Tic-Tac-Toe Game 207

}
else
{

move = computerMove(board, computer);
board[move] = computer;

}
displayBoard(board);
turn = opponent(turn);

}

announceWinner(winner(board), computer, human);

return 0;
}

The instructions() Function

This function displays the game instructions and gives the computer opponent a
little attitude.

void instructions()
{

cout << "Welcome to the ultimate man-machine showdown: Tic-Tac-Toe.\n";
cout << "--where human brain is pit against silicon processor\n\n";

cout << "Make your move known by entering a number, 0 - 8. The number\n";
cout << "corresponds to the desired board position, as illustrated:\n\n";

cout << " 0 | 1 | 2\n";
cout << " ——————— \n";
cout << " 3 | 4 | 5\n";
cout << " ——————— \n";
cout << " 6 | 7 | 8\n\n";

cout << "Prepare yourself, human. The battle is about to begin.\n\n";
}

The askYesNo() Function

This function asks a yes or no question. It keeps asking the question until the
player enters either a y or an n. It receives a question and returns either a ’y’ or
an ’n’.

208 Chapter 6 n References: Tic-Tac-Toe

char askYesNo(string question)
{

char response;
do
{

cout << question << " (y/n): ";
cin >> response;

} while (response != ’y’ && response != ’n’);

return response;
}

The askNumber() Function

This function asks for a number within a range and keeps asking until the player
enters a valid number. It receives a question, a high number, and a low number.
It returns a number within the range specified.

int askNumber(string question, int high, int low)
{

int number;
do
{

cout << question << " (" << low << " - " << high << "): ";
cin >> number;

} while (number > high || number < low);

return number;
}

If you take a look at this function’s prototype, you can see that the low number
has a default value of 0. I take advantage of this fact when I call the function later
in the program.

The humanPiece() Function

This function asks the player if he wants to go first, and returns the human’s
piece based on that choice. As the great tradition of Tic-Tac-Toe dictates, the X
goes first.

char humanPiece()
{

Introducing the Tic-Tac-Toe Game 209

char go_first = askYesNo("Do you require the first move?");
if (go_first == ’y’)
{

cout << "\nThen take the first move. You will need it.\n";
return X;

}
else
{

cout << "\nYour bravery will be your undoing. . . I will go first.\n";
return O;

}
}

The opponent() Function

This function gets a piece (either an ’X’ or an ’O’) and returns the opponent’s
piece (either an ’X’ or an ’O’).

char opponent(char piece)
{

if (piece == X)
{

return O;
}
else
{

return X;
}

}

The displayBoard() Function

This function displays the board passed to it. Because each element in the board
is either a space, an ’X’, or an ’O’, the function can display each one. I use a few
other characters on my keyboard to draw a decent-looking Tic-Tac-Toe board.

void displayBoard(const vector<char>& board)
{

cout << "\n\t" << board[0] << " | " << board[1] << " | " << board[2];
cout << "\n\t" << "———————";
cout << "\n\t" << board[3] << " | " << board[4] << " | " << board[5];
cout << "\n\t" << "———————";

210 Chapter 6 n References: Tic-Tac-Toe

cout << "\n\t" << board[6] << " | " << board[7] << " | " << board[8];
cout << "\n\n";

}

Notice that the vector that represents the board is passed through a constant
reference. This means that the vector is passed efficiently; it is not copied. It also
means that the vector is safeguarded against any changes. Since I plan to simply
display the board and not change it in this function, this is perfect.

The winner() Function

This function receives a board and returns the winner. There are four possible
values for a winner. The function will return either X or O if one of the players
has won. If every square is filled and no one has won, it returns TIE. Finally, if no
one has won and there is at least one empty square, the function returns NO_ONE.

char winner(const vector<char>& board)
{

// all possible winning rows
const int WINNING_ROWS[8][3] = { {0, 1, 2},

{3, 4, 5},
{6, 7, 8},
{0, 3, 6},
{1, 4, 7},
{2, 5, 8},
{0, 4, 8},
{2, 4, 6} };

The first thing to notice is that the vector that represents the board is passed
through a constant reference. This means that the vector is passed efficiently; it
is not copied. It also means that the vector is safeguarded against any change.

In this initial section of the function, I define a constant, two-dimensional array
of ints called WINNING_ROWS, which represents all eight ways to get three in a row
and win the game. Each winning row is represented by a group of three
numbers—three board positions that form a winning row. For example, the
group {0, 1, 2} represents the top row—board positions 0, 1, and 2. The next
group, {3, 4, 5}, represents the middle row—board positions 3, 4, and 5. And so
on. . . .

Next I check to see whether either player has won.

Introducing the Tic-Tac-Toe Game 211

const int TOTAL_ROWS = 8;

// if any winning row has three values that are the same (and not EMPTY),
// then we have a winner
for(int row = 0; row < TOTAL_ROWS; ++row)
{

if ((board[WINNING_ROWS[row][0]] != EMPTY) &&
(board[WINNING_ROWS[row][0]] == board[WINNING_ROWS[row][1]]) &&
(board[WINNING_ROWS[row][1]] == board[WINNING_ROWS[row][2]]))

{
return board[WINNING_ROWS[row][0]];

}
}

I loop through each possible way a player can win to see whether either player
has three in a row. The if statement checks to see whether the three squares in
question all contain the same value and are not EMPTY. If so, it means that the
row has either three Xs or Os in it, and one side has won. The function then
returns the piece in the first position of this winning row.

If neither player has won, I check for a tie game.

// since nobody has won, check for a tie (no empty squares left)
if (count(board.begin(), board.end(), EMPTY) == 0)

return TIE;

If there are no empty squares on the board, then the game is a tie. I use the STL
count() algorithm, which counts the number of times a given value appears in a
group of container elements, to count the number of EMPTY elements in board. If
the number is equal to 0, the function returns TIE.

Finally, if neither player has won and the game isn’t a tie, then there is no winner
yet. Thus, the function returns NO_ONE.

// since nobody has won and it isn’t a tie, the game ain’t over
return NO_ONE;

}

The isLegal() Function

This function receives a board and a move. It returns true if the move is a legal
one on the board or false if the move is not legal. A legal move is represented by
the number of an empty square.

212 Chapter 6 n References: Tic-Tac-Toe

inline bool isLegal(int move, const vector<char>& board)
{

return (board[move] == EMPTY);
}

Again, notice that the vector that represents the board is passed through a
constant reference. This means that the vector is passed efficiently; it is not
copied. It also means that the vector is safeguarded against any change.

You can see that I inlined isLegal(). Modern compilers are quite good at
optimizing on their own; however, since this function is just one line, it’s a good
candidate for inlining.

The humanMove() Function

This next function receives a board and the human’s piece. It returns the square
number for where the player wants to move. The function asks the player for the
square number to which he wants to move until the response is a legal move.
Then the function returns the move.

int humanMove(const vector<char>& board, char human)
{

int move = askNumber("Where will you move?", (board.size() - 1));
while (!isLegal(move, board))
{

cout << "\nThat square is already occupied, foolish human.\n";
move = askNumber("Where will you move?", (board.size() - 1));

}
cout << "Fine. . .\n";

return move;
}

Again, notice that the vector that represents the board is passed through a
constant reference. This means that the vector is passed efficiently; it is not
copied. It also means that the vector is safeguarded against any change.

The computerMove() Function

This function receives the board and the computer’s piece. It returns the computer’s
move. The first thing to notice is that I do not pass the board by reference.

int computerMove(vector<char> board, char computer)

Introducing the Tic-Tac-Toe Game 213

Instead, I choose to pass by value, even though it’s not as efficient as passing by
reference. I pass by value because I need to work with and modify a copy of the
board as I place pieces in empty squares to determine the best computer move.
By working with a copy, I keep the original vector that represents the board
safe.

Now on to the guts of the function. Okay, how do I program a bit of AI so the
computer puts up a decent fight? Well, I came up with a basic three-step strategy
for choosing a move.

1. If the computer can win on this move, make that move.

2. Otherwise, if the human can win on his next move, block him.

3. Otherwise, take the best remaining open square. The best square is the
center. The next best squares are the corners, and then the rest of the
squares.

The next section of the function implements Step 1.

{
unsigned int move = 0;
bool found = false;

//if computer can win on next move, that’s the move to make
while (!found && move < board.size())
{

if (isLegal(move, board))
{

board[move] = computer;
found = winner(board) == computer;
board[move] = EMPTY;

}

if (!found)
{

++move;
}

}

I begin to loop through all of the possible moves, 0–8. For each move, I test to
see whether the move is legal. If it is, I put the computer’s piece in the

214 Chapter 6 n References: Tic-Tac-Toe

corresponding square and check to see whether the move gives the computer a
win. Then I undo the move by making that square empty again. If the move
didn’t result in a win for the computer, I go on to the next empty square.
However, if the move did give the computer a win, then the loop ends—and I’ve
found the move (found is true) that I want the computer to make (square
number move) to win the game.

Next, I check to see if I need to go on to Step 2 of my AI strategy. If I haven’t
found a move yet (found is false), then I check to see whether the human can
win on his next move.

//otherwise, if human can win on next move, that’s the move to make
if (!found)
{

move = 0;
char human = opponent(computer);

while (!found && move < board.size())
{

if (isLegal(move, board))
{

board[move] = human;
found = winner(board) == human;
board[move] = EMPTY;

}

if (!found)
{

++move;
}

}
}

I begin to loop through all of the possible moves, 0–8. For each move, I test to
see whether the move is legal. If it is, I put the human’s piece in the
corresponding square and check to see whether the move gives the human a
win. Then I undo the move by making that square empty again. If the move
didn’t result in a win for the human, I go on to the next empty square. However,
if the move did give the human a win, then the loop ends—and I’ve found the

Introducing the Tic-Tac-Toe Game 215

move (found is true) that I want the computer to make (square number move) to
block the human from winning on his next move.

Next, I check to see if I need to go on to Step 3 of my AI strategy. If I haven’t
found a move yet (found is false), then I look through the list of best moves, in
order of desirability, and take the first legal one.

//otherwise, moving to the best open square is the move to make
if (!found)
{

move = 0;
unsigned int i = 0;

const int BEST_MOVES[] = {4, 0, 2, 6, 8, 1, 3, 5, 7};
//pick best open square
while (!found && i < board.size())
{

move = BEST_MOVES[i];
if (isLegal(move, board))
{

found = true;
}

++i;
}

}

At this point in the function, I’ve found the move I want the computer to
make—whether that’s a move that gives the computer a win, blocks a winning
move for the human, or is simply the best empty square available. So, I have the
computer announce the move and return the corresponding square number.

cout << "I shall take square number " << move << endl;
return move;

}

R e a l Wo r l d

The Tic-Tac-Toe game considers only the next possible move. Programs that play serious games of
strategy, such as chess, look far deeper into the consequences of individual moves and consider
many levels of moves and countermoves. In fact, good computer chess programs can consider
literally millions of board positions before making a move.

216 Chapter 6 n References: Tic-Tac-Toe

The announceWinner() Function

This function receives the winner of the game, the computer’s piece, and the
human’s piece. The function announces the winner or declares a tie.

void announceWinner(char winner, char computer, char human)
{

if (winner == computer)
{

cout << winner << "’s won!\n";
cout << "As I predicted, human, I am triumphant once more -- proof\n";
cout << "that computers are superior to humans in all regards.\n";

}

else if (winner == human)
{

cout << winner << "’s won!\n";
cout << "No, no! It cannot be! Somehow you tricked me, human.\n";
cout << "But never again! I, the computer, so swear it!\n";

}

else
{

cout << "It’s a tie.\n";
cout << "You were most lucky, human, and somehow managed to tie me.\n";
cout << "Celebrate. . . for this is the best you will ever achieve.\n";

}
}

Summary

In this chapter, you should have learned the following concepts:

n A reference is an alias; it’s another name for a variable.

n You create a reference using &—the referencing operator.

n A reference must be initialized when it’s defined.

n A reference can’t be changed to refer to a different variable.

n Whatever you do to a reference is done to the variable to which the
reference refers.

n When you assign a reference to a variable, you create a new copy of the
referenced value.

Summary 217

n When you pass a variable to a function by value, you pass a copy of the
variable to the function.

n When you pass a variable to a function by reference, you pass access to
the variable.

n Passing by reference can be more efficient than passing by value,
especially when you are passing large objects.

n Passing a reference provides direct access to the argument variable passed
to a function. As a result, the function can make changes to the argument
variable.

n A constant reference can’t be used to change the value to which it refers.
You declare a constant reference by using the keyword const.

n You can’t assign a constant reference or a constant value to a
non-constant reference.

n Passing a constant reference to a function protects the argument variable
from being changed by that function.

n Changing the value of an argument variable passed to a function can
lead to confusion, so game programmers consider passing a constant
reference before passing a non-constant reference.

n Returning a reference can be more efficient than returning a copy of a
value, especially when you are returning large objects.

n You can return a constant reference to an object so the object can’t be
changed through the returned reference.

n A basic technique of game AI is to have the computer consider all of its
legal moves and all of its opponent’s legal replies before deciding which
move to take next.

Questions and Answers

Q: Different programmers put the reference operator (&) in different places
when declaring a reference. Where should I put it?

A: Three basic styles exist with regard to using the referencing operator. Some
programmers opt for int& ref = var;, while others opt for int & ref = var;.

218 Chapter 6 n References: Tic-Tac-Toe

Still others opt for int &ref = var;. The computer is fine with all three. There
are cases to be made for each style; however, the most important thing is to
be consistent.

Q: Why can’t I initialize a non-constant reference with a constant value?

A: Because a non-constant reference allows you to change the value to which it
refers.

Q: If I initialize a constant reference with a non-constant variable, can I change
the value of the variable?

A: Not through the constant reference because when you declare a constant
reference, you’re saying that the reference can’t be used to change the value
to which it refers (even if that value can be changed by other means).

Q: How does passing a constant reference save overhead?

A: When you pass a large object to a function by value, your program makes a
copy of the object. This can be an expensive operation depending on the size
of the object. Passing a reference is like only passing access to the large object;
it is an inexpensive operation.

Q: Can I make a reference to a reference?

A: Not exactly. You can assign one reference to another reference, but the new
reference will simply refer to the value to which the original reference refers.

Q: What happens if I declare a reference without initializing it?

A: Your compiler should complain because it’s illegal.

Q: Why should I avoid changing the value of a variable that I pass through a
reference?

A: Because it could lead to confusion. It’s impossible to tell from only a function
call whether a variable is being passed to change its value.

Q: Does that mean I should always pass a constant reference?

A: No. You can pass a non-constant reference to a function, but to most game
programmers, this signals that you intend to change the argument variable’s
value.

Questions and Answers 219

Q: If I don’t change the argument variables passed to functions, how should I get
new information back to the calling code?

A: Use return values.

Q: Can I pass a literal through a non-constant reference?

A: No. If you try to pass a literal as a non-constant reference, you’ll generate a
compile error.

Q: Is it impossible to pass a literal to a parameter that accepts a reference?

A: No, you can pass a literal as a constant reference.

Q: What happens when I return an object from a function?

A: Normally, your program creates a copy of the object and returns that. This
can be an expensive operation, depending on the size of the object.

Q: Why return a reference?

A: It can be more efficient because returning a reference doesn’t involve copying
an object.

Q: How can I lose the efficiency of returning a reference?

A: By assigning the returned reference to a variable. When you assign a reference
to a variable, the computer must make a copy of the object to which the
reference refers.

Q: What’s wrong with returning a reference to a local variable?

A: The local variable doesn’t exist once the function ends, which means that
you’re returning a reference to a non-existent object, which is illegal.

Discussion Questions

1. What are the advantages and disadvantages of passing an argument by
value?

2. What are the advantages and disadvantages of passing a reference?

3. What are the advantages and disadvantages of passing a constant
reference?

220 Chapter 6 n References: Tic-Tac-Toe

4. What are the advantages and disadvantages of returning a reference?

5. Should game AI cheat in order to create a more worthy opponent?

Exercises

1. Improve the Mad Lib game from Chapter 5 by using references to make
the program more efficient.

2. What’s wrong with the following program?
int main()
{

int score;
score = 1000;
float& rScore = score;
return 0;

}

3. What’s wrong with the following function?
int& plusThree(int number)
{

int threeMore = number + 3;
return threeMore;

}

Exercises 221

This page intentionally left blank

Pointers: Tic-Tac-Toe 2.0

Pointers are a powerful part of C++. In some ways, they behave like iterators
from the STL. Often, you can use them in place of references. But pointers offer
functionality that no other part of the language can. In this chapter, you’ll learn
the basic mechanics of pointers and get an idea of what they’re good for.
Specifically, you’ll learn to:

n Declare and initialize pointers

n Dereference pointers

n Use constants and pointers

n Pass and return pointers

n Work with pointers and arrays

Understanding Pointer Basics

Pointers have a reputation for being difficult to understand. In reality, the
essence of pointers is quite simple—a pointer is a variable that can contain a
memory address. Pointers give you the ability to work directly and efficiently
with computer memory. Like iterators from the STL, they’re often used to access
the contents of other variables. But before you can put pointers to good use in
your game programs, you have to understand the basics of how they work.

chapter 7

223

H i n t

Computer memory is a lot like a neighborhood, but instead of houses in which people store their
stuff, you have memory locations where you can store data. Just like a neighborhood where houses
sit side by side, labeled with addresses, chunks of computer memory sit side by side, labeled with
addresses. In a neighborhood, you can use a slip of paper with a street address on it to get to a
particular house (and to the stuff stored inside it). In a computer, you can use a pointer with a
memory address in it to get to a particular memory location (and to the stuff stored inside it).

Introducing the Pointing Program

The Pointing program demonstrates the mechanics of pointers. The program
creates a variable for a score and then creates a pointer to store the address of
that variable. The program shows that you can change the value of a variable
directly, and the pointer will reflect the change. It also shows that you can
change the value of a variable through a pointer. It then demonstrates that you
can change a pointer to point to another variable entirely. Finally, the program
shows that pointers can work just as easily with objects. Figure 7.1 illustrates the
results of the program.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 7
folder; the filename is pointing.cpp.

Figure 7.1
The pointer pScore first points to the variable score and then to the variable newScore, while the
pointer pStr points to the variable str.

224 Chapter 7 n Pointers: Tic-Tac-Toe 2.0

// Pointing
// Demonstrates using pointers

#include <iostream>
#include <string>

using namespace std;

int main()
{

int* pAPointer; //declare a pointer

int* pScore = 0; //declare and initialize a pointer

int score = 1000;
pScore = &score; //assign pointer pScore address of variable score

cout << "Assigning &score to pScore\n";
cout << "&score is: " << &score << "\n"; //address of score variable
cout << "pScore is: " << pScore << "\n"; //address stored in pointer
cout << "score is: " << score << "\n";
cout << "*pScore is: " << *pScore << "\n\n"; //value pointed to by pointer

cout << "Adding 500 to score\n";
score += 500;
cout << "score is: " << score << "\n";
cout << "*pScore is: " << *pScore << "\n\n";

cout << "Adding 500 to *pScore\n";
*pScore += 500;
cout << "score is: " << score << "\n";
cout << "*pScore is: " << *pScore << "\n\n";

cout << "Assigning &newScore to pScore\n";
int newScore = 5000;
pScore = &newScore;
cout << "&newScore is: " << &newScore << "\n";
cout << "pScore is: " << pScore << "\n";
cout << "newScore is: " << newScore << "\n";
cout << "*pScore is: " << *pScore << "\n\n";

Understanding Pointer Basics 225

cout << "Assigning &str to pStr\n";
string str = "score";
string* pStr = &str; //pointer to string object
cout << "str is: " << str << "\n";
cout << "*pStr is: " << *pStr << "\n";
cout << "(*pStr).size() is: " << (*pStr).size() << "\n";
cout << "pStr->size() is: " << pStr->size() << "\n";

return 0;
}

Declaring Pointers

With the first statement in main() I declare a pointer named pAPointer.

int* pAPointer; //declare a pointer

Because pointers work in such a unique way, programmers often prefix pointer
variable names with the letter “p” to remind them that the variable is indeed a
pointer.

Just like an iterator, a pointer is declared to point to a specific type of value.
pAPointer is a pointer to int, which means that it can only point to an int value.
pAPointer can’t point to a float or a char, for example. Another way to say this
is that pAPointer can only store the address of an int.

To declare a pointer of your own, begin with the type of object to which the
pointer will point, followed by an asterisk, followed by the pointer name. When
you declare a pointer, you can put whitespace on either side of the asterisk. So
int* pAPointer;, int *pAPointer;, and int * pAPointer; all declare a pointer
named pAPointer.

T r a p

When you declare a pointer, the asterisk only applies to the single variable name that immediately
follows it. So the following statement declares pScore as a pointer to int and score as an int.

int* pScore, score;

score is not a pointer! It’s a variable of type int. One way to make this clearer is to play with the
whitespace and rewrite the statement as:

int *pScore, score;

226 Chapter 7 n Pointers: Tic-Tac-Toe 2.0

However, the clearest way to declare a pointer is to declare it in its own statement, as in the
following lines.

int* pScore;
int score;

Initializing Pointers

As with other variables, you can initialize a pointer in the same statement you
declare it. That’s what I do next with the following line, which assigns 0 to
pScore.

int* pScore = 0; //declare and initialize a pointer

Assigning 0 to a pointer has special meaning. Loosely translated, it means,
“Point to nothing.” Programmers call a pointer with the value of zero a null
pointer. You should always initialize a pointer with some value when you declare
it, even if that value is zero.

H i n t

Many programmers assign NULL to a pointer instead of 0 to make the pointer a null pointer. NULL
is a constant defined in multiple library files, including iostream.

Assigning Addresses to Pointers

Because pointers store addresses of objects, you need a way to get addresses into
the pointers. One way to do that is to get the memory address of an existing
variable and assign it to a pointer. That’s what I do in the following line, which
gets the address of the variable score and assigns it to pScore.

pScore = &score; //assign pointer address of variable score

I get the address of score by preceding the variable name with &, the address of
operator. (Yes, you’ve seen the & symbol before, when it was used as the
reference operator. However, in this context, the & symbol gets the address of an
object.)

As a result of the preceding line of code, pScore contains the address of score.
It’s as if pScore knows exactly where score is located in the computer’s memory.
This means you can use pScore to get to score and manipulate the value stored
in score. Figure 7.2 serves as a visual illustration of the relationship between
pScore and score.

Understanding Pointer Basics 227

To prove that pScore contains the address of score, I display the address of the
variable and the value of the pointer with the following lines.

cout << "&score is: " << &score << "\n"; //address of score variable
cout << "pScore is: " << pScore << "\n"; //address stored in pointer

pScore contains 0x22ff5c, which is the address of score. (The specific addresses
displayed by the Pointing program might be different on your system. The
important thing is that the values for pScore and &score are the same.)

Dereferencing Pointers

Just as you dereference an iterator to access the object to which it refers, you
dereference a pointer to access the object to which it points. You accomplish the
dereferencing the same way—with *, the dereference operator. I put the
dereference operator to work with the following line, which displays 1000

because *pScore accesses the value stored in score.

cout << "*pScore is: " << *pScore << "\n\n"; //value pointed to by pointer

Remember, *pScore means, “the object to which pScore points.”

T r a p

Don’t dereference a null pointer because it could lead to disastrous results.

Next, I add 500 to score with the following line.

score += 500;

When I send score to cout, 1500 is displayed, as you’d expect. When I send
*pScore to cout, the contents of score are again sent to cout, and 1500 is
displayed once more.

Figure 7.2
The pointer pScore points to score, which stores the value 1000.

228 Chapter 7 n Pointers: Tic-Tac-Toe 2.0

Next, I add 500 to the value to which pScore points with the following line.

*pScore += 500;

Because pScore points to score, the preceding line of code adds 500 to score.
Therefore, when I next send score to cout, 2000 is displayed. Then, when I send
*pScore to cout. . .you guessed it, 2000 is displayed again.

T r a p

Don’t change the value of a pointer when you want to change the value of the object to which the
pointer points. For example, if I want to add 500 to the int that pScore points to, then the
following line would be a big mistake.

pScore += 500;

The preceding code adds 500 to the address stored in pScore, not to the value to which pScore
originally pointed. As a result, pScore now points to some address that might contain anything.
Dereferencing a pointer like this can lead to disastrous results.

Reassigning Pointers

Unlike references, pointers can point to different objects at different times
during the life of a program. Reassigning a pointer works like reassigning any
other variable. Next, I reassign pScore with the following line.

pScore = &newScore;

As the result, pScore now points to newScore. To prove this, I display the address
of newScore by sending &newScore to cout, followed by the address stored in
pScore. Both statements display the same address. Then I send newScore and
*pScore to cout. Both display 5000 because they both access the same chunk of
memory that stores this value.

T r a p

Don’t change the value to which a pointer points when you want to change the pointer itself. For
example, if I want to change pScore to point to newScore, then the following line would be a
big mistake.

*pScore = newScore;

This code simply changes the value to which pScore currently points; it doesn’t change pScore
itself. If newScore is equal to 5000, then the previous code is equivalent to *pScore = 5000;
and pScore still points to the same variable it pointed to before the assignment.

Understanding Pointer Basics 229

Using Pointers to Objects

So far, the Pointing program has worked only with values of a built-in type, int.
But you can use pointers with objects just as easily. I demonstrate this next with
the following lines, which create str, a string object equal to "score", and pStr,
a pointer that points to that object.

string str = "score";
string* pStr = &str; //pointer to string object

pStr is a pointer to string, meaning that it can point to any string object.
Another way to say this is to say that pStr can store the address of any string

object.

You can access an object through a pointer using the dereference operator.
That’s what I do next with the following line.

cout << "*pStr is: " << *pStr << "\n";

By using the dereference operator with *pStr, I send the object to which pStr

points (str) to cout. As a result, the text score is displayed.

You can call the member functions of an object through a pointer the same way
you can call the member functions of an object through an iterator. One way to
do this is by using the dereference operator and the member access operator,
which is what I do next with the following lines.

cout << "(*pStr).size() is: " << (*pStr).size() << "\n";

The code (*pStr).size() says, “Take the result of dereferencing pStr and call
that object’s size() member function.” Because pStr refers to the string object
equal to "score", the code returns 5.

H i n t

Whenever you dereference a pointer to access a data member or member function, surround the
dereferenced pointer with a pair of parentheses. This ensures that the dot operator will be applied
to the object to which the pointer points.

Just as with iterators, you can use the -> operator with pointers for a more
readable way to access object members. That’s what I demonstrate next with the
following line.

cout << "pStr->size() is: " << pStr->size() << "\n";

230 Chapter 7 n Pointers: Tic-Tac-Toe 2.0

The preceding statement again displays the number of characters in the string
object equal to "score"; however, I’m able to substitute pStr->size() for
(*pStr).size() this time, making the code more readable.

Understanding Pointers and Constants

There are still some pointer mechanics you need to understand before you can
start to use pointers effectively in your game programs. You can use the keyword
const to restrict the way a pointer works. These restrictions can act as safeguards
and can make your programming intentions clearer. Since pointers are quite
versatile, restricting how a pointer can be used is in line with the programming
mantra of asking for only what you need.

Using a Constant Pointer

As you’ve seen, pointers can point to different objects at different times in a
program. However, by using the const keyword when you declare and initialize
a pointer, you can restrict the pointer so it can only point to the object it was
initialized to point to. A pointer like this is called a constant pointer. Another
way to say this is to say that the address stored in a constant pointer can never
change—it’s constant. Here’s an example of creating a constant pointer:

int score = 100;
int* const pScore = &score; //a constant pointer

The preceding code creates a constant pointer, pScore, which points to score.
You create a constant pointer by putting const right before the name of the
pointer when you declare it.

Like all constants, you must initialize a constant pointer when you first declare
it. The following line is illegal and will produce a big, fat compile error.

int* const pScore; //illegal - - you must initialize a constant pointer

Because pScore is a constant pointer, it can’t ever point to any other memory
location. The following code is also quite illegal.

pScore = &anotherScore; //illegal – pScore can’t point to a different object

Although you can’t change pScore itself, you can use pScore to change the value
to which it points. The following line is completely legal.

*pScore = 500;

Understanding Pointers and Constants 231

Confused? Don’t be. It’s perfectly fine to use a constant pointer to change the
value to which it points. Remember, the restriction on a constant pointer is that
its value—the address that the pointer stores—can’t change.

The way a constant pointer works should remind you of something—a
reference. Like a reference, a constant pointer can refer only to the object it
was initialized to refer to.

H i n t

Although you can use a constant pointer instead of a reference in your programs, you should stick
with references when possible. References have a cleaner syntax than pointers and can make your
code easier to read.

Using a Pointer to a Constant

As you’ve seen, you can use pointers to change the values to which they point.
However, by using the const keyword when you declare a pointer, you can
restrict a pointer so it can’t be used to change the value to which it points. A
pointer like this is called a pointer to a constant. Here’s an example of declaring
such a pointer:

const int* pNumber; //a pointer to a constant

The preceding code declares a pointer to a constant, pNumber. You declare a
pointer to a constant by putting const right before the type of value to which the
pointer will point.

You assign an address to a pointer to a constant as you did before.

int lives = 3;
pNumber = &lives;

However, you can’t use the pointer to change the value to which it points. The
following line is illegal.

*pNumber -= 1; //illegal - - can’t use pointer to a constant to change value
//that pointer points to

Although you can’t use a pointer to a constant to change the value to which it
points, the pointer itself can change. This means that a pointer to a constant

232 Chapter 7 n Pointers: Tic-Tac-Toe 2.0

can point to different objects in a program. The following code is perfectly
legal.

const int MAX_LIVES = 5;
pNumber = &MAX_LIVES; //pointer itself can change

Using a Constant Pointer to a Constant

A constant pointer to a constant combines the restrictions of a constant pointer
and a pointer to a constant. This means that a constant pointer to a constant can
only point to the object that it was initialized to point to. In addition, it can’t be
used to change the value of the object to which it points. Here’s the declaration
and initialization of such a pointer:

const int* const pBONUS = &BONUS; //a constant pointer to a constant

The preceding code creates a constant pointer to a constant named pBONUS that
points to the constant BONUS.

H i n t

Like a pointer to a constant, a constant pointer to a constant can point to either a non-constant or
constant value.

You can’t reassign a constant pointer to a constant. The following line is not
legal.

pBONUS = &MAX_LIVES; //illegal - - pBONUS can’t point to another object

You can’t use a constant pointer to a constant to change the value to which it
points. This means that the following line is illegal.

*pBONUS = MAX_LIVES; //illegal - - can’t change value through pointer

In many ways, a constant pointer to a constant acts like a constant reference,
which can only refer to the value it was initialized to refer to and which can’t be
used to change that value.

H i n t

Although you can use a constant pointer to a constant instead of a constant reference in your
programs, you should stick with constant references when possible. References have a cleaner
syntax than pointers and can make your code easier to read.

Understanding Pointers and Constants 233

Summarizing Constants and Pointers

I’ve presented a lot of information on constants and pointers, so I want to
provide a summary to help crystallize the new concepts. Here are three examples
of the different ways in which you can use the keyword const when you are
declaring pointers:

n int* const p = &i;

n const int* p;

n const int* const p = &I;

The first example declares and initializes a constant pointer. A constant pointer can
only point to the object to which it was initialized to point. The value—thememory
address—stored in the pointer itself is constant and can’t change. A constant
pointer can only point to a non-constant value; it can’t point to a constant.

The second example declares a pointer to a constant. A pointer to a constant
can’t be used to change the value to which it points. A pointer to a constant can
point to different objects during the life of a program. A pointer to a constant
can point to a constant or non-constant value.

The third example declares a constant pointer to a constant. A constant pointer to
a constant can only point to the value to which it was initialized to point. In
addition, it can’t be used to change the value to which it points. A constant pointer
to a constant can be initialized to point to a constant or a non-constant value.

