The C Library
Reference Guide

by Eric Huss

Copyright 1996 Eric Huss

This book can be found at the following address

http://www.acm.uiuc.edu/webmonkeys/book/c quide/

http://www.acm.uiuc.edu/webmonkeys/book/c_guide/

The C Library Reference Guide Introduction

Introduction

Welcome to the C Library Reference Guide. This guide provides a useful look at the standard C
programming language. In no way does this guide attempt to teach one how to program in C, nor will it
attempt to provide the history of C or the various implementations of it. It is merely a handy reference to
the standard C library. This guide is not a definitive look at the entire ANSI C standard. Some outdated
information has been left out. It issimply a quick reference to the functions and syntax of the language.
All efforts have been taken to make sure the information contained herein is correct, but no guarantees
are made. Nearly all of the information was obtained from the official ANSI C Standard published in
1989 in the document ANSI X3.159-1989. The associated International Organization for Standardization
document, 1SO 9899-1990, is a near duplicate of the ANSI standard.

This guide is divided into two sections. The first part, "Language’, is an analysis of the syntax and the
environment. The second part, "Library"”, isalist of the functions available in the standard C library.
These parts were designed to insure conformity among various implementations of the C language. Not
al information from the ANSI standard is contained in this guide. Additional reference may be made to
the actual ANSI publication.

Return to the Index

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/introduction.html4/1/2008 8:36:08 AM

The C Library Reference Guide

The C Library Reference Guide

by Eric Huss
© Copyright 1997 Eric Huss
Release 1
| nt roducti on
1. Language

1.1 Characters
1.1.1 Trigraph Characters
1.1.2 Escape Sequences
1.1.3 Comment s

1.2 ldentifiers
1.2.1 Keywor ds
1.2.2 Vari abl es
1.2.3 Enuner at ed Tags
1.2. 4 Arrays
1.2.5 Structures and Uni ons
1.2.6 Const ant s
1.2.7 Strings
1.2.8 si zeof Keyword

1.3 Functions
1.3.1 Definition
1.3.2 Program St artup

1.4 References
1.4.1 Poi nters and the Address QOperator
1.4.2 Typecasti ng

1.5 Operators
1.5.1 Postfi x
1.5.2 Unary and Prefix
1.5.3 Nor mal
1.5.4 Bool ean
1.5.5 Assi gnnent
1.5.6 Pr ecedence

1.6 Statenents
1.6.1 | f

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/index.html (1 of 6)4/1/2008 8:35:06 AM

The C Library Reference Guide

1.6.2 switch
1.6.3 whi |l e
1.6.4 do
1.6.5 for
1.6.6 oto
1.6.7 conti nue
1.6.8 br eak
1.6.9 return
1.7 Preprocessing Directives
1.7.1 #1f, #elif, #else, #endif
1.7.2 #define, #undef, #ifdef, #ifndef
1.7.3 #1 ncl ude
1.7.4 # 1 ne
1.7.5 #error
1.7.6 #pragma
1.7.7 Predefi ned Macros
Li brary
2.1 assert.h
2.1.1 assert
2.2 ctype.h
2.2.1 is... Functions
2.2.2 to... Functions
2.3 errno.h
2.3.1 EDOM
2.3.2 ERANGE
2.3.3 errno
2.4 float.h
2.4.1 Def i ned Val ues
2.5 limts.h
2.5.1 Def i ned Val ues
2.6 locale.h
2.6.1 Vari abl es and Definitions
2.6.2 setl ocal e
2.6.3 | ocal econv
2.7 math.h
2.7.1 Error Conditions
2.7.2 Trigononetric Functions
2.7.2.1 acos
2.7.2.2 asin
2.7.2.3 at an

file:///C)/Documents¥%20and%20Settings/sshai kot/Desktop/c_guide/c_guide/index.html (2 of 6)4/1/2008 8:35:06 AM

The C Library Reference Guide

2.7.2. 4 at an2
2.7.2.5 cos
2.7.2.6 cosh
2.7.2.7 sin
2.7.2.8 si nh
2.7.2.9 tan
2.7.2.10 tanh
2.7.3 Exponential, Logarithm c, and Power Functions
2.7.3. 1 exp
2.7.3.2 frex
2.7.3.3 | dexp
2.7.3. 4 | og
2.7.3.5 | 0g10
2.7.3.6 nodf
2.7.3.7 pow
2.7.3.8 sqrt
2.7.4 G her Math Functions
2.7.4.1 ceil
2.7.4.2 f abs
2.7.4.3 floor
2.7.4. 4 f nod

2.8.1 Vari abl es and Definitions
2.8.2 setjnp
2.8.3 | ongj np

2.9 signal.h
2.9.1 Vari abl es and Definitions
2.9.2 si gnal
2.9.3 rai se

2.10 stdarg.h
2.10.1 Vari abl es and Definitions
2.10.2 va_start
2.10.3 va_arg
2.10. 4 va_end
2.11 stddef.h
2.11.1 Vari abl es and Definitions
2.12 stdio.h
2.12.1 Vari abl es and Definitions
2.12.2 Streans and Fil es

2.12.3 Fil e Functions

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/index.html (3 of 6)4/1/2008 8:35:06 AM

The C Library Reference Guide

2.12.3.1 clearerr
2.12.3.2 fclose
2.12.3.3 feof
2.12.3.4 ferror
2.12.3.5 fflush
2.12. 3.6 fgetpos
2.12. 3.7 fopen
2.12.3.8 fread
2.12. 3.9 freopen
2.12.3.10 fseek
2.12.3.11 fsetpos
2.12.3.12 ftell
2.12.3.13 fwite
2.12.3.14 renove
2.12.3.15 renane
2.12.3.16 rew nd
2.12.3.17 set buf
2.12. 3. 18 set vbuf
2.12.3.19 tnpfile
2.12.3.20 tnpnam
2.12. 4 Formatted I/ O Functions
2.12.4.1 ...printf Functions
2.12.4.2 ...scanf Functions
2.12.5 Character 1/0O Functions
2.12.5.1 fgetc
2.12.5.2 fqgets
2.12.5.3 fputc
2.12.5.4 fputs
2.12.5.5 getc
2.12.5.6 getchar
2.12.5.7 gets
2.12.5.8 putc
2.12.5.9 putchar
2.12.5.10 puts
2.12.5.11 ungetc
2.12. 7 Error Functions
2.12.7.1 perror

2.13 stdlib.h
2.13. 1 Vari abl es and Definitions

file:///C)/Documents¥%20and%20Settings/sshai kot/Desktop/c_guide/c_guide/index.html (4 of 6)4/1/2008 8:35:06 AM

The C Library Reference Guide

2.13.2 String Functions
2.13.2.1 atof
2.13.2.2 atoi
2.13.2.3 atol
2.13.2.4 strtod
2.13.2.5 strtol
2.13.2.6 strtoul

2.13.3 Menory Functi ons
2.13.3.1 calloc
2.13.3.2 free
2.13.3.3 nmalloc
2.13.3.4 realloc

2.13.4 Envi ronnment Functi ons
2.13.4.1 abort
2.13.4.2 atexit
2.13.4.3 exit
2.13.4.4 getenv
2.13.4.5 system

2.13.5 Searching and Sorting Functions
2.13.5.1 bsearch
2.13.5.2 qgsort

2.13.6 Mat h Functi ons
2.13.6.1 abs
2.13.6.2 div
2.13.6.3 |abs
2.13.6.4 1div
2.13.6.5 rand
2.13.6.6 srand

2.13. 7 Mul ti byte Functions
2.13.7.1 nblen
2.13.7.2 nbstowcs
2.13.7.3 nbtowe
2.13.7.4 wcstonbs
2.13.7.5 wctonb

2.14 string.h
2.14. 1 Vari abl es and Definitions

2.14. 2 nmenchr

2.14. 3 nencnp
2.14. 4 nencpy

file:///C)/Documents¥%20and%20Settings/sshai kot/Desktop/c_guide/c_guide/index.html (5 of 6)4/1/2008 8:35:06 AM

The C Library Reference Guide

2.14.5 nenmmmove
14. 6 nenset
14,7 strcat
.14. 8 strncat
.14.9 strchr

.14. 10 strcnp
.14. 11 strncnp
.14.12 strcoll
.14. 13 strcpy
.14. 14 st rncpy

.14. 15 strcspn
.14. 16 strerror

.14. 17 strl en

.14. 18 strpbrk
.14. 19 strrchr

. 14. 20 strspn
.14. 21 strstr
.14. 22 strtok
14. 23 strxfrm

2.15 tine. h
.15.1 Vari abl es and Definitions
.15.2 asctine
.15.3 cl ock
.15. 4 ctine
.15.5 difftine
.15.6 gntinme
.15.7 | ocal tine
15.8 nkti me
.15.9 strftine
.15.10 tinme
Appendi x A
ASCl 1 Chart
| ndex
| ndex

Questions, comments, or error reports? Please send them to Eric Huss

file:///C)/Documents¥%20and%20Settings/sshai kot/Desktop/c_guide/c_guide/index.html (6 of 6)4/1/2008 8:35:06 AM

mailto:e-huss@uiuc.edu

C Guide--Index

The C Library Reference Guide

[#]

Index

Table of Contents

#|__|_IAIBICIDIEIEIGIHII[JILIMINI|OIP[QIR[SITIU[V W]

#if Preprocessing Directives
#define Preprocessing Directives
#elif Preprocessing Directives
#else Preprocessing Directives
#endif Preprocessing Directives
#error Preprocessing Directives
#ifdef Preprocessing Directives
#ifndef Preprocessing Directives
#include Preprocessing Directives
#line Preprocessing Directives
#pragma Preprocessing Directives
#undef Preprocessing Directives

__LINE__ Preprocessing Directives
__FILE__ Preprocessing Directives
__ DATE__ Preprocessing Directives
__TIME__ Preprocessing Directives
__STDC__ Preprocessing Directives

_|OFBF stdio.h
_|OLBF stdio.h
_|ONBF gdio.h

abort() stdlib.h
abs() stdlib.h
acos() math.h
asctime() time.h
asin() math.h
assert() assert.h
atan() math.h

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/index2.html (1 of 8)4/1/2008 8:37:04 AM

C Guide--Index

atan2() math.h
atexit() stdlib.h
atof () stdlib.h
atoi() stdlib.h
atol() stdlib.h
auto ldentifiers

break Statements
bsearch() stdlib.h
BUFSIZ stdio.h

calloc() stdlib.h
ceil() math.h

char Identifiers
clearerr() stdio.h
clock() time.h
clock ttime.h
CLOCKS PER SECtime.h
const |dentifiers
continue Statements
cos() math.h

cosh() math.h
ctime() time.h

difftime() time.h
div() stdlib.h
div_t stdlib.h

do Statements
double Identifiers

EDOM errno.h

enum ldentifiers

EOF stdio.h

ERANGE errno.h

errno errno.h

exit() stdlib.h
EXIT_FAILURE stdlib.h
EXIT_SUCCESS stdlib.h

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/index2.html (2 of 8)4/1/2008 8:37:04 AM

C Guide--Index

exp() math.h
extern ldentifiers

fabs() math.h
fclose() stdio.h
feof() stdio.h
ferror() stdio.h
fflush() stdio.h
fgetc() stdio.h
fgetpos() stdio.h
fgets() stdio.h
FILE stdio.h
FILENAME_MAX stdio.h
float Identifiers
floor() math.h
fmod() math.h
fopen() stdio.h
FOPEN_MAX stdio.h
for Statements
fpos t stdio.h
fprintf() stdio.h
fputc() stdio.h
fputs() stdio.h
fread() stdio.h
free() stdlib.h
freopen() stdio.h
frexp() math.h
fscanf() stdio.h
fseek() stdio.h
fsetpos() stdio.h
ftell() stdio.h
fwrite() stdio.h

getc() stdio.h
getchar() stdio.h
getenv() stdlib.h
gets() stdio.h
gmtime() time.h

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/index2.html (3 of 8)4/1/2008 8:37:04 AM

C Guide--Index

goto Statements
HUGE_VAL math.h

if Statements

isalnum() ctype.h
isalpha() ctype.h
iscntrl() ctype.h
isdigit() ctype.h
isgraph() ctype.h
islower() ctype.h
isprint() ctype.h
ispunct() ctype.h
isspace() ctype.h
isupper() ctype.h
isxdigit() ctype.h

jmp_buf setimp.h

L_tmpnam stdio.h
labs() stdlib.h

LC ALL locae.h

LC COLLATE locale.h
LC CTYPE locae.h
LC_MONETARY locae.h
LC NUMERIC locale.h
LC TIME locale.h
|dexp() math.h

Idiv() stdlib.h

Idiv_t stdlib.h

linkage Identifiers
localeconv() locale.h
localtime() time.h

log() math.h

log10() math.h

long Identifiers

longjmp() setjmp.h

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/index2.html (4 of 8)4/1/2008 8:37:04 AM

C Guide--Index

malloc() stdlib.h
MB_CUR_MAX stdlib.h
mblen() stdlib.h
mbstowcs() stdlib.h
mbtowc() stdlib.h
memchr() string.h

memcmp() string.h
memcpy() string.h

memmove() string.h
memset() string.h

mktime() time.h
modf() math.h

NDEBUG assert.h
NULL time.h string.h stdlib.h stdio.h stddef.h locale.h

offsetof() stddef.h

perror() stdio.h
pow() math.h
printf() stdio.h
ptrdiff _t stddef.h
putc() stdio.h
putchar() stdio.h
puts() stdio.h

gsort() stdlib.h

raise() signal.h
rand() stdlib.h

RAND_ MAX stdlib.h
realloc() stdlib.h
register Identifiers
remove() stdio.h
rename() stdio.h
return Statements
rewind() stdio.h

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/index2.html (5 of 8)4/1/2008 8:37:04 AM

C Guide--Index

scanf() stdio.h
scope |Identifiers
SEEK _CUR stdio.h
SEEK _END stdio.h
SEEK_SET stdio.h
setbuf() stdio.h
setjmp() setimp.h
setlocale() locale.h
setvbuf() stdio.h
short Identifiers
sig_atomic_t signal.h
SIG_DFL signal.h
SIG_ERR signal.h
SIG_IGN signal.h
SIGABRT signal.h
SIGFPE signal.h
SIGILL signal.h
SIGINT signal.h
signed Identifiers
SIGSEGYV signal.h
SIGTERM signal.h
signal() signal.h
sin() math.h

sinh() math.h

size t time.h string.h stdlib.h stdio.h stddef.h
sizeof |dentifiers
sprintf() stdio.h
sgrt() math.h
srand() stdlib.h
sscanf() stdio.h
static Identifiers
stderr stdio.h

stdin stdio.h

stdout stdio.h
strcat() string.h
strncat() string.h
strchr() string.h
strcmp() string.h

file:///C)/Documents¥%20and%20Setti ngs/sshaikot/Desktop/c_guide/c_guide/index2.html (6 of 8)4/1/2008 8:37:04 AM

C Guide--Index

strncmp() string.h
strcoll() string.h
strepy() string.h
strncpy() string.h
strespn() string.h
strerror() string.h
strftime() time.h
strlen() string.h
strpbrk() string.h
strrchr() string.h
strspn() string.h
strstr() string.h
strtod() stdlib.h
strtok() string.h
strtol() stdlib.h
strtoul() stdlib.h
struct Indentifiers
strxfrm() string.h
switch Statements
system() stdlib.h

tan() math.h

tanh() math.h
time() time.h
tmtime.h
TMP_MAX stdio.h
tmpfile() stdio.h
tmpnam() stdio.h
tolower() ctype.h

toupper() ctype.h
typedef Identifiers

ungetc() stdio.h
unions ldentifiers

va arg() stdarg.h

va_end() stdarg.h
va list stdarg.h

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/index2.html (7 of 8)4/1/2008 8:37:04 AM

C Guide--Index

va start() stdarg.h
viprintf() stdio.h
void Identifiers
vprintf() stdio.h
vsprintf() stdio.h

wcstombs() stdlib.h
wctomb() stdlib.h
wchar_t stdlib.h stddef.h
while Statements

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/index2.html (8 of 8)4/1/2008 8:37:04 AM

C Guide--1.1 Characters

< Previous | Table of Contents | Index | Next Section
Section 1.2 Identifiers
TOC

1.1.1 Trigraph Characters

A trigraph sequence found in the source code is converted to its respective translation character. This
allows people to enter certain characters that are not allowed under some (rare) platforms.

Trigraph Sequence Translation Character
?7= #
?272([
??/ \
?7?)]
?7?' A
?2?<
?7?1
27>

|~ — ~

?7?-

Example:
printf("No???/n");
trandates into:

printf("No?\n");

1.1.2 Escape sequences

The following escape sequences allow special characters to be put into the source code.

Escape Sequence Name Meaning

\a Alert Produces an audible or visible alert.

\'b Backspace Moves the cursor back one position (non-destructive).
\ f Form Feed Moves the cursor to the first position of the next page.

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.1.html (1 of 3)4/1/2008 8:38:25 AM

C Guide--1.1 Characters

\n New Line Moves the cursor to the first position of the next line.

\r Carriage Return Moves the cursor to the first position of the current line.

\ 't Horizontal Tab Moves the cursor to the next horizontal tabular position.

\v Vertical Tab Movesthe cursor to the next vertical tabular position.

\' Produces a single quote.

\ " Produces a double quote.

\ ? Produces a question mark.

\\ Produces a single backslash.

\0 Produces a null character.
Defines one character by the octal digits (base-8 number). Multiple

\ ddd characters may be defined in the same escape sequence, but the
value isimplementation-specific (see exampl es).

\ xdd Defines one character by the hexadecimal digit (base-16 number).

Examples:

printf("\12");
Produces the decimal character 10 (XOA Hex).

printf("\xFF");
Produces the decimal character -1 or 255 (depending on sign).

printf("\x123");
Produces a single character (value is undefined). May cause errors.

printf("\0222");

Produces two characters whose val ues are implementation-specific.

1.1.3 Comments

Comments in the source code are ignored by the compiler. They are encapsulated starting with/ * and
ending with */ . According to the ANSI standard, nested comments are not allowed, although some
implementations allow it.

Single line comments are becoming more common, although not defined in the ANSI standard. Single
line comments begin with / / and are automatically terminated at the end of the current line.

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.1.html (2 of 3)4/1/2008 8:38:25 AM

C Guide--1.1 Characters

< Previous | Table of Contents | Index | Next Section
Section 1.2 Identifiers
TOC

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.1.html (3 of 3)4/1/2008 8:38:25 AM

C Guide--1.2 Indentifiers

< Previous | Table of Contents | Index | Next Section
Section 1.3 Functions
1.1 Characters

1.2.1 Keywords

The following keywords are reserved and may not be used as an identifier for any other purpose.

auto doubl e i nt | ong

br eak el se 1ong switch
case enum regqister typedef
char externreturn union
const float short unsi gned
conti nue for signed void
default goto sizeof volatile
do | f static while

1.2.2 Variables

A variable may be defined using any uppercase or |lowercase character, a numerical digit (0 through 9),
and the underscore character (). Thefirst character of the variable may not be anumerical digit or
underscore. Variable names are case sensitive.

