

Cheat Sheets of the
C standard library

Version 1.06 Last updated: 2012-11-28

About

This document is a set of quick reference sheets (or ‘cheat sheets’) of the ANSI C standard library. It contains
function and macro declarations in every header of the library, as well as notes about their usage.

This document covers C++, but does not cover the C99 or C11 standard. A few non-ANSI-standard functions, if
they are interesting enough, are also included.

Style used in this document

Function names, prototypes and their parameters are in monospace.

Remarks of functions and parameters are marked italic and enclosed in ‘/*’ and ‘*/’ like C comments.

Data types, whether they are built-in types or provided by the C standard library, are also
marked in monospace. Types of parameters and return types are in bold.

Type modifiers, like ‘const’ and ‘unsigned’, have smaller font sizes in order to save space.

Macro constants are marked using proportional typeface, uppercase, and no italics, LIKE_THIS_ONE. One
exception is L_tmpnum, which is the constant that uses lowercase letters.

Example:

int system (const char * command);

/* system: The value returned depends on the running environment. Usually 0 when executing successfully.
 If command == NULL, system returns whether the command processor exists (0 if not). */

License

Copyright © 2011 Kang-Che “Explorer” Sung (宋岡哲 <explorer09 @ gmail.com>)

This work is licensed under the Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0/ .

When copying and distributing this document, I advise you to keep this notice and the references section
below with your copies, as a way to acknowledging all the sources I referenced.

References

Cplusplus.com – The C++ Resources Network
http://cplusplus.com/reference/clibrary/
(↑ Most of the information in this document is from here.)

The Open Group Base Specifications (Single UNIX Specification)
http://pubs.opengroup.org/onlinepubs/9699919799/

C Runtime Library reference in MSDN
http://msdn.microsoft.com/en-us/library/634ca0c2.aspx

Wikipedia
http://en.wikipedia.org/wiki/C_Standard_Library

Linux man pages
http://linux.die.net/man/

The C Library Reference Guide by Eric Huss
http://www.acm.uiuc.edu/webmonkeys/book/c_guide/index.html

C++ Reference (cppreference.com)
http://en.cppreference.com/w/cpp/io/c

Dinkumware's Libraries Reference
http://www.dinkumware.com/manuals/default.aspx

scanf and printf formats
Type – usually for integers: example

%d Decimal (signed) -12345

%i
scanf: Signed int, but allows
octal, decimal, and hexadecimal
input, depending on the prefix.

%u Decimal (unsigned) 53191

%o Octal 147707

%x %X Hexadecimal cfc7

Type – usually for floating points:

%f Fixed-point notation 123000.00

%e %E Exponential notation 1.23e+005

%g %G %f or %e, whichever is shorter

Type – usually for text:

%c Print a Character

%s String

%[]
%[^]

scanf: Scans only the characters
in the set.
(%[^] excludes them instead)

%[aeiou]

%[^12345]

Type – special:

%% Single ‘%’ character

%n

Reads and prints nothing, but
outputs the number of
characters read/printed so far.
(Argument must be an int*)

%p Pointer address

Note

For printf, * can be used in the field width or
precision (or both). In that case the function takes an
additional int argument – preceding the argument
to be formatted – to specify the width or precision.
(takes 2 arguments if both are *, like %*.*f)

strftime formats example

%Y Year 2001

%y Year, last two digits (00–99) 01

%B Full month name [locale-dependant] August

%b Abbreviated month name [locale-dependant] Aug

%m Month as a decimal number (01–12) 08

%U Week number with Sunday as the first day of week (00–53) 33

%W Week number with Monday as the first day of week (00–53) 34

%d Day of the month (01–31) 23

%j Day of the year (001–366) 235

%A Full weekday name [locale-dependant] Thursday

%a Abbreviated weekday name [locale-dependant] Thu

%w Weekday as a decimal number with Sunday as 0 (0–6) 4

%Z Timezone name or abbreviation CDT

%p AM or PM designation PM

%I Hour in 12h format (01–12) 02

%H Hour in 24h format (00–23) 14

%M Minute (00–59) 55

%S Second (00–61) 02

%x Date representation [locale-dependant] 08/23/01

%X Time representation [locale-dependant] 14:55:02

%c Date and time representation [locale-dependant] Thu Aug 23 14:55:02 2001

%% Single ‘%’ character %

%[flags][width][.precision][length]type

Flags (for printf only, except for the * flag)

%-4d 12
Left-justify the field instead of
right.

%+d +12 Always prepends the sign (+-).

% d
(space)

 12
Inserts a space if there’s no
sign.

%#o

%#X
014 0xC

(For o, x, X) Precedes value
with ‘0’ or ‘0x’.

%#.0f

%#.0e

12000034.

1.e+007

(For f, e) Prints the decimal
point even if no digits follow.

%#.3g 1.00e+007
(For g) Keeps trailing zeros,
along with decimal point.

%04d 0012
Pads the field with zeros
instead of spaces.

%*c
scanf: Retrieves the data but
discards it.

Field width
scanf: Maximum number of characters to be read.

printf: Minimum number of characters to be printed.

