

C
IN A NUTSHELL

Other resources from O’Reilly

Related titles C Pocket Reference

Practical C Programming

Secure Programming
Cookbook
for C and C++

Programming Embedded
Systems with C
and C++

Programming with GNU
Software

Objective-C Pocket
Reference

Prefactoring

Practical Development
Environments

oreilly.com oreilly.com is more than a complete catalog of O’Reilly
books. You’ll also find links to news, events, articles, web-
logs, sample chapters, and code examples.

oreillynet.com is the essential portal for developers inter-
ested in open and emerging technologies, including new
platforms, programming languages, and operating systems.

Conferences O’Reilly brings diverse innovators together to nurture the
ideas that spark revolutionary industries. We specialize in
documenting the latest tools and systems, translating the
innovator’s knowledge into useful skills for those in the
trenches. Visit conferences.oreilly.com for our upcoming
events.

Safari Bookshelf (safari.oreilly.com) is the premier online
reference library for programmers and IT professionals.
Conduct searches across more than 1,000 books. Sub-
scribers can zero in on answers to time-critical questions
in a matter of seconds. Read the books on your Book-
shelf from cover to cover or simply flip to the page you
need. Try it today for free.

C
IN A NUTSHELL

Peter Prinz and Tony Crawford

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

C in a Nutshell
by Peter Prinz and Tony Crawford

Copyright © 2006 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (safari.oreilly.com). For more information, contact
our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Jonathan Gennick

Production Editor: A. J. Fox

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Printing History:

December 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly Media, Inc. The In a Nutshell series designations, C in a Nutshell, the
image of a cow, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media,
Inc. was aware of a trademark claim, the designations have been printed in caps or initial
caps.

While every precaution has been taken in the preparation of this book, the publisher and
authors assume no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

ISBN: 978-0-596-00697-6

[LSI] [2012-05-11]

v

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Chapter 1

Table of Contents

Preface . xi

Part I. Language

1. Language Basics . 3
Characteristics of C 3

The Structure of C Programs 4

Source Files 6

Comments 7

Character Sets 8

Identifiers 13

How the C Compiler Works 16

2. Types . 20
Typology 20

Integer Types 21

Floating-Point Types 26

Complex Floating-Point Types (C99) 28

Enumerated Types 29

The Type void 30

3. Literals . 32
Integer Constants 32

Floating-Point Constants 33

vi | Table of Contents

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Character Constants 34

String Literals 37

4. Type Conversions . 40
Conversion of Arithmetic Types 41

Conversion of Nonarithmetic Types 48

5. Expressions and Operators . 55
How Expressions Are Evaluated 56

Operators in Detail 59

Constant Expressions 81

6. Statements . 83
Expression Statements 83

Block Statements 84

Loops 85

Selection Statements 89

Unconditional Jumps 92

7. Functions . 96
Function Definitions 96

Function Declarations 103

How Functions Are Executed 104

Pointers as Arguments and Return Values 104

Inline Functions 106

Recursive Functions 107

Variable Numbers of Arguments 108

8. Arrays . 111
Defining Arrays 111

Accessing Array Elements 113

Initializing Arrays 114

Strings 116

Multidimensional Arrays 117

Arrays as Arguments of Functions 120

9. Pointers . 122
Declaring Pointers 122

Operations with Pointers 125

Pointers and Type Qualifiers 129

Pointers to Arrays and Arrays of Pointers 132

Pointers to Functions 136

Table of Contents | vii

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

10. Structures, Unions, and Bit-Fields . 139
Structures 139

Unions 149

Bit-Fields 151

11. Declarations . 153
General Syntax 153

Type Names 160

typedef Declarations 161

Linkage of Identifiers 163

Storage Duration of Objects 164

Initialization 165

12. Dynamic Memory Management . 167
Allocating Memory Dynamically 168

Characteristics of Allocated Memory 169

Resizing and Releasing Memory 170

An All-Purpose Binary Tree 171

Characteristics 172

Implementation 172

13. Input and Output . 182
Streams 182

Files 183

Opening and Closing Files 186

Reading and Writing 188

Random File Access 205

14. Preprocessing Directives . 209
Inserting the Contents of Header Files 210

Defining and Using Macros 211

Conditional Compiling 218

Defining Line Numbers 220

Generating Error Messages 221

The #pragma Directive 221

The _Pragma Operator 222

Predefined Macros 223

viii | Table of Contents

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Part II. Standard Library

15. The Standard Headers . 227
Using the Standard Headers 227

Contents of the Standard Headers 230

16. Functions at a Glance . 252
Input and Output 252

Mathematical Functions 253

Character Classification and Conversion 260

String Processing 262

Multibyte Characters 263

Converting Between Numbers and Strings 264

Searching and Sorting 264

Memory Block Handling 265

Dynamic Memory Management 265

Date and Time 266

Process Control 267

Internationalization 268

Nonlocal Jumps 269

Debugging 269

Error Messages 270

17. Standard Library Functions . 271

Part III. Basic Tools

18. Compiling with GCC . 491
The GNU Compiler Collection 491

Obtaining and Installing GCC 492

Compiling C Programs with GCC 493

C Dialects 501

Compiler Warnings 502

Optimization 503

Debugging 507

Profiling 507

Option and Environment Variable Summary 508

Table of Contents | ix

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

19. Using make to Build C Programs . 512
Targets, Prerequisites, and Commands 512

The Makefile 513

Rules 513

Comments 520

Variables 520

Phony Targets 527

Other Target Attributes 528

Macros 529

Functions 530

Directives 534

Running make 537

20. Debugging C Programs with GDB . 545
Installing GDB 546

A Sample Debugging Session 546

Starting GDB 550

Using GDB Commands 554

Index . 577

xi

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Chapter 2

Preface

This book is a complete reference to the C programming language and the C
runtime library. As a Nutshell book, its purpose is to serve as a convenient, reli-
able companion for C programmers in their day-to-day work. It describes all the
elements of the language and illustrates their use with numerous examples.

The present description of the C language is based on the 1999 international C
standard, ISO/IEC 9899:1999, including the Technical Corrigenda, TC1 of 2001
and TC2 of 2004. This standard, widely known as C99, is an extension of the ISO/
IEC 9899:1990 standard and the 1995 Normative Addendum 1 (ISO/IEC 9899/
AMD1:1995). The 1990 ISO/IEC standard corresponds to the ANSI standard
X3.159, which was ratified in late 1989 and is commonly called ANSI C or C89.

The new features of the 1999 C standard are not yet fully supported by all
compilers and standard library implementations. In this book we have therefore
labeled 1999 extensions, such as new standard library functions that were not
mentioned in earlier standards, with the abbreviation C99.

This book is not an introduction to programming in C. Although it covers the
fundamentals of the language, it is not organized or written as a tutorial. If you are
new to C, we assume that you have read at least one of the many introductory
books, or that you are familiar with a related language, such as Java or C++.

How This Book Is Organized
This book is divided into three parts. The first part describes the C language in the
strict sense of the term; the second part describes the standard library; and the
third part describes the process of compiling and testing programs with the
popular tools in the GNU software collection.

xii | Preface

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Part I

Part I, which deals with the C language, includes Chapters 1 through 14. After
Chapter 1, which describes the general concepts and elements of the language,
each chapter is devoted to a specific topic, such as types, statements, or pointers.
Although the topics are ordered so that the fundamental concepts for each new
topic have been presented in an earlier chapter—types, for example, are described
before expressions and operators, which come before statements, and so on—you
may sometimes need to follow references to later chapters to fill in related details.
For example, some discussion of pointers and arrays is necessary in Chapter 5
(which covers expressions and operators), even though pointers and arrays are not
described in full detail until Chapters 8 and 9.

Chapter 1, Language Basics
Describes the characteristics of the language and how C programs are struc-
tured and compiled. This chapter introduces basic concepts such as the
translation unit, character sets, and identifiers.

Chapter 2, Types
Provides an overview of types in C and describes the basic types, the type
void, and enumerated types.

Chapter 3, Literals
Describes numeric constants, character constants, and string literals,
including escape sequences.

Chapter 4, Type Conversions
Describes implicit and explicit type conversions, including integer promotion
and the usual arithmetic conversions.

Chapter 5, Expressions and Operators
Describes the evaluation of expressions, all the operators, and their compat-
ible operands.

Chapter 6, Statements
Describes C statements such as blocks, loops, and jumps.

Chapter 7, Functions
Describes function definitions and function calls, including recursive and
inline functions.

Chapter 8, Arrays
Describes fixed-length and variable-length arrays, including strings, array
initialization, and multidimensional arrays.

Chapter 9, Pointers
Describes the definition and use of pointers to objects and functions.

Chapter 10, Structures, Unions, and Bit-Fields
Describes the organization of data in these user-defined derived types.

Preface | xiii

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Chapter 11, Declarations
Describes the general syntax of a declaration, identifier linkage, and the
storage duration of objects.

Chapter 12, Dynamic Memory Management
Describes the standard library’s dynamic memory management functions,
illustrating their use in a sample implementation of a generalized binary tree.

Chapter 13, Input and Output
Describes the C concept of input and output, with an overview of the use of
the standard I/O library.

Chapter 14, Preprocessing Directives
Describes the definition and use of macros, conditional compiling, and all the
other preprocessor directives and operators.

Part II

Part II, consisting of Chapters 15, 16, and 17, is devoted to the C standard library.
It provides an overview of standard headers and also contains a detailed function
reference.

Chapter 15, The Standard Headers
Describes contents of the headers and their use. The headers contain all of
the standard library’s macros and type definitions.

Chapter 16, Functions at a Glance
Provides an overview of the standard library functions, organized by areas of
application, such as “Mathematical Functions,” “Time and Date Functions,”
and so on.

Chapter 17, Standard Library Functions
Describes each standard library function in detail, in alphabetical order, and
contains examples to illustrate the use of each function.

Part III

The third part of this book provides the necessary knowledge of the C
programmer’s basic tools: the compiler, the make utility, and the debugger. The
tools described here are those in the GNU software collection.

Chapter 18, Compiling with GCC
Describes the principal capabilities that the widely used compiler offers for C
programmers.

Chapter 19, Using make to Build C Programs
Describes how to use the make program to automate the compiling process
for large programs.

Chapter 20, Debugging C Programs with GDB
Describes how to run a program under the control of the GNU debugger and
how to analyze programs’ runtime behavior to find logical errors.

xiv | Preface

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Further Reading
In addition to works mentioned at appropriate points in the text, there are a
number of resources for readers who want more technical detail than even this
book can provide. The international working group on C standardization has an
official home page at http://www.open-std.org/jtc1/sc22/wg14, with links to the
latest version of the C99 standard and current projects of the working group.

For readers who are interested in not only the what and how of C, but also the
why, the WG14 site also has a link to the “C99 Rationale”: this is a nonnormative
but current document that describes some of the motivations and constraints
involved in the standardization process. The C89 Rationale is online at http://
www.lysator.liu.se/c/rat/title.html. Furthermore, for those who may wonder how C
“got to be that way” in the first place, the originator of C, Dennis Ritchie, has an
article titled “The Development of the C Language” as well as other historical
documents on his Bell Labs web site, http://cm.bell-labs.com/cm/cs/who/dmr.

Readers who want details on floating-point math beyond the scope of C may wish
to start with David Goldberg’s thorough introduction, “What Every Computer
Scientist Should Know About Floating-Point Arithmetic,” currently available
online at http://docs.sun.com/source/806-3568/ncg_goldberg.html.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Highlights new terms; indicates filenames, file extensions, URLs, directories,
and Unix utilities.

Constant width
Indicates all elements of C source code: keywords, operators, variables, func-
tions, macros, types, parameters, and literals. Also used for console
commands and options, and the output from such commands.

Constant width bold
Highlights the function or statement under discussion in code examples. In
compiler, make, and debugger sessions, this font indicates command input to
be typed literally by the user.

Constant width italic
Indicates parameters in function prototypes, or placeholders to be replaced
with your own values.

Plain text
Indicates keys such as Return, Tab, and Ctrl.

Preface | xv

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

This icon signifies a tip, suggestion, or general note.

This icon signifies a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code
in this book in your programs and documentation. You do not need to contact us
for permission unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “C in a Nutshell by Peter Prinz
and Tony Crawford. Copyright 2006 O’Reilly Media, Inc., 0-596-00697-7.”

If you feel that your use of code examples falls outside fair use or the permission
given here, feel free to contact us at permissions@oreilly.com.

Safari® Enabled
When you see a Safari® Enabled icon on the cover of your favorite
technology book, that means the book is available online through
the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual
library that lets you easily search thousands of top tech books, cut and paste code
samples, download chapters, and find quick answers when you need the most
accurate, current information. Try it for free at http://safari.oreilly.com.

Your Questions and Comments
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

xvi | Preface

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/cinanut

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Acknowledgments
Both of us want to thank Jonathan Gennick, our editor, for originally bringing
us together and starting us off on this book, and for all his guidance along the
way. We also thank our technical reviewers, Matt Crawford, David Kitabjian,
and Chris LaPre, for their valuable criticism of our manuscript, and we’re
grateful to our production editor, Abby Fox, for all her attention to making our
book look good.

Peter

I would like to thank Tony first of all for the excellent collaboration. My heartfelt
thanks also go to all my friends for the understanding they showed again and
again when I had so little time for them. Last but not least, I dedicate this book to
my daughters, Vivian and Jeanette—both of them now students of computer
science—who strengthened my ambition to carry out this book project.

Tony

I have enjoyed working on this book as a very rewarding exercise in teamwork. I
thank Peter for letting me take all the space I could fill in this project. The oppor-
tunity to work with my brother Matt in the review phase was particularly
gratifying.

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

I
Language

3

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Chapter 1Language Basics

1
Language Basics

This chapter describes the basic characteristics and elements of the C program-
ming language.

Characteristics of C
C is a general-purpose, procedural programming language. Dennis Ritchie first
devised C in the 1970s at AT&T Bell Laboratories in Murray Hill, New Jersey, for
the purpose of implementing the Unix operating system and utilities with the
greatest possible degree of independence from specific hardware platforms. The
key characteristics of the C language are the qualities that made it suitable for that
purpose:

• Source code portability

• The ability to operate “close to the machine”

• Efficiency

As a result, the developers of Unix were able to write most of the operating system
in C, leaving only a minimum of system-specific hardware manipulation to be
coded in assembler.

C’s ancestors are the typeless programming languages BCPL (the Basic Combined
Programming Language), developed by Martin Richards; and B, a descendant of
BCPL, developed by Ken Thompson. A new feature of C was its variety of data
types: characters, numeric types, arrays, structures, and so on. Brian Kernighan
and Dennis Ritchie published an official description of the C programming
language in 1978. As the first de facto standard, their description is commonly
referred to simply as “K&R.”* C owes its high degree of portability to a compact

* The second edition, revised to reflect the first ANSI C standard, is available as The C Programming
Language, 2nd ed., by Brian W. Kernighan and Dennis M. Ritchie (Englewood Cliffs, N.J.: Prentice
Hall, 1988).

4 | Chapter 1: Language Basics

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

core language that contains few hardware-dependent elements. For example, the
C language proper has no file access or dynamic memory management state-
ments. In fact, there aren’t even any statements for console input and output.
Instead, the extensive standard C library provides the functions for all of these
purposes.

This language design makes the C compiler relatively compact and easy to port to
new systems. Furthermore, once the compiler is running on a new system, you
can compile most of the functions in the standard library with no further modifi-
cation, because they are in turn written in portable C. As a result, C compilers are
available for practically every computer system.

Because C was expressly designed for system programming, it is hardly surprising
that one of its major uses today is in programming embedded systems. At the
same time, however, many developers use C as a portable, structured high-level
language to write programs such as powerful word processor, database, and
graphics applications.

The Structure of C Programs
The procedural building blocks of a C program are functions, which can invoke
one another. Every function in a well-designed program serves a specific purpose.
The functions contain statements for the program to execute sequentially, and
statements can also be grouped to form block statements, or blocks. As the
programmer, you can use the ready-made functions in the standard library, or
write your own whenever no standard function fulfills your intended purpose. In
addition to the standard C library, there are many specialized libraries available,
such as libraries of graphics functions. However, by using such nonstandard
libraries, you limit the portability of your program to those systems to which the
libraries themselves have been ported.

Every C program must define at least one function of its own, with the special
name main(): this is the first function invoked when the program starts. The
main() function is the program’s top level of control, and can call other functions
as subroutines.

Example 1-1 shows the structure of a simple, complete C program. We will discuss
the details of declarations, function calls, output streams and more elsewhere in
this book. For now, we are simply concerned with the general structure of the C
source code. The program in Example 1-1 defines two functions, main() and
circularArea(). The main() function calls circularArea() to obtain the area of a
circle with a given radius, and then calls the standard library function printf() to
output the results in formatted strings on the console.

Example 1-1. A simple C program

// circle.c: Calculate and print the areas of circles

#include <stdio.h> // Preprocessor directive

double circularArea(double r); // Function declaration (prototype form)

The Structure of C Programs | 5

Lan
g

u
ag

e
B

asics

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Output:

 Areas of Circles

 Radius Area

 1.0 3.14
 5.0 78.54

Note that the compiler requires a prior declaration of each function called. The
prototype of circularArea() in the third line of Example 1-1 provides the infor-
mation needed to compile a statement that calls this function. The prototypes of
standard library functions are found in standard header files. Because the header
file stdio.h contains the prototype of the printf() function, the preprocessor direc-
tive #include <stdio.h> declares the function indirectly by directing the compiler’s
preprocessor to insert the contents of that file. (See also the section “How the C
Compiler Works,” at the end of this chapter.)

You may arrange the functions defined in a program in any order. In Example 1-1,
we could just as well have placed the function circularArea() before the function
main(). If we had, then the prototype declaration of circularArea() would be
superfluous, because the definition of the function is also a declaration.

Function definitions cannot be nested inside one another: you can define a local
variable within a function block, but not a local function.

int main() // Definition of main() begins
{
 double radius = 1.0, area = 0.0;

 printf(" Areas of Circles\n\n");
 printf(" Radius Area\n"
 "-------------------------\n");

 area = circularArea(radius);
 printf("%10.1f %10.2f\n", radius, area);

 radius = 5.0;
 area = circularArea(radius);
 printf("%10.1f %10.2f\n", radius, area);

 return 0;
}

// The function circularArea() calculates the area of a circle
// Parameter: The radius of the circle
// Return value: The area of the circle

double circularArea(double r) // Definition of circularArea() begins
{
 const double pi = 3.1415926536; // Pi is a constant
 return pi * r * r;
}

Example 1-1. A simple C program (continued)

6 | Chapter 1: Language Basics

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Source Files
The function definitions, global declarations and preprocessing directives make
up the source code of a C program. For small programs, the source code is written
in a single source file. Larger C programs consist of several source files. Because
the function definitions generally depend on preprocessor directives and global
declarations, source files usually have the following internal structure:

1. Preprocessor directives

2. Global declarations

3. Function definitions

C supports modular programming by allowing you to organize a program in as
many source and header files as desired, and to edit and compile them separately.
Each source file generally contains functions that are logically related, such as the
program’s user interface functions. It is customary to label C source files with the
filename suffix .c.

Examples 1-2 and 1-3 show the same program as Example 1-1, but divided into
two source files.

When a program consists of several source files, you need to declare the same
functions and global variables, and define the same macros and constants, in
many of the files. These declarations and definitions thus form a sort of file header
that is more or less constant throughout a program. For the sake of simplicity and
consistency, you can write this information just once in a separate header file, and
then reference the header file using an #include directive in each source code file.
Header files are customarily identified by the filename suffix .h. A header file
explicitly included in a C source file may in turn include other files.

Example 1-2. The first source file, containing the main() function

// circle.c: Prints the areas of circles.
// Uses circulararea.c for the math

#include <stdio.h>
double circularArea(double r);

int main()
{
 /* ... As in Example 1-1 ... */
}

Example 1-3. The second source file, containing the circularArea() function

// circulararea.c: Calculates the areas of circles.
// Called by main() in circle.c

double circularArea(double r)
{
 /* ... As in Example 1-1 ... */
}

Comments | 7

Lan
g

u
ag

e
B

asics

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Each C source file, together with all the header files included in it, makes up a
translation unit. The compiler processes the contents of the translation unit
sequentially, parsing the source code into tokens, its smallest semantic units, such
as variable names and operators. See the section “Tokens,” at the end of this
chapter for more detail.

Any number of whitespace characters can occur between two successive tokens,
allowing you a great deal of freedom in formatting the source code. There are no
rules for line breaks or indenting, and you may use spaces, tabs, and blank lines
liberally to format “human-readable” source code. The preprocessor directives are
slightly less flexible: a preprocessor directive must always appear on a line by
itself, and no characters except spaces or tabs may precede the hash mark (#) that
begins the line.

There are many different conventions and “house styles” for source code format-
ting. Most of them include the following common rules:

• Start a new line for each new declaration and statement.

• Use indentation to reflect the nested structure of block statements.

Comments
You should use comments generously in the source code to document your C
programs. There are two ways to insert a comment in C: block comments begin
with /* and end with */, and line comments begin with // and end with the next
new line character.

You can use the /* and */ delimiters to begin and end comments within a line,
and to enclose comments of several lines. For example, in the following function
prototype, the ellipsis (...) signifies that the open() function has a third, optional
parameter. The comment explains the usage of the optional parameter:

int open(const char *name, int mode, ... /* int permissions */);

You can use // to insert comments that fill an entire line, or to write source code
in a two-column format, with program code on the left and comments on the
right:

const double pi = 3.1415926536; // Pi is constant

These line comments were officially added to the C language by the C99 stan-
dard, but most compilers already supported them even before C99. They are
sometimes called “C++-style” comments, although they originated in C’s fore-
runner, BCPL.

Inside the quotation marks that delimit a character constant or a string literal, the
characters /* and // do not start a comment. For example, the following state-
ment contains no comments:

printf("Comments in C begin with /* or //.\n");

The only thing that the preprocessor looks for in examining the characters in a
comment is the end of the comment; thus it is not possible to nest block

8 | Chapter 1: Language Basics

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

comments. However, you can insert /* and */ to comment out part of a program
that contains line comments:

/* Temporarily removing two lines:
 const double pi = 3.1415926536; // Pi is constant
 area = pi * r * r // Calculate the area
 Temporarily removed up to here */

If you want to comment out part of a program that contains block comments, you
can use a conditional preprocessor directive (described in Chapter 14):

#if 0
 const double pi = 3.1415926536; /* Pi is constant */
 area = pi * r * r /* Calculate the area */
#endif

The preprocessor replaces each comment with a space. The character sequence
min/*max*/Value thus becomes the two tokens min Value.

Character Sets
C makes a distinction between the environment in which the compiler translates
the source files of a program—the translation environment—and the environment
in which the compiled program is executed, the execution environment. Accord-
ingly, C defines two character sets: the source character set is the set of characters
that may be used in C source code, and the execution character set is the set of
characters that can be interpreted by the running program. In many C implemen-
tations, the two character sets are identical. If they are not, then the compiler
converts the characters in character constants and string literals in the source code
into the corresponding elements of the execution character set.

Each of the two character sets includes both a basic character set and extended
characters. The C language does not specify the extended characters, which are
usually dependent on the local language. The extended characters together with
the basic character set make up the extended character set.

The basic source and execution character sets both contain the following types of
characters:

The letters of the Latin alphabet
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

The decimal digits
0 1 2 3 4 5 6 7 8 9

The following 29 punctuation marks
! " # % & ' () * + , - . / : ; < = > ? [\] ^ _ { | } ~

The five whitespace characters
Space, horizontal tab, vertical tab, new line, and form feed

The basic execution character set also includes four nonprintable characters: the
null character, which acts as the termination mark in a character string; alert;
backspace; and carriage return. To represent these characters in character and

Character Sets | 9

Lan
g

u
ag

e
B

asics

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

string literals, type the corresponding escape sequences beginning with a back-
slash: \0 for the null character, \a for alert, \b for backspace, and \r for carriage
return. See Chapter 3 for more details.

The actual numeric values of characters—the character codes—may vary from
one C implementation to another. The language itself imposes only the following
conditions:

• Each character in the basic character set must be representable in one byte.

• The null character is a byte in which all bits are 0.

• The value of each decimal digit after 0 is greater by one than that of the pre-
ceding digit.

Wide Characters and Multibyte Characters

C was originally developed in an English-speaking environment where the domi-
nant character set was the 7-bit ASCII code. Since then, the 8-bit byte has become
the most common unit of character encoding, but software for international use
generally has to be able to represent more different characters than can be coded
in one byte, and internationally, a variety of multibyte character encoding
schemes have been in use for decades to represent non-Latin alphabets and the
nonalphabetic Chinese, Japanese, and Korean writing systems. In 1994, with the
adoption of “Normative Addendum 1,” ISO C standardized two ways of repre-
senting larger character sets: wide characters, in which the same bit width is used
for every character in a character set, and multibyte characters, in which a given
character can be represented by one or several bytes, and the character value of a
given byte sequence can depend on its context in a string or stream.

Although C now provides abstract mechanisms to manipulate and
convert the different kinds of encoding schemes, the language itself
doesn’t define or specify any encoding scheme, or any character set
except the basic source and execution character sets described in
the previous section. In other words, it is left up to individual
implementations to specify how to encode wide characters, and
what multibyte encoding schemes to support.

Since the 1994 addendum, C has provided not only the type char, but also wchar_t,
the wide character type. This type, defined in the header file stddef.h, is large enough
to represent any element of the given implementation’s extended character sets.

Although the C standard does not require support for Unicode character sets,
many implementations use the Unicode transformation formats UTF-16 and
UTF-32 (see http://www.unicode.org) for wide characters. The Unicode standard is
largely identical with the ISO/IEC 10646 standard, and is a superset of many
perviously existing character sets, including the 7-bit ASCII code. When the
Unicode standard is implemented, the type wchar_t is at least 16 or 32 bits wide,
and a value of type wchar_t represents one Unicode character. For example, the
following definition initializes the variable wc with the Greek letter α.

wchar_t wc = '\x3b1';

10 | Chapter 1: Language Basics

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The escape sequence beginning with \x indicates a character code in hexadecimal
notation to be stored in the variable—in this case, the code for a lowercase alpha.

In multibyte character sets, each character is coded as a sequence of one or more
bytes. Both the source and execution character sets may contain multibyte charac-
ters. If they do, then each character in the basic character set occupies only one
byte, and no multibyte character except the null character may contain any byte in
which all bits are 0. Multibyte characters can be used in character constants,
string literals, identifiers, comments, and header filenames. Many multibyte char-
acter sets are designed to support a certain language, such as the Japanese
Industrial Standard character set (JIS). The multibyte UTF-8 character set, defined
by the Unicode Consortium, is capable of representing all Unicode characters.
UTF-8 uses from one to four bytes to represent a character.

The key difference between multibyte characters and wide characters (that is,
characters of type wchar_t) is that wide characters are all the same size, and multi-
byte characters are represented by varying numbers of bytes. This representation
makes multibyte strings more complicated to process than strings of wide charac-
ters. For example, even though the character 'A' can be represented in a single
byte, finding it in a multibyte string requires more than a simple byte-by-byte
comparison, because the same byte value in certain locations could be part of a
different character. Multibyte characters are well suited for saving text in files,
however (see Chapter 13).

C provides standard functions to obtain the wchar_t value of any multibyte char-
acter, and to convert any wide character to its multibyte representation. For
example, if the C compiler uses the Unicode standards UTF-16 and UTF-8, then
the following call to the function wctomb() (read: “wide character to multibyte”)
obtains the multibyte representation of the character α:

wchar_t wc = L'\x3B1'; // Greek lower-case alpha, α
char mbStr[10] = "";
int nBytes = 0;
nBytes = wctomb(mbStr, wc);

After the function call, the array mbStr contains the multibyte character, which in
this example is the sequence "\xCE\xB1". The wctomb() function’s return value,
assigned here to the variable nBytes, is the number of bytes required to represent
the multibyte character, namely 2.

Universal Character Names

C also supports universal character names as a way to use the extended character
set regardless of the implementation’s encoding. You can specify any extended
character by its universal character name, which is its Unicode value in the form:

\uXXXX

or:

\UXXXXXXXX

Character Sets | 11

Lan
g

u
ag

e
B

asics

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

where XXXX or XXXXXXXX is a Unicode code point in hexadecimal notation. Use the
lowercase u prefix followed by four hexadecimal digits, or the uppercase U followed
by exactly eight hex digits. If the first four hexadecimal digits are zero, then the
same universal character name can be written either as \uXXXX or as \U0000XXXX.

Universal character names are permissible in identifiers, character constants, and
string literals. However, they must not be used to represent characters in the basic
character set.

When you specify a character by its universal character name, the compiler stores
it in the character set used by the implementation. For example, if the execution
character set in a localized program is ISO 8859-7 (8-bit Greek), then the
following definition initializes the variable alpha with the code \xE1:

char alpha = '\u03B1';

However, if the execution character set is UTF-16, then you need to define the
variable as a wide character:

wchar_t alpha = '\u03B1';

In this case, the character code value assigned to alpha is hexadecimal 3B1, the
same as the universal character name.

Not all compilers support universal character names.

Digraphs and Trigraphs

C provides alternative representations for a number of punctuation marks that are
not available on all keyboards. Six of these are the digraphs, or two-character
tokens, which represent the characters shown in Table 1-1.

These sequences are not interpreted as digraphs if they occur within character
constants or string literals. In all other positions, they behave exactly like the
single-character tokens they represent. For example, the following code frag-
ments are perfectly equivalent, and produce the same output. With digraphs:

int arr<::> = <% 10, 20, 30 %>;
printf("The second array element is <%d>.\n", arr<:1:>);

Table 1-1. Digraphs

Digraph Equivalent

<: [

:>]

<% {

%> }

%: #

%:%: ##

12 | Chapter 1: Language Basics

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Without digraphs:

int arr[] = { 10, 20, 30 };
printf("The second array element is <%d>.\n", arr[1]);

Output:

The second array element is <20>.

C also provides trigraphs, three-character representations, all of them beginning
with two question marks. The third character determines which punctuation
mark a trigraph represents, as shown in Table 1-2.

Trigraphs allow you to write any C program using only the characters defined in
ISO/IEC 646, the 1991 standard corresponding to 7-bit ASCII. The compiler’s
preprocessor replaces the trigraphs with their single-character equivalents in the
first phase of compilation. This means that the trigraphs, unlike digraphs, are
translated into their single-character equivalents no matter where they occur, even
in character constants, string literals, comments, and preprocessing directives. For
example, the preprocessor interprets the statement’s second and third question
marks below as the beginning of a trigraph:

printf("Cancel???(y/n) ");

Thus the line produces the following preprocessor output:

printf("Cancel?[y/n) ");

If you need to use one of these three-character sequences and do not want it to be
interpreted as a trigraph, you can write the question marks as escape sequences:

printf("Cancel\?\?\?(y/n) ");

If the character following any two question marks is not one of those shown in
Table 1-2, then the sequence is not a trigraph, and remains unchanged.

As another substitute for punctuation characters in addition to the
digraphs and trigraphs, the header file iso646.h contains macros
that define alternative representations of C’s logical operators and
bitwise operators, such as and for && and xor for ^. For details, see
Chapter 15.

Table 1-2. Trigraphs

Trigraph Equivalent

??([

??)]

??< {

??> }

??= #

??/ \

??! |

??' ^

??- ~

Identifiers | 13

Lan
g

u
ag

e
B

asics

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Identifiers
The term identifier refers to the names of variables, functions, macros, structures
and other objects defined in a C program. Identifiers can contain the following
characters:

• The letters in the basic character set, a–z and A–Z. Identifiers are case-sensitive.

• The underscore character, _.

• The decimal digits 0–9, although the first character of an identifier must not
be a digit.

• Universal character names that represent the letters and digits of other lan-
guages.

The permissible universal characters are defined in Annex D of the C standard,
and correspond to the characters defined in the ISO/IEC TR 10176 standard,
minus the basic character set.

Multibyte characters may also be permissible in identifiers. However, it is up to
the given C implementation to determine exactly which multibyte characters are
permitted and what universal character names they correspond to.

The following 37 keywords are reserved in C, each having a specific meaning to
the compiler, and must not be used as identifiers:

The following examples are valid identifiers:

x dollar Break error_handler scale64

The following are not valid identifiers:

1st_rank switch y/n x-ray

If the compiler supports universal character names, then α is also an example of a
valid identifier, and you can define a variable by that name:

double α = 0.5;

Your source code editor might save the character α in the source file as the
universal character \u03B1.

When choosing identifiers in your programs, remember that many identifiers are
already used by the C standard library. These include the names of standard

auto enum restrict unsigned

break extern return void

case float short volatile

char for signed while

const goto sizeof _Bool

continue if static _Complex

default inline struct _Imaginary

do int switch

double long typedef

else register union

14 | Chapter 1: Language Basics

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

library functions, which you cannot use for functions you define or for global vari-
ables. See Chapter 15 for details.

The C compiler provides the predefined identifier _ _func_ _, which you can use in
any function to access a string constant containing the name of the function. This
is useful for logging or for debugging output; for example:

#include <stdio.h>
int test_func(char *s)
{
 if(s == NULL) {
 fprintf(stderr,
 "%s: received null pointer argument\n", _ _func_ _);
 return –1;
 }
 /* ... */
}

In this example, passing a null pointer to the function test_func() generates the
following error message:

test_func: received null pointer argument

There is no limit on the length of identifiers. However, most compilers consider
only a limited number of characters in identifiers to be significant. In other words,
a compiler might fail to distinguish between two identifiers that start with a long
identical sequence of characters. To conform to the C standard, a compiler must
treat at least the first 31 characters as significant in the names of functions and
global variables (that is, identifiers with external linkage), and at least the first 63
characters in all other identifiers.

Identifier Name Spaces

All identifiers fall into exactly one of the following four categories, which consti-
tute separate name spaces:

• Label names.

• Tags, which identify structure, union and enumeration types.

• Names of structure or union members. Each structure or union constitutes a
separate name space for its members.

• All other identifiers, which are called ordinary identifiers.

Identifiers that belong to different name spaces may be the same without causing
conflicts. In other words, you can use the same name to refer to different objects,
if they are of different kinds. For example, the compiler is capable of distin-
guishing between a variable and a label with the same name. Similarly, you can
give the same name to a structure type, an element in the structure, and a vari-
able, as the following example shows:

struct pin { char pin[16]; /* ... */ };
_Bool check_pin(struct pin *pin)
{
 int len = strlen(pin->pin);
 /* ... */
}

Identifiers | 15

Lan
g

u
ag

e
B

asics

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The first line of the example defines a structure type identified by the tag pin,
containing a character array named pin as one of its members. In the second line,
the function parameter pin is a pointer to a structure of the type just defined. The
expression pin->pin in the fourth line designates the member of the structure that
the function’s parameter points to. The context in which an identifier appears
always determines its name space with no ambiguity. Nonetheless, it is generally a
good idea to make all identifiers in a program distinct, in order to spare human
readers unnecessary confusion.

Identifier Scope

The scope of an identifier refers to that part of the translation unit in which the
identifier is meaningful. Or to put it another way, the identifier’s scope is that part
of the program that can “see” that identifier. The type of scope is always deter-
mined by the location at which you declare the identifier (except for labels, which
always have function scope). Four kinds of scope are possible:

File scope
If you declare an identifier outside all blocks and parameter lists, then it has
file scope. You can then use the identifier anywhere after the declaration and
up to the end of the translation unit.

Block scope
Except for labels, identifiers declared within a block have block scope. You
can use such an identifier only from its declaration to the end of the smallest
block containing that declaration. The smallest containing block is often, but
not necessarily, the body of a function definition. In C99, declarations do not
have to be placed before all statements in a function block. The parameter
names in the head of a function definition also have block scope, and are
valid within the corresponding function block.

Function prototype scope
The parameter names in a function prototype have function prototype scope.
Because these parameter names are not significant outside the prototype
itself, they are meaningful only as comments, and can also be omitted. See
Chapter 7 for further information.

Function scope
The scope of a label is always the function block in which the label occurs,
even if it is placed within nested blocks. In other words, you can use a goto
statement to jump to a label from any point within the same function that
contains the label. (Jumping into nested blocks is not a good idea, though:
see Chapter 6 for details.)

The scope of an identifier generally begins after its declaration. However, the type
names, or tags, of structure, union, and enumeration types and the names of
enumeration constants are an exception to this rule: their scope begins immedi-
ately after their appearance in the declaration, so that they can be referenced again
in the declaration itself. (Structures and unions are discussed in detail in
Chapter 10; enumeration types are described in Chapter 2.) For example, in the

16 | Chapter 1: Language Basics

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

following declaration of a structure type, the last member of the structure, next, is
a pointer to the very structure type that is being declared:

struct Node { /* ... */
 struct Node *next; }; // Define a structure type
void printNode(const struct Node *ptrNode); // Declare a function

int printList(const struct Node *first) // Begin a function definition
{
 struct Node *ptr = first;

 while(ptr != NULL) {
 printNode(ptr);
 ptr = ptr->next;
 }
}

In this code snippet, the identifiers Node, next, printNode, and printList all have
file scope. The parameter ptrNode has function prototype scope, and the variables
first and ptr have block scope.

It is possible to use an identifier again in a new declaration nested within its
existing scope, even if the new identifier does not have a different name space. If
you do so, then the new declaration must have block or function prototype scope,
and the block or function prototype must be a true subset of the outer scope. In
such cases, the new declaration of the same identifier hides the outer declaration,
so that the variable or function declared in the outer block is not visible in the
inner scope. For example, the following declarations are permissible:

double x; // Declare a variable x with file scope
long calc(double x); // Declare a new x with function prototype scope

int main()
{
 long x = calc(2.5); // Declare a long variable x with block scope

 if(x < 0) // Here x refers to the long variable
 { float x = 0.0F; // Declare a new float variable x with block scope
 /*...*/
 }
 x *= 2; // Here x refers to the long variable again
 /*...*/
}

In this example, the long variable x delcared in the main() function hides the
global variable x with type double. Thus there is no direct way to access the double
variable x from within main(). Furthermore, in the conditional block that depends
on the if statement, x refers to the newly declared float variable, which in turn
hides the long variable x.

How the C Compiler Works
Once you have written a source file using a text editor, you can invoke a C
compiler to translate it into machine code. The compiler operates on a translation

How the C Compiler Works | 17

Lan
g

u
ag

e
B

asics

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

unit consisting of a source file and all the header files referenced by #include direc-
tives. If the compiler finds no errors in the translation unit, it generates an object
file containing the corresponding machine code. Object files are usually identified
by the filename suffix .o or .obj. In addition, the compiler may also generate an
assembler listing (see Part III).

Object files are also called modules. A library, such as the C standard library,
contains compiled, rapidly accessible modules of the standard functions.

The compiler translates each translation unit of a C program—that is, each source
file with any header files it includes—into a separate object file. The compiler then
invokes the linker, which combines the object files, and any library functions used,
in an executable file. Figure 1-1 illustrates the process of compiling and linking a
program from several source files and libraries. The executable file also contains
any information that the target operating system needs to load and start it.

The C Compiler’s Translation Phases

The compiling process takes place in eight logical steps. A given compiler may
combine several of these steps, as long as the results are not affected. The steps are:

1. Characters are read from the source file and converted, if necessary, into the
characters of the source character set. The end-of-line indicators in the source
file, if different from the new line character, are replaced. Likewise, any
trigraph sequences are replaced with the single characters they represent.
(Digraphs, however are left alone; they are not converted into their single-
character equivalents.)

2. Wherever a backslash is followed immediately by a newline character, the
preprocessor deletes both. Since a line end character ends a preprocessor

Figure 1-1. From source code to executable file

1st translation unit 1st object file

2nd translation unit 2nd object file

nth translation unit nth object file

Standard library

Other libraries

Executable
file

LinkerCompiler

18 | Chapter 1: Language Basics

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

directive, this processing step lets you place a backslash at the end of a line in
order to continue a directive, such as a macro definition, on the next line.

Every source file, if not completely empty, must end with a new line
character.

3. The source file is broken down into preprocessor tokens (see the next section,
“Tokens”) and sequences of whitespace characters. Each comment is treated
as one space.

4. The preprocessor directives are carried out and macro calls are expanded.

Steps 1 through 4 are also applied to any files inserted by #include
directives. Once the compiler has carried out the preprocessor
directives, it removes them from its working copy of the source
code.

5. The characters and escape sequences in character constants and string literals
are converted into the corresponding characters in the execution character set.

6. Adjacent string literals are concatenated into a single string.

7. The actual compiling takes place: the compiler analyzes the sequence of
tokens and generates the corresponding machine code.

8. The linker resolves references to external objects and functions, and gener-
ates the executable file. If a module refers to external objects or functions that
are not defined in any of the translation units, the linker takes them from the
standard library or another specified library. External objects and functions
must not be defined more than once in a program.

For most compilers, either the preprocessor is a separate program, or the compiler
provides options to perform only the preprocessing (steps 1 through 4 in the
preceding list). This setup allows you to verify that your preprocessor directives
have the intended effects. For a more practically oriented look at the compiling
process, see Chapter 18.

Tokens

A token is either a keyword, an identifier, a constant, a string literal, or a symbol.
Symbols in C consist of one or more punctuation characters, and function as
operators or digraphs, or have syntactic importance, like the semicolon that termi-
nates a simple statement, or the braces { } that enclose a block statement. For
example, the following C statement consists of five tokens:

printf("Hello, world.\n");

The individual tokens are:

printf
(
"Hello, world.\n"
)
;

How the C Compiler Works | 19

Lan
g

u
ag

e
B

asics

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The tokens interpreted by the preprocessor are parsed in the third translation
phase. These are only slightly different from the tokens that the compiler inter-
prets in the seventh phase of translation:

• Within an #include directive, the preprocessor recognizes the additional
tokens <filename> and "filename".

• During the preprocessing phase, character constants and string literals have
not yet been converted from the source character set to the execution charac-
ter set.

• Unlike the compiler proper, the preprocessor makes no distinction between
integer constants and floating-point constants.

In parsing the source file into tokens, the compiler (or preprocessor) always
applies the following principle: each successive non-whitespace character must be
appended to the token being read, unless appending it would make a valid token
invalid. This rule resolves any ambiguity in the following expression, for example:

a+++b

Because the first + cannot be part of an identifier or keyword starting with a, it
begins a new token. The second + appended to the first forms a valid token—the
increment operator—but a third + does not. Hence the expression must be parsed
as:

a ++ + b

See Chapter 18 for more information on compiling C programs.

20

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Chapter 2Types

2
Types

Programs have to store and process different kinds of data, such as integers and
floating-point numbers, in different ways. To this end, the compiler needs to
know what kind of data a given value represents.

In C, the term object refers to a location in memory whose contents can represent
values. Objects that have names are also called variables. An object’s type deter-
mines how much space the object occupies in memory, and how its possible
values are encoded. For example, the same pattern of bits can represent
completely different integers depending on whether the data object is interpreted
as signed—that is, either positive or negative—or unsigned, and hence unable to
represent negative values.

Typology
The types in C can be classified as follows:

• Basic type

• Standard and extended integer types

• Real and complex floating-point types

• Enumerated types

• The type void

• Derived types

• Pointer types

• Array types

• Structure types

• Union types

• Function types

Integer Types | 21

Typ
es

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The basic types and the enumerated types together make up the arithmetic types.
The arithmetic types and the pointer types together are called the scalar types.
Finally, array types and structure types are referred to collectively as the aggregate
types. (Union types are not considered aggregate, because only one of their
members can store a value at any given time.)

A function type describes the interface to a function; that is, it specifies the type of
the function’s return value, and may also specify the types of all the parameters
that are passed to the function when it is called.

All other types describe objects. This description may or may not include the
object’s storage size: if it does, the type is properly called an object type; if not, it is
an incomplete type. An example of an incomplete type might be an externally
defined array variable:

extern float fArr[]; // External declaration

This line declares fArr as an array whose elements have type float. However,
because the array’s size is not specified here, fArr’s type is incomplete. As long as
the global array fArr is defined with a specified size at another location in the
program—in another source file, for example—this declaration is sufficient to let
you use the array in its present scope. (For more details on external declarations,
see Chapter 11.)

This chapter describes the basic types, enumerations and the type
void. The derived types are described in Chapters 7 through 10.

Some types are designated by a sequence of more than one keyword, such as
unsigned short. In such cases, the keywords can be written in any order. However,
there is a conventional keyword order, which we use in this book.

Integer Types
There are five signed integer types. Most of these types can be designated by
several synonyms, which are listed in Table 2-1.

For each of the five signed integer types in Table 2-1, there is also a corresponding
unsigned type that occupies the same amount of memory, with the same align-
ment: in other words, if the compiler aligns signed int objects on even-numbered

Table 2-1. Standard signed integer types

Type Synonyms

signed char

int signed, signed int

short short int, signed short, signed short int

long long int, signed long, signed long int

long long (C99) long long int, signed long long, signed long long int

22 | Chapter 2: Types

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

byte addresses, then unsigned int objects are also aligned on even addresses. These
unsigned types are listed in Table 2-2.

C99 introduced the unsigned integer type _Bool to represent Boolean truth values.
The Boolean value true is coded as 1, and false is coded as 0. If you include the
header file stdbool.h in a program, you can also use the identifiers bool, true, and
false, which are familiar to C++ programmers. The macro bool is a synonym for
the type _Bool, and true and false are symbolic constants equal to 1 and 0.

The type char is also one of the standard integer types. However, the one-word
type name char is synonymous either with signed char or with unsigned char,
depending on the compiler. Because this choice is left up to the implementation,
char, signed char, and unsigned char are formally three different types.

If your program relies on char being able to hold values less than
zero or greater than 127, you should be using either signed char or
unsigned char instead.

You can do arithmetic with character variables. It’s up to you to decide whether
your program interprets the number in a char variable as a character code or as
something else. For example, the following short program treats the char value in
ch as both an integer and a character, but at different times:

char ch = 'A'; // A variable with type char.
printf("The character %c has the character code %d.\n", ch, ch);
for (; ch <= 'Z'; ++ch)
 printf("%2c", ch);

In the printf() statement, ch is first treated as a character that gets displayed, and
then as numeric code value of the character. Likewise, the for loop treats ch as an
integer in the instruction ++ch, and as a character in the printf() function call.
On systems that use the 7-bit ASCII code, or an extension of it, the code produces
the following output:

The character A has the character code 65.
 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A value of type char always occupies one byte—in other words, sizeof(char)
always yields 1—and a byte is at least eight bits wide. Every character in the basic
character set can be represented in a char object as a positive value.

Table 2-2. Unsigned standard integer types

Type Synonyms

_Bool bool (defined in stdbool.h)

unsigned char

unsigned int unsigned

unsigned short unsigned short int

unsigned long unsigned long int

unsigned long long unsigned long long int

Integer Types | 23

Typ
es

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

C defines only the minimum storage sizes of the other standard types: the size of
type short is at least two bytes, long at least four bytes, and long long at least
eight bytes. Furthermore, although the integer types may be larger than their
minimum sizes, the sizes implemented must be in the order:

sizeof(short) ≤ sizeof(int) ≤ sizeof(long) ≤ sizeof(long long)

The type int is the integer type best adapted to the target system’s architecture,
with the size and bit format of a CPU register.

The internal representation of integer types is binary. Signed types may be repre-
sented in binary as sign and magnitude, as a one’s complement, or as a two’s
complement. The most common representation is the two’s complement. The
non-negative values of a signed type are within the value range of the corre-
sponding unsigned type, and the binary representation of a non-negative value is
the same in both the signed and unsigned types. Table 2-3 shows the different
interpretations of bit patterns as signed and unsigned integer types.

Table 2-4 lists the sizes and value ranges of the standard integer types.

Table 2-3. Binary representations of signed and unsigned 16-bit integers

Binary
Decimal value as
unsigned int

Decimal value as signed
int, one’s complement

Decimal value as signed
int, two’s complement

00000000 00000000 0 0 0

00000000 00000001 1 1 1

00000000 00000010 2 2 2

...

01111111 11111111 32,767 32,767 32,767

10000000 00000000 32,768 –32,767 –32,768

10000000 00000001 32,769 –32,766 –32,767

...

11111111 11111110 65,534 –1 –2

11111111 11111111 65,535 –0 –1

Table 2-4. Common storage sizes and value ranges of standard integer types

Type Storage size Minimum value Maximum value

char (same as either signed char or unsigned char)

unsigned char one byte 0 255

signed char one byte –128 127

int two bytes
or four bytes

–32,768
or -2,147,483,648

32,767
or 2,147,483,647

unsigned int two bytes
or four bytes

0 65,535
or 4,294,967,295

short two bytes –32,768 32,767

unsigned short two bytes 0 65,535

long four bytes –2,147,483,648 2,147,483,647

unsigned long four bytes 0 4,294,967,295

24 | Chapter 2: Types

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

In the following example, each of the int variables iIndex and iLimit occupies
four bytes on a 32-bit computer:

int iIndex, // Define two int variables and
 iLimit = 1000; // initialize the second one.

To obtain the exact size of a type or a variable, use the sizeof operator. The expres-
sions sizeof(type) and sizeof expression yield the storage size of the object or type
in bytes. If the operand is an expression, the size is that of the expression’s type. In
the previous example, the value of sizeof(int) would be the same as sizeof(iIndex):
namely, 4. The parentheses around the expression iIndex can be omitted.

You can find the value ranges of the integer types for your C compiler in the
header file limits.h, which defines macros such as INT_MIN, INT_MAX, UINT_MAX, and
so on (see Chapter 15). The program in Example 2-1 uses these macros to display
the minimum and maximum values for the types char and int.

In arithmetic operations with integers, overflows can occur. An overflow happens
when the result of an operation is no longer within the range of values that the type
being used can represent. In arithmetic with unsigned integer types, overflows are
ignored. In mathematical terms, that means that the effective result of an unsigned
integer operation is equal to the remainder of a division by UTYPE_MAX + 1, where
UTYPE_MAX is the unsigned type’s maximum representable value. For example, the
following addition causes the variable to overflow:

unsigned int ui = UINT_MAX;
ui += 2; // Result: 1

long long (C99) eight bytes –9,223,372,036,
 854,775,808

 9,223,372,036,
 854,775,807

unsigned long long (C99) eight bytes 0 18,446,744,073,
 709,551,615

Example 2-1. Value ranges of the types char and int

// limits.c: Display the value ranges of char and int.
// ---
#include <stdio.h>
#include <limits.h> // Contains the macros CHAR_MIN, INT_MIN, etc.

int main()
{
 printf("Storage sizes and value ranges of the types char and int\n\n");
 printf("The type char is %s.\n\n", CHAR_MIN < 0 ? "signed" :"unsigned");

 printf(" Type Size (in bytes) Minimum Maximum\n"
 "---\n");
 printf(" char %8d %20d %15d\n", sizeof(char), CHAR_MIN, CHAR_MAX);
 printf(" int %8d %20d %15d\n", sizeof(int), INT_MIN, INT_MAX);
 return 0;
}

Table 2-4. Common storage sizes and value ranges of standard integer types (continued)

Type Storage size Minimum value Maximum value

Integer Types | 25

Typ
es

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

C specifies this behavior only for the unsigned integer types. For all other types,
the result of an overflow is undefined. For example, the overflow may be ignored,
or it may raise a signal that aborts the program if it is not caught.

Integer Types with Exact Width (C99)

The width of an integer type is defined as the number of bits used to represent a
value, including the sign bit. Typical widths are 8, 16, 32, and 64 bits. For
example, the type int is at least 16 bits wide.

In C99, the header file stdint.h defines integer types to fulfill the need for known
widths. These types are listed in Table 2-5. Those types whose names begin with u
are unsigned. C99 implementations are not required to provide the types marked
as “optional” in the table.

For example, int_least64_t and uint_least64_t are integer types with a width of
at least 64 bits. If an optional signed type (without the prefix u) is defined, then
the corresponding unsigned type (with the initial u) is required, and vice versa.
The following example defines and initializes an array whose elements have the
type int_fast32_t:

#define ARR_SIZE 100
int_fast32_t arr[ARR_SIZE]; // Define an array arr
 // with elements of type int_fast32_t
 for (int i = 0; i < ARR_SIZE; ++i)
 arr[i] = (int_fast32_t)i; // Initialize each element

The types listed in Table 2-5 are usually defined as synonyms for existing stan-
dard types. For example, the stdint.h file supplied with one C compiler contains
the line:

typedef signed char int_fast8_t;

This declaration simply defines the new type int_fast8_t (the fastest 8-bit signed
integer type) as being equivalent with signed char.

Furthermore, an implementation may also define extended integer types such as
int24_t or uint_least128_t.

Table 2-5. Integer types with defined width

Type Meaning Implementation

intN_t
uintN_t

An integer type whose width is exactly N bits Optional

int_leastN_t
uint_leastN_t

An integer type whose width is at least N bits Required for N = 8, 16, 32, 64

int_fastN_t
uint_fastN_t

The fastest type to process whose width is at least N bits Required for N = 8, 16, 32, 64

intmax_t
uintmax_t

The widest integer type implemented Required

intptr_t
uintptr_t

An integer type wide enough to store the value of a pointer Optional

26 | Chapter 2: Types

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The signed intN_t types have a special feature: they must use the two’s comple-
ment binary representation. As a result, their minimum value is –2N–1, and their
maximum value is 2N–1 – 1.

The value ranges of the types defined in stdint.h are also easy to obtain: macros for
the greatest and least representable values are defined in the same header file. The
names of the macros are the uppercased type names, with the suffix _t (for type)
replaced by _MAX or _MIN (see Chapter 15). For example, the following definition
initializes the variable i64 with its smallest possible value:

int_least64_t i64 = INT_LEAST64_MIN;

The header file inttypes.h includes the header file stdint.h, and provides other
features such as extended integer type specifiers for use in printf() and scanf()
function calls (see Chapter 15).

Floating-Point Types
C also includes special numeric types that can represent nonintegers with a
decimal point in any position. The standard floating-point types for calculations
with real numbers are as follows:

float
For variables with single precision

double
For variables with double precision

long double
For variables with extended precision

A floating-point value can be stored only with a limited precision, which is deter-
mined by the binary format used to represent it and the amount of memory used
to store it. The precision is expressed as a number of significant digits. For
example, a “precision of six decimal digits” or “six-digit precision” means that the
type’s binary representation is precise enough to store a real number of six
decimal digits, so that its conversion back into a six-digit decimal number yields
the original six digits. The position of the decimal point does not matter, and
leading and trailing zeros are not counted in the six digits. The numbers
123,456,000 and 0.00123456 can both be stored in a type with six-digit precision.

In C, arithmetic operations with floating-point numbers are performed internally
with double or greater precision. For example, the following product is calculated
using the double type.

float height = 1.2345, width = 2.3456; // Float variables have single
 // precision.
double area = height * width; // The actual calculation is
 // performed with double
 // (or greater) precision.

If you assign the result to a float variable, the value is rounded as necessary. For
more details on floating-point math, see the section “math.h” in Chapter 15.

Floating-Point Types | 27

Typ
es

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

C defines only minimal requirements for the storage size and the binary format of
the floating-point types. However, the format commonly used is the one defined
by the International Electrotechnical Commission (IEC) in the 1989 standard for
binary floating-point arithmetic, IEC 60559. This standard is based in turn on the
Institute of Electrical and Electronics Engineers’ 1985 standard IEEE 754.
Compilers can indicate that they support the IEC floating-point standard by
defining the macro _ _STDC_IEC_559_ _. Table 2-6 shows the value ranges and the
precision of the real floating-point types in accordance with IEC 60559, using
decimal notation.

The header file float.h defines macros that allow you to use these values and other
details about the binary representation of real numbers in your programs. The
macros FLT_MIN, FLT_MAX, and FLT_DIG indicate the value range and the precision of
the float type. The corresponding macros for double and long double begin with
the prefixes DBL_ and LDBL_. These macros, and the binary representation of
floating-point numbers, are described in the section on float.h in Chapter 15.

The program in Example 2-2 starts by printing the typical values for the type
float, then illustrates the rounding error that results from storing a floating-point
number in a float variable.

Table 2-6. Real floating-point types

Type Storage size Value range
Smallest positive
value Precision

float 4 bytes ±3.4E+38 1.2E–38 6 digits

double 8 bytes ±1.7E+308 2.3E–308 15 digits

long double 10 bytes ±1.1E+4932 3.4E–4932 19 digits

Example 2-2. Illustrating the precision of type float

#include <stdio.h>
#include <float.h>

int main()
{
 puts("\nCharacteristics of the type float\n");

 printf("Storage size: %d bytes\n"
 "Smallest positive value: %E\n"
 "Greatest positive value: %E\n"
 "Precision: %d decimal digits\n",
 sizeof(float), FLT_MIN, FLT_MAX, FLT_DIG);

 puts("\nAn example of float precision:\n");
 double d_var = 12345.6; // A variable of type double.
 float f_var = (float)d_var; // Initializes the float
 // variable with the value of d_var.
 printf("The floating-point number "
 "%18.10f\n", d_var);

28 | Chapter 2: Types

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The last part of this program typically generates the following output:

The floating-point number 12345.6000000000
has been stored in a variable
of type float as the value 12345.5996093750
The rounding error is 0.0003906250

In this example, the nearest representable value to the decimal 12,345.6 is
12,345.5996093750. This may not look like a round number in decimal nota-
tion, but in the internal binary representation of the floating-point type it is
exactly representable, while 12,345.60 is not.

Complex Floating-Point Types (C99)
C99 supports mathematical calculations with complex numbers. The 1999 stan-
dard introduced complex floating-point types and extended the mathematical
library to include complex arithmetic functions. These functions are declared in
the header file complex.h, and include for example the trigonometric functions
csin(), ctan(), and so on (see Chapter 15).

A complex number z can be represented in Cartesian coordinates as z = x + y × i,
where x and y are real numbers, and i is the imaginary unit, defined by the equa-
tion i2 = –1. The number x is called the real part and y the imaginary part of z.

In C, a complex number is represented by a pair of floating-point values for the
real and imaginary parts. Both parts have the same type, whether float, double, or
long double. Accordingly, these are the three complex floating-point types:

• float _Complex

• double _Complex

• long double _Complex

Each of these types has the same size and alignment as an array of two float,
double, or long double elements.

The header file complex.h defines the macros complex and I. The macro complex is
a synonym for the keyword _Complex. The macro I represents the imaginary unit i,
and has the type const float _Complex:

#include <complex.h>
// ...
double complex z = 1.0 + 2.0 * I;
z *= I; // Rotate z through 90° counterclockwise around the origin.

 printf("has been stored in a variable\n"
 "of type float as the value "
 "%18.10f\n", f_var);
 printf("The rounding error is "
 "%18.10f\n", d_var - f_var);

 return 0;
}

Example 2-2. Illustrating the precision of type float (continued)

Enumerated Types | 29

Typ
es

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Enumerated Types
Enumerations are integer types that you define in a program. The definition of an
enumeration begins with the keyword enum, possibly followed by an identifier for
the enumeration, and contains a list of the type’s possible values, with a name for
each value:

enum [identifier] { enumerator-list };

The following example defines the enumerated type enum color:

enum color { black, red, green, yellow, blue, white=7, gray };

The identifier color is the tag of this enumeration. The identifiers in the list—
black, red, and so on—are the enumeration constants, and have the type int. You
can use these constants anywhere within their scope—as case constants in a
switch statement, for example.

Each enumeration constant of a given enumerated type represents a certain value,
which is determined either implicitly by its position in the list, or explicitly by
initialization with a constant expression. A constant without an initialization has
the value 0 if it is the first constant in the list, or the value of the preceding
constant plus one. Thus in the previous example, the constants listed have the
values 0, 1, 2, 3, 4, 7, 8.

Within an enumerated type’s scope, you can use the type in declarations:

enum color bgColor = blue, // Define two variables
 fgColor = yellow; // of type enum color.
void setFgColor(enum color fgc); // Declare a function with a parameter
 // of type enum color.

An enumerated type always corresponds to one of the standard integer types.
Thus your C programs may perform ordinary arithmetic operations with vari-
ables of enumerated types. The compiler may select the appropriate integer type
depending on the defined values of the enumeration constants. In the previous
example, the type char would be sufficient to represent all the values of the
enumerated type enum color.

Different constants in an enumeration may have the same value:

enum { OFF, ON, STOP = 0, GO = 1, CLOSED = 0, OPEN = 1 };

As the preceding example also illustrates, the definition of an enumerated type
does not necessarily have to include a tag. Omitting the tag makes sense if you
want only to define constants, and not declare any variables of the given type.
Defining integer constants in this way is generally preferable to using a long list of
#define directives, as the enumeration provides the compiler with the names of
the constants as well as their numeric values. These names are a great advantage
in a debugger’s display, for example.

30 | Chapter 2: Types

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The Type void
The type specifier void indicates that no value is available. Consequently, you
cannot declare variables or constants with this type. You can use the type void for
the purposes described in the following sections.

void in Function Declarations

A function with no return value has the type void. For example, the standard
function perror() is declared by the prototype:

void perror(const char *);

The keyword void in the parameter list of a function prototype indicates that the
function has no parameters:

FILE *tmpfile(void);

As a result, the compiler issues an error message if you try to use a function call
such as tmpfile("name.tmp"). If the function were declared without void in the
parameter list, the C compiler would have no information about the function’s
parameters, and hence be unable to determine whether the function call is correct.

Expressions of Type void

A void expression is one that has no value. For example, a call to a function with
no return value is an expression of type void:

char filename[] = "memo.txt";
if (fopen(filename, "r") == NULL)
 perror(filename); // A void expression.

The cast operation (void)expression explicitly discards the value of an expres-
sion, such as the return value of a function:

(void)printf("I don't need this function's return value!\n");

Pointers to void

A pointer of type void * represents the address of an object, but not its type. You
can use such quasi-typeless pointers mainly to declare functions that can operate
on various types of pointer arguments, or that return a “multipurpose” pointer.
The standard memory management functions are a simple example:

void *malloc(size_t size);
void *realloc(void *ptr, size_t size);
void free(void *ptr);

As Example 2-3 illustrates, you can assign a void pointer value to another object
pointer type, or vice versa, without explicit type conversion.

The Type void | 31

Typ
es

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Example 2-3. Using the type void

// usingvoid.c: Demonstrates uses of the type void
// ---
#include <stdio.h>
#include <time.h>
#include <stdlib.h> // Provides the following function prototypes:
 // void srand(unsigned int seed);
 // int rand(void);
 // void *malloc(size_t size);
 // void free(void *ptr);
 // void exit(int status);

enum { ARR_LEN = 100 };

int main()
{
 int i, // Obtain some storage space.
 *pNumbers = malloc(ARR_LEN * sizeof(int));

 if (pNumbers == NULL)
 {
 fprintf(stderr, "Insufficient memory.\n");
 exit(1);
 }

 srand((unsigned)time(NULL)); // Initialize the
 // random number generator.

 for (i=0; i < ARR_LEN; ++i)
 pNumbers[i] = rand() % 10000; // Store some random numbers.

 printf("\n%d random numbers between 0 and 9999:\n", ARR_LEN);
 for (i=0; i < ARR_LEN; ++i) // Output loop:
 {
 printf("%6d", pNumbers[i]); // Print one number per loop iteration
 if (i % 10 == 9) putchar('\n'); // and a newline after every 10 numbers.
 }
 free(pNumbers); // Release the storage space.
 return 0;
}

32

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Chapter 3Literals

3
Literals

In C source code, a literal is a token that denotes a fixed value, which may be an
integer, a floating-point number, a character, or a string. A literal’s type is deter-
mined by its value and its notation.

The literals discussed here are different from compound literals, which were intro-
duced in the C99 standard. Compound literals are ordinary modifiable objects,
similar to variables. For a full description of compound literals and the special
operator used to create them, see Chapter 5.

Integer Constants
An integer constant can be expressed as an ordinary decimal numeral, or as a
numeral in octal or hexadecimal notation. You must specify the intended nota-
tion by a prefix.

A decimal constant begins with a nonzero digit. For example, 255 is the decimal
constant for the base-10 value 255.

A number that begins with a leading zero is interpreted as an octal constant. Octal
(or base eight) notation uses only the digits from 0 to 7. For example, 047 is a valid
octal constant representing 4 × 8 + 7, and is equivalent with the decimal constant
39. The decimal constant 255 is equal to the octal constant 0377.

A hexadecimal constant begins with the prefix 0x or 0X. The hexadecimal digits A
to F can be upper- or lowercase. For example, 0xff, 0Xff, 0xFF, and 0XFF represent
the same hexadecimal constant, which is equivalent to the decimal constant 255.

Because the integer constants you define will eventually be used in expressions
and declarations, their type is important. The type of a constant is determined at
the same time as its value is defined. Integer constants such as the examples just
mentioned usually have the type int. However, if the value of an integer constant
is outside the range of the type int, then it must have a bigger type. In this case,

Floating-Point Constants | 33

Literals

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

the compiler assigns it the first type in a hierarchy that is large enough to repre-
sent the value. For decimal constants, the type hierarchy is:

int, long, long long

For octal and hexadecimal constants, the type hierarchy is:

int, unsigned int, long, unsigned long, long long, unsigned long long

For example, on a 16-bit system, the decimal constant 50000 has the type long,
since the greatest possible int value is 32,767, or 215 – 1.

You can also influence the types of constants in your programs explicitly by using
suffixes. A constant with the suffix l or L has the type long (or a larger type if
necessary, in accordance with the hierarchies just mentioned). Similarly, a
constant with the suffix ll or LL has at least the type long long. The suffix u or U
can be used to ensure that the constant has an unsigned type. The long and
unsigned suffixes can be combined. Table 3-1 gives a few examples.

Floating-Point Constants
Floating-point constants can be written either in decimal or in hexadecimal nota-
tion. These notations are described in the next two sections.

Decimal Floating-Point Constants

An ordinary floating-point constant consists of a sequence of decimal digits
containing a decimal point. You may also multiply the value by a power of 10, as
in scientific notation: the power of 10 is represented simply by an exponent, intro-
duced by the letter e or E. A floating-point constant that contains an exponent
does not need to have a decimal point. Table 3-2 gives a few examples of decimal
floating-point constants.

Table 3-1. Examples of constants with suffixes

Integer constant Type

0x200 int

512U unsigned int

0L long

0Xf0fUL unsigned long

0777LL long long

0xAAAllu unsigned long long

Table 3-2. Examples of decimal floating-point constants

Floating-point constant Value

10.0 10

2.34E5 2.34 × 105

67e-12 67.0 × 10–12

34 | Chapter 3: Literals

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The decimal point can also be the first or last character. Thus 10. and .234E6 are
permissible numerals. However, the numeral 10 with no decimal point would be
an integer constant, not a floating-point constant.

The default type of a floating-point constant is double. You can also append the
suffix F or f to assign a constant the type float, or the suffix L or l to give a
constant the type long double, as this example shows:

float f_var = 123.456F; // Initialize a float variable.

long double ld_var = f_var * 987E7L; // Initialize a long double variable
 // with the product of a
 // multiplication performed with
 // long double precision.

Hexadecimal Floating-Point Constants (C99)

The C99 standard introduced hexadecimal floating-point constants, which have a
key advantage over decimal floating-point numerals: if you specify a constant
value in hexadecimal notation, it can be stored in the computer’s binary floating-
point format exactly, with no rounding error, whereas values that are “round
numbers” in decimal notation—like 0.1—may be repeating fractions in binary,
and have to be rounded for representation in the internal format. (For an example
of rounding with floating-point numbers, see Example 2-2.)

A hexadecimal floating-point constant consists of the prefix 0x or 0X, a
sequence of hexadecimal digits with an optional decimal point (which perhaps
we ought to call a “hexadecimal point” in this case), and an exponent to base
two. The exponent is a decimal numeral introduced by the letter p or P. For
example, the constant 0xa.fP-10 is equal to the number (10 + 15/16) × 2–10

(not 2–16) in decimal notation. Equivalent ways of writing the same constant
value are 0xA.Fp-10, 0x5.78p-9, 0xAFp-14, and 0x.02BCp0. Each difference of 1 in
the exponent multiplies or divides the hexadecimal fraction by a factor of 2,
and each shift of the hexadecimal point by one place corresponds to a factor
(or divisor) of 16, or 24.

In hexadecimal floating-point constants, you must include the exponent, even if
its value is zero. This step is necessary in order to distinguish the type suffix F
(after the exponent) from the hexadecimal digit F (to the left of the exponent). For
example, if the exponent were not required, the constant 0x1.0F could represent
either the number 1.0 with type float, or the number 1 + 15/256 with the default
type double.

Like decimal floating-point constants, hexadecimal floating-point constants also
have the default type double. Append the suffix F or f to assign a constant the type
float, or the suffix L or l to give it the type long double.

Character Constants
A character constant consists of one or more characters enclosed in single quota-
tion marks. Some examples:

'a' 'XY' '0' '*'

Character Constants | 35

Literals

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

All the characters of the source character set are permissible in character
constants, except the single quotation mark ', the backslash \, and the newline
character. To represent these characters, you must use escape sequences:

'\'' '\\' '\n'

All the escape sequences that are permitted in character constants are described in
the upcoming section “Escape sequences.”

The Type of Character Constants

Character constants have the type int, unless they are explicitly defined as wide
characters, with type wchar_t, by the prefix L. If a character constant contains one
character that can be represented in a single byte, then its value is the character
code of that character in the execution character set. For example, the constant
'a' in ASCII encoding has the decimal value 97. The value of character constants
that consist of more than one character can vary from one compiler to another.

The following code fragment tests whether the character read is a digit between 1
and 5, inclusive:

#include <stdio.h>
int c = 0;

/* ... */

c = getchar(); // Read a character.
if (c != EOF && c > '0' && c < '6') // Compare input to character
 // constants.
{
 /* This block is executed if the user entered a digit from 1 to 5. */
}

If the type char is signed, then the value of a character constant can also be nega-
tive, because the constant’s value is the result of a type conversion of the character
code from char to int. For example, ISO 8859-1 is a commonly used 8-bit char-
acter set, also known as the ISO Latin 1 or ANSI character set. In this character
set, the currency symbol for pounds sterling, £, is coded as hexadecimal A3:

int c = '\xA3'; // Symbol for pounds sterling
printf("Character: %c Code: %d\n", c, c);

If the execution character set is ISO 8859-1, and the type char is signed, then the
printf statement in the preceding example generates the following output:

Character: £ Code: -93

In a program that uses characters that are not representable in a single byte, you
can use wide-character constants. Wide-character constants have the type wchar_t,
and are written with the prefix L, as in these examples:

L'a' L'12' L'\012' L'\u03B2'

The value of a wide-character constant that contains a single multibyte character
is the value that the standard function mbtowc() (“multibyte to wide character”)
would return for that multibyte character.

36 | Chapter 3: Literals

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The value of a character constant containing several characters,
such as L'xy', is not specified. To ensure portability, make sure
your programs do not depend on such a character constant having
a specific value.

Escape Sequences

An escape sequence begins with a backslash \, and represents a single character.
Escape sequences allow you to represent any character in character constants and
string literals, including nonprintable characters and characters that otherwise
have a special meaning, such as ' and ". Table 3-3 lists the escape sequences
recognized in C.

In the table, the active position refers to the position at which the output device
prints the next output character, such as the position of the cursor on a console
display. The behavior of the output device is not defined in the following cases: if
the escape sequence \b (backspace) occurs at the beginning of a line; if \t (tab)
occurs at the end of a line; or if \v (vertical tab) occurs at the end of a page.

Table 3-3. Escape sequences

Escape sequence Character value Action on output device

\' A single quotation mark (') Prints the character.

\" A double quotation mark (")

\? A question mark (?)

\\ A backslash character (\)

\a Alert Generates an audible or visible
signal.

\b Backspace Moves the active position back one
character.

\f Form feed Moves the active position to the
beginning of the next page.

\n Line feed Moves the active position to the
beginning of the next line.

\r Carriage return Moves the active position to the
beginning of the current line.

\t Horizontal tab Moves the active position to the next
horizontal tab stop.

\v Vertical tab Moves the active position to the next
vertical tab stop.

\o, \oo, or \ooo
(where o is an octal digit)

The character with the given octal code Prints the character.

\xh[h...]
(where h is a hexadecimal digit)

The character with the given hexadecimal
code

\uhhhh
\Uhhhhhhhh

The character with the given universal
character name

String Literals | 37

Literals

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

As Table 3.3 shows, universal character names are also considered escape
sequences. Universal character names allow you to specify any character in the
extended character set, regardless of the encoding used. See “Universal Character
Names” in Chapter 1 for more information.

You can also specify any character code in the value range of the type unsigned
char—or any wide-character code in the value range of wchar_t—using the octal
and hexadecimal escape sequences, as shown in Table 3-4.

There is no equivalent octal notation for the last constant in the table, L'\xF82',
because octal escape sequences cannot have more than three octal digits. For the
same reason, the wide-character constant L'\3702' consists of two characters:
L'\370' and L'2'.

String Literals
A string literal consists of a sequence of characters (and/or escape sequences)
enclosed in double quotation marks. Example:

"Hello world!\n"

Like character constants, string literals may contain all the characters in the
source character set. The only exceptions are the double quotation mark ", the
backslash \, and the newline character, which must be represented by escape
sequences. The following printf statement first produces an alert tone, then indi-
cates a documentation directory in quotation marks, substituting the string literal
addressed by the pointer argument doc_path for the conversion specification %s:

char doc_path[128] = ".\\share\\doc";
printf("\aSee the documentation in the directory \"%s\"\n", doc_path);

A string literal is a static array of char that contains character codes followed by a
string terminator, the null character \0 (see also Chapter 8). The empty string ""
occupies exactly one byte in memory, which holds the terminating null character.
Characters that cannot be represented in one byte are stored as multibyte
characters.

Table 3-4. Examples of octal and hexadecimal escape sequences

Octal Hexadecimal Description

'\0' '\x0' The null character.

'\033'
'\33'

'\x1B' The control character ESC (“escape”).

'\376' '\xfe' The character with the decimal code 254.

'\417' '\x10f' Illegal, as the numeric value is beyond the range of the type unsigned char.

L'\417' L'\x10f' That’s better! It’s now a wide-character constant; the type is wchar_t.

– L'\xF82' Another wide-character constant.

38 | Chapter 3: Literals

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

As illustrated in the previous example, you can use a string literal to initialize a
char array. A string literal can also be used to initialize a pointer to char:

char *pStr = "Hello, world!"; // pStr points to the first character, 'H'

In such an initializer, the string literal represents the address of its first element,
just as an array name would.

In Example 3-1, the array error_msg contains three pointers to char, each of which
is assigned the address of the first character of a string literal.

Like wide-character constants, you can also specify string literals as strings of
wide characters by using the prefix L:

L"Here's a wide-string literal."

A wide-string literal defines a null-terminated array whose elements have the type
wchar_t. The array is initialized by converting the multibyte characters in the
string literal to wide characters in the same way as the standard function
mbstowcs() (“multibyte string to wide-character string”) would do. Similarly, any
universal character names indicated by escape sequences in the string literal are
stored as individual wide characters.

In the following example, \u03b1 is the universal name for the character α, and
wprintf() is the wide-character version of the printf function, which formats and
prints a string of wide characters:

double angle_alpha = 90.0/3;
wprintf(L"Angle \u03b1 measures %lf degrees.\n", angle_alpha);

If any multibyte character or escape sequence in a string literal is not represent-
able in the execution character set, then the value of the string literal is not
specified—in other words, its value depends on the given compiler.

The compiler’s preprocessor concatenates any adjacent string literals—that is,
those which are separated only by whitespace—into a single string. As the
following example illustrates, this concatenation also makes it simple to break up
a string into several lines for readability:

Example 3-1. Sample function error_exit()

#include <stdlib.h>
#include <stdio.h>
void error_exit(unsigned int error_n) // Print a last error message
{ // and exit the program.
 char * error_msg[] = { "Unknown error code.\n",
 "Insufficient memory.\n",
 "Illegal memory access.\n" };
 unsigned int arr_len = sizeof(error_msg)/sizeof(char *);

 if (error_n >= arr_len)
 error_n = 0;
 fputs(error_msg[error_n], stderr);
 exit(1);
}

String Literals | 39

Literals

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

#define PRG_NAME "EasyLine"
char msg[] = "The installation of " PRG_NAME
 " is now complete.";

If any of the adjacent component strings is a wide-string literal, then the string
that results from their concatenation is also a wide-character string.

Another way to break a string literal into several lines is to end a line with a back-
slash, as in this example:

char info[] =
"This is a string literal broken up into\
 several source code lines.\nNow one more line:\n\
that's enough, the string ends here.";

The string continues at the beginning of the next line: any spaces at the left
margin, such as the space before several in the preceding example, are part of the
string literal. Furthermore, the string literal defined here contains exactly two
newline characters: one immediately before Now, and one immediately before
that's.

The compiler interprets escape sequences before concatenating adjacent strings
(see the section “The C Compiler’s Translation Phases” in Chapter 1). As a result,
the following two string literals form one wide-character string that begins with
the two characters '\xA7' and '2':

L"\xA7" L"2 et cetera"

However, if the string is written in one piece as L"\xA72 et cetera", then the first
character in the string is the wide character '\xA72'.

Although C does not strictly prohibit modifying string literals, you should not
attempt to do so. In the following example, the second statement is an attempt to
replace the first character of a string:

char *p = "house"; // Initialize a pointer to char.
*p = 'm'; // This is not a good idea!

This statement is not portable, and causes a run-time error on some systems. For
one thing, the compiler, treating the string literal as a constant, may place it in
read-only memory, so that the attempted write operation causes a fault. For
another, if two or more identical string literals are used in the program, the
compiler may store them at the same location, so that modifying one causes unex-
pected results when you access another.

However, if you use a string literal to initialize an array variable, you can then
modify the contents of the array:

char s[] = "house"; // Initialize an array of char.
s[0] = 'm'; // Now the array contains the string "mouse".

40

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Chapter 4Type Conversions

4
Type Conversions

In C, operands of different types can be combined in one operation. For example,
the following expressions are permissible:

double dVar = 2.5; // Define dVar as a variable of type double.
dVar *= 3; // Multiply dVar by an integer constant.
if (dVar < 10L) // Compare dVar with a long-integer constant.
 { /* ... */ }

When the operands have different types, the compiler tries to convert them to a
uniform type before performing the operation. In certain cases, furthermore, you
must insert type conversion instructions in your program. A type conversion yields
the value of an expression in a new type, which can be either the type void (meaning
that the value of the expression is discarded: see “Expressions of Type void” in
Chapter 2), or a scalar type—that is, an arithmetic type or a pointer. For example, a
pointer to a structure can be converted into a different pointer type. However, an
actual structure value cannot be converted into a different structure type.

The compiler provides implicit type conversions when operands have mismatched
types, or when you call a function using an argument whose type does not match
the function’s corresponding parameter. Programs also perform implicit type
conversion as necessary when initializing variables or otherwise assigning values
to them. If the necessary conversion is not possible, the compiler issues an error
message.

You can also convert values from one type to another explicitly using the cast
operator (see Chapter 5):

(type_name) expression

In the following example, the cast operator causes the division of one integer vari-
able by another to be performed as a floating-point operation:

int sum = 22, count = 5;
double mean = (double)sum / count;

Conversion of Arithmetic Types | 41

Typ
e

Co
n

versio
n

s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Because the cast operator has precedence over division, the value of sum in this
example is first converted to type double. The compiler must then implicitly convert
the divisor, the value of count, to the same type before performing the division.

You should always use the cast operator whenever there is a possibility of losing
information, as in a conversion from int to unsigned int, for example. Explicit
casts avoid compiler warnings, and also signpost your program’s type conver-
sions for other programmers. For example, using an explicit cast to void when you
discard the return value of a function serves as a reminder that you may be disre-
garding the function’s error indications.

To illustrate the implicit type conversions that the compiler provides, however,
the examples in this chapter use the cast operator only when it is strictly
necessary.

Conversion of Arithmetic Types
Type conversions are always possible between any two arithmetic types, and the
compiler performs them implicitly wherever necessary. The conversion preserves
the value of an expression if the new type is capable of representing it. This is not
always the case. For example, when you convert a negative value to an unsigned
type, or convert a floating-point fraction from type double to the type int, the new
type simply cannot represent the original value. In such cases the compiler gener-
ally issues a warning.

Hierarchy of Types

When arithmetic operands have different types, the implicit type conversion is
governed by the types’ conversion rank. The types are ranked according to the
following rules:

• Any two unsigned integer types have different conversion ranks. If one is
wider than the other, then it has a higher rank.

• Each signed integer type has the same rank as the corresponding unsigned
type. The type char has the same rank as signed char and unsigned char.

• The standard integer types are ranked in the order:

_Bool < char < short < int < long < long long

• Any standard integer type has a higher rank than an extended integer type of
the same width. (Extended integer types are described in the section “Integer
Types with Exact Width (C99)” in Chapter 2.)

• Every enumerated type has the same rank as its corresponding integer type
(see “Enumerated Types” in Chapter 2).

• The floating-point types are ranked in the following order:

float < double < long double

• The lowest-ranked floating-point type, float, has a higher rank than any inte-
ger type.

• Every complex floating-point type has the same rank as the type of its real
and imaginary parts.

42 | Chapter 4: Type Conversions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Integer Promotion

In any expression, you can always use a value whose type ranks lower than int in
place of an operand of type int or unsigned int. You can also use a bit-field as an
integer operand (bit-fields are discussed in Chapter 10). In these cases, the
compiler applies integer promotion: any operand whose type ranks lower than int
is automatically converted to the type int, provided int is capable of representing
all values of the operand’s original type. If int is not sufficient, the operand is
converted to unsigned int.

Integer promotion always preserves the value of the operand. Some examples:

char c = '?';
unsigned short var = 100;

if (c < 'A') // The character constant 'A' has type int: the value
 // of c is implicitly promoted to int for the
 // comparison.

 var = var + 1; // Before the addition, the value of var is promoted
 // to int or unsigned int.

In the last of these statements, the compiler promotes the first addend, the value
of var, to the type int or unsigned int before performing the addition. If int and
short have the same width, which is likely on a 16-bit computer, then the signed
type int is not wide enough to represent all possible values of the unsigned short
variable var. In this case, the value of var is promoted to unsigned int. After the
addition, the result is converted to unsigned short for assignment to var.

Usual Arithmetic Conversions

The usual arithmetic conversions are the implicit conversions that are automati-
cally applied to operands of different arithmetic types for most operators. The
purpose of the usual arithmetic conversions is to find a common real type for all of
the operands and the result of the operation.

The usual arithmetic conversions are performed implicitly for the following
operators:

• Arithmetic operators with two operands: *, /, %, +, and –

• Relational and equality operators: <, <=, >, >=, ==, and !=

• The bitwise operators, &, |, and ^

• The conditional operator, ?: (for the second and third operands)

With the exception of the relational and equality operators, the common real type
obtained by the usual arithmetic conversions is generally the type of the result.
However, if one or more of the operands has a complex floating-point type, then
the result also has a complex floating-point type.

The usual arithmetic conversions are applied as follows:

1. If either operand has a floating-point type, then the operand with the lower
conversion rank is converted to a type with the same rank as the other

Conversion of Arithmetic Types | 43

Typ
e

Co
n

versio
n

s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

operand. Real types are converted only to real types, however, and complex
types only to complex.

In other words, if either operand has a complex floating-point type, the usual
arithmetic conversion matches only the real type on which the actual type of
the operand is based. Some examples:

#include <complex.h>
// ...
short n = -10;
double x = 0.5, y = 0.0;
float _Complex f_z = 2.0F + 3.0F * I;
double _Complex d_z = 0.0;

y = n * x; // The value of n is converted to type double.
d_z = f_z + x; // Only the value of f_z is converted to
 // double _Complex.
 // The result of the operation also has type
 // double _Complex.

f_z = f_z / 3; // The constant value 3 is converted to float.
d_z = d_z - f_z; // The value of f_z is converted to the type
 // double _Complex.

2. If both operands are integers, integer promotion is first performed on both
operands. If after integer promotion the operands still have different types,
conversion continues as follows:

a. If one operand has an unsigned type T whose conversion rank is at least
as high as that of the other operand’s type, then the other operand is
converted to type T.

b. Otherwise, one operand has a signed type T whose conversion rank is
higher than that of the other operand’s type. The other operand is
converted to type T only if type T is capable of representing all values of
its previous type. If not, then both operands are converted to the
unsigned type that corresponds to the signed type T.

The following lines of code contain some examples:

int i = -1;
unsigned int limit = 200U;
long n = 30L;

if (i < limit)
 x = limit * n;

In this example, to evaluate the comparison in the if condition, the value of i, –1,
must first be converted to the type unsigned int. The result is a large positive
number. On a 32-bit system, that number is 232 – 1, and on any system it is
greater than limit. Hence, the if condition is false.

In the last line of the example, the value of limit is converted to n’s type, long, if
the value range of long contains the whole value range of unsigned int. If not—
for example, if both int and long are 32 bits wide—then both multiplicands are
converted to unsigned long.

44 | Chapter 4: Type Conversions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The usual arithmetic conversions preserve the operand’s value, except in the
following cases:

• When an integer of great magnitude is converted to a floating-point type, the
target type’s precision may not be sufficient to represent the number exactly.

• Negative values are outside the value range of unsigned types.

In these two cases, values that exceed the range or precision of the target type are
converted as described under “The Results of Arithmetic Type Conversions,” later
in this chapter.

Other Implicit Type Conversions

The compiler also automatically converts arithmetic values in the following cases:

• In assignments and initializations, the value of the right operand is always
converted to the type of the left operand.

• In function calls, the arguments are converted to the types of the correspond-
ing parameters. If the parameters have not been declared, then the default
argument promotions are applied: integer promotion is performed on integer
arguments, and arguments of type float are promoted to double.

• In return statements, the value of the return expression is converted to the
function’s return type.

In a compound assignment, such as x += 2.5, the values of both operands are first
subject to the usual arithmetic conversions, then the result of the arithmetic oper-
ation is converted, as for a simple assignment, to the type of the left operand.
Some examples:

#include <math.h> // Declares the function double sqrt(double).

int i = 7;
float x = 0.5; // The constant value is converted from double to float.

i = x; // The value of x is converted from float to int.

x += 2.5; // Before the addition, the value of x is converted to
 // double. Afterward, the sum is converted to float for
 // assignment to x.

x = sqrt(i); // Calculate the square root of i:
 // The argument is converted from int to double; the return
 // value is converted from double to float for assignment to x.

long my_func()
{
 /* ... */
return 0; // The constant 0 is converted to long, the function's return

 // type.
}

Conversion of Arithmetic Types | 45

Typ
e

Co
n

versio
n

s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The Results of Arithmetic Type Conversions

Because the different types have different purposes, representational characteris-
tics, and limitations, converting a value from one type to another often involves
the application of special rules to deal with such peculiarities. In general, the exact
result of a type conversion depends primarily on the characteristics of the target
type.

Conversions to _Bool

Any value of any scalar type can be converted to _Bool. The result is 0—i.e., false—
if the scalar value is equal to 0; and 1, or true, if it is nonzero. Because a null pointer
compares equal to zero, its value becomes false on conversion to _Bool.

Conversions to unsigned integer types other than _Bool

Integer values are always preserved if they are within the range of the new
unsigned type—in other words, if they are between 0 and Utype_MAX, where Utype_
MAX is the greatest value that can be represented by unsigned type.

For values outside the new unsigned type’s range, the value after conversion is the
value obtained by adding or subtracting (Utype_MAX + 1) as many times as neces-
sary until the result is within the range of the new type. The following example
illustrates the assignment of a negative value to an unsigned integer type:

#include <limits.h> // Defines the macros USHRT_MAX, UINT_MAX, etc.
unsigned short n = 1000; // The value 1000 is within the range of unsigned
 // short;
n = -1; // the value –1 must be converted.

To adjust a signed value of –1 to the variable’s unsigned type, the program implic-
itly adds USHRT_MAX + 1 to it until a result within the type’s range is obtained.
Because –1 + (USHRT_MAX + 1) = USHRT_MAX, the final statement in the previous
example is equivalent to n = USHRT_MAX;.

For positive integer values, subtracting (Utype_MAX + 1) as often as necessary to
bring the value into the new type’s range is the same as the remainder of a divi-
sion by (Utype_MAX + 1), as the following example illustrates:

#include <limits.h> // Defines the macros USHRT_MAX, UINT_MAX, etc.
unsigned short n = 0;
n = 0xFEDCBA; // The value is beyond the range of unsigned
 // short.

If unsigned short is 16 bits wide, then its maximum value, USHRT_MAX, is hexadec-
imal FFFF. When the value FEDCBA is converted to unsigned short, the result is
the same as the remainder of a division by hexadecimal 10000 (that’s USHRT_MAX +
1), which is always FFFF or less. In this case, the value assigned to n is hexadec-
imal DCBA.

46 | Chapter 4: Type Conversions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

To convert a real floating-point number to an unsigned or signed integer type, the
compiler discards the fractional part. If the remaining integer portion is outside
the range of the new type, the result of the conversion is undefined. Example:

double x = 2.9;

unsigned long n = x; // The fractional part of x is simply lost.

unsigned long m = round(x); // If x is non-negative, this has the
 // same effect as m = x + 0.5;

In the initialization of n in this example, the value of x is converted from double to
unsigned long by discarding its fractional part, 0.9. The integer part, 2, is the value
assigned to n. In the initialization of m, the C99 function round() rounds the value of
x to the nearest integer value (whether higher or lower), and returns a value of type
double. The fractional part of the resulting double value—3.0 in this case—is thus
equal to zero before being discarded through type conversion for the assignment to m.

When a complex number is converted to an unsigned integer type, the imaginary
part is first discarded. Then the resulting floating-point value is converted as
described previously. Example:

#include <limits.h> // Defines macros such as UINT_MAX.
#include <complex.h> // Defines macros such as the imaginary
 // constant I.

unsigned int n = 0;
float _Complex z = -1.7 + 2.0 * I;

n = z; // In this case, the effect is the same as
 // n = -1;
 // The resulting value of n is UINT_MAX.

The imaginary part of z is discarded, leaving the real floating-point value –1.7.
Then the fractional part of the floating-point number is also discarded. The
remaining integer value, –1, is converted to unsigned int by adding UINT_MAX+1,
so that the value ultimately assigned to n is equal to UINT_MAX.

Conversions to signed integer types

The problem of exceeding the target type’s value range can also occur when a
value is converted from an integer type, whether signed or unsigned, to a
different, signed integer type; for example, when a value is converted from the
type long or unsigned int to the type int. The result of such an overflow on
conversion to a signed integer type, unlike conversions to unsigned integer types,
is left up to the implementation.

Most compilers discard the highest bits of the original value’s binary representa-
tion and interpret the lowest bits according to the new type. As the following
example illustrates, under this conversion strategy the existing bit pattern of an
unsigned int is interpreted as a signed int value:

#include <limits.h> // Defines macros such as UINT_MAX
int i = UINT_MAX; // Result: i = –1 (in two's complement
 // representation)

Conversion of Arithmetic Types | 47

Typ
e

Co
n

versio
n

s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

However, depending on the compiler, such a conversion attempt may also result
in a signal being raised to inform the program of the value range overflow.

When a real or complex floating-point number is converted to a signed integer
type, the same rules apply as for conversion to an unsigned integer type, as
described in the previous section.

Conversions to real floating-point types

Not all integer values can be exactly represented in floating-point types. For example,
although the value range of the type float includes the range of the types long and
long long, float is precise to only six decimal digits. Thus, some long values cannot
be stored exactly in a float object. The result of such a conversion is the next lower
or next higher representable value, as the following example illustrates:

long l_var = 123456789L;
float f_var = l_var; // Implicitly converts long value to float.

printf("The rounding error (f_var - l_var) is %f\n", f_var - l_var);

Remember that the subtraction in this example, like all floating-point arithmetic,
is performed with at least double precision (see “Floating-Point Types” in
Chapter 2). Typical output produced by this code is:

The rounding error (f_var - l_var;) is 3.000000

Any value in a floating-point type can be represented exactly in another floating-
point type of greater precision. Thus when a double value is converted to long
double, or when a float value is converted to double or long double, the value is
exactly preserved. In conversions from a more precise to a less precise type,
however, the value being converted may be beyond the range of the new type. If
the value exceeds the target type’s range, the result of the conversion is unde-
fined. If the value is within the target type’s range, but not exactly representable in
the target type’s precision, then the result is the next smaller or next greater repre-
sentable value. The program in Example 2-2 illustrates the rounding error
produced by such a conversion to a less-precise floating-point type.

When a complex number is converted to a real floating-point type, the imaginary
part is simply discarded, and the result is the complex number’s real part, which
may have to be further converted to the target type as described in this section.

Conversions to complex floating-point types

When an integer or a real floating-point number is converted to a complex type, the
real part of the result is obtained by converting the value to the corresponding real
floating-point type as described in the previous section. The imaginary part is zero.

When a complex number is converted to a different complex type, the real and
imaginary parts are converted separately according to the rules for real floating-
point types.

#include <complex.h> // Defines macros such as the imaginary
 // constant I
double _Complex dz = 2;
float _Complex fz = dz + I;

48 | Chapter 4: Type Conversions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

In the first of these two initializations, the integer constant 2 is implicitly converted
to double _Complex for assignment to dz. The resulting value of dz is 2.0 + 0.0 × I.

In the initialization of fz, the two parts of the double _Complex value of dz are
converted (after the addition) to float, so that the real part of fz is equal to 2.0F,
and the imaginary part 1.0F.

Conversion of Nonarithmetic Types
Pointers and the names of arrays and functions are also subject to certain implicit
and explicit type conversions. Structures and unions cannot be converted,
although pointers to them can be converted to and from other pointer types.

Array and Function Designators

An array or function designator is any expression that has an array or function
type. In most cases, the compiler implicitly converts an expression with an array
type, such as the name of an array, into a pointer to the array’s first element. The
array expression is not converted into a pointer only in the following cases:

• When the array is the operand of the sizeof operator

• When the array is the operand of the address operator &

• When a string literal is used to initialize an array of char or wchar_t

The following examples demonstrate the implicit conversion of array designators
into pointers, using the conversion specification %p to print pointer values:

#include <stdio.h>

int *iPtr = 0; // A pointer to int, initialized with 0.
int iArray[] = { 0, 10, 20 }; // An array of int, initialized.

int array_length = sizeof(iArray) / sizeof(int); // The number of elements:
 // in this case, 3.

printf("The array starts at the address %p.\n", iArray);

*iArray = 5; // Equivalent to iArray[0] = 5;

iPtr = iArray + array_length – 1; // Point to the last element of iArray:
 // Equivalent to
 // iPtr = &iArray[array_length-1];

printf("The last element of the array is %d.\n", *iPtr);

In the initialization of array_length in this example, the expression
sizeof(iArray) yields the size of the whole array, not the size of a pointer.

Conversion of Nonarithmetic Types | 49

Typ
e

Co
n

versio
n

s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

However, the same identifier iArray is implicitly converted to a pointer in the
other three statements in which it appears:

• As an argument in the first printf() call.

• As the operand of the dereferencing operator *.

• In the pointer arithmetic operations and assignment to iPtr (see also “Modi-
fying and Comparing Pointers” in Chapter 9).

The names of character arrays are used as pointers in string operations, as in this
example:

#include <stdio.h>
#include <string.h> // Declares size_t strlen(const char *s)

char msg[80] = "I'm a string literal."; // Initialize an array of char.
printf("The string is %d characters long.\n", strlen(msg));
 // Answer: 21.
printf("The array named msg is %d bytes long.\n", sizeof(msg));
 // Answer: 80.

In the function call strlen(msg) in this example, the array identifier msg is implic-
itly converted to a pointer to the array’s first element with the function
parameter’s type, const char *. Internally, strlen() merely counts the characters
beginning at that address until the first null character, the string terminator.

Similarly, any expression that designates a function, such as a function name, can
also be implicitly converted into a pointer to the function. Again, this conversion
does not apply when the expression is the operand of the address operator &. The
sizeof operator cannot be used with an operand of function type. The following
example illustrates the implicit conversion of function names to pointers. The
program initializes an array of pointers to functions, then calls the functions in a
loop.

#include <stdio.h>
void func0() { puts("This is the function func0(). "); } // Two functions.
void func1() { puts("This is the function func1(). "); }
/* ... */
void (*funcTable[2])(void) = { func0, func1 }; // Array of two pointers to
 // functions returning void.
for (int i = 0; i < 2; ++i) // Use the loop counter as the array index.
 funcTable[i]();

Explicit Pointer Conversions

To convert a pointer from one pointer type to another, you must usually use an
explicit cast. In some cases the compiler provides an implicit conversion: these
cases are described in “Implicit Pointer Conversions,” later in this chapter.
Pointers can also be explicitly converted into integers, and vice versa.

50 | Chapter 4: Type Conversions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Object pointers

You can explicitly convert an object pointer—that is, a pointer to a complete or
incomplete object type—to any other object pointer type. In your program, you
must ensure that your use of the converted pointer makes sense. An example:

float f_var = 1.5F;
long *l_ptr = (long *)&f_var; // Initialize a pointer to long with
 // the address of f_var.
double *d_ptr = (double *)l_ptr; // Initialize a pointer to double with
 // the same address.

// On a system where sizeof(float) equals sizeof(long):

printf("The %d bytes that represent %f, in hexadecimal: 0x%lX\n",
 sizeof(f_var), f_var, *l_ptr);

// Using a converted pointer in an assignment can cause trouble:

/* *d_ptr = 2.5; */ // Don't try this! f_var's location doesn't
 // have space for a double value!
*(float *)d_ptr = 2.5; // OK: stores a float value in that location.

If the object pointer after conversion does not have the alignment required by the
new type, the results of using the pointer are undefined. In all other cases,
converting the pointer value back into the original pointer type is guaranteed to
yield an equivalent to the original pointer.

If you convert any type of object pointer into a pointer to any char type (char,
signed char, or unsigned char), the result is a pointer to the first byte of the
object. The first byte is considered here to be the byte with the lowest address,
regardless of the system’s byte order structure. The following example uses this
feature to print a hexadecimal dump of a structure variable:

#include <stdio.h>
struct Data {
 short id;
 double val;
 };

struct Data myData = { 0x123, 77.7 }; // Initialize a structure.

unsigned char *cp = (unsigned char *)&myData; // Pointer to the first
 // byte of the structure.

printf("%p: ", cp); // Print the starting
 // address.

for (int i = 0; i < sizeof(myData); ++i) // Print each byte of the
 printf("%02X ", *(cp + i)); // structure, in hexadecimal.
putchar('\n');

This example produces output like the following:

0xbffffd70: 23 01 00 00 00 00 00 00 CD CC CC CC CC 6C 53 40

Conversion of Nonarithmetic Types | 51

Typ
e

Co
n

versio
n

s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The output of the first two bytes, 23 01, shows that the code was executed on a
little-endian system: the byte with the lowest address in the structure myData was
the least significant byte of the short member id.

Function pointers

The type of a function always includes its return type, and may also include its
parameter types. You can explicitly convert a pointer to a given function into a
pointer to a function of a different type. In the following example, the typedef
statement defines a name for the type “function that has one double parameter
and returns a double value”:

#include <math.h> // Declares sqrt() and pow().
typedef double (func_t)(double); // Define a type named func_t.

func_t *pFunc = sqrt; // A pointer to func_t, initialized with
 // the address of sqrt().

double y = pFunc(2.0); // A correct function call by pointer.
printf("The square root of 2 is %f.\n", y);

pFunc = (func_t *)pow; // Change the pointer's value to the
 // address of pow().
/* y = pFunc(2.0); */ // Don't try this: pow() takes two
 // arguments.

In this example, the function pointer pFunc is assigned the addresses of functions
that have different types. However, if the program uses the pointer to call a func-
tion whose definition does not match the exact function pointer type, the
program’s behavior is undefined.

Implicit Pointer Conversions

The compiler converts certain types of pointers implicitly. Assignments, condi-
tional expressions using the equality operators == and !=, and function calls
involve implicit pointer conversion in three kinds of cases, which are described
individually in the sections that follow. The three kinds of implicit pointer conver-
sion are:

• Any object pointer type can be implicitly converted to a pointer to void, and
vice versa.

• Any pointer to a given type can be implicitly converted into a pointer to a
more qualified version of that type—that is, a type with one or more addi-
tional type qualifiers.

• A null pointer constant can be implicitly converted into any pointer type.

Pointers to void

Pointers to void—that is, pointers of the type void *—are used as “multipurpose”
pointers to represent the address of any object, without regard for its type. For
example, the malloc() function returns a pointer to void (see Example 2-3).

52 | Chapter 4: Type Conversions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Before you can access the memory block, the void pointer must always be
converted into a pointer to an object.

Example 4-1 demonstrates more uses of pointers to void. The program sorts an
array using the standard function qsort(), which is declared in the header file
stdlib.h with the following prototype:

void qsort(void *array, size_t n, size_t element_size,
 int (*compare)(const void *, const void *));

The qsort() function sorts the array in ascending order, beginning at the address
array, using the quick-sort algorithm. The array is assumed to have n elements
whose size is element_size.

The fourth parameter, compare, is a pointer to a function that qsort() calls to
compare any two array elements. The addresses of the two elements to be
compared are passed to this function in its pointer parameters. Usually this
comparison function must be defined by the programmer. It must return a value
that is less than, equal to, or greater than 0 to indicate whether the first element is
less than, equal to, or greater than the second.

Example 4-1. A comparison function for qsort()

#include <stdlib.h>
#define ARR_LEN 20

/*
 * A function to compare any two float elements,
 * for use as a call-back function by qsort().
 * Arguments are passed by pointer.
 *
 * Returns: -1 if the first is less than the second;
 * 0 if the elements are equal;
 * 1 if the first is greater than the second.
 */
int floatcmp(const void* p1, const void* p2)
{
 float x = *(float *)p1,
 y = *(float *)p2;

 return (x < y) ? -1 : ((x == y) ? 0 : 1);
}

/*
 * The main() function sorts an array of float.
 */
int main()
{
 /* Allocate space for the array dynamically: */
 float *pNumbers = malloc(ARR_LEN * sizeof(float));

 /* ... Handle errors, initialize array elements ... */

 /* Sort the array: */
 qsort(pNumbers, ARR_LEN, sizeof(float), floatcmp);

Conversion of Nonarithmetic Types | 53

Typ
e

Co
n

versio
n

s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

In Example 4-1, the malloc() function returns a void *, which is implicitly
converted to float * in the assignment to pNumbers. In the call to qsort(), the first
argument pNumbers is implicitly converted from float * to void *, and the func-
tion name floatcmp is implicitly interpreted as a function pointer. Finally, when
the floatcmp() function is called by qsort(), it receives arguments of the type
void *, the “universal” pointer type, and must convert them explicitly to float *
before dereferencing them to initialize its float variables.

Pointers to qualified object types

The type qualifiers in C are const, volatile, and restrict (see Chapter 11 for
details on these qualifiers). For example, the compiler implicitly converts any
pointer to int into a pointer to const int where necessary. If you want to remove
a qualification rather than adding one, however, you must use an explicit type
conversion, as the following example illustrates:

int n = 77;
const int *ciPtr = 0; // A pointer to const int.
 // The pointer itself is not constant!

ciPtr = &n; // Implicitly converts the address to the type
 // const int *.

n = *ciPtr + 3; // OK: this has the same effect as n = n + 3;

*ciPtr *= 2; // Error: you can't change an object referenced by
 // a pointer to const int.

*(int *)ciPtr *= 2; // OK: Explicitly converts the pointer into a
 // pointer to a nonconstant int.

The second to last statement in this example illustrates why pointers to const-
qualified types are sometimes called read-only pointers: although you can modify
the pointers’ values, you can’t use them to modify objects they point to.

Null pointer constants

A null pointer constant is an integer constant with the value 0, or a constant
integer value of 0 cast as a pointer to void. The macro NULL is defined in the header
files stdlib.h, stdio.h, and others as a null pointer constant. The following example
illustrates the use of the macro NULL as a pointer constant to initialize pointers
rather than an integer zero or a null character:

#include <stdlib.h>
long *lPtr = NULL; // Initialize to NULL: pointer is not ready for use.

/* ... operations here may assign lPtr an object address ... */

 /* ... Work with the sorted array ... */

 return 0;
}

Example 4-1. A comparison function for qsort() (continued)

54 | Chapter 4: Type Conversions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

if (lPtr != NULL)
{
 /* ... use lPtr only if it has been changed from NULL ... */
}

When you convert a null pointer constant to another pointer type, the result is
called a null pointer. The bit pattern of a null pointer is not necessarily zero.
However, when you compare a null pointer to zero, to NULL, or to another null
pointer, the result is always true. Conversely, comparing a null pointer to any
valid pointer to an object or function always yields false.

Conversions Between Pointer and Integer Types

You can explicitly convert a pointer to an integer type, and vice versa. The result
of such conversions depends on the compiler, and should be consistent with the
addressing structure of the system on which the compiled executable runs.
Conversions between pointer and integer types can be useful in system program-
ming, and necessary when programs need to access specific physical addresses,
such as ROM or memory-mapped I/O registers.

When you convert a pointer to an integer type whose range is not large enough to
represent the pointer’s value, the result is undefined. Conversely, converting an
integer into a pointer type does not necessarily yield a valid pointer. A few
examples:

float x = 1.5F, *fPtr = &x; // A float, and a pointer to it.

unsigned int adr_val = (unsigned int)fPtr; // Save the pointer value
 // as an integer.

/*
 * On an Intel x86 PC in DOS, the BIOS data block begins at the
 * address 0x0040:0000.
 * (Compile using DOS's "large" memory model.)
 */
unsigned short *biosPtr = (unsigned short *)= 0x400000L;
unsigned short com1_io = *biosPtr; // The first word contains the
 // I/O address of COM1.
printf("COM1 has the I/O base address %Xh.\n", com1_io);

The last three statements obtain information about the hardware configuration
from the system data table, assuming the operating environment allows the
program to access that memory area. In a DOS program compiled with the large
memory model, pointers are 32 bits wide and consist of a segment address in the
higher 16 bits and an offset in the lower 16 bits (often written in the form
segment:offset). Thus the pointer biosPtr in the prior example can be initialized
with a long integer constant.

55

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Chapter 5Expressions and Operators

5
Expressions and Operators

An expression consists of a sequence of constants, identifiers, and operators that
the program evaluates by performing the operations indicated. The expression’s
purpose in the program may be to obtain the resulting value, or to produce side
effects of the evaluation, or both (see the section “Side Effects and Sequence
Points,” later in this chapter).

A single constant, a string literal, or the identifier of an object or function is in
itself an expression. Such a simple expression, or a more complex expression
enclosed in parentheses, is called a primary expression.

Every expression has a type. An expression’s type is the type of the value that
results when the expression is evaluated. If the expression yields no value, it has
the type void. Some simple examples of expressions are listed in Table 5-1
(assume that a has been declared as a variable of type int, and z as a variable of
type float _Complex).

Table 5-1. Example expressions

Expression Type

'\n' int

a + 1 int

a + 1.0 double

a < 77.7 int

"A string literal." char *

abort() void

sqrt(2.0) double

z / sqrt(2.0) double _Complex

56 | Chapter 5: Expressions and Operators

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

As you can see from the examples in Table 5-1, compound expressions are formed
by using an operator with expressions as its operands. The operands can them-
selves be primary or compound expressions. For example, you can use a function
call as a factor in a multiplication. Likewise, the arguments in a function call can
be expressions involving several operators, as in this example:

2.0 * sin(3.14159 * fAngleDegrees/180.0)

How Expressions Are Evaluated
Before we consider specific operators in detail, this section explains a few funda-
mental principles that will help you understand how C expressions are evaluated.
The precedence and associativity of operators are obviously important in parsing
compound expressions, but sequence points and lvalues are no less essential to
understanding how a C program works.

Lvalues

An lvalue is an expression that designates an object. The simplest example is the
name of a variable. The initial “L” in the term originally meant “left”: because an
lvalue designates an object, it can appear on the left side of an assignment oper-
ator, as in leftexpression = rightexpression.* Other expressions—those that
represent a value without designating an object—are called, by analogy, rvalues.
An rvalue is an expression that can appear on the right side of an assignment
operator, but not the left. Examples include constants and arithmetic expressions.

An lvalue can always be resolved to the corresponding object’s address, unless the
object is a bit-field or a variable declared with the register storage class (see the
section “Storage Class Specifiers” in Chapter 11). The operators that yield an
lvalue include the subscript operator [] and the indirection operator *, as the
examples in Table 5-2 illustrate (assume that array has been declared as an array
and ptr as a pointer variable).

* The C standard acknowledges this etymology, but proposes that the L in lvalue be thought of as
meaning “locator,” because an lvalue always designates a location in memory. The standard steers
clear of the term rvalue, preferring the phrase “not an lvalue.”

Table 5-2. Pointer and array expressions may be lvalues

Expression Lvalue?

array[1] Yes; an array element is an object with a location.

&array[1] No; the location of the object is not an object with a location.

ptr Yes; the pointer variable is an object with a location.

*ptr Yes; what the pointer points to is also an object with a location.

ptr+1 No; the addition yields a new address value, but not an object.

*ptr+1 No; the addition yields a new arithmetic value, but not an object.

How Expressions Are Evaluated | 57

Exp
ressio

n
s

an
d

 O
p

erato
rs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

An object may be declared as constant. If this is the case, you can’t use it on the
left side of an assignment, even though it is an lvalue, as the following example
illustrates:

int a = 1;
const int b = 2, *ptr = &a;
b = 20; // Error: b is declared as const int.
*ptr = 10; // Error: ptr is declared as a pointer to const int.

In this example, the expressions a, b, ptr, and *ptr are all lvalues. However, b and
*ptr are constant lvalues. Because ptr is declared as a pointer to const int, you
cannot use it to modify the object it points to. For a full discussion of declara-
tions, see Chapter 11.

The left operand of an assignment, as well as any operand of the increment and
decrement operators, ++ and --, must be not only an lvalue, but also a modifiable
lvalue. A modifiable lvalue is an lvalue that is not declared as a const-qualified
type (see “Type Qualifiers” in Chapter 11), and that does not have an array type.
If a modifiable lvalue designates an object with a structure or union type, none of
its elements must be declared, directly or indirectly, as having a const-qualified
type.

Side Effects and Sequence Points

In addition to yielding a value, the evaluation of an expression can result in other
changes in the execution environment, called side effects. Examples of such
changes include modifications of a variable’s value, or of input or output streams.

During the execution of a program, there are determinate points at which all the
side effects of a given expression have been completed, and no effects of the next
expression have yet occurred. Such points in the program are called sequence
points. Between two consecutive sequence points, partial expressions may be eval-
uated in any order. As a programmer, you must therefore remember not to modify
any object more than once between two consecutive sequence points. An
example:

int i = 1; // OK.
i = i++; // Wrong: two modifications of i; behavior is undefined.

Because the assignment and increment operations in the last statement may take
place in either order, the resulting value of i is undefined. Similarly, in the expres-
sion f()+g(), where f() and g() are two functions, C does not specify which
function call is performed first. It is up to you the programmer to make sure that
the results of such an expression are not dependent on the order of evaluation.
Another example:

int i = 0, array[] = { 0, 10, 20 };
// ...
array[i] = array[++i]; // Wrong: behavior undefined.
array[i] = array[i + 1]; ++i; // OK: modifications separated by a sequence
 // point.

58 | Chapter 5: Expressions and Operators

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The most important sequence points occur at the following positions:

• After all the arguments in a function call have been evaluated, and before
control passes to the statements in the function.

• At the end of an expression which is not part of a larger expression. Such full
expressions include the expression in an expression statement (see “Expres-
sion Statements” in Chapter 6), each of the three controlling expressions in a
for statement, the condition of an if or while statement, the expression in a
return statement, and initializers.

• After the evaluation of the first operand of each of the following operators:

• && (logical AND)

• || (logical OR)

• ?: (the conditional operator)

• , (the comma operator)

Thus the expression ++i < 100 ? f(i++) : (i = 0) is permissible, as there is a
sequence point between the first modification of i and whichever of the other two
modifications is performed.

Operator Precedence and Associativity

An expression may contain several operators. In this case, the precedence of the
operators determines which part of the expression is treated as the operand of
each operator. For example, in keeping with the customary rules of arithmetic, the
operators *, /, and % have higher precedence in an expression than the operators +
and -. For example, the following expression:

a - b * c

is equivalent to a - (b * c). If you intend the operands to be grouped differently,
you must use parentheses, thus:

(a - b) * c

If two operators in an expression have the same precedence, then their
associativity determines whether they are grouped with operands in order from
left to right, or from right to left. For example, arithmetic operators are associated
with operands from left to right, and assignment operators from right to left, as
shown in Table 5-3. Table 5-4 lists the precedence and associativity of all the C
operators.

Table 5-3. Operator grouping

Expression Associativity Effective grouping

a / b % c Left to right (a / b) % c

a = b = c Right to left a = (b = c)

Operators in Detail | 59

Exp
ressio

n
s

an
d

 O
p

erato
rs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The last of the highest-precedence operators in Table 5-4, (type name){list}, is the
newest, added in C99. It is described in “Compound literals,” later in this chapter.

A few of the operator tokens appear twice in the table. To start with, the incre-
ment and decrement operators, ++ and --, have a higher precedence when used as
postfix operators (as in the expression x++) than the same tokens when used as
prefix operators (as in ++x).

Furthermore, the tokens +, -, *, and & represent both unary operators—that is,
operators that work on a single operand—and binary operators, or operators that
connect two operands. For example, * with one operand is the indirection oper-
ator, and with two operands, it is the multiplication sign. In each of these cases,
the unary operator has higher precedence than the binary operator. For example,
the expression *ptr1 * *ptr2 is equivalent to (*ptr1) * (*ptr2).

Operators in Detail
This section describes in detail the individual operators, and indicates what kinds
of operands are permissible. The descriptions are arranged according to the
customary usage of the operators, beginning with the usual arithmetic and assign-
ment operators.

Table 5-4. Operator precedence and associativity

Precedence Operators Associativity

1. Postfix operators:
[] () . -> ++ --
(type name){list}

Left to right

2. Unary operators:
++ --
! ~ + - * & sizeof

Right to left

3. The cast operator: (type name) Right to left

4. Multiplicative operators: * / % Left to right

5. Additive operators: + - Left to right

6. Shift operators: << >> Left to right

7. Relational operators: < <= > >= Left to right

8. Equality operators: == != Left to right

9. Bitwise AND: & Left to right

10. Bitwise exclusive OR: ^ Left to right

11. Bitwise OR: | Left to right

12. Logical AND: && Left to right

13. Logical OR: || Left to right

14. The conditional operator: ? : Right to left

15. Assignment operators:
 = += -= *=
/= %= &= ^=
|= <<= >>=

Right to left

16. The comma operator: , Left to right

60 | Chapter 5: Expressions and Operators

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Arithmetic Operators

Table 5-5 lists the arithmetic operators.

The operands of the arithmetic operators are subject to the following rules:

• Only the % operator requires integer operands.

• The operands of all other operators may have any arithmetic type.

Furthermore, addition and subtraction operations may also be performed on
pointers in the following cases:

• In an addition, one addend can be an object pointer while the other has an
integer type.

• In a subtraction, either both operands can be pointers to objects of the same type
(without regard to type qualifiers), or the minuend (the left operand) can be an
object pointer, while the subtrahend (the right operand) has an integer type.

Standard arithmetic

The operands are subject to the usual arithmetic conversions (see “Conversion of
Arithmetic Types” in Chapter 4). The result of division with two integer operands is
also an integer! To obtain the remainder of an integer division, use the modulo oper-
ation (the % operator). Implicit type conversion takes place in the evaluation of the
following expressions, as shown in Table 5-6 (assume n is declared by short n = -5;).

Table 5-5. Arithmetic operators

Operator Meaning Example Result

* Multiplication x * y The product of x and y

/ Division x / y The quotient of x by y

% The modulo operation x % y The remainder of x divided by y

+ Addition x + y The sum of x and y

- Subtraction x - y The difference of x and y

+ (unary) Positive sign +x The value of x

- (unary) Negative sign -x The arithmetic negation of x

Table 5-6. Implicit type conversions in arithmetic expressions

Expression Implicit type conversion The expression’s type The expression’s value

-n Integer promotion. int 5

n * -2L Integer promotion: the value of n is promoted
to long, because the constant -2L has the
type long.

long 10

8/n Integer promotion. int –1

8%n Integer promotion. int 3

8.0/n The value of n is converted to the type
double, because 8.0 has the type double.

double –1.6

8.0%n Error: the modulo operation (%) requires
integer operands.

Operators in Detail | 61

Exp
ressio

n
s

an
d

 O
p

erato
rs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

If both operands in a multiplication or a division have the same sign, the result is
positive; otherwise, it is negative. However, the result of a modulo operation always
has the same sign as the left operand. For this reason, the expression 8%n in Table 5-6
yields the value 3. If a program attempts to divide by zero, its behavior is undefined.

Pointer arithmetic

You can use the binary operators + and - to perform arithmetic operations on
pointers. For example, you can modify a pointer to refer to another object a
certain number of object sizes away from the object originally referenced. Such
pointer arithmetic is generally useful only to refer to the elements of an array.

Adding an integer to or subtracting an integer from a pointer yields a pointer
value with the same type as the pointer operand. The compiler automatically
multiplies the integer by the size of the object referred to by the pointer type, as
Example 5-1 illustrates.

Figure 5-1 illustrates the effects of the two assignment expressions using the
pointer dPtr.

The statement dPtr = dPtr + 1; adds the size of one array element to the pointer,
so that dPtr points to the next array element, dArr[1]. Because dPtr is declared as
a pointer to double, its value is increased by sizeof(double).

Example 5-1. Pointer arithmetic

double dArr[5] = { 0.0, 1.1, 2.2, 3.3, 4.4 }, // Initialize an array and
 *dPtr = dArr; // a pointer to its first element.
int i = 0; // An index variable.

dPtr = dPtr + 1; // Advance dPtr to the second element. Addends
dPtr = 2 + dPtr; // can be in either order. dPtr now points to dArr[3].

printf("%.1f\n", *dPtr); // Print the element referenced by dPtr.
printf("%.1f\n", *(dPtr -1)); // Print the element before that, without
 // modifying the pointer dPtr.

i = dPtr - dArr; // Result: the index of the array element that dPtr points to.

Figure 5-1. Using a pointer to move through the elements in an array

0.0

dArr

dPtr

+1 +2

1.1 2.2 3.3 4.4

62 | Chapter 5: Expressions and Operators

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The statement dPtr = dPtr + 1; in Example 5-1 has the same effect as any of the
following statements (see the sections “Assignment Operators” and “Increment
and Decrement Operators,” later in this chapter):

dPtr += 1;
++dPtr;
dPtr++;

Subtracting one pointer from another yields an integer value with the type
ptrdiff_t. The value is the number of objects that fit between the two pointer
values. In the last statement in Example 5-1, the expression dPtr - dArr yields the
value 3. This is also the index of the element that dPtr points to, because dArr
represents the address of the first array element (with the index 0). The type
ptrdiff_t is defined in the header file stddef.h, usually as int.

For more information on pointer arithmetic, see Chapter 9.

Assignment Operators

In an assignment operation, the left operand must be a modifiable lvalue; in other
words, it must be an expression that designates an object whose value can be
changed. In a simple assignment (that is, one performed using the operator =), the
assignment operation stores the value of the right operand in this object.

There are also compound assignments, which combine an arithmetic or a bitwise
operation in the same step with the assignment. Table 5-7 lists all the assignment
operators.

Simple assignment

The operands of a simple assignment must fulfill one of the following conditions:

• Both operands have arithmetic types.

• The left operand has the type _Bool and the right operand is a pointer.

• Both operands have the same structure or union type.

• Both operands are pointers to the same type, or the left operand is a pointer
to a qualified version of the common type—that is, the type pointed to by the
left operand is declared with one or more additional type qualifiers (see
Chapter 11).

• One operand is an object pointer and the other is a pointer to void (here again,
the type pointed to by the left operand may have additional type qualifiers).

• The left operand is a pointer and the right is a null pointer constant.

Table 5-7. Assignment operators

Operator Meaning Example Result

= Simple assignment x = y Assign x the value of y.

+= -=
*= /= %=
&= ^= |=
<<= >>=

Compound assignment x *= y For each binary arithmetic or binary bitwise operator
op, x op= y is equivalent to x = x op (y).

Operators in Detail | 63

Exp
ressio

n
s

an
d

 O
p

erato
rs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

If the two operands have different types, the value of the right operand is
converted to the type of the left operand (see the sections “The Results of Arith-
metic Type Conversions” and “Implicit Pointer Conversions” in Chapter 4).

The modification of the left operand is a side effect of an assignment expression.
The value of the entire assignment expression is the same as the value assigned to
the left operand, and the assignment expression has the type of the left operand.
However, unlike its left operand, the assignment expression itself is not an lvalue.
If you use the value of an assignment expression in a larger expression, pay careful
attention to implicit type conversions. Avoid errors such as that illustrated in the
following example. This code is supposed to read characters from the standard
input stream until the end-of-file is reached or an error occurs:

#include <stdio.h>
char c = 0;

/* ... */

while ((c = getchar()) != EOF)
 { /* ... Process the character stored in c ... */ }

In the controlling expression of the while statement in this example, getchar()
returns a value with type int, which is implicitly converted to char for assignment
to c. Then the value of the entire assignment expression c = getchar(), which is
the same char value, is promoted to int for comparison with the constant EOF,
which is usually defined as –1 in the header file stdio.h. However, if the type char
is equivalent to unsigned char, then the conversion to int always yields a non-
negative value. In this case, the loop condition is always true.

As Table 5-4 shows, assignment operators have a low precedence, and are
grouped with their operators from right to left. As a result, no parentheses are
needed around the expression to the right of the assignment operator, and
multiple assignments can be combined in one expression, as in this example:

double x = 0.5, y1, y2; // Declarations
y1 = y2 = 10.0 * x; // Equivalent to y1 = (y2 = (10.0 * x));

This expression assigns the result of the multiplication to y1 and to y2.

Compound assignments

A compound assignment is performed by any of the following operators:

 *= /= %= += -= (arithmetic operation and assignment)
<<= >>= &= ^= |= (bitwise operation and assignment)

In evaluating a compound assignment expression, the program combines the two
operands with the specified operation and assigns the result to the left operand.
Two examples:

long var = 1234L ;
var *= 3; // Triple the value of var.
var <<= 2; // Shift the bit pattern in var two bit-positions to the
 // left (i.e., multiply the value by four).

64 | Chapter 5: Expressions and Operators

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The only difference between a compound assignment x op= y and the corre-
sponding expression x = x op (y) is that in the compound assignment, the left
operand x is evaluated only once. In the following example, the left operand of the
compound assignment operator is an expression with a side effect, so that the two
expressions are not equivalent:

x[++i] *= 2; // Increment i once, then double the indexed
 // array element.
x[++i] = x[++i] * (2); // Oops: you probably didn't want to increment i
 // twice.

In the equivalent form x = x op (y), the parentheses around the right operand y
are significant, as the following example illustrates:

double var1 = 2.5, var2 = 0.5;
var1 /= var2 + 1; // Equivalent to var1 = var1 / (var2 + 1);

Without the parentheses, the expression var1 = var1 / var2 + 1 would yield a
different result, because simple division, unlike the compound assignment, has
higher precedence than addition.

The operands of a compound assignment can have any types that are permissible
for the operands of the corresponding binary operator. The only additional
restriction is that when you add a pointer to an integer, the pointer must be the
left operand, as the result of the addition is a pointer. Example:

short *sPtr;
/* ... */
sPtr += 2; // Equivalent to sPtr = sPtr + 2;
 // or sPtr = 2 + sPtr;

Increment and Decrement Operators

Each of the tokens ++ and -- represents both a postfix and a prefix operator.
Table 5-8 describes both forms of both operators.

Table 5-8. Increment and decrement operators

Operator Meaning Side effect Value of the expression

Postfix:
x++

Prefix:
++x

Increment Increases the value of x by one
(like x = x + 1).

The value of x++ is the value that x had before it
was incremented.
The value of ++x is the value that x has after it has
been incremented.

Postfix:
x--

Prefix:
--x

Decrement Decreases the value of x by one
(like x = x - 1).

The value of x-- is the value that x had before it
was decremented.
The value of --x is the value that x has after it has
been decremented.

Operators in Detail | 65

Exp
ressio

n
s

an
d

 O
p

erato
rs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

These operators require a modifiable lvalue as their operand. More specifically,
the operand must have a real arithmetic type (not a complex type), or an object
pointer type. The expressions ++x and --x are equivalent to (x += 1) and (x -= 1).

The following examples demonstrate the use of the increment operators, along
with the subscript operator [] and the indirection operator *:

char a[10] = "Jim";
int i = 0;
printf("%c\n", a[i++]); // Output: J
printf("%c\n", a[++i]); // Output: m

The character argument in the first printf() call is the character J from the array
element a[0]. After the call, i has the value 1. Thus in the next statement, the
expression ++i yields the value 2, so that a[++i] is the character m.

The operator ++ can also be applied to the array element itself:

i = 0;
printf("%c\n", a[i]++); // Output: J
printf("%c\n", ++a[i]); // Output: L

According to the operator precedences and associativity in Table 5-4, the expres-
sions a[i]++ and ++a[i] are equivalent to (a[i])++ and ++(a[i]). Thus each of
these expressions increases the value of the array element a[0] by one, while
leaving the index variable i unchanged. After the statements in this example, the
value of i is still 0, and the character array contains the string "Lim", as the first
element has been incremented twice.

The operators ++ and -- are often used in expressions with pointers that are
dereferenced by the * operator. For example, the following while loop copies a
string from the array a to a second char array, a2:

char a2[10], *p1 = a, *p2 = a2;
// Copy string to a2:
while ((*p2++ = *p1++) != '\0')
 ;

Because the postfix operator ++ has precedence over the indirection operator *
(see Table 5-4), the expression *p1++ is equivalent to *(p1++). In other words, the
value of the expression *p1++ is the array element referenced by p1, and as a side
effect, the value of p1 is one greater after the expression has been evaluated. When
the end of the string is reached, the assignment *p2++ = *p1++ copies the termi-
nator character '\0', and the loop ends, because the assignment expression yields
the value '\0'.

By contrast, the expression (*p1)++ or ++(*p1) would increment the element refer-
enced by p1, leaving the pointer’s value unchanged. However, the parentheses in
the expression ++(*p1) are unnecessary: this expression is equivalent to ++*p1,
because the unary operators are associated with operands from right to left (see
Table 5-4). For the same reason, the expression *++p1 is equivalent to *(++p1), and
its value is the array element that p1 points to after p1 has been incremented.

66 | Chapter 5: Expressions and Operators

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Comparative Operators

The comparative operators, also called the relational operators and the equality
operators, compare two operands and yield a value of type int. The value is 1 if
the specified relation holds, and 0 if it does not. C defines the comparative opera-
tors listed in Table 5-9.

For all comparative operators, the operands must meet one of the following
conditions:

• Both operands have real arithmetic types.

• Both operands are pointers to objects of the same type, which may be
declared with different type qualifiers.

With the equality operators, == and !=, operands that meet any of the following
conditions are also permitted:

• The two operands have any arithmetic types, including complex types.

• Both operands are pointers to functions of the same type.

• One operand is an object pointer, while the other is a pointer to void. The
two may be declared with different type qualifiers (the operand that is not a
pointer to void is implicitly converted to the type void* for the comparison).

• One operand is a pointer and the other is a null pointer constant. The null
pointer constant is converted to the other operand’s type for the comparison.

The operands of all comparison operators are subject to the usual arithmetic
conversions (see “Conversion of Arithmetic Types” in Chapter 4). Two complex
numbers are considered equal if their real parts are equal and their imaginary
parts are equal.

When you compare two object pointers, the result depends on the relative posi-
tions of the objects in memory. Elements of an array are objects with fixed relative
positions: a pointer that references an element with a greater index is greater than
any pointer that references an element with a lesser index. A pointer can also
contain the address of the first memory location after the last element of an array.
In this case, that pointer’s value is greater than that of any pointer to an element
of the array.

The function in Example 5-2 illustrates some expressions with pointers as
operands.

Table 5-9. Comparative operators

Operator Meaning Example Result (1 = true, 0 = false)

< Less than x < y 1 if x is less than y, otherwise 0

<= Less than or equal to x <= y 1 if x is less than or equal to y, otherwise 0

> Greater than x > y 1 if x is greater than y, otherwise 0

>= Greater than or equal to x >= y 1 if x is greater than or equal to y, otherwise 0

== Equal to x == y 1 if x is equal to y, otherwise 0

!= Not equal to x != y 1 if x is not equal to y, otherwise 0

Operators in Detail | 67

Exp
ressio

n
s

an
d

 O
p

erato
rs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Two pointers are equal if they point to the same location in memory, or if they are
both null pointers. In particular, pointers to members of the same union are
always equal, because all members of a union begin at the same address. The rule
for members of the same structure, however, is that a pointer to member2 is larger
than a pointer to member1 if and only if member2 is declared after member1 in the
structure type’s definition.

The comparative operators have lower precedence than the arithmetic operators,
but higher precedence than the logical operators. As a result, the following two
expressions are equivalent:

 a < b && b < c + 1
(a < b) && (b < (c + 1))

Furthermore, the equality operators, == and !=, have lower precedence than the
other comparative operators. Thus the following two expressions are also
equivalent:

 a < b != b < c
(a < b) != (b < c)

This expression is true (that is, it yields the value 1) if and only if one of the two
operand expressions, (a < b) and (b < c), is true and the other false.

Logical Operators

You can connect expressions using logical operators to form compound condi-
tions, such as those often used in jump and loop statements to control the
program flow. C uses the symbols described in Table 5-10 for the boolean opera-
tions AND, OR, and NOT.

Example 5-2. Operations with pointers

/* The function average() calculates the arithmetic mean of the
 * numbers passed to it in an array.
 * Arguments: An array of float, and its length.
 * Return value: The arithmetic mean of the array elements, with type double.
 */
double average(const float *array, int length)
{
 double sum = 0.0;
 float *end = array + length; // Points one past the last element.

 if (length <= 0) // The average of no elements is zero.
 return 0.0;
 // Accumulate the sum by
 for (float *p = array; p < end; ++p) // walking a pointer through the array.
 sum += *p;

 return sum/length; // The average of the element values.
}

68 | Chapter 5: Expressions and Operators

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Like comparative expressions, logical expressions have the type int. The result
has the value 1 if the logical expression is true, and the value 0 if it is false.

The operands may have any scalar type desired—in other words, any arithmetic
or pointer type. Any operand with a value of 0 is interpreted as false; any value
other than 0 is treated as true. Most often, the operands are comparative expres-
sions, as in the following example. Assuming the variable deviation has the type
double, all three of the expressions that follow are equivalent:

 (deviation < -0.2) || (deviation > 0.2)
 deviation < -0.2 || deviation > 0.2
!(deviation >= -0.2 && deviation <= 0.2)

Each of these logical expressions yields the value 1, or true, whenever the value of
the variable deviation is outside the interval [–0.2, 0.2]. The parentheses in the first
expression are unnecessary since comparative operators have a higher precedence
than the logical operators && and ||. However, the unary operator ! has a higher
precedence. Furthermore, as Table 5-4 shows, the operator && has a higher prece-
dence than ||. As a result, parentheses are necessary in the following expression:

(deviation < -0.2 || deviation > 0.2) && status == 1

Without the parentheses, that expression would be equivalent to this:

deviation < -0.2 || (deviation > 0.2 && status == 1)

These expressions yield different results if, for example, deviation is less than –0.2
and status is not equal to 1.

The operators && and || have an important peculiarity: their operands are evalu-
ated in order from left to right, and if the value of the left operand is sufficient to
determine the result of the operation, then the right operand is not evaluated at
all. There is a sequence point after the evaluation of the left operand. The oper-
ator && evaluates the right operand only if the left operand yields a nonzero value;
the operator || evaluates the right operand only if the left operand yields 0. The
following example shows how programs can use these conditional-evaluation
characteristics of the && and || operators:

double x;
_Bool get_x(double *x), check_x(double); // Function prototype
 // declarations.
/* ... */
while (get_x(&x) && check_x(x)) // Read and test a number.
 { /* ... Process x ... */ }

Table 5-10. Logical operators

Operator Meaning Example
Result
(1 = true, 0 = false)

&& logical AND x && y 1 if each of the operands x
and y is not equal to zero,
otherwise 0

|| logical OR x || y 0 if each of x and y is
equal to zero, otherwise 1

! logical NOT !x 1 if x is equal to zero,
otherwise 0

Operators in Detail | 69

Exp
ressio

n
s

an
d

 O
p

erato
rs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

In the controlling expression of the while loop, the function get_x(&x) is called
first to read a floating-point number into the variable x. Assuming that get_x()
returns a true value on success, the check_x() function is called only if there is a
new value in x to be tested. If check_x() also returns true, then the loop body is
executed to process x.

Bitwise Operators

For more compact data, C programs can store information in individual bits or
groups of bits. File access permissions are a common example. The bitwise opera-
tors allow you to manipulate individual bits in a byte or in a larger data unit: you
can clear, set, or invert any bit or group of bits. You can also shift the bit pattern
of an integer to the left or right.

The bit pattern of an integer type consists of bit positions numbered from right to
left, beginning with position 0 for the least significant bit. For example, consider
the char value '*', which in ASCII encoding is equal to 42, or binary 101010:

In this example, the value 101010 is shown in the context of an 8-bit byte; hence
the two leading zeros.

Boolean bitwise operators

The operators listed in Table 5-11 perform Boolean operations on each bit posi-
tion of their operands. The binary operators connect the bit in each position in
one operand with the bit in the same position in the other operand. A bit that is
set, or 1, is interpreted as true, and a bit that is cleared, or 0, is considered false.

In addition to the operators for boolean AND, OR, and NOT, there is also a
bitwise exclusive-OR operator. These are all described in Table 5-11.

Bit pattern 0 0 1 0 1 0 1 0

Bit positions 7 6 5 4 3 2 1 0

Table 5-11. Boolean bitwise operators

Operator Meaning Example
Result (for each bit position)
(1 = set, 0 = cleared)

& Bitwise AND x & y 1, if 1 in both x and y
0, if 0 in x or y, or both

| Bitwise OR x | y 1, if 1 in x or y, or both
0, if 0 in both x and y

^ Bitwise
exclusive OR

x ^ y 1, if 1 either in x or in y, but not in both
0, if either value in both x and y

~ Bitwise NOT
(one’s complement)

~x 1, if 0 in x
0, if 1 in x

70 | Chapter 5: Expressions and Operators

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The operands of the bitwise operators must have integer types, and are subject to
the usual arithmetic conversions. The resulting common type of the operands is
the type of the result. Table 5-12 illustrates the effects of these operators.

You can clear certain bits in an integer variable a by performing a bitwise AND
with an integer in which only the bits to be cleared contain zeroes, and assigning
the result to the variable a. The bits that were set in the second operand—called a
bit mask—have the same value in the result as they had in the first operand. For
example, an AND with the bit mask 0xFF clears all bits except the lowest eight:

a &= 0xFF; // Equivalent notation: a = a & 0xFF;

As this example illustrates, the compound assignment operator &= also performs
the & operation. The compound assignments with the other binary bitwise opera-
tors work similarly.

The bitwise operators are also useful in making bit masks to use in further bit
operations. For example, in the bit pattern of 0x20, only bit 5 is set. The expres-
sion ~0x20 therefore yields a bit mask in which all bits are set except bit 5:

a &= ~0x20; // Clear bit 5 in a.

The bit mask ~0x20 is preferable to 0xFFFFFFDF because it is more portable: it gives
the desired result regardless of the machine’s word size. (It also makes the state-
ment more readable for humans.)

You can also use the operators | (OR) and ^ (exclusive OR) to set and clear
certain bits. Here is an example of each one:

int mask = 0xC;
a |= mask; // Set bits 2 and 3 in a.
a ^= mask; // Invert bits 2 and 3 in a.

A second inversion using the same bit mask reverses the first inversion. In other
words, b^mask^mask yields the original value of b. This behavior can be used to
swap the values of two integers without using a third, temporary variable:

a ^= b; // Equivalent to a = a ^ b;
b ^= a; // Assign b the original value of a.
a ^= b; // Assign a the original value of b.

The first two expressions in this example are equivalent to b = b^(a^b) or b =
(a^b)^b. The result is like b = a, with the side effect that a is also modified, and

Table 5-12. Effects of the bitwise operators

Expression (or declaration) Bit pattern

int a = 6; 0 ... 0 0 1 1 0

int b = 11; 0 ... 0 1 0 1 1

a & b 0 ... 0 0 0 1 0

a | b 0 ... 0 1 1 1 1

a ^ b 0 ... 0 1 1 0 1

~a 1 ... 1 1 0 0 1

Operators in Detail | 71

Exp
ressio

n
s

an
d

 O
p

erato
rs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

now equals a^b. At this point, the third expression has the effect of (using the
original values of a and b) a = (a^b)^a, or a = b.

Shift operators

The shift operators transpose the bit pattern of the left operand by the number of
bit positions indicated by the right operand. They are listed in Table 5-13.