The scope of the variable (where it can be used), is determined by whereit is defined. If it is defined
outside any block or list of parameters, then it has file scope. This means it may be accessed anywherein
the current source code file. Thisis normally called aglobal variable and is normally defined at the top
of the source code. All other types of variables are local variables. If avariable is defined in a block
(encapsulated with { and }), then its scope begins when the variable is defined and ends when it hits the
terminating } . Thisis called block scope. If the variable is defined in a function prototype, then the
variable may only be accessed in that function. Thisis called function prototype scope.

Access to variables outside of their file scope can be made by using linkage. Linkage is done by placing
the keyword ext er n prior to avariable declaration. This allows a variable that is defined in another
source code file to be accessed.

Variables defined within a function scope have automatic storage duration. The life of the variableis
determined by the life of the function. Space is allocated at the beginning of the function and terminated

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.2.html (1 of 9)4/1/2008 8:38:26 AM

C Guide--1.2 Indentifiers

at the end of the function. Satic storage duration can be obtained by placing the keyword st ati ¢ in
front of the variable declaration. This causes the variabl€'s space to be allocated when the program starts
up and is kept during the life of the program. The value of the variable is preserved during subsequent
callsto the function that definesit. Variables with file scope are automatically static variables.

A variable is defined by the following:
storage-class-specifier type-specifier variable-names,...

The storage-class-specifier can be one of the following:

t ypedef The symbol name "variable-name" becomes atype-specifier of type "type-
specifier”. No variable is actually created, thisis merely for convenience.

extern Indicatesthat the variable is defined outside of the current file. This brings
the variables scope into the current scope. No variable is actually created by
this.

static Causesavariablethat is defined within afunction to be preserved in
subsequent calls to the function.

aut o Causes alocal variable to have alocal lifetime (default).

regi st er Requeststhat the variable be accessed as quickly as possible. Thisrequest is
not guaranteed. Normally, the variable's value is kept within a CPU register
for maximum speed.

The type-specifier can be one of the following:

voi d Defines an empty or NULL value whose
type isincomplete.
char, signed char Variableislarge enough to store abasic

character in the character set. Thevaueis
either signed or nonnegetive.

unsi gned char Same as char, but unsigned values only.

short, signed short, short Defines a short signed integer. May be the

I nt, signed short int same range as anormal int, or half the bits
of anormal int.

unsi gned short, unsigned Defines an unsigned short integer.

short int

I nt, signed, signed int,orno Defines asigned integer. If no type

type specifier specifier is given, then thisis the default.

unsi gned i nt, unsigned Same asint, but unsigned values only.

| ong, signed long, long int, Defines along signed integer. May be

signed | ong int twice the bit size asanormal int, or the

same as a normal int.

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.2.html (2 of 9)4/1/2008 8:38:26 AM

C Guide--1.2 Indentifiers

unsi gned | ong, unsigned | ong Same as long, but unsigned values only.

I nt

fl oat A floating-point number. Consists of a
sign, a mantissa (number greater than or
equal to 1), and an exponent. The mantissa
is taken to the power of the exponent then
given the sign. The exponent is al'so signed
allowing extremely small fractions. The
mantissa givesit afinite precision.

doubl e A more accurate floating-point number
than float. Normally twice as many bitsin
size.

| ong doubl e Increases the size of double.

Here are the maximum and minimum sizes of the type-specifiers on most common implementations.
Note: some implementations may be different.

Type Size Range
unsi gned char 8bits 0to 255
char 8 bits -128to 127
unsi gned i nt 16 bits0to 65,535
short int 16 bits -32,768 to 32,767
I nt 16 bits -32,768 to 32,767
unsi gned | ong 32 bits 0to 4,294,967,295
| ong 32 bits -2,147,483,648 to 2,147,483,647
f | oat 32 bits 1.17549435 * (10"-38) to 3.40282347 * (10"+38)
doubl e 64 bits 2.2250738585072014 * (10"-308) to 1.7976931348623157 * (10"+308)
| ong doubl e 80bhits3.4* (10"-4932) to 1.1 * (10M4932)
Examples:
I nt bob=32;

Creates variable "bob" and initializes it to the value 32.

char | oopl, | oop2, | o0op3="\x41";

Creates three variables. The value of "loopl" and "loop2" is undefined. The value of loop3
iIsthe letter "A".

t ypedef char bool ean;
Causes the keyword "boolean" to represent variable-type "char".

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.2.html (3 of 9)4/1/2008 8:38:26 AM

C Guide--1.2 Indentifiers

bool ean yes=1;
Creates variable "yes" astype "char" and setsitsvalueto 1.

1.2.3 Enumerated Tags

Enumeration allows a series of constant integers to be easily assigned. The format to create a
enumeration specifier is:

enum identifier { enumerator-list} ;

|dentifier isahandle for identification, and is optional.

Enumerator-listisalist of variablesto be created. They will be constant integers. Each
variable is given the value of the previous variable plus 1. Thefirst variableis given the
value of 0.

Examples:

enum {j oe, mary, bob, fran};
Creates 4 variables. Thevaue of joeis0, mary is1, bobis2, and franis 3.

enum test {larry, floyd=20, ted};
Creates 3 variables with the identifier test. The value of larry isO, floyd is 20, and ted is
21.

1.2.4 Arrays

Arrays create single or multidimensional matrices. They are defined by appending an integer
encapsulated in brackets at the end of a variable name. Each additional set of brackets defines an

additional dimension to the array. When addressing an index in the array, indexing begins at 0 and ends
at 1 lessthan the defined array. If noinitial valueis given to the array size, then the size is determined
by the initializers. When defining a multidimensional array, nested curly braces can be used to specify

which dimension of the array to initialize. The outermost nest of curly braces defines the leftmost
dimension, and works from left to right.

Examples:

I nt X[5];
Defines 5 integers starting at x[0], and ending at x[4]. Their values are undefined.

char str[16] ="Bl ueberry";
Createsastring. The value at str[8] isthe character "y". The value at str[9] is the null

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.2.html (4 of 9)4/1/2008 8:38:26 AM

C Guide--1.2 Indentifiers

character. The values from str[10] to str[15] are undefined.

char s[]="abc";
Dimensions the array to 4 (just long enough to hold the string plus a null character), and
stores the string in the array.

int y[3]={4};
Sets the value of y[0] to 4 and y[1] and y[2] to O.

I nt joe[4][5]={
{1, 2, 3, 4,5},
{6,7,8,9, 10},
{11, 12, 13, 14, 15}
'

Thefirst row initializes jog[0], the second row joe[1] and so forth. joe[3] isinitialized to 5
Zexros.

The same effect is achieved by:
int joe[4][5]={1,2,3,4,5,6,7,8,9,10, 11, 12,13, 14, 15};

1.2.5 Structures and Unions

Structures and unions provide away to group common variables together. To define a structure use:

struct structure-nane {
vari abl es, ...
} structure-variables,...;
Structure-name is optional and not needed if the structure variables are defined. Inside it can contain any
number of variables separated by semicolons. At the end, structure-variables defines the actual names of

the individual structures. Multiple structures can be defined by separating the variable names with
commas. If no structure-variables are given, no variables are created. Sructure-variables can be defined

separately by specifying:

st ruct structure-name new-structure-variable;

new-structure-variable will be created and has a separate instance of al the variables in structure-name.

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.2.html (5 of 9)4/1/2008 8:38:26 AM

C Guide--1.2 Indentifiers

To access avariable in the structure, you must use arecord selector (.).

Unions work in the same way as structures except that all variables are contained in the same location in
memory. Enough space is allocated for only the largest variable in the union. All other variables must
share the same memory location. Unions are defined using the union keyword.

Examples:

struct ny-structure {
int fred[5];
char wil ma, betty;
fl oat barny=1;

3
This defines the structure my-structure, but nothing has yet been done.

struct mny-structure account1;
This creates account1 and it has all of the variables from my-structure. accountl.barny
contains the value "1".

uni on ny-uni on {
char character _num
I nt integer_num
| ong | ong_num
float float_num
doubl e doubl e_num
} nunber;

This defines the union number and allocates just enough space for the variable
double_num.

nunber . i nt eger _nunel;

Sets the value of integer numto "1".

nunber . fl oat _nune5;

Sets the value of float_numto "5".

printf("%",integer_nun;

Thisis undefined since the location of integer num was overwritten in the previous line
by float_num.

1.2.6 Constants

Constants provide a way to define a variable which cannot be modified by any other part in the code.

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.2.html (6 of 9)4/1/2008 8:38:26 AM

C Guide--1.2 Indentifiers

Constants can be defined by placing the keyword const in front of any variable declaration. If the
keyword vol at i | e isplaced after const , then this allows external routines to modify the variable
(such as hardware devices). This also forces the compiler to retrieve the value of the variable each time
it is referenced rather than possibly optimizing it in aregister.

Constant numbers can be defined in the following way:
Hexadecimal constant:

Ox hexadecimal digits...
Where hexadecimal digitsisany digit or any letter A through F or a through
f.

Decimal constant:

Any number where the first number is not zero.
Octal constant:

Any number where the first number must be zero.
Floating constant:

A fractional number, optionally followed by either e or E then the
exponent.

The number may be suffixed by:
Uor u:

Causes the number to be an unsigned long integer.

Lorl:
If the number is a floating-point number, then it is along double, otherwise
it isan unsigned long integer.
Forf:
Causes the number to be a floating-point number.
Examples:

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.2.html (7 of 9)4/1/2008 8:38:26 AM

C Guide--1.2 Indentifiers

const float PI=3.141;
Causes the variable PI to be created with value 3.141. Any subsequent attempts to write to
Pl are not allowed.

const int joe=0xFFFF;
Causes joe to be created with the value of 65535 decimal.

const float penny=7. 4e5;
Causes penny to be created with the value of 740000.000000.

1.2.7 Strings

Strings are simply an array of characters encapsulated in double quotes. At the end of the string a null
character is appended.

Examples:

"\ x65" and" A" arethe same string.

char fred[25]="He said, \"Go away!\"";
The value at fred[9] is adouble quote. The value at fred[20] is the null character.

1.2.8 sizeof Keyword

Declaration:

size_t sizeof expression
or

size t sizeof (type)

The sizeof keyword returns the number of bytes of the given expression or type.
Si ze_t isanunsigned integer result.

Example:

printf("The nunber of bytes in an int is %l.\n", sizeof

(int));

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.2.html (8 of 9)4/1/2008 8:38:26 AM

C Guide--1.2 Indentifiers

< Previous | Table of Contents | Index | Next Section [
Section 1.3 Functions
1.1 Characters

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.2.html (9 of 9)4/1/2008 8:38:26 AM

C Guide--1.3 Functions

< Previous | Table of Contents | Index | Next Section
Section 1.4 References
1.2 Identifiers

1.3.1 Function Definition

A function is declared in the following manner:
return-type function-name(parameter-list,...) { body... }

return-type is the variable type that the function returns. This can not be an array type or afunction type.
If not given, theni nt isassumed.

function-name is the name of the function.

parameter-list isthe list of parameters that the function takes separated by commas. If no parameters are
given, then the function does not take any and should be defined with an empty set of parenthesis or
with the keyword voi d. If no variable typeisin front of avariable in the paramater list, theni nt is
assumed. Arrays and functions are not passed to functions, but are automatically converted to pointers.
If thelist isterminated with an elipsis(, . . .), then there is no set number of parameters. Note: the
header st dar g. h can be used to access arguments when using an ellipsis.

If the function is accessed before it is defined, then it must be prototyped so the compiler knows about
the function. Prototyping normally occurs at the beginning of the source code, and is donein the
following manner:

retur n-type function-name(paramater-type-list) ;
retur n-type and function-name must correspond exactly to the actual function definition. parameter-type-
list isalist separated by commas of the types of variable parameters. The actual names of the parameters
do not have to be given here, athough they may for the sake of clarity.

Examples:

int joe(float, double, int);
This defines the prototype for function joe.

int joe(float coin, double total, int sum

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.3.html (1 of 3)4/1/2008 8:38:26 AM

C Guide--1.3 Functions

{
[*. . %]
}

Thisisthe actual function joe.

int mary(void), *Iloyd(double);

This defines the prototype for the function mary with no parameters and return type int.
Function llyod is defined with a double type paramater and returns a pointer to an int.

Int (*peter)();

Defines peter as a pointer to a function with no parameters specified. The value of peter
can be changed to represent different functions.

int (*aaron(char *(*)(void)) (long, int);

Defines the function aaron which returns a pointer to afunction. The function aaron takes
one argument: a pointer to a function which returns a character pointer and takes no

arguments. The returned function returns atype int and has two parameters of type long
and int.

1.3.2 Program Startup

A program begins by calling the function main. There is no prototype required for this. It can be defined
with no parameters such as:

i nt main(void) { body... }
Or with the following two parameters:
int main(int argc, char *argv[]) { body... }
Note that they do not have to be called ar gc or ar gv, but thisis the common naming system.

ar gc isanonnegative integer. If ar gc is greater than zero, then the string pointed to by ar gv[0] is
the name of the program. If ar gc is greater than one, then the strings pointed to by ar gv[1] through
ar gv[argc- 1] arethe parameters passed to the program by the system.

Example:

#i ncl ude<st di 0. h>

I nt main(int argc, char *argv[])

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.3.html (2 of 3)4/1/2008 8:38:26 AM

C Guide--1.3 Functions

{
I nt | oop;
| f (argc>0)
printf("My programnane is %.\n",argv[0]);
| f(argc>1)
{
for(l oop=1; | oop<argc; | oop++)
printf("Paranmeter #% is %.\n", | oop, argv|[!| oop]);
}
}
< Previous | Table of Contents | Index | Next Section [
Section 1.4 References
1.2 Identifiers

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.3.html (3 of 3)4/1/2008 8:38:26 AM

C Guide--1.4 References

< Previous | Table of Contents | Index | Next Section
Section 1.5 Operators

1.3 Functions

1.4.1 Pointers and the Address Operator

Pointers are variables that contain the memory address for another variable. A pointer is defined like a
normal variable, but with an asterisk before the variable name. The type-specifier determines what kind
of variable the pointer points to but does not affect the actual pointer.

The address operator causes the memory address for a variable to be returned. It iswritten with an
ampersand sign before the variable name.

When using a pointer, referencing just the pointer such as:
I nt *ny_pointer;
I nt barny;

nmy _poi nt er =&bar ny;

Causes my_pointer to contain the address of barny. Now the pointer can be use indirection to reference
the variable it pointsto. Indirection is done by prefixing an asterisk to the pointer variable.

*my_poi nt er =3;
This causes the value of barny to be 3. Note that the value of ny _poi nt er isunchanged.
Pointers offer an additional method for addressing an array. The following array:
int nmy_array[3];
Can be addressed normally such as:
nmy_array|[2] =3;
The same can be accomplished with:
*(mmy_array+2) =3;
Notethat ny _ar r ay isapointer constant. Its value cannot be modified such as:

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.4.html (1 of 3)4/1/2008 8:38:26 AM

C Guide--1.4 References

nmy_array++; Thisisillegal.
However, if apointer variableis created such as:
I nt *sonme_poi nter=ny_array,

Then modifying the pointer will correctly increment the pointer so as to point to the next element in the
array.

*(sonme_poi nter+1) =3;

Thiswill causethevalueof ny _array[1] tobe3. Onasystemwhereani nt takesup two bytes,
adding 1 to sone_poi nt er did not actually increaseit by 1, but by 2 so that it pointed to the next
element in the array.

Functions can also be represented with a pointer. A function pointer is defined in the sasme way as a
function prototype, but the function name is replaced by the pointer name prefixed with an asterisk and
encapsulated with parenthesis. Such as:

int (*fptr)(int, char);
f ptr=sone_functi on;

To call thisfunction:
(*ftpr)(3,"A);
Thisis equivaent to:
sone_function(3,'A);
A structure or union can have a pointer to represent it. Such as:

struct some_structure honer;
struct sonme_structure *honer _pointer;
homer _poi nt er =&honer ;

This defines homer_pointer to point to the structure homer. Now, when you use the pointer to reference
something in the structure, the record selector now becomes - > instead of a period.

honmer _poi nt er - >an_el enent =5;

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.4.html (2 of 3)4/1/2008 8:38:26 AM

C Guide--1.4 References

Thisisthe same as:
homer . an_el enent =5;

The void pointer can represent an unknown pointer type.
voi d *j oe;

Thisis a pointer to an undetermined type.

1.4.2 Typecasting

Typecasting allows a variable to act like a variable of another type. The method of typecasting is done

by prefixing the variable type enclosed by parenthesis before the variable name. The actual variableis
not modified.

Example:
float index=3; int |oop=(int)index;

This causes index to be typecasted to act likean i nt .

< Previous | Table of Contents | Index | Next Section [

Section 1.5 Operators
1.3 Functions

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.4.html (3 of 3)4/1/2008 8:38:26 AM

C Guide--1.5 Operators

< Previous | Table of Contents | Index | Next Section
Section 1.6 Statements

1.4 References

1.5.1 Postfix

Postfix operators are operators that are suffixed to an expression.
operand++;
This causes the value of the operand to be returned. After the result is obtained, the value
of the operand isincremented by 1.

operand- - ;
Thisisthe same but the value of the operand is decremented by 1.

Examples:

I nt joe=3;
j oe++;

Thevalueof j oe isnhow 4.
printf("%",|oe++);

This outputs the number 4. The value of | oe isnow 5.

1.5.2 Unary and Prefix

Prefix operators are operators that are prefixed to an expression.

++operand;
This causes the value of the operand to be incremented by 1. Its new value isthen
returned.

- - operand,;
Thisisthe same but the value of the operand is decremented by 1.

I operand

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.5.html (1 of 7)4/1/2008 8:38:25 AM

C Guide--1.5 Operators

Returnsthe logical NOT operation on the operand. A true operand returns false, afalse
operand returns true. Also known as the bang operand.

~operand
Returns the compliment of the operand. The returned value is the operand with its bits
reversed (1's become O's, 0's become 1's).

Examples:

I nt bart=7;
printf("%",--bart);
This outputs the number 6. The value of bart is now 6.

int Iisa=1;
printf("%",!lisa);
This outputs O (false).

1.5.3 Normal

There are severa normal operators which return the result defined for each:

expressionl + expression
The result of thisisthe sum of the two expressions.

expressionl - expression2
The result of thisisthe value of expression2 subtracted from expressionl.

expressionl * expression2
Theresult of thisisthe value of expressionl multiplied by expression2.

expressionl / expression2
The result of thisisthe value of expressionl divided by expression2.

expressionl % expression2
The result of thisisthe value of the remainder after dividing expressionl by expression2.
Also called the modulo operator.

expressionl & expression2

Returns a bitwise AND operation done on expressionl and expression2. Theresultisa
value the same size as the expressions with its bits modified using the following rules:
Both bits must be 1 (on) to result in 1 (on), otherwise the result is O (off).

ot 2[Rt

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.5.html (2 of 7)4/1/2008 8:38:25 AM

C Guide--1.5 Operators

0
0
0

=~ o] o
~| ol r| o

1

expressionl | expression2

Returns a bitwise OR operation done on expressionl and expression2. Theresultisa
value the same size as the expressions with its bits modified using the following rules:
Both bits must be 0 (off) to result in O (off), otherwise theresult is 1 (on).

el |e2 |Result
ofo[o
o1 1
1[0 1
11 1

expressionl " expression2

Returns a bitwise XOR operation done on expressionl and expression2. Theresultisa
value the same size as the expressions with its bits modified using the following rules: If
both bits are the same, then the result is O (off), otherwise the result is 1 (on).

el [e2 [Result
oo o
o1 1
1[0 1
11 o

expressionl >> shift value

Returns expressionl with its bits shifted to the right by the shift_value. The leftmost bits
are replaced with zerosif the value is nonnegative or unsigned. Thisresult is the integer
part of expressionl divided by 2 raised to the power of shift_value. If expressionl is
signed, then the result isimplementation specific.

expressionl << shift value

Returns expressionl with its bits shifted to the left by the shift_value. The rightmost bits
are replaced with zeros. Thisresult isthe value of expressionl multiplied by the value of 2
raised to the power of shift value. If expressionl is signed, then theresult is
implementation specific.