Passing Pointers

Even though references are the preferred way to pass arguments because of their
cleaner syntax, you still might need to pass objects through pointers. For
example, suppose you’re using a graphics engine that returns a pointer to a
3D object. If you want another function to use this object, you’ll probably want
to pass the pointer to the object for efficiency. Therefore, it’s important to know
how to pass pointers as well as references.

Introducing the Swap Pointer Version Program

The Swap Pointer Version program works just like the Swap program from
Chapter 6, except that the Swap Pointer Version program uses pointers instead
of references. The Swap Pointer Version program defines two variables—one

234 Chapter 7 n Pointers: Tic-Tac-Toe 2.0

that holds my pitifully low score and another that holds your impressively high
score. After displaying the scores, the program calls a function meant to swap
the scores. Because only copies of the score values are sent to the function, the
original variables are unaltered. Next, the program calls another swap function.
This time, through the use of constant pointers, the original variables’ values are
successfully exchanged (giving me the great big score and leaving you with the
small one). Figure 7.3 shows the program in action.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 7
folder; the filename is swap_pointer_ver.cpp.

// Swap Pointer
// Demonstrates passing constant pointers to alter argument variables

#include <iostream>

using namespace std;

void badSwap(int x, int y);
void goodSwap(int* const pX, int* const pY);

int main()
{

Figure 7.3
Passing pointers allows a function to alter variables outside of the function’s scope.

Passing Pointers 235

int myScore = 150;
int yourScore = 1000;
cout << "Original values\n";
cout << "myScore: " << myScore << "\n";
cout << "yourScore: " << yourScore << "\n\n";

cout << "Calling badSwap()\n";
badSwap(myScore, yourScore);
cout << "myScore: " << myScore << "\n";
cout << "yourScore: " << yourScore << "\n\n";

cout << "Calling goodSwap()\n";
goodSwap(&myScore, &yourScore);
cout << "myScore: " << myScore << "\n";
cout << "yourScore: " << yourScore << "\n";

return 0;
}

void badSwap(int x, int y)
{

int temp = x;
x = y;
y = temp;

}

void goodSwap(int* const pX, int* const pY)
{

//store value pointed to by pX in temp
int temp = *pX;
//store value pointed to by pY in address pointed to by pX
*pX = *pY;
//store value originally pointed to by pX in address pointed to by pY
*pY = temp;

}

Passing by Value

After I declare and initialize myScore and yourScore, I send them to cout. As you’d
expect, 150 and 1000 are displayed. Next I call badSwap(), which passes both

236 Chapter 7 n Pointers: Tic-Tac-Toe 2.0

arguments by value. This means that when I call the function with the following
line, copies of myScore and yourScore are sent to the parameters x and y.

badSwap(myScore, yourScore);

Specifically, x is assigned 150 and y is assigned 1000. As a result, nothing I do
with x and y in badSwap() will have any effect on myScore and yourScore.

When badSwap() executes, x and y do exchange values—x becomes 1000 and y

becomes 150. However, when the function ends, both x and y go out of scope.
Control then returns to main(), in which myScore and yourScore haven’t
changed. When I then send myScore and yourScore to cout, 150 and 1000 are
displayed again. Sadly, I still have the tiny score and you still have the large one.

Passing a Constant Pointer

You’ve seen that it’s possible to give a function access to variables by passing
references. It’s also possible to accomplish this using pointers. When you pass a
pointer, you only pass the address of an object. This can be quite efficient,
especially if you’re working with objects that occupy large chunks of memory.
Passing a pointer is like e-mailing a friend the URL of a website instead of trying
to send him the entire site.

Before you can pass a pointer to a function, you need to specify function
parameters as pointers. That’s what I do in the goodSwap() header.

void goodSwap(int* const pX, int* const pY)

This means that pX and pY are constant pointers and will each accept a memory
address. I made the parameters constant pointers because, although I plan to
change the values they point to, I don’t plan to change the pointers themselves.
Remember, this is just how references work. You can change the value to which
a reference refers, but not the reference itself.

In main(), I pass the addresses of myScore and yourScore when I call goodSwap()
with the following line.

goodSwap(&myScore, &yourScore);

Notice that I send the addresses of the variables to goodSwap() by using the
address of operator. When you pass an object to a pointer, you need to send the
address of the object.

Passing Pointers 237

In goodSwap(), pX stores the address of myScore and pY stores the address of
yourScore. Anything done to *pX will be done to myScore; anything done to *pY

will be done to yourScore.

The first line of goodSwap() takes the value that pX points to and assigns it to temp.

int temp = *pX;

Because pX points to myScore, temp becomes 150.

The next line assigns the value pointed to by pY to the object to which pX points.

*pX = *pY;

This statement copies the value stored in yourScore, 1000, and assigns it to the
memory location of myScore. As a result, myScore becomes 1000.

The last statement in the function stores the value of temp, 150, in the address
pointed to by pY.

*pY = temp;

Because pY points to yourScore, yourScore becomes 150.

After the function ends, control returns to main(), where I send myScore and
yourScore to cout. This time, 1000 and 150 are displayed. The variables have
exchanged values. Success at last!

H i n t

You can also pass a constant pointer to a constant. This works much like passing a constant
reference, which is done to efficiently pass an object that you don’t need to change. I’ve adapted
the Inventory Displayer program from Chapter 6, which demonstrates passing constant references,
to pass a constant pointer to a constant. You can download the code for this program from the
Course Technology website (www.courseptr.com/downloads). The program is in the Chapter 7
folder; the filename is inventory_displayer_pointer_ver.cpp.

Returning Pointers

Before references, the only option game programmers had for returning objects
efficiently from functions was using pointers. And even though using references
provides a cleaner syntax than using pointers, you might still need to return
objects through pointers.

238 Chapter 7 n Pointers: Tic-Tac-Toe 2.0

Introducing the Inventory Pointer Program

The Inventory Pointer program demonstrates returning pointers. Through
returned pointers, the program displays and even alters the values of a vector
that holds a hero’s inventory. Figure 7.4 shows the results of the program.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 7
folder; the filename is inventory_pointer.cpp.

// Inventory Pointer
// Demonstrates returning a pointer

#include <iostream>
#include <string>
#include <vector>

using namespace std;

//returns a pointer to a string element
string* ptrToElement(vector<string>* const pVec, int i);

int main()
{

Figure 7.4
A function returns a pointer (not a string object) to each item in the hero’s inventory.

Returning Pointers 239

vector<string> inventory;
inventory.push_back("sword");
inventory.push_back("armor");
inventory.push_back("shield");

//displays string object that the returned pointer points to
cout << "Sending the objected pointed to by returned pointer:\n";
cout << *(ptrToElement(&inventory, 0)) << "\n\n";

//assigns one pointer to another - - inexpensive assignment
cout << "Assigning the returned pointer to another pointer.\n";
string* pStr = ptrToElement(&inventory, 1);
cout << "Sending the object pointed to by new pointer to cout:\n";
cout << *pStr << "\n\n";

//copies a string object - - expensive assignment
cout << "Assigning object pointed by pointer to a string object.\n";
string str = *(ptrToElement(&inventory, 2));
cout << "Sending the new string object to cout:\n";
cout << str << "\n\n";

//altering the string object through a returned pointer
cout << "Altering an object through a returned pointer.\n";
*pStr = "Healing Potion";
cout << "Sending the altered object to cout:\n";
cout << inventory[1] << endl;

return 0;
}

string* ptrToElement(vector<string>* const pVec, int i)
{

//returns address of the string in position i of vector that pVec points to
return &((*pVec)[i]);

}

Returning a Pointer

Before you can return a pointer from a function, you must specify that you’re
returning one. That’s what I do in the refToElement() header.

string* ptrToElement(vector<string>* const pVec, int i)

240 Chapter 7 n Pointers: Tic-Tac-Toe 2.0

By starting the header with string*, I’m saying that the function will return a
pointer to a string object (and not a string object itself). To specify that a
function returns a pointer to an object of a particular type, put an asterisk after
the type name of the return type.

The body of the function ptrToElement() contains only one statement, which
returns a pointer to the element at position i in the vector pointed to by pVec.

return &((*pVec)[i]);

The return statement might look a little cryptic, so I’ll step through it.
Whenever you come upon a complex expression, evaluate it like the computer
does—by starting with the innermost part. I’ll start with (*pVec)[i], which
means the element in position i of the vector pointed to by pVec. By applying
the address of operator (&) to the expression, it becomes the address of the
element in position i of the vector pointed to by pVec.

T r a p

Although returning a pointer can be an efficient way to send information back to a calling function,
you have to be careful not to return a pointer that points to an out-of-scope object. For example,
the following function returns a pointer that, if used, could crash the program.

string* badPointer()
{

string local = "This string will cease to exist once the function ends.";
string* pLocal = &local;
return pLocal;

}

That’s because badPointer() returns a pointer to a string that no longer exists after the
function ends. A pointer to a non-existent object is called a dangling pointer. Attempting to
dereference a dangling pointer can lead to disastrous results. One way to avoid dangling pointers is
to never return a pointer to a local variable.

Using a Returned Pointer to Display a Value

After I create inventory, a vector of items, I display a value with a returned
pointer.

cout << *(ptrToElement(&inventory, 0)) << "\n\n";

The preceding code calls ptrToElement(), which returns a pointer to inventory[0].
(Remember, ptrToElement() doesn’t return a copy of one of the elements of

Returning Pointers 241

inventory; it returns a pointer to one of them.) The line then sends the string

object pointed to by the pointer to cout. As a result, sword is displayed.

Assigning a Returned Pointer to a Pointer

Next I assign a returned pointer to another pointer with the following line.

string* pStr = ptrToElement(&inventory, 1);

The call to prtToElement() returns a pointer to inventory[1]. The statement
assigns that pointer to pStr. This is an efficient assignment because assigning a
pointer to a pointer does not involve copying the string object.

To help you understand the results of this line of code, look at Figure 7.5, which
shows a representation of pStr after the assignment. (Note that the figure is
abstract because the vector inventory doesn’t contain the string literals "sword",
"armor", and "shield"; instead, it contains string objects.)

Next I send *pStr to cout and armor is displayed.

Assigning to a Variable the Value Pointed
to by a Returned Pointer

Next I assign the value pointed to by a returned pointer to a variable.

string str = *(ptrToElement(&inventory, 2));

The call to prtToElement() returns a pointer to inventory[2]. However, the
preceding statement doesn’t assign this pointer to str—it can’t because str is a
string object. Instead, the computer quietly makes a copy of the string object to
which the pointer points and assigns that object to str. To help drive this point
home, check out Figure 7.6, which provides an abstract representation of the
results of this assignment.

Figure 7.5
pStr points to the element at position 1 of inventory.

242 Chapter 7 n Pointers: Tic-Tac-Toe 2.0

An assignment like this one, where an object is copied, is more expensive than
the assignment of one pointer to another. Sometimes the cost of copying an
object is perfectly acceptable, but you should be aware of the extra overhead
associated with this kind of assignment and avoid it when necessary.

Altering an Object through a Returned Pointer

You can also alter the object to which a returned pointer points. This means that
I can change the hero’s inventory through pStr.

*pStr = "Healing Potion";

Because pStr points to the element in position 1 of inventory, this code changes
inventory[1] so it’s equal to "Healing Potion". To prove this, I display the
element with the following line, which does indeed show Healing Potion.

cout << inventory[1] << endl;

For an abstract representation, check out Figure 7.7, which shows the status of
the variables after the assignment.

H i n t

If you want to protect an object pointed to by a returned pointer, make sure to restrict the pointer.
Return either a pointer to a constant or a constant pointer to a constant.

Figure 7.6
str is a new string object, totally independent from inventory.

Returning Pointers 243

Understanding the Relationship between

Pointers and Arrays

Pointers have an intimate relationship with arrays. In fact, an array name is really
a constant pointer to the first element of the array. Because the elements of an
array are stored in a contiguous block of memory, you can use the array name as a
pointer for random access to elements. This relationship also has important
implications for how you can pass and return arrays, as you’ll soon see.

Introducing the Array Passer Program

The Array Passer program creates an array of high scores and then displays
them, using the array name as a constant pointer. Next, the program passes the
array name as a constant pointer to a function that increases the scores. Finally,
the program passes the array name to a function as a constant pointer to a
constant to display the new high scores. Figure 7.8 shows the results of the
program.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 7
folder; the filename is array_passer.cpp.

//Array Passer
//Demonstrates relationship between pointers and arrays

#include <iostream>

using namespace std;

Figure 7.7
inventory[1] is changed through the returned pointer stored in pStr.

244 Chapter 7 n Pointers: Tic-Tac-Toe 2.0

void increase(int* const array, const int NUM_ELEMENTS);
void display(const int* const array, const int NUM_ELEMENTS);

int main()
{

cout << "Creating an array of high scores.\n\n";
const int NUM_SCORES = 3;
int highScores[NUM_SCORES] = {5000, 3500, 2700};

cout << "Displaying scores using array name as a constant pointer.\n";
cout << *highScores << endl;
cout << *(highScores + 1) << endl;
cout << *(highScores + 2) << "\n\n";

cout << "Increasing scores by passing array as a constant pointer.\n\n";
increase(highScores, NUM_SCORES);

cout << "Displaying scores by passing array as a constant pointer to a
constant.\n";

display(highScores, NUM_SCORES);

return 0;
}

Figure 7.8
Using an array name as a pointer, the high scores are displayed, altered, and passed to functions.

Understanding the Relationship between Pointers and Arrays 245

void increase(int* const array, const int NUM_ELEMENTS)
{

for (int i = 0; i < NUM_ELEMENTS; ++i)
{

array[i] += 500;
}

}

void display(const int* const array, const int NUM_ELEMENTS)
{

for (int i = 0; i < NUM_ELEMENTS; ++i)
{

cout << array[i] << endl;
}

}

Using an Array Name as a Constant Pointer

Because an array name is a constant pointer to the first element of the array, you
can dereference the name to get at the first element. That’s what I do after I
create an array of high scores, called highScores.

cout << *highScores << endl;

I dereference highScores to access the first element in the array and send it to
cout. As a result, 5000 is displayed.

You can randomly access array elements using an array name as a pointer
through simple addition. All you have to do is add the position number of the
element you want to access to the pointer before you dereference it. This is
simpler than it sounds. For example, I next access the score at position 1 in
highScores with the following line, which displays 3500.

cout << *(highScores + 1) << endl;

In the preceding code, *(highScores + 1) is equivalent to highScores[1]. Both
return the element in position 1 of highScores.

Next, I access the score at position 2 in highScores with the following line,
which displays 2700.

cout << *(highScores + 2) << endl;

246 Chapter 7 n Pointers: Tic-Tac-Toe 2.0

In the preceding code, *(highScores + 2) is equivalent to highScores[2]. Both
return the element in position 2 of highScores. In general, you can write
arrayName[i] as *(arrayName + i), where arrayName is the name of an array.

Passing and Returning Arrays

Because an array name is a constant pointer, you can use it to efficiently pass an
array to a function. That’s what I do next with the following line, which passes to
increase() a constant pointer to the first element of the array and the number of
elements in the array.

increase(highScores, NUM_SCORES);

H i n t

When you pass an array to a function, it’s usually a good idea to also pass the number of elements
in the array so the function can use this to avoid attempting to access an element that doesn’t
exist.

As you can see from the function header of increase(), the array name is
accepted as a constant pointer.

void increase(int* const array, const int NUM_ELEMENTS)

The function body adds 500 to each score.

for (int i = 0; i < NUM_ELEMENTS; ++i)
{

array[i] += 500;
}

I treat array just like any array and use the subscripting operator to access each
of its elements. Alternatively, I could have treated array as a pointer and
substituted *(array + i) += 500 for the expression array[i] += 500, but I opted for
the more readable version.

After increase() ends, control returns to main(). To prove that increase() did
in fact increase the high scores, I call a function to show the scores.

display(highScores, NUM_SCORES);

The function display() also accepts highScore as a pointer. However, as you
can see from the function’s header, the function accepts it as a constant pointer
to a constant.

void display(const int* const array, const int NUM_ELEMENTS)

Understanding the Relationship between Pointers and Arrays 247

By passing the array in this way, I keep it safe from changes. Because all I want
to do is display each element, it’s the perfect way to go.

Finally, the body of display() runs and all of the scores are listed, showing that
they’ve each increased by 500.

H i n t

You can pass a C-style string to a function, just like any other array. In addition, you can pass a
string literal to a function as a constant pointer to a constant.

Because an array name is a pointer, you can return an array using the array
name, just as you would any other pointer to an object.

Introducing the Tic-Tac-Toe 2.0 Game

The project for this chapter is a modified version of the project from Chapter 6,
the Tic-Tac-Toe game. From the player’s perspective, the Tic-Tac-Toe 2.0 game
looks exactly the same as the original because the changes are under the hood—
I’ve replaced all of the references with pointers. This means that objects such as
the Tic-Tac-Toe board are passed as constant pointers instead of as references.
This has other implications, including the fact that the address of a Tic-Tac-Toe
board must be passed instead of the board itself.

You can download the code for the new version of the program from the Course
Technology website (www.courseptr.com/downloads). The program is in the
Chapter 7 folder; the filename is tic-tac-toe2.cpp. I won’t go over the code
because most of it remains the same. But even though the number of changes
isn’t great, the changes are significant. This is a good program to study because,
although you should use references whenever you can, you should be equally
comfortable with pointers.

Summary

In this chapter, you should have learned the following concepts:

n Computer memory is organized in an ordered way, where each chunk of
memory has its own unique address.

n A pointer is a variable that contains a memory address.

248 Chapter 7 n Pointers: Tic-Tac-Toe 2.0

n In many ways, pointers act like iterators from the STL. For example, just
as with iterators, you use pointers to indirectly access an object.

n To declare a pointer, you list a type, followed by an asterisk, followed by
a name.

n Programmers often prefix pointer variable names with the letter “p” to
remind them that the variable is indeed a pointer.

n Just like an iterator, a pointer is declared to refer to a value of a specific type.

n It’s good programming practice to initialize a pointer when you declare it.

n If you assign 0 to a pointer, the pointer is called a null pointer.

n To get the address of a variable, put the address of operator (&) before
the variable name.

n When a pointer contains the address of an object, it’s said to point to
the object.

n Unlike references, you can reassign pointers. That is, a pointer can point
to different objects at different times during the life of a program.

n Just as with iterators, you dereference a pointer to access the object it
points to with *, the dereference operator.

n Just as with iterators, you can use the -> operator with pointers for a more
readable way to access object data members and member functions.

n A constant pointer can only point to the object it was initialized to point
to. You declare a constant pointer by putting the keyword const right
before the pointer name, as in int* const p = &i;.

n You can’t use a pointer to a constant to change the value to which it
points. You declare a pointer to a constant by putting the keyword const

before the type name, as in const int* p;.

n A constant pointer to a constant can only point to the value it was
initialized to point to, and it can’t be used to change that value. You
declare a constant pointer to a constant by putting the keyword const

before the type name and right before the pointer name, as in const int*

const p = &I;.

n You can pass pointers for efficiency or to provide direct access to an object.

Summary 249

n If you want to pass a pointer for efficiency, you should pass a pointer
to a constant or a constant pointer to a constant so the object you’re
passing access to can’t be changed through the pointer.

n A dangling pointer is a pointer to an invalid memory address. Dangling
pointers are often caused by deleting an object to which a pointer
pointed. Dereferencing such a pointer can lead to disastrous results.

n You can return a pointer from a function, but be careful not to return a
dangling pointer.

Questions and Answers

Q: How is a pointer different from the variable to which it points?

A: A pointer stores a memory address. If a pointer points to a variable, it stores
the address of that variable.

Q: What good is it to store the address of a variable that already exists?

A: One big advantage of storing the address of an existing variable is that you
can pass a pointer to the variable for efficiency instead of passing the variable
by value.

Q: Does a pointer always have to point to an existing variable?

A: No. You can create a pointer that points to an unnamed chunk of computer
memory as you need it. You’ll learn more about allocating memory in this
dynamic fashion in Chapter 9, “Advanced Classes and Dynamic Memory:
Game Lobby.”

Q: Why should I pass variables using references instead of pointers whenever
possible?

A: Because of the sweet, syntactic sugar that references provide. Passing a
reference or a pointer is an efficient way to provide access to objects, but
pointers require extra syntax (like the dereference operator) to access the
object itself.

Q: Why should I initialize a pointer when I declare it or soon thereafter?

A: Because dereferencing an uninitialized pointer can lead to disastrous results,
including a program crash.

250 Chapter 7 n Pointers: Tic-Tac-Toe 2.0

Q: What’s a dangling pointer?

A: A pointer that points to an invalid memory location, where any data could
exist.

Q: What’s so dangerous about a dangling pointer?

A: Like using an uninitialized pointer, using a dangling pointer can lead to
disastrous results, including a program crash.

Q: Why should I initialize a pointer to 0?

A: By initializing a pointer to 0, you create a null pointer, which is understood as
a pointer to nothing.

Q: So then it’s safe to dereference a null pointer, right?

A: No! Although it’s good programming practice to assign 0 to a pointer that
doesn’t point to an object, dereferencing a null pointer is as dangerous as
dereferencing a dangling pointer.

Q: What will happen if I dereference a null pointer?

A: Just like dereferencing a dangling pointer or an uninitialized pointer, the
results are unpredictable. Most likely, you’ll crash your program.

Q: What good are null pointers?

A: They’re often returned by functions as a sign of failure. For example, if a
function is supposed to return a pointer to an object that represents the
graphics screen, but that function couldn’t initialize the screen, it might
return a null pointer.

Q: How does using the keyword constwhen declaring a pointer affect the pointer?

A: It depends on how you use it. Generally, you use const when you are
declaring a pointer to restrict what the pointer can do.

Q: What kinds of restrictions can I impose on a pointer by declaring it with
const?

A: You can restrict a pointer so it can only point to the object it was initialized to
point to, or you can restrict a pointer so it can’t change the value of the object
it points to, or both.

Questions and Answers 251

Q: Why would I want to restrict what a pointer can do?

A: For safety. For example, you might be working with an object that you know
you don’t want to change.

Q: To what type of pointers can I assign a constant value?

A: A pointer to a constant or a constant pointer to a constant.

Q: How can I safely return a pointer from a function?

A: One way is by returning a pointer to an object that you received from the
calling function. This way, you’re returning a pointer to an object that exists
back in the calling code. (In Chapter 9, you’ll discover another important way
when you learn about dynamic memory.)

Discussion Questions

1. What are the advantages and disadvantages of passing a pointer?

2. What kinds of situations call for a constant pointer?

3. What kinds of situations call for a pointer to a constant?

4. What kinds of situations call for a constant pointer to a constant?

5. What kinds of situations call for a non-constant pointer to a
non-constant object?

Exercises

1. Write a program with a pointer to a pointer to a string object. Use
the pointer to the pointer to call the size() member function of
the string object.

2. Rewrite the final project from Chapter 5, the Mad Lib game, so that no
string objects are passed to the function that tells the story. Instead, the
function should accept pointers to string objects.

3. Will the three memory addresses displayed by the following program all
be the same? Explain what’s going on in the code.

252 Chapter 7 n Pointers: Tic-Tac-Toe 2.0

#include <iostream>

using namespace std;

int main()
{

int a = 10;
int& b = a;
int* c = &b;

cout << &a << endl;
cout << &b << endl;
cout << &(*c) << endl;

return 0;
}

Exercises 253

This page intentionally left blank

Classes: Critter

Caretaker

Object-oriented programming (OOP) is a different way of thinking about
programming. It’s a modern methodology that’s used in the creation of the
vast majority of games (and other commercial software, too). In OOP, you
define different types of objects with relationships to each other that allow the
objects to interact. You’ve already worked with objects from types defined in
libraries, but one of the key characteristics of OOP is the ability to make your
own types from which you can create objects. In this chapter, you’ll see how to
define your own types and create objects from them. Specifically, you’ll learn to:

n Create new types by defining classes

n Declare class data members and member functions

n Instantiate objects from classes

n Set member access levels

n Declare static data members and member functions

Defining New Types

Whether you’re talking about alien spacecrafts, poisonous arrows, or angry
mutant chickens, games are full of objects. Fortunately, C++ lets you represent
game entities as software objects, complete with member functions and data
members. These objects work just like the others you’ve already seen, such as

chapter 8

255

string and vector objects. But to use a new kind of object (say, an angry mutant
chicken object), you must first define a type for it.

Introducing the Simple Critter Program

The Simple Critter Program defines a brand-new type called Critter for
creating virtual pet objects. The program uses this new type to create two
Critter objects. Then, it gives each critter a hunger level. Finally, each critter
offers a greeting and announces its hunger level to the world. Figure 8.1 shows
the results of the program.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 8
folder; the filename is simple_critter.cpp.

//Simple Critter
//Demonstrates creating a new type

#include <iostream>

using namespace std;

Figure 8.1
Each critter says hi and announces how hungry it is.

256 Chapter 8 n Classes: Critter Caretaker

class Critter // class definition –– defines a new type, Critter
{
public:

int m_Hunger; // data member
void Greet(); // member function prototype

};

void Critter::Greet() // member function definition
{

cout << "Hi. I’m a critter. My hunger level is " << m_Hunger << ".\n";
}

int main()
{

Critter crit1;
Critter crit2;

crit1.m_Hunger = 9;
cout << "crit1’s hunger level is " << crit1.m_Hunger << ".\n";

crit2.m_Hunger = 3;
cout << "crit2’s hunger level is " << crit2.m_Hunger << ".\n\n";

crit1.Greet();
crit2.Greet();

return 0;
}

Defining a Class

To create a new type, you can define a class—code that groups data members
and member functions. From a class, you create individual objects that have
their own copies of each data member and access to all of the member functions.
A class is like a blueprint. Just as a blueprint defines the structure of a building, a
class defines the structure of an object. And just as a foreman can create many
houses from the same blueprint, a game programmer can create many objects
from the same class. Some real code will help solidify this theory. I begin a class
definition in the Simple Critter program with

class Critter // class definition –– defines a new type, Critter

Defining New Types 257

for a class named Critter. To define a class, start with the keyword class, followed
by the class name. By convention, class names begin with an uppercase letter. You
surround the class body with curly braces and end it with a semicolon.

Declaring Data Members

In a class definition, you can declare class data members to represent object
qualities. I give the critters just one quality, hunger. I see hunger as a range that
could be represented by an integer, so I declare an int data member m_Hunger.

int m_Hunger; // data member

This means that every Critter object will have its own hunger level, represented
by its own data member named m_Hunger. Notice that I prefix the data member
name with m_. Some game programmers follow this naming convention so that
data members are instantly recognizable.

Declaring Member Functions

In a class definition, you can also declare member functions to represent object
abilities. I give a critter just one—the ability to greet the world and announce its
hunger level—by declaring the member function Greet().

void Greet(); // member function prototype

This means that every Critter object will have the ability to say hi and
announce its own hunger level through its member function, Greet(). By
convention, member function names begin with an uppercase letter. At this
point, I’ve only declared the member function Greet(). Don’t worry, though, I’ll
define it outside of the class.

H i n t

You might have noticed the keyword public in the class definition. You can ignore it for now.
You’ll learn more about it a bit later in this chapter, in the section, “Specifying Public and Private
Access Levels.”

Defining Member Functions

You can define member functions outside of a class definition. Outside of the
Critter class definition, I define the Critter member function Greet(), which
says hi and displays the critter’s hunger level.

258 Chapter 8 n Classes: Critter Caretaker

void Critter::Greet() // member function definition
{

cout << "Hi. I’m a critter. My hunger level is " << m_Hunger << ".\n";
}

The definition looks like any other function definition you’ve seen, except for
one thing—I prefix the function name with Critter::. When you define a
member function outside of its class, you need to qualify it with the class name
and scope resolution operator so the compiler knows that the definition belongs
to the class.

In the member function, I send m_Hunger to cout. This means that Greet()

displays the value of m_Hunger for the specific object through which the function
is called. This simply means that the member function displays the critter’s
hunger level. You can access the data members and member functions of an
object in any member function simply by using the member’s name.

Instantiating Objects

When you create an object, you instantiate it from a class. In fact, specific
objects are called instances of the class. In main(), I instantiate two instances of
Critter.

Critter crit1;
Critter crit2;

As a result, I have two Critter objects—crit1 and crit2.

Accessing Data Members

It’s time to put these critters to work. Next, I give my first critter a hunger level.

crit1.m_Hunger = 9;

The preceding code assigns 9 to crit1’s data member m_Hunger. Just like when
you are accessing an available member function of an object, you can access an
available data member of an object using the member selection operator.

To prove that the assignment worked, I display the critter’s hunger level.

cout << "crit1’s hunger level is " << crit1.m_Hunger << ".\n";

The preceding code displays crit1’s data member m_Hunger and correctly shows 9.
Just like when you are assigning a value to an available data member, you can

Defining New Types 259

get the value of an available data member through the member selection
operator.

Next, I show that the same process works for another Critter object.

crit2.m_Hunger = 3;
cout << "crit2’s hunger level is " << crit2.m_Hunger << ".\n\n";

This time, I assign 3 to crit2’s data member m_Hunger and display it.

So, crit1 and crit2 are both instances of Critter, and yet each exists
independently and each has its own identity. Also, each has its own m_Hunger

data member with its own value.

Calling Member Functions

Next, I again put the critters through their paces. I get the first critter to give a
greeting.

crit1.Greet();

The preceding code calls crit1’s Greet() member function. The function
accesses the calling object’s m_Hunger data member to form the greeting it
displays. Because crit1’s m_Hunger data member is 9, the function displays the
text: Hi. I’m a critter. My hunger level is 9.

Finally, I get the second critter to speak up.

crit2.Greet();

The preceding code calls crit2’s Greet() member function. This function
accesses the calling object’s m_Hunger data member to form the greeting it
displays. Because crit2’s m_Hunger data member is 3, the function displays the
text: Hi. I’m a critter. My hunger level is 3.

Using Constructors

When you instantiate objects, you often want to do some initialization—usually
assigning values to data members. Luckily, a class has a special member function
known as a constructor that is automatically called every time a new object is
instantiated. This is a big convenience because you can use a constructor to
perform an initialization of the new object.

260 Chapter 8 n Classes: Critter Caretaker

Introducing the Constructor Critter Program

The Constructor Critter program demonstrates constructors. The program
instantiates a new critter object, which automatically invokes its constructor.
First, the constructor announces that a new critter has been born. Then, it
assigns the value passed to it to the critter’s hunger level. Finally, the program
calls the critter’s greeting member function, which displays the critter’s hunger
level, proving that the constructor did in fact initialize the critter. Figure 8.2
shows the results of the program.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 8
folder; the filename is constructor_critter.cpp.

//Constructor Critter
//Demonstrates constructors

#include <iostream>

using namespace std;

class Critter
{

Figure 8.2
The Critter constructor initializes a new object’s hunger level automatically.

Using Constructors 261

public:
int m_Hunger;

Critter(int hunger = 0); // constructor prototype
void Greet();

};

Critter::Critter(int hunger) // constructor definition
{

cout << "A new critter has been born!" << endl;
m_Hunger = hunger;

}

void Critter::Greet()
{

cout << "Hi. I’m a critter. My hunger level is " << m_Hunger << ".\n\n";
}

int main()
{

Critter crit(7);
crit.Greet();

return 0;
}

Declaring and Defining a Constructor

I declare a constructor in Critter with the following code:

Critter(int hunger = 0); // constructor prototype

As you can see from the declaration, the constructor has no return type. It can’t—
it’s illegal to specify a return type for a constructor. Also, you have no flexibility
when naming a constructor. You have to give it the same name as the class itself.

H i n t

A default constructor requires no arguments. If you don’t define a default constructor, the compiler
defines a minimal one for you that simply calls the default constructors of any data members of the
class. If you write your own constructor, then the compiler won’t provide a default constructor for
you. It’s usually a good idea to have a default constructor, so you should make sure to supply your
own when necessary. One way to accomplish this is to supply default arguments for all parameters
in a constructor definition.