Precision (for printf only)

%.4d 0012
(For d, u, o, x, X) Minimum
number of digits to be printed.

%.4f
%.3e

12.3400
1.234e+001

(For f, e, E) Number of digits
after the decimal point.

%.4g 12.34
(For g, G) Maximum number of
significant digits.

%.4s Prec
(For s) Maximum number of
characters to be printed.

Length

%hd %hf short (i.e. half length)

%ld %lf
long
(For long double, use %Lf .)

cstdio <stdio.h> functions
File access:

FILE * fopen (const char * filename, const char * mode);
FILE * freopen (const char * filename, const char * mode, FILE * stream);

/* mode parameter: "r|w|a[b][+]" (meaning: read/write/append, binary, for update)
 Examples: "rb+", "wb". Note that “write” erases the file content.
The system supports at least FOPEN_MAX files open simultaneously. (stdin, stdout, and stderr included.) */

int fclose (FILE * stream);

void setbuf (FILE * stream, char * buffer); /* buffer must have at least BUFSIZ bytes. */
int setvbuf (FILE * stream, char * buffer, int mode, size_t size);
int fflush (FILE * stream);

/* fclose, setvbuf, and fflush return 0 on success.
mode parameter: _IOFBF (Full buffering), _IOLBF (Line buffering), _IONBF (No buffering) */

Formatted input/output:

int fscanf (FILE * stream, const char * format %!, ...);
int fprintf (FILE * stream, const char * format %!, ...);
int scanf (const char * format %!, ...); stdin
int printf (const char * format %!, ...); stdout
int sscanf (const char * str, const char * format %!, ...);
int sprintf (char * str, const char * format %!, ...);

int vfprintf (FILE * stream, const char * format %!, va_list arg);
int vprintf (const char * format %!, va_list arg); stdout
int vsprintf (char * str, const char * format %!, va_list arg);

/* scanf functions: return the number of items read, or EOF if error occurs.
printf functions: return the number of characters written, or a negative value if error occurs. */

Character input/output:

int fgetc (FILE * stream); /* Alias: getc */
int fputc (int character, FILE * stream); /* Alias: putc */
char * fgets (char * str, int length, FILE * stream); /* length includes terminating '\0'. */
int fputs (const char * str, FILE * stream);
int getchar (void); stdin
int putchar (int character); stdout
char * gets (char * str); stdin (Deprecated) /* Unlike fgets, gets does not scan the '\n'! */
int puts (const char * str); stdout /* Appends a '\n' at the end! */

int ungetc (int character, FILE * stream);

/* fgetc, getchar, fputc, putchar, and ungetc: return the same character read/written, as an int.
fputs and puts: return a non-negative value. fgets and gets: return str.
All return EOF on error, except for fgets and gets, which return NULL. */

Direct (binary) input/output:

size_t fread (void * data, size_t size, size_t count, FILE * stream);
size_t fwrite (const void * data, size_t size, size_t count, FILE * stream);

/* Both return the total number of elements successfully read/written. */

File positioning:

int fgetpos (FILE * stream, fpos_t * position); /* Returns 0 on success. */
int fsetpos (FILE * stream, const fpos_t * position); /* Returns 0 on success. */

long int ftell (FILE * stream); /* Returns the current position, or -1L if error occurs. */
int fseek (FILE * stream, long int offset, int origin); /* Returns 0 on success. */

/* origin parameter: SEEK_SET (Beginning of file), SEEK_CUR (Current position), SEEK_END (End of file) */

void rewind (FILE * stream);

Error-handling:

int feof (FILE * stream); /* Can be triggered via Ctrl+Z (DOS/Windows) or Ctrl+D (Unix). */

int ferror (FILE * stream);
void perror (const char * str); stderr /* Outputs “str: <error message (from errno)>\n” */
void clearerr (FILE * stream);

Operations on files:

int rename (const char * oldname, const char * newname); /* Returns 0 on success. */
int remove (const char * filename); /* Returns 0 on success. */

FILE * tmpfile (void); /* File is created in "wb+" mode. Returns NULL on error. */
char * tmpnam (char * str); /* str must have at least L_tmpnam bytes. */

/* tmpnam: returns str, or a pointer to an internal buffer (if str == NULL), or NULL on error. */

: No buffer overflow
protection (bound
checking). Security
issues may occur.

%!: Be careful of format
string attacks.

cstdlib <stdlib.h> functions
String conversion:

int atoi (const char * str);
long int atol (const char * str);
double atof (const char * str);
double strtod (const char * str, char ** endptr);
long int strtol (const char * str, char ** endptr, int base);
unsigned long int strtoul (const char * str, char ** endptr, int base);

/* All return 0 (0L, or 0.0) if no valid conversion can be done.
If the converted number is out of range, functions return the limit instead, and set errno = ERANGE. */

Pseudo-random sequence generation:

int rand (void); /* Interval: [0, RAND_MAX]. Usually uses (rand() % range + offset) . */
void srand (unsigned int seed); /* Initial value of seed: 1. Usually uses srand(time(NULL)) . */