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.5.html (3 of 7)4/1/2008 8:38:25 AM

C Guide--1.5 Operators

1.5.4 Boolean

The boolean operators return either 1 (true) or O (false).

expressionl && expression2
Returns the logical AND operation of expressionl and expression2. The result is 1 (true)
If both expressions are true, otherwise the result is O (false).

el [e2 [Result
oo o
o1 o
1[0 o
11 1

expressionl || expression2
Returnsthe logical OR operation of expressionl and expression2. Theresult isO (false) if
bother expressions are false, otherwise the result is 1 (true).

el [e2 [Result
ofo[o
o1 1
1[0 1
11 1

expressionl < expression2
Returns 1 (true) if expressionl isless than expression2, otherwise the result is O (false).

expressionl > expression2
Returns 1 (true) if expressionl is greater than expression2, otherwise the result is O (false).

expressionl <= expression2
Returns 1 (true) if expressionl islessthan or equal to expression2, otherwise theresult is
0 (false).

expressionl >= expression2
Returns 1 (true) if expressionl is greater than or equal to expression2, otherwise the result
isO (false).

expressionl == expression2
Returns 1 (true) if expressionl isequal to expression2, otherwise the result is O (false).

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.5.html (4 of 7)4/1/2008 8:38:25 AM

C Guide--1.5 Operators

expressionl ! = expression2
Returns 1 (true) if expressionl is not equal to expression2, otherwise the result is O (false).

1.5.5 Assignment

An assignment operator stores the value of the right expression into the left expression.

expressionl = expression2
The value of expression2 is stored in expressionl.

expressionl * = expression2
The value of expressionl times expression2 is stored in expressionl.

expressionl / = expression2
The value of expressionl divided by expression2 is stored in expressionl.

expressionl % expression2
The value of the remainder of expressionl divided by expression2 is stored in expressionl.

expressionl += expression2
The value of expressionl plus expression2 is stored in expressionl.

expressionl - = expression2
The value of expressionl minus expression2 is stored in expressionl.

expressionl <<= shift_value
The value of expressionl's bits are shifted to the left by shift_value and stored in
expressionl.

expressionl >>= shift value
The value of expressionl's bits are shifted to the right by shift_value and stored in
expressionl.

expressionl &= expression2
The value of the bitwise AND of expressionl and expression2 is stored in expressionl.

el [e2 [Result
oo o
o1 o
1[0 o
11 1

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.5.html (5 of 7)4/1/2008 8:38:25 AM

C Guide--1.5 Operators

expressionl "= expression2
The value of the bitwise XOR of expressionl and expression2 is stored in expressionl.

el [e2 [Result
ofo] o
o1 1
1o 1
1[1] o

expressionl | = expression2

The value of the bitwise OR of expressionl and expression? is stored in expressionl.
el [e2 [Result
ofo] o
of1] 1
1(0[1
1(1] 1

1.5.6 Precedence

The operators have a set order of precedence during evaluation. Items encapsulated in parenthesis are
evaluated first and have the highest precedence. The following chart shows the order of precedence with
the items at the top having highest precedence.

Operator Name

! Logical NOT. Bang.

++ -- Increment and decrement operators.
*[% Multiplicative operators.

+ - Additive operators.

<< >> Shift operators.
< > <=>= |nequality comparators.
=== Equality comparators

& Bitwise AND.
n Bitwise XOR.
| Bitwise OR.

&& Logical AND.

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.5.html (6 of 7)4/1/2008 8:38:25 AM

C Guide--1.5 Operators

| Logica OR.
?. Conditional.
=op= Assignment.

Examples:

17 * 5 + 1(1+1) && 0
Evaluatesto O (false).

o+7<4
Evaluatesto 1 (true).

a<b<c

Same as (a<b)<c.

<g Previous | Table of Contents | Index | Next Section e
Section 1.6 Statements
1.4 References

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.5.html (7 of 7)4/1/2008 8:38:25 AM

C Guide--1.6 Statements

< Previous | Table of Contents | Index | Next Section
Section 1.7 Preprocessing
1.5 Operators Directives

1.6.11f

Theif statement evaluates an expression. If that expression is true, then a statement is executed. If an
else clause is given and if the expression is false, then the else's statement is executed.

Syntax:
I f(expression) statementl;
or

I f (expression) statementl;
el se statement?2 ;

Examples:
I f (1 oop<3) counter++;

I T (x==y)
X++:

el se

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.6.html (1 of 7)4/1/2008 8:39:51 AM

C Guide--1.6 Statements

1.6.2 switch

A switch statement allows a single variable to be compared with several possible constants. If the
variable matches one of the constants, then a execution jump is made to that point. A constant can not
appear more than once, and there can only be one default expression.

Syntax:

swtch (variable)
{
case const:
statenents...;
defaul t:
statenents...;

}
Examples:

switch(betty)
{
case 1:
printf("betty=1\n");
case 2:
printf("betty=2\n");
br eak;
case 3:
printf("betty=3\n");
br eak;
defaul t:
printf("Not sure.\n");

}

If betty is 1, then two lines are printed: betty=1 and betty=2. If betty is 2, then only one lineis printed:
betty=2. If betty=3, then only one lineis printed: betty=3. If betty does not equal 1, 2, or 3, then "Not
sure." is printed.

1.6.3 while

The while statement provides an iterative loop.

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.6.html (2 of 7)4/1/2008 8:39:51 AM

C Guide--1.6 Statements

Syntax:

whi | e(expression) statement...

statement is executed repeatedly as long as expression is true. The test on expression takes place before
each execution of statement.
Examples:

while(*pointer!="j"') pointer++,
whi | e(count er <5)

{

printf("counter=%", counter);
count er ++;

}

1.6.4 do

The do...while construct provides an iterative loop.
Syntax:

do statement... whi | e(expression) ;

statement is executed repeatedly as long as expression is true. The test on expression takes place after
each execution of statement.

Examples:

do {
bett y++;
printf("%", betty);
} while (betty<100);

1.6.5 for

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.6.html (3 of 7)4/1/2008 8:39:51 AM

C Guide--1.6 Statements

The for statement allows for a controlled loop.

Syntax:

f or (expressionl ; expression2 ; expression3) statement...
expressionl is evaluated before the first iteration. After each iteration, expression3 is evaluated. Both
expressionl and expression3 may be ommited. If expression2 is ommited, it is assumed to be 1.

statement is executed repeatedly until the value of expression2 is 0. The test on expression2 occurs
before each execution of statement.

Examples:

for (1 oop=0; | 00p<1000; | cop++)
printf("%\n",|oop);

Prints numbers 0 through 999.

for(x=3, y=5; x<100+y; X++, y--)
{
printf("%\n", x);
sone_function();

}

Prints numbers 3 through 53. some_function is called 51 times,

1.6.6 goto

The goto statement transfers program execution to some label within the program.

Syntax:
got o label;
I.;bel:
Examples:
got o ski p_point;

printf("This part was skipped.\n");
ski p_point:

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.6.html (4 of 7)4/1/2008 8:39:51 AM

C Guide--1.6 Statements

printf("H therel\n");

Only the text "Hi there!" is printed.

1.6.7 continue

The continue statement can only appear in aloop body. It causes the rest of the statement body in the
loop to be skipped.

Syntax:
conti nue;
Examples:

for (1 oop=0; | 00p<100; | oop++)

{
i f (1 oop==50)
conti nue;
printf("%\n",|oop);

}

The numbers O through 99 are printed except for 50.

] oe=0;
whi | e(j 0e<1000)
{
for (zi p=0; zi p<100; zi p++)
{
i f (] oe==500)
conti nue;
printf("%\n",joe);
}

] oet++;

}

Each number from 0 to 999 is printed 100 times except for the number 500 which is not printed at all.

1.6.8 break

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.6.html (5 of 7)4/1/2008 8:39:51 AM

C Guide--1.6 Statements

The break statement can only appear in a switch body or aloop body. It causes the execution of the
current enclosing switch or loop body to terminate.

Syntax:
br eak;
Examples:

swi t ch(henry)

{

case 1. print("H!\n");
br eak;

case 2: break;

}

If henry is equal to 2, nothing happens.

for (1 oop=0; | oop<50; | oop++)

{
i f (1 oop==10)
br eak;
printf("%\n",|oop);
}

Only numbers 0 through 9 are printed.

1.6.9 return

The return statement causes the current function to terminate. It can return a value to the calling
function. A return statement can not appear in afunction whose return type isvoid. If the value returned
has a type different from that of the function's return type, then the value is converted. Using the return
statement without an expression creates an undefined result. Reaching the } at the end of the function is
the same as returning without an expression.

Syntax:
ret ur n expression;

Examples:

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.6.html (6 of 7)4/1/2008 8:39:51 AM

C Guide--1.6 Statements

int alice(int x, int vy)

{ i f(x<y)
return(l);
el se
return(0);
}

< Previous | Table of Contents | Index | Next Section [
Section 1.7 Preprocessing
1.5 Operators Directives

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.6.html (7 of 7)4/1/2008 8:39:51 AM

C Guide--1.7 Preprocessing Directives

< Previous | Table of Contents | Index | Next Section
Section 2.1 assert.h
1.6 Statements

1.7.1 #if, #elif, #else, #endif

These preprocessing directives create conditional compiling parameters that control the compiling of the
source code. They must begin on a separate line.

Syntax:

#i f constant_expression
#el se
#endi f

or

#i f constant_expression
#el i f constant_expression
#endi f

The compiler only compiles the code after the #i f expression if the constant_expression evaluates to a
non-zero value (true). If the value is O (false), then the compiler skipsthe lines until the next #el se,
#el i f,or#endi f . If thereisamatching #el se, and the constant_expression evaluated to O (false),
then the lines between the #el se and the #endi f are compiled. If thereisamatching #el i f , and the
preceding #i f evaluated to false, then the constant_expression after that is evaluated and the code
between the#el i f andthe#endi f iscompiled only if this expression evaluates to a non-zero value

(true).
Examples:

I nt mai n(voi d)
{
#if 1
printf("Yabba Dabba Do!\n");
#el se
printf("Z p-Bang!\n");
#endi f
return O;

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.7.html (1 of 5)4/1/2008 8:39:51 AM

C Guide--1.7 Preprocessing Directives
Only "Y abba Dabba Do!" is printed.

I nt mai n(voi d)
{
#if 1
printf (" Checkpointl1l\n");
#elif 1
printf (" Checkpoint2\n");
#endi f
return O;

}

Only "Checkpointl" is printed. Note that if the first lineis#if O, then only "Checkpoint2" would be
printed.

#if ==1

printf("Version 1.0");
#eli f OS==2

printf("Version 2.0");
#el se

printf("Version unknown");
#endi f

Prints according to the setting of OS which is defined with a#define,

1.7.2 #define, #undef, #ifdef, #ifndef

The preprocessing directives#def i ne and #undef allow the definition of identifiers which hold a
certain value. These identifiers can simply be constants or a macro function. The directives #i f def and
#i f ndef allow conditional compiling of certain lines of code based on whether or not an identifier has
been defined.

Syntax:

#def i ne identifier replacement-code
#undef identifier

#i f def identifier
#el seor#tel i f
#endi f

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.7.html (2 of 5)4/1/2008 8:39:51 AM

C Guide--1.7 Preprocessing Directives

#i f ndef identifier
#el se ort#tel i f
#endi f

#i f def identifier isthesameis#i f defi ned(identifier) .

#i f ndef identifier isthesameas#i f ! defi ned(identifier) .

Anidentifier defined with #def i ne isavailable anywhere in the source code until a
#undef isreached.

A function macro can be defined with #def i ne in the following manner:

#def i ne identifier(parameter-list) (replacement-text)
The valuesin the parameter-list are replaced in the replacement-text.

Examples:

#define PI 3.141
printf("%",Pl);
#def i ne DEBUG
#i f def DEBUG
printf("This is a debug nessage.");
#endi f

#define QU CK(x) printf("%\n", x);
QU CK("HI ™)

#define ADD(Xx, y) X + Yy
z=3 * ADD(5, 6)

This evaluatesto 21 due to the fact that multiplication takes precedence over addition.

#define ADD(X,y) (x + vy)
z=3 * ADD(5, 6)

This evaluates to 33 due to the fact that the summation is encapsulated in parenthesis which takes
precedence over multiplication.

1.7.3 #include

The#i ncl ude directive allows external header files to be processed by the compiler.

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.7.html (3 of 5)4/1/2008 8:39:51 AM

C Guide--1.7 Preprocessing Directives

Syntax:

#i ncl ude <header-file>
or

#i ncl ude " source-file"

When enclosing the file with < and >, then the implementation searches the known header directories for
the file (which isimplementation-defined) and processes it. When enclosed with double quotation
marks, then the entire contents of the source-fileis replaced at this point. The searching manner for the
file isimplementation-specific.

Examples:

#i ncl ude <stdi o. h>
#i ncl ude "ny_header. h"

1.7.4 #line

The#l i ne directive alows the current line number and the apparent name of the current sourcecode
filename to be changed.

Syntax:
#| i ne line-number filename

Note that if the filename is not given, then it stays the same. The line number on the current lineis one
greater than the number of new-line characters (so the first line number is 1).
Examples:

#l i ne 50 user.c

#l i ne 23

1.7.5 #error

The#er r or directive will cause the compiler to halt compiling and return with the specified error
message.

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.7.html (4 of 5)4/1/2008 8:39:51 AM

C Guide--1.7 Preprocessing Directives

Syntax:

#err or message
Examples:
#i f ndef VERSI ON

#error Version nunber not specified.
#endi f

1.7.6 #pragma

This#pr agna directive allows adirective to be defined. Its effects are implementation-defined. If the
pragma is not supported, then it isignored.

Syntax:

#pr agnma directive

1.7.7 Predefined Macros

The following macros are already defined by the compiler and cannot be changed.

__LINE__ A decima constant representing the current line number.
__FILE__ A string representing the current name of the source codefile.

__ DATE__ A string representing the current date when compiling began for the current sourcefile. It
isin the format "mmm dd yyyy", the same as what is generated by the asctime function.

__TIME__ A string literal representing the current time when cimpiling began for the current source
file. Itisin the format "hh:mm:ss", the same as what is generated by the asctime function.

__STDC__ Thedecimal constant 1. Used to indicate if thisis a standard C compiler.

< Previous | Table of Contents | Index | Next Section [
Section 2.1 assert.h
1.6 Statements

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/1.7.html (5 of 5)4/1/2008 8:39:51 AM

C Guide--2.1 assert.h

< Previous | Table of Contents | Index | Next Section
Section 2.2 ctype.h
1.7 Preprocessing

Directives

2.1 assert.h

The assert header is used for debugging purposes.

Macros:
assert();
External References:

NDEBUG

2.1.1 assert

Declaration:

voi d assert (i nt expression);

The assert macro allows diagnostic information to be written to the standard error file.

If expression evaluatesto O (false), then the expression, sourcecode filename, and line number are sent
to the standard error, and then calls the abort function. If the identifier NDEBUG ("'no debug") is defined

with #def i ne NDEBUG then the macro assert does nothing.

Common error outputting isin the form:

Assertion fail ed: expression, fil e filename,

Example:

#i ncl ude<assert. h>

voi d open_record(char *record_nane)

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.1.html (1 of 2)4/1/2008 8:39:50 AM

| i ne line-number

C Guide--2.1 assert.h

{

assert(record_nane! =NULL) ;
/* Rest of code */

}

I nt mai n(voi d)
{
open_recor d(NULL) ;

}

< Previous | Table of Contents | Index | Next Section [
Section 2.2 ctype.h
1.7 Preprocessing

Directives

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.1.html (2 of 2)4/1/2008 8:39:50 AM

C Guide--2.2 ctype.h

< Previous

Section

2.1 assert.h

| Table of Contents | Index |

Next Section

2.3 errno.h

2.2 ctype.h

The ctype header is used for testing and converting characters. A control character refers to a character
that is not part of the normal printing set. In the ASCII character set, the control characters are the
characters from 0 (NUL) through Ox1F (US), and the character Ox7F (DEL). Printable characters are
those from 0x20 (space) to OX7E (tilde).

Functions;

sal num() ;
sal pha();
scntrl ();
sdigit();
sgraph();
sl ower () ;
sprint();
spunct () ;
sspace();
supper () ;
sxdigit();
tol ower () ;
t oupper () ;

2.2.11s... Functions

Declarations:

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.2.html (1 of 3)4/1/2008 8:39:51 AM

nt
nt
nt
nt
nt
nt
nt
nt

sal nun{i
sal pha(i
scntrl (i
sdigit(i
sgraph(i
sl ower (i
sprint (i
spunct (i

nt

nt
nt
nt
nt

nt

character) ;
character) ;
character) ;
character) ;
character) ;
character) ;
character) ;
character) ;

C Guide--2.2 ctype.h

I nt isspace(int character) ;
i nt isupper(int character) ;
I nt isxdigit(int character);

Theis... functionstest the given character and return a nonzero (true) result if it satisfies the following
conditions. If not, then O (false) is returned.

Conditions;

I sal num aletter (AtoZ or atoz) or adigit (0to9)

| sal pha aletter (AtoZ or atoz)

I scntrl any control character (0x00 to Ox1F or Ox7F)

I sdigit adgit(0to9)

I sgraph any printing character except for the space character (0x21 to OX7E)

I sl ower alowercase letter (ato z)

I sprint any printing character (0x20 to Ox7E)

I spunct any punctuation character (any printing character except for space character or isalnum)
| sspace awhitespace character (space, tab, carriage return, new line, vertical tab, or formfeed)
| supper an uppercase letter (A to Z)

I sxdi gi t ahexadecimal digit (0to9, AtoF, oratof)

2.2.2 to... Functions

Declarations;

I nt tol ower (int character);
I nt toupper (int character);

Theto... functions provide a means to convert a single character. If the character matches the appropriate
condition, then it is converted. Otherwise the character is returned unchanged.

Conditions;

t ol ower If the character is an uppercase character (A to Z), then it is converted to lowercase (ato z)
t oupper If the character is alowercase character (ato z), then it is converted to uppercase (A to Z)
Example:

#i ncl ude<ct ype. h>

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.2.html (2 of 3)4/1/2008 8:39:51 AM

C Guide--2.2 ctype.h

#i ncl ude<st di 0. h>
#i ncl ude<string. h>

I nt mai n(voi d)

{

I nt | oop;
char string[]="THIS IS A TEST";

for (Il oop=0; | cop<strlen(string);| oop++)
string[l oop] =tol ower(string[loop]);

printf("%\n",string);

return O;
}
< Previous | Table of Contents | Index | Next Section [
Section 2.3 erno.h
2.1 assert.h

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.2.html (3 of 3)4/1/2008 8:39:51 AM

C Guide--2.3 errno.h

< Previous | Table of Contents | Index | Next Section
Section 2.4 float.h
2.2 ctype.h

2.3 errno.h

The errno header is used as a general error handler.
Macros:

EDOM
ERANGE

Variables:

errno

2.3.1 EDOM

Declaration:
#def i ne EDOMsome value

EDOMis an identifier macro declared with #def i ne. Its value represents adomain error which is
returned by some math functions when a domain error occurs.

