
Object Oriented C (ooc) toolkit
for version 1.3c, 28 October 2017

Tibor Miseta

This manual is for Object Oriented C (ooc) toolkit (version 1.3c, 28 October 2017), which
is a lightweight collection of tools for Object Oriented programming approach in ANSI-C.

Copyright c©Tibor Miseta 2008-2011 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

(a) The FSF’s Back-Cover Text is: “You have the freedom to copy and modify
this GNU manual. Buying copies from the FSF supports it in developing GNU
and promoting software freedom.”

i

Table of Contents

1 Introduction . 1

2 Objects and Classes . 2
2.1 Underlying data structure . 2
2.2 Inheritance . 3
2.3 Class data members . 3
2.4 Member functions . 4
2.5 Virtual functions . 4

2.5.1 Overridden virtual functions . 5
2.5.2 Calling parent’s virtual functions . 6

2.6 Class description table . 6

3 Exception handling . 8
3.1 Throwing an exception . 8
3.2 Catching an exception . 8
3.3 Finalize the exception handling . 9
3.4 Closing the try block . 9
3.5 Protecting dynamic memory blocks and objects 9
3.6 Managed pointers . 10

3.6.1 Managing a pointer . 10
3.6.1.1 Manage a pointer: ooc_manage() . 11
3.6.1.2 Manage an Object: ooc_manage_object() 11
3.6.1.3 Pass the ownership: ooc_pass() . 11

3.6.2 Examples . 11
3.6.2.1 Protecting temporary memory allocation 11
3.6.2.2 Taking over the ownership of parameters 12

4 Using Classes . 13
4.1 Initializing the class . 13
4.2 Creating an object of a class . 13
4.3 Deleting an object . 14

4.3.1 Deleting an object directly . 14
4.3.2 Deleting object via pointer . 14

4.4 Accessing class members . 14
4.5 Finalizing a class . 15
4.6 Dynamic type checking . 15

ii

5 Implementing Classes . 17
5.1 Naming conventions . 17
5.2 Source files . 17
5.3 Class user header file . 17
5.4 Class implementation header file . 18
5.5 Class implementation file . 19

5.5.1 Class allocation . 19
5.5.2 Class initialization . 19
5.5.3 Class finalization . 20
5.5.4 Constructor definition . 20
5.5.5 Copy constructor definition . 21

5.5.5.1 Using the default copy constructor 22
5.5.5.2 Creating your own copy constructor 22
5.5.5.3 Disabling the copy constructor . 23

5.5.6 Destructor definition . 23
5.5.7 Implementing class methods . 23

5.5.7.1 Non-virtual methods . 24
5.5.7.2 Virtual methods . 24

5.6 Classes that have other classes . 24

6 Interfaces and multiple inheritance 26
6.1 What is an interface? . 26

6.1.1 Interfaces and inheritance . 26
6.1.2 Creating an interface . 27
6.1.3 Implementing an interface . 27

6.1.3.1 Adding the interface to the virtual table 28
6.1.3.2 Implementing the interafce methods 28
6.1.3.3 Initializing the virtual table . 28
6.1.3.4 Registering the implemented interafces 29
6.1.3.5 Allocating the class with interfaces 29

6.1.4 Using an interface . 29
6.1.4.1 If the type of the Object is known 29
6.1.4.2 If the type of the Object is unknown 29

6.2 Mixins . 30
6.2.1 Creating a mixin . 30
6.2.2 Implementing a mixin by a carrier class 32
6.2.3 How mixins work? . 33

7 Memory handling . 35
7.1 Memory allocation . 35
7.2 Freeing the allocated memory . 35
7.3 Thread safety . 36

iii

8 Unit testing support . 37
8.1 How to create a unit test? . 37
8.2 Writing a unit test . 38

8.2.1 Writing test methods . 38
8.2.2 Assertions . 38
8.2.3 Messages . 39
8.2.4 Overriding virtuals . 40
8.2.5 Testing exceptions . 41
8.2.6 Memory leak test . 41
8.2.7 Unit testing techniques: . 42

8.2.7.1 Inherited test cases . 42
8.2.7.2 Using fake objects . 42
8.2.7.3 Using mock objects . 42

8.2.8 Dependency lookup . 42

9 Class manipulation tool . 44

Appendix A GNU Free Documentation License
. 46

Table of Figures . 52

Index . 53

Chapter 1: Introduction 1

1 Introduction

Object Oriented C toolkit, or shortly ooc has been created with the intention to enable to
write object oriented code easily using standard ANSI-C, with all the possible type checks.
It is very important being ANSI-C compliant, because the main goal was the portability
even for systems that lack a C++ compiler.

The other goal was keeping it lightweight, being able to port it onto small computers as
well, like embedded systems. The implementation has a C++ like approach, using classes,
objects, and exceptions. The ooc also incorporates single inheritance and with the help of
interfaces and mixins a kind of multiple inheritance.

There are many similar kits out there, but I found most of them either too complicated
for writing a fully controllable, really portable code, or inconvenient to use it for writing
readable programs. So I have started from scratch.

The ooc toolkit comes with some container classes, a unit testing helper class and a tool
that let’s you generate classes from several templates easily.

In this manual I will cover only issues related to the implementation and use of ooc, I
assume that the reader is familiar with the Object Oriented Programming and has a good
knowledge about C and C++ and their most common internal implementation.

More detailed information on the use of ooc can be found in the ooc API documentation.

Chapter 2: Objects and Classes 2

2 Objects and Classes

Class is the type of an Object instance. It specifies its data and function members and
methods. We use the same terminology as in C++ here.

Before an Object could be used, it must be instantiated.

The Classes and Objects are located in the memory, as the following section describes.

2.1 Underlying data structure

Figure 2.1: Underlying data structure

The Class description table and the Virtual table are allocated statically in compilation
time while the Object instances are allocated dynamically on the heap in run time. The
Class allocation table is fully initialized at compilation time, while the Virtual Table must

Chapter 2: Objects and Classes 3

be initialized in run time before the Class is used. Due to this limitation it is not possible
allocating Objects statically on the heap.

There is always a Virtual table, even if the class does not have a virtual function. In
this case it is just a single pointer to the Class description table.

2.2 Inheritance

In ooc single inheritance is supported. The physical implementation of inheritance is em-
bedding the parent class members into the beginning of the instantiated object.

Real multiple inheritance is not supported because of considering run time effectiveness
on slower computers; plus trying to avoid complex inheritance problems that may occur in
case of multiple inheritance, and a good solution for them would require more support from
the compiler.

However since version 1.3 ooc supports the use of interfaces and mixins providing a kind
of multiple inheritance.

In every class definition macros we use two parameters:

• First parameter is the name of the class, while the

• Second parameter is the name of the parent class.

If a class is a base class (has no parent class), we shall mark it as it parent class was
Base. Therefore Base is a reserved class name in ooc!

DeclareClass(String, Base); /* String is a Base class */

DeclareClass(Utf8, String); /* Utf8 is a class inherited from String */

2.3 Class data members

Class definitions are basically nested struct definitions. That means that you can access
data members via their names, as they were accessed as struct members. There is an
important rule, that accessing the parent class’s data members requires a prefix with the
parent class’s name before the data member name. This is because the standard ANSI C
does not allow the use of unnamed struct, and I wanted to be ANSI compliant for better
portability.

ClassMembers(String, Base)

char * cstr;

int length;

EndOfClassMembers;

ClassMembers(Utf8, String)

Chapter 2: Objects and Classes 4

int num_of_chars;

EndOfClassMembers;

/**********************************

* Accessing data members

*/

String my_string;

Utf8 my_utf8;

int i;

i = my_string->length; /* Accessing a class member */

i = my_utf8->num_of_chars; /* Accessing a class member */

i = my_utf8->String.length; /* Accessing class member inherited from the parent class */

2.4 Member functions

A class member function is a normal C function, but there is a very important rule: the
first function parameter of a member function is always a class instance object, and this
first parameter can not be omitted.

void str_upper(String); /* Declaring a member function */

void str_upper(String self) /* Defining a member function */

{

int i;

assert(ooc_isInstanceOf(self, String));

for(i=0; i<self->length; i++)

self->cstr[i] = cupper(self->cstr[i]);

}

str_upper(my_string); /* Calling a member function */

As a naming convention it is a good idea to start all class member function’s name with
the name of the class, or with a meaningful abbreviation.

2.5 Virtual functions

Virtual functions have the same requirement: their mandatory first parameter is an object
instance pointer.
Virtual functions are implemented as static functions in the class implementation file, and

Chapter 2: Objects and Classes 5

the class’s virtual table holds pointers to these static functions.
Virtual functions are called via their function pointers in the vtable.

The vtable itself is basically a struct holding function pointers to the implemented static
functions. The calling via these function pointers provides us the capability for compilation
time type and parameter checking.

For virtual function calls we use the macros and inline functions.
For those compilers that the inline functions are not supported there is a function version
for virtual function calls, but that is slower of course. This is the price for the better type
safety.