262 Chapter 8 n Classes: Critter Caretaker

I define the constructor outside of the class with the following code:

Critter::Critter(int hunger) // constructor definition
{

cout << "A new critter has been born!" << endl;
m_Hunger = hunger;

}

The constructor displays a message saying that a new critter has been born and
initializes the object’s m_Hunger data member with the argument value passed to
the constructor. If no value is passed, then the constructor uses the default
argument value of 0.

T r i c k

You can use member initializers as a shorthand way to assign values to data members in a
constructor. To write a member initializer, start with a colon after the constructor’s parameter list.
Then type the name of the data member you want to initialize, followed by the expression you
want to assign to the data member, surrounded by parentheses. If you have multiple initializers,
separate them with commas. This is much simpler than it sounds (and it’s really useful, too). Here’s
an example that assigns hunger to m_Hunger and boredom to m_Boredom. Member
initializers are especially useful when you have many data members to initialize.

Critter::Critter(int hunger = 0, int boredom = 0):
m_Hunger(hunger),
m_Boredom(boredom)

{} // empty constructor body

Calling a Constructor Automatically

You don’t explicitly call a constructor; however, whenever you instantiate a new
object, its constructor is automatically called. In main(), I put my constructor
into action with the following code:

Critter crit(7);

When crit is instantiated, its constructor is automatically called and the message
A new critter has been born! is displayed. Then, the constructor assigns 7 to the
object’s m_Hunger data member.

To prove that the constructor worked, back in main(), I call the object’s Greet()

member function and sure enough, it displays Hi. I’m a critter. My hunger

level is 7.

Using Constructors 263

Setting Member Access Levels

Like functions, you should treat objects as encapsulated entities. This means
that, in general, you should avoid directly altering or accessing an object’s data
members. Instead, you should call an object’s member functions, allowing the
object to maintain its own data members and ensure their integrity. Fortunately,
you can enforce data member restrictions when you define a class by setting
member access levels.

Introducing the Private Critter Program

The Private Critter program demonstrates class member access levels by declaring
a class for critters that restricts direct access to an object’s data member for its
hunger level. The class provides two member functions—one that allows access to
the data member and one that allows changes to the data member. The program
creates a new critter and indirectly accesses and changes the critter’s hunger level
through these member functions. However, when the program attempts to change
the critter’s hunger level to an illegal value, the member function that allows
the changes catches the illegal value and doesn’t make the change. Finally, the
program uses the hunger-level-setting member function with a legal value, which
works like a charm. Figure 8.3 shows the results of the program.

Figure 8.3
By using a Critter object’s GetHunger() and SetHunger() member functions, the program
indirectly accesses an object’s m_Hunger data member.

264 Chapter 8 n Classes: Critter Caretaker

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 8
folder; the filename is private_critter.cpp.

//Private Critter
//Demonstrates setting member access levels

#include <iostream>

using namespace std;

class Critter
{
public: // begin public section

Critter(int hunger = 0);
int GetHunger() const;
void SetHunger(int hunger);

private: // begin private section
int m_Hunger;

};

Critter::Critter(int hunger):
m_Hunger(hunger)

{
cout << "A new critter has been born!" << endl;

}

int Critter::GetHunger() const
{

return m_Hunger;
}
void Critter::SetHunger(int hunger)
{

if (hunger < 0)
{

cout << "You can’t set a critter’s hunger to a negative number.\n\n";
}

Setting Member Access Levels 265

else
{

m_Hunger = hunger;
}

}

int main()
{

Critter crit(5);
//cout << crit.m_Hunger; //illegal, m_Hunger is private!
cout << "Calling GetHunger(): " << crit.GetHunger() << "\n\n";

cout << "Calling SetHunger() with -1.\n";
crit.SetHunger(-1);

cout << "Calling SetHunger() with 9.\n";
crit.SetHunger(9);
cout << "Calling GetHunger(): " << crit.GetHunger() << "\n\n";

return 0;
}

Specifying Public and Private Access Levels

Every class data member and member function has an access level, which
determines from where in your program you can access it. So far, I’ve always
specified class members to have public access levels using the keyword public.
Again in Critter, I start a public section with the following line:

public: // begin public section

By using public:, I’m saying that any data member or member function that
follows (until another access level specifier) will be public. This means that any
part of the program can access them. Because I declare all of the member
functions in this section, it means that any part of my code can call any member
function through a Critter object.

Next, I specify a private section with the following line:

private: // begin private section

266 Chapter 8 n Classes: Critter Caretaker

By using private:, I’m saying that any data member or member function that
follows (until another access level specifier) will be private. This means that only
code in the Critter class can directly access it. Since I declare m_Hunger in this
section, it means that only the code in Critter can directly access an object’s
m_Hunger data member. Therefore, I can’t directly access an object’s m_Hunger

data member through the object in main() as I’ve done in previous programs. So
the following line in main(), if uncommented, would be an illegal statement:

//cout << crit.m_Hunger; //illegal, m_Hunger is private!

Because m_Hunger is private, I can’t access it from code that is not part of the
Critter class. Again, only code that’s part of Critter can directly access the data
member.

I’ve only shown you how to make data members private, but you can make
member functions private, too. Also, you can repeat access modifiers. So if you
want, you could have a private section, followed by a public section, followed by
another private section in a class. Finally, member access is private by default.
Until you specify an access modifier, any class members you declare will be
private.

Defining Accessor Member Functions

An accessor member function allows indirect access to a data member. Because
m_Hunger is private, I wrote an accessor member function, GetHunger(), to return
the value of the data member. (For now, you can ignore the keyword const.)

int Critter::GetHunger() const
{

return m_Hunger;
}

I put the member function to work in main() with the following line:

cout << "Calling GetHunger(): " << crit.GetHunger() << "\n\n";

In the preceding code, crit.GetHunger() simply returns the value of crit’s
m_Hunger data member, which is 5.

Setting Member Access Levels 267

T r i c k

Just as you can with regular functions, you can inline member functions. One way to inline a
member function is to define it right inside of the class definition, where you’d normally only
declare the member function. If you include a member function definition in a class, then of course
you don’t need to define it outside of the class.

An exception to this rule is that when you define a member function in a class definition using the
keyword virtual, the member function is not automatically inlined. You’ll learn about virtual
functions in Chapter 10, “Inheritance and Polymorphism: Blackjack.”

At this point, you might be wondering why you’d go to the trouble of making a
data member private only to grant full access to it through accessor functions.
The answer is that you don’t generally grant full access. For example, take a look
at the accessor member function I defined for setting an object’s m_Hunger data
member, SetHunger():

void Critter::SetHunger(int hunger)
{

if (hunger < 0)
{

cout << "You can’t set a critter’s hunger to a negative number.\n\n";
}
else
{

m_Hunger = hunger;
}

}

In this accessor member function, I first check to make sure that the value
passed to the member function is greater than zero. If it’s not, it’s an illegal value
and I display a message, leaving the data member unchanged. If the value is
greater than zero, then I make the change. This way, SetHunger() protects the
integrity of m_Hunger, ensuring that it can’t be set to a negative number. Just as
I’ve done here, most game programmers begin their accessor member function
names with Get or Set.

Defining Constant Member Functions

A constant member function can’t modify a data member of its class or call a
non-constant member function of its class. Why restrict what a member
function can do? Again, it goes back to the tenet of asking only for what you

268 Chapter 8 n Classes: Critter Caretaker

need. If you don’t need to change any data members in a member function, then
it’s a good idea to declare that member function to be constant. It protects you
from accidentally altering a data member in the member function, and it makes
your intentions clear to other programmers.

T r a p

Okay, I lied a little. A constant member function can alter a static data member. You’ll learn about
static data members a bit later in this chapter, in the “Declaring and Initializing Static Data
Members” section. Also, if you qualify a data member with the mutable keyword, then even a
constant member function can modify it. For now, though, don’t worry about either of these
exceptions.

You can declare a constant member function by putting the keyword const at
the end of the function header. That’s what I do in Critter with the following
line, which declares GetHunger() to be a constant member function.

int GetHunger() const;

This means that GetHunger() can’t change the value of any non-static data
member declared in the Critter class, nor can it call any non-constant Critter
member function. I made GetHunger() constant because it only returns a value
and doesn’t need to modify any data member. Generally, Get member functions
can be defined as constant.

Using Static Data Members

and Member Functions

Objects are great because each instance stores its own set of data, giving it a
unique identity. But what if you want to store some information about an entire
class, such as the total number of instances that exist? You might want to do this
if you’ve created a bunch of enemies and you want them to fight the player based
on their total number. For example, if their total number is below a certain
threshold, you might want the enemies to run away. You could store the total
number of instances in each object, but that would be a waste of storage space.
Plus, it would be cumbersome to update all of the objects as the total changes.
Instead, what you really want is a way to store a single value for an entire class.
You can do this with a static data member.

Using Static Data Members and Member Functions 269

Introducing the Static Critter Program

The Static Critter program declares a new kind of critter with a static data
member that stores the total number of critters that have been created. It also
defines a static member function that displays the total. Before the program
instantiates any new critter objects, it displays the total number of critters by
directly accessing the static data member that holds the total. Next, the program
instantiates three new critters. Then it displays the total number of critters by
calling a static member function that accesses the static data member. Figure 8.4
shows the results of the program.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 8
folder; the filename is static_critter.cpp.

//Static Critter
//Demonstrates static member variables and functions

#include <iostream>

using namespace std;

Figure 8.4
The program stores the total number of Critter objects in the static data member s_Total and
accesses that data member in two different ways.

270 Chapter 8 n Classes: Critter Caretaker

class Critter
{
public:

static int s_Total; //static member variable declaration
//total number of Critter objects in existence

Critter(int hunger = 0);
static int GetTotal(); //static member function prototype

private:
int m_Hunger;

};

int Critter::s_Total = 0; //static member variable initialization

Critter::Critter(int hunger):
m_Hunger(hunger)

{
cout << "A critter has been born!" << endl;
++s_Total;

}

int Critter::GetTotal() //static member function definition
{

return s_Total;
}

int main()
{

cout << "The total number of critters is: ";
cout << Critter::s_Total << "\n\n";

Critter crit1, crit2, crit3;

cout << "\nThe total number of critters is: ";
cout << Critter::GetTotal() << "\n";

return 0;
}

Using Static Data Members and Member Functions 271

Declaring and Initializing Static Data Members

A static data member is a single data member that exists for the entire class. In
the class definition, I declare a static data member s_Total to store the number
of Critter objects that have been instantiated.

static int s_Total; //static member variable declaration

You can declare your own static data members just like I did, by starting the
declaration with the static keyword. I prefixed the variable name with s_ so it
would be instantly recognizable as a static data member.

Outside of the class definition, I initialize the static data member to 0.

int Critter::s_Total = 0; //static member variable initialization

Notice that I qualified the data member name with Critter::. Outside of its
class definition, you must qualify a static data member with its class name. After
the previous line of code executes, there is a single value associated with the
Critter class, stored in its static data member s_Total with a value of 0.

H i n t

You can declare a static variable in non-class functions, too. The static variable maintains its value
between function calls.

Accessing Static Data Members

You can access a public static data member anywhere in your program. In main(),
I access Critter::s_Total with the following line, which displays 0, the value of
the static data member and the total number of Critter objects that have been
instantiated.

cout << Critter::s_Total << "\n\n";

H i n t

You can also access a static data member through any object of the class. Assuming that crit1 is
a Critter object, I could display the total number of critters with the following line:

cout << crit1.s_Total << "\n\n";

I also access this static data member in the Critter constructor with the
following line, which increments s_Total.

++s_Total;

272 Chapter 8 n Classes: Critter Caretaker

This means that every time a new object is instantiated, s_Total is incremented.
Notice that I didn’t qualify s_Total with Critter::. Just as with non-static data
members, you don’t have to qualify a static data member with its class name
inside its class.

Although I made my static data member public, you can make a static data
member private—but then, like any other data member, you can only access it in
a class member function.

Declaring and Defining Static Member Functions

A static member function exists for the entire class. I declare a static member
function in Critter with the following line:

static int GetTotal(); //static member function prototype

You can declare your own static member function like I did, by starting the
declaration with the keyword static. Static member functions are often written
to work with static data members.

I define the static member function GetTotal() that returns the value of the
static data member s_Total.

int Critter::GetTotal() //static member function definition
{

return s_Total;
}

A static member function definition is much like the non-static member
function definitions you’ve seen so far. The major difference is that a static
member function cannot access non-static data members. This is because a static
member function exists for the entire class and is not associated with any
particular instance of the class.

Calling Static Member Functions

After I instantiate three Critter objects in main(), I reveal the total number of
critters again with the following line, which displays 3.

cout << Critter::GetTotal() << "\n\n";

To properly identify the static member function, I had to qualify it with
Critter::. To call a static member function from outside of its class, you
must qualify it with its class name.

Using Static Data Members and Member Functions 273

H i n t

You can also access a static member function through any object of the class. Assuming that
crit1 is a Critter object, I could display the total number of critters with the following line:

cout << crit1.GetTotal() << "\n\n";

Because static member functions exist for the entire class, you can call a static
member function without any instances of the class in existence. And just as
with private static data members, private static member functions can only be
accessed by other member functions of the same class.

Introducing the Critter Caretaker Game

The Critter Caretaker game puts the player in charge of his own virtual pet. The
player is completely responsible for keeping the critter happy, which is no small
task. He can feed and play with the critter to keep it in a good mood. He can also
listen to the critter to learn how the critter is feeling, which can range from
happy to mad. Figure 8.5 shows off the game.

Figure 8.5
If you fail to feed or entertain your critter, it will have a mood change for the worse. (But don’t worry—
with the proper care, your critter can return to a sunny mood.)

274 Chapter 8 n Classes: Critter Caretaker

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 8
folder; the filename is critter_caretaker.cpp.

Planning the Game

The core of the game is the critter itself. Therefore, I first plan my Critter class.
Because I want the critter to have independent hunger and boredom levels, I
know that the class will have private data members for those.

n m_Hunger

n m_Boredom

The critter should also have a mood, directly based on its hunger and boredom
levels. My first thought was to have a private data member, but a critter’s mood
is really a calculated value based on its hunger and boredom. Instead, I decided
to have a private member function that calculates a critter’s mood on the fly,
based on its current hunger and boredom levels:

n GetMood()

Next, I think about public member functions. I want the critter to be able to tell
the player how it’s feeling. I also want the player to be able to feed and play with
the critter to reduce its hunger and boredom levels. I need three public member
functions to accomplish each of these tasks.

n Talk()

n Eat()

n Play()

Finally, I want another member function that simulates the passage of time, to
make the critter a little more hungry and bored:

n PassTime()

I see this member function as private because it will only be called by other
member functions, such as Talk(), Eat(), or Play().

The class will also have a constructor to initialize data members. Take a look at
Figure 8.6, which models the Critter class. I preface each data member and

Introducing the Critter Caretaker Game 275

member function with a symbol to indicate its access level; I use + for public and
– for private.

Planning the Pseudocode

The rest of the program will be pretty simple. It’ll basically be a game loop that
asks the player whether he wants to listen to, feed, or play with the critter, or
quit the game. Here’s the pseudocode I came up with:

Create a critter
While the player doesn’t want to quit the game

Present a menu of choices to the player
If the player wants to listen to the critter

Make the critter talk
If the player wants to feed the critter

Make the critter eat
If the player wants to play with the critter

Make the critter play

Figure 8.6
Model for the Critter class.

276 Chapter 8 n Classes: Critter Caretaker

The Critter Class

The Critter class is the blueprint for the object that represents the player’s
critter. The class isn’t complicated, and most of it should look familiar, but it’s
long enough that it makes sense to attack it in pieces.

The Class Definition

After some initial comments and statements, I begin the Critter class.

//Critter Caretaker
//Simulates caring for a virtual pet

#include <iostream>

using namespace std;

class Critter
{
public:

Critter(int hunger = 0, int boredom = 0);
void Talk();
void Eat(int food = 4);
void Play(int fun = 4);

private:
int m_Hunger;
int m_Boredom;

int GetMood() const;
void PassTime(int time = 1);

};

m_Hunger is a private data member that represents the critter’s hunger level while
m_Boredom is a private data member that represents its boredom level. I’ll go
through each member function in its own section.

The Class Constructor

The constructor takes two arguments, hunger and boredom. The arguments each
have a default value of zero, which I specified in the constructor prototype back

Introducing the Critter Caretaker Game 277

in the class definition. I use hunger to initialize m_Hunger and boredom to initialize
m_Boredom.

Critter::Critter(int hunger, int boredom):
m_Hunger(hunger),
m_Boredom(boredom)

{}

The GetMood() Member Function

Next, I define GetMood().

inline int Critter::GetMood() const
{

return (m_Hunger + m_Boredom);
}

The return value of this inlined member function represents a critter’s mood. As
the sum of a critter’s hunger and boredom levels, a critter’s mood gets worse as
the number increases. I made this member function private because it should
only be invoked by another member function of the class. I made it constant
since it won’t result in any changes to data members.

The PassTime() Member Function

PassTime() is a private member function that increases a critter’s hunger and
boredom levels. It’s invoked at the end of each member function where the
critter does something (eats, plays, or talks) to simulate the passage of time. I
made this member function private because it should only be invoked by
another member function of the class.

void Critter::PassTime(int time)
{

m_Hunger += time;
m_Boredom += time;

}

You can pass the member function the amount of time that has passed;
otherwise, time gets the default argument value of 1, which I specify in the
member function prototype in the Critter class definition.

278 Chapter 8 n Classes: Critter Caretaker

The Talk() Member Function

The Talk() member function announces the critter’s mood, which can be happy,
okay, frustrated, or mad. Talk() calls GetMood() and, based on the return value,
displays the appropriate message to indicate the critter’s mood. Finally, Talk()
calls PassTime() to simulate the passage of time.

void Critter::Talk()
{

cout << "I’m a critter and I feel ";

int mood = GetMood();
if (mood > 15)
{

cout << "mad.\n";
}
else if (mood > 10)
{

cout << "frustrated.\n";
}
else if (mood > 5)
{

cout << "okay.\n";
}
else
{

cout << "happy.\n";
}

PassTime();
}

The Eat() Member Function

Eat() reduces a critter’s hunger level by the amount passed to the parameter
food. If no value is passed, food gets the default argument value of 4. The critter’s
hunger level is kept in check and is not allowed to go below zero. Finally,
PassTime() is called to simulate the passage of time.

void Critter::Eat(int food)
{

cout << "Brruppp.\n";
m_Hunger -= food;

Introducing the Critter Caretaker Game 279

if (m_Hunger < 0)
{

m_Hunger = 0;
}

PassTime();
}

The Play() Member Function

Play() reduces a critter’s boredom level by the amount passed to the parameter
fun. If no value is passed, fun gets the default argument value of 4. The critter’s
boredom level is kept in check and is not allowed to go below zero. Finally,
PassTime() is called to simulate the passage of time.

void Critter::Play(int fun)
{

cout << "Wheee!\n";

m_Boredom -= fun;
if (m_Boredom < 0)
{

m_Boredom = 0;
}

PassTime();
}

The main() Function

In main(), I instantiate a new Critter object. Because I don’t supply values
for m_Hunger or m_Boredom, the data members start out at 0, and the critter
begins life happy and content. Next, I create a menu system. If the player
enters 0, the program ends. If the player enters 1, the program calls the object’s
Talk() member function. If the player enters 2, the program calls the object’s
Eat() member function. If the player enters 3, the program calls the object’s Play()
member function. If the player enters anything else, he is told that the choice
is invalid.

int main()
{

Critter crit;
crit.Talk();

280 Chapter 8 n Classes: Critter Caretaker

int choice;
do
{

cout << "\nCritter Caretaker\n\n";
cout << "0 - Quit\n";
cout << "1 - Listen to your critter\n";
cout << "2 - Feed your critter\n";
cout << "3 - Play with your critter\n\n";

cout << "Choice: ";
cin >> choice;

switch (choice)
{
case 0:

cout << "Good-bye.\n";
break;

case 1:
crit.Talk();
break;

case 2:
crit.Eat();
break;

case 3:
crit.Play();
break;

default:
cout << "\nSorry, but " << choice << " isn’t a valid choice.\n";

}
} while (choice != 0);

return 0;
}

Summary

In this chapter, you should have learned the following concepts:

n Object-oriented programming (OOP) is a way of thinking about
programming in which you define different types of objects with
relationships that interact with each other.

Summary 281

n You can create a new type by defining a class.

n A class is a blueprint for an object.

n In a class, you can declare data members and member functions.

n When you define a member function outside of a class definition, you
need to qualify it with the class name and scope resolution operator (::).

n You can inline a member function by defining it directly in the class
definition.

n You can access data members and member functions of objects through
the member selection operator (.).

n Every class has a constructor—a special member function that’s
automatically called every time a new object is instantiated. Constructors
are often used to initialize data members.

n A default constructor requires no arguments. If you don’t provide a
constructor definition in your class, the compiler will create a default
constructor for you.

n Member initializers provide shorthand to assign values to data members
in a constructor.

n You can set member access levels in a class by using the keywords
public, private, and protected. (You’ll learn about protected in
Chapter 9, “Advanced Classes and Dynamic Memory: Game Lobby.”)

n A public member can be accessed by any part of your code through an
object.

n A private member can only be accessed by a member function of that
class.

n An accessor member function allows indirect access to a data member.

n A static data member exists for the entire class.

n A static member function exists for the entire class.

n Some game programmers prefix private data member names with
m_ and static data member names with s_ so that they’re instantly
recognizable.

282 Chapter 8 n Classes: Critter Caretaker

n A constant member function can’t modify non-static data members or
call non-constant member functions of its class.

Questions and Answers

Q: What is procedural programming?

A: A paradigm where tasks are broken down into a series of smaller tasks and
implemented in manageable chunks of code, such as functions. In procedural
programming, functions and data are separate.

Q: What is an object?

A: An entity that combines data and functions.

Q: Why create objects?

A: Because the world—and especially game worlds—are full of objects. By
creating your own types, you can represent objects and their relationships to
other objects more directly and intuitively than you might be able to
otherwise.

Q: What is object-oriented programming?

A: A paradigm where work is accomplished through objects. It allows pro-
grammers to define their own types of objects. The objects usually have
relationships to each other and can interact.

Q: Is C++ an object-oriented programming language or a procedural program-
ming language?

A: C++ is a multi-paradigm programming language. It allows a game pro-
grammer to write games in a procedural way or an object-oriented way—or
through a combination of both (to name just a few options).

Q: Should I always try to write object-oriented game programs?

A: Although object-oriented programming is used in almost every commercial
game on the market, you don’t have to write games using this paradigm. C++
lets you use one of several programming paradigms. In general, though, large
game projects will almost surely benefit from an object-oriented approach.

Questions and Answers 283

Q: Why not make all class members public?

A: Because it goes against the idea of encapsulation.

Q: What is encapsulation?

A: The quality of being self-contained. In the world of OOP, encapsulation
prevents client code from directly accessing the internals of an object.
Instead, it encourages client code to use a defined interface to the object.

Q: What are the benefits of encapsulation?

A: In the world of OOP, encapsulation protects the integrity of an object. For
example, you might have a spaceship object with a fuel data member. By
preventing direct access to this data member, you can guarantee that it never
becomes an illegal value (such as a negative number).

Q: Should I provide access to data members through accessor member
functions?

A: Some game programmers say you should never provide access to data
members through accessor member functions because even though this
kind of access is indirect, it goes against the idea of encapsulation. Instead,
they say you should write classes with member functions that provide the
client with all of the functionality it could need, eliminating the client’s need
to access a specific data member.

Q: What are mutable data members?

A: Data members that can be modified even by constant member functions. You
create a mutable data member using the keyword mutable. You can also
modify a mutable data member of a constant object.

Q: Why is it useful to have a default constructor?

A: Because there might be times when objects are automatically created without
any argument values passed to a constructor—for example, when you create
an array of objects.

Q: What is a structure?

A: A structure is very similar to a class. The only real difference is that the
default access level for structures is public. You define a structure by using
the keyword struct.

284 Chapter 8 n Classes: Critter Caretaker

Q: Why does C++ have both structures and classes?

A: So that C++ retains backward compatibly with C.

Q: When should I use structures?

A: Some game programmers use structures to group only data together, without
functions (because that’s how C structures work). But it’s probably best to
avoid structures whenever possible and use classes instead.

Discussion Questions

1. What are the advantages and disadvantages of procedural programming?

2. What are the advantages and disadvantages of object-oriented
programming?

3. Are accessor member functions a sign of poor class design? Explain.

4. How are constant member functions helpful to a game programmer?

5. When is it a good idea to calculate an object’s attribute on the fly rather
than storing it as a data member?

Exercises

1. Improve the Critter Caretaker program so that you can enter an unlisted
menu choice that reveals the exact values of the critter’s hunger and
boredom levels.

2. Change the Critter Caretaker program so that the critter is more
expressive about its needs by hinting at how hungry and bored it is.

3. What design problem does the following program have?

#include <iostream>
using namespace std;

class Critter
{
public:

int GetHunger() const {return m_Hunger;}

Exercises 285

private:
int m_Hunger;

};

int main()
{

Critter crit;
cout << crit.GetHunger() << endl;
return 0;

}

286 Chapter 8 n Classes: Critter Caretaker

Advanced Classes

and Dynamic Memory:

Game Lobby

C++ gives a game programmer a high degree of control over the computer. One
of the most fundamental abilities is direct control over memory. In this chapter,
you’ll learn about dynamic memory—memory that you manage yourself. But
with great power comes great responsibility, so you’ll also see the pitfalls of
dynamic memory and how to avoid them. You’ll learn a few more things about
classes, too. Specifically, you’ll learn to:

n Combine objects

n Use friend functions

n Overload operators

n Dynamically allocate and free memory

n Avoid memory leaks

n Produce deep copies of objects

Using Aggregation

Game objects are often composed of other objects. For example, in a racing
game, a drag racer could be seen as a single object composed of other individual
objects, such as a body, four tires, and an engine. Other times, you might see an
object as a collection of related objects. In a zookeeper simulation, you might see
the zoo as a collection of an arbitrary number of animals. You can mimic these

chapter 9

287

kinds of relationships among objects in OOP using aggregation—the combining
of objects so that one is part of another. For example, you could write a
Drag_Racer class that has an engine data member that’s an Engine object. Or,
you could write a Zoo class that has an animals data member that is a collection
of Animal objects.

Introducing the Critter Farm Program

The Critter Farm program defines a new kind of critter with a name. After the
program announces a new critter’s name, it creates a critter farm—a collection
of critters. Finally, the program calls roll on the farm and each critter announces
its name. Figure 9.1 shows the results of the program.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 9
folder; the filename is critter_farm.cpp.

//Critter Farm
//Demonstrates object containment

#include <iostream>
#include <string>
#include <vector>

Figure 9.1
The critter farm is a collection of critters, each with a name.

288 Chapter 9 n Advanced Classes and Dynamic Memory: Game Lobby

using namespace std;

class Critter
{
public:

Critter(const string& name = "");
string GetName() const;

private:
string m_Name;

};

Critter::Critter(const string& name):
m_Name(name)

{}

inline string Critter::GetName() const
{

return m_Name;
}

class Farm
{
public:

Farm(int spaces = 1);
void Add(const Critter& aCritter);
void RollCall() const;

private:
vector<Critter> m_Critters;

};

Farm::Farm(int spaces)
{

m_Critters.reserve(spaces);
}

void Farm::Add(const Critter& aCritter)
{

m_Critters.push_back(aCritter);
}

Using Aggregation 289

void Farm::RollCall() const
{

for (vector<Critter>::const_iterator iter = m_Critters.begin();
iter != m_Critters.end();
++iter)

{
cout << iter->GetName() << " here.\n";

}
}

int main()
{

Critter crit("Poochie");
cout << "My critter’s name is " << crit.GetName() << endl;

cout << "\nCreating critter farm.\n";
Farm myFarm(3);

cout << "\nAdding three critters to the farm.\n";
myFarm.Add(Critter("Moe"));
myFarm.Add(Critter("Larry"));
myFarm.Add(Critter("Curly"));

cout << "\nCalling Roll. . .\n";
myFarm.RollCall();

return 0;
}

Using Object Data Members

One way to use aggregation when you’re defining a class is to declare a data
member that can hold another object. That’s what I did in Critter with the
following line, which declares the data member m_Name to hold a string object.

string m_Name;

Generally, you use aggregation when an object has another object. In this case, a
critter has a name. These kinds of relationships are called has-a relationships.

290 Chapter 9 n Advanced Classes and Dynamic Memory: Game Lobby

I put the declaration for the critter’s name to use when I instantiate a new object
with:

Critter crit("Poochie");

which calls the Critter constructor:

Critter::Critter(const string& name):
m_Name(name)

{}

By passing the string literal "Poochie", the constructor is called and a string

object for the name is instantiated, which the constructor assigns to m_Name. A
new critter named Poochie is born.

Next, I display the critter’s name with the following line:

cout << "My critter’s name is " << crit.GetName() << endl;

The code crit.GetName() returns a copy of the string object for the name of the
critter, which is then sent to cout and displayed on the screen.

Using Container Data Members

You can also use containers as data members for your objects. That’s what I do
when I define Farm. The single data member I declare for the class is simply a
vector that holds Critter objects called m_Critter.

vector<Critter> m_Critters;

When I instantiate a new Farm object with:

Farm myFarm(3);

it calls the constructor:

Farm::Farm(int spaces)
{

m_Critters.reserve(spaces);
}

which allocates memory for three Critter objects in the Farm object’s m_Critter

vector.

Next, I add three critters to the farm by calling the Farm object’s Add() member
function.

Using Aggregation 291

myFarm.Add(Critter("Moe"));
myFarm.Add(Critter("Larry"));
myFarm.Add(Critter("Curly"));

The following member function accepts a constant reference to a Critter object
and adds a copy of the object to the m_Critters vector.

void Farm::Add(const Critter& aCritter)
{

m_Critters.push_back(aCritter);
}

T r a p

push_back() adds a copy of an object to a vector—this means that I create an extra copy of
each Critter object every time I call Add(). This is no big deal in the Critter Farm program, but
if I were adding many large objects, it could become a performance issue. You can reduce this
overhead by using, say, a vector of pointers to objects. You’ll see how to work with pointers to
objects later in this chapter.

Finally, I take roll through the Farm object’s RollCall() member function.

myFarm.RollCall();

This iterates through the vector, calling each Critter object’s GetName() member
function and getting each critter to speak up and say its name.

Using Friend Functions

and Operator Overloading

Friend functions and operator overloading are two advanced concepts related to
classes. Friend functions have complete access to any member of a class.
Operator overloading allows you to define new meanings for built-in operators
as they relate to objects of your own classes. As you’ll see, you can use these two
concepts together.

Introducing the Friend Critter Program

The Friend Critter program creates a critter object. It then uses a friend function,
which is able to directly access the private data member that stores the critter’s
name to display the critter’s name. Finally, the program displays the critter
object by sending the object to the standard output. This is accomplished

292 Chapter 9 n Advanced Classes and Dynamic Memory: Game Lobby

through a friend function and operator overloading. Figure 9.2 displays the
results of the program.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 9
folder; the filename is friend_critter.cpp.

//Friend Critter
//Demonstrates friend functions and operator overloading

#include <iostream>
#include <string>

using namespace std;

class Critter
{

//make following global functions friends of the Critter class
friend void Peek(const Critter& aCritter);
friend ostream& operator<<(ostream& os, const Critter& aCritter);

Figure 9.2
The name of the critter is displayed through a friend function, and the critter object is displayed by
sending it to the standard output.