2.3.2 ERANGE

Declaration:
#def i ne ERANGE some value

ERANGE is an identifier macro declared with #def i ne. Its value represents arange error whichis
returned by some math functions when arange error occurs.

2.3.3 errno

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.3.html (1 of 2)4/1/2008 8:39:51 AM

C Guide--2.3 errno.h

Declaration:
int errno;

Theer r no variable has avalue of zero at the beginning of the program. If an error occurs, then this
variableis given the value of the error number.

<g Previous | Table of Contents | Index | Next Section
Section 2.4 float.h
2.2 ctype.h

file:///C)/Documents¥%20and%20Settings/sshai kot/Desktop/c_guide/c_guide/2.3.html (2 of 2)4/1/2008 8:39:51 AM

C Guide--2.4 float.h

< Previous
Section
2.3 errno.h

| Table of Contents | Index | Next Section
2.5 limits.h

2.4 float.h

The float header defines the minimum and maximum limits of floating-point number values.

2.4.1 Defined Values

A floating-point number is defined in the following manner:

sign value E exponent

Where sign is plus or minus, value is the value of the number, and exponent is the value of the exponent.

The following values are defined with the #def i ne directive. These values are implementation-
specific, but may not be any lower than what is given here. Note that in all instances FLT refersto type
float, DBL refersto double, and LDBL refersto long double.

Defines the way floating-point numbers are rounded.

- 1 indeterminable
0 toward zero

FLT_ROUNDS
1 tonearest
2 toward positive infinity
3 toward negative infinity
FLT RADI X 2 Defines the base (radix) representation of the exponent (i.e. base-2 is

binary, base-10 is the normal decimal representation, base-16 is Hex).

FLT_MANT DI G
DBL_MANT DI G
LDBL_MANT DI G

Defines the number of digitsin the number (inthe FLT_RADI X base).

FLT DIG 6
DBL_DI G 10
LDBL_DI G 10

The maximum number decimal digits (base-10) that can be represented
without change after rounding.

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.4.html (1 of 2)4/1/2008 8:39:51 AM

C Guide--2.4 float.h

FLT M N_EXP
DBL_M N_EXP
LDBL_M N_EXP

The minimum negative integer value for an exponent in base
FLT_RADIX.

FLT M N_10_EXP - 37
DBL_M N_10_EXP - 37
LDBL_M N _10_EXP - 37

The minimum negative integer value for an exponent in base 10.

FLT _MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

The maximum integer value for an exponent in base FLT_RADIX.

FLT_MAX_10_EXP +37
DBL_MAX_ 10 EXP +37
LDBL_MAX_10_EXP +37

The maximum integer value for an exponent in base 10.

FLT MAX 1E+37
DBL_MAX 1E+37
LDBL_MAX 1E+37

Maximum finite floating-point value.

FLT_EPSI LON 1E-5
DBL_EPSI LON 1E-9
LDBL_EPSI LON 1E-9

Least significant digit representable.

FLT_M N 1E-37
DBL_M N 1E-37
LDBL_M N 1E- 37

Minimum floating-point value.

-‘ Previous

Section
2.3 errno.h

| Table of Contents | Index | Next Section [

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.4.html (2 of 2)4/1/2008 8:39:51 AM

2.5 limits.h

C Guide--2.5 limits.h

-q Previous
Section

2.4 float.h

| Table of Contents | Index | Next Section [

2.6 locale.h

2.5 limits.h

The limits header defines the characteristics of variable types.

2.5.1 Defined Values

The following values are defined with the #def i ne directive. These values are implementation-
specific, but may not be any lower than what is given here.

CHAR BIT 8

Number of bitsin abyte.

SCHAR M N - 127

Minimum value for asigned char.

SCHAR MAX +127

Maximum value for asigned char.

UCHAR_MAX 255

Maximum value for an unsigned char.

CHAR M N
CHAR MAX

These define the minimum and maximum values for achar. If achar is
being represented as a signed integer, then their values are the same as
the signed char (SCHAR) values. Otherwise CHAR_M Nis 0 and

CHAR MAX isthe same as UCHAR MAX.

MB_LEN MAX 1

Maximum number of bytesin a multibyte character.

SHRT_M N -32767

Minimum value for a short int.

SHRT_MAX +32767

Maximum value for a short int.

USHRT_MAX 65535

Maximum value for an unsigned short int.

INT_M N - 32767

Minimum value for an int.

| NT_MAX +32767

Maximum value for an int.

U NT_MAX 65535

Maximum value for an unsigned int.

L M N - Minimum value for along int
2147483647 g Int.

- VA Maximum value for along int
+2147483647 g Int.

ULONG MAX _ _ _
4294967295 Maximum value for an unsigned long int.

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.5.html (1 of 2)4/1/2008 8:41:27 AM

C Guide--2.5 limits.h

< Previous | Table of Contents | Index | Next Section |
Section 2.6 locale.h
2.4 float.h

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.5.html (2 of 2)4/1/2008 8:41:27 AM

C Guide--2.6 locale.h

< Previous | Table of Contents | Index | Next Section
Section 2.7 math.h
2.5 limits.h

2.6 locale.h

The locale header is useful for setting location specific information.
Variables:

struct | conv
Macros:

NUL L
LC ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMVERI C
LC TI ME

Functions:

| ocal econv();
setl ocal e();

2.6.1 Variables and Definitions

Thel conv structure contains the following variables in any order. The use of this structure is described
in 2.6.3 localeconv.

char *deci mal _point;
char *thousands_sep;
char *groupi ng;

char *int_curr_synbol;
char *currency_synbol ;
char *non_deci mal _poi nt;
char *non_t housands_sep;

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.6.html (1 of 6)4/1/2008 8:41:28 AM

C Guide--2.6 locale.h

char *non_groupi ng;
char *positive_sign;
char *negative_sign;
char int frac digits;
char frac _digits;
char p_cs_precedes;
char p_sep_by space;
char n_cs_precedes;
char n_sep_by space;
char p_sign_posn;
char n_sign_posn;

The LC_ macros are described in 2.6.2 setlocale. NULL isthe value of anull pointer constant.

2.6.2 setlocale

Declaration:
char *setl ocal e(i nt category, const char *locale);
Sets or reads |ocation dependent information.

category can be one of the following:

LC ALL Set everything.

LC COLLATE Affectsstrcoll and strxfrm functions.

LC CTYPE Affects al character functions.

LC_MONETARY Affects the monetary information provided by localeconv function.

Affects decimal-point formatting and the information provided by | ocal econv
function.

LC TI ME Affects the strftime function.

LC_NUMERI C

A value of "C" for locale sets the locale to the normal C translation environment settings (default). A
null value ("") sets the native environment settings. A null pointer (NULL) causes setlocale to return a
pointer to the string associated with this category for the current settings (no changes occur). All other
values are implementation-specific.

After asuccessful set, set | ocal e returns a pointer to a string which represents the previous location
setting. On failureit returns NULL.

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.6.html (2 of 6)4/1/2008 8:41:28 AM

C Guide--2.6 locale.h

Example:

#i ncl ude<l ocal e. h>
#i ncl ude<st di 0. h>

I nt mai n(voi d)

{

char *ol d_| ocal e;

ol d_| ocal e=setl ocal e(LC ALL,"C");
printf("The preivous setting was %.\n",old_l ocal e);
return O;

}
2.6.3 localeconv

Declaration:
struct | conv *l ocal econv(void);
Sets the structure | conv to represent the current location settings.

The string pointers in the structure may point to anull string (*") which indicates that the value is not
avallable. The char types are nonnegative numbers. If the value is CHAR _MAX, then the value is not
available.

| conv variables:

char *deci nal _point Decimal point character used for non-monetary values.
char *thousands_sep Thousands place separator character used for non-monetary values.

A string that indicates the size of each group of digitsin non-

monetary quantities. Each character represents an integer value
char *groupi ng which designates the number of digits in the current group. A value
of 0 means that the previous value is to be used for the rest of the
groups.
A string of the international currency symbols used. The first three
characters are those specified by 1SO 4217:1987 and the fourth is
the character which separates the currency symbol from the
monetary quantity.

char *currency_synbol The local symbol used for currency.

char *int_curr_synbol

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.6.html (3 of 6)4/1/2008 8:41:28 AM

C Guide--2.6 locale.h

char *non_deci mal _poi nt The decimal point character used for monetary values.
*non_t housands_sep The thousands place grouping character used for monetary values,

char

char

char
char

char

char

char

char

char

char

char

char

*on_groupi ng
*positive_sign

*negati ve_sign

int frac digits

frac_digits

p_cs_precedes

p_sep_by space

n_cs_precedes

n_sep_by space

p_sign_posn

n_si gn_posn

A string whose elements define the size of the grouping of digitsin
monetary values. Each character represents an integer value which
designates the number of digitsin the current group. A value of O
means that the previous value is to be used for the rest of the groups.

The character used for positive monetary values.
The character used for negative monetary values.

Number of digits to show after the decimal point in international
monetary values.

Number of digitsto show after the decimal point in monetary
values.

If equal to 1, thenthecur rency_synbol appearsbeforea
positive monetary value. If equal to O, then the
currency_synbol appears after a positive monetary value.

If equal to 1, thenthecur rency_synbol isseparated by a space
from a positive monetary value. If equal to O, then there is no space
between thecur r ency_synbol and apositive monetary value.

If equal to 1, thenthecur rency_synbol precedesanegative
monetary value. If equal to O, thenthecur r ency_synbol
succeeds a negative nonetary val ue.

If equal to 1, thenthecur rency_synbol isseparated by a space
from a negative monetary value. If equal to O, then there is no space
betweenthecur rency_synbol and anegative monetary value.
Represents the position of the posi ti ve_si gn inapositive
monetary value.

Represents the position of the negat i ve_si gn in anegative
monetary value.

Thefollowing values are used for p_si gn_posn andn_si gn_posn:

0 Parentheses encapsulate the value and the currency_symbol.

1 The sign precedes the value and currency _symbol.

2 The sign succeeds the value and currency _symbol.

3 The sign immediately precedes the value and currency_symbol.
4 The sign immediately succeeds the value and currency _symbol.

Example:

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.6.html (4 of 6)4/1/2008 8:41:28 AM

C Guide--2.6 locale.h

#i ncl ude<l ocal e. h>
#i ncl ude<st di 0. h>
I nt mai n(voi d)
{
struct |conv |ocal e _structure;
struct |l conv *local e ptr=& ocal e_structure;

| ocal e_ptr=I coal econv();

printf("Decinmal point: %",| ocale ptr-
>deci mal _point);

printf("Thousands Separ at or: %",|l ocale ptr-
>t housands_sep) ;

printf ("G ouping: %",|l ocale ptr-
>gr oupi ng) ;

printf("lInternational Currency Synbol: %",|l ocale ptr-
>i nt_curr_synbol);

printf("Currency Synbol: %",| ocale ptr-
>currency_synbol) ;

printf("Mnetary Deci mal Point: %",|l ocale ptr-
>non_deci mal _poi nt);

printf("Mnetary Thousands Separ at or: %",|l ocale ptr-
>non_t housands_sep) ;

printf("Mnetary G ouping: %",| ocale ptr-
>non_gr oupi ng) ;

printf("Mnetary Positive Sign: %",|l ocale ptr-
>positive_sign);

printf("Mnetary Negative Sign: %",|l ocale ptr-
>negative_sign);

printf("Mnetary Intl Decimal Digits: %", | ocal e _ptr-
>int _frac _digits);

printf("Mnetary Decinmal Digits: %", | ocal e _ptr-
>frac_digits);

printf("Mnetary + Precedes: %", | ocal e _ptr-
>p_cs_precedes);

printf("Mnetary + Space: %", | ocal e _ptr-
>p_sep_by space);

printf("Mnetary - Precedes: %", | ocal e _ptr-
>n_cs_precedes);

printf("Mnetary - Space: %", | ocal e _ptr-
>n_sep_by space);

printf("Mnetary + Sign Posn: %", | ocal e _ptr-

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.6.html (5 of 6)4/1/2008 8:41:28 AM

C Guide--2.6 locale.h

>p_sign_posn);
printf("Mnetary - Sign Posn: %", | ocal e ptr-
>n_si gn_posn);

}

< Previous | Table of Contents | Index | Next Section [
Section 2.7 math.h
2.5 limits.h

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.6.html (6 of 6)4/1/2008 8:41:28 AM

C Guide--2.7 math.h

< Previous

Section

2.6 locale.h

| Table of Contents | Index |

Next Section

2.8 setimp.h

2.7 math.h

The math header defines several mathematic functions.

Macros:.

HUGE_ VAL

Functions:

acos() ;
asin();
atan() ;

atan2();

ceil();
cos();
cosh();

exp() ;
fabs();

floor();

frod() ;

frexp();
| dexp();

1 og();

1 0g10() ;

modf () ;
pow() ;
sin();
sinh();
sqrt();
tan();
tanh();

2.7.1 Error Conditions

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.7.html (1 of 9)4/1/2008 8:41:27 AM

C Guide--2.7 math.h

All math.h functions handle errors similarly.

In the case that the argument passed to the function exceeds the range of that function, then the variable
er r no isset to EDOM The value that the function returns is implementation specific.

In the case that the value being returned is too large to be represented in a double, then the function
returns the macro HUGE VAL, and sets the variable er r no to ERANGE to represent an overflow. If the
valueistoo small to be represented in a double, then the function returns zero. In this case whether or
not er r no is set to ERANCE is implementation specific.

er r no, EDOM and ERANGE are defined in the errno.h header.

Note that in all caseswhen it is stated that there is no range limit, it isimplied that the value is limited by
the minimum and maximum values of type double.

2.7.2 Trigonometric Functions

2.7.2.1 acos

Declaration:
doubl e acos(doubl e x);
Returns the arc cosine of x in radians.
Range:

The value x must be within the range of -1 to +1 (inclusive). The returned value isin the
range of O to pi (inclusive).

2.7.2.2 asin

Declaration:
doubl e asi n(doubl e Xx);
Returnsthe arc sine of x in radians.

Range:

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.7.html (2 of 9)4/1/2008 8:41:27 AM

C Guide--2.7 math.h

The value of x must be within the range of -1 to +1 (inclusive). The returned valueisin
the range of -p/2 to +p/2 (inclusive).

2.7.2.3 atan

Declaration:
doubl e at an(doubl e X);

Returns the arc tangent of x in radians.

Range:
The value of x has no range. The returned value is in the range of -p/2 to +p/2 (inclusive).
2.7.2.4 atan?
Declaration:
doubl e atan2(doublyy, doubleXx);
Returns the arc tangent in radians of y/x based on the signs of both values to determine the
correct quadrant.
Range:
Both y and x cannot be zero. The returned value isin the range of -p/2 to +p/2 (inclusive).
2.7.2.5 cos
Declaration:
doubl e cos(doubl e x);
Returns the cosine of aradian angle x.
Range:

The value of x has no range. The returned value isin the range of -1 to +1 (inclusive).

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.7.html (3 of 9)4/1/2008 8:41:27 AM

C Guide--2.7 math.h
2.7.2.6 cosh
Declaration:
doubl e cosh(doubl e x);
Returns the hyperbolic cosine of x.
Range:

Thereisno range limit on the argument or return value.

2.7.2.7 sin

Declaration:
doubl e si n(doubl e x);
Returns the sine of aradian angle x.
Range:

The value of x has no range. The returned value is in the range of -1 to +1 (inclusive).

2.7.2.8 sinh

Declaration:
doubl e si nh(doubl e x) ;
Returns the hyperbolic sine of x.
Range:

There is no range limit on the argument or return value.

2.7.2.9 tan
Declaration:

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.7.html (4 of 9)4/1/2008 8:41:27 AM

C Guide--2.7 math.h

doubl e tan(doubl e x);
Returns the tangent of aradian angle x.
Range:

Thereisno range limit on the argument or return value.

2.7.2.10 tanh
Declaration:
doubl e tanh(doubl e x) ;
Returns the hyperbolic tangent of x.
Range:

The value of x has no range. The returned value is in the range of -1 to +1 (inclusive).

2.7.3 Exponential, Logarithmic, and Power Functions

2.7.3.1 exp

Declaration:

doubl e exp(doubl e x);

Returns the value of e raised to the xth power.
Range:

There is no range limit on the argument or return value.

2.7.3.2 frexp

Declaration:

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.7.html (5 of 9)4/1/2008 8:41:27 AM

C Guide--2.7 math.h
doubl e frexp(doubl ex, int *exponent);
The floating-point number x is broken up into a mantissa and exponent.

The returned value is the mantissa and the integer pointed to by exponent is the exponent.
Theresultant valueisx=mant i ssa * 2”"exponent.

Range:

The mantissaisin the range of .5 (inclusive) to 1 (exclusive).
2.7.3.3 ldexp
Declaration:

doubl e | dexp(doubl e x, i nt exponent) ;

Returns x multiplied by 2 raised to the power of exponent.

X*2"exponent
Range:

There is no range limit on the argument or return value.
2.7.3.4 log
Declaration:

doubl e | og(doubl e x);

Returns the natural logarithm (base-e logarithm) of x.
Range:

There is no range limit on the argument or return value.
2.7.3.510g10
Declaration:

doubl e | 0g1l0(doubl e Xx) ;

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.7.html (6 of 9)4/1/2008 8:41:27 AM

C Guide--2.7 math.h

Returns the common logarithm (base-10 logarithm) of x.

Range:
There is no range limit on the argument or return value.
2.7.3.6 modf
Declaration:
doubl e nodf (doubl e x, doubl e *integer) ;
Breaks the floating-point number x into integer and fraction components.
The returned value is the fraction component (part after the decimal), and sets integer to
the integer component.
Range:
There is no range limit on the argument or return value.
2.7.3.7 pow
Declaration:
doubl e pow doubl e x, doubl ey);
Returns X raised to the power of y.
Range:
x cannot be negativeif y isafractiona value. x cannot be zero if y islessthan or equal to
zero.
2.7.3.8 sqrt
Declaration:

doubl e sqgrt (doubl e x);

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.7.html (7 of 9)4/1/2008 8:41:27 AM

C Guide--2.7 math.h

Returns the square root of x.
Range:

The argument cannot be negative. The returned value is aways positive.

2.7.4 Other Math Functions

2.7.4.1 ceil

Declaration:

doubl e cei |l (doubl e x) ;

Returns the smallest integer value greater than or equal to x.
Range:

Thereisno range limit on the argument or return value.

2.7.4.2 fabs
Declaration:
doubl e fabs(doubl e x);

Returns the absolute value of x (a negative value becomes positive, positive valueis
unchanged).

Range:

Thereis no range limit on the argument. The return value is always positive.