/* Defining a virtual function */

Virtuals(String, Base)

int (* str_get_tokens)(String);

EndOfVirtuals;

/* Calling a virtual function; from the user point of view */

int len;

String my_string;

len = StringVirtual(my_string)->str_get_tokens(my_string);

/* Implementing the virtual function in the class implementation file */

static int virtual_str_get_tokens(String self)

{

/* doing some important here with self */

return result;

}

/* Initializing the virtual table in the class initialization handler */

static void String_init()

{

StringVtableInstance.str_get_tokens = virtual_str_get_token;

}

2.5.1 Overridden virtual functions

Overriding the parent class’s virtual functions is very easy in the class implementation file.
It can be done in the class initialization code.

/* Defining the virtual table */

Chapter 2: Objects and Classes 6

Virtuals(Utf8, String)

/* In this case there are no new Virtual functions, only the parent’s ones */

EndOfVirtuals;

/* Implementing the virtual function in the class implementation file */

static int utf8_get_tokens(String self)

{

/* doing some important here with self */

return result;

}

/* Overriding the parent’s virtual function pointer in the virtual table in the class initialization handler */

static void Utf8_init(Class class)

{

Utf8VtableInstance.String.str_get_tokens = utf8_get_token;

}

/* In the class’s user code you can call the virtual in the same way: */

len = Utf8Virtual(my_utf8)->String.str_get_tokens((String) my_utf8);

2.5.2 Calling parent’s virtual functions

If you would like to call the parent class’s virtual function (this may be necessary in the
implementation code when you would like to chain the new class’s virtual function to the
parent’s one, you can use other macro accessing the original (non-overridden) function:

static int utf8_get_tokens(String self)

{

/* doing some important stuff here with self,

then chaining to the original parent’s function: */

return Utf8ParentVirtual(self)->str_get_tokens(self);

}

2.6 Class description table

The Class description table is completely hidden from the user of the class. It is a static
struct in the heap, created and initialized at compilation time. The identifier of the class is
the address of this class description table, so you must refer to the class with the "address
of" operator and the class name.

You can allocate the class description table, the virtual table and some other helpers
with a single macro:

Chapter 2: Objects and Classes 7

AllocateClass(String, Base);

AllocateClass(Utf8, String);

Chapter 3: Exception handling 8

3 Exception handling

However the exception handling from the user’s point of view is very similar to the exception
handling in C++, there are very significant differences that you must keep in mind! In ooc
the key differences are:

• There is no stack unwinding!

• You must consider the side effects of optimizing compilers.

• There is an additional finally option.

• You must close the section with an end_try statement.

• Every executed try must have an executed end_try!

Being able to use the exceptions you must include the exception.h header file, and call
ooc_init_class(Exception); at the very beginning of your code! Because ooc uses the
exceptions internally, you must always initialize the Exception class in your code before
using any other ooc features!

3.1 Throwing an exception

Throwing an exception is very easy with the ooc_throw() instruction. The parameter
of the ooc_throw() is any Object. The object is "owned" by the exception handling
mechanism and will be deleted by it, so never delete it yourself, and never throw an object,
that you would like to use later. In practice I recommend throwing newly created objects
of Exception class or its subclasses, like:

if(error)

ooc_throw(str_exception_new(str_error_code));

You can use ooc_rethrow() as well for passing the actual exception to the caller, but
only inside a catch() or in a catch_any block.

3.2 Catching an exception

You can catch the thrown exceptions with the catch() or catch_any blocks.

The catch(Class) block catches the objects of the specified class or its subclasses.
The caught object is stored in a variable called Exception exception, that is automatically
defined and can be used only within the catch block.

The catch_any block catches all exceptions that were not handled by the earlier catch

blocks. It is typically used for cleanup and rethrow of exception that could not be handled

locally. You can use as many cath() blocks, as many you need, plus one catch_any block

as the last one. Be careful with the ordering of the catch() blocks: catching a class means

catching all of the subclasses as well.

Chapter 3: Exception handling 9

3.3 Finalize the exception handling

You can notice, that there is a finally option as well, that will run in every case. It is
very important that codes in the finally block can not fail (can not throw any exception)!
This section will run in every case, regardless of the existence of an exception, or if it was
caught or not. The finally block must be the last section of a try ... end_try block.

3.4 Closing the try block

You must close the try block sequence with an end_try; statement. You don’t have to
use all of the possible blocks in the try ... end_try block, however at least one catch or
catch_any or finally block must be used. Every executed try must have an executed
end_try! In practice this means that you must NOT return from within the try block!
(Or jump out with goto, but who does use it? :-))

3.5 Protecting dynamic memory blocks and objects

Unlike C++ there is no stack unwinding during the exception handling! Consequently you
must pay extra attention on memory handling in your routines: make sure that every
temporarily allocated memory block is freed in case of an exception rises in the routine or
in routines called. The simplest solution is a try ... finally ... end_try block. It is
relatively not computationally expensive, and is effective. For example the code below will
lead to memory leak if there would arise an exception:

void my_func(void)

{

char * mem;

mem = ooc_malloc(1000);

do_a_risky_call(); /* If this code throws an exception then */

/* the mem will never be freed, causing a */

ooc_free(mem); /* memory leak! */

}

The correct solution is protecting the sensible variables like follows:

void my_func(void)

{

char * volatile mem = NULL;

try {

mem = ooc_malloc(1000);

do_a_risky_call();

}

finally {

ooc_free(mem);

}

end_try;

}

Chapter 3: Exception handling 10

Listen to the followings in the above code:

• Use volatile storage class specifier for those variables that change their value in the
try code section, and you would like to use this new value in any of the catch or
finally blocks, or after the end_try statement! This is necessary, because the try

solution is based on setjmp/longjmp, that may change the register values, so we must
prevent optimizing compilers using registers for these variables. Forgetting setting
volatile typically brings you in a situation where the debugged code works properly,
but the optimized release fails while handling exceptions.

• Initialize the pointer variable with NULL! This is necessary because the local variable
is located on the stack, and gets a random starting value. If you forget the initializa-
tion, and the memory allocation would fail, then freeing this pointer in the finally

section would refer to an undefined memory block, and most probably would cause a
segmentation fault.

In most cases you want to prevent memory leak only, and do not necessarily need to get
the control in the case of an exception. For those situations there is a simpler mechanism
described in the next section.

3.6 Managed pointers

In ooc you have an other option for preventing memory leaks in case of an exception: the
managed pointers. Using managed pointers you will not get the program control in case of
an exception, but it is guaranteed, that the memory is freed or the Object is deleted in case
of an exception. (You may consider this as analogie for std::auto_ptr<> in C++.)
Using managed pointers is faster than using the try ... finally ... end_try constructs,
so it is more advisable if you do not need the program control in case of an exception.

3.6.1 Managing a pointer

Managing a pointer means that ooc will take care of freeing the resouce in case of an
exception. You can manage a pointer with the ooc_manage() macro. This macro pushes
the pointer (and the corresponding destroyer function) to the top of the managed pointers
stack.
If there is an exception thrown, ooc will continue the program execution at the next catch
or finally statement, and takes care that all memory or Objects that are referenced by the
managed pointers pushed onto the stack, are freed or deleted respectively till that point.
If there was no exception thrown, you must remove the pointer from the stack with the
ooc_pass() macro.
Because the managed pointers’ stack is a stack, you can remove the most recently pushed
item only: you must use ooc_pass() always in the reverse order of using ooc_manage()!
Use ooc_manage() / ooc_manage_object() and ooc_pass() always as a pair in the same
name scope! These macros use local variables, and the variable created by ooc_manage()

must be accessible by ooc_pass()! Never let ooc_manage() be executed more than once
without executing the corresponding ooc_pass() before!
To be ANSI-C compliant, the ooc_manage() and ooc_manage_object() macros always
must preceed any statement in the given namespace! (This is because they define a local

Chapter 3: Exception handling 11

variable.) In practice this means that you must open a new name scope with { if you’d like
to use the managed pointer in the middle of your code. Close this name scope only after
passing the managed pointer. You can nest more namescopes when using multiple managed
pointers. See the first example!

3.6.1.1 Manage a pointer: ooc_manage()

Pushes a pointer onto the top of the managed pointers’ stack.
ooc_manage() requires two parameters: the pointer to the resource and the appropriate
destroyer function for it (typically ooc_delete or ooc_free).
ooc_manage() does not return anything.

3.6.1.2 Manage an Object: ooc_manage_object()

Manages an Object like ooc_manage().
This is shortcut for ooc_manage(my_object, (ooc_destroyer) ooc_delete);.

3.6.1.3 Pass the ownership: ooc_pass()

Removes the most recently pushed pointer from the managed pointers’ stack. Always use
in the reverse order of using ooc_manage()!
ooc_pass() requires one parameter: the pointer to be removed.
Please note that since the most recently pushed pointer is removed, the parameter is used
only for verification that the push an pop orders are correct! (In release versions this
verification is skipped for gaining some speed.)
ooc_pass() returns the pointer itself.
The name is coming from passing the ownership of the pointer to an other object or function.

3.6.2 Examples

3.6.2.1 Protecting temporary memory allocation

In the previous section we used try ... finally ... end_try to prevent memory leak for
a temporary memory allocation. The same with managed pointer:

void my_func(void)

{

char * mem;

mem = ooc_malloc(1000);

{

ooc_manage(mem, ooc_free);

do_a_risky_call();

ooc_free(ooc_pass(mem));

}

}

Simplier, faster.