The operands of the shift operators must be integers. Before the actual bit-shift,
the integer promotions are performed on both operands. The value of the right
operand must not be negative, and must be less than the width of the left operand
after integer promotion. If it does not meet these conditions, the program’s
behavior is undefined.

The result has the type of the left operand after integer promotion. The shift
expressions in the following example have the type unsigned long.

unsigned long n = 0xB, // Bit pattern: 0 ... 0 0 0 1 0 1 1
 result = 0;
result = n << 2; // 0 ... 0 1 0 1 1 0 0
result = n >> 2; // 0 ... 0 0 0 0 0 1 0

In a left shift, the bit positions that are vacated on the right are always cleared. Bit
values shifted beyond the leftmost bit position are lost. A left shift through y bit
positions is equivalent to multiplying the left operand by 2y: If the left operand x
has an unsigned type, then the expression x << y yields the value of x × 2y. Thus in
the previous example, the expression n << 2 yields the value of n × 4, or 44.

On a right shift, the vacated bit positions on the left are cleared if the left operand
has an unsigned type, or if it has a signed type and a non-negative value. In this
case, the expression has x >> y yields the same value as the integer division x/2y. If
the left operand has a negative value, then the fill value depends on the compiler:
it may be either zero or the value of the sign bit.

The shift operators are useful in generating certain bit masks. For example, the
expression 1 << 8 yields a word with only bit 8 set, and the expression ~(3<<4)
produces a bit pattern in which all bits are set except bits 4 and 5. The function
setBit() in Example 5-3 uses the bit operations to manipulate a bit mask.

Table 5-13. Shift operators

Operator Meaning Example Result

<< Shift left x << y Each bit value in x is moved y positions to the left.

>> Shift right x >> y Each bit value in x is moved y positions to the right.

Example 5-3. Using a shift operation to manipulate a bit mask

// Function setBit()
// Sets the bit at position p in the mask m.
// Uses CHAR_BIT, defined in limits.h, for the number of bits in a byte.
// Return value: The new mask with the bit set, or the original mask
// if p is not a valid bit position.

72 | Chapter 5: Expressions and Operators

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The shift operators have lower precedence than the arithmetic operators, but
higher precedence than the comparative operators and the other bitwise opera-
tors. The parentheses in the expression mask | (1 << p) in Example 5-3 are thus
actually unnecessary, but they make the code more readable.

Memory Addressing Operators

The five operators listed in Table 5-14 are used in addressing array elements and
members of structures, and in using pointers to access objects and functions.

The & and * operators

The address operator & yields the address of its operand. If the operand x has the
type T, then the expression &x has the type “pointer to T.”

The operand of the address operator must have an addressable location in
memory. In other words, the operand must designate either a function or an
object (i.e., an lvalue) that is not a bit-field, and has not been declared with the
storage class register (see “Storage Class Specifiers” in Chapter 11).

You need to obtain the addresses of objects and functions when you want to
initialize pointers to them:

float x, *ptr;
ptr = &x; // OK: Make ptr point to x.
ptr = &(x+1); // Error: (x+1) is not an lvalue.

Conversely, when you have a pointer and want to access the object it references,
use the indirection operator *, which is sometimes called the dereferencing oper-
ator. Its operand must have a pointer type. If ptr is a pointer, then *ptr designates

unsigned int setBit(unsigned int mask, unsigned int p)
{
 if (p >= CHAR_BIT * sizeof(int))
 return mask;
 else
 return mask | (1 << p);
}

Table 5-14. Memory addressing operators

Operator Meaning Example Result

& Address of &x Pointer to x

* Indirection operator *p The object or function that p points to

[] Subscripting x[y] The element with the index y in the
array x (or the element with the index
x in the arrayy: the[] operator works
either way)

. Structure or union member designator x.y The member named y in the structure
or union x

-> Structure or union member designator
by reference

p->y The member named y in the structure
or union that p points to

Example 5-3. Using a shift operation to manipulate a bit mask (continued)

Operators in Detail | 73

Exp
ressio

n
s

an
d

 O
p

erato
rs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

the object or function that ptr points to. If ptr is an object pointer, then *ptr is an
lvalue, and you can use it as the left operand of an assignment operator:

float x, *ptr = &x;
*ptr = 1.7; // Assign the value 1.7 to the variable x
++(*ptr); // and add 1 to it.

In the final statement of this example, the value of ptr remains unchanged. The
value of x is now 2.7.

The behavior of the indirection operator * is undefined if the value of the pointer
operand is not the address of an object or a function.

Like the other unary operators, the operators & and * have the second highest
precedence. They are grouped with operands from right to left. The parentheses
in the expression ++(*ptr) are thus superfluous.

The operators & and * are complementary: if x is an expression that designates an
object or a function, then the expression *&x is equivalent to x. Conversely, in an
expression of the form &*ptr, the operators cancel each other out, so that the type
and value of the expression are equivalent to ptr. However, &*ptr is never an
lvalue, even if ptr is.

Elements of arrays

The subscript operator [] allows you to access individual elements of an array. It
takes two operands. In the simplest case, one operand is an array name and the
other operand designates an integer. In the following example, assume that
myarray is the name of an array, and i is a variable with an integer type. The
expression myarray[i] then designates element number i in the array, where the
first element is element number zero (see Chapter 8).

The left operand of [] need not be an array name. One operand must be an
expression whose type is “pointer to an object type”—an array name is a special
case of such an expression—while the other operand must have an integer type.
An expression of the form x[y] is always equivalent to (*((x)+(y))) (see also
“Pointer arithmetic,” earlier in this chapter). Example 5-4 uses the subscript oper-
ator in initializing a dynamically generated array.

In Example 5-4, the expression pArray[i] in the loop body is equivalent to
*(pArray+i). The notation i[pArray] is also correct, and yields the same array
element.

Example 5-4. Initializing an array

#include <stdlib.h>
#define ARRAY_SIZE 100
/* ... */
double *pArray = NULL; int i = 0:
pArray = malloc(ARRAY_SIZE * sizeof(double)); // Generate the array
if (pArray != NULL) {
 for (i = 0; i < ARRAY_SIZE; ++i) // and initialize it.
 pArray[i] = (double)rand()/RAND_MAX;
/* ... */
}

74 | Chapter 5: Expressions and Operators

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Members of structures and unions

The binary operators . and ->, most often called the dot operator and the arrow
operator, allow you to select a member of a structure or a union.

As Example 5-5 illustrates, the left operand of the dot operator . must have a
structure or union type, and the right operand must be the name of a member of
that type.

The result of the dot operator has the value and type of the selected member. If
the left operand is an lvalue, then the operation also yields an lvalue. If the left
operand has a qualified type (such as one declared with const), then the result is
likewise qualified.

The left operand of the dot operator is not always an lvalue, as the following
example shows:

struct Article getArticle(); // Function prototype
printf("name: %s\n", getArticle().name);

The function getArticle() returns an object of type struct Article. As a result,
getArticle().name is a valid expression, but not an lvalue, as the return value of a
function is not an lvalue.

The operator -> also selects a member of a structure or union, but its left operand
must be a pointer to a structure or union type. The right operand is the name of a
member of the structure or union. Example 5-6 illustrates the use of the -> oper-
ator, again using the Article structure defined in Example 5-5.

The result of the arrow operator is always an lvalue. It has the type of the selected
member, as well as any type qualifications of the pointer operand. In
Example 5-6, pcArticle is a pointer to const struct Article. As a result, the
expression pcArticle->price is constant.

Example 5-5. The dot operator

struct Article { long number; // The part number of an article
 char name[32]; // The article's name
 long price; // The unit price in cents
 /* ... */
 };
struct Article sw = { 102030L, "Heroes", 5995L };
sw.price = 4995L; // Change the price to 49.95

Example 5-6. The arrow operator

struct Article *pArticle = &sw, // A pointer to struct Article.
 const *pcArticle = &sw; // A "read-only pointer" to struct
 // Article.
++(pArticle->number); // Increment the part number.
if (pcArticle->number == 102031L) // Correct usage: read-only access.
 pcArticle->price += 50; // Error: can't use a const-qualified
 // pointer to modify the object.

Operators in Detail | 75

Exp
ressio

n
s

an
d

 O
p

erato
rs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Any expression that contains the arrow operator can be rewritten using the dot
operator by dereferencing the pointer separately: an expression of the form p->m is
equivalent to (*p).m. Conversely, the expression x.m is equivalent to (&x)->m, as
long as x is an lvalue.

The operators . and ->, like [], have the highest precedence, and are grouped from
left to right. Thus the expression ++p->m for example is equivalent to ++(p->m), and
the expression p->m++ is equivalent to (p->m)++. However, the parentheses in the
expression (*p).m are necessary, as the dereferencing operator * has a lower prece-
dence. The expression *p.m would be equivalent to *(p.m), and thus makes sense
only if the member m is also a pointer.

To conclude this section, we can combine the subscript, dot, and arrow operators
to work with an array whose elements are structures:

struct Article arrArticle[10]; // An array with ten elements
 // of type struct Article.
arrArticle[2].price = 990L; // Set the price of the
 // array element arrArticle[2].
arrArticle->number = 10100L; // Set the part number in the
 // array element arrArticle[0].

An array name, such as arrArticle in the example, is a constant pointer to the
first array element. Hence arrArticle->number designates the member number in
the first array element. To put it in more general terms: for any index i, the
following three expressions are equivalent:

arrArticle[i].number
(arrArticle+i)->number
(*(arrArticle+i)).number

All of them designate the member number in the array element with the index i.

Other Operators

There are six other operators in C that do not fall into any of the categories
described in this chapter. Table 5-15 lists these operators in order of precedence.

Table 5-15. Other operators

Operator Meaning Example Result

() Function call log(x) Passes control to the specified
function, with the specified argu-
ments.

(type name) {list} Compound literal (int [5]){ 1, 2 } Defines an unnamed object that
has the specified type and the
values listed.

sizeof Storage size of an
object or type, in bytes

sizeof x The number of bytes occupied in
memory by x.

(type name) Explicit type conver-
sion, or “cast”

(short) x The value of x converted to the
type specified.

?: Conditional evaluation x ? y : z The value of y, if x is true (i.e.,
nonzero); otherwise the value of z.

, Sequential evaluation x,y Evaluates firstx, theny. The result
of the expression is the value of y.

76 | Chapter 5: Expressions and Operators

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Function calls

A function call is an expression of the form fn_ptr(argument_list), where the
operand fn_ptr is an expression with the type “pointer to a function.” If the
operand designates a function (as a function name does, for example), then it is
automatically converted into a pointer to the function. A function call expression
has the value and type of the function’s return value. If the function has no return
value, the function call has the type void.

Before you can call a function, you must make sure that it has been declared in the
same translation unit. Usually a source file includes a header file containing the
function declaration, as in this example:

#include <math.h> // Contains the prototype double pow(double, double);
double x = 0.7, y = 0.0;
/* ... */
y = pow(x+1, 3.0); // Type: double

The parentheses enclose the comma-separated list of arguments passed to the
function, which can also be an empty list. If the function declaration is in proto-
type form (as is usually the case), the compiler ensures that each argument is
converted to the type of the corresponding parameter, as for an assignment. If this
conversion fails, the compiler issues an error message:

 pow(x, 3); // The integer constant 3 is converted to type double.
 pow(x); // Error: incorrect number of arguments.

The order in which the program evaluates the individual expressions that desig-
nate the function and its arguments is not defined. As a result, the behavior of a
printf statement such as the following is undefined:

int i = 0;
printf("%d %d\n", i, ++i); // Behavior undefined

However, there is a sequence point after all of these expressions have been evalu-
ated and before control passes to the function.

Like the other postfix operators, a function call has the highest precedence, and is
grouped with operands from left to right. For example, suppose that fn_table is
an array of pointers to functions that take no arguments and return a structure
that contains a member named price. In this case, the following expression is a
valid function call:

fn_table[i++]().price

The expression calls the function referenced by the pointer stored in fn_table[i].
The return value is a structure, and the dot operator selects the member price in
that structure. The complete expression has the value of the member price in the
return value of the function fn_table[i](), and the side effect that i is incre-
mented once.

Chapter 7 describes function calls in more detail, including recursive functions
and functions that take a variable number of arguments.

Operators in Detail | 77

Exp
ressio

n
s

an
d

 O
p

erato
rs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Compound literals

Compound literals are an extension introduced in the C99 standard. This exten-
sion allows you to define literals with any object type desired. A compound literal
consists of an object type in parentheses, followed by an initialization list in
braces:

(type name){ list of initializers }

The value of the expression is an unnamed object that has the specified type and
the values listed. If you place a compound literal outside of all function blocks,
then the initializers must be constant expressions, and the object has static storage
duration. Otherwise it has automatic storage duration, determined by the
containing block.

Typical compound literals generate objects with array or structure types. Here are
a few examples to illustrate their use:

float *fPtr = (float []){ -0.5, 0.0, +0.5 };

This declaration defines a pointer to a nameless array of three float elements.

#include "database.h" // Contains prototypes and type definitions,
 // including the structure Pair:
 // struct Pair { long key; char value[32]; };

insertPair(&db, &(struct Pair){ 1000L, "New York JFK Airport" });

This statement passes the address of a literal of type struct Pair to the function
insertPair().

To define a constant compound literal, use the type qualifier const:

(const char []){"A constant string."}

If the previous expression appears outside of all functions, it defines a static array
of char, like the following simple string literal:

"A constant string."

In fact, the compiler may store string literals and constant compound literals with
the same type and contents at the same location in memory.

Despite their similar appearance, compound literals are not the same as cast
expressions. The result of a cast expression has a scalar type or the type void, and
is not an lvalue.

The sizeof operator

The sizeof operator yields the size of its operand in bytes. Programs need to know
the size of objects mainly in order to reserve memory for them dynamically, or to
store binary data in files.

The operand of the sizeof operator can be either an object type in parentheses, or
an expression that has an object type and is not a bit-field. The result has the type
size_t, which is defined in stddef.h and other standard header files as an unsigned
integer type.

78 | Chapter 5: Expressions and Operators

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

For example, if i is an int variable and iPtr is a pointer to int, then each of the
following expressions yields the size of int—on a 32-bit system, the value
would be 4:

sizeof(int) sizeof i sizeof(i) sizeof *iPtr sizeof(*iPtr)

Note the difference to the following expressions, each of which yields the size of a
pointer to int:

sizeof(int*) sizeof &i sizeof(&i) sizeof iPtr sizeof(iPtr)

Like *, &, and the other unary operators, sizeof has the second highest prece-
dence, and is grouped from right to left. For this reason, no parentheses are
necessary in the expression sizeof *iPtr.

For an operand with the type char, unsigned char, or signed char, the sizeof oper-
ator yields the value 1, because these types have the size of a byte. If the operand
has a structure type, the result is the total size that the object occupies in memory,
including any gaps that may occur due to the alignment of the structure members.
In other words, the size of a structure is sometimes greater than the sum of its
individual members’ sizes. For example, if variables of the type short are aligned
on even byte addresses, the following structure has the size sizeof(short) + 2:

struct gap { char version; short value; };

In the following example, the standard function memset() sets every byte in the
structure to zero, including any gaps between members:

#include <string.h>
/* ... */
struct gap g;
memset(&g, 0, sizeof g);

If the operand of sizeof is an expression, it is not actually evaluated. The compiler
determines the size of the operand by its type, and replaces the sizeof expression
with the resulting constant. Variable-length arrays, introduced in the C99 stan-
dard, are an exception (see Chapter 8). Their size is determined at run time, as
Example 5-7 illustrates.

Regardless of the current value of the variable n, the expression sizeof(b) yields
the value of 2 × n0 × sizeof(float), where n0 is the value that n had at the begin-
ning of the function block. The expression sizeof(*b) is equivalent to
sizeof(b[0]), and in this case has the value of sizeof(float).

Example 5-7. Sizing variable-length arrays

void func(float a[], int n)
{
 float b[2*n]; // A variable-length array of float.
 /* ... the value of n may change now ... */
 int m = sizeof(b) / sizeof(*b); // Yields the number of elements
 /* ... */ // in the array b.
}

Operators in Detail | 79

Exp
ressio

n
s

an
d

 O
p

erato
rs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The parameter a in the function func() in Example 5-7 is a pointer,
not an array. The expression sizeof(a) within the function would
therefore yield the size of a pointer. See “Array and Function Desig-
nators” in Chapter 4.

The conditional operator

The conditional operator is sometimes called the ternary or trinary operator,
because it is the only one that has three operands:

condition ? expression 1 : expression 2

The operation first evaluates the condition. Then, depending on the result, it eval-
uates one or the other of the two alternative expressions.

There is a sequence point after the condition has been evaluated. If the result is not
equal to 0 (in other words, if the condition is true), then only the second operand,
expression 1, is evaluated, and the entire operation yields the value of expression 1.
If on the other hand condition does yield 0 (i.e., false), then only the third operand,
expression 2, is evaluated, and the entire operation yields the value of expression 2.
In this way the conditional operator represents a conditional jump in the program
flow, and is therefore an alternative to some if–else statements.

A common example is the following function, which finds the maximum of two
numbers:

inline int iMax(int a, int b) { return a >= b ? a : b; }

The function iMax() can be rewritten using an if–else statement:

inline int iMax(int a, int b)
{ if (a >= b) return a; else return b; }

The conditional operator has a very low precedence: only the assignment opera-
tors and the comma operator are lower. Thus the following statement requires no
parentheses:

distance = x < y ? y - x : x - y;

The first operand of the conditional operator, condition, must have a scalar
type—that is, an arithmetic type or a pointer type. The second and third oper-
ands, expression 1 and expression 2, must fulfill one of the following cases:

• Both of the alternative expressions have arithmetic types, in which case the
result of the complete operation has the type that results from performing the
usual arithmetic conversions on these operands.

• Both of the alternative operands have the same structure or union type, or the
type void. The result of the operation also has this type.

• Both of the alternative operands are pointers, and one of the following is true:

• Both pointers have the same type. The result of the operation then has
this type as well.

• One operand is a null pointer constant. The result then has the type of
the other operand.

• One operand is an object pointer and the other is a pointer to void. The
result then has the type void *.

80 | Chapter 5: Expressions and Operators

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The two pointers may point to differently qualified types. In this case, the result is
a pointer to a type which has all of the type qualifiers of the two alternative oper-
ands. For example, suppose that the following pointers have been defined:

const int *cintPtr; // Declare pointers.
volatile int *vintPtr;
void *voidPtr;

The expressions in the following table then have the type indicated, regardless of
the truth value of the variable flag:

The comma operator

The comma operator is a binary operator:

expression 1 , expression 2

The comma operator ensures sequential processing: first the left operand is evalu-
ated, then the right operand. The result of the complete expression has the type
and value of the right operand. The left operand is only evaluated for its side
effects; its value is discarded. There is a sequence point after the evaluation of the
left operand. Example:

x = 2.7, sqrt(2*x)

In this expression, the assignment takes place first, before the sqrt() function is
called. The value of the complete expression is the function’s return value.

The comma operator has the lowest precedence of all operators. For this reason,
the assignment x = 2.7 in the previous example does not need to be placed in
parentheses. However, parentheses are necessary if you want to use the result of
the comma operation in another assignment:

y = (x = 2.7, sqrt(2*x));

This statement assigns the square root of 5.4 to y.

A comma in a list of initializers or function arguments is a list separator, not a
comma operator. In such contexts, however, you can still use a comma operator
by enclosing an expression in parentheses:

y = sqrt((x=2.7, 2*x));

This statement is equivalent to the one in the previous example. The comma oper-
ator allows you to group several expressions into one. This ability makes it useful
for initializing or incrementing multiple variables in the head of a for loop, as in
the following example:

int i; float fArray[10], val;
for (i=0, val=0.25; i < 10; ++i, val *= 2.0)
 fArray[i] = val;

Expression Type

flag ? cintPtr : vintPtr volatile const int*

flag ? cintPtr : NULL const int*

flag ? cintPtr : voidPtr const void*

Constant Expressions | 81

Exp
ressio

n
s

an
d

 O
p

erato
rs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Constant Expressions
The compiler recognizes constant expressions in source code and replaces them
with their values. The resulting constant value must be representable in the
expression’s type. You may use a constant expression wherever a simple constant
is permitted.

Operators in constant expressions are subject to the same rules as in other expres-
sions. Because constant expressions are evaluated at translation time, though,
they cannot contain function calls or operations that modify variables, such as
assignments.

Integer Constant Expressions

An integer constant expression is a constant expression with any integer type.
These are the expressions you use to define the following items:

• The size of an array

• The value of an enumeration constant

• The size of a bit-field

• The value of a case constant in a switch statement

For example, you may define an array as follows:

#define BLOCK_SIZE 512
char buffer[4*BLOCK_SIZE];

The operands can be integer, character, or enumeration constants, or sizeof
expressions. However, the operand of sizeof in a constant expression must not be
a variable-length array. You can also use floating-point constants, if you cast them
as an integer type.

Other Constant Expressions

You can also use constant expressions to initialize static and external objects. In
these cases, the constant expressions can have any arithmetic or pointer type
desired. You may use floating-point constants as operands in an arithmetic
constant expression.

A constant with a pointer type, called an address constant, is usually a null
pointer, an array or function name, or a value obtained by applying the address
operator & to an object with static storage duration. However, you can also
construct an address constant by casting an integer constant as a pointer type, or
by pointer arithmetic. Example:

#define ARRAY_SIZE 200
static float fArray[ARRAY_SIZE];
static float *fPtr = fArray + ARRAY_SIZE - 1; // Pointer to the last
 // array element

82 | Chapter 5: Expressions and Operators

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

In composing an address constant, you can also use other operators, such as . and
->, as long as you do not actually dereference a pointer to access the value of an
object. For example, the following declarations are permissible outside any
function:

struct Person { char pin[32];
 char name[64];
 /* ... */
 };
struct Person boss;
const char *cPtr = &boss.name[0]; // or: ... = boss.name;

83

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Chapter 6Statements

6
Statements

A statement specifies one or more actions to be performed, such as assigning a
value to a variable, passing control to a function, or jumping to another state-
ment. The sum total of all a program’s statements determines what the program
does.

Jumps and loops are statements that control the flow of the program. Except
when those control statements result in jumps, statements are executed sequen-
tially; that is, in the order in which they appear in the program.

Expression Statements
An expression statement is an expression followed by a semicolon:

[expression] ;

In an expression statement, the expression—whether an assignment or another
operation—is evaluated for the sake of its side effects. Following are some typical
expression statements:

y = x; // An assignment
sum = a + b; // Calculation and assignment
++x;
printf("Hello, world\n"); // A function call

The type and value of the expression are irrelevant, and are discarded before the
next statement is executed. For this reason, statements such as the following are
syntactically correct, but not very useful:

100;
y < x;

84 | Chapter 6: Statements

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

If a statement is a function call and the return value of the function is not needed,
it can be discarded explicitly by casting the function as void:

char name[32];
/* ... */
(void)strcpy(name, "Jim"); // Explicitly discard
 // the return value.

A statement can also consist of a semicolon alone: this is called a null statement.
Null statements are necessary in cases where syntax requires a statement, but the
program should not perform any action. In the following example, a null state-
ment forms the body of a for loop:

for (i = 0; s[i] != '\0'; ++i) // Loop conditions
 ; // A null statement

This code sets the variable i to the index of the first null character in the array s,
using only the expressions in the head of the for loop.

Block Statements
A compound statement, called a block for short, groups a number of statements
and declarations together between braces to form a single statement:

{ [list of declarations and statements] }

Unlike simple statements, block statements are not terminated by a semicolon. A
block is used wherever the syntax calls for a single statement, but the program’s
purpose requires several statements. For example, you can use a block statement in
an if statement, or when more than one statement needs to be repeated in a loop:

{ double result = 0.0, x = 0.0; // Declarations
 static long status = 0;
 extern int limit;

 ++x; // Statements
 if (status == 0)
 { // New block
 int i = 0;
 while (status == 0 && i < limit)
 { /* ... */ } // Another block
 }
 else
 { /* ... */ } // And yet another block
}

The declarations in a block are usually placed at the beginning, before any state-
ments. However, C99 allows declarations to be placed anywhere.

Names declared within a block have block scope; in other words, they are visible
only from their declaration to the end of the block. Within that scope, such a
declaration can also hide an object of the same name that was declared outside
the block. The storage duration of automatic variables is likewise limited to the
block in which they occur. This means that the storage space of a variable not
declared as static or extern is automatically freed at the end of its block state-
ment. For a full discussion of scope and storage duration, see Chapter 11.

Loops | 85

Statem
en

ts

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Loops
Use a loop to execute a group of statements, called the loop body, more than
once. In C, you can introduce a loop by one of three iteration statements: while,
do ... while, and for.

In each of these statements, the number of iterations through the loop body is
controlled by a condition, the controlling expression. This is an expression of a
scalar type; that is, an arithmetic expression or a pointer. The loop condition is
true if the value of the controlling expression is not equal to 0; otherwise, it is
considered false.

while Statements

A while statement executes a statement repeatedly as long as the controlling
expression is true:

while (expression) statement

The while statement is a top-driven loop: first the loop condition (i.e., the control-
ling expression) is evaluated. If it yields true, the loop body is executed, and then
the controlling expression is evaluated again. If the condition is false, program
execution continues with the statement following the loop body.

Syntactically, the loop body consists of one statement. If several statements are
required, they are grouped in a block. Example 6-1 shows a simple while loop that
reads in floating-point numbers from the console and accumulates a running total
of them.

Example 6-1. A while loop

/* Read in numbers from the keyboard and
 * print out their average.
 * -------------------------------------- */
#include <stdio.h>
int main()
{
 double x = 0.0, sum = 0.0;
 int count = 0;

 printf("\t--- Calculate Averages ---\n");
 printf("\nEnter some numbers:\n"
 "(Type a letter to end your input)\n");
 while (scanf("%lf", &x) == 1)
 {
 sum += x;
 ++count;
 }
 if (count == 0)
 printf("No input data!\n");
 else
 printf("The average of your numbers is %.2f\n", sum/count);
 return 0;
}

86 | Chapter 6: Statements

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

In Example 6-1, the controlling expression:

scanf("%lf", &x) == 1

is true as long as the user enters a decimal number. As soon as the function scanf()
is unable to convert the string input into a floating-point number—when the user
types the letter q, for example—scanf() returns the value 0 (or –1 for EOF, if the end
of the input stream was reached or an error occurred). The condition is then false,
and execution continues at the if statement that follows the loop body.

for Statements

Like the while statement, the for statement is a top-driven loop, but with more
loop logic contained within the statement itself:

for ([expression1]; [expression2]; [expression3])
statement

The three actions that need to be executed in a typical loop are specified together
at the top of the loop body:

expression1 : Initialization
Evaluated only once, before the first evaluation of the controlling expression,
to perform any necessary initialization.

expression2 : Controlling expression
Tested before each iteration. Loop execution ends when this expression eval-
uates to false.

expression3 : Adjustment
An adjustment, such as the incrementation of a counter, performed after each
loop iteration, and before expression2 is tested again.

Example 6-2 shows a for loop that initializes each element of an array.

Any of the three expressions in the head of the for loop can be omitted. This
means that its shortest possible form is:

for (; ;)

A missing controlling expression is considered to be always true, and so defines an
infinite loop.

The following form, with no initializer and no adjustment expression, is equiva-
lent to while (expression):

for (; expression;)

Example 6-2. Initializing an array using a for loop

#define ARR_LENGTH 1000
/* ... */
long arr[ARR_LENGTH];
int i;
for (i = 0; i < ARR_LENGTH; ++i)
 arr[i] = 2*i;

Loops | 87

Statem
en

ts

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

In fact, every for statement can also be rewritten as a while statement, and vice
versa. For example, the complete for loop in Example 6-2 is equivalent to the
following while loop:

i = 0; // Initialize the counter
while (i < ARR_LENGTH) // The loop condition
{
 arr[i] = 2*i;
 ++i; // Increment the counter
}

for is generally preferable to while when the loop contains a counter or index vari-
able that needs to be initialized and then adjusted after each iteration.

In ANSI C99, a declaration can also be used in place of expression1. In this case,
the scope of the variable declared is limited to the for loop. For example:

for (int i = 0; i < ARR_LENGTH; ++i)
 arr[i] = 2*i;

The variable i declared in this for loop, unlike that in Example 6-2, no longer
exists after the end of the for loop.

The comma operator is often used in the head of a for loop in order to assign
initial values to more than one variable in expression1, or to adjust several vari-
ables in expression3. For example, the function strReverse() shown here uses
two index variables to reverse the order of the characters in a string:

void strReverse(char* str)
{
 char ch;
 for (int i = 0, j = strlen(str)-1; i < j; ++i, --j)
 ch = str[i], str[i] = str[j], str[j] = ch;
}

The comma operator can be used to evaluate additional expressions where only
one expression is permitted. See “Other Operators” in Chapter 5 for a detailed
description of the comma operator.

do . . . while Statements

The do ... while statement is a bottom-driven loop:

do statement while (expression);

The loop body statement is executed once before the controlling expression is
evaluated for the first time. Unlike the while and for statements, do ... while
ensures that at least one iteration of the loop body is performed. If the controlling
expression yields true, then another iteration follows. If false, the loop is
finished.

In Example 6-3, the functions for reading and processing a command are called at
least once. When the user exits the menu system, the function getCommand()
returns the value of the constant END.

88 | Chapter 6: Statements

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Example 6-4 shows a version of the standard library function strcpy(), with just a
simple statement rather than a block in the loop body. Because the loop condi-
tion is tested after the loop body, the copy operation includes the string
terminator '\0'.

Nested Loops

A loop body can be any simple or block statement, and may include other loop
statements. Example 6-5 is an implementation of the bubble-sort algorithm using
nested loops. The inner loop in this algorithm inspects the entire array on each
iteration, swapping neighboring elements that are out of order. The outer loop is
reiterated until the inner loop finds no elements to swap. After each iteration of
the inner loop, at least one element has been moved to its correct position. Hence
the remaining length of the array to be sorted, len, can be reduced by one.

Example 6-3. do . . . while

// Read and carry out an incoming menu command.
// --
int getCommand(void);
void performCommand(int cmd);
#define END 0
/* ... */
do
{
 int command = getCommand(); // Poll the menu system.
 performCommand(command); // Execute the command received.
} while (command != END);

Example 6-4. A strcpy() function using do ... while

// Copy string s2 to string s1.
// ----------------------------
char *strcpy(char* restrict s1, const char* restrict s2)
{
 int i = 0;
 do
 s1[i] = s2[i]; // The loop body: copy each character
 while (s2[i++] != '\0'); // End the loop if we just copied a '\0'.
 return s1;
}

Example 6-5. Nested loops in the bubble-sort algorithm

// Sort an array of float in ascending order
// using the bubble-sort algorithm.
// ---
void bubbleSort(float arr[], int len) // The array arr and
{ // its length len.
 int isSorted = 0;
 do
 {
 float temp; // Holder for values being swapped.
 isSorted = 1;

Selection Statements | 89

Statem
en

ts

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Note that the automatic variables temp, declared in the do ... while loop, and i,
declared in the head of the for loop, are created and destroyed again on each iter-
ation of the outer loop.

Selection Statements
A selection statement can direct the flow of program execution along different
paths depending on a given condition. There are two selection statements in C: if
and switch.

if Statements

An if statement has the following form:

if (expression) statement1 [else statement2]

The else clause is optional. The expression is evaluated first, to determine which
of the two statements is executed. This expression must have a scalar type. If its
value is true—that is, not equal to 0—then statement1 is executed. Otherwise,
statement2, if present, is executed.

The following example uses if in a recursive function to test for the condition that
ends its recursion:

// The recursive function power() calculates
// integer powers of floating-point numbers.
// ---
double power(double base, unsigned int exp)
{
 if (exp == 0) return 1.0;
 else return base * power(base, exp-1);
}

If several if statements are nested, then an else clause always belongs to the last
if (on the same block nesting level) that does not yet have an else clause:

if (n > 0)
if (n % 2 == 0)

 puts("n is positive and even");
else // This is the alternative

 puts("n is positive and odd"); // to the last if

 --len;
 for (int i = 0; i < len; ++i)
 if (arr[i] > arr[i+1])
 {
 isSorted = 0; // Not finished yet.
 temp = arr[i]; // Swap adjacent values.
 arr[i] = arr[i+1];
 arr[i+1] = temp;
 }
 } while (!isSorted);
}

Example 6-5. Nested loops in the bubble-sort algorithm (continued)

90 | Chapter 6: Statements

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

An else clause can be assigned to a different if by enclosing the last if statement
that should not have an else clause in a block:

if (n > 0)
{
 if (n % 2 == 0)
 puts("n is positive and even");
}
else // This is the alternative
 puts("n is negative or zero"); // to the first if

To select one of more than two alternative statements, if statements can be
cascaded in an else if chain. Each new if statement is simply nested in the else
clause of the preceding if statement:

// Test measurements for tolerance.
// --------------------------------
double spec = 10.0, measured = 10.3, diff;
/* ... */
diff = measured - spec;

if (diff >= 0.0 && diff < 0.5)
 printf("Upward deviation: %.2f\n", diff);
else if (diff < 0.0 && diff > -0.5)
 printf("Downward deviation: %.2f\n", diff);
else
 printf("Deviation out of tolerance!\n");

The if conditions are evaluated one after another. As soon as one of these expres-
sion yields true, the corresponding statement is executed. Because the rest of the
else if chain is cascaded under the corresponding else clause, it is alternative to
the statement executed, and hence skipped over. If none of the if conditions is
true, then the last if statement’s else clause is executed, if present.

switch Statements

A switch statement causes the flow of program execution to jump to one of
several statements according to the value of an integer expression:

switch (expression) statement

expression has an integer type, and statement is the switch body, which contains
case labels and at most one default label. The expression is evaluated once and
compared with constant expressions in the case labels. If the value of the expres-
sion matches one of the case constants, the program flow jumps to the statement
following that case label. If none of the case constants matches, the program
continues at the default label, if there is one.

Example 6-6 uses a switch statement to process the user’s selection from a menu.

Example 6-6. A switch statement

// Handle a command that the user selects from a menu.
// ---
// Declare other functions used:
int menu(void); // Prints the menu and returns
 // a character that the user types.

Selection Statements | 91

Statem
en

ts

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The syntax of the case and default labels is as follows:

case constant: statement
default: statement

constant is a constant expression with an integer type. Each case constant in a
given switch statement must have a unique value. Any of the alternative state-
ments may be indicated by more than one case label, though.

The default label is optional, and can be placed at any position in the switch
body. If there is no default label, and the control expression of the switch state-
ment does not match any of the case constants, then none of the statements in the
body of the switch statement is executed. In this case, the program flow continues
with the statement following the switch body.

The switch body is usually a block statement that begins with a case label. A
statement placed before the first case label in the block would never be executed.

Labels in C merely identify potential destinations for jumps in the program flow.
By themselves, they have no effect on the program. Thus, after the jump from the
switch to the first matching case label, program execution continues sequentially,
regardless of other labels. If the statements following subsequent case labels are to
be skipped over, then the last statement to be executed must be followed by a
break statement. The program flow then jumps to the end of the switch body.

If variables are declared within a switch statement, they should be enclosed in a
nested block:

switch (x)
{
 case C1: { int temp = 10; // Declare temp only for this "case"
 /* ... */
 }
 break;
 case C2:
 /* ... */
}

void action1(void),
 action2(void);
/* ... */

switch (menu()) // Jump depending on the result of menu().
{
 case 'a':
 case 'A': action1(); // Carry out action 1.
 break; // Don't do any other "actions."

 case 'b':
 case 'B': action2(); // Carry out action 2.
 break; // Don't do the default "action."

 default: putchar('\a'); // If no recognized command,
} // output an alert.

Example 6-6. A switch statement (continued)

92 | Chapter 6: Statements

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Integer promotion is applied to the switch expression. The case constants are then
converted to match the resulting type of the switch expression.

You can always program a selection among alternative statements using an else if
chain. If the selection depends on the value of one integer expression, however, then
you can use a switch statement—and should, because it makes code more readable.

Unconditional Jumps
Jump statements interrupt the sequential execution of statements, so that execu-
tion continues at a different point in the program. A jump destroys automatic
variables if the jump destination is outside their scope. There are four statements
that cause unconditional jumps in C: break, continue, goto, and return.

The break Statement

The break statement can occur only in the body of a loop or a switch statement,
and causes a jump to the first statement after the loop or switch statement in
which it is immediately contained:

break;

Thus the break statement can be used to end the execution of a loop statement at
any position in the loop body. For example, the while loop in Example 6-7 may be
ended either at the user’s request (by entering a non-numeric string), or by a
numeric value outside the range that the programmer wants to accept.

Example 6-7. The break statement

// Read user input of scores from 0 to 100
// and store them in an array.
// Return value: the number of values stored.
// --
int getScores(short scores[], int len)
{
 int i = 0;
 puts("Please enter scores between 0 and 100.\n"
 "Press <Q> and <Return> to quit.\n");
 while (i < len)
 {
 printf("Score No. %2d: ", i+1);
 if (scanf("%hd", &scores[i]) != 1)

break; // No number read: end the loop.
 if (scores[i] < 0 || scores[i] > 100)
 {
 printf("%d: Value out of range.\n", scores[i]);

break; // Discard this value and end the loop.
 }
 ++i;
 }
 return i; // The number of values stored.
}

Unconditional Jumps | 93

Statem
en

ts

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The continue Statement

The continue statement can be used only within the body of a loop, and causes
the program flow to skip over the rest of the current iteration of the loop:

continue;

In a while or do ... while loop, the program jumps to the next evaluation of the
loop’s controlling expression. In a for loop, the program jumps to the next evalu-
ation of the third expression in the for statement, containing the operations that
are performed after every loop iteration.

In Example 6-7, the second break statement terminates the data input loop as
soon as an input value is outside the permissible range. To give the user another
chance to enter a correct value, replace the second break with continue. Then the
program jumps to the next iteration of the while loop, skipping over the state-
ment that increments i:

// Read in scores.
// --------------------------
int getScores(short scores[], int len)
{
 /* ... (as in Example 6-7) ... */
 while (i < len)
 {
 /* ... (as in Example 6-7) ... */
 if (scores[i] < 0 || scores[i] > 100)
 {
 printf("%d : Value out of range.\n", scores[i]);
 continue; // Discard this value and read in another.
 }
 ++i; // Increment the number of values stored.
 }
 return i; // The number of values stored.
}

The goto Statement

The goto statement causes an unconditional jump to another statement in the
same function. The destination of the jump is specified by the name of a label:

goto label_name;

A label is a name followed by a colon:

label_name: statement

Labels have a name space of their own, which means they can have the same names
as variables or types without causing conflicts. Labels may be placed before any
statement, and a statement can have several labels. Labels serve only as destinations
of goto statements, and have no effect at all if the labeled statement is reached in the

94 | Chapter 6: Statements

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

normal course of sequential execution. The following function uses a label after a
return statement to mark the entry point to an error handling routine:

// Handle errors within the function.
// ----------------------------------
#include <stdbool.h> // Defines bool, true
 // and false (C99).
#define MAX_ARR_LENGTH 1000
bool calculate(double arr[], int len, double* result)
{
 bool error = false;
 if (len < 1 || len > MAX_ARR_LENGTH)
 goto error_exit;
 for (int i = 0; i < len; ++i)
 {
 /* ... Some calculation that could result in
 * the error flag being set ...
 */
 if (error)
 goto error_exit;
 /* ... Calculation continues; result is
 * assigned to the variable *result ...
 */
 }
 return true; // Flow arrives here if no error

 error_exit: // The error handler
 *result = 0.0;
 return false;
}

You should never use a goto statement to jump into a block from outside it if the
jump skips over declarations or statements that initialize variables. However, such
a jump is illegal only if it leads into the scope of an array with variable length,
skipping over the definition of the array (for more information about variable-
length arrays, which were introduced with C99, see Chapter 8):

static const int maxSize = 1000;
double func(int n)
{
 double x = 0.0;
 if (n > 0 && n < maxSize)
 {
 double arr[n]; // A variable-length array
 again:
 /* ... */
 if (x == 0.0)
 goto again; // Okay: the jump is entirely
 } // within the scope of arr.
 if (x < 0.0)
 goto again; // Illegal: the jump leads
 // into the scope of arr!
 return x;
}

Unconditional Jumps | 95

Statem
en

ts

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Because code that makes heavy use of goto statements is hard to read, you should
use them only when they offer a clear benefit, such as a quick exit from deeply
nested loops. Any C program that uses goto statements can also be written
without them!

The goto statement permits only local jumps; that is, jumps within
a function. C also provides a feature to program non-local jumps to
any point in the program, using the standard macro setjmp() and
the standard function longjmp(). The macro setjmp() marks a
location in the program by storing the necessary process informa-
tion, so that execution can be resumed at that point at another time
by a call to the function longjmp(). For more information on these
functions, see Part II.

The return Statement

The return statement ends execution of the current function, and jumps back to
where the function was called:

return [expression];

expression is evaluated and the result is given to the caller as the value of the func-
tion call. This return value is converted to the function’s return type, if necessary.

A function can contain any number of return statements:

// Return the smaller of two integer arguments.
int min(int a, int b)
{
 if (a < b) return a;
 else return b;
}

The contents of this function block can also be expressed by the following single
statement:

return (a < b ? a : b);

The parentheses do not affect the behavior of the return statement. However,
complex return expressions are often enclosed in parentheses for the sake of
readability.

A return statement with no expression can only be used in a function of type
void. In fact, such functions do not need to have a return statement at all. If no
return statement is encountered in a function, the program flow returns to the
caller when the end of the function block is reached. Function calls are described
in more detail in Chapter 7.

96

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Chapter 7Functions

7
Functions

All the instructions of a C program are contained in functions. Each function
performs a certain task. A special function name is main(): the function with this
name is the first one to run when the program starts. All other functions are
subroutines of the main() function (or otherwise dependent procedures, such as
call-back functions), and can have any names you wish.

Every function is defined exactly once. A program can declare and call a function
as many times as necessary.

Function Definitions
The definition of a function consists of a function head (or the declarator), and a
function block. The function head specifies the name of the function, the type of
its return value, and the types and names of its parameters, if any. The statements
in the function block specify what the function does. The general form of a func-
tion definition is as follows:

In the function head, name is the function’s name, while type consists of at least
one type specifier, which defines the type of the function’s return value. The
return type may be void or any object type, except array types. Furthermore, type
may include the function specifier inline, and/or one of the storage class speci-
fiers extern and static.

A function cannot return a function or an array. However, you can define a func-
tion that returns a pointer to a function or a pointer to an array.

type name(parameter_declarations)
{
 /* declarations, statements */
}

Function head

Function block

Function Definitions | 97

Fu
n

ctio
n

s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The parameter declarations are contained in a comma-separated list of declara-
tions of the function’s parameters. If the function has no parameters, this list is
either empty or contains merely the word void.

The type of a function specifies not only its return type, but also the types of all its
parameters. Example 7-1 is a simple function to calculate the volume of a cylinder.

This function has the name cylinderVolume, and has two parameters, r and h,
both with type double. It returns a value with the type double.

Functions and Storage Class Specifiers

The function in Example 7-1 is declared with the storage class specifier extern.
This is not strictly necessary, since extern is the default storage class for func-
tions. An ordinary function definition that does not contain a static or inline
specifier can be placed in any source file of a program. Such a function is avail-
able in all of the program’s source files, because its name is an external identifier
(or in strict terms, an identifier with external linkage: see “Linkage of Identifiers”
in Chapter 11). You merely have to declare the function before its first use in a
given translation unit (see the section “Function Declarations,” later in this
chapter). Furthermore, you can arrange functions in any order you wish within a
source file. The only restriction is that you cannot define one function within
another. C does not allow you to define “local functions” in this way.

You can hide a function from other source files. If you declare a function as
static, its name identifies it only within the source file containing the function
definition. Because the name of a static function is not an external identifier, you
cannot use it in other source files. If you try to call such a function by its name in
another source file, the linker will issue an error message, or the function call
might refer to a different function with the same name elsewhere in the program.

The function printArray() in Example 7-2 might well be defined using static
because it is a special-purpose helper function, providing formatted output of an
array of float variables.

Example 7-1. Function cylinderVolume()

// The cylinderVolume() function calculates the volume of a cylinder.
// Arguments: Radius of the base circle; height of the cylinder.
// Return value: Volume of the cylinder.

extern double cylinderVolume(double r, double h)
{
 const double pi = 3.1415926536; // Pi is constant
 return pi * r * r * h;
}

Example 7-2. Function printArray()

// The static function printArray() prints the elements of an array
// of float to standard output, using printf() to format them.
// Arguments: An array of float, and its length.
// Return value: None.

98 | Chapter 7: Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

If your program contains a call to the printArray() function before its definition,
you must first declare it using the static keyword:

static void printArray(const float [], int);

int main()
{
 float farray[123];
 /* ... */
 printArray(farray, 123);
 /* ... */
}

K&R-Style Function Definitions

In the early Kernighan-Ritchie standard, the names of function parameters were
separated from their type declarations. Function declarators contained only the
names of the parameters, which were then declared by type between the function
declarator and the function block. For example, the cylinderVolume() function
from Example 7-1 would have been written as follows:

double cylinderVolume(r, h)
double r, h; // Parameter declarations.
{
 const double pi = 3.1415926536; // Pi is constant.
 return pi * r * r * h;
}

This notation, called a “K&R-style” or “old-style” function definition, is depre-
cated, although compilers still support it. In new C source code, use only the
prototype notation for function definitions, as shown in Example 7-1.

Function Parameters

The parameters of a function are ordinary local variables. The program creates
them, and initializes them with the values of the corresponding arguments, when
a function call occurs. Their scope is the function block. A function can change
the value of a parameter without affecting the value of the argument in the context
of the function call. In Example 7-3, the factorial() function, which computes
the factorial of a whole number, modifies its parameter n in the process.

static void printArray(const float array[], int n)
{
 for (int i=0; i < n; ++i)
 {
 printf("%12.2f", array[i]); // Field width: 12; decimal places: 2.
 if (i % 5 == 4) putchar('\n'); // New line after every 5 numbers.
 }
 if (n % 5 != 0) putchar('\n'); // New line at the end of the output.
}

Example 7-2. Function printArray() (continued)

Function Definitions | 99

Fu
n

ctio
n

s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Although the factorial of an integer is always an integer, the function uses the type
long double in order to accommodate very large results. As Example 7-3 illus-
trates, you can use the storage class specifier register in declaring function
parameters. The register specifier is a request to the compiler to make a variable
as quickly accessible as possible. No other storage class specifiers are permitted on
function parameters.

Arrays as Function Parameters

If you need to pass an array as an argument to a function, you would generally
declare the corresponding parameter in the following form:

type name[]

Because array names are automatically converted to pointers when you use them
as function arguments, this statement is equivalent to the declaration:

type *name

When you use the array notation in declaring function parameters, any constant
expression between the brackets ([]) is ignored. In the function block, the para-
meter name is a pointer variable, and can be modified. Thus the function
addArray() in Example 7-4 modifies its first two parameters as it adds pairs of
elements in two arrays.

Example 7-3. Function factorial()

// factorial() calculates n!, the factorial of a non-negative number n.
// For n > 0, n! is the product of all integers from 1 to n inclusive.
// 0! equals 1.
// Argument: A whole number, with type unsigned int.
// Return value: The factorial of the argument, with type long double.

long double factorial(register unsigned int n)
{
 long double f = 1;
 while (n > 1)
 f *= n--;
 return f;
}

Example 7-4. Function addArray()

// addArray() adds each element of the second array to the
// corresponding element of the first (i.e., "array1 += array2", so to speak).
// Arguments: Two arrays of float and their common length.
// Return value: None.

void addArray(register float a1[], register const float a2[], int len)
{
 register float *end = a1 + len;
 for (; a1 < end; ++a1, ++a2)
 *a1 += *a2;
}

100 | Chapter 7: Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

An equivalent definition of the addArray() function, using a different notation for
the array parameters, would be:

void addArray(register float *a1, register const float *a2, int len)
{ /* Function body as earlier. */ }

An advantage of declaring the parameters with brackets ([]) is that human readers
immediately recognize that the function treats the arguments as pointers to an
array, and not just to an individual float variable. But the array-style notation
also has two peculiarities in parameter declarations:

• In a parameter declaration—and only there—C99 allows you to place any of
the type qualifiers const, volatile, and restrict inside the square brackets.
This ability allows you to declare the parameter as a qualified pointer type.

• Furthermore, in C99 you can also place the storage class specifier static,
together with a integer constant expression, inside the square brackets. This
approach indicates that the number of elements in the array at the time of the
function call must be at least equal to the value of the constant expression.

Here is an example that combines both of these possibilities:

int func(long array[const static 5])
{ /* ... */ }

In the function defined here, the parameter array is a constant pointer to long,
and so cannot be modified. It points to the first of at least five array elements.

C99 also lets you declare array parameters as variable-length arrays (see
Chapter 8). To do so, place a nonconstant integer expression with a positive value
between the square brackets. In this case, the array parameter is still a pointer to
the first array element. The difference is that the array elements themselves can
also have a variable length. In Example 7-5, the maximum() function’s third para-
meter is a two-dimensional array of variable dimensions.

The parameter matrix is a pointer to an array with ncols elements.

Example 7-5. Function maximum()

// The function maximum() obtains the greatest value in a
// two-dimensional matrix of double values.
// Arguments: The number of rows, the number of columns, and the matrix.
// Return value: The value of the greatest element.

double maximum(int nrows, int ncols, double matrix[nrows][ncols])
{
 double max = matrix[0][0];
 for (int r = 0; r < nrows; ++r)
 for (int c = 0; c < ncols; ++c)
 if (max < matrix[r][c])
 max = matrix[r][c];
 return max;
}

Function Definitions | 101

Fu
n

ctio
n

s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The main() Function

C makes a distinction between two possible execution environments:

Freestanding
A program in a freestanding environment runs without the support of an
operating system, and therefore only has minimal capabilities of the standard
library available to it (see Part II).

Hosted
In a hosted environment, a C program runs under the control, and with the
support, of an operating system. The full capabilities of the standard library
are available.

In a freestanding environment, the name and type of the first function invoked
when the program starts is determined by the given implementation. Unless you
program embedded systems, your C programs generally run in a hosted environ-
ment. A program compiled for a hosted environment must define a function with
the name main, which is the first function invoked on program start. You can
define the main() function in one of the following two forms:

int main(void) { /* ... */ }
A function with no parameters, returning int

int main(int argc, char *argv[]) { /* ... */ }
A function with two parameters whose types are int and char **, returning
int

These two approaches conform to the 1989 and 1999 C standards. In addition,
many C implementations support a third, nonstandard syntax as well:

int main(int argc, char *argv[], char *envp[]) { /* ... */ }
A function returning int, with three parameters, the first of which has the
type int, while the other two have the type char **

In all cases, the main() function returns its final status to the operating system as
an integer. A return value of 0 or EXIT_SUCCESS indicates that the program was
successful; any nonzero return value, and in particular the value of EXIT_FAILURE,
indicates that the program failed in some way. The constants EXIT_SUCCESS and
EXIT_FAILURE are defined in the header file stdlib.h. The function block of main()
need not contain a return statement. If the program flow reaches the closing brace
} of main()’s function block, the status value returned to the execution environ-
ment is 0. Ending the main() function is equivalent to calling the standard library
function exit(), whose argument becomes the return value of main().

The parameters argc and argv (which you may give other names if you wish)
represent your program’s command-line arguments. This is how they work:

• argc (short for “argument count”) is either 0 or the number of string tokens
in the command line that started the program. The name of the program itself
is included in this count.

102 | Chapter 7: Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

• argv (short for “arguments vector”) is an array of pointers to char that point
to the individual string tokens received on the command line:

• The number of elements in this array is one more than the value of argc;
the last element, argv[argc], is always a null pointer.

• If argc is greater than 0, then the first string, argv[0], contains the name
by which the program was invoked. If the execution environment does
not supply the program name, the string is empty.

• If argc is greater than 1, then the strings argv[1] through argv[argc - 1]
contain the program’s command line arguments.

• envp (short for “environment pointer”) in the nonstandard, three-parameter
version of main() is an array of pointers to the strings that make up the pro-
gram’s environment. Typically, these strings have the form name=value. In
standard C, you can access the environment variables using the getenv()
function.

The sample program in Example 7-6, args.c, prints its own name and command-
line arguments as received from the operating system.

Suppose we run the program on a Unix system by entering the following
command line:

$./args one two "and three"

The output is then as follows:

The program now running: ./args
The command line arguments:
one
two
and three

Example 7-6. The command line

#include <stdio.h>
int main(int argc, char *argv[])
{
 if (argc == 0)
 puts("No command line available.");
 else
 { // Print the name of the program.
 printf("The program now running: %s\n", argv[0]);
 if (argc == 1)
 puts("No arguments received on the command line.");
 else
 {
 puts("The command line arguments:");
 for (int i = 1; i < argc; ++i) // Print each argument on
 // a separate line.
 puts(argv[i]);
 }
 }
}

Function Declarations | 103

Fu
n

ctio
n

s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Function Declarations
By declaring a function before using it, you inform the compiler of its type: in
other words, a declaration describes a function’s interface. A declaration must
indicate at least the type of the function’s return value, as the following example
illustrates:

int rename();

This line declares rename() as a function that returns a value with type int.
Because function names are external identifiers by default, that declaration is
equivalent to this one:

extern int rename();

As it stands, this declaration does not include any information about the number
and the types of the function’s parameters. As a result, the compiler cannot test
whether a given call to this function is correct. If you call the function with argu-
ments that are different in number or type from the parameters in its definition,
the result will be a critical runtime error. To prevent such errors, you should
always declare a function’s parameters as well. In other words, your declaration
should be a function prototype. The prototype of the standard library function
rename(), for example, which changes the name of a file, is as follows:

int rename(const char *oldname, const char *newname);

This function takes two arguments with type pointer to const char. In other
words, the function uses the pointers only to read char objects. The arguments
may thus be string literals.

The identifiers of the parameters in a prototype declaration are optional. If you
include the names, their scope ends with the prototype itself. Because they have
no meaning to the compiler, they are practically no more than comments telling
programmers what each parameter’s purpose is. In the prototype declaration of
rename(), for example, the parameter names oldname and newname in indicate that
the old filename goes first and the new filename second in your rename() function
calls. To the compiler, the prototype declaration would have exactly the same
meaning without the parameter names:

int rename(const char *, const char *);

The prototypes of the standard library functions are contained in the standard
header files. If you want to call the rename() function in your program, you can
declare it by including the file stdio.h in your source code. Usually you will place
the prototypes of functions you define yourself in a header file as well, so that you
can use them in any source file simply by adding the appropriate include directive.

Declaring Optional Parameters

C allows you to define functions so that you can call them with a variable number
of arguments (for more information on writing such functions, see the section
“Variable Numbers of Arguments,” later in this chapter). The best-known
example of such a function is printf(), which has the following prototype:

int printf(const char *format, ...);

104 | Chapter 7: Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

As this example shows, the list of parameters types ends with an ellipsis (...) after
the last comma. The ellipsis represents optional arguments. The first argument in
a printf function call must be a pointer to char. This argument may be followed
by others. The prototype contains no information about what number or types of
optional arguments the function expects.

Declaring Variable-Length Array Parameters

When you declare a function parameter as a variable-length array elsewhere than
in the head of the function definition, you can use the asterisk character (*) to
represent the array length specification. If you specify the array length using a
nonconstant integer expression, the compiler will treat it the same as an asterisk.
For example, all of the following declarations are permissible prototypes for the
maximum() function defined in Example 7-5:

double maximum(int nrows, int ncols, double matrix[nrows][ncols]);
double maximum(int nrows, int ncols, double matrix[][ncols]);
double maximum(int nrows, int ncols, double matrix[*][*]);
double maximum(int nrows, int ncols, double matrix[][*]);

How Functions Are Executed
The instruction to execute a function—the function call—consists of the func-
tion’s name and the operator () (see the section “Other Operators” in Chapter 5).
For example, the following statement calls the function maximum() to compute the
maximum of the matrix mat, which has r rows and c columns:

maximum(r, c, mat);

The program first allocates storage space for the parameters, then copies the argu-
ment values to the corresponding locations. Then the program jumps to the
beginning of the function, and execution of the function begins with first variable
definition or statement in the function block.

If the program reaches a return statement or the closing brace } of the function
block, execution of the function ends, and the program jumps back to the calling
function. If the program “falls off the end” of the function by reaching the closing
brace, the value returned to the caller is undefined. For this reason, you must use
a return statement to stop any function that does not have the type void. The
value of the return expression is returned to the calling function (see the section
“The return Statement” in Chapter 6).

Pointers as Arguments and Return Values
C is inherently a call by value language, as the parameters of a function are local
variables initialized with the argument values. This type of language has the
advantage that any expression desired can be used as an argument, as long as it
has the appropriate type. On the other hand, the drawback is that copying large
data objects to begin a function call can be expensive. Moreover, a function has
no way to modify the originals—that is, the caller’s variables—as it knows how to
access only the local copy.

Pointers as Arguments and Return Values | 105

Fu
n

ctio
n

s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

However, a function can directly access any variable visible to the caller if one of
its arguments is that variable’s address. In this way C also provides call by refer-
ence functions. A simple example is the standard function scanf(), which reads
the standard input stream and places the results in variables referenced by pointer
arguments that the caller provides:

int var;
scanf("%d", &var);

This function call reads a string as a decimal numeral, converts it to an integer,
and stores the value in the location of var.

In the following example, the initNode() function initializes a structure variable.
The caller passes the structure’s address as an argument.

#include <string.h> // Prototypes of memset() and strcpy().
struct Node { long key;
 char name[32];
 /* ... more structure members ... */
 struct Node *next;
 };

void initNode(struct Node *pNode) // Initialize the structure *pNode.
{
 memset(pNode, 0, sizeof(*pNode));
 strcpy(pNode->name, "XXXXX");
}

Even if a function needs only to read and not to modify a variable, it still may be
more efficient to pass the variable’s address rather than its value. That’s because
passing by address avoids the need to copy the data; only the variable’s address is
pushed onto the stack. If the function does not modify such a variable, then you
should declare the corresponding parameter as a “read-only” pointer, as in the
following example:

void printNode(const struct Node *pNode);
{
 printf("Key: %ld\n", pNode->key);
 printf("Name: %s\n", pNode->name);
 /* ... */
}

You are also performing a “call by reference” whenever you call a function using
an array name as an argument, because the array name is automatically converted
into a pointer to the array’s first element. The addArray() function defined in
Example 7-4 has two such pointer parameters.

Often functions need to return a pointer type as well, as the mkNode() function
does in the following example. This function dynamically creates a new Node
object and gives its address to the caller:

#include <stdlib.h>
struct Node *mkNode()
{
 struct Node *pNode = malloc(sizeof(struct Node));

106 | Chapter 7: Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

 if (pNode != NULL)
 initNode(pNode);
 return pNode;
}

The mkNode() function returns a null pointer if it fails to allocate storage for a new
Node object. Functions that return a pointer usually use a null pointer to indicate a
failure condition. For example, a search function may return the address of the
desired object, or a null pointer if no such object is available.

Inline Functions
Ordinarily, calling a function causes the computer to save its current instruction
address, jump to the function called and execute it, then make the return jump to
the saved address. With small functions that you need to call often, this can degrade
the program’s run-time behavior substantially. As a result, C99 has introduced the
option of defining inline functions. The keyword inline is a request to the compiler
to insert the function’s machine code wherever the function is called in the program.
The result is that the function is executed as efficiently as if you had inserted the
statements from the function body in place of the function call in the source code.

To define a function as an inline function, use the function specifier inline in its
definition. In Example 7-7, swapf() is defined as an inline function that exchanges
the values of two float variables, and the function selection_sortf() calls the
inline function swapf().

Example 7-7. Function swapf()

// The function swapf() exchanges the values of two float variables.
// Arguments: Two pointers to float.
// Return value: None.

inline void swapf(float *p1, float *p2) // Define it as an inline function.
{
 float tmp = *p1; *p1 = *p2; *p2 = tmp;
}

// The function selection_sortf() uses the selection-sort
// algorithm to sort an array of float elements.
// Arguments: An array of float, and its length.
// Return value: None.

void selection_sortf(float a[], int n) // Sort an array a of length n.
{
 register int i, j, mini; // Three index variables.
 for (i = 0; i < n - 1; ++i)
 {
 mini = i; // Search for the minimum starting at index i.
 for (j = i+1; j < n; ++j)
 if (a[j] < a[mini])
 mini = j;

swapf(a+i, a+mini); // Swap the minimum with the element at index i.
 }
}

Recursive Functions | 107

Fu
n

ctio
n

s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

It is generally not a good idea to define a function containing loops, such as
selection_sortf(), as inline. Example 7-7 uses inline instead to speed up the
instructions inside a for loop.

The inline specifier is not imperative: the compiler may ignore it. Recursive func-
tions, for example, are usually not compiled inline. It is up to the given compiler
to determine when a function defined with inline is actually inserted inline.

Unlike other functions, you must repeat the definitions of inline functions in each
translation unit in which you use them. The compiler must have the function defi-
nition at hand in order to insert the inline code. For this reason, function
definitions with inline are customarily written in header files.

If all the declarations of a function in a given translation unit have the inline spec-
ifier, but not the extern specifier, then the function has an inline definition. An
inline definition is specific to the translation unit; it does not constitute an
external definition, and therefore another translation unit may contain an external
definition of the function. If there is an external definition in addition to the inline
definition, then the compiler is free to choose which of the two function defini-
tions to use.

If you use the storage class specifier extern outside all other functions in a declara-
tion of a function that has been defined with inline, then the function’s definition
is external. For example, the following declaration, if placed in the same transla-
tion unit with the definition of swapf() in Example 7-7, would produce an
external definition:

extern void swapf(float *p1, float *p2);

Once the function swapf() has an external definition, other translation units only
need to contain an ordinary declaration of the function in order to call it.
However, calls to the function from other translation units will not be compiled
inline.

Inline functions are ordinary functions, except for the way they are called in
machine code. Like ordinary functions, an inline function has a unique address. If
macros are used in the statements of an inline function, the preprocessor expands
them with their values as defined at the point where the function definition occurs
in the source code. However, you should not define modifiable objects with static
storage duration in an inline function that is not likewise declared as static.

Recursive Functions
A recursive function is one that calls itself, whether directly or indirectly. Indirect
recursion means that a function calls another function (which may call a third
function, and so on), which in turn calls the first function. Because a function
cannot continue calling itself endlessly, recursive functions must always have an
exit condition.

In Example 7-8, the recursive function binarySearch() implements the binary
search algorithm to find a specified element in a sorted array. First the function
compares the search criterion with the middle element in the array. If they are the
same, the function returns a pointer to the element found. If not, the function

108 | Chapter 7: Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

searches in whichever half of the array could contain the specified element by
calling itself recursively. If the length of the array that remains to be searched
reaches zero, then the specified element is not present, and the recursion is
aborted.

For an array of n elements, the binary search algorithm performs at most
1+log2(n) comparisons. With a million elements, the maximum number of
comparisons performed is 20, which means at most 20 recursions of the
binarySearch() function.

Recursive functions depend on the fact that a function’s automatic variables are
created anew on each recursive call. These variables, and the caller’s address for
the return jump, are stored on the stack with each recursion of the function that
begins. It is up to the programmer to make sure that there is enough space avail-
able on the stack. The binarySearch() function as defined in Example 7-8 does
not place excessive demands on the stack size, though.

Recursive functions are a logical way to implement algorithms that are by nature
recursive, such as the binary search technique, or navigation in tree structures.
However, even when recursive functions offer an elegant and compact solution to
a problem, simple solutions using loops are often possible as well. For example,
you could rewrite the binary search in Example 7-8 with a loop statement instead
of a recursive function call. In such cases, the iterative solution is generally faster
in execution than the recursive function.

Variable Numbers of Arguments
C allows you to define functions that you can call with a variable number of argu-
ments. These are sometimes called variadic functions. Such functions require a
fixed number of mandatory arguments, followed by a variable number of optional
arguments. Each such function must have at least one mandatory argument. The
types of the optional arguments can also vary. The number of optional arguments
is either determined by the values of the mandatory arguments, or by a special
value that terminates the list of optional arguments.

Example 7-8. Function binarySearch()

// The binarySearch() function searches a sorted array.
// Arguments: The value of the element to find;
// the array of long to search; the array length.
// Return value: A pointer to the element found,
// or NULL if the element is not present in the array.

long *binarySearch(long val, long array[], int n)
{
 int m = n/2;
 if (n <= 0) return NULL;
 if (val == array[m]) return array + m;
 if (val < array[m]) return binarySearch(val, array, m);
 else return binarySearch(val, array+m+1, n-m-1);
}

Variable Numbers of Arguments | 109

Fu
n

ctio
n

s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The best-known examples of variadic functions in C are the standard library func-
tions printf() and scanf(). Each of these two functions has one mandatory
argument, the format string. The conversion specifiers in the format string deter-
mine the number and the types of the optional arguments.

For each mandatory argument, the function head shows an appropriate para-
meter, as in ordinary function declarations. These are followed in the parameter
list by a comma and an ellipsis (...), which stands for the optional arguments.

Internally, variadic functions access any optional arguments through an object
with the type va_list, which contains the argument information. An object of this
type—also called an argument pointer—contains at least the position of one argu-
ment on the stack. The argument pointer can be advanced from one optional
argument to the next, allowing a function to work through the list of optional
arguments. The type va_list is defined in the header file stdarg.h.

When you write a function with a variable number of arguments, you must define
an argument pointer with the type va_list in order to read the optional argu-
ments. In the following description, the va_list object is named argptr. You can
manipulate the argument pointer using four macros, which are defined in the
header file stdarg.h:

void va_start(va_list argptr, lastparam);
The macro va_start initializes the argument pointer argptr with the position
of the first optional argument. The macro’s second argument must be the
name of the function’s last named parameter. You must call this macro
before your function can use the optional arguments.

type va_arg(va_list argptr, type);
The macro va_arg expands to yield the optional argument currently refer-
enced by argptr, and also advances argptr to reference the next argument in
the list. The second argument of the macro va_arg is the type of the argu-
ment being read.

void va_end(va_list argptr);
When you have finished using an argument pointer, you should call the
macro va_end. If you want to use one of the macros va_start or va_copy to
reinitialize an argument pointer that you have already used, then you must
call va_end first.

void va_copy(va_list dest, va_list src);
The macro va_copy initializes the argument pointer dest with the current
value of src. You can then use the copy in dest to access the list of optional
arguments again, starting from the position referenced by src.

The function in Example 7-9 demonstrates the use of these macros.

Example 7-9. Function add()

// The add() function computes the sum of the optional arguments.
// Arguments: The mandatory first argument indicates the number of
// optional arguments. The optional arguments are
// of type double.
// Return value: The sum, with type double.

110 | Chapter 7: Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

double add(int n, ...)
{
 int i = 0;
 double sum = 0.0;
 va_list argptr;
 va_start(argptr, n); // Initialize argptr;
 for (i = 0; i < n; ++i) // that is, for each optional argument,
 sum += va_arg(argptr, double); // read an argument with type double
 // and accumulate in sum.
 va_end(argptr);
 return sum;
}

Example 7-9. Function add() (continued)

111

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Chapter 8Arrays

8
Arrays

An array contains objects of a given type, stored consecutively in a continuous
memory block. The individual objects are called the elements of an array. The
elements’ type can be any object type. No other types are permissible: array
elements may not have a function type or an incomplete type (see the section
“Typology” in Chapter 2).

An array is also an object itself, and its type is derived from its elements’ type.
More specifically, an array’s type is determined by the type and number of
elements in the array. If an array’s elements have type T, then the array is called an
“array of T.” If the elements have type int, for example, then the array’s type is
“array of int.” The type is an incomplete type, however, unless it also specifies the
number of elements. If an array of int has 16 elements, then it has a complete
object type, which is “array of 16 int elements.”

Defining Arrays
The definition of an array determines its name, the type of its elements, and the
number of elements in the array. An array definition without any explicit initial-
ization has the following syntax:

type name[number_of_elements];

The number of elements, between square brackets ([]), must be an integer expres-
sion whose value is greater than zero. An example:

char buffer[4*512];

This line defines an array with the name buffer, which consists of 2,048 elements
of type char.

You can determine the size of the memory block that an array occupies using the
sizeof operator. The array’s size in memory is always equal to the size of one
element times the number of elements in the array. Thus, for the array buffer in

112 | Chapter 8: Arrays

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

our example, the expression sizeof(buffer) yields the value of 2048 *
sizeof(char); in other words, the array buffer occupies 2,048 bytes of memory,
because sizeof(char) always equals one.

In an array definition, you can specify the number of elements as a constant
expression, or, under certain conditions, as an expression involving variables. The
resulting array is accordingly called a fixed-length or a variable-length array.

Fixed-Length Arrays

Most array definitions specify the number of array elements as a constant expres-
sion. An array so defined has a fixed length. Thus the array buffer defined in the
previous example is a fixed-length array.

Fixed-length arrays can have any storage class: you can define them outside all
functions or within a block, and with or without the storage class specifier static.
The only restriction is that no function parameter can be an array. An array argu-
ment passed to a function is always converted into a pointer to the first array
element (see the section “Arrays as Function Parameters” in Chapter 7).

The four array definitions in the following example are all valid:

int a[10]; // a has external linkage.
static int b[10]; // b has static storage duration and file scope.

void func()
{
 static int c[10]; // c has static storage duration and block scope.
 int d[10]; // d has automatic storage duration.
 /* ... */
}

Variable-Length Arrays

C99 also allows you to define an array using a nonconstant expression for the
number of elements, if the array has automatic storage duration—in other words,
if the definition occurs within a block and does not have the specifier static. Such
an array is then called a variable-length array.

Furthermore, the name of a variable-length array must be an ordinary identifier
(see the section “Identifier Name Spaces” in Chapter 1). Thus members of struc-
tures or unions cannot be variable-length arrays. In the following examples, only
the definition of the array vla is a permissible definition:

void func(int n)
{
 int vla[2*n]; // OK: storage duration is automatic.
 static int e[n]; // Illegal: a variable length array cannot have
 // static storage duration.
 struct S { int f[n]; }; // Illegal: f is not an ordinary identifier.
 /* ... */
}

Accessing Array Elements | 113

A
rrays

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Like any other automatic variable, a variable-length array is created anew each
time the program flow enters the block containing its definition. As a result, the
array can have a different length at each such instantiation. Once created,
however, even a variable-length array cannot change its length during its storage
duration.

Storage for automatic objects is allocated on the stack, and is released when the
program flow leaves the block. For this reason, variable-length array definitions
are useful only for small, temporary arrays. To create larger arrays dynamically,
you should generally allocate storage space explicitly using the standard functions
malloc() and calloc(). The storage duration of such arrays then ends with the
end of the program, or when you release the allocated memory by calling the
function free() (see Chapter 12).

Accessing Array Elements
The subscript operator [] provides an easy way to address the individual elements
of an array by index. If myArray is the name of an array and i is an integer, then
the expression myArray[i] designates the array element with the index i. Array
elements are indexed beginning with 0. Thus, if len is the number of elements in
an array, the last element of the array has the index len-1 (see the section
“Memory Addressing Operators” in Chapter 5).

The following code fragment defines the array myArray and assigns a value to each
element.

#define A_SIZE 4
long myArray[A_SIZE];
for (int i = 0; i < A_SIZE; ++i)
 myArray[i] = 2 * i;

The diagram in Figure 8-1 illustrates the result of this assignment loop.

An array index can be any integer expression desired. The subscript operator []
does not bring any range checking with it; C gives priority to execution speed in
this regard. It is up to you the programmer to ensure that an index does not
exceed the range of permissible values. The following incorrect example assigns a
value to a memory location outside the array:

long myArray[4];
myArray[4] = 8; // Error: subscript must not exceed 3.

Such “off-by-one” errors can easily cause a program to crash, and are not always
as easy to recognize as in this simple example.

Figure 8-1. Values assigned to elements by index

myArray[0]

myArray

0
myArray[1]
2

myArray[2]
4

myArray[3]
6

114 | Chapter 8: Arrays

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Another way to address array elements, as an alternative to the subscript oper-
ator, is to use pointer arithmetic. After all, the name of an array is implicitly
converted into a pointer to the first array element in all expressions except sizeof
operations. For example, the expression myArray+i yields a pointer to the element
with the index i, and the expression *(myArray+i) is equivalent to myArray[i] (see
the section “Pointer arithmetic” in Chapter 5).

The following loop statement uses a pointer instead of an index to step through
the array myArray, and doubles the value of each element:

for (long *p = myArray; p < myArray + A_SIZE; ++p)
 *p *= 2;

Initializing Arrays
If you do not explicitly initialize an array variable, the usual rules apply: if the
array has automatic storage duration, then its elements have undefined values.
Otherwise, all elements are initialized by default to the value 0. (If the elements
are pointers, they are initialized to NULL.) For more details, see the section “Initial-
ization” in Chapter 11.

Writing Initialization Lists

To initialize an array explicitly when you define it, you must use an initialization
list: this is a comma-separated list of initializers, or initial values for the individual
array elements, enclosed in braces. An example:

int a[4] = { 1, 2, 4, 8 };

This definition gives the elements of the array a the following initial values:

a[0] = 1, a[1] = 2, a[2] = 4, a[3] = 8

When you initialize an array, observe the following rules:

• You cannot include an initialization in the definition of a variable-length
array.

• If the array has static storage duration, then the array initializers must be con-
stant expressions. If the array has automatic storage duration, then you can
use variables in its initializers.

• You may omit the length of the array in its definition if you supply an initial-
ization list. The array’s length is then determined by the index of the last
array element for which the list contains an initializer. For example, the defi-
nition of the array a in the previous example is equivalent to this:

int a[] = { 1, 2, 4, 8 }; // An array with four elements.

• If the definition of an array contains both a length specification and an initial-
ization list, then the length is that specified by the expression between the
square brackets. Any elements for which there is no initializer in the list are
initialized to zero (or NULL, for pointers). If the list contains more initializers
than the array has elements, the superfluous initializers are simply ignored.

• A superfluous comma after the last initializer is also ignored.

Initializing Arrays | 115

A
rrays

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

As a result of these rules, all of the following definitions are equivalent:

int a[4] = { 1, 2 };
int a[] = { 1, 2, 0, 0 };
int a[] = { 1, 2, 0, 0, };
int a[4] = { 1, 2, 0, 0, 5 };

In the final definition, the initializer 5 is ignored. Most compilers generate a
warning when such a mismatch occurs.

Array initializers must have the same type as the array elements. If the array
elements’ type is a union, structure, or array type, then each initializer is generally
another initialization list. An example:

typedef struct { unsigned long pin;
 char name[64];
 /* ... */
 } Person;
Person team[6] = { { 1000, "Mary"}, { 2000, "Harry"} };

The other four elements of the array team are initialized to 0, or in this case, to
{ 0, "" }.

You can also initialize arrays of char or wchar_t with string literals (see the section
“Strings,” later in this chapter).

Initializing Specific Elements

C99 has introduced element designators to allow you to associate initializers with
specific elements. To specify a certain element to initialize, place its index in
square brackets. In other words, the general form of an element designator for
array elements is:

[constant_expression]

The index must be an integer constant expression. In the following example, the
element designator is [A_SIZE/2]:

#define A_SIZE 20
int a[A_SIZE] = { 1, 2, [A_SIZE/2] = 1, 2 };

This array definition initializes the elements a[0] and a[10] with the value 1, and
the elements a[1] and a[11] with the value 2. All other elements of the array will
be given the initial value 0. As this example illustrates, initializers without an
element designator are associated with the element following the last one
initialized.

If you define an array without specifying its length, the index in an element desig-
nator can have any non-negative integer value. As a result, the following definition
creates an array of 1,001 elements:

int a[] = { [1000] = -1 };

All of the array’s elements have the initial value 0, except the last element, which
is initialized to the value –1.

116 | Chapter 8: Arrays

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Strings
A string is a continuous sequence of characters terminated by '\0', the null char-
acter. The length of a string is considered to be the number of characters
excluding the terminating null character. There is no string type in C, and conse-
quently there are no operators that accept strings as operands.

Instead, strings are stored in arrays whose elements have the type char or wchar_t.
Strings of wide characters—that is, characters of the type wchar_t—are also called
wide strings. The C standard library provides numerous functions to perform basic
operations on strings, such as comparing, copying, and concatenating them (see
the section “String Processing” in Chapter 16).

You can initialize arrays of char or wchar_t using string literals. For example, the
following two array definitions are equivalent:

char str1[30] = "Let's go"; // String length: 8; array length: 30.

char str1[30] = { 'L', 'e', 't', '\'', 's',' ', 'g', 'o', '\0' };

An array holding a string must always be at least one element longer than the
string length to accommodate the terminating null character. Thus the array str1
can store strings up to a maximum length of 29. It would be a mistake to define
the array with length 8 rather than 30, because then it wouldn’t contain the termi-
nating null character.

If you define a character array without an explicit length and initialize it with a
string literal, the array created is one element longer than the string length. An
example:

char str2[] = " to London!"; // String length: 11 (note leading space);
 // array length: 12.

The following statement uses the standard function strcat() to append the string
in str2 to the string in str1. The array str1 must be large enough to hold all the
characters in the concatenated string.

#include <string.h>

char str1[30] = "Let's go";
char str2[] = " to London!";

/* ... */

strcat(str1, str2);
puts(str1);

The output printed by the puts() call is the new content of the array str1:

Let's go to London!

The names str1 and str2 are pointers to the first character of the string stored in
each array. Such a pointer is called a pointer to a string, or a string pointer for
short. String manipulation functions such as strcat() and puts() receive the
beginning addresses of strings as their arguments. Such functions generally
process a string character by character until they reach the terminator, '\0'. The

Multidimensional Arrays | 117

A
rrays

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

function in Example 8-1 is one possible implementation of the standard function
strcat(). It uses pointers to step through the strings referenced by its arguments.

The char array beginning at the address s1 must be at least as long as the sum of
both the two strings’ lengths, plus one for the terminating null character. To test
for this condition before calling strcat(), you might use the standard function
strlen(), which returns the length of the string referenced by its argument:

if (sizeof(str1) >= (strlen(str1) + strlen(str2) + 1))
 strcat(str1, str2);

A wide string literal is identified by the prefix L (see the section “String Literals” in
Chapter 3). Accordingly, the initialization of a wchar_t array looks like this:

#include <stddef.h> // Definition of the type wchar_t.
/* ... */
wchar_t dinner[] = L"chop suey"; // String length: 10;
 // array length: 11;
 // array size: 11 * sizeof(wchar_t)

Multidimensional Arrays
A multidimensional array in C is merely an array whose elements are themselves
arrays. The elements of an n-dimensional array are (n–1)-dimensional arrays. For
example, each element of a two-dimensional array is a one-dimensional array. The
elements of a one-dimensional array, of course, do not have an array type.

A multidimensional array declaration has a pair of brackets for each dimension:

char screen[10][40][80]; // A three-dimensional array.

The array screen consists of the 10 elements screen[0] to screen[9]. Each of these
elements is a two-dimensional array, consisting in turn of 40 one-dimensional
arrays of 80 characters each. All in all, the array screen contains 32,000 elements
with the type char.

Example 8-1. Function strcat()

// The function strcat() appends a copy of the second string
// to the end of the first string.
// Arguments: Pointers to the two strings.
// Return value: A pointer to the first string, now concatenated with the second.

char *strcat(char * restrict s1, const char * restrict s2)
{
 char *rtnPtr = s1;
 while (*s1 != '\0') // Find the end of string s1.
 ++s1;
 while ((*s1++ = *s2++) != '\0') // The first character from s2 replaces
 ; // the terminator of s1.
 return rtnPtr;
}

118 | Chapter 8: Arrays

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

To access a char element in the three-dimensional array screen, you must specify
three indices. For example, the following statement writes the character Z in the
last char element of the array:

screen[9][39][79] = 'Z';

Matrices

Two-dimensional arrays are also called matrices. Because they are so frequently
used, they merit a closer look. It is often helpful to think of the elements of a
matrix as being arranged in rows and columns. Thus the matrix mat in the
following definition has three rows and five columns:

float mat[3][5];

The three elements mat[0], mat[1], and mat[2] are the rows of the matrix mat.
Each of these rows is an array of five float elements. Thus the matrix contains a
total of 3 × 5 = 15 float elements, as the following diagram illustrates:

The values specified in the diagram can be assigned to the individual elements by
a nested loop statement. The first index specifies a row, and the second index
addresses a column in the row:

for (int row = 0; row < 3; ++row)
 for (int col = 0; col < 5; ++col)
 mat[row][col] = row + (float)col/10;

In memory, the three rows are stored consecutively, since they are the elements of
the array mat. As a result, the float values in this matrix are all arranged consecu-
tively in memory in ascending order.

Declaring Multidimensional Arrays

In an array declaration that is not a definition, the array type can be incomplete;
you can declare an array without specifying its length. Such a declaration is a
reference to an array that you must define with a specified length elsewhere in the
program. However, you must always declare the complete type of an array’s
elements. For a multidimensional array declaration, only the first dimension can
have an unspecified length. All other dimensions must have a magnitude. In
declaring a two-dimensional matrix, for example, you must always specify the
number of columns.

If the array mat in the previous example has external linkage, for example—that is,
if its definition is placed outside all functions—then it can be used in another
source file after the following declaration:

extern float mat[][5]; // External declaration.

The external object so declared has an incomplete two-dimensional array type.

0 1 2 3 4

mat[0] 0.0 0.1 0.2 0.3 0.4

mat[1] 1.0 1.1 1.2 1.3 1.4

mat[2] 2.0 2.1 2.2 2.3 2.4

Multidimensional Arrays | 119

A
rrays

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Initializing Multidimensional Arrays

You can initialize multidimensional arrays using an initialization list according to
the rules described in “Initializing Arrays,” earlier in this chapter. There are some
peculiarities, however: you do not have to show all the braces for each dimen-
sion, and you may use multidimensional element designators.

To illustrate the possibilities, we will consider the array defined and initialized as
follows:

int a3d[2][2][3] = { { { 1, 0, 0 }, { 4, 0, 0 } },
 { { 7, 8, 0 }, { 0, 0, 0 } } };

This initialization list includes three levels of list-enclosing braces, and initializes
the elements of the two-dimensional arrays a3d[0] and a3d[1] with the following
values:

Because all elements that are not associated with an initializer are initialized by
default to 0, the following definition has the same effect:

int a3d[][2][3] = { { { 1 }, { 4 } }, { { 7, 8 } } };

This initialization list likewise shows three levels of braces. You do not need to
specify that the first dimension has the size 2, as the outermost initialization list
contains two initializers.

You can also omit some of the braces. If a given pair of braces contains more
initializers than the number of elements in the corresponding array dimension,
then the excess initializers are associated with the next array element in the
storage sequence. Hence these two definitions are equivalent:

int a3d[2][2][3] = { { 1, 0, 0, 4 }, { 7, 8 } };
int a3d[2][2][3] = { 1, 0, 0, 4, 0, 0, 7, 8 };

Finally, you can achieve the same initialization pattern using element designators
as follows:

int a3d[2][2][3] = { 1, [0][1][0]=4, [1][0][0]=7, 8 };

Again, this definition is equivalent to the following:

int a3d[2][2][3] = { {1}, [0][1]={4}, [1][0]={7, 8} };

Using element designators is a good idea if only a few elements need to be initial-
ized to a value other than 0.

0 1 2

a3d[0][0] 1 0 0

a3d[0][1] 4 0 0

0 1 2

a3d[1][0] 7 8 0

a3d[1][1] 0 0 0

120 | Chapter 8: Arrays

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Arrays as Arguments of Functions
When the name of an array appears as a function argument, the compiler implic-
itly converts it into a pointer to the array’s first element. Accordingly, the
corresponding parameter of the function is always a pointer to the same object
type as the type of the array elements.

You can declare the parameter either in array form or in pointer form: type name[]
or type *name. The strcat() function defined in Example 8-1 illustrates the
pointer notation. For more details and examples, see the section “Arrays as Func-
tion Parameters” in Chapter 7. Here, however, we’ll take a closer look at the case
of multidimensional arrays.

When you pass a multidimensional array as a function argument, the function
receives a pointer to an array type. Because this array type is the type of the
elements of the outermost array dimension, it must be a complete type. For this
reason, you must specify all dimensions of the array elements in the corre-
sponding function parameter declaration.

For example, the type of a matrix parameter is a pointer to a “row” array, and the
length of the rows (i.e., the number of “columns”) must be included in the decla-
ration. More specifically, if NCOLS is the number of columns, then the parameter
for a matrix of float elements can be declared as follows:

#define NCOLS 10 // The number of columns.
/* ... */
void somefunction(float (*pMat)[NCOLS]); // A pointer to a row array.

This declaration is equivalent to the following:

void somefunction(float pMat[][NCOLS]);

The parentheses in the parameter declaration float (*pMat)[NCOLS] are necessary
in order to declare a pointer to an array of float. Without them, float
*pMat[NCOLS] would declare the identifier pMat as an array whose elements have
the type float*, or pointer to float. See the section “Complex Declarators” in
Chapter 11.

In C99, parameter declarations can contain variable-length arrays. Thus in a
declaration of a pointer to a matrix, the number of columns need not be constant,
but can be another parameter of the function. For example, you can declare a
function as follows:

void someVLAfunction(int ncols, float pMat[][ncols]);

Example 7-5 shows a function that uses a variable-length matrix as a parameter.

If you use multidimensional arrays in your programs, it is a good idea to define a
type name for the (n–1)-dimensional elements of an n-dimensional array. Such
typedef names can make your programs more readable and your arrays easier to
handle. For example, the following typedef statement defines a type for the row
arrays of a matrix of float elements (see also the section “typedef Declarations” in
Chapter 11):

typedef float ROW_t[NCOLS]; // A type for the "row" arrays.

Arrays as Arguments of Functions | 121

A
rrays

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Example 8-2 illustrates the use of an array type name such as ROW_t. The function
printRow() provides formatted output of a row array. The function printMatrix()
prints all the rows in the matrix.

The parameters pRow and pMat are declared as pointers to const arrays because the
functions do not modify the matrix. Because the number of rows is variable, it is
passed to the function printMatrix() as a second argument.

The following code fragment defines and initializes an array of rows with type
ROW_t, and then calls the function printMatrix():

ROW_t mat[] = { { 0.0F, 0.1F },
 { 1.0F, 1.1F, 1.2F },
 { 2.0F, 2.1F, 2.2F, 2.3F } };
int nRows = sizeof(mat) / sizeof(ROW_t);
printMatrix(mat, nRows);

Example 8-2. Functions printRow() and printMatrix()

// Print one "row" array.
void printRow(const ROW_t pRow)
{
 for (int c = 0; c < NCOLS; ++c)
 printf("%6.2f", pRow[c]);
 putchar('\n');
}

// Print the whole matrix.
void printMatrix(const ROW_t *pMat, int nRows)
{
 for (int r = 0; r < nRows; ++r)
 printRow(pMat[r]); // Print each row.
}

122

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Chapter 9Pointers

9
Pointers

A pointer is a reference to a data object or a function. Pointers have many uses:
defining “call-by-reference” functions, and implementing dynamic data structures
such as chained lists and trees, to name just two examples.

Very often the only efficient way to manage large volumes of data is to manipu-
late not the data itself, but pointers to the data. For example, if you need to sort a
large number of large records, it is often more efficient to sort a list of pointers to
the records, rather than moving the records themselves around in memory. Simi-
larly, if you need to pass a large record to a function, it’s more economical to pass
a pointer to the record than to pass the record contents, even if the function
doesn’t modify the contents.

Declaring Pointers
A pointer represents both the address and the type of an object or function. If an
object or function has the type T, then a pointer to it has the derived type pointer
to T. For example, if var is a float variable, then the expression &var—whose
value is the address of the float variable—has the type pointer to float, or in C
notation, the type float *. A pointer to any type T is also called a T pointer for
short. Thus the address operator in &var yields a float pointer.

Because var doesn’t move around in memory, the expression &var is a constant
pointer. However, C also allows you to define variables with pointer types. A
pointer variable stores the address of another object or a function. We describe
pointers to arrays and functions a little further on. To start out, the declaration of
a pointer to an object that is not an array has the following syntax:

type * [type-qualifier-list] name [= initializer];

In declarations, the asterisk (*) means “pointer to.” The identifier name is declared
as an object with the type type *, or pointer to type. The optional type qualifier
list may contain any combination of the type qualifiers const, volatile, and

Declaring Pointers | 123

P
o

in
ters

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

restrict. For details about qualified pointer types, see the section “Pointers and
Type Qualifiers,” later in this chapter.

Here is a simple example:

int *iPtr; // Declare iPtr as a pointer to int.

The type int is the type of object that the pointer iPtr can point to. To make a
pointer refer to a certain object, assign it the address of the object. For example, if
iVar is an int variable, then the following assignment makes iPtr point to the
variable iVar:

iPtr = &iVar; // Let iPtr point to the variable iVar.

The general form of a declaration consists of a comma-separated list of declara-
tors, each of which declares one identifier (see Chapter 11). In a pointer
declaration, the asterisk (*) is part of an individual declarator. We can thus define
and initialize the variables iVar and iPtr in one declaration, as follows:

int iVar = 77, *iPtr = &iVar; // Define an int variable and a pointer to it.

The second of these two declarations initializes the pointer iPtr with the address
of the variable iVar, so that iPtr points to iVar.

Figure 9-1 illustrates one possible arrangement of the variables iVar and iPtr in
memory. The addresses shown are purely fictitious examples. As Figure 9-1
shows, the value stored in the pointer iPtr is the address of the object iVar.

It is often useful to output addresses for verification and debugging purposes. The
printf() functions provide a format specifier for pointers: %p. The following state-
ment prints the address and contents of the variable iPtr:

printf("Value of iPtr (i.e. the address of iVar): %p\n"
 "Address of iPtr: %p\n", iPtr, &iPtr);

The size of a pointer in memory—given by the expression sizeof(iPtr), for
example—is the same regardless of the type of object addressed. In other words, a
char pointer takes up just as much space in memory as a pointer to a large struc-
ture. On 32-bit computers, pointers are usually four bytes long.

Null Pointers

A null pointer is what results when you convert a null pointer constant to a
pointer type. A null pointer constant is an integer constant expression with the
value 0, or such an expression cast as the type void * (see “Null Pointer
Constants” in Chapter 4). The macro NULL is defined in stdlib.h, stdio.h and other
header files as a null pointer constant.

Figure 9-1. A pointer and another object in memory

. . . 77 10000 . . .

10000 10004

iVar iPtr

Value in memory:

Address:

Variable:

124 | Chapter 9: Pointers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

A null pointer is always unequal to any valid pointer to an object or function. For
this reason, functions that return a pointer type usually use a null pointer to indi-
cate a failure condition. One example is the standard function fopen(), which
returns a null pointer if it fails to open a file in the specified mode:

#include <stdio.h>
/* ... */
FILE *fp = fopen("demo.txt", "r");
if (fp == NULL)
{
 // Error: unable to open the file demo.txt for reading.
}

Null pointers are implicitly converted to other pointer types as necessary for
assignment operations, or for comparisons using == or !=. Hence no cast operator
is necessary in the previous example. (See also “Implicit Pointer Conversions” in
Chapter 4.)

void Pointers

A pointer to void, or void pointer for short, is a pointer with the type void *. As
there are no objects with the type void, the type void * is used as the all-purpose
pointer type. In other words, a void pointer can represent the address of any
object—but not its type. To access an object in memory, you must always convert
a void pointer into an appropriate object pointer.

To declare a function that can be called with different types of pointer arguments,
you can declare the appropriate parameters as pointers to void. When you call
such a function, the compiler implicitly converts an object pointer argument into
a void pointer. A common example is the standard function memset(), which is
declared in the header file string.h with the following prototype:

void *memset(void *s, int c, size_t n);

The function memset() assigns the value of c to each of the n bytes of memory in
the block beginning at the address s. For example, the following function call
assigns the value 0 to each byte in the structure variable record:

struct Data { /* ... */ } record;
memset(&record, 0, sizeof(record));

The argument &record has the type struct Data *. In the function call, the argu-
ment is converted to the parameter’s type, void *.

The compiler likewise converts void pointers into object pointers where neces-
sary. For example, in the following statement, the malloc() function returns a
void pointer whose value is the address of the allocated memory block. The
assignment operation converts the void pointer into a pointer to int:

int *iPtr = malloc(1000 * sizeof(int));

For a more thorough illustration, see Example 2-3.

Operations with Pointers | 125

P
o

in
ters

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Initializing Pointers

Pointer variables with automatic storage duration start with an undefined value,
unless their declaration contains an explicit initializer. All variables defined within
any block, without the storage class specifier static, have automatic storage dura-
tion. All other pointers defined without an initializer have the initial value of a
null pointer.

You can initialize a pointer with the following kinds of initializers:

• A null pointer constant.

• A pointer to the same type, or to a less qualified version of the same type (see
the section “Pointers and Type Qualifiers,” later in this chapter).

• A void pointer, if the pointer being initialized is not a function pointer. Here
again, the pointer being initialized can be a pointer to a more qualified type.

Pointers that do not have automatic storage duration must be initialized with a
constant expression, such as the result of an address operation or the name of an
array or function.

When you initialize a pointer, no implicit type conversion takes place except in
the cases just listed. However, you can explicitly convert a pointer value to
another pointer type. For example, to read any object byte by byte, you can
convert its address into a char pointer to the first byte of the object:

double x = 1.5;
char *cPtr = &x; // Error: type mismatch; no implicit conversion.
char *cPtr = (char *)&x; // OK: cPtr points to the first byte of x.

For more details and examples of pointer type conversions, see the section
“Explicit Pointer Conversions” in Chapter 4.

Operations with Pointers
This section describes the operations that can be performed using pointers. The
most important of these operations is accessing the object or function that the
pointer refers to. You can also compare pointers, and use them to iterate through
a memory block. For a complete description of the individual operators in C, with
their precedence and permissible operands, see Chapter 5.

Using Pointers to Read and Modify Objects

The indirection operator * yields the location in memory whose address is stored
in a pointer. If ptr is a pointer, then *ptr designates the object (or function) that
ptr points to. Using the indirection operator is sometimes called dereferencing a
pointer. The type of the pointer determines the type of object that is assumed to
be at that location in memory. For example, when you access a given location
using an int pointer, you read or write an object of type int.

126 | Chapter 9: Pointers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Unlike the multiplication operator *, the indirection operator * is a unary oper-
ator; that is, it has only one operand. In Example 9-1, ptr points to the variable x.
Hence the expression *ptr is equivalent to the variable x itself.

Do not confuse the asterisk (*) in a pointer declaration with the indirection oper-
ator. The syntax of the declaration can be seen as an illustration of how to use the
pointer. An example:

double *ptr;

As declared here, ptr has the type double * (read: “pointer to double“). Hence the
expression *ptr would have the type double.

Of course, the indirection operator * must be used with only a pointer that
contains a valid address. This usage requires careful programming! Without the
assignment ptr = &x in Example 9-1, all of the statements containing *ptr would
be senseless—dereferencing an undefined pointer value—and might well cause
the program to crash.

A pointer variable is itself an object in memory, which means that a pointer can
point to it. To declare a pointer to a pointer, you must use two asterisks, as in the
following example:

char c = 'A', *cPtr = &c, **cPtrPtr = &cPtr;

The expression *cPtrPtr now yields the char pointer cPtr, and the value of
**cPtrPtr is the char variable c. The diagram in Figure 9-2 illustrates these
references.

Pointers to pointers are not restricted to the two-stage indirection illustrated here.
You can define pointers with as many levels of indirection as you need. However,
you cannot assign a pointer to a pointer its value by mere repetitive application of
the address operator:

char c = 'A', **cPtrPtr = &(&c); // Wrong!

The second initialization in this example is illegal: the expression (&c) cannot be
the operand of &, because it is not an lvalue. In other words, there is no pointer to
char in this example for cPtrPtr to point to.

If you pass a pointer to a function by reference so that the function can modify its
value, then the function’s parameter is a pointer to a pointer. The following

Example 9-1. Dereferencing a pointer

double x, y, *ptr; // Two double variables and a pointer to double.
ptr = &x; // Let ptr point to x.
*ptr = 7.8; // Assign the value 7.8 to the variable x.
*ptr *= 2.5; // Multiply x by 2.5.
y = *ptr + 0.5; // Assign y the result of the addition x + 0.5.

Figure 9-2. A pointer to a pointer

&cPtr

 cPtrPtr

&c

 cPtr

'A'

c

Operations with Pointers | 127

P
o

in
ters

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

simple example is a function that dynamically creates a new record and stores its
address in a pointer variable:

#include <stdlib.h>
// The record type:
typedef struct { long key; /* ... */ } Record;

_Bool newRecord(Record **ppRecord)
{
 *ppRecord = malloc(sizeof(Record));
 if (*ppRecord != NULL)
 {
 /* ... Initialize the new record's members ... */
 return 1;
 }
 else
 return 0;
}

The following statement is one possible way to call the newRecord() function:

Record *pRecord = NULL;
if (newRecord(&pRecord))
{
 /* ... pRecord now points to a new Record object ... */
}

The expression *pRecord yields the new record, and (*pRecord).key is the member
key in that record. The parentheses in the expression (*pRecord).key are neces-
sary, because the dot operator (.) has higher precedence than the indirection
operator (*).

Instead of this combination of operators and parentheses, you can also use the
arrow operator -> to access structure or union members. If p is a pointer to a
structure or union with a member m, then the expression p->m is equivalent to
(*p).m. Thus the following statement assigns a value to the member key in the
structure that pRecord points to:

pRecord->key = 123456L;

Modifying and Comparing Pointers

Besides using assignments to make a pointer refer to a given object or function,
you can also modify an object pointer using arithmetic operations. When you
perform pointer arithmetic, the compiler automatically adapts the operation to the
size of the objects referred to by the pointer type.

You can perform the following operations on pointers to objects:

• Adding an integer to, or subtracting an integer from, a pointer.

• Subtracting one pointer from another.

• Comparing two pointers.

When you subtract one pointer from another, the two pointers must have the
same basic type, although you can disregard any type qualifiers (see “Comparative

128 | Chapter 9: Pointers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Operators” in Chapter 5). Furthermore, you may compare any pointer with a null
pointer constant using the equality operators (== and !=), and you may compare
any object pointer with a pointer to void.

The three pointer operations described here are generally useful only for pointers
that refer to the elements of an array. To illustrate the effects of these operations,
consider two pointers p1 and p2, which point to elements of an array a:

• If p1 points to the array element a[i], and n is an integer, then the expression
p2 = p1 + n makes p2 point to the array element a[i+n] (assuming that i+n is an
index within the array a).

• The subtraction p2 – p1 yields the number of array elements between the two
pointers, with the type ptrdiff_t. The type ptrdiff_t is defined in the
header file stddef.h, usually as int. After the assignment p2 = p1 + n, the
expression p2 – p1 yields the value of n.

• The comparison p1 < p2 yields true if the element referenced by p2 has a
greater index than the element referenced by p1. Otherwise, the comparison
yields false.

Because the name of an array is implicitly converted into a pointer to the first
array element wherever necessary, you can also substitute pointer arithmetic for
array subscript notation:

• The expression a + i is a pointer to a[i], and the value of *(a+i) is the ele-
ment a[i].

• The expression p1 – a yields the index i of the element referenced by p1.

In Example 9-2, the function selection_sortf() sorts an array of float elements
using the selection-sort algorithm. This is the pointer version of the function
selection_sortf() in Example 7-7; in other words, this function does the same
job, but uses pointers instead of indices. The helper function swapf() remains
unchanged.

Example 9-2. Pointer version of the selection_sortf() function

// The swapf() function exchanges the values of two float variables.
// Arguments: Two pointers to float.

inline void swapf(float *p1, float *p2);
{
 float tmp = *p1; *p1 = *p2; *p2 = tmp; // Swap *p1 and *p2.
}
// The function selection_sortf() uses the selection-sort
// algorithm to sort an array of float elements.
// Arguments: An array of float, and its length.

void selection_sortf(float a[], int n) // Sort an array a of n float elements.
{
 if (n <= 1) return; // Nothing to sort.

 register float *last = a + n-1, // A pointer to the last element.
 *p, // A pointer to a selected element.
 *minPtr; // A pointer to the current minimum.

Pointers and Type Qualifiers | 129

P
o

in
ters

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The pointer version of such a function is generally more efficient than the
index version, since accessing the elements of the array a using an index i, as in
the expression a[i] or *(a+i), involves adding the address a to the value
i*sizeof(element_type) to obtain the address of the corresponding array element.
The pointer version requires less arithmetic, because the pointer itself is incre-
mented instead of the index, and points to the required array element directly.

Pointers and Type Qualifiers
The declaration of a pointer may contain the type qualifiers const, volatile, and/
or restrict. The type qualifiers const and volatile may qualify either the pointer
type itself, or the type of object it points to. The difference is important. Those
type qualifiers that occur in the pointer’s declarator—that is, between the asterisk
and the pointer’s name—qualify the pointer itself. An example:

short const volatile * restrict ptr;

In this declaration, the keyword restrict qualifies the pointer ptr. This pointer can
refer to objects of type short that may be qualified with const or volatile, or both.

An object whose type is qualified with const is constant: the program cannot
modify it after its definition. The type qualifier volatile is a hint to the compiler
that the object so qualified may be modified not only by the present program, but
also by other processes or events (see Chapter 11).

The most common use of qualifiers in pointer declarations is in
pointers to constant objects, especially as function parameters. For
this reason, the following description refers to the type qualifier
const. The same rules govern the use of the type qualifier volatile
with pointers.

Constant Pointers and Pointers to Constant Objects

When you define a constant pointer, you must also initialize it, because you can’t
modify it later. As the following example illustrates, a constant pointer is not the
same thing as a pointer to a constant object:

int var; // An object with type int.
int *const c_ptr = &var; // A constant pointer to int.
*c_ptr = 123; // OK: we can modify the object referenced, but ...
++c_ptr; // error: we can't modify the pointer.

 for (; a < last; ++a) // Walk the pointer a through the array.
 {
 minPtr = a; // Find the smallest element
 for (p = a+1; p <= last; ++p) // between a and the end of the array.
 if (*p < *minPtr)
 minPtr = p;
 swapf(a, minPtr); // Swap the smallest element
 } // with the element at a.
}

Example 9-2. Pointer version of the selection_sortf() function (continued)

130 | Chapter 9: Pointers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

You can modify a pointer that points to an object that has a const-qualified type
(also called a pointer to const). However, you can use such a pointer only to read
the referenced object, not to modify it. For this reason, pointers to const are
commonly called “read-only pointers.” The referenced object itself may or may
not be constant. An example:

int var; // An object with type int.
const int c_var = 100, // A constant int object.
 *ptr_to_const; // A pointer to const int:
 // the pointer itself is not constant!
ptr_to_const = &c_var; // OK: Let ptr_to_const point to c_var.
var = 2 * *ptr_to_const; // OK. Equivalent to: var = 2 * c_var;
ptr_to_const = &var; // OK: Let ptr_to_const point to var.
if (c_var < *ptr_to_const) // OK: "read-only" access.
 *ptr_to_const = 77; // Error: we can't modify var using
 // ptr_to_const, even though var is
 // not constant.

Type specifiers and type qualifiers can be written in any order. Thus the following
is permissible:

int const c_var = 100, *ptr_to_const;

The assignment ptr_to_const = &var entails an implicit conversion: the int
pointer value &var is automatically converted to the left operand’s type, pointer to
const int. For any operator that requires operands with like types, the compiler
implicitly converts a pointer to a given type T into a more qualified version of the
type T. If you want to convert a pointer into a pointer to a less-qualified type, you
must use an explicit type conversion. The following code fragment uses the vari-
ables declared in the previous example:

int *ptr = &var; // An int pointer that points to var.
*ptr = 77; // OK: ptr is not a read-only pointer.
ptr_to_const = ptr; // OK: implicitly converts ptr from "pointer to int"
 // into "pointer to const int".
*ptr_to_const = 77; // Error: can't modify a variable through a read-only
 // pointer.
ptr = &c_var; // Error: can't implicitly convert "pointer to const
 // int" into "pointer to int".
ptr = (int *)&c_var; // OK: Explicit pointer conversions are always
 // possible.
*ptr = 200; // Attempt to modify c_var: possible runtime error.

The final statement causes a runtime error if the compiler has placed the constant
object c_var in a read-only section in memory.

You can also declare a constant pointer to const, as the parameter declaration in
the following function prototype illustrates:

void func(const int * const c_ptr_to_const);

The function’s parameter is a read-only pointer that is initialized when the func-
tion is called and remains constant within the function.

Pointers and Type Qualifiers | 131

P
o

in
ters

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Restricted Pointers

C99 introduced the type qualifier restrict, which is applicable only to object
pointers. A pointer qualified with restrict is called a restricted pointer. There is a
special relationship between a restrict-qualified pointer and the object it points
to: during the lifetime of the pointer, either the object is not modified, or the
object is not accessed except through the restrict-qualified pointer. An example:

typedef struct { long key; // Define a structure type.
 /* ... other members ... */
 } Data_t;
Data_t * restrict rPtr = malloc(sizeof(Data_t)); // Allocate a structure.

This example illustrates one way to respect the relationship between the restricted
pointer and its object: the return value of malloc()—the address of an anony-
mous Data_t object—is assigned only to the pointer rPtr, so the program won’t
access the object in any other way.

It is up to you, the programmer, to make sure that an object referenced by a
restrict-qualified pointer is accessed only through that pointer. For example, if
your program modifies an object through a restricted pointer, it must not access
the object by name or through another pointer for as long as the restricted pointer
exists.

The restrict type qualifier is a hint to the compiler that allows it to apply certain
optimization techniques that might otherwise introduce inconsistencies.
However, the restrict qualifier does not mandate any such optimization, and the
compiler may ignore it. The program’s outward behavior is the same in either
case.

The type qualifier restrict is used in the prototypes of many standard library func-
tions. For example, the function memcpy() is declared in the header file string.h as
follows:

void *memcpy(void * restrict dest, // Destination
 const void * restrict src, // Source
 size_t n); // Number of bytes to copy

This function copies a memory block of n bytes, beginning at the address src, to
the location beginning at dest. Because the pointer parameters are both restricted,
you must make sure that the function will not use them to access the same
objects: in other words, make sure that the source and destination blocks do not
overlap. The following example contains one correct and one incorrect memcpy()
call:

char a[200];
/* ... */
memcpy(a+100, a, 100); // OK: copy the first half of the array
 // to the the second half; no overlap.
memcpy(a+1, a, 199); // Error: move the whole array contents upward by
 // one index; large overlap.

The second memcpy() call in this example violates the restrict condition, because
the function must modify 198 locations that it accesses using both pointers.

132 | Chapter 9: Pointers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The standard function memmove(), unlike memcpy(), allows the source and destina-
tion blocks to overlap. Accordingly, neither of its pointer parameters has the
restrict qualifier:

void *memmove(void *dest, const void *src, size_t n);

Example 9-3 illustrates the second way to fulfill the restrict condition: the
program may access the object pointed to using other names or pointers, if it
doesn’t modify the object for as long as the restricted pointer exists. This simple
function calculates the scalar product of two arrays.

Assuming an array named P with three double elements, you could call this func-
tion using the expression scalar_products(P, P, 3). The function accesses
objects through two different restricted pointers, but as the const keyword in the
first two parameter declarations indicates, it doesn’t modify them.

Pointers to Arrays and Arrays of Pointers
Pointers occur in many C programs as references to arrays, and also as elements of
arrays. A pointer to an array type is called an array pointer for short, and an array
whose elements are pointers is called a pointer array.

Array Pointers

For the sake of example, the following description deals with an array of int. The
same principles apply for any other array type, including multidimensional arrays.

To declare a pointer to an array type, you must use parentheses, as the following
example illustrates:

int (* arrPtr)[10] = NULL; // A pointer to an array of
 // ten elements with type int.

Without the parentheses, the declaration int * arrPtr[10]; would define arrPtr
as an array of 10 pointers to int. Arrays of pointers are described in the next
section.

Example 9-3. The function scalar_product()

// This function calculates the scalar product of two arrays.
// Arguments: Two arrays of double, and their length.
// The two arrays need not be distinct.

double scalar_product(const double * restrict p1,
 const double * restrict p2,
 int n)
{
 double result = 0.0;
 for (int i = 0; i < n; ++i)
 result += p1[i] * p2[i];
 return result;
}

Pointers to Arrays and Arrays of Pointers | 133

P
o

in
ters

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

In the example, the pointer to an array of 10 int elements is initialized with NULL.
However, if we assign it the address of an appropriate array, then the expression
*arrPtr yields the array, and (*arrPtr)[i] yields the array element with the
index i. According to the rules for the subscript operator, the expression
(*arrPtr)[i] is equivalent to *((*arrPtr)+i) (see “Memory Addressing Opera-
tors” in Chapter 5). Hence **arrPtr yields the first element of the array, with the
index 0.

In order to demonstrate a few operations with the array pointer arrPtr, the
following example uses it to address some elements of a two-dimensional array—
that is, some rows of a matrix (see “Matrices” in Chapter 8):

int matrix[3][10]; // Array of three rows, each with 10 columns.
 // The array name is a pointer to the first
 // element; i.e., the first row.
arrPtr = matrix; // Let arrPtr point to the first row of
 // the matrix.
(*arrPtr)[0] = 5; // Assign the value 5 to the first element of the
 // first row.
 //
arrPtr[2][9] = 6; // Assign the value 6 to the last element of the
 // last row.
 //
++arrPtr; // Advance the pointer to the next row.
(*arrPtr)[0] = 7; // Assign the value 7 to the first element of the
 // second row.

After the initial assignment, arrPtr points to the first row of the matrix, just as the
array name matrix does. At this point you can use arrPtr in the same way as
matrix to access the elements. For example, the assignment (*arrPtr)[0] = 5 is
equivalent to arrPtr[0][0] = 5 or matrix[0][0] = 5.

However, unlike the array name matrix, the pointer name arrPtr does not repre-
sent a constant address, as the operation ++arrPtr shows. The increment
operation increases the address stored in an array pointer by the size of one
array—in this case, one row of the matrix, or ten times the number of bytes in an
int element.

If you want to pass a multidimensional array to a function, you must declare the
corresponding function parameter as a pointer to an array type. For a full descrip-
tion and an example of this use of pointers, see “Arrays as Function Arguments”
in Chapter 8.

One more word of caution: if a is an array of ten int elements, then you cannot
make the pointer from the previous example, arrPtr, point to the array a by this
assignment:

arrPtr = a; // Error: mismatched pointer types.

The reason is that an array name, such as a, is implicitly converted into a pointer
to the array’s first element, not a pointer to the whole array. The pointer to int is
not implicitly converted into a pointer to an array of int. The assignment in the
example requires an explicit type conversion, specifying the target type int
(*)[10] in the cast operator:

arrPtr = (int (*)[10])a; // OK

134 | Chapter 9: Pointers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

You can derive this notation for the array pointer type from the declaration of
arrPtr by removing the identifier (see “Type Names” in Chapter 11). However,
for more readable and more flexible code, it is a good idea to define a simpler
name for the type using typedef:

typedef int ARRAY_t[10]; // A type name for "array of ten int elements".
ARRAY_t a, // An array of this type,
 *arrPtr; // and a pointer to this array type.
arrPtr = (ARRAY_t *)a; // Let arrPtr point to a.

Pointer Arrays

Pointer arrays—that is, arrays whose elements have a pointer type—are often a
handy alternative to two-dimensional arrays. Usually the pointers in such an array
point to dynamically allocated memory blocks.

For example, if you need to process strings, you could store them in a two-dimen-
sional array whose row size is large enough to hold the longest string that can
occur:

#define ARRAY_LEN 100
#define STRLEN_MAX 256
char myStrings[ARRAY_LEN][STRLEN_MAX] =
{ // Several corollaries of Murphy's Law:
 "If anything can go wrong, it will.",
 "Nothing is foolproof, because fools are so ingenious.",
 "Every solution breeds new problems."
};

However, this technique wastes memory, as only a small fraction of the 25,600
bytes devoted to the array is actually used. For one thing, a short string leaves
most of a row empty; for another, memory is reserved for whole rows that may
never be used. A simple solution in such cases is to use an array of pointers that
reference the objects—in this case, the strings—and to allocate memory only for
the pointer array and for objects that actually exist. Unused array elements are
null pointers.

#define ARRAY_LEN 100
char *myStrPtr[ARRAY_LEN] = // Array of pointers to char
{ // Several corollaries of Murphy's Law:
 "If anything can go wrong, it will.",
 "Nothing is foolproof, because fools are so ingenious.",
 "Every solution breeds new problems."
};

The diagram in Figure 9-3 illustrates how the objects are stored in memory.

The pointers not yet used can be made to point to other strings at runtime. The
necessary storage can be reserved dynamically in the usual way. The memory can
also be released when it is no longer needed.

The program in Example 9-4 is a simple version of the filter utility sort. It reads
text from the standard input stream, sorts the lines alphanumerically, and prints
them to standard output. This routine does not move any strings: it merely sorts
an array of pointers.

Pointers to Arrays and Arrays of Pointers | 135

P
o

in
ters

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Figure 9-3. Pointer array

Example 9-4. A simple program to sort lines of text

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

char *getline(void); // Reads a line of text
int str_compare(const void *, const void *);

#define NLINES_MAX 1000 // Maximum number of text lines.
char *linePtr[NLINES_MAX]; // Array of pointers to char.

int main()
{
 // Read lines:
 int n = 0; // Number of lines read.
 for (; n < NLINES_MAX && (linePtr[n] = getline()) != NULL; ++n)
 ;

 if (!feof(stdin)) // Handle errors.
 {
 if (n == NLINES_MAX)
 fputs("sorttext: too many lines.\n", stderr);
 else
 fputs("sorttext: error reading from stdin.\n", stderr);
 }
 else // Sort and print.
 {
 qsort(linePtr, n, sizeof(char*), str_compare); // Sort.
 for (char **p = linePtr; p < linePtr+n; ++p) // Print.
 puts(*p);
 }
 return 0;
}

// Reads a line of text from stdin; drops the terminating newline character.
// Return value: A pointer to the string read, or
// NULL at end-of-file, or if an error occurred.
#define LEN_MAX 512 // Maximum length of a line.

char *getline()
{
 char buffer[LEN_MAX], *linePtr = NULL;

myStrPtr [0]

myStrPtr [1]

myStrPtr [2]

myStrPtr [3]
...

myStrPtr [99]

“If anything can go wrong, it will.”

“Nothing is foolproof. . .”

“Every solution breeds new problems.”

136 | Chapter 9: Pointers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The maximum number of lines that the program in Example 9-4 can sort is
limited by the constant NLINES_MAX. However, we could remove this limitation by
creating the array of pointers to text lines dynamically as well.

Pointers to Functions
There are a variety of uses for function pointers in C. For example, when you call
a function, you might want to pass it not only the data for it to process, but also
pointers to subroutines that determine how it processes the data. We have just
seen an example of this use: the standard function qsort(), used in Example 9-4,
takes a pointer to a comparison function as one of its arguments, in addition to
the information about the array to be sorted. qsort() uses the pointer to call the
specified function whenever it has to compare two array elements.

You can also store function pointers in arrays, and then call the functions using
array index notation. For example, a keyboard driver might use a table of func-
tion pointers whose indices correspond to the key numbers. When the user
presses a key, the program would jump to the corresponding function.

Like declarations of pointers to array types, function pointer declarations require
parentheses. The examples that follow illustrate how to declare and use pointers
to functions.

double (*funcPtr)(double, double);

This declaration defines a pointer to a function type with two parameters of type
double and a return value of type double. The parentheses that enclose the asterisk
and the identifier are important. Without them, the declaration double
*funcPtr(double, double); would be the prototype of a function, not the defini-
tion of a pointer.

 if (fgets(buffer, LEN_MAX, stdin) != NULL)
 {
 size_t len = strlen(buffer);

 if (buffer[len-1] == '\n') // Trim the newline character.
 buffer[len-1] = '\0';
 else
 ++len;

 if ((linePtr = malloc(len)) != NULL) // Get enough memory for the line.
 strcpy(linePtr, buffer); // Copy the line to the allocated block.
 }
 return linePtr;
}

// Comparison function for use by qsort().
// Arguments: Pointers to two elements in the array being sorted:
// here, two pointers to pointers to char (char **).
int str_compare(const void *p1, const void *p2)
{
 return strcmp(*(char **)p1, *(char **)p2);
}

Example 9-4. A simple program to sort lines of text (continued)

Pointers to Functions | 137

P
o

in
ters

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Wherever necessary, the name of a function is implicitly converted into a pointer to
the function. Thus the following statements assign the address of the standard
function pow() to the pointer funcPtr, and then call the function using that pointer:

double result;
funcPtr = pow; // Let funcPtr point to the function pow().
 // The expression *funcPtr now yields the
 // function pow().

result = (*funcPtr)(1.5, 2.0); // Call the function referenced by
 // funcPtr.
result = funcPtr(1.5, 2.0); // The same function call.

As the last line in this example shows, when you call a function using a pointer,
you can omit the indirection operator, because the left operand of the function
call operator (i.e., the parentheses enclosing the argument list) has the type
“pointer to function” (see “Function Calls” in Chapter 5).

The simple program in Example 9-5 prompts the user to enter two numbers, then
performs some simple calculations with them. The mathematical functions are
called by pointers that are stored in the array funcTable.

Example 9-5. Simple use of function pointers

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

double Add(double x, double y) { return x + y; }
double Sub(double x, double y) { return x - y; }
double Mul(double x, double y) { return x * y; }
double Div(double x, double y) { return x / y; }

// Array of 5 pointers to functions that take two double parameters
// and return a double:
double (*funcTable[5])(double, double)
 = { Add, Sub, Mul, Div, pow }; // Initializer list.

// An array of pointers to strings for output:
char *msgTable[5] = { "Sum", "Difference", "Product", "Quotient", "Power" };

int main()
{
 int i; // An index variable.
 double x = 0, y = 0;

 printf("Enter two operands for some arithmetic:\n");
 if (scanf("%lf %lf", &x, &y) != 2)
 printf("Invalid input.\n");

 for (i = 0; i < 5; ++i)
 printf("%10s: %6.2f\n", msgTable[i], funcTable[i](x, y));

 return 0;
}

138 | Chapter 9: Pointers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The expression funcTable[i](x,y) calls the function whose address is stored in
the pointer funcTable[i]. The array name and subscript do not need to be
enclosed in parentheses, because the function call operator () and the subscript
operator [] both have the highest precedence and left-to-right associativity (see
Table 5-4).

Once again, complex types such as arrays of function pointers are easier to
manage if you define simpler type names using typedef. For example, you could
define the array funcTable as follows:

typedef double func_t(double, double); // The functions' type is now
 // named func_t.
func_t *funcTable[5] = { Add, Sub, Mul, Div, pow };

This approach is certainly more readable than the array definition in Example 9-5.

139

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Chapter 10Structures and Unions

10
Structures, Unions,

and Bit-Fields

The pieces of information that describe the characteristics of objects, such as
information on companies or customers, are generally grouped together in
records. Records make it easy to organize, present, and store information about
similar objects.

A record is composed of fields that contain the individual details, such as the
name, address, and legal form of a company. In C, you determine the names and
types of the fields in a record by defining a structure type. The fields are called the
members of the structure.

A union is defined in the same way as a structure. Unlike the members of a struc-
ture, all the members of a union start at the same address. Hence you define a
union type when you want to use the same location in memory for different types
of objects.

In addition to the basic and derived types, the members of structures and unions
can also include bit-fields. A bit-field is an integer variable composed of a speci-
fied number of bits. By defining bit-fields, you can break down an addressable
memory unit into groups of individual bits that you can address by name.

Structures
A structure type is a type defined within the program that specifies the format of a
record, including the names and types of its members, and the order in which they
are stored. Once you have defined a structure type, you can use it like any other
type in declaring objects, pointers to those objects, and arrays of such structure
elements.

140 | Chapter 10: Structures, Unions, and Bit-Fields

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Defining Structure Types

The definition of a structure type begins with the keyword struct, and contains a
list of declarations of the structure’s members, in braces:

struct [tag_name] { member_declaration_list };

A structure must contain at least one member. The following example defines the
type struct Date, which has three members of type short:

struct Date { short month, day, year; };

The identifier Date is this structure type’s tag. The identifiers year, month, and day
are the names of its members. The tags of structure types are a distinct name
space: the compiler distinguishes them from variables or functions whose names
are the same as a structure tag. Likewise, the names of structure members form a
separate name space for each structure type. In this book, we have generally capi-
talized the first letter in the names of structure, union, and enumeration types:
this is merely a common convention to help programmers distinguish such names
from those of variables.

The members of a structure may have any desired complete type, including previ-
ously defined structure types. They must not be variable-length arrays, or pointers
to such arrays.

The following structure type, struct Song, has five members to store five pieces of
information about a music recording. The member published has the type struct
Date, defined in the previous example:

struct Song { char title[64];
 char artist[32];
 char composer[32];
 short duration; // Playing time in seconds.
 struct Date published; // Date of publication.
 };

A structure type cannot contain itself as a member, as its definition is not
complete until the closing brace (}). However, structure types can and often do
contain pointers to their own type. Such self-referential structures are used in
implementing linked lists and binary trees, for example. The following example
defines a type for the members of a singly linked list:

struct Cell { struct Song song; // This record's data.
 struct Cell *pNext; // A pointer to the next record.
 };

If you use a structure type in several source files, you should place its definition in
an included header file. Typically, the same header file will contain the proto-
types of the functions that operate on structures of that type. Then you can use
the structure type and the corresponding functions in any source file that includes
the given header file.

Structure Objects and typedef Names

Within the scope of a structure type definition, you can declare objects of that type:

struct Song song1, song2, *pSong = &song1;

Structures | 141

Stru
ctu

res
an

d
U

n
io

n
s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

This example defines song1 and song2 as objects of type struct Song, and pSong as
a pointer that points to the object song1. The keyword struct must be included
whenever you use the structure type. You can also use typedef to define a one-
word name for a structure type:

typedef struct Song Song_t; // Song_t is now a synonym for
 // struct Song.
Song_t song1, song2, *pSong = &song1; // Two struct Song objects and a
 // struct Song pointer.

Objects with a structure type, such as song1 and song2 in our example, are called
structure objects (or structure variables) for short.

You can also define a structure type without a tag. This approach is practical only
if you define objects at the same time, and don’t need the type for anything else,
or if you define the structure type in a typedef declaration, so that it has a name
after all. An example:

typedef struct { struct Cell *pFirst, *pLast; } SongList_t;

This typedef declaration defines SongList_t as a name for the structure type
whose members are two pointers to struct Cell named pFirst and pLast.

Incomplete Structure Types

You can define pointers to a structure type even when the structure type has not
yet been defined. Thus the definition of SongList_t in the previous example would
be permissible and correct even if struct Cell had not yet been defined. In such a
case, the definition of SongList_t would implicitly declare the name Cell as a
structure tag. However, the type struct Cell would remain incomplete until
explicitly defined. The pointers pFirst and pLast, whose type is struct Cell *,
cannot be used to access objects until the type struct Cell is completely defined,
with declarations of its structure members between braces.

The ability to declare pointers to incomplete structure types allows you to define
structure types that refer to each other. Here is a simple example:

struct A { struct B *pB; /* ... other members of struct A ... */ };
struct B { struct A *pA; /* ... other members of struct B ... */ };

These declarations are correct and behave as expected, except in the following
case: if they occur within a block, and the structure type struct B has already
been defined in a larger scope, then the declaration of the member pB in structure
A declares a pointer to the type already defined, and not to the type struct B
defined after struct A. To preclude this interference from the outer scope, you
can insert an “empty” declaration of struct B before the definition of struct A:

struct B;
struct A { struct B *pB; /* ... */ };
struct B { struct A *pA; /* ... */ };

This example declares B as a new structure tag that hides an existing structure tag
from the larger scope, if there is one.

142 | Chapter 10: Structures, Unions, and Bit-Fields

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Accessing Structure Members

Two operators allow you to access the members of a structure object: the dot
operator (.) and the arrow operator (->). Both of them are binary operators whose
right operand is the name of a member.

The left operand of the dot operator is an expression that yields a structure object.
Here are a few examples using the structure struct Song:

#include <string.h> // Prototypes of string functions.
Song_t song1, song2, // Two objects of type Song_t,
 *pSong = &song1; // and a pointer to Song_t.

// Copy a string to the title of song1:
strcpy(song1.title, "Havana Club");

// Likewise for the composer member:
strcpy(song1.composer, "Ottmar Liebert");

song1.duration = 251; // Playing time.

// The member published is itself a structure:
song1.published.year = 1998; // Year of publication.

if ((*pSong).duration > 180)
 printf("The song %s is more than 3 minutes long.\n", (*pSong).title);

Because the pointer pSong points to the object song1, the expression *pSong
denotes the object song1, and (*pSong).duration denotes the member duration in
song1. The parentheses are necessary because the dot operator has a higher prece-
dence than the indirection operator (see Table 5-4).

If you have a pointer to a structure, you can use the arrow operator -> to access
the structure’s members instead of the indirection and dot operators (* and .). In
other words, an expression of the form p->m is equivalent to (*p).m. Thus we
might rewrite the if statement in the previous example using the arrow operator
as follows:

if (pSong->duration > 180)
 printf("The song %s is more than 3 minutes long.\n", pSong->title);

You can use an assignment to copy the entire contents of a structure object to
another object of the same type:

song2 = song1;

After this assignment, each member of song2 has the same value as the corre-
sponding member of song1. Similarly, if a function parameter has a structure type,
then the contents of the corresponding argument are copied to the parameter
when you call the function. This approach can be rather inefficient unless the
structure is small, as in Example 10-1.

Structures | 143

Stru
ctu

res
an

d
U

n
io

n
s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Larger structures are generally passed by reference. In Example 10-2, the function
call copies only the address of a Song object, not the structure’s contents. Further-
more, as the function does not modify the structure object, the parameter is a
read-only pointer. Thus you can also pass this function a pointer to a constant
object.

The song’s playing time is printed in the format m:ss. The function dateAsString()
converts the publication date from a structure to string format.

Initializing Structures

When you define structure objects without explicitly initializing them, the usual
initialization rules apply: if the structure object has automatic storage class, then
its members have indeterminate initial values. If, on the other hand, the structure
object has static storage duration, then the initial value of its members is zero, or
if they have pointer types, a null pointer (see “Initialization” in Chapter 11).

Example 10-1. The function dateAsString()

// The function dateAsString() converts a date from a structure of type
// struct Date into a string of the form mm/dd/yyyy.
// Argument: A date value of type struct Date.
// Return value: A pointer to a static buffer containing the date string.

const char *dateAsString(struct Date d)
{
 static char strDate[12];
 sprintf(strDate, "%02d/%02d/%04d", d.month, d.day, d.year);
 return strDate;
}

Example 10-2. The function printSong()

// The printSong() function prints out the contents of a structure
// of type Song_t in a tabular format.
// Argument: A pointer to the structure object to be printed.
// Return value: None.

void printSong(const Song_t *pSong)
{
 int m = pSong->duration / 60, // Playing time in minutes
 s = pSong->duration % 60; // and seconds.

 printf("--\n"
 "Title: %s\n"
 "Artist: %s\n"
 "Composer: %s\n"
 "Playing time: %d:%02d\n"
 "Date: %s\n",
 pSong->title, pSong->artist, pSong->composer, m, s,
 dateAsString(pSong->published));
}

144 | Chapter 10: Structures, Unions, and Bit-Fields

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

To initialize a structure object explicitly when you define it, you must use an
initialization list: this is a comma-separated list of initializers, or initial values for
the individual structure members, enclosed in braces. The initializers are associ-
ated with the members in the order of their declarations: the first initializer is
associated with the first member, the second initializer goes with the second
member, and so forth. Of course, each initializer must have a type that matches
(or can be implicitly converted into) the type of the corresponding member. An
example:

Song_t mySong = { "What It Is",
 "Aubrey Haynie; Mark Knopfler",
 "Mark Knopfler",
 297,
 { 9, 26, 2000 }
 };

This list contains an initializer for each member. Because the member published
has a structure type, its initializer is another initialization list.

You may also specify fewer initializers than the number of members in the struc-
ture. In this case, any remaining members are initialized to zero.

Song_t yourSong = { "El Macho" };

After this definition, all members of yourSong have the value zero, except for the
first member. The char arrays contain empty strings, and the member published
contains the invalid date { 0, 0, 0 }.

The initializers may be nonconstant expressions if the structure object has auto-
matic storage class. You can also initialize a new, automatic structure variable
with a existing object of the same type:

Song_t yourSong = mySong; // Valid initialization within a block.

Initializing Specific Members

The C99 standard allows you to explicitly associate an initializer with a certain
member. To do so, you must prefix a member designator with an equal sign to the
initializer. The general form of a designator for the structure member member is:

.member // Member designator

The declaration in the following example initializes a Song_t object using the
member designators .title and .composer:

Song_t aSong = { .title = "I've Just Seen a Face",
 .composer = "John Lennon; Paul McCartney",
 127
 };

The member designator .title is actually superfluous here, because title is the
first member of the structure. An initializer with no designator is associated with
the first member, if it is the first initializer, or with the member that follows the
last member initialized. Thus in the previous example, the value 127 initializes the
member duration. All other members of the structure have the initial value 0.

Structures | 145

Stru
ctu

res
an

d
U

n
io

n
s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Structure Members in Memory

The members of a structure object are stored in memory in the order in which
they are declared in the structure type’s definition. The address of the first
member is identical with the address of the structure object itself. The address of
each member declared after the first one is greater than those of members declared
earlier.

Sometimes it is useful to obtain the offset of a member from the beginning address
of the structure. This offset, as a number of bytes, is given by the macro offsetof,
defined in the header file stddef.h. The macro’s arguments are the structure type
and the name of the member:

offsetof(structure_type, member)

The result has the type size_t. As an example, if pSong is a pointer to a Song_t
structure, then we can initialize the pointer ptr with the address of the first char-
acter in the member composer:

char *ptr = (char *)pSong + offsetof(Song_t, composer);

The compiler may align the members of a structure on certain kinds of addresses,
such as 32-bit boundaries, to ensure fast access to the members. This step results
in gaps, or unused bytes between the members. The compiler may also pad the
structure with extra bytes after the last member. As a result, the size of a structure
can be greater than the sum of its members’ sizes. You should always use the
sizeof operator to obtain a structure’s size, and the offsetof macro to obtain the
positions of its members.

You can control the compiler’s alignment of structure members, to avoid gaps
between members for example, by means of compiler options, such as the
-fpack-struct flag for GCC, or the /Zp1 command-line option or the pragma
pack(1) for Visual C/C++. However, you should use these options only if your
program places special requirements on the alignment of structure elements.

Programs need to determine the sizes of structures when allocating memory for
objects, or when writing the contents of structure objects to a binary file. In the
following example, fp is the FILE pointer to a file opened for writing binary data:

#include <stdio.h> // Prototype of fwrite().

/* ... */

if (fwrite(&aSong, sizeof(aSong), 1, fp) < 1)
 fprintf(stderr, "Error writing \"%s\".\n", aSong.title);

If the function call is successful, fwrite() writes a data object of size
sizeof(aSong), beginning at the address &aSong, to the file opened with the FILE
pointer fp.

146 | Chapter 10: Structures, Unions, and Bit-Fields

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Flexible Structure Members

C99 allows the last member of a structure with more than one member to have an
incomplete array type—that is, the last member may be declared as an array of
unspecified length. Such a structure member is called a flexible array member. In
the following example, array is the name of a flexible member:

typedef struct { int len; float array[]; } DynArray_t;

There are only two cases in which the compiler gives special treatment to a flex-
ible member:

• The size of a structure that ends in a flexible array member is equal to the off-
set of the flexible member. In other words, the flexible member is not
counted in calculating the size of the structure (although any padding that
precedes the flexible member is counted). For example, the expressions
sizeof(DynArray_t) and offsetof(DynArray_t, array) yield the same value.

• When you access the flexible member using the dot or arrow operator (. or ->),
you the programmer must make sure that the object in memory is large enough
to contain the flexible member’s value. You can do this by allocating the neces-
sary memory dynamically. An example:

DynArray_t *daPtr = malloc(sizeof(DynArray_t) + 10*sizeof(float));

This initialization reserves space for ten elements in the flexible array mem-
ber. Now you can perform the following operations:

daPtr->len = 10;
for (int i = 0; i < daPtr->len; ++i)
 daPtr->array[i] = 1.0F/(i+1);

Because you have allocated space for only ten array elements in the flexible
member, the following assignment is not permitted:

daPtr->array[10] = 0.1F // Invalid array index.

Although some implementations of the C standard library are aimed at making
programs safer from such array index errors, you should avoid them by careful
programming. In all other operations, the flexible member of the structure is
ignored, as in this structure assignment, for example:

DynArray_t da1;
da1 = *daPtr;

This assignment copies only the member len of the object addressed by daPtr, not
the elements of the object’s array member. In fact, the left operand, da1, doesn’t
even have storage space for the array. But even when the left operand of the
assignment has sufficient space available, the flexible member is still ignored.

C99 also doesn’t allow you to initialize a flexible structure member:

DynArray_t da1 = { 100 }, // Okay.
 da2 = { 3, { 1.0F, 0.5F, 0.25F } }; // Error.

Nonetheless, many compilers support language extensions that allow you to
initialize a flexible structure member, and generate an object of sufficient size to
contain those elements that you initialize explicitly.

Structures | 147

Stru
ctu

res
an

d
U

n
io

n
s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Pointers as Structure Members

To include data items that can vary in size in a structure, it is a good idea to use a
pointer rather than including the actual data object in the structure. The pointer
then addresses the data in a separate object for which you allocate the necessary
storage space dynamically. Moreover, this indirect approach allows a structure to
have more than one variable-length “member.”

Pointers as structure members are also very useful in implementing dynamic data
structures. The structure types SongList_t and Cell_t that we defined earlier in
this chapter for the head and items of a list are an example:

// Structures for a list head and list items:

typedef struct { struct Cell *pFirst, *pLast; } SongList_t;

typedef struct Cell { struct Song song; // The record data.
 struct Cell *pNext; // A pointer to the next record.
 } Cell_t;

Figure 10-1 illustrates the structure of a singly linked list made of these structures.

Special attention is required when manipulating such structures. For example, it
generally makes little sense to copy structure objects with pointer members, or to
save them in files. Usually the data referenced needs to be copied or saved, and
the pointer to it does not. For example, if you want to initialize a new list, named
yourList, with the existing list myList, you probably don’t want to do this:

SongList_t yourList = myList;

Such an initialization simply makes a copy of the pointers in myList without
creating any new objects for yourList. To copy the list itself, you have to dupli-
cate each object in it. The function cloneSongList(), defined in Example 10-3,
does just that:

SongList_t yourList = cloneSongList(&myList);

The function cloneSongList() creates a new object for each item linked to myList,
copies the item’s contents to the new object, and links the new object to the new
list. cloneSongList() calls appendSong() to do the actual creating and linking. If
an error occurs, such as insufficient memory to duplicate all the list items, then
cloneSongList() releases the memory allocated up to that point, and returns an
empty list. The function clearSongList() destroys all the items in a list.

Figure 10-1. A singly linked list

pFirst pLast

song pNext song pNext . . . song pNext

148 | Chapter 10: Structures, Unions, and Bit-Fields

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Example 10-3. The functions cloneSongList(), appendSong(), and clearSongList()

// The function cloneSongList() duplicates a linked list.
// Argument: A pointer to the list head of the list to be cloned.
// Return value: The new list. If insufficient memory is available to
// duplicate the entire list, the new list is empty.
#include "songs.h" // Contains type definitions (Song_t, etc.) and
 // function prototypes for song-list operations.

SongList_t cloneSongList(const SongList_t *pList)
{
 SongList_t newSL = { NULL, NULL }; // A new, empty list.

 Cell_t *pCell = pList->pFirst; // Cloning starts with the first list item.
 while (pCell != NULL && appendSong(&newSL, &pCell->song))
 pCell = pCell->pNext;

 if (pCell != NULL) // If we didn't finish the last item,
 clearSongList(&newSL); // discard any items cloned.

 return newSL; // In either case, return the list head.
}

// The function appendSong() dynamically allocates a new list item,
// copies the given song data to the new object, and appends it to the list.
// Arguments: A pointer to a Song_t object to be copied, and a pointer to a
// list to add the copy to.
// Return value: True if successful, otherwise false.

bool appendSong(SongList_t *pList, const Song_t *pSong)
{
 Cell_t *pCell = calloc(1, sizeof(Cell_t)); // Create a new list item.

 if (pCell == NULL)
 return false; // Failure: no memory.

 pCell->song = *pSong; // Copy data to the new item.
 pCell->pNext = NULL;

 if (pList->pFirst == NULL) // If the list is still empty,
 pList->pFirst = pList->pLast = pCell; // link a first (and last) item.
 else
 { // If not,
 pList->pLast->pNext = pCell; // insert a new last item.
 pList->pLast = pCell;
 }

 return true; // Success.
}

Unions | 149

Stru
ctu

res
an

d
U

n
io

n
s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Before the function clearSongList() frees each item, it has to save the pointer to
the item that follows; you can’t read a structure object member after the object
has been destroyed. The header file songs.h included in Example 10-3 is the place
to put all the type definitions and function prototypes needed to implement and
use the song list, including declarations of the functions defined in the example
itself. The header songs.h must also include the header file stdbool.h, because the
appendSong() function uses the identifiers bool, true, and false.