2.7.4.3 floor

Declaration:

doubl e fl oor (doubl e Xx);

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.7.html (8 of 9)4/1/2008 8:41:27 AM

C Guide--2.7 math.h

Returns the largest integer value less than or equal to x.
Range:

Thereisno range limit on the argument or return value.

2.7.4.4 fmod

Declaration:
doubl e fnod(doubl e x, doubl ey);
Returns the remainder of x divided by y.
Range:

Thereisno range limit on the return value. If y is zero, then either arange error will occur
or the function will return zero (implementation-defined).

< Previous | Table of Contents | Index | Next Section [
Section 2.8 setjmp.h
2.6 locale.h

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.7.html (9 of 9)4/1/2008 8:41:27 AM

C Guide--2.8 setjmp.h

< Previous | Table of Contents | Index | Next Section
Section 2.9signal.h
2.7 math.h

2.8 setjmp.h
The setjmp header is used for controlling low-level calls and returns to and from functions.

Macros:.

setj m();

Functions;

| ongj np() ;

Variables:
t ypedef | np_buf
2.8.1 Variables and Definitions

Thevariabletypej np_buf isan array type used for holding information for set j np and | ongj np.

2.8.2 setjmp

Declaration:
I nt setj np(j np_buf environment) ;

Saves the environment into the variable environment. If a non-zero value is returned, then this indicates
that the point in the sourcecode was reached by al ongj np. Otherwise zero is returned indicating the
environment has been saved.

2.8.3 longimp

Declaration:

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.8.html (1 of 3)4/1/2008 8:41:27 AM

C Guide--2.8 setjmp.h

voi d | ongj np(j np_buf environment, i nt value) ;

Causes the environment to be restored from aset | np call where the environment variable had been
saved. It causes execution to goto the set | np location asif set j np had returned the value of the
variable value. The variable value cannot be zero. However, if zero is passed, then 1 isreplaced. If the

function where set j np was called has terminated, then the results are undefined.
Example:

#i ncl ude<setj np. h>
#i ncl ude<st di 0. h>

voi d sonme_function(jnp_buf);

I nt mai n(voi d)
{
I nt val ue;
j mp_buf environnent buffer;

val ue=setj np(envi ronnent buffer);
I f (val ue! =0)
{
printf("Reached this point froma longjnp with val ue=%.
\n", val ue) ;
exit(0);
}
printf("Calling function.\n");
sone_function(environnment buffer);

return O;
}
voi d sonme_function(jnp_buf env_buf)
{
| ongj np(env_buf, 5);
}

The output from this program should be:

Cal ling function.
Reached this point froma longjnp wth val ue=5.

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.8.html (2 of 3)4/1/2008 8:41:27 AM

C Guide--2.8 setjmp.h

< Previous | Table of Contents | Index | Next Section
Section 2.9signal.h
2.7 math.h

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.8.html (3 of 3)4/1/2008 8:41:27 AM

C Guide--2.9 signal.h

< Previous | Table of Contents | Index | Next Section
Section 2.10 stdarg.h
2.8 setjmp.h

2.9 signal.h

The signal header provides a means to handle signals reported during a program's execution.
Macros:

SI G DFL
SI G ERR
SIGIGN
S| GABRT
SI GFPE
SIG LL
SI G NT
S| GSEGV
S| GTERM

Functions;

signal ();
rai se();

Variables:

typedef sig atomc_t

2.9.1 Variables and Definitions

Thesi g _atom c_t typeisof typei nt andisused asavariableinasignal handler. The SI G _
macros are used with the signal function to define signal functions.

S| G_DFL Default handler.
SI G_ERR Representsasignal error.
SI G_| GN Signal ignore.

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.9.html (1 of 3)4/1/2008 8:41:27 AM

C Guide--2.9 signal.h

The SI Gmacros are used to represent a signal number in the following conditions:

SI GABRT Abnormal termination (generated by the abort function).

Floating-point error (error caused by division by zero, invalid operation,
etc.).

SI A LL Illega operation (instruction).

SI A NT Interactive attention signal (such as ctrl-C).

SI GSEGV Invalid access to storage (segment violation, memory violation).
SI GTERM Termination request.

SI G-PE

2.9.2 signal
Declaration:
void (*signal (int sig, void (*func)(int)))(int);

Controls how asignal is handled. sig represents the signal number compatible with the SI G macros.
func is the function to be called when the signal occurs. If funcis SI G_DFL, then the default handler is
called. If funcis SI G_| G\, then the signal isignored. If func pointsto afunction, then when asignal is
detected the default functionis called (SI G_DFL), then the function is called. The function must take
one argument of typei nt which represents the signal number. The function may terminate with
return,abort,exit,orl ongj np. When the function terminates execution resumes where it was
interrupted (unless it was a SI G-PE signal in which case the result is undefined).

If the call to signal is successful, then it returns a pointer to the previous signal handler for the specified
signal type. If the call fails, then SI G_ERRIisreturned and er r no is set appropriately.

2.9.3 raise

Declaration

Int raise(int sig);
Causes signal sig to be generated. The sig argument is compatible with the SI Gmacros.
If the call is successful, zero is returned. Otherwise a nonzero value is returned.

Example:

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.9.html (2 of 3)4/1/2008 8:41:27 AM

C Guide--2.9 signal.h

#i ncl ude<si gnal . h>
#i ncl ude<st di 0. h>

voi d catch_function(int);

I nt mai n(voi d)

{
I f(signal (SIA NT, catch _function)==SI G ERR)
{
printf("An error occured while setting a signal handler.
\n");

exit(0):
}

printf("Raising the interactive attention signal.\n");
I f(raise(SI A NT)!=0)

{
printf("Error raising the signal.\n");
exit(0);

}

printf("Exiting.\n");

return O;

}

voi d catch_function(int signal)

{

printf("Interactive attention signal caught.\n");

}

The output from the program should be (assuming no errors):

Rai sing the interactive attention signal.
Interactive attention signal caught.

Exi ting.

<g Previous | Table of Contents | Index | Next Section [
Section 2.10 stdarg.h
2.8 setjmp.h

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.9.html (3 of 3)4/1/2008 8:41:27 AM

C Guide--2.10 stdarg.h

< Previous | Table of Contents | Index | Next Section
Section 2.11 stddef.h
2.9 signal.h

2.10 stdarg.h

The stdarg header defines several macros used to get the arguments in a function when the number of
arguments is not known.

Macros:
va start();
va_arg();
va_end();

Variables:

typedef va_ |i st

2.10.1 Variables and Definitions

Theva_|i st typeisatype suitable for use in accessing the arguments of a function with the stdarg
macros.

A function of variable argumentsis defined with the ellipsis(, . . .) at the end of the parameter list.

2.10.2 va_start

Declaration:
void va_start(va_list ap, last arg);

Initializes ap for use withtheva_ar g and va_end macros. last_arg is the last known fixed argument
being passed to the function (the argument before the ellipsis).

Notethat va_st art must be called beforeusingva_ar g andva_end.

2.10.3 va_arg

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.10.html (1 of 3)4/1/2008 8:41:28 AM

C Guide--2.10 stdarg.h

Declaration:

type va_arg(va_li st ap, type);

Expands to the next argument in the paramater list of the function with type type. Note that ap must be
initialized withva_st ar t . If there is no next argument, then the result is undefined.

2.10.4 va_end

Declaration:
void va_end(va_li st ap);

Allows afunction with variable arguments which used theva_st art macroto return. If va_end is
not called before returning from the function, the result is undefined. The variable argument list ap may
no longer be used after acall tova_end without acall tova_start .

Example:

#i ncl ude<st darg. h>
#i ncl ude<st di 0. h>

void sun(char *, int, ...);

i nt mai n(voi d)

{
sun("The sum of 10+15+13 is %l.\n", 3, 10, 15, 13);
return O;

}

voi d sum(char *string, int numargs, ...)
{

I nt sumeO;

va | ist ap;

I nt | oop;

va_start (ap, num args);

for (I oop=0; | oop<num ar gs; | oop++)
sum+r=va_arg(ap,int);

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.10.html (2 of 3)4/1/2008 8:41:28 AM

C Guide--2.10 stdarg.h

printf(string, sum;
va_end(ap);

}

< Previous | Table of Contents | Index | Next Section |
Section 2.11 stddef.h

2.9 signal.h

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.10.html (3 of 3)4/1/2008 8:41:28 AM

C Guide--2.11 stddef.h

< Previous | Table of Contents | Index | Next Section
Section 2.12 stdio.h
2.10 stdarg.h

2.11 stddef.h

The stddef header defines several standard definitions. Many of these definitions also appear in other
headers.

Macros:.

NULL
of fsetof ();

Variables:
typedef ptrdiff _t

t ypedef size t
t ypedef wchar t

2.11.1 Variables and Definitions

ptrdiff_t istheresult of subtracting two pointers.
si ze_t istheunsigned integer result of the sizeof keyword.
wchar _t isan integer type of the size of awide character constant.

NULL isthe value of anull pointer constant.

of f set of (type, member-designator)

This resultsin a constant integer of type si ze_t which isthe offset in bytes of a structure member
from the beginning of the structure. The member is given by member-designator, and the name of the
structureis given in type.

Example:

#1 ncl ude<st ddef . h>
#i ncl ude<st di 0. h>

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.11.html (1 of 2)4/1/2008 8:42:54 AM

C Guide--2.11 stddef.h

i nt mai n(voi d)

{

struct user{
char nane[50];
char alias[50];
int |evel;

}i

printf("level is the % byte in the user structure.\n"),
of f set of (struct user,|level));

}

The output should be:

| evel is the 100 byte in the user structure.

< Previous | Table of Contents | Index | Next Section [
Section 2.12 gtdio.h
2.10 stdarg.h

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.11.html (2 of 2)4/1/2008 8:42:54 AM

C Guide--2.12 stdio.h

<g Previous | Table of Contents | Index | Next Section e
Section 2.13 stdlib.h
2.11 stddef.h

2.12 stdio.h

The stdio header provides functions for performing input and outpui.
Macros:

NULL

_| OFBF

_ |1 OLBF

_ | ONBF
BUFSI Z
EOF
FOPEN_MAX
FI LENAVE _MAX
L _t npnam
SEEK CUR
SEEK END
SEEK SET
TMP_NMAX
stderr
stdin

st dout

Functions;

clearerr();
fclose();
feof ();
ferror();
fflush();
fget pos();
fopen();
fread();
freopen();
fseek();

f set pos();

file://IC|/Documents¥%20and%20Settings/sshai kot/Desktop/c_guide/c_guide/2.12.html (1 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

ftell();
fwite();
renmove() ;
renanme() ;
rew nd();
set buf () ;
set vbuf () ;
tmpfile();
t mpnam() ;
fprintf();
fscanf ();
printf();
scanf () ;
sprintf();
sscanf () ;
viprintf();
vprintf();
vsprintf();
fgetc();
fgets();
fputc();
fputs();
getc();
getchar () ;
gets();
putc();
put char () ;
puts();
ungetc();
perror();

Variables:

typedef size t
t ypedef FILE
t ypedef fpos t

2.12.1 Variables and Definitions

Si ze_t istheunsigned integer result of the sizeof keyword.
FI LE isatype suitable for storing information for afile stream.
f pos_t isatype suitable for storing any positionin afile.

file:///C|/Documents¥%20and%20Settings/sshai kot/Desktop/c_guide/c_guide/2.12.html (2 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

NULL isthe value of anull pointer constant.

_ | OFBF, _| OLBF, and _| ONBF are used in the setvbuf function.

BUFSI Z is an integer which represents the size of the buffer used by the setbuf function.
ECF is anegative integer which indicates an end-of-file has been reached.

FOPEN_MAX is an integer which represents the maximum number of files that the system
can guarantee that can be opened simultaneously.

FI LENAMVE _MAX is an integer which represents the longest length of a char array suitable
for holding the longest possible filename. If the implementation imposes no limit, then
this value should be the recommended maximum value.

L_t npnamisan integer which represents the longest length of a char array suitable for
holding the longest possible temporary filename created by the tmpnam function.

SEEK CUR, SEEK _END, and SEEK SET are used in the fseek function.

TMP_MAX is the maximum number of unique filenames that the function tmpnam can
generate.

stderr,stdin,andst dout arepointersto FI LE typeswhich correspond to the
standard error, standard input, and standard output streams.

2.12.2 Streams and Files

Streams facilitate away to create alevel of abstraction between the program and an input/output device.
This allows a common method of sending and receiving data amongst the various types of devices
avallable. There are two types of streams: text and binary.

Text streams are composed of lines. Each line has zero or more characters and are terminated by a new-
line character which is the last character in aline. Conversions may occur on text streams during input
and output. Text streams consist of only printable characters, the tab character, and the new-line
character. Spaces cannot appear before a newline character, although it is implementation-defined
whether or not reading atext stream removes these spaces. An implementation must support lines of up
to at least 254 characters including the new-line character.

Binary streams input and output datain an exactly 1:1 ratio. No conversion exists and all characters may
be transferred.

When a program begins, there are already three available streams. standard input, standard output, and
standard error.

Files are associated with streams and must be opened to be used. The point of I/O within afileis
determined by the file position. When afile is opened, the file position points to the beginning of thefile
unlessthefile is opened for an append operation in which case the position points to the end of thefile.
Thefile position follows read and write operations to indicate where the next operation will occur.

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (3 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

When afileis closed, no more actions can be taken on it until it is opened again. Exiting from the main
function causes all open files to be closed.

2.12.3 File Functions

2.12.3.1 clearerr

Declaration:
void clearerr(FILE *stream);

Clears the end-of -file and error indicators for the given stream. Aslong as the error indicator is s&t, all
stream operations will return an error until clearerr orr ew nd iscalled.

2.12.3.2 fclose
Declaration:

i nt fclose(FlLE *stream) ;
Closes the stream. All buffers are flushed.

If successful, it returns zero. On error it returns EOF.

2.12.3.3 feof
Declaration:
I nt feof (FILE *stream);

Tests the end-of-file indicator for the given stream. If the stream is at the end-of-file, then it returns a
nonzero value. If it isnot at the end of thefile, then it returns zero.

2.12.3.4 ferror

Declaration:

int ferror(FILE *stream);

file:///C)/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (4 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

Tests the error indicator for the given stream. If the error indicator is set, then it returns a nonzero value.
If the error indicator is not set, then it returns zero.

2.12.3.5 fflush

Declaration:
int fflush(FILE *stream) ;
Flushes the output buffer of a stream. If stream isanull pointer, then all output buffers are flushed.

If successful, it returns zero. On error it returns EOF.

2.12.3.6 fgetpos

Declaration:
I nt fgetpos(FlILE *stream, fpos_t *pos);
Getsthe current file position of the stream and writes it to pos.

If successful, it returns zero. On error it returns a nonzero value and stores the error number in the
variableer r no.

2.12.3.7 fopen

Declaration:
FI LE *fopen(const char *filename, const char *mode);

Opens the filename pointed to by filename. The mode argument may be one of the following constant
strings:

r read text mode

w write text mode (truncates file to zero length or creates new file)

a append text mode for writing (opens or creates file and sets file pointer to the end-of-file)
rb read binary mode

wb write binary mode (truncates file to zero length or creates new file)

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (5 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

append binary mode for writing (opens or creates file and sets file pointer to the end-of-

ab file)

r+ read and write text mode

WH read and write text mode (truncates file to zero length or creates new file)

at read and write text mode (opens or creates file and sets file pointer to the end-of-file)

r +b or r b+ read and write binary mode
w+b or wb+ read and write binary mode (truncates file to zero length or creates new file)
a+b or ab+ read and write binary mode (opens or creates file and sets file pointer to the end-of-file)

If the file does not exist and it is opened with read mode (r), then the open fails.

If the file is opened with append mode (a), then all write operations occur at the end of thefile
regardless of the current file position.

If the file is opened in the update mode (+), then output cannot be directly followed by input and input
cannot be directly followed by output without an intervening fseek, fsetpos, rewind, or fflush.

On success a pointer to the file stream is returned. On failure a null pointer is returned.

2.12.3.8 fread

Declaration:

size t fread(void *ptr, size t size, size_t nmemb, FILE
* stream) ;

Reads data from the given stream into the array pointed to by ptr. It reads nmemb number of elements of
size size. The total number of bytesread is (si ze* nnenb).

On success the number of elements read is returned. On error or end-of-file the total number of e ements
successfully read (which may be zero) is returned.

2.12.3.9 freopen

Declaration:

FI LE *freopen(const char *filename, const char *mode, FILE
* stream) ;

file:///C)/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (6 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

Associates a new filename with the given open stream. The old file in stream is closed. If an error occurs
while closing the file, the error isignored. The mode argument is the same as described in the fopen
command. Normally used for reassociating stdin, stdout, or stderr.

On success the pointer to the stream is returned. On error anull pointer is returned.

2.12.3.10 fseek

Declaration:
I nt fseek(FlILE *stream, |ong int offset, int whence);
Sets the file position of the stream to the given offset. The argument offset signifies the number of bytes
to seek from the given whence position. The argument whence can be:
SEEK SET Seeks from the beginning of thefile.

SEEK CUR Seeks from the current position.
SEEK END Seeks from the end of thefile.

On atext stream, whence should be SEEK SET and offset should be either zero or avalue returned from
ftell.

The end-of-file indicator isreset. The error indicator is NOT reset.

On success zero is returned. On error anonzero value is returned.

2.12.3.11 fsetpos

Declaration:
I nt fsetpos(FlILE *stream, const fpos_t *pos);

Sets the file position of the given stream to the given position. The argument posis a position given by
the function f get pos. The end-of-file indicator is cleared.

On success zero isreturned. On error anonzero value is returned and the variableer r no is set.

2.12.3.12 ftell

Declaration:

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (7 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

long int ftell (FILE *stream);

Returns the current file position of the given stream. If it is a binary stream, then the value is the number
of bytes from the beginning of thefile. If it isatext stream, then the value is a value useable by the fseek
function to return the file position to the current position.

On success the current file position is returned. On error avalue of - 1L isreturned and er r no is set.

2.12.3.13 fwrite

Declaration:

size t fwite(const void *ptr, size t size, size_t nmemb, FILE
* stream) ;

Writes data from the array pointed to by ptr to the given stream. It writes nmemb number of elements of
size size. The total number of byteswritten is(si ze* nmenb).

On success the number of elements writen is returned. On error the total number of elements
successfully writen (which may be zero) is returned.

2.12.3.14 remove

Declaration:
I nt renove(const char *filename);

Deletes the given filename so that it is no longer accessible (unlinks the file). If thefileis currently open,
then the result is implementation-defined.

On success zero isreturned. On failure a nonzero valueis returned.

2.12.3.15 rename

Declaration:
I nt renanme(const char *old filename, const char *new filename) ;

Causes the filename referred to by old_filename to be changed to new_filename. If the filename pointed

file:///C)/Documents%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (8 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

to by new_filename exists, the result is implementation-defined.

On success zero isreturned. On error anonzero value is returned and the file is still accessible by its old
filename.

2.12.3.16 rewind

Declaration:
void rew nd(Fl LE *stream) ;

Sets the file position to the beginning of the file of the given stream. The error and end-of-file indicators
are reset.

2.12.3.17 setbuf

Declaration:
voi d set buf (FI LE *stream, char * buffer);

Defines how a stream should be buffered. This should be called after the stream has been opened but
before any operation has been done on the stream. Input and output is fully buffered. The default
BUFSI Z isthe size of the buffer. The argument buffer points to an array to be used as the buffer. If
buffer isanull pointer, then the stream is unbuffered.