Chapter 3: Exception handling 12

3.6.2.2 Taking over the ownership of parameters

void foo_add_bar(Foo self, Bar bar)

{

ooc_manage(bar, (ooc_destroyer) ooc_delete);

do_a_risky_call();

/* pass the ownership of bar to self */

self->bar = ooc_pass(bar);

}

Foo foo;

foo = foo_new();

foo_add_bar(foo, bar_new()); /* this code is safe! */

If you we’re not using managed pointers for taking over the ownership of the parameter
then the parameter object would be leaked in case of an exception in the do_a_risky_

call() method.

Chapter 4: Using Classes 13

4 Using Classes

4.1 Initializing the class

Before you can use your class, you must initialize it! Initializing a class will automatically
initialize its superclasses, so if you have inherited your class from occ system classes (like
RefCounted), you do not have to initialize them separately. However, because ooc uses the
Exception class internally, you must initialize it before calling any ooc function.

int

main(int argc, char * argv[])

{

ooc_init_class(Exception);

ooc_init_class(MyClass);

do_my_program();

return 0;

}

4.2 Creating an object of a class

Creating an object is easy with the ooc_new marco, or with the equivalent ooc_new_

classptr function.

The ooc_new(classname, void * param) macro converts the Class name to the ap-
propriate class description table address, and calls the ooc_new_classptr function. Use
ooc_new when you create your class from a statically known class (you know the class name).
The second parameter is passed to the class constructor code without any modification or
check. You can parameterize your constructor this way, it is advisable passing a variable or
struct pointer here. The variable or the struct must exist until the constructor returns!

The ooc_new_classptr(Class class_ptr, void * param) function creates an object
of the class pointed by the first parameter. Use this function when you know only the class
description table’s address! This is very rare situation, and I guess it is mainly useful inside
the ooc code. The second parameter is passed to the class constructor code without any
modification or check.

The above methods return objects of Object type.

Although using the ooc_new macro for object creation is easy, it is advisable to define
a parameterized ..._new() function for each class, because that way you can control the
parameter checking, as well as the automatic conversion of return type (ooc_new returns
Object that you must cast to the desired type).

Chapter 4: Using Classes 14

String str_new(char * initial)

{

return ooc_new(String, initial);

}

4.3 Deleting an object

The created objects must be deleted with one of the deletion functions. They must not be
freed with the standard memory handling functions, like free or ooc_free!

4.3.1 Deleting an object directly

Deleting an object can be done with the ooc_delete(Object) function. It calls the class
destructors on the object, and frees the allocated memory. Any pointer to this object
will not be usable after deleting the object! Use this way an object destruction when you
would like to destroy objects that you did allocate temporarily in your C functions as local
variables.

4.3.2 Deleting object via pointer

In many cases it is important to mark that the object has been deleted by nulling the
pointer. But this operation rises some issues regarding circular object references, destroying
non-complete ojects and multi-threading.

For your convenience there is the object deletion function via its pointer, ooc_delete_
and_null(Object *), which does exactly the same in a thread-safe (or at least reentrant)
way.

void String_destructor(String self, StringVtable vtab)

{

/* Deletes the member object and nulls the pointer */

ooc_delete_and_null(& self->other);

}

Always use this way a object destruction when you would like to destroy objects that
you did allocate globally or as members of other classes! Especially it is important in
class destructor codes! (Since ooc 1.0, it is guaranteed that the destructor runs only once.
However it is still recommended nulling pointers in your code when deleting, just for clarity.)

4.4 Accessing class members

The class members can be accessed via the object pointer if they are made public, although
it is not an advisable method. It is recommended accessing the class members only via the
class methods.

Chapter 4: Using Classes 15

4.5 Finalizing a class

A class can be finalized when no longer needed, although it is not necessarily required.
If your class has reserved some global resources, then you can release them in the class’
finalize code. One may neglect finalizing, if known, that the class did not allocate any
global resources. However it is a good practice to finalize the classes that are not needed in
the future, especially in dinamically loadable modules.

You can finalize all initialized classes:

ooc_finalize_all();

as the last executed line in your code. In case of ooc_finalize_all() the class final-
ization is done in the reverse order of initialization.

However ooc_finalize_all() is the preferred way, you can finalize a given class, like:

ooc_finalize_class(String);

But be very carefull, here! If you finalize a class that would be required for using or
finalizing an other class then your code will crash! ooc_finalize_all() keeps track of
class dependencies, so this problem does not exist that case.

4.6 Dynamic type checking

ooc provides dynamic type safety for your objects, because the object types are known in
run time. You can safely cast Objects using the ooc_cast macro. If the cast fails then
err_bad_cast exception is thrown. An example of using the dynamic cast in ooc:

DeclareClass(String, Base);

DeclareClass(Utf8, String);

DeclareClass(Something, Base);

Something something = something_new();

Utf8 my_utf8_string = utf8_new("This is an utf8 string.");

String my_string;

my_string = ooc_cast(my_utf8_string, String); /* Correct */

my_string = ooc_cast(something, String); /* Can not be cast,

exception is thrown */

You can also retrieve the type of an Object. The ooc_get_type function returns the
type of an object in run time (actually returns a pointer to the class description table). If
the parameter is not a valid Object then err_bad_cast exception is thrown. An example
of retriving of the object type in ooc:

String my_string = string_new("Test string.");

printf("The type of my_string is: %s\n", ooc_get_type(my_string)->name);

This example prints The type of my_string is: String on the display.

You can use this function for comparing object types, like

if(ooc_get_type(my_object) == & StringClass)

... process my_object as a String object here

Chapter 4: Using Classes 16

else if (ooc_get_type(my_object) == & SomeOtherClass)

... process my_object as a SomeOther object here

Please note the Class suffix to the object’s typename. This pointer to the static class
description table is defined for each class.

But there is a more convenient way for dynamic type checking in ooc, that handles
the class inheritance correctly. The ooc_isInstanceOf macro returns TRUE if the object
is an instance of a given class or of any of its superclasses, FALSE otherwise. The typical
use of this kind type checking is at the very beginning of the class methods, to make
sure that the parameter object is of the right type. Because this is a bit computationally
"expensive" operation, it is usually placed into an assert macro, that lets you some control
distinguishing debug and release versions.

void

string_example_method(String self)

{

assert(ooc_isInstanceOf(self, String));

/* Do your method here!

You can be sure, that self is a valid

instance of String class.

(At least in the debug version!)

*/

}

Chapter 5: Implementing Classes 17

5 Implementing Classes

Implementing a new class is relatively simple. You have to create three (or two if you prefer)
source files, preferably with the class name. Then you can use the class implementation
macros defined in ooc.h, and must define the predefined mandatory class methods.

5.1 Naming conventions

Although it is totally up to you, and has no effect on the operation of the ooc toolkit, I
recommend using the following naming conventions:

• The class name should be relatively short, let’s say maximum eight-twelve characters.

• For file names use only lower case letters, like foo.h

• Use capital first letter for class names and as the object type, like Foo.

• Use a lower case initial for every class member function, making evident that this
member function belongs to this class, like foo_new.

• You should not apply any initials for the class member names and virtual function
names. They will be accessed unambigously.

5.2 Source files

The following files must be created for implementing class Foo that is a subclass (child) of
Parent:

• Class user header file. This contains the declarations of class Foo that are used by the
users of the class.

• Class Implementation header file. This file contains all declarations that are protected
for class Foo.

• Class implementation file. This file contains the declarations private to class foo and
the class methods.

5.3 Class user header file

This file should be named as foo.h.

In foo.h you must decalare the class and its virtual functions, plus the public methods
of the class.
You always have to use the virtual function definition block, even you class do not have any
virtual function. In this case just leave this block empty.

#ifndef FOO_H

#define FOO_H 1

#include "parent.h"

DeclareClass(Foo, Parent);

Virtuals(Foo, Parent)

Chapter 5: Implementing Classes 18

EndOfVirtuals;

/* Foo methods */

Foo foo_new(int initial_value);

int foo_get_value(void);

#endif

Please note that there is no semicolon after the Virtuals.

5.4 Class implementation header file

The class implementation header file contains the definitions for data members of the class
Foo. It is your choice if you creat a separate class implementation header, or you include
this section in the foo.h as weel.

Including the implementation related definitions in the class user header file you make
all class members public; in other word the user of class foo can access all data members
simple via pointers.

Including the implementation related definition in a separeted class implementation
header (e.g. called impl_foo.h) you make all data members protected; in other words
the user of the class can not access it, but the subclasses always can.

Making really private members would be a bit complicated, and not supported by the
macros. (See "pimpl" or "fast pimpl" idioms for a possible solution!)

The content of impl_foo.h should look like:

#ifndef IMPLEMENT_FOO_H

#define IMPLEMENT_FOO_H 1

#include "impl_parent.h"

#include "foo.h"

ClassMembers(Foo, Parent)

int data;

void * data_ptr;

EndOfClassMembers;

#endif

Chapter 5: Implementing Classes 19

5.5 Class implementation file

In the class implementation file you must allocate the class description table and the virtual
table of the class. Then you must implement the mandatory class member functions as
below. After this mandatory section you can implement your class methods.