Dynamic memory management:

void * malloc (size_t size);
void * calloc (size_t num, size_t size); /* Initializes the memory block to zero. */
void * realloc (void * ptr, size_t size); /* Content is preserved even if the block is moved. */

void free (void * ptr);

Environment:

void abort (void); /* Sends SIGABRT. Ignores object destructors and atexit functions! */
void exit (int status); /* Macros constants available: EXIT_SUCCESS and EXIT_FAILURE. */
int atexit (void (* function)(void));

/* atexit: returns 0 on success. Registered functions are executed in reversed order as a stack. */

char * getenv (const char * name);

/* getenv: returns NULL if the environment variable does not exist.
 The string returned is an internal buffer and shall not be modified by the program. */

int system (const char * command);

/* system: The value returned depends on the running environment. Usually 0 when executing successfully.
 If command == NULL, system returns whether the command processor exists (0 if not). */

Searching and sorting:

void * bsearch (const void * key, const void * base, size_t num, size_t size,
 int (* comparator)(const void *, const void *));
void qsort (void * base, size_t num, size_t size,
 int (* comparator)(const void *, const void *));

/* bsearch: binary-searches the key in the array base (returns NULL if not found). qsort: sorts the array.
base should have num elements, each element size bytes long, sorted / to be sorted by comparator.
comparator should return whether its left parameter precedes, equals, or succeeds its right parameter
 in <0, ==0, >0 respectively. Examples:

 */

Integer arithmetics:

int abs (int n);
long int labs (long int n);

div_t div (int numerator, int denominator);
ldiv_t ldiv (long int numerator, long int denominator);

/* div and ldiv: Return a structure with 2 members: quot (quotient) and rem (remainder).
In C++, abs and div are overloaded with long int type – same as labs and ldiv, respectively. */

Multibyte characters:

int mblen (const char * pmb, size_t max);
int mbtowc (wchar_t * pwc, const char * pmb, size_t max);
int wctomb (char * pmb, wchar_t character);

/* All return the size in bytes of the multibyte character, 0 if character is null ('\0'), or -1 if it’s invalid.
If pmb == NULL, the functions reset their individual shift states, and then return whether multibyte
 character encodings are state-dependent (0 if not).
No more than MB_CUR_MAX bytes are examined in any case. */

size_t mbstowcs (wchar_t * wcstr, const char * mbstr, size_t max);
size_t wcstombs (char * mbstr, const wchar_t * wcstr, size_t max);

/* mbstowcs: returns the number of wide characters translated. max parameter is in characters.
wcstombs: returns the number of bytes translated. max parameter is in bytes.
Both return -1 when an invalid character is met. */

Limits that the functions may return:
atoi: INT_MIN, INT_MAX
atol, strtol: LONG_MIN, LONG_MAX
strtoul: 0L, ULONG_MAX
atof, strtod: 0.0 (if it underflows), ±HUGE_VAL

int compare (const void * a, const void * b) {

 if (*(int*)a > *(int*)b) return 1;

 if (*(int*)a == *(int*)b) return 0;

 if (*(int*)a < *(int*)b) return -1;

}

int compare (const void * a, const void * b) {

 return (*(int*)a - *(int*)b);

}

cstring <string.h> functions
Copying:

void * memcpy (void * destination, const void * source, size_t num);
void * memmove (void * destination, const void * source, size_t num);

char * strcpy (char * destination, const char * source);
char * strncpy (char * destination, const char * source, size_t max); NO \0

/* memmove allows destination and source blocks to overlap, while memcopy doesn’t.
strncpy: pads destination with zeros if a '\0' is found before max characters.
All return destination. */

Concatenation:

char * strcat (char * destination, const char * source);
char * strncat (char * destination, const char * source, size_t max); \0

/* Both return destination. */

Comparison:

int memcmp (const void * ptr1, const void * ptr2, size_t num);

int strcmp (const char * str1, const char * str2);
int strcoll (const char * str1, const char * str2);
int strncmp (const char * str1, const char * str2, size_t max);

/* strcoll: Strings are interpreted according to the LC_COLLATE category of the current locale.
All return 0 if both “memory blocks / strings” are equal, or >0 if the first un-matching byte/character in
 “ptr1 or str1” (pointed data) has a greater value than in “ptr2 or str2”, or <0 if it has less. */

Searching:

void * memchr (const void * ptr, int value, size_t num);
char * strchr (const char * str, int character);
char * strrchr (const char * str, int character);

/* memchr or strchr: return a pointer to the first occurrence of “value or character” in “ptr or str”.
strrchr: returns the last occurrence.
All return NULL if value or character is not found. */

char * strpbrk (const char * str, const char * chars); NO \0
char * strstr (const char * str, const char * pattern); \0

/* strpbrk: returns the first occurrence in str of any of the characters in chars.
strstr: returns the first occurrence in str of the (sub-)string pattern. */

size_t strspn (const char * str, const char * chars);
size_t strcspn (const char * str, const char * chars); \0

/* strspn: returns the length (span) of the initial portion of str containing only characters in chars.
strcspn: returns the one not containing any of the characters in chars. */

char * strtok (char * str, const char * delimiters);