2.12.3.18 setvbuf

Declaration:
I nt setvbuf (FILE *stream, char *buffer, int mode, size t size);

Defines how a stream should be buffered. This should be called after the stream has been opened but
before any operation has been done on the stream. The argument mode defines how the stream should be
buffered as follows:

_ | OFBF Input and output is fully buffered. If the buffer is empty, an input operation attemptsto fill the
buffer. On output the buffer will be completely filled before any information is written to the
file (or the stream is closed).

_ |1 OLBF Input and output is line buffered. If the buffer is empty, an input operation attempts to fill the
buffer. On output the buffer will be flushed whenever a newline character iswritten.

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (9 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

_| ONBF Input and output is not buffered. No buffering is performed.

The argument buffer points to an array to be used as the buffer. If buffer isanull pointer, then set vbuf
usesmal | oc to create its own buffer.

The argument size determines the size of the array.

On success zero isreturned. On error anonzero value is returned.

2.12.3.19 tmpfile
Declaration:
FILE *tnpfil e(void);

Creates atemporary file in binary update mode (wb+). The tempfile is removed when the program
terminates or the stream is closed.

On success a pointer to afile stream is returned. On error a null pointer is returned.

2.12.3.20 tmpnam

Declaration:
char *tnpnam(char *sdtr);

Generates and returns a valid temporary filename which does not exist. Up to TMP_ MAX different
filenames can be generated.

If the argument str isanull pointer, then the function returns a pointer to avalid filename. If the
argument str isavalid pointer to an array, then the filename is written to the array and a pointer to the
same array is returned. The filename may be up to L_t npnamcharacters long.

2.12.4 Formatted I/O Functions

2.12.4.1 ..printf Functions

Declarations:

file:///CJ/Documents¥%20and%20Settings/sshai kot/Desktop/c_guide/c_guide/2.12.html (10 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

nt fprintf(Fl LE *stream, const char *format, ...);

nt printf(const char *format, ...);

nt sprintf(char *str, const char *format, ...);

nt vfprintf(FlILE *streem const char *format, va |ist arg);
nt vprintf(const char *format, va_|ist arg);

i
i
i
i
i
int vsprintf(char *str, const char *format, va |li st arg);

The ..printf functions provide a means to output formatted information to a stream.

fprintf sendsformatted output to a stream

printf sends formatted output to stdout

sprintf sendsformatted output to astring

viprintf sendsformatted output to astream using an argument list
vprintf sendsformatted output to stdout using an argument list
vsprintf sendsformatted output to a string using an argument list

These functions take the format string specified by the format argument and apply each following
argument to the format specifiersin the string in aleft to right fashion. Each character in the format
string is copied to the stream except for conversion characters which specify aformat specifier.

The string commands (spri nt f andvspri nt f) append anull character to the end of the string. This
null character is not counted in the character count.

The argument list commands (vf printf,vprintf,andvsprintf) useanargument list whichis
prepared by va_st ar t . These commands do not call va_end (the caller must call it).

A conversion specifier begins with the %character. After the %character come the following in this
order:

[flags] Control the conversion (optional).

[width] Defines the number of charactersto print (optional).

[.precision] Defines the amount of precision to print for a number type (optional).
[modifier] Overridesthe size (type) of the argument (optional).

[type] The type of conversion to be applied (required).

Flags:

- Vaueisleft justified (default isright justified). Overrides the O flag.

file:///CJ/Documents¥%20and%20Settings/sshai kot/Desktop/c_guide/c_guide/2.12.html (11 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

+ Forces the sign (+ or -) to always be shown. Default is to just show the - sign. Overridesthe
space flag.

space Causes apositive value to display a space for the sign. Negative values still show the - sign.

Alternate form:

Conversion Character Result

0 Precision isincreased to make the first digit a zero.
X or X Nonzero value will have Ox or OX prefixed to it.

(ES’ e, f. g or Result will aways have a decimal point.

Gor ¢ Trailing zeros will not be removed.

0 Ford,i,o,u, X, X, e E,f, g, and G leading zeros are used to pad the field width instead of
gpaces. Thisis useful only with awidth specifier. Precision overrides this flag.

Width:

The width of the field is specified here with adecimal value. If the value is not large enough to fill the
width, then the rest of the field is padded with spaces (unless the O flag is specified). If the value
overflows the width of the field, then the field is expanded to fit the value. If a* isused in place of the
width specifer, then the next argument (which must be ani nt type) specifies the width of the field.
Note: when using the * with the width and/or precision specifier, the width argument comes first, then
the precision argument, then the value to be converted.

Precision:

The precision begins with adot (.) to distinguish itself from the width specifier. The precision can be
given asadecimal value or asan asterisk (*). If a* isused, then the next argument (whichisani nt
type) specifies the precision. Note: when using the * with the width and/or precision specifier, the width
argument comes first, then the precision argument, then the value to be converted. Precision does not
affect the c type.

[.precision] Result
(none) Default precision values:
1ford,i,o,u,x, Xtypes. The minimum number of digitsto appear.
6 for f , e, E types. Specifies the number of digits after the decimal point.
For g or Gtypesall significant digits are shown.
For s type all charactersin string are print up to but not including the null character.

.or.0 Ford,i,o0,u,x, Xtypesthe default precision valueis used unlessthe valueis zero in
which case no characters are printed.
For f , e, E types no decimal point character or digits are printed.
For g or Gtypesthe precision is assumed to be 1.

file:///CJ/Documents¥%20and%20Settings/sshai kot/Desktop/c_guide/c_guide/2.12.html (12 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

. n Ford,i,o0,u, X, Xtypesthen a least n digits are printed (padding with zeros if necessary).
For f , e, E types specifies the number of digits after the decimal point.
For g or Gtypes specifies the number of significant digitsto print.
For s type specifies the maximum number of charactersto print.

Modifier:

A modifier changes the way a conversion specifier typeisinterpreted.

[modifier] [type] Effect

h d,i,0,u,x,XVaueisfirst converted to a short int or unsigned short i nt.
h n Specifies that the pointer points to a short int.

I ;j(" O X Valueisfirst converted to along int or unsigned long int .
I n Specifies that the pointer pointsto along int.

L e,E f,g,G Vaueisfirst converted to along double.

Conversion specifier type:
The conversion specifier specifies what type the argument isto be treated as.

[type]

d,i
0

® = X X C

5 T 0O O

Output
Typesi gned int.
Typeunsi gned i nt printedin octal.
Typeunsi gned i nt printed in decimal.
Typeunsi gned i nt printed in hexadecimal asdddd using a, b, ¢, d, e, f.
Typeunsi gned i nt printed in hexadecimal asdddd using A, B, C, D, E, F.
Typedoubl e printed as [-]ddd.ddd.

Typedoubl e printed as [-]d.dddefidd where there is one digit printed before the decimal (zero
only if the value is zero). The exponent contains at least two digits. If typeis E then the
exponent is printed with a capital E.

Typedoubl e printed astype e or E if the exponent is less than -4 or greater than or equal to
the precision. Otherwise printed astypef. Trailing zeros are removed. Decimal point character
appears only if thereis anonzero decimal digit.

Typechar . Single character is printed.
Type pointer to array. String is printed according to precision (no precision prints entire string).
Prints the value of a pointer (the memory location it holds).

The argument must be a pointer to an i nt . Stores the number of characters printed thusfar in
theint. No characters are printed.

file:///C)/Documents¥%20and%20Settings/sshai kot/Desktop/c_guide/c_guide/2.12.html (13 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

% A %sign is printed.
The number of characters printed are returned. If an error occurred, -1 is returned.

2.12.4.2 ..scanf Functions
Declarations:

I nt fscanf(FILE *stream, const char *format, ...);
I nt scanf(const char *format, ...);
I nt sscanf(const char *str, const char *format, ...);

The ..scanf functions provide a means to input formatted information from a stream.

f scanf readsformatted input from a stream
scanf readsformatted input from stdin
sscanf readsformatted input from astring

These functions take input in a manner that is specified by the format argument and store each input
field into the following argumentsin aleft to right fashion.

Each input field is specified in the format string with a conversion specifier which specifies how the
input isto be stored in the appropriate variable. Other characters in the format string specify characters
that must be matched from the input, but are not stored in any of the following arguments. If the input
does not match then the function stops scanning and returns. A whitespace character may match with
any whitespace character (space, tab, carriage return, new line, vertical tab, or formfeed) or the next
incompatible character.

Aninput field is specified with a conversion specifer which begins with the %character. After the %
character come the following in this order:

[*] Assignment suppressor (optional).

[width] Defines the maximum number of charactersto read (optional).
[modifier] Overridesthe size (type) of the argument (optional).

[type] The type of conversion to be applied (required).

Assignment suppressor:
Causes the input field to be scanned but not stored in avariable.

file:///CJ/Documents¥%20and%20Settings/sshai kot/Desktop/c_guide/c_guide/2.12.html (14 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

Width:

The maximum width of the field is specified here with adecimal value. If theinput is smaller than the
width specifier (i.e. it reaches a nonconvertible character), then what was read thus far is converted and
stored in the variable.

M odifier:

A modifier changes the way a conversion specifier typeisinterpreted.

[modifier] [typ€] Effect

h d.i,o,u, Theargumentisashort int orunsi gned short int.</td>
h n Specifies that the pointer pointstoashort int.

I)C(I" O 4, Theargumentisal ong i nt orunsi gned | ong int .

I n Specifies that the pointer pointstoal ong i nt .

I e, f,g Theargumentisadoubl e.

L e, f,g Theargumentisal ong doubl e.

Conversion specifier type:
The conversion specifier specifies what type the argument is. It also controls what a valid convertible
character is (what kind of charactersit can read so it can convert to something compatible).

[type]
d

[

0]

X, X

Input
Typesi gned i nt represented in base 10. Digits 0 through 9 and the sign (+ or -).

Typesi gned i nt. The base (radix) is dependent on the first two characters. If the first
character isadigit from 1to 9, then it is base 10. If the first digit is a zero and the second
digitisadigit from 1to 7, then it isbase 8 (octal). If thefirst digit is a zero and the
second character isan x or X, then it is base 16 (hexadecimal).

Typeunsi gned i nt. Theinput must bein base 8 (octal). Digits O through 7 only.
Typeunsi gned i nt . Theinput must bein base 10 (decimal). Digits O through 9 only.

Typeunsi gned i nt. Theinput must bein base 16 (hexadecimal). Digits O through 9
or A through Z or athrough z. The characters Ox or 0X may be optionally prefixed to the
value.

e,E f,g, GTypefl oat.Beginswith an optional sign. Then one or more digits, followed by an

optional decimal-point and decimal value. Finally ended with an optional signed
exponent value designated with an e or E.

Type character array. Inputs a sequence of non-whitespace characters (space, tab,
carriage return, new line, vertical tab, or formfeed). The array must be large enough to
hold the sequence plus a null character appended to the end.

file:///CJ/Documents¥%20and%20Settings/sshai kot/Desktop/c_guide/c_guide/2.12.html (15 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

[...] Type character array. Allows a search set of characters. Allowsinput of only those
character encapsulated in the brackets (the scanset). If the first character isacarrot (1),
then the scanset isinverted and allows any ASCI| character except those specified
between the brackets. On some systems a range can be specified with the dash character
(-). By specifying the beginning character, a dash, and an ending character a range of
characters can be included in the scanset. A null character is appended to the end of the

array.

C Type character array. Inputs the number of characters specified in the width field. If no
width field is specified, then 1 is assumed. No null character is appended to the array.

p Pointer to a pointer. Inputs amemory address in the same fashion of the %p type
produced by the printf function.

n The argument must be a pointer to an i nt . Stores the number of characters read thus far
inthei nt . No characters are read from the input stream.

% Requires a matching %sign from the input.

Reading an input field (designated with a conversion specifier) ends when an incompatible character is
met, or the width field is satisfied.

On success the number of input fields converted and stored are returned. If an input failure occurred,
then EOF is returned.

2.12.5 Character I/0O Functions

2.12.5.1 fgetc
Declaration:
I nt fgetc(FlLE *stream);

Gets the next character (an unsi gned char) from the specified stream and advances the position
indicator for the stream.

On success the character is returned. If the end-of-file is encountered, then EOF is returned and the end-
of-fileindicator is set. If an error occurs then the error indicator for the stream is set and ECF is returned.

2.12.5.2 fgets

Declaration:

file:///CJ/Documents¥%20and%20Settings/sshai kot/Desktop/c_guide/c_guide/2.12.html (16 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

char *fgets(char *str, int n, FILE *stream);

Reads a line from the specified stream and stores it into the string pointed to by str. It stops when either
(n-1) characters are read, the newline character is read, or the end-of-file is reached, whichever comes
first. The newline character is copied to the string. A null character is appended to the end of the string.

On success a pointer to the string is returned. On error anull pointer is returned. If the end-of-file occurs
before any characters have been read, the string remains unchanged.

2.12.5.3 fputc

Declaration:
I nt fputc(int char, FILE *stream);

Writes acharacter (an unsi gned char) specified by the argument char to the specified stream and
advances the position indicator for the stream.

On success the character is returned. If an error occurs, the error indicator for the stream is set and EOF
IS returned.

2.12.5.4 fputs

Declaration:
I nt fputs(const char *str, FILE *stream);
Writes a string to the specified stream up to but not including the null character.

On success a nonnegative value is returned. On error ECF is returned.

2.12.5.5 getc

Declaration:
I nt getc(FlILE *stream);

Gets the next character (an unsi gned char) from the specified stream and advances the position
indicator for the stream.

file:///CJ/Documents¥%20and%20Settings/sshai kot/Desktop/c_guide/c_guide/2.12.html (17 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

This may be amacro version of f get c.

On success the character is returned. If the end-of-file is encountered, then EOF is returned and the end-
of-fileindicator is set. If an error occurs then the error indicator for the stream is set and ECF is returned.

2.12.5.6 getchar

Declaration:
I nt getchar(void);
Gets acharacter (anunsi gned char) fromst di n.

On success the character is returned. If the end-of-file is encountered, then EOF is returned and the end-
of-fileindicator is set. If an error occurs then the error indicator for the stream is set and ECF is returned.

2.12.5.7 gets

Declaration:
char *gets(char *dr);

Reads alinefrom st di n and stores it into the string pointed to by str. It stops when either the newline
character isread or when the end-of-file is reached, whichever comesfirst. The newline character is not
copied to the string. A null character is appended to the end of the string.

On success a pointer to the string is returned. On error anull pointer is returned. If the end-of-file occurs
before any characters have been read, the string remains unchanged.

2.12.5.8 putc

Declaration:
i nt putc(int char, FILE *stream);

Writes acharacter (an unsi gned char) specified by the argument char to the specified stream and
advances the position indicator for the stream.

This may be amacro version of f putc.

file:///CJ/Documents¥%20and%20Settings/sshai kot/Desktop/c_guide/c_guide/2.12.html (18 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

On success the character is returned. If an error occurs, the error indicator for the stream isset and ECF
IS returned.

2.12.5.9 putchar

Declaration:
I nt put char (i nt char);
Writes a character (an unsi gned char) specified by the argument char to st dout .

On success the character is returned. If an error occurs, the error indicator for the stream is set and EOF
IS returned.

2.12.5.10 puts

Declaration:
I nt puts(const char *str);

Writesastring to st dout up to but not including the null character. A newline character is appended to
the output.

On success a nonnegative value is returned. On error ECF is returned.

2.12.5.11 ungetc

Declaration:
I nt ungetc(int char, FILE *stream);

Pushes the character char (an unsi gned char) onto the specified stream so that the thisis the next
character read. The functionsf seek, f set pos, andr ew nd discard any characters pushed onto the
stream.

Multiple characters pushed onto the stream are read in a FIFO manner (first in, first out).

On success the character pushed is returned. On error EOF is returned.

file:///CJ/Documents¥%20and%20Settings/sshai kot/Desktop/c_guide/c_guide/2.12.html (19 of 20)4/1/2008 8:42:57 AM

C Guide--2.12 stdio.h

2.12.7 Error Functions

2.12.7.1 perror

Declaration:
voi d perror(const char *str);

Prints a descriptive error message to stderr. First the string str is printed followed by a colon then a
space. Then an error message based on the current setting of the variable er r no is printed.

< Previous | Table of Contents | Index | Next Section [
Section 2.13 stdlib.h
2.11 stddef.h

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.12.html (20 of 20)4/1/2008 8:42:57 AM

C Guide--2.13 stdlib.h

<g Previous | Table of Contents | Index | Next Section e
Section 2.14 string.h
2.12 stdio.h

2.13 stdlib.h

The stdlib header defines several general operation functions and macros.
Macros:

NUL L
EXI T_FAI LURE
EXI T_SUCCESS
RAND MAX
MB_CUR MAX

Variables:

t ypedef size t
t ypedef wchar t
struct div_t
struct Idiv_t

Functions:

abort ();
abs();
atexit();
atof () ;
atoi () ;
atol ();
bsearch() ;
cal l oc();
div();
exit();
free();
getenv();
| abs();

I di v();
mal | oc() ;

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (1 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h

mbl en() ;
nbst owcs() ;
nbt owc() ;
gsort();
rand() ;
reall oc();
srand();
strtod();
strtol ();
strtoul ();
system();
west onbs() ;
wet onb() ;

2.13.1 Variables and Definitions

Si ze_t istheunsigned integer result of thesi zeof keyword.
wchar _t isan integer type of the size of awide character constant.
di v_t isthe structure returned by the di v function.

| di v_t isthe structure returned by thel di v function.

NULL isthe value of anull pointer constant.

EXI T_FAI LURE and EXI T_SUCCESS are values for the exit function to return termination status.
RAND _MAX is the maximum value returned by the rand function.

MB CUR_MAX isthe maximum number of bytesin a multibyte character set which cannot be larger than
MB LEN MAX.

2.13.2 String Functions

2.13.2.1 atof

Declaration:
doubl e atof (const char *str);

The string pointed to by the argument str is converted to a floating-point number (type doubl e). Any
initial whitespace characters are skipped (space, tab, carriage return, new line, vertical tab, or formfeed).
The number may consist of an optional sign, a string of digits with an optional decimal character, and an
optional e or E followed by a optionally signed exponent. Conversion stops when the first unrecognized
character is reached.

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (2 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h

On success the converted number isreturned. If no conversion can be made, zero isreturned. If the value
is out of range of the type double, then HUGE VAL isreturned with the appropriate sign and ERANGE is
stored in the variable er r no. If the value istoo small to be returned in the type doubl e, then zero is
returned and ERANGE is stored in the variable er r no.

2.13.2.2 atol

Declaration:
I nt atoi (const char *str);

The string pointed to by the argument str is converted to an integer (typei nt). Any initial whitespace
characters are skipped (space, tab, carriage return, new line, vertical tab, or formfeed). The number may
consist of an optional sign and a string of digits. Conversion stops when the first unrecognized character
IS reached.

On success the converted number is returned. If the number cannot be converted, then O is returned.

2.13.2.3 atol

Declaration:
| ong int atol (const char *str);

The string pointed to by the argument str is converted to along integer (typel ong i nt). Any initial
whitespace characters are skipped (space, tab, carriage return, new line, vertical tab, or formfeed). The
number may consist of an optional sign and a string of digits. Conversion stops when the first
unrecognized character is reached.