The class implementation file may be called e.g. foo.c, but it can consist multiple files
if necessary, of course.

5.5.1 Class allocation

#include "impl_foo.h"

AllocateClass(Foo, Parent);

5.5.2 Class initialization

The most of the class properties are initialized in compilation time. However the vtable
can not be initialized perfectly, so initializing a class means building up the class’s virtual
table.

You must initialize the virtual table only if your class defines new virtual functions; or
you would like to override any virtual function of the parent class! If you don’t have to do
anything in the class initialization, just leave its body empty!

The mandatory function name for the class initialization function is the class name +

the suffix of " initialize".

This function has got a pointer to the class description table as parameter. You can
access the class’s virtual table via this pointer. The virtual table address is stored in the
vtable field of the class description table, and the type of the virtual table is the class name
concatenated with Vtable.

Example: overriding the parent’s print virtual function:

static

void

Foo_initialize(Class this)

{

FooVtable virtuals = (FooVtable) this->vtable;

virtuals->Parent.print = virtual_foo_print;

}

Chapter 5: Implementing Classes 20

Example: aquiring some global resources in the class initialization code:

static List foo_list = NULL;

static

void

Foo_initialize(Class this)

{

ooc_init_class(List); /* make sure, that List has been initialized */

foo_list = list_new(ooc_delete);

}

You can call ooc_init_class(ClassName) as many times, you need, the ClassName_
initialize(Class) function will be called only once. (Until ooc_finalize_class(

ClassName) is not called.)

You can throw exception in ClassName_initialize(Class) function.

5.5.3 Class finalization

If you have aquired some global resources during class initialization, you may want to release
them before exiting your program. The class finalization method is there for this purpose.
The class finalization must not throw an exception!

static

void

Foo_finalize(Class this)

{

ooc_delete_and_null(& foo_list);

}

It is guaranteed, that ClassName_finalize(Class) is called only once for each
ClassName_initialize(Class). In most cases the class finalization is just a simple
empty function, doing nothing.

5.5.4 Constructor definition

The constructor is responsible for building up an object of the class. The constructor has
a fix name: the class name concatenated with _constructor.

In the constructor you can be sure, that all data members are set to 0 (or NULL in case
of a pointer) prior calling the constructor.

If your class has a parent class (other than Base) then the first thing in a construc-
tor is calling the parent class’s constructor using the chain_constructor() macro! It is
advisable putting the chain_constructor() macro always at the begining of your con-

Chapter 5: Implementing Classes 21

structor, because this practice makes the task of changing the inheritance more easy. The
chain_constructor() macro has three parameters:

• Name of your actual class,

• The actual object pointer,

• Parameters for the parent constructor.

The class constructor has two parameters: the address of the object itself as an Foo

object, and a pointer to the parameters. This parameter pointer was the second parameter
of the ooc_new() function, or was assigned by the subclass constructor by the chain_

constructor() macro.

static

void

Foo_constructor(Foo self, const void * params)

{

assert(ooc_isInitialized(Foo)); /* It is advisable to check if the class has

been initialized before the first use */

chain_constructor(Foo, self, NULL); /* Call parent’s constructor first! */

self->data = * ((int*) params);

}

If you encounter any problem in the construction code, you can throw an exception here.

It is advisable defining a convenient wrapper around the ooc_new() call to make the
parameter type checking perfect and being able to aggregate multiple parameters into a
single parameter struct, that can be forwarded to the ooc_new() as the second parameter,
and not less importantly converting the returned Object type automatically to your specific
object type.

Foo

Foo_new(int initial_value)

{

return (Foo) ooc_new(Foo, & initial_value);

}

5.5.5 Copy constructor definition

The copy constructor creates a second object of your class. The ooc_duplicate uses this
constructor when creating a duplicate of the class.

The copy constructor has a fix name: the class name concatenated with _copy.
The copy constructor has two parameters: a pointer to the new object, and a pointer to
the object that is copied.
The copy constructor must return:

Chapter 5: Implementing Classes 22

• OOC_COPY_DONE, if you have copied the object succesfully,

• OOC_COPY_DEFAULT, if you have not copied anything, and the default copy must be
applied,

• OOC_NO_COPY, if this object can not be copied.

When entering into the copy constructor you can be sure that all the parent class’
members are already copied succesfully, and all class members are set to 0 or NULL.

If you encounter any problem in the construction code, you can throw an exception here.

5.5.5.1 Using the default copy constructor

If your class do not require any special action when it is copied (the bit-by-bit copy is OK)
then you can leave all the task to the class manager, by simply returning OOC_COPY_DEFAULT:

static

int

Foo_copy(Foo self, const Foo from)

{

/* makes the default object copying (bit-by-bit) */

return OOC_COPY_DEFAULT;

}

But be careful with the default copying! Copying pointers may lead unexpected double
frees of memory block and may crash! Make your own copy, if you have pointers, reference
counted pointers, etc.!

An other aspect is the performance. Because the default copy uses the memcpy() for
completing the copy of an object, it is a bit "expensive", it has too much overhead. If your
program is using ooc_duplicate() extensively, it is recommended creating your own copy
constructor for smaller objects.

5.5.5.2 Creating your own copy constructor

Creating your own copy constructor is simply, and mostly self-explanatory.

static

int

Foo_copy(Foo self, const Foo from)

{

self->data = from->data;

return OOC_COPY_DONE;

}

Do not forget to return OOC COPY DONE, otherwise the default copy will run and
will overwrite everything that you made!

Chapter 5: Implementing Classes 23

5.5.5.3 Disabling the copy constructor

Unfortunately it is not possible disabling the copy constructor in compilation time, like
in C++. (In C++ this is the technique making the mandatory copy constructor private:

Foo::Foo(Foo&), so noone will be able to access it.)
However you can prevent copying the object in runtime, simply returning OOC_NO_COPY,
that forces throwing an Exception with the err_can_not_be_duplicated error code.

static

int

Foo_copy(Foo self, const Foo from)

{

return OOC_NO_COPY;

}

5.5.6 Destructor definition

The destructor destroys the object of your class before releasing the allocated memory. The
ooc_delete uses this destructor when deleting an object.

The destructor has a fix name: the class name concatenated with _destructor.
The destructor has two parameters: a pointer to the object to be detroyed, and a pointer
to its virtual table.

Within the destructor you can not throw any exception!
In the destructor you must consider, that your object is not valid: the virtual table pointer
was nulled before entering in to the destructor. This is for marking the object that deletion
is pending, and preventing multiple entry into the desctructor. (This way we could save
some bytes in each objects.) This means that you can not use Virtual macro, or other
macros that use the virtual table, e.g. ooc_isInstanceOf().
However you can still access the virtual functions via the vtab parameter, so you can use
them if you need. Since ooc 1.0 it is guaranteed that the destructor runs only once. However
you should use only ooc_delete_and_null() and ooc_free_and_null() in destructors!
This prevents crashes because of double freeing or deleting in case of circular references.

static

void

Foo_destructor(Foo self, FooVtable vtab)

{

ooc_free_and_null(& self->data_ptr);

}

5.5.7 Implementing class methods

The class methods are normal C functions with the first parameter as a pointer to the
object.

Chapter 5: Implementing Classes 24

Because there is no real parameter type checking in C when calling this class method, it
is possible to pass anything to the class method as its first parameter! This is error prone,
so it is a good practice to always check the first parameter within the class method!

5.5.7.1 Non-virtual methods

Non-virtual methods are global C functions.

void

foo_add_data(Foo self, int size)

{

assert(ooc_isInstanceOf(self, Foo));

self->data_ptr = ooc_malloc(size);

}

5.5.7.2 Virtual methods

Virtual methods are static C functions, that are accessed via pointers in the virtual table.

See section "Virtual Functions" for more information!

5.6 Classes that have other classes

You can have classes that embody other classes. You may implement them as normal
objects, and use ooc_new() in the outer objects constructor, to allocate and build the
related object, like:

ClassMembers(Foo, Base)

Bar bar;

EndOfClassMembers;

....

static

void

Foo_constructor(Foo self, const void * params)

{

chain_constructor(Foo, self, NULL);

bar = ooc_new(Bar, params);

}

static

void

Foo_destructor(Foo self, FooVtable vtab)

{

ooc_delete_and_null((Object*) & self->bar);

Chapter 5: Implementing Classes 25

}

In this example Foo object can be considered, that it has a Bar object as a member.
But this way of constructing the Foo object is not effective, because there are two memory
allocations: one for Foo and the other for Bar in Foo’s constructor. This requires more time,
and leads to more fragmented memory. It would be a better idea to include the body of the
Bar object completly into the Foo object. You can do it, but must take care, that you must
use ooc_use and ooc_release instead of ooc_new and ooc_delete respectively, because
there is no need for additional memory allocation and deallocation for the Bar object!
The above example rewritten:

ClassMembers(Foo, Base)

struct BarObject bar;

EndOfClassMembers;

....

static

void

Foo_constructor(Foo self, const void * params)

{

chain_constructor(Foo, self, NULL);

ooc_use(& self->bar, Bar, params);

}

static

void

Foo_destructor(Foo self, FooVtable vtab)

{

ooc_release((Object) & self->bar);

}

Less malloc(), better performance!
Of course, in this case you can access the member of the included Bar objects a bit different:
instead of self->bar->data you must reference as self->bar.data.