Using Friend Functions and Operator Overloading 293

public:
Critter(const string& name = "");

private:
string m_Name;

};

Critter::Critter(const string& name):
m_Name(name)

{}

void Peek(const Critter& aCritter);
ostream& operator<<(ostream& os, const Critter& aCritter);

int main()
{

Critter crit("Poochie");

cout << "Calling Peek() to access crit’s private data member, m_Name: \n";
Peek(crit);

cout << "\nSending crit object to cout with the << operator:\n";
cout << crit;

return 0;
}

//global friend function which can access all of a Critter object’s members
void Peek(const Critter& aCritter)
{

cout << aCritter.m_Name << endl;
}

//global friend function which can access all of Critter object’s members
//overloads the << operator so you can send a Critter object to cout
ostream& operator<<(ostream& os, const Critter& aCritter)
{

os << "Critter Object - ";
os << "m_Name: " << aCritter.m_Name;
return os;

}

294 Chapter 9 n Advanced Classes and Dynamic Memory: Game Lobby

Creating Friend Functions

A friend function can access any member of a class of which it’s a friend. You
specify that a function is a friend of a class by listing the function prototype
preceded by the keyword friend inside the class definition. That’s what I do
inside the Critter definition with the following line, which says that the global
function Peek() is a friend of Critter.

friend void Peek(const Critter& aCritter);

This means Peek() can access any member of Critter even though it’s not a
member function of the class. Peek() takes advantage of this relationship by
accessing the private data member m_Name to display the name of a critter passed
to the function.

void Peek(const Critter& aCritter)
{

cout << aCritter.m_Name << endl;
}

When I call Peek() in main() with the following line, the private data member
m_Name of crit is displayed and Poochie appears on the screen.

Peek(crit);

Overloading Operators

Overloading operators might sound like something you want to avoid at all
costs—as in, “Look out, that operator is overloaded and she’s about to blow!”—
but it’s not. Operator overloading lets you give meaning to built-in operators
used with new types that you define. For example, you could overload the *

operator so that when it is used with two 3D matrices (objects instantiated from
some class that you’ve defined), the result is the multiplication of the matrices.

To overload an operator, define a function called operatorX, where X is the
operator you want to overload. That’s what I do when I overload the << operator;
I define a function named operator<<.

ostream& operator<<(ostream& os, const Critter& aCritter)
{

os << "Critter Object - ";
os << "m_Name: " << aCritter.m_Name;
return os;

}

Using Friend Functions and Operator Overloading 295

The function overloads the << operator so that when I send a Critter object with
the << to cout, the data member m_Name is displayed. Essentially, the function
allows me to easily display Critter objects. The function can directly access the
private data member m_Name of a Critter object because I made the function a
friend of the Critter class with the following line in Critter:

friend ostream& operator<<(ostream& os, const Critter& aCritter);

This means I can simply display a Critter object by sending it to cout with the
<< operator, which is what I do in main() with the following line, which displays
the text Critter Object – m_Name: Poochie.

cout << crit;

H i n t

With all the tools and debugging options available to game programmers, sometimes simply
displaying the values of variables is the best way to understand what’s happening in your
programs. Overloading the << operator can help you do that.

This function works because cout is of the type ostream, which already overloads
the << operator so that you can send built-in types to cout.

Dynamically Allocating Memory

So far, whenever you’ve declared a variable, C++ has allocated the necessary
memory for it. When the function that the variable was created in ended, C++
freed the memory. This memory, which is used for local variables, is called the
stack. But there’s another kind of memory that persists independent of the
functions in a program. You, the programmer, are in charge of allocating and
freeing this memory, collectively called the heap (or free store).

At this point, you might be thinking, “Why bother with another type of
memory? The stack works just fine, thank you.” Using the dynamic memory
of the heap offers great benefits that can be summed up in one word: efficiency.
By using the heap, you can use only the amount of memory you need at any
given time. If you have a game with a level that has 100 enemies, you can allocate
the memory for the enemies at the beginning of the level and free the memory at
the end. The heap also allows you to create an object in one function that you
can access even after that function ends (without having to return a copy of the

296 Chapter 9 n Advanced Classes and Dynamic Memory: Game Lobby

object). You might create a screen object in one function and return access to it.
You’ll find that dynamic memory is an important tool in writing any significant
game.

Introducing the Heap Program

The Heap program demonstrates dynamic memory. The program dynamically
allocates memory on the heap for an integer variable, assigns it a value, and then
displays it. Next, the program calls a function that dynamically allocates memory
on the heap for another integer variable, assigns it a value, and returns a pointer
to it. The program takes the returned pointer, uses it to display the value, and
then frees the allocated memory on the heap. Finally, the program contains two
functions that demonstrate the misuse of dynamic memory. I don’t call these
functions, but I use them to illustrate what not to do with dynamic memory.
Figure 9.3 shows the program.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 9
folder; the filename is heap.cpp.

// Heap
// Demonstrates dynamically allocating memory

Figure 9.3
The two int values are stored on the heap.

Dynamically Allocating Memory 297

#include <iostream>

using namespace std;

int* intOnHeap(); //returns an int on the heap
void leak1(); //creates a memory leak
void leak2(); //creates another memory leak

int main()
{

int* pHeap = new int;
*pHeap = 10;
cout << "*pHeap: " << *pHeap << "\n\n";

int* pHeap2 = intOnHeap();
cout << "*pHeap2: " << *pHeap2 << "\n\n";

cout << "Freeing memory pointed to by pHeap.\n\n";
delete pHeap;

cout << "Freeing memory pointed to by pHeap2.\n\n";
delete pHeap2;

//get rid of dangling pointers
pHeap = 0;
pHeap2 = 0;

return 0;
}

int* intOnHeap()
{

int* pTemp = new int(20);
return pTemp;

}

void leak1()
{

int* drip1 = new int(30);
}

298 Chapter 9 n Advanced Classes and Dynamic Memory: Game Lobby

void leak2()
{

int* drip2 = new int(50);
drip2 = new int(100);
delete drip2;

}

Using the new Operator

The new operator allocates memory on the heap and returns its address. You use
new followed by the type of value you want to reserve space for. That’s what I do
in the first line of main().

int* pHeap = new int;

The new int part of the statement allocates enough memory on the heap for one
int and returns the address on the heap for that chunk of memory. The other
part of the statement, int* pHeap, declares a local pointer, pHeap, which points to
the newly allocated chunk of memory on the heap.

By using pHeap, I can manipulate the chunk of memory on the heap reserved for
an integer. That’s what I do next; I assign 10 to the chunk of memory and then I
display that value stored on the heap, using pHeap, as I would any other pointer
to int. The only difference is that pHeap points to a piece of memory on the
heap, not the stack.

H i n t

You can initialize memory on the heap at the same time you allocate it by placing a value,
surrounded by parentheses, after the type. This is even easier than it sounds. For example, the
following line allocates a chunk of memory on the heap for an int variable and assigns 10 to it.
The statement then assigns the address of that chunk of memory to pHeap.

int* pHeap = new int(10);

One of the major advantages of memory on the heap is that it can persist beyond
the function in which it was allocated, meaning that you can create an object on
the heap in one function and return a pointer or reference to it. That’s what I
demonstrate with the following line:

int* pHeap2 = intOnHeap();

Dynamically Allocating Memory 299

The statement calls the function intOnHeap(), which allocates a chunk of
memory on the heap for an int and assigns 20 to it.

int* intOnHeap()
{

int* pTemp = new int(20);
return pTemp;

}

Then, the function returns a pointer to this chunk of memory. Back in main(),
the assignment statement assigns the address of the chunk of memory on the
heap to pHeap2. Next, I use the returned pointer to display the value.

cout << "*pHeap2: " << *pHeap2 << "\n\n";

H i n t

Up until now, if you wanted to return a value created in a function, you had to return a copy of the
value. But by using dynamic memory, you can create an object on the heap in a function and return
a pointer to the new object.

Using the delete Operator

Unlike storage for local variables on the stack, memory that you’ve allocated on
the heap must be explicitly freed. When you’re finished with memory that
you’ve allocated with new, you should free it with delete. That’s what I do with
the following line, which frees the memory on the heap that stored 10.

delete pHeap;

That memory is returned to the heap for future use. The data that was stored in
it is no longer available. Next, I free some more memory, which frees the
memory on the heap that stored 20.

delete pHeap2;

That memory is returned to the heap for future use, and the data that was stored
in it is no longer available. Notice that there’s no difference, as far as delete is
concerned, regarding where in the program I allocated the memory on the heap
that I’m deleting.

T r i c k

Because you need to free memory that you’ve allocated once you’re finished with it, a good rule of
thumb is that every new should have a corresponding delete. In fact, some programmers write the
delete statement just after writing the new statement whenever possible, so they don’t forget it.

300 Chapter 9 n Advanced Classes and Dynamic Memory: Game Lobby

An important point to understand here is that the two previous statements free
the memory on the heap, but they do not directly affect the local variables pHeap

and pHeap2. This creates a potential problem because pHeap and pHeap2 now
point to memory that has been returned to the heap, meaning that they point to
memory that the computer can use in some other way at any given time.
Pointers like this are called dangling pointers and they are quite dangerous. You
should never attempt to dereference a dangling pointer. One way to deal with
dangling pointers is to assign 0 to them, and that’s what I do with the following
lines, which reassign both dangling pointers so they no longer point to some
memory to which they should not point.

pHeap = 0;
pHeap2 = 0;

Another good way to deal with a dangling pointer is to assign a valid memory
address to it.

T r a p

Using delete on a dangling pointer can cause your program to crash. Be sure to set a dangling
pointer to 0 or reassign it to point to a new, valid chunk of memory.

Avoiding Memory Leaks

One problem with allowing a programmer to allocate and free memory is that he
might allocate memory and lose any way to get at it, thus losing any way to ever
free it. When memory is lost like this, it’s called a memory leak. Given a large
enough leak, a program might run out of memory and crash. As a game
programmer, it’s your responsibility to avoid memory leaks.

I’ve written two functions in the Heap program that purposely create memory
leaks in order to show you what not to do when using dynamic memory. The
first function is leak1(), which simply allocates a chunk of memory on the heap
for an int value and then ends.

void leak1()
{

int* drip1 = new int(30);
}

Dynamically Allocating Memory 301

If I were to call this function, memory would be lost forever. (Okay, it would be
lost until the program ended.) The problem is that drip1, which is the only
connection to the newly acquired chunk of memory on the heap, is a local
variable and ceases to exist when the function leak1() ends. So, there’s no way
to free the allocated memory. Take a look at Figure 9.4 for a visual representa-
tion of how the leak occurs.

To avoid this memory leak, I could do one of two things. I could use delete to
free the memory in leak1(), or I could return a copy of the pointer drip1. If I
choose the second option, I have to make sure to free this memory in some other
part of the program.

The second function that creates a memory leak is leak2().

void leak2()
{

int* drip2 = new int(50);
drip2 = new int(100);
delete drip2;

}

This memory leak is a little more subtle, but there is still a leak. The first line in
the function body, int* drip2 = new int(50);, allocates a new piece of memory
on the heap, assigns 50 to it, and has drip2 point to that piece memory. So far, so
good. The second line, drip2 = new int(100);, points drip2 to a new piece of
memory on the heap, which stores the 100. The problem is that the memory on
the heap that stores 50 now has nothing pointing to it, so there is no way for the
program to free that memory. As a result, that piece of memory has essentially
leaked out of the system. Check out Figure 9.5 for a visual representation of how
the leak occurs.

The last statement of the function, delete drip2;, frees the memory that stores
100, so this won’t be the source of another memory leak. But remember, the

Figure 9.4
The memory that stores 30 can no longer be accessed to be freed, so it has leaked out of the system.

302 Chapter 9 n Advanced Classes and Dynamic Memory: Game Lobby

memory on the heap that stores 50 has still leaked out of the system. Also, I
don’t worry about drip2, which technically has become a dangling pointer,
because it will cease to exist when the function ends.

Working with Data Members and the Heap

You’ve seen how you can use aggregation to declare data members that store
objects, but you can also declare data members that are pointers to values on the
heap. You might use a data member that points to a value on the heap for some
of the same reasons you would use pointers in other situations. For example, you
might want to declare a data member for a large 3D scene; however, you might
only have access to the 3D scene through a pointer. Unfortunately, problems can
arise when you use a data member that points to a value on the heap because of
the way that some default object behaviors work. But you can avoid these issues
by writing member functions to change these default behaviors.

Introducing the Heap Data Member Program

The Heap Data Member program defines a new type of critter with a data
member that is a pointer, which points to an object stored on the heap. The class
defines a few new member functions to handle situations in which an object is
destroyed, copied, or assigned to another object. The program destroys, copies,
and assigns objects to show that the objects behave as you’d expect, even with
data members pointing to values on the heap. Figure 9.6 shows the results of the
Heap Data Member program.

Figure 9.5
By changing drip2 so that it points to the memory that stores 100, the memory that stores 50 is no
longer accessible and has leaked out of the system.

Working with Data Members and the Heap 303

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 9
folder; the filename is heap_data_member.cpp.

//Heap Data Member
//Demonstrates an object with a dynamically allocated data member

#include <iostream>
#include <string>

using namespace std;

class Critter
{
public:

Critter(const string& name = "", int age = 0);
~Critter(); //destructor prototype
Critter(const Critter& c); //copy constructor prototype
Critter& Critter::operator=(const Critter& c); //overloaded assignment

op
void Greet() const;

Figure 9.6
Objects, each with a data member that points to a value on the heap, are instantiated, destroyed, and
copied.

304 Chapter 9 n Advanced Classes and Dynamic Memory: Game Lobby

private:
string* m_pName;
int m_Age;

};

Critter::Critter(const string& name, int age)
{

cout << "Constructor called\n";
m_pName = new string(name);
m_Age = age;

}

Critter::~Critter() //destructor definition
{

cout << "Destructor called\n";
delete m_pName;

}

Critter::Critter(const Critter& c) //copy constructor definition
{

cout << "Copy Constructor called\n";
m_pName = new string(*(c.m_pName));
m_Age = c.m_Age;

}

Critter& Critter::operator=(const Critter& c) //overloaded assignment op def
{

cout << "Overloaded Assignment Operator called\n";
if (this != &c)
{

delete m_pName;
m_pName = new string(*(c.m_pName));
m_Age = c.m_Age;

}
return *this;

}

void Critter::Greet() const
{

Working with Data Members and the Heap 305

cout << "I’m " << *m_pName << " and I’m " << m_Age << " years old.\n";
cout << "&m_pName: " << cout << &m_pName << endl;

}

void testDestructor();
void testCopyConstructor(Critter aCopy);
void testAssignmentOp();

int main()
{

testDestructor();
cout << endl;

Critter crit("Poochie", 5);
crit.Greet();
testCopyConstructor(crit);
crit.Greet();
cout << endl;

testAssignmentOp();

return 0;
}

void testDestructor()
{

Critter toDestroy("Rover", 3);
toDestroy.Greet();

}

void testCopyConstructor(Critter aCopy)
{

aCopy.Greet();
}

void testAssignmentOp()
{

Critter crit1("crit1", 7);
Critter crit2("crit2", 9);
crit1 = crit2;

306 Chapter 9 n Advanced Classes and Dynamic Memory: Game Lobby

crit1.Greet();
crit2.Greet();
cout << endl;

Critter crit3("crit", 11);
crit3 = crit3;
crit3.Greet();

}

Declaring Data Members that
Point to Values on the Heap

To declare a data member that points to a value on the heap, you first need to
declare a data member that’s a pointer. That’s just what I do in Critter with the
following line, which declares m_pName as a pointer to a string object.

string* m_pName;

In the class constructor, you can allocate memory on the heap, assign a value to
the memory, and then point a pointer data member to the memory. That’s what
I do in the constructor definition with the following line, which allocates
memory for a string object, assigns name to it, and points m_pName to that
chunk of memory on the heap.

m_pName = new string(name);

I also declare a data member that is not a pointer:

int m_Age;

This data member gets its value in the constructor the way you’ve seen before,
with a simple assignment statement:

m_Age = age;

You’ll see how each of these data members is treated differently as Critter

objects are destroyed, copied, and assigned to each other.

Now, the first object with a data member on the heap is created when main()

calls testDestructor(). The object, toDestroy, has an m_pName data member that
points to a string object equal to "Rover" that’s stored on the heap. Figure 9.7
provides a visual representation of the Critter object. Note that the image is
abstract because the name of the critter is actually stored as a string object, not
a string literal.

Working with Data Members and the Heap 307

Declaring and Defining Destructors

One problem that can occur when a data member of an object points to a value
on the heap is a memory leak. That’s because when the object is deleted, the
pointer to the heap value disappears along with it. If the heap value remains, it
produces a memory leak. To avoid a memory leak, the object should clean up
after itself before it is destroyed by deleting its associated heap value. Fortu-
nately, there’s a member function, the destructor, that’s called just before an
object is destroyed, which can be used to perform the necessary cleanup.

A default destructor, which is created for you by the compiler if you don’t write
your own, doesn’t attempt to free any memory on the heap that a data member
might point to. This behavior is usually fine for simple classes, but when you
have a class with data members that point to values on the heap, you should
write your own destructor so you can free the memory on the heap associated
with an object before the object disappears, avoiding a memory leak. That’s what
I do in the Critter class. First, inside the class definition, I declare the
destructor. Notice that a destructor has the name of the class preceded by ~

(the tilde character) and does not have any parameters or return a value.

Critter::~Critter() //destructor definition
{

cout << "Destructor called\n";
delete m_pName;

}

In main(), I put the destructor to the test when I call testDestructor(). The
function creates a Critter object, toDestroy, and invokes its Greet() method,
which displays I’m Rover and I’m 3 years old. &m_pName: 73F2ED48003AF644. The
message provides a way to see the values of the object’s m_Age data member and
the string pointed to by its m_pName data member. But it also displays the address
of the string on the heap stored in the pointer m_pName. The important thing to

Figure 9.7
A representation of a Critter object. The string object equal to "Rover" is stored on the heap.

308 Chapter 9 n Advanced Classes and Dynamic Memory: Game Lobby

note is that after the Greet() message is displayed, the function ends and
toDestroy is ready to be destroyed. Fortunately, toDestroy’s destructor is
automatically called just before this happens. The destructor displays Destructor
called and deletes the string object equal to "Rover" that’s on the heap, cleaning
up after itself and leaking no memory. The destructor doesn’t do anything with
the m_Age data member. That’s perfectly fine since m_Age isn’t on the heap, but
part of toDestroy and will be properly disposed of right along with the rest of the
Critter object.

H i n t

When you have a class that allocates memory on the heap, you should write a destructor that
cleans up and frees that memory.

Declaring and Defining Copy Constructors

Sometimes an object is copied automatically for you. This occurs when an object
is:

n Passed by value to a function

n Returned from a function

n Initialized to another object through an initializer

n Provided as a single argument to the object’s constructor

The copying is done by a special member function called the copy constructor.
Like constructors and destructors, a default copy constructor is supplied for you
if you don’t write one of your own. The default copy constructor simply copies
the value of each data member to data members of the same name in the new
object—a member-wise copy.

For simple classes, the default copy constructor is usually fine. However, when
you have a class with a data member that points to a value on the heap, you
should consider writing your own copy constructor. Why? Imagine a Critter

object that has a data member that’s a pointer to a string object on the heap.
With only a default copy constructor, the automatic copying of the object would
result in a new object that points to the same single string on the heap because
the pointer of the new object would simply get a copy of the address stored in

Working with Data Members and the Heap 309

the pointer of the original object. This member-wise copying produces a shallow
copy, in which the pointer data members of the copy point to the same chunks of
memory as the pointer data members in the original object.

Let me give you a specific example. If I hadn’t written my own copy constructor
in the Heap Data Member program, when I passed a Critter object by value
with the following function call, the program would have automatically made a
shallow copy of crit called aCopy that existed in testCopyConstructor().

testCopyConstructor(crit);

aCopy’s m_pName data member would point to the exact same string object on
the heap as crit’s m_pName data member does. Figure 9.8 shows you what I
mean. Note that the image is abstract since the name of the critter is actually
stored as a string object, not a string literal.

Why is this a problem? Once testCopyConstructor() ends, aCopy’s destructor is
called, freeing the memory on the heap pointed to by aCopy’s m_pName data
member. Because of this, crit’s m_pName data member would point to memory
that has been freed, which would mean that crit’s m_pName data member would
be a dangling pointer! Figure 9.9 provides you with a visual representation of
this. Note that the image is abstract since the name of the critter is actually
stored as a string object, not a string literal.

What you really need is a copy constructor that produces a new object with its
own chunk of memory on the heap for each data member that points to a heap
object—a deep copy. That’s what I do when I define a copy constructor for the

Figure 9.8
If a shallow copy of crit were made, both aCopy and crit would have a data member that points to
the same chunk of memory on the heap.

310 Chapter 9 n Advanced Classes and Dynamic Memory: Game Lobby

class, which replaces the default one provided by the compiler. First, inside the
class definition, I declare the copy constructor:

Critter(const Critter& c); //copy constructor prototype

Next, outside the class definition, I define the copy constructor:

Critter::Critter(const Critter& c) //copy constructor definition
{

cout << "Copy Constructor called\n";
m_pName = new string(*(c.m_pName));
m_Age = c.m_Age;

}

Just like this one, a copy constructor must have the same name as the class. It
returns no value, but accepts a reference to an object of the class—the object that
needs to be copied. The reference should be made a constant reference to protect
the original object from being changed during the copy process.

The job of a copy constructor is to copy any data members from the original
object to the copy object. If a data member of the original object is a pointer to a
value on the heap, the copy constructor should request memory from the heap,
copy the original heap value to this new chunk of memory, and then point the
appropriate copy object data member to this new memory.

When I call testCopyConstructor() by passing crit to the function by value, the
copy constructor I wrote is automatically called. You can tell this because the
text Copy Constructor called. appears on the screen. My copy constructor
creates a new Critter object (the copy) and accepts a reference to the original in c.

Figure 9.9
If the shallow copy of the Critter object were destroyed, the memory on the heap that it shared with
the original object would be freed. As a result, the original object would have a dangling pointer.

Working with Data Members and the Heap 311

With the line m_pName = new string(*(c.m_pName));, my copy constructor allocates
a new chunk of memory on the heap, gets a copy of the string pointed to by the
original object, copies it to the new memory, and points the m_pName data member
of the copy to this memory. The next line, m_Age = c.m_Age; simply copies the value
of the original’s m_Age to the copy’s m_Age data member. As a result, a deep copy of
crit is made, and that’s what gets used in testCopyConstructor() as aCopy.

You can see that the copy constructor worked when I called aCopy’s Greet()

member function. In my sample run, the member function displayed a message,
part of which was I’m Poochie and I’m 5 years old. This part of the message
shows that aCopy correctly got a copy of the values of the data members from the
object crit. The second part of the message, &m_pName: 73F2ED48003AF660, shows
that the string object pointed to by the data member m_pName of aCopy is stored
in a different chunk of memory than the string pointed to by the data member
m_pName of crit, which is stored at memory location 73F2ED48003AF78C, proving
that a deep copy was made. Remember that the memory addresses displayed in
my sample run may be different from the ones displayed when the program is
run again. However, the key here is that the addresses stored in crit’s m_pName

and aCopy’s m_pName are different from each other.

When testCopyConstructor() ends, the copy of the Critter object used in the
function, stored in the variable aCopy, is destroyed. The destructor frees the
chunk of memory on the heap associated with the copy, leaving the original
Critter object, crit, created in main(), unaffected. Figure 9.10 shows the results.
Note that the image is abstract since the name of the critter is actually stored as a
string object, not a string literal.

Figure 9.10
With a proper copy constructor, the original and the copy each point to their own chunk of memory on
the heap. Then, when the copy is destroyed, the original is unaffected.

312 Chapter 9 n Advanced Classes and Dynamic Memory: Game Lobby

H i n t

When you have a class with data members that point to memory on the heap, you should consider
writing a copy constructor that allocates memory for a new object and creates a deep copy.

Overloading the Assignment Operator

When both sides of an assignment statement are objects of the same class, the
class’ assignment operator member function is called. Like a default copy
constructor, a default assignment operator member function is supplied for
you if you don’t write one of your own. Also like the default copy constructor,
the default assignment operator provides only member-wise duplication.

For simple classes, the default assignment operator is usually fine. However,
when you have a class with a data member that points to a value on the heap,
you should consider writing an overloaded assignment operator of your own. If
you don’t, you’ll end up with shallow copies of objects when you assign one
object to another. To avoid this problem, I overloaded the assignment operator
for Critter. First, inside the class definition, I write the declaration:

Critter& Critter::operator=(const Critter& c); //overloaded assignment
op

Next, outside the class definition, I write the member function definition:

Critter& Critter::operator=(const Critter& c) //overloaded assignment op def
{

cout << "Overloaded Assignment Operator called\n";
if (this != &c)
{

delete m_pName;
m_pName = new string(*(c.m_pName));
m_Age = c.m_Age;

}
return *this;

}

Notice that the member function returns a reference to a Critter object. For
robust assignment operation, return a reference from the overloaded assignment
operator member function.

Working with Data Members and the Heap 313

In main(), I call a function that tests the overloaded assignment operator for this
class.

testAssignmentOp();

The testAssignmentOp() creates two objects and assigns one to the other.

Critter crit1("crit1", 7);
Critter crit2("crit2", 9);
crit1 = crit2;

The preceding assignment statement, crit1 = crit2;, calls the assignment
operator member function—operator=()—for crit1. In the operator=() func-
tion, c is a constant reference to crit2. The goal of the member function is to
assign the values of all of the data members of crit2 to crit1 while making sure
each Critter object has its own chunks of memory on the heap for any pointer
data members.

After operator=() displays a message that the overloaded assignment operator
has been called, it uses the this pointer. What’s the this pointer? It’s a pointer
that all non-static member functions automatically have, which points to the
object that was used to call the function. In this case, this points to crit1, the
object being assigned to.

The next line, if (this != &c), checks to see whether the address of crit1 is not
equal to the address of crit2—that is, it tests if the object isn’t being assigned to
itself. Because it’s not, the block associated with the if statement executes.

Inside the if block, delete m_pName; frees the memory on the heap that crit1’s
m_pName data member pointed to. The line m_pName = new string(*(c.m_pName));

allocates a new chunk of memory on the heap, gets a copy of the string pointed to
by the m_pName data member of crit2, copies the string object to the new heap
memory, and points the m_pName data member of crit1 to this memory. You
should follow this logic for all data members that point to memory on the heap.

The last line in the block, m_Age = c.m_Age; simply copies the value of the crit2’s
m_Age to crit1’s m_Age data member. You should follow this simple member-
wise copying for all data members that are not pointers to memory on the heap.

Finally, the member function returns a copy of the new crit1 by returning
*this. You should do the same for any overloaded assignment operator member
function you write.

314 Chapter 9 n Advanced Classes and Dynamic Memory: Game Lobby

Back in testAssignmentOp(), I prove that the assignment worked by calling
crit1.Greet() and crit2.Greet(). crit1 displays the message I’m crit2 and I’m

9 years old. &m_pName: 73F2ED48003AF644 while crit2 displays the message I’m

crit2 and I’m 9 years old. &m_pName: 73F2ED48003AF634. The first part of each
message, I’m crit2 and I’m 9 years old., is the same and shows that the copying
of values worked. The second part of each message is different and shows that
each object points to different chunks of memory on the heap, which demon-
strates that I avoided shallow copies and have truly independent objects after the
assignment.

In the last test of the overloaded assignment operator, I demonstrate what
happens when you assign an object to itself. That’s what I do next in the
function with the following lines:

Critter crit3("crit", 11);
crit3 = crit3;

The preceding assignment statement, crit3 = crit3;, calls the assignment
operator member function—operator=()—for crit3. The if statement checks
to see whether crit3 is being assigned to itself. Because it is, the member
function simply returns a reference to the object through return *this. You
should follow this logic in your own overloaded assignment operator because of
potential problems that can arise from only one object being involved in an
assignment.

H i n t

When you have a class with a data member that points to memory on the heap, you should
consider overloading the assignment operator for the class.

Introducing the Game Lobby Program

The Game Lobby program simulates a game lobby—a waiting area for players,
usually in an online game. The program doesn’t actually involve an online
component. It creates a single line in which players can wait. The user of the
program runs the simulation and has four choices. He can add a person to the
lobby, remove a person from the lobby (the first person in line is the first to
leave), clear out the lobby, or quit the simulation. Figure 9.11 shows the program
in action.

Introducing the Game Lobby Program 315

The Player Class

The first thing I do is create a Player class to represent the players who are
waiting in the game lobby. Because I don’t know how many players I’ll have in
my lobby at one time, it makes sense to use a dynamic data structure. Normally,
I’d go to my toolbox of containers from the STL. But I decided to take a different
approach in this program and create my own kind of container using
dynamically allocated memory that I manage. I didn’t do this because it’s a
better programming choice—always see whether you can leverage good work
done by other programmers, like the STL—but because it makes for a better
game programming example. It’s a great way to really see dynamic memory in
action.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 9
folder; the filename is game_lobby.cpp. Here’s the beginning of the program,
which includes the Player class:

//Game Lobby
//Simulates a game lobby where players wait

#include <iostream>

Figure 9.11
The lobby holds players who are removed in the order in which they were added.

316 Chapter 9 n Advanced Classes and Dynamic Memory: Game Lobby

#include <string>

using namespace std;

class Player
{
public:

Player(const string& name = "");
string GetName() const;
Player* GetNext() const;
void SetNext(Player* next);

private:
string m_Name;
Player* m_pNext; //Pointer to next player in list

};

Player::Player(const string& name):
m_Name(name),
m_pNext(0)

{}

string Player::GetName() const
{

return m_Name;
}

Player* Player::GetNext() const
{

return m_pNext;
}

void Player::SetNext(Player* next)
{

m_pNext = next;
}

The m_Name data member holds the name of a player. That’s pretty straightfor-
ward, but you might be wondering about the other data member, m_pNext. It’s a
pointer to a Player object, which means that each Player object can hold a name
and point to another Player object. You’ll get the point of all this when I talk

Introducing the Game Lobby Program 317

about the Lobby class. Figure 9.12 provides a visual representation of a Player

object.

The class has a get accessor method for m_Name and get and set accessor member
functions for m_pNext. Finally, the constructor is pretty simple. It initializes
m_Name to a string object based on what’s passed to the constructor. It also sets
m_pNext to 0, making it a null pointer.

The Lobby Class

The Lobby class represents the lobby or line in which players wait. Here’s the
class definition:

class Lobby
{

friend ostream& operator�(ostream& os, const Lobby& aLobby);

public:
Lobby();
~Lobby();
void AddPlayer();
void RemovePlayer();
void Clear();

private:
Player* m_pHead;

};

The data member m_pHead is a pointer that points to a Player object, which
represents the first person in line. m_pHead represents the head of the line.

Because each Player object has an m_pNext data member, you can link a bunch
of Player objects in a linked list. Individual elements of linked lists are often

Figure 9.12
A Player object can hold a name and point to another Player object.

318 Chapter 9 n Advanced Classes and Dynamic Memory: Game Lobby

called nodes. Figure 9.13 provides a visual representation of a game lobby—a
series of player nodes linked with one player at the head of the line.

One way to think about the player nodes is as a group of train cars that carry
cargo and are connected. In this case, the train cars carry a name as cargo and
are linked through a pointer data member, m_pNext. The Lobby class allocates
memory on the heap for each Player object in the list. The Lobby data member
m_pHead provides access to the first Player object at the head of the list.

The constructor is very simple. It simply initializes the data member m_pHead to
0, making it a null pointer.

Lobby::Lobby():
m_pHead(0)

{}

The destructor simply calls Clear(), which removes all the Player objects from
the list, freeing the allocated memory.

Lobby::~Lobby()
{

Clear();
}

AddPlayer() instantiates a Player object on the heap and adds it to the end of
the list. RemovePlayer() removes the first Player object in the list, freeing the
allocated memory.