/* strtok: replaces the end of the token with '\0', and then returns the beginning of the token, or NULL if
 no tokens are found. If str here is NULL, strtok continues tokenizing the last str inputted. */

Other:

void * memset (void * ptr, int value, size_t num); /* Returns ptr. All bytes become value. */
char * strerror (int errnum); /* Returns a pointer to an internal buffer. */
size_t strlen (const char * str);
size_t strxfrm (char * destination, const char * source, size_t max);

/* strxfrm: transforms the string according to the current locale (LC_COLLATE category), to destination
 and returns its length (excluding '\0'). */

Non-standard functions: (OpenBSD, FreeBSD, Solaris, and Mac OS X)

size_t strlcpy (char * destination, const char * source, size_t size); \0
size_t strlcat (char * destination, const char * source, size_t size); \0

/* Alternatives to strncpy and strncat. Differences: (a) Always append a terminating null character.
 (b) Return the size required for the destination string (including '\0') instead.
strlcpy: Unlike strncpy, strlcpy doesn’t pad zeros. */

Notes

• For writing functions marked with \0 , these append a terminating null character ('\0') after the
process; for searching functions with \0 , '\0' is included during the search. NO \0 means the opposite.

• All max parameters exclude the terminating '\0'. All size parameters include the '\0'.

• In C++, the functions memchr, strchr, strrchr, strpbrk, strstr have declarations in different form:

const Type * Function (const Type *, «other parameters»);
Type * Function (Type *, «other parameters»);
// Overloaded. Type should be replaced with char or void. Function should be replaced with memchr, strchr, etc.

: No buffer overflow
protection (bound
checking). Security
issues may occur.

cmath <math.h> functions
Trigonometric functions:

double sin (double x); <complex> <valarray>
double cos (double x); <complex> <valarray>
double tan (double x); <complex> <valarray>

/* x is expressed in radians (for sin, cos, and tan). */

double asin (double x); <valarray> /* Intervals: x ∈ [−1, +1], return value ∈ [−π/2, +π/2] */
double acos (double x); <valarray> /* Intervals: x ∈ [−1, +1], return value ∈ [0, π] */
double atan (double x); <valarray> /* Interval: return value ∈ [−π/2, +π/2] */

double atan2 (double y, double x); <valarray> /* Interval: return value ∈ [−π, +π] */

/* The return value is in radians (for asin, acos, atan, and atan2).
atan2: If (x==0 && y==0), it sets errno = EDOM. */

Hyperbolic functions:

double sinh (double x); <complex> <valarray>
double cosh (double x); <complex> <valarray>
double tanh (double x); <complex> <valarray>

/* cosh and sinh: If the magnitude is too large, they return HUGE_VAL with appropriate sign and set
 errno = ERANGE. */

Exponential and logarithmic functions:

double exp (double x); <complex> <valarray> /* Base e */
double log (double x); <complex> <valarray> /* Base e */
double log10 (double x); <complex> <valarray> /* Base 10 */

/* exp: If the magnitude is too large, it returns HUGE_VAL and sets errno = ERANGE.
log, log10: If x==0, they return −HUGE_VAL and set errno = ERANGE. If x<0, they set errno = EDOM. */

double frexp (double x, int * exp); /* Returns the significand, in the interval [1/2, 1). */
double ldexp (double significand, int exp); /* Returns: (significand × 2

exp
). */

double modf (double x, double * intpart);

/* modf: returns the fractional part. Both intpart and return value have the same sign as x. */

Power functions:

double pow (double base, double exponent); <complex> <valarray>

/* pow: If the magnitude is too large, it returns HUGE_VAL with appropriate sign and sets errno = ERANGE.
 If base<0 and exponent is non-integer, or if base==0 and exponent<0, it sets errno = EDOM. */

double sqrt (double x); <complex> <valarray> /* If x<0, this sets errno = EDOM. */

Rounding, absolute value and remainder functions:

double ceil (double x);
double floor (double x);

double fabs (double x);

/* fabs: In C++, abs is also declared in this header with the same behavior, except that abs is overloaded
 in <cstdlib>, <complex>, and <valarray>. */

double fmod (double numerator, double denominator); /* Returns the remainder. */

Notes in C++

• All functions taking 1 or 2 double-type arguments are overloaded with float and long double types:

float Function (float);
long double Function (long double);

float Function (float, float);
long double Function (long double, long double);

• Other functions are overloaded in these ways:

float frexp (float, int *);
long double frexp (long double, int *);

float modf (float, float *);
long double modf (long double, long double *);

float ldexp (float, int);
long double ldexp (long double, int);

• Functions marked with <complex> or <valarray> are overloaded in <complex> or <valarray> respectively:

template<class T>

complex<T> pow
 (const complex<T>&, const complex<T>&);
complex<T> pow (const complex<T>&, const T&);
complex<T> pow (const T&, const complex<T>&);
complex<T> pow (const complex<T>&, int);

T abs (const complex<T>&);

/* For all other functions: */
complex<T> Function (const complex<T>&);

template<class T>

/* For atan2 and pow functions: */
valarray<T> Function
 (const valarray<T>&, const valarray<T>&);
valarray<T> Function (const valarray<T>&, const T&);
valarray<T> Function (const T&, const valarray<T>&);