Never use the object inclusion for reference counted objects! The reference counting will
not work for included objects!

Chapter 6: Interfaces and multiple inheritance 26

6 Interfaces and multiple inheritance

Since version 1.3 ooc introduces a kind of multiple inheritance with the help of interfaces.
The idea behind is a bit a mix of the Java and C++ interfaces, but differs in the way of
inheritance and the use.

6.1 What is an interface?

An interface is simply a collection of functions that describe the behavior of the Object in
some aspect. The interface itself does not implement any functionality, it just defines what
methods the Object must have, and behave according to it. In some design methods this
is called a contract for the Object. The Object should implement its own implementation
of the contract: this is called impementing the interface. In Java the interface is a pure
abstract class without a data member, in C++ it is called a pure virtual class without
constructor, destructor and data members.
The easiest way to define a group of functions is to collect some function pointers in a C
struct. For example in pure C we would write:

struct DrawableInterafce

{

void (* draw)(Object);

void (* rotate)(Object, double);

int (* get_heigth)(Object);

int (* get_width)(Object);

};

This describes the behavior of a drawable Object. Any Object type that implements a
DrawableInterafce can be asked for its dimensions and can be drawn and rotated.

6.1.1 Interfaces and inheritance

The use of interfaces provides a kind of multiple inheritance for ooc. While the classes can
be inherited in a single inheritance chain (each class can have only one superclass), every
class can implement as many interfaces as nedded. Since interfaces can be implemented by
unrelated classes, it is a kind of multiple inheritance, like in Java.
In ooc interfaces are simply added to the virtual table, so you can reference and use them
as any other virtual function of the class! This is very similar to the C++ implementation
of an interface.
As a consequence, in ooc the interface implementation is inherited by the subclasses and
can be overriden (like in C++, and unlike Java).
The good news is that by the help of interfaces ooc introduces multiple inheritance. The
bad news is, that multiple inheritance calls for the dread problem of diamond inheritance
(http://en.wikipedia.org/wiki/Diamond_problem).
Since an ANSI-C compiler has nothing to handle such a situation, we must avoid any
possibility of a diamond inheritance, thus the interfaces themselves can not be inherited
(other words: can not be extended) in ooc.
The following table summarizes the behaviour of interfaces in different languages:

http://en.wikipedia.org/wiki/Diamond_problem

Chapter 6: Interfaces and multiple inheritance 27

ooc C++ Java

The implementation of the interface
is inherited by subclassing a class

yes yes no

Interface methods can be overriden
in subclasses

yes yes must
be

The interface itself can be inherited
(a.k.a. extended in Java)

no yes yes

6.1.2 Creating an interface

Creating an interface is very easy in ooc: you just simply deaclare its members in a publicly
available header file. For example we create an interface for a drawable Object:
In drawable.h:

DeclareInterface(Drawable)

void (* draw)(Object);

void (* rotate)(Object, double);

int (* get_heigth)(Object);

int (* get_width)(Object);

EndOfInterface;

Please note, that the first parameter for each method in the interface is Object! This
is, because any kind of a Class can implement the interface, so we can not limit the type
of the Object for just a given class.
Each interafce has a unique identifier, an interface descriptor that must be statically allo-
cated (in ROM on microcomputers). This can be done in drawable.c, or if we have many
interfaces, collected them together in e.g. interfaces.c:

#include "drawable.h"

AllocateInterface(Drawable);

That’s it! We have done: the interface is declared and has a unique id: Drawable.
To minimize your work you can use the ooc tool to create the skeleton:

~$ ooc --new Drawable --template interface

6.1.3 Implementing an interface

To implement an interface for a class, you must do the followings:

1. Add the interface to the class’s virtual table.

2. Implement the interface methods for the class

3. Initialize the virtual table with the interface method implementations

4. Register the implemented interface(s) for the class

5. Allocate the ClassTable using the interface register

So let’s say we implement the Drawable interface for the Cat class! In the followings we
show only the steps necessary to implement the interface, other issues covered earlier are

Chapter 6: Interfaces and multiple inheritance 28

not repeated here!
Implelementing multiple interfaces for the class is the same, just repeat the necessary macros
and lines! As an example, along with the Drawable interface we add the Pet interafce as
well.

6.1.3.1 Adding the interface to the virtual table

In the public header (cat.h) locate the Virtuals, and add the interface with the Interface
macro:

Virtuals(Cat, Animal)

void (* miau)(Cat);

Interface(Drawable);

Interface(Pet);

EndOfVirtuals;

6.1.3.2 Implementing the interafce methods

The interface method impementations are static functions in the class implementation
file. This is exactly the same aproach to the implementation of any virtual method. (Do
not forget: an interface is just a collection of virtual functions in ooc.)
So in cat.c write:

static

void

cat_rotate(Cat self, double arcus)

{

assert(ooc_isInstanceOf(self, Cat));

// Rotate your cat here :-)

}

6.1.3.3 Initializing the virtual table

In the class initialization code you must assign the the implementation methods with the
appropriate function pointers in the virtual table. Again, see the section about virtual
functions.

static

void

Cat_initialize(Class this)

{

CatVtable virtuals = (CatVtable) this->vtable;

virtuals->Drawable.rotate = (void (*)(Object, double)) cat_rotate;

// add the other methods as well ...

}

Chapter 6: Interfaces and multiple inheritance 29

6.1.3.4 Registering the implemented interafces

There is a way to retrieve the implemented interfaces for any class, that is the ooc_get_

interface() function. To let it work, we must register all implemented interfaces for the
class. This is done in the class implementation file, preferably just right before the class
allocation. So, in cat.c we register the Drawable and Pet interfaces for the Cat class:

InterfaceRegister(Cat)

{

AddInterface(Cat, Drawable),

AddInterface(Cat, Pet)

};

Listen to the different syntax! Internally this is a table of structs, so you must end it
with a semicolon, and use comma as the internal list separator. You must not put a comma
after the last item in the list!
ooc_get_interface() scans this table, so you can get some increase in speed of average
execution, if you place your most frequently used interfaces in the first positions.

6.1.3.5 Allocating the class with interfaces

The only thing remained is to let the ClassTable know about the interface register. So
instead of AllocateClass use AllocateClassWithInterface:

AllocateClassWithInterface(Cat, Animal);

If you forget this step, ooc_get_interface() will always return NULL, since it will not
know about the registered interfaces for the class.

With this step we have finished the implementation of an interface for a class.

6.1.4 Using an interface

When we need to invoke an interface method, simply call the virtual function via the
function pointer in the virtual table. There can be two situation in practice: we may know
the type of the object we have, or may not.

6.1.4.1 If the type of the Object is known

If we know the type of the object we have, and this type has implemented the interface that
we need, then we can simply call the virtual function of the interface.

Cat mycat = cat_new();

// rotating mycat:

CatVirtual(mycat)->Drawable.rotate((Object) mycat);

This is the fastest way to invoke an interface method, since this is a dereferencing of a
function pointer only.

6.1.4.2 If the type of the Object is unknown

The main use of an interface is when we do not know the exact type of the object we
have, but we want it to behave according its interface method. The ooc_get_interface()
method can retrieve a given interface from any kind of Object. The ooc_get_interface()

Chapter 6: Interfaces and multiple inheritance 30

function returns a pointer to the interface methods of the class, and the desired method
can be called via this function pointer.

void

rotate_an_animal(Animal self)

{

Drawable drawable = ooc_get_interface((Object) self, Drawable);

if(drawable)

drawable->rotate((Object) self);

}

ooc_get_interface() returns NULL if the desired interface is not implemented for the
object. If you use this function, always check for a NULL pointer, otherwise you will generate
a segmentation fault, if the interface is not implemented.
In case you know that your object has implemented the desired interface, but you do not
know the exact type of your object, you can use the ooc_get_interface_must_have()

function instead. This will never return a NULL pointer, but throws an Exception if the
object does not have the desired interface.

ooc_get_interface_must_have((Object) self, Drawable)->rotate((Object) self);

Note: the ooc_get_interface() function traveses the InterfaceRegister for the class
and its superclasses, so it may be relative slow. If you use the interface for an object
multiple times within a context, it is worth to retrieve the interface pointer only once for
the object, and keep it around until needed.

6.2 Mixins

The mixins are interfaces that have default implementations and have their own data
(http://en.wikipedia.org/wiki/Mixin).

A mixin does not know anything about the enclosing Object / Class!

From the user point of view a mixin looks identical to an interface! See [Using an
interface], page 29.

A mixin has its own data, but it can not be instantiated directly. It is always held by
an Object (a carrier object).

A mixin has the following features:

• May have default implementation of the interface methods (usually has, but this is not
mandatory)

• Has its own data (that is accessible by the enclosing class as well).

• The default implementation of the interface methods can be overriden by the enclosing
class.

• May have initializing and finalizing, thus can use global resources.