Unions
Unlike structure members, which all have distinct locations in the structure, the
members of a union all share the same location in memory; that is, all members of
a union start at the same address. Thus you can define a union with many
members, but only one member can contain a value at any given time. Unions are
an easy way for programmers to use a location in memory in different ways.

Defining Union Types

The definition of a union is formally the same as that of a structure, except for the
keyword union in place of struct:

union [tag_name] { member_declaration_list };

The following example defines a union type named Data which has the three
members i, x, and str:

union Data { int i; double x; char str[16]; };

An object of this type can store an integer, a floating-point number, or a short string.

union Data var, myData[100];

This declaration defines var as an object of type union Data, and myData as an
array of 100 elements of type union Data. A union is at least as big as its largest
member. To obtain the size of a union, use the sizeof operator. Using our
example, sizeof(var) yields the value 16, and sizeof(myData) yields 1,600.

// The function clearSongList() destroys all the items in a list.
// Argument: A pointer to the list head.

void clearSongList(SongList_t *pList)
{
 Cell_t *pCell, *pNextCell;
 for (pCell = pList->pFirst; pCell != NULL; pCell = pNextCell)
 {
 pNextCell = pCell->pNext;
 free(pCell); // Release the memory allocated for each item.
 }
 pList->pFirst = pList->pLast = NULL;
}

Example 10-3. The functions cloneSongList(), appendSong(), and clearSongList() (continued)

150 | Chapter 10: Structures, Unions, and Bit-Fields

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

As Figure 10-2 illustrates, all the members of a union begin at the same address in
memory.

To illustrate how unions are different from structures, consider an object of the
type struct Record with members i, x, and str, defined as follows:

struct Record { int i; double x; char str[16]; };

As Figure 10-3 shows, each member of a structure object has a separate location
in memory.

You can access the members of a union in the same ways as structure members.
The only difference is that when you change the value of a union member, you
modify all the members of the union. Here are a few examples using the union
objects var and myData:

var.x = 3.21;
var.x += 0.5;
strcpy(var.str, "Jim"); // Occupies the place of var.x.
myData[0].i = 50;
for (int i = 0; i < 50; ++i)
 myData[i].i = 2 * i;

As for structures, the members of each union type form a name space unto them-
selves. Hence in the last of these statements, the index variable i and the union
member i identify two distinct objects.

You the programmer are responsible for making sure that the momentary
contents of a union object are interpreted correctly. The different types of the
union’s members allow you to interpret the same collection of byte values in
different ways. For example, the following loop uses a union to illustrate the
storage of a double value in memory:

var.x = 1.25;

for (int i = sizeof(double) - 1; i >= 0; --i)
 printf("%02X ", (unsigned char)var.str[i]);

This loop begins with the highest byte of var.x, and generates the following
output:

3F F4 00 00 00 00 00 00

Figure 10-2. An object of the type union Data in memory

Figure 10-3. An object of the type struct Record in memory

i
x
str

i x str

Bit-Fields | 151

Stru
ctu

res
an

d
U

n
io

n
s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Initializing Unions

Like structures, union objects are initialized by an initialization list. For a union,
though, the list can only contain one initializer. As for structures, C99 allows the
use of a member designator in the initializer to indicate which member of the
union is being initialized. Furthermore, if the initializer has no member desig-
nator, then it is associated with the first member of the union. A union object
with automatic storage class can also be initialized with an existing object of the
same type. Some examples:

union Data var1 = { 77 },
 var2 = { .str = "Mary" },
 var3 = var1,
 myData[100] = { {.x= 0.5}, { 1 }, var2 };

The array elements of myData for which no initializer is specified are implicitly
initialized to the value 0.

Bit-Fields
Members of structures or unions can also be bit-fields. A bit-field is an integer
variable that consists of a specified number of bits. If you declare several small bit-
fields in succession, the compiler packs them into a single machine word. This
permits very compact storage of small units of information. Of course, you can
also manipulate individual bits using the bitwise operators, but bit-fields offer the
advantage of handling bits by name, like any other structure or union member.

The declaration of a bit-field has the form:

type [member_name] : width ;

The parts of this syntax are as follows:

type
An integer type that determines how the bit-field’s value is interpreted. The
type may be _Bool, int, signed int, unsigned int, or another type defined by
the given implementation. The type may also include type qualifiers.

Bit-fields with type signed int are interpreted as signed; bit-fields whose type
is unsigned int are interpreted as unsigned. Bit-fields of type int may be
signed or unsigned, depending on the compiler.

member_name
The name of the bit-field, which is optional. If you declare a bit-field with no
name, though, there is no way to access it. Nameless bit-fields can serve only
as padding to align subsequent bit-fields to a certain position in a machine
word.

width
The number of bits in the bit-field. The width must be a constant integer
expression whose value is non-negative, and must be less than or equal to the
bit width of the specified type.

152 | Chapter 10: Structures, Unions, and Bit-Fields

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Nameless bit-fields can have zero width. In this case, the next bit-field declared is
aligned at the beginning of a new addressable storage unit.

When you declare a bit-field in a structure or union, the compiler allocates an
addressable unit of memory that is large enough to accommodate it. Usually the
storage unit allocated is a machine word whose size is that of the type int. If the
following bit-field fits in the rest of the same storage unit, then it is defined as
being adjacent to the previous bit-field. If the next bit-field does not fit in the
remaining bits of the same unit, then the compiler allocates another storage unit,
and may place the next bit-field at the start of new unit, or wrap it across the end
of one storage unit and the beginning of the next.

The following example redefines the structure type struct Date so that the
members month and day occupy only as many bits as necessary. To demonstrate a
bit-field of type _Bool, we have also added a flag for Daylight Saving Time. This
code assumes that the target machine uses words of at least 32 bits:

struct Date { unsigned int month : 4; // 1 is January; 12 is December.
 unsigned int day : 5; // The day of the month (1 to 31).
 signed int year : 22; // (-2097152 to +2097151)
 _Bool isDST : 1; // True if Daylight Saving Time is
 // in effect.
 };

A bit-field of n bits can have 2n distinct values. The structure member month now
has a value range from 0 to 15; the member day has the value range from 0 to 31;
and the value range of the member year is from –2097152 to +2097151. We can
initialize an object of type struct Date in the normal way, using an initialization
list:

struct Date birthday = { 5, 17, 1982 };

The object birthday occupies the same amount of storage space as a 32-bit int
object. Unlike other structure members, bit-fields generally do not occupy an
addressable location in memory. Thus you cannot apply the address operator (&)
or the offsetof macro to a bit-field.

In all other respects, however, you can treat bit-fields the same as other structure
or union members; use the dot and arrow operators to access them, and perform
arithmetic with them as with int or unsigned int variables. As a result, the new
definition of the Date structure using bit-fields does not necessitate any changes in
the dateAsString() function:

const char *dateAsString(struct Date d)
{
 static char strDate[12];
 sprintf(strDate, "%02d/%02d/%04d", d.month, d.day, d.year);
 return strDate;
}

The following statement calls the dateAsString() function for the object birthday,
and prints the result using the standard function puts():

puts(dateAsString(birthday));

153

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Chapter 11Declarations

11
Declarations

A declaration determines the significance and properties of one or more identi-
fiers. The identifiers you declare can be the names of objects, functions, types, or
other things, such as enumeration constants. Identifiers of objects and functions
can have various types and scopes. The compiler needs to know all of these char-
acteristics of an identifier before you can use it in an expression. For this reason,
each translation unit must contain a declaration of each identifier used in it.

Labels used as the destination of goto statements may be placed before any state-
ment. These identifiers are declared implicitly where they occur. All other
identifiers require explicit declaration before their first use, either outside of all
functions or at the beginning of a block. In C99, declarations may also appear
after statements within a block.

After you have declared an identifier, you can use it in expressions until the end of
its scope. The identifiers of objects and functions can have file or block scope (see
“Identifier Scope” in Chapter 1).

General Syntax
There are several different kinds of declarations:

• Declarations that only declare a structure, union, or enumeration tag, or the
members of an enumeration (that is, the enumeration constants)

• Declarations that declare one or more object or function identifiers

• typedef declarations, which declare new names for existing types

Declarations of enumerated, structure, and union types are described in Chapter 2
and Chapter 10. This chapter deals mainly with object, function, and typedef

154 | Chapter 11: Declarations

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

declarations. These declarations contain a declarator list with one or more declar-
ators. Each declarator declares a typedef name or an identifier for an object or a
function. The general form of this kind of declaration is:

[typedef | storage_class_specifier] type declarator [, declarator [, ...]];

The parts of this syntax are as follows:

storage_class_specifier
No more than one of the storage class specifiers extern, static, auto, or
register. A typedef declaration cannot include a storage class specifier. The
exact meanings of the storage class specifiers, and restrictions on their use,
are described in “Storage Class Specifiers,” later in this section.

type
At least a type specifier, possibly with type qualifiers. The type specifier may
be any of these:

• A basic type

• The type void

• An enumerated, structure, or union type

• A name defined by a previous typedef declaration

In a function declaration, the type specifier inline may also appear.

type may also contain one or more of the type qualifiers const, volatile, and
restrict.

declarator
The declarator list is a comma-separated list containing at least one declar-
ator. A declarator names the identifier that is being declared. If the declarator
defines an object, it may also include an initializer for the identifier. There are
four different kinds of declarators:

Function declarator
The identifier is declared as a function name if it is immediately followed
by a left parenthesis (().

Array declarator
The identifier is declared as an array name if it is immediately followed
by a left bracket ([).

Pointer declarator
The identifier is the name of a pointer if it is preceded by an asterisk
(*)—possibly with interposed type qualifiers—and if the declarator is
neither a function nor an array declarator.

Other
Otherwise, the identifier designates an object of the specified type.

A declarator in parentheses is equivalent to the same declarator without the
parentheses, and the rules listed here assume that declarations contain no
unnecessary parentheses. However, you can use parentheses intentionally in
declarations to control the associations between the syntax elements
described. We will discuss this in detail in “Complex Declarators,” later in
this chapter.

General Syntax | 155

D
eclaratio

n
s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Examples

Let us examine some examples of object and function declarations. We discuss
declarations of typedef names in “typedef Declarations,” later in this chapter.

In the following example, the declarator list in the first line contains two declara-
tors, one of which includes an initializer. The line declares two objects, iVar1 and
iVar2, both with type int. iVar2 begins its existence with the value 10.

int iVar1, iVar2 = 10;
static char msg[] = "Hello, world!";

The second line in this example defines and initializes an array of char named msg
with static storage duration (we discuss storage duration in the following section).

Next, you see the declaration of an external variable named status with the quali-
fied type volatile short:

extern volatile short status;

The next declaration defines an anonymous enumerated type with the enumera-
tion constants OFF and ON, as well as the variable toggle with this type. The
declaration initializes toggle with the value ON:

enum { OFF, ON } toggle = ON;

The following example defines the structure type struct CharColor, whose
members are the bit-fields fg, bg, and bl. It also defines the variable attribute with
this type, and initializes the members of attribute with the values 12, 1, and 0.

struct CharColor { unsigned fg:4, bg:3, bl:1; } attribute = { 12, 1, 0 };

The second line of the next example defines an array named clientArray with 100
elements of type struct Client, and a pointer to struct Client named clientPtr,
initialized with the address of the first element in clientArray:

struct Client { char name[64], pin[16]; /* ... */ }; // A structure type.
struct Client clientArray[100], *clientPtr = clientArray;

Next you see a declaration of a float variable, x, and an array, flPtrArray, whose
10 elements have the type pointer to float. The first of these pointers,
flPtrArray[0], is initialized with &x; the remaining array elements are initialized as
null pointers.

float x, *flPtrArray[10] = { &x };

The following line declares the function func1() with the return value type int.
This declaration offers no information about the number and types of the func-
tion’s parameters, if any.

int func1();

We’ll move on to the declaration of a static function named func2(), whose only
parameter has the type pointer to double, and which also returns a pointer to
double:

static double *func2(double *);

156 | Chapter 11: Declarations

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Last, we define the inline function printAmount(), with two parameters,
returning int.

inline int printAmount(double amount, int width)
{ return printf("%*.2lf", width, amount); }

Storage Class Specifiers

A storage class specifier in a declaration modifies the linkage of the identifier (or
identifiers) declared, and the storage duration of the corresponding objects. (The
concepts of linkage and storage duration are explained individually in later
sections of this chapter.)

A frequent source of confusion in regard to C is the fact that link-
age, which is a property of identifiers, and storage duration, which
is a property of objects, are both influenced in declarations by the
same set of keywords—the storage class specifiers. As we explain in
the upcoming sections of this chapter, the storage duration of an
object can be automatic, static, or allocated, and the linkage of an
identifer can be external, internal, or none. Expressions such as
“static linkage” or “external storage” in the context of C declara-
tions are meaningless, except as warning signs of incipient confu-
sion. Remember: objects have storage duration, not linkage; and
identifiers have linkage, not storage duration.

No more than one storage class specifier may appear in a declaration. Function
identifiers may be accompanied only by the storage class specifier extern or
static. Function parameters may take only the storage class specifier register.
The four storage class specifiers have the following meanings:

auto
Objects declared with the auto specifier have automatic storage duration.
This specifier is permissible only in object declarations within a function. In
ANSI C, objects declared within a function have automatic storage duration
by default, and the auto specifier is archaic.

register
You can use the specifier register when declaring objects with automatic
storage duration. The register keyword is a hint to the compiler that the
object should be made as quickly accessible as possible—ideally, by storing it
in a CPU register. However, the compiler may treat some or all objects
declared with register the same as ordinary objects with automatic storage
duration. In any case, programs must not use the address operator on objects
declared with the register specifier.

static
A function identifier declared with the specifier static has internal linkage. In
other words, such an identifier cannot be used in another translation unit to
access the function.

General Syntax | 157

D
eclaratio

n
s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

An object identifier declared with static has either no linkage or internal
linkage, depending on whether the object’s definition is inside a function or
outside all functions. Objects declared with static always have static storage
duration. Thus the specifier static allows you to define local objects—that
is, objects with block scope—that have static storage duration.

extern
Function and object identifiers declared with the extern specifier have
external linkage. You can use them anywhere in the entire program. External
objects have static storage duration.

Type Qualifiers

You can modify types in a declaration by including the type qualifiers const,
volatile, and restrict. A declaration may contain any number of type qualifiers
in any order. A type qualifier list may even contain the same type qualifier several
times, or the same qualifier may be applied repeatedly through qualified typedef
names. The compiler ignores such repetitions of any qualifier, treating them as if
the qualifier were present only once.

The individual type qualifiers have the following meanings:

const
An object whose type is qualified with const is constant; the program cannot
modify it after its definition.

volatile
An object whose type is qualified with volatile may be modified by other
processes or events. The volatile keyword instructs the compiler to reread
the object’s value each time it is used, even if the program itself has not
changed it since the previous access.

restrict
The restrict qualifier is applicable only to object pointer types. The type
qualifier restrict was introduced in C99, and is a hint to the compiler that
the object referenced by a given pointer, if it is modified at all, will not be
accessed in any other way except using that pointer, whether directly or indi-
rectly. This feature allows the compiler to apply certain optimization
techniques that would not be possible without such a restriction. The
compiler may ignore the restrict qualifier without affecting the result of the
program.

The compiler may store objects qualified as const, but not volatile, in a read-only
segment of memory. It may also happen that the compiler allocates no storage for
such an object if the program does not use its address.

Objects qualified with both const and volatile, such as the object ticks in the
following example, cannot be modified by the program itself, but may be modi-
fied by something else, such as a clock chip’s interrupt handler:

extern const volatile int ticks;

158 | Chapter 11: Declarations

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Here are some more examples of declarations using qualified types:

const int limit = 10000; // A constant int object.
typedef struct { double x, y, r; } Circle; // A structure type.
const Circle unit_circle = { 0, 0, 1 }; // A constant Circle object.
const float v[] = { 1.0F, 0.5F, 0.25F }; // An array of constant
 // float elements.
volatile short * restrict vsPtr; // A restricted pointer to volatile short.

With pointer types, the type qualifiers to the right of the asterisk qualify the
pointer itself, while those to the left of the asterisk qualify the type of object it
points to. In the last example, the pointer vsPtr is qualified with restrict, and the
object it points to with volatile. For more details, including more about
restricted pointers, see “Pointers and Type Qualifiers” in Chapter 9.

Declarations and Definitions

You can declare an identifier as often as you want, but only one declaration within
its scope can be a definition. Placing the definitions of objects and functions with
external linkage in header files is a common way of introducing duplicate defini-
tions, and is therefore not a good idea.

An identifier’s declaration is a definition in the following cases:

• A function declaration is a definition if it contains the function block. An
example:

int iMax(int a, int b); // This is a declaration, not a definition.
int iMax(int a, int b) // This is the function's definition.
{ return (a >= b ? a : b); }

• An object declaration is a definition if it allocates storage for the object. Dec-
larations that include initializers are always definitions. Furthermore, all dec-
larations within function blocks are definitions unless they contain the
storage class specifier extern. Some examples:

int a = 10; // Definition of a.
extern double b[]; // Declaration of the array b, which is
 // defined elsewhere in the program.
void func()
{
 extern char c; // Declaration of c, not a definition.
 static short d; // Definition of d.
 float e; // Definition of e.
 /* ... */
}

If you declare an object outside of all functions, without an initializer, and
without the storage class specifier extern, the declaration is a tentative
definition. Some examples:

int i, v[]; // Tentative definitions of i, v and j.
static int j;

A tentative definition of an identifier remains a simple declaration if the trans-
lation unit contains another definition for the same identifier. If not, then the
compiler behaves as if the tentative definition had included an initializer with

General Syntax | 159

D
eclaratio

n
s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

the value zero, making it a definition. Thus the int variables i and j in the
previous example, whose identifiers are declared without initializers, are
implicitly initialized with the value 0, and the int array v has one element,
with the initial value 0.

Complex Declarators

The symbols (), [], and * in a declarator specify that the identifier has a func-
tion, array, or pointer type. A complex declarator may contain multiple
occurrences of any or all of these symbols. This section explains how to interpret
such declarators.

The basic symbols in a declarator have the following meanings:

()
A function whose return value has the type . . .

[]
An array whose elements have the type . . .

*
A pointer to the type . . .

In declarators, these symbols have the same priority and associativity as the corre-
sponding operators would have in an expression. Furthermore, as in expressions,
you can use additional parentheses to modify the order in which they are inter-
preted. An example:

int *abc[10]; // An array of 10 elements whose type is pointer to int.
int (*abc)[10]; // A pointer to a array of 10 elements whose type is int.

In a declarator that involves a function type, the parentheses that indicate a func-
tion may contain the parameter declarations. The following example declares a
pointer to a function type:

int (*fPtr)(double x); // fPtr is a pointer to a function that has
 // one double parameter and returns int.

The declarator must include declarations of the function parameters if it is part of
the function definition.

When interpreting a complex declarator, always begin with the identifier. Starting
from there, repeat the following steps in order until you have interpreted all the
symbols in the declarator:

1. If a left parenthesis (() or bracket ([)appears immediately to the right, then
interpret the pair of parentheses or brackets.

2. Otherwise, if an asterisk (*) appears to the left, interpret the asterisk.

Here is an example:

extern char *(* fTab[])(void);

160 | Chapter 11: Declarations

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Table 11-1 interprets this example bit by bit. The third column is meant to be
read from the top row down, as a sentence.

fTab has an incomplete array type, because the declaration does not specify the
array length. Before you can use the array, you must define it elsewhere in the
program with a specific length.

The parentheses around * fTab[] are necessary. Without them, fTab would be
declared as an array whose elements are functions—which is impossible.

The next example shows the declaration of a function identifier, followed by its
interpretation:

float (* func())[3][10];
The identifier func is . . .
a function whose return value has the type . . .
pointer to . . .
an array of three elements of type . . .
array of ten elements of type . . .
float.

In other words, the function func returns a pointer to a two-dimensional array of
3 rows and 10 columns. Here again, the parentheses around * func() are neces-
sary, as without them the function would be declared as returning an array—
which is impossible.

Type Names
To convert a value explicitly from one type to another using the cast operator, you
must specify the new type by name. For example, in the cast expression (char *)ptr,
the type name is char * (read: “char pointer” or “pointer to char”). When you use a
type name as the operand of sizeof, it appears the same way, in parentheses. Func-
tion prototype declarations also designate a function’s parameters by their type
names, even if the parameters themselves have no names.

Table 11-1. Interpretation of extern char *(* fTab[])(void);

Step Symbols interpreted
Meaning (read this column from the top
down, as a sentence)

1. Start with the identifier. fTab fTab is . . .

2. Brackets to the right. fTab[] an array whose elements have the type . . .

3. Asterisk to the left. (* fTab[]) pointer to . . .

4. Function parentheses (and
parameter list) to the right.

(* fTab[])(void) a function, with no parameters, whose
return value has the type . . .

5. Asterisk to the left. *(* fTab[])(void) pointer to . . .

6. No more asterisks, parentheses
or brackets: read the type name.

char *(* fTab[])(void) char.

typedef Declarations | 161

D
eclaratio

n
s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The syntax of a type name is like that of an object or function declaration, but with
no identifier (and no storage class specifier). Two simple examples to start with:

unsigned char

The type unsigned char.

unsigned char *

The type “pointer to unsigned char.”

In the examples that follow, the type names are more complex. Each type name
contains at least one asterisk (*) for “pointer to,” as well as parentheses or
brackets. To interpret a complex type name, start with the first pair of brackets or
parentheses that you find to the right of the last asterisk. (If you were parsing a
declarator with an identifier rather than a type name, the identifier would be
immediately to the left of those brackets or parentheses.) If the type name
includes a function type, then the parameter declarations must be interpreted
separately.

float *[]
The type “array of pointers to float.” The number of elements in the array is
undetermined.

float (*)[10]
The type “pointer to an array of ten elements whose type is float.”

double *(double *)
The type “function whose only parameter has the type pointer to double, and
which also returns a pointer to double.”

double (*)()
The type “pointer to a function whose return value has the type double.” The
number and types of the function’s parameters are not specified.

int *(*(*)[10])(void)
The type “pointer to an array of ten elements whose type is pointer to a func-
tion with no parameters which returns a pointer to int.”

typedef Declarations
The easy way to use types with complex names, such as those described in the
previous section, is to declare simple synonyms for them. In a declaration that
starts with the keyword typedef, each declarator defines an identifier as a
synonym for the specified type. The identifier is then called a typedef name for
that type. Except for the keyword typedef, the syntax is exactly the same as for a
declaration of an object or function of the specified type. Some examples:

typedef unsigned int UINT, UINT_FUNC();
typedef struct Point { double x, y; } Point_t;
typedef float Matrix_t[3][10];

162 | Chapter 11: Declarations

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

In the scope of these declarations, UINT is synonymous with unsigned int, and
Point_t is synonymous with the structure type struct Point. You can use the
typedef names in declarations, as the following examples show:

UINT ui = 10, *uiPtr = &ui;

The variable ui has the type unsigned int, and uiPtr is a pointer to unsigned int.

UINT_FUNC *funcPtr;

The pointer funcPtr can refer to a function whose return value has the type
unsigned int. The function’s parameters are not specified.

Matrix_t *func(float *);

The function func() has one parameter, whose type is pointer to float, and
returns a pointer to the type Matrix_t.

Example 11-1 uses the typedef name of one structure type, Point_t, in the typedef
definition of a second structure type.

Ordinarily, you would use a header file to hold the definitions of any typedef
names that you need to use in multiple source files. However, you must make an
exception in the case of typedef declarations for types that contain a variable-
length array. Variable-length arrays can only be declared within a block, and the
actual length of the array is calculated anew each time the flow of program execu-
tion reaches the typedef declaration. An example:

int func(int size)
{
typedef float VLA[size]; // A typedef name for the type "array of float

 // whose length is (the value of size)."
 size *= 2;
 VLA temp; // An array of float whose length is the value
 // that size had in the typedef declaration.
 /* ... */
}

The length of the array temp in this example depends on the value that size had
when the typedef declaration was reached, not the value that size has when the
array definition is reached.

One advantage of typedef declarations is that they help to make programs more
easily portable. Types that are necessarily different on different system architec-
tures, for example, can be called by uniform typedef names. typedef names are
also helpful in writing human-readable code. As an example, consider the proto-
type of the standard library function qsort():

void qsort(void *base, size_t count, size_t size,
 int (*compare)(const void *, const void *));

Example 11-1. typedef declarations

typedef struct Point { double x, y; } Point_t;
typedef struct { Point_t top_left; Point_t bottom_right; } Rectangle_t;

Linkage of Identifiers | 163

D
eclaratio

n
s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

We can make this prototype much more readable by using a typedef name for the
comparison function’s type:

typedef int CmpFn(const void *, const void *);
void qsort(void *base, size_t count, size_t size, CmpFn *compare);

Linkage of Identifiers
An identifier that is declared in several translation units, or several times in the
same translation unit, may refer to the same object or function in each instance.
The extent of an identifier’s identity in and among translation units is determined
by the identifier’s linkage. The term reflects the fact that identifiers in separate
source files need to be linked if they are to refer to a common object.

Identifiers in C have either external, internal, or no linkage. The linkage is deter-
mined by the declaration’s position and storage class specifier, if any. Only object
and function identifiers can have external or internal linkage.

External Linkage

An identifier with external linkage represents the same function or object
throughout the program. The compiler presents such identifiers to the linker,
which resolves them with other occurrences in other translation units and
libraries.

Function and object identifiers declared with the storage class specifier extern
have external linkage, with one exception: if an identifier has already been
declared with internal linkage, a second declaration within the scope of the first
cannot change the identifier’s linkage to external.

The compiler treats function declarations without a storage class specifier as if
they included the specifier extern. Similarly, any object identifiers that you declare
outside all functions and without a storage class specifier have external linkage.

Internal Linkage

An identifier with internal linkage represents the same object or function within a
given translation unit. The identifier is not presented to the linker. As a result, you
cannot use the identifier in another translation unit to refer to the same object or
function.

A function or object identifier has internal linkage if it is declared outside all func-
tions and with the storage class specifier static.

Identifiers with internal linkage do not conflict with similar identifiers in other
translation units. However, if a given identifier is declared with external linkage in
any translation unit, you cannot declare the same identifier with internal linkage
in that translation unit. Or to put it another way, if you declare an identifier with
internal linkage in a given translation unit, you cannot also declare and use an
external identifier defined in another translation unit with the same spelling.

164 | Chapter 11: Declarations

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

No Linkage

All identifiers that have neither external nor internal linkage have no linkage. Each
declaration of such an identifier therefore introduces a new entity. Identifiers with
no linkage include the following:

• Identifiers that are not names of variables or functions, such as label names,
structure tags, and typedef names

• Function parameters

• Object identifiers that are declared within a function and without the storage
class specifier extern

A few examples:

int func1(void); // func1 has external linkage.
int a; // a has external linkage.
extern int b = 1; // b has external linkage.
static int c; // c has internal linkage.

static void func2(int d) // func2 has internal linkage; d has no
 // linkage.
{
 extern int a; // This a is the same as that above, with
 // external linkage.
 int b = 2; // This b has no linkage, and hides the
 // external b declared above.
 extern int c; // This c is the same as that above, and
 // retains internal linkage.
 static int e; // e has no linkage.
 /* ... */
}

As this example illustrates, an identifier with external or internal linkage is not
always visible. The identifier b with no linkage, declared in the function func2(),
hides the identifier b with external linkage until the end of the function block (see
“Identifier Scope” in Chapter 1).

Storage Duration of Objects
During the execution of the program, each object exists as a location in memory
for a certain period, called its lifetime. There is no way to access an object before
or after its lifetime. For example, the value of a pointer becomes invalid when the
object that it references reaches the end of its lifetime.

In C, the lifetime of an object is determined by its storage duration. Objects in C
have one of three kinds of storage duration: static, automatic, or allocated. C does
not specify how objects must actually be stored in any particular system architec-
ture, but typically, objects with static storage duration are located in a data
segment of the program in memory, while objects with automatic storage dura-
tion are located on the stack. Allocated storage is memory that the program
obtains at runtime by calling the malloc(), calloc(), and realloc() functions.
Dynamic storage allocation is described in Chapter 12.

Initialization | 165

D
eclaratio

n
s

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Static Storage Duration

Objects that are defined outside all functions, or within a function and with the
storage class specifier static, have static storage duration. These include all
objects whose identifiers have internal or external linkage.

All objects with static storage duration are generated and initialized before execu-
tion of the program begins. Their lifetime spans the program’s entire runtime.

Automatic Storage Duration

Objects defined within a function and with no storage class specifier (or with the
unnecessary specifier auto) have automatic storage duration. Function parameters
also have automatic storage duration. Objects with automatic storage duration are
generally called automatic variables for short.

The lifetime of an automatic object is delimited by the braces ({}) that begin and
end the block in which the object is defined. Variable-length arrays are an excep-
tion: their lifetime begins at the point of declaration, and ends with the identifier’s
scope—that is, at the end of the block containing the declaration, or when a jump
occurs to a point before the declaration.

Each time the flow of program execution enters a block, new instances of any auto-
matic objects defined in the block are generated (and initialized, if the declaration
includes an initializer). This fact is important in recursive functions, for example.

Initialization
You can explicitly specify an object’s initial value by including an initializer in its
definition. An object defined without an initializer either has an undetermined
initial value, or is implicitly initialized by the compiler.

Implicit Initialization

Objects with automatic storage duration have an undetermined initial value if
their definition does not include an initializer. Function parameters, which also
have automatic storage duration, are initialized with the argument values when
the function call occurs. All other objects have static storage duration, and are
implicitly initialized with the default value 0, unless their definition includes an
explicit initializer. Or, to put it more exactly:

1. Objects with an arithmetic type have the default initial value 0.

2. The default initial value of pointer objects is a null pointer (see “Initializing
Pointers” in Chapter 9).

The compiler applies these rules recursively in initializing array elements, struc-
ture members, and the first members of unions.

Explicit Initialization

An initializer in an object definition specifies the object’s initial value explicitly.
The initializer is appended to the declarator for the object’s identifier with an

166 | Chapter 11: Declarations

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

equals sign (=). The initializer can be either a single expression or a list of initial-
izer expressions enclosed in braces.

For objects with a scalar type, the initializer is a single expression:

#include <string.h> // Prototypes of string functions.
double var = 77, *dPtr = &var;
int (*funcPtr)(const char*, const char*) = strcmp;

The initializers here are 77 for the variable var, and &var for the pointer dPtr. The
function pointer funcPtr is initialized with the address of the standard library
function strcmp().

As in an assignment operation, the initializer must be an expression that can be
implicitly converted to the object’s type. Thus in the previous example, the
constant value 77, with type int, is implicitly converted to the type double.

Objects with an array, structure or union type are initialized with a comma-sepa-
rated list containing initializers for their individual elements or members:

short a[4] = { 1, 2, 2*2, 2*2*2 };
Rectangle_t rect1 = { { -1, 1 }, { 1, -1 } };

The type Rectangle_t used here is the typedef name of the structure we defined in
Example 11-1, whose members are structures with the type Point_t.

The initializers for objects with static storage duration must be constant expres-
sions, as in the previous examples. Automatic objects are not subject to this
restriction. You can also initialize an automatic structure or union object with an
existing object of the same type:

#include <string.h> // Prototypes of string functions.
/* ... */
void func(const char *str)
{
 size_t len = strlen(str); // Call a function to initialize len.
 Rectangle_t rect2 = rect1; // Refers to rect1 from the previous
 // example.
 /* ... */
}

More details on initializing arrays, structures and unions, including the initialization
of strings and the use of element designators, are presented in “Initializing Arrays” in
Chapter 8, and in “Initializing Structures” and “Initializing Unions” in Chapter 10.

Objects declared with the type qualifier const ordinarily must have an initializer,
as you can’t assign them the desired value later. However, a declaration that is not
a definition, such as the declaration of an external identifier, must not include an
initializer. Furthermore, you cannot initialize a variable-length array.

void func(void)
{
 extern int n; // Declaration of n, not a definition.
 char buf[n]; // buf is a variable-length array.
 /* ... */
}

The declarations of the objects n and buf cannot include initializers.

167

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Chapter 12Memory Management

12
Dynamic Memory Management

When you’re writing a program, you often don’t know how much data it will
have to process; or you can anticipate that the amount of data to process will vary
widely. In these cases, efficient resource use demands that you allocate memory
only as you actually need it at runtime, and release it again as soon as possible.
This is the principle of dynamic memory management, which also has the advan-
tage that a program doesn’t need to be rewritten in order to process larger
amounts of data on a system with more available memory.

This chapter describes dynamic memory management in C, and demonstrates the
most important functions involved using a general-purpose binary tree implemen-
tation as an example.

The standard library provides the following four functions for dynamic memory
management:

malloc(), calloc()
Allocate a new block of memory.

realloc()
Resize an allocated memory block.

free()
Release allocated memory.

All of these functions are declared in the header file stdlib.h. The size of an object in
memory is specified as a number of bytes. Various header files, including stdlib.h,
define the type size_t specifically to hold information of this kind. The sizeof
operator, for example, yields a number of bytes with the type size_t.

168 | Chapter 12: Dynamic Memory Management

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Allocating Memory Dynamically
The two functions for allocating memory, malloc() and calloc(), have slightly
different parameters:

void *malloc(size_t size);
The malloc() function reserves a contiguous memory block whose size in
bytes is at least size. When a program obtains a memory block through
malloc(), its contents are undetermined.

void *calloc(size_t count, size_t size);
The calloc() function reserves a block of memory whose size in bytes is at
least count × size. In other words, the block is large enough to hold an array
of count elements, each of which takes up size bytes. Furthermore, calloc()
initializes every byte of the memory with the value 0.

Both functions return a pointer to void, also called a typeless pointer. The
pointer’s value is the address of the first byte in the memory block allocated, or a
null pointer if the memory requested is not available.

When a program assigns the void pointer to a pointer variable of a different type,
the compiler implicitly performs the appropriate type conversion. Some program-
mers prefer to use an explicit type conversion, however.* When you access
locations in the allocated memory block, the type of the pointer you use deter-
mines how the contents of the location are interpreted. Some examples:

#include <stdlib.h> // Provides function prototypes.
typedef struct { long key;
 /* ... more members ... */
 } Record; // A structure type.

float *myFunc(size_t n)
{
 // Reserve storage for an object of type double.
 double *dPtr = malloc(sizeof(double));
 if (dPtr == NULL) // Insufficient memory.
 {
 /* ... Handle the error ... */
 return NULL;
 }
 else // Got the memory: use it.
 {
 *dPtr = 0.07;
 /* ... */
 }

 // Get storage for two objects of type Record.
 Record *rPtr;
 if ((rPtr = malloc(2 * sizeof(Record)) == NULL)
 {
 /* ... Handle the insufficient-memory error ... */
 return NULL;
 }

* Perhaps in part for historic reasons: in early C dialects, malloc() returned a pointer to char.

Characteristics of Allocated Memory | 169

M
em

o
ry

M
an

ag
em

en
t

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

 // Get storage for an array of n elements of type float.
 float *fPtr = malloc(n * sizeof(float));
 if (fPtr == NULL)
 {
 /* ... Handle the error ... */
 return NULL;
 }
 /* ... */
 return fPtr;
}

It is often useful to initialize every byte of the allocated memory block to zero,
which ensures that not only the members of a structure object have the default
value zero, but also any padding between the members. In such cases, the calloc()
function is preferable to malloc(). The size of the block to be allocated is expressed
differently with calloc(). We can rewrite the statements in the previous example
using the calloc() function as follows:

// Get storage for an object of type double.
double *dPtr = calloc(1, sizeof(double));

// Get storage for two objects of type Record.
Record *rPtr;
if ((rPtr = calloc(2, sizeof(Record)) == NULL)
{ /* ... Handle the insufficient-memory error ... */ }

// Get storage for an array of n elements of type float.
float *fPtr = calloc(n, sizeof(float));

Characteristics of Allocated Memory
A successful memory allocation call yields a pointer to the beginning of a memory
block. “The beginning” means that the pointer’s value is equal to the lowest byte
address in the block. The allocated block is aligned so that any type of object can
be stored at that address.

An allocated memory block stays reserved for your program until you explicitly
release it by calling free() or realloc(). In other words, the storage duration of
the block extends from its allocation to its release, or to end of the program.

The arrangement of memory blocks allocated by successive calls to malloc(),
calloc(), and/or realloc() is unspecified.

It is also unspecified whether a request for a block of size zero results in a null pointer
or an ordinary pointer value. In any case, however, there is no way to use a pointer to
a block of zero bytes, except perhaps as an argument to realloc() or free().

170 | Chapter 12: Dynamic Memory Management

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Resizing and Releasing Memory
When you no longer need a dynamically allocated memory block, you should give
it back to the operating system. You can do this by calling the function free().
Alternatively, you can increase or decrease the size of an allocated memory block
by calling the function realloc(). The prototypes of these functions are as
follows:

void free(void *ptr);
The free() function releases the dynamically allocated memory block that
begins at the address in ptr. A null pointer value for the ptr argument is
permitted, and such a call has no effect.

void *realloc(void *ptr, size_t size);
The realloc() function releases the memory block addressed by ptr and allo-
cates a new block of size bytes, returning its address. The new block may
start at the same address as the old one.

realloc() also preserves the contents of the original memory block—up to
the size of whichever block is smaller. If the new block doesn’t begin where
the original one did, then realloc() copies the contents to the new memory
block. If the new memory block is larger than the original, then the values of
the additional bytes are unspecified.

It is permissible to pass a null pointer to realloc() as the argument ptr. If
you do, then realloc() behaves similarly to malloc(), and reserves a new
memory block of the specified size.

The realloc() function returns a null pointer if it is unable to allocate a
memory block of the size requested. In this case, it does not release the orig-
inal memory block or alter its contents.

The pointer argument that you pass to either of the functions free() and
realloc()—if it is not a null pointer—must be the starting address of a dynami-
cally allocated memory block that has not yet been freed. In other words, you may
pass these functions only a null pointer or a pointer value obtained from a prior
call to malloc(), calloc(), or realloc(). If the pointer argument passed to free()
or realloc() has any other value, or if you try to free a memory block that has
already been freed, the program’s behavior is undefined.

The memory management functions keep internal records of the size of each allo-
cated memory block. This is why the functions free() and realloc() require only
the starting address of the block to be released, and not its size. There is no way to
test whether a call to the free() function is successful, because it has no return
value.

The function getline() in Example 12-1 is another variant of the function defined
with the same name in Example 9-4. It reads a line of text from standard input
and stores it in a dynamically allocated buffer. The maximum length of the line to
be stored is one of the function’s parameters. The function releases any memory it
doesn’t need. The return value is a pointer to the line read.

An All-Purpose Binary Tree | 171

M
em

o
ry

M
an

ag
em

en
t

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The following code shows how you might call the getline() function:

char *line;
if ((line = getline(128)) != NULL) // If we can read a line,
{
 /* ... */ // process the line,
 free(line); // then release the buffer.
}

An All-Purpose Binary Tree
Dynamic memory management is fundamental to the implementation of dynamic
data structures such as linked lists and trees. In Chapter 10 we presented a simple
linked list (see Figure 10-1). The advantage of linked lists over arrays is that new
elements can be inserted and existing members removed quickly. However, they
also have the drawback that you have to search through the list in sequential
order to find a specific item.

A binary search tree (BST), on the other hand, makes linked data elements more
quickly accessible. The data items must have a key value that can be used to

Example 12-1. The getline() function

// Read a line of text from stdin into a dynamically allocated buffer.
// Replace the newline character with a string terminator.
//
// Arguments: The maximum line length to read.
// Return value: A pointer to the string read, or
// NULL if end-of-file was read or if an error occurred.

char *getline(unsigned int len_max)
{
 char *linePtr = malloc(len_max+1); // Reserve storage for "worst case."
 if (linePtr != NULL)
 {
 // Read a line of text and replace the newline characters with
 // a string terminator:
 int c = EOF;
 unsigned int i = 0;
 while (i < len_max && (c = getchar()) != '\n' && c != EOF)
 linePtr[i++] = (char)c;
 linePtr[i] = '\0';

 if (c == EOF && i == 0) // If end-of-file before any
 { // characters were read,
 free(linePtr); // release the whole buffer.
 linePtr = NULL;
 }
 else // Otherwise, release the unused portion.
 linePtr = realloc(linePtr, i+1); // i is the string length.
 }
 return linePtr;
}

172 | Chapter 12: Dynamic Memory Management

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

compare and sort them. A binary search tree combines the flexibility of a linked
list with the advantage of a sorted array, in which you can find a desired data item
using the binary search algorithm.

Characteristics
A binary tree consists of a number of nodes that contain the data to be stored (or
pointers to the data), and the following structural characteristics:

• Each node has up to two direct child nodes.

• There is exactly one node, called the root of the tree, that has no parent node.
All other nodes have exactly one parent.

• Nodes in a binary tree are placed according to this rule: the value of a node is
greater than or equal to the value of any descendant in its left branch, and
less than or equal to the value of any descendant in its right branch.

Figure 12-1 illustrates the structure of a binary tree.

A leaf is a node that has no children. Each node of the tree is also considered as
the root of a subtree, which consists of the node and all its descendants.

An important property of a binary tree is its height. The height is the length of the
longest path from the root to any leaf. A path is a succession of linked nodes that
form the connection between a given pair of nodes. The length of a path is the
number of nodes in the path, not counting the first node. It follows from these
definitions that a tree consisting only of its root node has a height of 0, and the
height of the tree in Figure 12-1 is 3.

Implementation
The example that follows is an implementation of the principal functions for a
binary search tree, and uses dynamic memory management. This tree is intended
to be usable for data of any kind. For this reason, the structure type of the nodes
includes a flexible member to store the data, and a member indicating the size of
the data:

typedef struct Node { struct Node *left, // Pointers to the left and
 *right; // right child nodes.
 size_t size; // Size of the data payload.
 char data[]; // The data itself.
 } Node_t;

Figure 12-1. A binary tree

7

4

10

15

14 18

11

Implementation | 173

M
em

o
ry

M
an

ag
em

en
t

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The pointers left and right are null pointers if the node has no left or right child.

As the user of our implementation, you must provide two auxiliary functions. The
first of these is a function to obtain a key that corresponds to the data value
passed to it, and the second compares two keys. The first function has the
following type:

typedef const void *GetKeyFunc_t(const void *dData);

The second function has a type like that of the comparison function used by the
standard function bsearch():

typedef int CmpFunc_t(const void *pKey1, const void *pKey2);

The arguments passed on calling the comparison function are pointers to the two
keys that you want to compare. The function’s return value is less than zero, if the
first key is less than the second; or equal to zero, if the two keys are equal; or
greater than zero, if the first key is greater than the second. The key may be the
same as the data itself. In this case, you need to provide only a comparison
function.

Next, we define a structure type to represent a tree. This structure has three
members: a pointer to the root of the tree; a pointer to the function to calculate a
key, with the type GetKeyFunc_t; and a pointer to the comparison function, with
the type CmpFunc_t.

typedef struct { struct Node *pRoot; // Pointer to the root.
 CmpFunc_t *cmp; // Compares two keys.
 GetKeyFunc_t *getKey; // Converts data into a key value.
 } BST_t;

The pointer pRoot is a null pointer while the tree is empty.

The elementary operations for a binary search tree are performed by functions
that insert, find, and delete nodes, and functions to traverse the tree in various
ways, performing a programmer-specified operation on each element if desired.

The prototypes of these functions, and the typedef declarations of GetKeyFunc_t,
CmpFunc_t, and BST_t, are placed in the header file BSTree.h. To use this binary
tree implementation, you must include this header file in the program’s source
code.

The function prototypes in BSTree.h are:

BST_t *newBST(CmpFunc_t *cmp, GetKeyFunc_t *getKey);
This function dynamically generates a new object with the type BST_t, and
returns a pointer to it.

_Bool BST_insert(BST_t *pBST, const void *pData, size_t size);
BST_insert() dynamically generates a new node, copies the data referenced
by pData to the node, and inserts the node in the specified tree.

const void *BST_search(BST_t *pBST, const void *pKey);
The BST_search() function searches the tree and returns a pointer to the data
item that matches the key referenced by the pKey argument.

174 | Chapter 12: Dynamic Memory Management

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

_Bool BST_erase(BST_t *pBST, const void *pKey);
This function deletes the first node whose data contents match the key refer-
enced by pKey.

void BST_clear(BST_t *pBST);
BST_clear() deletes all nodes in the tree, leaving the tree empty.

int BST_inorder(BST_t *pBST, _Bool (*action)(void *pData));

int BST_rev_inorder(BST_t *pBST, _Bool (*action)(void *pData));

int BST_preorder(BST_t *pBST, _Bool (*action)(void *pData));

int BST_postorder(BST_t *pBST, _Bool (*action)(void *pData));
Each of these functions traverses the tree in a certain order, and calls the
function referenced by action to manipulate the data contents of each node.
If the action modifies the node’s data, then at least the key value must remain
unchanged to preserve the tree’s sorting order.

The function definitions, along with some recursive helper functions, are placed in
the source file BSTree.c. The helper functions are declared with the static speci-
fier, because they are for internal use only, and not part of the search tree’s
“public” interface. The file BSTree.c also contains the definition of the nodes’
structure type. You as the programmer do not need to deal with the contents of
this file, and may be content to use a binary object file compiled for the given
system, adding it to the command line when linking the program.

Generating an Empty Tree

When you create a new binary search tree, you specify how a comparison between
two data items is performed. For this purpose, the newBST() function takes as its
arguments a pointer to a function that compares two keys, and a pointer to a
function that calculates a key from an actual data item. The second argument can
be a null pointer if the data itself serves as the key for comparison. The return
value is a pointer to a new object with the type BST_t.

const void *defaultGetKey(const void *pData) { return pData; }

BST_t *newBST(CmpFunc_t *cmp, GetKeyFunc_t *getKey)
{
 BST_t *pBST = NULL;
 if (cmp != NULL)
 pBST = malloc(sizeof(BST_t));
 if (pBST != NULL)
 {
 pBST->pRoot = NULL;
 pBST->cmp = cmp;
 pBST->getKey = (getKey != NULL) ? getKey : defaultGetKey;
 }
 return pBST;
}

The pointer to BST_t returned by newBST() is the first argument to all the other
binary-tree functions. This argument specifies the tree on which you want to
perform a given operation.

Implementation | 175

M
em

o
ry

M
an

ag
em

en
t

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Inserting New Data

To copy a data item to a new leaf node in the tree, pass the data to the BST_insert()
function. The function inserts the new leaf at a position that is consistent with the
binary tree’s sorting condition. The recursive algorithm involved is simple: if the
current subtree is empty—that is, if the pointer to its root node is a null pointer—
then insert the new node as the root by making the parent point to it. If the subtree
is not empty, continue with the left subtree if the new data is less than the current
node’s data; otherwise, continue with the right subtree. The recursive helper func-
tion insert() applies this algorithm.

The insert() function takes an additional argument, which is a pointer to a pointer
to the root node of a subtree. Because this argument is a pointer to a pointer, the
function can modify it in order to link a new node to its parent. BST_insert()
returns true if it succeeds in inserting the new data; otherwise, false.

static _Bool insert(BST_t *pBST, Node_t **ppNode, const void *pData,
 size_t size);

_Bool BST_insert(BST_t *pBST, const void *pData, size_t size)
{
 if (pBST == NULL || pData == NULL || size == 0)
 return false;
 return insert(pBST, &(pBST->pRoot), pData, size);
}

static _Bool insert(BST_t *pBST, Node_t **ppNode, const void *pData,
 size_t size)
{
 Node_t *pNode = *ppNode; // Pointer to the root node of the subtree
 // to insert the new node in.
 if (pNode == NULL)
 { // There's a place for a new leaf here.
 pNode = malloc(sizeof(Node_t) + size);
 if (pNode != NULL)
 {
 pNode->left = pNode->right = NULL; // Initialize the new node's
 // members.
 memcpy(pNode->data, pData, size);
 *ppNode = pNode; // Insert the new node.
 return true;
 }
 else
 return false;
 }
 else // Continue looking for a place ...
 {
 const void *key1 = pBST->getKey(pData),
 *key2 = pBST->getKey(pNode->data);
 if (pBST->cmp(key1, key2) < 0) // ... in the left subtree,
 return insert(pBST, &(pNode->left), pData, size);
 else // or in the right subtree.
 return insert(pBST, &(pNode->right), pData, size);
 }
}

176 | Chapter 12: Dynamic Memory Management

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Finding Data in the Tree

The function BST_search() uses the binary search algorithm to find a data item
that matches a given key. If a given node’s data does not match the key, the search
continues in the node’s left subtree if the key is less than that of the node’s data,
or in the right subtree if the key is greater. The return value is a pointer to the data
item from the first node that matches the key, or a null pointer if no match was
found.

The search operation uses the recursive helper function search(). Like insert(),
search() takes as its second parameter a pointer to the root node of the subtree to
be searched.

static const void *search(BST_t *pBST, const Node_t *pNode,
 const void *pKey);

const void *BST_search(BST_t *pBST, const void *pKey)
{
 if (pBST == NULL || pKey == NULL) return NULL;
 return search(pBST, pBST->pRoot, pKey); // Start at the root of the
 // tree.
}

static const void *search(BST_t *pBST, const Node_t *pNode,
 const void *pKey)
{
 if (pNode == NULL)
 return NULL; // No subtree to search;
 // no match found.
 else
 { // Compare data:
 int cmp_res = pBST->cmp(pKey, pBST->getKey(pNode->data));

 if (cmp_res == 0) // Found a match.
 return pNode->data;
 else if (cmp_res < 0) // Continue the search
 return search(pBST, pNode->left, pKey); // in the left subtree,
 else
 return search(pBST, pNode->right, pKey); // or in the right
 // subtree.
 }
}

Removing Data from the Tree

The BST_erase() function searches for a node that matches the specified key, and
deletes it if found. Deleting means removing the node from the tree structure and
releasing the memory it occupies. The function returns false if it fails to find a
matching node to delete, or true if successful.

The actual searching and deleting is performed by means of the recursive helper
function erase(). The node needs to be removed from the tree in such a way that
the tree’s sorting condition is not violated. A node that has no more than one
child can be removed simply by linking its child, if any, to its parent. If the node

Implementation | 177

M
em

o
ry

M
an

ag
em

en
t

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

to be removed has two children, though, the operation is more complicated: you
have to replace the node you are removing with the node from the right subtree
that has the smallest data value. This is never a node with two children. For
example, to remove the root node from the tree in Figure 12-1, we would replace
it with the node that has the value 11. This removal algorithm is not the only
possible one, but it has the advantage of not increasing the tree’s height.

The recursive helper function detachMin() plucks the minimum node from a spec-
ified subtree, and returns a pointer to the node:

static Node_t *detachMin(Node_t **ppNode)
{
 Node_t *pNode = *ppNode; // A pointer to the current node.
 if (pNode == NULL)
 return NULL; // pNode is an empty subtree.
 else if (pNode->left != NULL)
 return detachMin(&(pNode->left)); // The minimum is in the left
 // subtree.
 else
 { // pNode points to the minimum node.
 *ppNode = pNode->right; // Attach the right child to the parent.
 return pNode;
 }
}

Now we can use this function in the definition of erase() and BST_erase():

static _Bool erase(BST_t *pBST, Node_t **ppNode, const void *pKey);

_Bool BST_erase(BST_t *pBST, const void *pKey)
{
 if (pBST == NULL || pKey == NULL) return false;
 return erase(pBST, &(pBST->pRoot), pKey); // Start at the root of
 // the tree.
}

static _Bool erase(BST_t *pBST, Node_t **ppNode, const void *pKey)
{
 Node_t *pNode = *ppNode; // Pointer to the current node.
 if (pNode == NULL)
 return false; // No match found.

 // Compare data:
 int cmp_res = pBST->cmp(pKey, pBST->getKey(pNode->data));

 if (cmp_res < 0) // Continue the search
 return erase(pBST, &(pNode->left), pKey); // in the left subtree,
 else if (cmp_res > 0)
 return erase(pBST, &(pNode->right), pKey); // or in the right
 // subtree.
 else
 { // Found the node to be deleted.
 if (pNode->left == NULL) // If no more than one child,
 *ppNode = pNode->right; // attach the child to the parent.
 else if (pNode->right == NULL)
 *ppNode = pNode->left;

178 | Chapter 12: Dynamic Memory Management

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

 else // Two children: replace the node with
 { // the minimum from the right subtree.
 Node_t *pMin = detachMin(&(pNode->right));
 *ppNode = pMin; // Graft it onto the deleted node's parent.
 pMin->left = pNode->left; // Graft the deleted node's children.
 pMin->right = pNode->right;
 }
 free(pNode); // Release the deleted node's storage.
 return true;
 }
}

A function in Example 12-2, BST_clear(), deletes all the nodes of a tree. The
recursive helper function clear() deletes first the descendants of the node refer-
enced by its argument, then the node itself.

Traversing a Tree

There are several recursive schemes for traversing a binary tree. They are often
designated by abbreviations in which L stands for a given node’s left subtree, R for
its right subtree, and N for the node itself:

In-order or LNR traversal
First traverse the node’s left subtree, then visit the node itself, then traverse
the right subtree.

Pre-order or NLR traversal
First visit the node itself, then traverse its left subtree, then its right subtree.

Post-order or LRN traversal
First traverse the node’s left subtree, then the right subtree, then visit the
node itself.

Example 12-2. The BST_clear() and clear() functions

static void clear(Node_t *pNode);

void BST_clear(BST_t *pBST)
{
 if (pBST != NULL)
 {
 clear(pBST->pRoot);
 pBST->pRoot = NULL;
 }
}

static void clear(Node_t *pNode)
{
 if (pNode != NULL)
 {
 clear(pNode->left);
 clear(pNode->right);
 free(pNode);
 }
}

Implementation | 179

M
em

o
ry

M
an

ag
em

en
t

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

An in-order traversal visits all the nodes in their sorting order, from least to
greatest. If you print each node’s data as you visit it, the output appears sorted.

It’s not always advantageous to process the data items in their sorting order,
though. For example, if you want to store the data items in a file and later insert
them in a new tree as you read them from the file, you might prefer to traverse the
tree in pre-order. Then reading each data item in the file and inserting it will
reproduce the original tree structure. And the clear() function in Example 12-2
uses a post-order traversal to avoid destroying any node before its children.

Each of the traversal functions takes as its second argument a pointer to an
“action” function that it calls for each node visited. The action function takes as
its argument a pointer to the current node’s data, and returns true to indicate
success and false on failure. This functioning enables the tree-traversal functions
to return the number of times the action was performed successfully.

The following example contains the definition of the BST_inorder() function, and
its recursive helper function inorder(). The other traversal functions are similar.

static int inorder(Node_t *pNode, _Bool (*action)(void *pData));

int BST_inorder(BST_t *pBST, _Bool (*action)(void *pData))
{
 if (pBST == NULL || action == NULL)
 return 0;
 else
 return inorder(pBST->pRoot, action);
}

static int inorder(Node_t *pNode, _Bool (*action)(void *pData))
{
 int count = 0;
 if (pNode == NULL)
 return 0;

 count = inorder(pNode->left, action); // L: Traverse the left
 // subtree.
 if (action(pNode->data)) // N: Visit the current node
 ++count; // itself.
 count += inorder(pNode-> right, action); // R: Traverse the right
 // subtree.
 return count;
}

A Sample Application

To illustrate one use of a binary search tree, the filter program in Example 12-3,
sortlines, presents a simple variant of the Unix utility sort. It reads text line by line
from the standard input stream, and prints the lines in sorted order to standard
output. A typical command line to invoke the program might be:

sortlines < demo.txt

This command prints the contents of the file demo.txt to the console.

180 | Chapter 12: Dynamic Memory Management

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The loop that reads input lines breaks prematurely if a read error occurs, or if
there is insufficient memory to insert a new node in the tree. In such cases, the
program exits with an error message.

An in-order traversal visits every node of the tree in sorted order. The return
value of BST_inorder() is the number of lines successfully printed. sortlines prints
the error and success information to the standard error stream, so that it is sepa-
rate from the actual data output. Redirecting standard output to a file or a pipe
affects the sorted text, but not these messages.

Example 12-3. The sortlines program

// This program reads each line of text into a node of a binary tree,
// then prints the text in sorted order.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "BSTree.h" // Prototypes of the BST functions.

#define LEN_MAX 1000 // Maximum length of a line.
char buffer[LEN_MAX];

// Action to perform for each line:
_Bool printStr(void *str) { return printf("%s", str) >= 0; }

int main()
{
 BST_t *pStrTree = newBST((CmpFunc_t*)strcmp, NULL);
 int n;

 while (fgets(buffer, LEN_MAX, stdin) != NULL) // Read each line.
 {
 size_t len = strlen(buffer); // Length incl. newline
 // character.
 if (!BST_insert(pStrTree, buffer, len+1)) // Insert the line in the
 break; // tree.
 }
 if (!feof(stdin))
 { // If unable to read the
 // entire text:
 fprintf(stderr, "sortlines: "
 "Error reading or storing text input.\n");
 exit(EXIT_FAILURE);
 }
 n = BST_inorder(pStrTree, printStr); // Print each line, in
 // sorted order.
 fprintf(stderr, "\nsortlines: Printed %d lines.\n", n);

 BST_clear(pStrTree); // Discard all nodes.
 return 0;
}

Implementation | 181

M
em

o
ry

M
an

ag
em

en
t

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The BST_clear() function call is technically superfluous, as all of the program’s
dynamically allocated memory is automatically released when the program exits.

The binary search tree presented in this chapter can be used for any kind of data.
Most applications require the BST_search() and BST_erase() functions in addi-
tion to those used in Example 12-3. Furthermore, more complex programs will no
doubt require functions not presented here, such as one to keep the tree’s left and
right branches balanced.

182

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Chapter 13Input and Output

13
Input and Output

Programs must be able to write data to files or to physical output devices such as
displays or printers, and to read in data from files or input devices such as a
keyboard. The C standard library provides numerous functions for these
purposes. This chapter presents a survey of the part of the standard library that is
devoted to input and output, often referred to as the I/O library. Further details
on the individual functions can be found in Part II. Apart from these library func-
tions, the C language itself contains no input or output support at all.

All of the basic functions, macros, and types for input and output are declared in
the header file stdio.h. The corresponding declarations for wide character input
and output functions—that is, for input and output of characters with the type
wchar_t—are contained in the header file wchar.h.

Streams
From the point of view of a C program, all kinds of files and devices for input and
output are uniformly represented as logical data streams, regardless of whether the
program reads or writes a character or byte at a time, or text lines, or data blocks
of a given size. Streams in C can be either text or binary streams, although on
some systems even this difference is nil. Opening a file by means of the function
fopen() (or tmpfile()) creates a new stream, which then exists until closed by the
fclose() function. C leaves file management up to the execution environment—
in other words, the system on which the program runs. Thus a stream is a channel
by which data can flow from the execution environment to the program, or from
the program to its environment. Devices, such as consoles, are addressed in the
same way as files.

Files | 183

In
p

u
t

an
d

O
u

tp
u

t

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Text Streams

A text stream transports the characters of a text that is divided into lines. A line of
text consists of a sequence of characters ending in a newline character. A line of
text can also be empty, meaning that it consists of a newline character only. The
last line transported may or may not have to end with a newline character,
depending on the implementation.

The internal representation of text in a C program is the same regardless of the
system on which the program is running. Thus text input and output on a given
system may involve removing, adding, or altering certain characters. For example,
on systems that are not Unix-based, end-of-line indicators ordinarily have to be
converted into newline characters when reading text files, as on Windows systems
for instance, where the end-of-line indicator is a sequence of two control charac-
ters, \r (carriage return) and \n (newline). Similarly, the control character ^Z
(character code 26) in a text stream on Windows indicates the end of the stream.

As the programmer, you generally do not have to worry about the necessary adap-
tations, because they are performed automatically by the I/O functions in the
standard library. However, if you want to be sure that an input function call yields
exactly the same text that was written by a previous output function call, your
text should contain only the newline and horizontal tab control characters, in
addition to printable characters. Furthermore, the last line should end with a
newline character, and no line should end with a space immediately before the
newline character.

Binary Streams

A binary stream is a sequence of bytes that are transmitted without modification.
In other words, the I/O functions do not involve any interpretation of control
characters when operating on binary streams. Data written to a file through a
binary stream can always be read back unchanged on the same system. However,
in certain implementations there may be additional zero-valued bytes appended at
the end of the stream.

Binary streams are normally used to write binary data—for example, database
records—without converting it to text. If a program reads the contents of a text
file through a binary stream, then the text appears in the program in its stored
form, with all the control characters used on the given system.

On common Unix systems, there is no difference between text
streams and binary streams.

Files
A file represents a sequence of bytes. The fopen() function associates a file with a
stream and initializes an object of the type FILE, which contains all the informa-
tion necessary to control the stream. Such information includes a pointer to the

184 | Chapter 13: Input and Output

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

buffer used; a file position indicator, which specifies a position to access in the
file; and flags to indicate error and end-of-file conditions.

Each of the functions that open files—namely fopen(), freopen(), and tmpfile()—
returns a pointer to a FILE object for the stream associated with the file being
opened. Once you have opened a file, you can call functions to transfer data and to
manipulate the stream. Such functions have a pointer to a FILE object—commonly
called a FILE pointer—as one of their arguments. The FILE pointer specifies the
stream on which the operation is carried out.

The I/O library also contains functions that operate on the file system, and take
the name of a file as one of their parameters. These functions do not require the
file to be opened first. They include the following:

• The remove() function deletes a file (or an empty directory). The string argu-
ment is the file’s name. If the file has more than one name, then remove()
only deletes the specified name, not the file itself. The data may remain acces-
sible in some other way, but not under the deleted filename.

• The rename() function changes the name of a file (or directory). The func-
tion’s two string arguments are the old and new names, in that order. The
remove() and rename() functions both have the return type int, and return
zero on success, or a non-zero value on failure. The following statement
changes the name of the file songs.dat to mysongs.dat:

if (rename("songs.dat", "mysongs.dat") != 0)
 fprintf(stderr, "Error renaming \"songs.dat\".\n");

Conditions that can cause the rename() function to fail include the following: no
file exists with the old name; the program does not have the necessary access priv-
ileges; or the file is open. The rules for forming permissible filenames depend on
the implementation.

File Position

Like the elements of a char array, each character in an ordinary file has a definite
position in the file. The file position indicator in the object representing the stream
determines the position of the next character to be read or written.

When you open a file for reading or writing, the file position indicator points to
the beginning of the file, so that the next character accessed has the position 0. If
you open the file in “append” mode, the file position indicator may point to the
end of the file. Each read or write operation increases the indicator by the number
of characters read from the file or written to the file. This behavior makes it simple
to process the contents of a file sequentially. Random access within the file is
achieved by using functions that change the file position indicator, fseek(),
fsetpos(), and rewind(), which are discussed in detail in “Random File Access,”
later in this chapter.

Of course, not all files support changing access positions. Sequential I/O devices
such as terminals and printers do not, for example.

Files | 185

In
p

u
t

an
d

O
u

tp
u

t

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Buffers

In working with files, it is generally not efficient to read or write individual charac-
ters. For this reason, a stream has a buffer in which it collects characters, which
are transferred as a block to or from the file. Sometimes you don’t want buffering,
however. For example, after an error has occurred, you might want to write data
to a file as directly as possible.

Streams are buffered in one of three ways:

Fully buffered
The characters in the buffer are normally transferred only when the buffer is
full.

Line-buffered
The characters in the buffer are normally transferred only when a newline
character is written to the buffer, or when the buffer is full. A stream’s buffer
is also written to the file when the program requests input through an unbuf-
fered stream, or when an input request on a line-buffered stream causes
characters to be read from the host environment.

Unbuffered
Characters are transferred as promptly as possible.

You can also explicitly transfer the characters in the stream’s output buffer to the
associated file by calling the fflush() function. The buffer is also flushed when
you close a stream, and normal program termination flushes the buffers of all the
program’s streams.

When you open an ordinary file by calling fopen(), the new stream is fully buff-
ered. Opening interactive devices is different, however: such device files are
associated on opening with a line-buffered stream. After you have opened a file,
and before you perform the first input or output operation on it, you can change
the buffering mode using the setbuf() or setvbuf() function.

The Standard Streams

Three standard text streams are available to every C program on starting. These
streams do not have to be explicitly opened. Table 13-1 lists them by the names of
their respective FILE pointers.

stdin is usually associated with the keyboard, and stdout and stderr with the
console display. These associations can be modified by redirection. Redirection is
performed either by the program calling the freopen() function, or by the envi-
ronment in which the program is executed.

Table 13-1. The standard streams

FILE pointer Common name Buffering mode

stdin Standard input Line-buffered

stdout Standard output Line-buffered

stderr Standard error output Unbuffered

186 | Chapter 13: Input and Output

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Opening and Closing Files
To write to a new file or modify the contents of an existing file, you must first
open the file. When you open a file, you must specify an access mode indicating
whether you plan to read, to write, or some combination of the two. When you
have finished using a file, close it to release resources.

Opening a File

The standard library provides the function fopen() to open a file. For special
cases, the freopen() and tmpfile() functions also open files.

FILE *fopen(const char * restrict filename, const char * restrict mode);

This function opens the file whose name is specified by the string filename. The
filename may contain a directory part. The second argument, mode, is also a string,
and specifies the access mode. The possible access modes are described in the
next section. The fopen() function associates the file with a new stream.

FILE *freopen(const char * restrict filename, const char * restrict mode,
 FILE * restrict stream);

This function redirects a stream. Like fopen(), freopen() opens the specified file
in the specified mode. However, rather than creating a new stream, freopen()
associates the file with the existing stream specified by the third argument. The
file previously associated with that stream is closed. The most common use of
freopen() is to redirect the standard streams, stdin, stdout, and stderr.

FILE *tmpfile(void);

The tmpfile() function creates a new temporary file whose name is distinct from
all other existing files, and opens the file for binary writing and reading (as if the
mode string "wb+" were used in an fopen() call). If the program is terminated
normally, the file is automatically deleted.

All three file-opening functions return a pointer to the stream
opened if successful, or a null pointer to indicate failure.

Access Modes

The access mode specified by the second argument to fopen() or freopen() deter-
mines what input and output operations the new stream permits. The permissible
values of the mode string are restricted. The first character in the mode string is
always r for “read,” w for “write,” or a for “append,” and in the simplest case, the
string contains just that one character. However, the mode string may also
contain one or both of the characters + and b (in either order: +b has the same
effect as b+).

A plus sign (+) in the mode string means that both read and write operations are
permitted. However, a program must not alternate immediately between reading
and writing. After a write operation, you must call the fflush() function or a

Opening and Closing Files | 187

In
p

u
t

an
d

O
u

tp
u

t

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

positioning function (fseek(), fsetpos(), or rewind()) before performing a read
operation. After a read operation, you must call a positioning function before
performing a write operation.

A b in the mode string causes the file to be opened in binary mode—that is, the
new stream associated with the file is a binary stream. If there is no b in the mode
string, the new stream is a text stream.

If the mode string begins with r, the file must already exist in the file system. If the
mode string begins with w, then the file will be created if it does not already exist.
If it does exist, its previous contents will be lost, because the fopen() function
truncates it to zero length in “write” mode.

A mode string beginning with a (for append) also causes the file to be created if it
does not already exist. If the file does exist, however, its contents are preserved,
because all write operations are automatically performed at the end of the file.
Here is a brief example:

#include <stdio.h>
#include <stdbool.h>
_Bool isReadWriteable(const char *filename)
{
FILE *fp = fopen(filename, "r+"); // Open a file to read and write.

 if (fp != NULL) // Did fopen() succeed?
 {

fclose(fp); // Yes: close the file; no error handling.
 return true;
 }
 else // No.
 return false;
}

This example also illustrates how to close a file using the fclose() function.

Closing a File

To close a file, use the fclose() function. The prototype of this function is:

int fclose(FILE *fp);

The function flushes any data still pending in the buffer to the file, closes the file,
and releases any memory used for the stream’s input and output buffers. The
fclose() function returns zero on success, or EOF if an error occurs.

When the program exits, all open files are closed automatically. Nonetheless, you
should always close any file that you have finished processing. Otherwise, you risk
losing data in the case of an abnormal program termination. Furthermore, there is
a limit to the number of files that a program may have open at one time; the
number of allowed open files is greater than or equal to the value of the constant
FOPEN_MAX.

188 | Chapter 13: Input and Output

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Reading and Writing
This section describes the functions that actually retrieve data from or send data
to a stream. First, there is another detail to consider: an open stream can be used
either for byte characters or for wide characters.

Byte-Oriented and Wide-Oriented Streams

In addition to the type char, C also provides a type for wide characters, named
wchar_t. This type is wide enough to represent any character in the extended char-
acter sets that the implementation supports (see “Wide Characters and Multibyte
Characters” in Chapter 1). Accordingly, there are two complete sets of functions
for input and output of characters and strings: the byte-character I/O functions
and the wide-character I/O functions. Functions in the second set operate on char-
acters with the type wchar_t. Each stream has an orientation that determines
which set of functions is appropriate.

Immediately after you open a file, the orientation of the stream associated with it
is undetermined. If the first file access is performed by a byte-character I/O func-
tion, then from that point on the stream is byte-oriented. If the first access is by a
wide-character function, then the stream is wide-oriented. The orientation of the
standard streams, stdin, stdout, and stderr, is likewise undetermined when the
program starts.

You can call the function fwide() at any time to ascertain a stream’s orientation.
Before the first I/O operation, fwide() can also set a new stream’s orientation. To
change a stream’s orientation once it has been determined, you must first reopen
the stream by calling the freopen() function.

The wide characters written to a wide-oriented stream are stored in the file associ-
ated with the stream as multibyte characters. The read and write functions
implicitly perform the necessary conversion between wide characters of type
wchar_t and the multibyte character encoding. This conversion may be stateful. In
other words, the value of a given byte in the multibyte encoding may depend on
control characters that precede it, which alter the shift state or conversion state of
the character sequence. For this reason, each wide-oriented stream has an associ-
ated object with the type mbstate_t, which stores the current multibyte conversion
state. The functions fgetpos() and fsetpos(), which get and set the value of the
file position indicator, also save and restore the conversion state for the given file
position.

Error Handling

The I/O functions can use a number of mechanisms to indicate to the caller when
they incur errors, including return values, error and EOF flags in the FILE object,
and the global error variable errno. To read which mechanisms are used by a
given function, see the individual function descriptions in Chapter 17. This
section describes the I/O error-handling mechanisms in general.

Reading and Writing | 189

In
p

u
t

an
d

O
u

tp
u

t

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Return values and status flags

The I/O functions generally indicate any errors that occur by their return value. In
addition, they also set an error flag in the FILE object that controls the stream if an
error in reading or writing occurs. To query this flag, you can call the ferror()
function. An example:

(void)fputc('*', fp); // Write an asterisk to the stream fp.
if (ferror(fp))
 fprintf(stderr, "Error writing.\n");

Furthermore, read functions set the stream’s EOF flag on reaching the end of the
file. You can query this flag by calling the feof() function. A number of read
functions return the value of the macro EOF if you attempt to read beyond the last
character in the file. (Wide-character functions return the value WEOF.) A return
value of EOF or WEOF can also indicate an error, however. To distinguish between
the two cases, you must call ferror() or feof(), as the following example
illustrates:

int i, c;
char buffer[1024];
/* ... Open a file to read using the stream fp ... */
i = 0;
while (i < 1024 && // While there is space in the buffer
 (c = fgetc(fp)) != EOF) // ... and the stream can deliver
 buffer[i++] = (char)c; // characters.
if (i < 1024 && ! feof(fp))
 fprintf(stderr, "Error reading.\n");

The if statement in this example prints an error message if fgetc() returns EOF
and the EOF flag is not set.

The error variable errno

Several standard library functions support more specific error handling by setting
the global error variable errno to a value that indicates the kind of error that has
occurred. Stream handling functions that set errno include ftell(), fgetpos(),
and fsetpos(). Depending on the implementation, other functions may also set
the errno variable. errno is declared in the header errno.h with the type int (see
Chapter 15). errno.h also defines macros for the possible values of errno.

The perror() function prints a system-specific error message for the current value
of errno to the stderr stream.

long pos = ftell(fp); // Get the current file position.
if (pos < 0L) // ftell() returns –1L if an error occurs.
 perror("ftell()");

The perror() function prints its string argument followed by a colon, the error
message, and a newline character. The error message is the same as the string that
strerror() would return if called with the given value of errno as its argument. In
the previous example, the perror() function as implemented in the GCC
compiler prints the following output to indicate an invalid FILE pointer argument:

ftell(): Bad file descriptor

190 | Chapter 13: Input and Output

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The error variable errno is also set by functions that convert between wide charac-
ters and multibyte characters in reading from or writing to a wide-oriented
stream. Such conversions are performed internally by calls to the wcrtomb() and
mbrtowc() functions. When these functions are unable to supply a valid conver-
sion, they return the value of –1 cast to size_t, and set errno to the value of
EILSEQ (for “illegal sequence”).

Unformatted I/O

The standard library provides functions to read and write unformatted data in the
form of individual characters, strings, or blocks of any given size. This section
describes these functions, listing the prototypes of both the byte-character and the
wide-character functions. The type wint_t is an integer type capable of repre-
senting at least all the values in the range of wchar_t, and the additional value
WEOF. The macro WEOF has the type wint_t and a value that is distinct from all the
character codes in the extended character set.

Unlike EOF, the value of WEOF is not necessarily negative.

Reading characters

Use the following functions to read characters from a file:

int fgetc(FILE * fp);
int getc(FILE *fp);
int getchar(void);
wint_t fgetwc(FILE *fp);
wint_t getwc(FILE *fp);
wint_t getwchar(void);

The fgetc() function reads a character from the input stream referenced by fp.
The return value is the character read, or EOF if an error occurred. The macro
getc() has the same effect as the function fgetc(). The macro is commonly used
because it is faster than a function call. However, if the argument fp is an expres-
sion with side effects (see Chapter 5), then you should use the function instead,
because a macro may evaluate its argument more than once. The macro getchar()
reads a character from standard input. It is equivalent to getc(stdin).

fgetwc(), getwc(), and getwchar() are the corresponding functions and macros
for wide-oriented streams. These functions set the global variable errno to the
value EILSEQ if an error occurs in converting a multibyte character to a wide
character.

Putting a character back

Use one of the following functions to push a character back into the stream from
whence it came:

int ungetc(int c, FILE *fp);
wint_t ungetwc(wint_t c, FILE *fp);

Reading and Writing | 191

In
p

u
t

an
d

O
u

tp
u

t

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

ungetc() and ungetwc() push the last character read, c, back onto the input
stream referenced by fp. Subsequent read operations then read the characters put
back, in LIFO (last in, first out) order—that is, the last character put back is the
first one to be read. You can always put back at least one character, but repeated
attempts might or might not succeed. The functions return EOF (or WEOF) on
failure, or the character pushed onto the stream on success.

Writing characters

The following functions allow you to write individual characters to a stream:

int fputc(int c, FILE *fp);
int putc(int c, FILE *fp);
int putchar(int c);
wint_t fputwc(wchar_t wc, FILE *fp);
wint_t putwc(wchar_t wc, FILE *fp);
wint_t putwchar(wchar_t wc);

The function fputc() writes the character value of the argument c to the output
stream referenced by fp. The return value is the character written, or EOF if an
error occurred. The macro putc() has the same effect as the function fputc(). If
either of its arguments is an expression with side effects (see Chapter 5), then you
should use the function instead, because a macro might evaluate its arguments
more than once. The macro putchar() writes the specified character to the stan-
dard output stream.

fputwc(), putwc(), and putwchar() are the corresponding functions and macros
for wide-oriented streams. These functions set the global variable errno to the
value EILSEQ if an error occurs in converting the wide character to a multibyte
character.

The following example copies the contents of a file opened for reading, refer-
enced by fpIn, to a file opened for writing, referenced by fpOut. Both streams are
byte-oriented.

_Bool error = 0;
int c;
rewind(fpIn); // Set the file position indicator to the beginning
 // of the file, and clear the error and EOF flags.
while ((c = getc(fpIn)) != EOF) // Read one character at a time.
 if (putc(c, fpOut) == EOF) // Write each character to the output
 { // stream.
 error = 1; break; // A write error.
 }
if (ferror(fpIn)) // A read error.
 error = 1;

Reading strings

The following functions allow you to read a string from a stream:

char *fgets(char *buf, int n, FILE *fp);
char *gets(char *buf);
wchar_t *fgetws(wchar_t *buf, int n, FILE *fp);

192 | Chapter 13: Input and Output

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The functions fgets() and fgetws() read up to n – 1 characters from the input
stream referenced by fp into the buffer addressed by buf, appending a null char-
acter to terminate the string. If the functions encounter a newline character or the
end of the file before they have read the maximum number of characters, then only
the characters read up to that point are read into the buffer. The newline character
'\n' (or, in a wide-oriented stream, L'\n') is also stored in the buffer if read.

gets() reads a line of text from standard input into the buffer addressed by buf.
The newline character that ends the line is replaced by the null character that
terminates the string in the buffer. fgets() is a preferable alternative to gets(), as
gets() offers no way to limit the number of characters read. There is no wide-
character function corresponding to gets().

All three functions return the value of their argument buf, or a null pointer if an error
occurred, or if there were no more characters to be read before the end of the file.

Writing strings

Use the following functions to write a null-terminated string to a stream:

int fputs(const char *s, FILE *fp);
int puts(const char *s);
int fputws(const wchar_t *s, FILE *fp);

The three puts functions have some features in common as well as certain
differences:

• fputs() and fputws() write the string s to the output stream referenced by
fp. The null character that terminates the string is not written to the output
stream.

• puts() writes the string s to the standard output stream, followed by a new-
line character. There is no wide-character function that corresponds to puts().

• All three functions return EOF (not WEOF) if an error occurred, or a non-nega-
tive value to indicate success.

The function in the following example prints all the lines of a file that contain a
specified string.

// Write to stdout all the lines containing the specified search string
// in the file opened for reading as fpIn.
// Return value: The number of lines containing the search string,
// or –1 on error.
// --
#include <stdio.h>
#include <string.h>
int searchFile(FILE fpIn, const char *keyword)
{
 #define MAX_LINE 256
 char line[MAX_LINE] = "";
 int count = 0;

 if (fpIn == NULL || keyword == NULL)
 return –1;
 else
 rewind(fpIn);

Reading and Writing | 193

In
p

u
t

an
d

O
u

tp
u

t

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

 while (fgets(line, MAX_LINE, fpIn) != NULL)
 if (strstr(line, keyword) != NULL)
 {
 ++count;
 fputs(line, stdout);
 }

 if (!feof(fpIn))
 return -1;
 else
 return count;
}

Reading and writing blocks

The fread() function reads up to n objects whose size is size from the stream
referenced by fp, and stores them in the array addressed by buffer:

size_t fread(void *buffer, size_t size, size_t n, FILE *fp);

The function’s return value is the number of objects transferred. A return value
less than the argument n indicates that the end of the file was reached while
reading, or that an error occurred.

The fwrite() function sends n objects whose size is size from the array addressed
by buffer to the output stream referenced by fp:

size_t fwrite(const void *buffer, size_t size, size_t n, FILE *fp);

Again, the return value is the number of objects written. A return value less than
the argument n indicates that an error occurred.

Because the fread() and fwrite() functions do not deal with characters or strings
as such, there are no corresponding functions for wide-oriented streams. On
systems that distinguish between text and binary streams, the fread() and
fwrite() functions should be used only with binary streams.

The function in the following example assumes that records have been saved in
the file records.dat by means of the fwrite() function. A key value of 0 indicates
that a record has been marked as deleted. In copying records to a new file, the
program skips over records whose key is 0.

// Copy records to a new file, filtering out those with the key value 0.
// ---
#include <stdio.h>
#include <stdlib.h>

#define ARRAY_LEN 100 // Maximum number of records in the buffer.
// A structure type for the records:
typedef struct { long key;
 char name[32];
 /* ... other fields in the record ... */ } Record_t;

char inFile[] = "records.dat", // Filenames.
 outFile[] = "packed.dat";

194 | Chapter 13: Input and Output

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

// Terminate the program with an error message:
inline void error_exit(int status, const char *error_msg)
{
 fputs(error_msg, stderr);
 exit(status);
}

int main()
{
 FILE *fpIn, *fpOut;
 Record_t record, *pArray;
 unsigned int i;

 if ((fpIn = fopen(inFile, "rb")) == NULL) // Open to read.
 error_exit(1, "Error on opening input file.");

 else if ((fpOut = fopen(outFile, "wb")) == NULL) // Open to write.
 error_exit(2, "Error on opening output file.");

 else // Create the buffer.
 if ((pArray = malloc(ARRAY_LEN * sizeof(Record_t))) == NULL)
 error_exit(3, "Insufficient memory.");

 i = 0; // Read one record at a time:
 while (fread(&record, sizeof(Record_t), 1, fpIn) == 1)
 {
 if (record.key != 0L) // If not marked as deleted ...
 { // ... then copy the record:
 pArray[i++] = record;
 if (i == ARRAY_LEN) // Buffer full?
 { // Yes: write to file.
 if (fwrite(pArray, sizeof(Record_t), i, fpOut) < i)
 break;
 i = 0;
 }
 }
 }
 if (i > 0 && !ferror(fpOut)) // Write the remaining records.
 fwrite(pArray, sizeof(Record_t), i, fpOut);

 if (ferror(fpOut)) // Handle errors.
 error_exit(4, "Error on writing to output file.");
 else if (ferror(fpIn))
 error_exit(5, "Error on reading input file.");

 return 0;
}

Formatted Output

C provides formatted data output by means of the printf() family of functions.
This section illustrates commonly used formatting options with appropriate
examples. A complete, tabular description of output formatting options is
included in Part II: see the discussion of the printf() function in Chapter 17.

Reading and Writing | 195

In
p

u
t

an
d

O
u

tp
u

t

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The printf() function family

The printf() function and its various related functions all share the same capabil-
ities of formatting data output as specified by an argument called the format
string. However, the various functions have different output destinations and
ways of receiving the data intended for output. The printf() functions for byte-
oriented streams are:

int printf(const char * restrict format, ...);
Writes to the standard output stream, stdout.

int fprintf(FILE * restrict fp, const char * restrict format, ...);
Writes to the output stream specified by fp. The printf() function can be
considered to be a special case of fprintf().

int sprintf(char * restrict buf, const char * restrict format, ...);
Writes the formatted output to the char array addressed by buf, and appends
a terminating null character.

int snprintf(char * restrict buf, size_t n,
 const char * restrict format, ...);

Like sprintf(), but never writes more than n bytes to the output buffer.

The ellipsis (...) in these function prototypes stands for more arguments, which
are optional. Another subset of the printf() functions takes a pointer to an argu-
ment list, rather than accepting a variable number of arguments directly in the
function call. The names of these functions begin with a v for “variable argument
list”:

int vprintf(const char * restrict format, va_list argptr);
int vfprintf(FILE * restrict fp, const char * restrict format,
 va_list argptr);
int vsprintf(char * restrict buf, const char * restrict format,
 va_list argptr);
int vsnprintf(char * restrict buffer, size_t n,
 const char * restrict format, va_list argptr);

To use the variable argument list functions, you must include stdarg.h in addition
to stdio.h.

There are counterparts to all of these functions for output to wide-oriented
streams. The wide-character printf() functions have names containing wprintf
instead of printf, as in vfwprintf() and swprintf(), for example. There is one
exception: there is no snwprintf(). Instead, swprintf() corresponds to the func-
tion snprintf(), with a parameter for the maximum output length.

The format string

One argument passed to every printf() function is a format string. This is a defi-
nition of the data output format, and contains some combination of ordinary
characters and conversion specifications. Each conversion specification defines
how the function should convert and format one of the optional arguments for
output. The printf() function writes the format string to the output destination,
replacing each conversion specification in the process with the formatted value of
the corresponding optional argument.

196 | Chapter 13: Input and Output

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

A conversion specification begins with a percent sign % and ends with a letter,
called the conversion specifier. (To include a percent sign % in the output, there is a
special conversion specification: %%. printf() converts this sequence into a single
percent sign.)

The syntax of a conversion specification ends with the conversion
specifier. Throughout the rest of this section, we use both these
terms frequently in talking about the format strings used in printf()
and scanf() function calls.

The conversion specifier determines the type of conversion to be performed, and
must match the corresponding optional argument. An example:

int score = 120;
char player[] = "Mary";
printf("%s has %d points.\n", player, score);

The format string in this printf() call contains two conversion specifications: %s
and %d. Accordingly, two optional arguments have been specified: a string,
matching the conversion specifier s (for “string”), and an int, matching the
conversion specifier d (for “decimal”). The function call in the example writes the
following line to standard output:

Mary has 120 points.

All conversion specifications (with the exception of %%) have the following general
format:

%[flags][field_width][.precision][length_modifier]specifier

The parts of this syntax that are indicated in square brackets are all optional, but
any of them that you include must be placed in the order shown here. The permis-
sible conversion specifications for each argument type are described in the
sections that follow. Any conversion specification can include a field width. The
precision does not apply to all conversion types, however, and its significance is
different depending on the specifier.

Field widths

The field width option is especially useful in formatting tabular output. If
included, the field width must be a positive decimal integer (or an asterisk, as
described below). It specifies the minimum number of characters in the output of
the corresponding data item. The default behavior is to position the converted
data right-justified in the field, padding it with spaces to the left. If the flags
include a minus sign (–), then the information is left-justified, and the excess field
width padded with space characters to the right.

The following example first prints a line numbering the character positions to
illustrate the effect of the field width option:

printf("1234567890123456\n"); // Character positions.
printf("%-10s %s\n", "Player", "Score"); // Table headers.
printf("%-10s %4d\n", "John", 120); // Field widths: 10; 4.
printf("%-10s %4d\n", "Mary", 77);

Reading and Writing | 197

In
p

u
t

an
d

O
u

tp
u

t

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

These statements produce a little table:

1234567890123456
Player Score
John 120
Mary 77

If the output conversion results in more characters than the specified width of the
field, then the field is expanded as necessary to print the complete data output.

If a field is right-justified, it can be padded with leading zeroes instead of spaces.
To do so, include a 0 (that’s the digit zero) in the conversion specification’s flags.
The following example prints a date in the format mm-dd-yyyy:

int month = 5, day = 1, year = 1987;
printf("Date of birth: %02d-%02d-%04d\n", month, day, year);

This printf() call produces the following output:

Date of birth: 05-01-1987

You can also use a variable to specify the field width. To do so, insert an asterisk
(*) as the field width in the conversion specification, and include an additional
optional argument in the printf() call. This argument must have the type int,
and must appear immediately before the argument to be converted for output. An
example:

char str[] = "Variable field width";
int width = 30;
printf("%-*s!\n", width, str);

The printf statement in this example prints the string str at the left end of a field
whose width is determined by the variable width. The results are as follows:

Variable field width !

Notice the trailing spaces preceding the bang (!) character in the output. Those
spaces are not present in the string used to initialize str[]. The spaces are gener-
ated by virtue of the fact that the printf statement specifies a 30-character width
for the string.

Printing characters and strings

The printf() conversion specifier for strings is s, as you have already seen in the
previous examples. The specifier for individual characters is c (for char). They are
summarized in Table 13-2.

Table 13-2. Conversion specifiers for printing characters and strings

Specifier Argument types Representation

c int A single character

s Pointer to any char type The string addressed by the pointer argument

198 | Chapter 13: Input and Output

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The following example prints a separator character between the elements in a list
of team members:

char *team[] = { "Vivian", "Tim", "Frank", "Sally" };
char separator = ';';
for (int i = 0; i < sizeof(team)/sizeof(char *); ++i)
 printf("%10s%c ", team[i], separator);
putchar('\ n');

The argument represented by the specification %c can also have a narrower type
than int, such as char. Integer promotion automatically converts such an argu-
ment to int. The printf() function then converts the int arguments to unsigned
char, and prints the corresponding character.

For string output, you can also specify the maximum number of characters of the
string that may be printed. This is a special use of the precision option in the
conversion specification, which consists of a dot followed by a decimal integer.
An example:

char msg[] = "Every solution breeds new problems.";
printf("%.14s\n", msg); // Precision: 14.
printf("%20.14s\n", msg); // Field width is 20; precision is 14.
printf("%.8s\n", msg+6); // Print the string starting at the 7th
 // character in msg, with precision 8.

These statements produce the following output:

Every solution
 Every solution
solution

Printing integers

The printf() functions can convert integer values into decimal, octal, or hexadec-
imal notation. The conversion specifiers listed in Table 13-3 are provided for this
purpose.

The following example illustrates different conversions of the same integer value:

printf("%4d %4o %4x %4X\n", 63, 63, 63, 63);

This printf() call produces the following output:

 63 77 3f 3F

Table 13-3. Conversion specifiers for printing integers

Specifier Argument types Representation

d, i int Decimal

u unsigned int Decimal

o unsigned int Octal

x unsigned int Hexadecimal with lowercase a, b, c, d, e, f

X unsigned int Hexadecimal with uppercase A, B, C, D, E, F

Reading and Writing | 199

In
p

u
t

an
d

O
u

tp
u

t

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The specifiers u, o, x, and X interpret the corresponding argument as an unsigned
integer. If the argument’s type is int and its value negative, the converted output
is the positive number that corresponds to the argument’s bit pattern when inter-
preted as an unsigned int:

printf("%d %u %X\n", -1, -1, -1);

If int is 32 bits wide, this statement yields the following output:

-1 4294967295 FFFFFFFF

Because the arguments are subject to integer promotion, the same conversion spec-
ifiers can be used to format short and unsigned short arguments. For arguments
with the type long or unsigned long, you must prefix the length modifier l (a lower-
case L) to the d, i, u, o, x, and X specifiers. Similarly, the length modifier for
arguments with the type long long or unsigned long long is ll (two lowercase Ls).
An example:

long bignumber = 100000L;
unsigned long long hugenumber = 100000ULL * 1000000ULL;
printf("%ld %llX\n", bignumber, hugenumber);

These statements produce the following output:

100000 2540BE400

Printing floating-point numbers

Table 13-4 shows the printf() conversion specifiers to format floating-point
numbers in various ways.

The most commonly used specifiers are f and e (or E). The following example
illustrates how they work:

double x = 12.34;
printf("%f %e %E\n", x, x, x);

This printf() call generates following output line:

12.340000 1.234000e+01 1.234000E+01

The e that appears in the exponential notation in the output is lowercase or
uppercase, depending on whether you use e or E for the conversion specifier.

Table 13-4. Conversion specifiers for printing floating-point numbers

Specifier Argument types Representation

f double Decimal floating-point number

e, E double Exponential notation, decimal

g, G double Floating-point or exponential notation, whichever is shorter

a, A double Exponential notation, hexadecimal

200 | Chapter 13: Input and Output

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Furthermore, as the example illustrates, the default output shows precision to six
decimal places. The precision option in the conversion specification modifies this
behavior:

double value = 8.765;
printf("Value: %.2f\n", value); // Precision is 2: output to two
 // decimal places.
printf("Integer value:\n"
 " Rounded: %5.0f\n" // Field width 5; precision 0.
 " Truncated: %5d\n", value, (int)value);

These printf() calls produce the following output:

Value: 8.77
Integer value:
 Rounded: 9
 Truncated: 8

As this example illustrates, printf() rounds floating-point numbers up or down
in converting them for output. If you specify a precision of 0, the decimal point
itself is suppressed. If you simply want to truncate the fractional part of the value,
you can cast the floating-point number as an integer type.

The specifiers described can also be used with float arguments, because they are
automatically promoted to double. To print arguments of type long double,
however, you must insert the length modifier L before the conversion specifier, as
in this example:

#include <math.h>
long double xxl = expl(1000);
printf("e to the power of 1000 is %.2Le\n", xxl);

Formatted Input

To read in data from a formatted source, C provides the scanf() family of func-
tions. Like the printf() functions, the scanf() functions take as one of their
arguments a format string that controls the conversion between the I/O format
and the program’s internal data. This section highlights the differences between
the uses of format strings and conversion specifications in the scanf() and the
printf() functions.

The scanf() function family

The various scanf() functions all process the characters in the input source in the
same way. They differ in the kinds of data sources they read, however, and in the
ways in which they receive their arguments. The scanf() functions for byte-
oriented streams are:

int scanf(const char * restrict format, ...);
Reads from the standard input stream, stdin.

int fscanf(FILE * restrict fp, const char * restrict format, ...);
Reads from the input stream referenced by fp.

int sscanf(const char * restrict src, const char * restrict format, ...);
Reads from the char array addressed by src.

Reading and Writing | 201

In
p

u
t

an
d

O
u

tp
u

t

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The ellipsis (...) stands for more arguments, which are optional. The optional
arguments are pointers to the variables in which the scanf() function stores the
results of its conversions.

Like the printf() functions, the scanf() family also includes variants that take a
pointer to an argument list, rather than accepting a variable number of arguments
directly in the function call. The names of these functions begin with the letter v
for “variable argument list”: vscanf(), vfscanf(), and vsscanf(). To use the vari-
able argument list functions, you must include stdarg.h in addition to stdio.h.

There are counterparts to all of these functions for reading wide-oriented streams.
The names of the wide-character functions contain the sequence wscanf in place
of scanf, as in wscanf() and vfwscanf(), for example.

The format string

The format string for the scanf() functions contains both ordinary characters and
conversion specifications that define how to interpret and convert the sequences
of characters read. Most of the conversion specifiers for the scanf() functions are
similar to those defined for the printf() functions. However, conversion specifi-
cations in the scanf() functions have no flags and no precision options. The
general syntax of conversion specifications for the scanf() functions is as follows:

%[*][field_width][length_modifier]specifier

For each conversion specification in the format string, one or more characters are
read from the input source and converted in accordance with the conversion spec-
ifier. The result is stored in the object addressed by the corresponding pointer
argument. An example:

int age = 0;
char name[64] = "";
printf("Please enter your first name and your age:\n");
scanf("%s%d", name, &age);

Suppose that the user enters the following line when prompted:

Bob 27\n

The scanf() call writes the string Bob into the char array name, and the value 27 in
the int variable age.

All conversion specifications except those with the specifier c skip over leading
whitespace characters. In the previous example, the user could type any number
of space, tab, or newline characters before the first word, Bob, or between Bob and
27, without affecting the results.

The sequence of characters read for a given conversion specification ends when
scanf() reads any whitespace character, or any character that cannot be inter-
preted under that conversion specification. Such a character is pushed back onto
the input stream, so that processing for the next conversion specification begins
with that character. In the previous example, suppose the user enters this line:

Bob 27years\n

202 | Chapter 13: Input and Output

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Then on reaching the character y, which cannot be part of a decimal numeral,
scanf() stops reading characters for the conversion specification %d. After the
function call, the characters years\n would remain in the input stream’s buffer.

If, after skipping over any whitespace, scanf() doesn’t find a character that
matches the current conversion specification, an error occurs, and the scanf()
function stops processing the input. We’ll show you how to detect such errors in
a moment.

Often the format string in a scanf() function call contains only conversion speci-
fications. If not, all other characters in the format string except whitespace
characters must literally match characters in corresponding positions in the input
source. Otherwise, the scanf() function quits processing and pushes the
mismatched character back on to the input stream.

One or more consecutive whitespace characters in the format string matches any
number of consecutive whitespace characters in the input stream. In other words,
for any whitespace in the format string, scanf() reads past all whitespace charac-
ters in the data source up to the first non-whitespace character. Knowing this,
what’s the matter with the following scanf() call?

scanf("%s%d\n", name, &age); // Problem?

Suppose that the user enters the following line:

Bob 27\n

In this case, scanf() doesn’t return after reading the newline character, but
instead continues reading more input—until a non-whitespace character comes
along.

Sometimes you will want to read past any sequence of characters that matches a
certain conversion specification without storing the result. You can achieve
exactly this effect by inserting an asterisk (*) immediately after the percent sign (%)
in the conversion specification. Do not include a pointer argument for a conver-
sion specification with an asterisk.

The return value of a scanf() function is the number of data items successfully
converted and stored. If everything goes well, the return value matches the
number of conversion specifications, not counting any that contain an asterisk.
The scanf() functions return the value of EOF if a read error occurs or they reach
the end of the input source before converting any data items. An example:

if (scanf("%s%d", name, &age) < 2)
 fprintf(stderr, "Bad input.\n");
else
{ /* ... Test the values stored ... */ }

Field widths

The field width is a positive decimal integer that specifies the maximum number
of characters that scanf() reads for the given conversion specification. For string
input, this item can be used to prevent buffer overflows:

char city[32];
printf("Your city: ");

Reading and Writing | 203

In
p

u
t

an
d

O
u

tp
u

t

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

if (scanf("%31s", city) < 1) // Never read in more than 31 characters!
 fprintf(stderr, "Error reading from standard input.\ n");
else
/* ... */

Unlike printf(), which exceeds the specified field width whenever the output is
longer than that number of characters, scanf() with the s conversion specifier
never writes more characters to a buffer than the number specified by the field
width.

Reading characters and strings

The conversion specifications %c and %1c read the next character in the input
stream, even if it is a whitespace character. By specifying a field width, you can
read that exact number of characters, including whitespace characters, as long as
the end of the input stream does not intervene. When you read more than one
character in this way, the corresponding pointer argument must point to a char
array that is large enough to hold all the characters read. The scanf() function
with the c conversion specifer does not append a terminating null character. An
example:

scanf("%*5c");

This scanf() call reads and discards the next five characters in the input source.

The conversion specification %s always reads just one word, as a whitespace char-
acter ends the sequence read. To read whole text lines, you can use the fgets()
function.

The following example reads the contents of a text file word by word. Here we
assume that the file pointer fp is associated with a text file that has been opened
for reading:

char word[128];
while (fscanf(fp, "%127s", word) == 1)
{
 /* ... process the word read ... */
}

In addition to the conversion specifier s, you can also read strings using the
“scanset” specifier, which consists of an unordered set of characters between
square brackets ([scanset]). The scanf() function then reads all characters, and
saves them as a string (with a terminating null character), until it reaches a char-
acter that does not match any of those in the scanset. An example:

char strNumber[32];
scanf("%[0123456789]", strNumber);

If the user enters 345X67, then scanf() stores the string 345\0 in the array
strNumber. The character X and all subsequent characters remain in the input
buffer.

To invert the scanset—that is, to match all characters except those between the
square brackets—insert a caret (^) immediately after the opening bracket. The

204 | Chapter 13: Input and Output

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

following scanf() call reads all characters, including whitespace, up to a punctua-
tion character that terminates a sentence; and then reads the punctuation
character itself:

char ch, sentence[512];
scanf("%511[^.!?]%c", sentence, &ch);

The following scanf() call can be used to read and discard all characters up to the
end of the current line:

scanf("%*[^\n]%*c");

Reading integers

Like the printf() functions, the scanf() functions offer the following conversion
specifiers for integers: d, i, u, o, x, and X. These allow you to read and convert
decimal, octal, and hexadecimal notation to int or unsigned int variables. An
example:

// Read a non-negative decimal integer:
unsigned int value = 0;
if (scanf("%u", &value) < 1)
 fprintf(stderr, "Unable to read an integer.\n");
else
 /* ... */

For the specifier i in the scanf() functions, the base of the numeral read is not
predefined. Instead, it is determined by the prefix of the numeric character
sequence read, in the same way as for integer constants in C source code (see
“Integer Constants” in Chapter 3). If the character sequence does not begin with a
zero, then it is interpreted as a decimal numeral. If it does begin with a zero, and
the second character is not x or X, then the sequence is interpreted as an octal
numeral. A sequence that begins with 0x or 0X is read as a hexadecimal numeral.

To assign the integer read to a short, char, long, or long long variable (or to a
variable of a corresponding unsigned type), you must insert a length modifier
before the conversion specifier: h for short, hh for char, l for long, or ll for long
long. In the following example, the FILE pointer fp refers to a file opened for
reading:

unsigned long position = 0;
if (fscanf(fp, "%lX", &position) < 1) // Read a hexadecimal integer.
 /* ... Handle error: unable to read a numeral ... */

Reading floating-point numbers

To process floating-point numerals, the scanf() functions use the same conver-
sion specifiers as printf(): f, e, E, g, and G. Furthermore, C99 has added the
specifiers a and A. All of these specifiers interpret the character sequence read in
the same way. The character sequences that can be interpreted as floating-point
numerals are the same as the valid floating-point constants in C; see “Floating-
Point Constants” in Chapter 3. scanf() can also convert integer numerals and
store them in floating-point variables.

Random File Access | 205

In
p

u
t

an
d

O
u

tp
u

t

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

All of these specifiers convert the numeral read into a floating-point value with the
type float. If you want to convert and store the value read as a variable of type
double or long double, you must insert a length modifier: either l (a lowercase L)
for double, or L for long double. An example:

float x = 0.0F;
double xx = 0.0;
// Read in two floating-point numbers; convert one to float and the other
// to double:
if (scanf("%f %lf", &x, &xx) < 2)
 /* ... */

If this scanf() call receives the input sequence 12.3 7\n, then it stores the value
12.3 in the float variable x, and the value 7.0 in the double variable xx.

Random File Access
Random file access refers to the ability to read or modify information directly at
any given position in a file. You do this by getting and setting a file position indi-
cator, which represents the current access position in the file associated with a
given stream.

Obtaining the Current File Position

The following functions return the current file access position. Use one of these
functions when you need to note a position in the file to return to it later.

long ftell(FILE *fp);
ftell() returns the file position of the stream specified by fp. For a binary
stream, this is the same as the number of characters in the file before this
given position—that is, the offset of the current character from the beginning
of the file. ftell() returns –1 if an error occurs.

int fgetpos(FILE * restrict fp, fpos_t * restrict ppos);
fgetpos() writes the file position indicator for the stream designated by fp to
an object of type fpos_t, addressed by ppos. If fp is a wide-oriented stream,
then the indicator saved by fgetpos() also includes the stream’s current
conversion state (see “Byte-Oriented and Wide-Oriented Streams,” earlier in
this chapter). fgetpos() returns a nonzero value to indicate that an error
occurred. A return value of zero indicates success.

The following example records the positions of all lines in the text file messages.txt
that begin with the character #:

#define ARRAY_LEN 1000
long arrPos[ARRAY_LEN] = { 0L };
FILE *fp = fopen("messages.txt", "r");
if (fp != NULL)
{
 int i = 0, c1 = '\n', c2;

206 | Chapter 13: Input and Output

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

 while (i < ARRAY_LEN && (c2 = getc(fp)) != EOF)
 {
 if (c1 == '\n' && c2 == '#')
 arrPos[i++] = ftell(fp) - 1;
 c1 = c2;
 }
 /* ... */
}

Setting the File Access Position

The following functions modify the file position indicator:

int fsetpos(FILE *fp, const fpos_t *ppos);
Sets both the file position indicator and the conversion state to the values
stored in the object referenced by ppos. These values must have been
obtained by a call to the fgetpos() function. If successful, fsetpos() returns
0 and clears the stream’s EOF flag. A nonzero return value indicates an error.

int fseek(FILE *fp, long offset, int origin);
Sets the file position indicator to a position specified by the value of offset
and by a reference point indicated by the origin argument. The offset argu-
ment indicates a position relative to one of three possible reference points,
which are identified by macro values. Table 13-5 lists these macros, as well as
the numeric values that were used for origin before ANSI C defined them.
The value of offset can be negative. The resulting file position must be
greater than or equal to zero, however.

When working with text streams—on systems that distinguish between text and
binary streams—you should always use a value obtained by calling the ftell()
function for the offset argument, and let origin have the value SEEK_SET. The
function pairs ftell()—fseek() and fgetpos()—fsetpos() are not mutually
compatible, because the fpos_t object used by fgetpos() and fsetpos() to indi-
cate that a file position may not have an arithmetic type.

If successful, fseek() clears the stream’s EOF flag and returns zero. A nonzero
return value indicates an error.

Table 13-5. The origin parameter in fseek()

Macro name

Traditional
value of
origin Offset is relative to

SEEK_SET 0 The beginning of the file

SEEK_CUR 1 The current file position

SEEK_END 2 The end of the file

Random File Access | 207

In
p

u
t

an
d

O
u

tp
u

t

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

void rewind(FILE *fp);

rewind() sets the file position indicator to the beginning of the file and clears the
stream’s EOF and error flags. Except for the error flag, the call rewind(fp) is
equivalent to:

(void)fseek(fp, 0L, SEEK_SET)

If the file has been opened for reading and writing, you can perform either a read
or a write operation after a successful call to fseek(), fsetpos(), or rewind().

The following example uses an index table to store the positions of records in the
file. This approach permits direct access to a record that needs to be updated.

// setNewName(): Finds a keyword in an index table
// and updates the corresponding record in the file.
// The file containing the records must be opened in
// "update mode"; i.e., with the mode string "r+b".
// Arguments: - A FILE pointer to the open data file;
// - The key;
// - The new name.
// Return value: A pointer to the updated record,
// or NULL if no such record was found.
// ---
#include <stdio.h>
#include <string.h>
#include "Record.h" // Defines the types Record_t, IndexEntry_t:
 // typedef struct { long key; char name[32];
 // /* ... */ } Record_t;
 // typedef struct { long key, pos; } IndexEntry_t;

extern IndexEntry_t indexTab[]; // The index table.
extern int indexLen; // The number of table entries.

Record_t *setNewName(FILE *fp, long key, const char *newname)
{
 static Record_t record;
 int i;
 for (i = 0; i < indexLen; ++i)
 {
 if (key == indexTab[i].key)
 break; // Found the specified key.
 }
 if (i == indexLen)
 return NULL; // No match found.
 // Set the file position to the record:
 if (fseek(fp, indexTab[i].pos, SEEK_SET) != 0)
 return NULL; // Positioning failed.

 if (fread(&record, sizeof(Record_t), 1, fp) != 1) // Read the record.
 return NULL; // Error on reading.

 if (key != record.key) // Test the key.
 return NULL;

208 | Chapter 13: Input and Output

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

 else
 { // Update the record:
 size_t size = sizeof(record.name);
 strncpy(record.name, newname, size-1);
 record.name[size-1] = '\0';

 if (fseek(fp, indexTab[i].pos, SEEK_SET) != 0)
 return NULL; // Error setting file position.
 if (fwrite(&record, sizeof(Record_t), 1, fp) != 1)
 return NULL; // Error writing to file.

 return &record;
 }
}

The second fseek() call before the write operation could also be replaced with
the following, moving the file pointer relative to its previous position:

 if (fseek(fp, -(long)sizeof(Record_t), SEEK_CUR) != 0)
 return NULL; // Error setting file position.

209

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Chapter 14Preprocessing Directives

14
Preprocessing Directives

In the section “How the C Compiler Works” in Chapter 1, we outlined the eight
steps in translation from C source to an executable program. In the first four of
those steps, the C preprocessor prepares the source code for the actual compiler.
The result is a modified source in which comments have been deleted and
preprocessing directives have been replaced with the results of their execution.

This chapter describes the C preprocessing directives. Among these are directives
to insert the contents of other source files; to identify sections of code to be
compiled only under certain conditions; and to define macros, which are identi-
fiers that the preprocessor replaces with another text.

Each preprocessor directive appears on a line by itself, beginning with the char-
acter #. Only space and tab characters may precede the # character on a line. A
directive ends with the first newline character that follows its beginning. The
shortest preprocessor directive is the null directive. This directive consists of a line
that contains nothing but the character #, and possibly comments or whitespace
characters. Null directives have no effect: the preprocessor removes them from the
source file.

If a directive doesn’t fit on one text line, you can end the line with a backslash (\)
and continue the directive on the next line. An example:

#define MacroName A long, \
long macro replacement value

The backslash must be the last character before the newline character. The
preprocessor concatenates the lines by removing each backslash-and-newline pair
that it encounters. Because the preprocessor also replaces each comment with a
space, the backslash no longer has the same effect if you put a comment between
the backslash and the newline character.

Spaces and tab characters may appear between the # character that introduces a
directive and the directive name. (In the previous example, the directive name is
define.)

210 | Chapter 14: Preprocessing Directives

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

You can verify the results of the C preprocessor, either by running the prepro-
cessor as a separate program or by using a compiler option to perform only the
preprocessing steps.

Inserting the Contents of Header Files
An #include directive instructs the preprocessor to insert the contents of a speci-
fied file in the place of the directive. There are two ways to specify the file to be
inserted:

#include <filename>
#include "filename"

Use the first form, with angle brackets, when you include standard library header
files or additional header files provided by the implementation. An example:

#include <math.h> // Prototypes of mathematical functions,
 // with related types and macros.

Use the second form, with double quotation marks, to include source files specific
to your programs. Files inserted by #include directives typically have names
ending in .h, and contain function prototypes, macro definitions, and type defini-
tions. These definitions can then be used in any program source file after the
corresponding #include directive. An example:

#include "myproject.h" // Function prototypes, type definitions
 // and macros used in my project.

You may use macros in an #include directive. If you do use a macro, the macro’s
replacement must result in a correct #include directive. Example 14-1 demon-
strates such #include directives.

If the macro _DEBUG_ is defined when this segment is preprocessed, then the
preprocessor inserts the contents of myProject_dbg.h. If not, it inserts myProject.h.
The #ifdef, #else, and #endif directives are described in detail in the section
“Conditional Compiling,” later in this chapter.

How the Preprocessor Finds Header Files

It is up to the given C implementation to define where the preprocessor searches
for files specified in #include directives. Whether filenames are case-sensitive is
also implementation-dependent. For files specified between angle brackets
(<filename>), the preprocessor usually searches in certain system directories, such
as /usr/local/include and /usr/include on Unix systems, for example.

Example 14-1. Macros in #include directives

#ifdef _DEBUG_
 #define MY_HEADER "myProject_dbg.h"
#else
 #define MY_HEADER "myProject.h"
#endif
#include MY_HEADER

Defining and Using Macros | 211

P
rep

ro
cessin

g
D

irectives

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

For files specified in quotation marks ("filename"), the preprocessor usually looks in
the current directory first, which is typically the directory containing the program’s
other source files. If such a file is not found in the current directory, the preprocessor
searches the system include directories as well. A filename may contain a directory
path. If so, the preprocessor looks for the file only in the specified directory.

You can always specify your own search path for #include directives, either by
using an appropriate command-line option in running the compiler, or by adding
search paths to the contents of an environment variable, often named INCLUDE.
Consult your compiler’s documentation.

Nested #include Directives

#include directives can be nested; that is, a source file inserted by an #include
directive may in turn contain #include directives. The preprocessor permits at
least 15 levels of nested includes.

Because header files sometimes include one another, it can easily happen that the
same file is included more than once. For example, suppose the file myProject.h
contains the line:

#include <stdio.h>

Then a source file that contains the following #include directives would include
the file stdio.h twice, once directly and once indirectly:

#include <stdio.h>
#include "myProject.h"

However, you can easily guard the contents of a header file against multiple inclu-
sions using the directives for conditional compiling (explained in “Conditional
Compiling,” later in this chapter). Example 14-2 demonstrates this usage.

At the first occurrence of a directive to include the file incfile.h, the macro
INCFILE_H_ is not yet defined. The preprocessor therefore inserts the contents of
the block between #ifndef and #endif—including the definition of the macro
INCFILE_H_. On subsequent insertions of incfile.h, the #ifndef condition is false,
and the preprocessor discards the block up to #endif.

Defining and Using Macros
You can define macros in C using the preprocessor directive #define. This direc-
tive allows you to give a name to any text you want, such as a constant or a
statement. Wherever the macro’s name appears in the source code after its defini-
tion, the preprocessor replaces it with that text.

Example 14-2. Preventing multiple inclusions

#ifndef INCFILE_H_
#define INCFILE_H_

/* ... The actual contents of the header file incfile.h are here ... */

#endif /* INCFILE_H_ */

212 | Chapter 14: Preprocessing Directives

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

A common use of macros is to define a name for a numeric constant:

#define ARRAY_SIZE 100
double data[ARRAY_SIZE];

These two lines define the macro name ARRAY_SIZE for the number 100, and then
use the macro in a definition of the array data. Writing macro names in all capi-
tals is a widely used convention that helps to distinguish them from variable
names. This simple example also illustrates how macros can make a C program
more flexible. It’s safe to assume that the length of an array like data will be used
in several places in the program—to control for loops that iterate through the
elements of the array, for example. In each instance, use the macro name instead
of a number. Then, if a program maintainer ever needs to modify the size of the
array, it needs to be changed in only one place: in the #define directive.

In the third translation step, the preprocessor parses the source file as a sequence
of preprocessor tokens and whitespace characters (see “The C Compiler’s Trans-
lation Phases” in Chapter 1). If any token is a macro name, the preprocessor
expands the macro; that is, it replaces the macro name with the text it has been
defined to represent. Macro names that occur in string literals are not expanded,
because a string literal is itself a single preprocessor token.

Preprocessor directives cannot be created by macro expansion. Even if a macro
expansion results in a formally valid directive, the preprocessor doesn’t execute it.

You can define macros with or without parameters.

Macros Without Parameters

A macro definition with no parameters has the form:

#define macro_name replacement_text

Whitespace characters before and after replacement_text are not part of the
replacement text. The replacement_text can also be empty. Some examples:

#define TITLE "*** Examples of Macros Without Parameters ***"
#define BUFFER_SIZE (4 * 512)
#define RANDOM (-1.0 + 2.0*(double)rand() / RAND_MAX)

The standard function rand() returns a pseudorandom integer in the interval
[0, RAND_MAX]. The prototype of rand() and the definition of the macro RAND_MAX
are contained in the standard header file stdlib.h.

The following statements illustrate one possible use of the preceding macros:

#include <stdio.h>
#include <stdlib.h>
/* ... */
// Display the title:
puts(TITLE);

Defining and Using Macros | 213

P
rep

ro
cessin

g
D

irectives

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

// Set the stream fp to "fully buffered" mode, with a buffer of
// BUFFER_SIZE bytes.
// The macro _IOFBF is defined in stdio.h as 0.
static char myBuffer[BUFFER_SIZE];
setvbuf(fp, myBuffer, _IOFBF, BUFFER_SIZE);

// Fill the array data with ARRAY_SIZE random numbers in the range
// [–10.0, +10.0]:
for (int i = 0; i < ARRAY_SIZE; ++i)
 data[i] = 10.0 * RANDOM;

Replacing each macro with its replacement text, the preprocessor produces the
following statements:

puts("*** Examples of Macros Without Parameters ***");

static char myBuffer[(4 * 512)];
setvbuf(fp, myBuffer, 0, (4 * 512));

for (int i = 0; i < 100; ++i)
 data[i] = 10.0 * (-1.0 + 2.0*(double)rand() / 2147483647);

In this example, the implementation-dependent value of the macro RAND_MAX is
2,147,483,647. With a different compiler, the value of RAND_MAX may be different.

If you write a macro containing an expression with operators, you should always
enclose the expression in parentheses to avoid unexpected effects of operator
precedence when you use the macro. For example, the outer parentheses in the
macro RANDOM ensure that the expression 10.0 * RANDOM yields the desired result.
Without them, macro replacement would produce this expression instead:

10.0 * -1.0 + 2.0*(double)rand() / 2147483647

This expression yields a random number in the interval [–10.0, –8.0].

Macros with Parameters

You can also define macros with parameters. When the preprocessor expands
such a macro, it incorporates arguments you specify for each use of the macro in
the replacement text. Macros with parameters are often called function-like
macros.

You can define a macro with parameters in either of the following ways:

#define macro_name([parameter_list]) replacement_text
#define macro_name([parameter_list ,] ...) replacement_text

The parameter_list is a comma-separated list of identifiers for the macro’s para-
meters. When you use such a macro, the comma-separated argument list must
contain as many arguments as there are parameters in the macro definition.
(However, C99 allows you to use “empty arguments,” as we will explain in a
moment.) The ellipsis (...) stands for one or more additional arguments.

When defining a macro, you must make sure there are no whitespace characters
between the macro name and the left parenthesis ((). If there is any space after the

214 | Chapter 14: Preprocessing Directives

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

name, then the directive defines a macro without parameters whose replacement
text begins with the left parenthesis.

The standard library usually includes macros, defined in stdio.h, to implement the
well-known functions getchar() and putchar(). Their expansion values can vary
from one implementation to another, but in any case, their definitions are similar
to the following:

#define getchar() getc(stdin)
#define putchar(x) putc(x, stdout)

When you “call” a function-like macro, the preprocessor replaces each occur-
rence of a parameter in the replacement text with the corresponding argument.
C99 allows you to leave blank the place of any argument in a macro call. In this
case, the corresponding parameter is replaced with nothing; that is, it is deleted
from the replacement text. However, this use of “empty arguments” is not yet
supported by all compilers.

If an argument contains macros, these are ordinarily expanded before the argu-
ment is substituted into the replacement text. Arguments for parameters which
are operands of the # or ## operators are treated specially. For details, see the
subsequent subsections “The stringify operator” and “The token-pasting oper-
ator.” Here are some examples of function-like macros and their expansions:

#include <stdio.h> // Contains the definition of putchar().
#define DELIMITER ':'
#define SUB(a,b) (a-b)
putchar(DELIMITER);
putchar(str[i]);
int var = SUB(,10);

If putchar(x) is defined as putc(x, stdout), then the preprocessor expands the
last three lines as follows:

putc(':', stdout);
putc(str[i], stdout);
int var = (-10);

As the following example illustrates, you should generally enclose the parameters
in parentheses wherever they occur in the replacement text. This ensures correct
evaluation in case any argument is an expression:

#define DISTANCE(x, y) ((x)>=(y) ? (x)-(y) : (y)-(x))
d = DISTANCE(a, b+0.5);

This macro call expands to the following:

d = ((a)>=(b+0.5) ? (a)-(b+0.5) : (b+0.5)-(a));

Without the parentheses around the parameters x and y, the expansion would
contain the expression a-b+0.5 instead of (a)-(b+0.5).

Variable numbers of arguments

The C99 standard lets you define macros with an ellipsis (...) at the end of the
parameter list to represent optional arguments. You can then invoke such a macro
with a variable number of arguments.

Defining and Using Macros | 215

P
rep

ro
cessin

g
D

irectives

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

When you invoke a macro with optional arguments, the preprocessor groups all
of the optional arguments, including the commas that separate them, into one
argument. In the replacement text, the identifier _ _VA_ARGS_ _ represents this
group of optional arguments. The identifier _ _VA_ARGS_ _ can be used only in the
replacement text of a macro definition. _ _VA_ARGS_ _ behaves the same as any
other macro parameter, except that it is replaced by all the remaining arguments
in the argument list, rather than just one argument. Here is an example of a macro
that takes a variable number of arguments:

// Assume we have opened a log file to write with file pointer fp_log.
//
#define printLog(...) fprintf(fp_log, _ _VA_ARGS_ _)
// Using the printLog macro:
printLog("%s: intVar = %d\n", _ _func_ _, intVar);

The preprocessor replaces the macro call in the last line of this example with the
following:

fprintf(fp_log, "%s: intVar = %d\n", _ _func_ _, intVar);

The predefined identifier _ _func_ _, used in any function, represents a string
containing the name of that function (see “Identifiers” in Chapter 1). Thus the
macro call in this example writes the current function name and the contents of
the variable intVar to the log file.

The stringify operator

The unary operator # is commonly called the stringify operator (or sometimes the
stringizing operator) because it converts a macro argument into a string. The
operand of # must be a parameter in a macro replacement text. When a para-
meter name appears in the replacement text with a prefixed # character, the
preprocessor places the corresponding argument in double quotation marks,
forming a string literal. All characters in the argument value itself remain
unchanged, with the following exceptions:

• Any sequence of whitespace characters between tokens in the argument value
is replaced with a single space character.

• A backslash character (\) is prefixed to each double quotation mark charac-
ter (") in the argument.

• A backslash character is also prefixed to each existing backslash that occurs
in a character constant or string literal in the argument, unless the existing
backslash character introduces a universal character name (see “Universal
Character Names” in Chapter 1).

The following example illustrates how you might use the # operator to make a
single macro argument work both as a string and as an arithmetic expression in
the replacement text:

#define printDBL(exp) printf(#exp " = %f ", exp)
printDBL(4 * atan(1.0)); // atan() is declared in math.h.

The macro call in the last line expands to this statement:

printf("4 * atan(1.0)" " = %f ", 4 * atan(1.0));

216 | Chapter 14: Preprocessing Directives

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Because the compiler merges adjacent string literals, this code is equivalent to the
following:

printf("4 * atan(1.0) = %f ", 4 * atan(1.0));

That statement would generate the following console output:

4 * atan(1.0) = 3.141593

The invocation of the showArgs macro in the following example illustrates how the
operator modifies whitespace characters, double quotation marks, and back-
slashes in macro arguments:

#define showArgs(...) puts(#_ _VA_ARGS_ _)
showArgs(one\n, "2\n", three);

The preprocessor replaces this macro with the following text:

puts("one\n, \"2\\n\", three");

This statement produces the following output:

one
, "2\n", three

The token-pasting operator

The operator ## is a binary operator, and can appear in the replacement text of
any macro. It joins its left and right operands together into a single token, and for
this reason is commonly called the token-pasting operator. If the resulting text also
contains a macro name, the preprocessor performs macro replacement on it.
Whitespace characters that occur before and after the ## operator are removed
along with the operator itself.

Usually, at least one of the operands is a macro parameter. In this case, the argu-
ment value is first substituted for the parameter, but the macro expansion itself is
postponed until after token-pasting. An example:

#define TEXT_A "Hello, world!"
#define msg(x) puts(TEXT_ ## x)
msg(A);

Regardless of whether the identifier A has been defined as a macro name, the
preprocessor first substitutes the argument A for the parameter x, and then
performs the token-pasting operation. The result of these two steps is the
following line:

puts(TEXT_A);

Now, because TEXT_A is a macro name, the subsequent macro replacement yields
this statement:

puts("Hello, world!");

If a macro parameter is an operand of the ## operator and a given macro invoca-
tion contains no argument for that parameter, then the preprocessor uses a
placeholder to represent the empty string substituted for the parameter. The
result of token pasting between such a placeholder and any token is that token.
Token-pasting between two placeholders results in one placeholder. When all

Defining and Using Macros | 217

P
rep

ro
cessin

g
D

irectives

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

the token-pasting operations have been carried out, the preprocessor removes
any remaining placeholders. Here is an example of a macro call with an empty
argument:

msg();

This call expands to the following line:

puts(TEXT_);

If TEXT_ is not an identifier representing a string, the compiler will issue an error
message.

The order of evaluation of the stringify and token-pasting operators # and ## is not
specified. If the order matters, you can influence it by breaking a macro up into
several macros.

Using Macros Within Macros

After argument substitution and execution of the # and ## operations, the prepro-
cessor examines the resulting replacement text and expands any macros it contains.
No macro can be expanded recursively, though; if the preprocessor encounters the
name of any macro in the replacement text of the same macro, or in the replace-
ment text of any other macro nested in it, that macro name is not expanded.

Similarly, even if expanding a macro yields a valid preprocessing directive, that
directive is not executed. However, the preprocessor does process any _Pragma oper-
ators that occur in a completely expanded macro replacement (see “The _Pragma
Operator,” later in this chapter).

The following sample program prints a table of function values:

// fn_tbl.c: Display values of a function in tabular form.
// This program uses nested macros.
// ---
#include <stdio.h>
#include <math.h> // Prototypes of the cos() and exp() functions.

#define PI 3.141593
#define STEP (PI/8)
#define AMPLITUDE 1.0
#define ATTENUATION 0.1 // Attenuation in wave propagation.
#define DF(x) exp(-ATTENUATION*(x))
#define FUNC(x) (DF(x) * AMPLITUDE * cos(x)) // Attenuated oscillation.
// For the function display:
#define STR(s) #s
#define XSTR(s) STR(s) // Expand the macros in s, then stringify.

int main()
{
 double x = 0.0;

 printf("\nFUNC(x) = %s\n", XSTR(FUNC(x))); // Print the function.

 printf("\n %10s %25s\n", "x", STR(y = FUNC(x))); // Table header.
 printf("---\n");

218 | Chapter 14: Preprocessing Directives

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

 for (; x < 2*PI + STEP/2; x += STEP)
 printf("%15f %20f\n", x, FUNC(x));

 return 0;
}

This example prints the following table:

FUNC(x) = (exp(-0.1*(x)) * 1.0 * cos(x))

 x y = FUNC(x)

 0.000000 1.000000
 0.392699 0.888302
...
 5.890487 0.512619
 6.283186 0.533488

Macro Scope and Redefinition

You cannot use a second #define directive to redefine an identifier that is
currently defined as a macro, unless the new replacement text is identical to the
existing macro definition. If the macro has parameters, the new parameter names
must also be identical to the old ones.

To change the meaning of a macro, you must first cancel its current definition
using the following directive:

#undef macro_name

After that point, the identifier macro_name is available for use in a new macro defi-
nition. If the specified identifier is not the name of a macro, the preprocessor
ignores the #undef directive.

The names of several functions in the standard library are also defined as macros.
For these functions, you can use the #undef directive if you want to make sure
your program calls one of those functions and not the macro of the same name.
You don’t need to specify a parameter list with the #undef directive, even when
the macro you are undefining has parameters. An example:

#include <ctype.h>
#undef isdigit // Remove any macro definition with this name.
/* ... */
if (isdigit(c)) // Call the function isdigit().
/* ... */

The scope of a macro ends with the first #undef directive with its name, or if there
is no #undef directive for that macro, then with the end of the translation unit in
which it is defined.

Conditional Compiling
The conditional compiling directives instruct the preprocessor to retain or omit
parts of the source code depending on specified conditions. You can use condi-
tional compiling to adapt a program to different target systems, for example,
without having to manage a variety of source files.

Conditional Compiling | 219

P
rep

ro
cessin

g
D

irectives

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

A conditional section begins with one of the directives #if, #ifdef, or #ifndef, and
ends with the directive #endif. Any number of #elif directives, and at most one
#else directive, may occur within the conditional section. A conditional section
that begins with #if has the following form:

#if expression1
 [group1]
[#elif expression2
 [group2]]
...
[#elif expression(n)
 [group(n)]]
[#else
 [group(n+1)]]
#endif

The preprocessor evaluates the conditional expressions in sequence until it finds
one whose value is nonzero, or “true.” The preprocessor retains the text in the
corresponding group for further processing. If none of the expressions is true, and
the conditional section contains an #else directive, then the text in the #else
directive’s group is retained.

The token groups group1, group2, and so on consist of any C source code, and
may include more preprocessing directives, including nested conditional
compiling directives. Groups that the preprocessor does not retain for further
processing are removed from the program at the end of the preprocessor phase.

The #if and #elif Directives

The expression that forms the condition of an #if or #elif directive must be an
integer constant preprocessor expression. This is different from an ordinary
integer constant expression (see “Constant Expressions” in Chapter 5) in these
respects:

• You may not use the cast operator in an #if or #elif expression.

• You may use the preprocessor operator defined (see “The defined Operator,”
later in this chapter).

• After the preprocessor has expanded all macros and evaluated all defined
expressions, it replaces all other identifiers or keywords in the expression
with the character 0.

• All signed values in the expression have the type intmax_t, and all unsigned val-
ues have the type uintmax_t. Character constants are subject to these rules as
well. The types intmax_t and uintmax_t are defined in the header file stdint.h.

• The preprocessor converts characters and escape sequences in character con-
stants and string literals into the corresponding characters in the execution
character set. Whether character constants have the same value in a prepro-
cessor expression as in later phases of compiling is up to the given implemen-
tation, however.

220 | Chapter 14: Preprocessing Directives

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The defined Operator

The unary operator defined can occur in the condition of an #if or #elif direc-
tive. Its form is one of the following:

defined identifier
defined (identifier)

These preprocessor expressions yield the value 1 if the specified identifier is a
macro name—that is, if it has been defined in a #define directive and its defini-
tion hasn’t been canceled by an #undef directive. For any other identifier, the
defined operator yields the value 0.

The advantage of the defined operation over the #ifdef and #ifndef directives is
that you can use its value in a larger preprocessor expression. An example:

#if defined(_ _unix_ _) && defined(_ _GNUC_ _)
/* ... */
#endif

Most compilers provide predefined macros, like those used in this example, to
identify the target system and the compiler. Thus on a Unix system, the macro
_ _unix_ _ is usually defined, and the macro _ _GNUC_ _ is defined if the compiler
being used is GCC. Similarly, the Microsoft Visual C compiler on Windows
automatically defines the macros _WIN32 and _MSC_VER.

The #ifdef and #ifndef Directives

You can also test whether a given macro is defined using the #ifdef and #ifndef
directives. Their syntax is:

#ifdef identifier
#ifndef identifier

These are equivalent to the following #if directives:

#if defined identifier
#if !defined identifier

The conditional code following the #ifndef identifier is retained if identifier is
not a macro name. Examples 14-1 and 14-2 illustrate possible uses of these
directives.

Defining Line Numbers
The compiler includes line numbers and source filenames in warnings, error
messages, and information provided to debugging tools. You can use the #line
directive in the source file itself to change the compiler’s filename and line
numbering information. The #line directive has the following syntax:

#line line_number ["filename"]

The next line after a #line directive has the number specified by line_number. If
the directive also includes the optional string literal "filename", then the compiler
uses the contents of that string as the name of the current source file.

The #pragma Directive | 221

P
rep

ro
cessin

g
D

irectives

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The line_number must be a decimal constant greater than zero. An example:

#line 1200 "primary.c"

The line containing the #line directive may also contain macros. If so, the prepro-
cessor expands them before executing the #line directive. The #line directive
must then be formally correct after macro expansion.

Programs can access the current line number and filename settings as values of the
standard predefined macros _ _LINE_ _ and _ _FILE_ _:

printf("This message was printed by line %d in the file %s.\n", _ _LINE_ _,
 _ _FILE_ _);

The #line directive is typically used by programs that generate C source code as
their output. By placing the corresponding input file line numbers in #line direc-
tives, such programs can make the C compiler’s error messages refer to the
pertinent lines in the original source.

Generating Error Messages
The #error directive makes the preprocessor issue an error message, regardless of
any actual formal error. Its syntax is:

#error [text]

If the optional text is present, it is included in the preprocessor’s error message.
The compiler then stops processing the source file and exits as it would on
encountering a fatal error. The text can be any sequence of preprocessor tokens.
Any macros contained in it are not expanded. It is a good idea to use a string
literal here to avoid problems with punctuation characters, such as single quota-
tion marks.

The following example tests whether the standard macro _ _STDC_ _ is defined, and
generates an error message if it is not:

#ifndef _ _STDC_ _
 #error "This compiler does not conform to the ANSI C standard."
#endif

The #pragma Directive
The #pragma directive is a standard way to provide additional information to the
compiler. This directive has the following form:

#pragma [tokens]

If the first token after #pragma is STDC, then the directive is a standard pragma. If
not, then the effect of the #pragma directive is implementation-dependent. For the
sake of portability, you should use #pragma directives sparingly.

If the preprocessor recognizes the specified tokens, it performs whatever action
they stand for, or passes information on to the compiler. If the preprocessor
doesn’t recognize the tokens, it must ignore the #pragma directive.

222 | Chapter 14: Preprocessing Directives

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Recent versions of the GNU C compiler and Microsoft’s Visual C compiler both
recognize the pragma pack(n), for example, which instructs the compiler to align
structure members on certain byte boundaries. The following example uses
pack(1) to specify that each structure member be aligned on a byte boundary:

#if defined(_ _GNUC_ _) || defined(_MSC_VER)
 #pragma pack(1) // Byte-aligned: no padding.
#endif

Single-byte alignment ensures that there are no gaps between the members of a
structure. The argument n in a pack pragma is usually a small power of two. For
example, pack(2) aligns structure members on even-numbered byte addresses,
and pack(4) on four-byte boundaries. pack() with no arguments resets the align-
ment to the implementation’s default value.

C99 introduced the following three standard pragmas:

#pragma STDC FP_CONTRACT on_off_switch
#pragma STDC FENV_ACCESS on_off_switch
#pragma STDC CX_LIMITED_RANGE on_off_switch

The value of the on_off_switch must be ON, OFF, or DEFAULT. The effects of these
pragmas are discussed in “Mathematical Functions” in Chapter 16.

The _Pragma Operator
You cannot construct a #pragma directive (or any other preprocessor directive) by
means of a macro expansion. For cases where you would want to do that, C99 has
also introduced the preprocessor operator _Pragma, which you can use with
macros. Its syntax is as follows:

_Pragma (string_literal)

Here is how the _Pragma operator works. First, the string_literal operand is “de-
stringized,” or converted into a sequence of preprocessor tokens, in this way: the
quotation marks enclosing the string are removed; each sequence of a backslash
followed by a double quotation mark (\") is replaced by a quotation mark alone
("); and each sequence of two backslash characters (\\) is replaced with a single
backslash (\). Then the preprocessor interprets the resulting sequence of tokens as
if it were the text of a #pragma directive.

The following line defines a helper macro, STR, which you can use to rewrite any
#pragma directive using the _Pragma operator:

#define STR(s) #s // This # is the "stringify" operator.

With this definition, the following two lines are equivalent:

#pragma tokens
_Pragma (STR(tokens))

The following example uses the _Pragma operator in a macro:

#define ALIGNMENT(n) _Pragma(STR(pack(n)))
ALIGNMENT(2)

Predefined Macros | 223

P
rep

ro
cessin

g
D

irectives

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Macro replacement changes the ALIGNMENT(2) macro call to the following:

_Pragma("pack(2)")

The preprocessor then processes the line as it would the following directive:

#pragma pack(2)

Predefined Macros
Every compiler that conforms to the ISO C standard must define the following
seven macros. Each of these macro names begins and ends with two underscore
characters:

_ _DATE_ _
The replacement text is a string literal containing the compilation date in the
format "Mmm dd yyyy" (example: "Mar 19 2006"). If the day of the month is
less than 10, the tens place contains an additional space character.

_ _FILE_ _
A string literal containing the name of the current source file.

_ _LINE_ _
An integer constant whose value is the number of the line in the current
source file that contains the __LINE__ macro reference, counting from the
beginning of the file.

_ _TIME_ _
A string literal that contains the time of compilation, in the format "hh:mm:ss"
(example: "08:00:59").

_ _STDC_ _
The integer constant 1, indicating that the compiler conforms to the ISO C
standard.

_ _STDC_HOSTED_ _
The integer constant 1 if the current implementation is a hosted implementa-
tion; otherwise the constant 0.

_ _STDC_VERSION_ _
The long integer constant 199901L if the compiler supports the C99 standard
of January 1999.

The values of the _ _FILE_ _ and _ _LINE_ _ macros can be influenced by the #line
directive. The values of all the other predefined macros remains constant
throughout the compilation process.

The value of the constant _ _STDC_VERSION_ _ will be adjusted with each future revi-
sion of the international C standard.

Under the C99 standard, C programs are executed either in a hosted or in a free-
standing environment. Most C programs are executed in a hosted environment,
which means that the C program runs under the control and with the support of
an operating system. In this case, the constant _ _STDC_HOSTED_ _ has the value 1,
and the full standard library is available.

224 | Chapter 14: Preprocessing Directives

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

A program in a freestanding environment runs without the support of an oper-
ating system, and therefore only minimal standard library resources are available
to it (see “Execution Environments” in Chapter 15).

Unlike the macros listed previously, the following standard macros are optional. If
any of these macros is defined, it indicates that the implementation supports a
certain IEC or ISO standard:

_ _STDC_IEC_559_ _
This constant is defined with the value 1 if the implementation’s real floating-
point arithmetic conforms to the IEC 60559 standard.

_ _STDC_IEC_559_COMPLEX_ _
This constant is defined with the value 1 if the implementation’s complex
floating-point arithmetic also conforms to the IEC 60559 standard.

_ _STDC_ISO_10646_ _
This long integer constant represents a date in the form yyyymmL (example:
199712L). This constant is defined if the encoding of wide characters with type
wchar_t conforms to the ISO/IEC 10646 standard, including all supplements
and corrections up to the year and month indicated by the macro’s value.

You must not use any of the predefined macro names described in this section in a
#define or #undef directive. Finally, the macro name _ _cplusplus is reserved for
C++ compilers, and must not be defined when you compile a C source file.

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

II
Standard Library

227

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Chapter 15The Standard Headers

15
The Standard Headers

Each standard library function is declared in one or more of the standard headers.
These headers also contain all the macro and type definitions that the C standard
provides. This chapter describes the contents and use of the standard headers.

Each of the standard headers contains a set of related function declarations,
macros, and type definitions. The standard headers are also called header files, as
the contents of each header are usually stored in a file. Strictly speaking, however,
the standard does not require the headers to be organized in files.