On success the converted number isreturned. If the number cannot be converted, then O is returned.

2.13.2.4 strtod

Declaration:
doubl e strtod(const char *str, char **endptr);

The string pointed to by the argument str is converted to afloating-point number (type doubl e). Any
initial whitespace characters are skipped (space, tab, carriage return, new line, vertical tab, or formfeed).
The number may consist of an optional sign, a string of digits with an optional decimal character, and an

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (3 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h

optional e or E followed by a optionally signed exponent. Conversion stops when the first unrecognized
character is reached.

The argument endptr is a pointer to a pointer. The address of the character that stopped the scan is stored
In the pointer that endptr pointsto.

On success the converted number is returned. If no conversion can be made, zero isreturned. If the value
is out of range of the type double, then HUGE VAL is returned with the appropriate sign and ERANGE is
stored in the variable er r no. If the valueistoo small to be returned in the type doubl e, then zero is
returned and ERANGE is stored in the variable er r no.

2.13.2.5 strtol

Declaration:
long int strtol (const char *str, char **endptr, int base);

The string pointed to by the argument str is converted to along integer (typel ong i nt). Any initial
whitespace characters are skipped (space, tab, carriage return, new line, vertical tab, or formfeed). The
number may consist of an optional sign and a string of digits. Conversion stops when the first
unrecognized character is reached.

If the base (radix) argument is zero, then the conversion is dependent on the first two characters. If the
first character isadigit from 1to 9, then it is base 10. If thefirst digit isa zero and the second digitisa
digit from 1to 7, then it is base 8 (octal). If the first digit is a zero and the second character isan x or X,
then it is base 16 (hexadecimal).

If the base argument isfrom 2 to 36, then that base (radix) is used and any characters that fall outside of
that base definition are considered unconvertible. For base 11 to 36, the characters A to Z (or ato z) are
used. If the base is 16, then the characters Ox or 0X may precede the number.

The argument endptr is a pointer to a pointer. The address of the character that stopped the scan is stored
in the pointer that endptr pointsto.

On success the converted number isreturned. If no conversion can be made, zero is returned. If the value
isout of the range of thetypel ong i nt, then LONG_MAX or LONG M Nisreturned with the sign of
the correct value and ERANGE is stored in the variable er r no.

2.13.2.6 strtoul

Declaration:

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (4 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h

unsi gned |l ong int strtoul (const char *str, char **endptr, i nt
base) ;

The string pointed to by the argument str is converted to an unsigned long integer (typeunsi gned

| ong i nt). Any initial whitespace characters are skipped (space, tab, carriage return, new line,
vertical tab, or formfeed). The number may consist of an optional sign and a string of digits. Conversion
stops when the first unrecognized character is reached.

If the base (radix) argument is zero, then the conversion is dependent on the first two characters. If the
first character isadigit from 1t0 9, then it is base 10. If thefirst digit is a zero and the second digitisa
digit from 1to 7, then it isbase 8 (octal). If thefirst digit is a zero and the second character isan x or X,
then it is base 16 (hexadecimal).

If the base argument isfrom 2 to 36, then that base (radix) is used and any characters that fall outside of
that base definition are considered unconvertible. For base 11 to 36, the characters A to Z (or ato z) are
used. If the base is 16, then the characters Ox or 0X may precede the number.

The argument endptr is a pointer to a pointer. The address of the character that stopped the scan is stored
in the pointer that endptr pointsto.

On success the converted number isreturned. If no conversion can be made, zero is returned. If the value
isout of the range of thetypeunsi gned | ong i nt, then ULONG_MAX is returned and ERANGE is
stored in the variable er r no.

2.13.3 Memory Functions

2.13.3.1 calloc

Declaration:
void *cal loc(size t nitems, size t size);

Allocates the requested memory and returns a pointer to it. The requested size is nitems each size bytes
long (total memory requested is nitems* size). The spaceisinitialized to al zero bits.

On success a pointer to the requested space is returned. On failure anull pointer is returned.

2.13.3.2 free

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (5 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h

Declaration:
void free(void *ptr);

Deallocates the memory previously allocated by acall tocal | oc, mal | oc,orreal | oc. The
argument ptr points to the space that was previoudy allocated. If ptr pointsto a memory block that was
not allocated withcal | oc, mal | oc, orr eal | oc, or isaspace that has been deall ocated, then the
result is undefined.

No valueisreturned.

2.13.3.3 malloc

Declaration:
void *mal | oc(size_t size);

Allocates the requested memory and returns a pointer to it. The requested size is size bytes. The value of
the space is indeterminate.

On success a pointer to the requested space is returned. On failure a null pointer is returned.

2.13.3.4 realloc

Declaration:
void *realloc(void *ptr, size t size);

Attemptsto resize the memory block pointed to by ptr that was previously allocated with acall to

mal | oc or cal | oc. The contents pointed to by ptr are unchanged. If the value of size is greater than
the previous size of the block, then the additional bytes have an undeterminate value. If the value of size
IS less than the previous size of the block, then the difference of bytes at the end of the block are freed. If
ptr is null, then it behaveslikemal | oc. If ptr pointsto a memory block that was not allocated with

cal | oc ormal | oc, or isaspace that has been deall ocated, then the result is undefined. If the new
space cannot be allocated, then the contents pointed to by ptr are unchanged. If sizeis zero, then the
memory block is completely freed.

On success a pointer to the memory block is returned (which may be in adifferent location as before).
Onfailureor if sizeiszero, anull pointer is returned.

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (6 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h

2.13.4 Environment Functions

2.13.4.1 abort

Declaration:
voi d abort(void);

Causes an abnormal program termination. Raises the SI GABRT signal and an unsuccessful termination
status is returned to the environment. Whether or not open streams are closed is implementation-defined.

No return is possible.

2.13.4.2 atexit

Declaration:
int atexit(void (*func)(void));

Causes the specified function to be called when the program terminates normally. At least 32 functions
can be registered to be called when the program terminates. They are called in alast-in, first-out basis
(the last function registered is called first).

On success zero is returned. On failure a nonzero valueis returned.

2.13.4.3 exit

Declaration:
voi d exit(int status);

Causes the program to terminate normally. First the functions registered by atexit are called, then al
open streams are flushed and closed, and all temporary files opened with tmpfile are removed. The value
of statusis returned to the environment. If statusis EXI T_SUCCESS, then this signifies a successful
termination. If statusis EXI T_FAI LURE, then this signifies an unsuccessful termination. All other
values are implementation-defined.

No return is possible.

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (7 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h

2.13.4.4 getenv

Declaration:
char *getenv(const char *name),;

Searches for the environment string pointed to by name and returns the associated value to the string.
This returned value should not be written to.

If the string is found, then a pointer to the string's associated value is returned. If the string is not found,
then anull pointer is returned.

2.13.4.5 system

Declaration:
I nt systen(const char *string);

The command specified by string is passed to the host environment to be executed by the command
processor. A null pointer can be used to inquire whether or not the command processor exists.

If string isanull pointer and the command processor exists, then zero isreturned. All other return values
are implementation-defined.

2.13.5 Searching and Sorting Functions

2.13.5.1 bsearch

Declaration:

voi d *bsearch(const void *key, const void *base, size t nitems,
size_t size, int (*compar)(const void *, const void *));

Performs a binary search. The beginning of the array is pointed to by base. It searches for an element
equal to that pointed to by key. The array is nitems long with each element in the array size bytes long.

The method of comparing is specified by the compar function. This function takes two arguments, the
first isthe key pointer and the second is the current element in the array being compared. This function
must return less than zero if the compared value is less than the specified key. It must return zero if the
compared value is equal to the specified key. It must return greater than zero if the compared valueis

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (8 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h

greater than the specified key.

The array must be arranged so that elements that compare less than key are first, elements that equal key
are next, and elements that are greater than key are last.

If amatch isfound, a pointer to this match is returned. Otherwise anull pointer isreturned. If multiple
matching keys are found, which key isreturned is unspecified.

2.13.5.2 gsort

Declaration:

void gsort(void *base, size t nitems, size t size, int (*compar)
(const void *, const void*));

Sorts an array. The beginning of the array is pointed to by base. The array is nitems long with each
element in the array size bytes|ong.

The elements are sorted in ascending order according to the compar function. This function takes two
arguments. These arguments are two elements being compared. This function must return less than zero
iIf the first argument is less than the second. It must return zero if the first argument is equal to the
second. It must return greater than zero if the first argument is greater than the second.

If multiple elements are equal, the order they are sorted in the array is unspecified.
No valueis returned.
Exanpl e:

#1 ncl ude<stdl i b. h>
#1 ncl ude<st di 0. h>
#i ncl ude<string. h>

i nt mai n(voi d)
{
char string _array[10][50]="John",

"Jane",
"Mary”,
"Rogery",
"Dave",
"Paul ",

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (9 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h

"Beavi s",
"Astro",

" Geor ge",
"Elroy"};

/* Sort the list */
gsort(string_array, 10, 50, strcnp) ;

/* Search for the item"Elroy" and print it */
printf("%", bsearch("El roy", string_array, 10, 50, strcnp));

return O;

}
2.13.6 Math Functions

2.13.6.1 abs

Declaration:
int abs(int X);

Returns the absolute value of x. Note that in two's compliment that the most maximum number cannot
be represented as a positive number. The result in this case is undefined.

The absolute value is returned.

2.13.6.2 div

Declaration:
div_t div(int numer, int denom);

Divides numer (numerator) by denom (denominator). The result is stored in the structure di v_t which
has two members:

I nt gout;
int rem

Where quot is the quotient and rem is the remainder. In the case of inexact division, quot is rounded

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (10 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h

down to the nearest integer. The value numer isequal to quot * denom + rem

The value of the division isreturned in the structure.

2.13.6.3 labs

Declaration:
long int |abs(long int X);

Returns the absolute value of x. Not that in two's compliment that the most maximum number cannot be
represented as a positive number. The result in this case is undefined.

The absolute value is returned.

2.13.6.4 Idiv

Declaration:
ldiv_t Idiv(long int numer, |ong int denom);

Divides numer (numerator) by denom (denominator). The result is stored in the structure | di v_t which
has two members:

| ong i nt qout;
long int rem

Where quot is the quotient and rem is the remainder. In the case of inexact division, quot is rounded
down to the nearest integer. The value numer isequal to quot * denom + rem

The value of the division isreturned in the structure.

2.13.6.5 rand

Declaration:
I nt rand(void);

Returns a pseudo-random number in the range of 0 to RAND _MAX.

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (11 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h

The random number is returned.

2.13.6.6 srand

Declaration:
voi d srand(unsi gned int seed);

This function seeds the random number generator used by the function r and. Seeding sr and with the
same seed will cause r and to return the same sequence of pseudo-random numbers. If sr and is not
called, r and actsasif srand(1) hasbeen called.

No valueis returned.

2.13.7 Multibyte Functions

The behavior of the multibyte functions are affected by the setting of LC_CTYPE in the location
Ssettings.

2.13.7.1 mblen

Declaration:
I nt nblen(const char *str, size t n);

Returns the length of a multibyte character pointed to by the argument str. At most n bytes will be
examined.

If str isanull pointer, then zero isreturned if multibyte characters are not state-dependent (shift state).
Otherwise anonzero value is returned if multibyte character are state-dependent.

If str isnot null, then the number of bytes that are contained in the multibyte character pointed to by str
arereturned. Zero isreturned if str pointsto anull character. A value of -1 isreturned if str does not
point to avalid multibyte character.

2.13.7.2 mbstowcs

Declaration:

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (12 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h

size_t nbstowcs(schar _t *pwcs, const char *dr, size t n);

Converts the string of multibyte characters pointed to by the argument str to the array pointed to by
pwcs. It stores no more than n valuesinto the array. Conversion stops when it reaches the null character
or n values have been stored. The null character is stored in the array as zero but is not counted in the
return value.

If an invalid multibyte character is reached, then the value -1 is returned. Otherwise the number of
values stored in the array is returned not including the terminating zero character.

2.13.7.3 mbtowc

Declaration:
I nt nbtowc(whcar _t *pwc, const char *sr, size t n);

Examines the multibyte character pointed to by the argument str. The value is converted and stored in
the argument pwc if pwc is not null. It scans at most n bytes.

If str isanull pointer, then zero isreturned if multibyte characters are not state-dependent (shift state).
Otherwise anonzero value is returned if multibyte character are state-dependent.

If str isnot null, then the number of bytes that are contained in the multibyte character pointed to by str
arereturned. Zero isreturned if str pointsto anull character. A value of -1 isreturned if str does not
point to avalid multibyte character.

2.13.7.4 wcstombs

Declaration:
size_t westonbs(char *str, const wchar t *pwcs, size t n);

Converts the codes stored in the array pwcs to multibyte characters and stores them in the string str. It
copies at most n bytes to the string. If a multibyte character overflows the n constriction, then none of
that multibyte character's bytes are copied. Conversion stops when it reaches the null character or n
bytes have been written to the string. The null character is stored in the string, but is not counted in the
return value.

If aninvalid code is reached, the value -1 is returned. Otherwise the number of bytes stored in the string
Is returned not including the terminating null character.

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (13 of 14)4/1/2008 8:42:56 AM

C Guide--2.13 stdlib.h
2.13.7.5 wctomb
Declaration:
I nt wetonb(char *str, wchar _t wchar);

Examines the code which corresponds to a multibyte character given by the argument wchar. The code
Is converted to a multibyte character and stored into the string pointed to by the argument str if str is not
null.

If str isanull pointer, then zero isreturned if multibyte characters are not state-dependent (shift state).
Otherwise anonzero value is returned if multibyte character are state-dependent.

If str is not null, then the number of bytes that are contained in the multibyte character wchar are
returned. A value of -1 isreturned if wchar is not avalid multibyte character.

<g Previous | Table of Contents | Index | Next Section [
Section 2.14 string.h
2.12 gtdio.h

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.13.html (14 of 14)4/1/2008 8:42:56 AM

C Guide--2.14 string.h

< Previous | Table of Contents | Index | Next Section
Section 2.15time.h
2.13 stdlib.h

2.14 string.h

The string header provides many functions useful for manipulating strings (character arrays).
Macros:
NULL
Variables:
t ypedef size t
Functions:

menchr () ;

mencip() ;

mencpy() ;
menmmove() ;

menset () ;
strcat ();
strncat();
strchr();

strcenp();
strncnp();
strcol |l ();
strcepy();

strncpy();
strcspn();

strerror();
strlen();
strpbrk();
strrchr();
strspn();
strstr();
strtok();
strxfrm();

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.14.html (1 of 10)4/1/2008 8:42:54 AM

C Guide--2.14 string.h

2.14.1 Variables and Definitions

size t isthe unsigned integer result of the sizeof keyword.
NULL isthe value of anull pointer constant.

2.14.2 memchr

Declaration:
void *nmenchr(const void *str, int ¢, size t n);

Searches for the first occurrence of the character ¢ (an unsi gned char) inthefirst n bytes of the
string pointed to by the argument str.

Returns a pointer pointing to the first matching character, or null if no match was found.

2.14.3 memcmp
Declaration:
I nt mencnp(const void *strl, const void *str2, size t n);

Compares the first n bytes of str1 and str2. Does not stop comparing even after the null character (it
always checks n characters).

Returns zero if the first n bytes of strl and str2 are equal. Returns less than zero or greater than zero if
strlislessthan or greater than str2 respectively.

2.14.4 memcpy
Declaration:

void *nmencpy(void *strl, const void *str2, size t n);
Copies n characters from str2 to strl. If strl and str2 overlap the behavior is undefined.

Returns the argument str1.

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.14.html (2 of 10)4/1/2008 8:42:54 AM

C Guide--2.14 string.h

2.14.5 memmove

Declaration:
voi d *nmemmove(void *strl, const void *str2, size t n);

Copies n characters from str2 to strl. If strl and str2 overlap the information is first completely read
from str1 and then written to str2 so that the characters are copied correctly.

Returns the argument strl.

2.14.6 memset

Declaration:
void *nmenset (void *str, int ¢, size t n);

Copiesthe character c (anunsi gned char) to the first n characters of the string pointed to by the
argument str.

The argument str is returned.

2.14.7 strcat

Declaration:
char *strcat(char *strl, const char *str2);

Appends the string pointed to by str2 to the end of the string pointed to by str1. The terminating null
character of strl isoverwritten. Copying stops once the terminating null character of str2 is copied. If
overlapping occurs, the result is undefined.

The argument strl is returned.

2.14.8 strncat

Declaration:

char *strncat(char *strl, const char *str2, size t n);

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.14.html (3 of 10)4/1/2008 8:42:54 AM

C Guide--2.14 string.h

Appends the string pointed to by str2 to the end of the string pointed to by strl up to n characters long.
The terminating null character of strl is overwritten. Copying stops once n characters are copied or the
terminating null character of str2 is copied. A terminating null character is always appended to strl. If
overlapping occurs, the result is undefined.

The argument strl is returned.

2.14.9 strchr

Declaration:
char *strchr(const char *dr, int ©;

Searches for the first occurrence of the character ¢ (an unsigned char) in the string pointed to by the
argument str. The terminating null character is considered to be part of the string.

Returns a pointer pointing to the first matching character, or null if no match was found.

2.14.10 strcmp

Declaration:
i nt strcnp(const char *strl, const char *str2);
Compares the string pointed to by strl to the string pointed to by str2.

Returns zero if strl and str2 are equal. Returns less than zero or greater than zero if strl isless than or
greater than str2 respectively.

2.14.11 strncmp

Declaration:
I nt strncnp(const char *strl, const char *str2, size t n);
Compares at most the first n bytes of strl and str2. Stops comparing after the null character.

Returns zero if the first n bytes (or null terminated length) of strl and str2 are equal. Returns less than
zero or greater than zero if strl islessthan or greater than str2 respectively.

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.14.html (4 of 10)4/1/2008 8:42:54 AM

C Guide--2.14 string.h

2.14.12 strcoll

Declaration:
int strcoll (const char *strl, const char *str2);
Compares string strl to str2. The result is dependent on the LC_COLLATE setting of the location.

Returns zero if strl and str2 are equal. Returns less than zero or greater than zero if strl islessthan or
greater than str2 respectively.

2.14.13 strcpy

Declaration:
char *strcpy(char *strl, const char *str2);

Copies the string pointed to by str2 to str1. Copies up to and including the null character of str2. If strl
and str2 overlap the behavior is undefined.

Returns the argument strl.

2.14.14 strncpy

Declaration:
char *strncpy(char *strl, const char *str2, size t n);

Copies up to n characters from the string pointed to by str2 to str1. Copying stops when n characters are
copied or the terminating null character in str2 is reached. If the null character is reached, the null
characters are continually copied to strl until n characters have been copied.

Returns the argument strl.

2.14.15 strcspn

Declaration:

size_t strcspn(const char *strl, const char *str2);

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.14.html (5 of 10)4/1/2008 8:42:54 AM

C Guide--2.14 string.h

Finds the first sequence of charactersin the string str1 that does not contain any character specified in
str2.

Returns the length of this first sequence of characters found that do not match with str2.

2.14.16 strerror

Declaration:
char *strerror(int errnum);
Searches an internal array for the error number errnum and returns a pointer to an error message string.

Returns a pointer to an error message string.