6.2.1 Creating a mixin

The mixin is nothing else than an interface impementation plus a data structure. But this
data structure is handled like a class, with very similar methods: there are initialization,

http://en.wikipedia.org/wiki/Mixin

Chapter 6: Interfaces and multiple inheritance 31

finalization, construction, destruction and copy methods like for a normal Class, and an
additional one: the ... populate() method.
In this section we go through the steps creating a mixin.
To create the mixin skeleton for Flavour, just type:

~$ ooc --new Flavour --template mixin

Three files has been created:
The flavour.h is familiar, it looks like a normal interface declaration except it is declared
with DeclareMixinInterface().
Put your interafce methods (function pointers, of course) into the declaration as needed.

There is a implement/flavour.h file, that contains the data member declaration for the
mixin. Add your data members as needed.
These data fields will be mixed into the enclosing class’s object structure, and can be
referenced via a FlavourData type pointer (interface name + Data suffix).

In the flavour.c file you will find the necessary AllocateMixin macro, and you must
provide the method implementations for the mixin. The following methods must be imple-
mented:

Flavour_initialize()

This is called only once, and is called automatically before the initialization of
the first enclosing class.
Shared or global resources used by the mixin may be initialized here.

Flavour_finalize()

Called only once when ooc_finalize_all() is called.
Release the shared or global resources that were initialized by the mixin.

Flavour_constructor(Flavour flavour, FlavourData self)

Initializes the data fields of the mixin. All data fields are garanteed to be zero
at entrance.
This method is called automatically before the enclosing class’s constructor is
called.
If your data fields do not require any construction, you can leave this method
empty.
The interface methods are set (and are overriden by the enclosing class), so
they can be used here. (The first parameter.)
Note, that there are no constructor parameters! There is only "default con-
structor" for mixins. If you need some values or construction depending on the
enclosing object then implement a setter or constructor method in the interface
itself and call it from the enclosing class’s constructor!

Flavour_destructor(Flavour flavour, FlavourData self)

Destroys the data fields of the mixin.
This method is called automatically after the enclosing class’s destructor, and
the normal rules within a desctructor must be applied here as well!
If your data fields do not require any destruction, you can leave this method
empty. The interface methods are set (and are overriden by the enclosing class),

Chapter 6: Interfaces and multiple inheritance 32

so they can be used here. (The first parameter.)

Flavour_copy(Flavour flavour, FlavourData self, const FlavourData from)

Copy constructor. This is very similar to the copy constructor used for Objects!
Must return: OOC_COPY_DEFAULT, OOC_COPY_DONE or OOC_NO_COPY, and the
same rules apply!
This method is called automatically before calling the enclosing class’s copy
constructor.
The interface methods are set (and are overriden by the enclosing class), so
they can be used here. (The first parameter.)

Flavour_populate(Flavour flavour)

Populates the interface method table with function pointers to the default mixin
method implementations.
This method is called automatically before calling the enclosing class’s initial-
ization method.

The mixin interface methods’ implementation must follow an important rule! Since the
mixin does not know where its data is located, the mixin’s data must be retrieved first!
The only thing that a mixin method knows is the carrier Object (always the first parameter
for an interface method!). Retrieving the mixin’s data fields can be done with the ooc_

get_mixin_data() function.
Therefore a typical mixin interface method starts with the followings:

static

void

flavour_set(Object carrier, const char * flavour_name)

{

FlavourData self = ooc_get_mixin_data(carrier, Flavour);

self->name = flavour_name;

}

6.2.2 Implementing a mixin by a carrier class

The implementation of a mixin for a class is almost the same as the implementation of an
interface, with few additional tasks.
The steps to implement some Flavour for the IceCream class are:

• Create the IceCream class with ~$ ooc --new IceCream.

• Add the Interface(Flavour); macro to the IceCream virtuals in icecream.h.

• Add the MixinData(Flavour); data member to the end of the ClassMembers(

IceCream, Base) structure in implement/icecream.h.
It is very important that no data members can follow the MixinData() macros in the
ClassMembers() list, otherwise the copy constructor will not work correctly!

• Create the Interface register for IceCream in icecream.c.

Chapter 6: Interfaces and multiple inheritance 33

InterfaceRegister(IceCream)

{

AddMixin(IceCream, Flavour)

};

• Replace the AllocateClass(IceCream, Base);macro with AllocateClassWithInterface(
IceCream, Base); in icecream.c.

• Override the necessary Flavour interface methods as needed in IceCream_

initialize().

• Set some initial vale for the Flavour mixin while constructig an IceCream object, if
the default constructor is not sufficient for you.

static void IceCream_constructor(IceCream self, const void * params)

{

assert(ooc_isInitialized(IceCream));

chain_constructor(IceCream, self, NULL);

IceCreamVirtuals(self)->Flavour.set((Object) self, "vanilla");

...

}

6.2.3 How mixins work?

Mixins work like a superclass for the enclosing class: you do not have to care with it, ooc
does everything automatically for you:

• The mixins are automatically initialized before initializing the enclosing class, just like
a superclass.

• The mixin’s interface methods in the enclosing class’s virtual table are automatically
populated with the default implementations before the initialization method of the
enclosing class is called.
(The mixin’s ..._populate() method is called.)

• The mixin’s data members are automatically constructed before the constructor of the
carrier object is called.
Using the mixin in the carrier object’s constructor is legal.

• The mixin’s data members are automatically copied before the copy constructor of the
carrier object is called.
Using the mixin in the carrier object’s copy constructor is legal.

• The mixin’s data members are automatically destructed after the destructor of the
carrier object is called.
Using the mixin in the carrier object’s destructor is legal.

• The mixins are automatically finalized when ooc_finalize_all() is called.

This is the same behavior of a superclass, you can treat the implemented mixin as a
superclass of the enclosing class as well, except you can not cast the types (Mixins do
not have type information at all.), and you must access it as an interface via its interface
methods.

However, mixins have some drawbacks!
First: it exposes all mixin data members to the enclosing (carrier) class: the enclosing class

Chapter 6: Interfaces and multiple inheritance 34

can acces the mixin’s data directly, and it is up to the programmer’s intelligence not to do
bad thigs. :-(
Second: using interafces and mixins frequently is a very elegant design, but be aware that
in ooc it is a bit expensive! Since a C compiler gives no support for such implementations,
every lookup, check and conversion is done in run-time, thus much slower than in C++ for
example.

Chapter 7: Memory handling 35

7 Memory handling

There are basic memory handling wrappers around the standard C library memory handling
routines. The key difference is, that the ooc memory handling throws exceptions in case of a
system failure, and performs some tasks that are necessary for multi-threaded or reentrant
programming.

7.1 Memory allocation

You can allocate memory with the following routines:

void * ooc_malloc(size_t size);

The same to the standard malloc, except that throws an exception on failure, thus never
returns NULL.

void * ooc_calloc(size_t num, size_t size);

The same to the standard calloc, except that throws an exception on failure, thus never
returns NULL.

void * ooc_realloc(void *ptr, size_t size);

The same to the standard realloc, except that throws an exception on failure, thus
never returns NULL.

void * ooc_memdup(const void * ptr, size_t size);

Duplicates a memory block using the standard memcpy, and throws an exception on
failure, thus never returns NULL.

7.2 Freeing the allocated memory

Deallocate the memory with one of the following methods:

void ooc_free(void * mem);

Frees a memory block allocated with one of the above allocation codes. Never failes, mem
can be NULL;

void ooc_free_and_null(void ** mem_ptr);

Frees a memory block via a memory pointer and nulls the pointer simultaneously. It
is very important for thread-safe or reentrant codes. It is also very important for freeing
memory blocks with circular references. mem_ptr can point to a NULL pointer.

Always use this, if your class has a memory pointer as a class member, for example in a
class destructor!

Chapter 7: Memory handling 36

7.3 Thread safety

Important! ooc is thread safe only if the underlying standard C library (malloc, calloc,
realloc, setjmp/longjmp) is thread-safe too!

The thread safety of ooc does not mean that your code will be thread safe automatically!
You must take care about the proper thread-safe implementation of your classes!

The ooc_init_class(), ooc_finalize_class() and ooc_finalize_all() functions
are not thread safe! It is advisable calling ooc_init_class() from the main thread before
the fork and ooc_finalize_all() after the join.

Chapter 8: Unit testing support 37

8 Unit testing support

It is very important testing your classes before you integrate them into a larger part of
code. The Unit testing support in ooc is inspired by the Unit 3 testing framework used
mainly in Java. If you are not familiar with the topic I recommend some reading about the
"test-driven development" approach to catch the basis and importance of unit testing.

8.1 How to create a unit test?

Unit test classes are subclasses of TestCase class, these are called test cases. A test case in
ooc is represented by an executable that can be invoked from the operating system or can
be run in a simulator in case of microcontrollers.
The test cases have several test methods, that do different tests. These test methods are
executed in the order as they are defined in the test method order table.
The test cases could be organized into test suites. The latter means a batch file in ooc that
executes the test cases in a sequence.
Its recommended collecting your testable classes in a static directory (*.o in Linux, *.lib
in Windows, etc.) to make things simplier. Although this is not necessary, this makes the
linking of your testcase more simply, and enables you creating fake classes as needed.