The C standard defines the following 24 headers. Those marked with an asterisk
have been added in C99.

Using the Standard Headers
You can add the contents of a standard header to a source file by inserting an
#include directive, which must be placed outside all functions. You can include
the standard headers as many times as you want, and in any order. However,
before the #include directive for any header, your program must not define any
macro with the same name as an identifier in that header. To make sure that your
programs respect this condition, always include the required standard headers at
the beginning of your source files, before any header files of your own.

assert.h inttypes.h* signal.h stdlib.h

complex.h* iso646.h stdarg.h string.h

ctype.h limits.h stdbool.h* tgmath.h*

errno.h locale.h stddef.h time.h

fenv.h* math.h stdint.h* wchar.h

float.h setjmp.h stdio.h wctype.h

228 | Chapter 15: The Standard Headers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Execution Environments

C programs run in one of two execution environments: hosted or freestanding.
Most common programs run in a hosted environment; that is, under the control
and with the support of an operating system. In a hosted environment, the full
capabilities of the standard library are available. Furthermore, programs compiled
for a hosted environment must define a function named main(), which is the first
function invoked on program start.

A program designed for a freestanding environment runs without the support of
an operating system. In a freestanding environment, the name and type of the first
function invoked when a program starts is determined by the given implementa-
tion. Programs for a freestanding environment cannot use complex floating-point
types, and may be limited to the following headers:

Specific implementations may also provide additional standard library resources.

Function and Macro Calls

All standard library functions have external linkage. You may use standard library
functions without including the corresponding header by declaring them in your
own code. However, if a standard function requires a type defined in the header,
then you must include the header.

The standard library functions are not guaranteed to be reentrant—that is, two
calls to a standard library function may not safely be in execution concurrently in
one process. One reason for this rule is that several of the functions use and
modify static variables, for example. As a result, you can’t generally call standard
library functions in signal handling routines. Signals are asynchronous, which
means that a program may receive a signal at any time, even while it’s executing a
standard library function. If that happens, and the handler for that signal calls the
same standard function, then the function must be reentrant. It is up to indi-
vidual implementations to determine which functions are reentrant, or whether to
provide a reentrant version of the whole standard library.

As the programmer, you are responsible for calling functions and function-like
macros with valid arguments. Wrong arguments can cause severe runtime errors.
Typical mistakes to avoid include the following:

• Argument values outside the domain of the function, as in the following call:

double x = -1.0, y = sqrt(x);

• Pointer arguments that do not point to an object or a function, as in this
function call with an uninitialized pointer argument:

char *msg; strcpy(msg, "error");

• Arguments whose type does not match that expected by a function with a
variable number of arguments. In the following example, the conversion
specifier %f calls for a float pointer argument, but &x is a pointer to double:

double x; scanf("%f", &x);

float.h iso646.h limits.h stdarg.h stdbool.h stddef.h stdint.h

Using the Standard Headers | 229

Th
e Stan

d
ard

H
ead

ers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

• Array address arguments that point to an array that isn’t large enough to
accommodate data written by the function. Example:

char name[] = "Hi "; strcat(name, "Alice");

Macros in the standard library make full use of parentheses, so that you can use
them in expressions in the same way as individual identifiers. Furthermore, each
function-like macro in the standard library uses its arguments only once.* This
means that you can call these macros in the same way as ordinary functions, even
using expressions with side effects as arguments. Here is an example:

int c = 'A';
while (c <= 'Z') putchar(c++); // Output: 'ABC ... XYZ'

The functions in the standard library may be implemented both as macros and as
functions. In such cases, the same header file contains both a function prototype
and a macro definition for a given function name. As a result, each use of the
function name after you include the header file invokes the macro. The following
example calls the macro or function toupper() to convert a lowercase letter to
uppercase:

#include <ctype.h>
/* ... */
 c = toupper(c); // Invokes the macro toupper(), if there is one.

However, if you specifically want to call a function and not a macro with the same
name, you can use the #undef directive to cancel the macro definition:

#include <ctype.h>
#undef toupper // Remove any macro definition with this name.
/* ... */
 c = toupper(c) // Calls the function toupper().

You can also call a function rather than a macro with the same name by setting
the name in parentheses:

#include <ctype.h>
/* ... */
 c = (toupper)(c) // Calls the function toupper().

Finally, you can omit the header containing the macro definition, and declare the
function explicitly in your source file:

extern int toupper(int);
/* ... */
 c = toupper(c) // Calls the function toupper().

* The C99 standard contradicts itself on this point. In describing the use of library functions it says,
“Any invocation of a library function that is implemented as a macro shall expand to code that
evaluates each of its arguments exactly once, fully protected by parentheses where necessary, so
it is generally safe to use arbitrary expressions as arguments,” but in its descriptions of the func-
tions putc(), putwc(), getc(), and getwc(), the standard contains warnings like this one: “The
putc function is equivalent to fputc, except that if it is implemented as a macro, it may evaluate
streammore than once, so that argument should never be an expression with side effects.” It is fair
to hope that the warnings are obsolete, but perhaps safer just to avoid using arguments with side
effects—or to use fputc() rather than putc(), and so on.

230 | Chapter 15: The Standard Headers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Reserved Identifiers

When choosing identifiers to use in your programs, you must be aware that
certain identifiers are reserved for the standard library. Reserved identifiers
include the following:

• All identifiers that begin with an underscore, followed by a second under-
score or an uppercase letter, are always reserved. Thus you cannot use identi-
fiers such as _ _x or _Max, even for local variables or labels.

• All other identifiers that begin with an underscore are reserved as identifiers
with file scope. Thus you cannot use an identifier such as _a_ as the name of a
function or a global variable, although you can use it for a parameter, a local
variable, or a label. The identifiers of structure or union members can also
begin with an underscore, as long as the second character is not another
underscore or an uppercase letter.

• Identifiers declared with external linkage in the standard headers are reserved
as identifiers with external linkage. Such identifiers include function names,
as well as the names of global variables such as errno. Although you cannot
declare these identifiers with external linkage as names for your own func-
tions or objects, you may use them for other purposes. For example, in a
source file that does not include string.h, you may define a static function
named strcpy().

• The identifiers of all macros defined in any header you include are reserved.

• Identifiers declared with file scope in the standard headers are reserved within
their respective name spaces. Once you include a header in a source file, you
cannot use any identifier that is declared with file scope in that header for
another purpose in the same name space (see “Identifier Name Spaces” in
Chapter 1) or as a macro name.

Although some of the conditions listed here have “loopholes” that allow you to
reuse identifiers in a certain name space or with static linkage, overloading identi-
fiers can cause confusion, and it’s generally safest to avoid the identifiers declared
in the standard headers completely. In the following sections, we also list identi-
fiers that have been reserved for future extensions of the C standard. The last
three rules in the previous list apply to such reserved identifiers as well.

Contents of the Standard Headers
The following subsections list the standard headers in alphabetical order, with
brief descriptions of their contents, including all the types and macros defined in
them.

The standard functions are described in the next two chapters: Chapter 16
summarizes the functions that the standard library provides each area of applica-
tion—the mathematical functions, string manipulation functions, functions for
time and date operations, and so on. Chapter 17 then provides a detailed descrip-
tion of each function individually, in alphabetical order, with examples
illustrating their use.

Contents of the Standard Headers | 231

Th
e Stan

d
ard

H
ead

ers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

assert.h

This header defines only the function-like macro assert(), which tests whether
the value of an expression is nonzero. If you define the macro NDEBUG before
including assert.h, then calls to assert() have no effect.

complex.h

C99 supports arithmetic with complex numbers by introducing complex floating-
point types and including appropriate functions in the math library. The header
file complex.h contains the prototypes of the complex math functions and defines
the related macros. For a brief description of complex numbers and their repre-
sentation in C, see “Complex Floating-Point Types (C99)” in Chapter 2.

The names of the mathematical functions for complex numbers all begin with the
letter c. For example, csin() is the complex sine function, and cexp() the
complex exponential function. You can find a complete list of these functions in
“Mathematical Functions” in Chapter 16. In addition, the following function
names are reserved for future extensions:

cerf() cerfc() cexp2() cexpm1() clog10() clog1p()
clog2() clgamma() ctgamma()

The same names with the suffixes f (float _Complex) and l (long double _Complex)
are also reserved.

The header file complex.h defines the following macros:

complex
This is a synonym for the keyword _Complex.

_Complex_I
This macro represents an expression of type const float _Complex whose
value is the imaginary unit, i.

I
This macro is a synonym for _Complex_I, and likewise represents the imagi-
nary unit.

ctype.h

This header contains the declarations of functions to classify and convert single
characters. These include the following functions, which are usually also imple-
mented as macros:

isalnum() isalpha() isblank() iscntrl() isdigit() isgraph()
islower() isprint() ispunct() isspace() isupper() isxdigit()
tolower() toupper()

These functions or macros take an argument of type int, whose value must be
between 0 and 255, inclusive, or EOF. The macro EOF is defined in stdio.h.

All names that begin with is or to followed by a lowercase letter are reserved for
future extensions.

232 | Chapter 15: The Standard Headers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

errno.h

This header declares the identifier errno for use as a status variable with type int.
Various functions in the standard library set errno to a value indicating the type of
error encountered during execution. In the function descriptions in Chapter 17,
the possible values of errno are listed for each such function.

The identifier errno is not necessarily declared as a global variable. It may be a
macro that represents a modifiable lvalue with the type int. For example, if _errno()
is a function that returns a pointer to int, then errno could be defined as follows:

#define errno (* _errno())

The header errno.h also defines an appropriate macro constant for each possible
value of errno. The names of these macros begin with E, and include at least these
three:

EDOM
Domain error; the function is mathematically not defined for the given value
of the argument.

EILSEQ
Illegal sequence. For example, a multibyte character conversion function may
have encountered a sequence of bytes that cannot be interpreted as a multi-
byte character in the encoding used.

ERANGE
Range error; the function’s mathematical result is not representable by its
return type.

All macro names that begin with E followed by a digit or an uppercase letter are
reserved for future extensions.

fenv.h

C99 introduced the floating-point environment, which provides system variables to
allow programs to deal flexibly with floating-point exceptions and control modes.
(See also “Mathematical Functions” in Chapter 16.) The header fenv.h contains all
the declarations that may be used in accessing the floating-point environment,
although implementations are not required to support floating-point exceptions
or control modes.

Macro and type definitions for the floating-point environment

The header fenv.h contains the following definitions to manipulate the floating-
point environment:

fenv_t
A type capable of representing the floating-point environment as a whole.

FE_DFL_ENV
An object of the type const fenv_t *; points to the default floating-point
environment, which is in effect when the program starts.

Contents of the Standard Headers | 233

Th
e Stan

d
ard

H
ead

ers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Macro and type definitions for floating-point exceptions

Implementations that support floating-point exceptions also define an integer
macro corresponding to the status flag for each kind of exception that can occur.
Standard names for these macros are:

FE_DIVBYZERO, FE_INEXACT, FE_INVALID, FE_OVERFLOW, FE_UNDERFLOW
These macros allow you to select one or more kinds of exceptions when
accessing the status flags. You can also combine several such macros using
the bitwise OR operator (|) to obtain a value that represents several kinds of
exceptions.

FE_ALL_EXCEPT
This macro represents the bitwise OR of all the exception macros defined in
the given implementation.

If a given implementation does not support one or more of the exceptions indi-
cated by these macros, then the corresponding macro is not defined. Furthermore,
implementations may also define other exception macros, with names that begin
with FE_ followed by an uppercase letter.

In addition to the macros listed previously, implementations that support
floating-point exceptions also define a type for the floating-point exception status
flags:

fexcept_t
This type represents all of the floating-point exception status flags, including
all the information that the given implementation provides about exceptions.
Such information may include the address of the instruction that raised the
exception, for example. This type is used by the functions fegetexceptflag()
and fesetexceptflag().

Macro definitions for rounding modes

Implementations may allow programs to query or set the way floating-point
results are rounded. If so, the header fenv.h defines the following macros as
distinct integer constants:

FE_DOWNWARD, FE_TONEAREST, FE_TOWARDZERO, FE_UPWARD

A given implementation might not define all of these macros if it does not support
the corresponding rounding direction, and might also define macro names for
other rounding modes that it does support. The function fegetround() returns the
current rounding mode—that is, the value of the corresponding macro name—
and fesetround() sets the rounding mode as specified by its argument.

float.h

The header file float.h defines macros that describe the value range, the precision,
and other properties of the types float, double, and long double.

234 | Chapter 15: The Standard Headers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Normalized representation of floating-point numbers

The values of the macros in float.h refer to the following normalized representa-
tion of a floating-point number x:

x = s × 0.d1d2 ... dp × be

The symbols in this representation have the following meanings and conditions:

s The sign of x; s = 1 or s = –1

di A base b digit in the significand (also called the mantissa) of x (0.d1d2 . . . dp in
the general representation); d1 > 0 if x ≠ 0

p The number of digits in the significand (or to be more precise, in the fraction
part)

b The base of the exponent; b > 1

e The integer exponent; emin ≤ e ≤ emax

The floating-point types may also be able to represent other values besides
normalized floating-point numbers, such as the following kinds of values:

• Subnormal floating-point numbers, or those for which x ≠ 0, e = emin, and
d1 = 0.

• Non-normalized floating-point numbers, for which x ≠ 0, e > emin, and d1 = 0.

• Infinities; that is, values that represent +∞ or –∞.

• NaNs, or values that do not represent valid floating-point numbers. NaN
stands for “not a number.”

NaNs can be either quiet or signaling NaNs. When a signaling NaN occurs in the
evaluation of an arithmetic expression, it sets the exception flag FE_INVALID in the
floating-point environment. Quiet NaNs do not set the exception flag.

Rounding mode and evaluation method

The following two macros defined in the header float.h provide details about how
floating-point arithmetic is performed:

FLT_ROUNDS
This macro represents the currently active rounding direction, and is the only
macro defined in float.h whose value can change during runtime. It can have
the following values:

Other values may stand for implementation-defined rounding modes. If the
implementation supports different rounding modes, you can change the
active rounding mode by calling the function fesetround().

–1 Undetermined

0 Toward zero

1 Toward the nearest representable value

2 Toward the next greater value

3 Toward the next smaller value

Contents of the Standard Headers | 235

Th
e Stan

d
ard

H
ead

ers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

FLT_EVAL_METHOD
The macro FLT_EVAL_METHOD has one of several possible values, but does not
change during the program’s runtime. This macro indicates the floating-point
format used internally for operations on floating-point numbers. The internal
format may have greater precision and a broader value range than the oper-
ands’ type. The possible values of FLT_EVAL_METHOD have the following
meanings:

Precision and value range

For a given base, the precision with which numbers are represented is determined
by the number of digits in the significand, and the value range is indicated by the
least and greatest values of the exponent. These values are provided, for each real
floating-point type, by the following macros. The macro names with the prefix
FLT_ represent characteristics of the type float; those with the prefix DBL_ refer to
double; and those with LDBL_ refer to long double. The value of FLT_RADIX applies
to all three floating-point types.

FLT_RADIX
The radix or base (b) of the exponential representation of floating point
numbers; usually 2

FLT_MANT_DIG, DBL_MANT_DIG, LDBL_MANT_DIG
The number of digits in the significand or mantissa (p)

FLT_MIN_EXP, DBL_MIN_EXP, LDBL_MIN_EXP
The smallest negative exponent to the base FLT_RADIX (emin)

FLT_MAX_EXP, DBL_MAX_EXP, LDBL_MAX_EXP
The largest positive exponent to the base FLT_RADIX (emax)

In practice, it is useful to have the precision and the value range of a floating-
point type in decimal notation. Macros for these characteristics are listed in
Table 15-1. The values in the second column represent the C standard’s
minimum requirements. The values in the third column are the requirements of
the IEC 60559 standard for floating-point numbers with single and double preci-
sion. In most C implementations, the types float and double have these IEC
60559 characteristics.

–1 Undetermined.

0 Arithmetic operations are performed with the precision of the
operands’ type.

1 Operations on float or double values are executed in double
precision, and operations on long double are executed in long
double precision.

2 All operations are performed internally in long double precision.

236 | Chapter 15: The Standard Headers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

inttypes.h

The header inttypes.h includes the header stdint.h, and contains extensions to it.
The header stdint.h defines integer types with specified bit widths, including the
types intmax_t and uintmax_t, which represent the widest integer types imple-
mented. (See also “Integer Types with Exact Width” in Chapter 2.)

Types

The header inttypes.h defines the following structure type:

imaxdiv_t
This is a structure type of two members named quot and rem, whose type is
intmax_t. The function imaxdiv() divides one number of type intmax_t by
another, and stores the quotient and remainder in an object of type struct
imaxdiv_t.

Table 15-1. Macros for the range and precision of floating-point types in decimal notation

Macro ISO 9899 IEC 60559 Meaning

FLT_DIG
DBL_DIG
LDBL_DIG

6
10
10

6
15

The precision as a number of decimal digits. A
decimal floating-point number of this many
digits, stored in binary representation, always
yields the same value to this many digits
when converted back to decimal notation.

DECIMAL_DIG 10 17 The number of decimal digits necessary to
represent any number of the largest floating-
point type supported so that it can be
converted to decimal notation and back to
binary representation without its value
changing.

FLT_MIN_10_EXP
DBL_MIN_10_EXP
LDBL_MIN_10_EXP

–37
–37
–37

–37
–307

The smallest negative exponent to base 10, n,
such that 10n is within the positive range of
the type.

FLT_MAX_10_EXP
DBL_MAX_10_EXP
LDBL_MAX_10_EXP

+37
+37
+37

+38
+308

The greatest exponent to base 10, n, such
that 10n is within the range of the type.

FLT_MIN
DBL_MIN
LDBL_MIN

1E–37
1E–37
1E–37

1.17549435E–38F
2.2250738585072014E–308

The smallest representable positive floating-
point number.

FLT_MAX
DBL_MAX
LDBL_MAX

1E+37
1E+37
1E+37

3.40282347E+38F
1.7976931348623157E+308

The greatest representable finite floating-
point number.

FLT_EPSILON
DBL_EPSILON
LDBL_EPSILON

1E–5
1E–9
1E–9

1.19209290E–07F
2.2204460492503131E–16

The positive difference between 1 and the
smallest representable number greater than 1.

Contents of the Standard Headers | 237

Th
e Stan

d
ard

H
ead

ers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Functions

In addition to imaxdiv(), the header inttypes.h also declares the function imaxabs(),
which returns the absolute value of an integer of the type intmax_t, and four func-
tions to convert strings into integers with the type intmax_t or uintmax_t.

Macros

Furthermore, inttypes.h defines macros for string literals that you can use as type
specifiers in format string arguments to the printf and scanf functions. The
header contains macros to specify each of the types defined in stdint.h. (In C++
implementations, these macros are defined conditionally: if you want the type
specifiers to be defined, you must make sure that the macro _ _STDC_FORMAT_MACROS
is defined before you include inttypes.h.)

The names of the type specifier macros for the printf family of functions begin
with the prefix PRI, followed by a conversion specifier (d, i, o, x, or X) and a
sequence of uppercase letters that refers to a type name. For example, the macro
names with the conversion specifier d are:

PRIdN PRIdLEASTN PRIdFASTN PRIdMAX PRIdPTR

The letter N at the end of the first three macro names listed here is a placeholder
for a decimal number indicating the bit width of a given type. Commonly imple-
mented values are 8, 16, 32, and 64.

Other PRI . . . macro names are analogous to the five just listed, but have different
conversion specifiers in place of the letter d , such as i, o, x, or X. The following
example uses a variable with the type int_fast32_t:

#include <inttypes.h>
int_fast32_t i32Var;
/* ... */
 printf("The value of i32Var, in hexadecimal notation: " "%10" PRIxFAST32
 "\n", i32Var);

The preprocessor concatenates the string literals "%10" and PRIxFAST32 to form the
full conversion specification. The resulting output of i32Var has a field width of
10 characters.

The names of the conversion specifier macros for the scanf family of functions
begins with the prefix SCN. The remaining characters are the same as the corre-
sponding PRI . . . macros, except that there is no conversion specifier X for scanf().
For example, the macro names with the conversion specifier d are:

SCNdN SCNdLEASTN SCNdFASTN SCNdMAX SCNdPTR

Again, the letter N at the end of the first three macro names as listed here is a
placeholder for a decimal number indicating the bit width of a given type.
Commonly implemented values are 8, 16, 32, and 64.

238 | Chapter 15: The Standard Headers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

iso646.h

The header iso646.h defines the eleven macros listed in Table 15-2, which you can
use as synonyms for C’s logical and bitwise operators.

limits.h

The header limits.h contains macros to represent the least and greatest represent-
able value of each integer type. These macros are listed in Table 15-3. The
numeric values in the table represent the minimum requirements of the C
standard.

The range of the type char depends on whether char is signed or unsigned. If char
is signed, then CHAR_MIN is equal to SCHAR_MIN and CHAR_MAX equal to SCHAR_MAX. If
char is unsigned, then CHAR_MIN is zero and CHAR_MAX is equal to UCHAR_MAX.

Table 15-2. ISO 646 operator names

Macro Meaning

and &&

or ||

not !

bitand &

bitor |

xor ^

compl ~

and_eq &=

or_eq |=

xor_eq ^=

not_eq !=

Table 15-3. Value ranges of the integer types

Type Minimum Maximum
Maximum value of
the unsigned type

char CHAR_MIN CHAR_MAX UCHAR_MAX
28 – 1

signed char SCHAR_MIN
–(27 – 1)

SCHAR_MAX
27 – 1

short SHRT_MIN
–(215 – 1)

SHRT_MAX
215 – 1

USHRT_MAX
216 – 1

int INT_MIN
–(215 – 1)

INT_MAX
215 – 1

UINT_MAX
216 – 1

long LONG_MIN
–(231 – 1)

LONG_MAX
231 – 1

ULONG_MAX
232 – 1

long long LLONG_MIN
–(263 – 1)

LLONG_MAX
263 – 1

ULLONG_MAX
264 – 1

Contents of the Standard Headers | 239

Th
e Stan

d
ard

H
ead

ers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The header limits.h also defines the following two macros:

CHAR_BIT
The number of bits in a byte, which must be at least 8.

MB_LEN_MAX
The maximum number of bytes in a multibyte character, which must be at
least 1.

The value of the macro CHAR_BIT determines the value of UCHAR_MAX: UCHAR_MAX is
equal to 2CHAR_BIT – 1.

The value of MB_LEN_MAX is greater than or equal to the value of MB_CUR_MAX, which
is defined in the header stdlib.h. MB_CUR_MAX represents the maximum number of
bytes in a multibyte character in the current locale. More specifically, the value
depends on the locale setting for the LC_CTYPE category (see the description of
setlocale() in Chapter 17 for details). If the current locale uses a stateful multi-
byte encoding, then both MB_LEN_MAX and MB_CUR_MAX include the number of bytes
necessary for a state-shift sequence before the actual multibyte character.

locale.h

The standard library supports the development of C programs that are able to
adapt to local cultural conventions. For example, programs may use locale-
specific character sets or formats for currency information.

The header locale.h declares two functions, the type struct lconv, the macro NULL
for the null pointer constant, and macros whose names begin with LC_ for the
locale information categories.

The function setlocale() allows you to query or set the current locale. The infor-
mation that makes up the locale is divided into categories, which you can query
and set individually. The following integer macros are defined to designate these
categories:

LC_ALL LC_COLLATE LC_CTYPE
LC_MONETARY LC_NUMERIC LC_TIME

The function setlocale() takes one of these macros as its first argument, and
operates on the corresponding locale category. The meanings of the macros are
described under the setlocale() function in Chapter 17. Implementations may
also define additional macros whose names start with LC_ followed by an upper-
case letter.

The second function defined in locale.h is localeconv(), which supplies informa-
tion about the conventions of the current locale by filling the members of a
structure of the type struct lconv. localeconv() returns a pointer to the struc-
ture. The structure contains members to describe the local formatting of
numerals, monetary amounts, and date and time information. For details, see the
description of localeconv() in Chapter 17.

240 | Chapter 15: The Standard Headers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

math.h

The header math.h declares the mathematical functions for real floating-point
numbers, and the related macros and types.

The mathematical functions for integer types are declared in stdlib.h, and those for
complex numbers in complex.h. In addition, the header tgmath.h defines the type-
generic macros, which allow you to call mathematical functions by uniform names
regardless of the arguments’ type. For a summary of the mathematical functions
in the standard library, see “Mathematical Functions” in Chapter 16.

The types float_t and double_t

The header math.h defines the two types float_t and double_t. These types repre-
sent the floating-point precision used internally by the given implementation in
evaluating arithmetic expressions of the types float and double. (If you use oper-
ands of the type float_t or double_t in your programs, they will not need to be
converted before arithmetic operations, as float and double may.) The value of
the macro FLT_EVAL_METHOD, defined in the header float.h, indicates which basic
types correspond to float_t and double_t. The possible values of FLT_EVAL_METHOD
are explained in Table 15-4.

Any other value of FLT_EVAL_METHOD indicates that the evaluation of floating-point
expressions is implementation-defined.

Classification macros

In addition to normalized floating-point numbers, the floating-point types can
also represent other values, such as infinities and NaNs (see “Normalized repre-
sentation of floating-point numbers” in the description of float.h in this chapter).
C99 specifies five classes of floating-point values, and defines an integer macro to
designate each of these categories. The five macros are:

FP_ZERO FP_NORMAL FP_SUBNORMAL FP_INFINITE FP_NAN

Implementations may also define additional categories, and corresponding macros
whose names begin with FP_ followed by an uppercase letter.

math.h defines the following function-like macros to classify floating-point values:

fpclassify()
This macro expands to the value of the FP_ . . . macro that designates the cate-
gory of its floating-point argument.

isfinite(), isinf(), isnan(), isnormal(), signbit()
These function-like macros test whether their argument belongs to a specific
category.

Table 15-4. The types float_t and double_t

FLT_EVAL_METHOD float_t double_t

0 float double

1 double double

2 long double long double

Contents of the Standard Headers | 241

Th
e Stan

d
ard

H
ead

ers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Other macros in math.h

The header math.h also defines the following macros:

HUGE_VAL, HUGE_VALF, HUGE_VALL
HUGE_VAL represents a large positive value with the type double. Mathematical
functions that return double can return the value of HUGE_VAL, with the appro-
priate sign, when the result exceeds the finite value range of double. The value
of HUGE_VAL may also represent a positive infinity, if the implementation
supports such a value.

HUGE_VALF and HUGE_VALL are analogous to HUGE_VAL, but have the types float
and long double.

INFINITY
This macro’s value is constant expression of type float that represents a posi-
tive or unsigned infinity, if such a value is representable in the given
implementation. If not, then INFINITY represents a constant expression of
type float that yields an overflow when evaluated, so that the compiler
generates an error message when processing it.

NAN
NaN stands for “not a number.” The macro NAN is a constant of type float
whose value is not a valid floating-point number. It is defined only if the
implementation supports quiet NaNs—that is, if a NaN can occur without
raising a floating-point exception.

FP_FAST_FMA, FP_FAST_FMAF, FP_FAST_FMAL
FMA stands for “fused multiply-and-add.” The macro FP_FAST_FMA is defined if
the function call fma(x,y,z) can be evaluated at least as fast as the mathemati-
cally equivalent expression x*y+z, for x, y, and z of type double. This is typically
the case if the fma() function makes use of a special FMA machine operation.

The macros FP_FAST_FMAF and FP_FAST_FMAL are analogous to FP_FAST_FMA, but
refer to the types float and long double.

FP_ILOGB0, FP_ILOGBNAN
These macros represent the respective values returned by the function call
ilogb(x) when the argument x is zero or NaN. FP_ILOGB0 is equal either to
INT_MIN or to –INT_MAX, and FP_ILOGBNAN equals either INT_MIN or INT_MAX.

MATH_ERRNO, MATH_ERREXCEPT, math_errhandling
MATH_ERRNO is the constant 1 and MATH_ERREXCEPT the constant 2. These values
are represented by distinct bits, and hence can be used as bit masks in
querying the value of math_errhandling. The identifier math_errhandling is
either a macro or an external variable with the type int. Its value is constant
throughout runtime, and you can query it in your programs to determine
whether the mathematical functions indicate errors by raising exceptions or
by providing an error code, or both. If the expression math_errhandling &
MATH_ERRNO is not equal to zero, then the program can read the global error
variable errno to identify domain and range errors in math function calls.
Similarly, if math_errhandling & MATH_ERREXCEPT is nonzero, then the math
functions indicate errors using the floating-point environment’s exception
flags. For more details, see “Error Handling” in Chapter 16.

242 | Chapter 15: The Standard Headers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

If a given implementation supports programs that use floating-point exceptions,
then the header fenv.h must define at least the macros FE_DIVBYZERO, FE_INVALID,
and FE_OVERFLOW.

setjmp.h

The header setjmp.h declares the function longjmp(), and defines the array type
jmp_buf and the function-like macro setjmp().

Calling setjmp() saves the current execution environment, including at least the
momentary register and stack values, in a variable whose type is jmp_buf. In this
way the setjmp() call bookmarks a point in the program, which you can then
jump back to at any time by calling the companion function longjmp(). In effect,
setjmp() and longjmp() allow you to program a nonlocal “goto.”

signal.h

The header signal.h declares the functions raise() and signal(), as well as
related macros and the following integer type:

sig_atomic_t
You can use the type sig_atomic_t to define objects that are accessible in an
atomic operation. Such objects are suitable for use in hardware interrupt
signal handlers, for example. The value range of this type is described by the
values of the macros SIG_ATOMIC_MIN and SIG_ATOMIC_MAX, which are defined
in the header stdint.h.

A signal handler is a function that is automatically executed when the program
receives a given signal from the operating environment. You can use the function
signal() in your programs to install functions of your own as signal handlers.

Each type of signal that programs can receive is identified by a signal number.
Accordingly, signal.h defines macros of type int to designate the signal types. The
required signal type macros are:

SIGABRT SIGFPE SIGILL SIGINT SIGSEGV SIGTERM

The meanings of these signal types are described along with the signal() func-
tion in Chapter 17. Implementations may also define other signals. The names of
the corresponding macros begin with SIG or SIG_, followed by an uppercase letter.

The first argument to the function signal() is a signal number. The second is the
address of a signal handler function, or one of the following macros:

SIG_DFL, SIG_IGN
These macros are constant expressions whose values cannot be equal to the
address of any declarable function. SIG_DFL installs the implementation’s default
signal handler for the given signal type. If you call signal() with SIG_IGN as the
second argument, the program ignores signals of the given type, if the imple-
mentation allows programs to ignore them.

SIG_ERR
This macro represents the value returned by the signal() function if an error
occurs.

Contents of the Standard Headers | 243

Th
e Stan

d
ard

H
ead

ers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

stdarg.h

The header stdarg.h defines one type and four macros for use in accessing the
optional arguments of functions that support them (see “Variable Numbers of
Arguments” in Chapter 7):

va_list
Functions with variable numbers of arguments use an object of the type va_list
to access their optional arguments. Such an object is commonly called an
argument pointer, as it serves as a reference to a list of optional arguments.

The following function-like macros operate on objects of the type va_list:

va_start()
Sets the argument pointer to the first optional argument in the list.

va_arg()
Returns the current argument and sets the argument pointer to the next one
in the list.

va_copy()
Copies the va_list object in its current state.

va_end()
Cleans up after the use of a va_list object. A function with a variable number
of arguments must contain a va_end() macro call corresponding to each invo-
cation of va_start() or va_copy().

The macros va_copy() and va_end() may also be implemented as functions.

stdbool.h

The header stdbool.h defines the following four macros:

bool
A synonym for the type _Bool

true
The constant 1

false
The constant 0

_ _bool_true_false_are_defined
The constant 1

stddef.h

The header stddef.h defines three types and two macros for use in all kinds of
programs. The three types are:

ptrdiff_t
A signed integer type that represents the difference between two pointers.

size_t
An unsigned integer type used to represent the result of sizeof operations;
also defined in stdlib.h, wchar.h, stdio.h, and string.h.

244 | Chapter 15: The Standard Headers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wchar_t
An integer type that is wide enough to store any code in the largest extended
character that the implementation supports; also defined in stdlib.h and
wchar.h.

Macros that specify the least and greatest representable values of these three types
are defined in the header stdint.h.

The two macros defined in stddef.h are:

NULL
This macro represents a null pointer constant—an integer constant expres-
sion with the value 0, or such an expression cast as the type void *. The
macro NULL is also defined in the headers stdio.h, stdlib.h, string.h, time.h, and
wchar.h.

offsetof(structure_type, member)
This macro yields an integer constant with type size_t whose value is the
number of bytes between the beginning of the structure and the beginning of
its member member. The member must not be a bit-field.

stdint.h

The header stdint.h defines integer types with specific bit widths, and macros that
indicate the value ranges of these and other types. For example, you can use the
int64_t type, defined in stdint.h, to define a signed, 64-bit integer.

Value ranges of the integer types with specific widths

If a signed type of a given specific width is defined, then the corresponding
unsigned type is also defined, and vice versa. Unsigned types have names that
start with u (such as uint64_t, for example), which is followed by the name of the
corresponding signed type (such as int64_t).

For each type defined in stdint.h, macros are also defined to designate the type’s
least and greatest representable values. Table 15-5 lists the names of these macros,
with the standard’s requirements for their values. The word “exactly” in the table
indicates that the standard specifies an exact value rather than a maximum or
minimum. Otherwise, the standard allows the implementation to exceed the
ranges given in the table. The letter N before an underscore in the type names as
listed here is a placeholder for a decimal number indicating the bit width of a
given type. Commonly implemented values are 8, 16, 32, and 64.

Table 15-5. Value ranges of the integer types with specific widths

Type Minimum Maximum
Maximum value of the
unsigned type

intN_t INTN_MIN
Exactly –(2N–1)

INTN_MAX
Exactly 2N–1 – 1

UINTN_MAX
Exactly 2N – 1

int_leastN_t INT_LEASTN_MIN
–(2N–1 – 1)

INT_LEASTN_MAX
2N–1 – 1

UINT_LEASTN_MAX
2N – 1

Contents of the Standard Headers | 245

Th
e Stan

d
ard

H
ead

ers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

For the meanings of the fixed-width integer type names, and the C standard’s
requirements as to which of them must be defined, please see “Integer Types with
Exact Width” in Chapter 2.

Value ranges of other integer types

The header stdint.h also contains macros to document the value ranges of types
defined in other headers. These types are listed in Table 15-6. The numbers in
the table represent the minimum requirements of the C standard. The types
sig_atomic_t, wchar_t, and wint_t may be defined as signed or unsigned.

The types ptrdiff_t, size_t, and wchar_t are described in the section on stddef.h
in this chapter. The type sig_atomic_t is described under signal.h, and wint_t is
described under wchar.h.

In C++ implementations, the macros in Tables 15-5 and 15-6 are defined only if
the macro _ _STDC_LIMIT_MACROS is defined when you include stdint.h.

int_fastN_t INT_FASTN_MIN
–(2N–1 – 1)

INT_FASTN_MAX
2N–1 – 1

UINT_FASTN_MAX
2N – 1

intmax_t INTMAX_MIN
–(263 – 1)

INTMAX_MAX
263 – 1

UINTMAX_MAX
264 – 1

intptr_t INTPTR_MIN
–(215 – 1)

INTPTR_MAX
215 – 1

UINTPTR_MAX
216 – 1

Table 15-6. Value ranges of other integer types

Type Minimum Maximum

ptrdiff_t PTRDIFF_MIN
–65535

PTRDIFF_MAX
+65535

sig_atomic_t SIG_ATOMIC_MIN
If signed: –127
If unsigned: 0

SIG_ATOMIC_MAX
If signed: 127
If unsigned: 255

size_t N/A SIZE_MAX
65535

wchar_t WCHAR_MIN
If signed: –127
If unsigned: 0

WCHAR_MAX
If signed: 127
If unsigned: 255

wint_t WINT_MIN
If signed: –32767
If unsigned: 0

WINT_MAX
If signed: 32767
If unsigned: 65535

Table 15-5. Value ranges of the integer types with specific widths (continued)

Type Minimum Maximum
Maximum value of the
unsigned type

246 | Chapter 15: The Standard Headers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Macros for integer constants

For each decimal number N for which the header stdint.h defines a type int_leastN_t
(an integer type that is at least N bits wide), the header also defines two function-like
macros to generate values with the type int_leastN_t. Arguments to these macros
must be constants in decimal, octal, or hexadecimal notation, and must be within
the value range of the intended type (see “Integer Constants” in Chapter 3). The
macros are:

INTN_C(value), UINTN_C(value)
Expands to a signed or unsigned integer constant with the specified value and
the type int_leastN_t or uint_leastN_t, which is at least N bits wide. For
example, if uint_least32_t is defined as a synonym for the type unsigned
long, then the macro call UINT32_C(123) may expand to the constant 123UL.

The following macros are defined for the types intmax_t and uintmax_t:

INTMAX_C(value), UINTMAX_C(value)
These macros expand to a constant with the specified value and the type
intmax_t or uintmax_t.

(In C++ implementations, these macros are defined only if __STDC_CONSTANT_MACROS
is defined when you include stdint.h.)

stdio.h

The header stdio.h contains the declarations of all the basic functions for input
and output, as well as related macro and type definitions. The declarations for
wide character I/O functions—that is, for input and output of characters with the
type wchar_t—are contained in the header file wchar.h (see also Chapter 13).

In addition to size_t, which is discussed under stddef.h in this chapter, stdio.h
defines the following two types:

FILE
An object of the type FILE contains all the information necessary for control-
ling an I/O stream. This information includes a pointer to the stream’s buffer,
a file access position indicator, and flags to indicate error and end-of-file
conditions.

fpos_t
Objects of this type, which is the return type of the fgetpos() function, are
able to store all the information pertaining to a file access position. You can
use the fsetpos() function to resume file processing at the position described
by an fpos_t object.

The header stdio.h defines the macro NULL (described under stddef.h) as well as the
following 12 macros, all of which represent integer constant expressions:

_IOFBF, _IOLBF, _IONBF
These constants are used as arguments to the setvbuf() function, and specify
I/O buffering modes. The names stand for “fully buffered,” “line buffered,”
and “not buffered.”

Contents of the Standard Headers | 247

Th
e Stan

d
ard

H
ead

ers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

BUFSIZ
This is the size of the buffer activated by the setbuf() function, in bytes.

EOF
“End of file.” A negative value (usually –1) with type int. Various functions
return the constant EOF to indicate an attempt to read at the end of a file, or to
indicate an error.

FILENAME_MAX
This constant indicates how big a char array must be to store the longest file-
name supported by the fopen() function.

FOPEN_MAX
Programs are allowed to have at least this number of files open
simultaneously.

L_tmpnam
This constant indicates how big a char array must be to store a filename
generated by the tmpnam() function.

SEEK_SET, SEEK_CUR, SEEK_END
These constants are used as the third argument to the fseek() function.

TMP_MAX
The maximum number of unique filenames that the tmpnam() function can
generate.

The header stdio.h also declares three objects:

stdin, stdout, stderr
These are the standard I/O streams. They are pointers to the FILE objects
associated with the “standard input,” “standard output,” and “standard error
output” streams.

stdlib.h

The header stdlib.h declares general utility functions for the following purposes:

• Conversion of numeral strings into binary numeric values

• Random number generation

• Memory management

• Communication with the operating system

• Searching and sorting

• Integer arithmetic

• Conversion of multibyte characters to wide characters and vice versa

stdlib.h also defines the types size_t and wchar_t, which are described under
stddef.h in this chapter, as well as the following three types:

div_t, ldiv_t, lldiv_t
These are structure types used to hold the results of the integer division func-
tions div(), ldiv(), and lldiv(). These types are structures of two members,
quot and rem, which have the type int, long, or long long.

248 | Chapter 15: The Standard Headers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The header stdlib.h defines the macro NULL (see stddef.h) as well as the following
four macros:

EXIT_FAILURE, EXIT_SUCCESS
Integer constants that you can pass as arguments to the functions exit() and
_Exit() to report your program’s exit status to the operating environment.

MB_CUR_MAX
A nonzero integer expression with the type size_t. This is the maximum
number of bytes in a multibyte character under the current locale setting for the
locale category LC_CTYPE. This value must be less than or equal to MB_LEN_MAX,
defined in limits.h.

RAND_MAX
An integer constant that indicates the greatest possible value that can be
returned by the function rand().

string.h

The header string.h declares the string manipulation functions, along with other
functions that operate on byte arrays. The names of these functions begin with
str, as in strcpy(), for example, or with mem, as in memcpy(). Function names
beginning with str, mem, or wcs followed by a lowercase letter are reserved for
future extensions.

The header string.h also defines the type size_t and the macro NULL, described
under stddef.h in this section.

tgmath.h

The header tgmath.h includes the headers math.h and complex.h, and defines the
type-generic macros. These macros allow you to call different variants of mathe-
matical functions by a uniform name, regardless of the arguments’ type.

The mathematical functions in the standard library are defined with parameters of
specific real or complex floating-point types. Their names indicate types other
than double by the prefix c for _Complex, or by the suffixes f for float and l for
long double. The type-generic macros are overloaded names for these functions
that you can use with arguments of any arithmetic type. These macros detect the
arguments’ type and call the appropriate math function.

The header tgmath.h defines type-generic macros for all the mathematical func-
tions with floating-point parameters except except modf(), modff(), and modfl().
If a given function is defined for both real and complex or only for real floating-
point types, then the corresponding type-generic macro has the same name as the
function version for arguments of the type double—that is, the base name of the
function with no c prefix and no f or l suffix. For an example, assume the
following declarations:

#include <tgmath.h>
float f = 0.5F;
double d = 1.5;
double _Complex z1 = -1;
long double _Complex z2 = I;

Contents of the Standard Headers | 249

Th
e Stan

d
ard

H
ead

ers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Each of the macro calls in Table 15-7 then expands to the function call shown in
the right column.

Arguments with integer types are automatically converted to double. If you use
arguments of different types in invoking a type-generic macro with two parame-
ters, such as pow(), the macro calls the function version for the argument type
with the higher rank (see “Hierarchy of Types” in Chapter 4). If any argument has
a complex floating-point type, the macro calls the function for complex numbers.

Several functions are defined only for complex floating-point types. The type-generic
macros for these functions have names that start with c, but with no f or l suffix:

carg() cimag() conj() cproj() creal()

If you invoke one of these macros with a real argument, it calls the function for
the complex type that corresponds to the argument’s real floating-point type.

time.h

The header time.h declares the standard functions, macros and types for manipu-
lating date and time information. These functions are listed in the section “Date
and Time” in Chapter 16.

The types declared in time.h are size_t (see stddef.h in this chapter) and the
following three types:

clock_t
This is the arithmetic type returned by the function clock() (usually defined
as unsigned long).

time_t
This is an arithmetic type returned by the functions timer() and mktime()
(usually defined as long).

struct tm
The members of this structure represent a date or a time, broken down into
seconds, minutes, hours, the day of the month, and so on. The functions
gmtime() and localtime() return a pointer to struct tm. The structure’s
members are described under the gmtime() function in Chapter 17.

The header time.h defines the macro NULL (see stddef.h) and the following macro:

CLOCKS_PER_SEC
This is a constant expression with the type clock_t. You can divide the return
value of the clock() function by CLOCKS_PER_SEC to obtain your program’s
CPU use in seconds.

Table 15-7. Expansion of type-generic macros

Type-generic macro call Expansion

sqrt(f) sqrtf(f)

sqrt(d) sqrt(d)

sqrt(z1) csqrt(z1)

sqrt(z2) csqrtl(z2)

250 | Chapter 15: The Standard Headers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wchar.h

The headers stdio.h, stdlib.h, string.h, and time.h all declare functions for
processing byte-character strings—that is, strings of characters with the type char.
The header wchar.h declares similar functions for wide strings: strings of wide
characters, which have the type wchar_t. The names of these functions generally
contain an additional w, as in wprintf(), for example, or start with wcs instead of
str, as in wcscpy(), which is the name of the wide-string version of the strcpy()
function.

Furthermore, the header wchar.h declares more functions for converting multi-
byte characters to wide characters and vice versa, in addition to those declared in
stdlib.h. wchar.h declares functions for the following kinds of purposes:

• Wide and multibyte character I/O

• Conversion of wide-string numerals

• Copying, concatenating, and comparing wide strings and wide-character
arrays

• Formatting date and time information in wide strings

• Conversion of multibyte characters to wide characters and vice versa

The types defined in wchar.h are size_t and wchar_t (explained under stddef.h);
struct tm (see time.h); and the following two types:

mbstate_t
Objects of this type store the parsing state information involved in the
conversion of a multibyte string to a wide character string, or vice versa.

wint_t
An integer type whose bit width is at least that of int. wint_t must be wide
enough to represent the value range of wchar_t and the value of the macro
WEOF. The types wint_t and wchar_t may be identical.

The header wchar.h defines the macro NULL (see stddef.h), the macros WCHAR_MIN
and WCHAR_MAX (see stdint.h), and the following macro:

WEOF
The macro WEOF has the type wint_t and a value that is distinct from all the
character codes in the extended character set. Unlike EOF, its value may be
positive. Various functions return the constant WEOF to indicate an attempt to
read at the end of a file, or to indicate an error.

wctype.h

The header wctype.h declares functions to classify and convert wide characters.
These functions are analogous to those for byte characters declared in the header
ctype.h. In addition, wctype.h declares extensible wide character classification and
conversion functions.

Contents of the Standard Headers | 251

Th
e Stan

d
ard

H
ead

ers

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The types defined in wctype.h are wint_t (described under wchar.h) and the
following two types:

wctrans_t
This is a scalar type to represent locale-specific mapping rules. You can
obtain a value of this type by calling the wctrans() function, and use it as an
argument to the function towctrans() to perform a locale-specific wide-char-
acter conversion.

wctype_t
This is a scalar type to represent locale-specific character categories. You can
obtain a value of this type by calling the wctype() function, and pass it as an
argument to the function iswctype() to determine whether a given wide char-
acter belongs to the given category.

The header wctype.h also defines the macro WEOF, described under wchar.h.

252

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Chapter 16Functions at a Glance

16
Functions at a Glance

This chapter lists the functions in the standard library according to their respec-
tive areas of application, describing shared features of the functions and their
relationships to one another. This compilation might help you to find the right
function for your purposes while programming.

The individual functions are described in detail in Chapter 17,
which explains them in alphabetical order, with examples.

Input and Output
We have dealt with this topic in detail in Chapter 13, which contains sections on
I/O streams, sequential and random file access, formatted I/O, and error hand-
ling. A tabular list of the I/O functions will therefore suffice here. Table 16-1 lists
general file access functions declared in the header stdio.h.

Table 16-1. General file access functions

Purpose Functions

Rename a file, delete a file rename(), remove()

Create and/or open a file fopen(), freopen(), tmpfile()

Close a file fclose()

Generate a unique filename tmpnam()

Query or clear file access flags feof(), ferror(), clearerr()

Query the current file access position ftell(), fgetpos()

Change the current file access position rewind(), fseek(), fsetpos()

Write buffer contents to file fflush()

Control file buffering setbuf(), setvbuf()

Mathematical Functions | 253

Fu
n

ctio
n

s
at

a
G

lan
ce

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

There are two complete sets of functions for input and output of characters and
strings: the byte-character and the wide-character I/O functions (see “Byte-
Oriented and Wide-Oriented Streams” in Chapter 13 for more information). The
wide-character functions operate on characters with the type wchar_t, and are
declared in the header wchar.h. Table 16-2 lists both sets.

Mathematical Functions
The standard library provides many mathematical functions. Most of them
operate on real or complex floating-point numbers. However, there are also
several functions with integer types, such as the functions to generate random
numbers.

The functions to convert numeral strings into arithmetic types are listed in “String
Processing,” later in this chapter. The remaining math functions are described in
the following subsections.

Mathematical Functions for Integer Types

The math functions for the integer types are declared in the header stdlib.h. Two
of these functions, abs() and div(), are declared in three variants to operate on
the three signed integer types int, long, and long long. As Table 16-3 shows, the
functions for the type long have names beginning with the letter l; those for long
long with ll. Furthermore, the header inttypes.h declares function variants for the
type intmax_t, with names that begin with imax.

Table 16-2. File I/O functions

Purpose Functions in stdio.h Functions in wchar.h

Get/set stream orientation fwide()

Write characters fputc(), putc(), putchar() fputwc(), putwc(), putwchar()

Read characters fgetc(), getc(), getchar() fgetwc(), getwc(), getwchar()

Put back characters read ungetc() ungetwc()

Write lines fputs(), puts() fputws()

Read lines fgets(), gets() fgetws()

Write blocks fwrite()

Read blocks fread()

Write formatted strings printf(), vprintf()
fprintf(), vfprintf()
sprintf(), vsprintf()
snprintf(), vsnprintf()

wprintf(), vwprintf()
fwprintf(), vfwprintf()
swprintf(), vswprintf()

Read formatted strings scanf(), vscanf()
fscanf(), vfscanf()
sscanf(), vsscanf()

wscanf(), vwscanf()
fwscanf(), vfwscanf()
swscanf(), vswscanf()

254 | Chapter 16: Functions at a Glance

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Floating-Point Functions

The functions for real floating-point types are declared in the header math.h, and
those for complex floating-point types in complex.h. Table 16-4 lists the functions
that are available for both real and complex floating-point types. The complex
versions of these functions have names that start with the prefix c. Table 16-5 lists
the functions that are only defined for the real types; and Table 16-6 lists the func-
tions that are specific to complex types.

For the sake of readability, Tables 16-4 through 16-6 show only the names of the
functions for the types double and double _Complex. Each of these functions also
exists in variants for the types float (or float _Complex) and long double (or long
double _Complex). The names of these variants end in the suffix f for float or l for
long double. For example, the functions sin() and csin() listed in Table 16-4
also exist in the variants sinf(), sinl(), csinf(), and csinl() (but see also
“Type-generic macros” in the next section).

Table 16-3. Integer arithmetic functions

Purpose Functions declared in stdlib.h Functions declared in stdint.h

Absolute value abs(), labs(), llabs() imaxabs()

Division div(), ldiv(), lldiv() imaxdiv()

Random numbers rand(), srand()

Table 16-4. Functions for real and complex floating-point types

Mathematical function C functions in math.h C functions in complex.h

Trigonometry sin(), cos(), tan()
asin(), acos(), atan()

csin(), ccos(), ctan()
casin(), cacos(), catan()

Hyperbolic trigonometry sinh(), cosh(), tanh()
asinh(), acosh(), atanh()

csinh(), ccosh(), ctanh()
casinh(), cacosh(), catanh()

Exponential function exp() cexp()

Natural logarithm log() clog()

Powers, square root pow(), sqrt() cpow(), csqrt()

Absolute value fabs() cabs()

Table 16-5. Functions for real floating-point types

Mathematical function C function

Arctangent of a quotient atan2()

Exponential functions exp2(), expm1(), frexp(), ldexp()
scalbn(), scalbln()

Logarithmic functions log10(), log2(), log1p(),
logb(), ilogb()

Roots cbrt(), hypot()

Error functions for normal distributions erf(), erfc()

Gamma function tgamma(), lgamma()

Mathematical Functions | 255

Fu
n

ctio
n

s
at

a
G

lan
ce

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Function-like Macros

The standard headers math.h and tgmath.h define a number of function-like
macros that can be invoked with arguments of different floating-point types. Vari-
able argument types in C are supported only in macros, not in function calls.

Type-generic macros

Each floating-point math function exists in three or six different versions: one for
each of the three real types, or for each of the three complex types, or for both real
and complex types. The header tgmath.h defines the type-generic macros, which
allow you to call any version of a given function under a uniform name. The
compiler detects the appropriate function from the arguments’ type. Thus you do
not need to edit the math function calls in your programs when you change an
argument’s type from double to long double, for example. The type-generic
macros are described in the section on tgmath.h in Chapter 15.

Categories of floating-point values

C99 defines five kinds of values for the real floating-point types, with distinct
integer macros to designate them (see the section on math.h in Chapter 15):

FP_ZERO FP_NORMAL FP_SUBNORMAL FP_INFINITE FP_NAN

Remainder fmod(), remainder(), remquo()

Separate integer and fractional parts modf()

Next integer ceil(), floor()

Next representable number nextafter(), nexttoward()

Rounding functions trunc(), round(), lround(), llround(),
nearbyint(), rint(), lrint(), llrint()

Positive difference fdim()

Multiply and add fma()

Minimum and maximum fmin(), fmax()

Assign one number’s sign to another copysign()

Generate a NaN nan()

Table 16-6. Functions for complex floating-point types

Mathematical function C function

Isolate real and imaginary parts creal(), cimag()

Argument (the angle in polar coordinates) carg()

Conjugate conj()

Project onto the Riemann sphere cproj()

Table 16-5. Functions for real floating-point types (continued)

Mathematical function C function

256 | Chapter 16: Functions at a Glance

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

These classification macros, and the function-like macros listed in Table 16-7, are
defined in the header math.h. The argument of each of the function-like macros
must be an expression with a real floating-point type.

For example, the following two tests are equivalent:

if (fpclassify(x) == FP_INFINITE) /* ... */ ;
if (isinf(x)) /* ... */ ;

Comparison macros

Any two real, finite floating-point numbers can be compared. In other words, one
is always less than, equal to, or greater than the other. However, if one or both
operands of a comparative operator is a NaN—a floating-point value that is not a
number—for example, then the operands are not comparable. In this case, the
operation yields the value 0, or “false,” and may raise the floating-point exception
FE_INVALID.

In practice, you may want to avoid risking an exception when comparing floating-
point objects. For this reason, the header math.h defines the function-like macros
listed in Table 16-8. These macros yield the same results as the corresponding
expressions with comparative operators, but perform a “quiet” comparison; that
is, they never raise exceptions. The two arguments of each macro must be expres-
sions with real floating-point types.

Pragmas for Arithmetic Operations

The following two standard pragmas influence the way in which arithmetic
expressions are compiled:

#pragma STDC FP_CONTRACT on_off_switch
#pragma STDC CX_LIMITED_RANGE on_off_switch

Table 16-7. Function-like macros to classify floating-point values

Purpose Function-like macros

Get the category of a floating-point value fpclassify()

Test whether a floating-point value
belongs to a certain category

isfinite(), isinf(), isnan(), isnormal(), signbit()

Table 16-8. Function-like macros to compare floating-point values

Comparison Function-like macro

(x) > (y) isgreater(x, y)

(x) >= (y) isgreaterequal(x, y)

(x) < (y) isless(x, y)

(x) <= (y) islessequal(x, y)

((x) < (y) || (x) > (y)) islessgreater(x, y)a

a Unlike the corresponding operator expression, the function-like macro islessgreater()
evaluates its arguments only once

Test for comparability isunordered(x, y)

Mathematical Functions | 257

Fu
n

ctio
n

s
at

a
G

lan
ce

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The value of on_off_switch must be ON, OFF, or DEFAULT. If switched ON, the first of
these pragmas, FP_CONTRACT, allows the compiler to contract floating-point expres-
sions with several C operators into fewer machine operations, if possible.
Contracted expressions are faster in execution. However, because they also elimi-
nate rounding errors, they may not yield precisely the same results as
uncontracted expressions. Furthermore, an uncontracted expression may raise
floating-point exceptions that are not raised by the corresponding contracted
expression. It is up to the compiler to determine how contractions are performed,
and whether expressions are contracted by default.

The second pragma, CX_LIMITED_RANGE, affects the multiplication, division, and
absolute values of complex numbers. These operations can cause problems if their
operands are infinite, or if they result in invalid overflows or underflows. When
switched ON, the pragma CX_LIMITED_RANGE instructs the compiler that it is safe to
use simple arithmetic methods for these three operations, as only finite operands
will be used, and no overflows or underflows need to be handled. By default, this
pragma is switched OFF.

In source code, these pragma directives can be placed outside all functions, or at
the beginning of a block, before any declarations or statements. The pragmas take
effect from the point where they occur in the source code. If a pragma directive is
placed outside all functions, its effect ends with the next directive that invokes the
same pragma, or at the end of the translation unit. If the pragma directive is
placed within a block, its effect ends with the next directive that invokes the same
pragma in a nested block, or at the end of the containing block. At the end of a
block, the compiler behavior returns to the state that was in effect at the begin-
ning of the block.

The Floating-Point Environment

The floating-point environment consists of system variables for floating-point
status flags and control modes. Status flags are set by operations that raise
floating-point exceptions, such as division by zero. Control modes are features of
floating-point arithmetic behavior that programs can set, such as the way in which
results are rounded to representable values. Support for floating-point exceptions
and control modes is optional.

All of the declarations involved in accessing the floating-point environment are
contained in the header fenv.h (see Chapter 15).

Programs that access the floating-point environment should inform the compiler
beforehand by means of the following standard pragma:

#pragma STDC FENV_ACCESS ON

This directive prevents the compiler from applying optimizations, such as changes
in the order in which expressions are evaluated, that might interfere with querying
status flags or applying control modes.

FENV_ACCESS can be applied in the same ways as FP_CONTRACT and CX_LIMITED_RANGE:
outside all functions, or locally within a block (see the preceding section). It is up
to the compiler whether the default state of FENV_ACCESS is ON or OFF.

258 | Chapter 16: Functions at a Glance

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Accessing status flags

The functions in Table 16-9 allow you to access the exception status flags. One
argument to these functions indicates the kind or kinds of exceptions to operate
on. The following integer macros are defined in the header fenv.h to designate the
individual exception types:

FE_DIVBYZERO FE_INEXACT FE_INVALID FE_OVERFLOW FE_UNDERFLOW

Each of these macros is defined only if the implementation supports the corre-
sponding exception. The macro FE_ALL_EXCEPT designates all the supported
exception types.

Rounding modes

The floating-point environment also includes the rounding mode currently in
effect for floating-point operations. The header fenv.h defines a distinct integer
macro for each supported rounding mode. Each of the following macros is
defined only if the implementation supports the corresponding rounding
direction:

FE_DOWNWARD FE_TONEAREST FE_TOWARDZERO FE_UPWARD

Implementations may also define other rounding modes and macro names for
them. The values of these macros are used as return values or as argument values
by the functions listed in Table 16-10.

Saving the whole floating-point environment

The functions listed in Table 16-11 operate on the floating-point environment as a
whole, allowing you to save and restore the floating-point environment’s state.

Table 16-9. Functions giving access to the floating-point exceptions

Purpose Function

Test floating-point exceptions fetestexcept()

Clear floating-point exceptions feclearexcept()

Raise floating-point exceptions feraiseexcept()

Save floating-point exceptions fegetexceptflag()

Restore floating-point exceptions fesetexceptflag()

Table 16-10. Rounding mode functions

Purpose Function

Get the current rounding mode fegetround()

Set a new rounding mode fesetround()

Mathematical Functions | 259

Fu
n

ctio
n

s
at

a
G

lan
ce

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Error Handling

C99 defines the behavior of the functions declared in math.h in cases of invalid
arguments or mathematical results that are out of range. The value of the macro
math_errhandling, which is constant throughout a program’s runtime, indicates
whether the program can handle errors using the global error variable errno, or
the exception flags in the floating-point environment, or both.

Domain errors

A domain error occurs when a function is mathematically not defined for a given
argument value. For example, the real square root function sqrt() is not defined
for negative argument values. The domain of each function in math.h is indicated
in the description in Chapter 17.

In the case of a domain error, functions return a value determined by the imple-
mentation. In addition, if the expression math_errhandling & MATH_ERRNO is not
equal to zero—in other words if the expression is true—then a function incurring
a domain error sets the error variable errno to the value of EDOM. If the expression
math_errhandling & MATH_ERREXCEPT is true, then the function raises the floating-
point exception FE_INVALID.

Range errors

A range error occurs if the mathematical result of a function is not representable in
the function’s return type without a substantial rounding error. An overflow occurs
if the range error is due to a mathematical result whose magnitude is finite, but too
large to be represented by the function’s return type. If the default rounding mode
is in effect when an overflow occurs, or if the exact result is infinity, then the func-
tion returns the value of HUGE_VAL (or HUGE_VALF or HUGE_VALL, if the function’s type
is float or long double) with the appropriate sign. In addition, if the expression
math_errhandling & MATH_ERRNO is true, then the function sets the error variable
errno to the value of ERANGE. If the expression math_errhandling & MATH_ERREXCEPT is
true, then an overflow raises the exception FE_OVERFLOW if the mathematical result is
finite, or FE_DIVBYZERO if it is infinite.

An underflow occurs when a range error is due to a mathematical result whose
magnitude is nonzero, but too small to be represented by the function’s return
type. When an underflow occurs, the function returns a value which is defined by
the implementation, but less than or equal to the value of DBL_MIN (or FLT_MIN, or
LDBL_MIN, depending on the function’s type). The implementation also determines
whether the function sets the error variable errno to the value of ERANGE if the

Table 16-11. Functions that operate on the whole floating-point environment

Purpose Function

Save the floating-point environment
Restore the floating-point environment

fegetenv()
fesetenv()

Save the floating-point environment and switch to nonstop processing feholdexcept()a

a In the nonstop processing mode activated by a call to feholdexcept(), floating-point exceptions do not interrupt program execution.

Restore a saved environment and raise any exceptions that are currently set feupdateenv()

260 | Chapter 16: Functions at a Glance

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

expression math_errhandling & MATH_ERRNO is true. Furthermore, the implementa-
tion defines whether an underflow raises the exception FE_UNDERFLOW if the
expression math_errhandling & MATH_ERREXCEPT is true.

Character Classification and Conversion
The standard library provides a number of functions to classify characters and to
perform conversions on them. The header ctype.h declares such functions for byte
characters, with character codes from 0 to 255. The header wctype.h declares
similar functions for wide characters, which have the type wchar_t. These func-
tions are commonly implemented as macros.

The results of these functions, except for isdigit() and isxdigit(), depends on
the current locale setting for the locale category LC_CTYPE. You can query or
change the locale using the setlocale() function.

Character Classification

The functions listed in Table 16-12 test whether a character belongs to a certain
category. Their return value is nonzero, or true, if the argument is a character
code in the given category.

The functions isgraph() and iswgraph() behave differently if the execution char-
acter set contains other byte-coded, printable, whitespace characters (that is,
whitespace characters which are not control characters) in addition to the space char-
acter (' '). In that case, iswgraph() returns false for all such printable whitespace
characters, while isgraph() returns false only for the space character (' ').

The header wctype.h also declares the two additional functions listed in
Table 16-13 to test wide characters. These are called the extensible classification
functions, which you can use to test whether a wide-character value belongs to an
implementation-defined category designated by a string.

Table 16-12. Character classification functions

Category Functions in ctype.h Functions in wctype.h

Letters isalpha() iswalpha()

Lowercase letters islower() iswlower()

Uppercase letters isupper() iswupper()

Decimal digits isdigit() iswdigit()

Hexadecimal digits isxdigit() iswxdigit()

Letters and decimal digits isalnum() iswalnum()

Printable characters (including whitespace) isprint() iswprint()

Printable, non-whitespace characters isgraph() iswgraph()

Whitespace characters isspace() iswspace()

Whitespace characters that separate words in a line of text isblank() iswblank()

Punctuation marks ispunct() iswpunct()

Control characters iscntrl() iswcntrl()

Character Classification and Conversion | 261

Fu
n

ctio
n

s
at

a
G

lan
ce

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The two functions in Table 16-13 can be used to perform at least the same tests as
the functions listed in Table 16-12. The strings that designate the character classes
recognized by wctype() are formed from the name of the corresponding test func-
tions, minus the prefix isw. For example, the string "alpha", like the function
name iswalpha(), designates the category “letters.” Thus for a wide character
value wc, the following tests are equivalent:

iswalpha(wc)
iswctype(wc, wctype("alpha"))

Implementations may also define other such strings to designate locale-specific
character classes.

Case Mapping

The functions listed in Table 16-14 yield the uppercase letter that corresponds to
a given lowercase letter, and vice versa. All other argument values are returned
unchanged.

Here again, as in the previous section, the header wctype.h declares two addi-
tional extensible functions to convert wide characters. These are described in
Table 16-15. Each kind of character conversion supported by the given implemen-
tation is designated by a string.

The two functions in Table 16-15 can be used to perform at least the same conver-
sions as the functions listed in Table 16-14. The strings that designate those

Table 16-13. Extensible character classification functions

Purpose Function

Map a string argument that designates a character class to a scalar value that can be used as the
second argument to iswctype().

wctype()

Test whether a wide character belongs to the class designated by the second argument. iswctype()

Table 16-14. Character conversion functions

Conversion Functions in ctype.h Functions in wctype.h

Upper- to lowercase tolower() towlower()

Lower- to uppercase toupper() towupper()

Table 16-15. Extensible character conversion functions

Purpose Function

Map a string argument that designates a character conversion to a scalar value that can be used as
the second argument to towctrans().

wctrans()

Perform the conversion designated by the second argument on a given wide character. towctrans()

262 | Chapter 16: Functions at a Glance

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

conversions are "tolower" and "toupper". Thus for a wide character wc, the
following two calls have the same result:

towupper(wc);
towctrans(wc, wctrans("toupper"));

Implementations may also define other strings to designate locale-specific char-
acter conversions.

String Processing
A string is a continuous sequence of characters terminated by '\0', the string
terminator character. The length of a string is considered to be the number of
characters before the string terminator. Strings are stored in arrays whose
elements have the type char or wchar_t. Strings of wide characters—that is, char-
acters of the type wchar_t—are also called wide strings.

C does not have a basic type for strings, and hence has no operators to concatenate,
compare, or assign values to strings. Instead, the standard library provides numerous
functions, listed in Table 16-16, to perform these and other operations with strings.
The header string.h declares the functions for conventional strings of char. The
names of these functions begin with str. The header wchar.h declares the corre-
sponding functions for strings of wide characters, with names beginning with wcs.

Like any other array, a string that occurs in an expression is implicitly converted
into a pointer to its first element. Thus when you pass a string as an argument to a
function, the function receives only a pointer to the first character, and can deter-
mine the length of the string only by the position of the string terminator character.

Table 16-16. String-processing functions

Purpose Functions in string.h Functions in wchar.h

Find the length of a string. strlen() wcslen()

Copy a string. strcpy(), strncpy() wcscpy(), wcsncpy()

Concatenate strings. strcat(), strncat() wcscat(), wcsncat()

Compare strings. strcmp(),strncmp(),
strcoll()

wcscmp(), wcsncmp(),
wcscoll()

Transform a string so that a comparison of two trans-
formed strings using strcmp() yields the same
result as a comparison of the original strings using the
locale-sensitive function strcoll().

strxfrm() wcsxfrm()

In a string, find:

• The first or last occurrence of a given character strchr(), strrchr() wcschr(), wcsrchr()

• The first occurrence of another string strstr() wcsstr()

• The first occurrence of any of a given set of char-
acters

strcspn(),strpbrk() wcscspn(), wcspbrk()

• The first character that is not a member of a given
set

strspn() wcsspn()

Parse a string into tokens strtok() wcstok()

Multibyte Characters | 263

Fu
n

ctio
n

s
at

a
G

lan
ce

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Multibyte Characters
In multibyte character sets, each character is coded as a sequence of one or more
bytes (see “Wide Characters and Multibyte Characters” in Chapter 1). Unlike wide
characters, each of which is represented by a single object of the type wchar_t, indi-
vidual multibyte characters may be represented by different numbers of bytes.
However, the number of bytes that represent a multibyte character, including any
necessary state-shift sequences, is never more than the value of the macro MB_CUR_MAX,
which is defined in the header stdlib.h.

C provides standard functions to obtain the wide-character code, or wchar_t
value, that corresponds to any given multibyte character, and to convert any wide
character to its multibyte representation. Some multibyte encoding schemes are
stateful; the interpretation of a given multibyte sequence may depend on its posi-
tion with respect to control characters, called shift sequences, that are used in the
multibyte stream or string. In such cases, the conversion of a multibyte character
to a wide character, or the conversion of a multibyte string into a wide string,
depends on the current shift state at the point where the first multibyte character
is read. For the same reason, converting a wide character to a multibyte char-
acter, or a wide string to a multibyte string, may entail inserting appropriate shift
sequences in the output.

Conversions between wide and multibyte characters or strings may be necessary
when you read or write characters from a wide-oriented stream (see “Byte-
Oriented and Wide-Oriented Streams” in Chapter 13).

Table 16-17 lists all of the standard library functions for handling multibyte
characters.

The letter r in the names of functions declared in wchar.h stands for “restartable.”
The restartable functions, in contrast to those declared in stdlib.h, without the r in
their names, take an additional argument, which is a pointer to an object that
stores the shift state of the multibyte character or string argument.

Table 16-17. Multibyte character functions

Purpose Functions in stdlib.h Functions in wchar.h

Find the length of a multibyte character mblen() mbrlen()

Find the wide character corresponding to a given
multibyte character

mbtowc() mbrtowc()

Find the multibyte character corresponding to a given
wide character

wctomb() wcrtomb()

Convert a multibyte string into a wide string mbstowcs() mbsrtowcs()

Convert a wide string into a multibyte string wcstombs() wcsrtombs()

Convert between byte characters and wide characters btowc(), wctob()

Test for the initial shift state mbsinit()

264 | Chapter 16: Functions at a Glance

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Converting Between Numbers and Strings
The standard library provides a variety of functions to interpret a numeral string
and return a numeric value. These functions are listed in Table 16-18. The
numeral conversion functions differ both in their target types and in the string
types they interpret. The functions for char strings are declared in the header
stdlib.h, and those for wide strings in wchar.h. Four new functions introduced in
C99, declared in inttypes.h, convert a string into the widest available signed or
unsigned integer type, intmax_t or uintmax_t.

The functions strtol(), strtoll(), and strtod() can be more practical to use
than the corresponding functions atol(), atoll(), and atof(), as they return the
position of the next character in the source string after the character sequence that
was interpreted as a numeral.

In addition to the functions listed in Table 16-18, you can also perform string-to-
number conversions using one of the sscanf() functions with an appropriate format
string. Similarly, you can use the sprintf() functions to perform the reverse conver-
sion, generating a numeral string from a numeric argument. These functions are
declared in the header stdio.h. Once again, the corresponding functions for wide
strings are declared in the header wchar.h. Table 16-19 lists both sets of functions.

Searching and Sorting
Table 16-20 lists the standard library’s two general searching and sorting functions,
which are declared in the header stdlib.h. The functions to search the contents of a
string are listed in the section “String Processing,” earlier in this chapter.

Table 16-18. Conversion of numeral strings

Conversion Functions in stdlib.h Functions in wchar.h

String to int atoi()

String to long atol(), strtol() wcstol()

String to unsigned long strtoul() wcstoul()

String to long long atoll(), strtoll() wcstoll()

String to unsigned long long strtoull() wcstoull()

String to intmax_t strtoimax() wcstoimax()

String to uintmax_t strtoumax() wcstoumax()

String to float strtof() wcstof()

String to double atof(), strtod() wcstod()

String to long double strtold() wcstold()

Table 16-19. Conversions between strings and numbers using format strings

Conversion Functions in stdio.h Functions in wchar.h

String to number sscanf(), vsscanf() swscanf(), vswscanf()

Number to string sprintf(), snprintf(),
vsprintf(), vsnprintf()

swprintf(), vswprintf()

Dynamic Memory Management | 265

Fu
n

ctio
n

s
at

a
G

lan
ce

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

These functions feature an abstract interface that allows you to use them for
arrays of any element type. One parameter of the qsort() function is a pointer to
a call-back function that qsort() can use to compare pairs of array elements.
Usually you will need to define this function yourself. The bsearch() function,
which finds the array element designated by a “key” argument, uses the same
technique, calling a user-defined function to compare array elements with the
specified key.

The bsearch() function uses the binary search algorithm, and therefore requires
that the array be sorted beforehand. Although the name of the qsort() function
suggests that it implements the quick-sort algorithm, the standard does not
specify which sorting algorithm it uses.

Memory Block Handling
The functions listed in Table 16-21 initialize, copy, search, and compare blocks of
memory. The functions declared in the header string.h access a memory block
byte by byte, while those declared in wchar.h read and write units of the type
wchar_t. Accordingly, the size parameter of each function indicates the size of a
memory block as a number of bytes, or as a number of wide characters.

Dynamic Memory Management
Many programs, including those that work with dynamic data structures for
example, depend on the ability to allocate and release blocks of memory at
runtime. C programs can do that by means of the four dynamic memory manage-
ment functions declared in the header stdlib.h, which are listed in Table 16-22.
The use of these functions is described in detail in Chapter 12.

Table 16-20. Searching and sorting functions

Purpose Function

Sort an array qsort()

Search a sorted array bsearch()

Table 16-21. Functions to manipulate blocks of memory

Purpose Functions in string.h Functions in wchar.h

Copy a memory block, where source and destina-
tion do not overlap

memcpy() wmemcpy()

Copy a memory block, where source and destina-
tion may overlap

memmove() wmemmove()

Compare two memory blocks memcmp() wmemcmp()

Find the first occurrence of a given character memchr() wmemchr()

Fill the memory block with a given character value memset() wmemset()

266 | Chapter 16: Functions at a Glance

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Date and Time
The header time.h declares the standard library functions to obtain the current
date and time, to perform certain conversions on date and time information, and
to format it for output. A key function is time(), which yields the current calendar
time in the form of an arithmetic value of the type time_t. This is usually encoded
as the number of seconds elapsed since a specified moment in the past, called the
epoch. The Unix epoch is 00:00:00 o’clock on January 1, 1970, UTC (Coordi-
nated Universal Time, formerly called Greenwich Mean Time or GMT).

There are also standard functions to convert a calendar time value with the type
time_t into a string or a structure of type struct tm. The structure type has
members of type int for the second, minute, hour, day, month, year, day of the
week, day of the year, and a Daylight Saving Time flag (see the description of the
gmtime() function in Chapter 17). Table 16-23 lists all the date and time
functions.

The extremely flexible strftime() function uses a format string and the LC_TIME
locale category to generate a date and time string. You can query or change the
locale using the setlocale() function. The function wcsftime() is the wide-string
version of strftime(), and is declared in the header wchar.h rather than time.h.

The diagram in Figure 16-1 offers an organized summary of the available date and
time functions.

Table 16-22. Dynamic memory management functions

Purpose Function

Allocate a block of memory malloc()

Allocate a memory block and fill it with null bytes calloc()

Resize an allocated memory block realloc()

Release a memory block free()

Table 16-23. Date and time functions

Purpose Function

Get the amount of CPU time used clock()

Get the current calendar time time()

Convert calendar time to struct tm gmtime()

Convert calendar time to struct tm with local time values localtime()

Normalize the values of a struct tm object and return the calendar
time with type time_t

mktime()

Convert calendar time to a string ctime(), strftime(), wcsftime()

Process Control | 267

Fu
n

ctio
n

s
at

a
G

lan
ce

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Process Control
A process is a program that is being executed. Each process has a number of
attributes, such as its open files. The exact attributes of processes are dependent
on the given system. The standard library’s process control features can be
divided into two kinds: those for communication with the operating system, and
those concerned with signals.

Communication with the Operating System

The functions in Table 16-24 are declared in the header stdio.h, and allow
programs to communicate with the operating system.

In Unix and Windows, one attribute of a process is the environment, which
consists of a list of strings of the form name=value. Usually, a process inherits an
environment generated by its parent process. The getenv() function is one way
for a program to receive control information, such as the names of directories
containing files to use.

In contrast to exit(), the _Exit() function ignores all signals, and does not call
any functions registered by atexit().

Figure 16-1. Date and time functions

Table 16-24. Functions for communication with the operating system

Purpose Function

Query the value of an environment variable getenv()

Execute a system command system()

Register a function to be executed when the program exits atexit()

Exit the program normally exit(), _Exit()

Exit the program abruptly abort()

System

Calendar time with the
arithmetic type time_t Calendar time as a string

time()

ctime()

Date and time information broken down
into a structure of type struct tm

gmtime()
localtime() mktime()

asctime()
strftime()
wcsftime()

268 | Chapter 16: Functions at a Glance

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Signals

An operating system sends various signals to processes to notify them of unusual
events. Such events typically include severe errors, such as illegal memory access,
or hardware interrupts such as timer alarms. Signals may also be caused by a user
at the console, however, or by the program itself calling the raise() function.

Each program may determine for itself how to react to specific signals. A program
can choose to ignore signals, or let the default signal handler deal with them, or
install its own signal handler function. A signal handler is a function that is
executed automatically when the program receives a given type of signal.

The two C functions that deal with signals are declared, along with macros to desig-
nate the signal types, in the header signal.h. The functions are listed in Table 16-25.

Internationalization
The standard library supports the development of C programs that are able to
adapt to local cultural conventions. For example, programs may use locale-
specific character sets or formats for currency information.

All programs start in the default locale, named "C", which contains no country or
language-specific information. During runtime, programs can change their locale
or query information about the current locale. The information that makes up a
locale is divided into categories, which you can query and set individually.

The functions that operate on the current locale are declared, along with the
related types and macros, in the header locale.h. They are listed in Table 16-26.

Many functions make use of locale-specific information. The standard library
function descriptions in Chapter 17 point out whenever a given function accesses
locale settings. Such functions include the following:

• Character classification and case mapping functions

• Locale-sensitive string comparison (strcoll() and wcscoll())

• Date and time formatting (strftime() and wcsftime())

• Conversion of numeral strings

• Conversions between multibyte and wide characters

Table 16-25. Signal functions

Purpose Function

Set the response to a given signal type signal()

Send a signal to the calling process raise()

Table 16-26. Locale functions

Purpose Function

Query or set the locale for a specified category of information setlocale()

Get information about the local formatting conventions for numeric and monetary strings localeconv()

Debugging | 269

Fu
n

ctio
n

s
at

a
G

lan
ce

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Nonlocal Jumps
The goto statement in C can be used to jump only within a function. For greater
freedom, the header setjmp.h declares a pair of functions that permit jumps to any
point in a program. Table 16-27 lists these functions.

When you call the function-like macro setjmp(), it stores a value in its argument
with the type jmp_buf that acts as a bookmark to that point in the program. The
jmp_buf object holds all the necessary parts of the current execution state
(including registers and stack). When you pass a jmp_buf object to longjmp(),
longjmp() restores the saved state, and the program continues at the point
following the earlier setjmp() call. The longjmp() call must not occur after the
function that called setjmp() returns. Furthermore, if any variables with auto-
matic storage duration in the function that called setjmp() were modified after
the setjmp() call (and were not declared as volatile), then their values after the
longjmp() call are indeterminate.

The return value of setjmp() indicates whether the program has reached that
point after the original setjmp() call, or through a longjmp() call: setjmp() itself
returns 0. If setjmp() appears to return any other value, then that point in the
program was reached by calling longjmp(). If the second argument in the
longjmp() call—that is, the requested return value—is 0, it is replaced with 1 as
the apparent return value after the corresponding setjmp() call.

Debugging
Using the macro assert() is a simple way to find logical mistakes during program
development. This macro is defined in the header assert.h. It simply tests its scalar
argument for a nonzero value. If the argument’s value is zero, assert() prints an
error message that lists the argument expression, the function, the filename, and
the line number, and then calls abort() to stop the program. In the following
example, the assert() calls perform some plausibility checks on the argument to
be passed to free():

#include <stdlib.h>
#include <assert.h>

char *buffers[64] = { NULL }; // An array of pointers
int i;

/* ... allocate some memory buffers; work with them ... */

 assert(i >= 0 && i < 64); // Index out of range?
 assert(buffers[i] != NULL); // Was the pointer used at all?
 free(buffers[i]);

Table 16-27. Nonlocal jump functions

Purpose Function

Save the current execution context as a jump target for the longjmp() function setjmp()

Jump to a program context saved by a call to the setjmp() function longjmp()

270 | Chapter 16: Functions at a Glance

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Rather than trying to free a nonexistent buffer, this code aborts the program (here
compiled as assert.c) with the following diagnostic output:

assert: assert.c:14: main: Assertion `buffers[i] != ((void *)0)' failed.
Aborted

When you have finished testing, you can disable all assert() calls by defining the
macro NDEBUG before the #include directive for assert.h. The macro does not need
to have a replacement value. For example:

#define NDEBUG
#include <assert.h>
/* ... */

Error Messages
Various standard library functions set the global variable errno to a value indi-
cating the type of error encountered during execution (see the section on errno.h
in Chapter 15). The functions in Table 16-28 generate an appropriate error
message for the current the value of errno.

The function perror() prints the string passed to it as an argument, followed by a
colon and the error message that corresponds to the value of errno. This error
message is the one that strerror() would return if called with the same value of
errno as its argument. Here is an example:

if (remove("test1") != 0) // If we can't delete the file ...
 perror("Couldn't delete 'test1'");

This perror() call produces the same output as the following statement:

fprintf(stderr, "Couldn't delete 'test1': %s\n", strerror(errno));

In this example, if the file test1 does not exist, a program compiled with GCC
prints the following message:

Couldn't delete 'test1': No such file or directory

Table 16-28. Error message functions

Purpose Function Header

Print an appropriate error message on
stderr for the current value of errno

perror() stdio.h

Return a pointer to the appropriate error
message for a given error number

strerror() string.h

271

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Chapter 17Standard Library

17
Standard Library Functions

This chapter describes in alphabetical order the functions available in the stan-
dard ANSI C libraries. Most of the functions described here were included in the
1989 ANSI standard or in the 1990 “Normative Addendum” and are currently
supported by all major compilers. The ISO/IEC 9899:1999 standard introduced
several new functions, which are not yet implemented in all compilers. These are
labeled “C99” in this chapter.

Each description includes the function’s purpose and return value, the function
prototype, the header file in which the function is declared, and a brief example.
For the sake of brevity, the examples do not always show a main() function or the
#include directives indicating the header file with the function’s declaration.
When using the functions described in this chapter, remember that you must
provide a declaration of each standard function used in your program by
including the appropriate header file. Also, any filename may also contain a rela-
tive or absolute directory path. For more information about errors and exceptions
that can occur in standard function calls, see the sections on the standard headers
math.h, fenv.h, and errno.h in Chapter 15.

_Exit

Ends program execution without calling atexit() functions or signal handlers

C99

#include <stdlib.h>
void _Exit(int status);

The _Exit() function terminates the program normally, but without calling any
cleanup functions that you have installed using atexit(), or signal handlers you have
installed using signal(). Exit() returns a status value to the operating system in the
same way as the exit() function does.

Whether _Exit() flushes the program’s file buffers or removes its temporary files may
vary from one implementation to another.

272 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

abort

Example
int main (int argc, char *argv[])
{
 if (argc < 3)
 {
 fprintf(stderr, "Missing required arguments.\n");

_Exit(-1);
 }
 /* ... */
}

See Also
abort(), exit(), atexit(), raise()

abort

Ends program execution immediately

#include <stdlib.h>
void abort(void);

The abort() function terminates execution of a program by raising the SIGABRT signal.

For a “clean” program termination, use the exit() function. abort() does not flush
the buffers of open files or call any cleanup functions that you have installed using
atexit(). The abort() function generally prints a message such as:

Abnormal program termination

on the stderr stream. In Unix, aborting a program also produces a core dump.

Example
struct record { long id;
 int data[256];
 struct record *next;
 };
/* ... */
struct record *new = (struct record *)malloc(sizeof(struct record));
if (new == NULL) // Check whether malloc failed!
{
 fprintf(stderr, "%s: out of memory!", _ _func_ _);
abort();

}
else /* ... */

See Also
_Exit(), exit(), atexit(), raise()

abs

Gives the absolute value of an integer

#include <stdlib.h>
int abs(int n);
long labs(long n);
long long llabs(long long n);

Chapter 17: Standard Library Functions | 273

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

acos

The abs() functions return the absolute value of the integer argument n; if n is greater
than or equal to 0, the return value is equal to n. If n is less than 0, the function returns –n.

Example
int amount = -1234;
char currencysym[2] = "$";
char sign[2] = "-";
div_t dollarsandcents = { 0, 0 };

if (amount >= 0)
 sign[0] = '\0';

dollarsandcents = div(abs(amount), 100);

printf("The balance is %s%s%d.%2d\n", sign, currencysym,
 dollarsandcents.quot, dollarsandcents.rem);

This code produces the following output:

The balance is -$12.34

See Also
The C99 absolute value function imaxabs(), declared in the header file inttypes.h for
the type intmax_t; the absolute value functions for real numbers, fabs(), fabsf(), and
fabsl(); the absolute value functions for complex numbers, cabs(), cabsf(), and
cabsl()

acos

Calculates the inverse cosine of a number

#include <math.h>
double acos(double x);
float acosf(float x); (C99)

long double acosl(long double x); (C99)

acos() implements the inverse cosine function, commonly called arc cosine. The argu-
ment x must be between –1 and 1, inclusive: –1 ≤ x ≤ 1. If x is outside the function’s
domain—that is, greater than 1 or less than –1—the function incurs a domain error.

The return value is given in radians, and is thus in the range 0 ≤ acos(x) ≤ π.

Example
/*
 * Calculate the pitch of a roof given
 * the sloping width from eaves to ridge and
 * the horizontal width of the floor below it.
 */
#define PI 3.141593
#define DEG_PER_RAD (180.0/PI)

double floor_width = 30.0;
double roof_width = 34.6;

double roof_pitch = acos(floor_width / roof_width) * DEG_PER_RAD ;
printf("The pitch of the roof is %2.0f degrees.\n", roof_pitch);

274 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

acosh

This code produces the following output:

The pitch of the roof is 30 degrees.

See Also
The arc cosine functions for complex numbers: cacos(), cacosf(), and cacosl()

acosh

Calculates the inverse hyperbolic cosine of a number

C99

include <math.h>
double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);

The acosh() functions return the non-negative number whose hyperbolic cosine is
equal to the argument x. Because the hyperbolic cosine of any number is greater than
or equal to 1, acosh() incurs a domain error if the argument is less than 1.

Example
double x, y1, y2;

puts("acosh(x) is equal to log(x + sqrt(x*x - 1))\n");
puts("For the argument x, enter some numbers greater than or equal to 1.0"
 "\n(type any letter to quit):");
while (scanf("%lf", &x) == 1)
{
 errno = 0;
 y1 = acosh(x);
 if (errno == EDOM)
 {
 perror("acosh"); break;
 }
 y2 = log(x + sqrt(x*x - 1));
 printf("x = %f; acosh(x) = %f; log(x + sqrt(x*x-1)) = %f\n", x, y1, y2);
}

This code produces the following output:

For the argument x, enter some numbers greater than or equal to 1.0
(type any letter to quit):
1.5
x = 1.500000; acosh(x) = 0.962424; log(x + sqrt(x*x-1)) = 0.962424
0.5
acosh: Numerical argument out of domain

See Also
Other hyperbolic trigonometry functions for real numbers: asinh(), atanh(), sinh(),
cosh(), and tanh(); the hyperbolic cosine and inverse hyperbolic cosine functions for
complex numbers: ccosh() and cacosh()

Chapter 17: Standard Library Functions | 275

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

asin

asctime

Converts a date and time structure to string form

#include <time.h>
char *asctime(struct tm *systime);

The single argument of the asctime() function is a pointer to a structure of type struct
tm, in which a date and time is represented by elements for the year, month, day, hour,
and so on. The structure is described under mktime() in this chapter. The asctime()
function returns a pointer to a string of 26 bytes containing the date and time in a
timestamp format:

"Wed Apr 13 07:23:20 2005\n"

The day of the week and the month are abbreviated with the first three letters of their
English names, with no period. If the day of the month is a single digit, an additional
space fills the place of its tens digit. If the hour is less than ten, it is represented with a
leading zero.

Example
time_t now;
time(&now); /* Get the time (seconds since 1/1/70) */
printf("Date: %.24s GMT\n", asctime(gmtime(&now)));

Typical output:

Date: Sun Aug 28 14:22:05 2005 GMT

See Also
localtime(), gmtime(), ctime(), difftime(), mktime(), strftime(), time(). The
localtime() and gmtime() functions are the most common ways of filling in the values
in the tm structure. The function call ctime(&seconds) is equivalent to the call
asctime(localtime(&seconds))

asin

Calculates the inverse sine of a number

#include <math.h>
double asin(double x);
float asinf(float x); (C99)

long double asinl(long double x); (C99)

asin() implements the inverse sine function, commonly called arc sine. The argument
x must be between –1 and 1, inclusive: –1 ≤ x ≤ 1. If x is outside the function’s
domain—that is, if x is greater than 1 or less than –1—the function incurs a domain
error.

The return value is given in radians, and is thus in the range –π/2 ≤ asin(x) ≤ π/2.

Example
/*
 * Calculate the altitude of the sun (its angle upward from the horizon)
 * given the height of a vertical object and the length of the object's
 * shadow.
 */

276 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

asinh

#define PI 3.141593
#define DEG_PER_RAD (180.0/PI)

float height = 2.20F;
float length = 1.23F;
float altitude = asinf(height / sqrtf(height*height + length*length));
printf("The sun's altitude is %2.0f\xB0.\n", altitude * DEG_PER_RAD);

This code produces the following output:

The sun's altitude is 61°.

See Also
Arcsine functions for complex numbers: casin(), casinf(), and casinl()

asinh

Calculates the inverse hyperbolic sine of a number

C99

include <math.h>
double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);

The asinh() functions return the number whose hyperbolic sine is equal to the argu-
ment x.

Example
puts(" x asinh(x) log(x + sqrt(x*x+1))\n"
 "---");
for (double x = -2.0; x < 2.1; x += 0.5)
 printf("%6.2f %15f %20f\n", x, asinh(x), log(x + sqrt(x*x+1)));

This code produces the following output:

 x asinh(x) log(x + sqrt(x*x+1))

 -2.00 -1.443635 -1.443635
 -1.50 -1.194763 -1.194763
 -1.00 -0.881374 -0.881374
 -0.50 -0.481212 -0.481212
 0.00 0.000000 0.000000
 0.50 0.481212 0.481212
 1.00 0.881374 0.881374
 1.50 1.194763 1.194763
 2.00 1.443635 1.443635

See Also
Other hyperbolic trigonometry functions for real numbers: acosh(), atanh(), sinh(),
cosh(), and tanh(); the hyperbolic sine and inverse hyperbolic sine functions for
complex numbers: csinh() and casinh()

Chapter 17: Standard Library Functions | 277

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

atan

assert

Tests an expression

#include <assert.h>
void assert(int expression);

The assert() macro evaluates a given expression and aborts the program if the result
is 0 (that is, false). In this case, assert() also prints a message on stderr, indicating
the name of the program, and the source file, line number, and function in which the
failing assert() call occurs:

program: file:line: function: Assertion 'expression' failed.

If the value of expression is true (that is, nonzero), assert() does nothing and the
program continues.

Use assert() during development to guard against logical errors in your program.
When debugging is complete, you can instruct the preprocessor to suppress all
assert() calls by defining the symbolic constant NDEBUG.

Example
int units_in_stock = 10;
int units_shipped = 9;
/* ... */
 units_shipped++;
 units_in_stock--;
/* ... */
 units_in_stock -= units_shipped;
 assert(units_in_stock >= 0);

This code produces the following output:

inventory: inventory.c:110: main: Assertion `units_in_stock >= 0' failed.
Aborted.

See Also
exit(), _Exit(), raise(), abort()

atan

Calculates the inverse tangent of a number

#include <math.h>
double atan(double x);
float atanf(float x); (C99)

long double atanl(long double x); (C99)

atan() implements the inverse tangent function, commonly called arc tangent.

The return value is given in radians, and is thus in the range –π/2 ≤ atan(x) ≤ π/2.

Example
#ifdef PI
 printf("The symbol PI was already defined.\n");
 long double pi = (long double) PI;

278 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

atan2

#else
 long double pi = 4.0L * atanl(1.0L); // Because tan(pi/4) = 1
#endif
 printf("Assume pi equals %.17Lf.\n", pi);

This code produces the following output:

Assume pi equals 3.14159265358979324.

See Also
The arc tangent functions for complex numbers: catan(), catanf(), and catanl()

atan2

Calculates the inverse tangent of a quotient

#include <math.h>
double atan2(double y, double x);
float atan2f(float y, float x); (C99)

long double atan2l(long double y, long double x); (C99)

The atan2() function divides the first argument by the second and returns the arc
tangent of the result, or arctan(y/x).

The return value is given in radians, and is in the range –π ≤ atan2(y,x) ≤ π. The signs
of x and y determine the quadrant of the result:

x > 0, y > 0:
0 ≤ atan2(y,x) ≤ π/2

x < 0, y > 0:
π/2 ≤ atan2(y,x) ≤ π

x < 0, y < 0:
–π ≤ atan2(y,x) ≤ –π/2

x > 0, y < 0:
–π/2 ≤ atan2(y,x) ≤ 0

If both arguments are zero, then the function may incur a domain error.

Example
/*
 * Calculate an acute angle of a right triangle, given
 * the adjacent and opposite sides.
 */
#define PI 3.141593
#define DEG_PER_RAD (180.0/PI)

double adjacent = 3.0;
double opposite = 4.0;
double angle = atan2(opposite, adjacent) * DEG_PER_RAD;

printf("The acute angles of a 3-4-5 right triangle are %4.2f\xB0 "
 "and %4.2f\xB0.\n", angle, 90.0 – angle);

Chapter 17: Standard Library Functions | 279

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

atanh

This code produces the following output:

The acute angles of a 3-4-5 right triangle are 53.13° and 36.87°.

See Also
The arc tangent function for a single argument: atan()

atanh

Calculates the inverse hyperbolic tangent of a number

C99

include <math.h>
double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);

The atanh() functions return the number whose hyperbolic tangent is equal to their
argument x. Because the hyperbolic tangent of any number is between –1 and +1,
atanh() incurs a domain error if the absolute value of the argument is greater than 1.
Furthermore, a range error may result if the absolute value of the argument is equal to 1.

Example
double x[] = { -1.0, -0.5, 0.0, 0.5, 0.99, 1.0, 1.01 };

puts(" x atanh(x) \n"
 " ---------------------------------------");
for (int i = 0; i < sizeof(x) / sizeof(x[0]); ++i)
{
 errno = 0;
 printf("%+15.2f %+20.10f\n", x[i], atanh(x[i]));
 if (errno)
 perror("atanh");
}

This code produces the following output:

 x atanh(x)

 -1.00 -inf
atanh: Numerical argument out of domain
 -0.50 -0.5493061443
 +0.00 +0.0000000000
 +0.50 +0.5493061443
 +0.99 +2.6466524124
 +1.00 +inf
atanh: Numerical argument out of domain
 +1.01 +nan
atanh: Numerical argument out of domain

See Also
Other hyperbolic trigonometry functions for real numbers: asinh(), acosh(), sinh(),
cosh(), and tanh(); the hyperbolic tangent and inverse hyperbolic tangent functions
for complex numbers: ctanh() and catanh()

280 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

atexit

atexit

Registers a function to be called when the program exits

#include <stdlib.h>
int atexit(void (*func)(void));

The argument of the atexit() function is a pointer to a function of type void that has
no parameters. If the atexit() call is successful, your program will call the function
referenced by this pointer if and when it exits normally. The atexit() call returns 0 to
indicate that the specified function has been registered successfully.

You may call atexit() up to 32 times in a program. If you register more than one
function in this way, they will be called in LIFO order: the last function registered will
be the first one called when your program exists.

Example
int main()
{
 void f1(void), f2(void);

 printf("Registering the \"at-exit\" functions f1 and f2:");

 if (atexit(f1) || atexit(f2))
 printf(" failed.\n");
 else
 printf(" done.\n");

 printf("Exiting now.\n");
 exit(0); // Equivalent to return 0;
}
void f1(void)
{ printf("Running the \"at-exit\" function f1().\n"); }
void f2(void)
{ printf("Running the \"at-exit\" function f2().\n"); }

This code produces the following output:

Registering the "at-exit" functions f1 and f2: done.
Exiting now.
Running the "at-exit" function f2().
Running the "at-exit" function f1().

See Also
_Exit(), exit(), abort()

atof

Converts a string to a floating-point number

#include <stdlib.h>
double atof(const char *s);

The atof() function converts a string of characters representing a numeral into a
floating-point number of type double. The string must be in a customary floating-point
numeral format, including scientific notation (e.g., 0.0314 or 3.14e–2). The conversion
ignores any leading whitespace (space, tab, and newline) characters. A minus sign may

Chapter 17: Standard Library Functions | 281

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

atol, atoll

be prefixed to the mantissa or exponent to make it negative; a plus sign in either posi-
tion is permissible.

Any character in the string that cannot be interpreted as part of a floating-point
numeral has the effect of terminating the input string, and atof() converts only the
partial string to the left of that character. If the string cannot be interpreted as a
numeral at all, atof() returns 0.

Example
char string[] = " -1.02857e+2 \260C"; // symbol for degrees Celsius
double z;

z = atof(string);
printf("\"%s\" becomes %.2f\n", string, z);

 This code produces the following output:

" -1.02857e+2 °C" becomes -102.86

See Also
strtod(), atoi(), atol(), atoll(), strtol(), strtoll()

atoi

Converts a string to an integer

#include <stdlib.h>
int atoi(const char *s);
long atol(const char *s);
long long atoll(const char *s); (C99)

The atoi() function converts a string of characters representing a numeral into a
number of int. Similarly, atol() returns a long integer, and in C99, the atoll() func-
tion converts a string into an integer of type long long.

The conversion ignores any leading whitespace characters (spaces, tabs, newlines). A
leading plus sign is permissible; a minus sign makes the return value negative. Any
character that cannot be interpreted as part of an integer, such as a decimal point or
exponent sign, has the effect of terminating the numeral input, so that atoi() converts
only the partial string to the left of that character. If under these conditions the string
still does not appear to represent a numeral, then atoi() returns 0.

Example
char *s = " –135792468.00 Balance on Dec. 31";
printf("\"%s\" becomes %ld\n", s, atol(s));

These statements produce the output:

" –135792468.00 Balance on Dec. 31" becomes –135792468

See Also
strtol() and strtoll(); atof() and strtod()

atol, atoll

See atoi()

282 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

bsearch

bsearch

Searches an array for a specified key

#include <stdlib.h>
void *bsearch(const void *key, const void *array, size_t n, size_t size,
 int (*compare)(const void *, const void *));

The bsearch() function uses the binary search algorithm to find an element that
matches key in a sorted array of n elements of size size. (The type size_t is defined in
stdlib.h as unsigned int.) The last argument, compare, gives bsearch() a pointer to a
function that it calls to compare the search key with any array element. This function
must return a value that indicates whether its first argument, the search key, is less
than, equal to, or greater than its second argument, an array element to test. For a
detailed description of such comparison functions, see qsort() in this chapter.

You should generally use qsort() before bsearch(), because the array must be sorted
before searching. This step is necessary because the binary search algorithm tests
whether the search key is higher or lower than the middle element in the array, then
eliminates half of the array, tests the middle of the result, eliminates half again, and so
forth. If you define the comparison function for bsearch() with identical types for its
two arguments, then qsort() can use the same comparison function.

The bsearch() function returns a pointer to the first array element found that matches
the search key. If no matching element is found, bsearch() returns a null pointer.

Example
#include <stdio.h>
#include <stdlib.h>

typedef struct { unsigned long id;
 int data;
 } record ;

int main()
{
 int id_cmp(const void *s1, const void *s2); //Declare comparison function

 record recordset[] = { {3, 5}, {5, -5}, {4, 10}, {2, 2}, {1, -17} };
 record querykey;
 record *found = NULL;
 int recordcount = sizeof(recordset) / sizeof (record);

 printf("Query record number: ");
 scanf("%lu", &querykey.id);

 printf("\nRecords before sorting:\n\n"
 "%8s %8s %8s\n", "Index", "ID", "Data");

 for (int i = 0; i < recordcount ; i++)
 printf("%8d %8u %8d\n", i, recordset[i].id, recordset[i].data);

qsort(recordset, recordcount, sizeof(record), id_cmp);

Chapter 17: Standard Library Functions | 283

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

bsearch

 printf("\nRecords after sorting:\n\n"
 "%8s %8s %8s\n", "Index", "ID", "Data");
 for (int i = 0; i < recordcount ; i++)
 printf("%8d %8u %8d\n", i, recordset[i].id, recordset[i].data);

 found = (record *) bsearch(&querykey, recordset, recordcount,
 sizeof(record), id_cmp);
 if (found == NULL)
 printf("No record with the ID %lu found.\n", querykey.id);
 else
 printf("The data value in record %lu is %d.\n",
 querykey.id, found->data);

} // End of main().

int id_cmp(const void *s1, const void *s2)
/* Compares records by ID, not data content. */
{
 record *p1 = (record *)s1;
 record *p2 = (record *)s2;

 if (p1->id < p2->id) return -1;
 else if (p1->id == p2->id) return 0;
 else return 1;
}

This example produces the following output:

Query record number: 4

Records before sorting:

 Index ID Data
 0 3 5
 1 5 -5
 2 4 10
 3 2 2
 4 1 -17

Records after sorting:

 Index ID Data
 0 1 -17
 1 2 2
 2 3 5
 3 4 10
 4 5 -5
The data value in record 4 is 10.

See Also
qsort()

284 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

btowc

btowc

Converts a byte character into a wide character

#include <stdio.h>
#include <wchar.h>
wint_t btowc(int c);

The btowc() function returns the corresponding wide character for its byte character
argument, if possible. A return value of WEOF indicates that the argument’s value is EOF,
or that the argument does not represent a valid byte character representation in the
initial shift state of a multibyte stream.

Example
/* Build a table of wide characters for the first 128 byte values */
wchar_t low_table[128];

for (int i = 0; i < 128 ; i++)
 low_table[i] = (wchar_t)btowc(i);

See Also
wctob(), mbtowc(), wctomb()

cabs

Obtains the absolute value of a complex number

C99

#include <complex.h>
double cabs(double complex z);
float cabsf(float complex z);
long double cabsl(long double complex z);

For a complex number z = x + y × i, where x and y are real numbers, cabs(z) is equal
to the square root of x2 + y2 , or hypot(x,y). The result is a non-negative real number.

Example
The absolute value of a complex number is its absolute distance from the origin in the
complex plane—in other words, a positive real number, as this example demonstrates:

double complex z[4];
z[0] = 3.0 + 4.0 * I;
z[1] = conj(z[0]);
z[2] = z[0] * I;
z[3] = -(z[0]);

for (int i = 0; i < 4 ; i++)
 {
 double a = creal(z[i]);
 double b = cimag(z[i]);
 printf ("The absolute value of (%4.2f %+4.2f × I) is ", a, b);

 double absolute_z = cabs(z[i]);
 printf ("%4.2f.\n", absolute_z);
 }

The output of the sample code is as follows:

Chapter 17: Standard Library Functions | 285

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

cacosh

The absolute value of (3.00 +4.00 × I) is 5.00.
The absolute value of (3.00 -4.00 × I) is 5.00.
The absolute value of (-4.00 +3.00 × I) is 5.00.
The absolute value of (-3.00 -4.00 × I) is 5.00.

See Also
cimag(), creal(), carg(), conj(), cproj()

cacos

Calculates the inverse cosine of a complex number

C99

#include <complex.h>
double complex cacos(double complex z);
float complex cacosf(float complex z);
long double complex cacosl(long double complex z);

The cacos() functions accept a complex number as their argument and return a
complex number, but otherwise work the same as acos().

Example
double complex v, z ;
double a = 0.0, b = 0.0;

puts("Calculate the arc cosine of a complex number, cacos(z)\n");
puts("Enter the real and imaginary parts of a complex number:");
if (scanf("%lf %lf", &a, &b) == 2)
{
 z = a + b * I;
 printf("z = %.2f %+.2f*I.\n", creal(z), cimag(z));

 v = cacos(z);
 printf("The cacos(z) function yields %.2f %+.2f*I.\n",
 creal(v), cimag(v));
 printf("The inverse function, ccos(cacos(z)), yields %.2f %+.2f*I.\n",
 creal(ccos(v)), cimag(ccos(v)));
}
else
 printf("Invalid input. \n");

See Also
ccos(), csin(), ctan(), cacos(), casin(), catan()

cacosh

Calculates the inverse hyperbolic cosine of a complex number

C99

#include <complex.h>
double complex cacosh(double complex z);
float complex cacoshf(float complex z);
long double complex cacoshl(long double complex z);

The cacosh() functions return the complex number whose hyperbolic cosine is equal
to the argument z. The real part of the return value is non-negative; the imaginary part
is in the interval [–πi, +πi].

286 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

calloc

Example
double complex v, z ;
double a = 0.0, b = 0.0;

puts("Calculate the inverse hyperbolic cosine of a complex number,"
 " cacosh(z)\n");
puts("Enter the real and imaginary parts of a complex number:");
if (scanf("%lf %lf", &a, &b) == 2)
{
 z = a + b * I;
 printf("z = %.2f %+.2f*I.\n", creal(z), cimag(z));

 v = cacosh(z);
 printf("The cacosh(z) function yields %.2f %+.2f*I.\n",
 creal(v), cimag(v));
 printf("The inverse function, ccosh(cacosh(z)), yields %.2f %+.2f*I.\n",
 creal(ccosh(v)), cimag(ccosh(v)));
}
else
 printf("Invalid input.\n");

See Also
Other hyperbolic trigonometry functions for complex numbers: casinh(), catanh(),
csinh(), ccosh(), and ctanh(); the hyperbolic cosine and inverse hyperbolic cosine
functions for real numbers: cosh() and acosh()

calloc

Allocates memory for an array

#include <stdlib.h>
void *calloc(size_t n, size_t size);

The calloc() function obtains a block of memory from the operating system that is
large enough to hold an array of n elements of size size.

If successful, calloc() returns a void pointer to the beginning of the memory block
obtained. void pointers are converted automatically to another pointer on assignment,
so that you do not need to use an explicit cast, although you may want do so for the
sake of clarity. If no memory block of the requested size is available, the function
returns a null pointer. Unlike malloc(), calloc() initializes every byte of the block
allocated with the value 0.

Example
size_t n;
int *p;
printf("\nHow many integers do you want to enter? ");
scanf("%u", &n);
p = (int *)calloc(n, sizeof(int)); /* Allocate some memory */
if (p == NULL)
 printf("\nInsufficient memory.");
else
 /* read integers into array elements ... */

Chapter 17: Standard Library Functions | 287

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

casin

See Also
malloc(), realloc(); free(), memset()

carg

Calculates the argument of a complex number

C99

#include <complex.h>
double carg(double complex z);
float cargf(float complex z);
long double cargl(long double complex z);

The carg() function determines the argument of a complex number, or the angle it
forms with the origin and the positive part of the real axis. A complex number is
defined in polar coordinates by its argument and modulus (or radius), which is the same
as the absolute value of the complex number, given by cabs(). The return value of
carg() is in radians, and within the range [–π, π]. For a complex number z = x + y × i,
where x and y are real numbers, carg(z) is equal to atan2(y, x).

Example
/* Convert a complex number from Cartesian to polar coordinates. */
double complex z = -4.4 + 3.3 * I;
double radius = cabs(z);
double argument = carg(z);

double x = creal(z);
double y = cimag(z);

printf("Cartesian (x, y): (%4.1f, %4.1f)\n", x, y);
printf("Polar (r, theta): (%4.1f, %4.1f)\n", radius, argument);

This code produces the following output:

Cartesian (x, y): (-4.4, 3.3)
Polar (r, theta): (5.5, 2.5)

See Also
cabs(), cimag(), creal(), carg(), conj(), cproj()

casin

Calculates the inverse sine of a complex number

C99

#include <complex.h>
double complex casin(double complex z);
float complex casinf(float complex z);
long double complex casinl(long double complex z);

The casin() functions accept a complex number as their argument and return a
complex number, but otherwise work the same as asin(). The real part of the return
value is in the interval [–π/2, π/2].

Example
puts("Results of the casin() function for integer values:");
float complex z = 0;

288 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

casinh

for (int n = -3; n <= 3; ++n)
{
 z = casinf(n);
 printf(" casin(%+d) = %+.2f %+.2f*I\n", n, crealf(z), cimagf(z));
}

This code produces the following output:

Results of the casin() function for integer values:
 casin(-3) = -1.57 +1.76*I
 casin(-2) = -1.57 +1.32*I
 casin(-1) = -1.57 -0.00*I
 casin(+0) = +0.00 +0.00*I
 casin(+1) = +1.57 -0.00*I
 casin(+2) = +1.57 +1.32*I
 casin(+3) = +1.57 +1.76*I

See Also
ccos(), csin(), ctan(), cacos(), casin(), catan()

casinh

Calculates the inverse hyperbolic sine of a number

C99

include <complex.h>
double complex casinh(double complex z);
float complex casinhf(float complex z);
long double complex casinhl(long double complex z);

The casinh() functions return the complex number whose hyperbolic sine is equal to
their argument z.

Example
double complex v, w, z ;
double a = 0.0, b = 0.0;

puts("Enter the real and imaginary parts of a complex number:");
if (scanf("%lf %lf", &a, &b) == 2)
{
 z = a + b * I;
 printf("z = %.2f %+.2f*I.\n", creal(z), cimag(z));

 v = casin(z);
 w = casinh(z);
 printf("z is the sine of %.2f %+.2f*I\n", creal(v), cimag(v));
 printf("and the hyperbolic sine of %.2f %+.2f*I.\n",
 creal(w), cimag(w));
}
else
 printf("Invalid input. \n");

See Also
cacosh(), catanh(), ccosh(), csinh(), ctanh(); the hyperbolic trigonometry functions
for real numbers: acosh(), atanh(), sinh(), cosh(), and tanh()

Chapter 17: Standard Library Functions | 289

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

catanh

catan

Calculates the inverse tangent of a complex number

C99

#include <complex.h>
double complex catan(double complex z);
float complex catanf(float complex z);
long double complex catanl(double long complex z);

The catan() functions accept a complex number as their argument and return a
complex number, but otherwise work the same as atan().

Example
double complex v, w, z ;
double a = 0.0, b = 0.0;

puts("Enter the real and imaginary parts of a complex number:");
if (scanf("%lf %lf", &a, &b) == 2)
{
 z = a + b * I;
 printf("z = %.2f %+.2f*I.\n", creal(z), cimag(z));

 v = catan(z);
 w = catanh(z);
 printf("z is the tangent of %.2f %+.2f*I\n", creal(v), cimag(v));
 printf("and the hyperbolic tangent of %.2f %+.2f*I.\n",
 creal(w), cimag(w));
}
else
 printf("Invalid input. \n");

This code produces output like the following:

Enter the real and imaginary parts of a complex number:
30 30
z = 30.00 +30.00*I.
z is the tangent of 1.55 +0.02*I
and the hyperbolic tangent of 0.02 +1.55*I.

See Also
ccos(), csin(), ctan(), cacos(), casin()

catanh

Calculates the inverse hyperbolic tangent of a complex number

C99

#include <complex.h>
double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(double long complex z);

The catanh() functions return the number whose hyperbolic tangent is equal to their
argument z. The imaginary part of the return value is in the interval [–π/2 × i, π/2 × i].

Example
See the example for catan() in this chapter.

290 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

cbrt

See Also
Other hyperbolic trigonometry functions for complex numbers: casinh(), cacosh(),
csinh(), ccosh(), and ctanh(); the hyperbolic tangent and inverse hyperbolic tangent
functions for real numbers: tanh() and atanh()

cbrt

Calculates the cube root of a number

C99

#include <math.h>
double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);

The cbrt() functions return the cube root of their argument x.

Example
#define KM_PER_AU (149597870.691) // An astronomical unit is the mean
 // distance between Earth and Sun:
 // about 150 million km.
#define DY_PER_YR (365.24)

double dist_au, dist_km, period_dy, period_yr;

printf("How long is a solar year on your planet (in Earth days)?\n");
scanf("%lf", &period_dy);

period_yr = period_dy / DY_PER_YR;
dist_au = cbrt(period_yr * period_yr); // by Kepler's Third Law
dist_km = dist_au * KM_PER_AU;

printf("Then your planet must be about %.0lf km from the Sun.\n", dist_km);

See Also
sqrt(), hypot(), pow()

ccos

Calculates the cosine of a complex number

C99

#include <complex.h>
double complex ccos(double complex z);
float complex ccosf(float complex z);
long double complex ccosl(long double complex z);

The ccos() function returns the cosine of its complex number argument z, which is
equal to (eiz + e–iz)/2.

Example
/* Demonstrate the exponential definition
 * of the complex cosine function.
 */
double complex z = 2.2 + 3.3 * I;
double complex c, d;

Chapter 17: Standard Library Functions | 291

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

ceil

c = ccos(z);
d = 0.5 * (cexp(z * I) + cexp(- z * I));

printf("The ccos() function returns %.2f %+.2f \xD7 I.\n",
 creal(c), cimag(c));
printf("Using the cexp() function, the result is %.2f %+.2f \xD7 I.\n",
 creal(d), cimag(d));

This code produces the following output:

The ccos() function returns -7.99 -10.95 × I.
Using the cexp() function, the result is -7.99 -10.95 × I.

See Also
csin(), ctan(), cacos(), casin(), catan(), cexp()

ccosh

Calculates the hyperbolic cosine of a complex number

C99

#include <complex.h>
double complex ccosh(double complex z);
float complex ccoshf(float complex z);
long double complex ccoshl(long double complex z);

The hyperbolic cosine of a complex number z is equal to (exp(z) + exp(–z)) / 2. The
ccosh functions return the hyperbolic cosine of their complex argument.

Example
double complex v, w, z = 1.2 - 3.4 * I;

v = ccosh(z);
w = 0.5 * (cexp(z) + cexp(-z));

printf("The ccosh() function returns %.2f %+.2f*I.\n",
 creal(v), cimag(v));
printf("Using the cexp() function, the result is %.2f %+.2f*I.\n",
 creal(w), cimag(w));

This code produces the following output:

The ccosh() function returns -1.75 +0.39*I.
Using the cexp() function, the result is -1.75 +0.39*I.

See Also
csinh(), ctanh(), cacosh(), casinh(), catanh()

ceil

Rounds a real number up to an integer value

#include <math.h>
double ceil(double x);
float ceilf(float x); (C99)

long double ceill(long double x); (C99)

292 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

cexp

The ceil() function returns the smallest integer that is greater than or equal to its
argument. However, the function does not have an integer type; it returns an integer
value, but with a floating-point type.

Example
/* Amount due = unit price * count * VAT, rounded up to the next cent */
div_t total = { 0, 0 };
int count = 17;
int price = 9999; // 9999 cents is $99.99
double vat_rate = 0.055; // Value-added tax of 5.5%

total = div((int)ceil((count * price) * (1 + vat_rate)), 100);

printf("Total due: $%d.%2d\n", total.quot, total.rem);

This code produces the following output:

Total due: $1793.33

See Also
floor(), floorf(), and floorl(), round(), roundf(), and roundl(); the C99 rounding
functions that return floating-point types: trunc(), rint(), nearbyint(), nextafter(),
nexttoward(); the C99 rounding functions that return integer types: lrint(), lround(),
llrint(), llround(); the fesetround() and fegetround() functions, which operate on
the C99 floating-point environment.

cexp

Calculates the natural exponential of a complex number

C99

#include <complex.h>
double complex cexp(double complex z);
float complex cexpf(float complex z);
long double complex cexpl(long double complex z);

The return value of the cexp() function is e raised to the power of the function’s argu-
ment, or ez, where e is Euler’s number, 2.718281.... Furthermore, in complex
mathematics, ezi = cos(z) + sin(z) × i for any complex number z.

The natural exponential function cexp() is the inverse of the natu-
ral logarithm, clog().

Example
// Demonstrate Euler's theorem in the form
// e^(I*z) = cos(z) + I * sin(z)

double complex z = 2.2 + 3.3 * I;
double complex c, d;

c = cexp(z * I);
d = ccos(z) + csin(z) * I ;

printf("cexp(z*I) yields %.2f %+.2f \xD7 I.\n",
 creal(c), cimag(c));

Chapter 17: Standard Library Functions | 293

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

clearerr

printf("ccos(z) + csin(z) * I yields %.2f %+.2f \xD7 I.\n",
 creal(d), cimag(d));

This code produces the following output:

cexp(z*I) yields -0.02 +0.03 × I.
ccos(z) + csin(z) * I yields -0.02 +0.03 × I.

See Also
ccos(), csin(), clog(), cpow(), csqrt()

cimag

Obtains the imaginary part of a complex number

C99

#include <complex.h>
double cimag(double complex z);
float cimagf(float complex z);
long double cimagl(long double complex z);

A complex number is represented as two floating-point numbers, one quantifying the
real part and one quantifying the imaginary part. The cimag() function returns the
floating-point number that represents the imaginary part of the complex argument.

Example
double complex z = 4.5 – 6.7 * I;

printf("The complex variable z is equal to %.2f %+.2f \xD7 I.\n",
 creal(z), cimag(z));

This code produces the following output:

The complex variable z is equal to 4.50 –6.70 × I.

See Also
cabs(), creal(), carg(), conj(), cproj()

clearerr

Clears the file error and EOF flags

#include <stdio.h>
void clearerr(FILE *fp);

The clearerr() function is useful in handling errors in file I/O routines. It clears the
end-of-file (EOF) and error flags associated with a specified FILE pointer.

Example
FILE *fp;
int c;
if ((fp = fopen("infile.dat", "r")) == NULL)
 fprintf(stderr, "Couldn't open input file.\n");
else
{
 c = fgetc(fp); // fgetc() returns a character on success;

294 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

clock

 if (c == EOF) // EOF means either an error or end-of-file.
 {
 if (feof(fp))
 fprintf(stderr, "End of input file reached.\n");
 else if (ferror(fp))
 fprintf(stderr, "Error on reading from input file.\n");

clearerr(fp); // Same function clears both conditions.
 }
 else
 { /* ... */ } // Process the character that we read.
}

See Also
feof(), ferror(), rewind()

clock

Obtains the CPU time used by the process

#include <time.h>
clock_t clock(void);

If you want to know how much CPU time your program has used, call the clock()
function. The function’s return type, clock_t, is defined in time.h as long. If the func-
tion returns –1, then the CPU time is not available. Note that the value of clock()
does not reflect actual elapsed time, as it doesn’t include any time the system may have
spent on other tasks.

The basic unit of CPU time, called a “tick,” varies from one system to another. To convert
the result of the clock() call into seconds, divide it by the constant CLOCKS_PER_SEC, which
is also defined in time.h.

Example
#include <stdio.h>
#include <time.h>
time_t start, stop;
clock_t ticks; long count;

int main()
{
time(&start);

 for (count = 0; count <= 50000000; ++count)
 {
 if (count % 1000000 != 0) continue; /* measure only full millions */
 ticks = clock();
 printf("Performed %ld million integer divisions; "
 "used %0.2f seconds of CPU time.\n", count / 1000000,
 (double)ticks/CLOCKS_PER_SEC);
 }
 time(&stop);
 printf("Finished in about %.0f seconds.\n", difftime(stop, start));
 return 0;
}

Chapter 17: Standard Library Functions | 295

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

copysign

This program produces 51 lines of output, ending with something like this:

Performed 50 million integer divisions; used 2.51 seconds of CPU time.
Finished in about 6 seconds.

See Also
time(), difftime()

conj

Obtains the conjugate of a complex number

C99

#include <complex.h>
double complex conj(double complex z);
float complex conjf(float complex z);
long double complex conjl(long double complex z);

The conj() function returns the complex conjugate of its complex argument. The
conjugate of a complex number x + yi, where x and y are the real and imaginary parts,
is defined as x – yi. Accordingly, the conj() function calculates the conjugate by
changing the sign of the imaginary part.

Example
See the example for cabs() in this chapter.

See Also
cabs(), cimag(), creal(), carg(), conj(), and cproj()

copysign

Makes the sign of a number match that of another number

C99

#include <math.h>
double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);

The copysign() function returns a value with the magnitude of its first argument and
the sign of its second argument.

Example
/* Test for signed zero values */
double x = copysign(0.0, -1.0);
double y = copysign(0.0, +1.0);

 printf("x is %+.1f; y is %+.1f.\n", x, y);
 printf("%+.1f is %sequal to %+.1f.\n", x, (x == y) ? "" : "not " , y)

This code produces the following output:

x is -0.0; y is +0.0.
-0.0 is equal to +0.0.

See Also
abs(), fabs(), fdim(), fmax(), fmin()

296 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

cos

cos

Calculates the cosine of an angle

#include <math.h>
double cos(double x);
double cosf(float x); (C99)

double cosl(long double x); (C99)

The cos() function returns the cosine of its argument, which is an angle measure in
radians. The return value is in the range –1 ≤ cos(x) ≤ 1.

Example
/*
 * Calculate the sloping width of a roof
 * given the horizontal width
 * and the angle from the horizontal.
 */
#define PI 3.141593
#define DEG_PER_RAD (180.0/PI)

double roof_pitch = 20.0; // In degrees
double floor_width = 30.0; // In feet, say.
double roof_width = 1.0 / cos(roof_pitch / DEG_PER_RAD) * floor_width;

printf("The sloping width of the roof is %4.2f ft.\n", roof_width);

This code produces the following output:

The sloping width of the roof is 31.93 ft.

See Also
sin(), tan(), acos(), ccos()

cosh

Calculates the hyperbolic cosine of a number

#include <math.h>
double cosh(double x);
float coshf(float x); (C99)

long double coshl(long double x); (C99)

The hyperbolic cosine of any number x equals (ex + e–x)/2 and is always greater than or
equal to 1. If the result of cosh() is too great for the double type, the function incurs a
range error.

Example
double x, sum = 1.0;
unsigned max_n;
printf("Cosh(x) is the sum as n goes from 0 to infinity "
 "of x^(2*n) / (2*n)!\n");
 // That's x raised to the power of 2*n, divided by 2*n factorial.
printf("Enter x and a maximum for n (separated by a space): ");

Chapter 17: Standard Library Functions | 297

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

cpow

if (scanf(" %lf %u", &x, &max_n) < 2)
 {
 printf("Couldn't read two numbers.\n");
 return -1;
 }
printf("cosh(%.2f) = %.4f;\n", x, cosh(x));
for (unsigned n = 1 ; n <= max_n ; n++)
 {
 unsigned factor = 2 * n; // Calculate (2*n)!
 unsigned divisor = factor;
 while (factor > 1)
 {
 factor--;
 divisor *= factor;
 }
 sum += pow(x, 2 * n) / divisor; // Accumulate the series
 }
printf("Approximation by series of %u terms = %.4f.\n", max_n+1, sum);

With the numbers 1.72 and 3 as input, the program produces the following output:

cosh(1.72) = 2.8818;
Approximation by series of 4 terms = 2.8798.

See Also
The C99 inverse hyperbolic cosine function acosh(); the hyperbolic cosine and inverse
hyperbolic cosine functions for complex numbers: ccosh(), cacosh(); the example for
sinh()

cpow

Raises a complex number to a complex power

C99

#include <complex.h>
double complex cpow(double complex x, double complex y);
float complex cpowf(float complex x, float complex y);
long double complex cpowl(long double complex x, long double complex y);

The cpow() function raises its first complex argument x to the power of the second
argument, y. In other words, it returns the value of xy.

The cpow() function has a branch cut along the negative real axis to yield a unique
result.

Example
double complex z = 0.0 + 2.7 * I;
double complex w = 2.7 + 0.0 * I;

double complex c = cpow(w, z); // Raise e to the power of i*2.7

printf("%.2f %+.2f \xD7 I raised to the power of %.2f %+.2f \xD7 I "
 "is %.2f %+.2f \xD7 I.\n",
 creal(w), cimag(w), creal(z), cimag(z), creal(c), cimag(c));

This code produces the following output:

2.70 +0.00 × I raised to the power of 0.00 +2.70 × I is -0.90 +0.44 × I.

298 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

cproj

See Also
The corresponding function for real numbers, pow(); the complex math functions
cexp(), clog(), cpow(), csqrt()

cproj

Calculates the projection of a complex number on the Riemann sphere

C99

#include <complex.h>
double complex cproj(double complex z);
float complex cprojf(float complex z);
long double complex cprojl(long double complex z);

The Riemann sphere is a surface that represents the entire complex plane and one
point for infinity. The cproj() function yields the representation of a complex number
on the Riemann sphere. The value of cproj(z) is equal to z, except in cases where the
real or complex part of z is infinite. In all such cases, the real part of the result is
infinity, and the imaginary part is zero with the sign of the imaginary part of the argu-
ment z.

Example
double complex z = -INFINITY - 2.7 * I;

double complex c = cproj(z);
printf("%.2f %+.2f * I is projected to %.2f %+.2f * I.\n",
 creal(z), cimag(z), creal(c), cimag(c));

This code produces the following output:

-inf -2.70 * I is projected to inf -0.00 * I.

See Also
cabs(), cimag(), creal(), carg(), conj()

creal

Obtains the real part of a complex number

C99

#include <complex.h>
double creal(double complex z);
float crealf(float complex z);
long double creall(long double complex z);

A complex number is represented as two floating-point numbers, one quantifying the
real part and one quantifying the imaginary part. The creal() function returns the
floating-point number that represents the real part of the complex argument.

Example
double complex z = 4.5 – 6.7 * I;

printf("The complex variable z is equal to %.2f %+.2f \xD7 I.\n",
creal(z), cimag(z));

This code produces the following output:

The complex variable z is equal to 4.50 –6.70 × I.

Chapter 17: Standard Library Functions | 299

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

csinh

See Also
cimag(), cabs(), carg(), conj(), cproj()

csin

Calculates the sine of a complex number

C99

#include <complex.h>
double complex csin(double complex z);
float complex csinf(float complex z);
long double complex csinl(long double complex z);

The csin() function returns the sine of its complex number argument z, which is
equal to (eiz – e–iz)/2 × i.

Example
/* Demonstrate the exponential definition of the complex sine function. */
double complex z = 4.3 - 2.1 * I;
double complex c, d;

c = csin(z);
d = (cexp(z * I) - cexp(- z * I)) / (2 * I);

printf("The csin() function returns %.2f %+.2f \xD7 I.\n",
 creal(c), cimag(c));
printf("Using the cexp() function, the result is %.2f %+.2f \xD7 I.\n",
 creal(d), cimag(d));

This code produces the following output:

The csin() function returns -3.80 +1.61 × I.
Using the cexp() function, the result is -3.80 +1.61 × I.

See Also
ccos(), ctan(), cacos(), casin(), catan()

csinh

Calculates the hyperbolic sine of a complex number

C99

#include <complex.h>
double complex csinh(double complex z);
float complex csinhf(float complex z);
long double complex csinhl(long double complex z);

The hyperbolic sine of a complex number z is equal to (exp(z) – exp(–z)) / 2. The
csinh functions return the hyperbolic sine of their complex argument.

Example
double complex v, w, z = -1.2 + 3.4 * I;

v = csinh(z);
w = 0.5 * (cexp(z) - cexp(-z));

printf("The csinh() function returns %.2f %+.2f*I.\n",
 creal(v), cimag(v));

300 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

csqrt

printf("Using the cexp() function, the result is %.2f %+.2f*I.\n",
 creal(w), cimag(w));

This code produces the following output:

The csinh() function returns 1.46 -0.46*I.
Using the cexp() function, the result is 1.46 -0.46*I.

See Also
ccosh(), ctanh(), cacosh(), casinh(), catanh()

csqrt

Calculates the square root of a complex number

C99

#include <complex.h>
double complex csqrt(double complex z);
float complex csqrtf(float complex z);
long double complex csqrtl(long double complex z);

The csqrt() function returns the complex square root of its complex number
argument.

Example
double complex z = 1.35 - 2.46 * I;
double complex c, d;

c = csqrt(z);
d = c * c;

printf("If the square root of %.2f %+.2f \xD7 I equals %.2f %+.2f \xD7 I,"
 "\n", creal(z), cimag(z), creal(c), cimag(c));
printf("then %.2f %+.2f \xD7 I squared should equal %.2f %+.2f \xD7 I.\n",
 creal(c), cimag(c), creal(d), cimag(d));

This code produces the following output:

If the square root of 1.35 -2.46 × I equals 1.44 -0.85 × I,
then 1.44 -0.85 × I squared should equal 1.35 -2.46 × I.

See Also
cexp(), clog(), cpow(), csqrt()

ctan

Calculates the tangent of a complex number

C99

#include <complex.h>
double complex ctan(double complex z);
float complex ctanf(float complex z);
long double complex ctanl(long double complex z);

The ctan() function returns the tangent of its complex number argument z, which is
equal to sin(z) / cos(z).

Example
double complex z = - 0.53 + 0.62 * I;
double complex c, d;

Chapter 17: Standard Library Functions | 301

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

ctime

c = ctan(z);
d = csin(z) / ccos(z);

printf("The ctan() function returns %.2f %+.2f \xD7 I.\n",
 creal(c), cimag(c));
printf("Using the csin() and ccos() functions yields %.2f %+.2f \xD7 I.\n",
 creal(d), cimag(d));

This code produces the following output:

The ctan() function returns -0.37 +0.67 × I.
Using the csin() and ccos() functions yields -0.37 +0.67 × I.

See Also
csin(), ccos(), cacos(), casin(), catan()

ctanh

Calculates the hyperbolic tangent of a complex number

C99

#include <complex.h>
double complex ctanh(double complex z);
float complex ctanhf(float complex z);
long double complex ctanhl(long double complex z);

The hyperbolic tangent of a complex number z is equal to sinh(z) / cosh(z). The ctanh
functions return the hyperbolic tangent of their complex argument.

Example
double complex v, w, z = -0.5 + 1.23 * I;

v = ctanh(z);
w = csinh(z) / ccosh(z);

printf("The ctanh() function returns %.2f %+.2f*I.\n", creal(v), cimag(v));
printf("Using the csinh() and ccosh() functions yields %.2f %+.2f*I.\n",
 creal(w), cimag(w));

This code produces the following output:

The ctanh() function returns -1.53 +0.82*I.
Using the csinh() and ccosh() functions yields -1.53 +0.82*I.

See Also
ccosh(), csinh(), cacosh(), casinh(), catanh()

ctime

Converts an integer time value into a date and time string

#include <time.h>
char *ctime(const time_t *seconds);

The argument passed to the ctime() function is a pointer to a number interpreted as a
number of seconds elapsed since the epoch (on Unix systems, January 1, 1970).

302 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

difftime

The function converts this value into a human-readable character string showing the
local date and time, and returns a pointer to that string. The string is exactly 26 bytes
long, including the terminating null character, and has the following format:

Thu Apr 28 15:50:56 2005\n

The argument’s type, time_t, is defined in time.h, usually as a long or unsigned long
integer.

The function call ctime(&seconds) is equivalent to asctime(localtime(&seconds)). A
common way to obtain the argument value passed to ctime() is by calling the time()
function, which returns the current time in seconds.

Example
void logerror(int errorcode)
{
 time_t eventtime;

 time(&eventtime);
 fprintf(stderr, "%s: Error number %d occurred.\n",

ctime(&eventtime), errorcode);
}

This code produces output like the following:

Fri Sep 9 14:58:03 2005
: Error number 23 occurred.

The output contains a line break because the string produced by ctime() ends in a
newline character.

See Also
asctime(), difftime(), gmtime(), localtime(), mktime(), strftime(), time()

difftime

Calculates the difference between two arithmetic time values

#include <time.h>
double difftime(time_t time2, time_t time1);

The difftime() function returns the difference between two time values, time2 –
time1, as a number of seconds. While difftime() has the return type double, its argu-
ments have the type time_t. The time_t type is usually, but not necessarily, defined as
an integer type such as long or unsigned long.

A common way to obtain the argument values passed to difftime() is by successive
calls to the time() function, which returns the current time as a single arithmetic
value.

Example
See the sample program for clock() in this chapter.

See Also
asctime(), ctime(), gmtime(), localtime(), mktime(), strftime(), time()

Chapter 17: Standard Library Functions | 303

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

erf

div

Performs integer division, returning quotient and remainder

#include <stdlib.h>
div_t div(int dividend, int divisor);
ldiv_t ldiv(long dividend, long divisor);
lldiv_t lldiv(long long dividend, long long divisor); (C99)

The div() functions divide an integer dividend by an integer divisor, and return the
integer part of the quotient along with the remainder in a structure of two integer
members named quot and rem. div() obtains the quotient and remainder in a single
machine operation, replacing both the / and % operations. The header file stdlib.h
defines this structure for the various integer types as follows:

typedef struct { int quot; int rem; } div_t;
typedef struct { long int quot; long int rem; } ldiv_t;
typedef struct { long long int quot; long long int rem; } lldiv_t;

Example
int people, apples;
div_t share;

for (apples = -3 ; apples < 6 ; apples += 3)
{
 if (apples == 0)
 continue; // Don't bother dividing up nothing.
 for (people = -2 ; people < 4 ; people += 2)
 {
 if (people == 0)
 continue; // Don't try to divide by zero.
 share = div(apples, people);

 printf("If there are %+i of us and %+i apples, "
 "each of us gets %+i, with %+i left over.\n",
 people, apples, share.quot, share.rem);
 }
}

As the output of the preceding code illustrates, any nonzero remainder has the same
sign as the dividend:

If there are -2 of us and -3 apples, each of us gets +1, with -1 left over.
If there are +2 of us and -3 apples, each of us gets -1, with -1 left over.
If there are -2 of us and +3 apples, each of us gets -1, with +1 left over.
If there are +2 of us and +3 apples, each of us gets +1, with +1 left over.

See Also
imaxdiv(), remainder()

erf

Calculates the error function of a floating-point number

C99

#include <math.h>
double erf(double x);

304 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

erfc

float erff(float x);
long double erfl(long double x);

The function erf(), called the error function, is associated with the Gaussian function
or normal distribution. If the measured values of a given random variable conform to a
normal distribution with the standard deviation σ, then the probability that a single
measurement has an error within ±a is erf(a / (σ × √2)).

The return value of erf(x) is

The function erfc() is the complementary error function, defined as erfc(x) = 1 –
erf(x).

Example
/*
 * Given a normal distribution with mean 0 and standard deviation 1,
 * calculate the probability that the random variable is within the
 * range [0, 1.125]
 */
double sigma = 1.0; // The standard deviation
double bound = 1.125;
double probability; // probability that mean <= value <= bound

probability = 0.5 * erf(bound / (sigma * sqrt(2.0)));

See Also
erfc()

erfc

Calculates the complementary error function of a floating-point number

C99

#include <math.h>
double erfc(double x);
float erfcf(float x);
long double erfcl(long double x);

The function erfc() is the complementary error function, defined as erfc(x) = 1 –
erf(x).

See Also
erf()

exit

Terminates the program normally

#include <stdlib.h>
void exit(int status);

The exit() function ends the program and returns a value to the operating environment
to indicate the program’s final status. Control never returns from the exit() function.

erf x()
2

π
------- e

t
2

–

td

0

x

∫⋅=

Chapter 17: Standard Library Functions | 305

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

exp

Before terminating the program, exit() calls any functions that have been registered
by the atexit() function (in LIFO order), closes any open files, and deletes any files
created by the tmpfile() function.

The file stdlib.h defines two macros for use as arguments to exit(): EXIT_SUCCESS and
EXIT_FAILURE. If the argument is equal to one of these values, the program returns a
corresponding system-specific value to the operating system to indicate success or
failure. An argument value of 0 is treated the same as EXIT_SUCCESS. For other argu-
ment values, the value returned to the host environment is determined by the
implementation.

Example
FILE *f_in, *f_out;

enum { X_OK = 0, X_ARGS, X_NOIN, X_NOOUT };

if (argc != 3) {
 fprintf(stderr, "Usage: program input-file output-file\n");
 exit(X_ARGS);
}

f_in = fopen(argv[1], "r");
if (f_in == NULL) {
 fprintf(stderr, "Unable to open input file.\n");
exit(X_NOIN);

}
f_out = fopen(argv[2], "a+");
if (f_out == NULL) {
 fprintf(stderr, "Unable to open output file.\n");
exit(X_NOOUT);

}

/* ... read, process, write, close files ... */

exit(X_OK);

See Also
_Exit(), atexit(), abort()

exp

Calculates the natural exponential of a number

#include <math.h>
double exp(double x);
float expf(float x);
long double expl(long double x);

The return value of the exp() function is e raised to the power of the function’s argu-
ment, or ex, where e is Euler’s number, 2.718281.... If the result is beyond the range of
the function’s type, a range error occurs.

306 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

exp2

The natural exponential function exp() is the inverse of the natural
logarithm function, log().

Example
/* Amount owed = principal * e**(interest_rate * time) */
int principal = 10000; // Initial debt is ten thousand dollars.
int balance = 0;
double rate = 0.055; // Interest rate is 5.5% annually.
double time = 1.5; // Period is eighteen months.

balance = principal * exp(rate * time);
printf("Invest %d dollars at %.1f%% compound interest, and "
 "in %.1f years you'll have %d dollars.\n",
 principal, rate*100.0, time, balance);

This code produces the following output:

Invest 10000 dollars at 5.5% compound interest, and in 1.5 years
you'll have 10859 dollars.

See Also
The C99 exponential functions exp2() and expm1(); the exponential functions for
complex numbers: cexp(), cexpf(), and cexpl(); the general exponential function,
pow()

exp2

Calculates the base 2 exponential of a number

C99

#include <math.h>
double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);

The return value of the exp2() function is 2 raised to the power of the function’s argu-
ment, or 2x. If the result is beyond the range of the function’s type, a range error
occurs.