I declare the function operator<<() a friend of Lobby so that I can send a Lobby

object to cout using the << operator.

Figure 9.13
Each node holds a name and a pointer to the next player in the list. The first player in line is at the head.

Introducing the Game Lobby Program 319

T r a p

The Lobby class has a data member, m_pHead, which points to Player objects on the heap.
Because of this, I included a destructor that frees all of the memory occupied by the Player
objects on the heap instantiated by a Lobby object to avoid any memory leaks when a Lobby
object is destroyed. However, I didn’t define a copy constructor or overload the assignment
operator in the class. For the Game Lobby program, this isn’t necessary. But if I wanted a more
robust Lobby class, I would have defined these member functions.

The Lobby::AddPlayer() Member Function

The Lobby::AddPlayer() member function adds a player to the end of the line in
the lobby.

void Lobby::AddPlayer()
{

//create a new player node
cout << "Please enter the name of the new player: ";
string name;
cin >> name;
Player* pNewPlayer = new Player(name);

//if list is empty, make head of list this new player
if (m_pHead == 0)
{

m_pHead = pNewPlayer;
}
//otherwise find the end of the list and add the player there
else
{

Player* pIter = m_pHead;
while (pIter->GetNext() != 0)
{

pIter = pIter->GetNext();
}
pIter->SetNext(pNewPlayer);

}
}

The first thing the function does is gets the new player’s name from the user and
use it to instantiate a new Player object on the heap. Then it sets the object’s
pointer data member to the null pointer.

320 Chapter 9 n Advanced Classes and Dynamic Memory: Game Lobby

Next, the function checks to see whether the lobby is empty. If the Lobby object’s
data member m_pHead is 0, then there’s no one in line. If so, the new Player

object becomes the head of the line and m_pHead is set to point to a new Player

object on the heap.

If the lobby isn’t empty, the player is added to the end of the line. The function
accomplishes this by moving through the list one node at a time, using pIter’s
GetNext() member function, until it reaches a Player object whose GetNext()

returns 0, meaning that it’s the last node in the list. Then, the function
makes that node point to the new Player object on the heap, which has the
effect of adding the new object to the end of the list. Figure 9.14 illustrates this
process.

Figure 9.14
The list of players just before and just after a new player node is added.

Introducing the Game Lobby Program 321

T r a p

Lobby::AddPlayer() marches through the entire list of Player objects every time it’s called.
For small lists this isn’t a problem, but with large lists this inefficient process can become unwieldy.
There are more efficient ways to do what this function does. In one of the chapter exercises, your
job will be to implement one of these more efficient methods.

The Lobby::RemovePlayer() Member Function

The Lobby:: RemovePlayer() member function removes the player at the head of
the line.

void Lobby::RemovePlayer()
{

if (m_pHead == 0)
{

cout << "The game lobby is empty. No one to remove!\n";
}
else
{

Player* pTemp = m_pHead;
m_pHead = m_pHead->GetNext();
delete pTemp;

}
}

The function tests m_pHead. If it’s 0, then the lobby is empty and the function
displays a message that says so. Otherwise, the first player object in the list is
removed. The function accomplishes this by creating a pointer, pTemp, and
pointing it to the first Player object in the list. Then the function sets m_pHead to
the next thing in the list—either the next Player object or 0. Finally, the function
destroys the Player object pointed to by pTemp. Check out Figure 9.15 for a
visual representation of how this works.

The Lobby::Clear() Member Function

The Lobby::Clear() member function removes all of the players from the lobby.

void Lobby::Clear()
{

while (m_pHead != 0)
{

322 Chapter 9 n Advanced Classes and Dynamic Memory: Game Lobby

RemovePlayer();
}

}

If the list is empty, the loop isn’t entered and the function ends. Otherwise, the
loop is entered and the function keeps removing the first Player object in the list
by calling RemovePlayer() until there are no more Player objects.

The operator<<() Member Function

The operator<<() member function overloads the << operator so I can display a
Lobby object by sending it to cout.

ostream& operator<<(ostream& os, const Lobby& aLobby)
{

Player* pIter = aLobby.m_pHead;

Figure 9.15
The list of players just before and just after a player node is removed.

Introducing the Game Lobby Program 323

os << "\nHere’s who’s in the game lobby:\n";
if (pIter == 0)
{

os << "The lobby is empty.\n";
}
else
{

while (pIter != 0)
{

os << pIter->GetName() << endl;
pIter = pIter->GetNext();

}
}

return os;
}

If the lobby is empty, the appropriate message is sent to the output stream.
Otherwise, the function cycles through all of the players in the list, sending their
names to the output stream, using pIter to move through the list.

The main() Function

The main() function displays the players in the lobby, presents the user with a
menu of choices, and performs the requested action.

int main()
{

Lobby myLobby;
int choice;

do
{

cout << myLobby;
cout << "\nGAME LOBBY\n";
cout << "0 - Exit the program.\n";
cout << "1 - Add a player to the lobby.\n";
cout << "2 - Remove a player from the lobby.\n";
cout << "3 - Clear the lobby.\n";
cout << endl << "Enter choice: ";
cin >> choice;

324 Chapter 9 n Advanced Classes and Dynamic Memory: Game Lobby

switch (choice)
{

case 0: cout << "Good-bye.\n"; break;
case 1: myLobby.AddPlayer(); break;
case 2: myLobby.RemovePlayer(); break;
case 3: myLobby.Clear(); break;
default: cout << "That was not a valid choice.\n";

}
}
while (choice != 0);

return 0;
}

The function first instantiates a new Lobby object, and then it enters a loop that
presents a menu and gets the user’s choice. Then it calls the corresponding Lobby

object’s member function. If the user enters an invalid choice, he or she is told
so. The loop continues until the user enters 0.

Summary

In this chapter, you should have learned the following concepts:

n Aggregation is the combining of objects so that one is part of another.

n Friend functions have complete access to any member of a class.

n Operator overloading allows you to define new meanings for built-in
operators as they relate to objects of your own classes.

n The stack is an area of memory that is automatically managed for you
and is used for local variables.

n The heap (or free store) is an area of memory that you, the programmer,
can use to allocate and free memory.

n The new operator allocates memory on the heap and returns its address.

n The delete operator frees memory on the heap that was previously
allocated.

n A dangling pointer points to an invalid memory location. Dereferencing
or deleting a dangling pointer can cause your program to crash.

Summary 325

n A memory leak is an error in which memory that has been allocated
becomes inaccessible and can no longer be freed. Given a large enough
leak, a program might run out of memory and crash.

n A destructor is a member function that’s called just before an object is
destroyed. If you don’t write a destructor of your own, the complier will
supply a default destructor for you.

n The copy constructor is a member function that’s invoked when an
automatic copy of an object is made. A default copy constructor is
supplied for a class if you don’t write one of your own.

n The default copy constructor simply copies the value of each data
member to data members with the same names in the copy, producing a
member-wise copy.

n Member-wise copying can produce a shallow copy of an object, in which
the pointer data members of the copy point to the same chunks of
memory as the pointers in the original object.

n A deep copy is a copy of an object that has no chunks of memory in
common with the original.

n A default assignment operator member function, which provides only
member-wise duplication, is supplied for you if you don’t write one of
your own.

n The this pointer is a pointer that all non-static member functions
automatically have; it points to the object that was used to call the
function.

Questions and Answers

Q: Why should you use aggregation?

A: To create more complex objects from other objects.

Q: What is composition?

A: A form of aggregation in which the composite object is responsible for the
creation and destruction of its object parts. Composition is often called a
“uses a” relationship.

326 Chapter 9 n Advanced Classes and Dynamic Memory: Game Lobby

Q: When should I use a friend function?

A: When you need a function to have access to the non-public members of a
class.

Q: What is a friend member function?

A: A member function of one class that can access all of the members of another
class.

Q: What is a friend class?

A: A class that can access all of the members of another class.

Q: Can’t operator overloading become confusing?

A: Yes. Giving too many meanings or unintuitive meanings to operators can
lead to code that’s difficult to understand.

Q: What happens when I instantiate a new object on the heap?

A: All of the data members will occupy memory on the heap and not on the
stack.

Q: Can I access an object through a constant pointer?

A: Sure. But you can only access constant member functions through a constant
pointer.

Q: What’s wrong with shallow copies?

A: Because shallow copies share references to the same chunks of memory, a
change to one object will be reflected in another object.

Q: What is a linked list?

A: A dynamic data structure that consists of a sequence of linked nodes.

Q: How is a linked list different from a vector?

A: Linked lists permit insertion and removal of nodes at any point in the list but
do not allow random access, like vectors. However, the insertion and deletion
of nodes in the middle of the list can be more efficient than the insertion and
deletion of elements in the middle of vectors.

Questions and Answers 327

Q: Is there a container class from the STL that serves as a linked list?

A: Yes, the list class.

Q: Is the data structure used in the Game Lobby program a linked list?

A: It shares similarities to a linked list, but it is really a queue.

Q: What’s a queue?

A: A data structure in which elements are removed in the same order in which
they were entered. This process is often called first in, first out (FIFO).

Q: Is there a kind of container from the STL that serves as a queue?

A: Yes, the queue container adaptor.

Discussion Questions

1. What types of game entities could you create with aggregation?

2. Do friend functions undermine encapsulation in OOP?

3. What advantages does dynamic memory offer to game programs?

4. Why are memory leaks difficult errors to track down?

5. Should objects that allocate memory on the heap always be required to
free it?

Exercises

1. Improve the Lobby class from the Game Lobby program by writing a
friend function of the Player class that allows a Player object to be sent
to cout. Next, update the function that allows a Lobby object to be sent
to cout so that it uses your new function for sending a Player object to
cout.

2. The Lobby::AddPlayer() member function from the Game Lobby pro-
gram is inefficient because it iterates through all of the player nodes to
add a new player to the end of the line. Add an m_pTail pointer data
member to the Lobby class that always points to the last player node in
the line and use it to more efficiently add a player.

328 Chapter 9 n Advanced Classes and Dynamic Memory: Game Lobby

3. What’s wrong with the following code?

#include <iostream>
using namespace std;

int main()
{

int* pScore = new int;
*pScore = 500;
pScore = new int(1000);
delete pScore;
pScore = 0;

return 0;
}

Exercises 329

This page intentionally left blank

Inheritance and

Polymorphism: Blackjack

Classes give you the perfect way to represent game entities that have attributes
and behaviors. But game entities are often related. In this chapter, you’ll learn
about inheritance and polymorphism, which give you ways to express those
connections and can make defining and using classes even simpler and more
intuitive. Specifically, you’ll learn to:

n Derive one class from another

n Use inherited data members and member functions

n Override base class member functions

n Define virtual functions to enable polymorphism

n Declare pure virtual functions to define abstract classes

Introducing Inheritance

One of the key elements of OOP is inheritance, which allows you to derive a new
class from an existing one. When you do so, the new class automatically inherits
(or gets) the data members and member functions of an existing class. It’s like
getting the work that went into the existing class for free!

Inheritance is especially useful when you want to create a more specialized
version of an existing class because you can add data members and member
functions to the new class to extend it. For example, imagine you have a class
Enemy that defines an enemy in a game with a member function Attack() and a

chapter 10

331

data member m_Damage. You can derive a new class Boss from Enemy for a boss.
This means that Boss could automatically have Attack() and m_Damage without you
having to write any code for them at all. Then, to make a boss tough, you could add
a member function SpecialAttack() and a data member DamageMultiplier to the
Boss class. Take a look at Figure 10.1, which shows the relationship between the
Enemy and Boss classes.

One of the many advantages of inheritance is that you can reuse classes you’ve
already written. This reusability produces benefits that include:

n Less work. There’s no need to redefine functionality you already have.
Once you have a class that provides the base functionality for other
classes, you don’t have to write that code again.

n Fewer errors. Once you’ve got a bug-free class, you can reuse it without
errors cropping up in it.

Figure 10.1
Boss inherits Attack() and m_Damage from Enemy while defining SpecialAttack() and
m_DamageMultiplier.

332 Chapter 10 n Inheritance and Polymorphism: Blackjack

n Cleaner code. Because the functionality of base classes exist only once in
a program, you don’t have to wade through the same code repeatedly,
which makes programs easier to understand and modify.

Most related game entities cry out for inheritance. Whether it’s the series of
enemies that a player faces, squadrons of military vehicles that a player commands,
or an inventory of weapons that a player wields, you can use inheritance to define
these groups of game entities in terms of each other, which results in faster and
easier programming.

Introducing the Simple Boss Program

The Simple Boss program demonstrates inheritance. In it, I define a class for lowly
enemies, Enemy. From this class, I derive a new class for tough bosses that the
player has to face, Boss. Then, I instantiate an Enemy object and call its Attack()

member function. Next, I instantiate a Boss object. I’m able to call Attack() for the
Boss object because it inherits the member function from Enemy. Finally, I call the
Boss object’s SpecialAttack() member function, which I defined in Boss, for a
special attack. Since I define SpecialAttack() in Boss, only Boss objects have
access to it. Enemy objects don’t have this special attack at their disposal. Figure 10.2
shows the results of the program.

Figure 10.2
The Boss class inherits the Attack() member function and then defines its own SpecialAttack()
member function.

Introducing Inheritance 333

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 10
folder; the filename is simple_boss.cpp.

//Simple Boss
//Demonstrates inheritance

#include <iostream>
using namespace std;

class Enemy
{
public:

int m_Damage;

Enemy();
void Attack() const;

};

Enemy::Enemy():
m_Damage(10)

{}

void Enemy::Attack() const
{

cout << "Attack inflicts " << m_Damage << " damage points!\n";
}

class Boss : public Enemy
{
public:

int m_DamageMultiplier;

Boss();
void SpecialAttack() const;

};
Boss::Boss():

m_DamageMultiplier(3)
{}

334 Chapter 10 n Inheritance and Polymorphism: Blackjack

void Boss::SpecialAttack() const
{

cout << "Special Attack inflicts " << (m_DamageMultiplier * m_Damage);
cout << " damage points!\n";

}

int main()
{

cout << "Creating an enemy.\n";
Enemy enemy1;
enemy1.Attack();

cout << "\nCreating a boss.\n";
Boss boss1;
boss1.Attack();
boss1.SpecialAttack();

return 0;
}

Deriving from a Base Class

I derive the Boss class from Enemy when I define Boss with the following line:

class Boss : public Enemy

Boss is based on Enemy. In fact, Enemy is called the base class (or superclass) and
Boss the derived class (or subclass). This means that Boss inherits Enemy’s data
members and member functions, subject to access controls. In this case, Boss
inherits and can directly access m_Damage and Attack(). It’s as if I defined both
m_Damage and Attack() in Boss.

H i n t

You might have noticed that I made all of the members of the classes pubic, including their
data members. I did this because it makes for the simplest first example of a base and derived
class. You also might have noticed that I used the keyword public when deriving Boss
from Enemy. For now, don’t worry about this. I’ll cover it all in the next example program,
Simple Boss 2.0.

Introducing Inheritance 335

To derive classes of your own, follow my example. After the class name in a class
definition, put a colon followed by an access modifier (such as public), followed
by the name of the base class. It’s perfectly acceptable to derive a new class from
a derived class, and sometimes it makes perfect sense to do so. However, to keep
things simple, I’m only going to deal with one level of inheritance in this
example.

There are actually a few base class member functions that are not inherited by
derived classes. They are as follows:

n Constructors

n Copy constructors

n Destructors

n Overloaded assignment operators

You have to write your own versions of these in the derived class.

Instantiating Objects from a Derived Class

In main(), I instantiate an Enemy object and then call its Attack() member
function. This works just as you’d expect. The interesting part of the program
begins next, when I instantiate a Boss object.

Boss boss1;

After this line of code, I have a Boss object with an m_Damage data member equal
to 10 and an m_DamageMultiplier data member equal to 3. How did this happen?
Although constructors and destructors are not inherited from a base class, they
are called when an instance is created or destroyed. In fact, a base class
constructor is called before the derived class constructor to create its part of
the final object.

In this case, when a Boss object is instantiated, the default Enemy constructor is
automatically called and the object gets an m_Damage data member with a value of
10 (just like any Enemy object would). Then, the Boss constructor is called and
finishes off the object by giving it an m_DamageMultiplier data member with a
value of 3. The reverse happens when a Boss object is destroyed at the end of the
program. First, the Boss class destructor is called for the object, and then the

336 Chapter 10 n Inheritance and Polymorphism: Blackjack

Enemy class destructor is called. Because I didn’t define destructors in this
program, nothing special happens before the Boss object ceases to exist.

H i n t

The fact that base class destructors are called for objects of derived classes ensures that each class
gets its chance to clean up any part of the object that needs to be taken care of, such as memory
on the heap.

Using Inherited Members

Next, I call an inherited member function of the Boss object, which displays the
exact same message as enemy1.Attack().

boss1.Attack();

That makes perfect sense because the same code is being executed and both
objects have an m_Damage data member equal to 10. Notice that the function call
looks the same as it did for enemy1. The fact that Boss inherited the member
function from Enemy makes no difference in how the function is called.

Next, I get Boss to pull out its special attack, which displays the message Special

Attack inflicts 30 damage points!

boss1.SpecialAttack();

The thing to notice about this is that SpecialAttack(), declared as a part of Boss,
uses the data member m_Damage, declared in Enemy. That’s perfectly fine. Boss
inherits m_Damage from Enemy and, in this example, the data member works like
any other data member in the Boss class.

Controlling Access under Inheritance

When you derive one class from another, you can control how much access the
derived class has to the base class’ members. For the same reasons that you want
to provide only as much access as is necessary to a class’ members to the rest of
your program, you want to provide only as much access as is necessary to a class’
members to a derived class. Not coincidentally, you use the same access
modifiers that you’ve seen before—public, protected, and private. (Okay,
you haven’t seen protected before, but I’ll explain that modifier in the “Using
Access Modifiers with Class Members” section.)

Controlling Access under Inheritance 337

Introducing the Simple Boss 2.0 Program

The Simple Boss 2.0 program is another version of the Simple Boss program
from earlier in this chapter. The new version, Simple Boss 2.0, looks exactly the
same to the user, but the code is a little different because I put some restrictions
on base class members. If you want to see what the program does, take a look
back at Figure 10.2.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 10
folder; the filename is simple_boss2.cpp.

//Simple Boss 2.0
//Demonstrates access control under inheritance

#include <iostream>
using namespace std;

class Enemy
{
public:

Enemy();
void Attack() const;

protected:
int m_Damage;

};

Enemy::Enemy():
m_Damage(10)

{}

void Enemy::Attack() const
{

cout << "Attack inflicts " << m_Damage << " damage points!\n";
}

class Boss : public Enemy
{
public:

Boss();
void SpecialAttack() const;

338 Chapter 10 n Inheritance and Polymorphism: Blackjack

private:
int m_DamageMultiplier;

};

Boss::Boss():
m_DamageMultiplier(3)

{}

void Boss::SpecialAttack() const
{

cout << "Special Attack inflicts " << (m_DamageMultiplier * m_Damage);
cout << " damage points!\n";

}

int main()
{

cout << "Creating an enemy.\n";
Enemy enemy1;
enemy1.Attack();

cout << "\nCreating a boss.\n";
Boss boss1;
boss1.Attack();
boss1.SpecialAttack();

return 0;
}

Using Access Modifiers with Class Members

You’ve seen the access modifiers public and private used with class members
before, but there’s a third modifier you can use with members of a class—
protected. That’s what I use with the data member of Enemy.

protected:
int m_Damage;

Members that are specified as protected are not accessible outside of the class,
except in some cases of inheritance. As a refresher, here are the three levels of
member access:

n public members are accessible to all code in a program.

Controlling Access under Inheritance 339

n protected members are accessible only in their own class and certain
derived classes, depending upon the access level used in inheritance.

n private members are only accessible in their own class, which means
they are not directly accessible in any derived class.

Using Access Modifiers When Deriving Classes

When you derive a class from an existing one, you can use an access modifier,
such as public, which I used in deriving Boss.

class Boss : public Enemy

Using public derivation means that public members in the base class become
public members in the derived class, protected members in the base class
become protected members in the derived class, and private members in the
base class are inaccessible in the derived class.

T r i c k

Even if base data members are private, you can still use them indirectly through base class member
functions. You can even get and set their values if the base class has accessor member functions.

Because Boss inherits from Enemy using the keyword public, Boss inherits
Enemy’s public member functions as public member functions. It also means
that Boss inherits m_Damage as a protected data member. The class essentially acts
as if I simply copied and pasted the code for these two Enemy class members right
into the Boss definition. But through the beauty of inheritance, I didn’t have to
do this. The upshot is that the Boss class can access Attack() and m_Damage().

H i n t

You can derive a new class with the protected and private keywords, but they’re rarely used
and are beyond the scope of this book.

Calling and Overriding Base Class

Member Functions

You’re not stuck with every base class member function you inherit in a derived
class as is. You have options that allow you to customize how those inherited
member functions work in your derived class. You can override them by giving

340 Chapter 10 n Inheritance and Polymorphism: Blackjack

them new definitions in your derived class. You can also explicitly call a base
class member function from any member function of your derived class.

Introducing the Overriding Boss Program

The Overriding Boss program demonstrates calling and overriding base class
member functions in a derived class. The program creates an enemy that taunts
the player and then attacks him. Next, the program creates a boss from a derived
class. The boss also taunts the player and attacks him, but the interesting thing is
that the inherited behaviors of taunting and attacking are changed for the boss
(who is a bit cockier than the enemy). These changes are accomplished through
function overriding and calling a base class member function. Figure 10.3 shows
the results of the program.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 10
folder; the filename is overriding_boss.cpp.

//Overriding Boss
//Demonstrates calling and overriding base member functions

#include <iostream>

using namespace std;

Figure 10.3
The Boss class inherits and overrides the base class member functions Taunt() and Attack(),
creating new behaviors for the functions in Boss.

Calling and Overriding Base Class Member Functions 341

class Enemy
{
public:

Enemy(int damage = 10);
void virtual Taunt() const; //made virtual to be overridden
void virtual Attack() const; //made virtual to be overridden

private:
int m_Damage;

};

Enemy::Enemy(int damage):
m_Damage(damage)

{}

void Enemy::Taunt() const
{

cout << "The enemy says he will fight you.\n";
}

void Enemy::Attack() const
{

cout << "Attack! Inflicts " << m_Damage << " damage points.";
}

class Boss : public Enemy
{
public:

Boss(int damage = 30);
void virtual Taunt() const; //optional use of keyword virtual
void virtual Attack() const; //optional use of keyword virtual

};

Boss::Boss(int damage):
Enemy(damage) //call base class constructor with argument

{}

void Boss::Taunt() const //override base class member function
{

cout << "The boss says he will end your pitiful existence.\n";
}

342 Chapter 10 n Inheritance and Polymorphism: Blackjack

void Boss::Attack() const //override base class member function
{

Enemy::Attack(); //call base class member function
cout << " And laughs heartily at you.\n";

}

int main()
{

cout << "Enemy object:\n";
Enemy anEnemy;
anEnemy.Taunt();
anEnemy.Attack();

cout << "\n\nBoss object:\n";
Boss aBoss;
aBoss.Taunt();
aBoss.Attack();

return 0;
}

Calling Base Class Constructors

As you’ve seen, the constructor for a base class is automatically called when an object
of a derived class is instantiated, but you can also explicitly call a base class
constructor from a derived class constructor. The syntax for this is a lot like the
syntax for a member initialization list. To call a base class constructor from a derived
class constructor, after the derived constructor’s parameter list, type a colon followed
by the name of the base class, followed by a set of parentheses containing whatever
parameters the base class constructor you’re calling needs. I do this in the Boss

constructor, which says to explicitly call the Enemy constructor and pass it damage.

Boss::Boss(int damage):
Enemy(damage) //call base class constructor with argument

{}

This allows me to pass the Enemy constructor the value that gets assigned to
m_Damage, rather than just accepting its default value.

When I first instantiate aBoss in main(), the Enemy constructor is called and
passed the value 30, which gets assigned to m_Damage. Then, the Boss constructor
runs (which doesn’t do much of anything) and the object is completed.

Calling and Overriding Base Class Member Functions 343

H i n t

Being able to call a base class constructor is useful when you want to pass specific values to it.

Declaring Virtual Base Class Member Functions

Any inherited base class member function that you expect to be overridden in a
derived class should be declared as virtual, using the keyword virtual. When
you declare a member function virtual, you provide a way for overridden
versions of the member function to work as expected with pointers and
references to objects. Since I know that I’ll override Taunt() in the derived
class, Boss, I declare Taunt() virtual in my base class, Enemy.

void virtual Taunt() const; //made virtual to be overridden

T r a p

Although you can override non-virtual member functions, this can lead to behavior you might not expect.
A good rule of thumb is to declare any base class member function to be overridden as virtual.

Outside the Enemy class definition, I define Taunt():

void Enemy::Taunt() const
{

cout << "The enemy says he will fight you.\n";
}

Notice that I didn’t use the keyword virtual in the definition. You don’t use
virtual in the definition of a member function, only in its declaration.

Once a member function has been declared as virtual, it’s virtual in any derived
class. This means you don’t have to use the keyword virtual in a declaration
when you override a virtual member function, but you should use it anyway
because it will remind you that the function is indeed virtual. So, when I override
Taunt() in Boss, I explicitly declare it as virtual, even though I don’t have to:

void virtual Taunt() const; //optional use of keyword virtual

Overriding Virtual Base Class Member Functions

The next step in overriding is to give the member function a new definition in
the derived class. That’s what I do for the Boss class with:

void Boss::Taunt() const //override base class member function

344 Chapter 10 n Inheritance and Polymorphism: Blackjack

{
cout << "The boss says he will end your pitiful existence.\n";

}

This new definition is executed when I call the member function through any
Boss object. It replaces the definition of Taunt() inherited from Enemy for all Boss
objects. When I call the member function in main() with the following line, the
message The boss says he will end your pitiful existence. is displayed.

aBoss.Taunt();

Overriding member functions is useful when you want to change or extend the
behavior of base class member functions in derived classes.

T r a p

Don’t confuse override with overload. When you override a member function, you provide a new
definition of it in a derived class. When you overload a function, you create multiple versions of it
with different signatures.

T r a p

When you override an overloaded base class member function, you hide all of the other overloaded
versions of the base class member function—meaning that the only way to access the other
versions of the member function is to explicitly call the base class member function. So if you
override an overloaded member function, it’s a good idea to override every version of the
overloaded function.

Calling Base Class Member Functions

You can directly call a base class member function from any function in a
derived class. All you have to do is prefix the class name to the member function
name with the scope resolution operator. That’s what I do when I define the
overridden version of Attack() for the Boss class.

void Boss::Attack() const //override base class member function
{

Enemy::Attack(); //call base class member function
cout << " And laughs heartily at you.\n";

}

The code Enemy::Attack(); explicitly calls the Attack() member function of
Enemy. Because the Attack() definition in Boss overrides the class’ inherited

Calling and Overriding Base Class Member Functions 345

version, it’s as if I’ve extended the definition of what it means for a boss to
attack. What I’m essentially saying is that when a boss attacks, the boss does
exactly what an enemy does and then laughs. When I call the member function
for a Boss object in main() with the following line, Boss’ Attack() member
function is called because I’ve overloaded Attack().

aBoss.Attack();

The first thing that Boss’ Attack() member function does is explicitly call
Enemy’s Attack() member function, which displays the message Attack!

Inflicts 30 damage points. Then, Boss’ Attack() member function displays
the message And laughs heartily at you.

T r i c k

You can extend the way a member function of a base class works in a derived class by overriding
the base class method and then explicitly calling the base class member function from this new
definition in the derived class and adding some functionality.

Using Overloaded Assignment Operators and

Copy Constructors in Derived Classes

You already know how to write an overloaded assignment operator and a copy
constructor for a class. However, writing them for a derived class requires a little
bit more work because they aren’t inherited from a base class.

When you overload the assignment operator in a derived class, you usually want
to call the assignment operator member function from the base class, which you
can explicitly call using the base class name as a prefix. If Boss is derived from
Enemy, the overloaded assignment operator member function defined in Boss

could start:

Boss& operator=(const Boss& b)
{

Enemy::operator=(b); //handles the data members inherited from Enemy
//now take care of data members defined in Boss

The explicit call to Enemy’s assignment operator member function handles the
data members inherited from Enemy. The rest of the member function would
take care of the data members defined in Boss.

346 Chapter 10 n Inheritance and Polymorphism: Blackjack

For the copy constructor, you also usually want to call the copy constructor from
a base class, which you can call just like any base class constructor. If Boss is
derived from Enemy, the copy constructor defined in Boss could start:

Boss (const Boss& b): Enemy(b) //handles the data members inherited from Enemy
{

//now take care of data members defined in Boss

By calling Enemy’s copy constructor with Enemy(b), you copy that Enemy’s data
members into the new Boss object. In the remainder of Boss’ copy constructor, you
can take care of copying the data members declared in Boss into the new object.

Introducing Polymorphism

One of the pillars of OOP is polymorphism, which means that a member
function will produce different results depending on the type of object for which
it is being called. For example, suppose you have a group of bad guys that the
player is facing, and the group is made of objects of different types that are
related through inheritance, such as enemies and bosses. Through the magic of
polymorphism, you could call the same member function for each bad guy in
the group, say to attack the player, and the type of each object would determine
the exact results. The call for the enemy objects could produce one result, such
as a weak attack, while the call for bosses could produce a different result, such
as a powerful attack. This might sound a lot like overriding, but polymorphism
is different because the effect of the function call is dynamic and is determined at
run time, depending on the object type. But the best way to understand this isn’t
through theoretical discussion; it is through a concrete example.

Introducing the Polymorphic Bad Guy Program

The Polymorphic Bad Guy program demonstrates how to achieve polymorphic
behavior. It shows what happens when you use a pointer to a base class to call
inherited virtual member functions. It also shows how using virtual destructors
ensures that the correct destructors are called for objects pointed to by pointers
to a base class. Figure 10.4 shows the results of the program.

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 10
folder; the filename is polymorphic_bad_guy.cpp.

Introducing Polymorphism 347

//Polymorphic Bad Guy
//Demonstrates calling member functions dynamically

#include <iostream>

using namespace std;

class Enemy
{
public:

Enemy(int damage = 10);
virtual ~Enemy();
void virtual Attack() const;

protected:
int* m_pDamage;

};

Enemy::Enemy(int damage)
{

m_pDamage = new int(damage);
}

Figure 10.4
Through polymorphism the correct member functions and destructors are called for objects pointed to by
pointers to a base class.

348 Chapter 10 n Inheritance and Polymorphism: Blackjack

Enemy::~Enemy()
{

cout << "In Enemy destructor, deleting m_pDamage.\n";
delete m_pDamage;
m_pDamage = 0;

}

void Enemy::Attack() const
{

cout << "An enemy attacks and inflicts " << *m_pDamage << " damage points.";
}

class Boss : public Enemy
{
public:

Boss(int multiplier = 3);
virtual ~Boss();
void virtual Attack() const;

protected:
int* m_pMultiplier;

};

Boss::Boss(int multiplier)
{

m_pMultiplier = new int(multiplier);
}

Boss::~Boss()
{

cout << "In Boss destructor, deleting m_pMultiplier.\n";
delete m_pMultiplier;
m_pMultiplier = 0;

}

void Boss::Attack() const
{

cout << "A boss attacks and inflicts " << (*m_pDamage) * (*m_pMultiplier)
<< " damage points.";

}

Introducing Polymorphism 349

int main()
{

cout << "Calling Attack() on Boss object through pointer to Enemy:\n";
Enemy* pBadGuy = new Boss();
pBadGuy->Attack();

cout << "\n\nDeleting pointer to Enemy:\n";
delete pBadGuy;
pBadGuy = 0;

return 0;
}

Using Base Class Pointers to Derived Class Objects

An object of a derived class is also a member of the base class. For example, in
the Polymorphic Bad Guy program, a Boss object is an Enemy object, too. That
makes sense because a boss is really only a specialized kind of enemy. It also
makes sense because a Boss object has all of the members of an Enemy object.
Okay, so what? Well, because an object of a derived class is also a member of the
base class, you can use a pointer to the base class to point to an object of the
derived class. That’s what I do in main() with the following line, which
instantiates a Boss object on the heap and creates a pointer to Enemy, pBadGuy,
that points to the Boss object.