Creating a unit test is easy!

1. Make a directory in wich you would like to collect your test cases. This directory will
be your test suite directory, since it will hold your test case, your makefiles and test
siute batch files. Select this directory as your working folder. (For very small projects
this practice may not be necessary, you may use the source directory too for your tests.)

2. Create your test environment with the following command:

~$ ooc --testsuite

This creates the necessary makefiles and test suite batch files into this directory. Edit
those files according to the comments in them as necessary. If you are working with an
IDE, you can configure it to use these makefiles for convenience. It can be used with
the automake tools as well under Linux.

3. Create your test case with the following command:

~$ ooc --new MyClassTest --template test

As a naming convention I recommend using "Test" as a tail for your test classes. This
helps identify them, but also lets you use the automatic makefile rules in Linux! In
Windows you must add this file to the Makefile: edit it according to the comments in
it.

4. Implement the before_class(), before(), after(), after_class() methods in
your test file if they are necessary for your test methods. The skeletons can be found
in the created file already.

5. Implement your test methods. Add them to the test method order table. For details
see the next sections.

6. Build your test case with the supplied Makefile.

Chapter 8: Unit testing support 38

7. Run your test case as an executable.

8. Run your testsuite. Edit your test suite file (suite.sh or suite.bat) as required by the
help of the comments in it, and start that script/batch file.

8.2 Writing a unit test

8.2.1 Writing test methods

Implement your test method as a function of the following prototype:

static void myclasstest_method1(MyTest self);

You can expect that the before()method has been completed succefully before invoking
your test method, and the after() method will be invoked after completing your test
method.
The test method can throw an Exception or a subclass of it. If the exception is uncaught
within the method, the test case repots the test as failed. If the Exception is not caught
within your test method, the after() method will not be invoked!

You must put your test method into the test method order table, to let your test case
know what methods to invoke! You can do this using the TEST macro:

static ROM_ALLOC struct TestCaseMethod methods[] =

{

TEST(myclasstest_method1),

{NULL, NULL} /* Do NOT delete this line! */

};

Important! In ooc your test methods are not independent! This means that if one of
your test methods makes changes into any global or test case member variables, or into
the environment, the succeeding test methods will inherit those changes. This is a very
important difference from Unit 3, where it is garanteed that all test methods starts in a
fresh environment.

8.2.2 Assertions

This is why we do the whole staff! :-) Within our test methods we would like to make
assertions on the status of our testable classes. For this purpose we can use a group of
assertCondition macros. (Don’t be confused: these macros do nothing with those ones
in the <assert.h> headers!) The assertCondition macros check the given condition, and if
the assertion is not met, print an error message identifying the line of code. The execution
of code continues in both cases.
A group of assertCondition macros can print messages defined by the user as well. These
macros look like assertConditionMsg.
An example for using the assertCondition macros from the ListTest unit test case,
testing the list iterator:

Chapter 8: Unit testing support 39

static

void

iterator(ListTest self)

{

list_append(self->foolist, foo_new());

assertTrue(self->foolist->first == list_first(self->foolist));

assertTrue(self->foolist->last == list_last(self->foolist));

assertTrue(list_first(self->foolist) == list_last(self->foolist));

list_append(self->foolist, foo_new());

assertTrue(self->foolist->first == list_first(self->foolist));

assertTrue(self->foolist->last == list_last(self->foolist));

assertFalse(list_first(self->foolist) == list_last(self->foolist));

assertTrue(list_last(self->foolist) == list_next(self->foolist, list_first(self->foolist)));

assertTrue(list_first(self->foolist) == list_previous(self->foolist, list_last(self->foolist)));

}

For the complete list of assertCondition macros see the ooc API documentation, or
the testcase.h header file.

There is a macro that reports a failure unconditionally, this is the fail (or the failMsg)

macro. It prints the error message unconditionally, and continues. It can be used if the

condition to be tested is not a simple assertion, and the code runs on a bad path.

8.2.3 Messages

Normally the test cases do not print any message on the screen: they inform you about
the actual method by printing its name, but this info will be deleted if the method was
executed succesfully. On a Linux or Windows system there won’t be any messages left on
the display in case of expected results!

~$./listtest

~$

If some assertions fails, you will see a message similar to this one:

~$./listtest

[4] ListTest::iterator()

Failed: [listtest.c : 325]

Test case ListTest failed: 30/1 (methods run/failed)

~$

This could be an example, if our ListTest::iterator() method detected an error in
the list iterator implementation. Let’s see the meaning of the message!

1. The number in angle brackets shows the sequence number of the method: the failed
method was the fourth executed method in the test case.

Chapter 8: Unit testing support 40

2. ListTest::iterator() informs about the name of the method. The part before the
period shows the name of the class, the part after the period identifies the name of the
failed test method.

3. The next line says that an assertion in this method failed. If we used an
assertConditionMsg assertion, the message would be displayed here.

4. In the angle brackets the exact location of the failed assertion is displayed: the name
of the source code and the line number in the source code. This information helps you
find the failed one fast and easily.

5. The last line is a summary for the test case. It shows how many test methods was run
in the test case, and how many of them was failed.

In some cases your test method may throw an exception that is not caught by your
method. These exceptions are caught by the TestCase class, displayed as follows, and the
code execution continues with the next test method.

~$./listtest

[4] ListTest::iterator()

Unexpected exception: Exception, code: 1, user code: 0

~$

The caught exception was an Exception class with code 1. Since this is a core ooc
exception, evaluating the "exception.h" header it can be seen, this is err_out_of_memory,
probably our test method run out of memory.

8.2.4 Overriding virtuals

Use the before_class(), before(), after(), after_class() methods to prepare your
test case for test methods. Similar to Unit 3: before_class() and after_class() will
run only once: when instantiating your test case class, that is a subclass of TestCase.
The before() and after() methods will run for each test method execution. Generally
in before() you can prepare the necessary classes for your test methods, while in after()

you should destroy them.
You can use assertConditionMsg assertions freely in these virtuals. It might be usefull
especially in the after()method to check that the test method did not corrupt the integrity
of your test class.
You can throw ecxeptions in before() and before_class() methods, but never throw in
after()!
For complicated test cases you can override these methods, since those are virtual methods
(but do not do this, if you do not understand exactly how and when they are called. Check
the source code if you have any doubt!)
The exexcution order of the virtual methods is:

For each instantiation of your test case:

{

Your testcase’s parents’ constructors

Your testcase’s constructor

For each testcase_run(TestCase):

{

Your test’s parents’ before_class() methods

Your test’s before_class() method

Chapter 8: Unit testing support 41

For each test method in the test method table:

{

Your test’s parents’ before() methods

Your test’s before() method

Yor test method

Your test’s after() method

Your test’s parents’ after() methods

}

Your test’s after_class() method

Your test’s parents’ after_class() methods

}

Your testcase’s destructor

Your testcase’s parents’ destructors

}

8.2.5 Testing exceptions

Test the expected exceptions as follows! Let’s check the index overrun behavior of the
Vector class:

try {

vector_get_item(self->vector, -1); /* Should throw an Exception! */

fail(); /* Should never be executed! */

}

catch_any

assertTrue(exception_get_error_code(exception) == err_wrong_position);

end_try;

8.2.6 Memory leak test

Tests for possible memory leaks is an essential issue in C! Always run your test cases to
discover memory leaks, because this helps you make your code robust and reliable!
In ooc the recommended way is using Valgrind (http://valgrind.org), a memory checker
(and much more!) tool available under Linux. (For Windows I do not know such a tool,
please infrom me if there is a similar possibility.)
To perform a memory check, run your testcase in Valgrind:

~$ valgrind --leak-check=yes --quiet ./myclasstest

To minimize your headache, I recommend running only error free test cases under Val-
grind! :-) Hunting for assertion failures together with memory problems could be a night-
mare!

Note I.: In the Linux standard C library there may be some optimizations that are
reported by Valgrind as a possible memory leak, but in fact they are not an error, especially
not yours. If you face with this problem, you can suppress them. To supress them, create
an empty test case, run it in Valgrind and create a suppress file. For details see the
Valgrind documentation: "2.5. Suppressing errors" (http://valgrind.org/docs/manual/
manual-core.html#manual-core.suppress).

http://valgrind.org
http://valgrind.org/docs/manual/manual-core.html#manual-core.suppress
http://valgrind.org/docs/manual/manual-core.html#manual-core.suppress

Chapter 8: Unit testing support 42

Note II.: ooc converts the Unix signals (SIGSEGV, SIGFPE) into ooc exceptions. This
let us handle and display those problems the same way as other exceptions in ooc. Un-
fortunately Valgrind overrides these signal handlers, and as a consequence, your test case
can not be run under Valgrind if you force emmitting these Unix signals (e.g. intentionally
dereferencing a NULL pointer and checking for SegmentationFault exception.)

8.2.7 Unit testing techniques:

There are several best practices in Unit testing. Some of them could be used in ooc as well.

8.2.7.1 Inherited test cases

If you must write many test cases that requires identical preparation or a special environ-

ment, then you may consider creating a test case to make this preparation and which could

be the parent for your test cases.

ooc TestCase can be inherited!