The base 2 exponential function exp2() is the inverse of the base 2
logarithm function, log2().

Example
// The famous grains-of-rice-on-a-chessboard problem.
// The sultan loses a chess game. The wager was one grain for square 1
// on the chessboard, then double the last number for each successive
// square. How much rice in all?

int squares = 64;
long double gramspergrain = 0.0025L; // A grain of rice weighs 25 mg.
long double sum = 0.0L;

Chapter 17: Standard Library Functions | 307

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fabs

for (int i = 0; i < squares; i++)
 sum += gramspergrain * exp2l((long double)i);

 printf("The sultan's wager costs him %.3Lf metric tons of rice.\n",
 sum / 1000000.0L); // A million grams per ton.

This code produces the following output:

The sultan's wager costs him 46116860184.274 metric tons of rice.

See Also
exp(), expm1(), log(), log1p(), log2(), log10()

expm1

Calculates the natural exponential of a number, minus one

C99

#include <math.h>
double expm1(double x);
float expm1f(float x);
long double expm1l(long double x);

The return value of the expm1() function is one less than e raised to the power of the
function’s argument, or ex, where e is Euler’s number, 2.718281.... The expm1() func-
tion is designed to yield a more accurate result than the expression exp(x)-1, especially
when the value of the argument is close to zero. If the result is beyond the range of the
function’s type, a range error occurs.

Example
/* let y = (-e^(-2x) - 1) / (e^(-2x) + 1), for certain values of x */

double w, x, y;
if ((x > 1.0E-12) && (x < 1.0))
{ w = expm1(-(x+x));
 y = - w / (w + 2.0);
}
else
 /* ... handle other values of x ... */

See Also
exp(), log1p(), log()

fabs

Obtains the absolute value of a number

#include <math.h>
double fabs(double x);
float fabsf(float x);
long double fabsl(long double x);

The fabs() function returns the absolute value of its floating-point argument x; if x is
greater than or equal to 0, the return value is equal to x. If x is less than 0, the function
returns –x.

308 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fclose

Example
float x = 4.0F * atanf(1.0F);
long double y = 4.0L * atanl(1.0L);

if (x == y)
 printf("x and y are exactly equal.\n");
else if (fabs(x - y) < 0.0001 * fabsl(y))
 printf("x and y are approximately equal:\n"
 "x is %.8f; y is %.8Lf.\n", x, y);

This code produces the following output:

x and y are approximately equal:
x is 3.14159274; y is 3.14159265.

See Also
The absolute value functions for integer types: abs(), labs(), llabs(), and imaxabs();
the absolute value functions for complex numbers: cabs(), cabsf(), cabsl(); the C99
functions fdim() and copysign(); the functions fmax() and fmin()

fclose

Closes a file or stream

#include <stdio.h>
int fclose(FILE *fp);

The fclose() function closes the file associated with a given FILE pointer, and releases
the memory occupied by its I/O buffer. If the file was opened for writing, fclose()
flushes the contents of the file buffer to the file.

The fclose() function returns 0 on success. If fclose() fails, it returns the value EOF.

Example
/* Print a file to the console, line by line. */
FILE *fp_infile;
char linebuffer[512];

if ((fp_infile=fopen("input.dat", "r")) == NULL)
{
 fprintf(stderr, "Couldn't open input file.\n");
 return -1;
}

while (fgets(linebuffer, sizeof(linebuffer), fp_infile)) != NULL)
 fputs(linebuffer, stdout);
if (! feof(fp_infile)) // This means "if not end of file"
 fprintf(stderr, "Error reading from input file.\n");

if (fclose(fp_infile) != 0)
{
 fprintf(stderr, "Error closing input file.\n");
 return -2;
}

Chapter 17: Standard Library Functions | 309

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

feclearexcept

See Also
fflush(), fopen(), setbuf()

fdim

Obtains the positive difference between two numbers

C99

#include <math.h>
double fdim(double x, double y);
float fdimf(float x, float y);
long double fdiml(long double x, long double y);

The fdim() function return x – y or 0, whichever is greater. If the implementation has
signed zero values, the zero returned by fdim() is positive.

Example
/* Make sure an argument is within the domain of asin() */

double sign, argument, result;
/* ... */

sign = copysign(1.0, argument); // Save the sign ...
argument = copysign(argument, 1.0); // ... then use only positive values
argument = 1.0 - fdim(1.0, argument); // Trim excess beyond 1.0
result = asin(copysign(argument, sign)); // Restore sign and call asin()

See Also
copysign(), fabs(), fmax(), fmin()

feclearexcept

Clears status flags in the floating-point environment

C99

#include <fenv.h>
int feclearexcept(int excepts);

The feclearexcept() function clears the floating-point exceptions specified by its
argument. The value of the argument is the bitwise OR of one or more of the integer
constant macros described under feraiseexcept() in this chapter.

The function returns 0 if successful; a nonzero return value indicates that an error
occurred.

Example
double x, y, result;
int exceptions;

#pragma STDC FENV_ACCESS ON
feclearexcept(FE_ALL_EXCEPT);
result = somefunction(x, y); // This function may raise exceptions!
exceptions = fetestexcept(FE_INEXACT | FE_UNDERFLOW);

if (exceptions & FE_UNDERFLOW)
{
 /* ... handle the underflow ... */

310 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fegetenv

}
else if (exceptions & FE_INEXACT)
{
 /* ... handle the inexact result ... */
}

See Also
feraisexcept(), feholdexcept(), fetestexcept()

fegetenv

Stores a copy of the current floating-point environment

C99

#include <fenv.h>
int fegetenv(fenv_t *envp);

The fegetenv() function saves the current state of the floating-point environment in
the object referenced by the pointer argument. The function returns 0 if successful; a
nonzero return value indicates that an error occurred.

The object type that represents the floating-point environment, fenv_t, is defined in
fenv.h. It contains at least two kinds of information: floating-point status flags, which
are set to indicate specific floating-point processing exceptions, and a floating-point
control mode, which can be used to influence the behavior of floating-point arith-
metic, such as the direction of rounding.

Example
The fegetenv() and fesetenv() functions can be used to provide continuity of the
floating-point environment between different locations in a program:

static fenv_t fpenv; // Global environment variables.
static jmp_buf env;
/* ... */

#pragma STDC FENV_ACCESS ON
fegetenv(&fpenv); // Store a copy of the floating-point environment

if (setjmp(env) == 0) // setjmp() returns 0 when actually called
{
 /* ... Proceed normally; floating-point environment unchanged ... */
}
else // Nonzero return value means longjmp() occurred
{
 fesetenv(&fpenv); // Restore floating-point environment to known state
 /* ... */
}

See Also
fegetexceptflag(), feholdexcept(), fesetenv(), feupdateenv(), feclearexcept(),
feraisexcept(), fetestexcept()

Chapter 17: Standard Library Functions | 311

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fegetround

fegetexceptflag

Stores the floating-point environment’s exception status flags

C99

#include <fenv.h>
int fegetexceptflag(fexcept_t *flagp, int excepts);

The fegetexceptflag() function saves the current state of specified status flags in the
floating-point environment, which indicate specific floating-point processing excep-
tions, in the object referenced by the pointer argument. The object type that represents
the floating-point status flags, fexcept_t, is defined in fenv.h. Unlike the integer argu-
ment that represents the floating-point exception status flags in this and other
functions that manipulate the floating-point environment, the object with type
fexcept_t cannot be directly modified by user programs.

The integer argument is a bitwise OR of the values of macros defined in fenv.h to
represent the floating-point exception flags. The macros are listed under
feraiseexcept() in this chapter. fegetexceptflag() stores the state of those flags
which correspond to the values that are set in this mask.

The function returns 0 if successful; a nonzero return value indicates that an error
occurred.

Example
/* Temporarily store the state of the FE_INEXACT, FE_UNDERFLOW
 * and FE_OVERFLOW flags
 */
fexcept_t fpexcepts;

#pragma STDC FENV_ACCESS ON
/* Save state: */
fegetexceptflag(&fpexcepts, FE_INEXACT | FE_UNDERFLOW | FE_OVERFLOW);

feclearexcept(FE_INEXACT | FE_UNDERFLOW | FE_OVERFLOW);

/* ... Perform some calculations that might raise those exceptions ... */

/* ... Handle (or ignore) the exceptions our calculations raised ... */

/* Restore state as saved: */
fesetexceptflag(&fpexcepts, FE_INEXACT | FE_UNDERFLOW | FE_OVERFLOW);

See Also
fesetexceptflag(), feraisexcept(), feclearexcept(), fetestexcept()

fegetround

Determines the current rounding direction in the floating-point environment

C99

#include <fenv.h>
int fegetround(void);

312 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

feholdexcept

The fegetround() function obtains the current rounding direction. The integer return
value is negative if the rounding direction is undetermined, or equal to one of the
following macros, defined in fenv.h as integer constants, if the function is successful:

FE_DOWNWARD
Round down to the next lower integer.

FE_UPWARD
Round up to the next greater integer.

FE_TONEAREST
Round up or down toward whichever integer is nearest.

FE_TOWARDZERO
Round positive values downward and negative values upward.

Example
See the examples for fmod() and fesetround() in this chapter.

See Also
fesetround(), fegetenv(), fegetexceptflag()

feholdexcept

Saves the current floating-point environment and switches to nonstop mode

C99

#include <fenv.h>
int feholdexcept(fenv_t *envp);

Like fegetenv(), the feholdexcept() function saves the current floating-point environ-
ment in the object pointed to by the pointer argument. However, feholdexcept() also
clears the floating-point status flags and switches the floating-point environment to a
nonstop mode, meaning that after any floating-point exception, normal execution
continues uninterrupted by signals or traps. The function returns 0 if it succeeds in
switching to nonstop floating-point processing; otherwise, the return value is nonzero.

Example
/*
 * Compute the hypotenuse of a right triangle, avoiding intermediate
 * overflow or underflow.
 *
 * (This example ignores the case of one argument having great magnitude
 * and the other small, causing both overflow and underflow!)
 */
double hypotenuse(double sidea, double sideb)
{
#pragma STDC FENV_ACCESS ON
 double sum, scale, ascaled, bscaled, invscale;
 fenv_t fpenv;
 int fpeflags;

 if (signbit(sidea)) sidea = fabs(sidea);
 if (signbit(sideb)) sideb = fabs(sideb);

feholdexcept(&fpenv); // Save previous environment, clear exceptions,
 // switch to nonstop processing.

Chapter 17: Standard Library Functions | 313

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

feof

 invscale = 1.0;
 sum = sidea * sidea + sideb * sideb; // First try whether a^2 + b^2
 // causes any exceptions.

 fpeflags = fetestexcept(FE_UNDERFLOW | FE_OVERFLOW); // Did it?
 if (fpeflags & FE_OVERFLOW && sidea > 1.0 && sideb > 1.0)
 {
 /* a^2 + b^2 caused an overflow. Scale the triangle down. */
 feclearexcept(FE_OVERFLOW);
 scale = scalbn(1.0, (DBL_MIN_EXP /2));
 invscale = 1.0 / scale;
 ascaled = scale * sidea;
 bscaled = scale * sideb;
 sum = ascaled * ascaled + bscaled * bscaled;
 }
 else if (fpeflags & FE_UNDERFLOW && sidea < 1.0 && sideb < 1.0)
 {
 /* a^2 + b^2 caused an underflow. Scale the triangle up. */
 feclearexcept(FE_UNDERFLOW);
 scale = scalbn(1.0, (DBL_MAX_EXP /2));
 invscale = 1.0 / scale;
 ascaled = scale * sidea;
 bscaled = scale * sideb;
 sum = ascaled * ascaled + bscaled * bscaled;
 }

 feupdateenv(&env); // restore the caller's environment, and
 // raise any new exceptions

 /* c = (1/scale) * sqrt((a * scale)^2 + (b * scale)^2): */
 return invscale * sqrt(sum);
}

See Also
fegetenv(), fesetenv(), feupdateenv(), feclearexcept(), feraisexcept(),
fegetexceptflag(), fesetexceptflag(), fetestexcept()

feof

Tests whether the file position is at the end

#include <stdio.h>
int feof(FILE *fp);

The feof() macro tests whether the file position indicator of a given file is at the end
of the file.

The feof() macro’s argument is a FILE pointer. One attribute of the file or stream
referenced by this pointer is the end-of-file flag, which indicates that the program has
attempted to read past the end of the file. The feof() macro tests the end-of-file flag
and returns a nonzero value if the flag is set. If not, feof() returns 0.

Example
See the examples at clearerr() and fclose() in this chapter.

314 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

feraiseexcept

See Also
rewind(), fseek(), clearerr(), ferror()

feraiseexcept

Raises floating-point exceptions

C99

#include <fenv.h>
int feraiseexcept(int excepts);

The feraiseexcept() function raises the floating-point exceptions represented by its
argument. Unlike the fesetexceptflag() function, feraiseexcept() invokes any traps
that have been enabled for the given exceptions.

The argument is a bitwise OR of the values of the following macros, defined in fenv.h
to represent the floating-point exception flags:

FE_DIVBYZERO
This exception occurs when a nonzero, noninfinite number is divided by zero.

FE_INEXACT
This exception indicates that true result of an operation cannot be represented
with the available precision, and has been rounded in the current rounding
direction.

FE_INVALID
This exception flag is set when the program attempts an operation which has no
defined result, such as dividing zero by zero or subtracting infinity from infinity.
Some systems may also set FE_INVALID whenever an overflow or underflow excep-
tion is raised.

FE_OVERFLOW
The result of an operation exceeds the range of representable values.

FE_UNDERFLOW
The result of an operation is nonzero, but too small in magnitude to be
represented.

Each of these macros is defined if and only if the system supports the corresponding
floating-point exception. Furthermore, the macro FE_ALL_EXCEPT is the bitwise OR of
all of the macros that are supported.

If feraiseexcept() raises the FE_INEXACT exception in conjunction with FE_UNDERFLOW
or FE_OVERFLOW, then the underflow or overflow exception is raised first. Otherwise,
multiple exceptions are raised in an unspecified order.

The function returns 0 if successful; a nonzero return value indicates that an error
occurred.

Example
Although user programs rarely need to raise a floating-point exception by artificial
means, the following example illustrates how to do so:

int result, except_set, except_test;

#pragma STDC FENV_ACCESS ON
feclearexcept (FE_ALL_EXCEPT);
except_set = FE_OVERFLOW;
result = feraiseexcept(except_set);

Chapter 17: Standard Library Functions | 315

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fesetenv

if (result != 0)
{
 printf("feraisexcept() failed (%d)\n", result);
 exit(result);
}
except_test = fetestexcept(except_set);
if (except_test != except_set)
 printf("Tried to raise flags %X, but only raised flags %X.\n",
 except_set, except_test);

See Also
feclearexcept(), feholdexcept(), fetestexcept(), fegetexceptflag(), fesetexceptflag()

ferror

Tests whether a file access error has occurred

#include <stdio.h>
int ferror(FILE *fp);

The ferror() function—often implemented as a macro—tests whether an error has
been registered in reading or writing a given file.

ferror()’s argument is a FILE pointer. One attribute of the file or stream referenced by
this pointer is an error flag which indicates that an error has occurred during a read or
write operation. The ferror() function or macro tests the error flag and returns a
nonzero value if the flag is set. If not, ferror() returns 0.

Example
See the examples for clearerr() and fclose() in this chapter.

See Also
rewind(), clearerr(), feof()

fesetenv

Sets the floating-point environment to a previously saved state

C99

#include <fenv.h>
int fesetenv(const fenv_t *envp);

The fesetenv() function reinstates the floating-point environment from an object
obtained by a prior call to fegetenv() or feholdexcept(), or a macro such as FE_DFL_ENV,
which is defined as a pointer to an object of type fenv_t representing the default floating-
point environment. Although a call to fesetenv() may result in floating-point exception
flags being set, the function does not raise the corresponding exceptions. The function
returns 0 if successful; a nonzero return value indicates that an error occurred.

Example
See the example for fegetenv() in this chapter.

See Also
fegetenv(), feholdexcept(), fegetexceptflag(), fesetexceptflag(), feupdateenv(),
feclearexcept(), feraisexcept(), fetestexcept()

316 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fesetexceptflag

fesetexceptflag

Reinstates the floating-point environment’s exception status flags

C99

#include <fenv.h>
int fesetexceptflag(const fexcept_t *flagp, int excepts);

The fesetexceptflag() function resets the exception status flags in the floating-point
environment to a state that was saved by a prior call to fegetexceptflag(). The object
type that represents the floating-point status flags, fexcept_t, is defined in fenv.h.

The second argument is a bitwise OR of the values of macros defined in fenv.h to
represent the floating-point exception flags. The macros are listed under
feraiseexcept() in this chapter. fesetexceptflag() sets those flags that correspond to
the values that are set in this mask.

All of the flags specified in the mask argument must be represented in the status flags
object passed to fesetexceptflag() as the first argument. Thus in the
fegetexceptflag() call used to save the flags, the second argument must have speci-
fied at least all of the flags to be set by the call to fesetexceptflag().

The function returns 0 if successful (or if the value of the integer argument was zero).
A nonzero return value indicates that an error occurred.

Example
See the example for fegetexceptflag() in this chapter.

See Also
fegetexceptflag(), feraisexcept(), feclearexcept(), fetestexcept(), fegetenv(),
feholdexcept(), fesetenv(), feupdateenv()

fesetround

Sets the rounding direction in the floating-point environment

C99

#include <fenv.h>
int fesetround(int round);

The fesetround() function sets the current rounding direction in the program’s
floating-point environment to the direction indicated by its argument. On success the
function returns 0. If the argument’s value does not correspond to a rounding direc-
tion, the current rounding direction is not changed.

Recognized values of the argument are given by macros in the following list, defined in
fenv.h as integer constants. A given implementation may not define all of these macros
if it does not support the corresponding rounding direction, and may also define
macro names for other rounding modes that it does support.

FE_DOWNWARD
Round down to the next lower integer.

FE_UPWARD
Round up to the next greater integer.

FE_TONEAREST
Round up or down toward whichever integer is nearest.

FE_TOWARDZERO
Round positive values downward and negative values upward.

Chapter 17: Standard Library Functions | 317

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

feupdateenv

The function returns 0 if successful; a nonzero return value indicates that an error
occurred.

Example
/*
 * Save, set, and restore the rounding direction.
 * Report an error and abort if setting the rounding direction fails.
 */
#pragma STDC FENV_ACCESS ON
int prev_rounding_dir;
int result;
prev_rounding_dir = fegetround();
result = fesetround(FE_TOWARDZERO);

/* ... perform a calculation that requires rounding toward 0 ... */

fesetround(prev_rounding_dir);
#pragma STDC FENV_ACCESS OFF

See also the example for fmod() in this chapter.

See Also
fegetround(), round(), lround(), llround(), nearbyint(), rint(), lrint(), llrint()

fetestexcept

Tests the status flags in the floating-point environment against a bit mask

C99

#include <fenv.h>
int fetestexcept(int excepts);

The fetestexcept() function takes as its argument a bitwise OR of the values of
macros defined in fenv.h to represent the floating-point exception flags. The macros
are listed under feraiseexcept() in this chapter.

fetestexcept() returns the bitwise AND of the values representing the exception flags
that were set in the argument and the exception flags that are currently set in the
floating-point environment.

Example
See the examples at feclearexcept() and feholdexcept() in this chapter.

See Also
feclearexcept(), feraisexcept(), feholdexcept(), fesetexceptflag(), feupdateenv(),
fegetenv(), fesetenv()

feupdateenv

Sets the floating-point environment to a previously saved state, but preserves exceptions

C99

#include <fenv.h>
void feupdateenv(const fenv_t *envp);

The feupdateenv() function internally saves the current floating-point exception status
flags before installing the floating-point environment stored in the object referenced by

318 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fflush

its pointer argument. Then the function raises floating-point exceptions that were set
in the saved status flags.

The argument must be a pointer to an object obtained by a prior call to fegetenv() or
feholdexcept(), or a macro such as FE_DFL_ENV, which is defined as a pointer to an
object of type fenv_t representing the default floating-point environment.

The function returns 0 if successful; a nonzero return value indicates an error.

Example
See the example for feholdexcept() in this chapter.

See Also
fegetexceptflag(), feraisexcept(), feclearexcept(), fetestexcept(), fegetenv(),
feholdexcept(), fesetenv(), feupdateenv()

fflush

Clears a file buffer

#include <stdio.h>
int fflush(FILE *fp);

The fflush() function empties the I/O buffer of the open file specified by the FILE
pointer argument. If the file was opened for writing, fflush() writes the contents of
the file. If the file is only opened for reading, the behavior of fflush() is not specified
by the standard. Most implementations simply clear the input buffer. The function
returns 0 if successful, or EOF if an error occurs in writing to the file.

The argument passed to fflush() may be a null pointer. In this case, fflush() flushes
the output buffers of all the program’s open streams. The fflush() function does not
close the file, and has no effect at all on unbuffered files (see “Files” in Chapter 13 for
more information on unbuffered input and output).

Example
In this example, the program fflush.c writes two lines of text to a file. If the macro FLUSH is
defined, the program flushes the file output buffer to disk after each line. If not, only the
first output line is explicitly flushed. Then the program raises a signal to simulate a fatal
error, so that we can see the effect with and without the second fflush() call.

/* fflush.c: Tests the effect of flushing output file buffers. */
FILE *fp;

#ifdef FLUSH
char filename[] = "twice.txt";
#else
char filename[] = "once.txt";
#endif /* FLUSH */

fp = fopen(filename, "w");
if (fp == NULL)
 fprintf(stderr "Failed to open file '%s' to write.\n", filename);

fputs("Going once ...\n", fp);
fflush(fp); // Flush the output unconditionally

fputs("Going twice ...\n", fp);

Chapter 17: Standard Library Functions | 319

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fgetc

#ifdef FLUSH
fflush(fp); // Now flush only if compiled with '-DFLUSH'
#endif

raise(SIGKILL); // End the program abruptly.

fputs("Gone.\n", fp); // These three lines will never be executed.
fclose(fp);
exit(0);

When we compile and test the program, the output looks like this:

$ cc –DFLUSH -o fflushtwice fflush.c
$./fflushtwice
Killed
$ cc -o fflushonce fflush.c
$./fflushonce
Killed
$ ls -l
-rw-r--r-- 1 tony tony 781 Jul 22 12:36 fflush.c
-rwxr-xr-x 1 tony tony 12715 Jul 22 12:38 fflushonce
-rwxr-xr-x 1 tony tony 12747 Jul 22 12:37 fflushtwice
-rw-r--r-- 1 tony tony 15 Jul 22 12:38 once.txt
-rw-r--r-- 1 tony tony 31 Jul 22 12:37 twice.txt

The two cc commands have created two different executables, named fflushonce and
fflushtwice, and each version of the program has run and killed itself in the process of
generating an output file. The contents of the two output files, once.txt and twice.txt,
are different:

$ cat twice.txt
Going once ...
Going twice ...
$ cat once.txt
Going once ...
$

When the fputs() call returned, the output string was still in the file buffer, waiting
for the operating system to write it to disk. Without the second fflush() call, the
intervening “kill” signal caused the system to abort the program, closing all its files,
before the disk write occurred.

See Also
setbuf(), setvbuf()

fgetc

Reads a character from a file

#include <stdio.h>
int fgetc(FILE *fp);

The fgetc() function reads the character at the current file position in the specified
file, and increments the file position.

The return value of fgetc() has the type int. If the file position is at the end of the file,
or if the end-of-file flag was already set, fgetc() returns EOF and sets the end-of-file

320 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fgetpos

flag. If you convert the function’s return value to char, you might no longer be able to
distinguish a value of EOF from a valid character such as '\xFF'.

Example
FILE *fp;
int c;
char buffer[1024];
int i = 0;

/* ... Open input file ... */

while (i < 1023)
{
 c = fgetc(fp); // Returns a character on success;
 if (c == EOF) // EOF means either an error or end-of-file.
 {
 if (feof(fp))
 fprintf(stderr, "End of input.\n");
 else if (ferror(fp))
 fprintf(stderr, "Input error.\n");
 clearerr(fp); // Clear the file's error or EOF flag.
 break;
 }
 else
 {
 buffer[i++] = (char) c; // Use value as char *after* checking for EOF.
 }
}
buffer[i] = '\0'; // Terminate string.

See Also
getc(), getchar(), putc(), fputc(), fgets(), fgetwc(), getwc()

fgetpos

Obtains the current read/write position in a file

#include <stdio.h>
int fgetpos(FILE * restrict fp, fpos_t * restrict ppos);

The fgetpos() function determines the current value of the file position indicator in an
open file, and places the value in the variable referenced by the pointer argument ppos.
You can use this value in subsequent calls to fsetpos() to restore the file position.

If the FILE pointer argument refers to a multibyte stream, then the fgetpos() function
also obtains the stream’s multibyte parsing state. In this case, the type fpos_t is
defined as a structure to hold both the file position information and the parsing state.

The fgetpos() function returns 0 if successful. If an error occurs, fgetpos() returns a
nonzero return value and sets the errno variable to indicate the type of error.

Chapter 17: Standard Library Functions | 321

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fgets

Example
FILE *datafile; fpos_t bookmark;

if ((datafile = fopen(".testfile", "r+")) == NULL)
{
 fprintf(stderr, "Unable to open file %s.\n",".testfile");
 return 1;
}

if (fgetpos(datafile, &bookmark)) // Save initial position
 perror("Saving file position");
else
{
 /* ... Read data, modify data ... */

 if (fsetpos(datafile, &bookmark)) // Return to initial position
 perror("Restoring file position");

 /* ... write data back at the original position in the file ... */
}

See Also
fsetpos(), fseek(), ftell(), rewind()

fgets

Reads a string from a file

#include <stdio.h>
char *fgets(char * restrict buffer, int n, FILE * restrict fp);

The fgets() function reads a sequence of up to n – 1 characters from the file refer-
enced by the FILE pointer argument, and writes it to the buffer indicated by the char
pointer argument, appending the string terminator character '\0'. If a newline char-
acter ('\n') is read, reading stops and the string written to the buffer is terminated
after the newline character.

The fgets() function returns the pointer to the string buffer if anything was written to
it, or a null pointer if an error occurred or if the file position indicator was at the end of
the file.

Example
FILE *titlefile;
char title[256];
int counter = 0;

if ((titlefile = fopen("titles.txt", "r")) == NULL)
 perror("Opening title file");
else
{
 while (fgets(title, 256, titlefile) != NULL)
 {
 title[strlen(title) –1] = '\0'; // Trim off newline character.
 printf("%3d: \"%s\"\n", ++counter, title);
 }

322 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fgetwc

 /* fgets() returned NULL: either EOF or an error occurred. */
 if (feof(titlefile))
 printf("Total: %d titles.\n", counter);
}

If the working directory contains an appropriate text file, the program produces
output like this:

 1: "The Amazing Maurice"
 2: "La condition humaine"
 3: "Die Eroberung der Maschinen"
Total: 3 titles.

See Also
fputs(), puts(), fgetc(), fgetws(), fputws()

fgetwc

Reads a wide character from a file

#include <stdio.h>
#include <wchar.h>
wint_t fgetwc(FILE *fp);

The fgetwc() function reads the wide character at the current file position in the speci-
fied file and increments the file position.

The return value of fgetwc() has the type wint_t. If the file position is at the end of the
file, or if the end-of-file flag was already set, fgetwc() returns WEOF and sets the end-of-
file flag. If a wide-character encoding error occurs, fgetwc() sets the errno variable to
EILSEQ (“illegal sequence”) and returns WEOF. Use feof() and ferror() to distinguish
errors from end-of-file conditions.

Example
char file_in[] = "local_in.txt",
 file_out[] = "local_out.txt";
FILE *fp_in_wide, *fp_out_wide;
wint_t wc;

if (setlocale(LC_CTYPE, "") == NULL)
 fwprintf(stderr,
 L"Sorry, couldn't change to the system's native locale.\n"),
 exit(1);

if ((fp_in_wide = fopen(file_in, "r")) == NULL)
 fprintf(stderr, "Error opening the file %s\n", file_in), exit(2);

if ((fp_out_wide = fopen(file_out, "w")) == NULL)
 fprintf(stderr, "Error opening the file %s\n", file_out), exit(3);

fwide(fp_in_wide, 1); // Not strictly necessary, since first
fwide(fp_out_wide, 1); // file access also sets wide or byte mode.

while ((wc = fgetwc(fp_in_wide)) != WEOF)
{
 // ... process each wide character read ...

Chapter 17: Standard Library Functions | 323

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

floor

 if (fputwc((wchar_t)wc, fp_out_wide) == WEOF)
 break;
}
if (ferror(fp_in_wide))
 fprintf(stderr, "Error reading the file %s\n", file_in);
if (ferror(fp_out_wide))
 fprintf(stderr, "Error writing to the file %s\n", file_out);

See Also
getwc(), getwchar(), fputwc(), putwc(), fgetc()

fgetws

Reads a wide-character string from a file

#include <stdio.h>
#include <wchar.h>
wchar_t *fgetws(wchar_t * restrict buffer, int n, FILE * restrict fp);

The fgetws() function reads a sequence of up to n – 1 wide characters from the file
referenced by the FILE pointer argument, and writes it to the buffer indicated by the
wchar_t pointer argument, appending the string terminator character L'\0'. If a
newline character (L'\n') is read, reading stops and the string written to the buffer is
terminated after the newline character.

The fgetws() function returns the pointer to the wide string buffer if anything was
written to it, or a null pointer if an error occurred or if the file position indicator was at
the end of the file.

Example
FILE *fp_in_wide;
wchar_t buffer[4096];
wchar_t *line = &buffer;

if ((fp_in_wide = fopen("local.doc", "r")) == NULL)
 perror("Opening input file");
fwide(fp_in_wide);

line = fgetws(buffer, sizeof(buffer), fp_in_wide);
if (line == NULL)
 perror("Reading from input file");

See Also
fputws(), putws(), fgetwc(), fgets(), fputs()

floor

Rounds a real number down to an integer value

#include <math.h>
double floor(double x);
float floorf(float x); (C99)

long double floorl(long double x); (C99)

324 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fma

The floor() function returns the greatest integer that is less than or equal to its argu-
ment. However, the function does not have an integer type; it returns an integer value,
but with a floating-point type.

Example
/* Scale a point by independent x and y factors */
struct point { int x, y; };

int width_orig = 1024, height_orig = 768;
int width_new = 800, height_new = 600;

struct point scale(struct point orig)
{
 struct point new;
 new.x = (int)floor(orig.x * (double)width_new / (double)width_orig);
 new.y = (int)floor(orig.y * (double)height_new / (double)height_orig);
 return new;
}

See Also
ceil(), round(); the C99 rounding functions that return floating-point types: trunc(),
rint(), nearbyint(), nextafter(), and nexttoward(); the C99 rounding functions that
return integer types: lrint(), lround(), llrint(), and llround(); the fesetround()
and fegetround() functions, which operate on the C99 floating-point environment.

fma

Multiplies two numbers and adds a third number to their product

C99

#include <math.h>
double fma(double x, double y, double z);
float fmaf(float x, float y, float z);
long double fmal(long double x, long double y, long double z);

The name of the fma() function stands for “fused multiply-add.” fma() multiplies its
first two floating-point arguments, then adds the third argument to the result. The
advantage over the expression (x * y) + z, with two separate arithmetic operations, is
that fma() avoids the error that would be incurred by intermediate rounding, as well as
intermediate overflows or underflows that might otherwise be caused by the separate
multiplication.

If the implementation defines the macro FP_FAST_FMA in math.h, that indicates that the
fma() function is about as fast to execute as, or faster than, the expression (x * y) + z.
This is typically the case if the fma() function makes use of a special FMA machine
operation. The corresponding macros FP_FAST_FMAF and FP_FAST_FMAL provide the same
information about the float and long double versions.

Example
double x, y, z;

x = nextafter(3.0, 4.0); // Smallest possible double value greater than 3
y = 1.0/3.0;
z = -1.0;

Chapter 17: Standard Library Functions | 325

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fmin

printf("x = %.15G\n"
 "y = %.15G\n"
 "z = %.15G\n", x, y, z);

#ifdef FP_FAST_FMA

printf("fma(x, y, z) = %.15G\n", fma(x, y, z));

#else // i.e., not def FP_FAST_FMA

double product = x * y;

printf("x times y = %.15G\n", product);
printf("%.15G + z = %.15G\n", product, product + z);

#endif // def FP_FAST_FMA

fmax

Determines the greater of two floating-point numbers

C99

#include <math.h>
double fmax(double x, double y);
float fmaxf(float x, float y);
long double fmaxl(long double x , long double y);

The fmax() functions return the value of the greater argument.

Example:
// Let big equal the second-greatest possible double value ...
const double big = nextafter(DBL_MAX, 0.0);
// ... and small the second-least possible double value:
const double small = nextafter(DBL_MIN, 0.0);

double a, b, c;

/* ... */

if (fmin(fmin(a, b), c) <= small)
 printf("At least one value is too small.\n");
if (fmax(fmax(a, b), c) >= big)
 printf("At least one value is too great.\n");

See Also
fabs(), fmin()

fmin

Determines the lesser of two floating-point numbers

C99

#include <math.h>
double fmin(double x, double y);
float fminf(float x, float y);
long double fminl(long double x , long double y);

The fmin() functions return the value of the lesser argument.

326 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fmod

Example
See the example for fmax().

See Also
fabs(), fmax()

fmod

Performs the modulo operation

#include <math.h>
double fmod(double x, double y);
float fmodf(float x, float y); (C99)

long double fmodl(long double x, long double y); (C99)

The fmod() function returns the remainder of the floating-point division of x by y,
called “x modulo y.” The remainder is equal to x minus the product of y and the
largest integer quotient whose absolute value is not greater than that of y. This
quotient is negative (or 0) if x and y have opposite signs, and the return value has the
same sign as x. If the argument y is zero, fmod() may incur a domain error, or return 0.

Example
double people = -2.25, apples = 3.3, eachgets = 0.0, someleft = 0.0;
int saverounding = fegetround(); // Save previous setting

fesetround(FE_TOWARDZERO);

eachgets = rint(apples / people);
someleft = fmod(apples, people);

printf("If there are %+.2f of us and %+.2f apples, "
 "each of us gets %+.2f, with %+.2f left over.\n",
 people, apples, eachgets, someleft);

fesetround(saverounding); // Restore previous setting

This code produces the following output:

If there are -2.25 of us and +3.30 apples, each of us gets -1.00, with +1.05
left over.

See Also
The C99 functions remainder() and remquo()

fopen

Opens a file

#include <stdio.h>
FILE *fopen(const char * restrict name, const char * restrict mode);

The fopen() function opens the file with the specified name. The second argument is a
character string that specifies the requested access mode. The possible values of the
mode string argument are shown in Table 17-1.

Chapter 17: Standard Library Functions | 327

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fopen

fopen() returns the FILE pointer for you to use in subsequent input or output opera-
tions on the file, or a null pointer if the function fails to open the file with the
requested access mode.

When a file is first opened, the file position indicator points to the first byte in the file.
If a file is opened with the mode string "a" or "a+", then the file position indicator is
automatically placed at the end of the file before each write operation, so that existing
data in the file cannot be written over.

If the mode string includes a plus sign, then the mode allows both input and output,
and you must synchronize the file position indicator between reading from and writing
to the file. Do this by calling fflush() or a file positioning function—fseek(),
fsetpos(), or rewind()—after writing and before reading, and by calling a file-
positioning function after reading and before writing (unless it’s certain that you have
read to the end of the file).

The mode string may also include b as the second or third letter (that is, "ab+" for
example is the same as "a+b"), which indicates a binary file, as opposed to a text file.
The exact significance of this distinction depends on the given system.

Example
FILE *in, *out;
int c;

if (argc != 3)
 fprintf(stderr, "Usage: program input-file output-file\n"), exit(1);

// If "-" appears in place of input filename, use stdin:
in = (strcmp(argv[1], "-") == 0) ? stdin : fopen(argv[1], "r");
if (in == NULL)
 perror("Opening input file"), return -1;

// If "-" appears in place of output filename, use stdout:
out = (strcmp(argv[2], "-") == 0) ? stdout : fopen(argv[2], "a+");
if (out == NULL)
 perror("Opening output file"), return -1;

while ((c = fgetc(in)) != EOF)
 if (fputc(c, out) == EOF)
 break;

Table 17-1. File access modes

Mode string Access mode Notes

"r"
"r+"

Read
Read and write

The file must already exist.

"w"
"w+"

Write
Write and read

If the file does not exist, fopen() creates it. If it does exist,
fopen() erases its contents on opening.

"a"
"a+"

Append
Append and read

If the file does not exist, fopen() creates it.

328 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fpclassify

if (!feof(in))
 perror("Error while copying");
fclose(in), fclose(out);

See Also
fclose(), fflush(), freopen(), setbuf()

fpclassify

Obtains a classification of a real floating-point number

C99

#include <math.h>
int fpclassify(x);

The fpclassify() macro determines whether its argument is a normal floating-point
number, or one of several special categories of values, including NaN (not a number),
infinity, subnormal floating-point values, zero, and possibly other implementation-
specific categories.

To determine what category the argument belongs to, compare the return value of
fpclassify() with the values of the following number classification macros, defined in
math.h:

FP_INFINITE
FP_NAN
FP_NORMAL
FP_SUBNORMAL
FP_ZERO

These five macros expand to distinct integer values.

Example
double minimum(double a, double b)
{
 register int aclass = fpclassify(a);
 register int bclass = fpclassify(b);

 if (aclass == FP_NAN || bclass == FP_NAN)
 return NAN;

 if (aclass == FP_INFINITE) // -Inf is less than anything;
 return (signbit(a) ? a : b); // +inf is greater than anything.

 if (bclass == FP_INFINITE)
 return (signbit(b) ? b : a);

 return (a < b ? a : b);
}

 See Also
isfinite(), isinf(), isnan(), isnormal(), signbit()

Chapter 17: Standard Library Functions | 329

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fputc

fprintf

Writes formatted output to an open file

#include <stdio.h>
int fprintf(FILE * restrict fp, const char * restrict format, ...);

The fprintf() function is similar to printf(), but writes its output to the stream spec-
ified by fp rather than to stdout.

Example
FILE *fp_log;
time_t sec;

fp_log = fopen("example.log", "a");
if (fp != NULL)
{
 time(&sec);
fprintf(fp_log, "%.24s Opened log file.\n", ctime(&sec));

}

This code appends the following output to the file example.log:

Wed Dec 8 21:10:43 2004 Opened log file.

See Also
printf(), sprintf(), snprintf(), declared in stdio.h; vprintf(), vfprintf(),
vsprintf(), vsnprintf(), declared in stdio.h and stdarg.h; the wide-character func-
tions wprintf(), fwprintf(), swprintf(), declared in stdio.h and wchar.h; vwprintf(),
vfwprintf(), and vswprintf(), declared in stdio.h, wchar.h, and stdarg.h; the scanf()
input functions. Argument conversion in the printf() family of functions is described
under printf() in this chapter.

fputc

Writes a character to a file

#include <stdio.h>
int fputc(int c, FILE *fp);

The fputc() function writes one character to the current file position of the specified
FILE pointer. The return value is the character written, or EOF if an error occurred.

Example
#define CYCLES 10000
#define DOTS 4

printf("Performing %d modulo operations ", CYCLES);
for (int count = 0; count < CYCLES; ++count)
 {
 if (count % (CYCLES / DOTS) != 0) continue;

fputc('.', stdout); // Mark every nth cycle
 }
printf(" done.\n");

This code produces the following output:

Performing 10000 modulo operations done.

330 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fputs

See Also
putc(); fgetc(), fputwc()

fputs

Writes a string to a file

#include <stdio.h>
int fputs(const char * restrict string, FILE * restrict fp);

The fputs() function writes a string to the file specified by the FILE pointer argument.
The string is written without the terminator character ('\0'). If successful, fputs()
returns a value greater than or equal to zero. A return value of EOF indicates that an
error occurred.

Example
See the examples at fclose() and fflush() in this chapter.

See Also
fgets(), fputws()

fputwc

Writes a wide character to a file

#include <wchar.h>
wint_t fputwc(wchar_t wc, FILE *fp);

The fputwc() function writes a wide character to the current file position of the speci-
fied FILE pointer. The return value is the character written, or WEOF if an error occurred.
Because the external file associated with a wide-oriented stream is considered to be a
sequence of multibyte characters, fputwc() implicitly performs a wide-to-multibyte
character conversion. If an encoding error occurs in the process, fputwc() sets the
errno variable to the value of EILSEQ (“illegal byte sequence”).

Example
See the example for fgetwc() in this chapter.

See Also
fputc(), fgetwc(), putwc(), putwchar()

fputws

Writes a string of wide characters to a file

#include <wchar.h>
int fputws(const wchar_t * restrict ws, FILE * restrict fp);

The fputws() function writes a string of wide characters to the file specified by the
FILE pointer argument. The string is written without the terminator character (L'\0').
If successful, fputws() returns a value greater than or equal to zero. A return value of
EOF indicates that an error occurred.

Chapter 17: Standard Library Functions | 331

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fread

Example
FILE *fpw;
char fname_wide[] = "widetest.txt";
int widemodeflag = 1;
int result;

wchar_t widestring[] = L"How many umlauts are there in Fahrvergnügen?\n";

if ((fpw = fopen(fname_wide, "a")) == NULL)
 perror("Opening output file"), return -1;

// Set file to wide-character orientation:
widemodeflag = fwide(fpw, widemodeflag);
if (widemodeflag <= 0)
{
 fprintf(stderr, "Unable to set output file %s to wide characters\n",
 fname_wide);
 (void)fclose(fpw);
 return -1;
}

// Write wide-character string to the file:
result = fputws(widestring, fpw);

See Also
fgets(), fputs(), fgetws(), fwprintf()

fread

Reads a number of objects from a file

#include <stdio.h>
size_t fread(void * restrict buffer, size_t size, size_t n,
 FILE * restrict fp);

The fread() function reads up to n data objects of size size from the specified file, and
stores them in the memory block pointed to by the buffer argument. You must make
sure that the available size of the memory block in bytes is at least n times size.
Furthermore, on systems that distinguish between text and binary file access modes,
the file should be opened in binary mode.

The fread() function returns the number of data objects read. If this number is less than
the requested number, then either the end of the file was reached or an error occurred.

Example
typedef struct {
 char name[64];
 /* ... more members ... */
} item;

#define CACHESIZE 32 // Size as a number of array elements.

FILE *fp;
int readcount = 0;
item itemcache[CACHESIZE]; // An array of "items".

332 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

free

if ((fp = fopen("items.dat", "r+")) == NULL)
 perror("Opening data file"), return -1;

/* Read up to CACHESIZE "item" records from the file.*/

readcount = fread(itemcache, sizeof (item), CACHESIZE, fp);

See Also
fwrite(), feof(), ferror()

free

Releases allocated memory

#include <stdlib.h>
void free(void *ptr);

After you have finished using a memory block that you allocated by calling malloc(),
calloc() or realloc(), the free() function releases it to the system for recycling. The
pointer argument must be the exact address furnished by the allocating function,
otherwise the behavior is undefined. If the argument is a null pointer, free() does
nothing. In any case, free() has no return value.

Example
char *ptr;

/* Obtain a block of 4096 bytes ... */
ptr = calloc(4096, sizeof(char));

if (ptr == NULL)
 fprintf(stderr, "Insufficient memory.\n"), abort();
else
{
/* ... use the memory block ... */
 strncpy(ptr, "Imagine this is a long string.\n", 4095);
 fputs(stdout, ptr);
/* ... and release it. */
free(ptr);

}

See Also
malloc(), calloc(), realloc()

freopen

Changes the file associated with an existing file pointer

#include <stdio.h>
FILE *freopen(const char * restrict name, const char * restrict mode,
 FILE * restrict fp);

The freopen() function closes the file associated with the FILE pointer argument and
opens the file with the specified name, associating it with the same FILE pointer as the

Chapter 17: Standard Library Functions | 333

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

frexp

file just closed. That FILE pointer is the function’s return value. If an error occurs,
freopen() returns a null pointer, and the FILE pointer passed to the function is closed.

The new access mode is specified by the second character string argument, in the same
way described under fopen().

The most common use of freopen() is to redirect the standard I/O streams stdin,
stdout, and stderr.

Example
time_t sec;
char fname[] = "test.dat";
if (freopen(fname, "w", stdout) == NULL)
 fprintf(stderr, "Unable to redirect stdout.\n");
else
{
 time(&sec);
 printf("%.24s: This file opened as stdout.\n", ctime(&sec));
}

See Also
fopen(), fclose(), fflush(), setbuf()

frexp

Splits a real number into a mantissa and exponent

#include <math.h>
double frexp(double x, int *exp);
float frexpf(float x, int *exp); (C99)

long double frexpl(long double x, int *exp); (C99)

The frexp() function expresses a floating-point number x as a normalized fraction f
and an integer exponent e to base 2. In other words, if the fraction f is the return value
of frexp(x, &e), then x = f × 2e and 0.5 ≤ f < 1.

The normalized fraction is the return value of the frexp() function. The function
places the other part of its “answer,” the exponent, in the location addressed by the
pointer argument. If the floating-point argument x is equal to 0, then the function
stores the value 0 at the exponent location and returns 0.

Example
double fourthrt(double x)
{
 int exponent, exp_mod_4;
 double mantissa = frexp(x, &exponent);

 exp_mod_4 = exponent % 4;
 exponent -= (exp_mod_4); // Get an exponent that's divisible by four ...

 for (int i = abs(exp_mod_4); i > 0; i--)
 {
 if (exp_mod_4 > 0) // ... and compensate in the mantissa.
 mantissa *= 2.0;

334 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fscanf

 else
 mantissa /= 2.0;
 }
 return ldexp(sqrt(sqrt(mantissa)), exponent / 4);
}

See Also
The ldexp() function, which performs the reverse calculation.

fscanf

Reads formatted data from an open file

#include <stdio.h>
int fscanf(FILE * restrict fp, const char * restrict format, ...);

The fscanf() function is like scanf(), except that it reads input from the file refer-
enced by first argument, fp, rather than from stdin. If fscanf() reads to the end of the
file, it returns the value EOF.

Example
The example code reads information about a user from a file, which we will suppose
contains a line of colon-separated strings like this:

tony:x:1002:31:Tony Crawford,,,:/home/tony:/bin/bash

Here is the code:

struct pwrecord { // Structure to hold contents of passwd fields.
 unsigned int uid;
 unsigned int gid;
 char user[32];
 char pw [32];
 char realname[128];
 char home [128];
 char shell [128];
};

/* ... */

FILE *fp;
int results = 0;
struct pwrecord record;
struct pwrecord *recptr = &record;
char gecos[256] = "";

/* ... Open the password file to read ... */

record = (struct pwrecord) { UINT_MAX, UINT_MAX, "", "", "", "", "", "" };

/* 1. Read login name, password, UID and GID. */
results = fscanf(fp, "%32[^:]:%32[^:]:%u:%u:",
 recptr->user, recptr->pw,
 &recptr->uid, &recptr->gid);

This function call reads the first part of the input string, tony:x:1002:31:, and copies
the two strings "tony" and "x" and assigns two unsigned int values, 1002 and 31, to

Chapter 17: Standard Library Functions | 335

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fseek

the corresponding structure members. The return value is 4. The remainder of the
code is then as follows:

if (results < 4)
{
 fprintf(stderr, "Unable to parse line.\n");
fscanf(fp, "%*[^\n]\n"); // Read and discard rest of line.

}

/* 2. Read the "gecos" field, which may contain nothing, or just the real
 * name, or comma-separated sub-fields.
 */
results = fscanf(fp, "%256[^:]:", gecos);
if (results < 1)
 strcpy(recptr->realname, "[No real name available]");
else
sscanf(gecos, "%128[^,]", recptr->realname); // Truncate at first comma.

/* 3. Read two more fields before the end of the line. */

results = fscanf(fp, "%128[^:]:%128[^:\n]\n",
 recptr->home, recptr->shell);
if (results < 2)
{
 fprintf(stderr, "Unable to parse line.\n");
fscanf(fp, "%*[^\n]\n"); // Read and discard rest of line.

}
printf("The user account %s with UID %u belongs to %s.\n",
 recptr->user, recptr->uid, recptr->realname);

For our sample input line, the printf() call produces the following output:

The user account tony with UID 1002 belongs to Tony Crawford.

See Also
scanf(), sscanf(), vscanf(), vfscanf(), and vsscanf(); wscanf(), fwscanf(),
swscanf(), vwscanf(), vfwscanf(), and vswscanf()

fseek

Moves the access position in a file

#include <stdio.h>
int fseek(FILE *fp, long offset, int origin);

The fseek() function moves the file position indicator for the file specified by the FILE
pointer argument. The new position is offset bytes from the position selected by the
value of the origin argument, which may indicate the beginning of the file, the previous
position, or the end of the file. Table 17-2 lists the permitted values for origin.

Table 17-2. Values for fseek()’s origin argument

Value of origin Macro name Offset is relative to

0 SEEK_SET The beginning of the file

1 SEEK_CUR The current position

2 SEEK_END The end of the file

336 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fsetpos

You can use a negative offset value to move the file access position backward, but the
position indicator cannot be moved backward past the beginning of the file. However,
it is possible to move the position indicator forward past the end of the file. If you then
perform a write operation at the new position, the file’s contents between its previous
end and the new data are undefined.

The fseek() function returns 0 if successful, or –1 if an error occurs.

Example
typedef struct { long id;
 double value;
 } record;
FILE *fp;
record cur_rec = (record) { 0, 0.0 };
int reclength_file = sizeof(record);
long seek_id = 123L;

if ((fp = fopen("records", "r")) == NULL)
 perror("Unable to open records file");
else do
{
 if (1 > fread(&cur_rec.id, sizeof (long), 1, fp))
 fprintf(stderr, "Record with ID %ld not found\n", seek_id);
 else // Skip rest of record
 if (fseek(fp, reclength_file – sizeof(long), 1)
 perror("fseek failed");
} while (cur_rec.id != seek_id);

See Also
fgetpos(), fsetpos(), ftell(), rewind()

fsetpos

Sets a file position indicator to a previously recorded position

#include <stdio.h>
int fsetpos(FILE *fp, const fpos_t *ppos);

The fsetpos() function sets the file position indicator for the file specified by the FILE
pointer argument. The ppos argument, a pointer to the value of the new position, typi-
cally points to a value obtained by calling the fgetpos() function.

The function returns 0 if successful. If an error occurs, fsetpos() returns a nonzero
value and sets the errno variable to an appropriate positive value.

The type fpos_t is defined in stdio.h, and may or may not be an integer type.

Example
See the example for fgetpos() in this chapter.

See Also
fgetpos(), fseek(), ftell(), rewind()

Chapter 17: Standard Library Functions | 337

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

ftell

ftell

Obtains the current file access position

#include <stdio.h>
long ftell(FILE *fp);

The ftell() function returns the current access position in the file controlled by the
FILE pointer argument. If the function fails to obtain the file position, it returns the
value –1 and sets the errno variable to an appropriate positive value.

To save the access position in a multibyte stream, use the fgetpos()
function, which also saves the stream’s multibyte parsing state.

Example
This example searches in a file, whose name is the second command-line argument,
for a string, which the user can specify in the first command-line argument.

#define MAX_LINE 256

FILE *fp;
long lOffset = 0L;
char sLine[MAX_LINE] = "";
char *result = NULL;
int lineno = 0;
/* ... */
if ((fp = fopen(argv[2], "r")) == NULL)
{
 fprintf(stderr, "Unable to open file %s\n", argv[2]);
 exit(-1);
}
do
{
 lOffset = ftell(fp); // Bookmark the beginning of
 // the line we're about to read.
 if (-1L == lOffset)
 fprintf(stderr, "Unable to obtain offset in %s\n", argv[2]);
 else
 lineno++;

 if (! fgets(sLine, MAX_LINE, fp)) // Read next line from file.
 {
 break;
 }
} while (strstr(sLine, argv[1]) == NULL); // Test for argument in sLine.
/* Dropped out of loop: Found search keyword or EOF */
if (feof(fp) || ferror(fp))
 {
 fprintf(stderr, "Unable to find \"%s\" in %s\n", argv[1], argv[2]);
 rewind(fp);
 }

338 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fwide

else
 {
 printf("%s (%d): %s\n", argv[2], lineno, sLine);
 fseek(fp, lOffset, 0); // Set file pointer at beginning of
 // the line containing the keyword
 }

The following example runs this program on its own source file, searching for a line
containing the word “the”. As you can see, the first occurrence of “the” is in line 22.
The program finds that line and displays it:

tony@luna:~/ch17$./ftell the ftell.c
ftell.c (22): lOffset = ftell(fp); // Bookmark the beginning of

See Also
fgetpos(), fsetpos(), fseek(), rewind()

fwide

Determines whether a stream is byte-character- or wide-character-oriented

#include <stdio.h>
#include <wchar.h>
int fwide(FILE *fp, int mode);

The fwide() function either gets or sets the character type orientation of a file,
depending on the value of the mode argument:

mode > 0
The fwide() function attempts to change the file to wide-character orientation.

mode < 0
The function attempts to change the file to byte-character orientation.

mode = 0
The function does not alter the orientation of the stream.

In all three cases, the return value of fwide() indicates the stream’s orientation after
the function call in the same way:

Greater than 0
After the fwide() function call, the file has wide-character orientation.

Less than 0
The file now has byte-character orientation.

Equal to 0
The file has no orientation.

The normal usage of fwide() is to call it once immediately after opening a file to set it
to wide-character orientation. Once you have determined the file’s orientation, fwide()
does not change it on subsequent calls. If you do not call fwide() for a given file, its
orientation is determined by whether the first read or write operation is byte-oriented or
wide-oriented. You can remove a file’s byte or wide-character orientation by calling
freopen(). For more information, see “Byte-Oriented and Wide-Oriented Streams” in
Chapter 13.

Example
See the example for fputws() in this chapter.

Chapter 17: Standard Library Functions | 339

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fwscanf

See Also
The many functions for working with streams of wide characters, listed in Table 16-2.

fwprintf

Writes formatted output in a wide-character string to a file

#include <stdio.h>
#include <wchar.h>
int fwprintf(FILE * restrict fp, const wchar_t * restrict format, ...);

The fwprintf() function is similar to fprintf(), except that its format string argu-
ment and its output are strings of wide characters.

Example
wchar_t name_local[] = L"Ka\u0142u\u017Cny";
char name_portable[]= "Kaluzny";
char locale[] = "pl_PL.UTF-8";
char * newlocale;

newlocale = setlocale(LC_ALL, locale);
if (newlocale == NULL)
 fprintf(stderr, "Sorry, couldn't change the locale to %s.\n"
 "The current locale is %s.\n",
 locale, setlocale(LC_ALL, NULL));

fwprintf(stdout,
 L"Customer's name: %ls (Single-byte transliteration: %s)\n",
 name_local, name_portable);

If the specified Polish locale is available, this example produces the output:

Customer's name: Ka u ny (Single-byte transliteration: Kaluzny)

See Also
The byte-character output function fprintf(); the wide-character input functions
fgetwc, fgetws, getwc, getwchar, fwscanf, wscanf, vfwscanf, and vwscanf; the wide-char-
acter output functions fputwc, fputws, putwc, putwchar, wprintf, vfwprintf, and
vwprintf.

fwscanf

Reads in a formatted data string of wide characters from a file

#include <stdio.h>
#include <wchar.h>
int fwscanf(FILE * restrict fp, const wchar_t * restrict format, ...);

The fwscanf() function is similar to wscanf(), except that it reads its input from the
file referenced by the first argument, fp, rather than from stdin.

Example
See the example for wscanf() in this chapter.

340 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fwrite

See Also
wscanf(), swscanf(), wcstod(), wcstol(), wcstoul(), scanf(), fscanf(); the wide-
character output functions fwprintf(), wprintf(), vfwprintf(), and vwprintf()

fwrite

Writes a number of objects of a given size to a file

#include <stdio.h>
size_t fwrite(const void * restrict buffer, size_t size, size_t n,
 FILE * restrict fp);

The fwrite() function writes up to n data objects of the specified size from the buffer
addressed by the pointer argument buffer to the file referenced by the FILE pointer fp.
Furthermore, on systems that distinguish between text and binary file access modes,
the file should be opened in binary mode.

The function returns the number of data objects that were actually written to the file.
This value is 0 if either the object size size or the number of objects n was 0, and may
be less than the argument n if a write error occurred.

Example
typedef struct {
 char name[64];
 /* ... more structure members ... */
} item;

#define CACHESIZE 32 // Size as a number of array elements.

FILE *fp;
int writecount = 0;
item itemcache[CACHESIZE]; // An array of "items".

/* ... Edit the items in the array ... */

if ((fp = fopen("items.dat", "w")) == NULL)
 perror ("Opening data file"), return -1;

/* Write up to CACHESIZE "item" records to the file.*/

writecount = fwrite(itemcache, sizeof (item), CACHESIZE, fp);

See Also
The corresponding input function, fread(); the string output functions fputs() and
fprintf()

getc

Reads a character from a file

#include <stdio.h>
int getc(FILE *fp);

Chapter 17: Standard Library Functions | 341

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

getchar

The getc() function is the same as fgetc(), except that it may be implemented as a
macro, and may evaluate its argument more than once. If the argument is an expres-
sion with side effects, use fgetc() instead.

getc() returns the character read. A return value of EOF indicates an error or an
attempt to read past the end of the file. In these cases, the function sets the file’s error
or end-of-file flag as appropriate.

Example
FILE *inputs[16];
int nextchar, i = 0;

/* ... open 16 input streams ... */

do {
 nextchar = getc(inputs[i++]); // Warning: getc() is a macro!
 /* ... process the character ... */
} while (i < 16);

The do . . .while statement in this example skips over some files in the array if getc()
evaluates its argument more than once. Here is a safer version, without side effects in
the argument to getc():

for (i = 0; i < 16; i++) {
 nextchar = getc(inputs[i]);
 /* ... process the character ... */
}

See Also
fgetc(), fputc(), putc(), putchar(); the C99 functions to read and write wide charac-
ters: getwc(), fgetwc(), and getwchar(), putwc(), fputwc(), and putwchar(), ungetc(),
ungetwc()

getchar

Reads a character from the standard input stream

#include <stdio.h>
int getchar(void);

The function call getchar() is equivalent to getc(stdin). Like getc(), getchar() may
be implemented as a macro. As it has no arguments, however, unforeseen side effects
are unlikely.

getchar() returns the character read. A return value of EOF indicates an error or an
attempt to read past the end of the input stream. In these cases the function sets the
error or end-of-file flag for stdin as appropriate.

Example
char file_name[256};
int answer;

/* ... */

fprintf(stderr, "Are you sure you want to replace the file \"%s\"?\n",
 file_name);

342 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

getenv

answer = tolower(getchar());
if (answer != 'y')
 exit(-1);

See Also
fgetc(), fputc(), getch(), putc(), putchar(); the C99 functions to read and write
wide characters: getwc(), fgetwc(), getwchar(), putwc(), fputwc(), and putwchar(),
ungetc(), ungetwc()

getenv

Obtains the string value of a specified environment variable

#include <stdlib.h>
char *getenv(const char *name);

The getenv() function searches the environment variables at runtime for an entry with
the specified name, and returns a pointer to the variable’s value. If there is no environ-
ment variable with the specified name, getenv() returns a null pointer.

Your program must not modify the string addressed by the pointer returned, and the
string at that address may be replaced by subsequent calls to getenv(). Furthermore, C
itself does not define a function to set or modify environment variables, or any list of
variable names that you can expect to exist; these features, if available at all, are
system-specific.

Example
#define MAXPATH 1024;
char sPath[MAXPATH] = "";
char *pTmp;

if ((pTmp = getenv("PATH")) != NULL)
 strncpy(sPath, pTmp, MAXPATH – 1); // Save a copy for our use.
else
 fprintf(stderr, "No PATH variable set.\n") ;

See Also
system()

gets

Reads a line of text from standard input

#include <stdio.h>
char *gets(char *buffer);

The gets() function reads characters from the standard input stream until it reads a
newline character or reaches the end of the stream. The characters read are stored as a
string in the buffer addressed by the pointer argument. A string terminator character
'\0' is appended after the last character read (not counting the newline character,
which is discarded).

If successful, the function returns the value of its argument. If an error occurs, or if the
end of the file is reached before any characters can be read in, gets() returns a null
pointer.

Chapter 17: Standard Library Functions | 343

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

getwc

The gets() function provides no way to limit the input length, and
if the stdin stream happens to deliver a long input line, gets() will
attempt to store characters past the end of the of the available
buffer. Such buffer overflows are a potential security risk. Use
fgets() instead, which has a parameter to control the maximum
input length.

Example
char buffer[1024];

/* 7/11/04: Replaced gets() with fgets() to avoid potential buffer overflow
 * OLD: while (gets(buffer) != NULL)
 * NEW: below
 */
while (fgets(buffer, sizeof(buffer), stdin) != NULL)
{
 /* ... process the line; remember that fgets(), unlike gets(),
 retains the newline character at the end of the string ... */
}

See Also
The function fgets(); the corresponding string output functions, puts() and fputs();
the C99 functions for wide-character string input, getws() and fgetws()

getwc

Reads a wide character from a file

#include <stdio.h>
#include <wchar.h>
wint_t getwc(FILE *fp);

The getwc() function is the wide-character counterpart to getc(): it may be imple-
mented as a macro, and may evaluate its argument more than once, causing
unforeseen side effects. Use fgetwc() instead.

getwc() returns the character read. A return value of WEOF indicates an error or an
attempt to read past the end of the file.

Example
wint_t wc;

if (setlocale(LC_CTYPE, "") == NULL)
{
 fwprintf(stderr,
 L"Sorry, couldn't change to the system's native locale.\n");
 return 1;
}
while ((wc = getwc(stdin)) != WEOF)
{
 wc = towupper(wc);
putwc((wchar_t)wc, stdout);

}

344 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

getwchar

See Also
The function fgetwc(); the corresponding output functions putwc() and fputwc(); the
byte-character functions getc() and getchar(); the byte-character output functions
putc(), putchar(), and fputc()

getwchar

Reads a wide character from the standard input stream

#include <wchar.h>
wint_t getwchar(void);

The getwchar() function is the wide-character counterpart to getchar(); it is equiva-
lent to getwc(stdin) and returns the wide character read. Like getwc(), getwchar()
may be implemented as a macro, but because it has no arguments, unforeseen side
effects are not likely. A return value of WEOF indicates an error or an attempt to read
past the end of the input stream. In these cases, the function sets the error or end-of-
file flag for stdin as appropriate.

Example
wint_t wc;

if (setlocale(LC_CTYPE, "") == NULL)
{
 fwprintf(stderr,
 L"Sorry, couldn't change to the system's native locale.\n");
 return 1;
}
while ((wc = getwchar()) != WEOF) // or: (wc = getwc(stdin))
{
 wc = towupper(wc);
putwchar((wchar_t)wc); // or: putwc((wchar_t)wc, stdout);

}

See Also
fgetwc(); the byte-character functions getc() and getchar(); the output functions
fputwc() and putwchar()

gmtime

Converts a timer value into a year, month, day, hour, minute, second, etc.

#include <time.h>
struct tm *gmtime(const time_t *timer);

The gmtime() function converts a numeric time value (usually a number of seconds
since January 1, 1970, but not necessarily) into the equivalent date and time structure
in Coordinated Universal Time (UTC, formerly called Greenwich Mean Time; hence
the function’s name). To obtain similar values for the local time, use the function
localtime().

The function’s argument is not the number of seconds itself, but a pointer to that
value. Both the structure type struct tm and the arithmetic type time_t are defined in
the header file time.h.

The tm structure is defined as follows:

Chapter 17: Standard Library Functions | 345

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

hypot

struct tm {
 int tm_sec; /* Seconds since the full minute: 0 to 60 */
 int tm_min; /* Minutes since the full hour: 0 to 59 */
 int tm_hour; /* Hours since midnight: 0 to 23 */
 int tm_mday; /* Day of the month: 1 to 31 */
 int tm_mon; /* Months since January: 0 to 11 */
 int tm_year; /* Years since 1900 */
 int tm_wday; /* Days since Sunday: 0 to 6 */
 int tm_yday; /* Days since Jan. 1: 0 to 365 */
 int tm_isdst; /* Flag for Daylight Savings Time:
 greater than 0 if time is DST;
 equal to 0 if time is not DST;
 less than 0 if unknown. */
};

The argument most often passed to gmtime() is the current time, obtained as a number
with type time_t by calling the function time(). The type time_t is defined in time.h,
usually as equivalent to long or unsigned long.

Example
The following program prints a string showing the offset of the local time zone from
UTC:

time_t rawtime;
struct tm utc_tm, local_tm, *ptr_tm;
char buffer[1024] = "";

time(&rawtime); // Get current time as an integer.
ptr_tm = gmtime(&rawtime); // Convert to UTC in a struct tm.
memcpy(&utc_tm, ptr_tm, sizeof(struct tm)); // Save a local copy.
ptr_tm = localtime(&rawtime); // Do the same for local time zone.
memcpy(&local_tm, ptr_tm, sizeof(struct tm));

if (strftime(buffer, sizeof(buffer),
 "It's %A, %B %d, %Y, %R o'clock, UTC.", &utc_tm))
 puts(buffer);
if (strftime(buffer, sizeof(buffer),
 "Here it's %A, %B %d, %Y, %R o'clock, UTC %z.", &local_tm))
 puts(buffer);

This code produces the following output:

It's Tuesday, March 22, 2005, 22:26 o'clock, UTC.
Here it's Wednesday, March 23, 2005, 00:26 o'clock, UTC +0200.

See Also
localtime(), strftime(), time()

hypot

Calculates a hypotenuse by the Pythagorean formula

C99

#include <math.h>
double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);

346 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

ilogb

The hypot() functions compute the square root of the sum of the squares of their
arguments, while avoiding intermediate overflows. If the result exceeds the function’s
return type, a range error may occur.

Example
double x, y, h; // Three sides of a triangle

printf("How many kilometers do you want to go westward? ");
scanf("%lf", &x);

printf("And how many southward? ");
scanf("%lf", &y);

errno = 0;
h = hypot(x, y);

if (errno)
 perror(_ _FILE_ _);
else
 printf("Then you'll be %4.2lf km from where you started.\n", h);

If the user answers the prompts with 3.33 and 4.44, the program prints this output:

Then you'll be 5.55 km from where you started.

See Also
sqrt(), cbrt(), csqrt()

ilogb

Returns the exponent of a floating-point number as an integer

C99

#include <math.h>
int ilogb(double x)
int ilogbf(float x)
int ilogbl(long double x)

The ilogb() functions return the exponent of their floating-point argument as a signed
integer. If the argument is not normalized, ilogb() returns the exponent of its normal-
ized value.

If the argument is 0, ilogb() returns the value of the macro FP_ILOGB0 (defined in
math.h), and may incur a range error. If the argument is infinite, the return value is
equal to INT_MAX. If the floating-point argument is NaN (“not a number”), ilogb()
returns the value of the macro FP_ILOGBNAN.

Example
int exponent = 0;
double x = -1.509812734e200;

while (exponent < INT_MAX)
{
 exponent = ilogb(x);
 printf("The exponent of %g is %d.\n", x, exponent);

Chapter 17: Standard Library Functions | 347

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

imaxdiv

 if (x < 0.0 && x * x > 1.0)
 x /= 1e34;
 else
 x += 1.1, x *= 2.2e34 ;
}

This code produces some 15 output lines, including these samples:

The exponent of -1.50981e+200 is 664.
The exponent of -1.50981e+30 is 100.
The exponent of -0.000150981 is -13.
The exponent of 2.41967e+34 is 114.
The exponent of inf is 2147483647.

See Also
logb(), log(), log10(), log1p(), exp(), pow().

imaxabs

Gives the absolute value of a number of the longest available integer type

C99

#include <inttypes.h>
intmax_t imaxabs(intmax_t n)

The imaxabs() function is the same as either labs() or llabs(), depending on how
many bits wide the system’s largest integer type is. Accordingly, the type intmax_t is
the same as either long or long long.

Example
intmax_t quantity1 = 9182734;
intmax_t quantity2 = 1438756;

printf("The difference between the two quantities is %ji.\n",
imaxabs(quantity2 - quantity1));

See Also
abs(), labs(), llabs(), fabs()

imaxdiv

Performs integer division, returning quotient and remainder

C99

#include <inttypes.h>
imaxdiv_t imaxdiv(intmax_t dividend, intmax_t divisor);

The imaxdiv() function is the same as either ldiv() or lldiv(), depending on how
many bits wide the system’s largest integer type is. Accordingly, the structure type of
the return value, imaxdiv_t, is the same as either ldiv_t or lldiv_t.

Example
intmax_t people = 110284, apples = 9043291;
imaxdiv_t share;

if (people == 0) // Avoid dividing by zero.
 printf("There's no one here to take the apples.\n"), return -1;

348 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

isalnum

else
 share = imaxdiv(apples, people);

printf("If there are %ji of us and %ji apples,\n"
 "each of us gets %ji, with %ji left over.\n",
 people, apples, share.quot, share.rem);

This example prints the following output:

If there are 110284 of us and 9091817 apples,
each of us gets 82, with 3 left over.

See Also
The description under div() in this chapter; the floating point functions remainder()
and remquo()

isalnum

Ascertains whether a given character is alphanumeric

#include <ctype.h>
int isalnum(int c);

The function isalnum() tests whether its character argument is alphanumeric; that is,
whether the character is either a letter of the alphabet or a digit. In other words,
isalnum() is true for all characters for which either isalpha() or isdigit() is true.

Which characters are considered alphabetic or numeric depends on the current locale
setting for the localization category LC_CTYPE, which you can query or change using the
setlocale() function.

If the character is alphanumeric, isalnum() returns a nonzero value (that is, true); if
not, the function returns 0 (false).

Example
See the example for isprint() in this chapter.

See Also
isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
ispunct(), isspace(), isupper(), isxdigit(); the corresponding C99 function for
wide characters, iswalnum(); setlocale()

isalpha

Ascertains whether a given character is a letter of the alphabet

#include <ctype.h>
int isalpha(int c);

The function isalpha() tests whether its character argument is a letter of the alphabet.
If the character is alphabetic, isalpha() returns a nonzero value (that is, true); if not,
the function returns 0 (false).

Chapter 17: Standard Library Functions | 349

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

isblank

Which characters are considered alphabetic depends on the cur-
rent locale setting for the localization category LC_CTYPE, which you
can query or change using the setlocale() function.

In the C locale, which is the default locale setting, the alphabetic
characters are those for which isupper() or islower() returns true.
These are the 26 lowercase and 26 uppercase letters of the Latin
alphabet, which are the letters in the basic source and execution
character sets (see “Character Sets” in Chapter 1).

Accented characters, umlauts, and the like are considered alpha-
betic only in certain locales. Moreover, other locales may have char-
acters that are alphabetic, but are neither upper- nor lowercase, or
both upper- and lowercase.

In all locales, the isalpha() classification is mutually exclusive with iscntrl(),
isdigit(), ispunct(), and isspace().

Example
See the example for isprint() in this chapter.

See Also
The corresponding C99 function for wide characters, iswalpha(); isalnum(), isblank(),
iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(),
isupper(), isxdigit(), setlocale()

isblank

Ascertains whether a given character is a space or tab character

C99

#include <ctype.h>
int isblank(int c);

The function isblank() is a recent addition to the C character type functions. It
returns a nonzero value (that is, true) if its character argument is either a space or a tab
character. If not, the function returns 0 (false).

Example
This program trims trailing blank characters from the user’s input:

#define MAX_STRING 80

char raw_name[MAX_STRING];
int i;

printf("Enter your name, please: ");
fgets(raw_name, sizeof(raw_name), stdin);

/* Trim trailing blanks: */

i = (strlen(raw_name) - 1); // Index the last character.
while (i >= 0) // Index must not go below first character.
{

350 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

iscntrl

 if (raw_name[i] == '\n')
 raw_name[i] = '\0'; // Chomp off the newline character.
 else if (isblank(raw_name[i]))
 raw_name[i] = '\0'; // Lop off trailing spaces and tabs.
 else
 break; // Real data found; stop truncating.
 --i; // Count down.
}

See also the example for isprint() in this chapter.

See Also
The corresponding C99 function for wide characters, iswblank(); isalnum(), isalpha(),
iscntrl(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(),
isupper(), isxdigit()

iscntrl

Ascertains whether a given character is a control character

#include <ctype.h>
int iscntrl(int c);

The function iscntrl() tests whether its character argument is a control character. For
the ASCII character set, these are the character codes from 0 through 31 and 127. The
function may yield different results depending on the current locale setting for the
localization category LC_CTYPE, which you can query or change using the setlocale()
function.

If the argument is a control character, iscntrl() returns a nonzero value (that is,
true); if not, the function returns 0 (false).

Example
See the example for isprint() in this chapter.

See Also
The corresponding C99 function for wide characters, iswcntrl(); isalnum(), isalpha(),
isblank(), isdigit(), isgraph(), islower(), isprint(), ispunct(), isspace(),
isupper(), isxdigit(), setlocale()

isdigit

Ascertains whether a given character is a decimal digit

#include <ctype.h>
int isdigit(int c);

The function isdigit() tests whether its character argument is a digit. isdigit()
returns a nonzero value (that is, true) for the ten characters between '0' (not to be
confused with the null character, '\0') and '9' inclusive. Otherwise, the function
returns 0 (false).

Example
See the example for isprint() in this chapter.

Chapter 17: Standard Library Functions | 351

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

isgraph

See Also
The corresponding C99 function for wide characters, iswdigit(); isalnum(), isalpha(),
isblank(), iscntrl(), isgraph(), islower(), isprint(), ispunct(), isspace(),
isupper(), isxdigit(), setlocale()

isfinite

Tests whether a given floating-point value is a finite number

C99

#include <math.h>
int isfinite(float x);
int isfinite(double x);
int isfinite(long double x);

The macro isfinite() yields a nonzero value (that is, true) if its argument is not an
infinite number and not a NaN. Otherwise, isfinite() yields 0. The argument must
be a real floating-point type. The rule that floating-point types are promoted to at least
double precision for mathematical calculations does not apply here; the argument’s
properties are determined based on its representation in its actual semantic type.

Example
double vsum(int n, ...)
// n is the number of arguments in the list
{
 va_list argptr;
 double sum = 0.0, next = 0.0;
 va_start(argptr, n);
 while (n--)
 {
 next = va_arg(argptr, double);
 sum += next;
 if (isfinite(sum) == 0)
 break; // If sum reaches infinity, stop adding.
 }
 va_end(argptr);
 return sum;
}

See Also
fpclassify(), isinf(), isnan(), isnormal(), signbit()

isgraph

Ascertains whether a given character is graphic

#include <ctype.h>
int isgraph(int c);

The function isgraph() tests whether its character argument is a graphic character;
that is, whether the value represents a printing character other than the space char-
acter. (In other words, the space character is considered printable, but not graphic.) If
the character is graphic, isgraph() returns a nonzero value (that is, true); if not, the
function returns 0 (false).

352 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

isgreater, isgreaterequal

Whether a given character code represents a graphic character depends on the current
locale setting for the category LC_CTYPE, which you can query or change using the
setlocale() function.

Example
See the example for isprint() in this chapter.

See Also
The corresponding C99 function for wide characters, iswgraph(); isalnum(), isalpha(),
isblank(), iscntrl(), isdigit(), islower(), isprint(), ispunct(), isspace(),
isupper(), isxdigit(), setlocale()

isgreater, isgreaterequal

Compares two floating-point values without risking an exception

C99

#include <math.h>
int isgreater(x, y);
int isgreaterequal(x, y);

The macro isgreater() tests whether the argument x is greater than the argument y,
but without risking an exception. Both operands must have real floating-point types.
The result of isgreater() is the same as the result of the operation (x) > (y), but that
operation could raise an “invalid operand” exception if either operand is NaN (“not a
number”), in which case neither is greater than, equal to, or less than the other.

The macro isgreater() returns a nonzero value (that is, true) if the first argument is
greater than the second; otherwise, it returns 0. The macro isgreaterequal() func-
tions similarly, but corresponds to the relation (x) >= (y), returning true if the first
argument is greater than or equal to the second; otherwise 0.

Example
/* Can a, b, and c be three sides of a triangle? */
double a, b, c, temp;
/* First get the longest "side" in a. */
if (isgreater(a, b))
 temp = a; a = b; b = temp;
if (isgreater(a, c))
 temp = a; a = c; c = temp;
/* Then see if a is longer than the sum of the other two sides: */
if (isgreaterequal(a, b + c))
 printf("The three numbers %.2lf, %.2lf, and %.2lf "
 "are not sides of a triangle.\n", a, b, c);

See Also
isless(), islessequal(), islessgreater(), isunordered()

isinf

Tests whether a given floating point value is an infinity

C99

#include <math.h>
int isinf(float x);
int isinf(double x);
int isinf(long double x);

Chapter 17: Standard Library Functions | 353

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

isless, islessequal, islessgreater

The macro isinf() yields a nonzero value (that is, true) if its argument is a positive or
negative infinity. Otherwise, isinf() yields 0. The argument must be a real floating-
point type. The rule that floating-point types are promoted to at least double precision
for mathematical calculations does not apply here; the argument’s properties are deter-
mined based on its representation in its actual semantic type.

Example
This function takes a short cut if it encounters an infinite addend:

double vsum(int n, va_list argptr)
{
 double sum = 0.0, next = 0.0;
 va_start(argptr, n);

 for (int i = 0; i < n; i ++)
 {
 next = va_arg(argptr, double);
 if (isinf(next))
 return next;
 sum += next;
 }
 va_end(argptr);
 return sum;
}

See Also
fpclassify(), isfinite(), isnan(), isnormal(), signbit()

isless, islessequal, islessgreater

Compares two floating-point values without risking an exception

C99

#include <math.h>
int isless(x, y);
int islessequal(x, y);
int islessgreater(x, y);

The macro isless() tests whether the argument x is less than the argument y, but
without risking an exception. Both operands must have real floating-point types. The
result of isless() is the same as the result of the operation (x) < (y), but that opera-
tion could raise an “invalid operand” exception if either operand is NaN (“not a
number”), in which case neither is greater than, equal to, or less than the other.

The macro isless() returns a nonzero value (that is, true) if the first argument is less
than the second; otherwise, it returns 0. The macro islessequal() functions similarly,
but corresponds to the relation (x) <= (y), returning true if the first argument is less
than or equal to the second; otherwise 0. The macro islessgreater() is also similar,
but corresponds to the expression (x) < (y) || (x) > (y), returning true if the first
argument is less than or greater than the second; otherwise 0.

Example
double minimum(double a, double b)
{
 if (islessgreater(a, b))
 return (isless(a, b) ? a : b);

354 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

islower

 if (a == b)
 return a;
 feraiseexcept(FE_INVALID);
 return NAN;
}

See Also
isgreater(), isgreaterequal(), isunordered()

islower

Ascertains whether a given character is a lowercase letter

#include <ctype.h>
int islower(int c);

The function islower() tests whether its character argument is a lowercase letter.
Which characters are letters and which letters are lowercase both depend on the
current locale setting for the category LC_CTYPE, which you can query or change using
the setlocale() function.

If the character is a lowercase letter, islower() returns a nonzero value (that is, true);
if not, the function returns 0 (false).

In the default locale C, the truth values of isupper() and islower() are mutually exclu-
sive for the alphabetic characters. However, other locales may have alphabetic
characters for which both isupper() and islower() return true, or characters which
are alphabetic, but are neither upper- nor lowercase.

Example
See the example for isprint() in this chapter.

See Also
isupper(), tolower(), toupper(); the corresponding C99 function for wide charac-
ters, iswlower(); isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(),
isprint(), ispunct(), isspace(), isxdigit(), setlocale()

isnan

Tests whether a given floating-point value is “not a number”

C99

#include <math.h>
int isnan(float x);
int isnan(double x);
int isnan(long double x);

The macro isnan() yields a nonzero value (that is, true) if its argument is a NaN, or
“not a number” (see the section on float.h in Chapter 15). Otherwise, isnan() yields 0.
The argument must be a real floating-point type. The rule that floating-point types are
promoted to at least double precision for mathematical calculations does not apply
here; the argument’s properties are determined based on its representation in its actual
semantic type.

Chapter 17: Standard Library Functions | 355

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

isprint

Example
double dMax(double a, double b)
{
 // NaN overrides all comparison:
 if (isnan(a)) return a;
 if (isnan(b)) return b;
 // Anything is greater than -inf:
 if (isinf(a) && signbit(a)) return b;
 if (isinf(b) && signbit(b)) return a;

 return (a > b ? a : b);
}

See Also
fpclassify(), isfinite(), isinf(), isnormal(), signbit()

isnormal

Tests whether a given floating-point value is normalized

C99

#include <math.h>
int isnormal(float x);
int isnormal(double x);
int isnormal(long double x);

The macro isnormal() yields a nonzero value (that is, true) if its argument’s value is a
normalized floating-point number. Otherwise, isnormal() yields 0. The argument
must be a real floating-point type. The rule that floating-point types are promoted to at
least double precision for mathematical calculations does not apply here; the argu-
ment’s properties are determined based on its representation in its actual semantic
type.

Example
double maximum(double a, double b)
{
 if (isnormal(a) && isnormal(b)) // Handle normal case first.
 return (a >= b) ? a : b ;

 else if (isnan(a) || isnan(b))
 {
 /* ... */

See Also
fpclassify(), isfinite(), isinf(), isnan(), signbit()

isprint

Ascertains whether a given character is printable

#include <ctype.h>
int isprint(int c);

356 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

isprint

The isprint() function tests whether its argument is a printing character. If the argu-
ment is a printing character, isprint() returns a nonzero value (that is, true); if not,
the function returns 0 (false).

“Printing” means only that the character occupies printing space on the output
medium, not that it fills the space with a glyph. Thus the space is a printing character
(isprint(' ') returns true), even though it does not leave a mark (isgraph(' ')
returns false).

Which character codes represent printable characters depends on the current locale
setting for the category LC_CTYPE, which you can query or change using the setlocale()
function. In the default locale C, the printable characters are the alphanumeric charac-
ters, the punctuation characters, and the space character; the corresponding character
codes are those from 32 through 126.

Example
unsigned int c;

printf("\nThe current locale for the 'is ...' functions is '%s'.\n",
 setlocale(LC_CTYPE, NULL));

printf("Here is a table of the 'is ...' values for the characters"
 " from 0 to 127 in this locale:\n\n");

for (c = 0; c < 128; c++) // Loop iteration for each table row.
{
 if (c % 24 == 0) // Repeat table header every 24 rows.
 {
 printf("Code char alnum alpha blank cntrl digit graph lower"
 " print punct space upper xdigit\n");
 printf("---"
 "-------------------------------\n");
 }
 printf("%4u %4c %3c %5c %5c %5c %5c %5c %5c %5c %5c %5c %5c %5c\n",
 c, // Print numeric character code.
 (isprint(c) ? c : ' '), // Print the glyph, or a space
 // if it's not printable.
 (isalnum(c) ? 'X' : '-'), // In a column for each category,
 (isalpha(c) ? 'X' : '-'), // print X for yes or - for no.
 (isblank(c) ? 'X' : '-'),
 (iscntrl(c) ? 'X' : '-'),
 (isdigit(c) ? 'X' : '-'),
 (isgraph(c) ? 'X' : '-'),
 (islower(c) ? 'X' : '-'),
 (isprint(c) ? 'X' : '-'),
 (ispunct(c) ? 'X' : '-'),
 (isspace(c) ? 'X' : '-'),
 (isupper(c) ? 'X' : '-'),
 (isxdigit(c) ? 'X' : '-'));
} // end of loop for each character value

The following selected lines from the table produced by this program include at least
one member and one nonmember of each category:

Chapter 17: Standard Library Functions | 357

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

isspace

Code char alnum alpha blank cntrl digit graph lower print punct space upper xdigit
--
 31 - - - X - - - - - - - -
 32 - - X - - - - X - X - -
 33 ! - - - - - X - X X - - -

 48 0 X - - - X X - X - - - X

 65 A X X - - - X - X - - X X

 122 z X X - - - X X X - - - -

See Also
isgraph(); the corresponding C99 function for wide characters, iswprint(); isalnum(),
isalpha(), isblank(), iscntrl(), isdigit(), islower(), ispunct(), isspace(),
isupper(), isxdigit()

ispunct

Ascertains whether a given character is a punctuation mark

#include <ctype.h>
int ispunct(int c);

The function ispunct() tests whether its character argument is a punctuation mark. If
the character is a punctuation mark, ispunct() returns a nonzero value (that is, true);
if not, the function returns 0 (false).

The punctuation characters are dependent on the current locale setting for the cate-
gory LC_CTYPE, which you can query or change using the setlocale() function. In the
default locale C, the punctuation characters are all of the graphic characters (those for
which isgraph() is true), except the alphanumeric characters (those for which
isalnum() is true).

Example
See the example for isprint() in this chapter.

See Also
The corresponding C99 function for wide characters, iswpunct(); isalnum(), isalpha(),
isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(), isspace(),
isupper(), isxdigit()

isspace

Ascertains whether a given character produces space

#include <ctype.h>
int isspace(int c);

The function isspace() tests whether its character argument produces whitespace
rather than a glyph when printed—such as a space, tabulator, newline, or the like. If
the argument is a whitespace character, isspace() returns a nonzero value (that is,
true); if not, the function returns 0 (false).

358 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

isunordered

Which characters fall into the whitespace class depends on the current locale setting
for the category LC_CTYPE, which you can query or change using the setlocale() func-
tion. In the default locale C, the isspace() function returns true for the characters in
Table 17-3.

Example
char buffer[1024];
char *ptr = buffer;

while (fgets(buffer, sizeof(buffer), stdin) != NULL)
{
 ptr = buffer;
 while (isspace(*ptr)) // Skip over leading whitespace.
 ptr++;
 printf("The line read: %s\n", ptr);
}

See also the example for isprint() in this chapter.

See Also
The C99 function isblank(), which returns true for the space and horizontal tab char-
acters; the corresponding C99 functions for wide characters, iswspace() and
iswblank(); isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), islower(),
isprint(), ispunct(), isxdigit()

isunordered

Tests whether two floating-point values can be numerically ordered

C99

#include <math.h>
int isunordered(x, y)

The macro isunordered() tests whether any ordered relation exists between two
floating-point values, without risking an “invalid operand” exception in case either of
them is NaN (“not a number”). Both operands must have real floating-point types.
Two floating-point values are be said to be ordered if one is either less than, equal to,
or greater than the other. If either or both of them are NaN, then they are unordered.
isunordered() returns a nonzero value (that is, true) if no ordered relation obtains
between the two arguments.

Table 17-3. Whitespace characters in the default locale, C

Character ASCII name Decimal value

'\t' Horizontal tabulator 9

'\n' Line feed 10

'\v' Vertical tabulator 11

'\f' Page feed 12

'\r' Carriage return 13

' ' Space 32

Chapter 17: Standard Library Functions | 359

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

iswalnum

Example
double maximum(double a, double b)
{
 if (isinf(a)) // +Inf > anything; -Inf < anything
 return (signbit(a) ? b : a);

 if (isinf(b))
 return (signbit(b) ? a : b);

 if (isunordered(a, b))
 {
 feraiseexcept(FE_INVALID);
 return NAN;
 }
 return (a > b ? a : b);
}

See Also
isgreater(), isgreaterequal(), isless(), islessequal(), islessgreater()

isupper

Ascertains whether a given character is an uppercase letter

#include <ctype.h>
int isupper(int c);

The function isupper() tests whether its character argument is a capital letter. If the
character is a uppercase letter, isupper() returns a nonzero value (that is, true); if not,
the function returns 0 (false).

Which characters are letters and which letters are uppercase both depend on the
current locale setting for the category LC_CTYPE, which you can query or change using
the setlocale() function. In the default locale C, the truth values of isupper() and
islower() are mutually exclusive for the alphabetic characters. However, other locales
may have alphabetic characters for which both isupper() and islower() return true,
or characters which are alphabetic, but are neither upper- nor lowercase.

Example
See the examples at setlocale() and isprint() in this chapter.

See Also
islower(), tolower(), toupper(); the corresponding C99 function for wide charac-
ters, iswupper(); isalnum(), isalpha(), isblank(), iscntrl(), isdigit(), isgraph(),
isprint(), ispunct(), isspace(), isxdigit(), setlocale()

iswalnum

Ascertains whether a given wide character is alphanumeric

#include <wctype.h>
int iswalnum(wint_t wc);

The iswalnum() function is the wide-character version of the isalnum() character clas-
sification function. It tests whether its character argument is alphanumeric; that is,

360 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

iswalnum

whether the character is either a letter of the alphabet or a digit. If the character is
alphanumeric, iswalnum() returns a nonzero value (that is, true); if not, the function
returns 0 (false).

Which characters are considered alphabetic or numeric depends on the current locale
setting for the localization category LC_CTYPE, which you can query or change using the
setlocale() function. In general, iswalnum() is true for all characters for which either
iswalpha() or iswdigit() is true.

Example
wint_t wc, i;
int j, dummy;

setlocale(LC_CTYPE, "");

wprintf(L"\nThe current locale for the 'is ...' functions is '%s'.\n",
 setlocale(LC_CTYPE, NULL));
wprintf(L"These are the alphanumeric wide characters"
 " in this locale:\n\n");

for (wc = 0, i = 0; wc < 1024; wc++)
 if (iswalnum(wc))
 {
 if (i % 25 == 0)
 {
 wprintf(L"... more ...\n");
 dummy = getchar(); // Wait a moment before printing more
 wprintf(L"Wide character Code\n");
 wprintf(L"-----------------------\n");
 }
 wprintf(L"%5lc %4lu\n", wc, wc);
 i++;
 }
wprintf(L"-----------------------\n");
return 0;

Here are samples from the output of this code. Which characters can be displayed
correctly on the screen depends on the font used:

The current locale for the 'is ...' functions is 'de_DE.UTF-8'.
These are the alphanumeric wide characters in this locale:

Wide character Code

0 48
1 49
2 50

...
254
255
256
257
258
259
260
261

Chapter 17: Standard Library Functions | 361

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

iswalpha

See Also
iswalpha() and iswdigit(); the corresponding function for byte characters, isalnum();
iswblank(), iswcntrl(), iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(),
iswupper(), iswxdigit(), setlocale(); the extensible wide-character classification
function, iswctype()

iswalpha

Ascertains whether a given wide character is a letter of the alphabet

#include <wctype.h>
int iswalpha(wint_t wc);

The iswalpha() function is the wide-character version of the isalpha() character clas-
sification function. It tests whether its character argument is a letter of the alphabet. If
the character is alphabetic, iswalpha() returns a nonzero value (that is, true); if not,
the function returns 0 (false).

Which characters are considered alphabetic depends on the current locale setting for
the localization category LC_CTYPE, which you can query or change using the
setlocale() function. In all locales, the iswalpha() classification is mutually exclusive
with iswcntrl(), iswdigit(), iswpunct() and iswspace().

Accented characters, umlauts, and the like are considered alphabetic only in certain
locales. Moreover, other locales may have wide characters that are alphabetic, but that
are neither upper- nor lowercase, or both upper- and lowercase.

Example
wint_t wc;

if (setlocale(LC_CTYPE, "") == NULL)
{
 fwprintf(stderr,
 L"Sorry, couldn't change to the system's native locale.\n");
 return 1;
}
wprintf(L"The current locale for the 'isw ...' functions is '%s'.\n",
 setlocale(LC_CTYPE, NULL));

wprintf(L"Here is a table of the 'isw ...' values for the characters "
 L"from 128 to 255 in this locale:\n\n");

for (wc = 128; wc < 255; ++wc) // Loop iteration for each table row.
{
 if ((wc-128) % 24 == 0) // Repeat table header every 24 rows.
 {
 wprintf(L"Code char alnum alpha blank cntrl digit graph lower"
 L" print punct space upper xdigit\n");
 wprintf(L"---"
 L"-------------------------------\n");
 }
 wprintf(L"%4u %4lc %3c %5c %5c %5c %5c %5c %5c %5c %5c %5c %5c %5c\n",
 wc, // Print numeric character code.
 (iswprint(wc) ? wc : ' '), // Print the glyph, or a space
 // if it's not printable.

362 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

iswblank

 (iswalnum(wc) ? 'X' : '-'), // In a column for each
 (iswalpha(wc) ? 'X' : '-'), // category, print X for
 (iswblank(wc) ? 'X' : '-'), // yes or - for no.
 (iswcntrl(wc) ? 'X' : '-'),
 (iswdigit(wc) ? 'X' : '-'),
 (iswgraph(wc) ? 'X' : '-'),
 (iswlower(wc) ? 'X' : '-'),
 (iswprint(wc) ? 'X' : '-'),
 (iswpunct(wc) ? 'X' : '-'),
 (iswspace(wc) ? 'X' : '-'),
 (iswupper(wc) ? 'X' : '-'),
 (iswxdigit(wc) ? 'X' : '-'));
} // end of loop for each character value

The following selected lines from the table produced by this program illustrate
members of various categories:

Code char alnum alpha blank cntrl digit graph lower print punct space upper xdigit
--
 128 - - - X - - - - - - - -
 162 ¢ - - - - - X - X X - - -
 163 £ - - - - - X - X X - - -
 169 © - - - - - X - X X - - -
 170 ª X X - - - X - X - - - -
 171 « - - - - - X - X X - - -
 180 ´ - - - - - X - X X - - -
 181 µ X X - - - X X X - - - -
 182 ¶ - - - - - X - X X - - -
 185 1 - - - - - X - X X - - -
 186 º X X - - - X - X - - - -
 191 ¿ - - - - - X - X X - - -
 192 À X X - - - X - X - - X -

See Also
The corresponding function for byte characters, isalpha(); iswalnum(), iswblank(),
iswcntrl(), iswdigit(), iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(),
iswupper(), iswxdigit(), setlocale(); the extensible wide-character classification
function, iswctype()

iswblank

Ascertains whether a given wide character is a space or tab character

C99

#include <wctype.h>
int iswblank(wint_t wc);

The iswblank() function is the wide-character version of the isblank() character clas-
sification function. It tests whether its wide character argument is either a space or a
tab character. In the default locale C, iswblank() returns a nonzero value (that is, true)
only for the argument values L' ' (space) and L'\t' (horizontal tab); these are called
the standard blank wide characters. In other locales, iswblank() may also be true for
other wide characters for which iswspace() also returns true.

Example
See the example for iswalpha() in this chapter.

Chapter 17: Standard Library Functions | 363

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

iswctype

See Also
The corresponding function for byte characters, isblank(); iswalnum(), iswalpha(),
iswcntrl(), iswdigit(), iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(),
iswupper(), iswxdigit(), setlocale(); the extensible wide-character classification
function, iswctype()

iswcntrl

Ascertains whether a given wide character is a control character

#include <wctype.h>
int iswcntrl(wint_t wc);

The iswcntrl() function is the wide-character version of the iscntrl() character clas-
sification function. It tests whether its wide character argument is a control character.
If the argument is a control character, iswcntrl() returns a nonzero value (that is,
true); if not, the function returns 0 (false).

The function may yield different results depending on the current locale setting for the
localization category LC_CTYPE, which you can query or change using the setlocale()
function.

Example
See the example for iswalpha() in this chapter.

See Also
The corresponding function for byte characters, iscntrl(); iswalnum(), iswalpha(),
iswblank(), iswdigit(), iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(),
iswupper(), iswxdigit(), setlocale(); the extensible wide-character classification
function, iswctype()

iswctype

Ascertains whether a given wide character fits a given description

#include <wctype.h>
int iswctype(wint_t wc, wctype_t description);

The iswctype() function tests whether the wide character passed as its first argument
falls in the category indicated by the second argument. The value of the second argu-
ment, with the special-purpose type wctype_t, is obtained by calling the function
wctype() with a string argument that names a property of characters in the current
locale. In the default locale, C, characters can have the properties listed in Table 17-4.

Table 17-4. Wide character properties

Character property iswctype() call Equivalent single function call

"alnum" iswctype(wc, wctype("alnum")) isalnum(wc)

"alpha" iswctype(wc, wctype("alpha")) isalpha(wc)

"blank" iswctype(wc, wctype("blank")) isblank(wc)

"cntrl" iswctype(wc, wctype("cntrl")) iscntrl(wc)

"digit" iswctype(wc, wctype("digit")) isdigit(wc)

"graph" iswctype(wc, wctype("graph")) isgraph(wc)

"lower" iswctype(wc, wctype("lower")) islower(wc)

364 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

iswdigit

If the wide character argument has the property indicated, iswctype() returns a
nonzero value (that is, true); if not, the function returns 0 (false). Thus the call
iswctype(wc, wctype("upper")) is equivalent to iswupper(wc).

The result of an iswctype() function call depends on the current locale setting for
the localization category LC_CTYPE, which you can query or change using the
setlocale() function. Furthermore, additional property strings are defined in other
locales. For example, in a Japanese locale, the call iswctype(wc, wctype("jkanji"))
can be used to distinguish kanji from katakana or hiragana characters. You must not
change the LC_CTYPE setting between the calls to wctype() and iswctype().

Example
wint_t wc = L'ß';

setlocale(LC_CTYPE, "de_DE.UTF-8");
if (iswctype(wc, wctype("alpha")))
{
 if (iswctype(wc, wctype("lower")))
 wprintf(L"The character %lc is lowercase.\n", wc);
 if (iswctype(wc, wctype("upper")))
 wprintf(L"The character %lc is uppercase.\n", wc);
}

See Also
wctype(), iswalnum(), iswalpha(), iswblank(), iswcntrl(), iswdigit(), iswgraph(),
iswlower(), iswprint(), iswpunct(), iswspace(), iswupper(), iswxdigit()

iswdigit

Ascertains whether a given wide character is a decimal digit

#include <wctype.h>
int iswdigit(wint_t wc);

The iswdigit() function is the wide-character version of the isdigit() character clas-
sification function. It tests whether its wide character argument corresponds to a digit
character.

The digit wide characters are L'0' (not to be confused with the null character L'\0')
through L'9'. The iswdigit() function returns a nonzero value (that is, true) if the
wide character represents a digit; if not, it returns 0 (false).

"print" iswctype(wc, wctype("print")) isprint(wc)

"punct" iswctype(wc, wctype("punct")) ispunct(wc)

"space" iswctype(wc, wctype("space")) isspace(wc)

"upper" iswctype(wc, wctype("upper")) isupper(wc)

"xdigit" iswctype(wc, wctype("xdigit")) isxdigit(wc)

Table 17-4. Wide character properties (continued)

Character property iswctype() call Equivalent single function call

Chapter 17: Standard Library Functions | 365

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

iswlower

Example
See the example for iswalpha() in this chapter.

See Also
The corresponding function for byte characters, isdigit(); iswalnum(), iswalpha(),
iswblank(), iswcntrl(), iswgraph(), iswlower(), iswprint(), iswpunct(), iswspace(),
iswupper(), iswxdigit(), setlocale(); the extensible wide-character classification
function, iswctype()

iswgraph

Ascertains whether a given wide character is graphic

#include <wctype.h>
int iswgraph(wint_t wc);

The iswgraph() function is the wide-character version of the isgraph() character clas-
sification function. It tests whether its character argument is a graphic character; that
is, whether the value represents a printable character that is not a whitespace char-
acter. In other words, iswgraph(wc) is true if and only if iswprint(wc) is true and
iswspace(wc) is false.

The function call iswgraph(wc) can yield a different value than the corresponding byte-
character function call isgraph(wctob(wc)) if wc is both a printing character and a
whitespace character in the execution character set. In other words,
isgraph(wctob(wc)) can be true while iswgraph(wc) is false, if both iswprint(wc) and
iswspace(wc) are true. Or, to put it yet another way, while the space character (' ') is
the only printable character for which isgraph() returns false, iswgraph() may return
false for other printable, whitespace characters in addition to L' '.

Example
See the example for iswalpha() in this chapter.

See Also
The corresponding function for byte characters, isgraph(); iswalnum(), iswalpha(),
iswblank(), iswcntrl(), iswdigit(), iswlower(), iswprint(), iswpunct(), iswspace(),
iswupper(), iswxdigit(), setlocale(); the extensible wide-character classification
function, iswctype()

iswlower

Ascertains whether a given wide character is a lowercase letter

#include <wctype.h>
int iswlower(wint_t wc);

The iswlower() function is the wide-character version of the islower() character clas-
sification function. It tests whether its character argument is a lowercase letter. If the
character is a lowercase letter, iswlower() returns a nonzero value (that is, true); if
not, the function returns 0 (false).

Which characters are letters and which letters are lowercase both depend on the
current locale setting for the category LC_CTYPE, which you can query or change using
the setlocale() function. For some locale-specific characters, both iswupper() and
iswlower() may return true, or both may return false even though iswalpha() returns

366 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

iswprint

true. However, iswlower() is mutually exclusive with iswcntrl(), iswdigit(),
iswpunct(), and iswspace() in all locales.

Example
See the example for iswalpha() in this chapter.

See Also
iswupper(), iswalpha(); the corresponding function for byte characters, islower();
the extensible wide-character classification function, iswctype(); iswalnum(),
iswblank(), iswcntrl(), iswdigit(), iswgraph(), iswprint(), iswpunct(), iswspace(),
iswxdigit(), setlocale()

iswprint

Ascertains whether a given wide character is printable

#include <wctype.h>
int iswprint(wint_t wc);

The iswprint() function is the wide-character version of the isprint() character clas-
sification function. It tests whether its argument is a printing character. If the
argument is a printing wide character, iswprint() returns a nonzero value (that is,
true); if not, the function returns 0 (false).

“Printing” means only that the character occupies printing space on the output
medium, not that it fills the space with a glyph. In other words, iswprint() may return
true for locale-specific whitespace characters, as well as for the space character, L' '.

Which character codes represent printable characters depends on the current locale
setting for the category LC_CTYPE, which you can query or change using the setlocale()
function.

Example
See the example for iswalpha() in this chapter.

See Also
iswgraph(), iswspace(); the corresponding function for byte characters, isprint();
iswalnum(), iswalpha(), iswblank(), iswcntrl(), iswdigit(), iswlower(), iswpunct(),
iswupper(), iswxdigit(), setlocale(); the extensible wide-character classification
function, iswctype()

iswpunct

Ascertains whether a given wide character is a punctuation mark

#include <wctype.h>
int iswpunct(wint_t wc);

The iswpunct() function is the wide-character version of the ispunct() character clas-
sification function. It tests whether its wide character argument is a punctuation mark.
If the argument represents a punctuation mark, iswpunct() returns a nonzero value
(that is, true); if not, the function returns 0 (false).

Which characters represent punctuation marks depends on the current locale setting
for the category LC_CTYPE, which you can query or change using the setlocale()

Chapter 17: Standard Library Functions | 367

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

iswupper

function. For all locale-specific punctuation characters, both iswspace() and
iswalnum() return false.

If the wide character is not the space character L' ', but is both a printing and a white-
space character—that is, both iswprint(wc) and iswspace(wc) return true—then the
function call iswpunct(wc) may yield a different value than the corresponding byte-
character function call ispunct(wctob(wc)).

Example
See the example for iswalpha() in this chapter.

See Also
The corresponding function for byte characters, ispunct(); iswalnum(), iswalpha(),
iswblank(), iswcntrl(), iswdigit(), iswgraph(), iswlower(), iswprint(), iswspace(),
iswupper(), iswxdigit(), setlocale(); the extensible wide-character classification
function, iswctype()

iswspace

Ascertains whether a given wide character produces space

#include <wctype.h>
int iswspace(wint_t wc);

The iswspace() function is the wide-character version of the isspace() character clas-
sification function. It tests whether its wide character argument produces whitespace
rather than a glyph when printed—that is, a space, tabulator, newline, or the like. If
the argument is a whitespace wide character, iswspace() returns a nonzero value (that
is, true); if not, the function returns 0 (false).

Which wide characters fall into the whitespace class depends on the current locale
setting for the category LC_CTYPE, which you can query or change using the setlocale()
function. In all locales, however, if iswspace() is true for a given wide character, then
iswalnum(), iswgraph(), and iswpunct() are false.

Example
See the example for iswalpha() in this chapter.

See Also
iswblank(), iswprint(); the corresponding function for byte characters, isspace();
iswalnum(), iswalpha(), iswcntrl(), iswdigit(), iswgraph(), iswlower(), iswprint(),
iswpunct(), iswupper(), iswxdigit(), setlocale(); the extensible wide-character clas-
sification function, iswctype()

iswupper

Ascertains whether a given wide character is an uppercase letter

#include <wctype.h>
int iswupper(wint_t wc);

The iswupper() function is the wide-character version of the isupper() character clas-
sification function. It tests whether its character argument is a uppercase letter. If the
character is a uppercase letter, isupper() returns a nonzero value (that is, true); if not,
the function returns 0 (false).

368 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

iswxdigit

Which characters are letters and which letters are uppercase both depend on the
current locale setting for the category LC_CTYPE, which you can query or change using
the setlocale() function. For some locale-specific characters, both iswupper() and
iswlower() may return true, or both may return false even though iswalpha() returns
true. However, iswupper() is mutually exclusive with iswcntrl(), iswdigit(),
iswpunct(), and iswspace() in all locales.

Example
See the example for iswalpha() in this chapter.

See Also
iswlower(), iswalpha(); the corresponding function for byte characters, isupper();
the extensible wide-character classification function, iswctype(); iswalnum(),
iswblank(), iswcntrl(), iswdigit(), iswgraph(), iswprint(), iswpunct(), iswspace(),
iswxdigit(), setlocale()

iswxdigit

Ascertains whether a given wide character is a hexadecimal digit

#include <wctype.h>
int iswxdigit(wint_t wc);

The iswxdigit() function is the wide-character version of the isxdigit() character
classification function. It tests whether its character argument is a hexadecimal digit,
and returns a nonzero value (that is, true) if the character is one of the digits between
L'0' and L'9' inclusive, or a letter from L'A' through L'F' or from L'a' through L'f'
inclusive. If not, the function returns 0 (false).

Example
See the example for iswalpha() in this chapter.

See Also
iswdigit(); the corresponding functions for byte characters, isdigit() and isxdigit();
iswalnum(), iswalpha(), iswblank(), iswcntrl(), iswgraph(), iswlower(), iswprint(),
iswpunct(), iswspace(), iswupper(), setlocale(); the extensible wide-character classi-
fication function, iswctype()

isxdigit

Ascertains whether a given character is a hexadecimal digit

#include <ctype.h>
int isxdigit(int c);

The function isxdigit() tests whether its character argument is a hexadecimal digit.
The results depend on the current locale setting for the localization category LC_CTYPE,
which you can query or change using the setlocale() function. In the C locale,
isxdigit() returns a nonzero value (that is, true) if the character is between '0' and
'9' inclusive, or between 'A' and 'F' inclusive, or between 'a' and 'f' inclusive. If
not, the function returns 0 (false).

Chapter 17: Standard Library Functions | 369

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

ldiv

Example
See the example for isprint() in this chapter.

See Also
The corresponding C99 function for wide characters, iswxdigit(); isalnum(),
isalpha(), isblank(), iscntrl(), isdigit(), isgraph(), islower(), isprint(),
ispunct(), isspace(), isupper(), isxdigit(); the extensible wide-character classifica-
tion function, iswctype()

labs

Gives the absolute value of a long integer

#include <stdlib.h>
long labs(long n);

The parameter and the return value of labs() are long integers. Otherwise, labs()
works the same as the int function abs().

Example
See the example for abs() in this chapter.

See Also
abs(), labs(), imaxabs()

ldexp

Multiplies a floating-point number by a power of two

#include <math.h>
double ldexp(double mantissa, int exponent);
float ldexpf(float mantissa, int exponent); (C99)

long double ldexpl(long double mantissa, int exponent); (C99)

The ldexp() functions calculate a floating-point number from separate mantissa and
exponent values. The exponent parameter is an integer exponent to base 2.

The function returns the value mantissa × 2exponent. If the result is not representable in
the function’s type, a range error may occur.

Example
See the example for frexp() in this chapter.

See Also
The function frexp(), which performs the reverse operation, analyzing a floating-
point number into a mantissa and an exponent to base 2.

ldiv

Performs integer division, returning quotient and remainder

#include <stdlib.h>
ldiv_t ldiv(long dividend, long divisor);

370 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

llabs

The parameters of ldiv() are long integers, and its return value is a structure of type
ldiv_t containing two long integers. Otherwise, ldiv() works the same as the int
function div().

Example
See the example for div() in this chapter.

See Also
div(), lldiv(), imaxdiv()

llabs

Gives the absolute value of a long long integer

C99

#include <stdlib.h>
long long llabs(long long n);

The parameter and the return value of llabs() are long long integers. Otherwise,
llabs() works the same as the int function abs().

Example
See the example for abs() in this chapter.

See Also
abs(), labs(), imaxabs()

lldiv

Performs integer division, returning quotient and remainder

C99

#include <stdlib.h>
lldiv_t lldiv(long long dividend, long long divisor);

The parameters of lldiv() are long long integers, and its return value is a structure of
type lldiv_t containing two long long integers. Otherwise, lldiv() works the same as
the int function div().

Example
See the example for div() in this chapter.

See Also
div(), ldiv(), imaxdiv()

llrint

Rounds a floating-point number to a long long integer

#include <math.h>
long long llrint(double x);
long long llrintf(float x);
long long llrintl(long double x);

Chapter 17: Standard Library Functions | 371

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

localeconv

The llrint() functions round a floating-point number to the next integer value in the
current rounding direction. If the result is outside the range of long long, a range error
may occur (this is implementation-dependent), and the return value is unspecified.

Example
See the example for the analogous function lrint().

See Also
rint(), lrint(), round(), lround(), llround(), nearbyint(), fegetround(),
fesetround()

llround

Rounds a floating-point number to a long long integer

#include <math.h>
long long llround(double x);
long long llroundf(float x);
long long llroundl(long double x);

The llround() functions are like lround(), except that they return an integer of type
long long. llround() rounds a floating-point number to the nearest integer value. A
value halfway between two integers is rounded away from zero. If the result is outside
the range of long long, a range error may occur (this is implementation-dependent),
and the return value is unspecified.

Example
See the example for lround() in this chapter.

See Also
rint(), lrint(), llrint(), round(), lround(), nearbyint()

localeconv

Obtains the conventions of the current locale

#include <locale.h>
struct lconv *localeconv(void);

The localeconv() function returns a pointer to a structure containing complete infor-
mation on the locale-specific conventions for formatting numeric and monetary
information. The values returned reflect the conventions of the current locale, which
you can query or set using the setlocale() function.

The structure that localeconv() fills in has the type struct lconv, which is defined in
the header file locale.h. The members of this structure describe how to format mone-
tary as well as non-monetary numeric values in the locale. In C99, moreover, two sets
of information describing monetary formatting are present: one describing local usage
and one describing international usage, which calls for standard alphabetic currency
symbols, and may also use a different number of decimal places.

372 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

localeconv

The full set of members and their order in the structure may vary from one implemen-
tation to another, but they must include at least the members described here:

char *decimal_point;
The decimal point character, except when referring to money. In the default
locale C, this pointer refers to the value ".".

char *thousands_sep;
The digit-grouping character: for example, the comma in "65,536". In spite of the
name, not all locales group digits by thousands; see the next member, grouping.

char *grouping;
This pointer refers not to a text string, but to an array of numeric char values with
the following meaning: the first element in the array is the number of digits in the
rightmost digit group. Each successive element is the number of digits in the next
group to the left. The value CHAR_MAX means that the remaining digits are not
grouped at all; the value 0 means that the last group size indicated is used for all
remaining digits. For example, the char array {'\3','\0'} indicates that all digits
are grouped in threes.

char *mon_decimal_point;
Decimal point character for monetary values.

char *mon_thousands_sep;
The digit-grouping character for monetary values.

char *mon_grouping;
Like the grouping element, but for monetary values.

char *positive_sign;
The sign used to indicate positive monetary values.

char *negative_sign;
The sign used to indicate negative monetary values.

char *currency_symbol;
The currency symbol in local use: in the United States, this would be "$", while
the abbreviation used in international finance, "USD", would be indicated by
another structure member, int_currency_symbol.

char frac_digits;
The number of digits after the decimal point in monetary values, in local usage.

char p_cs_precedes;
The value 1 means the local currency_symbol is placed before positive numbers (as
in U.S. dollars: "$10.99"); 0 means the symbol comes after the number (as in the
Canadian French locale, "fr_CA": "10,99 $").

char n_cs_precedes;
The value 1 means the local currency_symbol is placed before negative numbers; 0
means the symbol comes after the number.

char p_sep_by_space;
The value 1 means a space is inserted between currency_symbol and a positive
number.

char n_sep_by_space;
The value 1 means a space is inserted between currency_symbol and a negative
number.

char p_sign_posn;
See next item.

Chapter 17: Standard Library Functions | 373

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

localeconv

char n_sign_posn;
These values indicate the positions of the positive and negative signs, as follows:

0 The number and currency_symbol are enclosed together in parentheses.

1 The sign string is placed before the number and currency_symbol.

2 The sign string is placed after the number and currency_symbol.

3 The sign string is placed immediately before the currency_symbol.

4 The sign string is placed immediately after the currency_symbol.

char *int_curr_symbol;
This pointer indicates a null-terminated string containing the three-letter interna-
tional symbol for the local currency (as specified in ISO 4217), and a separator
character in the fourth position.

char int_frac_digits;
The number of digits after the decimal point in monetary values, in international
usage.

char int_p_cs_precedes; (C99)

The value 1 means that int_curr_symbol is placed before positive numbers; 0
means the symbol comes after the number.

char int_n_cs_precedes; (C99)

The value 1 means int_curr_symbol is placed before negative numbers; 0 means
the symbol comes after the number.

char int_p_sep_by_space; (C99)

The value 1 means a space is inserted between int_curr_symbol and a positive
number.

char int_n_sep_by_space; (C99)

The value 1 means a space is inserted between int_curr_symbol and a negative
number.

char int_p_sign_posn; (C99)

See next item.

char int_n_sign_posn; (C99)

These values indicate the positions of the positive and negative signs with respect
to int_curr_symbol in the same way as p_sign_posn and n_sign_posn indicate the
sign positions with respect to currency_symbol.

In the default locale, C, all of the char members have the value CHAR_MAX, and all of the
char * members point to an empty string (""), except decimal_point, which points to
the string ".".

Example
long long cents; // Amount in cents or customary fraction of
 // currency unit.
struct lconv *locinfo;
wchar_t number[128] = { L'\0' }, prefix[32] = { L'\0' },
 suffix[32] = { L'\0' };

// Use system's current locale.
char *localename = setlocale(LC_MONETARY, "");

locinfo = localeconv();

/* ... */

374 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

localtime

if (cents >= 0) // For positive amounts,
 // use 'p_...' members of lconv structure.
{
 if (locinfo->p_cs_precedes) // If currency symbol before number ...
 { // ... prepare prefix ...
 mbstowcs(prefix, locinfo->currency_symbol, 32);
 if (locinfo->p_sep_by_space)
 wcscat(prefix, L" "); // ... maybe with a space.
 }
/* ... else etc. ... */

See Also
setlocale()

localtime

Converts a timer value into a year, month, day, hour, minute, second, and so on

#include <time.h>
struct tm *localtime(const time_t *timer);

The localtime() function converts a numeric time value (usually a number of seconds
since January 1, 1970, but not necessarily) into the equivalent date and time structure
for the local time zone. To obtain similar values for Coordinated Universal Time
(UTC, formerly called Greenwich Mean Time), use the function gmtime().

The function’s argument is not the number of seconds itself, but a pointer to that
value. Both the structure type struct tm and the arithmetic type time_t are defined in
the header file time.h. The tm structure is described at gmtime() in this chapter.

The argument most often passed to localtime() is the current time, obtained as a
number with type time_t by calling the function time(). The type time_t is usually
defined in time.h as equivalent to long or unsigned long.

Example
See the example for gmtime() in this chapter.

See Also
asctime(), difftime(), gmtime(), mktime(), strftime(), time()

log

Calculates the natural logarithm of a number

#include <math.h>
double log(double x);
float logf(float x); (C99)

long double logl(long double x); (C99)

The log() functions calculate the natural logarithm of their argument. The natural
logarithm—called “log” for short in English as well as in C—is the logarithm to base e,
where e is Euler’s number, 2.718281....

The natural log of a number x is defined only for positive values of x. If x is negative, a
domain error occurs; if x is zero, a range error may occur (or not, depending on the
implementation).

Chapter 17: Standard Library Functions | 375

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

log1p

Example
The following code prints some sample values for base 2, base e, and base 10
logarithms:

double x[] = { 1E-100, 0.5, 2, exp(1), 10, 1E+100 };

puts(" x log2(x) log(x) log10(x)\n"
 " ---");
for (int i = 0; i < sizeof(x) / sizeof(x[0]); ++i)
{
 printf("%#10.3G %+17.10G %+17.10G %+17.10G\n",
 x[i], log2(x[i]), log(x[i]), log10(x[i]));
}

This code produces the following output:

 x log2(x) log(x) log10(x)

 1.00E-100 -332.1928095 -230.2585093 -100
 0.500 -1 -0.6931471806 -0.3010299957
 2.00 +1 +0.6931471806 +0.3010299957
 2.72 +1.442695041 +1 +0.4342944819
 10.0 +3.321928095 +2.302585093 +1
 1.00E+100 +332.1928095 +230.2585093 +100

See Also
log10(), log1p(), log2(), exp(), pow()

log10

Calculates the base-10 logarithm of a number

#include <math.h>
double log10(double x);
float log10f(float x); (C99)

long double log10l(long double x); (C99)

The log10() functions calculate the common logarithm of their argument. The
common logarithm is the logarithm to base 10. The common logarithm of a number x
is defined only for positive values of x. If x is negative, a domain error occurs; if x is
zero, a range error may occur.

Example
See the example for log() in this chapter.

See Also
log(), log1p(), log2(), exp(), pow()

log1p

Calculates the logarithm of one plus a number

C99

#include <math.h>
double log1p(double x);
float log1pf(float x);
long double log1pl(long double x);

376 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

log2

The log1p() functions calculate the natural logarithm of the sum of one plus the argu-
ment x, or loge(1 + x). The function is designed to yield a more accurate result than the
expression log(x + 1), especially when the value of the argument is close to zero.

The natural logarithm is defined only for positive numbers. If x is less than –1, a
domain error occurs; if x is equal to –1, a range error may occur (or not, depending on
the implementation).

Example
// atanh(x) is defined as 0.5 * (log(x+1) - log(-x+1).
// Rounding errors can result in different results for different methods.

puts(" x atanh(x) atanh(x) - 0.5*(log1p(x) - log1p(-x))\n"
 "---");
for (double x = -0.8; x < 1.0; x += 0.4)
{
 double y = atanh(x);
 printf("%6.2f %15f %20E\n", x, y, y - 0.5*(log1p(x) - log1p(-x)));
}

This code produces the following output:

 x atanh(x) atanh(x) - 0.5*(log1p(x) - log1p(-x))

 -0.80 -1.098612 -1.376937E-17
 -0.40 -0.423649 -1.843144E-18
 0.00 0.000000 0.000000E+00
 0.40 0.423649 7.589415E-19
 0.80 1.098612 -4.640385E-17

See Also
log(), log10(), log2(), exp(), pow()

log2

Calculates the logarithm to base 2 of a number

C99

#include <math.h>
double log2(double x);
float log2f(float x);
long double log2l(long double x);

The base-2 logarithm of a number x is defined only for positive values of x. If x is nega-
tive, a domain error occurs; if x is zero, and depending on the implementation, a range
error may occur.

Example
double x[] = { 0, 0.7, 1.8, 1234, INFINITY };

for (int i = 0; i < sizeof(x) / sizeof(double); i++)
{
 errno = 0;
 printf("The base 2 log of %.1f is %.3f.\n", x[i], log2(x[i]));
 if (errno == EDOM || errno == ERANGE)
 perror(_ _FILE_ _);
}

Chapter 17: Standard Library Functions | 377

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

longjmp

This code produces the following output:

The base 2 log of 0.0 is -inf.
log2.c: Numerical result out of range
The base 2 log of 0.7 is -0.515.
The base 2 log of 1.8 is 0.848.
The base 2 log of 1234.0 is 10.269.
The base 2 log of inf is inf.

See Also
log(), log10(), log1p(), exp(), pow()

logb

Obtains the exponent of a floating-point number

C99

#include <math.h>
double logb(double x);
float logbf(float x);
long double logbl(long double x);

The logb() functions return the exponent of their floating-point argument. If the argu-
ment is not normalized, logb() returns the exponent of its normalized value. If the
argument is zero, logb() may incur a domain error, depending on the implementa-
tion. (In our example below, using the GNU C library, no domain error occurs.)

Example
double x[] = { 0, 0, 0.7, 1.8, 1234, INFINITY };

x[1] = nexttoward(0.0, 1.0);

for (int i = 0; i < sizeof(x) / sizeof(double); i++)
{
 printf("The exponent in the binary representation of %g is %g.\n",
 x[i], logb(x[i]));
 if (errno == EDOM || errno == ERANGE)
 perror(_ _FILE_ _);
}

This code produces the following output:

The exponent in the binary representation of 0 is -inf.
The exponent in the binary representation of 4.94066e-324 is -1074.
The exponent in the binary representation of 0.7 is -1.
The exponent in the binary representation of 1.8 is 0.
The exponent in the binary representation of 1234 is 10.
The exponent in the binary representation of inf is inf.

See Also
ilogb(), log(), log10(), log1p(), log2(), exp(), pow()

longjmp

Jump to a previously defined point in the program

#include <setjmp.h>
void longjmp(jmp_buf environment, int returnval);

378 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

lrint

The longjmp() function allows the program to jump to a point that was previously
defined by calling the macro setjmp(). Unlike the goto statement, the longjmp() call
does not need to be within the same function as its destination. The use of setjmp()
and longjmp() can make a program harder to read and maintain, but they are useful as
a way to escape from function calls in case of errors.

The environment argument contains the processor and stack environment corre-
sponding to the destination, and must be obtained from a prior setjmp() call. Its type,
jmp_buf, is defined in setjmp.h.

The longjmp() function does not return. Instead, the program continues as if returning
from the setjmp() call, except that the returnval argument passed to longjmp()
appears as the return value of setjmp(). This value allows the setjmp() caller to deter-
mine whether the initial setjmp() call has just returned, or whether a longjmp() call
has occurred. setjmp() itself returns 0. If setjmp() appears to return any other value,
then that point in the program was reached by calling longjmp(). If the returnval argu-
ment in the longjmp() call is 0, it is replaced with 1 as the apparent return value after
the corresponding setjmp() call. The longjmp() call must not occur after the function
that called setjmp() returns. Furthermore, if any variables with automatic storage
duration in the function that called setjmp() were modified after the setjmp() call
(and were not declared as volatile), then their values after the longjmp() call are
indeterminate.

Example
See the example for setjmp().

See Also
setjmp()

lrint

Rounds a floating-point number to an integer

C99

#include <math.h>
long lrint(double x);
long lrintf(float x);
long lrintl(long double x);

The lrint() functions round a floating-point number to the next integer value in the
current rounding direction. If the result is outside the range of long, a range error may
occur, depending on the implementation, and the return value is unspecified.

Example
double t_ambient; // Ambient temperature in Celsius.
int t_display; // Display permits integer values.
char tempstring[128];
int saverounding = fegetround();

/* ... Read t_ambient from some thermometer somewhere ... */

fesetround(FE_TONEAREST); // Round toward nearest integer, up or down.

Chapter 17: Standard Library Functions | 379

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

malloc

t_display = (int)lrint(t_ambient);
snprintf(tempstring, 128, "Current temperature: %d° C\n", t_display);

fesetround(saverounding); // Restore rounding direction.

See Also
rint(), llrint(), round(), lround(), llround(), nearbyint()

lround

Rounds a floating-point number to an integer

C99

#include <math.h>
long lround(double x);
long lroundf(float x);
long lroundl(long double x);

The lround() functions are like round(), except that they return an integer of type
long. lround() rounds a floating-point number to the nearest integer value. A number
halfway between two integers is rounded away from 0. If the result is outside the range
of long, a range error may occur (depending on the implementation), and the return
value is unspecified.

Example
long costnow; // Total cost in cents.
long realcost;
double rate; // Annual interest rate.
int period; // Time to defray cost.

/* ... obtain the interest rate to use for calculation ... */

realcost = lround((double)costnow * exp(rate * (double)period));

printf("Financed over %d years, the real cost will be $%ld.%2ld.\n",
 period, realcost/100, realcost % 100);

See Also
rint(), lrint(), llrint(), round(), llround(), nearbyint()

malloc

Allocates a block of memory

#include <stdlib.h>
void *malloc(size_t size);

The malloc() function obtains a block of memory for the program to use. The argu-
ment specifies the size of the block requested in bytes. The type size_t is defined in
stdlib.h, usually as unsigned int.

If successful, malloc() returns a void pointer to the beginning of the memory block
obtained. Void pointers are converted automatically to another pointer on assign-
ment, so you do not need to use an explicit cast, although you may want do so for the

380 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

mblen

sake of clarity. Also, in older C dialects, malloc() returned a pointer to char, which did
necessitate explicit casts. If no memory block of the requested size is available, the
function returns a null pointer.

Example
struct linelink { char *line;
 struct linelink *next;
 };
struct linelink *head = NULL, *tail = NULL;

char buffer[2048];
FILE *fp_in;
/* ... 0pen input file ... */
while (NULL != fgets(buffer, sizeof(buffer) fp_in))
{
 if (head == NULL) /* Chain not yet started; add first link */
 {
 head = tail = malloc(sizeof(struct linelink));
 if (head != NULL)
 {
 head->line = malloc(strlen(buffer) + 1);
 if (head->line != NULL)
 { strcpy(head->line, buffer); head->next = NULL; }
 else
 fprintf(stderr, "Out of memory\n"), return –1;
 }
 else
 fprintf(stderr, "Out of memory\n"), return –1;
 }
 else /* Chain already started; add another link ... */

See Also
free(), calloc(), realloc()

mblen

Determines the length of a multibyte character, or whether the multibyte encoding is stateful

#include <stdlib.h>
int mblen(const char *s, size_t maxsize);

The mblen() function determines the length in bytes of a multibyte character refer-
enced by its pointer argument. If the argument points to a valid multibyte character,
then mblen() returns a value greater than zero. If the argument points to a null char-
acter ('\0'), then mblen() returns 0. A return value of –1 indicates that the argument
does not point to a valid multibyte character, or that the multibyte character is longer
than the maximum size specified by the second argument. The LC_TYPE category in the
current locale settings determines which byte sequences are valid multibyte characters.

The second argument specifies a maximum byte length for the multibyte character,
and should not be greater than the value of the symbolic constant MB_CUR_MAX, defined
in stdlib.h.

If you pass mblen() a null pointer as the first argument, then the return value indicates
whether the current multibyte encoding is stateful. This behavior is the same as that of

Chapter 17: Standard Library Functions | 381

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

mblen

mbtowc(). If mblen() returns 0, then the encoding is stateless. If it returns any other
value, the encoding is stateful; that is, the interpretation of a given byte sequence may
depend on the shift state.

Example
size_t mbsrcat(char * restrict s1, char * restrict s2,
 mbstate_t * restrict p_s1state, size_t n)
/* mbsrcat: multibyte string restartable concatenation.
 * Appends s2 to s1, respecting final shift state of destination string,
 * indicated by *p_s1state. String s2 must start in the initial shift state.
 * Returns: number of bytes written, or (size_t)-1 on encoding error.
 * Max. total length (incl. terminating null byte) is <= n;
 * stores ending state of concatenated string in *s1state.
 */
{
 int result;
 size_t i = strlen(s1);
 size_t j = 0;

 if (i >= n - (MB_CUR_MAX + 1)) // Sanity check: room for 1 multibyte
 // char + string terminator.
 return 0; // Report 0 bytes written.

 // Shift s1 down to initial state:

 if (!mbsinit(p_s1state)) // If not initial state, then append
 { // shift sequence to get initial state.
 if ((result = wcrtomb (s1+i, L'\0', p_s1state)) == -1)
 { // Encoding error:
 s1[i] = '\0'; // Try restoring termination.
 return (size_t)-1; // Report error to caller.
 }
 else
 i += result;
 }
 // Copy only whole multibyte characters at a time.
 // Get length of next char w/o changing state:
 while ((result = mblen(s2+j, MB_CUR_MAX)) <= (n - (1 + i)))
 {
 if (result == 0) break;
 if (result == -1)
 { // Encoding error:
 s1[i] = '\0'; // Terminate now.
 return (size_t)-1; // Report error to caller.
 }
 // Next character fits; copy it and update state:
 strncpy(s1+i, s2+j, mbrlen(s2+j, MB_CUR_MAX, p_s1state));
 i += result;
 j += result;
 }
 s1[i] = '\0';
 return j;
}

382 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

mbrlen

See Also
mbrlen(), mbtowc()

mbrlen

Determines the length of a multibyte character and saves the parse state

#include <stdlib.h>
size_t mbrlen(const char * restrict s, size_t maxsize,
 mbstate_t * restrict state);

The mbrlen() function, like mblen(), determines the length in bytes of a multibyte
character referenced by its first argument. Its additional parameter, a pointer to an
mbstate_t object, describes the parse state (also called the shift state) of a multibyte
character sequence in the given encoding. mbrlen() updates this parse-state object
after analyzing the multibyte character in the string, so that you can use it in a subse-
quent function call to interpret the next character correctly. (Hence the additional “r”
in the function name, which stands for “restartable.”) If the final argument is a null
pointer, mbrlen() uses an internal, static mbstate_t object.

The possible return values are as follows:

Positive values
The return value is the length of the multibyte character.

0
The first multibyte character in the string is a null character. In this case, mbrlen()
sets the parse state object to the initial state.

–1
The first argument does not point to a valid multibyte character. The mbrlen()
function sets the errno variable to EILSEQ and leaves the mbstate_t object in an
undefined state.

–2
The first argument does not point to a valid multibyte character within the speci-
fied maximum number of bytes. The sequence may be the beginning of a valid
but longer multibyte character.

The LC_TYPE category in the current locale settings determines which byte sequences
are valid multibyte characters.

Example
See the example for mblen() in this chapter.

See Also
mblen(), mbrtowc()

mbrtowc

Converts a multibyte character to a wide character, and saves the parse state

C99

#include <wchar.h>
size_t mbrtowc(wchar_t * restrict widebuffer, const char * restrict string,
 size_t maxsize, mbstate_t * restrict state);

Chapter 17: Standard Library Functions | 383

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

mbrtowc

The mbrtowc() function, like mbtowc(), determines the wide character that corresponds to
the multibyte character referenced by the second pointer argument, and stores the result
in the location referenced by the first pointer argument. Its additional parameter, a
pointer to an mbstate_t object, describes the shift state of a multibyte character sequence
in the given encoding. mbrtowc() updates this shift-state object after analyzing the multi-
byte character in the string, so you can use it in a subsequent function call to interpret the
next character correctly. (Hence the extra “r”—for “restartable”—in the function name.)
If the last argument is a null pointer, mbrtowc() uses an internal, static mbstate_t object.

The third argument is the maximum number of bytes to read for the multibyte character,
and the return value is the number of bytes that the function actually read to obtain a
valid multibyte character. If the string pointer in the second parameter points to a null
character, mbrtowc() returns 0 and sets the parse state object to the initial state. If the
string pointer does not point to a valid multibyte character, mbrtowc() returns –1, sets the
errno variable to EILSEQ, and leaves the mbstate_t object in an undefined state. If no valid
multibyte character is found within the maximum length specified by the maxsize argu-
ment, mbrtowc() returns –2.

Example
size_t mbstoupper(char *s1, char *s2, size_t n)
/* Copies the multibyte string from s2 to s1, converting all the characters
 to upper case on the way.
 Because there are no standard functions for case-mapping in multibyte
 encodings, converts to and from the wide-character encoding (using the

current locale setting for the LC_CTYPE category). The source string must
 begin in the initial shift state.
 Returns: the number of bytes written; or (size_t)–1 on an encoding error.
 */
{
 char *inptr = s2, *outptr = s1;
 wchar_t thiswc[1];
 size_t inresult, outresult;

 mbstate_t states[2], *instate = &states[0], *outstate = &states[1];

 memset(states, '\0', sizeof states);

 do
 {
 inresult = mbrtowc(thiswc, inptr, MB_CUR_MAX, instate);
 switch (inresult)
 {
 case (size_t)-2: // The (MB_CUR_MAX) bytes at inptr do not make a

// complete mb character. Maybe there is a redundant sequence of
 // shift codes. Treat the same as an encoding error.
 *outptr = '\0';
 return (size_t)-1;

 case (size_t)-1: // Found an invalid mb sequence at inptr:
 return inresult; // pass the error to the caller.

 case 0: // Got a null character. Make a last null wc.
 // The default action, with wcrtomb, does this nicely,
 // so *no break statement* necessary here.

384 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

mbsinit

 default: // Read <result> mb characters to get one wide
 // character.
 /* Check for length limit before writing anything but a null.
 Note: Using inresult as an approximation for the output length.
 The actual output length could conceivably be different due to a
 different succession of state-shift sequences.
 */
 if ((outptr - s1) + inresult + MB_CUR_MAX > n)
 { // i.e., if bytes written + bytes to write + termination > n,
 // then terminate now by simulating a null-character input.
 thiswc[0] = L'\0';
 inresult = 0;
 }
 inptr += inresult;
 if ((outresult = wcrtomb(outptr, (wchar_t)towupper(thiswc[0]),
 outstate)) == -1)
 { // Encoding error on output:
 *outptr = '\0'; // Terminate and return error.
 return outresult;
 }
 else
 outptr += outresult;
 }
 } while (inresult); // Drop out after handling '\0'.
 return outptr - s1;
}

See Also
mbtowc(), mbrlen(), wcrtomb()

mbsinit

Determines whether a multibyte parse state variable represents the initial state

#include <wchar.h>
int mbsinit(const mbstate_t *state);

The mbsinit() function tests whether the multibyte parse state variable represents the
initial state. The type mbstate_t is defined in wchar.h. An object of this type holds the
parse state of a multibyte string or stream. If the parse state is the initial state, mbsinit()
returns a nonzero value; otherwise, mbsinit() returns 0. mbsinit() also returns a
nonzero value if the argument is a null pointer.

Example
See the example for mblen() in this chapter.

See Also
wcrtomb(), wcsrtombs(), mbsrtowcs(), mbrtowc()

Chapter 17: Standard Library Functions | 385

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

mbstowcs

mbsrtowcs

Converts a multibyte string to a wide-character string

#include <stdlib.h>
size_t mbsrtowcs(wchar_t * restrict dest, const char * restrict src,
 size_t n, mbstate_t * restrict state);

The mbsrtowcs() function, like mbstowcs(), converts a multibyte string to a wide char-
acter string, and returns the number of wide characters in the result, not counting the
terminating null wide character. However, mbsrtowcs() also stores the resulting parse
state of the multibyte string in the mbstate_t object addressed by the state argument.
If mbsrtowcs() encounters an invalid multibyte character, it returns –1 and sets the
errno variable to EILSEQ (“illegal sequence”).

The conversion performed is equivalent to calling mbrtowc() for each multibyte char-
acter in the original string, beginning in the shift state represented by the mbstate_t
object addressed by the state argument.

Example
size_t result;

char mbstring[] = "This is originally a multibyte string.\n";
const char *mbsptr = mbstring;

wchar_t widestring[256] = { L'\0' };

mbstate_t state;
memset(&state, '\0', sizeof state);

printf("The current locale is %s.\n", setlocale(LC_CTYPE, ""));

result = mbsrtowcs(widestring, &mbsptr, 256, &state);
if (result == (size_t)-1)
{
 fputs("Encoding error in multibyte string", stderr);
 return -1;
}
else
{
 printf("Converted %u multibyte characters. The result:\n", result);
 printf("%ls", widestring);
}

See Also
mbstowcs(), mbrtowc(); wcsrtombs(), wcrtomb(), wcstombs(), wctomb()

mbstowcs

Converts a multibyte string to a wide-character string

#include <stdlib.h>
size_t mbstowcs(wchar_t * restrict dest, const char * restrict src,
 size_t n);

386 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

mbtowc

The mbstowcs() function converts a multibyte string to a wide character string, and
returns the number of wide characters in the result, not counting the wide string termi-
nator. The first argument is a pointer to a buffer for the result; the second argument is
a pointer to the string of multibyte characters to be converted; the third argument is
the maximum number of wide characters to be written to the buffer.

The conversion performed is equivalent to calling mbtowc() for each multibyte char-
acter in the original string, beginning in the initial shift state.

The mbstowcs() function terminates the resulting wide-character
string with a null wide character (L'\0') only if it has not yet writ-
ten the maximum number of wide characters specified by the third
argument! If the return value is the same as the specified limit, then
the resulting wide string has not been terminated.

If mbstowcs() encounters an invalid multibyte character, it returns –1.

Example
See the example for localeconv() in this chapter.