/* For all other functions: */
valarray<T> Function (const valarray<T>&);

cctype <ctype.h> functions and ASCII table
/* In C++, a locale-specific template version of every function below exists in <locale>. */

Case conversion:

int tolower (int c); /* If conversion is impossible, returns c unchanged. */
int toupper (int c); /* If conversion is impossible, returns c unchanged. */

Classification:

/* All 11 classifying functions (iscntrl, isspace, isprint, isgraph, ispunct, isalnum, isxdigit, isdigit,
 isalpha, isupper, islower) are in this form: */

int Function (int c);

/* All return non-zero (true) if c belongs to the category, 0 (false) otherwise. */

ASCII values Characters is
c
n
tr

l

is
s
p

a
c
e

is
p
ri

n
t

is
g
ra

p
h

is
p

u
n
c
t

is
a
ln

u
m

is
x
d

ig
it

is
d
ig

it

is
a
lp

h
a

is
u
p
p

e
r

is
lo

w
e
r

0x00–0x08 \0 (other control chars) ● ●: function will
return non-zero.

(blank): function
will return zero.

0x09–0x0D \t\n\v\f\r ● ●

0x0E–0x1F (control chars) ●

0x20 (Sp) ● ●

0x21–0x2F !"#$%&'()*+,-./ ● ● ●

0x30–0x39 0123456789 ● ● ● ● ●

0x3A–0x40 :;<=>?@ ● ● ●

0x41–0x46 ABCDEF ● ● ● ● ● ●

0x47–0x5A GHIJKLMNOPQRSTUVWXYZ ● ● ● ● ●

0x5B–0x60 [\]^_` ● ● ●

0x61–0x66 abcdef ● ● ● ● ● ●

0x67–0x7A ghijklmnopqrstuvwxyz ● ● ● ● ●

0x7B–0x7E {|}~ ● ● ●

0x7F (Del) ●

ASCII table

 ↓Binary Oct. Dec. Hex. 0 1 2 3 4 5 6 7 8 9 A B C D E F

 000 0000 0008 0 0x00 Nul SoH STx ETx EoT Enq Ack Bel BS HT LF VT FF CR SO SI

 001 0000 0208 16 0x10 DLE DC1 DC2 DC3 DC4 NAk Syn ETB Can EM Sub Esc FS GS RS US

 010 0000 0408 32 0x20 Sp ! " # $ % & ' () * + , - . /

 011 0000 0608 48 0x30 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

 100 0000 1008 64 0x40 @ A B C D E F G H I J K L M N O

 101 0000 1208 80 0x50 P Q R S T U V W X Y Z [\] ^ _

 110 0000 1408 96 0x60 ` a b c d e f g h i j k l m n o

 111 0000 1608 112 0x70 p q r s t u v w x y z { | } ~ Del

Nul ^@ '\0' Null character

SoH ^A Start of Header

STx ^B Start of Text

ETx ^C End of Text

EoT ^D End of Transmission

Enq ^E Enquiry

Ack ^F Acknowledgment

Bel ^G '\a' Bell

BS ^H '\b' Backspace

HT ^I '\t' Horizontal Tab

LF ^J '\n' Line feed

VT ^K '\v' Vertical Tab

FF ^L '\f' Form Feed

CR ^M '\r' Carriage Return

SO ^N Shift Out

SI ^O Shift In

DLE ^P Data Link Escape

DC1 ^Q Device Control 1

DC2 ^R Device Control 2

DC3 ^S Device Control 3

DC4 ^T Device Control 4

NAk ^U Negative Acknowledge

Syn ^V Synchronous idle

ETB ^W End of Transmission Block

Can ^X Cancel

EM ^Y End of Medium

Sub ^Z Substitute

Esc ^[Escape

FS ^\ File Separator

GS ^] Group Separator

RS ^^ Record Separator

US ^_ Unit Separator

(Note: '\\' is used to output a single backslash \.) Sp Space Del ^? Delete

clocale <locale.h> functions
char * setlocale (int category, const char * locale);

/* setlocale: returns a string identifying the locale currently set for the category, or NULL on error.
locale parameter: name of a locale, which are system-specific, except for these two:
 "C" (Minimal “C” locale; all C programs set this by default), and "" (Environment’s default locale)
 If locale == NULL, setlocale doesn’t change the locale but returns the current locale name. */

struct lconv * localeconv (void);

/* localeconv: returns the formatting parameters for quantities in the current locale. The pointed data
 shouldn’t be modified as it may be overridden by further calls to localeconv or setlocale. */

Locale categories in C: (for category parameter)

LC_ALL The entire locale

LC_COLLATE Affects the behavior of strcoll and strxfrm.

LC_CTYPE
Affects character handling functions (all functions of <cctype>, except isdigit and
isxdigit), and the multibyte and wide character functions.

LC_MONETARY Affects the monetary formatting information returned by localeconv.

LC_NUMERIC
Affects the decimal-point character in formatted input/output operations and string
formatting functions, as well as non-monetary information returned by localeconv.

LC_TIME Affects the behavior of strftime.