2.14.17 strlen

Declaration:
size_t strlen(const char *str);
Computes the length of the string str up to but not including the terminating null character.

Returns the number of charactersin the string.

2.14.18 strpbrk

Declaration:
char *strpbrk(const char *strl, const char *str2);
Finds the first character in the string str1 that matches any character specified in str2.

A pointer to the location of this character is returned. A null pointer is returned if no character in str2
existsin stri.

Example:
#i ncl ude<string. h>

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.14.html (6 of 10)4/1/2008 8:42:54 AM

C Guide--2.14 string.h
#1 ncl ude<st di 0. h>
I nt mai n(voi d)

{
char string[]="H there, Chip!";

char *string_ptr;

while((string ptr=strpbrk(string,” "))!=NULL)
*string _ptr="-";

printf("New string is \"%\".\n",string);

return O;

}

The output should result in every space in the string being converted to adash (-).

2.14.19 strrchr

Declaration:
char *strrchr(const char *str, int c);

Searches for the last occurrence of the character ¢ (an unsi gned char) in the string pointed to by the
argument str. The terminating null character is considered to be part of the string.

Returns a pointer pointing to the last matching character, or null if no match was found.

2.14.20 strspn

Declaration:
size_t strspn(const char *strl, const char *str2);
Finds the first sequence of charactersin the string str1 that contains any character specified in str2.
Returns the length of this first sequence of characters found that match with str2.
Example:

#i ncl ude<string. h>
#i ncl ude<st di 0. h>

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.14.html (7 of 10)4/1/2008 8:42:54 AM

C Guide--2.14 string.h

I nt mai n(voi d)
{
char string[]="7803 EImSt.";

printf("The nunber length is %.\n", strspn
(string, "1234567890"));

return O;

}

The output should be: The number length is 4.

2.14.21 strstr

Declaration:
char *strstr(const char *strl, const char *str2);

Finds the first occurrence of the entire string str2 (not including the terminating null character) which
appearsin the string strl.

Returns a pointer to the first occurrence of str2 in strl. If no match was found, then anull pointer is
returned. If str2 pointsto a string of zero length, then the argument strl is returned.

2.14.22 strtok

Declaration:
char *strtok(char *strl, const char *str2);

Breaks string str1 into a series of tokens. If strl and str2 are not null, then the following search sequence
begins. The first character in strl that does not occur in str2 isfound. If strl consists entirely of
characters specified in str2, then no tokens exist and a null pointer is returned. If this character is found,
then this marks the beginning of the first token. It then begins searching for the next character after that
which is contained in str2. If this character is not found, then the current token extends to the end of strl.
If the character isfound, then it is overwritten by a null character, which terminates the current token.
The function then saves the following position internally and returns.

Subsequent calls with anull pointer for str1 will cause the previous position saved to be restored and
begins searching from that point. Subsequent calls may use a different value for str2 each time.

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.14.html (8 of 10)4/1/2008 8:42:54 AM

C Guide--2.14 string.h

Returns a pointer to the first token in strl. If no token is found then anull pointer is returned.
Example:

#i ncl ude<string. h>
#i ncl ude<st di 0. h>

i nt mai n(voi d)

{
char search_string[]="Wody Normdiff";
char *array[50];

I nt | oop;
array[0] =strtok(search_string," ");
i f (array[0] ==NULL)
{
printf("No test to search.\n");
exit(0);
}

for(l oop=1; 1 00p<50; | oop++)

{
array[l oop] =strtok(NULL," ");
I f(array[l oop] ==NULL)

br eak;
}
for (1l oop=0; | oop<50; | cop++)
{
I f(array[| oop] ==NULL)
br eak;
printf("ltem#% is %.\n", | oop, array[l oop]);
}
return O;

}

This program replaces each space into a null character and stores a pointer to each substring into the
array. It then prints out each item.

2.14.23 strxfrm

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.14.html (9 of 10)4/1/2008 8:42:54 AM

C Guide--2.14 string.h
Declaration:
size_t strxfrm(char *srl, const char *str2, size_t n);

Transforms the string str2 and places the result into strl. It copies at most n characters into strl
including the null terminating character. The transformation occurs such that st r cnp applied to two
separate converted strings returns the same valueas st r col | applied to the same two strings. If
overlapping occurs, the result is undefined.

Returns the length of the transformed string (not including the null character).

<g Previous | Table of Contents | Index | Next Section
Section 2.15time.h
2.13 stdlib.h

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.14.html (10 of 10)4/1/2008 8:42:54 AM

C Guide--2.15 time.h

< Previous | Table of Contents | Index | Next Section
Section I ndex
2.14 string.h

2.15 time.h

The time header provides several functions useful for reading and converting the current time and date.
Some functions behavior is defined by the LC_TI ME category of the location setting.

Macros:

NULL
CLOCKS_PER SEC

Variables:

t ypedef size t
t ypedef clock t
t ypedef size t
struct tm

Functions;

asctinme();
cl ock();
ctime();
difftinme();
gntime();

| ocal tinme();
mktime();
strftime();
time();

2.15.1 Variables and Definitions

NULL isthe value of anull pointer constant.
CLOCKS_PER_SECisthe number of processor clocks per second.

si ze_t istheunsigned integer result of the sizeof keyword.

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.15.html (1 of 8)4/1/2008 8:42:54 AM

C Guide--2.15 time.h

cl ock_t isatype suitable for storing the processor time.
ti me_t isatype suitable for storing the calendar time.

struct t misastructure used to hold the time and date. I1ts members are as follows:

nt
nt
nt
nt
nt
nt
nt

*/
I nt
I nt

t m sec;
tmmn;
t m_hour;
t m nday;
t m_non;
tmyear;
t m wday;

t m yday;
tmisdst;

/*
/*
/*
/*
/*
/*
/*

/*
/*

seconds after the mnute (0 to 61) */
m nutes after the hour (0 to 59) */
hours since mdnight (0 to 23) */

day of the nonth (1 to 31) */

nmont hs since January (0 to 11) */
years since 1900 */

days since Sunday (0 to 6 Sunday=0)

days since January 1 (0 to 365) */
Dayl i ght Savi ngs Tinme */

If t m_i sdst iszero, then Daylight Savings Timeis not in effect. If it is a positive value, then Daylight
Savings Timeisin effect. If it is negative, then the function using it is requested to attempt to calculate
whether or not Daylight Savings Timeisin effect for the given time.

Notethat t m sec may go as high as 61 to allow for up to two leap seconds.

2.15.2 asctime

Declaration:

char *asctinme(const struct tm *timeptr);

Returns a pointer to a string which represents the day and time of the structure timeptr. The string isin
the following format:

DDD MW dd hh: mm ss YYYY

DDD Day of the week (Sun, Mon, Tue, Wed, Thu, Fri, Sat)
MVM Month of the year (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec)

dd Day of the month (1,...,31)

hh Hour (0,...,23)
mm Minute (0,...,59)
ss Second (0,...,59)

YYYY Year

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.15.html (2 of 8)4/1/2008 8:42:54 AM

C Guide--2.15time.h
The string is terminated with a newline character and a null character. The string is always 26 characters
long (including the terminating newline and null characters).
A pointer to the string is returned.

Example:

#i ncl ude<ti ne. h>
#i ncl ude<st di 0. h>

i nt mai n(voi d)

{

time_t timer;

timer=time(NULL);

printf("The current time is %.\n",asctime(localtine
(&imer)));

return O;

}
2.15.3 clock

Declaration:
cl ock_t clock(void);

Returns the processor clock time used since the beginning of an implementation-defined era (normally
the beginning of the program). The returned value divided by CLOCKS_PER_SEC results in the number
of seconds. If the value is unavailable, then -1 is returned.

Example:

#i ncl ude<ti ne. h>
#i ncl ude<st di 0. h>

I nt mai n(voi d)

{
clock t ticksl, ticks2;

ticksl=cl ock();
ticks2=ticksl;
while((ticks2/ CLOCKS PER SEC-ticksl/ CLOCKS PER SEC) <1)

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.15.html (3 of 8)4/1/2008 8:42:54 AM

C Guide--2.15 time.h

ti cks2=cl ock();
printf("Took %d ticks to wait one second.\n",ticks2-
ticksl);
printf("This val ue should be the sane as CLOCKS PER _SEC

which is %d.\n", CLOCKS PER SEC);
return O;

}
2.15.4 ctime

Declaration:
char *ctime(const tinme_t *timer);

Returns a string representing the localtime based on the argument timer. Thisis equivaent to:
asctinme(locatinme(tiner));

The returned string is in the following format:

DDD MW dd hh: mm ss YYYY

DDD Day of the week (Sun, Mon, Tue, Wed, Thu, Fri, Sat)

MVM Month of the year (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec)
dd Day of the month (1,...,31)

hh Hour (0,...,23)

mm Minute (0,...,59)

ss Second (0,...,59)

YYYY Y ear

The string is terminated with a newline character and a null character. The string is aways 26 characters
long (including the terminating newline and null characters).

A pointer to the string is returned.

2.15.5 difftime

Declaration:

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.15.html (4 of 8)4/1/2008 8:42:54 AM

C Guide--2.15 time.h

double difftine(tinme_t timel, tine_t time2);
Calculates the difference of seconds between timel and time2 (timel-time2).

Returns the number of seconds.

2.15.6 gmtime

Declaration:
struct tm*gntinme(const tinme_t *timer);

The value of timer is broken up into the structure t mand expressed in Coordinated Universal Time
(UTC) also known as Greenwich Mean Time (GMT).

A pointer to the structureisreturned. A null pointer isreturned if UTC is not available.

2.15.7 localtime

Declaration:
struct tm*localtinme(const tine_t *timer);
The value of timer is broken up into the structure t mand expressed in the local time zone.
A pointer to the structure is returned.
Example:

#i ncl ude<ti ne. h>
#i ncl ude<st di 0. h>

I nt mai n(voi d)

{

time_t timer;

timer=time(NULL);

printf("The current tinme is %.\n",asctine(localtine
(&imer)));

return O;

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.15.html (5 of 8)4/1/2008 8:42:54 AM

C Guide--2.15 time.h

}
2.15.8 mktime

Declaration:
time_t nktinme(struct tm *timeptr) ;

Converts the structure pointed to by timeptr intoat i me_t value according to the local time zone. The
valuesin the structure are not limited to their constraints. If they exceed their bounds, then they are
adjusted accordingly so that they fit within their bounds. The original valuesof t m wday (day of the
week) and t m_yday (day of the year) areignored, but are set correctly after the other values have been
constrained. t m_nday (day of the month) is not corrected until after t m non andt m year are
corrected.

After adjustment the structure still represents the same time.
Theencoded t i me_t valueisreturned. If the calendar time cannot be represented, then -1 is returned.
Example:

#i ncl ude<ti nme. h>
#i ncl ude<st di 0. h>

/* find out what day of the week is January 1, 2001
(first day of the 21st century) */

I nt mai n(voi d)
{

struct tmtine_struct;

char days[7][4]={"Sun", "Mon", "Tue", "Wed", "Thu",
"Fri", "Sat"};

time_struct.tm year=2001-1900;
time_struct.tmnon=0;
time_struct.tm nday=1;
time_struct.tmsec=0;
time_struct.tmm n=0;
time_struct.tm hour=0;
time_struct.tm.isdst=-1;

I f(nktime(&inme _struct)==-1)

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.15.html (6 of 8)4/1/2008 8:42:54 AM

C Guide--2.15 time.h

{printf("Error getting tine.\n");
exit(0);
}
printf("January 1, 2001 is a %.\n",days[tine_struct.
t m wday]) ;
return O;
}

2.15.9 strftime

Declaration:

size_t strftinme(char *str, size_t maxsize, const char *format,
const struct tm *timeptr);

Formats the time represented in the structure timeptr according to the formatting rules defined in format
and stored into str. No more than maxsize characters are stored into str (including the terminating null
character).

All charactersin the format string are copied to the str string, including the terminating null character,
except for conversion characters. A conversion character begins with the %sign and is followed by
another character which defines a special value that it isto be replaced by.

gﬁg\rlz(r:tse?n What it isreplaced by

Ya abbreviated weekday name
%A full weekday name

% abbreviated month name
B full month name

% appropriate date and time representation
%l day of the month (01-31)
o hour of the day (00-23)

% hour of the day (01-12)

% day of the year (001-366)
%m month of the year (01-12)
oM minute of the hour (00-59)
%p AM/PM designator

file:///CJ/Documents¥20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.15.html (7 of 8)4/1/2008 8:42:54 AM

C Guide--2.15 time.h

%5 second of the minute (00-61)

%) week number of the year where Sunday isthe first day of week 1 (00-53)
v weekday where Sunday is day 0 (0-6)

oW week number of the year where Monday is the first day of week 1 (00-53)
U appropriate date representation

X appropriate time representation

Ny year without century (00-99)

%Y year with century

0wz time zone (possibly abbreviated) or no charactersif time zone isunavailable
%0 %

Returns the number of characters stored into str not including the terminating null character. On error
zero is returned.

2.15.10 time

Declaration:
time t time(tinme_t *timer);
Calculates the current calender time and encodesitintot i me_t format.

Theti me_t valueisreturned. If timer isnot a null pointer, then the value is also stored into the object
it pointsto. If thetimeis unavailable, then -1 is returned.

< Previous | Table of Contents | Index | Next Section [
Section Index
2.14 string.h

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/2.15.html (8 of 8)4/1/2008 8:42:54 AM

C Guide--Appendix A ASCI| Chart

| Table of Contents | Index |

Appendix A

ASCI| Chart

Decimal |Octal |Hex |Character | |Decimal |Octal |Hex [Char acter
0 0 |00 [NUL 64 100 [40 |@
1 1 |01 [soH 65 101 [41 [A
2 2 |02 [sTX 66 102 |42 [B
3 3 [03 [ETX 67 103 [43 [C
4 4 |04 [EOT 68 104 [44 D
5 5 |05 [ENQ 69 105 [45 [E
6 6 |06 |ACK 70 106 |46 [F
7 7 |07 [BEL 71 107 [47 |G
8 10 |08 |BS 72 110 [48 [H
9 11 |09 [HT 73 111 [49 |
10 12 [oA [LF 74 112 [4A [3
11 13 [oB |[vT 75 113 [4B [K
12 14 |oc [FF 76 114 [4C [L
13 15 [oD [cR 77 115 [4D M
14 16 [0E [sO 78 116 [4E |N
15 17 |OF |SI 79 117 |4F |O
16 20 [10 [DLE 80 120 [50 [P
17 21 |11 [pc1 81 121 [51 [Q
18 22 [12 [pC2 82 122 52 [R
19 23 [13 [DC3 83 123 53 [s
20 24 [14 [DC4 84 124 [54 [T
21 25 [15 [NAK 85 125 [55 [U
22 26 [16 [sYMm 86 126 56 |v
23 27 [17 [ETB 87 127 57 |w
24 30 [18 [cAN 88 130 58 [X

file:///C)/Documents¥%20and%20Settings/sshai kot/Desktop/c_guide/c_guide/a.html (1 of 3)4/1/2008 8:42:53 AM

C Guide--Appendix A ASCI| Chart

25 31 [19 [EM 89 131 [59 [y
26 32 [1A [suB 90 132 [5A [z
27 33 [1B [ESC 91 133 5B [
28 34 [1C [FS 92 134 [5C |\
29 35 [1D [GS 93 135 [5D |]
30 36 [1IE |RS 94 136 [5E [~
31 37 [1F [us 95 137 [5F [
32 40 [20 [sP 96 140 [60 [
33 41 [21 | 97 141 [61 [a
34 42 (2] 08 142 62 [b
35 43 (23 [# 99 143 [63 [c
36 44 24 [3 100 [144 [64 |[d
37 45 (25 [% 101 [145 [65 e
38 6 (26 [& 102 [146 [66 [f
39 47 27 | 103 [147 [67 g
40 50 [28 [104 [150 [68 |h
41 51 [29) 105 [151 [69 i
42 52 [2A [+ 106 [152 [6A |j
43 53 [2B [+ 107 [153 [6B |k
44 54 [2c |, 108 [154 [6C |l
45 55 [2D |- 109 [155 [6D |m
46 56 [2E |. 110 [156 [6E |n
47 57 [2F |/ 111 [157 [6F o
48 60 (30 [0 112 [160 [70 |p
49 61 [31 [1 113 [161 [71 |q
50 62 [32 |2 114 [162 [72 |r
51 63 [33 [3 115 [163 [73 |s
52 64 [34 [4 116 [164 [74 |t
53 65 [35 [5 117 [165 [75 [u
54 66 (36 [6 118 [166 [76 |v
55 67 [37 [7 119 [167 [77 |w
56 70 [38 [8 120 [170 [78 [x

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/a.html (2 of 3)4/1/2008 8:42:53 AM

C Guide--Appendix A ASCI| Chart

57 71 [39 o 121 [171 [79 |y
58 72 [3a[: 122 [172 [7A [z
59 73 [3B |, 123 [173 [1B [
60 74 [3C |< 124 [174 [7C ||
61 75 [3D |= 125 [175 [7D |
62 76 [3E [126 [176 [7E |-
63 77 [3F [? 127 [177 [7F |DEL

| Table of Contents | Index |

file:///C)/Documents¥%20and%20Settings/sshaikot/Desktop/c_guide/c_guide/a.html (3 of 3)4/1/2008 8:42:53 AM

	introduction.pdf
	introduction.pdf
	Local Disk
	The C Library Reference Guide Introduction

	index.pdf
	Local Disk
	The C Library Reference Guide

	index2.pdf
	Local Disk
	C Guide--Index

	1.1.pdf
	Local Disk
	C Guide--1.1 Characters

	1.2.pdf
	Local Disk
	C Guide--1.2 Indentifiers

	1.3.pdf
	Local Disk
	C Guide--1.3 Functions

	1.4.pdf
	Local Disk
	C Guide--1.4 References

	1.5.pdf
	Local Disk
	C Guide--1.5 Operators

	1.6.pdf
	Local Disk
	C Guide--1.6 Statements

	1.7.pdf
	Local Disk
	C Guide--1.7 Preprocessing Directives

	2.1.pdf
	Local Disk
	C Guide--2.1 assert.h

	2.2.pdf
	Local Disk
	C Guide--2.2 ctype.h

	2.3.pdf
	Local Disk
	C Guide--2.3 errno.h

	2.4.pdf
	Local Disk
	C Guide--2.4 float.h

	2.5.pdf
	Local Disk
	C Guide--2.5 limits.h

	2.6.pdf
	Local Disk
	C Guide--2.6 locale.h

	2.7.pdf
	Local Disk
	C Guide--2.7 math.h

	2.8.pdf
	Local Disk
	C Guide--2.8 setjmp.h

	2.9.pdf
	Local Disk
	C Guide--2.9 signal.h

	2.10.pdf
	Local Disk
	C Guide--2.10 stdarg.h

	2.11.pdf
	Local Disk
	C Guide--2.11 stddef.h

	2.12.pdf
	Local Disk
	C Guide--2.12 stdio.h

	2.13.pdf
	Local Disk
	C Guide--2.13 stdlib.h

	2.14.pdf
	Local Disk
	C Guide--2.14 string.h

	2.15.pdf
	Local Disk
	C Guide--2.15 time.h

	appendix.pdf
	Local Disk
	C Guide--Appendix A ASCII Chart