See Also
mbsrtowcs(), mbtowc(), wcstombs(), wcsrtombs()

mbtowc

Converts a multibyte character to a wide character

#include <stdlib.h>
int mbtowc(wchar_t * restrict wc, const char * restrict s,
 size_t maxsize);

The mbtowc() function determines the wide character corresponding to the multibyte
character referenced by the second pointer argument, and stores the result in the loca-
tion referenced by the first pointer argument. The third argument is the maximum
number of bytes to read for the multibyte character, and the return value is the
number of bytes that the function actually read to obtain a valid multibyte character. If
the second argument points to a null character, mbtowc() returns 0. If it does not point
to a valid multibyte character, mbtowc() returns –1.

If you pass mbtowc() a null pointer as the second argument, s, then the return value
indicates whether the current multibyte encoding is stateful. This behavior is the same
as that of mblen(). If mbtowc() returns 0, then the encoding is stateless. If it returns any
other value, the encoding is stateful; that is, the interpretation of a given byte sequence
may depend on the shift state.

Example
The following example converts an array of multibyte characters into wide characters
one at a time, and prints each one:

int i = 0, n = 0;
wchar_t wc;
char mbstring[256] = "This is originally a multibyte string.\n";

printf("The current locale is %s.\n", setlocale(LC_CTYPE, ""));

Chapter 17: Standard Library Functions | 387

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

memcmp

while ((n = mbtowc(&wc, &mbstring[i], MB_CUR_MAX)) != 0)
{
 if (n == -1)
 {
 fputs("Encoding error in multibyte string", stderr);
 break;
 }
 printf("%lc", (wint_t)wc);
 i += n;
};

See Also
mbrtowc(), mblen(), mbsinit()

memchr

Searches a memory block for a given byte value

#include <string.h>
void *memchr(const void *buffer, int c, size_t n);

The memchr() function searches for a byte with the value of c in a buffer of n bytes
beginning at the address in the pointer argument buffer. The function’s return value is
a pointer to the first occurrence of the specified character in the buffer, or a null
pointer if the character does not occur within the specified number of bytes. The type
size_t is defined in string.h (and other header files), usually as unsigned int.

Example
char *found, buffer[4096] = "";
int ch = ' ';

fgets(buffer, sizeof(buffer), stdin);

/* Replace any spaces in the string read with underscores: */
while ((found = memchr(buffer, ch, strlen(buffer))) != NULL)
 *found = '_';

See Also
strchr(), wmemchr()

memcmp

Compares two memory blocks

#include <string.h>
int memcmp(const void *b1, const void *b2, size_t n);

The memcmp() function compares the contents two memory blocks of n bytes, begin-
ning at the addresses in b1 and b2, until it finds a byte that doesn’t match. The
function returns a value greater than zero if the first mismatched byte (evaluated as
unsigned char) is greater in b1, or less than zero if the first mismatched byte is greater
in b2, or zero if the two buffers are identical over n bytes.

388 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

memcpy

Example
long setone[5] = { 1, 3, 5, 7, 9 };
long settwo[5] = { 0, 2, 4, 6, 8 };

for (int i = 0; i < 5; i++)
 settwo[i] += 1;

if (memcmp(&setone, &settwo, sizeof(settwo)) == 0)
 printf("The two arrays are identical, byte for byte.\n");

See Also
strcmp(), strncmp(), wmemcmp()

memcpy

Copies the contents of a memory block

#include <string.h>
void *memcpy(void * restrict dest, const void * restrict src, size_t n);

The memcpy() function copies n successive bytes beginning at the address in src to the
location beginning at the address in dest. The return value is the same as the first argu-
ment, dest. The two pointer values must be at least n bytes apart, so that the source
and destination blocks do not overlap; otherwise, the function’s behavior is unde-
fined. For overlapping blocks, use memmove().

Example
typedef struct record {
 char name[32];
 double data;
 struct record *next, *prev;
} Rec_t;

Rec_t template = { "Another fine product", -0.0, NULL, NULL };
Rec_t *tmp_new;

if ((tmp_new = malloc(sizeof(Rec_t))) != NULL)
memcpy(tmp_new, &template, sizeof(Rec_t));

else
 fprintf(stderr, "Out of memory!\n"), return -1;

See Also
strcpy(), strncpy(), memove(), wmemcpy(), wmemmove()

memmove

Copies the contents of a memory block

#include <string.h>
void *memmove(void *dest, const void *src, size_t int n);

The memmove() function copies n successive bytes beginning at the address in src to
the location beginning at the address in dest. The return value is the same as the first

Chapter 17: Standard Library Functions | 389

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

mktime

argument, dest. If the source and destination blocks overlap, copying takes place as if
through a temporary buffer, so that after the function call, each original value from
the src block appears in dest.

Example
char a[30] = "That's not what I said." ;

memmove(a+7, a+11, 13); // Move 13 bytes, 'w' through '\0'
puts(a);

These lines produce the following output:

That's what I said.

See Also
memcpy(), wmemmove()

memset

Set all bytes of a memory block to a given value

#include <string.h>
void *memset(void *dest, int c, size_t n);

The memset() function sets each byte in a block of n bytes to the value c, beginning at
the address in dest. The return value is the same as the pointer argument dest.

Example
See the example for mbsinit() in this chapter.

See Also
wmemset(), calloc()

mktime

Determines the time represented by a struct tm value

#include <time.h>
time_t mktime(struct tm *timeptr);

The mktime() function calculates the local calendar time represented by the member
values in the object referenced by the pointer argument.

The type struct tm is defined in time.h as follows:

struct tm {
 int tm_sec; /* Seconds (0-60; 1 leap second) */
 int tm_min; /* Minutes (0-59) */
 int tm_hour; /* Hours (0-23) */
 int tm_mday; /* Day (1-31) */
 int tm_mon; /* Month (0-11) */
 int tm_year; /* Year (difference from 1900) */
 int tm_wday; /* Day of week (0-6) */
 int tm_yday; /* Day of year (0-365) */
 int tm_isdst; /* Daylight saving time (-1, 0, 1) */
};

390 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

mktime

The member tm_isdst is equal to 0 if daylight saving time is not in effect, or 1 if it is. A
negative value indicates that the information is not available, in which case mktime()
attempts to calculate whether daylight saving time is applicable at the time repre-
sented by the other members.

The mktime() function ignores the tm_wday and tm_yday members in determining the
time, but does use tm_isdst. The other members may contain values outside their
normal ranges. Once it has calculated the time represented, mktime() adjusts the
struct tm members so that each one is within its normal range, and also sets tm_wday
and tm_yday accordingly. The return value is the number of seconds from the epoch
(usually midnight on January 1, 1970, UTC) to the time represented in the structure,
or –1 to indicate an error.

Example
 time_t seconds;
 struct tm sometime;

 sometime.tm_sec = 10;
 sometime.tm_min = 80;
 sometime.tm_hour = 40;
 sometime.tm_mday = 23;
 sometime.tm_mon = 1;
 sometime.tm_year = 105;
 sometime.tm_wday = 11;
 sometime.tm_yday = 111;
 sometime.tm_isdst = -1;

 seconds = mktime(&sometime);

 if (seconds == -1)
 {
 printf("mktime() couldn't make sense of its input.\n");
 return -1;
 }

 printf("The return value, %ld, represents %s",
 (long)seconds, ctime(&seconds));

 printf("The structure has been adjusted as follows:\n"
 "tm_sec == %d\n"
 "tm_min == %d\n"
 "tm_hour == %d\n"
 "tm_mday == %d\n"
 "tm_mon == %d\n"
 "tm_year == %d\n"
 "tm_wday == %d\n"
 "tm_yday == %d\n"
 "tm_isdst == %d\n",

 sometime.tm_sec,
 sometime.tm_min,
 sometime.tm_hour,
 sometime.tm_mday,
 sometime.tm_mon,

Chapter 17: Standard Library Functions | 391

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

modf

 sometime.tm_year,
 sometime.tm_wday,
 sometime.tm_yday,
 sometime.tm_isdst);

 printf("The structure now represents %s", asctime(&sometime));
}

This program produces the following output:

The return value, 1109262010, represents Thu Feb 24 17:20:10 2005
The structure has been adjusted as follows:
tm_sec == 10
tm_min == 20
tm_hour == 17
tm_mday == 24
tm_mon == 1
tm_year == 105
tm_wday == 4
tm_yday == 54
tm_isdst == 0
The structure now represents Thu Feb 24 17:20:10 2005

See Also
asctime(), ctime(), localtime(), gmtime(), strftime()

modf

Separates a floating-point number into integer and fraction parts

#include <math.h>
double modf(double x, double *intpart);
float modff(float x, float *intpart); (C99)

long double modfl(long double x, long double *intpart); (C99)

The modf() functions analyze a floating-point number into an integer and a fraction
whose magnitude is less than one. The integer part is stored in the location addressed
by the second argument, and fractional part is the return value.

There is no type-generic macro for the modf() functions.

Example
double x, integer = 0.0, fraction = 0.0;
x = 1.23;
fraction = modf(x, &integer);
printf("%10f = %f + %f\n", x , integer, fraction);

x = -1.23;
fraction = modf(x, &integer);
printf("%10f = %f + %f\n", x , integer, fraction);

The example produces the following output:

 1.230000 = 1.000000 + 0.230000
 -1.230000 = -1.000000 + -0.230000

392 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

nearbyint

See Also
frexp()

nearbyint

Rounds a floating-point number to an integer value

C99

#include <math.h>
double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);

The nearbyint() functions round the value of the argument to the next integer value
in the current rounding direction. The current rounding direction is an attribute of the
floating-point environment that you can read and modify using the fegetround() and
fesetround() functions. They are similar to the rint() functions, except that the
nearbyint() functions do not raise the FE_INEXACT exception when the result of the
rounding is different from the argument.

Example
if (fesetround(FE_TOWARDZERO) == 0)
 printf("The current rounding mode is \"round toward 0.\"\n");
else
 printf("The rounding mode is unchanged.\n");

printf("nearbyint(1.9) = %4.1f nearbyint(-1.9) = %4.1f\n",
nearbyint(1.9), nearbyint(-1.9));

printf("round(1.9) = %4.1f round(-1.9) = %4.1f\n",
 round(1.9), round(-1.9));

This code produces the following output:

The current rounding mode is "round toward 0."
nearbyint(1.9) = 1.0 nearbyint(-1.9) = -1.0
round(1.9) = 2.0 round(-1.9) = -2.0

See Also
rint(), lrint(), llrint(); round(), lround(), llround(); nextafter(), nexttoward(),
ceil(), floor(), fegetround(), fesetround()

nextafter

Obtains the next representable value

C99

#include <math.h>
double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);

The nextafter() function returns the next value to the first argument x, removed from
it in the direction toward the value of y, that is representable in the function’s type. If
the values of the two arguments are equal, nextafter() returns the value of the second
argument y.

Chapter 17: Standard Library Functions | 393

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

perror

If the argument x has the magnitude of the largest finite value that can be represented
in the function’s type, and the result is not a finite, representable value, then a range
error may occur.

Example
double x = nextafter(0.0, 1.0);
printf("The smallest positive number "
 "with the type double: %E\n", x);

This code produces output like the following:

The smallest positive number with the type double: 4.940656E-324

See Also
nexttoward(), nearbyint(), rint(), lrint(), llrint(), round(), lround(), llround(),
ceil(), floor()

nexttoward

Obtains the next representable value in the direction of a given long double value

C99

#include <math.h>
double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);

The nexttoward() functions are similar to nextafter(), except that the second para-
meter in all three variants has the type long double.

Example
float x = nexttowardf(0.0F, -1E-100L);
printf("The greatest negative floating-point number \n"
 "(i.e., the closest to zero) with type float: %E\n", x);

This code produces output like the following:

The greatest negative floating-point number
(i.e., the closest to zero) with type float: -1.401298E-45

See Also
nextafter(), nearbyint(), rint(), lrint(), llrint(), round(), lround(), llround(),
ceil(), floor()

perror

Print an error message corresponding to the value of errno

#include <stdio.h>
void perror(const char *string);

The perror() function prints a message to the standard error stream. The output
includes first the string referenced by the pointer argument, if any; then a colon and a
space, then the error message that corresponds to the current value of the errno vari-
able, ending with a newline character.

394 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

pow

Example
#define MSGLEN_MAX 256
FILE *fp;
char msgbuf[MSGLEN_MAX] = "";

if ((fp = fopen("nonexistentfile", "r")) == NULL)
{
 snprintf(msgbuf, MSGLEN_MAX, "%s, function %s, file %s, line %d",
 argv[0], _ _func_ _, _ _FILE_ _, _ _LINE_ _);
perror(msgbuf);

 return errno;
}

Assuming that there is no file available named nonexistentfile, this code results in
output like the following on stderr:

./perror, function main, file perror.c, line 18: No such file or directory

See Also
strerror()

pow

Raises a number to a power

#include <math.h>
double pow(double x, double y);
float powf(float x, float y); (C99)

long double powl(long double x, long double y); (C99)

The pow() function calculates x to the power of y. In other words, the return value is
xy. The arguments are subject to the following rules:

• If x is negative, y must have an integer value.

• If x is zero, then y must not be negative. (00 = 1.0, but for all other positive values
of y, 0y = 0.0.)

If the arguments violate these conditions, pow() may return NaN (not a number) or
infinity, and may indicate a domain error. If an overflow or underflow occurs, pow()
returns positive or negative HUGE_VAL and may indicate a range error.

Example
See the example for cosh() in this chapter.

See Also
exp(), sqrt(), cpow()

printf

Writes formatted output to the standard output stream

#include <stdio.h>
int printf(const char * restrict format, ...);

The printf() function converts various kinds of data into string representations for
output, and substitutes them for placeholders in the string referenced by the manda-
tory pointer argument, format. The resulting output string is then written to the

Chapter 17: Standard Library Functions | 395

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

printf

standard output stream. The return value of printf() is the number of characters
printed, or EOF to indicate that an error occurred.

The placeholders in the string argument are called conversion specifications, because
they also specify how each replacement data item is to be converted, according to a
protocol described shortly.

The optional arguments, represented by the ellipsis in the function prototype, are the
data items to be converted for insertion in the output string. The arguments are in the
same order as the conversion specifications in the format string.

Conversion specification syntax
For a general overview of data output with printf(), see “Formatted Output” in
Chapter 13. This section describes the syntax of conversion specifications in the
printf() format string in detail. The conversion specifications have the following
syntax:

%[flags][field width][.precision][length modifier]specifier

The flags consist of one or more of the characters +, ' ' (space), –, 0, or #. Their mean-
ings are as follows:

+ Add a plus sign before positive numbers.

' ' Add a space before positive numbers (not applicable in conjunction with +).

- Align the output with the left end of the field.

0 Pad the field with leading zeroes to the left of the numeric output (not applicable
in conjunction with –). Ignored for integer types if precision is specified.

Use alternative conversion rules for the following conversion specifiers:

A, a, E, e, F, f, G, g
Format floating-point numbers with a decimal point, even if no digits follow.

G, g
Do not truncate trailing zeroes.

X, x, o
Format nonzero hexadecimal integers with the 0X or 0x prefix; format octal
integers with the 0 prefix.

The optional field width is a positive integer that specifies the minimum number of
characters that the given data item occupies in the output string. If the flags include a
minus sign, then the converted argument value is aligned left in the field; otherwise, it
is aligned right. The remaining field width is padded with spaces (or zeroes, if the flags
include 0). If the converted data item is longer than the specified field width, it is
inserted in the output string in its entirety.

If an asterisk (*) appears in place of the field width, then the argument to be
converted for output must be preceded by an additional argument with the type int,
which indicates the field width for the converted output.

For the conversion specifiers f, F, e, E, a, and A, precision specifies the number of
decimal places to present. For the conversion specifier g, precision indicates the
number of significant digits. The result is rounded. The default value for precision is 6.

For integers—that is, the conversion specifiers u, d, i, x, and o—precision specifies a
minimum number of digits to present. The converted value is padded with leading
zeroes if necessary. The default value for precision in this case is 1. If you convert a
zero integer value with zero precision, the result is no characters.

396 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

printf

For the conversion specifier s, indicating a string argument, precision specifies the
maximum length of the string to be inserted in the output.

If an asterisk (*) appears in place of a precision value, then the argument to be
converted for output must be preceded by an additional argument with the type int,
which indicates the precision for the converted output. If asterisks appear both for
field width and for precision, then the argument to be converted must be preceded by
two additional int arguments, the first for field width and the second for precision.

The length modifier qualifies the conversion specifier to indicate the corresponding
argument’s type more specifically. Each length modifier value is applicable only to
certain conversion specifier values. If they are mismatched, the function’s behavior is
undefined. The permissible length modifier values and their meaning for the appro-
priate conversion specifiers are listed in Table 17-5.

The conversion specifier indicates the type of the argument and how it is to be
converted. The corresponding function argument must have a compatible type; other-
wise, the behavior of printf() is undefined. The conversion specifier values are listed
in Table 17-6.

Table 17-5. printf() conversion specifier modifiers

Modifier With conversion specifier Corresponding argument’s type

hh d, i, o, u, x, or X signed char or unsigned char

hh n signed char *

h d, i, o, u, x, or X short int or unsigned short int

h n short int *

l (ell) d, i, o, u, x, or X long int or unsigned long int

l (ell) c wint_t

l (ell) n long int *

l (ell) s wchar_t *

l (ell) a, A, e, E, f, F, g, or G (The modifier is permitted, but has no effect)

ll (two ells) d, i, o, u, x, or X long long or unsigned long long

ll (two ells) n long long *

j d, i, o, u, x, or X intmax_t or uintmax_t

j n intmax_t *

z d, i, o, u, x, or X size_t or the corresponding signed integer type

z n size_t * or a pointer to the corresponding signed integer type

t d, i, o, u, x, or X ptrdiff_t or the corresponding unsigned integer type

t n ptrdiff_t * or a pointer to the corresponding unsigned integer type

L a, A, e, E, f, F, g, or G long double

Chapter 17: Standard Library Functions | 397

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

printf

The exact meaning of the a and A conversion specifiers, introduced in C99, is some-
what complicated. They convert a floating-point argument into an exponential
notation in which the significant digits are hexadecimal, preceded by the 0x (or 0X)
prefix, and with one digit to the left of the decimal point character. The exponential
multiplier, separated from the significant digits by a p (or P), is represented as a
decimal exponent to base FLT_RADIX. The symbolic constant FLT_RADIX, defined in
float.h, indicates the base of the floating-point environment’s exponent representa-
tion; this is usually 2, for binary exponent representation. Here is an example using the
a conversion specifier:

double pi = 3.1415926;
double bignumber = 8 * 8 * 8 * pi * pi * pi;
printf("512 times pi cubed equals %.2e, or %.2a.\n", bignumber, bignumber);

This printf() call produces the following output:

512 times pi cubed equals 1.59e+04, or 0x1.f0p+13.

The first representation shown here, produced by the e conversion specifier, reads
“one point five nine times ten to the fourth power,” and the second, produced by a, as
“hexadecimal one point F zero times two to the (decimal) thirteenth power.”

For floating-point arguments, and for the x or X conversion specifiers, the case of the
conversion specifier determines the case of any letters in the resulting output: the x (or
X) in the hexadecimal prefix; the hexadecimal digits greater than 9; the e (or E) in expo-
nential notation; infinity (or INFINITY) and nan (or NAN); and p (or P) in hexadecimal
exponential notation.

In Chapter 2, we described the types with specific characteristics defined in stdint.h,
such as intmax_t for the given implementation’s largest integer type, int_fast32_t for
its fastest integer type of at least 32 bits, and the like (see Table 2-5). The header file
stdint.h also defines macros for the corresponding conversion specifiers for use in the
printf() functions. These conversion specifier macros are listed in Table 17-7.

Table 17-6. printf() conversion specifiers

Conversion specifier Argument type Output notation

d, i int Decimal

u unsigned int Decimal

o unsigned int Octal

x, X unsigned int Hexadecimal

f, F float or double Floating decimal point

e, E float or double Exponential notation

g, G float or double Floating decimal point or exponential notation, whichever is shorter

a, A float or double Hexadecimal exponential notation

c char or int Single character

s char * The string addressed by the pointer argument

n int * No output; instead, printf() stores the number of characters in
the output string so far in the variable addressed by the argument

p Any pointer type The pointer value, in hexadecimal notation

% None A percent sign (%)

398 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

printf

The macros in Table 17-7 expand to string literals. Therefore, when you use one in a
printf() format string, you must close the quotation marks surrounding the format
string on either side of the macro. Here is an example:

int_fast16_t counter = 1001;
while (--counter)
 printf("Only %" PRIiFAST16 " nights to go.\n", counter);

The preprocessor expands the macro and concatenates the resulting string literal with
the adjacent ones on either side of it.

Example
The following example illustrates the use of the %n conversion specification to count
the characters in the output string:

void print_line(double x)
{
 int n1, n2;
 printf("x = %5.2f exp(x) = %n%10.5f%n\n", x, &n1, exp(x), &n2);
 assert(n2-n1 <= 10); // Did printf() stretch the field width?
}

int main()
{
 print_line(11.22);
 return 0;
}

The code produces the following output:

x = 11.22 exp(x) = 74607.77476
printf_ex: printf_ex.c:20: print_line: Assertion `n2-n1 <= 10' failed.
Aborted

See Also
The other functions in the “printf() family,” fprintf(), sprintf(), and snprintf();
the printf() functions for wide characters (declared in wchar.h): wprintf(), fwprintf(),

Table 17-7. Conversion specifier macros for integer types defined in stdint.h

Type Meaning printf() conversion specifiers

intN_t
uintN_t

An integer type whose width is exactly N bits PRIdN, PRIiN
PRIoN, PRIuN, PRIxN, PRIXN

int_leastN_t
uint_leastN_t

An integer type whose width is at least N bits PRIdLEASTN, PRIiLEASTN
PRIoLEASTN, PRIuLEASTN,
PRIxLEASTN, PRIXLEASTN

int_fastN_t
uint_fastN_t

The fastest type to process whose width is at least
N bits

PRIdFASTN, PRIiFASTN
PRIoFASTN, PRIuFASTN,
PRIxFASTN, PRIXFASTN

intmax_t
uintmax_t

The widest integer type implemented PRIdMAX, PRIiMAX
PRIoMAX, PRIuMAX, PRIxMAX,
PRIXMAX

intptr_t
uintptr_t

An integer type wide enough to store the value of
a pointer

PRIdPTR, PRIiPTR
PRIoPTR, PRIuPTR, PRIxPTR,
PRIXPTR

Chapter 17: Standard Library Functions | 399

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

putchar

and swprintf(); the printf() functions that use the type va_list for the variable argu-
ments (declared in stdarg.h): vprintf(), vfprintf(), vsprintf(), and vsnprintf(); the
printf() functions for wide characters that use the type va_list for the variable argu-
ments, vwprintf(), vfwprintf(), and vswprintf(); the formatted input functions
scanf(), sscanf(), and fscanf()

putc

Writes a character to a file

#include <stdio.h>
int putc(int c, FILE *fp);

The macro putc() is similar to the function fputc(). It writes one character to the
current file position of the specified FILE pointer. The return value is the character
written, or EOF if an error occurred.

Because putc() is a macro, it may evaluate its argument more than once. Make sure
the argument is not an expression with side effects—or else use fputc()

Example
This is a simple search-and-replace filter to eliminate back-tick characters in text files:

int c;
FILE *fp;

if ((fp = fopen("textfile", "r+")) == NULL)
{
 fprintf(stderr, "Couldn't open input file.\n");
 exit(-1);
}

while ((c = getc(fp)) != EOF) // Read a character until EOF
{
 if (c == '`') // If it's a back-tick ...
 {
 fseek(fp, -1, SEEK_CUR); // back up to the place it was read from, and

putc('\'', fp); // replace it with a single-quote character.
 fflush(fp);
 }
}
fclose(fp);

See Also
fgetc(), fputc(), getc(), getchar(), putchar(); the functions to read and write wide
characters, putwc(), fputwc(), and putwchar(); getwc(), fgetwc(), and getwchar()

putchar

Writes a character to standard output

#include <stdio.h>
int putchar(int c);

The macro putchar() is similar to putc(), but rather than writing a character to a
specified file, it writes to stdout, and hence has no FILE pointer argument.

400 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

puts

Example
The following example code reads the beginning of a file repetitively, and reports its
progress on stdout.

long count; const long CYCLES = 5000;
FILE *fp = fopen("infile.txt", "r");
char readback[1024];

for (count = 0; count <= CYCLES; ++count)
{
 /* Start output with '\r' to re-use same screen line. */
 printf("\rPerformed %li file reads. ", count);

 rewind(fp);
 fgets(readback, 1024, fp);

/* Scroll a new screen line every hundred cycles. */
 if (count % 100 != 0) continue;

putchar('\n');
}
puts("Done.");

See Also
putc(), getc(), getchar(), fgetc(), fputc(); the functions to read and write wide
characters, putwc(), fputwc(), and putwchar(); getwc(), fgetwc(), and getwchar()

puts

Writes a text line to standard output

#include <stdio.h>
int puts(const char *string);

The puts() function writes the string referenced by its pointer argument to the stan-
dard output stream, followed by a newline character ('\n'). The return value is non-
negative, or EOF if an error occurs.

Example
See the examples at qsort(), setjmp(), and signal() in this chapter.

See Also
fputs(), gets(), fputws()

putwc

Writes a wide character to a file

#include <stdio.h>
#include <wchar.h>
wint_t putwc(wchar_t c, FILE *fp);

The function or macro putwc() is similar to the function fputwc(). It writes one char-
acter to the current file position of the specified FILE pointer. The return value is the
character written, or WEOF if an error occurred.

Chapter 17: Standard Library Functions | 401

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

qsort

Because putwc() may be implemented as a macro, it might evaluate its argument more
than once. Make sure the argument is not an expression with side effects—or else use
fputwc().

Example
See the examples for getwc() and fgetwc() in this chapter.

See Also
fputwc(), putwchar(), getwc(), fgetwc(), getwchar()

putwchar

Writes a wide character to standard output

#include <wchar.h>
wint_t putwchar(wchar_t c);

The macro putwchar() is similar to putwc(), but writes a wide character to stdout, and
has no FILE pointer argument.

Example
See the example for getwchar() in this chapter.

See Also
putwc(), fputwc(), getwc(), fgetwc(), getwchar()

qsort

Sorts an array using the quick-sort algorithm

#include <stdlib.h>
void qsort(void *array, size_t n, size_t size,
 int (*compare)(const void *, const void *));

The qsort() function sorts the array referenced by its first argument according to a
user-definable sorting criterion using the quick-sort algorithm. You determine the
sorting criterion by defining a callback function that compares two array elements in
some way and indicates which is greater. The qsort() function calls this function by
the pointer passed in the last argument to qsort() each time it needs to compare two
elements of the array.

The comparison function takes as its arguments two pointers to elements of the array
being sorted. The corresponding parameters are declared as void pointers, so that
qsort() can be used with any type of array element. The comparison must return a
negative value if its first argument is “less than” the second, a positive value if the first
argument is “greater than” the second, or zero if they are “equal.” It is up to you to
define the criteria that constitute these relations for the given type of array element.
The qsort() function sorts the array in ascending order. The same comparison func-
tion can be used by the bsearch() function.

Example
int strptrcmp(const void *sp1, const void *sp2);

int main()

402 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

raise

{
 char *words[] = { "Then", "he", "shouted", "What", "I",
 "didn't", "hear", "what", "you", "said" };

 int n = sizeof(words) / sizeof(char *);

qsort(words, n, sizeof(char *), strptrcmp);

 for (int j = 0 ; j < n ; j++)
 puts(words[j]);
}

int strptrcmp(const void *sp1, const void *sp2)
// Compare two strings by reference.
{
 // qsort() passes a pointer to the pointer:
 // dereference it to pass a char * to strcmp.
 const char * s1 = *(char **)sp1;
 const char * s2 = *(char **)sp2;
 return strcmp(s1, s2);
}

This program sorts the words in the array in alphabetical order. As the output shows,
any capital letter is less than any lowercase letter, and "he" is less than "hear":

I
Then
What
didn't
he
hear
said
shouted
what
you

See also the example for bsearch() in this chapter, as well as Example 4-1.

See Also
bsearch()

raise

Raises a signal

#include <signal.h>
int raise(int sig);

The raise() function sends the signal identified by sig to the program. If the program
has installed a handler for the given signal by means of a call to the signal() function,
then that handler routine runs when the signal is raised, and raise() does not return
until the handler function has returned. If the signal handler doesn’t end the program,
the return value of raise() is 0 if it succeeds in raising the signal, otherwise a nonzero
value.

Chapter 17: Standard Library Functions | 403

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

realloc

Macros for values of the argument sig are defined in the standard
header signal.h, and are described under signal() in this chapter.

Example
See the example for signal() in this chapter.

See Also
abort(), signal(), feraiseexcept()

rand

Obtains a random integer value

#include <stdlib.h>
int rand(void);

The rand() function returns a pseudorandom number between 0 and RAND_MAX. The
symbolic constant RAND_MAX is defined in stdlib.h, and is equal to at least 32,767 (or
215 –1).

To initialize the pseud-random number generator, call the srand() function with a
new seed value before the first call to rand(). This step ensures that rand() provides a
different sequence of random numbers each time the program runs. If you call rand()
without having called srand(), the result is the same as if you had called srand() with
the argument value 1.

Example
printf("Think of a number between one and twenty.\n"
 "Press Enter when you're ready.");
getchar();

srand((unsigned)time(NULL));

for (int i = 0; i < 3; i++) // We get three guesses.
{
 printf("Is it %u? (y or n) ", 1 + rand() % 20);
 if (tolower(getchar()) == 'y')
 {
 printf("Ha! I knew it!\n");
 exit(0);
 }
 getchar(); // Dicard newline character.
}
printf("I give up.\n");

realloc

Resizes an allocated memory block

#include <stdlib.h>
void *realloc(void *ptr, size_t n);

404 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

remainder

The realloc() function replaces a memory block dynamically allocated by malloc(),
calloc() or realloc() with a new one of size n, and copies the contents of the
previous block to the new block, to the extent that the two blocks’ sizes permit. If the
new block is larger, the values of the remaining bytes are undetermined. The pointer
argument passed to realloc() is the address of the block previously allocated, and the
function’s return value is the address of the new block. The new block may or may not
begin at the same address as the old block. realloc() returns a null pointer if the new
block could not be allocated as requested; in this case, it does not release the old
block, and your program can continue using it.

If the first argument is a null pointer, realloc() allocates a new memory block,
behaving similarly to malloc(). Otherwise, if the pointer argument does not point to a
memory block allocated by malloc(), calloc(), or realloc(), or if it points to such a
block that has since been released by a call to free() or realloc(), then the behavior
is undefined.

Example
typedef struct { int len;
 float array[];
 } DynArray_t;

DynArray_t *daPtr = malloc(sizeof(DynArray_t) + 10*sizeof(float));
if (daPtr == NULL) exit –1;

daPtr->len = 10;

for (int i = 0; i < daPtr->len; ++i)
 daPtr->array[i] = 1.0F/(i+1);
/* daPtr->array[10] = 0.1F // Invalid array index! */

DynArray_t *daResizePtr = realloc(daPtr,
 sizeof(DynArray_t) + 11*sizeof(float));
if (daResizePtr != NULL)
{
 daPtr = daResizePtr ;
 daPtr->len = 11;
 daPtr->array[10] = 0.1F / 12; // Okay now.
}
else
 /* We'll just have to get along with the array of 10 floats. */

See Also
malloc(), calloc(), free()

remainder

Calculates the remainder of a floating-point division

C99

#include <math.h>
double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);

Chapter 17: Standard Library Functions | 405

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

remove

The remainder() functions return the remainder r of x / y, such that r = x – ny, where n
is the nearest integer to the exact value of x / y (regardless of the current rounding
direction). If the exact quotient is exactly halfway between two integers, then the
quotient n is the nearest even integer. By this definition, the remainder can be positive
or negative. If the remainder is zero, then remainder() returns 0 with the same sign as
the argument x.

Example
double apples, people, share, left;
printf("\nHow many people? ");
scanf("%lf", &people);
printf("\nHow many apples? ");
scanf("%lf", &apples);

left = remainder(apples, people); // left may be negative!
share = (apples – left) / people;

printf("If there are %.1lf of us and %.1lf apples, "
 "each of us gets %.1lf of %s, with %.1lf left over.\n",
 people, apples, share, (share < 1) ? "one" : "them", left);

See Also
remquo(), fmod()

remove

Unlinks a file

#include <stdio.h>
int remove(const char *filename);

The remove() function deletes the file (or directory) referred to by its string argument.
To be exact, it “unlinks” the file, or deletes its filename from the file system, so that
the file’s contents may still exist if the file was linked to more than one name.

The remove() function may or may not be able to unlink a file while it is open,
depending on the given implementation. The function returns 0 on success. If remove()
fails to unlink the file, it returns a nonzero value.

Example
char fname_tmp[L_tmpnam] = "";
FILE *fp;
int result;

tmpnam(fname_tmp);
fp = fopen(fname_tmp, "w+");

/* ... write something in the file, edit it ... */

fclose(fp);

result = rename(fname_tmp, "finished.txt");

406 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

remquo

if (result) // Delete previous "finished.txt" and try again.
{
remove("finished.txt");

 result = rename(fname_tmp, "finished.txt");
 if (result) // Give up and log the error.
 fprintf(stderr, "Error %d on trying to rename output file\n", errno);
}

See Also
fopen(), tmpfile()

remquo

Calculates the integer quotient and the remainder of a floating-point division

C99

#include <math.h>
double remquo(double x, double y, int *quo);
float remquof(float x, float y, int *quo);
long double remquol(long double x, long double y, int *quo);

The remquo() functions are similar to the remainder() functions, except that they also
store part of the integer quotient of the division in the object referenced by the pointer
argument. The entire quotient may not fit in the int object referenced by the pointer,
and the ISO C standard requires only that the quotient as stored has the same sign as
the actual quotient x/y, and that its absolute value matches the actual quotient in at
least the lowest three bits, or modulo 8.

Example
double apples = 0.0, people = 0.0, left = 0.0, share = 0.0;
int quotient = 0;

printf("\nHow many people? ");
scanf("%lf", &people);

printf("\nHow many apples? ");
scanf("%lf", &apples);

share = nearbyint(apples / people);
left = remquo(apples, people, "ient);

printf("If there are %.2lf of us and %.2lf apples, "
 "each of us gets %.2lf apple%s, with %.2lf left over.\n",
 people, apples, share, (share == 1) ? "" : "s", left);
printf("remquo() stored %d as the quotient of the division (modulo 8).\n",
 quotient);

printf("Test: share modulo 8 - quotient = %d\n",
 (int) share % 8 - quotient);

See Also
remainder(), modf()

Chapter 17: Standard Library Functions | 407

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

rewind

rename

Renames or moves a file

#include <stdio.h>
int rename(const char *oldname, const char *newname);

The rename() function changes the name of the file specified by oldname to the string
referenced by newname. The pointer argument oldname must refer to the name of an
existing file.

The function returns 0 on success. If rename() fails to rename the file, it returns a
nonzero value.

Example
See the example for remove() in this chapter.

See Also
freopen(), remove(), tmpnam()

rewind

Resets a file’s access position to the beginning of the file

#include <stdio.h>
void rewind(FILE *fp);

The rewind() function sets the access position of the file associated with the FILE
pointer fp to the beginning of the file, and clears the EOF and error flags.

Example
This example prints the contents of a file twice, converting each character to lower-
case the first time through, and to uppercase the second time:

FILE *fp; int c;

if ((fp = fopen(argv[1], "r")) == NULL)
 fprintf(stderr, "Failed to open file %s\n", argv[1]);
else
{
 puts("Contents of the file in lower case:");
 while ((c = fgetc(fp)) != EOF)
 putchar(tolower(c));

rewind(fp);

 puts("Same again in upper case:");
 while ((c = fgetc(fp)) != EOF)
 putchar(toupper(c));

 fclose(fp);
}

See Also
fseek(), ftell(), fgetpos(), fsetpos(), clearerr()

408 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

rint

rint

Rounds a floating-point number to an integer value

C99

#include <math.h>
double rint(double x);
float rintf(float x);
long double rintl(long double x);

The rint() functions round a floating-point number to the next integer value in the
current rounding direction. The current rounding direction is an attribute of the
floating-point environment that you can read and modify using the fegetround() and
fesetround() functions. The rint() functions are similar to the nearbyint() func-
tions, except that the rint() functions may raise the FE_INEXACT exception (depending
on the implementation) when the result of the rounding is different from the
argument.

Example
struct round_modes { int id; char *str; } arrModes[] =
{
 #ifdef FE_TONEAREST
 { FE_TONEAREST, "FE_TONEAREST: round to nearest representable value" },
 #endif
 #ifdef FE_DOWNWARD
 { FE_DOWNWARD, "FE_DOWNWARD: round toward –Inf" },
 #endif
 #ifdef FE_UPWARD
 { FE_UPWARD, "FE_UPWARD: round toward +Inf" },
 #endif
 #ifdef FE_TOWARDZERO
 { FE_TOWARDZERO, "FE_TOWARDZERO: round toward 0" }
 #endif
};

int nModes = sizeof(arrModes) / sizeof(*arrModes);

 #pragma STDC FENV_ACCESS ON

for (int i = 0; i < nModes; ++i)
{
 if (fesetround(arrModes[i].id) != 0)
 break;
 printf("Current rounding mode: %s\n", arrModes[i].str);

 printf("rint(1.4) = %4.1f rint(1.5) = %4.1f\n",
 rint(1.4), rint(1.5));
 printf("rint(-1.4) = %4.1f rint(-1.5) = %4.1f\n",
 rint(-1.4), rint(-1.5));
}

If the implementation supports all four rounding modes, this code produces the
following output:

Current rounding mode: FE_TONEAREST: round to nearest representable value
rint(1.4) = 1.0 rint(1.5) = 2.0
rint(-1.4) = -1.0 rint(-1.5) = -2.0

Chapter 17: Standard Library Functions | 409

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

scalbln, scalbn

Current rounding mode: FE_DOWNWARD: round toward –Inf
rint(1.4) = 1.0 rint(1.5) = 1.0
rint(-1.4) = -2.0 rint(-1.5) = -2.0
Current rounding mode: FE_UPWARD: round toward +Inf
rint(1.4) = 2.0 rint(1.5) = 2.0
rint(-1.4) = -1.0 rint(-1.5) = -1.0
Current rounding mode: FE_TOWARDZERO: round toward 0
rint(1.4) = 1.0 rint(1.5) = 1.0
rint(-1.4) = -1.0 rint(-1.5) = -1.0

See Also
lrint(), llrint(); nearbyint(), nexttoward(), nextafter(); round(), lround(),
llround(), ceil(), floor(), fegetround(), fesetround()

round

Rounds a floating-point number to an integer value

C99

#include <math.h>
double round(double x);
float roundf(float x);
long double roundl(long double x);

The round() functions round a floating-point number to the nearest integer value,
regardless of the current rounding direction setting in the floating-point environment.
If the argument is exactly halfway between two integers, round() rounds it away from
0. The return value is the rounded integer value.

Example
See the example for nearbyint() in this chapter.

See Also
lround(), llround(), rint(), lrint(), llrint(), nearbyint(), nexttoward(),
nextafter(); ceil(), floor(), trunc()

scalbln, scalbn

Multiplies a floating-point number by a power of the floating-point radix

C99

#include <math.h>
double scalbn(double x, int n);
float scalbnf(float x, int n);
long double scalbnl(long double x, int n);

double scalbln(double x, long int n);
float scalblnf(float x, long int n);
long double scalblnl(long double x, long int n);

The scalbn() and scalbln() functions multiply a floating-point number x by an
integer power of FLT_RADIX, providing a more efficient calculation than the arithmetic
operators. The symbolic constant FLT_RADIX, defined in float.h, indicates the base of
the floating-point environment’s exponent representation; this is usually 2, for binary
exponent representation. In this case, the return value of the scalbn() and scalbln()
functions is x × 2n.

410 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

scanf

Example
See the example for feholdexcept() in this chapter.

See Also
frexp(), ldexp()

scanf

Reads formatted data from standard input

#include <stdio.h>
int scanf(const char * restrict format, ...);

The scanf() function reads a sequence of characters from the standard input stream
and parses it for the data items specified by the format string. The function then stores
the data in the locations addressed by the subsequent pointer arguments.

The ellipsis (...) in the function prototype indicates that scanf() takes a variable
number of optional arguments. All parameters after those explicitly declared can be
considered to be of the type void *, which means that you can pass any type of object
pointer to scanf() in that position. Each of these pointer arguments must point to a
variable whose type agrees with the corresponding conversion specification in the
format string. If there are more such arguments than conversion specifiers, the excess
arguments are ignored.

Conversion specification syntax
For a general overview of data conversion with scanf(), see “Formatted Input” in
Chapter 13. This section describes the syntax of conversion specifications in the
scanf() format string in detail. The conversion specifications have the following
syntax:

%[*][field width][length modifier]specifier

Before processing each conversion specification in the format string, scanf() skips
over any whitespace characters in the input stream (except with the conversion speci-
fiers c and [], which we will describe in a moment). For each conversion specification,
scanf() reads one or more characters from the input stream. As soon as scanf() reads
a character that cannot be interpreted under the current conversion specification,
reading is interrupted, as if the first character after the data to be converted had not
been read. Then scanf() converts the characters that belong to the field, and assigns
the result to the variable addressed by the corresponding pointer argument.

If a conversion specification contains an asterisk after the percent sign (%* . . .), then the
result of the conversion is not assigned to a variable, but simply discarded.

The optional field width is a positive integer that specifies the maximum number of
characters to read and convert for the given conversion specification.

The length modifier qualifies the conversion specifier to indicate the corresponding
argument’s type more specifically. Each length modifier value is applicable only to
certain conversion specifier values. If they are mismatched, the function’s behavior is
undefined. The permissible length modifier values and their meaning for the appro-
priate conversion specifiers are listed in Table 17-8.

Chapter 17: Standard Library Functions | 411

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

scanf

The conversion specifier indicates the type of the argument and how the input char-
acters are to be interpreted. The corresponding function argument must have a
compatible type; otherwise, the behavior of scanf() is undefined. The conversion
specifier values are listed in Table 17-9.

For a description of the character sequences that are interpreted as floating-point
numbers, including decimal and hexadecimal exponential notation, see “Floating-
Point Constants” in Chapter 3.

If you use the conversion specifier c without a field width, it matches one character. If
you specify a field width, as in the conversion specification %7c, then scanf() reads the
specified number of characters, including whitespace characters, and assigns them to

Table 17-8. scanf() conversion specifier modifiers

Modifier With conversion specifier Corresponding argument’s type

hh d, i, o, u, x, X, or n signed char * or unsigned char *

h d, i, o, u, x, X, or n short int * or unsigned short int *

l (ell) d, i, o, u, x, X, or n long int * or unsigned long int *

l (ell) c, s, or [...] wchar_t *; conversion as by mbrtowc()

l (ell) a, A, e, E, f, F, g, or G double *

ll (two ells) d, i, o, u, x, X, or n long long * or unsigned long long *

j d, i, o, u, x, X, or n intmax_t * or uintmax_t *

z d, i, o, u, x, X, or n size_t * or a pointer to the corresponding signed integer type

t d, i, o, u, x, X, or n ptrdiff_t * or a pointer to the corresponding unsigned integer type

L a, A, e, E, f, F, g, or G long double *

Table 17-9. scanf() conversion specifiers

Conversion specifier Argument type Input notation

d signed int* Decimal with optional sign

i signed int* Decimal, octal, or hexadecimal, with optional sign

u unsigned int * Decimal with optional sign

o unsigned int * Octal with optional sign

x unsigned int * Hexadecimal with optional sign and/or 0x (or 0X) prefix

a, e, f, or g float * or double * Floating-point

c char * or int * One character, or several if a field width greater than one is specified

s char * Consecutive non-whitespace characters

[scanset] char * Consecutive characters from the specified set

n int * No input read; instead,scanf() stores the number of characters
read from input so far in the variable addressed by the argument

p void * The system’s notation for a pointer value; converts inversely as
printf()

% None A single percent sign (%); no value stored

412 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

scanf

successive elements of an array of char addressed by the corresponding pointer argu-
ment, but does not append a terminating null character. It is up to you to make sure
that the argument points to the first element of an array of sufficient size to accommo-
date the number of characters indicated by the field width.

If you use the conversion specifier c together with the length modifier l, then scanf()
reads one or more bytes (according to the specified field width, if any), converting
them as it goes from multibyte characters to wide characters in the same way as
successive calls to the mbrtowc() function would, starting with an mbstate_t object
corresponding to the initial parsing state. If you specify a field width, scanf() reads
the specified number of bytes, and assigns the corresponding wide characters to
successive elements of an array of wchar_t addressed by the corresponding pointer
argument, but does not append a terminating null wide character ('\0'L). It is up to
you to make sure that the argument points to the first element of an array of sufficient
size to accommodate the number of wide characters stored.

The conversion specifier s is similar to c, with these exceptions:

• scanf() with an s specifier stops reading at the first whitespace character, or
when it has read the number of bytes indicated by the field length, if specified.

• scanf() with an s specifier appends a null character (or wide character, if the l
modifier is present) to the sequence of characters (or wide characters) stored. The
pointer argument must point to the first element of an array that is large enough
to accommodate the characters read plus the null character.

The conversion specifier […] is similar to s, with the following exceptions: rather than
matching any sequence of non-whitespace characters, it matches any sequence of the
characters in the set that appear between the square brackets, called the scanset. (The
scanset may or may not include whitespace characters.) If the first character after the
opening bracket is a caret (^), then it is not a member of the scanset, but inverts the
meaning of the set of characters that follows; the conversion specifier matches any
sequence of the characters that do not appear in the list that follows the caret.

If the first character after the opening bracket (or after the opening bracket and an
initial caret) of a […] specifier is a right bracket (]), then that right bracket is inter-
preted as a member of the character list that defines the scanset, not as the closing
delimiter. If the characters between the brackets (or between the initial caret and the
closing bracket) include a hyphen (-) that is neither in the first nor the last position, then
it is left up to the given implementation to define whether scanf() interprets the hyphen
in a special way—for example, as indicating a range of characters. For example, the
conversion specifier %[0-9] may match any sequence of digits, or any sequence of the
characters 0, –, and 9—or the implementation may define the hyphen in some other way.

The scanf() function stops reading the input stream in whichever of the following
events occurs first:

• The entire format string has been processed.

• A matching failure: a non-whitespace character in the input failed to match the
conversion specification or the character in the corresponding position in the
format string.

• An input failure: no further characters could be read from the input, or an
encoding error occurred.

Any non-whitespace character in the format string that is not part of a conversion
specification is processed by reading a character from the input stream, and testing for

Chapter 17: Standard Library Functions | 413

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

setbuf

a literal match. If the characters do not match, scanf() returns, leaving the input
stream as if the mismatched character had not been read.

If there are arguments that have not been assigned a value when scanf() returns, they
will have been evaluated nonetheless. If there are not enough arguments for the data
items converted, the behavior is undefined.

The scanf() function returns the number of data items assigned to variables, not
counting assignments due to %n conversion specifications. If an input failure occurs
before any input item can be converted, scanf() returns EOF.

Example
double x, y;
char operation[16] = "";
scanf("%15s%lf%*[^0123456789]%lf", operation, &x, &y);

The format string in this scanf() call contains four conversion specifications. Let us
assume that a user enters the following sequence of characters when this call occurs:

Divide 1.5e3 by 52.25\n

For the first conversion specification, %15s, scanf() reads each character up to the first
space, and hence stores the string "Divide", terminated by a null character, in the array
operation. After the space, the sequence 1.5e3 matches the conversion specification %lf,
and scanf() assigns the value 1500.0 to the double variable x. After the next space, each
of the characters 'b', 'y', and ' ' (the space) is in the very large scanset of the conver-
sion specification %*[^01234567890]; the first character that does not match is the digit
character '5'. Because the conversion specification contains the asterisk, scanf()
discards the characters read, then reads to the next whitespace character, '\n', for the
conversion specification %lf, and assigns the value 52.25 to the variable y.

For another example, see fscanf() in this chapter. (fscanf() reads a specified file
rather than stdin, but is otherwise similar to scanf().)

See Also
fscanf(), sscanf(), wscanf(), fwscanf(), swscanf(), vscanf(), vfscanf(), vsscanf(),
vwscanf(), vfwscanf(), vswscanf()

setbuf

Sets up I/O buffering for an open file

#include <stdio.h>
void setbuf(FILE * restrict fp, char * restrict buffer);

The setbuf() function is similar to setvbuf(), except that it has no return value, and
no parameters to specify a buffering mode or a buffer size. The size of the buffer estab-
lished by setbuf() is given by the value of the macro BUFSIZ. If the buffer argument is
not a null pointer, the setbuf() call initiates fully buffered input and output for the
specified file, so that the buffer is filled completely before data appears from the source
or at the destination; this behavior corresponds to the buffering mode specified by the
macro _IOFBF as the mode argument to setvbuf(). If the buffer argument is a null
pointer, setbuf() disables all I/O buffering for the file, so that data is written and read
directly.

You may call the setbuf() function only after the file has been successfully opened,
and before any file I/O operations have taken place.

414 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

setjmp

Example
FILE *fp = tmpfile();
unsigned char *iobuffer = malloc(BUFSIZ);
if (iobuffer != NULL)
{
setbuf(fp, iobuffer); // Make sure temporary file is buffered.

}
/* ... now write and read the temporary file as needed ... */

See Also
setvbuf(), fflush()

setjmp

Saves the calling environment as a long jump destination

#include <setjmp.h>
int setjmp(jmp_buf env);

The setjmp() macro saves the current environment at the time of the call in a buffer
specified by its argument. The environment includes the stack, and with it all vari-
ables that have automatic storage duration. Like the setjmp() macro itself, the
argument’s type, jmp_buf, is defined in the header file setjmp.h.

A later call to the longjmp() function restores the saved environment. As a result, the
longjmp() function does not return, but instead causes execution to continue as if
control had returned from the setjmp(). However, while the original setjmp() call
always returns 0, the apparent return value after longjmp() is never equal to zero.

Because the execution environment saved may not include other partial expressions,
the return value of setjmp() must not be used except in simple conditional expres-
sions, or in comparison to an integer constant value. Furthermore, if any variables
with automatic storage duration in the function that called setjmp() were modified
after the setjmp() call (and were not declared as volatile), then their values after the
longjmp() call are indeterminate.

Example
This example shows the complete contents of two source files to illustrate how
setjmp() and longjmp() allow you to escape from a function call.

#include <stdlib.h>
#include <stdio.h>
#include <setjmp.h>
#include <errno.h>

double calculate1(double x); // Functions defined
double calculate2(double x); // in calculate.c.

jmp_buf jmp_dest; // Destination for longjmp()

int main()
{
 double x = 0, y1, y2;
 int n = 0;

Chapter 17: Standard Library Functions | 415

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

setjmp

 puts("--- Demonstrating non-local jumps ---\n");

 switch(setjmp(jmp_dest)) // Jump to here for error handling
 {
 case 0: // The original setjmp() call
 break;
 case EDOM: // Arrived via longjmp() call with EDOM
 puts("Domain error. "
 "Negative numbers are not permitted.");
 break;
 case ERANGE: // Arrived via longjmp() call with ERANGE
 puts("Range error. "
 "The number you entered is too big.");
 break;
 default: // We should never arrive here.
 puts("Unknown error.");
 exit(EXIT_FAILURE);
 }

 printf("Enter a number: ");
 do
 {
 if ((n = scanf("%lf", &x)) < 0) // Read in a number.
 exit(EXIT_FAILURE); // Read end of file.
 while (getchar() != '\n') // Clear the input buffer.
 ;
 if (n == 0)
 printf("Invalid entry. Try again: ");
 }while (n == 0);

 y1 = calculate1(x);
 y2 = calculate2(x);

 printf("\nResult of Calculation 1: %G\n", y1);
 printf("Result of Calculation 2: %G\n", y2);

 return 0;
}

// calculate.c: Perform some calculations.
// Functions: calculate1(), calculate2().
#include <math.h>
#include <setjmp.h>
#include <errno.h>

extern jmp_buf jmp_dest; // Destination for longjmp()

double calculate1(double x)
{
 if (x < 0)
 longjmp(jmp_dest, EDOM); // Domain error
 else
 return sqrt(x);
}

416 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

setlocale

double calculate2(double x)
{
 double y = exp(x);
 if (y == HUGE_VAL)
 longjmp(jmp_dest, ERANGE); // Range error
 else
 return y;
}

See Also
longjmp()

setlocale

Gets or sets locale information

#include <locale.h>
char *setlocale(int category, const char *locale_name);

The setlocale() function allows you to adapt the program to the local conditions of a
given regional and cultural environment—called a locale—such as clocks and calen-
dars, decimal point and currency symbol characters, and other conventions. The
setlocale() function returns a pointer to a string that identifies the new locale, or the
current locale if you pass the function a null pointer as its second argument.

The locale conventions are classed in categories. You can set the individual categories
of the program’s locale individually. The header file locale.h defines the following
macros to identify each category in the first argument to setlocale():

LC_ALL
Includes all the other categories.

LC_COLLATE
Affects the functions strcoll(), strxfrm(), wcscoll(), and wcsxfrm().

LC_CTYPE
Affects the character-handling functions (such as isalpha(), tolower(), and so
on), and the multibyte and wide-character functions.

LC_MONETARY
Affects the monetary format information provided by the localeconv() function.

LC_NUMERIC
Affects the nonmonetary numeral format information provided by the
localeconv() function, and the decimal point used by the printf() and scanf()
functions, and by string conversion functions such as strtod().

LC_TIME
Affects the time and date string format produced by the strftime() and
wcsftime() functions.

The second argument to setlocale(), locale_name, is a pointer to a string that indi-
cates the desired locale,. The permissible locale_name strings are system-dependent,
except for two standard values, which are the default locale, "C", and the empty string,
"". All locale categories are set to the default locale "C" on program start-up; the "C"
locale corresponds to the minimum environment for compiling C programs. If you use
the empty string as the locale name, setlocale() sets the specified category to the

Chapter 17: Standard Library Functions | 417

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

setlocale

system’s native locale. If setlocale() is unable to set the desired locale, it returns a
null pointer.

If you pass setlocale() a null pointer as the locale_name argument, it returns the
name of the current locale. You can use this string as the locale_name argument to
restore that locale later.

Example
#define MAX_STRING 80

char name[MAX_STRING];
char locale[MAX_STRING];
char *newlocale;
int i;

printf("Who are you? ");
fgets(name, sizeof(name), stdin);

printf("What is your locale? ");
fgets(locale, sizeof(locale), stdin);

name[strlen(name) – 1] = '\0'; // Chomp off the newlines.
locale[strlen(locale) – 1] = '\0';

newlocale = setlocale(LC_CTYPE, locale);
if (newlocale == NULL)
 printf("Sorry, couldn't change the locale to %s.\n"
 "The current locale is %s. ", locale, setlocale(LC_CTYPE, NULL));
else
 printf("The new locale is %s. ", newlocale);

name[0] = toupper(name[0]); // Force the first letter to uppercase.

i = 1;
if (isupper(name[i])) // Is the second letter also uppercase?
 {
 while (name[i] != '\0') // If so, force all the rest to lowercase.
 {
 name[i] = tolower(name[i]);
 ++i;
 }
 }
printf("Hello there, %s!\n", name);

This program produces output like the following, if the first setlocale() call is
successful:

Who are you? sÖrEn
What is your locale? de_DE
The new locale is de_DE. Hello there, Sören!

In the locale "de_DE", the isupper() function recognized the second letter of sÖrEn as
uppercase, and so the Ö and E were changed to lowercase.

418 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

setvbuf

If the first setlocale() call fails, the output may look like this:

Who are you? FRÉDÉRIQUE
What is your locale? fr_CA
Sorry, couldn't change the locale to fr_CA.
The current locale is C. Hello there, FrÉdÉrique!

In the locale "C", the isupper() function recognized the R as uppercase, but the tolower()
function was unable to convert the accented uppercase É.

See Also
The character classification functions, whose names begin with is and isw ; the char-
acter conversion functions, whose names begin with to and tow; the numeral string
conversion functions, whose names begin with strto and wcsto; the locale-sensitive
string functions strcoll(), strxfrm(), wcscoll(), and wcsxfrm(); strftime() and
wcsftime()

setvbuf

Sets up I/O buffering for an open file

#include <stdio.h>
int setvbuf(FILE * restrict fp, char * restrict buffer, int mode,
 size_t size);

The setvbuf() function specifies the buffering conditions for input and/or output
using the stream associated with the FILE pointer fp. You may call the setvbuf() func-
tion only after the file has been successfully opened, and before any file I/O operations
have taken place.

The mode parameter determines the type of buffering requested. Symbolic constants for
the permissible values are defined in stdio.h as follows:

_IOFBF
Fully buffered: On read and write operations, the buffer is filled completely before
data appears from the source or at the destination.

_IOLBF
Line buffered: On read and write operations, characters are placed in the buffer until
one of them is a newline character, or until the buffer is full. Then the contents of
the buffer are written to the stream. The buffer is also written to the stream when-
ever the program requests, from an unbuffered stream or a line-buffered stream,
input that requires characters to be read from the execution environment.

_IONBF
Not buffered: Data is read from or written to the file directly. The buffer and size
parameters are ignored.

You can provide a buffer for the file by passing its address and size in the arguments
buffer and size. The setvbuf() function is not required to use the buffer you provide,
however. If buffer is a null pointer, setvbuf() dynamically allocates a buffer of the
specified size. Otherwise, you must make sure that the buffer remains available until
you close the file. The function returns 0 on success; any other value indicates failure
or an invalid mode argument.

Example
#define MAX_LINE 4096
FILE *fp_linewise = fopen("output.txt", "a+");

Chapter 17: Standard Library Functions | 419

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

signal

unsigned char *iobuffer = malloc(MAX_LINE);
if (iobuffer != NULL)
{ // Buffer output up to each '\n'.
 if (setvbuf(fp_linewise, iobuffer, _IOLBF, MAX_LINE))
 fprintf(stderr, "setvbuf() failed; unable to set line-buffering.\n"),
 exit(-2);
}
else
 fprintf(stderr, "malloc() failed; no point in calling setvbuf().\n"),
 exit(-1);

See Also
setbuf(), fopen(), malloc()

signal

Installs a signal handler

#include <signal.h>
void (* signal(int sig, void (*handler)(int)))(int);

The signal() function specifies a function to be executed when the program receives a
given signal. The parameter handler is a pointer to a function that takes one argument
of type int and has no return value. This pointer may be the address of a function
defined in your program, or one of two macros defined in the header file signal.h.

The handler argument works in the following ways (assuming that the call to signal()
is successful):

• If the handler argument is a function pointer, then signal() installs this function
as the routine to be called the next time the program receives the signal desig-
nated by the integer parameter sig.

• If the handler argument is equal to the macro SIG_DFL, then the next time the
program receives the specified signal, the default signal handler routine is called.
The default handler’s action for most signals is to terminate the program.

• If the handler argument is equal to the macro SIG_IGN, then the specified signal
will be ignored.

If the handler argument points to a function in the program, then that function is
generally installed as a handler for only one occurrence of the signal, as if the program
called signal() with the argument SIG_DFL before calling the handler. To make a
handler persistent, you can have your handler function reinstall itself by calling
signal() again. Alternatively, the C standard allows implementations to mask the
signal sig while the handler is running, rather than uninstalling the handler before
calling it: BSD Unix does this, for example. Refer to the documentation for your
system.

The return value of signal() is also a function pointer: it has the same type as the
handler parameter. If the signal() function succeeds in installing the new handler, it
returns a pointer to the previous handler (which may be SIG_IGN or SIG_DEF, if the
program has not installed any other handler for the given signal). If unsuccessful,
signal() returns the value of SIG_ERR and sets the errno variable to an appropriate value.

Signals are sent through the operating system by other programs, or are raised by
system interrupts, or by the program itself using the raise() function. According to
the C standard, the following signals are defined in all implementations. The macros

420 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

signal

listed here represent the permissible values of the signal() function’s integer argu-
ment sig, as well as the argument value passed to the signal handler installed when the
signal occurs.

SIGFPE
Floating-point exception: The program attempted an illegal arithmetic operation,
such as division by zero, or caused an error such as an overflow.

SIGILL

Illegal instruction: The program flow contained an invalid machine code.

SIGSEGV

Segmentation violation: The program tried to perform an illegal memory access
operation.

SIGABRT
Abort: End the program abruptly. (See also abort() in this chapter.)

SIGINT

Interrupt: The program has been interrupted interactively, by the user pressing
Ctrl+C or by some similar event.

SIGTERM

Termination: The program is being ordered to exit.

Specific systems may also define other signal types, as well as macros for other special
values of handler. Furthermore, many systems do not allow programs to install signal
handlers for, or to ignore, certain signals. For example, Unix systems do not allow
programs to handle or ignore a SIGKILL or SIGSTOP signal. The first three signals in the
previous list—SIGFPE, SIGILL, and SIGSEGV—are non-recoverable. In other words, if
you use signal() to install a handler for one of these signals, your handler function
should never return. If it does, the program’s behavior is undefined. For other signal
types, when a signal handler returns, the program resumes execution wherever it was
when the signal occurred.

Signal handler functions are also subject to other constraints, as the state of the system
and the program is undefined at the time of their execution. They must not access
objects with static storage class, except objects declared with the type sig_atomic_t
and the qualifier volatile. Signal handlers must also avoid calling any other functions
except abort(), _Exit(), or signal(), and may call signal() only to set a handler for
the signal type that caused the present function call. Otherwise the program’s behavior
is undefined. These restrictions do not apply to handlers invoked through calls to
abort() or raise(), however. Handlers invoked through abort() or raise() must not
call raise(). Certain systems specify other functions besides abort(), _Exit(), and
signal() that a signal handler may call safely. In particular, the POSIX standards
define such “safe functions,” as well as functions for finer control of signal handling.

Example
include <stdio.h>
include <stdlib.h>
include <stdint.h> // Defines SIG_ATOMIC_MAX
include <signal.h>

void sigint_handler(int sig);
volatile sig_atomic_t i; // A counter accessed by main and the handler.

Chapter 17: Standard Library Functions | 421

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

signbit

int main()
{
 if (signal(SIGINT, sigint_handler) == SIG_ERR)
 {
 perror("Failed to install SIGINT handler");
 exit(3);
 }

 while (1)
 {
 puts("Press Ctrl+C to interrupt me.");
 for (i = 0 ; i < SIG_ATOMIC_MAX ; i++)
 if (i % 100000 == 0)
 {
 printf("\r%d ", i / 100000);
 fflush(stdout);
 }
 raise(SIGINT); // Simulate a Ctrl+C in case the user didn't type it.
 }
 return 0;
}

void sigint_handler(int sig)
{
 int c = 0;

 if (sig != SIGINT) exit(1);

signal(SIGINT, SIG_IGN); // Ignore a second Ctrl+C

 puts("\nThis is the function sigint_handler()."
 "\nDo you want to exit the program now? [y/n]");
 while ((c = tolower(getchar())) != 'y' && c != 'n' && c != EOF)
 ;

 if (c != 'n')
 exit(0);
 else
 i = 0; // Reset timer
signal(SIGINT, sigint_handler); // Reinstall this handler.

 /* No return value; just fall off the end of the function. */
}

See Also
raise(), abort()

signbit

Ascertains whether a floating-point number is negative

C99

#include <math.h>
int signbit(x);

422 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

sin

The argument of the signbit() macro can have any real floating-point type—float,
double, or long double—and can have any numeric or other value, including INFINITY,
NaN, or 0. The macro ascertains whether the argument’s value is negative (whether its
sign bit is set, to put it more precisely), and returns a nonzero value, or true, if it is.
Otherwise, signbit() returns 0.

Example
double x[] = { -0.0, 187.234, sqrt(-1.0), 1.0 / -0.0 };

for (int i = 0 ; i < (sizeof(x) / sizeof(double)) ; i++)
 printf("x[%d] equals %lF, and is%s negative.\n",
 i, x[i], signbit(x[i]) ? "" : " not");

The behavior of this example depends on whether the compiler supports negative zero
values in floating-point constants, and whether the undefined arithmetic operations in
the array initialization cause fatal exceptions. Compiled with GCC 3.3.5 and the GNU
C library, this code produces the following output:

x[0] equals -0.000000, and is negative.
x[1] equals 187.234000, and is not negative.
x[2] equals NAN, and is negative.
x[3] equals -INF, and is negative.

See also the example for isunordered() in this chapter.

See Also
fpclassify(), isfinite(), isinf(), isnan(), isnormal()

sin

Calculates the sine of an angle

#include <math.h>
double sin(double x);
double sinf(float x); (C99)

double sinl(long double x); (C99)

The sin() function calculates the sine of the angle represented by its argument x as a
number of radians. The return value is in the range –1 ≤ sin(x) ≤ 1.

Example
#define DEG_PER_RAD (180.0 / PI)

const double PI = 4.0 * atan(1.0);
double a[4];

printf("\nEnter an acute angle measure, in degrees: ");

if (scanf("%lf", a) < 1 || (a[0] <= 0 || a[0] >= 90))
 printf("\nThat's not an acute angle.\n"), exit(1);
else
{
 a[1] = a[0] + 90 ;
 a[2] = 180 - a[0] ;
 a[3] = 225 + a[0] ;

Chapter 17: Standard Library Functions | 423

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

sinh

 for (int i = 0 ; i < 4 ; i ++)
 printf("The sine of %4.2lf degrees is %6.4lf.\n",
 a[i], sin(a[i] / DEG_PER_RAD));
}

See Also
cos(), tan(), asin(), csin()

sinh

Calculates the hyperbolic sine of a number

#include <math.h>
double sinh(double x);
float sinhf(float x); (C99)

long double sinhl(long double x); (C99)

The sinh() function returns the hyperbolic sine of its argument x. If the result of sinh()
is too great for the double type, a range error occurs.

Example
// A chain hanging from two points forms a curve called a catenary.
// A catenary is an segment of the graph of the function
// cosh(k*x)/k, for some constant k.
// The length along the catenary over a certain span, bounded by the
// two vertical lines at x=a and x=b, is equal to sinh(k*b)/k - sinh(k*a)/k.

double x, k;
puts("Catenary f(x) = cosh(k*x)/k\n"
 "Length along the catenary from a to b: sinh(k*b)/k - sinh(k*a)/k)\n");

puts(" f(-1.0) f(0.0) f(1.0) f(2.0) Length(-1.0 to 2.0)\n"

 "---");
for (k = 0.5; k < 5; k *= 2)
{
 printf("k = %.1f: ", k);
 for (x = -1.0; x < 2.1; x += 1.0)
 printf("%8.2f ", cosh(k*x)/k);

 printf(" %12.2f\n", (sinh(2*k) - sinh(-1*k))/ k);
}

This code produces the following output:

Catenary f(x) = cosh(k*x)/k
Length along the catenary from a to b: sinh(k*b)/k - sinh(k*a)/k)

 f(-1.0) f(0.0) f(1.0) f(2.0) Length(-1.0 to 2.0)

k = 0.5: 2.26 2.00 2.26 3.09 3.39
k = 1.0: 1.54 1.00 1.54 3.76 4.80
k = 2.0: 1.88 0.50 1.88 13.65 15.46
k = 4.0: 6.83 0.25 6.83 372.62 379.44

424 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

snprintf

See Also
cosh(), tanh(), asinh(), csinh(), casinh()

snprintf

Stores formatted output in a string buffer

#include <stdio.h>
int snprintf(char * restrict dest, size_t n,
 const char * restrict format, ...);

The snprintf() function is similar to printf(), but writes its output as a string in the
buffer referenced by the first pointer argument, dest, rather than to stdout. Further-
more, the second argument, n, specifies the maximum number of characters that
snprintf() may write to the buffer, including the terminating null character. If n is too
small to accommodate the complete output string, then snprintf() writes only the
first n–1 characters of the output, followed by a null character, and discards the rest.
The return value is the number of characters (not counting the terminating null char-
acter) that would have been written if n had been large enough. To obtain the length of
the output string without generating it, you can set n equal to zero; in this case,
sprintf() writes nothing to dest, which may be a null pointer.

If the output overlaps with any argument that snprintf() copies
data from, the behavior is undefined.

Example
char buffer[80];
double x = 1234.5, y = 678.9, z = -753.1, a = x * y + z;
int output_len = 0;

output_len = snprintf(buffer, 80, "For the input values %lf, %lf,"
 " and %lf, the result was %lf.\n",
 x, y, z, a);
puts(buffer);
if (output_len >= 80)
 fprintf(stderr, "Output string truncated! Lost %d characters.\n",
 output_len - 79);

This code produces the following output:

For the input values 1234.500000, 678.900000, and -753.100000, the result
was 8
Output string truncated! Lost 14 characters.

The first line was printed by snprintf() and the second by fprintf().

See Also
printf(), fprintf(), sprintf(), declared in stdio.h; vprintf(), vfprintf(), vsprintf(),
vsnprintf(), declared in stdarg.h; the wide-character functions: wprintf(), fwprintf(),
swprintf(), declared in stdio.h and wchar.h; and vwprintf(), vfwprintf(), and
vswprintf(), declared in stdarg.h; the scanf() input functions. Argument conversion
in the printf() family of functions is described in detail under printf() in this
chapter.

Chapter 17: Standard Library Functions | 425

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

sqrt

sprintf

Stores formatted output in a string buffer

#include <stdio.h>
int sprintf(char * restrict dest, const char * restrict format, ...);

The sprintf() function is similar to snprintf(), except that it has no parameter to
limit the number of characters written to the destination buffer. As a result, using it
means risking buffer overflows, especially because the length of the output depends on
the current locale as well as input variables. Use snprintf() instead.

Example
double x = 1234.5, y = 678.9, z = -753.1, a = x * y + z;
char buffer[80];
int output_len = 0;

output_len = sprintf(buffer, "For the input values %lf, %lf, and %lf, "
 "the result was %lf.\n",
 x, y, z, a);
puts(buffer);
if (output_len >= 80)
 fprintf(stderr, "Output string overflowed by %d characters.\n"
 "The variables x, y, z and a may have been corrupted:\n"
 "x now contains %lf, y %lf, z %lf, and a %lf.\n",
 output_len - 79, x, y, z, a);

This code produces the following output:

For the input values 1234.500000, 678.900000, and -753.100000, the result
was 837348.950000.

Output string overflowed by 14 characters.
The variables x, y, z and a may have been corrupted:
x now contains 1234.500000, y 678.900000, z -736.004971, and a 0.000000.

See Also
printf(), fprintf(), snprintf(), declared in stdio.h; vprintf(), vfprintf(),
vsprintf(), vsnprintf(), declared in stdarg.h; the wide-character functions: wprintf(),
fwprintf(), swprintf(), declared in stdio.h and wchar.h; and vwprintf(), vfwprintf(),
and vswprintf(), declared in stdarg.h; the scanf() input functions. Argument conver-
sion in the printf() family of functions is described in detail under printf() in this
chapter.

sqrt

Calculates the square root of a floating-point number

#include <math.h>
double sqrt(double x);
float sqrtf(float x); (C99)

long double sqrtl(long double x); (C99)

The sqrt() functions return the square root of the argument x. If the argument is less
than zero, a domain error occurs.

426 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

srand

Example
double x[] = { 0.5, 0.0, -0.0, -0.5 };

for (int i = 0; i < (sizeof(x) / sizeof(double)); i++)
{
 printf("The square root of %.2F equals %.4F\n", x[i], sqrt(x[i]));
 if (errno)
 perror(_ _FILE_ _);
}

This code produces the following output:

The square root of 0.50 equals 0.7071
The square root of 0.00 equals 0.0000
The square root of -0.00 equals -0.0000
The square root of -0.50 equals NAN
sqrt.c: Numerical argument out of domain

sqrt() is also used in the examples shown at erf(), feholdexcept(), frexp() and
signbit() in this chapter.

See Also
The complex arithmetic function csqrt(); the cube root function cbrt() and the
hypotenuse function, hypot()

srand

Initializes the random number generator

#include <stdlib.h>
void srand(unsigned n);

The srand() function initializes the random number generator using its argument n as
the “seed.” For each value of the seed passed to srand(), subsequent calls to rand()
yield the same sequence of “random” numbers. For this reason, a common technique
to avoid repetition is to seed srand() with the current time. If you call rand() without
having called srand(), the result is the same as if you had called srand() with the argu-
ment value 1.

Example
See the example for rand() in this chapter.

See Also
rand()

sscanf

Reads formatted data from a string

#include <stdio.h>
int sscanf(const char * restrict src, const char * restrict format, ...);

The sscanf() function is similar to scanf(), except that it reads input items from the
string addressed by its first pointer argument, src, rather than from stdin. Reading to
the null character before the entire format string has been processed causes an input
failure.

Chapter 17: Standard Library Functions | 427

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

strcat

Example
See the examples at fscanf() and strspn() in this chapter.

See Also
scanf(), fscanf(), and sscanf(), declared in stdio.h; vscanf(), vsscanf(), and
vfscanf(), declared in stdarg.h; fwscanf(), wscanf(), vwscanf(), vfwscanf(), and
vswscanf(), declared in wchar.h; the printf() output functions. Argument conver-
sion in the scanf() family of functions is described in detail under scanf() in this
chapter.

strcat

Appends one string to another

#include <string.h>
char *strcat(char * restrict s1, const char * restrict s2);

The strcat() function copies the string addressed by the second pointer argument, s2,
to the location following the string addressed by the first pointer, s1. The first character
of s2 is copied over the terminating null character of the string addressed by s1.The
function returns the value of its first argument, which points to the concatenated string.

There is no limit to the number of characters strcat() may write before it encounters a
null character in the source string. It is up to you the programmer to make sure that
there is enough storage available at the destination to accommodate the result. You
should consider using strncat() instead to reduce the risk of buffer overflows. You must
also make sure that the locations that strcat() reads from and writes to do not overlap.

Example
typedef struct { char lastname[32];
 char firstname[32];
 _Bool ismale;
} Name;

char displayname[80];
Name *newName = calloc(1, sizeof(Name));

/* ... check for calloc failure; read in the name parts ... */

strcpy(displayname, (newName->ismale ? "Mr. " : "Ms. "));
strcat(displayname, newName->firstname);
strcat(displayname, " ");
strcat(displayname, newName->lastname);

puts(displayname);

See Also
strncat(), wcscat()

428 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

strchr

strchr

Search for a given character in a string

#include <string.h>
char *strchr(const char *s, int c);

The strchr() function returns a pointer to the first occurrence of the character value c
in the string addressed by s. If there is no such character in the string, strchr() returns
a null pointer. If c is a null character ('\0'), then the return value points to the termi-
nator character of the string addressed by s.

Example
typedef struct { char street[32];
 char city[32];
 char stateprovince[32];
 char zip[16];
 } Address;

char printaddr[128] = "720 S. Michigan Ave.\nChicago, IL 60605\n";
int sublength;
Address *newAddr = calloc(1, sizeof(Address));

if (newAddr != NULL)
{
 sublength = strchr(printaddr, '\n') - printaddr;
 strncpy(newAddr->street, printaddr, (sublength < 31 ? sublength : 31)
);
 /* ... */
}

See Also
strrchr(), strpbrk(), strstr(); the wide string functions wcschr() and wcsrchr()

strcmp

Compares two strings

#include <string.h>
int strcmp(const char *s1, const char *s2);

The strcmp() function compares the strings addressed by its two pointer arguments,
and returns a value indicating the result as follows:

Zero
The two strings are equal.

Greater than zero
The string addressed by s1 is greater than the string addressed by s2.

Less than zero
The string addressed by s1 is less than the string addressed by s2.

The strcmp() function compares the strings, one character at a time. As soon as it
finds unmatched characters in corresponding positions in the two strings, the string
containing the greater unsigned character value at that position is the greater string.

Chapter 17: Standard Library Functions | 429

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

strcoll

Example
int result = 0;
char word1[256], word2[256], *greaterlessequal;

while (result < 2)
{
 puts("Type two words, please.");
 result = scanf("%s%s", word1, word2);
}
result = strcmp(word1, word2);

if (result < 0)
 greaterlessequal = "less than";
else if (result > 0)
 greaterlessequal = "greater than";
else
 greaterlessequal = "the same as";

printf("The word \"%s\" is %s the word \"%s\".\n",
 word1, greaterlessequal, word2);

See also the example for qsort() in this chapter.

See Also
strncmp(), memcmp(), wcscmp()

strcoll

Compares two strings by locale-specific sorting criteria

#include <string.h>
int strcoll(const char *s1, const char *s2);

Like strcmp(), the strcoll() function performs a character-by-character comparison of
the two strings, s1 and s2. However, where strcmp() just compares unsigned character
values, strcoll() can apply a locale-specific set of rules in comparing strings. The value
of the locale information category LC_COLLATE determines the applicable rule set, and
can be changed by the setlocale() function.

The return value of strcoll() indicates the result of the comparison as follows:

Zero
The two strings are equal.

Greater than zero
The string addressed by s1 is greater than the string addressed by s2.

Less than zero
The string addressed by s1 is less than the string addressed by s2.

Example
char *samples[] = { "curso", "churro" };

setlocale(LC_COLLATE, "es_US.UTF-8");

430 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

strcpy

int result = strcoll(samples[0], samples[1]);

if (result == 0)
 printf("The strings \"%s\" and \"%s\" are alphabetically equivalent.\n",
 samples[0], samples[1]);
else if (result < 0)
 printf("The string \"%s\" comes before \"%s\" alphabetically.\n",
 samples[0], samples[1]);
else if (result > 0)
 printf("The string \"%s\" comes after \"%s\" alphabetically.\n",
 samples[0], samples[1]);

Because the letter ch comes after the letter c in the Spanish alphabet, the preceding
code prints this line in the es_US locale:

The string "curso" comes before "churro" alphabetically.

See Also
strcmp(), strncmp(), setlocale(), wcscoll(), strxfrm()

strcpy

Copies a string to another location

#include <string.h>
char *strcpy(char * restrict dest, const char * restrict src);

The strcpy() function copies the string addressed by src to the char array addressed
by dest, and returns the value of its first argument, which points to the new copy of
the string.

There is no limit to the number of characters strcpy() may write before it encounters
a null character in the source string. It is up to you the programmer to make sure there
is enough storage available to accommodate the string, including its terminator char-
acter. Consider using strncpy() instead to reduce the risk of buffer overflows. You
must also make sure that the locations that strcpy() reads from and writes to do not
overlap.

Example
struct guest { char name[64]; int age; _Bool male, smoking, discount; }
this;
int result;

printf("Last name: ");
result = scanf("%[^\n]", this.name);
if (result < 1)
strcpy(this.name, "[not available]");

See Also
The strncpy(), memcpy(), memmove(), wcscpy(), wcsncpy(), wmemcpy(), and wmemmove()
functions; and the examples at atof(), malloc(), and strxfrm()

Chapter 17: Standard Library Functions | 431

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

strerror

strcspn

Searches for any element of one string in another

#include <string.h>
int strcspn(const char *s1, const char *s2);

The strcspn() function returns the number of characters at the beginning of the string
addressed by s1 that do not match any of the characters in the string addressed by s2.
In other words, strcspn() returns the index of the first character in s1 that matches
any character in s2. If the two strings have no characters in common, then the return
value is the length of the string addressed by s1.

Example
char *path = "/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/games";
int separator;
char *basename = "aprogram";
char fullname[1024] = "";

separator = strcspn(path, ":"); // Obtain the index of the first colon.

strncpy(fullname, path, separator);
fullname[separator] = '\0'; // Terminate the copied string fragment.
strncat(fullname, "/", sizeof(fullname) - strlen(fullname) -1);
strncat(fullname, basename, sizeof(fullname) - strlen(fullname) -1);

puts(fullname);

The last statement prints the following string:

/usr/local/bin/aprogram

See Also
strspn(), strpbrk(), strchr(), wcscspn()

strerror

Obtains a string that describes a given error

#include <string.h>
char *strerror(int errornumber);

The strerror() function returns a pointer to an error message string that corresponds
to the specified error number. The argument value is usually that of the errno vari-
able, but can be any integer value. The string pointed to by the return value of
strerror() may change on successive strerror() calls.

Example
FILE *fp;
char msgbuf[1024] = { '\0' };

/* Open input file: */
if ((fp = fopen("nonexistent", "r")) == NULL)
{
 int retval = errno;

432 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

strftime

 snprintf(msgbuf, sizeof(msgbuf),
 "%s: file %s, function %s, line %d: error %d, %s.\n",
 argv[0], _ _FILE_ _, _ _func_ _, _ _LINE_ _, retval,
 strerror(retval));
 fputs(msgbuf, stderr);
 return retval;
}

This error-handling block prints the following message:

./strerror: file strerror.c, function main, line 17: error 2, No such file
or directory.

See Also
perror()

strftime

Generates a formatted time and date string

#include <time.h>
size_t strftime(char * restrict s, size_t n,
 const char * restrict format,
 const struct tm * restrict timeptr);

The strftime() function converts date and time information from a struct tm object
addressed by the last pointer argument into a character string, following a format spec-
ified by the string addressed by the pointer argument format. The strftime() function
stores the resulting string in the buffer addressed by the first pointer argument,
without exceeding the buffer length specified by the second argument, n. The loca-
tions that strftime() reads from and writes to using its restricted pointer parameters
must not overlap.

Typically, the struct tm object is obtained by calling localtime() or gmtime(). For a
description of this structure type, see mktime() in this chapter.

The generation of the output string is governed by the format string. In this way,
strftime() is similar to the functions in the printf() family. The format string
consists of ordinary characters, which are copied to the output buffer unchanged, and
conversion specifications, which direct strftime() to convert a data item from the
struct tm object and include it in the output string.

Conversion specification syntax
The conversion specifications have the following syntax:

%[modifier]specifier

The modifier, if present, instructs strftime() to use an alternative, locale-specific
conversion for the specified data item, and is either E, for locale-specific calendars and
clocks, or O, for locale-specific numeric symbols. The E modifier can be prefixed to the
specifiers c, C, x, X, y, and Y. The O modifier can be prefixed to the specifiers d, e, H, I, m,
M, S, u, U, V, w, W, and Y. All of the conversion specifiers are listed, with the struct tm
members they refer to, in Table 17-10. The replacement value for the conversion speci-
fiers depend on the LC_TIME category of the current locale, which can be changed by
the setlocale() function.

Chapter 17: Standard Library Functions | 433

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

strftime

Table 17-10. The strftime() conversion specifiers

Conversion
specifier Structure member(s) Output notation

a tm_wday The name of the day of the week, abbreviated

A tm_wday The name of the day of the week, in full

b or h tm_mon The name of the month, abbreviated

B tm_mon The name of the month, in full

c (all) The date and time

C tm_year The year, divided by 100, as a decimal integer (00 to 99)

d tm_mday The day of the month, in decimal, with a leading zero on values
less than 10 (01 to 31)

D tm_mon, tm_mday, tm_year Shorthand for %m/%d/%y

F tm_mon, tm_mday, tm_year Shorthand for %Y-%m-%d

g tm_year, tm_wday, tm_yday The last two digits of the year in the ISO 8601 week-based
calendar (00 to 99)a

G tm_year, tm_wday, tm_yday The four-digit year in the ISO 8601 week-based calendar

H tm_hour The hour of the 24-hour clock as a two-digit decimal number
(00 to 23)

I tm_hour The hour of the 12-hour clock as a two-digit decimal number
(01 to 12)

j tm_yday The day of the year as a three-digit decimal number (001 to 366)

m tm_mon The month as a two-digit decimal number (01 to 12)

M tm_min The minutes after the hour as a two-digit decimal number
(00 to 59)

n (none) A newline character ('\n')

p tm_hour The AM or PM indication used with a 12-hour clock

r tm_hour, tm_min, tm_sec The time of day on the 12-hour clock

R tm_hour, tm_min Shorthand for %H:%M

S tm_sec The seconds after the minute as a two-digit decimal number
(00 to 60)

t (none) A tab character ('\t')

T tm_hour, tm_min, tm_sec Shorthand for %H:%M:%S

u tm_wday The day of the week as a one-digit decimal number (1 to 7,
where 1 is Monday)

U tm_year, tm_wday, tm_yday The week of the year as a two-digit decimal number (00 to 53),
where week 1 begins on the first Sunday in January

V tm_year, tm_wday, tm_yday The week of the year in the ISO 8601 week-based calendar, as a
two-digit decimal number (01 to 53), where week 1 begins on
the last Monday that falls on or before January 4

w tm_wday The day of the week as a one-digit decimal number (0 to 6,
where 0 is Sunday)

W tm_year, tm_wday, tm_yday The week of the year as a two-digit decimal number (00 to 53),
where week 1 begins on the first Monday in January

x (all) The date

X (all) The time

434 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

strlen

The strftime() function returns the length of the string written to the output buffer,
not counting the terminating null character. If the output is longer than the argument
n allows, strftime() returns 0, and the contents of the output buffer are
undetermined.

Example
time_t now;
struct tm *localnow;
char hdr_date[999] = "";

time(&now);
localnow = localtime(&now);

if (strftime(hdr_date, 78, "Date: %a, %d %b %Y %T %z", localnow))
 puts(hdr_date);
else
 return -1;

This code prints a date field in RFC 2822 style, such as this one:

Date: Thu, 10 Mar 2005 13:44:18 +0100

See Also
asctime(), ctime(), mktime(), localtime(), gmtime(), wcsftime(), snprintf(),
setlocale()

strlen

Obtains the length of a string

#include <string.h>
size_t strlen(const char *s);

y tm_year The last two digits of the year, as a decimal number (00 to 99)

Y tm_year The year as a decimal number (example: 2005)

z tm_isdst The offset from Greenwich Mean Time if available; otherwise
nothing (example: +0200 for two hours and no minutes east
of GMT)

Z tm_isdst The name or abbreviation of the time zone if available; otherwise
nothing

% (none) A percent sign (%)

a In this calendar, the week begins on Monday, and the first week of the year is the week that con-
tains January 4. Up to the first three days of January may belong to week 53 of the old year, or up
to the last three days of December may belong to week 1 of the new year.

Table 17-10. The strftime() conversion specifiers (continued)

Conversion
specifier Structure member(s) Output notation

Chapter 17: Standard Library Functions | 435

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

strncmp

The strlen() function calculates the length of the string addressed by its argument s.
The length of a string is the number of characters in it, not counting the terminating
null character ('\0').

Example
char line[1024] = "This string could easily be hundreds of characters long.";
char *readptr = line;
int columns = 80;

// While the text is longer than a row:
while (strlen(readptr) > columns)
{ // print a row with a backslash at the end:
 printf("%.*s\\", columns-1, readptr);
 readptr += columns -1;
} // Then print the rest with a newline at the end:
printf("%s\n", readptr);

See Also
wcslen()

strncat

Appends a number of characters from one string to another

#include <string.h>
char *strncat(char * restrict s1, const char * restrict s2, size_t n);

The strncat() function copies up to n characters of the string addressed by the second
pointer argument, s2, to the location following the string addressed by the first
pointer, s1. The first character of s2 is copied over the null character that terminates
the string addressed by s1. The function returns the value of its first argument, which
points to the resulting string. The locations that strncat() reads from and writes to
must not overlap.

Unlike strcat(), strncat() has a third parameter, n, to limit the length of the string
written. The strncat() function stops copying when it has copied n characters, or
when it reaches a terminating null character in the source string, whichever occurs
first. In either case, strncat() appends a null character to the concatenated string
addressed by s1. The string’s length thus increases by at most n characters.

Example
See the example for strcspn() in this chapter.

See Also
strcat(), wcsncat()

strncmp

Compares the first n characters of two strings

#include <string.h>
int strncmp(const char *s1, const char *s2, size_t n);

436 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

strncpy

The strncmp() function compares at most the first n characters in the two strings
addressed by its pointer arguments. Characters that follow a null character are
ignored. strncmp() returns a value indicating the result as follows:

Zero
The two strings, or arrays of n characters, are equal.

Greater than zero
The string or array of n characters addressed by s1 is greater than that addressed
by s2.

Less than zero
The string or array of n characters addressed by s1 is less than that addressed by
s2.

Example
char *weekdays[] = { "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
 "Friday", "Saturday" };
char date[] = "Thu, 10 Mar 2005 13:44:18 +0100";
int dow;
for (dow = 0; dow < 7; dow++)
 if (strncmp(date, weekdays[dow], 3) == 0)
 break;

See Also
strcmp(), wcsncmp(), wcscmp()

strncpy

Copies the first n characters of a string to another location

#include <string.h>
char *strncpy(char * restrict dest, const char * restrict src, size_t n);

The strncpy() function copies at most n characters from the string addressed by src to
the char array addressed by dest, which must be large enough to accommodate n char-
acters. The strncpy() function returns the value of its first argument, dest. The
locations that strncpy() reads from and writes to using its restricted pointer parame-
ters must not overlap.

If there is no terminating null character within the first n characters
of src, then the copied string fragment is not terminated.

If strncpy() reads a null character from src before it has copied n characters, then the
function writes null characters to dest until it has written a total of n characters.

Example
See the examples for strcspn() and strpbrk() in this chapter.

See Also
strcpy(), memcpy(), memmove(), wcsncpy(), wmemcpy(), wmemmove()

Chapter 17: Standard Library Functions | 437

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

strrchr

strpbrk

Finds the first character in a string that matches any character in another string

#include <string.h>
char *strpbrk(const char *s1, const char *s2);

The strpbrk() function returns a pointer to the first character in the string addressed
by s1 that matches any character contained in the string addressed by s2, or a null
pointer if the two strings have no characters in common.

Example
char *story = "He shouted: \"What? I can't hear you!\"\n";
char separators[] = " \t\n.:?!\"";
char *start = story, *end = NULL;
char words[16][16]; // An array of char arrays to collect words in.
int i = 0;

while (i < 16 && (end = strpbrk(start, separators)) != NULL)
{
 if (end != start) // If the separator wasn't the first character,
 { // then save a word in an array.
 strncpy(words[i], start, end - start);
 words[i][end - start] = '\0'; // And terminate it.
 i++;
 }
 start = end + 1; // Next strpbrk call starts with
} // the character after this separator.
puts(story);
for (int j = 0 ; j < i ; j++)
 puts(words[j]);

This program prints each of the words it has collected on a new line:

He
shouted
What
I
can't
hear
you

See Also
strchr(), strrchr(), strstr(), strcspn(), strtok(), wcspbrk()

strrchr

Searches for the rightmost occurrence of a given character in a string

#include <string.h>
char *strrchr(const char *s, int c);

The strrchr() function returns a pointer to the last occurrence of the character value c
in the string addressed by s. If there is no such character in the string, strrchr()
returns a null pointer. If c is a null character ('\0'), then the return value points to the
terminator character of the string addressed by s.

438 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

strspn

Example
char *mybasename = strrchr(argv[0], '/'); // Find end of path.
if (mybasename != NULL)
 mybasename++; // Point to the first character after the slash.
else
 mybasename = argv[0];
printf("This program was invoked as %s.\n", mybasename);

See Also
strchr(), strpbrk(), strstr(); the wide-string functions wcschr() and wcsrchr()

strspn

Searches a string for a character that is not in a given set

#include <string.h>
int strspn(const char *s1, const char *s2);

The strspn() function returns the index of the first character in the string addressed
by s1 that does not match any character in the string addressed by s2, or in other
words, the length of the string segment addressed by s1 that contains only characters
that are present in the string addressed by s2. If all characters in s1 are also contained
in s2, then strspn() returns the index of s1’s string terminator character, which is the
same as strlen(s1).

Example
char wordin[256];
double val;

puts("Enter a floating-point number, please:");
scanf("%s", wordin);

int index = strspn(wordin, "+-0123456789eE.");
if (index < strlen(wordin))
 printf("Sorry, but the character %c is not permitted.\n",
 wordin[index]);
else
{
 sscanf(wordin, "%lg", &val);
 printf("You entered the value %g\n", val);
}

See Also
strcspn(), wcsspn()

strstr

Searches a string for a replica of another string

#include <string.h>
char *strstr(const char *s1, const char *s2);

Chapter 17: Standard Library Functions | 439

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

strtod, strtof, strtold

The strstr() function searches the string s1 for the first occurrence of the string s2
(not counting s2’s terminating null character). The return value is a pointer to the first
character in the first occurrence in s1 of the sequence contained in s2, or a null pointer
if there is no such occurrence. If s2 points to an empty string, then strstr() returns
the value of its first argument, s1.

Example
FILE *fpTx, *fpRx, *fpLog;
char rxbuffer[1024], *found;
/* ... */
fgets(rxbuffer, 1024, fpRx);
found = strstr(rxbuffer, "assword:");
if (found != NULL)
{
 fputs("Got password prompt. Sending password", fpLog);
 fputs("topsecret", fpTx);
}

See Also
strchr(), strpbrk(), wcsstr()

strtod, strtof, strtold

Converts a string into a floating-point number

#include <stdlib.h>
double strtod(const char * restrict s, char ** restrict endptr);
float strtof(const char * restrict s, char ** restrict endptr); (C99)

long double strtold(const char * restrict s, char ** restrict endptr);(C99)

The strtod() function attempts to interpret the string addressed by its first pointer
argument, s, as a floating-point numeric value, and returns the result with the type
double. strtof() and strold() are similar, but return float and long double respec-
tively. Leading whitespace characters are ignored, and the string converted ends with
the last character that can be interpreted as part of a floating-point numeral. The
second parameter, endptr, is a pointer to a pointer. If its argument value is not a null
pointer, then the function stores a pointer to the first character that is not part of the
numeral converted in the location addressed by the endptr argument. (The locations
that the function reads from and writes to using its restricted pointer parameters must
not overlap.) If no conversion is possible, the function returns 0.

If the resulting value exceeds the range of the function’s type, then the return value is
positive or negative HUGE_VAL (or HUGE_VALF or HUGE_VALL, for the float and long double
variants). On an overflow, the errno variable is set to the value of ERANGE (“range
error”). If the conversion produces an underflow, the magnitude of the return value is
at most the smallest value greater than zero that is representable in the function’s
return type, and the function may set the errno variable to the value of ERANGE (“range
error”).

The character sequences that can be interpreted as floating-point numerals depend on
the current locale. In all locales, they include those described in the section “Floating-
Point Constants” in Chapter 3, and the sequences "infinity" and "nan", without
regard to upper- or lowercase.

440 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

strtoimax

Example
char in[1024], *this = in, *next = in;
double val;
puts("Enter some floating-point numbers, please:");
scanf("%[^\n]", in);

puts("Here are the values you entered:");
while (1)
{
 val = strtod(this, &next);
 if (next == this) // Means no conversion was possible.
 break ;
 printf("\t%g\n", val);
 this = next; // Try again with the rest of the input string.
}
puts("Done.");

See Also
atof(); wcstof(), wcstod() and wcstold(); strtol(), strtoul(), and strtoimax()

strtoimax

Converts a string into an integer value with type intmax_t

C99

#include <inttypes.h>
intmax_t strtoimax(const char * restrict s, char ** restrict endptr,
 int base);

The strtoimax() function is similar to strtol(), except that it converts a string to an
integer value of type intmax_t. If the conversion fails, strtoimax() returns 0. If the
result of the conversion exceeds the range of the type intmax_t, then strtoimax()
returns the value of INTMAX_MAX or INTMAX_MIN, and sets the errno variable to the value
of ERANGE (“range error”).

Example
See the example for the analogous function strtol() in this chapter.

See Also
strtoumax(), wcstoimax(), and wcstoumax(); strtol() and strtoul(); strtod(),
strtof(), and strtold(); wcstol() and wcstoul()

strtok

Divides a string into tokens

#include <string.h>
char *strtok(char * restrict s1, const char * restrict s2);

The strtok() function isolates tokens in the string addressed by s1 that are delimited
by any of the characters contained in the string addressed by s2. The tokens are identi-
fied one at a time by successive calls to strtok(). On calls after the first, the s1
argument is a null pointer.

On the first call, strtok() searches in s1 for the first character that does not match
any character in s2, behavior that is similar to the strspn() function. The first such

Chapter 17: Standard Library Functions | 441

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

strtol, strtoll

character found is considered to be the beginning of a token. Then strtok() searches
further for the first character that does match any of the characters in s2—or the null
character that terminates the string, whichever comes first—similarly to the strcspn()
function. This is considered to be the delimiter that ends the token. strtok() then
replaces this ending delimiter with '\0', and returns a pointer to the beginning of the
token (or a null pointer if no token was found), while saving an internal, static pointer
to the next character after the ending delimiter for use in subsequent strtok() calls.

On each subsequent call with a null pointer as the s1 argument, strtok() behaves
similarly, but starts the search at the character that follows the previous delimiter. You
can specify a different set of delimiters in the s2 argument on each call. The locations
that strtok() reads from using s2 and writes to using s1 on any given call must not
overlap.

Example
char *mnemonic, *arg1, *arg2, *comment;
char line[] = " mul eax,[ebp+4] ; Multiply by y\n";

mnemonic = strtok(line, " \t"); // First word, between spaces or tabs.
arg1 = strtok(NULL, ","); // From there to the comma is arg1.
 // (Trim off any spaces later.)
arg2 = strtok(NULL, ";\n"); // From there to a semicolon or line end.
comment = strtok(NULL, "\n\r\v\f"); // From there to end of line or page.

printf("Command: %s\n"
 "1st argument: %s\n"
 "2nd argument: %s\n"
 "Comment: %s\n\n",
 mnemonic, arg1, arg2, comment);

This sample produces the following output:

Command: mul
1st argument: eax
2nd argument: [ebp+4]
Comment: Multiply by y

See Also
strspn(), strcspn(), strstr(), wcstok()

strtol, strtoll

Converts a string into a long (or long long) integer value

#include <stdlib.h>
long strtol(const char * restrict s, char ** restrict endptr, int base);
long long strtoll(const char * restrict s, char ** restrict endptr,
 int base); (C99)

The strtol() function attempts to interpret the string addressed by its first pointer
argument, s, as an integer numeric value, and returns the result with the type long.
strtoll() is similar, but returns long long. The character string is interpreted as a
numeral to the base specified by the third argument, base, which must be 0 or an
integer between 2 and 36. If base is 36, then the letters from a to z (and likewise those
from A to Z) are used as digits with values from 10 to 35. If base is between 10 and 35,

442 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

strtoul, strtoull

then only those letters up to the digit value of base minus one are permissible. In other
locales besides the default locale, C, other character sequences may also be interpretable
as numerals.

If base is zero, then the numeral string is interpreted as octal if it begins, after an
optional plus or minus sign, with the character 0, hexadecimal if it begins with 0x or
0X, or decimal if it begins with a digit from 1 to 9. Leading whitespace characters are
ignored, and the string converted ends with the last character than can be interpreted
as part of the numeral.

The second parameter, endptr, is a pointer to a pointer. If its argument value is not a
null pointer, then the function stores a pointer to the first character that is not part of
the numeral converted in the location addressed by the endptr argument. (The loca-
tions that the function reads from and writes to using its restricted pointer parameters
must not overlap.) If no conversion is possible, the function returns 0.

If the resulting value exceeds the range of the function’s type, then the return value is
LONG_MAX or LONG_MIN, depending on the sign (or LLONG_MAX or LLONG_MIN, for strtoll()),
and the errno variable is set to the value of ERANGE (“range error”).

Example
char date[] = "10/3/2005, 13:44:18 +0100", *more = date;
long day, mo, yr, hr, min, sec, tzone;
day = strtol(more, &more, 10);
mo = strtol(more+1, &more, 10);
yr = strtol(more+1, &more, 10);
/* ... */

See Also
strtoul(); strtod(), strtof(), and strtold(); wcstol() and wcstoul(); strtoimax(),
strtoumax(), wcstoimax(), and wcstoumax()

strtoul, strtoull

Converts a string into an unsigned long (or unsigned long long) integer value

#include <stdlib.h>
unsigned long strtoul(const char * restrict s, char ** restrict endptr,
 int base);
unsigned long long strtoull(const char * restrict s, char ** restrict endptr,
 int base); (C99)

The strtoul() function attempts to interpret the string addressed by its first pointer
argument, s, as an integer numeric value, and returns the result with the type unsigned
long. Otherwise, the strtoul() function works in the same way as strtol().
strtoull() is similar, but returns unsigned long long.

If the resulting value is outside the range of the function’s type, then the return value is
ULONG_MAX (or ULLONG_MAX, for strtoull()), and the errno variable is set to the value of
ERANGE (“range error”).

Example
This for loop uses stroul() to convert an IPv4 address from a dotted-decimal string to
a 32-bit integer value:

char dotted[] = "172.16.2.10", *ptr = dotted, *nextdot = NULL;
unsigned long dest = 0;

Chapter 17: Standard Library Functions | 443

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

strxfrm

for (i = 0; i < 4; i++)
{
 dest << 8;
 dest += stroul(ptr, &nextdot, 10);
 ptr = nextdot + 1;
}

See Also
strtol(), strtod(), strtof(), and strtold(); wcstol() and wcstoul(); strtoimax(),
strtoumax(), wcstoimax(), and wcstoumax()

strtoumax

Converts a string into an integer value with type uintmax_t

C99

#include <inttypes.h>
uintmax_t strtoumax(const char * restrict s, char ** restrict endptr,
 int base);

The strtoumax() function is similar to strtoul(), except that it converts a string to an
integer value of type uintmax_t. If the conversion fails, strtoumax() returns 0. If the
result of the conversion is outside the range of the type uintmax_t, then strtoumax()
returns UINTMAX_MAX, and sets the errno variable to the value of ERANGE (“range error”).

Example
See the example for the analogous function strtoul() in this chapter.

See Also
strtoimax(), wcstoimax(), and wcstoumax(); strtol() and strtoul(); strtod(),
strtof(), and strtold(); wcstol() and wcstoul()

strxfrm

Transforms a string for easier locale-specific comparison

#include <string.h>
size_t strxfrm(char * restrict dest, const char * restrict src, size_t n);

The strxfrm() function transforms the string addressed by src, and copies the result
to the char array addressed by dest. The third argument, n, specifies a maximum
number of characters (including the terminating null character) that the function may
write to dest. The locations that strxfrm() reads from and writes to using its restricted
pointer parameters must not overlap.

The transformation performed depends on the value of the locale category LC_COLLATE,
which you can query or set using the setlocale() function. Furthermore, the strxfrm()
transformation is related to the strcoll() function in the following way: If you use
strcmp() to compare two strings produced by strxfrm() calls, the result is the same as
if you use strcoll() to compare the original strings passed to strxfrm(). Using
strxfrm() and strcmp() may be more efficient than strcoll() if you need to use the
same string in many comparisons.

The strxfrm() function returns the length of the transformed version of the string, not
counting the terminating null character. If this length is greater than or equal to n, then
the contents of the array at dest are indeterminate. The value of n may also be 0, in
which case dest may be a null pointer.

444 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

swprintf

Example
typedef struct stringpair { char * original;
 char * xformed; } Stringpair_t ;

Stringpair_t stringpairs[8] =
 { { "Chávez", NULL }, { "Carron", NULL },
 { "Canoso", NULL }, { "Cañoso", NULL },
 { "Carteño", NULL }, { "Cortillo", NULL },
 { "Cortiluz S.A.", NULL }, { "Corriando", NULL } };

char xformbuffer[1024]; // Space to catch each strxfrm() result.

int stringpaircmp(const void * p1, const void *p2);
 // Defined externally.

setlocale(LC_COLLATE, ""); // Use the host system's locale setting.

for (int i = 0; i < 8 ; i++)
{
 stringpairs[i].xformed
 = malloc(strxfrm(xformbuffer, stringpairs[i].original, 1024) +1);
 if (stringpairs[i].xformed != NULL)
 strcpy(stringpairs[i].xformed, xformbuffer);
}

qsort(stringpairs, 8, sizeof(Stringpair_t), stringpaircmp);

The qsort() function invoked in the last line would pass the transformed strings to a
comparison function named stringpaircmp(). That function would compare the trans-
formed strings using strcmp(), rather than comparing the originals using strcoll().

See Also
strcoll(), strcmp(), wcsxfrm(), setlocale()

swprintf

Stores formatted output in a wide-character string buffer

#include <wchar.h>
int swprintf(wchar_t * restrict dest, size_t n,
 const wchar_t * restrict format, ...);

The swprintf() function is similar to snprintf(), except that its format string argu-
ment and its output are strings of wide characters.

Example
const wchar_t *dollar_as_wstr(long amount)
// Converts a number of cents into a wide string showing dollars and cents.
// For example, converts (long)-123456 into the wide string L"-$1234.56"
{
 static wchar_t buffer[16];
 wchar_t sign[2] = L"";
 if (amount < 0L)
 amount = -amount, sign[0] = '-';
 ldiv_t dollars_cents = ldiv(amount, 100);

Chapter 17: Standard Library Functions | 445

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

system

swprintf(buffer, sizeof(buffer),
 L"%ls$%ld.%2ld", sign, dollars_cents.quot, dollars_cents.rem);
 return buffer;
}

See Also
wprintf() and fwprintf(), declared in stdio.h and wchar.h; and vwprintf(),
vfwprintf(), and vswprintf(), declared in stdarg.h; printf(), fprintf(), sprintf(),
snprintf(), declared in stdio.h; vprintf(), vfprintf(), vsprintf(), vsnprintf(),
declared in stdarg.h; the wscanf() input functions. Argument conversion in the
printf() family of functions is described in detail under printf() in this chapter.

swscanf

Reads in formatted data from a wide-character string

#include <wchar.h>
int swscanf(const wchar_t * restrict wcs,
 const wchar_t * restrict format, ...);

The swscanf() function is similar to wscanf(), except that it reads its input from the
wide-character string addressed by the first argument, wcs, rather than from stdin. If
swscanf() reads to the end of the string, it returns the value EOF.

Example
double price = 0.0;
wchar_t wstr[] = L"Current price: $199.90";
swscanf(wstr, L"%*[^$]$%lf", &price); // Read price from string.
price *= 0.8; // Apply 20% discount.
printf("New price: $%.2lf\n", price);

This code produces the following output:

New price: $159.92

See Also
wscanf(), fwscanf(); wcstod(), wcstol(), and wcstoul(); scanf(), fscanf();
fwprintf(), wprintf(), vfwprintf(), and vwprintf(); the example at wcsspn() in this
chapter.

system

Executes a shell command

#include <stdlib.h>
int system(const char *s);

The system() function passes a command line addressed by the pointer argument s to
an operating system shell. If s is a null pointer, the function returns true (a nonzero
value) if a command processor is available to handle shell commands, and 0 or false if
not.

How the system executes a command, and what value the system() function returns,
are left up to the given implementation. The command may terminate the program
that calls system(), or have unspecified effects on its further behavior.

446 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

tan

Example
if (system(NULL))
system("echo \"Shell: $SHELL; process ID: $$\"");

else
 printf("No command processor available.\n");

This example is not portable, but on certain systems it can produce output like this:

Shell: /usr/local/bin/bash; process ID: 21349

See Also
getenv()

tan

Calculates the tangent of an angle

#include <math.h>
double tan(double x);
float tanf(float x); (C99)

long double tanl(long double x); (C99)

The tan() function calculates the tangent of the angle represented by its argument x as
a number of radians.

Example
const double pi = 4.0L * atan(1.0); // Because tan(pi/4) = 1
double shadow_length = 85.5,
 angle = 36.2; // Sun's elevation from the horizon, in
 // degrees
double height = shadow_length * tan(angle * pi/180);

printf("The tower is %.2f meters high.\n", height);

This code produces the following output:

The tower is 62.58 meters high.

See Also
sin(), cos(), atan(); the tangent functions for complex numbers, ctan(), ctanf()
and ctanl()

tanh

Calculates the hyperbolic tangent of a number

#include <math.h>
double tanh(double x);
float tanhf(float x); (C99)

long double tanhl(long double x); (C99)

The tanh() function returns the hyperbolic tangent of its argument x, which is defined
as sinh(x)/cosh(x).

Chapter 17: Standard Library Functions | 447

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

time

Example
double x = -0.5, y1, y2;

y1 = tanh(x);
y2 = exp(2*x);
y2 = (y2 -1) / (y2 + 1);

printf("The tanh() function returns %.15f.\n", y1);
printf("Using the function exp() yields %.15f.\n", y2);

This code produces the following output:

The tanh() function returns -0.462117157260010.
Using the function exp() yields -0.462117157260010.

See Also
sinh(), cosh(), atanh(); the hyperbolic tangent and inverse tangent functions for
complex numbers, ctanh() and catanh()

time

Obtains the current calendar time

#include <time.h>
time_t time(time_t *timeptr);

The time() function returns the current calendar time as a single arithmetic value. The
return type, time_t, is defined in time.h, generally as long or unsigned long. If the argu-
ment is not a null pointer, the return value is also assigned to the location it references.

Many operating systems specify that the type time_t represents an integer number of
seconds, and that the time() function returns the number of seconds passed since a
specified epoch, such as midnight on January 1, 1970, Greenwich Mean Time.
However, according to the C standard, neither of these conditions is required. The
type time_t is an arithmetic type whose range and precision are defined by the imple-
mentation, as is the encoding of the time() function’s return value.

Example
time_t sec;

time(&sec);
printf("This line executed at %.24s.\n", ctime(&sec));

This code produces the following output:

This line executed at Tue Mar 15 13:05:16 2005.

See also the examples at asctime(), ctime(), fprintf(), freopen(), gmtime(), rand(),
and strftime() in this chapter.

See Also
asctime(), ctime(), gmtime(), localtime(), strftime()

448 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

tmpfile

tmpfile

Opens a temporary file with a unique name

#include <stdio.h>
FILE *tmpfile(void);

The tmpfile() function opens a temporary file for reading and writing, and returns the
corresponding FILE pointer. The file is guaranteed to have a distinct name and FILE
pointer from all other files, and is automatically deleted when closed, whether by
fclose() or by normal program termination. The file is opened with the mode string
"wb+" (see fopen() in this chapter for a description of mode strings).

If tmpfile() is unable to open a temporary file, it returns a null pointer. Whether
temporary files are deleted after an abnormal program termination depends on the
given implementation. The C99 standard recommends that the maximum number of
temporary files that can be created should be available in the macro TMP_MAX, which is
defined in stdio.h and must be at least 25.

Example
FILE *fpTmp; *fpRx;
int c;

/* ... open Rx stream ... */

if ((fpTmp = tmpfile()) == NULL)
 fputs("Unable to open a temporary file.", stderr);
else
{
 while ((c = fgetc(fpRx)) != EOF)
 if (fputc(c, fpTmp) == EOF)
 break;
}
fclose(fpRx);

/* ... process the data captured in fpTmp ... */

See Also
fopen(), tmpnam()

tmpnam

Generates a unique filename

#include <stdio.h>
char *tmpnam(char *s);

The tmpnam() function generates a unique filename suitable for using for temporary
files, and returns a pointer to the name string. If the pointer argument s is not a null
pointer, then tmpnam() places the name string in a buffer addressed by s. The size of
the buffer is assumed to be at least equal to the macro L_tmpnam. If s is a null pointer,
then the return value points to the filename in tmpnam()’s internal, static buffer, where
it may be modified by subsequent tmpnam() calls.

Chapter 17: Standard Library Functions | 449

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

tolower

If you use a name supplied by tmpnam() to create a file, that does not mean the file is a
temporary file in the sense of tmpfile(); it will not be automatically deleted on
closing.

The tmpnam() function generates a different name each time it is called, and can
generate at least TMP_MAX distinct names (some of which may be used by tmpfile()).
The macros L_tmpnam and TMP_MAX are defined in stdio.h. TMP_MAX is greater than or
equal to 25. The tmpnam() function returns a null pointer on failure.

Example
char buffer[L_tmpnam], *name = buffer;
FILE *fpOut;
int result;

name = tmpnam(buffer);

if (name == NULL)
{
 fputs("Failed to generate temporary file name", stderr);
 return -1;
}

fpOut = fopen(name, "w+");
/* ... write something in the file, edit it ... */
fclose(fpOut);
printf("Results saved in %s\n", name);

See Also
tmpfile(), rename()

tolower

Converts an uppercase alphabetic character to lowercase

#include <ctype.h>
int tolower(int c);

The tolower() function returns the lowercase letter corresponding to the character
value of its argument c. If c is not an uppercase letter, or if there is no lowercase letter
which corresponds to it, its value is returned unchanged.

Which characters are considered uppercase, and which of those
have a corresponding lowercase character, depends on the current
locale setting for the localization category LC_CTYPE, which you can
query or change using the setlocale() function. The uppercase
characters are those for which isupper() returns true; the lower-
case characters are those for which islower() returns true.

Accented characters, umlauts, and the like are considered alpha-
betic only in certain locales. Moreover, other locales may have char-
acters that are alphabetic, but are neither upper- nor lowercase, or
both upper- and lowercase.

450 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

toupper

Example
See the examples at getchar() and setlocale() in this chapter.

See Also
islower(), toupper(), isupper(), towupper(), towlower(), towctrans()

toupper

Converts a lowercase alphabetic character to uppercase

#include <ctype.h>
int toupper(int c);

The toupper() function returns the uppercase letter corresponding to the character
value of its argument c. If c is not an lowercase letter, or if there is no uppercase letter
which corresponds to it, its value is returned unchanged.

The note concerning locales under tolower() in this chapter applies
to toupper() as well.

Example
See the example for setlocale() in this chapter.

See Also
isupper(), tolower(), islower(), towupper(), towlower(), towctrans()

towctrans

Performs a locale-specific conversion on a wide character

#include <wctype.h>
wint_t towctrans(wint_t wc, wctrans_t desc);

The towctrans() function returns a wide character that corresponds to the wide char-
acter value of its first argument, wc, according to a locale-specific mapping described
by the second argument, desc. Values of desc are obtained by calling the wctrans()
function. The behavior of both wctrans() and towctrans() is dependent on the locale
setting of the category LC_CTYPE, which must not change between the two function
calls.

Example
wint_t before = L'\0', after = L'\0';
wctrans_t mapping;
mapping = wctrans("toupper");

while ((before = getwchar()) != WEOF)
{
 after = towctrans(before, mapping);
 putwchar(after);
 if (after == L'Q')
 break;
}

Chapter 17: Standard Library Functions | 451

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

trunc

See Also
wctrans(), towlower(), towupper()

towlower

Converts an uppercase wide character to lowercase

#include <wctype.h>
wint_t towlower(wint_t wc);

The towlower() function is like tolower() in all respects, except that it operates on
wide characters. An uppercase wide character is one for which iswupper() returns true
in the current locale; a lowercase wide character is one for which iswlower() returns
true.

Example
See the example using the analogous function towupper() under mbrtowc() in this
chapter.

See Also
iswlower(), iswupper(), tolower(), toupper(), towupper(), towctrans()

towupper

Converts a lowercase wide character to uppercase

#include <wctype.h>
wint_t towupper(wint_t wc);

The towupper() function is like toupper() in all respects, except that it operates on
wide characters. An uppercase wide character is one for which iswupper() returns true
in the current locale; a lowercase wide character is one for which iswlower() returns
true.

Example
See the example for mbrtowc() in this chapter.

See Also
iswlower(), iswupper(), tolower(), toupper(), towlower(), towctrans()

trunc

Rounds a floating-point number toward 0 to an integer value

C99

#include <math.h>
double trunc(double x);
float truncf(float x);
long double truncl(long double x);

The trunc() functions round the value of their argument, x, to the nearest integer
value whose magnitude is not greater than that of x—in other words, toward 0.

452 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

ungetc

Example
printf("trunc(-1.7) = %.2f trunc(1.4) = %.2f trunc(1.5) = %.2f\n",
 trunc(-1.7), trunc(1.4), trunc(1.5));

printf("round(-1.7) = %.2f round(1.4) = %.2f round(1.5) = %.2f\n",
 round(-1.7), round(1.4), round(1.5));

This code produces the following output:

trunc(-1.7) = -1.00 trunc(1.4) = 1.00 trunc(1.5) = 1.00
round(-1.7) = -2.00 round(1.4) = 1.00 round(1.5) = 2.00

See Also
rint(), lrint(), llrint(), round(), lround(), llround(), nearbyint()

ungetc

Pushes a character back onto a file buffer to be read next

#include <stdio.h>
int ungetc(int c, FILE *fp);

The ungetc() function reverses the effect of a getc() call; it pushes the character c
back onto the file buffer associated with the FILE pointer fp, so that c becomes the first
character to be read in a subsequent read operation. (However, if the program success-
fully calls fseek(), fsetpos(), or rewind() before reading from the file again, then the
pushed-back character is lost.) The ungetc() function does not change the file on disk.

You can push at least one character onto the file buffer with unget(). Multiple calls in
succession are possible, but are not guaranteed to succeed without intervening read
operations. If successive unget() calls succeed, the characters pushed will be read in
last-in, first-out order.

If successful, the ungetc() function returns the character pushed back onto the file
buffer, and clears the file’s EOF flag. On failure, ungetc() returns EOF. You cannot
push an EOF value onto a file buffer.

The file associated with fp must be open for reading in either text or binary mode. If
the file is in text mode, then ungetc() leaves the file access position indicator in an
unspecified state until all pushed-back characters have been read again. If the file is in
binary mode, ungetc() reduces the file position indicator by one. In either case, once
all pushed-back characters have been read again, the file position indicator is the same
as before the first ungetc() call.

Example
char file[] = "input.dat";
FILE *fp;
int c;
char numstr[64];

if ((fp = fopen(file, "r")) == NULL)
 fprintf(stderr, "Can't read the file %s\n", file), exit(1);

while ((c = getc(fp)) != EOF)
{

Chapter 17: Standard Library Functions | 453

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

va_arg, va_copy, va_end, va_start

 if (isdigit(c)) // Collect a sequence of digits.
 {
 int i = 0;
 do
 {
 numstr[i++] = (char)c;
 c = getc(fp);
 }while (isdigit(c) && i+1 < sizeof(numstr));

 numstr[i] = '\0'; // Terminate the numeral string.

 /* ... process the numeral string ... */

 if (ungetc(c, fp) == EOF) // Put back the first non-digit.
 break;
 continue;
 }
 /* ... process any non-digit characters ... */
}
if (!feof(fp))
 fprintf(stderr, "Error processing the file %s\n", file);

return 0;

See Also
getc(), ungetwc(), getwc()

ungetwc

Pushes a wide character back onto a file buffer to be read next

#include <stdio.h>
#include <wchar.h>
wint_t ungetwc(wint_t wc, FILE *fp);

The ungetwc() function is the wide-character version of ungetc(), and works analo-
gously, returning WEOF on failure or the wide character pushed back onto the file buffer
if successful.

Example
See the example for the corresponding byte-character function, ungetc().

See Also
ungetc() getwc(), getc()

va_arg, va_copy, va_end, va_start

Manage variable-argument lists

#include <stdarg.h>
void va_start(va_list argptr, last_fixed_arg);
type va_arg(va_list argptr, type);
void va_copy(va_list dest, va_list src); (C99)

void va_end(va_list argptr);

454 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

va_arg, va_copy, va_end, va_start

The macros va_arg(), va_start(), and va_end() allow you to define C functions with
variable numbers of arguments. Such functions use these macros to access the optional
arguments, which are managed as anonymous objects in a list referenced by a pointer
object of type va_list.

The prototype syntax for a function that takes a variable number of arguments is as
follows:

fn_type fn_name([arg_type_1 fixed_arg_1, [arg_type_2 fixed_arg_2, [etc.]]]
last_arg_type last_fixed_arg, ...);

The ellipsis (...) after last_fixed_arg in this syntax is a literal ellipsis, which must
appear in the function prototype to represent the optional arguments. A function with
optional arguments must also take at least one mandatory argument. The ellipsis
representing the optional arguments must be the last item in the parameter list, after
the last mandatory parameter. The following example shows the prototype of the func-
tion vop(), which takes two mandatory arguments—one with the type pointer to
const char and one with the type int—and a variable number of optional arguments:

double vop(const char * op, int argcount, ...);

In a function definition, the macros va_start(), va_arg(), va_copy(), and va_end()
allow you to access the optional arguments.

va_start
The macro va_start() initializes a va_list object so that it can be used in a va_arg()
call to access the first optional argument in the variable-arguments list. The va_start()
macro takes as its arguments the va_list object argptr, and the identifier of the last
mandatory parameter, represented in this description by last_fixed_arg. Because
va_start() makes certain assumptions about the alignment of the parameters in
memory, last_fixed_arg must not be declared with the register storage class speci-
fier, and must not have a function or array type, nor an integer type that is narrower
than int.

Once you have called va_start(), you can access the optional arguments in the list
one by one through successive va_arg() calls. You must not call va_start() again for
the same va_list object until you have passed it to the va_end() macro.

va_arg
To obtain each optional argument, call the va_arg() macro. The va_arg() macro takes
as its arguments the va_list object argptr, and the type of the argument being read.
Each such call to va_arg() returns one argument from the optional arguments list, and
adjusts argptr so that the next call returns the next argument.

If there is no argument left to be read when you call va_arg(), the behavior is unde-
fined. The behavior is likewise undefined if the type indicated in the va_arg() call does
not match the actual argument’s type, with two exceptions: a signed integer type may
match an unsigned integer type, if the value of the argument is representable in both
types; and a pointer to void can match a pointer to char, signed char or unsigned char.

The type argument to va_arg() must be in such a notation that
appending an asterisk to it yields the type of a pointer to type. For
example, the type argument may be char *, but not char [8],
because char ** means “pointer to a pointer to char”; but char [8]*
does not mean “pointer to an array of 8 char elements.” (That
type’s name would be written char (*)[8].)

Chapter 17: Standard Library Functions | 455

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

va_arg, va_copy, va_end, va_start

va_copy
The macro va_copy() copies the state of the argument list referenced by the va_list
object src to the object dest. If you have already called va_arg() for the same va_list
object, then the copy produced by va_copy() is set to access the same argument as the
original at the time it was copied. Otherwise, the copy is initialized to access the first
argument in the list. You must call va_end() both for the copy and for the original
after use.

va_end
To facilitate a clean return, a function that takes a variable number of arguments must call
the va_end() macro after it has finished reading its optional arguments. The va_end()
macro may render argptr unusable until it is re-initialized by calling va_start().

Example
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

double vproduct(int n, va_list argptr);
double vsum(int n, va_list argptr);

double vop(const char * op, int argcount, ...);
// main() calls vop() to perform calculations. vop()'s arguments are:
// (1) the name of the operation ("sum", "product",
// "sum minus the product");
// (2) the number of operands;
// (3 through n) the operands themselves.
// Iterates through operations twice: once with three operands, once with
// six.

int main()
{
 double d1, d2, d3, d4, d5, d6;

 puts("Enter six floating-point numbers, please:");
 scanf("%lf%lf%lf%lf%lf%lf", &d1, &d2, &d3, &d4, &d5, &d6);

 char *operation[] = { "sum", "product", "product minus the sum", NULL };

 printf("\nUsing the three numbers %lf, %lf, and %lf.\n", d1, d2, d3);
 for (int i = 0; operation[i] != NULL; i++)
 {
 printf("The %s of these %d numbers is %lf\n",
 operation[i], 3,
 vop(operation[i], 3, d1, d2, d3));
 }

 printf("\nUsing six numbers:\n\t%lf \t%lf \t%lf \n\t%lf \t%lf \t%lf\n",
 d1, d2, d3, d4, d5, d6);
 for (int i = 0; operation[i] != NULL; i++)
 {

456 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

va_arg, va_copy, va_end, va_start

 printf("The %s of these %d numbers is %lf\n",
 operation[i], 6,
 vop(operation[i], 6, d1, d2, d3, d4, d5, d6));
 }
}

double vop(const char * op, int argcount, ...)
{
 va_list argptr;
 double result;

va_start(argptr, argcount);

 if (strcmp(op, "sum") == 0)
 result = vsum(argcount, argptr);

 else if (strcmp(op, "product") == 0)
 result = vproduct(argcount, argptr);

 else if (strcmp(op, "product minus the sum") == 0)
 {

va_list duplicate_argptr; // Clone the va_list in its present state.
va_copy(duplicate_argptr, argptr);

 result = vproduct(argcount, argptr)
 - vsum(argcount, duplicate_argptr);

va_end(duplicate_argptr); // Clean up the clone.
 }

 else result = NAN;

va_end(argptr); // Clean up the original.
 return result;
}

double vproduct(int n, va_list argptr)
{
 double product = 1.0;

 for (int i = 0; i < n; i ++)
 product *= va_arg(argptr, double);

 return product;
}

double vsum(int n, va_list argptr)
{
 double sum = 0.0;

 for (int i = 0; i < n; i ++)
 sum += va_arg(argptr, double);

 return sum;
}

Chapter 17: Standard Library Functions | 457

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

vfprintf, vprintf, vsnprintf, vsprintf

In this example, the helper functions vproduct() and vsum() take as their second argu-
ment a va_list object that has already been initialized, and also leave the cleaning up
to the caller. In this respect, they are similar to the vprintf() and vscanf() function
families.

See also the example for vfscanf() in this chapter.

See Also
vfprintf(), vprintf(), vsnprintf(), and vsprintf(); vfscanf(), vscanf(), and
vsscanf(); vfwprintf(), vswprintf(), and vwprintf(); vfwscanf(), vswscanf(), and
vwscanf()

vfprintf, vprintf, vsnprintf, vsprintf

Writes formatted output using a variable argument list object

#include <stdio.h>
#include <stdarg.h>
int vfprintf(FILE * restrict fp, const char * restrict format,
 va_list argptr);
int vprintf(const char * restrict format, va_list argptr);
int vsprintf(char * restrict buffer, const char * restrict format,
 va_list argptr);
int vsnprintf(char * restrict buffer, size_t n,
 const char * restrict format, va_list argptr); (C99)

The functions vfprintf(), vprintf(), vsprintf(), and vsnprintf() work in the same
way as fprintf(), printf(), sprintf(), and snprintf(), respectively, except that their
last argument, argptr, is a variable-argument list object with type va_list. The program
must initialize this object by calling the va_start() macro before calling the vfprintf(),
vprintf(), vsprintf(), or vsnprintf() function, and must call the va_end() macro after
the function returns. Because these functions use the va_arg() macro internally to
advance argptr through the argument list, its value is indeterminate after the vfprintf(),
vprintf(), vsprintf(), or vsnprintf() function call has returned.

The va_start(), va_arg(), and va_end() macros and the type va_list
are declared in the header file stdarg.h.

Like the fprintf() and printf() functions, vfprintf() and vprintf(), return the
number of characters written to the output stream. The function vsprintf() returns
the number of characters written to the string buffer, not counting the terminator
character; and vsnprintf() returns the number of characters that would have been
written to the string buffer if the parameter n had been sufficiently large, again not
counting the terminator character.

Example
// write_log appends a line to the log file associated with the
// FILE pointer fp_log.
// The format string and optional arguments are the same as for printf().

458 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

vfscanf, vscanf, vsscanf

void write_log(const char *function_name, unsigned int line_num,
 const char *format_str, ...)
{
 if (fp_log == NULL)
 return;
 time_t timestamp = time(NULL);
 va_list argptr;
 // Set argptr to the first optional argument:
 va_start(argptr, format_str);

 // First print the timestamp, function name, and line number:
 fprintf(fp_log, "%.8s %s (line %u): ",
 ctime(×tamp)+11, function_name, line_num);
 // Then print the rest of the message:
 vfprintf(fp_log, format_str, argptr);

 va_end(argptr);
}

void myFunc(int param)
{
 write_log(_ _func_ _, _ _LINE_ _, "param = %d\n", param);
 /* ... */
}

Calling myFunc() in this example with the argument value 777 results in the following
log file entry:

13:32:44 myFunc (line 62): param = 777

See Also
va_start(), va_arg(), va_copy() and va_end(); fprintf(), printf(), sprintf(), and
snprintf(); vfwprintf(), vwprintf(), and vswprintf()

vfscanf, vscanf, vsscanf

Reads formatted data using a variable argument list

#include <stdio.h>
#include <stdarg.h>
int vfscanf(FILE * restrict fp, const char * restrict format,
 va_list argptr);
int vscanf(const char * restrict format, va_list argptr);
int vsscanf(char * restrict buffer, const char * restrict format,
 va_list argptr);

The functions vfscanf(), vscanf(), and vsscanf() work in the same way as fscanf(),
scanf(), and sscanf(), respectively, except that their final argument, argptr, is a vari-
able-argument list object with type va_list. The program must initialize this object by
calling the va_start macro before calling the vfscanf(), vscanf(), or vsscanf() func-
tion, and must call the va_end() macro after the function returns. Because these
functions use the va_arg() macro internally to advance the pointer through the argu-
ment list, its value is indeterminate after the vfscanf(), vscanf(), or vsscanf()
function call has returned.

Chapter 17: Standard Library Functions | 459

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

vfscanf, vscanf, vsscanf

The va_start(), va_arg(), and va_end() macros and the type va_list
are declared in the header file stdarg.h.

Like the fscanf(), scanf(), and sscanf() functions, vfscanf(), vscanf(), and
vsscanf() return the number of input items that have been assigned to variables refer-
enced by elements of the argument list.

Example
typedef struct {
 char lastname[20];
 char firstname[20];
 int dob_month;
 int dob_day;
 int dob_year;
} person;

person employee;

int read_person(char *lname, char *fname, ...)
// As variable arguments (...) use NULL
// or three int pointers (month, day, year).
{
 va_list args;
 int count;

 printf("Enter the last name and first name (Example: Smith, Sally)\n");
 count = scanf("%[^,], %[^\n]", lname, fname); // Read the name.

 va_start(args, fname); // Initialize args to start with the argument
 // that follows fname in the function call.
 if (count == 2 && va_arg(args, int*) != NULL)
 {
 va_end(args);
 va_start(args, fname); // Initialize args again.

 printf("Enter the date of birth. (Example: 9/21/1962)\n");
 count += vscanf("%d/%d/%d", args); // Read date of birth.
 }
#ifdef DEBUG
 fprintf(stderr, "Read %d fields.\n", count);
#endif // def DEBUG

 va_end(args);
 return count;
}

int main()
{
 person *pEmployee = &employee;
 int result;

460 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

vfwprintf, vswprintf, vwprintf

 result = read_person(pEmployee->lastname,
 pEmployee->firstname,
 &pEmployee->dob_month,
 &pEmployee->dob_day,
 &pEmployee->dob_year);

#ifdef DEBUG
 fprintf(stderr, "Fields read: %s, %s; born %d-%d-%d\n",
 pEmployee->lastname,
 pEmployee->firstname,
 pEmployee->dob_month,
 pEmployee->dob_day,
 pEmployee->dob_year);
#endif // def DEBUG
}

See Also
va_start(), va_arg(), va_copy() and va_end(); fscanf(), scanf(), and sscanf();
vfwscanf(), vwscanf(), and vswscanf()

vfwprintf, vswprintf, vwprintf

Prints formatted wide-character output using a variable argument list object

#include <stdarg.h>
#include <wchar.h>
int vfwprintf(FILE *fp, const wchar_t * restrict format, va_list argptr);
int vswprintf(wchar_t * restrict s, size_t n,
 const wchar_t * restrict format, va_list argptr);
int vwprintf(const wchar_t * restrict format, va_list argptr);

The functions vfwprintf(), vswprintf(), and vwprintf() are like fwprintf(),
swprintf(), and wprintf(), respectively, except that their last argument, argptr, is a
variable-argument list object with type va_list. The program must initialize this object
by calling the va_start() macro before calling the vfwprintf(), vswprintf(), or
vwprintf() function, and must call the va_end() macro after the function returns.
Because these functions use the va_arg() macro internally to advance the pointer
through the argument list, its value is indeterminate after the vfwprintf(), vswprintf(),
or vwprintf() function call has returned.

The vfwprintf() and vwprintf() functions return the number of wide characters
written to the output stream, or a negative value if an error occurred. The vswprintf()
function returns the number of wide characters written to the output buffer, not
counting the terminating null wide character, or a negative value if an encoding error
occurred or if the complete output string would have contained more than n wide
characters.

Example
See the example for the corresponding byte-character function vfprintf() in this
chapter.

See Also
vfwscanf(), vswscanf(), and vwscanf()

Chapter 17: Standard Library Functions | 461

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wcrtomb

vfwscanf, vswscanf, vwscanf

Reads formatted wide-character input using a variable argument list object

#include <stdarg.h>
#include <wchar.h>
int vswscanf(const wchar_t * restrict s, const wchar_t * restrict format,
 va_list argptr);
int vwscanf(const wchar_t * restrict format, va_list argptr);
#include <stdio.h> // (in addition to <stdarg.h> and <wchar.h>)
int vfwscanf(FILE * restrict fp, const wchar_t * restrict format,
 va_list argptr);

The functions vfwscanf(), vswscanf(), and vwscanf() are like fwscanf(), swscanf(),
and wscanf(), respectively, except that their final argument, argptr, is a variable-argu-
ment list object with type va_list. The program must initialize this object by calling
the va_start() macro before calling the vfwscanf(), vswscanf(), or vwscanf() func-
tion, and must call the va_end() macro after the function returns. Because these
functions use the va_arg() macro internally to advance the pointer through the argu-
ment list, its value is indeterminate after the vfwprintf(), vswprintf(), or vwprintf()
function call has returned.

The vfwscanf(), vswscanf(), and vwscanf() functions return the number of input
items assigned to variables, which may be 0; or EOF if an input failure occurs before any
conversion takes place.

Example
See the example for the corresponding byte-character function vfscanf() in this
chapter.

See Also
va_start(), va_arg(), va_copy() and va_end(); fwscanf(), swscanf(), and wscanf();
vfwprintf(), vswprintf(), and vwprintf()

wcrtomb

Converts a wide character to a multibyte character

#include <wchar.h>
size_t wcrtomb(char restrict *dest, wchar_t wc,
 mbstate_t * restrict state);

The wcrtomb() function is the restartable version of wctomb(). The third argument is a
pointer to a variable with type mbstate_t, which holds the current parse state of a
multibyte string being formed in the buffer that the first argument by successive func-
tion calls. Each call to wcrtomb() converts a wide character into a multibyte character,
and stores the result in the buffer pointed to by its first argument. The return value
indicates the number of bytes written to the output buffer. The maximum number of
bytes that wcrtomb() writes to the buffer is the value of MB_CUR_MAX. wcrtomb() also
updates the state variable referenced by the third argument to represent the new parse
state of the string written. The locations that wcrtomb() reads from and writes to using
its restricted pointer parameters must not overlap.

If the wide character is the null character (L'\0'), then wcrtomb() writes to the buffer a
shift sequence, if necessary, to restore the multibyte string to the initial parse state,

462 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wcscat

then writes a null character. The state variable is updated to represent the initial state.
If the second argument is not a valid wide character, wcrtomb() returns –1, sets the
errno variable to EILSEQ, and leaves the parse state variable in an undefined state. If the
first argument is a null pointer, then wcrtomb() only sets the state variable to represent
the initial state. The return value is then the number of bytes that would have been
written to the output buffer.

Example
See the example for mbrtowc() in this chapter.

See Also
wctomb(), mbrtowc(), wctob(), and btowc(); wcsrtombs(), wcstombs(), and mbstowcs()

wcscat

Appends one wide string to another

#include <wchar.h>
wchar_t *wcscat(wchar_t * restrict s1, const wchar_t * restrict s2);

The wcscat() function copies the wide character string addressed by the second
pointer argument, s2, to the location following the string addressed by the first
pointer, s1. The first wide character of s2 is copied over the terminating null wide
character of the string addressed by s1. The function returns the value of its first argu-
ment, which points to the concatenated string.

There is no limit to the number of characters wcscat() may write before it encounters
a null wide character in the source string. It is up to you the programmer to make sure
that there is enough storage available at the destination to accommodate the result.
You should consider using wcsncat() instead to reduce the risk of buffer overflows.
You must also make sure that the locations that wcscat() reads from and writes to do
not overlap.

Example
typedef struct {
 wchar_t lastname[32];
 wchar_t firstname[32];
 _Bool ismale;
} Name;

 wchar_t displayname[80];
 Name *newName = calloc(1, sizeof(Name));

/* ... check for calloc failure; read in the name parts ... */

if (newName != NULL)
{

 fputws(L"Enter <last name>, <first name>:", stdout);
 wscanf(L"%32l[^,]%*[,] %32ls", newName->lastname, newName->firstname);

 wcscpy(displayname, (newName->ismale ? L"Mr. " : L"Ms. "));

Chapter 17: Standard Library Functions | 463

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wcscmp

wcscat(displayname, newName->firstname);
wcscat(displayname, L" ");
wcscat(displayname, newName->lastname);
wcscat(displayname, L"\n");

 fputws(displayname, stdout);
}

See Also
wcsncat(), strcat(), strncat()

wcschr

Searches for a given character in a string

#include <wchar.h>
wchar_t *wcschr(const wchar_t *s, wchar_t c);

The wcschr() function returns a pointer to the first occurrence of the wide character
value c in the wide string addressed by s. If there is no such character in the string,
wcschr() returns a null pointer. If c is a null wide character (L'\0'), then the return
value points to the terminator character of the wide string addressed by s.