LC_MESSAGES
(POSIX.1, not in C standard) Affects what strings are expected or given (or both) by
commands and utilities as affirmative or negative responses.

Types:

struct lconv {
Value in “C”

locale Description

char * decimal_point;
char * mon_decimal_point;

"."
""

Decimal-point separator.

char * thousands_sep;
char * mon_thousands_sep;

""
""

Separators used to delimit group of digits to the left of the
decimal point.

char * grouping;
char * mon_grouping;

""
""

The size of each group of digits. (From right to left, starting at the
decimal point.)

The last number before the ending 0 ('\0') is used over and over
for the remaining groups. If this number is CHAR_MAX, no further
grouping would be performed.

Example: "\3\2\1" → 1,0,0,0,00,000 (If thousand_sep == ",")

char * positive_sign;
char * negative_sign;

""
""

Sign to be used for monetary quantities.

char * int_curr_symbol;
char * currency_symbol;

""
""

int_curr_symbol consists of the 3-letter ISO 4217 code,
followed by a character (usually space) that separates the
code from the monetary quantity.

currency_symbol: Local currency symbol, like “$”.

char int_frac_digits;
char frac_digits;

CHAR_MAX
CHAR_MAX

Amount of fractional digits after the decimal point for
monetary quantities.

char p_cs_precedes;
char n_cs_precedes;

CHAR_MAX
CHAR_MAX

Whether the currency symbol should precede or follow the
monetary quantities.

1: Precede $ 123 0: Follow 123 $

char p_sep_by_space;
char n_sep_by_space;

CHAR_MAX
CHAR_MAX

Whether a space should appear between the currency
symbol and the monetary quantities.

1: Yes $ 123 0: No $123

char p_sign_posn;
char n_sign_posn;

CHAR_MAX
CHAR_MAX

Position of the sign.

0: Currency symbol and quantity surrounded by parentheses ($ 123)

1: Sign before quantity and currency symbol -$ 123

2: Sign after quantity and currency symbol $ 123-

3: Sign right before currency symbol -$ 123

4: Sign right after currency symbol $ -123 };

Notes

• decimal_point, thousands_sep, and grouping are for non-monetary quantities; the rest are monetary.

• int_curr_symbol and int_frac_digits are for monetary quantities in the international format.

• Member names with “p_” prefix are for positive or zero quantities; those with “n_” are for negatives.

• CHAR_MAX or "" (empty string) indicates that the value is unspecified.

ctime <time.h> functions
Time manipulation:

clock_t clock (void);

/* clock: returns the number of clock ticks elapsed since the program starts, or -1 on error.
 The initial moment of reference used by clock as the beginning of the program execution may vary
 between platforms. To calculate the actual processing times of a program, the value returned by clock
 should be compared to a value returned by an initial call to clock.
Macro constant available: CLOCKS_PER_SEC (number of clock ticks in a second). */

time_t time (time_t * timer);

/* time: returns the current calendar time, or -1 on error. It also stores the return value to the location
 pointed by timer argument (if it is not NULL). */

time_t mktime (struct tm * timeptr); /* Returns the converted time, or -1 on error. */

/* mktime: interprets the structure pointed by timeptr as local time. The members tm_wday and tm_yday
 are not read, but set to appropriate values. Other members are also set to values within the range. */

double difftime (time_t latter, time_t earlier); /* Returns: (latter − earlier) in seconds. */

Conversion:

struct tm * gmtime (const time_t * timer); /* Returned time is expressed as UTC. */
struct tm * localtime (const time_t * timer); /* Returned time is local time. */

/* gmtime and localtime: return a pointer to a structure that is statically allocated and shared by both
 functions. Each time either one of these functions is called the content is overwritten. */

char * asctime (const struct tm * timeptr);
char * ctime (const time_t * timer);

/* The returned string has this format: “Www Mmm dd hh:mm:ss yyyy\n” (≈“%a %b %d %H:%M:%S %Y\n” in
 “C” locale). Terminating '\0' included. The array that holds the string is statically allocated and shared
 by both asctime and ctime. */

size_t strftime (char * str, size_t maxsize, const char * format, const struct tm * timeptr);

/* strftime: returns the number of characters written to str (excluding '\0'). maxsize includes '\0'.
 If the resulting string doesn’t fit, strftime returns 0 and the contents of str are indeterminate. */

Types:

struct tm { Description Range

int tm_sec; Seconds 0–61

int tm_min; Minutes 0–59

int tm_hour; Hours 0–23

int tm_mday; Day of the month 1–31

int tm_mon; Month since January 0–11

int tm_year; Years since 1900

int tm_wday; Days since Sunday 0–6

int tm_yday; Days since January 1 0–365

int tm_isdst;

Daylight Saving Time (DST) flag

 >0: DST is in effect.
==0: DST is not in effect.
 <0: Information is not available. };

csetjmp <setjmp.h>
/* macro */ int setjmp (jmp_buf env);

/* setjmp: saves the calling environment to env for later use by longjmp.
setjmp returns 0 on its direct invocation, and returns a non-zero value on a later return from longjmp. */

void longjmp (jmp_buf env, int val);