Enemy* pBadGuy = new Boss();

Why in the world would you want to do this? It’s useful because it allows you to deal
with objects without requiring that you know their exact type. For example, you
could have a function that accepts a pointer to Enemy that could work with either an
Enemy or a Boss object. The function wouldn’t have to know the exact type of object
being passed to it; it could work with the object to produce different results
depending on the object’s type, as long as derived member functions were declared
virtual. Because Attack() is virtual, the correct version of the member function will
be called (based on the type of object) and will not be fixed by the type of pointer.

I prove that the behavior will be polymorphic in main(). Remember that
pBadGuy is a pointer to Enemy that points to a Boss object. So, the following line
calls the Attack() member function of a Boss object through a pointer to Enemy,
which correctly results in the Attack() member function defined in Boss being

350 Chapter 10 n Inheritance and Polymorphism: Blackjack

called and the text A boss attacks and inflicts 30 damage points. being displayed
on the screen.

pBadGuy->Attack();

H i n t

Virtual functions produce polymorphic behavior through references as well as through pointers.

T r a p

If you override a non-virtual member function in a derived class and call that member function on a
derived class object through a pointer to a base class, you’ll get the results of the base class
member function and not the derived class member function definition. This is easier to understand
with an example. If in the Polymorphic Bad Guy program I hadn’t declared Attack() as virtual,
then when I invoked the member function through a pointer to Enemy on a Boss object with
pBadGuy->Attack();, I would have gotten the message An enemy attacks and
inflicts 10 damage points. This would have happened as a result of early binding, in
which the exact member function is bound based on the pointer type—in this case, Enemy. But
because Attack() is declared as virtual, the member function call is based on the type of object
being pointed to at run time, Boss in this case, not fixed by pointer type. I achieve this
polymorphic behavior as the result of late binding because Attack() is virtual. The moral of the
story is that you should only override virtual member functions.

T r a p

The benefits of virtual functions aren’t free; there is a performance cost associated with the
overhead. Therefore, you should use virtual functions only when you need them.

Defining Virtual Destructors

When you use a pointer to a base class to point to an object of a derived class,
you have a potential problem. When you delete the pointer, only the base class’
destructor will be called for the object. This could lead to disastrous results
because the derived class’ destructor might need to free memory (as the
destructor for Boss does). The solution, as you might have guessed, is to
make the base class’ destructor virtual. That way, the derived class’ destructor
is called, which (as always) leads to the calling the base class’ destructor, giving
every class the chance to clean up after itself.

I put this theory into action when I declare Enemy’s destructor virtual.

virtual ~Enemy();

Introducing Polymorphism 351

In main(), when I delete the pointer pointing to the Boss object with the
following line, the Boss object’s destructor is called, which frees the memory on
the heap that m_pDamageMultiplier points to and displays the message In Boss

destructor, deleting m_pMultiplier.

delete pBadGuy;

Then, Enemy’s destructor is called, which frees the memory on the heap that
m_pDamage points to and displays the message In Enemy destructor, deleting

m_pDamage. The object is destroyed, and all memory associated with the object is
freed.

T r i c k

A good rule of thumb is that if you have any virtual member functions in a class, you should make
the destructor virtual, too.

Using Abstract Classes

At times you might want to define a class to act as a base for other classes, but it
doesn’t make sense to instantiate objects from this class because it’s so generic.
For example, suppose you have a game with a bunch of types of creatures
running around in it. Although you have a wide variety of creatures, they all
have two things in common: They have a health value and they can offer a
greeting. So, you could define a class, Creature, as a base from which to derive
other classes, such as Pixie, Dragon, Orc, and so on. Although Creature is
helpful, it doesn’t really make sense to instantiate a Creature object. It would be
great if there were a way to indicate that Creature is a base class only, and not
meant for instantiating objects. Well, C++ lets you define a kind of class just like
this, called an abstract class.

Introducing the Abstract Creature Program

The Abstract Creature program demonstrates abstract classes. In the program, I
define an abstract class, Creature, which can be used as a base class for specific
creature classes. I define one such class, Orc. Then, I instantiate an Orc object
and call a member function to get the orc to grunt hello and another member
function to display the orc’s health. Figure 10.5 shows the results of the program.

352 Chapter 10 n Inheritance and Polymorphism: Blackjack

You can download the code for this program from the Course Technology
website (www.courseptr.com/downloads). The program is in the Chapter 10
folder; the filename is abstract_creature.cpp.

//Abstract Creature
//Demonstrates abstract classes

#include <iostream>
using namespace std;

class Creature //abstract class
{
public:

Creature(int health = 100);
virtual void Greet() const = 0; //pure virtual member function
virtual void DisplayHealth() const;

protected:
int m_Health;

};

Creature::Creature(int health):
m_Health(health)

Figure 10.5
The orc is an object instantiated from a class derived from an abstract class for all creatures.

Using Abstract Classes 353

{}

void Creature::DisplayHealth() const
{

cout << "Health: " << m_Health << endl;
}

class Orc : public Creature
{
public:

Orc(int health = 120);
virtual void Greet() const;

};

Orc::Orc(int health):
Creature(health)

{}

void Orc::Greet() const
{

cout << "The orc grunts hello.\n";
}

int main()
{

Creature* pCreature = new Orc();
pCreature->Greet();
pCreature->DisplayHealth();

return 0;
}

Declaring Pure Virtual Functions

A pure virtual function is one to which you don’t need to give a definition. The
logic behind this is that there might not be a good definition in the class for the
member function. For example, I don’t think it makes sense to define the Greet()

function in my Creature class because a greeting really depends on the specific
type of creature—a pixie twinkles, a dragon blows a puff of smoke, and an orc
grunts.

354 Chapter 10 n Inheritance and Polymorphism: Blackjack

You specify a pure virtual function by placing an equal sign and a zero at the end
of the function header. That’s what I did in Creature with the following line:

virtual void Greet() const = 0; //pure virtual member function

When a class contains at least one pure virtual function, it’s an abstract class.
Therefore, Creature is an abstract class. I can use it as the base class for other
classes, but I can’t instantiate objects from it.

An abstract class can have data members and virtual functions that are not pure
virtual. In Creature, I declare a data member m_Health and a virtual member
function DisplayHealth().

Deriving a Class from an Abstract Class

When you derive a new class from an abstract class, you can override its pure
virtual functions. If you override all of its pure virtual functions, then the new
class is not abstract and you can instantiate objects from it. When I derive Orc

from Creature, I override Creature’s one pure virtual function with the
following lines:

void Orc::Greet() const
{

cout << "The orc grunts hello.\n";
}

This means I can instantiate an object from Orc, which is what I do in main()

with the following line:

Creature* pCreature = new Orc();

The code instantiates a new Orc object on the heap and assigns the memory
location of the object to pCreature, a pointer to Creature. Even though I can’t
instantiate an object from Creature, it’s perfectly fine to declare a pointer using
the class. Like all base class pointers, a pointer to Creature can point to any
object of a class derived from Creature, like Orc.

Next, I call Greet(), the pure virtual function that I override in Orc with the
following line:

pCreature->Greet();

The correct greeting, The orc grunts hello., is displayed.

Using Abstract Classes 355

Finally, I call DisplayHealth(), which I define in Creature.

pCreature->DisplayHealth();

It also displays the proper message, Health: 120.

Introducing the Blackjack Game

The final project for this chapter is a simplified version of the casino card game
Blackjack (tacky green felt not included). The game works like this: Players are
dealt cards with point values. Each player tries to reach a total of 21 without
exceeding that amount. Numbered cards count as their face value. An ace counts
as either 1 or 11 (whichever is best for the player), and any jack, queen, or king
counts as 10.

The computer is the house (the casino) and it competes against one to seven
players. At the beginning of the round, all participants (including the house) are
dealt two cards. Players can see all of their cards, along with their total. However,
one of house’s cards is hidden for the time being.

Next, each player gets the chance to take one additional card at a time for as long
as he likes. If a player’s total exceeds 21 (known as busting), the player loses.
After all players have had the chance to take additional cards, the house reveals
its hidden card. The house must then take additional cards as long as its total is
16 or less. If the house busts, all players who have not busted win. Otherwise,
each remaining player’s total is compared to the house’s total. If the player’s total
is greater than the house’s, he wins. If the player’s total is less than the house’s,
he loses. If the two totals are the same, the player ties the house (also known as
pushing). Figure 10.6 shows the game.

Designing the Classes

Before you start coding a project with multiple classes, it is helpful to map them
out on paper. You might make a list and include a brief description of each class.
Table 10.1 shows my first pass at such a list for the Blackjack game.

To keep things simple, all member functions will be public and all data members
will be protected. Also, I’ll use only public inheritance, which means that each
derived class will inherit all of its base class members.

356 Chapter 10 n Inheritance and Polymorphism: Blackjack

In addition to describing your classes in words, it helps to draw a family tree of
sorts to visualize how your classes are related. That’s what I did in Figure 10.7.

Next, it’s a good idea to get more specific. Ask yourself about the classes. What
exactly will they represent? What will they be able to do? How will they work
with the other classes?

Figure 10.6
One player wins; the other is not so lucky.

Table 10.1 Blackjack Classes

Class Base Class Description

Card None A Blackjack playing card.

Hand None A Blackjack hand. A collection of Card objects.

Deck Hand A Blackjack deck. Has extra functionality that Hand doesn’t, such as
shuffling and dealing.

GenericPlayer Hand A generic Blackjack player. Not a full player, but the common
elements of a human player and the computer player.

Player GenericPlayer A human Blackjack player.

House GenericPlayer The computer player, the house.

Game None A Blackjack game.

Introducing the Blackjack Game 357

I see Card objects as real-life cards. You don’t copy a card when you deal it from
the deck to a hand; you move it. For me, that means Hand will have a data
member that is a vector of pointers to Card objects, which will exist on the heap.
When a card moves from one Hand to another, it’s really pointers that are being
copied and destroyed.

I see players (the human players and the computer) as Blackjack hands with
names. That’s why I derive Player and House (indirectly) from Hand. (Another
equally valid view is that players have a hand. If I had gone this route, Player and
House would have had Hand data members instead of being derived from Hand.)

I define GenericPlayer to house the functionality that Player and House share, as
opposed to duplicating this functionality in both classes.

Also, I see the deck as separate from the house. The deck will deal cards to the
human players and the computer-controlled house in the same way. This means
that Deck will have a member function to deal cards that is polymorphic and will
work with either a Player or a House object.

To really flesh things out, you can list the data members and member functions
that you think the classes will have, along with a brief description of each. That’s
what I do next in Tables 10.2 through 10.8. For each class, I list only the
members I define in it. Several classes will, of course, be inherited members from
base classes.

Figure 10.7
Inheritance hierarchy of classes for the Blackjack game. GenericPlayer is shaded because it turns
out to be an abstract class.

358 Chapter 10 n Inheritance and Polymorphism: Blackjack

Table 10.2 Card Class

Member Description

rank m_Rank Rank of the card (ace, 2, 3, and so on). rank is an enumeration for all 13 ranks.

suit m_Suit Suit of the card (clubs, diamonds, hearts, or spades). suit is an enumeration for the
four possible suits.

bool m_IsFaceUp Indicates whether the card is face up. Affects how the card is displayed and the value
it has.

int GetValue() Returns the value of the card.

void Flip() Flips a card. Face up becomes face down, and face down becomes face up.

Table 10.3 Hand Class

Member Description

vector<Card*> m_Cards Collection of cards. Stores pointers to Card objects.

void Add(Card* pCard) Adds a card to the hand. Adds a pointer to Card to the vector m_Cards.

void Clear() Clears all cards from the hand. Removes all pointers in the vector m_Cards,
deleting all associated Card objects on the heap.

int GetTotal() const Returns the total value of the hand.

Table 10.4 GenericPlayer Class (Abstract)

Member Description

string m_Name Generic player’s name.

virtual bool IsHitting() const = 0 Indicates whether the generic player wants another hit. Pure
virtual function.

bool IsBusted() const Indicates whether the generic player is busted.

void Bust() const Announces that the generic player busts.

Table 10.5 Player Class

Member Description

virtual bool IsHitting() const Indicates whether the player wants another hit.

void Win() const Announces that the player wins.

void Lose() const Announces that the player loses.

void Push() const Announces that the player pushes.

Introducing the Blackjack Game 359

Planning the Game Logic

The last part of my planning is to map out the basic flow of one round of the
game. I wrote some pseudocode for the Game class’ Play() member function.
Here’s what I came up with:

Deal players and the house two initial cards
Hide the house’s first card
Display players’ and house’s hands
Deal additional cards to players

Table 10.6 House Class

Member Description

virtual bool IsHitting() const Indicates whether the house is taking another hit.

void FlipFirstCard() Flips over the first card.

Table 10.7 Deck Class

Member Description

void Populate() Creates a standard deck of 52 cards.

void Shuffle() Shuffles cards.

void Deal(Hand& aHand) Deals one card to a hand.

void AdditionalCards(GenericPlayer&
aGenericPlayer)

Gives additional cards to a generic player for as long
as the generic player can and wants to hit.

Table 10.8 Game Class

Member Description

Deck m_Deck A deck of cards.

House m_House The casino’s hand, the house.

vector<Player> m_Players Collection of human players. A vector of Player objects.

void Play() Plays a round of Blackjack.

360 Chapter 10 n Inheritance and Polymorphism: Blackjack

Reveal house’s first card
Deal additional cards to house
If house is busted

Everyone who is not busted wins
Otherwise

For each player
If player isn’t busted

If player’s total is greater than the house’s total
Player wins

Otherwise if player’s total is less than house’s total
Player loses

Otherwise
Player pushes

Remove everyone’s cards

At this point you know a lot about the Blackjack program and you haven’t even
seen a single line of code yet! But that’s a good thing. Planning can be as
important as coding (if not more so). Because I’ve spent so much time
describing the classes, I won’t describe every part of the code. I’ll just point
out significant or new ideas. You can download the code for this program from
the Course Technology website (www.courseptr.com/downloads). The program
is in the Chapter 10 folder; the filename is blackjack.cpp.

H i n t

The blackjack.cpp file contains seven classes. In C++ programming, it’s common to break up
files like this into multiple files, based on individual classes. However, the topic of writing a single
program using multiple files is beyond the scope of this book.

The Card Class

After some initial statements, I define the Card class for an individual playing
card.

//Blackjack
//Plays a simple version of the casino game of blackjack; for 1 - 7 players

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>

Introducing the Blackjack Game 361

#include <ctime>

using namespace std;
class Card
{
public:

enum rank {ACE = 1, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN,
JACK, QUEEN, KING};

enum suit {CLUBS, DIAMONDS, HEARTS, SPADES};

//overloading << operator so can send Card object to standard output
friend ostream& operator<<(ostream& os, const Card& aCard);

Card(rank r = ACE, suit s = SPADES, bool ifu = true);

//returns the value of a card, 1 - 11
int GetValue() const;

//flips a card; if face up, becomes face down and vice versa
void Flip();

private:
rank m_Rank;
suit m_Suit;
bool m_IsFaceUp;

};

Card::Card(rank r, suit s, bool ifu): m_Rank(r), m_Suit(s), m_IsFaceUp(ifu)
{}

int Card::GetValue() const
{

//if a cards is face down, its value is 0
int value = 0;
if (m_IsFaceUp)
{

//value is number showing on card
value = m_Rank;
//value is 10 for face cards
if (value > 10)

362 Chapter 10 n Inheritance and Polymorphism: Blackjack

{
value = 10;

}
}
return value;

}

void Card::Flip()
{

m_IsFaceUp = !(m_IsFaceUp);
}

I define two enumerations, rank and suit, to use as the types for the rank and
suit data members of the class, m_Rank and m_Suit. This has two benefits. First, it
makes the code more readable. A suit data member will have a value like CLUBS

or HEARTS instead of 0 or 2. Second, it limits the values that these two data
members can have. m_Suit can only store a value from suit, and m_Rank can only
store a value from rank.

Next, I make the overloaded operator<<() function a friend of the class so I can
display a card object on the screen.

GetValue() returns a value for a Card object, which can be between 0 and 11.
Aces are valued at 11. (I deal with potentially counting them as 1 in the Hand

class, based on the other cards in the hand.) A face-down card has a value of 0.

The Hand Class

I define the Hand class for a collection of cards.

class Hand
{
public:

Hand();

virtual ~Hand();

//adds a card to the hand
void Add(Card* pCard);

//clears hand of all cards
void Clear();

Introducing the Blackjack Game 363

//gets hand total value, intelligently treats aces as 1 or 11
int GetTotal() const;

protected:
vector<Card*> m_Cards;

};

Hand::Hand()
{

m_Cards.reserve(7);
}

Hand::~Hand()
{

Clear();
}

void Hand::Add(Card* pCard)
{

m_Cards.push_back(pCard);
}

void Hand::Clear()
{

//iterate through vector, freeing all memory on the heap
vector<Card*>::iterator iter = m_Cards.begin();
for (iter = m_Cards.begin(); iter != m_Cards.end(); ++iter)
{

delete *iter;
*iter = 0;

}
//clear vector of pointers
m_Cards.clear();

}

int Hand::GetTotal() const
{

//if no cards in hand, return 0
if (m_Cards.empty())
{

return 0;

364 Chapter 10 n Inheritance and Polymorphism: Blackjack

}

//if a first card has value of 0, then card is face down; return 0
if (m_Cards[0]->GetValue() = = 0)
{

return 0;
}

//add up card values, treat each ace as 1
int total = 0;
vector<Card*>::const_iterator iter;
for (iter = m_Cards.begin(); iter != m_Cards.end(); ++iter)
{

total += (*iter)->GetValue();
}

//determine if hand contains an ace
bool containsAce = false;
for (iter = m_Cards.begin(); iter != m_Cards.end(); ++iter)
{

if ((*iter)->GetValue() = = Card::ACE)
{

containsAce = true;
}

}

//if hand contains ace and total is low enough, treat ace as 11
if (containsAce && total <= 11)
{

//add only 10 since we’ve already added 1 for the ace
total += 10;

}

return total;
}

T r a p

The destructor of the class is virtual, but notice that I don’t use the keyword virtual outside of
the class when I actually define the destructor. You only use the keyword inside the class definition.
Don’t worry; the destructor is still virtual.

Introducing the Blackjack Game 365

Although I’ve already covered this, I want to point it out again. All of the Card

objects will exist on the heap. Any collection of cards, such as a Hand object, will
have a vector of pointers to a group of those objects on the heap.

The Clear() member function has an important responsibly. It not only
removes all of the pointers from the vector m_Cards, but it destroys the
associated Card objects and frees the memory on the heap that they occupied.
This is just like a real-world Blackjack game in which cards are discarded when a
round is over. The virtual class destructor calls Clear().

The GetTotal() member function returns the point total of the hand. If a hand
contains an ace, it counts it as a 1 or an 11, whichever is best for the player. The
program accomplishes this by checking to see whether the hand has at least one
ace. If it does, it checks to see whether treating the ace as 11 will put the hand’s
point total over 21. If it won’t, then the ace is treated as an 11. Otherwise, it’s
treated as a 1.

The GenericPlayer Class

I define the GenericPlayer class for a generic Blackjack player. It doesn’t
represent a full player. Instead, it represents the common element of a human
player and the computer player.

class GenericPlayer : public Hand
{

friend ostream& operator<<(ostream& os,
const GenericPlayer& aGenericPlayer);

public:
GenericPlayer(const string& name = "");

virtual ~GenericPlayer();

//indicates whether or not generic player wants to keep hitting
virtual bool IsHitting() const = 0;

//returns whether generic player has busted - has a total greater than 21
bool IsBusted() const;

//announces that the generic player busts
void Bust() const;

366 Chapter 10 n Inheritance and Polymorphism: Blackjack

protected:
string m_Name;

};

GenericPlayer::GenericPlayer(const string& name):
m_Name(name)

{}

GenericPlayer::~GenericPlayer()
{}

bool GenericPlayer::IsBusted() const
{

return (GetTotal() > 21);
}

void GenericPlayer::Bust() const
{

cout << m_Name << " busts.\n";
}

I make the overloaded operator<<() function a friend of the class so I can display
GenericPlayer objects on the screen. It accepts a reference to a GenericPlayer

object, which means that it can accept a reference to a Player or House object, too.

The constructor accepts a string object for the name of the generic player. The
destructor is automatically virtual because it inherits this trait from Hand.

The IsHitting() member function indicates whether a generic player wants
another card. Because this member function doesn’t have a real meaning for a
generic player, I made it a pure virtual function. Therefore, GenericPlayer

becomes an abstract class. This also means that both Player and House need
to implement their own versions of this member function.

The IsBusted() member function indicates whether a generic player has busted.
Because players and the house bust the same way—by having a total greater
than 21—I put the definition in this class.

The Bust() member function announces that the generic player busts. Because
busting is announced the same way for players and the house, I put the
definition of the member function in this class.

Introducing the Blackjack Game 367

The Player Class

The Player class represents a human player. It’s derived from GenericPlayer.

class Player : public GenericPlayer
{
public:

Player(const string& name = "");

virtual ~Player();

//returns whether or not the player wants another hit
virtual bool IsHitting() const;

//announces that the player wins
void Win() const;

//announces that the player loses
void Lose() const;

//announces that the player pushes
void Push() const;

};

Player::Player(const string& name):
GenericPlayer(name)

{}

Player::~Player()
{}

bool Player::IsHitting() const
{

cout << m_Name << ", do you want a hit? (Y/N): ";
char response;
cin >> response;
return (response = = ’y’ || response = = ’Y’);

}

void Player::Win() const
{

cout << m_Name << " wins.\n";
}

368 Chapter 10 n Inheritance and Polymorphism: Blackjack

void Player::Lose() const
{

cout << m_Name << " loses.\n";
}

void Player::Push() const
{

cout << m_Name << " pushes.\n";
}

The class implements the IsHitting() member function that it inherits from
GenericPlayer. Therefore, Player isn’t abstract. The class implements the
member function by asking the human whether he wants to keep hitting. If
the human enters y or Y in response to the question, the member function
returns true, indicating that the player is still hitting. If the human enters a
different character, the member function returns false, indicating that the
player is no longer hitting.

The Win(), Lose(), and Push() member functions simply announce that a player
has won, lost, or pushed, respectively.

The House Class

The House class represents the house. It’s derived from GenericPlayer.

class House : public GenericPlayer
{
public:

House(const string& name = "House");

virtual ~House();

//indicates whether house is hitting - will always hit on 16 or less
virtual bool IsHitting() const;

//flips over first card
void FlipFirstCard();

};

Introducing the Blackjack Game 369

House::House(const string& name):
GenericPlayer(name)

{}

House::~House()
{}

bool House::IsHitting() const
{

return (GetTotal() <= 16);
}

void House::FlipFirstCard()
{

if (!(m_Cards.empty()))
{

m_Cards[0]->Flip();
}
else
{

cout << "No card to flip!\n";
}

}

The class implements the IsHitting() member function that it inherits from
GenericPlayer. Therefore, House isn’t abstract. The class implements the member
function by calling GetTotal(). If the returned total value is less than or equal to
16, the member function returns true, indicating that the house is still hitting.
Otherwise, it returns false, indicating that the house is no longer hitting.

FlipFirstCard() flips the house’s first card. This member function is necessary
because the house hides its first card at the beginning of the round and then
reveals it after all of the players have taken all of their additional cards.

The Deck Class

The Deck class represents a deck of cards. It’s derived from Hand.

class Deck : public Hand
{

370 Chapter 10 n Inheritance and Polymorphism: Blackjack

public:
Deck();

virtual ~Deck();

//create a standard deck of 52 cards
void Populate();

//shuffle cards
void Shuffle();

//deal one card to a hand
void Deal(Hand& aHand);

//give additional cards to a generic player
void AdditionalCards(GenericPlayer& aGenericPlayer);

};

Deck::Deck()
{

m_Cards.reserve(52);
Populate();

}

Deck::~Deck()
{}

void Deck::Populate()
{

Clear();
//create standard deck
for (int s = Card::CLUBS; s <= Card::SPADES; ++s)
{

for (int r = Card::ACE; r <= Card::KING; ++r)
{

Add(new Card(static_cast<Card::rank>(r),
static_cast<Card::suit>(s)));

}
}

}

void Deck::Shuffle()

Introducing the Blackjack Game 371

{
random_shuffle(m_Cards.begin(), m_Cards.end());

}

void Deck::Deal(Hand& aHand)
{

if (!m_Cards.empty())
{

aHand.Add(m_Cards.back());
m_Cards.pop_back();

}
else
{

cout << "Out of cards. Unable to deal.";
}

}

void Deck::AdditionalCards(GenericPlayer& aGenericPlayer)
{

cout << endl;
//continue to deal a card as long as generic player isn’t busted and
//wants another hit
while (!(aGenericPlayer.IsBusted()) && aGenericPlayer.IsHitting())
{

Deal(aGenericPlayer);
cout << aGenericPlayer << endl;

if (aGenericPlayer.IsBusted())
{

aGenericPlayer.Bust();
}

}
}

H i n t

Type casting is a way of converting a value of one type to a value of another type. One way to do
type casting is to use static_cast. You use static_cast to return a value of a new type
from a value of another type by specifying the new type you want between < and >, followed by
the value from which you want to get a new value between parentheses. Here’s an example that
returns the double value 5.0.

static_cast<double>(5);

372 Chapter 10 n Inheritance and Polymorphism: Blackjack

Populate() creates a standard deck of 52 cards. The member function loops
through all of the possible combinations of Card::suit and Card::rank values. It
uses static_cast to cast the int loop variables to the proper enumerated types
defined in Card.

Shuffle() shuffles the cards in the deck. It randomly rearranges the pointers in
m_Cards with random_shuffle() from the Standard Template Library. This is the
reason I include the <algorithm> header file.

Deal() deals one card from the deck to a hand. It adds a copy of the pointer to
the back of m_Cards to the object through the object’s Add() member function.
Then, it removes the pointer at the back of m_Cards, effectively transferring the
card. The powerful thing about Deal() is that it accepts a reference to a Hand

object, which means it can work equally well with a Player or a House object.
And through the magic of polymorphism, Deal() can call the object’s Add()

member function without knowing the exact object type.

AdditionalCards() gives additional cards to a generic player until the generic
player either stops hitting or busts. The member function accepts reference to a
GenericPlayer object so you can pass a Player or House object to it. Again,
through the magic of polymorphism, AdditionalCards() doesn’t have to know
whether it’s working with a Player or a House object. It can call the IsBusted()

and IsHitting() member functions for the object without knowing the object’s
type, and the correct code will be executed.

The Game Class

The Game class represents a game of Blackjack.

class Game
{
public:

Game(const vector<string>& names);

~Game();

//plays the game of blackjack
void Play();

Introducing the Blackjack Game 373

private:
Deck m_Deck;
House m_House;
vector<Player> m_Players;

};

Game::Game(const vector<string>& names)
{

//create a vector of players from a vector of names
vector<string>::const_iterator pName;
for (pName = names.begin(); pName != names.end(); ++pName)
{

m_Players.push_back(Player(*pName));
}

//seed the random number generator
srand(static_cast<unsigned int>(time(0)));
m_Deck.Populate();
m_Deck.Shuffle();

}

Game::~Game()
{}

void Game::Play()
{

//deal initial 2 cards to everyone
vector<Player>::iterator pPlayer;
for (int i = 0; i < 2; ++i)
{

for (pPlayer = m_Players.begin(); pPlayer != m_Players.end();
++pPlayer)

{
m_Deck.Deal(*pPlayer);

}
m_Deck.Deal(m_House);

}

//hide house’s first card
m_House.FlipFirstCard();

374 Chapter 10 n Inheritance and Polymorphism: Blackjack

//display everyone’s hand
for (pPlayer = m_Players.begin(); pPlayer != m_Players.end(); ++pPlayer)
{

cout << *pPlayer << endl;
}
cout << m_House << endl;

//deal additional cards to players
for (pPlayer = m_Players.begin(); pPlayer != m_Players.end(); ++pPlayer)
{

m_Deck.AdditionalCards(*pPlayer);
}

//reveal house’s first card
m_House.FlipFirstCard();
cout << endl << m_House;

//deal additional cards to house
m_Deck.AdditionalCards(m_House);

if (m_House.IsBusted())
{

//everyone still playing wins
for (pPlayer = m_Players.begin(); pPlayer != m_Players.end();

++pPlayer)
{

if (!(pPlayer->IsBusted()))
{

pPlayer->Win();
}

}
}
else
{

//compare each player still playing to house
for (pPlayer = m_Players.begin(); pPlayer != m_Players.end();

++pPlayer)
{

if (!(pPlayer->IsBusted()))
{

if (pPlayer->GetTotal() > m_House.GetTotal())

Introducing the Blackjack Game 375

{
pPlayer->Win();

}
else if (pPlayer->GetTotal() < m_House.GetTotal())
{

pPlayer->Lose();
}
else
{

pPlayer->Push();
}

}
}

}

//remove everyone’s cards
for (pPlayer = m_Players.begin(); pPlayer != m_Players.end(); ++pPlayer)
{

pPlayer->Clear();
}
m_House.Clear();

}

The class constructor accepts a reference to a vector of string objects, which
represent the names of the human players. The constructor instantiates a Player

object with each name. Next, it seeds the random number generator, and then it
populates and shuffles the deck.

The Play() member function faithfully implements the pseudocode I wrote
earlier about how a round of play should be implemented.

The main() Function

After declaring the overloaded operator�() functions, I write the program’s
main() function.

//function prototypes
ostream& operator<<(ostream& os, const Card& aCard);
ostream& operator<<(ostream& os, const GenericPlayer& aGenericPlayer);

int main()
{

376 Chapter 10 n Inheritance and Polymorphism: Blackjack

cout << "\t\tWelcome to Blackjack!\n\n";

int numPlayers = 0;
while (numPlayers < 1 || numPlayers > 7)
{

cout << "How many players? (1 - 7): ";
cin >> numPlayers;

}

vector<string> names;
string name;
for (int i = 0; i < numPlayers; ++i)
{

cout << "Enter player name: ";
cin >> name;
names.push_back(name);

}
cout << endl;

//the game loop
Game aGame(names);
char again = ’y’;
while (again != ’n’ && again != ’N’)
{

aGame.Play();
cout << "\nDo you want to play again? (Y/N): ";
cin >> again;

}

return 0;
}

The main() function gets the names of all the players and puts them into a vector
of string objects, and then instantiates a Game object, passing a reference to the
vector. The main() function keeps calling the Game object’s Play() member
function until the players indicate that they don’t want to play anymore.

Overloading the operator<<() Function

The following function definition overloads the << operator so I can send a Card

object to the standard output.

Introducing the Blackjack Game 377

//overloads << operator so Card object can be sent to cout
ostream& operator<<(ostream& os, const Card& aCard)
{

const string RANKS[] = {"0", "A", "2", "3", "4", "5", "6", "7", "8", "9",
"10", "J", "Q", "K"};

const string SUITS[] = {"c", "d", "h", "s"};

if (aCard.m_IsFaceUp)
{

os << RANKS[aCard.m_Rank] << SUITS[aCard.m_Suit];
}
else
{

os << "XX";
}

return os;
}

The function uses the rank and suit values of the object as array indices. I begin
the array RANKS with "0" to compensate for the fact that the value for the rank

enumeration defined in Card begins at 1.