Example
typedef struct {
 wchar_t street[32];
 wchar_t city[32];
 wchar_t stateprovince[32];
 wchar_t zip[16];
} Address;

wchar_t printaddr[128] = L"720 S. Michigan Ave.\nChicago, IL 60605\n";
int sublength;
Address *newAddr = calloc(1, sizeof(Address));

if (newAddr != NULL)
 {
 sublength = wcschr(printaddr, L'\n') - printaddr;
 wcsncpy(newAddr->street, printaddr, (sublength < 31 ? sublength : 31));
 /* ... */
}

See Also
strchr(), wcsrchr()

wcscmp

Compares two wide strings

#include <wchar.h>
int wcscmp(const wchar_t *s1, const wchar_t *s2);

464 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wcscoll

The wcscmp() function compares the wide strings addressed by its two pointer argu-
ments, and returns a value indicating the result as follows:

Zero
The two strings are equal.

Greater than zero
The string addressed by s1 is greater than the string addressed by s2.

Less than zero
The string addressed by s1 is less than the string addressed by s2.

The wcscmp() function compares the strings one wide character at a time. As soon as it
finds unmatched characters in corresponding positions in the two strings, the string
containing the greater wide character value at that position is the greater string.

Example
int result = 0;
wchar_t word1[255], word2[256], *greaterlessequal;

while (result < 2)
{
 fputws(L"Type two words, please: ", stdout);
 result = wscanf(L"%255l[^]%255ls", word1, word2);
 if (result == EOF)
 return EOF;
}
result = wcscmp(word1, word2);

if (result < 0)
 greaterlessequal = L"less than";
else if (result > 0)
 greaterlessequal = L"greater than";
else
 greaterlessequal = L"the same as";

wprintf(L"The word \"%ls\" is %ls the word \"%ls\".\n", word1,
 greaterlessequal, word2);

See Also
wcsncmp(), strcmp()

wcscoll

Collates two wide strings

#include <wchar.h>
int wcscoll(const wchar_t *s1, const wchar_t *s2);

Like wcscmp(), the wcscoll() function performs a wide-character-by-wide-character
comparison of the two strings, s1 and s2. However, where wcscmp() just compares
unsigned character values, wcscoll() can apply a locale-specific set of rules in
comparing strings. The value of the locale information category LC_COLLATE deter-
mines the applicable rule set, and can be changed by the setlocale() function. The
return value of wcscoll() indicates the relation between the two wide strings as
follows. If the return value is:

Chapter 17: Standard Library Functions | 465

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wcscpy

Zero
The two strings are equal.

Greater than zero
The string addressed by s1 is greater than that addressed by s2.

Less than zero
The string addressed by s1 is less than that addressed by s2.

Example
wchar_t *samples[] = { L"anejo", L"añeja",};

setlocale(LC_COLLATE, "es_US.UTF-8");

int result = wcscoll(samples[0], samples[1]);

wprintf(L"In the locale %s, ", setlocale(LC_COLLATE, NULL));

if (result == 0)
 wprintf(L"the wide strings \"%ls\" and \"%ls\" are alphabetically "
 "equivalent.\n", samples[0], samples[1]);
else if (result < 0)
 wprintf(L"the wide string \"%ls\" precedes \"%ls\" alphabetically.\n",
 samples[0], samples[1]);
else if (result > 0)
 wprintf(L"the wide string \"%ls\" comes after \"%ls\" alphabetically.\n",
 samples[0], samples[1]);

See Also
wcscmp(), wcsncmp(), and wcsxfrm(); strcoll(), strcmp(), strncmp(), and strxfrm()

wcscpy

Copies a wide string to another location

#include <wchar.h>
wchar_t *wcscpy(wchar_t * restrict dest, const wchar_t * restrict src);

The wcscpy() function copies the wide string addressed by src to the wchar_t array
addressed by dest, and returns the value of its first argument, which points to the new
copy of the string.

There is no limit to the number of wide characters wcscpy() may write before it
encounters a null wide character in the source string. It is up to you the programmer to
make sure there is enough storage available to accommodate the string, including its
terminator character. Consider using wcsncpy() instead to reduce the risk of buffer
overflows. You must also make sure that the locations that wcscpy() reads from and
writes to do not overlap.

Example
struct record {
 wchar_t name[64];
 int age;
 _Bool male, smoking, discount;
} this;

466 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wcscspn

int results;

wprintf(L"Last name: ");
results = wscanf(L"%63l[^\n]", this.name);
if (results < 1)
wcscpy(this.name, L"[Name not available]");

wprintf(L"%ls\n", this.name);

See Also
wcsncpy(), strcpy(), strncpy()

wcscspn

Searches for any element of one wide string in another

#include <wchar.h>
size_t wcscspn(const wchar_t *s1, const wchar_t *s2);

The wcscspn() function returns the number of wide characters at the beginning of the
string addressed by s1 that do not match any of the wide characters in the string
addressed by s2. In other words, wcscspn() returns the index of the first wide char-
acter in s1 that matches any wide character in s2. If the two strings have no wide
characters in common, then the return value is the length of the string addressed by s1.

Example
wchar_t *path = L"/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/games";
int separator;

wchar_t *basename = L"aprogram";
wchar_t fullname[1024] = L"";

separator = wcscspn(path, L":");

if (separator > (sizeof(fullname) - 1))
 return -1;

wcsncpy(fullname, path, separator);
fullname[separator] = '\0';
wcsncat(fullname, L"/", sizeof(fullname) - wcslen(fullname) -1);
wcsncat(fullname, basename, sizeof(fullname) - wcslen(fullname) -1);

fputws(fullname, stdout);

See Also
wcsspn(), wcspbrk(), and wcschr(); strcspn(), strspn(), strpbrk(), and strchr()

wcsftime

Generates a formatted wide string of time and date information

#include <time.h>
#include <wchar.h>
size_t wcsftime(wchar_t * restrict s, size_t n,
 const wchar_t * restrict format,
 const struct tm * restrict timeptr);

Chapter 17: Standard Library Functions | 467

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wcslen

The wcsftime() function is similar to strftime(), except that its format string argu-
ment and the output string it generates are wide character strings. Accordingly, the
length n and the function’s return value indicate numbers of wide characters, not byte
characters. The locations that wcsftime() reads from and writes to using its restricted
pointer parameters must not overlap.

Example
#define MAX_HDR 1024

time_t now;
struct tm *localnow;
wchar_t hdr_date[MAX_HDR] = L"";

time(&now);
localnow = localtime(&now);

if (wcsftime(hdr_date, MAX_HDR, L"Date: %a, %d %b %Y %T %z", localnow))
 fputws(hdr_date, stdout);
else
 return -1;

See Also
strftime(), setlocale()

wcslen

Obtains the length of a wide-character string

#include <wchar.h>
size_t wcslen(const wchar_t *s);

The wcslen() function calculates the length of the string addressed by its argument s.
The length of a wide string is the number of wide characters in it, not counting the
terminating null character (L'\0').

Example
wchar_t line[1024] =
 L"This string could easily be 400 or 500 characters long. "
 L"This string could easily be 400 or 500 characters long. "
 L"\n";
wchar_t *readptr = line;
int columns = 80;
while (wcslen(readptr) > columns) // While remaining text is too long,
{ // print a chunk with a final
 wprintf(L"%.*ls\\\n", columns-1, readptr); // backslash and newline.
 readptr += columns -1;
}
wprintf(L"%ls\n", readptr); // Print the rest, ending with a newline.

See Also
strlen(); the example for mbtowc()

468 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wcsncat

wcsncat

Appends a number of wide characters from one string to another

#include <wchar.h>
wchar_t *wcsncat(wchar_t * restrict s1, const wchar_t * restrict s2,
 size_t n);

The wcsncat() function copies up to n wide characters of the string addressed by the
second pointer argument, s2, to the location following the wide string addressed by
the first pointer, s1. The first wide character of s2 is copied over the null wide char-
acter that terminates the string addressed by s1. The function returns the value of its
first argument, which points to the resulting string. The locations that wcsncat() reads
from and writes to must not overlap.

Unlike wcscat(), wcsncat() has a third parameter, n, to limit the length of the string
written. The wcsncat() function stops copying when it has copied n characters, or
when it reaches a terminating null character in the source string, whichever occurs
first. In either case, wcsncat() appends a null character to the concatenated string
addressed by s1. The string’s length thus increases by at most n wide characters.

Example
See the example for wcscspn() in this chapter.

See Also
wcscat(), strncat(), strcat()

wcsncmp

Compares the first n wide characters of two strings

#include <wchar.h>
int wcsncmp(const wchar_t *s1, const wchar_t *s2, size_t n);

The wcsncmp() function compares at most the first n wide characters in the two strings
addressed by its pointer arguments. Characters that follow a null wide character are
ignored. wcsncmp() returns a value indicating the result as follows:

Zero
The two wide strings, or arrays of n wide characters, are equal.

Greater than zero
The string or array of n wide characters addressed by s1 is greater than that
addressed by s2.

Less than zero
The string or array of n wide characters addressed by s1 is less than that addressed
by s2.

Example
wchar_t *months[] = { L"January", L"February", L"March", L"April",
 L"May", L"June", L"July", L"August",
 L"September", L"October", L"November", L"December" };

wchar_t date[] = L"Thu, 10 Mar 2005 13:44:18 +0100";
int mo = 0;
while ((mo < 12) && (wcsncmp(date + 8, months[mo], 3) != 0))
 mo++;

Chapter 17: Standard Library Functions | 469

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wcspbrk

See Also
wcscmp(), wcscoll(), strncmp(), strcmp()

wcsncpy

Copies the first n wide characters of a string to another location

#include <wchar.h>
wchar_t *wcsncpy(const wchar_t * restrict dest,
 const wchar_t * restrict src, size_t n);

The wcsncpy() function copies at most n wide characters from the string addressed by
src to the wchar_t array addressed by dest, which must be large enough to accommo-
date n wide characters. The wcsncpy() function returns the value of its first argument,
dest. The locations that wcsncpy() reads from and writes to using its restricted pointer
parameters must not overlap.

If there is no null wide character within the first n characters of src,
then the copied string fragment is not terminated.

If wcsncpy() reads a null wide character from src before it has copied n wide charac-
ters, then the function writes null wide characters to dest until it has written a total of
n wide characters.

Example
See the examples for wcscspn() and wcspbrk() in this chapter.

See Also
strcpy(), strncpy(), memcpy(), memmove(), wcscpy(), wmemcpy(), wmemmove()

wcspbrk

Finds the first wide character in a string that matches any wide character in another string

#include <wchar.h>
wchar_t *wcspbrk(const wchar_t *s1, const wchar_t *s2);

The wcspbrk() function returns a pointer to the first wide character in the string
addressed by s1 that matches any wide character contained in the string addressed by
s2. If the two strings have no wide characters in common, then wcspbrk() returns a
null pointer.

Example
wchar_t *story = L"He shouted: \"What? I can't hear you!\"\n";
wchar_t separators[] = L" \t\n.:?!\"";
wchar_t *start = story, *end = NULL;
wchar_t words[16][16];
int i = 0;

while (i < 16 && (end = wcspbrk(start, separators)) != NULL)
{

470 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wcsrchr

 if (end != start) // If the separator wasn't the first
 { // character in the substring,
 wcsncpy(words[i], start, end - start); // then save a word.
 words[i][end - start] = L'\0'; // And terminate it.
 i++;
 }
 start = end + 1; // Next wcspbrk call starts with the
} // character after this separator.

fputws(story, stdout);
for (int j = 0 ; j < i ; j++)
{
 fputws(words[j], stdout);
 fputwc(L'\n', stdout);
}

See Also
wcschr(), wcsrchr(), wcswcs(), wcscspn(), strpbrk()

wcsrchr

Searches for the rightmost occurrence of a given wide character in a string

#include <wchar.h>
wchar_t *wcsrchr(const wchar_t *s, wchar_t wc);

The wcsrchr() function returns a pointer to the last occurrence of the wide character
value wc in the string addressed by s. If there is no such wide character in the string,
wcsrchr() returns a null pointer. If wc is a null wide character (L'\0'), then the return
value points to the terminator of the string addressed by s.

Example
int main(int argc, char ** argv)
{
 wchar_t wmyname[256];
 size_t result = mbstowcs(wmyname, argv[0], 256);
 if (result == -1)
 return -1;
 wchar_t *mybasename = wcsrchr(wmyname, L'/'); // End of path
 if (mybasename != NULL)
 mybasename++;
 else
 mybasename = wmyname;
 wprintf(L"This program was invoked as %ls.\n", mybasename);
}

See Also
wcschr(), wcsstr(), wcsspn(), wcscspn(), wcspbrk(); the byte character string func-
tions strchr(), strrchr(), strpbrk(), strstr(), strspn(), strcspn()

Chapter 17: Standard Library Functions | 471

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wcsrtombs

wcsrtombs

Converts a wide character string into a multibyte string and saves the parse state

#include <wchar.h>
size_t wcsrtombs(char * restrict dest, const wchar_t ** restrict src,
 size_t n, mbstate_t * restrict state);

The wcsrtombs() function converts one or more wide characters from the array indi-
rectly addressed by src into a string of multibyte characters, beginning in the parse
state indicated by the state argument, and stores the results in the array of char
addressed by dest. (dest may also be a null pointer, in which case wcsrtombs() does
not actually store any output characters, and does not modify the pointer in the loca-
tion addressed by src. The function therefore merely returns the number of bytes that
a multibyte representation of the wide character string would occupy.) The third argu-
ment, n, specifies the maximum number of characters that can be written to the output
buffer. The conversion performed on each wide character is the same as that which
would be performed by the wcrtomb() function, updating the mbstate_t object
addressed by state. Conversion ends on the first of three possible events:

When a terminating null character has been written to the output buffer.
In this case, wcsrtombs() stores a null pointer in the location addressed by src,
and returns the number of bytes in the multibyte sequence resulting from the
conversion. The object addressed by state represents the initial parse state, and
the terminating null character stored in the output buffer is preceeded by any shift
sequence required to reach the initial parse state.

When writing another multibyte character would exceed the maximum length of n bytes.
In the location addressed by src, wcsrtombs() stores a pointer to the location that
follows the last wide character read, and the object addressed by state represents
the current parse state of the incomplete output string. The function returns the
number of bytes in the multibyte sequence resulting from the conversion.

When a wide character read cannot be converted into a valid multibyte character.
In this case, wcsrtombs() sets the errno variable to the value of EILSEQ (“illegal
sequence”) and returns –1. The state of the object addressed by state is
unspecified.

Example
int i = 0, n = 0;
size_t result;
wchar_t wc;
char mbstring[256] = { '\0' };
wchar_t widestring[] = L"This is originally a string of wide characters.\n";
const wchar_t *wcsptr = widestring;
mbstate_t state;

printf("The current locale is %s.\n", setlocale(LC_CTYPE, ""));

memset(&state, '\0', sizeof state);

result = wcsrtombs(mbstring, &wcsptr, 256, &state);

while ((n = mbtowc(&wc, &mbstring[i], MB_CUR_MAX)) != 0)
{

472 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wcsspn

 if (n == -1)
 { /* Encoding error */
 fputs("Encoding error in multibyte string", stderr);
 break;
 }
 printf("%lc", (wint_t)wc);
 i += n;
};

See Also
wcstombs(), wcrtomb(), wctomb(), mbsrtowcs(), mbstowcs(), mbrtowc(), mbtowc()

wcsspn

Searches a wide string for a wide character that is not in a given set

#include <wchar.h>
size_t wcsspn(const wchar_t *s1, const wchar_t *s2);

The wcsspn() function returns the index of the first wide character in the string
addressed by s1 that does not match any wide character in the string addressed by s2.
In other words, the return value is length of the wide string segment addressed by s1
that contains only wide characters which are present in the wide string addressed by
s2. If all of the wide characters in s1 are also contained in s2, then wcsspn() returns the
index of s1’s string terminator character, which is the same as wcslen(s1).

Example
wchar_t wordin[256];
double val;
fputws(L"Enter a floating-point number, please:", stdout);
wscanf(L"%ls", wordin);
int index = wcsspn(wordin, L"+-0123456789eE.");
if (index < wcslen(wordin))
 wprintf (L"Sorry, but the character %lc is not permitted.\n",
 wordin[index]);
else
{
 swscanf(wordin, L"%lg", &val);
 wprintf(L"You entered the value %g\n", val);
}

See Also
wcscspn(), wcschr(), wcsrchr(), wcsstr(), wcspbrk(), strspn(), strcspn(), strchr(),
strrchr(), strstr(), strpbrk()

wcsstr

Searches a wide string for a replica of another wide string

#include <wchar.h>
wchar_t *wcsstr(const wchar_t *s1, const wchar_t *s2);

The wcsstr() function searches the wide string addressed by s1 for the sequence of
wide characters contained in s2, not counting the terminating null wide character. The

Chapter 17: Standard Library Functions | 473

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wcstod, wcstof, wcstold

return value is a pointer to the first wide character in the first occurrence in s1 of the
sequence contained in s2, or a null pointer if there is no such occurrence. If s2 points
to an empty wide string, then wcsstr() returns the value of its first argument, s1.

Example
This simple program prints each line in a file that contains a given keyword:

#define MAX_LINE 1024

int main(int argc, char **argv)
{
 FILE *fpIn = NULL;
 wchar_t keyword[MAX_LINE] = { L'\0' };
 wchar_t line[MAX_LINE] = { L'\0' };

 if (argc != 3)
 {
 wprintf(L"Syntax: %s <keyword> <filename>\n", argv[0]);
 return -1;
 }

 if ((fpIn = fopen(argv[2], "r")) == NULL)
 return -2;
 else
 fwide(fpIn, 1);

 if (mbstowcs(keyword, argv[1], MAX_LINE) == -1)
 return -3;

 int count = 0;
 while (fgetws(line, MAX_LINE, fpIn) != NULL)
 if (wcsstr(line, keyword) != NULL)
 {
 ++count;
 fputws(line, stdout);
 }

 if (!feof(fpIn))
 return -4;
 else
 return count;
}

See Also
wcspbrk(), wcsspn(), wcscspn(), wcschr(), wcsrchr(), strstr(), strpbrk(), strspn(),
strcspn(), strchr(), strrchr()

wcstod, wcstof, wcstold

Converts a wide string into a floating-point number

#include <wchar.h>
double wcstod(const wchar_t * restrict wcs, wchar_t ** restrict endptr);
float wcstof(const wchar_t * restrict wcs,
 wchar_t ** restrict endptr); (C99)

474 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wcstoimax

long double wcstold(const wchar_t * restrict wcs,
 wchar_t ** restrict endptr); (C99)

The wcstod() function attempts to interpret the wide string addressed by its first
pointer argument, wcs, as a floating-point numeric value, and returns the result with
the type double. wcstof() and wcsold() are similar, but return float and long double
respectively. Leading whitespace wide characters are ignored, and the string converted
ends with the last wide character that can be interpreted as part of a floating-point
numeral. The second parameter, endptr, is a pointer to a pointer. If its argument value
is not a null pointer, then the function stores a pointer to the first wide character that
is not part of the numeral converted in the location addressed by the endptr argument.
(The locations that the function reads from and writes to using its restricted pointer
parameters must not overlap.) If no conversion is possible, the function returns 0.

If the resulting value exceeds the range of the function’s type, then the return value is
positive or negative HUGE_VAL (or HUGE_VALF or HUGE_VALL, for the float and long double
variants). On an overflow, the errno variable is set to the value of ERANGE (“range
error”). If the conversion produces an underflow, the magnitude of the return value is
at most the smallest value greater than 0 that is representable in the function’s return
type, and the function may set the errno variable to the value of ERANGE (“range error”).

The wide-character sequences that can be interpreted as floating-point numerals
depend on the current locale. In all locales, they include those described in “Floating-
Point Constants” in Chapter 3, and the sequence L"infinity", without regard to upper
or lower case, or any sequence of letters, digits, and underscores that begins with
L"nan", without regard to case.

Example
wchar_t in[1024], *this = in, *next = in;
double val;
fputws(L"Enter some floating-point numbers, please:\n", stdout);
wscanf(L"%l[^\n]", in);

fputws(L"Here are the values you entered:\n", stdout);
while (1)
{
 val = wcstod(this, &next);
 if (next == this) // Means no conversion possible.
 break ;
 this = next;
 wprintf(L"\t%g\n", val);
}
fputws(L"Done.\n", stdout);

See Also
wcstol(), wcstoul(), and wcstoimax(); strtof(), strtod(), and strtold()

wcstoimax

Converts a wide string into an integer value with type intmax_t

C99

#include <stddef.h>
#include <inttypes.h>
intmax_t wcstoimax(const wchar_t * restrict wcs,
 wchar_t ** restrict endptr, int base);

Chapter 17: Standard Library Functions | 475

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wcstok

The wcstoimax() function is similar to wcstol(), except that it converts a wide string
to an integer value of type intmax_t. If the conversion fails, wcstoimax() returns 0. If
the result of the conversion exceeds the range of the type intmax_t, then the
wcstoimax() returns INTMAX_MAX or INTMAX_MIN, and sets the errno variable to the value
of ERANGE (“range error”).

Example
See the example for the analogous function wcstoumax() in this chapter.

See Also
wcstoumax(), wcstol(), and wcstoul(); wcstod(), wcstof(), and wcstold();
strtoimax() and strtoumax()

wcstok

Divides a wide string into tokens

#include <wchar.h>
wchar_t *wcstok(wchar_t * restrict s1, const wchar_t * restrict s2,
 wchar_t ** restrict ptr);

The wcstok() function isolates tokens in the wide string addressed by s1 that are
delimited by any of the wide characters contained in the string addressed by s2. The
tokens are identified one at a time by successive calls to wcstok(). On calls after the
first, the s1 argument is a null pointer. The third argument is a pointer to a wchar_t
pointer; wcstok() stores caller-specific information at the location addressed by this
pointer for use on successive calls in the same sequence.

On the first call, wcstok() searches in s1 for the first character that does not match any
character in s2, similarly to the wcsspn() function. The first such wide character found
is considered to be the beginning of a token. Then wcstok() searches further for the
first wide character that does match any of the wide characters in s2—or the null wide
character that terminates the string, whichever comes first—similarly to the wcscspn()
function. The first such wide character found is considered to be the delimiter that
ends the token. wcstok() then replaces this ending delimiter with L'\0', and returns a
pointer to the beginning of the token (or a null pointer if no token was found), after
storing a value in the location addressed by the ptr argument for use in subsequent
wcstok() calls.

On each subsequent call with a null pointer as the s1 argument and the same value as
before for the ptr argument, wcstok() behaves similarly, but starts the search at the
wide character that follows the previous delimiter. You can specify a different set of
delimiters in the s2 argument on each call. The locations that wcstok() reads from and
writes to using its restricted pointer arguments must not overlap on any given call.

Example
wchar_t *mnemonic, *arg1, *arg2, *comment, *ptr;
wchar_t line[] = L" mul eax,[ebp+4] ; Multiply by y\n";
// First word between spaces or tabs
mnemonic = wcstok(line, L" \t", &ptr);
arg1 = wcstok(NULL, L",", &ptr); // From there to the comma is arg1.
 // Trim off any spaces later.
arg2 = wcstok(NULL, L";\n", &ptr); // From there to the semicolon is arg2.

476 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wcstol, wcstoll

// To line or page end is comment:
 comment = wcstok(NULL, L"\n\r\v\f", &ptr);

wprintf(L"Command: %ls\n"
 L"1st argument: %ls\n"
 L"2nd argument: %ls\n"
 L"Comment: %ls\n\n",
 mnemonic, arg1, arg2, comment);

This code produces the following output:

Command: mul
1st argument: eax
2nd argument: [ebp+4]
Comment: Multiply by y

See Also
wcsspn(), wcscspn(), wcsstr(), wcspbrk(), and strtok()

wcstol, wcstoll

Converts a wide string into a long (or long long) integer value

#include <wchar.h>
long int wcstol(const wchar_t * restrict wcs, wchar_t ** restrict endptr,
 int base);
long long int wcstoll(const wchar_t * restrict wcs,
 wchar_t ** restrict endptr, int base); (C99)

The wcstol() function attempts to interpret the wide string addressed by its first
pointer argument, wcs, as an integer numeric value, and returns the result with the
type long. wcstoll() is similar, but returns long long. These functions are the wide-
string equivalents of strtol() and strtoll(), and they work in the same way, except
that they operate on strings of wchar_t rather than char. See the description under
strtol() in this chapter.

Example
wchar_t date[] = L"10/3/2005, 13:44:18 +0100", *more = date;
long day, mo, yr, hr, min, sec, tzone;
day = wcstol(more, &more, 10); // &more is the address of a pointer
mo = wcstol(more+1, &more, 10);
yr = wcstol(more+1, &more, 10);
hr = wcstol(more+1, &more, 10);
min = wcstol(more+1, &more, 10);
sec = wcstol(more+1, &more, 10);
tzone = wcstol(more+1, &more, 10);

 wprintf(L"It's now %02ld:%02ld o'clock on %02ld-%02ld-%02ld.\n",
 hr, min, mo, day, yr % 100);

This code produces the following output:

It's now 13:44 o'clock on 03-10-05.

See Also
wcstoul(), wcstoull(), wcstod(), wcstof(), and wcstold(); strtol(), strtoll(),
strtoul(), and strtoull()

Chapter 17: Standard Library Functions | 477

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wcstombs

wcstold

See the description under wcstod()

wcstoll

See the description under wcstol()

wcstombs

Converts a wide-character string into a multibyte string

#include <stdlib.h>
size_t wcstombs(char * restrict dest, const wchar_t * restrict src,
 size_t n);

The wcstombs() function converts one or more wide characters from the array
addressed by src into a string of multibyte characters, beginning in the initial parse
state, and stores the results in the array of char addressed by dest. The third argu-
ment, n, specifies the maximum number of characters that can be written to the output
buffer; conversion ends either when a terminating null character has been written to
the output buffer, or when writing another multibyte character would exceed the
buffer size of n bytes. The wcstombs() function returns the number of bytes written,
not including the terminating null character if any, or –1 if an encoding error occurs.
The conversion performed on each wide character is the same as that which would be
performed by the wctomb() function.

The wcstombs() function terminates the resulting multibyte string
with a null character ('\0') only if it has not yet written the maxi-
mum number of characters specified by the third argument! If the
return value is the same as the specified limit, then the resulting
string has not been terminated.

Example
wchar_t fmt_amount[128] = { L'\0' };
wchar_t prefix[32] = L"-";
wchar_t suffix[32] = L" ";
wchar_t number[128] = L"123.456,78";
char output_amount[256];

wcscpy(fmt_amount, prefix);
wcscat(fmt_amount, number);
wcscat(fmt_amount, suffix);

if (-1 != wcstombs(output_amount, fmt_amount, 256))
 printf("Full amount: %s\n", output_amount);

See Also
wcsrtombs(), mbstowcs(), and wcrtomb(); wctomb(), mbtowc(), and mbrtowc()

478 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wcstoul, wcstoull

wcstoul, wcstoull

Converts a wide string into an unsigned long (or unsigned long long) integer value

#include <wchar.h>
unsigned long int wcstoul(const wchar_t * restrict wcs,
 wchar_t ** restrict endptr, int base);
unsigned long long int wcstoull(const wchar_t * restrict wcs,
 wchar_t ** restrict endptr,
 int base); (C99)

The wcstoul() function attempts to interpret the wide string addressed by its first
pointer argument, wcs, as an integer numeric value, and returns the result with the
type unsigned long. wcstoull() is similar, but returns unsigned long long. These func-
tions are the wide-string equivalents of strtoul() and strtoull(), and they work in
the same way, except that they operate on strings of wchar_t rather than char. See the
description for strtol() in this chapter.

If the resulting value is outside the range of the function’s type, then the return value is
ULONG_MAX, depending on the sign (or ULLONG_MAX, for wcstoull()), and the errno vari-
able is set to the value of ERANGE (“range error”).

Example
See the example for the analogous function wcstol() in this chapter.

See Also
wcstol(), wcstod(), wcstof(), and wcstold(); strtol() and strtoul()

wcstoumax

Converts a wide string into an integer value with type uintmax_t

C99

#include <stddef.h>
#include <inttypes.h>
uintmax_t wcstoumax(const wchar_t * restrict wcs,
 wchar_t ** restrict endptr, int base);

The wcstoumax() function is similar to wcstoul(), except that it converts a wide string
to an integer value of type uintmax_t. If the conversion fails, wcstoumax() returns 0. If
the result of the conversion exceeds the range of the type uintmax_t, then the
wcstoumax() returns UINTMAX_MAX and sets the errno variable to the value of ERANGE
(“range error”).

Example
typedef struct {
 uintmax_t packets, bytes;
 wchar_t policy[16];
 wchar_t protocol[6];
 /* ... */
} stats_t ;
stats_t iface_in;

wchar_t wcsstat[] =
 L"25183 1633438 ACCEPT tcp -- eth2 * 0.0.0.0/0 tcp dpts:80";
wchar_t *wcsptr = wcsstat;

Chapter 17: Standard Library Functions | 479

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wcsxfrm

iface_in.packets = wcstoumax(wcsptr, &wcsptr, 10);
iface_in.bytes = wcstoumax(++wcsptr, &wcsptr, 10);
/* ... */
wprintf(L"Packets: %" PRIuMAX "; bytes: %" PRIuMAX "; policy: ...\n",
 iface_in.packets, iface_in.bytes);

This code produces the following output:

Packets: 25183; bytes: 1633438; policy: ...

See Also
wcstoimax(), wcstol(), and wcstoul(); wcstod(), wcstof(), and wcstold();
strtoimax() and strtoumax()

wcsxfrm

Transforms a wide string for easier locale-specific comparison

#include <wchar.h>
size_t wcsxfrm(wchar_t * restrict dest, const wchar_t * restrict src,
 size_t n);

The wcsxfrm() function transforms the wide string addressed by src, and copies the
result to the wchar_t array addressed by dest. The third argument, n, specifies a
maximum number of wide characters (including the terminating null wide character)
that the function may write to dest. The locations that wcsxfrm() reads from and
writes to using its restricted pointer parameters must not overlap.

The transformation performed depends on the value of the locale category LC_COLLATE,
which you can query or set using the setlocale() function. Furthermore, the wcsxfrm()
transformation is related to the wcscoll() function in the following way: if you use
wcscmp() to compare two strings produced by wcsxfrm() calls, the result is the same as if
you use wcscoll() to compare the original strings passed to wcsxfrm(). Using wcsxfrm()
and wcscmp() may be more efficient than wcscoll() if you need to use the same string in
many comparisons.

The wcsxfrm() function returns the length of the transformed version of the string, not
counting the terminating null character. If this length is greater than or equal to n, then
the contents of the array at dest are indeterminate. The value of n may also be 0, in
which case dest may be a null pointer.

Example
typedef struct stringpair { wchar_t * original;
 wchar_t * xformed;
 } Stringpair_t ;

int stringpaircmp(const void *p1, const void *p2);

int main()
{
 wchar_t *originals[] = { L"Chávez", L"Carron", L"Canoso",
 L"Cañoso", L"Carteño", L"Corriando",
 L"Carilo", L"Carillón", };
 wchar_t xformbuffer[1024];

480 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wcsxfrm

 /* Make an array of structures out of the strings and their
 xformations */

 const int elementcount = sizeof(originals) / sizeof(wchar_t *);
 Stringpair_t stringpairs[elementcount];

 setlocale(LC_ALL, "es_US.UTF-8"); // Set the locale to US Spanish
 wprintf(L"Sorting order in the locale %s:\n",
 setlocale(LC_COLLATE, NULL));

 for (int i = 0; i < elementcount ; i++)
 {
 stringpairs[i].original = originals[i];
 stringpairs[i].xformed
 = malloc(wcsxfrm(xformbuffer, originals[i], 1024));
 if (stringpairs[i].xformed != NULL)
 wcscpy(stringpairs[i].xformed, xformbuffer);
 };

 qsort(stringpairs, elementcount, sizeof(Stringpair_t), stringpaircmp);

 for (int i = 0; i < elementcount ; i++)
 {
 fputws(stringpairs[i].original, stdout);
 fputwc(L'\n', stdout);
 }
} // end of main()

/* A comparison function for use by qsort. Uses wcscmp() rather
 * that wcscoll(), assuming strings are paired with their wcsxfrm()
 * results in a Stringpair_t structure.
 */
int stringpaircmp(const void *p1, const void *p2)
{
 const Stringpair_t * sp1 = (Stringpair_t *)p1;
 const Stringpair_t * sp2 = (Stringpair_t *)p2;

 return wcscmp(sp1->xformed, sp2->xformed);
}

This code produces the following output:

Sorting order in the locale es_US.UTF-8:
Canoso
Cañoso
Carilo
Carillón
Carron
Carteño
Corriando
Chávez

See Also
wcscoll(), wcscmp(), strxfrm(), setlocale()

Chapter 17: Standard Library Functions | 481

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wctomb

wctob

Obtains the single-byte equivalent of a wide character, if any

#include <stdio.h>
#include <wchar.h>
int wctob(wint_t wc);

The wctob() function returns the single-byte member of the extended character set, if
there is one, that corresponds to its wide character argument, wc.

To be more exact, wctob() determines whether there is a character in the extended
character set which corresponds to the wide character wc, and whose multibyte char-
acter representation is expressed in a single byte in the initial shift state of the locale’s
multibyte encoding. If this is the case, then wctob() returns that character, converted
from unsigned char to int. If not, wctob() returns EOF.

Example
FILE *fp_inwide;
wchar_t wc;
int bc;

/* ... open the files ... */

fwide(fp_inwide, 1);
while ((wc = fgetwc(fp_inwide)) != WEOF)
 if ((bc = wctob(wc)) != EOF)
 fputc(c, stdout);
 else // If no byte-character equivalent,
 fputc('?', stdout); // print a question mark instead.

See Also
wctomb(), wcrtomb(), wcstombs(), and wcsrtombs(); btowc(), mbtowc(), mbrtowc(),
mbstowcs(), and mbsrtowcs()

wctomb

Converts a wide character to a multibyte character, or determines whether the multibyte encoding is stateful

#include <stdlib.h>
int wctomb(char *s, wchar_t wc);

The wctomb() function determines the multibyte representation that corresponds to
the wide character wc, and stores it, including any necessary shift sequences, in the
char array addressed by the pointer argument s. The size of this array is assumed to be
at least MB_CUR_MAX to accommodate the multibyte character representation. If wc is a
null wide character (L'\0'), wctomb() stores a null character, preceded by any neces-
sary shift sequences to restore the initial shift state, in the char array addressed by s.
The function returns the number of bytes in the multibyte sequence written, or –1 if
the value of wc does not correspond to any valid multibyte character.

If you pass wctomb() a null pointer as the first argument, then the return value indi-
cates whether the current multibyte encoding is stateful. This behavior is the same as
that of mblen(). If wctomb() returns 0, then the encoding is stateless. If it returns any
other value, the encoding is stateful; that is, the interpretation of a given byte sequence
may depend on the shift state.

482 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wctrans

Example
 char mbbuffer[MB_LEN_MAX] = { '\0' };
 wchar_t wcs[] = L"Wir stehen auf den Füßen von Riesen";
 int n = 0, i = 0;

 printf("The current locale is %s.\n", setlocale(LC_CTYPE, ""));
 printf("The locale's multibyte encoding is %s.\n",
 (wctomb(NULL, L'\0') ? "stateful" : "stateless"));
 do {
 n += wctomb(mbbuffer, wcs[i]);
 } while (wcs[i++] != L'\0');

 printf("The wide string \"%ls\" is %u wide characters long.\n"
 "Its multibyte representation requires a buffer of %u bytes.\n",
 wcs, wcslen(wcs), n);

This code produces output like this:

The current locale is en_US.UTF-8.
The locale's multibyte encoding is stateless.
The wide string "Wir stehen auf den Füßen von Riesen" is 35 wide characters
long.
Its multibyte representation requires a buffer of 38 bytes.

See Also
wctob(), wcrtomb(), wcstombs(), and wcsrtombs(); btowc(), mbtowc(), mbrtowc(),
mbstowcs(), and mbrstowcs()

wctrans

Provides a transformation argument for towctrans()

#include <wctype.h>
wctrans_t wctrans(const char *property);

The wctrans() function obtains a value of type wctrans_t that you can use as an argu-
ment to the towctrans() function, and that represents a wide character mapping in the
current locale. The permissible values of the string argument property depend on the
current locale setting for the LC_CTYPE category, but "tolower" and "toupper" are
permissible values in all locales. If the string addressed by property does not identify a
valid mapping, wctrans() returns 0.

Example
See the example for towctrans() in this chapter.

See Also
towctrans(), towupper(), towlower()

wctype

Provides a property argument for iswctype()

#include <wctype.h>
wctype_t wctype(const char *property);

Chapter 17: Standard Library Functions | 483

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wmemcmp

The wctype() function constructs a value with type wctype_t that describes a class of
wide characters identified by the string argument property.

If property identifies a valid class of wide characters according to the LC_CTYPE cate-
gory of the current locale, the wctype() function returns a nonzero value that is valid
as the second argument to the iswctype() function; otherwise, it returns 0.

The strings listed in the description of the iswctype() function are
valid in all locales as property arguments to the wctype() function.

Example
wctype_t wct_kanji, wct_kata, wct_hira /* , ... */ ;

setlocale(LC_CTYPE, "ja_JP.UTF-8");

if ((wct_kata = wctype("jkata")) == 0)
 wprintf(L"The locale doesn't support the wide-character type "
 "string \"jkata\".\n"), return -1;
/* ... */
wc = fgetwc(stdin);
if (iswctype(wc, wct_kata)) // Mainly 0xFF66 – 0xFF9F.
 wprintf(L"%lc is a katakana character.\n", wc);

See Also
iswctype()

wmemchr

Searches a memory block for a given wide character value

#include <wchar.h>
wchar_t *wmemchr(const wchar_t *buffer, wchar_t wc, size_t n);

The wmemchr() function searches for a wide character with the value of wc in a buffer of
n wide characters beginning at the address in the pointer argument buffer. The func-
tion returns a pointer to the first occurrence of the specified wide character in the
buffer, or a null pointer if the wide character does not occur within the specified
number of wide characters.

Example
See the example for wmemcpy() in this chapter.

See Also
wcschr(), wcsrchr(), wcsstr(), wcsspn(), and wcscspn(); memchr(), strchr(),
strrchr(), strstr(), strspn(), and strcspn()

wmemcmp

Compares two blocks of wide characters

#include <wchar.h>
int wmemcmp(const wchar_t * restrict b1, const wchar_t * restrict b2,
 size_t n);

484 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wmemcpy

The wmemcmp() function compares the contents of two memory blocks of n wide char-
acters, beginning at the addresses in b1 and b2, until it finds a pair of wide characters
that don’t match. The function returns a value greater than 0 if the mismatched wide
character is greater in b1, or less than 0 if the first mismatched wide character is greater
in b2, or 0 if the two buffers are identical over n wide characters.

Example
#define BUFFERSIZE 4096

wchar_t first[BUFFERSIZE] = { L'\0' };
wchar_t second[BUFFERSIZE] = { L'\0' };

/* ... read some data into the two buffers ... */

if (wmemcmp(first, second, BUFFERSIZE) == 0)
 printf("The two buffers contain the same wide-character text.\n");

See Also
wcscmp(), memcmp(), strcmp()

wmemcpy

Copies the contents of a block of wide characters

#include <wchar.h>
wchar_t *wmemcpy(wchar_t * restrict dest, const wchar_t * restrict src,
 size_t n);

The wmemcpy() function copies n successive wide characters beginning at the address in
src to the location beginning at the address in dest. The return value is the same as the
first argument, dest. The two pointer values must be at least n wide characters apart,
so that the source and destination blocks do not overlap; otherwise, the function’s
behavior is undefined. For overlapping blocks, use wmemmove().

Example
#define BUFFERSIZE 2048 // Size as a number of wchar_t elements.

wchar_t inputbuffer[BUFFERSIZE] = { L'\0' },
 *writeptr = inputbuffer;

struct block { wchar_t *text;
 struct block *next;
 struct block *prev;
} firstblock = { NULL }, *tmp = NULL; // The first block is the list head.

struct block *newblock(struct block *lastblock);
 // Creates a linked-list member.
wchar_t *storetext(struct block *listhead,
 wchar_t *buffer,
 size_t bufsize);
 // Copies input buffer to a new linked-list member.

Chapter 17: Standard Library Functions | 485

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wmemcpy

int main()
{

 while (fgetws(writeptr, BUFFERSIZE - (writeptr - inputbuffer), stdin)
 != NULL)
 {
 // Set writeptr to end of the input string:
 writeptr = wmemchr(inputbuffer, L'\0',
 sizeof(inputbuffer) / sizeof(wchar_t));

 if (BUFFERSIZE - (writeptr - inputbuffer) < 80)
 // If block full, or nearly so:
 { // copy buffer to a data block.
 writeptr = storetext(&firstblock, inputbuffer, BUFFERSIZE);
 if (writeptr == NULL) // Out of memory!
 abort();
 }
 } // Here if fgetws() returns NULL.
 writeptr = storetext(&firstblock, inputbuffer, BUFFERSIZE);
 if (writeptr == NULL) // Out of memory!
 abort();
}

wchar_t *storetext(struct block *listhead, wchar_t *buffer, size_t bufsize)
 // Copies input buffer to a new chained-list member;
 // returns pointer to input buffer, or NULL on failure.
{
 struct block *tmp = listhead; // create new block on end of list ...
 while (tmp->next != NULL)
 tmp = tmp->next;
 if ((tmp = newblock(tmp)) != NULL)

wmemcpy(tmp->text, buffer, bufsize); // ... and copy the text.
 else // Out of memory!
 return NULL;

#ifdef DEBUG
 fwprintf(stderr, L"\nStored a block with this text:\n%ls\n", tmp->text);
#endif

 return buffer; // Return pointer to buffer, now ready for re-use.
}

struct block *newblock(struct block *lastblock)
 // Allocates a new block and appends it to the chained list;
 // returns pointer to new block, or NULL on failure.
{
 if ((lastblock->next = malloc(sizeof(struct block))) != NULL
 && (lastblock->next->text = malloc(BUFFERSIZE * sizeof(wchar_t)))
 != NULL)
 {
 lastblock->next->prev = lastblock;
 lastblock->next->next = NULL;
 return lastblock->next;
 }

486 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wmemmove

 else // Out of memory!
 return NULL;
}

See Also
wmemmove(), wcscpy(), wcsncpy(), memcpy(), strcpy(), strncpy(), memove()

wmemmove

Copies the contents of a block of wide characters

#include <wchar.h>
wchar_t *wmemmove(wchar_t *dest, const wchar_t *src, size_t n);

The wmemmove() function copies n successive wide characters beginning at the address
in src to the location beginning at the address in dest. The return value is the same as
the first argument, dest. If the source and destination blocks overlap, copying takes
place as if through a temporary buffer; after the function call, each original value from
the src block appears in dest.

Example
#define LINESIZE 2048 // Sizes as numbers of wchar_t elements.
FILE *fp_input, *fp_tmp;
w_char inputblock[LINESIZE*128], *writeptr;

/* ... Input some lines to the input block ... */

/* Dump most of the block to a temporary file ... */
fp_tmp = tmpfile();
fwrite(inputblock, sizeof(wchar_t), LINESIZE*127, fp_tmp);

/* ... push the rest of the block to the front ... */
wmemmove(inputblock, inputblock + LINESIZE*127, LINESIZE);

/* ... and continue input: */
writeptr -= LINESIZE*127;
/* ... */

See Also
wmemcpy() and wcsncpy(); memmove(), memcpy(), and strncpy()

wmemset

Sets all wide characters in a memory block to a given value

#include <wchar.h>
wchar_t *wmemset(wchar_t *buffer, wchar_t c, size_t n);

The wmemset() function sets each wide character in a block of n wide characters to the
value c, beginning at the address in dest. The return value is the same as the pointer
argument dest.

Chapter 17: Standard Library Functions | 487

Stan
d

ard
Lib

rary

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wscanf

Example
#define BLOCKSIZE 2048 // Size as a number of wchar_t elements.
wchar_t *inputblock;

if ((inputblock = malloc(BLOCKSIZE * sizeof(wchar_t))) != NULL)
wmemset(inputblock, L'~', BLOCKSIZE);

/* ... */

See Also
memset(), calloc()

wprintf

Prints formatted wide-character string output

#include <wchar.h>
int wprintf(const wchar_t * restrict format, ...);

The wprintf() function is similar to printf(), except that its format string argument is
a string of wide characters, and it prints wide character output to stdout.

Example
See the examples for iswalnum() and wscanf() in this chapter.

See Also
swprintf() and fwprintf(), declared in stdio.h and wchar.h; vwprintf(), vfwprintf(),
and vswprintf(), declared in stdarg.h; printf(), fprintf(), sprintf(), and snprintf(),
declared in stdio.h; vprintf(), vfprintf(), vsprintf(), and vsnprintf(), declared in
stdarg.h; the wscanf() input functions. Argument conversion in the printf() family of
functions is described in detail under printf() in this chapter.

wscanf

Reads in formatted wide-character data from standard input

#include <stdio.h>
#include <wchar.h>
int wscanf(const wchar_t * restrict format, ...);

The wscanf() function is similar to scanf(), except that its format string and input
stream are composed of wide characters. The conversion specifications are like those
of scanf(), except in the cases described in Table 17-11.

Table 17-11. wscanf() conversion specifications that differ from scanf()

Conversion
specification Argument type Remarks

%c char * Conversion as by wcrtomb()

%lc wchar_t * No conversion, no string terminator

%s char * Conversion as by wcrtomb()

%ls wchar_t * No conversion

488 | Chapter 17: Standard Library Functions

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wscanf

Example
wchar_t perms[11];
wchar_t name[256];
unsigned int ownerid, groupid, links;
unsigned long size;
int count;

count = wscanf(L"%10l[rwxsStTld-]%u%u%u%lu%*10s%*5s%256ls",
 perms, &links, &ownerid, &groupid, &size, name);

wprintf(L"The file %ls has a length of %lu bytes.\n", name, size);

Assume that this code is executed with the following input (produced by the Unix
command ls -ln --time-style=long-iso) :

-rw-r--r-- 1 1001 1001 15 2005-03-01 17:23 überlänge.txt

The wscanf() function call in the example copies the string "-rw-r--r--" to the array
perms, and assigns the integer values 1 to the links variable, 1,001 to ownerid and
groupid, and 15 to size. Then it reads and discards the date and time information, and
copies the rest of the input string, up to a maximum length of 256 wide characters, to
the name array. The resulting output is:

The file überlänge.txt has a length of 15 bytes.

See Also
fwscanf(), swscanf(); wcstod(), wcstol(), wcstoul(); scanf(), fscanf(), sscanf();
the wide-character output functions fwprintf(), wprintf(), vfwprintf(), and
vwprintf()

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

III
Basic Tools

491

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Chapter 18GCC

18
Compiling with GCC

This chapter explains how to use GCC to compile executable programs from C
source code. First we present the basic program control options, in the order of
the corresponding steps in the compiling process. Then we look at how you can
use GCC’s warning options to troubleshoot your programs. Finally, we summa-
rize the options for optimized compiling.

This chapter should provide you with a basic working knowledge of GCC. If you
later need information on special details, such as architecture-specific or system-
specific options, this basic orientation will enable you to find what you need in
the GCC manual. The manual is included in Texinfo format in the GCC distribu-
tion, and is also available in PostScript and HTML formats at http://gcc.gnu.org/
onlinedocs/.

The GNU Compiler Collection
GCC originally stood for the “GNU C Compiler.” Since its beginnings, the
program has grown to support a number of other programming languages besides
C, including C++, Ada, Objective-C, Fortran, and Java. The acronym GCC has
therefore been redefined to mean “GNU Compiler Collection.” The compiler
incorporates a number of frontends to translate different languages. In this book,
of course, we are concerned only with the C frontend.

GCC is also a multitarget compiler; in other words, it has interchangeable back-
ends to produce executable output for a number of different computer
architectures. As the modular concept would suggest, GCC can also be used as a
cross-compiler; that is, you can produce executable programs for machines and

492 | Chapter 18: Compiling with GCC

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

operating systems other than the one GCC is running on. However, doing so
requires special configuration and installation, and most GCC installations are
adapted to compile programs only for the same system on which they are hosted.

GCC not only supports many “dialects” of C, but also distinguishes between
them; that is, you can use command-line options to control which C standard the
compiler adheres to in translating your source code. Support for all the features of
the C99 standard is not yet complete. The GCC developers maintain a statement
about the current progress of C99 support at http://gcc.gnu.org/c99status.html.

Obtaining and Installing GCC
If you have a Unix-like system, there’s a fair chance that GCC is already installed.
To find out, type cc --version at the command prompt. If GCC is installed and
linked to the default C compiler name cc, you will see the compiler’s version
number and copyright information:

$ cc --version
cc (GCC) 3.3.5 (Debian 1:3.3.5-6)
Copyright (C) 2003 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

In the examples in this chapter, the dollar sign ($) at the beginning
of a line represents the command prompt. What follows it is a com-
mand line that you would enter at a console to invoke GCC (or
whatever program is named in the command).

It’s possible that GCC is installed, but not linked to the program name cc. Just in
case, try calling the compiler by its proper name:

$ gcc --version

If GCC is not installed, consult your system vendor to see whether GCC is avail-
able in a binary package for your system’s software installation mechanism.
Otherwise, you can obtain the source code of GCC from the Free Software Foun-
dation (see the list of mirror sites at http://gcc.gnu.org/mirrors.html) and compile it
on your system. Follow the step-by-step instructions at http://gcc.gnu.org/install/.
If you want to compile programs only in C, then you need only the GCC “core
distribution,” which leaves out the frontends for other languages, and is only half
the size of the full GCC package.

If your system has no C compiler at all, then you can’t compile the GCC from
source. You’ll need to install it as a precompiled binary. The GCC web site main-
tains a list of GCC binary packages compiled by third parties for a variety of
systems, from AIX to Windows, at http://gcc.gnu.org/install/binaries.html.

Compiling C Programs with GCC | 493

G
CC

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Compiling C Programs with GCC
When you run GCC, its default behavior is to produce an executable program file
from source code. To start with a simple example, we’ll run GCC to make a
finished executable program from the C source code in Example 1-1 at the begin-
ning of this book:

$ gcc -Wall circle.c

This command line contains only the compiler’s name, the source file name, and
one option: -Wall instructs GCC to print warnings if it finds certain problems in
the program (see the section “Compiler Warnings,” later in this chapter, for more
information). If there are no errors in the source code, GCC runs and exits
without writing to the screen. Its output is a program file in the current working
directory with the default name a.out. (In Windows, the default name is a.exe.)
We can run this new program file:

$./a.out

which produces the screen output shown in Example 1-1.

If you do not want the executable program file to be named a.out, you can specify
an output filename on the command line using the -o option:

$ gcc -Wall -o circle circle.c

This command produces the same executable, but it is now named circle.

Step by Step

The following sections present GCC options to let you control each stage of the
compiling process: preprocessing, compiling, assembling, and linking. You can also
perform the individual steps by invoking separate tools, such as the C prepro-
cessor cpp, the assembler as, and the linker ld. GCC can also be configured to use
such external programs on a given host system. For the sake of a uniform over-
view, however, this chapter shows you how to perform all four steps by invoking
GCC and letting it control the process.

Preprocessing

Before submitting the source code to the actual compiler, the preprocessor
executes directives and expands macros in the source files (see steps 1 through 4
in the section “The C Compiler’s Translation Phases” in Chapter 1). GCC ordi-
narily leaves no intermediate output file containing the results of this
preprocessing stage. However, you can save the preprocessor output for diag-
nostic purposes by using the -E option, which directs GCC to stop after
preprocessing. The preprocessor output is directed to the standard output stream,
unless you indicate an output filename using the -o option:

$ gcc -E -o circle.i circle.c

Because header files can be large, the preprocessor output from source files that
include several headers is often unwieldy.

494 | Chapter 18: Compiling with GCC

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

You may find it helpful to use the -C option as well, which prevents the preprocessor
from removing comments from source and header files:

$ gcc -E -C -o circle.i circle.c

The following commonly used options affect GCC’s behavior in the preprocessor
phase:

-Dname[=definition]
Defines the symbol name before preprocessing the source files. The macro
name must not be defined in the source and header files themselves. Use this
option together with #ifdef name directives in the source code for conditional
compiling.

-Uname
“Undefines” the symbol name, if defined on the command line or in GCC’s
default settings. The -D and -U options are processed in the order in which
they occur on the command line.

-Idirectory[:directory[...]]
When header files are required by #include directives in the source code,
search for them in the specified directory (or directories), in addition to the
system’s standard include directories.

The usual search order for include directories is:

1. The directory containing the given source file (for filenames in given in
quotation marks in an #include directive).

2. Directories specified by -I options, in command-line order.

3. Directories specified in the environment variables C_INCLUDE_PATH and
CPATH.

4. The system’s default include directories.

-I-
This option divides any -Idirectory options on the command line into two
groups. All directories appended to an -I option to the left of -I- are not
searched for header files named in angle brackets in an #include directive,
such as this one:

#include <stdio.h>
Instead, they are searched only for header files named in quotation marks in
the #include directive, thus:

#include "myheader.h"
The second group consists of any directories named in an -I option to the
right of -I-. These directories are searched for header files named in any
#include directive.

Furthermore, if -I- appears on the command line, then the directory
containing the source file is no longer automatically searched first for header
files.

Compiling C Programs with GCC | 495

G
CC

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Compiling

At the heart of the compiler’s job is the translation of C programs into the
machine’s assembly language.* Assembly language is a human-readable program-
ming language that correlates closely to the actual machine code. Consequently,
there is a different assembly language for each CPU architecture.

Assembly language is often referred to more simply as “assembler.”
Strictly speaking, however, the term “assembler” refers to the pro-
gram that translates assembly language into machine code. In this
chapter, we use “assembly language” to refer to the human-
readable code and “assembler” to refer to the program that trans-
lates assembly language into a binary object file.

Ordinarily GCC stores its assembly-language output in temporary files, and
deletes them immediately after the assembler has run. But you can use the -S
option to stop the compiling process after the assembly-language output has been
generated. If you do not specify an output filename, GCC with the -S option
creates an assembly-language file with a name ending in .s for each input file
compiled. An example:

$ gcc -S circle.c

The compiler preprocesses circle.c and translates it into assembly language, and
saves the results in the file circle.s. To include the names of C variables as
comments on the assembly language statements that access those variables, use
the additional option -fverbose-asm:

$ gcc -S -fverbose-asm circle.c

Assembling

Because each machine architecture has its own assembly language, GCC invokes
an assembler on the host system to translate the assembly-language program into
executable binary code. The result is an object file, which contains the machine
code to perform the functions defined in the corresponding source file, and also
contains a symbol table describing all objects in the file that have external linkage.

If you invoke GCC to compile and link a program in one command, then its
object files are only temporary, and are deleted after the linker has run. Most
often, however, compiling and linking are done separately. The -c option

* Actually, as a retargetable compiler, GCC doesn’t translate C statements directly into the target
machine’s assembly language, but uses an intermediate language, called Register Transfer Lan-
guage or RTL, between the input language and the assembly-language output. This abstraction
layer allows the compiler to choose the most economical way of coding a given operation in any
context. Furthermore, an abstract description of the target machine in an interchangeable file pro-
vides a structured way to retarget the compiler to new architectures. From the point of view of
GCC users, though, we can ignore this intermediate step.

496 | Chapter 18: Compiling with GCC

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

instructs GCC not to link the program, but to produce an object file with the file-
name ending .o for each input file:

$ gcc -c circle.c

This command produces the object file circle.o.

You can use GCC’s option -Wa to pass command-line options to the assembler
itself. For example, suppose we want the assembler to run with the following
options:

-as=circle.sym
Print the module’s symbol table in a separate listing, and save the specified
listing output in a filenamed circle.sym.

-L
Include local symbols—that is, symbols representing C identifiers with
internal linkage—in the symbol table. (Don’t confuse this assembler option
with the GCC option -L!)

We can have GCC add these options to its invocation of the assembler by
appending them as a comma-separated list to GCC’s own -Wa option:

$ gcc -v -o circle -Wa,-as=circle.sym,-L circle.c

The list must begin with a comma after -Wa, and must contain no spaces. You can
also use additional -Wa options in the same command. The -v option, which
makes GCC print the options applied at each step of compiling, allows you to see
the resulting assembler command line (along with a great deal of other
information).

You can append several switches to the assembler’s -a option to control the listing
output. For a full reference, see the assembler’s manual. The default listing
output, produced when you simply specify -a with no additional switches,
contains the assembly language code followed by the symbol table.

GCC’s -g option makes the compiler include debugging information in its output.
If you specify the -g option in addition to the assembler’s -a option, then the
resulting assembly language listing is interspersed with the corresponding lines of
C source code:

$ gcc -g -o circle -Wa,-a=circle.list,-L circle.c

The resulting listing file, circle.list, allows you to examine line by line how the
compiler has translated the C statements in the program circle.

Linking

The linker joins a number of binary object files into a single executable file. In the
process, it has to complete the external references among your program’s various
modules by substituting the final locations of the objects for the symbolic refer-
ences. The linker does this using the same information that the assembler
provides in the symbol table.

Compiling C Programs with GCC | 497

G
CC

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Furthermore, the linker must also add the code for any C standard library func-
tions you have used in your program. In the context of linking, a library is simply
a set of object files collected in a single archive file for easier handling.

When you link your program to a library, only its member object
files containing the functions you use are actually linked into your
program. To make libraries of your own out of object files that you
have compiled, use the utility ar; see its manual page for information.

The bulk of the standard library functions are ordinarily in the file libc.a (the
ending .a stands for “archive”) or in a shareable version for dynamic linking in
libc.so (the ending .so stands for “shared object”). These libraries are generally in
/lib/ or /usr/lib/, or in another library directory that GCC searches by default.

Certain functions are contained in separate library files, such as the standard
library’s floating-point math functions. To demonstrate how to link such libraries,
let us replace the definition of π in circle.c with another one. In Example 1-1, the
variable pi was initialized with a literal:

const double pi = 3.1415926536; // Pi is a constant

We can initialize pi using the result of the arc tangent function by replacing that
line with this one:

const double pi = 4.0 * atan(1.0); // because tan(pi/4) = 1

Of course we will add the directive #include <math.h> at the beginning of the
source file to declare the new external function. But the atan() function is not
defined in the source code, nor in libc.a. To compile circle.c with this change, we
have to use the -l option to link the math library as well:

$ gcc -o circle -lm circle.c

The filename of the math library is libm.a. (On systems that support dynamic
linking, GCC automatically uses the shared library libm.so, if it is available. See
“Dynamic Linking and Shared Object Files,” later in this chapter, for more details.)
The prefix lib and the suffix .a are standard, and GCC adds them automatically to
whatever base name follows the -l on the command line—in this case, m.

Normally, GCC automatically searches for a file with the library’s name in stan-
dard library directories, such as /usr/lib. There are three ways to link a library that
is not in a path where GCC searches for it. One is to present GCC with the full
path and filename of the library as if it were an object file. For example, if the
library were named libmath.a and located in /usr/local/lib, the following command
would make GCC compile circle.c, then link the resulting circle.o with libmath.a:

$ gcc -o circle circle.c /usr/local/lib/libmath.a

In this case the library filename must be placed after the name of the source or
object files that use it. This is because the linker works through the files on its
command line sequentially, and does not go back to an earlier library file to
resolve a reference in a later object.

498 | Chapter 18: Compiling with GCC

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The second way to link a library not in GCC’s search path is to use the -L option
to add another directory for GCC to search for libraries:

$ gcc -o circle -L/usr/local/lib -lmath circle.c

You can add more than one library directory either by using multiple -L options,
or by using one -L followed by a colon-separated path list. The third way to make
sure GCC finds the necessary libraries is to make sure that the directories
containing your libraries are listed in the environment variable LIBRARY_PATH.

You can pass options directly to the linker stage using -Wl followed by a comma-
separated list, as in this command:

$ gcc -lm -Wl,-Map,circle.map circle.c circulararea.c

The option -Wl,-Map,circle.map on the GCC command line passes the option -Map,
circle.map to the linker command line, instructing the linker to print a link script
and a memory map of the linked executable to the specified file, circle.map.

The list must begin with a comma after -Wl, and must contain no spaces. In case
of doubt, you can use several -Wl options in the same GCC command line. Use
the -v option to see the resulting linker command.

All of the above

There is another GCC option that offers a convenient way to obtain all the inter-
mediate output files at once, and that is -save-temps. When you use that option,
GCC will compile and link normally, but will save all preprocessor output,
assembly language, and object files in the current directory. The intermediate files
produced with the -save-temps option have the same base filename as the corre-
sponding source files, with the endings .i, .s, and .o for preprocessor output,
assembly language, and object files, respectively.

None of the above

If you invoke GCC with the option -fsyntax-only, it does not preprocess,
compile, assemble, or link. It merely tests the input files for correct syntax. See
also “Compiler Warnings,” later in this chapter.

Multiple Input Files

In Chapter 1, we went on to divide circle.c into two separate source files (see
Examples 1-2 and 1-3). Compiling multiple source files results in multiple object
files, each containing the machine code and symbols corresponding to the objects
in one source file. GCC uses temporary files for the object output, unless you use
the option -c to instruct it to compile only, and not link:

$ gcc -c circle.c
$ gcc -c circulararea.c

Compiling C Programs with GCC | 499

G
CC

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

These commands produce two object files in the current working directory named
circle.o and circulararea.o. You can achieve the same result by putting both source
filenames on one GCC command line:

$ gcc -c circle.c circulararea.c

In practice, however, the compiler is usually invoked for one small task at a time.
Large programs consist of many source files, which have to be compiled, tested,
edited, and compiled again many times during development, and very few of the
changes made between builds affect all source files. To save time, a tool such as
make (see Chapter 19) controls the build process, invoking the compiler to recom-
pile only those object files that are older than the latest version of the
corresponding source file.

Once all the object files have been compiled from current source files, you can use
GCC to link them:

$ gcc -o circle circle.o circulararea.o -lm

GCC assumes that files with the filename extension .o are object files to be linked.

File types

The compiler recognizes a number of file extensions that pertain to C programs,
interpreting them as follows:

.c C source code, to be preprocessed before compiling.

.i C preprocessor output, ready for compiling.

.h C header file. (To save time compiling many source files that include the
same headers, GCC allows you to create “precompiled header” files, which it
then uses automatically as appropriate.)

.s Assembly language.

.S Assembly language with C preprocessor directives, to be preprocessed before
assembling.

GCC also recognizes the file extensions .ii, .cc, .cp, .cxx, .cpp, .CPP, .c++, .C, .hh,
.H, .m, .mi, .f, .for, .FOR, .F, .fpp, .FPP, .r, .ads, and .adb; these file types are
involved in compiling C++, Objective-C, Fortran, or Ada programs. A file with any
other filename extension is interpreted as an object file ready for linking.

If you use other naming conventions for your input files, you can use the option
-x file_type to specify how GCC should treat them. file_type must be one of
the following: c, c-header, cpp-output, assembler (meaning that the file contains
assembly language), assembler-with-cpp, or none. All files that you list on the
command line following an -x option will be treated as the type that you specify.
To change types, use -x again. For example:

$ gcc -o bigprg mainpart.c -x assembler trickypart.asm -x c otherpart.c

You can use the -x option several times on the same command line to indicate
files of different types. The option -x none turns off the file type indication, so that
subsequent filenames are interpreted according to their endings again.

500 | Chapter 18: Compiling with GCC

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Mixed input types

You can mix any combination of input file types on the GCC command line. The
compiler ignores any files that cannot be processed as you request. An example:

$ gcc -c circle.c circulararea.s /usr/lib/libm.a

With this command line, assuming all the specified files are present, GCC
compiles and assembles circle.c, assembles circulararea.s, and ignores the library
file, because the -c option says not to do any linking. The results are two object
files: circle.o and circulararea.o.

Dynamic Linking and Shared Object Files

Shared libraries are special object files that can be linked to a program at runtime.
The use of shared libraries has a number of advantages: a program’s executable
file is smaller; and shared modules permit modular updating, as well as more effi-
cient use of the available memory.

To create a shared object file, use GCC’s -shared option. The input file must be
an existing object file. Here is a simple example using our circle program:

$ gcc -c circulararea.c
$ gcc -shared -o libcirculararea.so circulararea.o

The second of these two commands creates the shared object file libcirculararea.so.
To link an executable to a shared object file, name the object file on the command
line like any other object or library file:

$ gcc -c circle.c
$ gcc -o circle circle.o libcirculararea.so -lm

This command creates an executable that dynamically links to libcirculararea.so at
runtime. Of course, you will also have to make sure that your program can find
the shared library at runtime—either by installing your libraries in a standard
directory, such as /usr/lib, or by setting an appropriate environment variable such
as LD_LIBRARY_PATH. The mechanisms for configuring dynamic loading vary from
one system to another.

If shared libraries are available on your system, but you want to avoid using
them—to exclude a potential opening for rogue code, for example—you can
invoke GCC with the -static option, thus:

$ gcc -static -o circle circle.o circulararea.o -lm

The resulting program file may be much larger than the dynamically linked one,
however.

Freestanding Programs

In addition to the object and library files you specify on the GCC command line,
the linker must also link in the system-specific startup code that the program
needs in order to load and interact smoothly with the operating system. This code
is already on hand in a standard object file named crt0.o, which contains the
actual entry point of the executable program. (The crt stands for “C runtime.”)

C Dialects | 501

G
CC

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

On most systems, GCC also links programs by default with initialization routines
in object files named crtbegin.o and crtend.o.

However, if you are writing a freestanding program, such as an operating system
or an application for an embedded microcontroller, you can instruct GCC not to
link this code by using the -ffreestanding and -nostartfiles options. The option
-nostdlib allows you to disable automatic linking to the C standard library. If you
use this option, you must provide your own versions of any standard functions
used in your program. Finally, in a freestanding environment, a C program need
not begin with main(). You can use the linker option -ename on the GCC
command line to specify an alternative entry point for your program.

C Dialects
When writing a C program, one of your first tasks is to decide which of the
various definitions of the C language applies to your program. GCC’s default
dialect is “GNU C,” which is largely the ISO/IEC 9899:1990 standard, with its
published corrigenda, and with a number of language extensions. These exten-
sions include many features that have since been standardized in C99—such as
complex floating-point types and long long integers—as well as other features
that have not been adopted, such as complex integer types and zero-length arrays.
The full list of extensions is provided in the GCC documentation.

To turn off all the GNU C extensions, use the command-line option -ansi. This
book describes C as defined in ISO/IEC 9899:1999, or “C99.” GCC adheres (not
yet completely, but nearly so) to C99 if you use the command-line option
-std=c99, and we have done so in testing the examples in this book.

GCC’s language standardization options are:

-std=iso9899:1990, -std=c89, -ansi
These three options all mean the same thing: conform to ISO/IEC 9899:1990,
including Technical Corrigenda of 1994 and 1996. They do not mean that no
extensions are accepted: only those GNU extensions that conflict with the
ISO standard are disabled, such as the typeof operator.

-std=iso9899:199409
Conform to “AMD1,” the 1995 internationalization amendment to ISO/IEC
9899:1990.

-std=iso9899:1999, -std=c99
Conform to ISO/IEC 9899:1999, with the Technical Corrigendum of 2001.
Note that support for all provisions of C99 is not yet complete. See http://
gcc.gnu.org/c99status.html for the current development status.

-std=gnu89
Support ISO/IEC 9899:1990 and the GNU extensions. This dialect is GCC’s
default.

-std=gnu99
Support ISO/IEC 9899:1999 and the GNU extensions. This dialect is
expected to become the default dialect of future GCC versions once C99
support has been completed.

502 | Chapter 18: Compiling with GCC

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

With any of these options, you must also add the option -pedantic if you want GCC
to issue all the warnings that are required by the given standard version, and to reject
all extensions that are prohibited by the standard. The option -pedantic-errors
causes compiling to fail when such warnings occur.

Earlier versions of GCC also offered a -traditional option, which was intended to
provide support for pre-ANSI or “K&R-style” C. Currently GCC supports this
option only in the preprocessing stage, and accepts it only in conjunction with the
-E option, which directs GCC to perform preprocessing and then exit.

Furthermore, a number of GCC options allow you to enable or disable individual
aspects of different standards and extensions. For example, the -trigraphs option
enables trigraphs (see “Digraphs and Trigraphs” in Chapter 1) even if you have
not used the -ansi option. For the full list of available dialect options, see the
GCC manual.

Compiler Warnings
You’ll get two types of complaints from GCC when compiling a C program. Error
messages refer to problems that make your program impossible to compile.
Warnings refer to conditions in your program that you might want to know about
and change—for stricter conformance to a given standard, for example—but that
do not prevent the compiler from finishing its job. You may be able to compile
and run a program in spite of some compiler warnings—although that doesn’t
mean it’s a good idea to do so.

GCC gives you very fine control over the warning messages that it provides. For
example, if you don’t like the distinction between errors and warnings, you can
use the -Werror option to make GCC stop compiling on any warning, as if it were
an error. Other options let you request warnings about archaic or nonstandard
usage, and about many kinds of C constructs in your programs that are consid-
ered hazardous, ambiguous, or sloppy.

You can enable most of GCC’s warnings individually using options that begin
with -W. For example, the option -Wswitch-default causes GCC to produce a
warning message whenever you use a switch statement without a default label,
and -Wsequence-point provides a warning when the value of an expression
between two sequence points depends on a subexpression that is modified in the
same interval (see “Side Effects and Sequence Points” in Chapter 5).

The easiest way to request these and many other warnings from GCC is to use the
command-line option -Wall. However, the name of this option is somewhat
misleading: -Wall does not enable all of the individual -W options. Quite a few
more must be asked for specifically by name, such as -Wshadow: this option gives
you a warning whenever you define a variable with block scope that has the same
name as, and thus “shadows,” another variable with a larger scope. Such warn-
ings are not among those produced by -Wall.

If you use the -Wall option but want to disable a subset of the warnings it causes,
you can insert no- after the -W in the names of individual warning options. Thus
-Wno-switch-default turns off warnings about switch statements without default.

Optimization | 503

G
CC

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Furthermore, the -w option (that’s a lowercase w) anywhere on the command line
turns off all warnings.

The option -Wextra (formerly named simply -W, with no suffix) adds warnings
about a number of legal but questionable expressions, such as testing whether an
unsigned value is negative or non-negative:

unsigned int u;
/* ... */
if (u < 0)
 { /* ... this block is never executed ... */ }

The -Wextra option also warns about expressions that have no side effects and
whose value is discarded. The full set of conditions it checks for is described in the
GCC manual.

Furthermore, if you are updating older programs, you may want to use
-Wtraditional to request warnings about constructs that have different meanings
in old-style C and ISO standard C, such as a string literal in a macro body that
contains the macro’s argument:

#define printerror(x) fputs("x\n", stderr)

In older, “traditional” C, this macro would work as intended, but ISO standard C,
it would print the letter “x” and a newline character each time you use it. Hence
-Wtraditional would generate a warning for this line:

file:line:column: warning: macro argument "x" would be stringified in
traditional C

Optimization
GCC can apply many techniques to make the executable program that it gener-
ates faster and/or smaller. These techniques all tend to reduce still further the
“word-for-word” correspondence between the C program you write and the
machine code that the computer reads. As a result, they can make debugging
more difficult, and are usually applied only after a program has been tested and
debugged without optimization.

There are two kinds of optimization options. You can apply individual optimi-
zation techniques by means of options beginning with -f (for flag), such as
-fmerge-constants, which causes the compiler to place identical constants in a
common location, even across different source files. You can also use the -O
options (-O0, -O1, -O2, and -O3) to set an optimization level that cumulatively
enables a number of techniques at once.

The -O Levels

Each of the -O options represents a number of individual optimization techniques.
The -O optimization levels are cumulative: -O2 includes all the optimizations in -O1,
and -O3 includes -O2. For complete and detailed descriptions of the different levels,

504 | Chapter 18: Compiling with GCC

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

and the many -f optimization options that they represent, see the GCC reference
manual. The following list offers a brief description of each level:

-O0
Turn off all optimization options.

-O, -O1
Try to make the executable program smaller and faster, but without
increasing compiling time excessively. The techniques applied include
merging identical constants, basic loop optimization, and grouping stack
operations after successive function calls. An -O with no number is inter-
preted as -O1.

-O2
Apply almost all of the supported optimization techniques that do not
involve a tradeoff between program size and execution speed. This option
generally increases the time needed to compile. In addition to the optimiza-
tions enabled by -O1, the compiler performs common subexpression
elimination, or CSE; this process involves detecting mathematically equiva-
lent expressions in the program and rewriting the code to evaluate them only
once, saving the value in an unnamed variable for reuse. Furthermore,
instructions are reordered to reduce the time spent waiting for data moving
between memory and CPU registers. Incidentally, the data flow analysis
performed at this level of optimization also allows the compiler to provide
additional warnings about the use of uninitialized variables.

-O3
Generate inline functions and enable more flexible allocation of variables to
processor registers. Includes the -O2 optimizations.

-Os
Optimize for size. This option is like -O2, but without those performance
optimizations that are likely to increase the code size. Furthermore, block
reordering and the alignment of functions and other jump destinations on
power-of-two byte boundaries are disabled. If you want small executables,
you should be compiling with the GCC option -s, which instructs the linker
to strip all the symbol tables out of the executable output file after all the
necessary functions and objects have been linked. This makes the finished
program file significantly smaller, and is often used in building a production
version.

The following example illustrates how -O options are used:

$ gcc -Wall -O3 -o circle circle.c circulararea.c -lm

This command uses -O3 to enable the majority of the supported optimization
techniques.

The -f Flags

GCC’s many -f options give you even finer control over optimization. For
example, you can set a general optimization level using an -O option, and then
turn off a certain technique. An example:

$ gcc -Wall -O3 -fno-inline-functions -o circle circle.c circulararea.c -lm

Optimization | 505

G
CC

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The options -O3 -fno-inline-functions in this command enable all the optimiza-
tions grouped in -O3 except inline compiling of functions.

There are also flags to enable many optimizations that are not included in any -O
level, such as -funroll-loops; this option replaces loop statements that have a
known, small number of iterations with repetitive, linear code sequences, thus
saving jumps and loop-counter operations. A full list of the hundred or so -f
options that control GCC’s individual optimization flags would be too long for
this chapter, but the examples in this section offer a hint of the capabilities avail-
able. If you need a certain compiler feature, there’s a good chance you’ll find it in
the manual.

Floating-Point Optimization

Some of the optimization options that are not included in the -O groups pertain to
floating-point operations. The C99 floating-point environment supports scientific
and mathematical applications with a high degree of numeric accuracy, but for a
given application, you might be more interested in speed than in the best floating-
point math available. For such cases, the -ffast-math option defines the prepro-
cessor macro _ _FAST_MATH_ _, indicating that the compiler makes no claim to
conform to IEEE and ISO floating-point math standards. The -ffast-math flag is a
group option, which enables the following six individual options:

-fno-math-errno
Disables the use of the global variable errno for math functions that repre-
sent a single floating-point instruction.

-funsafe-math-optimizations
The “unsafe math optimizations” are those that might violate floating-point
math standards, or that do away with verification of arguments and results.
Using such optimizations may involve linking code that modifies the floating-
point processor’s control flags.

-fno-trapping-math
Generates “nonstop” code, on the assumption that no math exceptions will
be raised that can be handled by the user program.

-ffinite-math-only
Generates executable code that disregards infinities and NaN (“not a
number”) values in arguments and results.

-fno-rounding-math
This option indicates that your program does not depend on a certain
rounding behavior, and does not attempt to change the floating-point envi-
ronment’s default rounding mode. This setting is currently the default, and
its opposite, -frounding-math, is still experimental.

-fno-signaling-nans
This option permits optimizations that limit the number of floating-point
exceptions that may be raised by signaling NaNs. This setting is currently the
default, and its opposite, -fsignaling-nans, is still experimental.

506 | Chapter 18: Compiling with GCC

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Architecture-Specific Optimization

For certain system architectures, GCC provides options to produce optimized
code for specific members of the processor family, taking into account features
such as memory alignment, model-specific CPU instructions, stack structures,
increased floating-point precision, prefetching and pipelining, and others. These
machine-specific options begin with the prefix -m. If you want to compile your
code to make the most of a specific target system, read about the available options
in the GCC reference manual.

For several processor types, such as the Sparc, ARM, and RS/6000-PowerPC
series, the option -mcpu=cpu generates machine code for the specific CPU type’s
register set, instruction set, and scheduling behavior. Programs compiled with this
option may not run at all on a different model in the same CPU family. The GCC
manual lists the available cpu abbreviations for each series.

The option -mtune=cpu is more tolerant. Code generated with -mtune=cpu uses
optimized scheduling parameters for the given CPU model, but adheres to the
family’s common instructions and registers, so that it should still run on a related
model.

For the Intel x86 series, the -mcpu=cpu option is the same as -mtune=cpu. The
option to enable a model-specific instruction set is -march=cpu. An example:

$ gcc -Wall -O -march=athlon-4 -o circle circle.c circulararea.c -lm

This command line compiles a program for the AMD Athlon XP CPU.

Why Not Optimize?

Sometimes there are good reasons not to optimize. In general, compiling with
optimization takes longer and requires more memory than without optimization.
How much more depends on what techniques are applied. Furthermore, the
performance gains obtained by a given optimization technique depend on both
the given program and the target architecture. If you really need optimum perfor-
mance, you need to choose the techniques that will work in your specific
circumstances.

You can combine both -O and -f optimization options with GCC’s -g option to
include debugging information in the compiled program, but if you do, the results
may be hard to follow in a debugging program; optimization can change the order
of operations, and variables defined in the program may not remain associated
with one register, or may even be optimized out of existence. For these reasons,
many developers find it easier to optimize only after a program has been
debugged.

Some optimization options may also conflict with strict conformance to the ISO C
standard, such as merging variables declared with const as if they were constants.
If standards-conformance is critical, and sometimes it is, there are certain optimi-
zations you may not wish to pursue.

Profiling | 507

G
CC

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Another issue you may encounter is that some optimization techniques result in
nondeterministic code generation. For example, the compiler may use random-
ness in guessing which branch of a conditional jump will be taken most often. If
you are programming real-time applications, you’ll probably want to be careful to
ensure deterministic behavior.

In any case, if you want to be sure of getting the greatest possible runtime perfor-
mance, or if you need to know in detail how GCC is arriving at the exact machine
code for your C program, you will need to study the detailed optimization options
in the GCC manual.

Debugging
Use the -g option to have GCC include symbol and source-line information in its
object and executable output files. This information is used by debugging
programs to display the contents of variables in registers and memory while step-
ping through the program. (For more on debugging, see Chapter 20.) There are a
number of formats for this symbol information, and by default GCC uses your
system’s native format.

You can also use a suffix to the -g option to store the symbol information in a
different format from your system’s native format. You might want to do this in
order to conform to the specific debugging program that you are using. For
example, the option -ggdb chooses the best format available on your system for
debugging with the GNU debugger, GDB.

Because the symbol information can increase and even multiply the size of your
executable file, you will probably want to recompile without the -g option and
link using the -s option when you have completed debugging and testing.
However, some software packages are distributed with debugging information in
the binaries for use in diagnosing subsequent users’ problems.

Profiling
The -p option adds special functions to your program to output profiling informa-
tion when you run it. Profiling is useful in resolving performance problems,
because it lets you see which functions your program is spending its execution
time on. The profiling output is saved in a file called mon.out. You can then use
the prof utility to analyze the profiling information in a number of ways; see the
prof manual for details.

For the GNU profiler, gprof, compile your program with the -pg option. The
default output filename for the profiling information is then gmon.out. gprof with
the -pg option can generate a call graph showing which functions in your program
call which others. If you combine the -pg option with -g, the GCC option that
provides source-line information for a debugger, then gprof can also provide line-
by-line profiling.

508 | Chapter 18: Compiling with GCC

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Option and Environment Variable Summary
This section summarizes frequently used GCC options for quick reference, and
lists the environment variables used by GCC.

Command-Line Options

-c
Preprocess, compile, and assemble only (i.e., don’t link).

-C
Leave comments in when preprocessing.

-Dname[=definition]
Defines the symbol name.

-ename
Start program execution at name.

-E
Preprocess only; output to stdout, unless used with -o.

-ffast-math
Permit faster floating-point arithmetic methods at the cost of accuracy or
precision.

-ffinite-math-only
Disregard infinities and NaN (“not a number”) values.

-ffreestanding
Compile as a freestanding (not hosted) program.

-finline-functions, -fno-inline-functions
Enable/disable inline functions.

-fno-math-errno
Disable the errno variable for simple math functions.

-fno-trapping-math
Generate “nonstop” floating-point code.

-frounding-math
Don’t disregard the rounding-mode features of the floating-point environ-
ment (experimental).

-fsignaling-nans
Allow all exceptions raised by signaling NaNs (experimental).

-fsyntax-only
Don’t compile or link; just test input for syntax.

-funroll-loops, -fno-unroll-loops
Enable/disable loop optimization.

-funsafe-math-optimizations
Permit optimizations that don’t conform to standards and/or don’t verify
values.

Option and Environment Variable Summary | 509

G
CC

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

-fverbose-asm
Include C variable names as comments in assembly language.

-g[format]
Compile for debugging.

-Idirectory[:directory[...]]
Search for “include” files in the specified path.

-I-
Distinguish between -Ipath for #include <file> and -Ipath for #include
"file".

-lbasename
Link with library libbasename.so or libbasename.a.

-Ldirectory[:directory[...]]
Search for library files in the specified path.

-march=cpu
Intel x86: Generate model-specific code.

-mcpu=cpu
Sparc, ARM, and RS/6000-PowerPC: Generate model-specific code.

Intel x86: Optimize scheduling for the specified CPU model.

-mtune=cpu
Optimize scheduling for the specified CPU model.

-nostartfiles
Don’t link startup code.

-nostdlib
Don’t link with the standard library.

-o file
Direct output to the specified file.

-O0
Turn off all optimization options.

-O, -O1
Perform some optimization without taking much time.

-O2
Perform more optimization, including data flow analysis.

-O3
Perform still more optimization, including inline function compilation.

-Os
Optimize for size.

-p
Link in code to output profiling information.

-pedantic
Output warnings on nonstandard usage.

510 | Chapter 18: Compiling with GCC

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

-pedantic-errors
Fail on nonstandard usage.

-pg
Link in code to output profiling information for gprof.

-s
Strip symbol tables from executable file.

-S
Preprocess and translate into assembly language only.

-save-temps
Save intermediate output files.

-shared
Create a shared object file for dynamic linking.

-static
Don’t link to shared object files.

-std=iso9899:1990

-std=c89

-ansi
Support ISO/IEC 9899:1990.

-std=iso9899:199409
Support ISO/IEC 9899:1989 and AMD1.

-std=c99
Support ISO/IEC 9899:1999.

-std=gnu89
Like -ansi, plus GNU extensions (default).

-std=gnu99
Like -std=c99, plus GNU extensions.

-traditional
Support old-style C. Deprecated; supported only with -E.

-trigraphs
Support ISO C trigraphs.

-Uname
“Undefine” the symbol name.

-v
Be verbose: print the options applied at each step of compiling.

--version
Output GCC version and license information.

-w
Disable all warnings.

-Wa,option[,option[...]]
Pass options to assembler command line.

Option and Environment Variable Summary | 511

G
CC

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

-Wall
Output warnings about a broad range of problems in source code.

-Wl,option[,option[...]]
Pass options to linker command line.

-Werror
Fail on all warnings.

-Wextra
Output warnings about legal but questionable usage.

-Wtraditional
Warn about differences to old-style C.

-fmerge-constants
Put identical constants in a single location.

-x filetype
Treat subsequent files as being of the specified type.

Environment Variables

CPATH, C_INCLUDE_PATH
Colon-separated list of directories to search for header files, after those indi-
cated by -Idirectory on the command line.

COMPILER_PATH
Colon-separated list of directories to search for GCC’s own subprogram files.

GCC_EXEC_PREFIX
A prefix for GCC to add to the names of its subprograms when invoking
them. May end with a slash.

LIBRARY_PATH
Colon-separated list of directories to search for linker and library files, after
directories specified by -Ldirectory on the command line.

LD_LIBRARY_PATH
Colon-separated list of directories to search for shared library files. Read not
by GCC, but by executables dynamically linked against shared libraries.

TMPDIR
Directory to use for temporary files.

512

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Chapter 19Using make

19
Using make to Build
C Programs

As you saw in Chapter 18, the commands involved in compiling and linking C
programs can be numerous and complex. The make utility automates and
manages the process of compiling programs of any size and complexity, so that a
single make command replaces hundreds of compiler and linker commands.
Moreover, make compares the timestamps of related files to avoid having to
repeat any previous work. And most importantly, make manages the individual
rules that define how to build various targets, and automatically analyzes the
dependency relationships between all the files involved.

There are a number of different versions of make, and their features and usage
differ to varying degrees. They feature different sets of built-in variables and targets
with special meanings. In this brief chapter, rather than trying to cover different
varieties, we concentrate on GNU make, which is widely available. (On systems
that use a different default make, GNU make is often available under the execut-
able name gmake.) Furthermore, even as far as GNU make is concerned, this
chapter sticks more or less to the basics: in this book, we want to use make only as
a tool for building programs from C source code. If you want to go on to exploit
the full capabilities of make, an inevitable step is to read the program’s documenta-
tion itself. For a well-structured course in using make’s advanced capabilities, see
also Managing Projects with GNU make by Robert Mecklenburg (O’Reilly).

Targets, Prerequisites, and Commands
Before we describe the make solution, we will briefly review the problem. To make
an executable program, we need to link compiled object files. To generate object
files, we need to compile C source files. The source files in turn need to be prepro-
cessed to include their header files. And whenever we have edited a source or header
file, then any file that was directly or indirectly generated from it needs to be rebuilt.

Rules | 513

U
sin

g
 m

ake

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The make utility organizes the work just described in the form of rules. For C
programs, these rules generally take the following form: the executable file is a
target that must be rebuilt whenever certain object files have changed—the object
files are its prerequisites. At the same time, the object files are intermediate targets,
which must be recompiled if the source and header files have changed. (Thus the
executable depends indirectly on the source files. make manages such depen-
dency chains elegantly, even when they become complex.) The rule for each target
generally contains one or more commands, called the command script, that make
executes to build it. For example, the rule for building the executable file says to
run the linker, while the rule for building object files says to run the preprocessor
and compiler. In other words, a rule’s prerequisites say when to build the target,
and the command script says how to build it.

The Makefile
The make program has a special syntax for its rules. Furthermore, the rules for all
the operations that you want make to manage in your project generally need to be
collected in a file for make to read. The command-line option -f filename tells
make which file contains the rules you want it to apply. Usually, though, this
option is omitted and make looks for a file with the default name makefile, or
failing that, Makefile.*

When you read makefiles, remember that they are not simply scripts to be
executed in sequential order. Rather, make first analyzes an entire makefile to
build a dependency tree of possible targets and their prerequisites, then iterates
through that dependency tree to build the desired targets.

In addition to rules, makefiles also contain comments, variable assignments,
macro definitions, include directives, and conditional directives. These will be
discussed in later sections of this chapter, after we have taken a closer look at the
meat of the makefile: the rules.

Rules
Example 19-1 shows a makefile that might be used to build the program in
Example 1-2.

* Before makefile or Makefile, GNU make without the -f option first looks for a file named
GNUmakefile.

Example 19-1. A basic makefile

A basic makefile for "circle".

CC = gcc
CFLAGS = -Wall -g -std=c99
LDFLAGS = -lm

circle : circle.o circulararea.o
 $(CC) $(LDFLAGS) -o $@ $^

514 | Chapter 19: Using make to Build C Programs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The line that begins with the character # is a comment, which make ignores. This
makefile begins by defining some variables, which are used in the statements that
follow. The rest of the file consists of rules, whose general form is:

target [target [...]] : [prerequisite [prerequisite [...]]]
 [command
 [command
 [...]]]

The first target must be placed at the beginning of the line, with no whitespace to
the left of it. Moreover, each command line must start with a tab character. (It
would be simpler if all whitespace characters were permissible here, but that’s not
the case.)

Each rule in the makefile says, in effect: if any target is older than any prerequisite,
then execute the command script. More importantly, make also checks whether the
prerequisites have other prerequisites in turn before it starts executing commands.

Both the prerequisites and the command script are optional. A rule with no
command script only tells make about a dependency relationship; and a rule with
no prerequisites tells only how to build the target, not when to build it. You can
also put the prerequisites for a given target in one rule, and the command script in
another. For any target requested, whether on the make command line or as a
prerequisite for another target, make collects all the pertinent information from all
rules for that target before it acts on them.

Example 19-1 shows two different notations for variable references in the
command script. Variable names that consist of more than one character—in this
case, CC, CFLAGS, and LDFLAGS—must be prefixed with a dollar sign and enclosed in
parentheses when referenced. Variables that consist of just one character—in our
example, these happen to be the automatic variables ^, <, and @—need just the
dollar sign, not the parentheses. We discuss variables in detail in a separate
section later in this chapter. The following program output shows how make
expands both kinds of variables to generate compiler commands:

$ make -n -f Makefile19-1 circle
gcc -Wall -g -std=c99 -o circle.o -c circle.c
gcc -Wall -g -std=c99 -o circulararea.o -c circulararea.c
gcc -lm -o circle circle.o circulararea.o

The command-line option -n instructs make to print the commands it would
otherwise execute to build the specified targets. This option is indispensable when
testing makefiles. (A complete reference list of make options is included at the end
of this chapter.) The final line of output corresponds to the first rule contained in
Example 19-1. It shows that make expands the variable reference $(CC) to the text
gcc and $(LDFLAGS) to -lm. The automatic variables $@ and $^ expand to the target

circle.o : circle.c
 $(CC) $(CFLAGS) -o $@ -c $<

circulararea.o: circulararea.c
 $(CC) $(CFLAGS) -o $@ -c $<

Example 19-1. A basic makefile (continued)

Rules | 515

U
sin

g
 m

ake

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

circle and the prerequisite list circle.o circulararea.o. In the first two output
lines, the automatic variable $< is expanded to just one prerequisite, which is the
name of the C source file to be compiled.

The Command Script

The command script for a rule can consist of several lines, each of which must
begin with a tab. Comments and blank lines are ignored, so that the command
script ends with the next target line or variable definition.

Furthermore, the first line of the command script may be placed after a semicolon
at the end of the dependency line, thus:

target_list : [prerequisite_list] ; [command
 [command
 [...]]]

This variant is rarely used today, however.

The important thing to remember about the command part of a make rule is that
it is not a shell script. When make invokes a rule to build its target, each line in
the rule’s command section is executed individually, in a separate shell instance.
Thus you must make sure that no command depends on the side effects of a
preceding line. For example, the following commands will not run etags in the src
subdirectory:

TAGS:
 cd src/
 etags *.c

In trying to build TAGS, make runs the shell command cd src/ in the current direc-
tory. When that command exits, make runs etags *.c in a new shell, again in the
current directory.

There are ways to cause several commands to run in the same shell: putting them
on one line, separated by a semicolon, or adding a backslash to place them virtu-
ally on one line:

TAGS:
 cd src/ ;\
 etags *.c

Another reason for running multiple commands in the same shell could be to
speed up processing, especially in large projects.

Pattern Rules

The last two rules in Example 19-1 show a repetitive pattern. Each of the two
object files, circle.o and circulararea.o, depends on a source file with the same
name and the suffix .c, and the commands to build them are the same. make lets
you describe such cases economically using pattern rules. Here is a single rule that
replaces the last two rules in Example 19-1:

circulararea.o circle.o: %.o: %.c
 $(CC) $(CFLAGS) -o $@ -c $<

516 | Chapter 19: Using make to Build C Programs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The first line of this rule has three colon-separated parts rather than two. The first
part is a list of the targets that the rule applies to. The rest of the line, %.o: %.c, is
a pattern explaining how to derive a prerequisite name from each of the targets,
using the percent sign (%) as a wildcard. When make matches each target in the
list against the pattern %.o, the part of the target that corresponds to the wildcard
% is called the stem. The stem is then substituted for the percent sign in %.c to
yield the prerequisite.

The general syntax of such pattern rules is:

[target_list :] target_pattern : prerequisite_pattern
 [command-script]

You must make sure that each target in the list matches the target pattern. Other-
wise, make issues an error message.

If you include an explicit target list, the rule is a static pattern rule. If you omit the
target list, the rule is called an implicit rule, and applies to any target whose name
matches the target pattern. For example, if you expect to add more modules as the
circle program grows and evolves, you can make a rule for all present and future
object files in the project like this:

%.o: %.c
 $(CC) $(CFLAGS) -o $@ -c $<

And if a certain object needs to be handled differently for some reason, you can
put a static pattern rule for that object file in the makefile as well. make then
applies the static rule for targets explicitly named in it, and the implicit rule for all
other .o files. Also, make refrains from announcing an error if any object file’s
implicit prerequisite does not exist.

The percent sign is usually used only once in each pattern. To represent a literal
percent sign in a pattern, you must escape it with a backslash. For example, the
filename app%3amodule.o matches the pattern app\%3a%.o, and the resulting stem
is module. To use a literal backslash in a pattern without escaping a percent sign
that happens to follow it, you need to escape the backslash itself. Thus the file-
name app\module.o would match the pattern app\\%.o, yielding the stem module.

Suffix Rules

The kind of pattern rule in which the percent sign represents all but the file-
name’s suffix is the modern way of expressing a suffix rule. In older makefiles, you
might see such a rule expressed in the following notation:

.c.o:
 $(CC) $(CFLAGS) ...

The “target” in this rule consists simply of the target and source filename
suffixes—and in the opposite order; that is, with the source suffix first, followed
by the target suffix. This example with the target .c.o: is equivalent to a pattern
rule beginning with %o: %c. If a suffix rule target contains only one suffix, then
that is the suffix for source filenames, and target filenames under that rule are
assumed to have no suffix.

GNU make also supports suffix rules, but that notation is considered obsolete.
Pattern rules using the % wildcard character are more readable, and more versatile.

Rules | 517

U
sin

g
 m

ake

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Every suffix used in the target of a suffix rule must be a “known suffix.” make
stores its list of known suffixes in the built-in variable SUFFIXES. You can add your
own suffixes by declaring them as prerequisites of the built-in target .SUFFIXES
(see the section “Special Targets Used as Runtime Options,” near the end of this
chapter, for more about his technique).

Built-in Rules

You don’t have to tell make how to do standard operations like compiling an
object file from C source; the program has a built-in default rule for that opera-
tion, and for many others. Example 19-2 shows a more elegant version of our
sample makefile that takes advantage of built-in rules.

This makefile does away with the rule for compiling source code into objects,
depending instead on make’s built-in pattern rule. Furthermore, the rule that says
the executable circle depends on the two object files has no command script. This
is because make also has a built-in rule to link objects to build an executable. We
will look at those built-in rules in a moment. First, suppose we enter this
command:

$ touch *.c ; make circle

This produces roughly the same output as before:

gcc -Werror -std=c99 -c -o circle.o circle.c
gcc -Werror -std=c99 -c -o circulararea.o circulararea.c
gcc circle.o circulararea.o /usr/lib/libm.so -o circle

None of these commands is visible in the new makefile in Example 19-2, even if
individual arguments are recognizable in the variable assignments. To display
make’s built-in rules (as well as the variables at work), you can run the program
with the command-line switch -p. The output is rather long. Here are the parts of
it that are relevant to our example (including the comments that make generates
to identify where each variable or rule definition originates):

default
OUTPUT_OPTION = -o $@

default
LINK.o = $(CC) $(LDFLAGS) $(TARGET_ARCH)

default
COMPILE.c = $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) -c

Example 19-2. A makefile using built-in rules

A slightly more elegant makefile for "circle".

CC = gcc
CFLAGS = -Werror -std=c99
OBJS = circle.o circulararea.o

circle: $(OBJS) -lm

518 | Chapter 19: Using make to Build C Programs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

%: %.o
commands to execute (built-in):
 $(LINK.o) $^ $(LOADLIBES) $(LDLIBS) -o $@

%.o: %.c
commands to execute (built-in):
 $(COMPILE.c) $(OUTPUT_OPTION) $<

Note that the linking step was handled by a combination of two rules; make auto-
matically applied the command defined by the built-in rule using the information
about the prerequisites provided by the dependency rule in the makefile.

Finally, the makefile in Example 19-2, unlike Example 19-1, does not define a
variable for linker options. Instead, it correctly lists the C math library as a prereq-
uisite of the executable circle, using the same -lm notation as the compiler’s
command line. The output shown illustrates how make expands this notation to
the full library filename.

Implicit Rule Chains

make tries to use implicit rules, whether built-in ones or pattern rules from the
makefile, for any target that doesn’t have an explicit rule with a command script.
There may be many implicit rules that match a given target. For example, make
has built-in rules to generate an object file (matching the pattern %.o) from source
code in C (%.c) or C++ (%.cpp) or even assembler (%.s). Which rule does make
use, then? It selects the first one in the list for which the prerequisites either are
available or can be made by applying appropriate rules. In this way, make can
automatically apply a chain of implicit rules to generate a target. If make gener-
ates any intermediate files that are not mentioned in the makefile, it deletes them
once they have served their purpose. For example, suppose that the current direc-
tory contains only the file square.c, and the makefile contains the following:

%: %.o
 cc -o $@ $^

%.o : %.c
 cc -c -o $@ $<

To disable all the built-in rules and use only the two implicit rules we can see in
the makefile, we’ll run make with the -r option:

$ ls
Makefile square.c
$ make -r square
cc -c -o square.o square.c
cc -o square square.o
rm square.o
$ ls
Makefile square square.c

From the target, the two implicit rules in the makefile, and the available source
file, make found the indirect way to build the target, and then automatically
cleaned up the intermediate object file, because it isn’t mentioned in the makefile
or on the command line.

Rules | 519

U
sin

g
 m

ake

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Double-Colon Rules

Before we move away from rules, another kind of rule that you should know
about is the double-colon rule, so named because it has not one, but two colons
between the targets and the prerequisites:

target :: prerequisites
commands

Double-colon rules are the same as single-colon rules, unless your makefile
contains multiple double-colon rules for the same target. In that case, make treats
the rules as alternative rather than cumulative: instead of collating all the rules’
prerequisites into a single set of dependencies for the target, make tests the target
against each rule’s prerequisites separately to decide whether to execute that rule’s
script. Example 19-3 shows a makefile that uses double-colon rules.

The makefile in Example 19-3 builds the target circle in either of two ways, with
or without debugging options in the compiler command line. In the first rule for
circle, the target depends on the source files. make runs the command for this rule
if the source files are newer than the executable. In the second rule, circle depends
on a file named debug in the current directory. The command for that rule doesn’t
use the prerequisite debug at all. That file is empty; it just sits in the directory for
the sake of its timestamp, which tells make whether to build a debugging version
of the circle executable. The following sample session illustrates how make can
alternate between the two rules:

$ make clean
rm -f circle
$ make circle
gcc -Wall -std=c99 -o circle -lm circle.c circulararea.c
$ make circle
make: `circle' is up to date.
$ touch debug

Example 19-3. Double-colon rules

A makefile for "circle" to demonstrate double-colon rules.

CC = gcc
RM = rm -f
CFLAGS = -Wall -std=c99
DBGFLAGS = -ggdb -pg
DEBUGFILE = ./debug
SRC = circle.c circulararea.c

circle :: $(SRC)
 $(CC) $(CFLAGS) -o $@ -lm $^

circle :: $(DEBUGFILE)
 $(CC) $(CFLAGS) $(DBGFLAGS) -o $@ -lm $(SRC)

.PHONY : clean
clean :
 $(RM) circle

520 | Chapter 19: Using make to Build C Programs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

$ make circle
gcc -Wall -std=c99 -ggdb -pg -o circle -lm circle.c circulararea.c
$ make circle
make: `circle' is up to date.
$ make clean
rm -f circle
$ make circle
gcc -Wall -std=c99 -o circle -lm circle.c circulararea.c

As the output shows, make applies only one rule or the other, depending on
which rule’s prerequisites are newer than the target. (If both rules’ prerequisites
are newer than the target, make applies the rule that appears first in the makefile.)

Comments
In a makefile, a hash mark (#) anywhere in a line begins a comment, unless the
line is a command. make ignores comments, as if the text from the hash mark to
the end of its line did not exist. Comments (like blank lines) between the lines of a
rule do not interrupt its continuity. Leading whitespace before a hash mark is
ignored.

If a line containing a hash mark is a command—that is, if it begins with a tab
character—then it cannot contain a make comment. If the corresponding target
needs to be built, make passes the entire command line, minus the leading tab
character, to the shell for execution. (Some shells, such as the Bourne shell, also
interpret the hash mark as introducing a comment, but that is beyond make’s
control.)

Variables
All variables in make are of the same type: they contain sequences of characters,
never numeric values. Whenever make applies a rule, it evaluates all the variables
contained in the targets, prerequisites, and commands. Variables in GNU make
come in two “flavors,” called recursively expanded and simply expanded variables.
Which flavor a given variable has is determined by the specific assignment oper-
ator used in its definition. In a recursively expanded variable, nested variable
references are stored verbatim until the variable is evaluated. In a simply
expanded variable, on the other hand, variable references in the value are
expanded immediately on assignment, and their expanded values are stored, not
their names.

Variable names can include any character except :, =, and #. However, for robust
makefiles and compatibility with shell constraints, you should use only letters,
digits, and the underscore character.

Assignment Operators

Which assignment operator you use in defining a variable determines whether it is
a simply or a recursively expanded variable. The assignment operator = in the
following example creates a recursively expanded variable:

DEBUGFLAGS = $(CFLAGS) -ggdb -DDEBUG -O0

Variables | 521

U
sin

g
 m

ake

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

make stores the character sequence to the right of the equals sign verbatim; the
nested variable $(CFLAGS) is not expanded until $(DEBUGFLAGS) is used.

To create a simply expanded variable, use the assignment operator := as shown in
the following example:

OBJ = circle.o circulararea.o
TESTOBJ := $(OBJ) profile.o

In this case make stores the character sequence circle.o circulararea.o profile.o
as the value of $(TESTOBJ). If a subsequent assignment modifies the value of $(OBJ),
$(TESTOBJ) is not affected.

You can define both recursively expanded and simply expanded variables not only
in the makefile, but also on the make command line, as in the following example:

$ make CFLAGS=-ffinite-math-only circulararea.o

Each such assignment must be contained in a single command-line argument. If
the assignment contains spaces, you must escape them or enclose the entire
assignment in quotation marks. Any variable defined on the command line, or in
the shell environment, can be cancelled out by an assignment in the makefile that
starts with the optional override keyword, as this one does:

override CPPLFAGS = -DDEBUG

Use override assignments with caution, unless you want to confuse and frustrate
future users of your makefile.

make also provides two more assignment operators. Here is the complete list:

= Defines a recursively expanded variable.

:= Defines a simply expanded variable.

+= Also called the append operator. Appends more characters to the existing
value of a variable. If the left operand is not yet defined, the assignment
defines a recursively expanded variable. Or, to put it another way, the result
of the append operator is a recursively expanded variable, unless its left
operand already exists as a simply expanded variable.

This operator provides the only way to append characters to the value of a
recursively expanded variable. The following assignment is wrong, as recur-
sive expansion would cause an infinite loop:

OBJ = $(OBJ) profile.o

Here is the right way to do it:

OBJ += profile.o

The += operator automatically inserts a space before appending the new text
to the variable’s previous value.

?= The conditional assignment operator. Assigns a value to a variable, but only if
the variable has no value.

The conditional assignment operator can only define recursively expanded
variables. If its left operand already exists, it remains unaffected, regardless of
whether it is a simply expanded or a recursively expanded variable.

522 | Chapter 19: Using make to Build C Programs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

In addition to these operations, there are two more ways to define make vari-
ables. One is the define directive, used to create variables of multiple lines; we
will discuss this in the section “Macros,” later in this chapter. Another is by
setting environment variables in the system shell before you invoke make. We will
discuss make’s use of environment variables later in the chapter as well.

Variables and Whitespace

In a variable assignment, make ignores any whitespace between the assignment
operator and the first non-whitespace character of the value. However, trailing
whitespace up to the end of the line containing the variable assignment, or up to a
comment that follows on the same line, becomes part of the variable’s value.
Usually this behavior is unimportant, because most references to make variables
are options in shell command lines, where additional whitespace has no effect.
However, if you use variable references to construct file or directory names, unin-
tended whitespace at the end of an assignment line can be fatal.

On the other hand, if you develop complex makefiles, you could sometimes need
a literal space that make does not ignore or interpret as a list separator. The easiest
way is to use a variable whose value is a single space character, but defining such a
variable is tricky. Simply enclosing a space in quotation marks does not have the
same effect as in C. Consider the following assignment:

ONESPACE := ' '
TEST = Does$(ONESPACE)this$(ONESPACE)work?

In this case, a reference to $(TEST) would expand to the following text:

Does' 'this' 'work?

Double quotation marks are no different: they also become part of the variable’s
value. To define a variable containing just the space and nothing else, you can use
the following lines:

NOTHING :=
ONESPACE := $(NOTHING) # This comment terminates the variable’s value.

The variable reference $(NOTHING) expands to zero characters, but it ends the
leading whitespace that make trims off after the assignment operator. If you do
not insert a comment after the space character that follows $(NOTHING), you may
find it hard to tell when editing the makefile whether the single trailing space is
present as desired.

Target-Specific Variable Assignments

You can make any of the assignment operations apply to only a specific target (or
target pattern) by including a line in your makefile with the form:

target_list: [override] assignment

While make is building the given target—or its prerequisites—the target-specific
or pattern-specific variable supersedes any other definition of the same variable
name elsewhere in the makefile.

Example 19-4 shows a sample makefile illustrating different kinds of assignments.

Variables | 523

U
sin

g
 m

ake

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

For the targets debug and symbols, this makefile uses the append operator to add
the value of DEBUGCFLAGS to the value of CFLAGS, while conserving any compiler
flags already defined.

The assignment to SYMTABS illustrates another feature of make variables: you can
perform substitutions when referencing them. As Example 19-4 illustrates, a
substitution reference has this form:

$(name:ending=new_ending)

When you reference a variable in this way, make expands it, then checks the end
of each word in the value (where a word is a sequence of non-whitespace charac-
ters followed by a whitespace character, or by the end of the value) for the string
ending. If the word ends with ending, make replaces that part with new_ending. In
Example 19-4, the resulting value of $(SYMTABS) is circle.sym circulararea.sym.

Example 19-4. Variable assignments

Tools and options:
CC = gcc
CFLAGS = -c -Wall -std=c99 $(ASMFLAGS)
DEBUGCFLAGS = -ggdb -O0
RM = rm -f
MKDIR = mkdir -p

Filenames:
OBJ = circle.o circulararea.o
SYMTABS = $(OBJ:.o=.sym)
EXEC = circle

The primary targets:
production: clean circle

testing: clean debug

symbols: $(SYMTABS)

clean:
 $(RM) $(OBJ) *.sym circle circle-dbg

Rules to build prerequisites:
circle debug: $(OBJ) -lm
 $(CC) $(LDFLAGS) -o $(EXEC) $^

$(OBJ): %.o: %.c
 $(CC) $(CFLAGS) $(CPPFLAGS) -o $@ $<

$(SYMTABS): %.sym: %.c
 $(CC) $(CFLAGS) $(CPPFLAGS) -o $*.o $<

Target-specific options:
debug: CPPFLAGS += -DDEBUG
debug: EXEC = circle-dbg
debug symbols: CFLAGS += $(DEBUGCFLAGS)
symbols: ASMFLAGS = -Wa,-as=$*.sym,-L

524 | Chapter 19: Using make to Build C Programs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The variable CFLAGS is defined near the top of the makefile, with an unconditional
assignment. The expansion of the nested variable it contains, $(ASMFLAGS), is
deferred until make expands $(CFLAGS) in order to execute the compiler
command. The value of $(ASMFLAGS) for example may be -Wa,-as=circle.sym,-L,
or it may be nothing. When make builds the target symbols, the compiler
command expands recursively to:

gcc -c -Wall -std=c99 -Wa,-as=circle.sym,-L -ggdb -O0 -o circle.o circle.c
gcc -c -Wall -std=c99 -Wa,-as=circulararea.sym,-L -ggdb -O0 -o
circulararea.o circulararea.c

As you can see, if there is no variable defined with the name CPPFLAGS at the time
of variable expansion, make simply replaces $(CPPFLAGS) with nothing.

Unlike C, make doesn’t balk at undefined variables. The only differ-
ence between an undefined variable and a variable whose value
contains no characters is that a defined variable has a determined
flavor: it is either simply expanded or recursively expanded, and
cannot change its behavior, even if you assign it a new value.

Like many real-life makefiles, the one in Example 19-4 uses variables to store the
names of common utilities like mkdir and rm together with the standard options
that we want to use with them. This approach not only saves repetition in the
makefile’s command scripts, but also makes maintenance and porting easier.

The Automatic Variables

The command scripts in Example 19-4 also contain a number of single-character
variables: $@, $<, $^, and $*. These are automatic variables, which make defines
and expands itself in carrying out each rule. Here is a complete list of the auto-
matic variables and their meanings in a given rule:

$@ The target filename.

$* The stem of the target filename—that is, the part represented by % in a
pattern rule.

$< The first prerequisite.

$^ The list of prerequisites, excluding duplicate elements.

$? The list of prerequisites that are newer than the target.

$+ The full list of prerequisites, including duplicates.

$% If the target is an archive member, the variable $% yields the member name
without the archive filename, and $@ supplies the filename of the archive.

The last of these automatic variables brings up a special target case. Because most
programs depend not only on source code, but also on library modules, make also
provides a special notation for targets that are members of an archive:

archive_name(member_name): [prerequisites]
 [command_script]

Variables | 525

U
sin

g
 m

ake

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The name of the archive member is enclosed in parentheses immediately after the
filename of the archive itself. Here is an example:

AR = ar -rv

libcircularmath.a(circulararea.o): circulararea.o
 $(AR) $@ $%

This rule executes the following command to add or replace the object file in the
archive:

ar -rv libcircularmath.a circulararea.o

In other make versions, these special variables also have long names that start
with a dot, such as $(.TARGET) as a synonym for $@. Also, some make programs
use the symbol $> for all prerequisites rather than GNU make’s $^.

When an automatic variable expands to a list, such as a list of filenames, the
elements are separated by spaces.

To separate filenames from directories, there are two more versions of each auto-
matic variable in this list whose names are formed with the suffixes D and F.
Because the resulting variable name is two characters, not one, parentheses are
required. For example, $(@D) in any rule expands to the directory part of the
target, without the actual filename, while $(@F) yields just the filename with no
directory. (GNU make supports these forms for compatibility’s sake, but provides
more flexible handling of filenames by means of functions: see the section “Built-
in Functions,” later in this chapter.)

Other Built-in Variables

The variables that make uses internally are described in the following list. You can
also use them in makefiles. Remember that you can find out the sources of all
variables in the output of make -p.

MAKEFILES
A list of standard makefiles that make reads every time it starts.

MAKEFILE_LIST
A list of all the makefiles that the present invocation of make is using.

MAKE
This variable holds the name of the make executable. When you use $(MAKE)
in a command, make automatically expands it to the full path name of the
program file, so that all recursive instances of make are from the same
executable.

MAKELEVEL
When make invokes itself recursively, this variable holds the degree of recur-
sion of the present instance. In exporting this variable to the environment,
make increments its value. Child instances of make print this number in
square brackets after the program name in their console output.

MAKEFLAGS
This variable contains the command-line options with which make was
invoked, with some exceptions. Each instance of make reads this variable

526 | Chapter 19: Using make to Build C Programs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

from the environment on starting, and exports it to the environment before
spawning a recursive instance. You can modify this variable in the environ-
ment or in a makefile.

MAKECMDGOALS
make stores any targets specified on the command line in this variable. You
can modify this variable, but doing so doesn’t change the targets make builds.

CURDIR
This variable holds the name of the current working directory, after make has
processed its -C or --directory command-line options. You can modify this
variable, but doing so doesn’t change the working directory.

VPATH
The directory path that make uses to search for any files not found in the
current working directory.

SHELL
The name of the shell that make invokes when it runs command scripts,
usually /bin/sh. Unlike most variables, make doesn’t read the value of SHELL
from the environment (except on Windows), as users’ shell preferences
would make make’s results less consistent. If you want make to run
commands using a specific shell, you must set this variable in your makefile.

MAKESHELL
On Windows, this variable holds the name of the command interpreter for
make to use in running command scripts. MAKESHELL overrides SHELL.

SUFFIXES
make’s default list of known suffixes (see “Suffix Rules,” earlier in this
chapter). This variable contains the default list, which is not necessarily the list
currently in effect; the value of this variable does not change when you clear
the list or add your own known suffixes using the built-in target .SUFFIXES.

.LIBPATTERNS
A list of filename patterns that determines how make searches for libraries
when a prerequisite starts with -l. The default value is lib%.so lib%.a. A
prerequisite called -lm causes make to search for libm.so and libm.a, in that
order.

Environment Variables

If you want, you can set environment variables in the shell before starting make,
and then reference them in the makefile using the same syntax as for other make
variables. Furthermore, you can use the export directive in the makefile to copy
any or all of make’s variables to the shell environment before invoking shell
commands, as in the following example:

INCLUDE=/usr/include:/usr/local/include:~/include
export INCLUDE
export LIB := $(LIBS):/usr/lib:/usr/local/lib

%.o: %.c
 $(CC) $(CFLAGS) -o $@ -c $<

Phony Targets | 527

U
sin

g
 m

ake

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

When the C compiler is invoked by the pattern rule in this example, it can obtain
information defined in the makefile by reading the environment variables INCLUDE
and LIB. Similarly, make automatically passes its command-line options to child
instances by copying them to and then exporting the variable MAKEFLAGS. See the
section “Recursive make Commands,” later in this chapter, for other examples.

The shell environment is more restrictive than make with regard to the characters
that are permitted in variable names and values. It might be possible to trick your
shell into propagating environment variables containing illegal characters, but the
easiest thing by far is just to avoid special characters in any variables you want to
export.

Phony Targets
The makefile in Example 19-4 also illustrates several different ways of using
targets. The targets debug, testing, production, clean, and symbols are not names
of files to be generated. Nonetheless, the rules clearly define the behavior of a
command like make production or make clean symbols debug. Targets that are not
the names of files to be generated are called phony targets.

In Example 19-4, the phony target clean has a command script, but no prerequi-
sites. Furthermore, its command script doesn’t actually build anything: on the
contrary, it deletes files generated by other rules. We can use this target to clear
the board before rebuilding the program from scratch. In this way, the phony
targets testing and production ensure that the executable is linked from object
files made with the desired compiler options by including clean as one of their
prerequisites.

You can also think of a phony target as one that is never supposed to be up to
date: its command script should be executed whenever the target is called for.
This is the case with clean—as long as no file with the name clean happens to
appear in the project directory.

Often, however, a phony target’s name might really appear as a filename in the
project directory. For example, if your project’s products are built in subdirecto-
ries, such as bin and doc, you might want to use subdirectory names as targets.
But you must make sure that make rebuilds the contents of a subdirectory when
out of date, even if the subdirectory itself already exists.

For such cases, make lets you declare a target as phony regardless of whether a
matching filename exists. The way to do so is to is to add a line like this one to
your makefile, making the target a prerequisite of the special built-in target .PHONY:

.PHONY: clean

Or, to use an example with a subdirectory name, suppose we added these lines to
the makefile in Example 19-4:

.PHONY: bin
bin: circle
 $(MKDIR) $@
 $(CP) $< $@/
 $(CHMOD) 600 $@/$<

528 | Chapter 19: Using make to Build C Programs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

This rule for the target bin actually does create bin in the project directory.
However, because bin is explicitly phony, it is never up to date. make puts an up-
to-date copy of circle in the bin subdirectory even if bin is newer than its prerequi-
site, circle.

You should generally declare all phony targets explicitly, as doing so can also save
time. For targets that are declared as phony, make does not bother looking for
appropriately named source files that it could use with implicit rules to build a file
with the target’s name. An old-fashioned, slightly less intuitive way of producing
the same effect is to add another rule for the target with no prerequisites and no
commands:

bin: circle
 $(MKDIR) $@
 $(CP) $< $@/
 $(CHMOD) 600 $@/$<
bin:

The .PHONY target is preferable if only because it is so explicit, but you may see the
other technique in automatically generated dependency rules, for example.

Other Target Attributes
There are also other attributes that you can assign to certain targets in a makefile
by making those targets prerequisites of other built-in targets like .PHONY. The
most important of these built-in targets are listed here. Other special built-in
targets that can be used in makefiles to alter make’s runtime behavior in general
are listed at the end of this chapter.

.PHONY
Any targets that are prerequisites of .PHONY are always treated as out of date.

.PRECIOUS
Normally, if you interrupt make while running a command script—if make
receives any fatal signal, to be more precise—make deletes the target it was
building before it exits. Any target you declare as a prerequisite of .PRECIOUS
is not deleted in such cases, however.

Furthermore, when make builds a target by concatenating implicit rules, it
normally deletes any intermediate files that it creates by one such rule as
prerequisites for the next. However, if any such file is a prerequisite of .PRECIOUS
(or matches a pattern that is a prerequisite of .PRECIOUS), make does not
delete it.

.INTERMEDIATE
Ordinarily, when make needs to build a target whose prerequisites do not
exist, it searches for an appropriate rule to build them first. If the absent
prerequisites are not named anywhere in the makefile, and make has to resort
to implicit rules to build them, then they are called intermediate files. make
deletes any intermediate files after building its intended target (see the section
“Implicit Rule Chains,” earlier in this chapter). If you want certain files to be
treated in this way even though they are mentioned in your makefile, declare
them as prerequisites of .INTERMEDIATE.

Macros | 529

U
sin

g
 m

ake

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

.SECONDARY
Like .INTERMEDIATE, except that make does not automatically delete files that
are prerequisites of .SECONDARY.

You can also put .SECONDARY in a makefile with no prerequisites at all. In this
case, make treats all targets as prerequisites of .SECONDARY.

.IGNORE
For any target that is a prerequisite of .IGNORE, make ignores any errors that
occur in executing the commands to build that target. .IGNORE itself does not
take a command script.

You can also put .IGNORE in a makefile with no prerequisites at all, although it
is probably not a good idea. If you do, make ignores all errors in running any
command script.

.LOW_RESOLUTION_TIME
On some systems, the timestamps on files have resolution of less than a
second, yet certain programs create timestamps that reflect only full seconds.
If this behavior causes make to misjudge the relative ages of files on your
system, you can declare any file with high-resolution timestamps as a prereq-
uisite of .LOW_RESOLUTION_TIME. Then make considers the file up to date if its
timestamp indicates the same whole second in which its prerequisite was
stamped. Members of library archives are automatically treated as having
low-resolution timestamps.

A few other built-in targets act like general runtime options, affecting make’s
overall behavior just by appearing in a makefile. These are listed in the section
“Running make,” later in this chapter.

Macros
When we talk about macros in make, you should remember that there is really no
difference between them and variables. Nonetheless, make provides a directive
that allows you to define variables with both newline characters and references to
other variables embedded in them. Programmers often use this capability to
encapsulate multiline command sequences in a variable, so that the term macro is
fairly appropriate. (The GNU make manual calls them “canned command
sequences.”)

To define a variable containing multiple lines, you must use the define directive.
Its syntax is:

define macro_name
macro_value
endef

The line breaks shown in the syntax are significant: define and endef both need to
be placed at the beginning of a line, and nothing may follow define on its line
except the name of the macro. Within the macro_value, though, any number of
newline characters may also occur. These are included literally, along with all

530 | Chapter 19: Using make to Build C Programs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

other characters between the define and endef lines, in the value of the variable
you are defining. Here is a simple example:

define installtarget
 @echo Installing $@ in $(USRBINDIR) ... ;\
 $(MKDIR) -m 7700 $(USRBINDIR) ;\
 $(CP) $@ $(USRBINDIR)/ ;\
 @echo ... done.
endef

The variable references contained in the macro installtarget are stored literally
as shown here, and expanded only when make expands $(installtarget) itself, in
a rule like this for example:

circle: $(OBJ) $(LIB)
 $(CC) $(LDFLAGS) -o $@ $^
ifdef INSTALLTOO
 $(installtarget)
endif

Functions
GNU make goes beyond simple macro expansion to provide functions—both
built-in and user-defined functions. By using parameters, conditions, and built-in
functions, you can define quite powerful functions and use them anywhere in
your makefiles.

The syntax of function invocations in makefiles, like that of macro references,
uses the dollar sign and parentheses:

$(function_name argument[,argument[,...]])

Whitespace in the argument list is significant. make ignores any
whitespace before the first argument, but if you include any white-
space characters before or after a comma, make treats them as part
of the adjacent argument value.

The arguments themselves can contain any characters, except for embedded
commas. Parentheses must occur in matched pairs; otherwise they will keep make
from parsing the function call correctly. If necessary, you can avoid these restric-
tions by defining a variable to hold a comma or parenthesis character, and using a
variable reference as the function argument.

Built-in Functions

GNU make provides more than 20 useful text-processing and flow-control func-
tions, which are listed briefly in the following sections.

Functions | 531

U
sin

g
 m

ake

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Text-processing functions

The text-processing functions listed here are useful in operating on the values of
make variables, which are always sequences of characters:

$(subst find_text,replacement_text,original_text)
Expands to the value of original_text, except that each occurrence of
find_text in it is changed to replacement_text.

$(patsubst find_pattern,replacement_pattern,original_text)
Expands to the value of original_text, except that each occurrence of
find_pattern in it is changed to replacement_pattern. The find_pattern argu-
ment may contain a percent sign as a wildcard for any number of non-
whitespace characters. If replacement_pattern also contains a percent sign, it
is replaced with the characters represented by the wildcard in find_pattern.
The patsubst function also collapses each unquoted whitespace sequence
into a single space character.

$(strip original_text)
Removes leading and trailing whitespace, and collapses each unquoted
internal whitespace sequence into a single space character.

$(findstring find_text,original_text)
Expands to the value of find_text, if it occurs in original_text; or to nothing
if it does not.

$(filter find_patterns,original_text)
find_patterns is a whitespace-separated list of patterns like that in
patsubst. The function call expands to a space-separated list of the words in
original_text that match any of the words in find_patterns.

$(filter-out find_patterns,original_text)
Expands to a space-separated list of the words in original_text that do not
match any of the words in find_patterns.

$(sort original_text)
Expands to a list of the words in original_text, in alphabetical order,
without duplicates.

$(word n,original_text)
Expands to the nth word in original_text.

$(firstword original_text)
The same as $(word 1,original_text).

$(wordlist n,m,original_text)
Expands to a space-separated list of the nth through mth words in original_text.

$(words original_text)
Expands to the number of words in original_text.

532 | Chapter 19: Using make to Build C Programs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Filename-manipulation functions

These functions operate on a whitespace-separated list of file or directory names,
and expand to a space-separated list containing a processed element for each
name in the argument:

$(dir filename_list)
Expands to a list of the directory parts of each filename in the argument.

$(notdir filename_list)
Expands to a list of the filenames in the argument with their directory parts
removed.

$(suffix filename_list)
Expands to a list of the filename suffixes in the argument. Each suffix is the
filename ending, beginning with the last period (.) in it; or nothing, if the file-
name contains no period.

$(basename filename_list)
Expands to a list of the filenames in the argument with their suffixes
removed. Directory parts are unchanged.

$(addsuffix suffix,filename_list)
Expands to a list of the filenames in the argument with suffix appended to
each one. (suffix is not treated as a list, even if it contains whitespace.)

$(addprefix prefix,filename_list)
Expands to a list of the filenames in the argument with prefix prefixed to
each one. (prefix is not treated as a list, even if it contains whitespace.)

$(join prefix_list,suffix_list)
Expands to a list of filenames composed by concatenating each word in
prefix_list with the corresponding word in suffix_list. If the lists have
different numbers of elements, the excess elements are included unchanged in
the result.

$(wildcard glob)
Expands to a list of existing filenames that match the pattern glob, which
typically contains shell wildcards.

Conditions and flow control functions

The functions listed here allow you to perform operations conditionally, process
lists iteratively, or execute the contents of a variable:

$(foreach name,list,replacement)
The argument name is a name for a temporary variable (without dollar sign
and parentheses). The replacement text typically contains a reference to
$(name). The result of the function is a list of expansions of replacement,
using successive elements of list as the value of $(name).

Functions | 533

U
sin

g
 m

ake

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

$(if condition,then_text[,else_text])
Expands to the value of then_text if condition, stripped of leading and
trailing spaces, expands to a nonempty text. Otherwise, the function expands
to the value of else_text, if present.

$(eval text)
Treats the expansion of text as included makefile text.

Operations on variables

The argument variable_name in the descriptions that follow is just the name of a
variable (without dollar sign and parentheses), not a reference to it. (Of course,
you may use a variable reference to obtain the name of another variable, if you
want.)

$(value variable_name)
Expands to the “raw” value of the variable named, without further expan-
sion of any variable references it may contain.

$(origin variable_name)
Expands to one of the following values to indicate how the variable named
was defined:

undefined
default
environment
environment override
file
command line
override
automatic

$(call variable_name,argument[,argument[,...]])
Expands the variable named, replacing numbered parameters in its expan-
sion ($1, $2, and so on) with the remaining arguments. In effect, this built-in
function allows you to create user-defined function-like macros. See the
section “User-Defined Functions,” later in this chapter.

System functions

The functions in the following list interact with make’s environment:

$(shell text)
Passes the expansion of text to the shell. The function expands to the stan-
dard output of the resulting shell command.

$(error text)
make prints the expansion of text as an error message and exits.

$(warning text)
Like the error command, except that make doesn’t exit. The function
expands to nothing.

534 | Chapter 19: Using make to Build C Programs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

User-Defined Functions

You can define functions in the same way as simply expanded variables or
macros, using the define directive or the := assignment operator. Functions in
make are simply variables that contain numbered parameter references—$1, $2,
$3, and so on—to represent arguments that you provide when you use the built-in
function call to expand the variable.

In order for these parameters to be replaced with the arguments when make
expands your user-defined function, you have to pass the function name and
arguments to the built-in make function call.

Example 19-5 defines the macro getmodulename to return a filename for a program
module depending on whether the flag STATIC has been set, to indicate a statically
linked executable, or left undefined, to indicate dynamic object linking.

The $(call ...) function expands the macro getmodulename either to the text
circulararea.o, or, if the variable STATIC is not defined, to circulararea.so.

The rule to build the object file circulararea.o in Example 19-5 brings us to our
next topic, as it illustrates another way to query the STATIC flag in another way: by
means of the conditional directive ifndef.

Directives
We have already introduced the define directive, which produces a simply
expanded variable or a function. Other make directives allow you to influence the
effective contents of your makefiles dynamically by making certain lines in a
makefile dependent on variable conditions, or by inserting additional makefiles on
the fly.

Example 19-5. The user-defined function getmodulename

A conditional assignment, just as a reminder that
the user may define STATIC=1 or STATIC=yes on the command line.
STATIC ?=

A function to generate the "library" module name:
Syntax: $(call getmodulename, objectname, isstatic)
define getmodulename
 $(if $2,$1,$(addsuffix .so,$(basename $1)))
endef

all: circle

circle: circle.o $(call getmodulename,circulararea.o,$(STATIC))
 $(CC) -o $@ $^

ifndef STATIC
%.so: %.o
 $(CC) -shared -o $@ $<
endif

Directives | 535

U
sin

g
 m

ake

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Conditionals

You can also make part of your makefile conditional upon the existence of a vari-
able by using the ifdef or ifndef directive. They work the same as the C
preprocessor directives of the same names, except that in make, an undefined vari-
able is the same as one whose value is empty. Here is an example:

OBJ = circle.o
LIB = -lm

ifdef SHAREDLIBS
 LIB += circulararea.so
else
 OBJ += circulararea.o
endif

circle: $(OBJ) $(LIB)
 $(CC) -o $@ $^

%.so : %.o
 $(CC) -shared -o $@ $<

As the example shows, the variable name follows ifdef or ifndef without a dollar
sign or parentheses. The makefile excerpt shown here defines a rule to link object
files into a shared library if the variable SHAREDLIBS has been defined. You might
define such a general build option in an environment variable, or on the
command line, for example.

You can also make certain lines of the makefile conditional upon whether two
expressions—usually the value of a variable and a literal string—are equal. The
ifeq and ifneq directives test this condition. The two operands whose equality is
the condition to test are either enclosed together in parentheses and separated by
a comma, or enclosed individually in quotation marks and separated by white-
space. Here is an example:

ifeq ($(MATHLIB), /usr/lib/libm.so)
 # ... Special provisions for this particular math library ...
endif

That conditional directive, with parentheses, is equivalent to this one with quota-
tion marks:

ifeq "$(MATHLIB)" "/usr/lib/libm.so"
 # ... Special provisions for this particular math library ...
endif

The second version has one strong advantage: the quotation marks make it quite
clear where each of the operands begins and ends. In the first version, you must
remember that whitespace within the parentheses is significant, except immedi-
ately before and after the comma (see also the section “Variables and
Whitespace,” earlier in this chapter).

536 | Chapter 19: Using make to Build C Programs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

make’s handling of whitespace in the ifeq and ifneq directives is
not the same as in function calls!

Includes

The include directive serves the same purpose as its C preprocessor counterpart,
but works slightly differently. To start with an example, you might write a make-
file named defaults.mk with a set of standard variables for your environment,
containing something like this:

BINDIR = /usr/bin
HOMEBINDIR = ~/bin
SRCDIR = project/src
BUILDDIR = project/obj

RM = rm -f
MKDIR = mkdir -p
... etc. ...

Then you could add these variables to any makefile by inserting this line:

include defaults.mk

The include keyword may be followed by more than one filename. You can also
use shell wildcards like * and ?, and reference make variables to form filenames:

include $(HOMEBINDIR)/myutils.mk $(SRCDIR)/*.mk

For included files without an absolute path, make searches in the current working
directory first, then in any directories specified with the -I option on the
command line, and then in standard directories determined when make was
compiled.

If make fails to find a file named in an include directive, it continues reading the
makefile, and then checks to see whether there is a rule that will build the missing
file. If so, make rereads the whole makefile after building the included file. If not,
make exits with an error. The -include directive (or its synonym sinclude) is more
tolerant: it works the same as include, except that make ignores the error and goes
on working if it can’t find or build an included file.

Other Directives

Of the other four make directives, three are used to control the interplay between
make’s internal variables and the shell environment, while the fourth instructs
make where to look for specific kinds of files. These directives are:

override variable_assignment
Ordinarily, variables defined on the command line take precedence over defi-
nitions or assignments with the same name in a makefile. Prefixing the
override keyword makes an assignment in a makefile take precedence over
the command line. The variable_assignment may use the =, :=, or += oper-
ator, or the define directive.

Running make | 537

U
sin

g
 m

ake

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

export [variable_name | variable_assignment]
You can prefix export to a variable assignment or to the name of a variable
that has been defined to export that variable to the environment, so that
programs invoked by command scripts (including recursive invocations of
make) can read it.

The export directive by itself on a line exports all make variables to the
environment.

make does not export variables whose names contain any charac-
ters other than letters, digits, and underscores. The values of vari-
ables you export from makefiles may contain characters that are
not allowed in shell environment variables. Such values will proba-
bly not be accessible by ordinary shell commands. Nonetheless,
child instances of make itself can inherit and use them.

The make variables SHELL and MAKEFLAGS, and also MAKEFILES if you have
assigned it a value, are exported by default. Any variables which the current
instance of make acquired from the environment are also passed on to child
processes.

unexport variable_name
Use the unexport directive to prevent a variable from being exported to the
environment. The unexport directive always overrides export.

vpath pattern directory[:directory[:...]]
The pattern in this directive is formed in the same way as in make pattern
rules, using one percent sign (%) as a wildcard character. Whenever make
needs a file that matches the pattern, it looks for it in the directories indi-
cated, in the order of their appearance. An example:

vpath %.c $(MYPROJECTDIR)/src
vpath %.h $(MYPROJECTDIR)/include:/usr/include

On Windows, the separator character in the directory list is a semicolon, not
a colon.

Running make
This section explains how to add dependency information to the makefile automati-
cally, and how to use make recursively. These two ways of using make are common
and basic, but they do involve multiple features of the program. Finally, the
remainder of this section is devoted to a reference list of GNU make’s command-line
options and the special pseudotargets that also function as runtime options.

The command-line syntax of make is as follows:

 make [options] [variable_assignments] [target [target [...]]]

If you don’t specify any target on the command line, make behaves as though you
had specified the default target; that is, whichever target is named first in the
makefile. make builds other targets named in the makefile only if you request
them on the command line, or if they need to be built as prerequisites of any
target requested.

538 | Chapter 19: Using make to Build C Programs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Generating Header Dependencies

Our program executable circle depends on more files than those we have named
in the sample makefile up to now. Just think of the standard headers included in
our source code, to begin with—not to mention the implementation-specific
header files they include in turn.

Most C source files include both standard and user-defined header files, and the
compiled program should be considered out of date whenever any header file has
been changed. Because you cannot reasonably be expected to know the full list of
header files involved, the standard make technique to account for these dependen-
cies is to let the C preprocessor analyze the #include directives in your C source
and write the appropriate make rules. The makefile lines in Example 19-6 fulfill
this purpose.

The third rule uses a special kind of make variable reference, called a substitution
reference, to declare that the target dependencies depends on files like those
named in the value of $(OBJ), but with the ending .c instead of .o. The command
to build dependencies runs the compiler with the preprocessor option -M, which
instructs it to collate dependency information from source files. (The GCC
compiler permits fine control of the dependency output by means of more prepro-
cessor options that start with -M: these are listed in the section “GCC Options for
Generating Makefile Rules,” at the end of this chapter.)

The first time you use this makefile, make prints an error message about the
include directive because no file named dependencies exists. When this happens,
however, make automatically treats the missing file named in the include direc-
tive as a target, and looks for a rule to build it. The include directive itself is
placed below the target rules to prevent the included file’s contents from defining
a new default target.

Recursive make Commands

Your makefile rules can include any command that is executable on your system.
This includes the make command itself, and indeed recursive invocation of make
is a frequently used technique, especially to process source code in subdirectories.

Example 19-6. Generating header dependencies

CC = gcc
OBJ = circle.o circulararea.o
LIB = -lm

circle: $(OBJ) $(LIB)
 $(CC) $(LDFLAGS) -o $@ $^

%.o: %.c
 $(CC) $(CFLAGS) $(CPPFLAGS) -o $@ $<

dependencies: $(OBJ:.o=.c)
 $(CC) -M $^ > $@

include dependencies

Running make | 539

U
sin

g
 m

ake

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

make is designed to be aware of such recursive invocation, and incorporates
certain features that help it work smoothly when you use it in this way. This
section summarizes the special features of “recursive make.”

The most typical recursive use of make is in building projects that are organized in
subdirectories, with a makefile in each subdirectory. The following snippet illus-
trates how a top-level makefile can invoke recursive instances of make in three
subdirectories named utils, drivers, and doc:

.PHONY: utils drivers doc

utils drivers doc:
 $(MAKE) -C $@

The variable MAKE is not defined in the makefile; it is defined internally to yield the
full pathname of the currently running program file. Your makefiles should always
invoke make in this way to ensure consistent program behavior.

The command-line option -C, or its long form --directory, causes make to change
to the specified working directory on startup, before it even looks for a makefile.
This is how make “passes control” to the makefile in a subdirectory when used
recursively. In this example, the command does not name a target, so the child
make will build the first target named in the default makefile in the given
subdirectory.

The subdirectories themselves are declared as prerequisites of the special target
.PHONY so that make never considers them up to date (see “Phony Targets,”
earlier in this chapter, for more details). However, if files in one subdirectory
depend on files in a parallel subdirectory, you must account for these dependen-
cies in the makefile of a higher-level directory that contains both subdirectories.

There are a few things to remember about command-line options and special vari-
ables when you use make recursively. A more complete list of make options and
environment variables appears in the next section, “Command-Line Options.”
The following list merely summarizes those with a special relevance to the recur-
sive use of make:

• Some of make’s command-line options instruct it not to execute commands,
but to only print them (-n), or to touch the files (-t), or to indicate whether
the targets are up to date (-q). If in these cases the subordinate make com-
mand were not executed, then these options would be incompatible with the
recursive use of make. To ensure recursion, when you run make with one of
the -t, -n, or -q options, commands containing the variable reference $(MAKE)
are executed, even though other commands are not. You can also extend this
special treatment to other commands individually by prefixing a plus sign (+)
to the command line as a command modifier.

• The variable MAKELEVEL automatically contains a numeral indicating the recur-
sion depth of the current make instance, starting with 0 for a make invoked
from the console.

• The parent instance of make passes its command-line options to child
instances by copying them to the environment variable MAKEFLAGS. However,

540 | Chapter 19: Using make to Build C Programs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

the options -C, -f, -o, and -W are exceptions: these options, which take a file
or directory name as their argument, do not appear in MAKEFLAGS.