/* longjmp: restores the environment from env, and pass the argument val to setjmp. Program execution
 continues as if the corresponding call of setjmp had just returned the value val.
 (If val==0, setjmp returns 1 instead.) */

Non-standard functions: (POSIX.1)

int sigsetjmp (sigjmp_buf env, int savesigs);
void siglongjmp (sigjmp_buf env, int val);

/* If savesigs argument is non-zero (true), sigsetjmp also saves the set of blocked signals to env, which
 will then be restored by siglongjmp. */

/* The member tm_sec allows up to 2 leap seconds
(if supported by the system), although 1 is enough
for UTC. */

Example usage of setjmp and longjmp:

int main() {
 jmp_buf env;
 int val;
 val = setjmp(env);
 printf("val is %d\n", val);
 if (!val)
 longjmp(env, 1);
 return 0;
}

1
2
3 7
4 8
5 9
6
 10

cassert <assert.h>
/* macro */ void assert (int expression);

/* assert: If expression==0, it outputs a message to stderr and then calls abort, terminating the program.
 The error message is usually like this: “Assertion failed: expression, file __FILE__, line __LINE__”
 Adding the line #define NDEBUG before the inclusion of <assert.h> disables the assert macro. */

cerrno <errno.h>
/* macro */ int errno = 0;

/* errno: Last error number, modified by certain functions to signal some types of error. You may modify it.
 In C++, errno is always declared as a macro, but in C compilers it may also be implemented as an int
 object with external linkage.
Macro constants available: EDOM (Domain error), ERANGE (Range error), and EILSEQ (Illegal byte
 sequence). */

csignal <signal.h> functions
void (* signal (int sig, void (* handler)(int)))(int);

/* signal: returns the signal handler function before this call, or SIG_ERR on error.
handler parameter: signal handler function, which may be SIG_DFL (Default handling), SIG_IGN (Ignore
 the signals), or a user-defined function.
For maximum portability, a signal handler should only make calls (that succeed) to the function signal,
 assign values to objects of type volatile sig_atomic_t, and return control to its caller. */

int raise (int sig); /* Returns 0 on success. */

ANSI standard signals: (for sig parameter)

SIGABRT Abort (from abort function) SIGINT
Interrupt (generated by user pressing
interrupt key such as Ctrl+C)

SIGFPE
Erroneous arithmetic operation
(formerly: Floating-Point Exception)

SIGSEGV
Segmentation Violation (invalid memory
reference, or segmentation fault)

SIGILL Illegal Instruction SIGTERM Termination request

Each compiler implementation may provide additional signal number macro constants to be used by functions.

Notes

• Equivalent, yet human-readable prototype of signal:

/* In FreeBSD: */
typedef void (* sig_t)(int);
sig_t signal (int sig, sig_t handler);

/* In GNU C Library: */
typedef void (* sighandler_t)(int);
sighandler_t signal (int sig, sighandler_t handler);

• <signal.h> also defines sig_atomic_t, the integral type of an object that can be accessed as an atomic
entity, even in the presence of asynchronous interrupts. It is used as a variable in signal handlers.

cstdarg <stdarg.h>
/* macro */ void va_start (va_list ap, lastparam);
/* macro */ Type va_arg (va_list ap, Type); /* Type is expanded to return type of the macro. */
/* macro */ void va_end (va_list ap);

/* lastparam parameter: Name of the last named parameter (just before the ellipsis). */

Example usage

void PrintArgs (int amount, ...) {
 int value, i;
 va_list vl;
 va_start(vl, amount);
 for (i = 0; i<amount; i++) {
 value = va_arg(vl, int);
 printf("%d ", value);
 }
 va_end(vl);
}

void WriteFormatted (char * format, ...) {
 va_list args;
 va_start(args, format);
 vprintf(format, args);
 va_end(args);
}

/* vfprintf, vprintf, and vsprintf do not automatically call
the va_end macro. */

cstddef <stddef.h>
/* <stddef.h> also define these types: ptrdiff_t (result of pointer subtraction), size_t, and wchar_t. */

/* macro */ size_t offsetof(Type,member);

/* offsetof: returns the offset value of member in the structure Type.
 offsetof is not a function and cannot be described as a C prototype. In C++, the use of offsetof is
 restricted to “POD types”, which for classes, more or less corresponds to the C concept of struct. */

climits <limits.h>
Name ANSI Minimum magnitude Description

CHAR_BIT ≥+8 Number of bits in a char (or a byte)

MB_LEN_MAX ≥+1 Maximum length of a multibyte character across all locales (in bytes)

CHAR_MIN SCHAR_MIN or 0 Minimum value for a char

CHAR_MAX SCHAR_MAX or UCHAR_MAX Maximum value for a char

SCHAR_MIN ≤− 127 Minimum value for a signed char

SCHAR_MAX ≥+ 127 Maximum value for a signed char

UCHAR_MAX ≥+ 255 Maximum value for an unsigned char

SHRT_MIN ≤− 32 767 Minimum value for a short int

SHRT_MAX ≥+ 32 767 Maximum value for a short int

USHRT_MAX ≥+ 65 535 Maximum value for an unsigned short int

INT_MIN ≤− 32 767 Minimum value for an int

INT_MAX ≥+ 32 767 Maximum value for an int

UINT_MAX ≥+ 65 535 Maximum value for an unsigned int

LONG_MIN ≤− 2 147 483 647 Minimum value for a long int

LONG_MAX ≥+ 2 147 483 647 Maximum value for a long int

ULONG_MAX ≥+ 4 294 967 295 Maximum value for an unsigned long int

cfloat <float.h>

Name
Minimum

magnitude Description

FLT_RADIX ≥2
Base (i.e. radix) for all floating-point types (float, double and
long double).