8.2.7.2 Using fake objects

In this technique you can mimic the behaviour of an object that is not available during
the execution of your test case: you simply replace a class with a fake class that behaves
identical (or at least as expected), but does not do its job.
Write your fake class in your test suite directory: all the method names must be identical to
the original ones! Link your test case as usual, except that you define your fake object file
earlier in the parameter line than the library containing your testable classes. The linker
will use the symbols in the order they appear in the parameter list: replacing you class with
the fake.

In Linux and Windows this is very simple! Just create your fake class with the ooc tool

in the suite directory (you may copy it from your source directory). Do not copy the header

file, since it should be the original one! As a naming convention the source file name must

NOT end with Test, tail it with Fake instead.

Modifiy your code in the fake class. The rest is done by the supplied Makefiles! (In Windows,

you must add your file to the Makefile first!)

8.2.7.3 Using mock objects

I have no clue in this moment, how to elaborate this technique in C. :-(

8.2.8 Dependency lookup

For effective unit testing you need a design in wich your classes do not rely on their depen-
dencies. Establishing your classes uncoupled helps you reuse them much easier and lets you
implement unit testing. (For more infromation on this topic I recommend some googling on
dependency injection, dependency lookup and such topics in Java.) Theoretically it is pos-
sible writing a cotainer class in ooc that could handle the object/class dependencies based
on an external descriptor file (e.g. XML), like in some Java implementations. Although it
would be possible, it will not be feasible: small microcontollers do not have the power to
execute effectively. So I recommend using the "dependency lookup" idiom in ooc with a
very simple implementation:

Chapter 8: Unit testing support 43

1. In your class’s implementation source file define an external function prototype, like
this:

extern void injectMyClass(MyClass self);

This is your injector method for your class.

2. In your class’s constructor call your injector. It is the injector’s responsibility to fill
the members with the dependencies of your class. Do not set those members in your
constructor. It is a good idea to put some check in your code that validates the injected
dependencies, at least in the debug version.

Static

Void

MyClass_constructor(MyClass self, void * param)

{

chain_constructor(MyClass, self, NULL);

injectMyClass(self);

assert(ooc_isInstanceOf(self->settings, Settings));

}

3. Create your injector method in a separate file, let’s call it injector.c.

#include "myclass.h"

#include "implement/myclass.h"

#include "settings.h"

void injectMyClass(MyClass self)

{

self->settings = settings_new();

}

You can inject singleton objects too, if you create them before any call to injectors, or
you can use reference counted objects for your dependencies alternatively.
Implement your other injectors in this file too.

4. Compile and link together your object files.

5. Copy your injector file into your unit testing directory, and rewrite it as it is required
by your unit tests. Compile and link your test: pay atention to link your test injector,
instead of the original one! (The supplied Makefiles will take care.)
See [Using fake objects], page 42.

Altough in Java there is only a idiom called "inject while constructing", in ooc it makes
sense "inject while initializing". Implement injectors for your initialization methods sepa-
rately, when it makes sense. (e.g. Injecting virtual functions, like mixins into the virtual
table.)
Important! Take care of your design in your classes, that if there is a circular dependency
(typically a reference-back) between your classes, this approach will result in an endless loop!
Break up the circular dependency, and pass the back reference as a constructor parameter!

Chapter 9: Class manipulation tool 44

9 Class manipulation tool

Creating ooc classes by typing from scratch may be labor-intensive, error prone, but mostly
boring. Fortunatley ooc has a tool that helps you create classes from templates, or from
other classes that are already implemented. This tool is suprisingly called ooc and is used
as follows. Type at the prompt:

~$ ooc --new MyClass

This instruction creates a class called MyClass from the default ooc template, and puts
it into the current working directory. Using the default template the following files will be
created in the current working directory:

myclass.h

This is the MyClass header containing the declaration of MyClass class plus
its virtual functions. These are the publicly available declarations for MyClass,
this class is to be included by the users of the class. Extend this file with your
method declarations as needed.

myclass.c

This is the class implementation file. It contains the class allocation, construc-
tor, descructor etc. skeletons. You must extend this file with your method
definitions, and other code.

implement/myclass.h

This is the implementation header. This cointains the declaration of class data
members, that are publicly not available. This file must be included by the
subclasses of MyClass. (If you create your classes with the ooc tool with --

from or --source switches then these includes are handled automatically.)

As you have created your class using the ooc tool, check the created skeletons, and modify
them as needed. The created class can not be compiled without some modifications, and
this is intentional: this forces you to set the construction parameters properly for example.

The following switches can be used with ooc. The switches can be combined!

ooc commands:

--help Prints the version information and a short help message.

--new ClassName

Creates a new class named as ClassName.

--testsuite

Creates a testsuite from the current directory. (Copies all makefiles and test-
suite script/batch, that is required for unit testing.)

Modifiers for the ooc --new ClassName command:

--parent ParentClassName

The created class is created as a subclass for ParentClassName. If --parent
switch is missing, then Base will be used as parent class.

Chapter 9: Class manipulation tool 45

--from SampleClassName

Uses SampleClassName as a template. If --from switch is missing, then the
default SampleClass template is used.
If --source switch is not defined then the template class is searched
for in the files called sampleclassname.c, sampleclassname.h and
implement/sampleclassname.h in the default template directory (usually
/usr/local/share/ooc/template).

--source filename

--template filename

Uses filename.c, filename.h and implement/filename.h files as the tem-
plate file.
If filename is a simple filename (not absolute path) then it is located in the
standard template directory (usually /usr/local/share/ooc/template). If -
-from switch is not defined then the default SampleClass is looked for as a
template in sampleclassname.

--target filename

Puts the results into filename.c, filename.h and implement/filename.h

files in the current working directory. (Depending on the template used, some
files may not be used.)
Does not overwrite the files, appends the new content to the end of the files.

The next example creates a Foo class with header and implementation files, and adds
FooException to the files as an additional class.

~$ ooc --new Foo --parent Bar

~$ ooc --new FooException --parent Exception --template private --target foo

You will have foo.c, foo.h and implement/foo.h files with class definitions and imple-
mentations for Foo and FooException.

The following templates are available:

sample The default template. This generates a class with ’protected’ data members
and implementation header. This class can be subclassed. (This is the default
if you do not specify a --template or --source.)

private Class definition with private members only. This type of class can not be
subclassed! (there is no implementation header)

minimal A minimal class definition, only with a class implementation file (no headers).
Use this for internal classes within a class.

interface

Interface declaration.

mixin Mixin declaration and implementation files.

test Unit testing base class template.

Appendix A: GNU Free Documentation License 46

Appendix A GNU Free Documentation License

Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

Appendix A: GNU Free Documentation License 47

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

Appendix A: GNU Free Documentation License 48

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

Appendix A: GNU Free Documentation License 49

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

Appendix A: GNU Free Documentation License 50

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

Appendix A: GNU Free Documentation License 51

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Table of Figures 52

Table of Figures

Figure 2.1: Underlying data structure . 2

Index 53

Index

(Index is nonexistent)

	Introduction
	Objects and Classes
	Underlying data structure
	Inheritance
	Class data members
	Member functions
	Virtual functions
	Overridden virtual functions
	Calling parent's virtual functions

	Class description table

	Exception handling
	Throwing an exception
	Catching an exception
	Finalize the exception handling
	Closing the try block
	Protecting dynamic memory blocks and objects
	Managed pointers
	Managing a pointer
	Manage a pointer: ooc_manage()
	Manage an Object: ooc_manage_object()
	Pass the ownership: ooc_pass()

	Examples
	Protecting temporary memory allocation
	Taking over the ownership of parameters

	Using Classes
	Initializing the class
	Creating an object of a class
	Deleting an object
	Deleting an object directly
	Deleting object via pointer

	Accessing class members
	Finalizing a class
	Dynamic type checking

	Implementing Classes
	Naming conventions
	Source files
	Class user header file
	Class implementation header file
	Class implementation file
	Class allocation
	Class initialization
	Class finalization
	Constructor definition
	Copy constructor definition
	Using the default copy constructor
	Creating your own copy constructor
	Disabling the copy constructor

	Destructor definition
	Implementing class methods
	Non-virtual methods
	Virtual methods

	Classes that have other classes

	Interfaces and multiple inheritance
	What is an interface?
	Interfaces and inheritance
	Creating an interface
	Implementing an interface
	Adding the interface to the virtual table
	Implementing the interafce methods
	Initializing the virtual table
	Registering the implemented interafces
	Allocating the class with interfaces

	Using an interface
	If the type of the Object is known
	If the type of the Object is unknown

	Mixins
	Creating a mixin
	Implementing a mixin by a carrier class
	How mixins work?

	Memory handling
	Memory allocation
	Freeing the allocated memory
	Thread safety

	Unit testing support
	How to create a unit test?
	Writing a unit test
	Writing test methods
	Assertions
	Messages
	Overriding virtuals
	Testing exceptions
	Memory leak test
	Unit testing techniques:
	Inherited test cases
	Using fake objects
	Using mock objects

	Dependency lookup

	Class manipulation tool
	GNU Free Documentation License
	Table of Figures
	Index