• The -j option, whose argument tells make how many commands it can
spawn for parallel processing, is passed on to child instances of make, but
with the parallel job limit decreased by one.

• By default, a child instance of make inherits those of its parent’s variables that
were defined on the command line or in the environment. You can use the
export directive to pass on variables defined in a makefile.

Like any other shell command in a makefile rule, a recursive instance of make can
exit with an error status. If this happens, the parent make also exits with an error
(unless it was started with the -k or --keep-going option), so that the error
cascades up the chain of recursive make instances.

When using make recursively with multiple makefiles in subdirectories, you
should use the include directive to avoid duplicating common definitions, implicit
rules, and so on. See the section “Includes,” earlier in this chapter, for more
information.

Command-Line Options

The following is a brief summary of the command-line options supported by
GNU make. Some of these options can also be enabled by including special
targets in the makefile. Such targets are described in the following section.

-B, --always-make
Build unconditionally. In other words, make considers all targets out of date.

-C dir, --directory=dir
make changes the current working directory to dir before it does anything
else. If the command line includes multiple -C options (which is often the
case when make invokes itself recursively), each directory specified builds on
the previous one. Example:

$ make -C src -C common -C libs

These options would have the same effect as -C src/common/libs.

-d
Print debugging information.

-e

--environment-overrides
In case of multiple definitions of a given variable name, variables defined on
the make command line or in makefiles normally have precedence over envi-
ronment variables. This command-line option makes environment variables
take precedence over variable assignments in makefiles (except for variables
specified in override directives).

-f filename, --file=filename, --makefile=filename
Use the makefile filename.

-h, --help
Print make’s command-line options.

Running make | 541

U
sin

g
 m

ake

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

-i, --ignore-errors
Ignore any errors that occur when executing command scripts.

-I dir, --include-dir=dir
If a makefile contains include directives that specify files without absolute
paths, search for such files in the directory dir (in addition to the current
directory). If the command line includes several -I options, the directories are
searched in the order of their occurrence.

-j [number], --jobs[=number]
Run multiple commands in parallel. The optional integer argument number
specifies the maximum number of simultaneous jobs. The -j argument by
itself causes make to run as many simultaneous commands as possible.
(Naturally make is smart enough not to start building any target before its
prerequisites have been completed.) If the command line includes several -j
options, the last one overrides all others.

Parallel jobs spawned by make do not share the standard streams
elegantly. Console output from different jobs can appear in ran-
dom order, and only one job can inherit the stdin stream from
make. If you use the -j option, make sure none of the commands in
your makefiles read from stdin.

-k, --keep-going
This option tells make not to exit after a command has returned a nonzero
exit status. Instead, make abandons the failed target and any other targets
that depend on it, but continues working on any other goals in progress.

-l [number], --load-average[=number], --max-load[=number]
In conjunction with the -j option, -l (that’s a lowercase L) prevents make
from executing more simultaneous commands whenever the system load is
greater than or equal to the floating-point value number. The -l option with
no argument cancels any load limit imposed by previous -l options.

-n, --just-print, --dry-run, --recon
make prints the commands it would otherwise run, but doesn’t actually
execute them.

-o filename, --old-file=filename, --assume-old=filename
make treats the specified file as if it were up to date, and yet older than any
file that depends on it.

-p, --print-data-base
Before executing any commands, make prints its version information and all
its rules and variables, including both built-ins and those acquired from
makefiles.

-q, --question
make builds nothing and prints nothing, but returns an exit status as follows:

0 All specified targets are up to date.

1 At least one target is out of date.

2 An error occurred.

542 | Chapter 19: Using make to Build C Programs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

-r, --no-builtin-rules
This option disables make’s built-in implicit rules, as well as the default list of
suffixes for old-style suffix rules. Pattern rules, user-defined suffixes, and
suffix rules that you have defined in makefiles still apply, as do built-in
variables.

-R, --no-builtin-variables
Like -r, but also disables make’s built-in rule-specific variables. Variables you
define in makefiles are unaffected.

-s, --silent, --quiet
Ordinarily make echoes each command on standard output before executing
it. This option suppresses such output.

-S, --no-keep-going, --stop
This option causes a recursive instance of make to ignore a -k or --keep-going
option inherited from its parent make.

-t, --touch
make simply touches target files—that is, it updates their timestamps—
instead of rebuilding them.

-v, --version
make prints its version and copyright information.

-w, --print-directory
make prints a line indicating the working directory both before and after
processing the makefile. This output can be useful in debugging recursive
make applications. This option is enabled by default for recursive instances of
make, and whenever you use the -C option.

--no-print-directory
Disable the working directory output in cases where -w is automatically
activated.

-W filename, --what-if=filename, --new-file=filename, --assume-new=filename
make treats the file filename as if it were brand-new.

--warn-undefined-variables
Normally, make takes references to undefined variables in its stride, treating
them like references to variables with empty values. This option provides
warnings about undefined variables to help you debug your makefiles.

Special Targets Used as Runtime Options

The built-in targets listed in this section are ordinarily used in makefiles to alter
make’s runtime behavior in general. Other built-in targets are used primarily to
assign attributes to certain targets in a makefile, and are listed in the section
“Other Target Attributes,” earlier in this chapter.

.DEFAULT
You can use the built-in target .DEFAULT to introduce a command script that
you want make to execute for any target that is not covered by any other
explicit or implicit rule. make also executes the .DEFAULT command script for
every prerequisite that is not a target in some rule.

Running make | 543

U
sin

g
 m

ake

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

.DELETE_ON_ERROR
You can include the built-in target .DELETE_ON_ERROR anywhere in a makefile
to instruct make to delete any target that has been changed by its command
script if the script returns a nonzero value on exiting.

.SILENT
Normally make prints each command to standard output before executing it.
However, if a given target is a prerequisite of .SILENT, then make does not
print the rules when building that target.

If you include .SILENT with no prerequisites in a makefile, it applies to all
targets, like the command-line options -s or --silent.

.EXPORT_ALL_VARIABLES
This target acts as an option telling make to export all the currently defined
variables before spawning child processes (see the section “Recursive make
Commands,” earlier in this chapter).

.NOTPARALLEL
This built-in target is a general option; any prerequisites are ignored. The
target .NOTPARALLEL in a makefile overrides the command-line option -j for
the current instance of make, so that targets are built in sequence. If make
invokes itself, however, the new instance of make still executes commands in
parallel, unless its makefile also contains .NOTPARALLEL.

.SUFFIXES
This built-in target defines the list of suffixes that make recognizes for use in
old-style suffix rules (see “Suffix Rules,” earlier in this chapter). You can add
suffixes to the built-in list by naming them as prerequisites of .SUFFIXES, or
clear the list by declaring the target .SUFFIXES with no prerequisites.

GCC Options for Generating Makefile Rules

-M
Generate a rule showing the prerequisites for the object file that would result
from compiling a given source file. The -M option implies the -E option
(preprocess only; don’t compile), but the -MD and -MMD variants do not. By
default, the dependency rules are written to standard output.

-MD
Like -M, but allows GCC to compile source files (unless -E is also present) in
addition to running the preprocessor. The dependency output is written to a
file whose name is taken from the -o argument, if any, but with the filename
ending .d.

-MM
Like -M, but omit header files located in system header directories (and any
files they depend on in turn) from the dependency list.

-MMD
Combines the effects of -MM and -MD.

544 | Chapter 19: Using make to Build C Programs

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The following options are modifiers used in addition to -M, -MD, -MM, or -MMD:

-MF filename
Writes the dependency information to filename rather than to standard
output or to a preprocessor output file.

-MG
Include nonexistent header files in the dependency list.

-MP
Include a phony target for each header file in the dependency output. The
effect is that make doesn’t complain about header files that have been
removed from the project, but not from the dependency list.

-MT target
Substitute target for the actual target in generating dependency rules.

-MQ target
Like -MT, but quote any special characters.

545

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Chapter 20Debugging with GDB

20
Debugging C Programs

with GDB

An important part of software development is testing and troubleshooting. In a
large program, programming errors, or bugs, are practically inevitable. Programs
can deliver wrong results, get hung up in infinite loops, or crash due to illegal
memory operations. The task of finding and eliminating such errors is called
debugging a program.

Many bugs are not apparent by simply studying the source code. Extra output
provided by a testing version of the program is one helpful diagnostic technique.
You can add statements to display the contents of variables and other informa-
tion during runtime. However, you can generally perform runtime diagnostics
much more efficiently by using a debugger.

A debugger is a program that runs another program in a finely controlled environ-
ment. For example, a debugger allows you to run the program step by step,
observing the contents of variables, memory locations, and CPU registers after
each statement. You can also analyze the sequence of function calls that lead to a
given point in the program.

This chapter is an introduction to one powerful and widely used debugger, the
GNU debugger or GDB. The sections that follow describe GDB’s basic options
and commands. Most of the features and working principles described here are
similar to those of other debugging tools. For a complete description of GDB’s
capabilities, see the program manual “Debugging with GDB” by the Free Soft-
ware Foundation, which is available in PDF and HTML at http://www.gnu.org/
software/gdb/documentation/. If your system also has the GNU Texinfo system
installed, you can browse the full manual by entering the shell command info gdb.

546 | Chapter 20: Debugging C Programs with GDB

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Installing GDB
If the GNU C compiler, GCC, is available on your system, then GDB is probably
already installed as well. You can tell by running the following command, which
displays the debugger’s version and copyright information:

$ gdb -version

As in the preceding chapters, the dollar sign character ($) followed by a space
represents the shell command prompt.

If GDB is installed, a message like the following appears:

GNU gdb 6.1
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i586-suse-linux".

If GDB is not installed, you can download the source code and compile it (see
http://www.gnu.org/software/gdb/download/). This is seldom necessary, though.
Most Unix-like systems provide a convenient method to install a binary GDB
package, including the documentation. On Windows systems, we recommend
that you install the Cygwin software. Cygwin provides a standard Unix environ-
ment on Windows platforms, including the GCC compiler, the GDB debugger,
and other GNU tools (see http://www.cygwin.com or http://www.redhat.com/
software/cygwin/).

A Sample Debugging Session
This section describes a sample GDB session to illustrate the basic operation of
the debugger. Many problems in C programs can be pinpointed using just a
handful of debugger commands. The program in Example 20-1, gdb_example.c,
contains a logical error. We’ll use this program in the following subsections to
show how GDB can be used to track down such errors.

Example 20-1. A program to be debugged in a GDB session

// gdb_example.c:
// Test the swap() function, which exchanges the contents of two int variables.
// ---
#include <stdio.h>

void swap(int *p1, int *p2); // Exchange *p1 and *p2

int main()
{
 int a = 10, b = 20;
/* ... */
 printf("The old values: a = %d; b = %d.\n", a, b);

 swap(&a, &b);

A Sample Debugging Session | 547

D
eb

u
g

g
in

g
w

ith
 G

D
B

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Symbol Information

GDB is a symbolic command line debugger. “Symbolic” here means that you can
refer to variables and functions in the running program by the names you have
given them in your C source code. In order to display and interpret these names,
the debugger requires information about the types of the variables and functions
in the program, and about which instructions in the executable file correspond to
which lines in the source files. Such information takes the form of a symbol table,
which the compiler and linker include in the executable file when you run GCC
with the -g option:

$ gcc -g gdb_example.c

In a large program consisting of several source files, you must compile each
module with the -g option.

Finding a Bug

The following command runs the program from Example 20-1:

$./a.out

The program produces the following output:

The old values: a = 10; b = 20.
The new values: a = 10; b = 20.

Although the swap() function call is plain to see in the source code, the contents
of the variables a and b have not been swapped. We can look for the reason using
GDB. To begin the debugging session, start GDB from the shell, specifying the
name of the executable file as a command-line argument to the debugger:

$ gdb ./a.out
GNU gdb 6.1
Copyright 2004 Free Software Foundation, Inc.
...
(gdb)

The debugger loads the program executable, but waits for your instructions before
running it. GDB prints (gdb) at the beginning of a new line to prompt you for a
debugging command. You can start by entering the command list, or just its
initial l for short, to list a few lines of source code of the program you are debug-
ging. By default, the listing shows 10 lines, centered on the source line that is

 printf("The new values: a = %d; b = %d.\n", a, b);
/* ... */
 return 0;
}

void swap(int *p1, int *p2) // Exchange *p1 and *p2.
{
 int *p = p1;
 p1 = p2;
 p2 = p;
}

Example 20-1. A program to be debugged in a GDB session (continued)

548 | Chapter 20: Debugging C Programs with GDB

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

ready to be executed next. In our example, the program has just been started, and
the next line is line 8, where the function main() begins:

(gdb) l
5
6 void swap(int *p1, int *p2); // Exchange *p1 and *p2
7
8 int main()
9 {
10 int a = 10, b = 20;
11 /* ... */
12
13 printf("The old values: a = %d; b = %d.\n", a, b);
14
(gdb)

If you follow one list command with another, GDB prints the next few lines of
source code.

Before you instruct GDB to run the program, you should tell it where you want it
to stop. You can do this by setting a breakpoint. When the debugger reaches the
breakpoint, it interrupts the execution of your program, giving you an opportu-
nity to examine the program’s state at that point. Furthermore, once the program
has been interrupted at a breakpoint, you can continue execution line by line,
observing the state of program objects as you go.

To set a breakpoint, enter the command break, or b for short. Breakpoints are
usually set at a specific line of source code or at the beginning of a function. The
following command sets a breakpoint at line 15 of the current source file, which is
the line containing the swap() function call:

(gdb) b 15
Breakpoint 1 at 0x80483aa: file gdb_example.c, line 15.

The command run, or r, starts the program:

(gdb) r
Starting program: /home/peter/src/c/gdb/a.out
Breakpoint 1, main () at gdb_example.c:15
15 swap(&a, &b);

Upon reaching the breakpoint, the debugger interrupts the execution of the
program and displays the line containing the next statement to be executed. As we
suspect the bug in our example is in the swap() function, we want to execute that
function step by step. For this purpose, GDB provides the commands next, or n,
and step, or s. The next and step commands behave differently if the next line to be
executed contains a function call. The next command executes the next line,
including all function calls, and interrupts the program again at the following line.
The step command, on the other hand, executes a jump to the function called in the
line, provided that the debugging symbols are available for that function, and inter-
rupts the program again at the first statement in the function body. In our example
session, the command step takes us to the first statement in the swap() function:

(gdb) s
swap (p1=0xbffff234, p2=0xbffff230) at gdb_example.c:24
24 int *p = p1;

A Sample Debugging Session | 549

D
eb

u
g

g
in

g
w

ith
 G

D
B

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The debugger displays the values of the function arguments (here, these are the
addresses of the variables a and b), and once again the next line to be executed. At
this point we can check to see whether the values of the variables referenced by
the function’s pointer arguments are correct. We can do this using the print
command (p for short), which displays the value of a given expression:

(gdb) p *p1
$1 = 10
(gdb) p *p2
$2 = 20

The expression *p1 has the value 10, and *p2 has the value 20. The output of
GDB’s print command has the form $number = value, where $number is a GDB
variable that the debugger creates so that you can refer to this result later. (See the
section “Displaying Data,” later in this chapter, for more information about
GDB’s variables.)

If we now type n (for next) three times, the debugger executes lines 24, 25, and 26:

(gdb) n
25 p1 = p2;
(gdb) n
26 p2 = p;
(gdb) n
27 }
(gdb)

As long as the program flow has not yet returned from the swap() function to
main(), we can use the print command to display the contents of the local
variables:

(gdb) p *p1
$3 = 20
(gdb) p *p2
$4 = 10

Now *p1 has the value 20, and *p2 has the value 10, which seems correct. We can
continue the examination of the program state with two more print commands:

(gdb) p p1
$5 = (int *) 0xbffff230
(gdb) p p2
$6 = (int *) 0xbffff234
(gdb)

As these print commands show, the values of the pointers p1 and p2 have been
swapped, and not the contents of the memory locations referenced as *p1 and *p2.
That was the bug in swap(). The function needs to be amended so that it
exchanges the int values addressed as *p1 and *p2, rather than the pointer values
stored in p1 and p2. A correct version would be the following:

void swap(int *p1, int *p2) // Exchange *p1 and *p2.
{
 int tmp = *p1;
 *p1 = *p2;
 *p2 = tmp;
}

550 | Chapter 20: Debugging C Programs with GDB

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The command continue, abbreviated c, lets program execution continue until it
reaches the next breakpoint or the end of the program:

(gdb) c
Continuing.
The new values: a = 10; b = 20
Program exited normally.
(gdb)

As the (gdb) prompt indicates, the debugger is still running. To stop it, enter the
command quit or q. The quit command terminates the debugger even if the
program you are debugging is still running. However, GDB does prompt you for
confirmation in this case:

(gdb) q
The program is running. Exit anyway? (y or n) y
$

Starting GDB
You can start GDB by entering gdb at the shell command prompt. GDB supports
numerous command-line options and arguments:

gdb [options] [executable_file [core_file | process_id]]

For example, the following command starts the debugger without displaying its
sign-on message:

$ gdb -silent
(gdb)

In this example, the command line does not name the executable file to be
debugged. You can specify the program you want to test in GDB using the
debugger’s file command, described in the section “Using GDB Commands,”
later in this chapter.

Command-Line Arguments

Ordinarily, the program to be debugged is named on the GDB command line. In
the following example, the GDB command loads the executable myprog for
debugging:

$ gdb myprog
(gdb)

As an additional argument after the name of the program to be tested, you may
specify a process ID number or the name of a core dump file. In the following
example, the number after the program name is a process ID (or “PID”):

$ gdb myprog 1001
(gdb)

This command instructs GDB to connect to a process that is already running on
the system, and has the program name myprog and the process ID 1001. If GDB
finds such a process, you can interrupt its execution to begin debugging by
pressing Ctrl+C. If the debugger finds a file in the current working directory
named 1001, however, it will interpret that argument as the name of a core file

Starting GDB | 551

D
eb

u
g

g
in

g
w

ith
 G

D
B

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

rather than a process ID. For details about debugging with core files, see the
section “Analyzing Core Files in GDB,” at the end of this chapter.

Command-Line Options

Most of the command-line options for the GDB debugger have both short and
long forms. The descriptions in the following list and subsections show both
forms for the most frequently used options. You can also truncate the long form,
if you type enough of it to be unambiguous. For options that take an argument,
such as -tty device, the option and its argument can be separated either by a
space or by an equals sign (=), as in -tty=/dev/tty6. Options may be introduced
by either one or two hyphens: -quiet for example is synonymous with --quiet.

This section lists the most commonly used GDB options. For a
complete list, see the program’s documentation.

--version, -v
GDB prints its version and copyright information to the console and then
exits, without starting a debugging session.

--quiet, --silent
GDB starts an interactive session without displaying its version and copy-
right information.

--help, -h
GDB displays its command-line syntax with a brief description of all the
options, then exits without starting a debugging session.

Passing arguments to the program being debugged

GDB has one special command-line option that serves to separate the debugger’s
own command line from that of the program you want it to load for debugging:

--args
Use the --args option on starting a debugging session to pass command-line
arguments to the program that GDB loads for debugging. In the following
example, myprog is the program to be debugged:

$ gdb --args myprog -d "$HOME"
(gdb)

The --args option must be immediately followed by the command invoking
the program you wish to debug. That command should consist of the
program name and then its arguments, just as they would appear if you were
starting that program without GDB. In the previous example, -d and "$HOME"
are command-line arguments for myprog, not for gdb. If you want to specify
options for GDB at the same time, you must place them before --args on the
command line. In other words, --args must be the last GDB option.

You can also specify arguments for the program you are debugging after GDB has
started, by using one of the interactive commands run or set args, described in
the section “Running a Program in the Debugger,” later in this chapter.

552 | Chapter 20: Debugging C Programs with GDB

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Selecting files

The following command-line options tell GDB which input files to use:

-symbols filename, -s filename
If the table of debugging symbols is not contained in the executable file, use
the -symbols option to load a separate symbol table file. GDB reads the
symbol table from the specified file.

-exec filename, -e filename
The -exec option specifies the executable file to be debugged.

-se filename
The specified file is the executable you want to test in GDB and contains the
symbol table. This option is not usually necessary; if the GDB command line
contains a filename that is not an argument to any option, GDB treats the
first such file as if it were an argument to the -se option.

-core filename, -c filename, -c number, -pid number, -p number
The -core and -pid options are actually synonymous. If the argument to
either one is a decimal number, GDB connects to a running process with that
process ID, if there is one. If there is no process with that ID, GDB attempts
to open a core file with the name number. If you want to force GDB to open a
core file whose name is a decimal number, you can prefix the directory to the
filename. For example, gdb -p ./32436 instructs GDB to open a core file
named 32436 in the current directory, regardless of whether there is a
running process with that PID.

Like the -se option, the -core option is often unnecessary. If the GDB
command line contains a second filename that is not an argument to any
option, GDB treats that file as if it were an argument to the -core option.

Selecting the user interface

In GDB’s customary command-line mode, the console I/O of the program being
debugged appears interspersed with the debugger’s own commands and diag-
nostic output. If this behavior is inconvenient, you can prevent it by specifying a
separate terminal for the input and output of the program you are debugging.

-tty device, -t device
The debugger uses device as the standard input and output streams of the
program you are debugging. In the following example, the standard I/O
streams of the program myprog are attached to the terminal /dev/tty5:

$ gdb myprog -t /dev/tty5

-windows, -w
GDB may also be built with an integrated GUI. This user interface provides
separate display windows for the source code, assembler code, and CPU regis-
ters of the program you are debugging. The -w option instructs GDB to run
with its GUI, if possible. If the GUI is not available, this option has no effect.

-nowindows, -nw
The -nw option instructs GDB to run in console mode, even if a GUI is avail-
able. If the GUI is not available, this option has no effect.

Starting GDB | 553

D
eb

u
g

g
in

g
w

ith
 G

D
B

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

There are a number of separate “frontend” programs that provide GUIs for
GDB. The best known of these is DDD, the Data Display Debugger (see http://
www.gnu.org/software/ddd/). DDD’s capabilities include displaying dynamic
data structures such as linked lists and trees. But even without a GUI, you may
be able to use separate display windows with GDB:

-tui
If the help text displayed by the command gdb -h includes the option --tui,
then your GDB installation provides a text-based user interface, or TUI, to
manage a number of console windows. The TUI is a program module that
uses the curses library.

The -tui option starts GDB with the text-based full-screen user interface, or
TUI. The initial display consists of two windows: the upper window displays
the C source code, with the current line highlighted and breakpoints indi-
cated in the left margin. Below it is the command window, which displays the
same (gdb) command prompt and diagnostic output as a line-based GDB
session. You can also open a third window to display the program in
assembly language or the contents of CPU registers. For details about
working with the TUI, see the section “GDB Text User Interface” in the GDB
manual.

If you use the Emacs editor, you can run GDB using the Emacs
buffer windows for its display. Start GDB within Emacs using the
command M-x gdb. The debugger’s command window appears as a
new Emacs buffer. When you begin running a program in GDB, a
second buffer is created displaying the source code. The Emacs
“debugger” mode also provides commands to control GDB, which
are described in the section “Using GDB under GNU Emacs” in
the GDB manual, and also documented in Emacs itself through the
C-h m command.

Executing command scripts

-command command_file, -x command_file
The -command or -x option instructs GDB to carry out the commands in the
specified file on starting. A command file is a text file whose lines are GDB
commands. Blank lines and comments, which are lines beginning with the
hash character (#), are ignored. If you want the debugger to execute one or
more command files and then exit, use the -batch option in addition to the -x
or -command option.

-batch
The -batch option instructs GDB to exit after executing all command files
specified in -x commands. If no errors occur, GDB exits with the status 0.
Any other exit status indicates an error.

Initialization Files

On starting, GDB ordinarily processes an initialization file, if present, with the
name .gdbinit. On certain systems with a special debugger configuration, the

554 | Chapter 20: Debugging C Programs with GDB

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

initialization file may have a different name. Initialization files have the same
internal syntax as command files, consisting of GDB commands, comments, and
blank lines. GDB processes the initialization files it finds in the current directory
and your home directory. The initialization files, command line, and command
files are processed in the following order:

1. Upon starting, GDB first reads the initialization file in your home directory, if
present, and carries out the commands it contains. On Windows, GDB deter-
mines the home directory from the value of the environment variable HOME.
The initialization file typically contains general commands to configure the
debugger, such as set listsize 5 to limit the default output of the list
command to five lines.

2. Next, GDB processes the command-line options. Any command files speci-
fied in -x or -command options are not executed at this point, though.

3. If the current directory is not your home directory, and if the current direc-
tory contains an initialization file, GDB executes the commands in that file.
Usually the current directory contains the files of a program in development,
and the local initialization file .gdbinit contains commands to configure the
debugger for the program’s special requirements.

4. Finally, GDB executes the commands in files specified by the -x or -command
options on the command line.

GDB also lets you skip any .gdbinit files by specifying the following command-line
option:

-nx, -n
Instructs GDB to ignore all initialization files. The option takes no argument.

Using GDB Commands
Upon starting, the debugger prompts you to enter commands—for example, to
set a breakpoint and run the program that you specified on the command line to
load for debugging.

Each command you issue to GDB is a line of text beginning with a command
keyword. The remainder of the line consists of the command’s arguments. You
can truncate any keyword, as long as you type enough of it to identify a command
unambiguously. For example, you can enter q (or qu or qui) to exit the debugger
with the quit command.

If you enter an empty command line—that is, if you press the return key immedi-
ately at the GDB command prompt—then GDB repeats your last command, if
that action is plausible. For example, GDB automatically repeats step and next
commands in this way, but not a run command.

If you enter an ambiguous or unknown abbreviation, or fail to specify required
command arguments, GDB responds with an appropriate error message, as in this
example:

(gdb) sh
Ambiguous command "sh": sharedlibrary, shell, show.

Using GDB Commands | 555

D
eb

u
g

g
in

g
w

ith
 G

D
B

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Command Completion

The GDB debugger can reduce your typing by completing the names of
commands, variables, files, and functions. Type the first few characters of the
desired word, then press the Tab key. For example, the program circle.c in
Example 1-1 contains the function circularArea(). To display this function in a
GDB session, all you have to enter is the following:

(gdb) list ci

and press the Tab key. Automatic completion yields this command line:

(gdb) list circularArea

Press Return to execute the command. If there are several possible completions
for a word, GDB inserts the next letters that are common to all possible comple-
tions, then prompts you for more input. You can type another letter or two to
make your entry more specific, then press the Tab key again. If you press the Tab
key twice in a row, GDB displays all possible completions of the word. Here is an
example of command completion in several steps:

(gdb) break ci<tab>

GDB appends two letters, then pauses for more input to resolve an ambiguity:

(gdb) break circ

If you press the Tab key twice, GDB displays the possible completions, then
repeats the prompt:

(gdb) break circ<tab><tab>
circle.c circularArea
(gdb) break circ

Displaying Help for Commands

GDB has a help function, which divides its many commands into classes to help
you find the one you need. When you enter the help (or h) command with no
argument, GDB prints the list of command classes:

(gdb) h
List of classes of commands:
aliases -- Aliases of other commands
breakpoints -- Making program stop at certain points
data -- Examining data
files -- Specifying and examining files
internals -- Maintenance commands
obscure -- Obscure features
running -- Running the program
stack -- Examining the stack
status -- Status inquiries
support -- Support facilities
tracepoints -- Tracing of program execution without stopping the program
user-defined -- User-defined commands

Type "help" followed by a class name for a list of commands in that class.
Type "help" followed by command name for full documentation.
Command name abbreviations are allowed if unambiguous.
(gdb)

556 | Chapter 20: Debugging C Programs with GDB

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

To read about the commands in a given class, type help followed by the class
name. To read about how a given command works, enter help followed by the
name of the command.

Status Information

To display information about the status of the debugger and the program being
debugged, GDB provides the commands info and show, as the help text shows:

(gdb) help status
Status inquiries.
List of commands:
info -- Generic command for showing things about the program being debugged
show -- Generic command for showing things about the debugger

Status information on the program being debugged

The info command with no argument lists all the items that you can query about
the program you are testing:

(gdb) info
List of info subcommands:

info address -- Describe where symbol SYM is stored
info all-registers -- List of all registers and their contents
info args -- Argument variables of current stack frame
info breakpoints -- Status of user-settable breakpoints
...

When you specify one of the info arguments listed, GDB displays the corre-
sponding information. Like commands, these arguments can be abbreviated, as in
the following command:

(gdb) info all-reg

This command displays the contents of all processor registers, including floating-
point and vector registers. The command info register, on the other hand,
displays only the CPU registers, without the floating-point or vector registers.

The following command displays information about the current source file; that is,
the source file containing the function which is currently being executed. If you
have not yet started the program that you want to test, then the current source file
is the one that contains the function main():

(gdb) info source
Current source file is circle.c
Compilation directory is /home/peter/C_in_a_Nutshell/tests/Ch20/
...
(gdb)

Some of the subcommands take another argument. For example, the info
subcommand address in the following example takes the name of an object or
function as its argument:

(gdb) info address radius
Symbol "radius" is a local variable at frame offset -8.
(gdb)

Using GDB Commands | 557

D
eb

u
g

g
in

g
w

ith
 G

D
B

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Status information on the debugger

Like info, the show command also has numerous subcommands, to display various
kinds of information about the debugger itself. The help text on show describes its
subcommands:

(gdb) help show
Generic command for showing things about the debugger.
List of show subcommands:

show annotate -- Show annotation_level
show archdebug -- Show architecture debugging
show architecture -- Show the current target architecture
show args -- Show argument list to give program being debugged when it is
started
...

The following command displays information about GDB’s current logging
behavior:

(gdb) show logging
Future logs will be written to gdb.txt.
Logs will be appended to the log file.
Output will be logged and displayed.
(gdb)

Most of the settings displayed by show can be modified by the set command. For
example, the following command turns on logging:

(gdb) set logging on
Copying output to gdb.txt.
(gdb) show logging
Currently logging to "gdb.txt".
...

The online help also describes the subcommands. For example, the following help
command displays a description of possible logging settings:

(gdb) help set logging

Running a Program in the Debugger

The following GDB commands allow you to control programs running in the
debugger:

file filename
If you have not specified the program you want to debug in the GDB
command line, you can indicate it at GDB’s prompt using the file
command. GDB reads the symbol table from the executable file filename, and
starts the program if you enter a subsequent run command. If filename is not
in the debugger’s working directory, the debugger searches for it in the direc-
tories named in the environment variable PATH.

set args [arguments]
If you have not specified the command-line arguments for the program you
want to debug in the GDB command line, you can define them at GDB’s

558 | Chapter 20: Debugging C Programs with GDB

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

prompt using the set args command. For example, the following command
specifies two arguments for the program being tested:

(gdb) set args -d $HOME

To clear the argument list without setting new arguments, enter the set args
command with no further arguments.

show args
Displays the currently set command-line arguments for the program being
debugged:

(gdb) show args
Argument list to give program being debugged when it is started is "-d
$HOME".

run [arguments]
When you start a program using the run command (r for short), you can also
specify command line arguments for it. On Unix-like systems, the arguments
may contain shell metacharacters such as * and $. You can also redirect the
program’s input and output using <, >, and >>. The debugger uses a shell to
interpret the program’s command line, so that all special characters have the
same effect as they would in an ordinary shell environment. GDB uses
whichever shell is indicated by the SHELL environment variable, or the default
shell /bin/sh if SHELL is not defined.

The run command with no arguments starts the program with the arguments
currently set for it in GDB. If you have not yet set any arguments for the
program, whether in a previous run command, on the GDB command line, or
in a set args command, then run starts the program with no arguments.

Once you start the program using the run command, it runs until it exits, or
until it reaches a breakpoint that you have set in the debugger. The program
can also be interrupted by a signal, such as the SIGINT signal, which is usually
raised by the key combination Ctrl+C.

kill
If you have found one or more errors to correct and want to edit and recom-
pile a program outside the debugger, you should first terminate it. You can
do this using the kill command, as in the following example:

(gdb) kill
Kill the program being debugged? (y or n) y

The settings, including the command-line arguments for the program, remain
unchanged as long as you do not exit the debugger. The next time you start
the program using the run command, GDB detects the fact that the execut-
able file has been modified, and reloads it.

Displaying Source Code

You can display a program’s source code in the debugger using the list (or l)
command. By default, GDB displays ten lines at a time, starting five lines before
the next statement to be executed. The list command supports arguments that
allow you to specify which part of the program you want to display:

Using GDB Commands | 559

D
eb

u
g

g
in

g
w

ith
 G

D
B

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

list filename:line_number
Displays source code centered around the line with the specified line number.

list line_number
If you do not specify a source filename, then the lines displayed are those in
the current source file.

list from,[to]
Displays the specified range of the source code. The from and to arguments
can be either line numbers or function names. If you do not specify a to argu-
ment, list displays the default number of lines beginning at from. For
example, the following command displays the first 10 lines of the main()
function:

(gdb) list main,

list function_name
Displays source code centered around the line in which the specified func-
tion begins.

list, l
The list command with no arguments displays more lines of source code
following those presented by the last list command. If another command
executed since the last list command also displayed a line of source code,
then the new list command displays lines centered around the line displayed
by that command. For example, if the debugger has just interrupted execu-
tion of the program at a breakpoint, the next list command displays lines
centered around that breakpoint.

If you have not yet started the program, the first list command with no argu-
ments displays source code centered around the beginning of the main() function,
as the following example illustrates:

$ gdb -silent circle
(gdb) l
1 // Circle.c: Calculate and print the areas of circles
2 #include <stdio.h> // Preprocessor directive
3
4 double circularArea(double r); // Function declaration (prototype
5 // form)
6 int main() // Definition of main() begins
7 {
8 double radius = 1.0, area = 0.0;
9
10 printf(" Areas of Circles\n\n");
(gdb)

Two other commands are useful in controlling the output of your list
commands:

set listsize number
Sets the default number of lines displayed by list commands to number.

show listsize
Shows the default number of lines displayed by list commands.

560 | Chapter 20: Debugging C Programs with GDB

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Working with Breakpoints

On reaching a breakpoint, the debugger interrupts the running program and
displays the line at which you have set the breakpoint. To be exact, the line
displayed is the line containing the next statement that will be executed when the
program resumes. Once the program flow has been interrupted by a breakpoint,
you can use GDB commands to execute the program line by line, and to display
the contents of variables and registers.

Breakpoints can also be made conditional, so that on reaching such a breakpoint,
the debugger interrupts the program only if a specified condition is fulfilled.

Setting and displaying breakpoints

Set breakpoints using the break command, which you can also abbreviate b. You
can specify the location of a breakpoint in several ways. Here are the most
common forms of the break command:

break [filename:]line_number
Sets a breakpoint at the specified line in the current source file, or in the
source file filename, if specified.

break function
Sets a breakpoint at the first line of the specified function.

break
Sets a breakpoint at the next statement to be executed. In other words, the
program flow will be automatically interrupted the next time it reaches the
point where it is now. (To be more exact, the break command with no argu-
ments sets a breakpoint at the next statement in the currently selected stack
frame: see the section “Analyzing the Stack,” later in this chapter. For now,
we assume that you have not explicitly selected any stack frame, so that the
current frame corresponds to the function in which the program flow is
currently interrupted, and the break command with no arguments sets a
breakpoint at the current statement.)

Referring now to the program gdb_example.c from Example 20-1, the following
command sets a breakpoint at the beginning of the function swap():

(gdb) b swap
Breakpoint 1 at 0x4010e7: file gdb_example.c, line 27.

The output from the b command tells you that the breakpoint was set on line 27.
You can issue the list command to confirm that line 27 is, in fact, the first line of
the swap function:

(gdb) list 27
22 return 0;
23 }
24
25 void swap(int *p1, int *p2) // Exchange *p1 and *p2.
26 {
27 int *p = p1;
28 p1 = p2;
29 p2 = p;
30 }
31

Using GDB Commands | 561

D
eb

u
g

g
in

g
w

ith
 G

D
B

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The following command sets a second breakpoint before the end of the function:

(gdb) b 30
Breakpoint 2 at 0x4010f9: file gdb_example.c, line 30.

You can use the info command to display all the breakpoints that are currently
defined:

(gdb) info breakpoints
Num Type Disp Enb Address What
1 breakpoint keep y 0x004010e7 in swap at gdb_example.c:27
2 breakpoint keep y 0x004010f9 in swap at gdb_example.c:30

The breakpoint numbers shown at left in the info output are used to identify the
individual breakpoints in other commands, such as those to delete or disable a
breakpoint. In the info output above, the letter y for “yes” in the column labeled
Enb indicates that both breakpoints are enabled. The third column, labeled Disp
for “disposition,” indicates whether each breakpoint will be retained or deleted
the next time the program flow reaches it. If a breakpoint is temporary, GDB
automatically deletes it as soon as it is reached. To set a temporary breakpoint,
use the tbreak command instead of break, as in the following example:

(gdb) tbreak 16
Breakpoint 3 at 0x4010c0: file gdb_example.c, line 16.

Deleting, disabling, and ignoring breakpoints

The following commands take as their argument either a single breakpoint
number or a range of breakpoints. A range consists of two breakpoint numbers
separated by a hyphen, such as 3-5.

delete [bp_number | range]

d [bp_number | range]
Deletes the specified breakpoint or range of breakpoints. A delete command
with no argument deletes all the breakpoints that have been defined. GDB
prompts you for confirmation before carrying out such a sweeping command:

(gdb) d
Delete all breakpoints? (y or n)

disable [bp_number | range]
Temporarily deactivates a breakpoint or a range of breakpoints. If you don’t
specify any argument, this command affects all breakpoints. It is often more
practical to disable breakpoints temporarily than to delete them. GDB retains
the information about the positions and conditions of disabled breakpoints
so that you can easily reactivate them.

enable [bp_number | range]
Restores disabled breakpoints. If you don’t specify any argument, this
command affects all disabled breakpoints.

ignore bp_number iterations
Instructs GDB to pass over a breakpoint without stopping a certain number
of times. The ignore command takes two arguments: the number of a break-
point, and the number of times you want it to be passed over.

562 | Chapter 20: Debugging C Programs with GDB

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Here is an example using all of the commands listed:

(gdb) del 2
(gdb) dis 1-3
No breakpoint number 2.
(gdb) ena 1
(gdb) ign 1 5
Will ignore next 5 crossings of breakpoint 1.
(gdb) info b
Num Type Disp Enb Address What
1 breakpoint keep y 0x004010e7 in swap at gdb_example.c:27
 ignore next 5 hits
3 breakpoint del n 0x004010c0 in main at gdb_example.c:16

As the info output indicates, breakpoint 2 no longer exists; the temporary break-
point 3 is disabled, and breakpoint 1 will not stop the program until the sixth
time the program reaches it.

Conditional breakpoints

Normally, the debugger interrupts a program as soon as it reaches a breakpoint. If
the breakpoint is conditional, however, then GDB stops the program only if the
specified condition is true. You can specify a break condition when you set a
breakpoint by appending the keyword if to a normal break command:

break [position] if expression

In this syntax, position can be a function name or a line number, with or without
a filename, just as for an unconditional breakpoint (see the earlier subsection
“Setting and displaying breakpoints”). The condition can be any C expression
with a scalar type, and may include function calls. Here is an example of a condi-
tional breakpoint:

(gdb) s
27 for (i = 1; i <= limit ; ++i)
(gdb) break 28 if i == limit - 1
Breakpoint 1 at 0x4010e7: file gdb_test.c, line 28.

This command instructs the debugger to interrupt the program at line 28 if the
variable i at that point has a value one less than the variable limit.

Any variables you use in a break condition must be visible at the
breakpoint’s position. In other words, the breakpoint must be
located within the variables’ scope.

If you have already set a breakpoint at the desired position, you can use the
condition command to add or change its break condition:

condition bp_number [expression]

The argument expression becomes the new condition of the breakpoint with the
number bp_number. The output of the info breakpoints (or info b) command
includes any break conditions, as the following example illustrates:

Using GDB Commands | 563

D
eb

u
g

g
in

g
w

ith
 G

D
B

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

(gdb) condition 2 *p1 != *p2
(gdb) info b
Num Type Disp Enb Address What
1 breakpoint keep y 0x004010ae in main at gdb_example.c:12
2 breakpoint keep y 0x004010e7 in swap at gdb_example.c:21
 stop only if *p1 != *p2
3 breakpoint del y 0x004010f9 in swap at gdb_example.c:24
(gdb)

To delete a break condition, use the condition command without an expression
argument:

(gdb) condition 2
Breakpoint 2 now unconditional.

Resuming Execution After a Break

When you have finished analyzing the state of a stopped program, there are
several ways of resuming execution. You can step through the program line by
line, or let the program run to the next breakpoint, or let it run to a specified posi-
tion, such as the end of the current function. The commands you can use to
proceed after a break in execution are listed here. Examples of all four commands
are given after the list.

continue [passes], c [passes]
Allows the program to run until it reaches another breakpoint, or until it exits
if it doesn’t encounter any further breakpoints. The passes argument is a
number that indicates how many times you want to allow the program to run
past the present breakpoint before GDB stops it again. This is especially
useful if the program is currently stopped at a breakpoint within a loop. See
also the ignore command, described in the previous section “Working with
Breakpoints.”

step [lines], s [lines]
Executes the current line of the program, and stops the program again before
executing the line that follows. The step command accepts an optional argu-
ment, which is a positive number of source code lines to be executed before
GDB interrupts the program again. However, GDB stops the program earlier
if it encounters a breakpoint before executing the specified number of lines. If
any line executed contains a function call, step proceeds to the first line of
the function body, provided that the function has been compiled with the
necessary symbol and line number information for debugging.

next [lines], n [lines]
Works the same way as step, except that next executes function calls without
stopping before the function returns, even if the necessary debugging infor-
mation is present to step through the function.

finish
To resume execution until the current function returns, use the finish
command. The finish command allows program execution to continue through
the body of the current function, and stops it again immediately after the
program flow returns to the function’s caller. At that point, GDB displays the
function’s return value in addition to the line containing the next statement.

564 | Chapter 20: Debugging C Programs with GDB

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Remember that the lines of a program are not always executed in the order in
which they appear in the source code. For example, consider the following func-
tion to compute a factorial:

(gdb) list factorial
21
22 // factorial() calculates n!, the factorial of a nonnegative number n.
23 // For n > 0, n! is the product of all integers from 1 to n inclusive.
24 // 0! equals 1.
25
26 long double factorial(register unsigned int n)
27 {
28 long double f = 1;
29 while (n > 1)
30 f *= n--;
31 return f;
32 }

The following excerpt of a GDB session demonstrates that lines of code can
execute outside of their linear order. The frame command shows that the program
execution has been stopped at line 30. The step command executes line 30,
whereupon line 29 is displayed as the next one to be executed:

(gdb) frame
#0 factorial (n=10) at factorial.c:30
30 f *= n--;
(gdb) s
29 while (n > 1)
(gdb)

In this particular example, the execution of line 31 does not follow that of line 30.
Instead, line 29 follows line 30. The reason, of course, is that the loop condition
has to be evaluated after every iteration of the loop body.

If any line executed by a step command contains a function call, and GDB has the
necessary symbol table and line number information for the function, then execu-
tion stops again at the first line within the function called. In the following
example, the step command enters the factorial() function, but not the printf()
function:

(gdb) frame
#0 main () at factorial.c:14
14 printf("%u factorial is %.0Lf.\n", n, factorial(n));
(gdb) s
factorial (n=10) at factorial.c:28
28 long double f = 1;
(gdb)

In this example, the function printf(), unlike factorial(), was linked into the
program from a standard library that was compiled without debugging informa-
tion. As a result, GDB is able to display the contents of factorial(), but not of
printf().

Using GDB Commands | 565

D
eb

u
g

g
in

g
w

ith
 G

D
B

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

You can use the next command to skip over function calls; that is, to avoid step-
ping into functions. The following example is the same as the preceding one,
except that it substitutes next for step to illustrate the difference in behavior
between the two commands:

(gdb) frame
#0 main () at factorial.c:14
14 printf("%u factorial is %.0Lf.\n", n, factorial(n));
(gdb) n
10 factorial is 3628800.
16 return 0;
(gdb)

As you can see, the use of next prevented the debugger from stepping into either
factorial() or printf().

Finally, here is an example illustrating the finish command, again using the
factorial() function:

(gdb) s
14 printf("%u factorial is %.0Lf.\n", n, factorial(n));
(gdb) s
factorial (n=10) at factorial.c:28
28 long double f = 1;
(gdb) finish
Run till exit from #0 factorial (n=10) at factorial.c:28
0x0040112b in main () at factorial.c:14
14 printf("%u factorial is %.0Lf.\n", n, factorial(n));
Value returned is $2 = 3628800
(gdb)

In this case, finish caused execution to continue until the return from the
factorial() function call. (If there had been breakpoints within the factorial()
function block, GDB would have stopped the program there.) The call to printf()
has not yet been executed at this point, however.

Analyzing the Stack

The call stack, usually simply called the stack, is an area of memory organized on
the LIFO principle: “last in, first out.” Each time a program performs a function
call, it creates a data structure on the stack called a stack frame. The stack frame
contains not only the caller’s address and register values, which enable the
program to return control to the caller after completing the function, but also the
function’s parameters and local variables. When a function returns, the memory
that its stack frame occupied is free again.

Displaying a call trace

When the debugger stops a program, it is often helpful to know what sequence of
function calls has brought the flow of execution to the current position. GDB
provides this information in the form of a call trace, which shows each function
call that is currently in progress, with its arguments. To display the call trace, use
the backtrace command (abbreviated bt). The backtrace command has two more
synonyms: where and info stack (or info s).

566 | Chapter 20: Debugging C Programs with GDB

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The following example shows the call trace when the program circle.c is stopped
within the function circularArea():

(gdb) bt
#0 circularArea (r=5) at circle.c:30
#1 0x0040114c in main () at circle.c:18

The trace shows that the circularArea() function is called from main() at line 18,
with the argument value 5. The debugger numbers the stack frames from last to
first, so that the current function’s frame always has the number 0. The highest
numbered stack frame is that of the main() function.

The address that follows the frame number in the backtrace output is the return
address; that is, the address of the next instruction to be executed after the return
from the function call for which the stack frame was generated. However, this
address is omitted from the stack frame display if it corresponds to the same
source code line at which the program is stopped.

We’ll illustrate backtraces using the following recursive function named
factorial():

34 long double factorial(register unsigned int n)
35 {
36 if (n <= 1)
37 return 1.0L;
38 else
39 return n * factorial(n-1);
40 }

The following GDB output shows the call stack during the final, recursive call to
factorial(). By definition, that final call occurs when n is 1. To stop the program
in the last recursive iteration of the factorial() function, we can set a breakpoint
with the condition n == 1:

(gdb) b factorial if n == 1
Breakpoint 1 at 0x40114f: file factorial.c, line 36.
(gdb) r
...
Breakpoint 1, factorial (n=1) at factorial.c:36
36 if (n <= 1)
(gdb) bt
#0 factorial (n=1) at factorial.c:36
#1 0x0040117c in factorial (n=2) at factorial.c:39
#2 0x0040117c in factorial (n=3) at factorial.c:39
#3 0x0040117c in factorial (n=4) at factorial.c:39
#4 0x0040117c in factorial (n=5) at factorial.c:39
#5 0x0040112b in main () at factorial.c:14
(gdb)

The backtrace in this example shows that the main() function started things off by
requesting the value of 5! (the factorial of 5). The factorial() function then recur-
sively invoked itself to compute 4!, and then 3!, followed by 2!, and finally by 1!.

Using GDB Commands | 567

D
eb

u
g

g
in

g
w

ith
 G

D
B

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Displaying and changing the current stack frame

Most of the commands for examining the stack operate on the current stack
frame. For example, you can address the local variables in the current stack frame
by their names. When multiple frames are available, GDB lets you choose among
them.

When the debugger stops the program at a breakpoint, the current stack frame is
the frame corresponding to the function currently being executed—that is, the
frame numbered 0 in the backtrace list. The frame command allows you to display
the current stack frame, or to select a different frame:

frame [number]

The command frame, abbreviated as f, selects and displays the frame with the
specified number. That frame is then the current stack frame. The frame
command with no argument simply displays information about the current frame.

The output of the frame command always consists of two lines of text: the first
contains the name of the function called and the values of its arguments; the
second is the current source code line in the corresponding function.

In the following example, the program circle has been stopped in the function
circularArea():

(gdb) bt
#0 circularArea (r=5) at circle.c:27
#1 0x0040114c in main () at circle.c:18
(gdb) f 1
#1 0x0040114c in main () at circle.c:18
18 area = circularArea(radius);
(gdb) p radius
$1 = 5
(gdb)

The command f 1 selects the stack frame that contains the call to the current
function. In this example, that is the frame corresponding to the main() function.
Once that stack frame has been selected, local variables in main() can be accessed
by their names, as the command p radius demonstrates.

Displaying arguments and local variables

The info command has three subcommands that are useful in displaying the
contents of the current stack frame:

info frame
Displays information about the current stack frame, including its return
address and saved register values.

info locals
Lists the local variables of the function corresponding to the stack frame,
with their current values.

info args
List the argument values of the corresponding function call.

568 | Chapter 20: Debugging C Programs with GDB

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

In the following example, the program has been stopped at the beginning of the
swap() function. This swap() is the corrected version of the function in
Example 20-1:

25 void swap(int *p1, int *p2) // Exchange *p1 and *p2.
26 {
27 int tmp = *p1;
28 *p1 = *p2;
29 *p2 = tmp;
30 }

On an Intel-based system with Windows XP, the info frame command displays
the following information:

(gdb) info frame
Stack level 0, frame at 0x22f010:
 eip = 0x4010e7 in swap (gdb_example.c:27); saved eip 0x4010c0
 called by frame at 0x22f030
 source language c.
 Arglist at 0x22f008, args: p1=0x22f024, p2=0x22f020
 Locals at 0x22f008, Previous frame's sp is 0x22f010
 Saved registers:
 ebp at 0x22f008, eip at 0x22f00c

The register eip (the “extended instruction pointer”) contains the address of the
next machine instruction to be executed, corresponding to line 27. The ebp
register (“extended base pointer”) points to the current stack frame. The info args
command produces the following display:

(gdb) info args
p1 = (int *) 0x22f024
p2 = (int *) 0x22f020

GDB indicates the pointers’ type, int *, as well as their values. The info locals
command displays the following information:

(gdb) info locals
tmp = 0

Displaying Data

Usually you can use the print command to display the values of variables and
other expressions. In addition, you can use the command x to examine unnamed
blocks of memory.

Displaying values of expressions

The print or p command takes any C expression as its argument:

p [/format] [expression]

This command evaluates expression and displays the resulting value. A print
command with no expression argument displays the previous value again,
without reevaluating the previous expression. If you want, you can specify a
different output format.

Using GDB Commands | 569

D
eb

u
g

g
in

g
w

ith
 G

D
B

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The optional argument /format allows you to specify an appropriate output
format for the expression (see the following subsection, “Output formats”).
Without a format argument, print formats the output as appropriate for the data
type.

Expressions in print commands can also have side effects, as the following
example illustrates. The current stack frame is that of the circularArea() func-
tion in the circle program:

(gdb) p r
$1 = 1
(gdb) p r=7
$2 = 7
(gdb) p r*r
$3 = 49

In this example, the expression r=7 in the second print command assigns the
value 7 to the variable r. You can also change the value of a variable using the set
command:

(gdb) set variable r=1.5

The print command’s output displays an expression’s value as the value of a vari-
able $i, where i is a positive integer. You can refer to these variables in
subsequent commands, as in the following example:

(gdb) p 2*circularArea($2)
$4 = 307.87608005280003

This command calls the function circularArea() with the value of $2 (which was
7 in our preceding example), then multiplies the return value by 2 and saves the
result in the new variable $4.

You can also use the p and set commands to define new variables in GDB, with
names that start with a dollar sign. For example, the command set $var = *ptr
creates a new variable named $var and assigns it the value currently referenced by
the pointer ptr. The debugger’s variables are separate from those of the program
being debugged. GDB also stores the values of CPU registers in variables whose
names are the standard register names, with the dollar sign prefix.

To access variables in other stack frames without first changing the current stack
frame, prefix the function name and the double-colon operator (::) to the vari-
able’s name, as the following example illustrates:

(gdb) p main::radius
$8 = 1

Output formats

The optional /format argument to the print command consists of a slash followed
by a single letter that specifies an output format. The letters permitted are mostly
similar to the conversion specifiers in the format string argument of the C func-
tion printf(). For example, the command print /x displays the previous value as
an integer in hexadecimal notation.

570 | Chapter 20: Debugging C Programs with GDB

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

The print command converts the value to the appropriate type, if necessary. The
following list describes all of the format options for integer values:

d Decimal notation. This is the default format for integer expressions.

u Decimal notation. The value is interpreted as an unsigned integer type.

x Hexadecimal notation.

o Octal notation.

t Binary notation. Do not confuse this with the x command’s option b for
“byte,” described in the next subsection.

c Character, displayed together with the character code in decimal notation.

As the following example illustrates, the format option can follow the p command
immediately, without an intervening space:

(gdb) p/x 65
$10 = 0x41
(gdb) p/t
$11 = 1000001
(gdb) p/c
$12 = 65 'A'
(gdb) p/u -1
$13 = 4294967295

Each print command without an expression argument in this example displays the
same value as the previous command, but formatted as specified by the /format
argument.

The print command accepts two more format options for non-integer expressions:

a Displays an address, such as a pointer value, in hexadecimal notation, along
with its offset from the nearest named address below it in memory, if any.

f Interprets the bit pattern of the expression’s value as a floating-point number,
and displays it.

Here are some examples using these format options:

(gdb) p/a 0x401100
$14 = 0x401100 <swap+31>
(gdb) p/f 123.0
$15 = 123
(gdb) p/f 123
$16 = 1.72359711e-43

Displaying memory blocks

The x command allows you to examine unnamed memory blocks. The
command’s arguments include the block’s beginning address and size, and an
optional output format:

x [/nfu] [address]

This command displays the contents of the memory block starting at the specified
address, with the block size and output format determined by the /nfu option. The
address argument can be any expression whose value is a valid address. If you omit

Using GDB Commands | 571

D
eb

u
g

g
in

g
w

ith
 G

D
B

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

the address argument, the x command displays the next memory block following
the last memory location displayed by an x or print command.

The /nfu argument can consist of up to three parts, all of which are optional:

n A decimal number specifying how many units of memory to display. The size
of each such unit is determined by the third part of the /nfu option, u. The
default value of n is one.

f A format specifier, which may be one of those supported by the print
command (described in the preceding section, “Output formats”), or one of
the following two additional format specifiers:

s Display the data at the specified address as a null-terminated string.

i Display machine instructions in assembly language.

The default format is initially x, and later whichever format you last specified
in an x or print command.

u The third part of the /nfu argument, the u option, defines the size of each
memory unit displayed, and can have one of the following values:

b One byte

h Two bytes (a “half word”)

w Four bytes (a “word”)

g Eight bytes (a “giant word”)

The default value of u is initially w, and later whichever unit you last specified in
an x command. It makes no sense to specify a unit size with the format option s or
i. If you do so, GDB ignores the unit size option.

The following examples illustrate the use of the x command. In these examples,
assume that the following variables are defined in the current scope:

char msg[100] = "Hello world!\n";
char *cPtr = msg + 6;

Each line of the x command’s output begins with the starting address of the
memory location displayed, and the corresponding name from the symbol table, if
any. The first x command displays the string msg:

(gdb) x/s msg
0x402000 <msg>: "Hello world!\n"

The next command displays the first 15 bytes of the msg string in hexadecimal:

(gdb) x/15xb msg
0x402000 <msg>: 0x48 0x65 0x6c 0x6c 0x6f 0x20 0x77 0x6f
0x402008 <msg+8>: 0x72 0x6c 0x64 0x21 0x0a 0x00 0x00

Two 32-bit words, in hexadecimal notation, at the address msg:

(gdb) x/2xw msg
0x402000 <msg>: 0x6c6c6548 0x6f77206f

The string that begins at the pointer value of cPtr:

(gdb) x/s cPtr
0x402006 <msg+6>: "world!\n"

572 | Chapter 20: Debugging C Programs with GDB

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Beginning at the same address, eight decimal character codes, with the corre-
sponding character values:

(gdb) x/8cb cPtr
0x402006 <msg+6>: 119 'w' 111 'o' 114 'r' 108 'l' 100 'd' 33 '!' 10 '\n' 0 '\0'

The value of the pointer cPtr itself, in hexadecimal and in binary:

(gdb) x/a &cPtr
0x22f00c: 0x402006 <msg+6>
(gdb) x/tw &cPtr
0x22f00c: 00000000010000000010000000000110

Watchpoints: Observing Operations on Variables

GDB lets you take notice of read and write access to variables by setting
watchpoints. A watchpoint is like a breakpoint, except that it is not bound to a
specific line of source code. If you set a watchpoint for a variable, then GDB stops
the program whenever the value of the variable changes. In fact, GDB can watch
not only individual variables, but also expressions. You can set different kinds of
watchpoints using the commands watch, rwatch, and awatch. All three commands
have the same syntax:

watch expression
The debugger stops the program when the value of expression changes.

rwatch expression
The debugger stops the program whenever the program reads the value of
any object involved in the evaluation of expression.

awatch expression
The debugger stops the program whenever the program reads or modifies the
value of any object involved in the evaluation of expression.

The most common use of watchpoints is to observe when the program modifies a
variable. When a watched variable changes, GDB displays the variable’s old and
new values, and the line containing the next statement to be executed. To illus-
trate the use of watchpoints, we will provide some examples based on the
following simple program:

1 #include <stdio.h>
2
3 int main()
4 {
5 int a = 10;
6 int b = 20;
7 int *iPtr = &a;
8
9 ++*iPtr;
10 puts("This is the statement following ++*iPtr.");
11
12 printf("a = %d; b = %d.\n", a, b);
13 return 0;
14 }

Using GDB Commands | 573

D
eb

u
g

g
in

g
w

ith
 G

D
B

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Before you can set a watchpoint for a local variable, you must begin executing the
program until the program flow enters the scope of the desired variable. For this
reason, we will start by running the program to an ordinary breakpoint at line 9:

(gdb) b 9
Breakpoint 1 at 0x4010ba: file myprog2.c, line 9.
(gdb) r
Starting program: ...

Breakpoint 1, main () at myprog2.c:9
9 ++*iPtr;

Now we can set a watchpoint for the variable a, and continue execution:

(gdb) watch a
Hardware watchpoint 2: a
(gdb) c
Continuing.
Hardware watchpoint 2: a

Old value = 10
New value = 11
main () at myprog2.c:10
10 puts("This is the statement following ++*iPtr.");

Because iPtr points to a, the expression ++*iPtr modifies the value of a. As a
result, the debugger stops the program after that operation, and displays the next
statement about to be executed.

To continue this example, we can set a “read watchpoint” on the variable b.
Watchpoints are included in the list of breakpoints displayed by the command
info breakpoints (or info b for short):

(gdb) rwatch b
Hardware read watchpoint 3: b
(gdb) info b
Num Type Disp Enb Address What
1 breakpoint keep y 0x004010ba in main at myprog2.c:9
 breakpoint already hit 1 time
2 hw watchpoint keep y a
 breakpoint already hit 1 time
3 read watchpoint keep y b
(gdb) c
Continuing.
This is the statement following ++*iPtr.
Hardware read watchpoint 3: b

Value = 20
0x004010ce in main () at myprog2.c:12
12 printf("a = %d; b = %d.\n", a, b);
(gdb) c
Continuing.
a = 11; b = 20.
...

574 | Chapter 20: Debugging C Programs with GDB

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

When the program leaves a block—that is, when the flow of program execution
passes a closing brace (})—the debugger automatically deletes all watchpoints for
expressions involving local variables that are no longer in scope.

To conclude this section, let us look at how the debugger behaves when you set a
watchpoint for an expression with several variables. GDB stops the program each
time it accesses (or modifies, depending on the type of watchpoint) any variable in
the expression. For the following session, we restart the program examined in the
previous examples. When it stops at the breakpoint in line 9, we set a read watch-
point for the expression a + b:

(gdb) b 9
Breakpoint 1 at 0x4010ba: file myprog2.c, line 9.
 (gdb) r
Starting program: ...

Breakpoint 1, main () at myprog2.c:9
9 ++*iPtr;
(gdb) rwatch a+b
Hardware read watchpoint 2: a + b

If we now let the program continue, the debugger stops it at the next statement
that reads either of the variables a or b. The next such statement is the printf call
in line 12. Because that statement reads both a and b, the debugger stops the
program twice, displaying the value of the watch expression a + b each time:

(gdb) c
Continuing.
This is the statement following ++*iPtr.
Hardware read watchpoint 2: a + b

Value = 31
0x004010ce in main () at myprog2.c:12
12 printf("a = %d; b = %d.\n", a, b);
(gdb) c
Continuing.
Hardware read watchpoint 2: a + b

Value = 31
0x004010d5 in main () at myprog2.c:12
12 printf("a = %d; b = %d.\n", a, b);
(gdb) c
Continuing.
a = 11; b = 20.
...

Analyzing Core Files in GDB

A core file, or core dump, is a file containing an image of the memory used by a
process. Unix systems generally write a core dump in the working directory when
a process terminates abnormally. (On Unix systems, you can read which signals
trigger a core dump under man signal.) By passing the name of a core file to GDB
on the command line, you can examine the state of the process at the moment it
was terminated.

Using GDB Commands | 575

D
eb

u
g

g
in

g
w

ith
 G

D
B

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

A GDB session to analyze a core file is similar to an ordinary debugging session,
except that the program you are debugging has already been stopped at a certain
position, and you can’t use the run, step, next, or continue commands to make it
go again. We’ll walk through a sample “postmortem” session to illustrate how to
debug the program using the other GDB commands. To begin, suppose the
program myprog, located in the current directory, has been compiled with the -g
option. The following command runs the program:

$./myprog
Segmentation fault (core dumped)

The error message indicates that myprog aborted due to an illegal memory access.
The system has generated a core file in the current directory with the name core.
To analyze the program’s error, we will start GDB, passing it the name of the core
file as well as the executable file on the command line. On starting, the debugger
immediately displays the address and the function in which the program was
terminated:

$ gdb myprog core
GNU gdb 6.1
Copyright 2004 Free Software Foundation, Inc.
...
Core was generated by `./myprog'.
Program terminated with signal 11, Segmentation fault.

Reading symbols from /lib/tls/libc.so.6...done.
Loaded symbols for /lib/tls/libc.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
#0 0x4008ff06 in strcpy () from /lib/tls/libc.so.6
(gdb)

The last output line indicates that the error took place in the standard library
function strcpy(). If we assume that strcpy() itself is bug-free, then myprog must
have made an error in calling it. The command backtrace, abbreviated bt, displays
the function calls that have led to the current point in the program flow (for more
details on backtraces, see the section “Analyzing the Stack,” earlier in this
chapter):

(gdb) bt
#0 0x4008ff06 in strcpy () from /lib/tls/libc.so.6
#1 0x080483f3 in main () at myprog.c:13
(gdb)

The output indicates that the strcpy() call occurs at line 13 of the source file
myprog.c, in the function main(). Each of the numbered lines in the output of the
backtrace command corresponds to a stack frame, which is a data structure
created on the stack to hold the data required for a function call. The command
frame n (or f n for short), where n is the number of a stack frame displayed in the
backtrace, selects the stack frame corresponding to the current function’s caller,
and displays the source code line containing the function call:

(gdb) f 1
#1 0x080483f3 in main () at myprog.c:13
13 strcpy(name, "Jim");

576 | Chapter 20: Debugging C Programs with GDB

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

Because the function call shows that the second argument to strcpy() is a string
literal, we can assume that the other argument, name, is an invalid pointer. To
verify its value, use the print command:

(gdb) p name
$1 = 0x0
(gdb)

The value of name is zero: myprog crashed by trying to write using a null pointer.
To correct this bug, you would have to make sure that name points to a char array
of sufficient size to hold the string copied to it.

577

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

20
Index

Symbols
& (ampersand)

& (address-of) operator, 72
address constants, 81
pointers to pointers, 126
precedence and associativity, 59

& (bitwise AND) operator, 69
precedence and associativity, 59
usual arithmetic conversions, 42

&= (bitwise AND assignment)
operator, 62, 70

precedence and associativity, 59
&& (logical AND) operator, 68

precedence and associativity, 59
<, > (angle brackets)

> (greater than) operator, 66
precedence and associativity, 59
usual arithmetic conversions, 42

>= (greater than or equal to)
operator, 66

precedence and associativity, 59
usual arithmetic conversions, 42

<< (left shift) operator, 59, 71
<<= (left shift assignment)

operator, 62
precedence and associativity, 59

< (less than) operator, 66
precedence and associativity, 59
usual arithmetic conversions, 42

<= (less than or equal to)
operator, 66

precedence and associativity, 59
usual arithmetic conversions, 42

>> (right shift) operator, 59, 71
>>= (right shift assignment)

operator, 59, 62
* (asterisk)

* (indirection) operator, 65, 72, 75,
125, 127

precedence and associativity, 59
structure members,

accessing, 142
* (multiplication) operator, 60

precedence and associativity, 59
usual arithmetic conversions, 42

*= (multiplication assignment)
operator, 62

precedence and associativity, 59
in declarators, 159
in type names, 161

\ (backslash)
ending lines, 39
in escape sequences, 36

{ } (braces)
in array initializations, 114
in block statements, 84
in multidimensional array

initializations, 119

578 | Index

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

[] (brackets)
[] (subscript) operator, 72, 73, 138

accessing array elements, 113
array definitions, 111
arrays as function parameters, 99
precedence and associativity, 59
using with . and –> operators, 75

in declarators, 159
^ (caret)

^ (bitwise exclusive OR)
operator, 69

precedence and associativity, 59
setting and clearing bits, 70
usual arithmetic conversions, 42

^= (bitwise exclusive OR
assignment) operator, 62

precedence and associativity, 59
: (colon)

:= (assignment) operator, in make
utility, 521

double-colon rules in make, 519
, (comma) operator, 75, 80

precedence and associativity, 59
use in for loops, 87

$ (dollar sign)
$() in make macros, 530

. (dot)
. (member access) operator, 72, 74,

127
accessing flexible structure

members, 146
accessing structure members, 142
precedence and associativity, 59

... (ellipsis), 7, 109, 213
= (equals sign)

= (assignment) operator, 62
in make utility, 521
precedence and associativity, 59

== (equal to) operator, 66, 67
comparing pointers, 128
precedence and associativity, 59
usual arithmetic conversions, 42

! (exclamation mark)
! (logical NOT) operator, 68

precedence and associativity, 59
!= (not equal) operator, 66, 67

comparing pointers, 128
precedence and associativity, 59
usual arithmetic conversions, 42

(hash mark)
(stringify) operator, 215
(token-pasting) operator, 216

in makefile comments, 520
in preprocessor directives, 7

– (minus sign)
– – (decrement) operator, 64

precedence and associativity, 59
–> (member access) operator, 72, 74

accessing flexible structure
members, 146

accessing structure members, 142
accessing structure or union

members, 127
precedence and associativity, 59

– (subtraction) operator, 59, 60
usual arithmetic conversions, 42

–= (subtraction assignment)
operator, 62

precedence and associativity, 59
– (unary negation) operator, 60

precedence and associativity, 59
() (parentheses)

() (function call) operator, 75, 76,
104, 138

precedence and associativity, 59
in declarators, 159

% (percent sign)
% (modulo) operator, 60

precedence and associativity, 59
usual arithmetic conversions, 42

%= (modulo assignment)
operator, 62

precedence and associativity, 59
+ (plus sign)

+ (addition) operator, 59, 60
usual arithmetic conversions, 42

+ (unary plus) operator, 60
precedence and associativity, 59

+= (addition assignment)
operator, 62

precedence and associativity, 59
+= (append) operator in

makefiles, 521
++ (increment) operator, 64

precedence and associativity, 59
? (question mark)

?: (conditional) operator, 75, 79
precedence and associativity, 59
usual arithmetic conversions, 42

?= (conditional assignment) operator,
in make utility, 521

" (quotation marks, double)
"" (empty string), 37
enclosing string literals, 37

Index | 579

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

; (semicolon)
in expression statements, 83
in null statements, 84

/ (slash)
/* and */ delimiters, block

comments, 7
//, beginning line comments, 7
/ (division) operator, 60

precedence and associativity, 59
usual arithmetic conversions, 42

/= (division assignment) operator, 62
precedence and associativity, 59

~ (tilde)
~ (bitwise NOT) operator, 69

precedence and associativity, 59
_ (underscore), in identifier names, 230
| (vertical bar)

| (bitwise OR) operator, 69
precedence and associativity, 59
setting and clearing bits, 70
usual arithmetic conversions, 42

|= (bitwise OR assignment)
operator, 62

precedence and associativity, 59
|| (logical OR) operator, 68

precedence and associativity, 59

A
\a (alert) character, 8
abort() function, 272
abs() function, 272
access modes, 186
acos() function, 273
acosh() function, 274
additive operators, precedence and

associativity, 59
address constants, 81
adjustment (after loop iterations), 86
aggregate types, 21
alert (\a) character, 8
alignment

signed and unsigned types, 21
structure members by compiler, 145

allocating memory (see dynamic
memory management)

alphabet letters (Latin), 8
AND, OR, and NOT operators (see

bitwise operators; logical
operators)

ANSI C (C89), xi

ANSI character set, 35
appendSong() function, 147
argument pointers, 109
arguments, function

arrays as, 120
pointers as, 104
stdarg.h header, 243
variable numbers of, 103, 108

arithmetic
with complex numbers, 231
performing on pointers, 127
performing with character

variables, 22
pragmas for (see pragmas)

arithmetic constant expressions, 81
arithmetic operators, 60–62

associativity, 58
pointer arithmetic, 61
standard arithmetic, 60

arithmetic types, 21
conversion of, 41–48

hierarchy of types, 41
integer promotion, 42
other implicit conversions, 44
results, 45–48
usual arithmetic

conversions, 42–44
array declarator, 154
array designators, type conversions, 48
array pointers, 132
array types, 20
arrays, 111–121

accessing elements, 113
char array, 37, 116
declaration (examples), 155
defining, 111–113

fixed-length arrays, 112
variable-length arrays, 112

elements of (see [] operator)
elements of type int_fast32_t, 25
as flexible structure members, 146
as function arguments, 120
as function parameters, 99
initializing, 114

specific elements, 115
writing initialization lists, 114

linked lists vs., 171
multidimensional, 117–119

declaring, 118
initializing, 119
matrices, 118

580 | Index

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

arrays (continued)
pointer arrays, 134–136
pointers to char, 38
sorting and searching, 264
sorting with qsort(), 52
of strings, 116
structures as elements, 75
variable initialized with string

literal, 39
variable-length

goto statements and, 94
size of, 78

arrow operator (see –> operator)
ASCII, 12, 22
asctime() function, 275
asin() function, 275
asinh() function, 276
assembler, 495
assembly language, translation of C

programs into, 495
assert() macro, 269, 277
assert.h header, 231
assignment

copying contents of structure object
to another object of same
type, 142

implicit type conversions of
arithmetic values, 44

assignment expressions, 63
assignment operators, 62–64

associativity, 58
compound assignment, 63
in makefiles, 520
precedence and associativity, 59
simple assignment, 62

associativity of operators, 58
atan() function, 277
atan2() function, 278
atanh() function, 279
atexit() function, 280
atof() function, 280
atoi() function, 281
auto (storage class specifier), 156
automatic (storage duration), 165
automatic variables, 165
automatic variables (in make), 524

B
\b (backspace) character, 8, 36
B language, 3

base eight (octal) notation, 32
basic character set, 8

multibyte characters and, 10
BCPL (Basic Combined Programming

Language), 3
binary

representation of floating-point
types, 27

representation of integer types, 23
binary operators, 59
binary search algorithm, 265, 282
binary search tree (BST), 171–181

characteristics, 172
implementation, 172–181

finding data, 176
generating empty tree, 174
inserting data, 175
removing data, 176–178
sample application, 179
traversing a tree, 178

binary streams, 182, 183, 187
binarySearch() function, 107
bit-fields, 139, 151

integer promotion of, 42
bit masks, 70

generation with shift operators, 71
bitwise operators, 69

Boolean, 69
macros for, 238
shift operators, 71
usual arithmetic conversions, 42

block comments, 7
nesting not permitted, 7

block scope, 15, 16, 84, 153
block statement, 4, 84
blocks, 4

lifetime of automatic objects, 165
reading and writing, 193

_Bool, conversions to, 45
Boolean bitwise operators, 69
Boolean truth values, 243

represented by type _Bool, 22
bottom-driven loop, 87
break statement, 93
breakpoints, 548, 560–563
bsearch() function, 282
BST (see binary search tree)
BST_clear() function, 178, 181

prototype, 174
BST_erase() function, 176, 181

prototype, 174

Index | 581

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

BST_inorder() function, 179, 180
prototype, 174

BST_insert() function, 175
prototype, 173

BST_postorder() function, 174
BST_preorder() function, 174
BST_rev_inorder() function, 174
BST_search() function, 176, 181

prototype, 173
btowc() function, 284
buffers, 185
building C programs with

make, 512–544
built-in rules (in make), 517
byte-character I/O functions, 253
byte-oriented streams, 188

printf() functions, 195

C
.c file extension, 6
C language

characteristics, 3
dialects, choosing among, 501
source files, 6
standardization working group, xiv
standards, xi
structure of programs, 4

C++-style comments, 7
C89 Rationale, xiv
C89 standard, xi
C99 standard, xi, xiv, 501

complex floating-point types, 28
hexadecimal floating-point

constants, 34
integer types with exact width, 25

cabs() function, 284
cacos() function, 285
cacosh() function, 285
call by reference functions, 105
call by value functions, 104
call stack, 565
call trace, displaying with GDB, 565
calloc() function, 164, 168, 169, 286
carg() function, 287
carriage return (\r), 8, 183
Cartesian coordinates representing

complex number, 28
case constants, 91, 92
case labels, 90, 91
case mapping, 261

casin() function, 287
casinh() function, 288
cast operator, 40, 75

precedence and associativity, 59
catan() function, 289
catanh() function, 289
cbrt() function, 290
ccos() function, 290
ccosh() function, 291
ceil() function, 291
cexp() function, 292
char type, 22

character constants, 35
value ranges, 24, 238

character codes, 9
character constants, 34–37

escape sequences, 36
type of, 35

character encoding, wide and multibyte
characters, 9

character literals
escape sequences, 8
quotation marks around, 7

character sets, 8–12
digraphs and trigraphs, 11
ISO Latin 1, 35
locale-specific, 268
multibyte, 263
universal character names, 10
wide and multibyte characters, 9

characters
classification and conversion

functions, 260–262
input and output functions, 253
putting back into a stream, 190
reading from input stream with

scanf(), 203
writing to a stream, 191

cimag() function, 293
circularArea() function, 4
clear() function, 178

post-order traversal, 179
clearerr() function, 293
clearSongList() function, 147
clock() function, 294
cloneSongList() function, 147
comma operator (see , (comma)

operator, under Symbols)
command-line arguments

GDB, 550
main() function parameters, 101

582 | Index

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

command-line options
GCC, 508–511
GDB, 551–553

executing command scripts, 553
passing arguments to program

being debugged, 551
selecting files, 552
selecting user interface, 552

GNU make, 540–542
command script (in makefile rules), 515
command scripts, executing in

GDB, 553
commands (GDB), 554–576

analyzing core files, 574
analyzing the stack, 565–568
command completion, 555
displaying data, 568–572
displaying help for commands, 555
displaying source code, 558
resuming execution after

break, 563–565
running program in debugger, 557
status information, 556–557
watchpoints for variable

operations, 572–574
working with breakpoints, 560–563

commands (in make), 513
comments, 7

in makefiles, 520
common real type, 42
comparative operators, 66

precedence, 67
(see also equality operators;

relational operators)
comparison function for qsort() or

bsearch(), 52
comparison macros, floating-point

numbers, 256
compilers

how the C compiler works, 16–19
processing of translation units, 7
(see also GCC compiler; pack

pragma)
complex declarators, 159
complex floating-point types, 28

conversion rank, 41
conversions to, 47
mathematical functions for, 254
not permitted in freestanding

environment, 228
type-generic macros for

functions, 249

complex numbers
absolute value of, 284
converted to unsigned integer

type, 46
CX_LIMITED_RANGE, 257
equality of, 66

complex.h header, 28, 231
compound assignments, 62, 63
compound literals, 32, 75, 77
compound statements, 84
conditional compiling, 218
conditional operator (see ?: under

Symbols)
conj() function, 295
const (type qualifier), 53, 157

initializers and, 166
modifiable lvalues and, 57
pointers, 129

constant expressions, 81
address constants, 81
arithmetic, 81
in case labels, 90, 91
integer, 81

constant pointers, 129
constants

character, 34–37
enumeration, 29
floating-point, 33
integer, 32

macros for, 246
null pointer, 123
null pointer constants, 53
use in expressions, 57

controlling expression, 85
conversion rank, 41
conversion specifications, 195

(see also scanf() function)
conversion specifier, 196
copysign() function, 295
core files, analyzing in GDB, 574
cos() function, 296
cosh() function, 296
cpow() function, 297
cproj() function, 298
CPU-specific compiler

optimizations, 506
creal() function, 298
csin() function, 299
csinh() function, 299
csqrt() function, 300
ctan() function, 300
ctanh() function, 301

Index | 583

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

ctime() function, 301
ctype.h header, 231
currency formats, 239, 268
current file position, 205
current stack frame (GDB), 567
CX_LIMITED_RANGE pragma, 257

D
data types, 3

(see also types)
_ _DATE_ _, 223
dates and times

functions for, 266
locale-specific formatting, 268
time.h header, 249

debugging
assert() macro, 269
C programs with GDB, 545–576

installing GDB, 546
sample session, 546–550
starting GDB, 550–554
using GDB commands, 554–576

compiler optimization and, 503
GCC compiler output, 507
information in compiler output, 496

decimal constants
floating-point, 33
integer, 32

types, 33
decimal digits, 8
decimal notation, range and precision of

floating-point types, 235
declarations, 153–166

complex declarators, 159
definitions and, 158
initialization, 165
kinds of, 153
linkage of identifiers, 163–164
object and function (examples), 155
storage class specifiers, 156
storage duration of objects, 164
type names, 160
type qualifiers, 157
typedef, 161

declarations/definitions
in block statements, 84
declaration of a bit-field, 151
declaring functions, 103

optional parameters, 103
declaring multidimensional

arrays, 118

declaring pointers, 122–124
null pointers, 123
void pointers, 124

defining a structure type, 140
defining arrays, 111–113
defining fixed-length arrays, 112
defining functions, 96–102

arrays as parameters, 99
function parameters, 98
K&R-style, 98
parameter declarations, 97
storage class specifiers, 97

defining main() function, 101
defining union types, 149
defining variable-length arrays, 112
definitions of inline functions, 107
external, 21
in source files, 6

declarator (function head), 96
declarator list, 154
declarators, complex, 159
decrement operators, 59, 64

lvalues, 57
default argument promotions, 44
default label, 90, 91
define directive (in make), 529
#define directives, 29, 211

macro redefinition and, 218
predefined macros and, 224

defined operator, 220
definitions

declarations and, 158
(see also declarations/definitions)

dependencies, header (make
utility), 538

dereferencing a pointer, 125
dereferencing operator (see * (asterisk),

under Symbols)
derived types, 20
detachMin() function, 177
“Development of the C Language,

The,” xiv
difftime() function, 302
digits, 8
digraphs, 11
directives (in make), 534–537
div() function, 303
do ... while statements, 87

continue statement and, 93
domain errors, 259
dot operator (see . (dot), under Symbols)

584 | Index

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

double _Complex type, 28
double type, 26, 27

float.h header, 233
floating-point constants, 34
hexadecimal floating-point

constants, 34
double-colon rules (in make), 519
double_t type, 240
dynamic linking, shared object files, 500
dynamic memory

management, 167–181
binary search tree

implementation, 172–181
characteristics of allocated

memory, 169
functions for, 265
resizing and releasing memory, 170

E
e or E (exponents), 33
element designators, 115

in multidimensional array
initialization, 119

(see also [] (brackets), under
Symbols)

#elif directives, 219
ellipsis (see ... (ellipsis), under Symbols)
#else directives, 219
else clause (if statements), 89
else if clause (if statements), 90
embedded systems programming, 4
empty string (""), 37
#endif directives, 219
end-of-line indicators, 183
enum keyword, 29
enumerated types

conversion rank, 41
declaration (example), 155

enumeration constants, 29
enumerations, 20, 29

identifier scope, 15
environment, 267

floating-point, 232
environment variables, 102

GCC, 511
make utility, 526

equality operators, 66
comparing pointers, 128
precedence and associativity, 59
usual arithmetic conversions, 42

erase() function, 176
erf() function, 304
erfc() function, 304
errno.h header, 232
#error directives, 221
error handling

I/O, 188
return values and status flags, 189

mathematical functions, 259
error messages, functions for, 270
error variable errno, 189
escape sequences, 9, 36

beginning with \x, 10
interpretation by compiler, 39
octal and hexadecimal, 37
universal character names, 37

exception status flags, 257
accessing, 258

execution character set, 8
conversion of characters and escape

sequences into, 18
multibyte characters, 10
universal character names, 11

execution environments, 8, 228
freestanding and hosted, 101

_Exit() function, 271
exit() function, 304
exp() function, 305
exp2() function, 306
explicit initialization, 165
explicit type conversions, 40

pointers, 49–51
expm1() function, 307
exponential notation

decimal floating-point constants, 33
hexadecimal floating-point

constants, 34
expression statements, 83
expressions, 55–59

constant, 81
controlling loops, 85
evaluation of, 56–59

lvalues, 56
operator precedence and

associativity, 58
side effects and sequence

points, 57
examples of, 55
with type void, 30

extended character set, 8
universal character names, 10

Index | 585

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

extended characters, 8
extern (storage class specifier), 97, 107,

157
external declarations, 21
external linkage, 163

identifiers declared with, 230
standard library functions, 228

F
fabs() function, 307
false (Boolean value), 22
fclose() function, 187, 308
fdim() function, 309
feclearexcept() function, 309
fegetenv() function, 310
fegetexceptflag() function, 311
fegetround() function, 233, 311
feholdexcept() function, 312
FENV_ACCESS pragma, 257
fenv.h header, 232
feof() function, 189, 313
feraiseexcept() function, 314
ferror() function, 189, 315
fesetenv() function, 315
fesetexceptflag() function, 316
fesetround() function, 233, 316
fetestexcept() function, 317
feupdateenv() function, 317
fflush() function, 185, 318
fgetc() function, 190, 319
fgetpos() function, 188, 206, 320
fgets() function, 203, 321
fgetwc() function, 322
fgetws() function, 323
field widths, 196
fields, 139
_ _FILE_ _, 223
file access functions, 252
file extensions, 503

.c, 6

.h, 6

.o, 17

.obj, 17
file position indicator, 184

functions modifying, 206
file scope, 15, 16, 153

reserved identifiers, 230
file types recognized by GCC, 499, 503
filename-manipulation functions (in

make), 532

files, 183–185
buffers, 185
closing, 187
file position, 184
opening, 186

access modes, 186
random access, 205–208
standard streams, 185
(see also streams)

fixed-length arrays, 112
flexible array member, 146
float _Complex type, 28
float type, 26, 27

float.h header, 233
precision of, 27

floatcmp() function, 53
float.h header, 27, 233–236

normalized representation of
floating-point numbers, 234

precision and value range, 235
rounding mode and evaluation

method, 234
floating-point constants, 33

hexadecimal, 34
floating-point environment, 232,

257–259, 505
accessing status flags, 258
rounding modes, 233, 258
saving, 258

floating-point exceptions, 233, 257
floating-point optimization, 505
floating-point types, 20, 26–28

arithmetic, online information
about, xiv

complex, 28
conversion rank, 41
function-like macros for, 255
mathematical functions for, 240, 254
normalized representation, 234
printing numbers, 199
reading floating-point numbers with

scanf(), 204
real, 27
type-generic macros for

functions, 248
usual arithmetic conversions, 42

float_t type, 240
floor() function, 323
fma() function, 324
fmax() function, 325

586 | Index

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

fmin() function, 325
fmod() function, 326
fopen() function, 183, 326

access modes, 186
opening a file, 186
returning null pointer, 124

for statements, 86
continue statement and, 93
rewriting as while statements, 87

format string
printf() function, 195
scanf() function, 201

formatted input, 200–205
reading characters and strings, 203
reading floating-point numbers, 204
reading integers, 204

fpclassify() macro, 328
FP_CONTRACT pragma, 257
fprintf() function, 329
fputc() function, 329
fputs() function, 192, 330
fputwc() function, 330
fputws() function, 192, 330
fread() function, 193, 331
free() function, 169, 332

prototype, 170
Free Software Foundation, 492, 545
freestanding environment, 101, 224,

228
freestanding programs, 500
freopen() function, 184, 186, 332

access modes, 186
frexp() function, 333
fscanf() function, 334
fseek() function, 206, 335
fsetpos() function, 188, 206, 336
ftell() function, 206, 337
fully buffered streams, 185
function block, 96
function calls, 76

with variable number of
arguments, 103

function declarator, 154
function designators, type

conversions, 48
function head (or declarator), 96
function-like macros, 213, 255

assert(), 231
categories of floating-point

values, 255

comparison of floating-point
numbers, 256

type-generic macros, 255
function pointers, 136–138

explicit conversions, 51
function prototype scope, 15, 16
function prototypes, 103

declarations, 160
function scope, 15
function types, 20, 21
functions, 4, 96–110, 252–270

arrays as arguments, 120
calling, 228
character classification, 260
character conversion, 261
for complex numbers, 231
converting between numbers and

strings, 264
date and time, 266
debugging, 269
declarations, 103

examples, 155
optional parameters, 103

definitions, 96–102
arrays as parameters, 99
K&R-style, 98
parameter declarations, 97
storage class specifiers, 97

dynamic memory management, 167,
265

error handling, 259
error messages, 270
execution, 104
floating-point environment, 257–259
implementation as functions or

macros, 229
inline, 106
input and output, 252

byte- and wide-character, 188
file access, 252

internationalization, 268
main(), 101
make utility, 530–534
mathematical, 253–260

for real floating-point
numbers, 240

memory block handling, 265
multibyte character, 263
nonlocal jumps, 269
pointers as arguments and return

values, 104

Index | 587

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

pragmas for arithmetic
operations, 256

process control, 267–268
operating system

communications, 267
signals, 268

recursive, 107
with the return type void, 30, 95
return statements, 95
searching and sorting, 264
signal handler, 242
standard library, 271–488
string processing, 262
using pointers instead of indices, 128
variable numbers of arguments, 108

fwide() function, 338
stream orientation, 188

fwprintf() function, 339
fwrite() function, 193, 340
fwscanf() function, 339

G
GCC compiler, 491–511

C dialects, choosing among, 501
compiling C programs, 493–501

assembling, 495
compiling, 495
dynamic linking and shared object

files, 500
freestanding programs, 500
-fsyntax-only option, 498
linking, 496
multiple input files, 498–500
preprocessing, 493
-save-temps option, 498, 510

debugging information, 507
manual, 491
obtaining and installing, 492
optimization, 503–507

architecture-specific, 506
-f flags, 504
floating-point, 505
levels (-O levels), 503
reasons not to optimize, 506

options and environment variables,
summary of, 508–511

options for generating makefile
rules, 543

profiling output, 507
-static option, 500
warnings, 502–503

GDB (GNU debugger), 507, 545–576
commands, using, 554–576

analyzing core files, 574
analyzing the stack, 565–568
breakpoints, 560–563
command completion, 555
displaying data, 568–572
displaying source code, 558
help for commands, 555
resuming execution after

break, 563–565
running program in

debugger, 557
status information, 556–557
watchpoints, 572–574

installing, 546
manual, 545
sample debugging session, 546–550

finding a bug, 547–550
symbol information, 547

starting, 550–554
command-line arguments, 550
command-line options, 551–553
initialization files, 553

getc() function, 341
getchar() function, 341
getCommand() function, 87
getenv() function, 342
getline() function, 170
gets() function, 342
getwc() function, 343
getwchar() function, 344
global declarations, 6
gmtime() function, 344
GNU Compiler Collection (see GCC

compiler)
GNU debugger (see GDB)
Goldberg, David, xiv
goto statement, 93–95, 242, 269
gprof (GNU profiler), 507

H
header dependencies, generating (in

make), 538
header files, 6, 227

complex.h, 28
float.h, 27
inserting contents, 210
inttypes.h, 26
limits.h, 24
preventing multiple inclusions, 211

588 | Index

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

header files (continued)
stdbool.h, 22
stdint.h, 25
(see also standard headers)

headers (see header files; standard
headers)

height (binary tree), 172
hexadecimal constants

floating-point, 34
integer, 32

types, 33
hexadecimal escape sequences, 37
hexadecimal notation

character code in, 10
Unicode code points, 11

hosted environment, 101, 228
hypot() function, 345

I
i, I (imaginary unit), 28
identifiers, 13–16, 153

bool, true, and false, 22
errno, 232
linkage of, 163–164
naming by declarators, 154
reserved, 230
scope, 15

nested declarations, 16
variable-length array names, 112

IEC 60559 standard for binary floating-
point arithmetic, 27

IEEE standard 754 for floating-point
arithmetic, 27

#if directives, 219, 220
if statements, 89
#ifdef directives, 219, 220
ifdef directives (in make), 535
ifeq and ifneq directives (in make), 535
#ifndef directives, 219, 220
ifndef directives (in make), 535
ilogb() function, 346
imaginary unit (i), 28
imaxabs() function, 237, 347
imaxdiv() function, 236, 347
implicit initialization, 165
implicit type conversions, 40

arithmetic types
hierarchy of types, 41

array designators to pointers, 48
evaluation of arithmetic

expressions, 60

other, for arithmetic types, 44
pointers, 51–54
usual arithmetic conversions, 42

#include directives, 5, 210
nested, 211
referencing header file, 6
standard headers, 227

include directives (in make), 536
incomplete type, 21
increment operators, 59, 64

lvalues, 57
indenting source code, 7
indirection levels, pointers, 126
infinite loop, 86
initialization, 165

loops, 86
initialization files, GDB, 553
initialization lists

for arrays, 114
for unions, 151
for structures, 144

inline definition, 107
inline functions, 106

declaring, 156
inline (storage class specifier), 107
inorder() function, 179
in-order (LNR) traversal, 178
input and output (I/O), 182–208

byte-oriented and wide-oriented
streams, 188

closing files, 187
error handling, 188
files, 183–185

buffers, 185
file position, 184
standard streams, 185

functions
byte-character and

wide-character, 253
file access, 252

opening files, 186
random file access, 205–208

current file position, 205
setting file access

position, 206–208
reading and writing, 188–205

formatted input, 200–205
formatted output, 194–200
unformatted data, 190–194

stdio.h header, 246
streams, 182–183

Index | 589

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

insert() function, 175
int type, 21, 23

character constants, 35
integer constants, 32, 33
value ranges, 24

integer constant expressions, 81
integer constants, 32

macros for, 246
suffixes, 33
type of, 32

integer promotion, 42
applied to switch expression, 92
shift operator operands, 71

integer types, 20, 21–26
binary representation, 23
bit-field, 151
bit pattern of, 69
bitwise operator operands, 70
char, 22
conversion rank, 41
conversions to and from pointer

types, 54
enumerations, 29
with exact width

defined as synonyms of standard
types, 25

mathematical functions for, 253
overflows in arithmetic

operations, 24
signed, 21
standard

minimum storage sizes, 23
sizes and value ranges, 23

stdint.h header, 244–246
unsigned, 22

type_Bool, 22
usual arithmetic conversions, 43
value ranges of, 238, 244

integers
printing, 198
reading from formatted input, 204

internal linkage, 163
internationalization, 268
intmax_t type, 219
inttypes.h header, 26, 236
I/O (see input and output)
isalnum() function, 348
isalpha() function, 348
isblank() function, 349
iscntrl() function, 350

isdigit() function, 350
isfinite() function, 351
isgraph() function, 351
isgreater() macro, 352
isgreaterequal() macro, 352
isinf() macro, 353
isless() macro, 353
islessequal() macro, 353
islessgreater() macro, 353
islower() function, 354
isnan() macro, 354
isnormal() macro, 355
ISO 8859-7 (8-bit Greek), 11
ISO Latin 1 or ANSI character set, 35
iso646.h header, 238
ISO/IEC 10646 standard, 9
ISO/IEC 646 standard, 12
ISO/IEC 9899:1999 C standard, xi, 501
isprint() function, 356
ispunct() function, 357
isspace() function, 357
isunordered() macro, 358
isupper() function, 359
iswalnum() function, 359
iswalpha() function, 361–362
iswblank() function, 362
iswcntrl() function, 363
iswctype() function, 363
iswdigit() function, 364
iswgraph() function, 365
iswlower() function, 365
iswprint() function, 366
iswpunct() function, 366
iswspace() function, 367
iswupper() function, 367
iswxdigit() function, 368
isxdigit() function, 368
iteration statements, 85

J
Japanese Industrial Standard character

set (JIS), 10
jump statements, 92–95

break, 92
continue, 93
goto, 93–95
return, 95

jumps in program flow, 91, 269

590 | Index

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

K
Kernighan, Brian, 3
Kernighan-Ritchie (K&R) standard,

function definitions, 98
K&R description of C, 3
K&R-style C (GCC), 502

L
labels, 91
labs() function, 369
Latin alphabet letters, 8
ldexp() function, 369
ldiv() function, 369
libraries, 4
lifetime, 164
limits.h header, 24, 238
_ _LINE_ _, 223
line breaks, 7
line-buffered streams, 185
line comments, 7
#line directives, 220, 223
lines of text, 183
linked lists, 171
linking C programs, 496

commands in makefiles, 518
dynamic linking and shared object

files, 500
system-specific code for interaction

with operating system, 500
lists

linked, 171
structures for head and items, 147

literals, 32–39
character constants, 34–37
compound, 75, 77
floating-point constants, 33
integer constants, 32
string, 37

llabs() function, 370
lldiv() function, 370
llrint() function, 371
llround() function, 371
localeconv() function, 239, 371–374
locale.h header, 239
locales, 268
localtime() function, 374
log() function, 374
log10() function, 375
log1p() function, 376

log2() function, 376
logb() function, 377
logical operators, 67–69

macros for, 238
precedence and associativity, 59

long double _Complex type, 28
long double type, 26, 27

decimal floating-point constant, 34
float.h header, 233
hexadecimal floating-point

constants, 34
long long type, 21

integer constants, 33
long type, 21

integer constants, 33
longjmp() function, 242, 378
loops, 85–89

do ... while statements, 87
ending execution with break

statement, 92
ending iteration with continue

statement, 93
for statements, 86
nested, 88
while statements, 85

lrint() function, 378
lround() function, 379
lvalues, 56

modifiable, 57
resulting from –> operator, 74

M
macros, 211–218

_ _cplusplus, 224
_ _LINE_ _ and _ _FILE_ _, 221
bool, 22
Boolean values, 243
calling function-like macros, 228
complex floating-point types, 28
defined by limits.h, 24
defining with parameters, 213–217

stringify operator, 215
token-pasting operator, 216
variable numbers of

arguments, 214
defining without parameters, 212
errno values, 232
floating-point classification, 240
floating-point environment, 232
floating-point exceptions, 233

Index | 591

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

floating-point types, 27
precision and value range, 235
rounding mode and evaluation

method, 234
function arguments, variable

numbers of, 243
function-like, 255

type-generic, 255
identifying target system and

compiler, 220
integer types with specific widths,

value ranges, 244
locale information, 239
in makefiles, 529
NULL, 53, 123
offsetof, 145
_Pragma operator, using, 222
predefined, list of, 223
reserved identifiers, 230
rounding modes, 233
scope and redefinition, 218
signal types, 242
stdlib.h, 248
synonyms for logical and bitwise

operators, 238
type-generic, 248
type specifiers in format string

arguments for printf and scanf
functions, 237

use in #include directive, 210
using within other macros, 217
va_arg, 109
va_copy, 109
va_end, 109
va_start, 109
value ranges for integer types, 238
value ranges of types defined in

stdint.h, 26
main() function, 4, 101

programs in hosted
environments, 228

make utility, 499, 512–544
built-in rules, 517
comments in makefile, 520
directives, 534–537
double-colon rules, 519
functions, 530–534

conditions and flow control, 532
filename-manipulation, 532
operations on variables, 533

system, 533
user-defined, 534

implicit rule chains, 518
macros, 529
makefiles, 513
phony targets, 527
rules in makefile, 513–520

command script, 515
example, 513–515
pattern rules, 515
suffix rules, 516

running, 537–544
command-line options, 540–542
GCC options for makefile

rules, 543
header dependencies,

generating, 538
recursive make commands, 538
special targets as runtime

options, 542
targets, other attributes, 528
variables, 520–527

assignment operators used to
define, 520

automatic, 524
built-in, 525
environment variables, 526
target-specific assignments, 522
whitespace and, 522

makefiles, 513
malloc() function, 164, 168, 379

returning pointer to void, 51, 53
mandatory arguments, 108
mantissa, 234
mathematical functions, 253–260

calling variants by uniform
name, 248

error handling for, 259
for floating-point types, 254
for integer types, 253

math.h header, 240–242
matrices, 118

addressing elements with array
pointers, 133

variable-length, as function
parameter, 120

mblen() function, 380
mbrlen() function, 382
mbrtowc() function, 383
mbsinit() function, 384

592 | Index

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

mbsrtowcs() function, 385
mbstowcs() function, 38, 385
mbtowc() function, 35, 386
member designators, 144

for union members, 151
memchr() function, 387
memcmp() function, 387
memcpy() function, 131, 388
memmove() function, 132, 388
memory

dynamic allocation, 167–181
binary search tree, 171–181
characteristics of allocated

memory, 169
management functions, 247, 265
resizing and releasing

memory, 170
memory addressing operators, 72–75

& and *, 72
members of structures and

unions, 74
subscript operator ([]), 73

memory blocks, functions for, 265
memset() function, 124, 389
minimum storage sizes, standard

types, 23
mixed input types, GCC compiler, 500
mktime() function, 389–391
modf() function, 391
modifiable lvalues, 57

assignment operator operands, 62
multibyte characters, 9, 263

conversion to and from wide
characters, 247

converting to wide characters in
string literals, 38

in wide-character constants, 35
wide characters vs., 10

multidimensional arrays, 117–119
declaring, 118
as function arguments, 120
initializing, 119
matrices, 118

multiplicative operators, precedence and
associativity, 59

multitarget compiler, 491

N
\n (newline), 183
NaNs (not a number), 234

floating-point comparisons and, 256

nearbyint() function, 392
nested blocks, variables declared within

switch statement, 91
nested loops, 88
newBST() function, 174

prototype, 173
newline characters and text

streams, 183
nextafter() function, 392
nexttoward() function, 393
no linkage, 164
nodes (binary tree), 172
nonprintable characters, 8
normalized representation, floating-

point numbers, 234
Normative Addendum 1, xi, 9
NOT operators (see bitwise operators;

logical operators)
null character \0, 8, 37
null directives, 209
NULL macro, 244
null pointer constants, 53, 123, 239

conversion of, 51
simple assignment operands, 62

null pointers, 123
null statement, 84
numbers, converting to and from

strings, 264
numeric values of characters (character

codes), 9

O
object files

containing machine code, 495
shared, 500

object pointers
adding, subtracting, and

comparing, 127
explicit conversions, 50
simple assignment operands, 62

object type, 21
objects

defined, 20
initializing, 165
qualified with both const and

volatile, 157
reading and modifying with

pointers, 125
size in memory, 167
storage duration, 164
structure, 140

Index | 593

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

octal constants, 32
types, 33

octal escape sequences, 37
offset argument (ftell()), 206
offsetof macro, 145, 244
“old-style” function definition, 98
one’s complement, 23, 59, 69
operating systems

communication with, 247, 267
hosted environments, 228
program interaction with, 500

operators, 59–80
arithmetic operators, 60–62
assignment, 62–64
bitwise operators, 69
comparative, 66
defined operator, 220
increment and decrement, 64
logical operators, 67–69
memory addressing operators, 72–75
other, 75
_Pragma, 222
precedence and associativity, 58
stringify (#), 215
token-pasting (##), 216
usual arithmetic conversions, 42

optimization, GCC compiler, 503–507
architecture-specific, 506
-f flags, 504
floating-point optimization, 505
optimization levels, 503
reasons not to optimize, 506

optional arguments, 108
OR operators (see bitwise operators;

logical operators)
orientation (streams), 188
output

formatted, 4, 194–200
unformatted, 190–194
(see also input and output)

overflows
arithmetic operations with

integers, 24
range errors, 259

P
pack pragma, 222
parameter declarations, 97
parameters of a function, 98

arrays as, 99
declaring optional parameters, 103

declaring variable-length arrays
as, 104

main() function, 101
multidimensional arrays as, 120
pointer to a pointer, 126
in prototype declarations, 103

parameters of a macro, 213
passing by reference, structure

objects, 143
path (binary tree), 172
pattern rules (makefile), 515
-pedantic option (GCC), 502
perror() function, 30, 189, 393
pointer arrays, 132, 134–136
pointer declarator, 154
pointer to const, 130
pointer types, 20
pointers, 122–138

to allocated memory block, 169
argument, 109
arguments passed to free() and

realloc(), 170
arithmetic operations on, 60, 61
to arrays, 132
comparative operations with, 66
conversions to and from integer

types, 54
declaring, 122–124

null pointers, 123
void pointers, 124

defined, 122
dereferenced by the * operator, 65
explicit conversions to other pointer

types, 49–51
as function arguments and return

values, 104
to functions, 136–138
implicit conversion of array

designators to, 48
implicit conversion of function

names to, 49
implicit conversions, 51–54
to incomplete structure types, 141
initializing, 125
initializing pointers to char, 38
null pointer constants, 53
operations with, 125–129

modifying and comparing
pointers, 127–129

reading and modifying
objects, 125

594 | Index

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

pointers (continued)
to pointers, 126
to qualified object types, 53
simple assignment operands, 62
to strings, 116
as structure members, 147–149
type qualifiers and, 129–132

restricted pointers, 131
of type void *, 30
to void, 30, 51–53, 168

simple assignment operands, 62
portability, 3
postfix operators

precedence and associativity, 59
post-order (LRN) traversal, 178
pow() function, 394
#pragma directives, 221
_Pragma operator, 222
pragmas

for arithmetic operations, 256
for floating-point environment

access, 257
precedence, operator, 58

address-of (&) and indirection (*)
operators, 73

assignment operators, 63
comma (,) operator, 80
comparative operators, 67
increment and decrement

operators, 65
member selection operators

(. and –>), 75
shift operators, 72
sizeof operator, 78

precision, floating-point numbers, 26,
235

pre-order (NLR) traversal, 178
preprocessing, 18, 493
preprocessing directives, 5, 6, 18,

209–224
conditional compiling, 218
defining and using macros, 211–218
defining line numbers, 220
formatting, 7
generating error messages, 221
inserting header file content, 210
#pragma, 221
_Pragma operator, 222
predefined macros, 223

preprocessor, finding header files, 210
prerequisites (for make), 513, 527

printArray() function, 97
printf() function, 195, 394–399

field widths, 196
format string, 195
printing integers, 198
type specifiers for format string

arguments, 237
printMatrix() function, 121
printRow() function, 121
process control, 267–268

communication with operating
system, 267

signals, 268
process, defined, 267
processor types, compiler optimization

for, 506
profiling, 507
programs

building C programs with
make, 512–544

multiple source files for single
program, 6

structure of, 4
prototypes of functions, 103
ptrdiff_t type, 243
punctuation marks, 8

not available on all keyboards, 11
putc() macro, 399
putchar() macro, 399
puts() function, 116, 192, 400
putwc() function, 400
putwchar() macro, 401

Q
qsort() function, 52, 401

comparison function for, 52
prototype declaration, 162

qualifiers, type, 53
quiet NaNs, 234

R
\r (carriage return), 8, 183
raise() function, 242, 402
rand() function, 403
random file access, 205–208

current file position, 205
setting file access position, 206–208

random numbers, 247
range errors, 259
read-only pointers, 130, 143

Index | 595

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

reading and writing files, 186
real floating-point numbers

categories of, 255
mathematical functions for, 240

real floating-point types, 27
conversions to, 47
mathematical functions for, 254

realloc() function, 164, 169, 404
prototype, 170
resizing memory, 170

records, 139
recursion, testing with if statement, 89
recursive functions, 107
recursive make commands, 538
recursively expanded variables (in

make), 520
register (storage class specifier), 99, 156
relational operators, 66

precedence and associativity, 59
usual arithmetic conversions, 42

remainder() function, 405
remove() function, 184, 405
remquo() function, 406
rename() function, 184, 407
reserved identifiers, 230
restrict (type qualifier), 53, 157
restricted pointers, 131
retargetable compiler (GCC), 495
return statement, 95
return values, 95

I/O functions, 189
pointers as, 104

rewind() function, 207, 407
rint() function, 408
Ritchie, Dennis, xiv, 3
round() function, 409
rounding modes, 233, 258
rule chains (in make), 518
rules (makefile), 513–520

GCC options for generating, 543

S
scalar types, 21

conversions to _Bool, 45
logical operator operands, 68
object initialization, 166

scalbln() function, 409
scalbn() function, 409
scanf() function, 105, 200, 410–413

field width, 201
format string, 201

reading characters and strings, 203
reading floating-point numbers, 204
reading integers, 204
type specifiers for integer types of

specified width, 237
scanset specifier, 203
scientific notation, 33
scope

block scope, 15, 84
identifiers, 15

nested declarations, 16
search() function, 176
searching, function for, 264
selection statements, 89–92

if, 89
switch, 90

sequence points, 57
evaluation of logical && and ||

expressions, 68
setbuf() function, 185, 413
setjmp() macro, 242, 414–416
setjmp.h header, 242
setlocale() function, 239, 416–418
setvbuf() function, 185, 418
shared object files, 500
shell environment, make and, 526
shift operators, 71

precedence and associativity, 59
short type, 21
side effects (of expressions), 57

compound assignment, 64
expression statements, 83

signal() function, 242, 419–421
signal handlers, 242
signal.h header, 242
signaling NaNs, 234
signals, 268
signbit() macro, 421
signed integer types, 21

char, 21, 22
conversions to, 46
representation in binary, 23
widths, 25

signed types, 20
significand, 234

floating-point precision and, 235
simple assignment, 62

conditions operands must fill, 62
simply expanded variables (in

make), 520
sin() function, 422

596 | Index

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

sinh() function, 423
sizeof operator, 24, 75, 77

array size in memory,
determining, 111

precedence and associativity, 59
structure size, determining, 145

size_t type, 167, 243
snprintf() function, 424
sorting

arrays with qsort(), 52
function for, 264

sortlines program (example), 179
source character set, 8

multibyte characters, 10
source code

displaying in GDB, 558
formatting conventions, 7

source files, 6
formatting code, 7
multiple, for single program, 6

sprintf() function, 425
sqrt() function, 425
srand() function, 426
sscanf() function, 426
stack, analyzing with GDB, 565–568,

575
stack frame (in GDB), 565, 575

displaying and changing, 567
displaying arguments and local

variables, 567
standard headers, 227–251

contents, 230–251
assert.h, 231
complex.h, 231
ctype.h, 231
errno.h, 232
fenv.h, 232
float.h, 233–236
inttypes.h, 236
iso646.h, 238
limits.h, 238
locale.h, 239
math.h, 240–242
setjmp.h, 242
signal.h, 242
stdarg.h, 243
stdbool.h, 243
stddef.h, 243
stdint.h, 244–246
stdio.h, 246
stdlib.h, 247
string.h, 248

tgmath.h, 248
time.h, 249
wchar.h, 250
wctype.h, 250

execution environments, 228
function and macro calls, 228
listed, 227
reserved identifiers, 230

standard integer types, sizes and value
ranges, 23

standard I/O streams, 185, 247
redirection with freopen(), 186

standardization working group, xiv
statements, 4, 83–95

block, 84
expression, 83
loops, 85–89

do ... while statements, 87
for statements, 86
nested loops, 88
while statements, 85

selection, 89–92
if statements, 89
switch statements, 90

unconditional jumps, 92–95
break statement, 92
continue statement, 93
goto statement, 93–95
return statement, 95

static functions, 97
static keyword, 98
static (storage class specifier), 156, 165
static storage duration, 165
status flags (floating-point

environment), 257
accessing, 258

status flags (I/O functions), 189
stdarg.h header, 243
stdbool.h header, 22, 243
_ _STDC_ _, 223
_ _STDC_HOSTED_ _, 223
_ _STDC_IEC_559_ _, 27
_ _STDC_IEC_559_COMPLEX_ _, 224
_ _STDC_ISO_10646_ _, 224
_ _STDC_VERSION_ _, 223
stddef.h header, 243
stderr, 185
stdin, 185
stdint.h header, 25, 236, 244–246

integer types with defined width, 25
value ranges of integer types with

specific widths, 26, 244

Index | 597

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

value ranges of other integer
types, 245

value ranges of types defined in, 26
stdlib.h header, 247
stdout, 185
storage class specifiers, 97, 156, 164

automatic, 125
extern, 107
in declarations, 154
inline, 107
register, 99
static, in arrays as function

parameters, 100
variable-length arrays, 113

strcat() function, 116, 427
strchr() function, 428
strcmp() function, 428
strcoll() function, 429
strcpy() function, 88, 430
strcspn() function, 431
streams, 182–183

buffers, 185
byte-oriented and wide-oriented, 188,

263
standard, 185, 247

strerror() function, 189, 431
strftime() function, 432–434
string literals, 37

breaking into several lines, 39
escape sequences, 8
handling by C compiler, 18
initializing array variable, 39
initializing char array or a pointer to

char, 38
modification of, 39
quotation marks around, 7
wide, 117
wide characters, 38

string.h header, 248
stringify operator (#), 215
strings

arrays of, 116
conversion specifier, printf(), 196
converting to and from

numbers, 237, 264
functions for processsing, 262
input and output functions, 253
reading from input streams with

scanf(), 203
of wide characters, 250
writing to a stream, 192

strlen() function, 49, 117, 435
strncat() function, 435
strncmp() function, 435
strncpy() function, 436
strpbrk() function, 437
strrchr() function, 437
strReverse() function, 87
strspn() function, 438
strstr() function, 438
strtod() function, 439
strtof() function, 439
strtoimax() function, 440
strtok() function, 440
strtol() and strtoll() functions, 441
strtold() function, 439
strtoul() and strtoull() functions, 442
strtoumax() function, 443
struct keyword, 140
structure types, 139

defining, 140
identifier scope, 15
incomplete structure types, 141

structures, 20, 139–149
accessing members, 142
array elements as, 75
bit-fields, 151
declaration (example), 155
differences from unions, 150
flexible members, 146
initializing, 143
initializing specific members, 144
members in memory, 145
pointers as members, 147–149
selecting members of, 74
structure objects and typedef

names, 140
type representing binary tree, 173

strxfrm() function, 443
substitution reference (variables in

make), 538
suffix rules (makefile), 516
suffixes for constants

decimal floating-point constants, 34
hexadecimal floating-point

constants, 34
integer constants, 33

switch statements, 90
swprintf() function, 444
swscanf() function, 445
symbol table, 495

GDB, 547

598 | Index

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

system() function, 445
system functions (in make), 533

T
\t (tab), 36
tan() function, 446
tanh() function, 446
targets (in make), 513, 527–530

special targets as runtime
options, 542

Technical Corrigenda, TC1 of 2001 and
TC2 of 2004, xi

ternary or trinary operator (see ?: under
Symbols)

text-processing functions (in make), 531
text streams, 182, 183
tgmath.h header, 248
_ _TIME_ _, 223
time() function, 447
time.h header, 249
tmpfile() function, 184, 186, 448
tmpnam() function, 448
token-pasting operator (##), 216
tokens, 7, 18
tolower() function, 449
top-driven loop, 85
toupper() function, 450
towctrans() function, 450
towlower() function, 451
towupper() function, 451
translation environment, 8
translation of C programs into assembly

language, 495
translation phases, 17
translation unit, 7
traversing a binary tree, 178
trigonometric functions, 28
trigraphs, 12
true (Boolean value), 22
trunc() function, 451
two-dimensional arrays (matrices), 118
two’s complement, 23
type conversions, 40–54

arithmetic types, 41–48
hierarchy of types, 41
integer promotion, 42
other implicit conversions, 44
results of, 45–48
usual arithmetic

conversions, 42–44
explicit, 40

implicit, 40
nonarithmetic types, 48–54

array and function
designators, 48

conversions between pointers and
integers, 54

explicit pointer
conversions, 49–51

implicit pointer
conversions, 51–54

void pointer to different type, 168
type-generic macros, 248, 255
(type name) {list} (compound literal)

operator, 75, 77
type names, 160
type qualifiers, 53, 157

const
initializers and, 166
modifiable lvalues and, 57

in parameter declarations, 100
pointers, 129–132

restrict, 131
typedef, defining name for structure

type, 141
typedef declarations, 161
typeless pointers (see pointers, to void)
types, 20–31

bit-field, 151
categories of, 20
of character constants, 35
enumerated, 29
expression, 55
floating-point, 26–28
integer, 21–26

minimum storage sizes, 23
scalar, 21
specification in declarations, 154
void, 30

U
unary operators, 59

defined operator, 220
precedence and associativity, 59
stringify (#), 215

unbuffered streams, 185
unconditional jumps, 92–95

break statement, 92
continue statement, 93
goto statement, 93–95
return statement, 95

Index | 599

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

#undef directives, 218
canceling macro definition for a

function, 229
predefined macros and, 224

ungetc() function, 452
ungetwc() function, 453
Unicode, 9

universal character name values, 10
UTF-8 character set, 10

union type, identifier scope, 15
unions, 20, 149–151

bit-fields, 151
defined, 139
defining union types, 149
differences from structures, 150
initializing, 151
selecting members of, 74

universal character names, 10
as escape sequences, 37
stored as wide characters, 38

unsigned char, 22
unsigned integer types, 20, 22

binary representation, 23
conversions to, 45
octal and hexadecimal constants, 33
overflows and, 24
type _Bool, 22
widths, 25

user-defined functions (in make), 534
user interface, selecting for GDB, 552
usual arithmetic conversions, 42–44

arithmetic operator operands, 60
bitwise operator operands, 70
cases where operand value is not

preserved, 44
comparison operator operands, 66

UTF-8 character set, 10

V
\v (vertical tab), 36
va_arg() macro, 109, 454
va_copy() macro, 109, 454, 455–457
va_end() macro, 109, 454, 455
va_list type, 109
va_start() macro, 109, 454
value ranges

of floating-point types, 235
of integer types, 24
of integer types with specific

widths, 244

variable-length arrays, 112
array function parameters, 100
in function parameter

declarations, 104, 120
goto statements and, 94
initialization and, 166
typedef declarations for types

containing, 162
variable numbers of arguments

functions with, 103, 108, 243
macros with, 214

variables, 20
character, doing arithmetic with, 22
declared within a switch

statement, 91
in make, 520–527

assignment operators used to
define, 520

operations on, 533
substitution reference, 538

watchpoints for operations
on, 572–574

variadic functions, 108
vfprintf(), vprintf(), vsprintf(), and

vsnprintf() functions, 457
vfscanf(), vscanf(), and vsscanf()

functions, 458
vfwprintf(), vswprintf(), and vwprintf()

functions, 460
vfwscanf(), vswscanf(), and vwscanf()

functions, 461
void

pointers to, 30, 51, 124, 168
void type, 20, 30

functions, 95
pointers, 51–53, 124

volatile (type qualifier), 53, 157
pointers, 129

W
warnings, GCC compiler, 502–503
watchpoints (GDB), 572–574
wchar.h header, 250
wchar_t type, 9, 244

array initialization, 117
strings, 116
wide character constants, 35

wcrtomb() function, 461
wcscat() function, 462
wcschr() function, 463

600 | Index

This is the Title of the Book, eMatter Edition

Copyright © 2012 O’Reilly & Associates, Inc. All rights reserved.

wcscmp() function, 464
wcscoll() function, 464
wcscpy() function, 465
wcscspn() function, 466
wcsftime() function, 467
wcslen() function, 467
wcsncat() function, 468
wcsncmp() function, 468
wcsncpy() function, 469
wcspbrk() function, 469
wcsrchr() function, 470
wcsrtombs() function, 471
wcsspn() function, 472
wcsstr() function, 472
wcstod(), wcstof(), and wcstold()

functions, 473
wcstoimax() function, 475
wcstok() function, 475
wcstol() and wcstoll() functions, 476
wcstombs() function, 477
wcstoul() and wcstoull()

functions, 478
wcstoumax() function, 478
wcsxfrm() function, 479
wctob() function, 481
wctomb() function, 10, 481
wctrans() function, 482
wctype() function, 482
wctype.h header, 250
“What Every Computer Scientist Should

Know About Floating-Point
Arithmetic,” xiv

while statements, 85
continue statement and, 93
ending execution with break

statement, 92
for statements vs., 87

whitespace
in basic source and execution

character sets, 8
in make, 514, 520, 522, 530, 535
between tokens, 7

wide-character constants, 35
wide-character I/O functions, 253
wide characters, 9

classification and conversion
functions, 250

conversion to and from multibyte
characters, 247

multibyte characters vs., 10
wide-oriented streams, 188, 263

reading characters from, 190
writing characters to, 191

wide-string literals, 38, 117
wide strings, 116, 250, 262
width of bit-fields, 151
widths of integer types, 25
wint_t type, 190
wmemchr() function, 483
wmemcmp() function, 484
wmemcpy() function, 484
wmemmove() function, 486
wmemset() function, 486
wprintf() function, 38, 487
writing to files, 186
wscanf() function, 487

X
\x, escape sequences beginning with, 10

About the Authors

Peter Prinz is a seminar leader and key course developer, teaching courses to
thousands of software developers for Unix and Windows systems. As the chief
developer and cofounder of the IT company Authensis AG in Germany, he has
gained extensive experience in software development for computer telephony.
Peter is also the author of several other books on software development in C/C++,
most of them as coauthor with Ulla Kirch-Prinz, including O’Reilly’s C Pocket
Reference.

Tony Crawford is a technical writer and freelance translator with a strong C back-
ground. In addition to regular software localization projects, he has translated
books on network administration and ATM. A U.S. native, Tony translates docu-
ments from German into English and is based just outside Berlin.

Colophon

Our look is the result of reader comments, our own experimentation, and feed-
back from distribution channels. Distinctive covers complement our distinctive
approach to technical topics, breathing personality and life into potentially dry
subjects.

The animal on the cover of C in a Nutshell is a cow, in the broad sense that it is a
member of the domesticated species generally known as Western or European
cattle (Bos taurus). In cattle terminology, the word “cow” refers to an adult female
(or more specifically, a female who has given birth), as opposed to a heifer (young
female), steer (castrated male), or bull (intact male).

All domesticated cattle evolved from aurochs, ancient long-horned oxen that
stood six feet at the shoulder and had roughly half the mass of a rhinoceros. The
head of an aurochs (the term is both singular and plural) is currently featured on
the Romanian coat of arms and the Moldovan flag, tracing back to the royal stan-
dard adopted in 1359 by Bogdan I, founder of the Romanian principality of
Bogdania (later renamed Moldova). Full-body profiles of the animal survive in
Paleolithic European cave paintings, and animated renderings can be found in
video games; aurochs have been objects of fear and worship in a number of soci-
eties through the ages.

Aurochs are believed to have originated in India some two million years ago; over
time, they spread to neighboring continents and split into at least three geneti-
cally distinct groups, which were domesticated independently. Domestication of
aurochs began in the southern Caucasus and northern Mesopotamia 8,000 to
10,000 years ago; European cattle descended from this group. Wild aurochs
survived in dwindling numbers in the forests of eastern Europe through the
Middle Ages (the last one was killed by a poacher in 1627). Attempts were made
in Germany in the early twentieth century to breed aurochs back into existence
(guided by a pre-Darwinian concept of atavism), using primitive varieties of cattle
such as Highland Cattle; the result is a breed known as Heck Cattle.

European cattle, brought to the Americas by Columbus on his second voyage,
now number in the hundreds of breeds. It is a popular misconception that only
the males have horns; in fact, both sexes are born with horns (except in a few
breeds that are polled, or naturally hornless). Seeing horns other than on isolated
bulls is unusual because of the common practice in modern cattle management of
debudding calves at or shortly after birth (that is, removing the immature base, or
horn bud, before an actual horn develops).

Cow horns, which consist of a bony core sheathed in keratinous material, figure in
the history of book manufacturing and the promulgation of the alphabet. In
sixteenth- to eighteenth-century Europe and in colonial America, a common type
of primer was composed of the alphabet (plus other text that varied) printed or
written on one side of a piece of paper or parchment, which was then attached to
a wooden board and covered with a thin, transparent sheet culled from the outer
layer of a cow horn. The board was shaped like a small paddle (with a hole in the
handle for attachment to a girdle) to make it easy to transport and share among
students. The protective layer of horn extended the life of the paper (a scarce and
expensive resource) and inspired the name for the device: a hornbook.

Abby Fox was the production editor for C in a Nutshell. Nancy Kotary was the
copyeditor, and Nancy Reinhardt proofread the book. Jamie Peppard and Claire
Cloutier provided quality control. Ellen Troutman Zaig wrote the index.

Karen Montgomery designed the cover of this book, based on a series design by
Edie Freedman. The cover image is an original illustration created by Susan Hart.
Karen Montgomery produced the cover layout with Adobe InDesign CS using
Adobe’s ITC Garamond font.

David Futato designed the interior layout. This book was converted by Keith
Fahlgren from Microsoft Word to Adobe FrameMaker 5.5.6 using Open Source
XML technologies. The text font is Linotype Birka; the heading font is Adobe
Myriad Condensed; and the code font is LucasFont’s TheSans Mono Condensed.
The illustrations that appear in the book were produced by Robert Romano,
Jessamyn Read, and Lesley Borash using Macromedia FreeHand MX and Adobe
Photoshop CS. The tip and warning icons were drawn by Christopher Bing. This
colophon was written by Abby Fox.

	Table of Contents
	Preface
	How This Book Is Organized
	Part I
	Part II
	Part III

	Further Reading
	Conventions Used in This Book
	Using Code Examples
	Safari® Enabled
	Your Questions and Comments
	Acknowledgments
	Peter
	Tony

	I
	Language Basics
	Characteristics of C
	The Structure of C Programs
	Source Files
	Comments
	Character Sets
	Wide Characters and Multibyte Characters
	Universal Character Names
	Digraphs and Trigraphs

	Identifiers
	Identifier Name Spaces
	Identifier Scope

	How the C Compiler Works
	The C Compiler’s Translation Phases
	Tokens

	Types
	Typology
	Integer Types
	Integer Types with Exact Width (C99)

	Floating-Point Types
	Complex Floating-Point Types (C99)
	Enumerated Types
	The Type void
	void in Function Declarations
	Expressions of Type void
	Pointers to void

	Literals
	Integer Constants
	Floating-Point Constants
	Decimal Floating-Point Constants
	Hexadecimal Floating-Point Constants (C99)

	Character Constants
	The Type of Character Constants
	Escape Sequences

	String Literals

	Type Conversions
	Conversion of Arithmetic Types
	Hierarchy of Types
	Integer Promotion
	Usual Arithmetic Conversions
	Other Implicit Type Conversions
	The Results of Arithmetic Type Conversions
	Conversions to _Bool
	Conversions to unsigned integer types other than _Bool
	Conversions to signed integer types
	Conversions to real floating-point types
	Conversions to complex floating-point types

	Conversion of Nonarithmetic Types
	Array and Function Designators
	Explicit Pointer Conversions
	Object pointers
	Function pointers

	Implicit Pointer Conversions
	Pointers to void
	Pointers to qualified object types
	Null pointer constants

	Conversions Between Pointer and Integer Types

	Expressions and Operators
	How Expressions Are Evaluated
	Lvalues
	Side Effects and Sequence Points
	Operator Precedence and Associativity

	Operators in Detail
	Arithmetic Operators
	Standard arithmetic
	Pointer arithmetic

	Assignment Operators
	Simple assignment
	Compound assignments

	Increment and Decrement Operators
	Comparative Operators
	Logical Operators
	Bitwise Operators
	Boolean bitwise operators
	Shift operators

	Memory Addressing Operators
	The & and * operators
	Elements of arrays
	Members of structures and unions

	Other Operators
	Function calls
	Compound literals
	The sizeof operator
	The conditional operator
	The comma operator

	Constant Expressions
	Integer Constant Expressions
	Other Constant Expressions

	Statements
	Expression Statements
	Block Statements
	Loops
	while Statements
	for Statements
	do . . . while Statements
	Nested Loops

	Selection Statements
	if Statements
	switch Statements

	Unconditional Jumps
	The break Statement
	The continue Statement
	The goto Statement
	The return Statement

	Functions
	Function Definitions
	Functions and Storage Class Specifiers
	K&R-Style Function Definitions
	Function Parameters
	Arrays as Function Parameters
	The main(��) Function

	Function Declarations
	Declaring Optional Parameters
	Declaring Variable-Length Array Parameters

	How Functions Are Executed
	Pointers as Arguments and Return Values
	Inline Functions
	Recursive Functions
	Variable Numbers of Arguments

	Arrays
	Defining Arrays
	Fixed-Length Arrays
	Variable-Length Arrays

	Accessing Array Elements
	Initializing Arrays
	Writing Initialization Lists
	Initializing Specific Elements

	Strings
	Multidimensional Arrays
	Matrices
	Declaring Multidimensional Arrays
	Initializing Multidimensional Arrays

	Arrays as Arguments of Functions

	Pointers
	Declaring Pointers
	Null Pointers
	void Pointers
	Initializing Pointers

	Operations with Pointers
	Using Pointers to Read and Modify Objects
	Modifying and Comparing Pointers

	Pointers and Type Qualifiers
	Constant Pointers and Pointers to Constant Objects
	Restricted Pointers

	Pointers to Arrays and Arrays of Pointers
	Array Pointers
	Pointer Arrays

	Pointers to Functions

	Structures, Unions, and Bit-Fields
	Structures
	Defining Structure Types
	Structure Objects and typedef Names
	Incomplete Structure Types
	Accessing Structure Members
	Initializing Structures
	Initializing Specific Members
	Structure Members in Memory
	Flexible Structure Members
	Pointers as Structure Members

	Unions
	Defining Union Types
	Initializing Unions

	Bit-Fields

	Declarations
	General Syntax
	Examples
	Storage Class Specifiers
	Type Qualifiers
	Declarations and Definitions
	Complex Declarators

	Type Names
	typedef Declarations
	Linkage of Identifiers
	External Linkage
	Internal Linkage
	No Linkage

	Storage Duration of Objects
	Static Storage Duration
	Automatic Storage Duration

	Initialization
	Implicit Initialization
	Explicit Initialization

	Dynamic Memory Management
	Allocating Memory Dynamically
	Characteristics of Allocated Memory
	Resizing and Releasing Memory
	An All-Purpose Binary Tree
	Characteristics
	Implementation
	Generating an Empty Tree
	Inserting New Data
	Finding Data in the Tree
	Removing Data from the Tree
	Traversing a Tree
	A Sample Application

	Input and Output
	Streams
	Text Streams
	Binary Streams

	Files
	File Position
	Buffers
	The Standard Streams

	Opening and Closing Files
	Opening a File
	Access Modes
	Closing a File

	Reading and Writing
	Byte-Oriented and Wide-Oriented Streams
	Error Handling
	Return values and status flags
	The error variable errno

	Unformatted I/O
	Reading characters
	Putting a character back
	Writing characters
	Reading strings
	Writing strings
	Reading and writing blocks

	Formatted Output
	The printf(��) function family
	The format string
	Field widths
	Printing characters and strings
	Printing integers
	Printing floating-point numbers

	Formatted Input
	The scanf(��) function family
	The format string
	Field widths
	Reading characters and strings
	Reading integers
	Reading floating-point numbers

	Random File Access
	Obtaining the Current File Position
	Setting the File Access Position

	Preprocessing Directives
	Inserting the Contents of Header Files
	How the Preprocessor Finds Header Files
	Nested #include Directives

	Defining and Using Macros
	Macros Without Parameters
	Macros with Parameters
	Variable numbers of arguments
	The stringify operator
	The token-pasting operator

	Using Macros Within Macros
	Macro Scope and Redefinition

	Conditional Compiling
	The #if and #elif Directives
	The defined Operator
	The #ifdef and #ifndef Directives

	Defining Line Numbers
	Generating Error Messages
	The #pragma Directive
	The _Pragma Operator
	Predefined Macros

	II
	The Standard Headers
	Using the Standard Headers
	Execution Environments
	Function and Macro Calls
	Reserved Identifiers

	Contents of the Standard Headers
	assert.h
	complex.h
	ctype.h
	errno.h
	fenv.h
	Macro and type definitions for the floating-point environment
	Macro and type definitions for floating-point exceptions
	Macro definitions for rounding modes

	float.h
	Normalized representation of floating-point numbers
	Rounding mode and evaluation method
	Precision and value range

	inttypes.h
	Types
	Functions
	Macros

	iso646.h
	limits.h
	locale.h
	math.h
	The types float_t and double_t
	Classification macros
	Other macros in math.h

	setjmp.h
	signal.h
	stdarg.h
	stdbool.h
	stddef.h
	stdint.h
	Value ranges of the integer types with specific widths
	Value ranges of other integer types
	Macros for integer constants

	stdio.h
	stdlib.h
	string.h
	tgmath.h
	time.h
	wchar.h
	wctype.h

	Functions at a Glance
	Input and Output
	Mathematical Functions
	Mathematical Functions for Integer Types
	Floating-Point Functions
	Function-like Macros
	Type-generic macros
	Categories of floating-point values
	Comparison macros

	Pragmas for Arithmetic Operations
	The Floating-Point Environment
	Accessing status flags
	Rounding modes
	Saving the whole floating-point environment

	Error Handling
	Domain errors
	Range errors

	Character Classification and Conversion
	Character Classification
	Case Mapping

	String Processing
	Multibyte Characters
	Converting Between Numbers and Strings
	Searching and Sorting
	Memory Block Handling
	Dynamic Memory Management
	Date and Time
	Process Control
	Communication with the Operating System
	Signals

	Internationalization
	Nonlocal Jumps
	Debugging
	Error Messages

	Standard Library Functions
	_Exit
	abort
	abs
	acos
	acosh
	asctime
	asin
	asinh
	assert
	atan
	atan2
	atanh
	atexit
	atof
	atoi
	atol, atoll
	bsearch
	btowc
	cabs
	cacos
	cacosh
	calloc
	carg
	casin
	casinh
	catan
	catanh
	cbrt
	ccos
	ccosh
	ceil
	cexp
	cimag
	clearerr
	clock
	conj
	copysign
	cos
	cosh
	cpow
	cproj
	creal
	csin
	csinh
	csqrt
	ctan
	ctanh
	ctime
	difftime
	div
	erf
	erfc
	exit
	exp
	exp2
	expm1
	fabs
	fclose
	fdim
	feclearexcept
	fegetenv
	fegetexceptflag
	fegetround
	feholdexcept
	feof
	feraiseexcept
	ferror
	fesetenv
	fesetexceptflag
	fesetround
	fetestexcept
	feupdateenv
	fflush
	fgetc
	fgetpos
	fgets
	fgetwc
	fgetws
	floor
	fma
	fmax
	fmin
	fmod
	fopen
	fpclassify
	fprintf
	fputc
	fputs
	fputwc
	fputws
	fread
	free
	freopen
	frexp
	fscanf
	fseek
	fsetpos
	ftell
	fwide
	fwprintf
	fwscanf
	fwrite
	getc
	getchar
	getenv
	gets
	getwc
	getwchar
	gmtime
	hypot
	ilogb
	imaxabs
	imaxdiv
	isalnum
	isalpha
	isblank
	iscntrl
	isdigit
	isfinite
	isgraph
	isgreater, isgreaterequal
	isinf
	isless, islessequal, islessgreater
	islower
	isnan
	isnormal
	isprint
	ispunct
	isspace
	isunordered
	isupper
	iswalnum
	iswalpha
	iswblank
	iswcntrl
	iswctype
	iswdigit
	iswgraph
	iswlower
	iswprint
	iswpunct
	iswspace
	iswupper
	iswxdigit
	isxdigit
	labs
	ldexp
	ldiv
	llabs
	lldiv
	llrint
	llround
	localeconv
	localtime
	log
	log10
	log1p
	log2
	logb
	longjmp
	lrint
	lround
	malloc
	mblen
	mbrlen
	mbrtowc
	mbsinit
	mbsrtowcs
	mbstowcs
	mbtowc
	memchr
	memcmp
	memcpy
	memmove
	memset
	mktime
	modf
	nearbyint
	nextafter
	nexttoward
	perror
	pow
	printf
	putc
	putchar
	puts
	putwc
	putwchar
	qsort
	raise
	rand
	realloc
	remainder
	remove
	remquo
	rename
	rewind
	rint
	round
	scalbln, scalbn
	scanf
	setbuf
	setjmp
	setlocale
	setvbuf
	signal
	signbit
	sin
	sinh
	snprintf
	sprintf
	sqrt
	srand
	sscanf
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strerror
	strftime
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod, strtof, strtold
	strtoimax
	strtok
	strtol, strtoll
	strtoul, strtoull
	strtoumax
	strxfrm
	swprintf
	swscanf
	system
	tan
	tanh
	time
	tmpfile
	tmpnam
	tolower
	toupper
	towctrans
	towlower
	towupper
	trunc
	ungetc
	ungetwc
	va_arg, va_copy, va_end, va_start
	vfprintf, vprintf, vsnprintf, vsprintf
	vfscanf, vscanf, vsscanf
	vfwprintf, vswprintf, vwprintf
	vfwscanf, vswscanf, vwscanf
	wcrtomb
	wcscat
	wcschr
	wcscmp
	wcscoll
	wcscpy
	wcscspn
	wcsftime
	wcslen
	wcsncat
	wcsncmp
	wcsncpy
	wcspbrk
	wcsrchr
	wcsrtombs
	wcsspn
	wcsstr
	wcstod, wcstof, wcstold
	wcstoimax
	wcstok
	wcstol, wcstoll
	wcstold
	wcstoll
	wcstombs
	wcstoul, wcstoull
	wcstoumax
	wcsxfrm
	wctob
	wctomb
	wctrans
	wctype
	wmemchr
	wmemcmp
	wmemcpy
	wmemmove
	wmemset
	wprintf
	wscanf

	III
	Compiling with GCC
	The GNU Compiler Collection
	Obtaining and Installing GCC
	Compiling C Programs with GCC
	Step by Step
	Preprocessing
	Compiling
	Assembling
	Linking
	All of the above
	None of the above

	Multiple Input Files
	File types
	Mixed input types

	Dynamic Linking and Shared Object Files
	Freestanding Programs

	C Dialects
	Compiler Warnings
	Optimization
	The -O Levels
	The -f Flags
	Floating-Point Optimization
	Architecture-Specific Optimization
	Why Not Optimize?

	Debugging
	Profiling
	Option and Environment Variable Summary
	Command-Line Options
	Environment Variables

	Using make to Build C Programs
	Targets, Prerequisites, and Commands
	The Makefile
	Rules
	The Command Script
	Pattern Rules
	Suffix Rules
	Built-in Rules
	Implicit Rule Chains
	Double-Colon Rules

	Comments
	Variables
	Assignment Operators
	Variables and Whitespace
	Target-Specific Variable Assignments
	The Automatic Variables
	Other Built-in Variables
	Environment Variables

	Phony Targets
	Other Target Attributes
	Macros
	Functions
	Built-in Functions
	Text-processing functions
	Filename-manipulation functions
	Conditions and flow control functions
	Operations on variables
	System functions

	User-Defined Functions

	Directives
	Conditionals
	Includes
	Other Directives

	Running make
	Generating Header Dependencies
	Recursive make Commands
	Command-Line Options
	Special Targets Used as Runtime Options
	GCC Options for Generating Makefile Rules

	Debugging C Programs with GDB
	Installing GDB
	A Sample Debugging Session
	Symbol Information
	Finding a Bug

	Starting GDB
	Command-Line Arguments
	Command-Line Options
	Passing arguments to the program being debugged
	Selecting files
	Selecting the user interface
	Executing command scripts

	Initialization Files

	Using GDB Commands
	Command Completion
	Displaying Help for Commands
	Status Information
	Status information on the program being debugged
	Status information on the debugger

	Running a Program in the Debugger
	Displaying Source Code
	Working with Breakpoints
	Setting and displaying breakpoints
	Deleting, disabling, and ignoring breakpoints
	Conditional breakpoints

	Resuming Execution After a Break
	Analyzing the Stack
	Displaying a call trace
	Displaying and changing the current stack frame
	Displaying arguments and local variables

	Displaying Data
	Displaying values of expressions
	Output formats
	Displaying memory blocks

	Watchpoints: Observing Operations on Variables
	Analyzing Core Files in GDB

	Index