The last function definition overloads the << operator so I can send a GenericPlayer

object to the standard output.

//overloads << operator so a GenericPlayer object can be sent to cout
ostream& operator<<(ostream& os, const GenericPlayer& aGenericPlayer)
{

os << aGenericPlayer.m_Name << ":\t";

vector<Card*>::const_iterator pCard;
if (!aGenericPlayer.m_Cards.empty())
{

for (pCard = aGenericPlayer.m_Cards.begin();
pCard != aGenericPlayer.m_Cards.end();
++pCard)

{
os << *(*pCard) << "\t";

}

if (aGenericPlayer.GetTotal() != 0)

378 Chapter 10 n Inheritance and Polymorphism: Blackjack

{
cout << "(" << aGenericPlayer.GetTotal() << ")";

}
}
else
{

os << "<empty>";
}
return os;

}

The function displays the generic player’s name and cards, along with the total
value of the cards.

Summary

In this chapter, you should have learned the following concepts:

n One of the key elements of OOP is inheritance, which allows you to
derive a new class from an existing one. The new class automatically
inherits data members and member functions from the existing class.

n A derived class does not inherit constructors, copy constructors, destruc-
tors, or an overloaded assignment operator.

n Base class constructors are automatically called before the derived class
constructor when a derived class object is instantiated.

n Base class destructors are automatically called after the derived class
destructor when a derived class object is destroyed.

n Protected members are accessible only in their own class and certain
derived classes, depending upon the derivation access level.

n Using public derivation means that public members in the base class
become public members in the derived class, protected members in the
base class become protected members in the derived class, and private
members are (as always) inaccessible.

n You can override base class member functions by giving them new defi-
nitions in a derived class.

n You can explicitly call a base class member function from a derived class.

Summary 379

n You can explicitly call the base class constructor from a derived class
instructor.

n Polymorphism is the quality whereby a member function will produce
different results depending on the type of object for which it is called.

n Virtual functions allow for polymorphic behavior.

n Once a member function is defined as virtual, it’s virtual in any derived
class.

n A pure virtual function is a function to which you don’t need to give a
definition. You specify a pure virtual function by placing an equal sign
and a zero at the end of the function header.

n An abstract class has at least one pure virtual member function.

n An abstract class can’t be used to instantiate an object.

Questions and Answers

Q: How many levels of inheritance can you have?

A: Theoretically, as many as you want. But as a beginning programmer, you
should keep things simple and try not to go beyond a few levels.

Q: Is friendship inherited? That is, if a function is a friend of a base class, is it
automatically a friend of a derived class?

A: No.

Q: Can a class have more than one direct base class?

A: Yes. This is called multiple inheritance. It’s powerful, but creates its own set of
thorny issues.

Q: Why would you want to call a base class constructor from a derived class
constructor?

A: So you can control exactly how the base class constructor is called. For
example, you might want to pass specific values to the base class constructor.

Q: Are there any dangers in overriding a base class function?

A: Yes. By overriding a base class member function, you hide all of the
overloaded version of the function in the base class. However, you can

380 Chapter 10 n Inheritance and Polymorphism: Blackjack

still call a hidden base class member function explicitly by using the base
class name and the scope resolution operator.

Q: How can I solve this problem of hiding base class functions?

A: One way is to override all of the overloaded version of the base class function.

Q: Why do you usually want to call the assignment operator member function of the
base class from the assignment operator member function of a derived class?

A: So that any base class data members can be properly assigned.

Q: Why do you usually want to call the copy constructor of a base class from the
copy constructor of a derived class?

A: So that any base class data members can be properly copied.

Q: Why can you lose access to an object’s member functions when you point to
it with a base class member?

A: Because non-virtual functions are called based on the pointer type and the
object type.

Q: Why not make all member functions virtual, just in case you ever need
polymorphic behavior from them?

A: Because there’s a performance cost associated with making member functions
virtual.

Q: So when should you make member functions virtual?

A: Whenever they may be inherited from a base class.

Q: When should you make a destructor virtual?

A: If you have any virtual member functions in a class, you should make the
destructor virtual, too. However, some programmers say that to be safe, you
should always make a destructor virtual.

Q: Can constructors be virtual?

A: No. This also means that copy constructors can’t be declared as virtual either.

Q: In OOP, what is slicing?

A: Slicing is cutting off part of an object. Assigning an object of a derived class to
a variable of a base class is legal, but you slice the object, losing the data

Questions and Answers 381

members declared in the derived class and losing access to member functions
of the derived class.

Q: What good are abstract classes if you can’t instantiate any objects from them?

A: Abstract classes can be very useful. They can contain many common class
members that other classes will inherit, which saves you the effort of defining
those members over and over again.

Discussion Questions

1. What benefits does inheritance bring to game programming?

2. How does polymorphism expand the power of inheritance?

3. What kinds of game entities might it make sense to model through
inheritance?

4. What kinds of game-related classes would be best implemented as
abstract?

5. Why is it advantageous to be able to point to a derived class object with
a base class pointer?

Exercises

1. Improve the Simple Boss 2.0 program by adding a new class, FinalBoss,
that is derived from the Boss class. The FinalBoss class should define a
new method, MegaAttack(), that inflicts 10 times the amount of damage
as the SpecialAttack() method does.

2. Improve the Blackjack game program by forcing the deck to repopulate
before a round if the number of cards is running low.

3. Improve the Abstract Creature program by adding a new class, OrcBoss,
that is derived from Orc. An OrcBoss object should start off with 180 for
its health data member. You should also override the virtual Greet()
member function so that it displays: The orc boss growls hello.

382 Chapter 10 n Inheritance and Polymorphism: Blackjack

Creating Your First C++

Program

Follow these steps to write, save, compile, and run your first program using
Microsoft’s Visual Cþþ 2010 Express, a popular and free IDE for the Windows
platform.

1. Download Visual Cþþ 2010 Express from http://www.microsoft.com/
express/downloads.

2. Install Visual Cþþ 2010 Express, accepting the default options.

3. Launch Visual Cþþ 2010 Express. You should see what appears in
Figure A.1.

4. From the application menu, select File, New, Project. In the New Project
dialog that appears, select Win32 from the Installed Templates pane and
select Win32 Console Application from the pane to the right. In the
Name field, type game_over. In the Location field, browse to the location
to save your project by clicking the Browse button. I recommend creating
a new folder for the project. (I store my project in C:\Users\Mike\Desk-
top\game_over\.) Last but not least, make sure the check box is checked
for Create directory for solution. Your New Project dialog should look
similar to the one in Figure A.2.

H i n t

It’s generally a good idea to store each project in its own folder.

appendix A

383

Figure A.1
Visual Cþþ 2010 Express on startup.

Figure A.2
The New Project dialog, filled out.

384 Appendix A n Creating Your First C++ Program

5. With the New Project dialog filled out, click the Okay button. This
will bring up the Win32 Application Wizard—Overview. Click the
Next button. This will take you to the Win32 Application Wizard—
Application Settings. Under Additional options, check the check box for
Empty project. Your screen should look like Figure A.3.

6. In the Win32 Application Wizard—Application Settings, click the Finish
button. This will create and open a new solution for your project, as
pictured in Figure A.4.

H i n t

If the Solution Explorer is not displayed, from the application menu, select View, Other Windows,
Solution Explorer.

7. In the Solution Explorer, right-click the Source Files folder. From the menu
that appears, select Add, New Item. In the Add New Item dialog that
appears, select Cþþ File (.cpp). In the Name field, type game_over.cpp.
Check out Figure A.5 for a completed Add New Item dialog image.

Figure A.3
The Win32 Application Wizard – Application Settings, defining an empty project.

Creating Your First C++ Program 385

Figure A.4
Your newly created project.

Figure A.5
The Add New Item dialog, filled out.

386 Appendix A n Creating Your First C++ Program

8. In the Add New Item dialog, click the Add button. The empty Cþþ file
named game_over.cpp appears, ready for editing. In the game_over.cpp

Cþþ file, type the following:

// Game Over

// A first C++ program

#include <iostream>

int main()
{

std::cout << "Game Over!" << std::endl;
return 0;

}

Your screen should look like Figure A.6.

9. From the application menu, select File, Save.

Figure A.6
Your new Cþþ file, edited.

Creating Your First C++ Program 387

10. From the application menu, select Debug, Build Solution.

11. Press CtrlþF5 to run the project and enjoy the fruits of your labor. You
should see the results shown in Figure A.7.

Congratulations! You’ve written, saved, compiled, and run your first Cþþ

program.

H i n t

For more detailed information about Microsoft Visual Cþþ 2010 Express, please see its
documentation.

Figure A.7
The big payoff: seeing your program run.

388 Appendix A n Creating Your First C++ Program

Operator Precedence

C++ Operator Precedence

Precedence Level Operator Description

17 :: Scope resolution

16 -> Indirect member selection

16 . Member selection

16 [] Array index

16 () Function call

16 () Type construction

16 sizeof Size in bytes

15 ++ Increment

15 - - Decrement

15 ~ Bitwise NOT

15 ! Logical NOT

15 + Unary plus

15 - Unary minus

15 * Dereference

15 & Address-of

15 () Cast

15 new Acquire memory on the heap

15 delete Release memory on the heap

14 ->* Indirect member pointer selector

14 .* Member pointer selector

13 * Multiplication

appendix B

(Continued)

389

C++ Operator Precedence (Continued)

Precedence Level Operator Description

13 / Division

13 % Modulus

12 + Addition

12 - Subtraction

11 << Bitwise shift left

11 >> Bitwise shift right

10 < Less than

10 <= Less than or equal to

10 > Greater than

10 >= Greater than or equal to

9 == Equal to

9 != Not equal to

8 & Bitwise AND

7 ^ Bitwise XOR

6 | Bitwise OR

5 && Logical AND

4 || Logical OR

3 ?: Conditional operator

2 = Assignment

2 *= Multiply and assign

2 /= Divide and assign

2 %= Modulus and assign

2 += Add and assign

2 -= Subtract and assign

2 <<= Bitwise shift left and assign

2 >>= Bitwise shift right and assign

2 &= Bitwise AND and assign

2 |= Bitwise OR and assign

2 ^= Bitwise XOR and assign

1 , Comma operator

390 Appendix B n Operator Precedence

Keywords

This appendix contains a list of Cþþ keywords.

appendix C

and

asm

auto

bitand

bitor

bool

break

case

catch

char

class

compl

const

const_cast

continue

default

delete

do

double

dynamic_cast

else

enum

explicit

extern

false

float

for

friend

goto

if

inline

int

long

mutable

namespace

new

not

not_eq

operator

or

or_eq

private

protected

public

register

reinterpret_cast

return

short

391

signed

sizeof

static

static_cast

struct

switch

template

this

throw

true

try

typedef

typeid

typename

union

unsigned

using

virtual

void

volatile

wchar_t

while

xor

xor_eq

392 Appendix C n Keywords

ASCII Chart

ASCII Chart

Decimal Hexadecimal Character

0 00 NUL

1 01 SOH

2 02 STX

3 03 ETX

4 04 EOT

5 05 ENQ

6 06 ACK

7 07 BEL

8 08 BS

9 09 HT

10 0A LF

11 0B VT

12 0C FF

13 0D CR

14 0E SO

15 0F SI

16 10 DLE

17 11 DC1

18 12 DC2

19 13 DC3

20 14 DC4

appendix D

(Continued)

393

ASCII Chart (Continued)

Decimal Hexadecimal Character

21 15 NAK

22 16 SYM

23 17 ETB

24 18 CAN

25 19 EM

26 1A SUB

27 1B ESC

28 1C FS

29 1D GS

30 1E RS

31 1F US

32 20 SP

33 21 !

34 22 "

35 23 #

36 24 $

37 25 %

38 26 &

39 27 ’

40 28 (

41 29)

42 2A *

43 2B +

44 2C ,

45 2D -

46 2E .

47 2F /

48 30 0

49 31 1

50 32 2

51 33 3

52 34 4

53 35 5

54 36 6

55 37 7

56 38 8

57 39 9

(Continued)

394 Appendix D n ASCII Chart

ASCII Chart (Continued)

Decimal Hexadecimal Character

58 3A :

59 3B ;

60 3C <

61 3D =

62 3E >

63 3F ?

64 40 @

65 41 A

66 42 B

67 43 C

68 44 D

69 45 E

70 46 F

71 47 G

72 48 H

73 49 I

74 4A J

75 4B K

76 4C L

77 4D M

78 4E N

79 4F O

80 50 P

81 51 Q

82 52 R

83 53 S

84 54 T

85 55 U

86 56 V

87 57 W

88 58 X

89 59 Y

90 5A Z

91 5B [

92 5C \

93 5D]

94 5E ^

(Continued)

ASCII Chart 395

ASCII Chart (Continued)

Decimal Hexadecimal Character

95 5F _

96 60 `

97 61 a

98 62 b

99 63 c

100 64 d

101 65 e

102 66 f

103 67 g

104 68 h

105 69 i

106 6A j

107 6B k

108 6C l

109 6D m

110 6E n

111 6F o

112 70 p

113 71 q

114 72 r

115 73 s

116 74 t

117 75 u

118 76 v

119 77 w

120 78 x

121 79 y

122 7A z

123 7B {

124 7C |

125 7D }

126 7E ~

127 7F DEL

396 Appendix D n ASCII Chart

Escape Sequences

Escape Sequences

Escape Sequence Description

\’ Single quote

\" Double quote

\\ Backslash

\0 Null character

\a System bell

\b Backspace

\f Formfeed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\x Hexadecimal number

appendix E

397

This page intentionally left blank

� (subtraction) operator, 14
! (NOT) operator, 61tbl, 66–67, 77
!= (not equal to) operator, 40tbl
(hash mark) symbol, 7, 35
% (modulus operator), 15, 72
& (reference operator), 189, 217
&& (AND) operator, 61tbl, 77
* (dereference operator), 128,

146, 230
* (multiplication) operator, 14
. (member selection operator),

88, 259
/ (forward slash), 14
:: (scope resolution operator), 9,

125, 259, 345
; (semicolon)

if statement, 43
terminating statements, 9

[] (subscripting operator), 93, 99,
121, 147

|| (OR) operator, 61tbl, 66
þ (addition) operator, 14, 92
þþ (increment operator), 27–28
< (less than) operator, 40tbl
<< (output operator), 9
<= (less than or equal to)

operator, 40tbl
= (assignment operator), 21, 44,

313–315, 346–347
== (equal to) operator, 40tbl, 44
> (greater than) operator, 40tbl
>= (greater than or equal to)

operator, 40tbl
64-element array, 103

A
abstract classes, 352–356, 380, 382

Abstract Creature program,
352–354

declaring pure virtual functions,
354–355

deriving classes from, 355–356
virtual functions and, 355

Abstract Creature program,
352–354

abstraction
encapsulation and, 160
functions, 155

access control, 337–340
Simple Boss 2.0 program,

338–339
using access modifiers when

deriving classes, 340
using access modifiers with class

members, 339–340
access modifiers

using when deriving classes, 340
using with class members,

339–340
access_global() function, 168
accessing

array elements, 246
data members, 259–260
global variables, 168
member functions of array

element, 100
member functions of vector

element, 129–130
reference values, 190
static data members, 272–273

accessor member functions, 267–
268, 282

action statement, for loop, 82
Add() member function, 292
Add New Item dialog box,

386fig
addition (þ) operator, 14, 92
address, variable, 249

advanced classes
aggregation, 287–292

container data members,
291–292

Critter Farm program,
288–290

object data members,
290–291

friend functions
creating, 295
Friend Critter program,

292–294
Game Lobby program,

315–325
Lobby class, 318–320
Lobby::AddPlayer()

member function,
320–322

Lobby::Clear() member
function, 322–323

Lobby::RemovePlayer()
member function, 322

main() function,
324–325

operator<<() member
function, 323–324

Player class, 316–318
operator overloading, 295–296

again character, looping, 57–58
aggregation, 287–292

container data members,
291–292

Critter Farm program,
288–290

defined, 325
object data members,

290–291
AI (Artificial Intelligence),

203

399

INDEX

algorithms, 131–135, 146
defined, 116
find(), 134
High Scores program,

131–133
preparing to use, 133
random_shuffle(), 134–135
sort(), 135

allocating dynamic memory,
296–303
avoiding memory leaks,

301–303
delete operator, 300–301
Heap program, 297–299
new operator, 299–300

altering
global variables, 169
iterators, 128
object through returning

pointers, 243–244
object through returning

references, 202
reference values, 190–191
value of variable, 26

American Standard Code for
Information Interchange
(ASCII), 22, 393–396

AND (&&) operator, 61tbl, 77
announceWinner()function,

Tic-Tac-Toe game, 217
ANSI (ANSI/ISO) standard, 5
argument variable, 191, 197
arguments, 70

versus parameters, 184
passing references to alter,

191–194
arithmetic operators, 13–15

adding, 14
Expensive Calculator program,

13–14
floating point division, 14–15
integer division, 14–15
modulus operator, 15
multiplying, 14
order of operations, 15
subtracting, 14

Array Passer program, 244–246
arrays, 96–106

accessing member functions of
array element, 100

bounds checking, 100–101
creating, 98–99
Hero's Inventory program,

96–98
indexing, 99–100
multidimensional, 103–106

creating, 105
indexing, 105–106
Tic-Tac-Toe Board

program, 103–105
pointers and, 244–248

Array Passer program,
244–246

constant pointer, 246–247
passing and returning,

247–248
versus vectors, 117, 146–147

Artificial Intelligence
(AI), 203

ASCII (American Standard Code
for Information Interchange),
22, 393–396

askNumber() function
assigning default arguments to

parameters, 173
Mad Lib game, 182
Tic-Tac-Toe game, 209

askText()function, Mad Lib
game, 182

askYesNo1() function
Mad Lib game, 157–158
Tic-Tac-Toe game, 208–209

assembly language, 2
assigning values

to Boolean variables, 22
to character variables, 21–22
to floating point variables, 21
to integer variables, 21

assignment operator (=), 21, 44,
313–315, 346–347

assignment statement, 70
associative container, 138

B
badSwap() function, 193–194,

236–237
base class

constructors, 343–344, 379
destructors, 379
member functions, 340–346

base class constructors,
343–344

calling, 345–346
declaring virtual, 344
Overriding Boss program,

341–343
overriding virtual, 344–345

pointers, 350–351
begin()vector member function,

127, 135

Blackjack game, 356–379
Card class, 361–363
Deck class, 370–373
designing classes, 356–360
Game class, 373–376
GenericPlayer class, 366–367
Hand class, 363–366
House class, 369–370
main() function, 376–377
overloading the operator()

function, 377–379
planning game logic, 360–361
Player class, 368–369

block, 8, 37
body of function, 8
bool fullScreen parameter, 171
bool IsBusted() const member,

BlackJack GenericPlayer
class, 359

bool m_IsFaceUp member,
BlackJack Card class, 359

bool type, 18, 19tbl, 37–38
bool variables, 39, 78
Boole, George, 38
Boolean variables, 22
bounds checking, 93,

100–101, 111
branching, 40–54

if statement, 40–51
with else clauses, 45–51
nesting, 44–45
relational operators, 44
Score Rater program, 41–42
true and false values,

42–43
switch statement, 51–54

creating ways to branch, 54
Menu Chooser program,

52–53
break statement, 79, 111

exiting loop, 60
Finicky Counter program,

58–60
loops, 77
switch statement and, 51
understanding when to use, 61
while (true) loop, 60

busting, BlackJack, 356

C
C programming language, 36
Cþþ program, 5–10

commenting code, 7
creating first program with,

383–388

400 Index

displaying text through standard
output, 8–9

Game Over program, 5–6
including other files, 7–8
main() function, 8, 10
terminating statements, 9
whitespace, 7

calling
base class member functions,

345–346
constructors, 263–264
end()vector member function,

127–128
functions, 70, 154
inlined functions, 179–180
member functions, 260
overloaded functions, 177
static member functions,

273–274
camel case, 20
capacity()member function,

136–137
Card class, BlackJack, 357,

359, 361–363
case sensitivity, 20, 38, 258
cctype file, 142
change_global() function, 169
char type, 19tbl, 112
char value, 158
character variables, 21–22
cin object, 36
classes, 255–283

See also advanced classes
constructors, 260–264

calling automatically,
263–264

Constructor Critter
program, 261–262

declaring and defining,
262–263

Critter Caretaker game,
274–281
Critter class, 277–280
main() function, 280–281
planning game, 275–276
planning pseudocode, 276

defined, 282
defining new types, 255–260

accessing data members,
259–260

calling member functions,
260

declaring data members, 258
declaring member

functions, 258

defining member functions,
258–259

instatiating objects, 259
Simple Critter program,

256–257
setting member access levels,

264–269
defining accessor member

functions, 267–268
defining constant member

functions, 268–269
Private Critter program,

264–266
specifying public and

private, 266–267
static data members

accessing, 272–273
declaring, 272
initializing, 272
Static Critter program,

270–271
static member functions

calling, 273–274
declaring, 273
defining, 273
Static Critter program,

270–271
clear()member function, 122
code profiling, 185–186
combined assignment operators,

26–27
commenting code, 7
comments, 7, 37
compile errors, 4
compiler, defined, 2
compiler warning, 37
computerMove()function,

Tic-Tac-Toe game,
213–216

concatenating string objects, 92
const keyword, 170, 234,

249, 251, 269
constant iterator, 126
constant member functions,

268–269
constant pointer, 246–247, 249
constant reference, 197–198, 218
constants, 29–32

defined, 36
enumerations, 31–32
Game Stats 3.0 program,

29–30
global, 170
overview, 31
pointers and, 231–234

Constructor Critter program,
261–262

constructors, 260–264
base class, 379
calling automatically, 263–264
Constructor Critter program,

261–262
declaring and defining,

262–263
defined, 282
instantiating objects from

derived class, 336
containers

adaptors, 147
associative, 138
data members, 291–292
defined, 145
sequential, 138–139

continue statement, 59, 61,
77, 111

copy constructors, 326
declaring, 309–313
defining, 309–313
using in derived classes,

346–347
Counter program, 82–84
cout object, 8–9, 36
Critter Caretaker game, 274–281

Critter class, 277–280
class constructor, 277–278
class definition, 277
Eat() member function,

279–280
GetMood() member

function, 278
PassTime() member

function, 278
Play() member function,

280
Talk() member function,

279
main() function, 280–281
planning game, 275–276
planning pseudocode,

276
Critter Farm program,

288–290
cstdlib file, 78
cstring file, 102
C-style comments, 7
C-style strings, 101–102
curly braces

functions, 8
nested scopes, 165
scopes, 163

Index 401

D
dangling pointers, 241, 250–251,

301, 325
data members, 87, 110

accessing, 259–260
container, 291–292
declaring, 258
heap and, 303–315

declaring and defining copy
constructors, 309–313

declaring and defining
destructors, 308–309

declaring data members that
point to values on heap,
307–308

Heap Data Member
program, 303–307

overloading assignment
operator, 313–315

object, 290–291
Deck class, BlackJack, 357, 360,

370–373
Deck m_Deck member, BlackJack

Game class, 360
declaring

constructors, 262–263
copy constructors, 309–313
data members, 258, 307–308
destructors, 308–309
functions, 153, 183
iterators, 125–126
member functions, 258
multidimensional arrays, 105
pointers, 226–227, 249
references, 189
static data members, 272
static member functions, 273
variables, 19–20, 165
vectors, 119–120

deep copy, 310, 326
default arguments,

171–174, 184
assigning to parameters,

173–174
Give Me a Number program,

171–172
overriding, 174
specifying, 173

default assignment operator,
313, 326

default constructor, 262–263, 284
default copy constructor, 309, 326
default destructor, 308
default keyword, 77
default statement, 51

defining
accessor member functions,

267–268
constant member functions,

268–269
constructors, 262–263
copy constructors, 309–313
destructors, 308–309
enumerations, 31–32
functions, 154
member functions, 258–259, 282
new names for types, 23
new types, 255–260

accessing data members,
259–260

calling member functions,
260

declaring data members, 258
declaring member

functions, 258
defining member functions,

258–259
instatiating objects, 259
Simple Critter program,

256–257
static member functions, 273
variables inside switch

statements, 166
virtual destructors, 351–352

delete operator, 300–301, 325
deque STL container, 139
dereference operator (*), 128, 146,

230
dereferencing

iterators, 128
pointers, 228–229, 249

derived classes, 379
from base classes, 335–336
deriving from abstract classes,

355–356
instantiating objects from,

336–337
using access modifiers when

deriving, 340
using base class pointers to

objects, 350–351
using overloaded assignment

operators and copy
constructors in, 346–347

Designers Network Program,
62–65

destructors, 326
base class, 379
declaring, 308–309
defining, 308–309

instantiating objects from
derived class, 336

virtual, 347
when to make virtual, 381

Die Roller program, 68–69
display() function

constant referencees and, 197
passing and returning arrays,

247–248
displayBoard()function,

Tic-Tac-Toe game, 210–211
do loops, 56–58, 77

logical NOT operator, 66
overview, 57–58
Play Again 2.0 program,

56–57
dot operator, 230
double type, 18, 19tbl
double-ended queue, 148
dynamic array, 116
dynamic memory

allocating, 296–303
avoiding memory leaks, 301–

303
delete operator, 300–301
Heap program, 297–299
new operator, 299–300

data members and heap,
303–315
copy constructors,

309–313
declaring, 307–308
destructors, 308–309
Heap Data Member

program, 303–307
overloading assignment op-

erator, 313–315

E
early binding, 351
Eat() member function, Critter

class, 279–280
editor, defined, 2
else clause, if statement,

45–51, 77
creating ways to branch, 47–48
if statements with, 48–51
Score Rater 2.0 program, 46–47

empty statements, for loops, 85
empty()member function, 96, 122
encapsulation, 160, 184, 284
end() member function

calling, 127–128
string objects, 135

402 Index

enumerations, 31–32, 36
enumerators, 31
equal to (==) operator, 40tbl, 44
erase()member function, 95,

130–131
errors, 4, 35
escape sequences, 23, 397
executable file, 2–4
exit statement, 85
Expensive Calculator program,

13–14
expression, 14

F
false values

interpreting, 43
testing, 42–43

find() algorithm, 134
find() member function, 94–95
Finicky Counter program,

58–60
float type, 19tbl
floating points, 14, 21
for loops, 81–87

Counter program, 82–84
counting with, 84–85
defining variables inside, 166
nesting, 86–87
using empty statements in, 85

FORTRAN language, 112
forward slash (/), 14
free store, 296, 325. See also heap
freeing memory, 300
Friend Critter program,

292–294
friend functions, 325

creating, 295
Friend Critter program,

292–294
function body, 154
function header, 154
function inlining, 184
functions, 8, 35, 151–186

abstraction, 155
accepting values into

parameters, 158–160
calling, 70, 154
calling with default

arguments, 173
declaring, 153, 183
default arguments, 171–174

assigning to parameters,
173–174

Give Me a Number
program, 171–172

overriding, 174
specifying, 173

defining, 154
encapsulation, 160
global constants, 170
global variables, 166–170

accessing, 168
altering, 169
declaring, 168
Global Reach program,

166–168
hiding, 169
minimizing use of, 170

inlining, 177–180
calling, 179–180
specifying, 179
Taking Damage program,

177–179
Instructions program, 152–153
Mad Lib game, 180–183

askNumber()function, 182
askText()function, 182
main()function, 181–182
setting up, 181
tellStory()function, 183

overloading, 174–177, 184
calling, 177
creating, 176
Triple program, 174–176

prototype, 153, 159
return values, 157–158

return statement, 158
specifying return type, 157
using, 158

scopes, 161–166
nested, 165–166
Scoping program, 161–163
separate, 163–164

software reuse, 161
Tic-Tac-Toe game, 206tbl
Yes or No program, 155–157

fundamental types, 18

G
Game class, BlackJack, 357, 360,

373–376
Game Lobby program,

315–325
Lobby class, 318–320
Lobby::AddPlayer() member

function, 320–322
Lobby::Clear() member

function, 322–323
Lobby::RemovePlayer()

member function, 322

main() function, 324–325
operator() member function,

323–324
Player class, 316–318

game loop, 72–73, 77
Game Over program, 5–6, 10–12
Game Stats 2.0 program, 24–26
Game Stats 3.0 program, 29–30
Game Stats program, 16–17
game testers, 4
generating random numbers,

68–72
calculating number within

range, 71–72
Die Roller program, 68–69
rand()function, 69–70
seeding, 70–71

generic statement, 40
GenericPlayer class, BlackJack,

357, 359, 366–367
GetMood()member function,

Critter class, 278
Give Me a Number program,

171–172
global constants, 170, 184
global variables, 166–170, 184

accessing, 168
altering, 169
declaring, 168
Global Reach program,

166–168
hiding, 169
minimizing use of, 170

goodSwap() header, 192, 194, 237
greater than (>) operator, 40tbl
greater than or equal to (>=)

operator, 40tbl
Guess My Number game, 73–76

applying game loop, 74
creating, 76
ending, 76
setting up, 74–75

H
Hand class, BlackJack, 357, 359,

363–366
Hangman game, 141–145

ending, 145
entering main loop, 143–144
getting player's guess,

144–145
initializing variables and

constants, 143
planning, 141–142
setting up, 142

Index 403

has-a relationships, 290
header file, 8
heap

data members and, 303–315
declaring and defining copy

constructors, 309–313
declaring and defining

destructors, 308–309
declaring to values on heap,

307–308
Heap Data Member

program, 303–307
overloading assignment

operator, 313–315
memory, 296, 325

Heap Data Member
program, 303–307

Heap program, 297–299
Hero's Inventory program,

96–98
version 2.0, 117–119
version 3.0, 123–125

hide_global() function, 169
hiding

global variables, 169
variables, 185

high parameter, askNumber()
function, 173

High Scores program, 131–133
House class, BlackJack, 357, 360,

369–370
House m_House member,

BlackJack Game class, 360
humanMove()function,

Tic-Tac-Toe game, 213
humanPiece()function,

Tic-Tac-Toe game,
209–210

I
IDE (Integrated Development

Environment), 3–4
identifier, 20, 31
if statements, 39–45

defining variables inside, 166
with else clauses, 48–51

creating sequence of, 50–51
Score Rater 3.0 program,

49–50
nesting, 44–45
relational operators, 44
Score Rater program, 41–42
true and false values

interpreting, 43
testing, 42–43

increment operator (þþ),
27–28

indexing
arrays, 99–100
multidimensional arrays,

105–106
string objects, 93
vectors, 121

infinite loop, 58, 78–79
inheritance, 331–346, 356–380

base class member functions,
340–346
calling, 345–346
calling base class

constructors,
343–344

declaring virtual, 344
Overriding Boss program,

341–343
overriding virtual, 344–345

Blackjack game, 356–379
Card class, 361–363
Deck class, 370–373
designing classes, 356–360
Game class, 373–376
GenericPlayer class,

366–367
Hand class, 363–366
House class, 369–370
main() function, 376–377
overloading the

operator()
function, 377–379

planning game logic,
360–361

Player class, 368–369
controlling access under,

337–340
access modifiers, 339–340
Simple Boss 2.0 program,

338–339
deriving from base classes,

335–336
inherited members, 337
instantiating objects from

derived classes, 336–337
overloaded assignment

operators and copy
constructors, 346–347

Simple Boss program, 333–335
initialization statement, for

loop, 82
initializer list, 99
initializing

constant pointer, 231
pointers, 227, 250

references, 189
static data members, 272
variables, 22

inlining functions, 177–180, 268,
282
calling inlined functions,

179–180
specifying functions for, 179
Taking Damage program,

177–179
inner loop, 86–87
insert()vector member

function, 130
instances, class, 259
instantiating objects, 259, 263
instructions() function

Mad Lib game, 154
Tic-Tac-Toe game, 208

Instructions program, 152–153
int type, 18, 19tbl, 112
int argument, 175
int GetTotal() const member,