FLT_ROUNDS

Rounding mode for floating-point addition:

-1: Indeterminable 2: Toward positive infinity

0: Toward zero 3: Toward negative infinity

1: To nearest (default) (other): Non-standard mode

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

Number of digits that conform the significand (mantissa), i.e. precision of
significand. (in the FLT_RADIX base)

FLT_DIG
DBL_DIG
LDBL_DIG

≥6
≥10
≥10

Number of decimal digits that can be rounded into a floating-point and
back without change in the number of decimal digits.

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

Minimum negative integer value for the exponent that generates a
normalized floating-point number. (in base FLT_RADIX)

FLT_MIN_10_EXP
DBL_MIN_10_EXP
LDBL_MIN_10_EXP

≤−37
≤−37
≤−37

Minimum negative integer value for the exponent of a base-10
expression that would generate a normalized floating-point number.

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

Maximum integer value for the exponent that generates a normalized
floating-point number. (in base FLT_RADIX)

FLT_MAX_10_EXP
DBL_MAX_10_EXP
LDBL_MAX_10_EXP

≥+37
≥+37
≥+37

Maximum integer value for the exponent of a base-10 expression that
would generate a normalized floating-point number.

FLT_EPSILON
DBL_EPSILON
LDBL_EPSILON

≤1E−5
≤1E−9
≤1E−9

Epsilon (Difference between 1 and the least value greater than 1 that is
representable.)

FLT_MIN
DBL_MIN
LDBL_MIN

≤1E−37
≤1E−37
≤1E−37

Minimum positive representable floating-point number.

FLT_MAX
DBL_MAX
LDBL_MAX

≥1E+37
≥1E+37
≥1E+37

Maximum finite representable floating-point number.

The minimum magnitudes refer to those in ANSI standard. Actual values may vary between implementations.

Other macro constants (that are not described above)

NULL Null pointer <stddef.h> <stdio.h> <stdlib.h> <string.h> <time.h>

This macro expands to a null pointer constant. A null pointer is generally used to signify that a pointer does
not point to any object. In C++, NULL expands either to 0 or 0L.

EOF End-of-File <stdio.h>

This macro expands to a negative integral constant expression.

It is used as the value returned by several <stdio.h> functions to indicate failure, either because the
End-of-File has been reached in a reading operation or because an error happened.

FILENAME_MAX Maximum length of file names <stdio.h>

This macro constant expands to an integral expression corresponding to the size needed for an array of
char elements to hold the longest file name string allowed by the system. Or, if the system imposes no such
restriction, it is set to the recommended size for character arrays intended to hold any file name.

TMP_MAX Number of temporary files <stdio.h>

This macro expands to the minimum number of unique temporary file names that are granted to be possible
to generate using tmpnam or tmpfile.

EXIT_FAILURE Failure termination code <stdlib.h>

This macro expands to a system-dependent integral expression that, when used as the argument for function
exit, should signify that the application failed.

The opposite meaning can be specified with EXIT_SUCCESS (see below).

EXIT_SUCCESS Success termination code <stdlib.h>

This macro expands to a system-dependent integral expression that, when used as the argument for function
exit, should signify that the application was successful.

MB_CUR_MAX Maximum size of multibyte characters <stdlib.h>

This macro expands to a positive integer expression, the value of which is the maximum number of bytes in a
multibyte character with the current locale.

Its value is never greater than MB_LEN_MAX (macro defined in <limits.h>).

RAND_MAX Maximum value returned by rand <stdlib.h>

This macro expands to an integral constant expression whose value is the maximum value returned by the
rand function. This value is library dependent, but is granted to be at least 32767.

HUGE_VAL Huge value <math.h>

A function returns this value when the result of a mathematical operation yields a value that is so large in
magnitude that it is not representable with its return type. This is one of the possible range errors, and is
signaled by setting errno to ERANGE.

Functions can return either a positive or a negative HUGE_VAL to at least indicate the sign of the result.

CLOCKS_PER_SEC Clock ticks per second <time.h>

This macro expands to an expression representing the number of clock ticks in a second, as returned by the
function clock. Dividing a count of clock ticks by this expression yields the number of seconds.

CLK_TCK is an obsolete alias of this macro.

ciso646 <iso646.h>

/* In C++, these words are reserved and treated as aliases of their respective operator. */

#define and &&
#define and_eq &=
#define bitand &
#define bitor |
#define compl ~
#define not !
#define not_eq !=
#define or ||
#define or_eq |=
#define xor ^
#define xor_eq ^=