BlackJack Hand class, 359
int GetValue() member,

BlackJack Card class, 359
integer division, 14–15
integer variables, 21
integer wrap around, 26,

28–29
integers, 14, 78
Integrated Development

Environment (IDE), 3–4
intOnHeap() function, 300
Inventory Displayer program,

195–196
Inventory Pointer program,

239–240
iostream file, 8–9, 36
isLegal()function, Tic-Tac-Toe

game, 212–213
ISO standard, 5
iterating through string objects,

93–94
iterators, 123–131

accessing member functions of
vector element, 129–130

changing value of vector
element, 128–129

declaring, 125–126
defined, 116, 146
erase()vector member

function, 130–131
Hero's Inventory 3.0 program,

123–125
insert()vector member

function, 130

404 Index

looping through vector, 126–128
altering an iterator, 128
calling begin()vector

member function, 127
calling end()vector

member function,
127–128

dereferencing an iterator,
128

vector member functions
and, 147

K
keywords, 20, 391–392

L
late binding, 351
length() member function, 92
less than (<) operator, 40tbl
less than or equal to (<=)

operator, 40tbl
link errors, 4
linked list, 318–319
list STL container, 139
literals, 37
Lobby class, Game Lobby

program, 318–320
Lobby::AddPlayer() member

function, Game Lobby
program, 320–322

Lobby::Clear() member
function, Game Lobby
program, 322–323

Lobby::RemovePlayer()
member function, Game Lobby
program, 322

local variables, 163, 185
logical errors, 4
logical operators, 61–68

Designers Network Program,
62–65

NOT operator, 66–67
AND operator, 65
OR operator, 66
order of operations, 67–68

long double type, 19tbl
long int type, 19tbl
long modifier, 18
loop body, 56
looping

break statement
exiting loop, 60
Finicky Counter program,

58–60

understanding when to
use, 61

while (true) loop, 60
continue statement

Finicky Counter program,
58–60

jumping back to top of
loop, 61

understanding when to
use, 61

while (true) loop, 60
do loops, 56–58

overview, 57–58
Play Again 2.0 program,

56–57
iterators through vector,

126–128
altering an iterator, 128
calling begin()vector

member function, 127
calling end()vector

member function,
127–128

dereferencing an iterator,
128

logical operators, 61–68
Designers Network

Program, 62–65
NOT operator, 66–67
AND operator, 65
OR operator, 66
order of operations, 67–68

while loops, 54–56
overview, 55–56
Play Again program, 54–55

Lost Fortune game, 32–35
getting information from player,

33–34
setting up, 32–33
telling story, 34–35

low parameter, askNumber()
function, 173

M
Mad Lib game, 180–183

askNumber()function, 182
askText()function, 182
main()function, 181–182
setting up, 181
tellStory()function, 183

main() function, 8, 181–182
Blackjack game, 376–377
creating string objects, 91
Critter Caretaker game,

280–281

declaring vectors, 119
defined, 35
Game Lobby program,

324–325
initializing variables and

constants, 143
looping, 55
returning value from, 10
Tic-Tac-Toe game, 207–208

map STL container, 139
member access levels, class,

264–269
defining accessor member

functions, 267–268
defining constant member

functions, 268–269
private, 267
Private Critter program,

264–266
public, 266

member access operator, 230
member functions, 87, 110

See also names of specific
member functions

calling, 260
declaring, 258
defining, 258–259, 282
inlining, 282

member initializers, 263, 282
member selection operator (.), 88,

259
member-wise copying, 309, 326
memory, 24, 224, 248
memory leak, 301–303, 326
Menu Chooser program,

52–53
modifiers, type, 18–19
modulus operator (%), 15, 72
multidimensional arrays,

103–106, 111
creating, 105
indexing, 105–106
Tic-Tac-Toe Board program,

103–105
multimap STL container, 139
multiple inheritance, 380
multiplication (*) operator, 14
multiset STL container, 139
mutable data members, 284

N
namespace, 9. See also std

namespace
naming convention, 258
naming variables, 20–21

Index 405

nested scopes, 165–166, 185
nesting

if statements, 44–45
for loops, 86–87

new operator, 299–300, 325
New Project dialog box, 384fig
newline (\nl), 23
\nl (newline), 23
nodes, linked list, 319
non-constant reference, 219
non-inlined function,

calling, 179
non-virtual member functions,

overriding, 344, 351
non-zero value, 43, 77
NOT (!) operator, 61tbl, 66–67, 77
not equal to (!=) operator, 40tbl
null character, 101
null pointers, 227–228,

249, 251

O
object data members, 290–291
object file, 2
object-oriented programming. See

OOP
objects

See also string objects
altering through returning

pointers, 243–244
defined, 283
instatiating, 259
overview, 87–89

OOP (object-oriented
programming), 2, 255,
281, 283
inheritance, 331–333
polymorphism, 347

operator overloading, 92,
112–113, 295–296, 325

operator precedence, 389–390
operator() member function

Blackjack game, 377–379
Game Lobby program,

323–324
operators. See specific operators
opponent()function,

Tic-Tac-Toe game,
210

OR (||) operator, 61tbl, 66
order of operations

arithmetic operators, 15
logical operators, 67–68

outer loop, 86–87
out-of-scope

objects, 201, 241
variables, 164, 185

output operator (), 9
output stream, 8
overloading

assignment operator, 313–315
functions, 174–177

calling, 177
creating, 176
Triple program, 174–176

operators, 92, 112–113,
295–296, 325

versus overriding, 345
overriding

base class member functions,
379

default arguments, 174
non-virtual member function,

344, 351
Overriding Boss program,

341–343

P
pAPointer pointer, 226
parameters, 153

versus arguments, 184
assigning default arguments,

173–174
functions, 158–160

parentheses
dereferencing iterators, 129
order of operations, 15, 67

passing pointers, 234–238
constant pointer, 237–238
Swap Pointer Version program,

234–236
by value, 236–237

passing references
to alter arguments, 191–194

passing by reference, 194
passing by value, 193–194
Swap program, 191–193

constant references, 197–198
Inventory Displayer program,

195–196
pitfalls, 196–197

PassTime() member function,
Critter class, 278

Peek() global function, 295
planning programs, 139–141

pseudocode, 139–140
stepwise refinement, 140–141

Play Again 2.0 program, 56–57
Play Again program, 54–55

Play() member function,
Critter class, 280

Player class
BlackJack game, 357, 359,

368–369
Game Lobby program,

316–318
pointers, 223–250

arrays and, 244–248
Array Passer program,

244–246
constant pointer, 246–247
passing and returning,

247–248
assigning addresses to,

227–228
constants and, 231–234
dangling, 301, 325
declaring, 226–227
declaring data member, 307
defined, 248
dereferencing, 228–229
initializing, 227
passing, 234–238

constant pointer, 237–238
Swap Pointer Version

program, 234–236
by value, 236–237

Pointing program, 224–226
reassigning, 229
returning, 238–244
Tic-Tac-Toe 2.0 game, 248
using with objects, 230–231

Pointing program, 224–226
Polymorphic Bad Guy program,

347–350
polymorphism, 347–380

abstract classes, 352–356
Abstract Creature program,

352–354
declaring pure virtual

functions, 354–355
deriving classes from,

355–356
Blackjack game, 356–379

Card class, 361–363
Deck class, 370–373
designing classes, 356–360
Game class, 373–376
GenericPlayer class,

366–367
Hand class, 363–366
House class, 369–370
main() function, 376–377
overloading the operator()

function, 377–379

406 Index

planning game logic,
360–361

Player class, 368–369
defining virtual destructors,

351–352
Polymorphic Bad Guy program,

347–350
using base class pointers to

derived class objects, 350–351
pop_back() member function

adding or removing
elements, 138

vectors, 122
postfix increment operator, 27–28
precedence level, operators, 15
predicate function, 113
prefix increment operator, 27–28
premature optimization, 186
preprocessor, 7
priority queue, 148
priority_queue STL

container, 139
Private Critter program,

264–266
private keyword, 267
private members, 282

class access levels, 267
defined, 340

procedural programming, 283
profiling code, 180
program, defined, 35
protected members, 340, 379
prototypes, function

overview, 153
parameter names and, 159

pScore pointer, 224
pseudocode

Critter Caretaker game, 276
defined, 146
Tic-Tac-Toe game, 204
when to use, 148

pseudorandom number, 70, 79
ptrToElement() function,

241–242
public derivation, 379
public inheritance, 356
public keyword, 258, 266
public members, 282

class access levels, 266
defined, 339

pure virtual function, 380
push_back() member function,

292
adding or removing elements,

138
vectors, 120

pushing, BlackJack, 356
puzzle games, 107

Q
queue, 148
queue STL container, 139

R
rand()function, 69–70
random numbers, generating,

68–72
calculating number within

range, 71–72
Die Roller program, 68–69
rand()function, 69–70
seeding, 70–71

random_shuffle() algorithm,
134–135, 143

random-element access, 147
rank m_Rank member, BlackJack

Card class, 359
reallocation, vector memory, 136
reassigning pointers, 229
redundant parentheses, 68
reference operator (&),

189, 217
references, 187–217

versus constant pointers, 232
creating, 189–190
deciding how to pass arguments,

198
defined, 217
passing

to alter arguments, 191–194
constant references,

197–198
Inventory Displayer pro-

gram, 195–196
pitfalls, 196–197

versus pointers, 249
Referencing program, 187–189
returning, 198–203

altering object through, 202
assigning to reference, 202
assigning to variable, 202
displaying value of, 201
Inventory Referencer

program, 199–200
overview, 200–201

Tic-Tac-Toe game, 203–217
announceWinner()

function, 217
askNumber()function, 209

askYesNo()function,
208–209

computerMove()function,
213–216

creating list of functions, 205
displayBoard()function,

210–211
humanMove()function, 213
humanPiece()function,

209–210
instructions()function,

208
isLegal()function,

212–213
main()function, 207–208
opponent()function, 210
pseudocode, 204
representing data, 204–205
setting up, 205–207
winner()function, 211–212

values
accessing, 190
altering, 190–191

Referencing program, 187–189
refToElement() function header,

200–201, 240
relational operators, 40tbl, 44
reserve()member function, 137
restricting pointers, 243, 251
return statement, 50, 158,

184–185
return type, constructor, 262
return values, function, 157–158

return statement, 158
specifying return type, 157
using, 158

returning pointers, 238–244
altering object through,

243–244
assigning to pointer, 242
assigning to variable value

pointed to by returned
pointer, 242–243

Inventory Pointer program,
239–240

overview, 240–241
using to display value, 241–242

returning references, 198–203, 220
altering object through, 202
assigning, 202
assigning to reference, 202
assigning to variable, 202
displaying value of, 201
Inventory Referencer program,

199–200
overview, 200–201

Index 407

reusability, class, 332–333
role-playing game (RPG), 72
run-time errors, 4

S
scope resolution operator (::), 9,

125, 259, 345
scopes, 161–166

hiding global variables, 169
nested, 165–166, 185
Scoping program, 161–163
separate, 163–164

Score Rater program, 41–42
version 2.0, 46–47
version 3.0, 49–50

seeding random number
generator, 70–71, 79, 134

self-documenting code, 21
semicolon (;)

if statement, 43
terminating statements, 9

separate scopes, 163–164
sequential container, 138, 147
set STL container, 139
shallow copy, 310
short int type, 19tbl
short modifier, 18
signed modifier, 18
Simple Boss 2.0 program,

338–339
Simple Boss program, 333–335
Simple Critter program, 256–257
64-element array, 103
size()member function, 92, 120
skYesNo2() function, 158
slicing, OOP, 381
software reuse, 161
sort() algorithm, 135
source code, 2
srand() function, 71, 78
stack, 147, 296, 325
stack STL container, 139
standard I/O, 5

displaying text, 8–9
std namespace, 10–13

Game Over 2.0 program,
10–11

Game Over 3.0 program,
11–12

using declarations, 12–13
using directive, 11, 13

standard library, 5, 35
Standard Template Library.

See STL
Static Critter program, 270–271

static data members, 282
accessing, 272–273
constant member function

and, 269
declaring, 272
initializing, 272
Static Critter program, 270–271

static keyword
declaring static data members,

272
declaring static member

function, 273
static member functions, 282

calling, 273–274
declaring, 273
defining, 273

std namespace, 10–13
algorithms and, 133
defined, 36
Game Over 2.0 program, 10–11
Game Over 3.0 program, 11–12
using declarations, 12–13
using directive, 11, 13

stepwise refinement
defined, 146
when to use, 148

STL (Standard Template Library),
115–149
algorithms, 131–135

find(), 134
High Scores program,

131–133
preparing to use, 133
random_shuffle(),

134–135
sort(), 135

containers, 138–139
Hangman game, 141–145

ending, 145
entering main loop,

143–144
getting player's guess,

144–145
initializing variables and

constants, 143
planning, 141–142
setting up, 142

iterators, 123–131
accessing member

functions of vector
element, 129–130

changing value of vector
element, 128–129

declaring, 125–126
erase()vector member

function, 130–131

Hero's Inventory 3.0
program, 123–125

insert()vector member
function, 130

looping through vector,
126–128

overview, 115–116
planning programs, 139–141

pseudocode, 139–140
stepwise refinement,

140–141
vectors, 116–122, 136–138

calling member functions of
element, 121–122

clear()member function,
122

STL (Standard Template Library)
(continued)

declaring, 119–120
element insertion and

deletion, 138
empty()member function,

122
growth, 136–137
Hero's Inventory 2.0

program, 117–119
indexing, 121
pop_back()member

function, 122
preparing to use,

119
push_back() member

function, 120
size()member function,

120
strategy games, 216
streams, 34, 182
string argument, 175
string literal, 8
string m_Name member,

BlackJack GenericPlayer
class, 359

string objects, 33, 38, 89–96, 135
array, 96–97
concatenating, 92
creating, 91
defined, 110
empty()member function, 96
erase()member function, 95
find() member function,

94–95
indexing, 93
iterating through, 93–94
size()member function, 92
String Tester program, 89–91

String Tester program, 89–91

408 Index

strings
C-style strings, 101–102
overview, 8

Stroustrup, Bjarne, 1
structure, defined, 284
subclass. See derived classes
subscripting operator ([]), 93, 99,

121, 147
subtraction (�) operator, 14
suit m_Suit member, BlackJack

Card class, 359
superclass, 335. See also base class
Swap Pointer Version program,

234–236
Swap program, 191–193
switch statements, 39, 51–54, 77

creating ways to branch, 54
defining variables inside, 166
Menu Chooser program, 52–53

syntactic sugar, 130, 250
syntax errors, 4

T
tab (\t), 23
Taking Damage program,

177–179
Talk() member function,

Critter class, 279
tellStory()function, 183
terminating statements, 9
test expression, for loop, 82
text, displaying through standard

output, 8–9
this pointer, 326
Tic-Tac-Toe 2.0 game, 248
Tic-Tac-Toe Board program,

103–105
Tic-Tac-Toe game, 203–217

announceWinner()function,
217

askNumber()function, 209
askYesNo()function, 208–209
computerMove()function,

213–216
creating list of functions, 205
displayBoard()function,

210–211
humanMove()function, 213
humanPiece()function, 209–210
instructions()function, 208
isLegal()function, 212–213
main()function, 207–208
opponent()function, 210
pseudocode, 204
representing data, 204–205

setting up, 205–207
winner()function, 211–212

toupper() function, 155
triple() function, 176
Triple program, 174–176
true values

interpreting, 43
testing, 42–43

truth, 39–40
two-dimensional array, 103
type casting, 372
types

See also classes
defining new names, 23
fundamental, 18
modifiers, 18–19
understanding which to use, 24

U
unsigned int type, 19tbl
unsigned long int type, 19tbl
unsigned modifier, 18
unsigned short int type, 19tbl
uppercase() function, 145
using declarations, 12–13
using directive, 11, 13

V
values

See also assigning values
data member, accessing, 260
displaying, 22–23
references

accessing, 190
altering, 190–191

returning from main()
function, 10

variables, 16–24
assigning returning references,

202
assigning values, 21–22

to Boolean variables, 22
to character variables, 21–22
to floating point variables, 21
to integer variables, 21

declaring, 19–20
defining new names

for types, 23
displaying values, 22–23
fundamental types, 18
Game Stats program, 16–17
getting user input, 23
global. See global variables
initializing, 22

naming, 20–21
performing arithmetic

operations, 24–29
altering value of variable, 26
combined assignment

operators, 26–27
decrement operator, 27–28
Game Stats 2.0 program,

24–26
increment operator, 27–28
integer wrap around, 28–29

scopes, 161
type modifiers, 18–19
understanding which types to

use, 24
vector member functions, 115
vector objects, 115
vector STL container, 139
vector<Card*> m_Cards

member, BlackJack Hand class,
359

vector<Player> m_Players
member, BlackJack Game
class, 360

vectors, 116–122, 136–138
versus arrays, 146–147
calling member functions of

element, 121–122
clear()member function, 122
declaring, 119–120
defined, 146
element insertion and deletion,

138
empty()member function, 122
growth, 136–137

capacity()member
function, 136–137

reserve()member
function, 137

Hero's Inventory 2.0 program,
117–119

indexing, 121
looping iterators through,

126–128
altering iterator, 128
calling begin()vector

member function, 127
calling end()vector member

function, 127–128
dereferencing iterator, 128

pop_back()member function,
122

preparing to use, 119
push_back() member

function, 120
size()member function, 120

Index 409

virtual base class member
functions, 344–345

virtual bool IsHitting()
const = 0 member, BlackJack
GenericPlayer class, 359

virtual bool IsHitting()
const member
BlackJack House class, 360
BlackJack Player class, 359

virtual destructors, 347
virtual functions, 354–355, 380
virtual keyword, 268, 365
void Add(Card* pCard) member,

BlackJack Hand class, 359
void AdditionalCards member,

BlackJack Deck class, 360
void Bust() const member,

BlackJack GenericPlayer
class, 359

void Clear() member, BlackJack
Hand class, 359

void Deal(Hand& aHand)
member, BlackJack Deck
class, 360

void Flip() member, BlackJack
Card class, 359

void FlipFirstCard() member,
BlackJack House class, 360

void Lose() const member,
BlackJack Player class, 359

void Play() member, BlackJack
Game class, 360

void Populate() member,
BlackJack Deck class, 360

void Push() const member,
BlackJack Player class, 359

void setDisplay prototype,
173–174

void Shuffle() member,
BlackJack Deck class, 360

void Win() const member,
BlackJack Player class, 359

W
while (true) loop, 60, 79
while loops, 54–56, 77

defining variables inside, 166

versus for loop, 111
overview, 55–56
Play Again program, 54–55

whitespace, 7, 37, 226
Win32 Application

Wizard – Application
Settings, 385fig

winner()function, Tic-Tac-Toe
game, 211–212

Word Jumble game, 106–107
choosing word to jumble,

107–108
entering game loop, 109–110
exiting, 110
jumbling word, 108–109
setting up, 107
welcoming player, 109

Y
Yes or No program, 155–157

410 Index

	Contents
	Introduction
	Chapter 1 Types, Variables, and Standard I/O: Lost Fortune
	Introducing C++
	Using C++ for Games
	Creating an Executable File
	Dealing with Errors
	Understanding the ISO Standard

	Writing Your First C++ Program
	Introducing the Game Over Program
	Commenting Code
	Using Whitespace
	Including Other Files
	Defining the main() Function
	Displaying Text through the Standard Output
	Terminating Statements
	Returning a Value from main()

	Working with the std Namespace
	Introducing the Game Over 2.0 Program
	Employing a using Directive
	Introducing the Game Over 3.0 Program
	Employing using Declarations
	Understanding When to Employ using

	Using Arithmetic Operators
	Introducing the Expensive Calculator Program
	Adding, Subtracting, and Multiplying
	Understanding Integer and Floating Point Division
	Using the Modulus Operator
	Understanding Order of Operations

	Declaring and Initializing Variables
	Introducing the Game Stats Program
	Understanding Fundamental Types
	Understanding Type Modifiers
	Declaring Variables
	Naming Variables
	Assigning Values to Variables
	Initializing Variables
	Displaying Variable Values
	Getting User Input
	Defining New Names for Types
	Understanding Which Types to Use

	Performing Arithmetic Operations with Variables
	Introducing the Game Stats 2.0 Program
	Altering the Value of a Variable
	Using Combined Assignment Operators
	Using Increment and Decrement Operators
	Dealing with Integer Wrap Around

	Working with Constants
	Introducing the Game Stats 3.0 Program
	Using Constants
	Using Enumerations

	Introducing Lost Fortune
	Setting Up the Program
	Getting Information from the Player
	Telling the Story

	Summary
	Questions and Answers
	Discussion Questions
	Exercises

	Chapter 2 Truth, Branching, and the Game Loop: Guess My Number
	Understanding Truth
	Using the if Statement
	Introducing the Score Rater Program
	Testing true and false
	Interpreting a Value as true or false
	Using Relational Operators
	Nesting if Statements

	Using the else Clause
	Introducing the Score Rater 2.0 Program
	Creating Two Ways to Branch

	Using a Sequence of if Statements with else Clauses
	Introducing the Score Rater 3.0 Program
	Creating a Sequence of if Statements with else Clauses

	Using the switch Statement
	Introducing the Menu Chooser Program
	Creating Multiple Ways to Branch

	Using while Loops
	Introducing the Play Again Program
	Looping with a while Loop

	Using do Loops
	Introducing the Play Again 2.0 Program
	Looping with a do Loop

	Using break and continue Statements
	Introducing the Finicky Counter Program
	Creating a while (true) Loop
	Using the break Statement to Exit a Loop
	Using the continue Statement to Jump Back to the Top of a Loop
	Understanding When to Use break and continue

	Using Logical Operators
	Introducing the Designers Network Program
	Using the Logical AND Operator
	Using the Logical OR Operator
	Using the Logical NOT Operator
	Understanding Order of Operations

	Generating Random Numbers
	Introducing the Die Roller Program
	Calling the rand() Function
	Seeding the Random Number Generator
	Calculating a Number within a Range

	Understanding the Game Loop
	Introducing Guess My Number
	Applying the Game Loop
	Setting Up the Game
	Creating the Game Loop
	Wrapping Up the Game

	Summary
	Questions and Answers
	Discussion Questions
	Exercises

	Chapter 3 For Loops, Strings, and Arrays: Word Jumble
	Using for Loops
	Introducing the Counter Program
	Counting with for Loops
	Using Empty Statements in for Loops
	Nesting for Loops

	Understanding Objects
	Using String Objects
	Introducing the String Tester Program
	Creating string Objects
	Concatenating string Objects
	Using the size() Member Function
	Indexing a string Object
	Iterating through string Objects
	Using the find() Member Function
	Using the erase() Member Function
	Using the empty() Member Function

	Using Arrays
	Introducing the Hero's Inventory Program
	Creating Arrays
	Indexing Arrays
	Accessing Member Functions of an Array Element
	Being Aware of Array Bounds

	Understanding C-Style Strings
	Using Multidimensional Arrays
	Introducing the Tic-Tac-Toe Board Program
	Creating Multidimensional Arrays
	Indexing Multidimensional Arrays

	Introducing Word Jumble
	Setting Up the Program
	Picking a Word to Jumble
	Jumbling the Word
	Welcoming the Player
	Entering the Game Loop
	Saying Goodbye

	Summary
	Questions and Answers
	Discussion Questions
	Exercises

	Chapter 4 The Standard Template Library: Hangman
	Introducing the Standard Template Library
	Using Vectors
	Introducing the Hero's Inventory 2.0 Program
	Preparing to Use Vectors
	Declaring a Vector
	Using the push_back() Member Function
	Using the size() Member Function
	Indexing Vectors
	Calling Member Functions of an Element
	Using the pop_back() Member Function
	Using the clear() Member Function
	Using the empty() Member Function

	Using Iterators
	Introducing the Hero's Inventory 3.0 Program
	Declaring Iterators
	Looping through a Vector
	Changing the Value of a Vector Element
	Accessing Member Functions of a Vector Element
	Using the insert() Vector Member Function
	Using the erase() Vector Member Function

	Using Algorithms
	Introducing the High Scores Program
	Preparing to Use Algorithms
	Using the find() Algorithm
	Using the random_shuffle() Algorithm
	Using the sort() Algorithm

	Understanding Vector Performance
	Examining Vector Growth
	Examining Element Insertion and Deletion

	Examining Other STL Containers
	Planning Your Programs
	Using Pseudocode
	Using Stepwise Refinement

	Introducing Hangman
	Planning the Game
	Setting Up the Program
	Initializing Variables and Constants
	Entering the Main Loop
	Getting the Player's Guess
	Ending the Game

	Summary
	Questions and Answers
	Discussion Questions
	Exercises

	Chapter 5 Functions: Mad Lib
	Creating Functions
	Introducing the Instructions Program
	Declaring Functions
	Defining Functions
	Calling Functions
	Understanding Abstraction

	Using Parameters and Return Values
	Introducing the Yes or No Program
	Returning a Value
	Accepting Values into Parameters
	Understanding Encapsulation

	Understanding Software Reuse
	Working with Scopes
	Introducing the Scoping Program
	Working with Separate Scopes
	Working with Nested Scopes

	Using Global Variables
	Introducing the Global Reach Program
	Declaring Global Variables
	Accessing Global Variables
	Hiding Global Variables
	Altering Global Variables
	Minimizing the Use of Global Variables

	Using Global Constants
	Using Default Arguments
	Introducing the Give Me a Number Program
	Specifying Default Arguments
	Assigning Default Arguments to Parameters
	Overriding Default Arguments

	Overloading Functions
	Introducing the Triple Program
	Creating Overloaded Functions
	Calling Overloaded Functions

	Inlining Functions
	Introducing the Taking Damage Program
	Specifying Functions for Inlining
	Calling Inlined Functions

	Introducing the Mad Lib Game
	Setting Up the Program
	The main() Function
	The askText() Function
	The askNumber() Function
	The tellStory() Function

	Summary
	Questions and Answers
	Discussion Questions
	Exercises

	Chapter 6 References: Tic-Tac-Toe
	Using References
	Introducing the Referencing Program
	Creating References
	Accessing Referenced Values
	Altering Referenced Values

	Passing References to Alter Arguments
	Introducing the Swap Program
	Passing by Value
	Passing by Reference

	Passing References for Efficiency
	Introducing the Inventory Displayer Program
	Understanding the Pitfalls of Reference Passing
	Declaring Parameters as Constant References
	Passing a Constant Reference

	Deciding How to Pass Arguments
	Returning References
	Introducing the Inventory Referencer Program
	Returning a Reference
	Displaying the Value of a Returned Reference
	Assigning a Returned Reference to a Reference
	Assigning a Returned Reference to a Variable
	Altering an Object through a Returned Reference

	Introducing the Tic-Tac-Toe Game
	Planning the Game
	Setting Up the Program
	The main() Function
	The instructions() Function
	The askYesNo() Function
	The askNumber() Function
	The humanPiece() Function
	The opponent() Function
	The displayBoard() Function
	The winner() Function
	The isLegal() Function
	The humanMove() Function
	The computerMove() Function
	The announceWinner() Function

	Summary
	Questions and Answers
	Discussion Questions
	Exercises

	Chapter 7 Pointers: Tic-Tac-Toe 2.0
	Understanding Pointer Basics
	Introducing the Pointing Program
	Declaring Pointers
	Initializing Pointers
	Assigning Addresses to Pointers
	Dereferencing Pointers
	Reassigning Pointers
	Using Pointers to Objects

	Understanding Pointers and Constants
	Using a Constant Pointer
	Using a Pointer to a Constant
	Using a Constant Pointer to a Constant
	Summarizing Constants and Pointers

	Passing Pointers
	Introducing the Swap Pointer Version Program
	Passing by Value
	Passing a Constant Pointer

	Returning Pointers
	Introducing the Inventory Pointer Program
	Returning a Pointer
	Using a Returned Pointer to Display a Value
	Assigning a Returned Pointer to a Pointer
	Assigning to a Variable the Value Pointed to by a Returned Pointer
	Altering an Object through a Returned Pointer

	Understanding the Relationship between Pointers and Arrays
	Introducing the Array Passer Program
	Using an Array Name as a Constant Pointer
	Passing and Returning Arrays

	Introducing the Tic-Tac-Toe 2.0 Game
	Summary
	Questions and Answers
	Discussion Questions
	Exercises

	Chapter 8 Classes: Critter Caretaker
	Defining New Types
	Introducing the Simple Critter Program
	Defining a Class
	Defining Member Functions
	Instantiating Objects
	Accessing Data Members
	Calling Member Functions

	Using Constructors
	Introducing the Constructor Critter Program
	Declaring and Defining a Constructor
	Calling a Constructor Automatically

	Setting Member Access Levels
	Introducing the Private Critter Program
	Specifying Public and Private Access Levels
	Defining Accessor Member Functions
	Defining Constant Member Functions

	Using Static Data Members and Member Functions
	Introducing the Static Critter Program
	Declaring and Initializing Static Data Members
	Accessing Static Data Members
	Declaring and Defining Static Member Functions
	Calling Static Member Functions

	Introducing the Critter Caretaker Game
	Planning the Game
	Planning the Pseudocode
	The Critter Class
	The main() Function

	Summary
	Questions and Answers
	Discussion Questions
	Exercises

	Chapter 9 Advanced Classes and Dynamic Memory: Game Lobby
	Using Aggregation
	Introducing the Critter Farm Program
	Using Object Data Members
	Using Container Data Members

	Using Friend Functions and Operator Overloading
	Introducing the Friend Critter Program
	Creating Friend Functions
	Overloading Operators

	Dynamically Allocating Memory
	Introducing the Heap Program
	Using the new Operator
	Using the delete Operator
	Avoiding Memory Leaks

	Working with Data Members and the Heap
	Introducing the Heap Data Member Program
	Declaring Data Members that Point to Values on the Heap
	Declaring and Defining Destructors
	Declaring and Defining Copy Constructors
	Overloading the Assignment Operator

	Introducing the Game Lobby Program
	The Player Class
	The Lobby Class
	The Lobby::AddPlayer() Member Function
	The Lobby::RemovePlayer() Member Function
	The Lobby::Clear() Member Function
	The operator<<() Member Function
	The main() Function

	Summary
	Questions and Answers
	Discussion Questions
	Exercises

	Chapter 10 Inheritance and Polymorphism: Blackjack
	Introducing Inheritance
	Introducing the Simple Boss Program
	Deriving from a Base Class
	Instantiating Objects from a Derived Class
	Using Inherited Members

	Controlling Access under Inheritance
	Introducing the Simple Boss 2.0 Program
	Using Access Modifiers with Class Members
	Using Access Modifiers when Deriving Classes

	Calling and Overriding Base Class Member Functions
	Introducing the Overriding Boss Program
	Calling Base Class Constructors
	Declaring Virtual Base Class Member Functions
	Overriding Virtual Base Class Member Functions
	Calling Base Class Member Functions

	Using Overloaded Assignment Operators and Copy Constructors in Derived Classes
	Introducing Polymorphism
	Introducing the Polymorphic Bad Guy Program
	Using Base Class Pointers to Derived Class Objects
	Defining Virtual Destructors

	Using Abstract Classes
	Introducing the Abstract Creature Program
	Declaring Pure Virtual Functions
	Deriving a Class from an Abstract Class

	Introducing the Blackjack Game
	Designing the Classes
	Planning the Game Logic
	The Card Class
	The Hand Class
	The GenericPlayer Class
	The Player Class
	The House Class
	The Deck Class
	The Game Class
	The main() Function
	Overloading the operator<<() Function

	Summary
	Questions and Answers
	Discussion Questions
	Exercises

	Appendix A: Creating Your First C++ Program
	Appendix B: Operator Precedence
	Appendix C: Keywords
	Appendix D: ASCII Chart
	Appendix E: Escape Sequences
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

