THE
PROGRAMMING

LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

PREMNTICE HALL SOFTWHAE SERES

(1= = TSR 6
Preface to the firSt @AItIONccoiiee e e et e e s neeeneeas 8
Chapter 1 - A Tutorial INtrOJUCTIONceiuiiieeieiiesiee e e 9
1.1 GELtING SLAEA.c.eieeeeiirierieieieri et it b ettt e e b ne e e e 9
1.2 Variables and ArithmetiC EXPreSSIONS........c.ccvieeieieeieiest creeecee e et eneneenens 11
1.3 TNETOr SEAIEMENL......ceeeiecicie e s e e 16
1.4 SYMDBDOIIC CONSLANES......eeiverieeiieiesiesie e ettt sttt s sre b sse s e e seensessesbesbesses eesseenes 17
1.5 Character INpUt a0 OULPUL.........couerueerierieieeenis e e e e e sne e 18
1.5.1 FilE COPYING. . ecuertiireerierienieesieses et sse et sse e siesaeses £ebesse e esesbe s e sesbessesesse s easeneesaees 18
1.5.2 CharaCter COUNLINGceruirieirieriereeenie ceseeesie e see it se e e eeesessesse e sseseessesesseses oo 20
1.5.3 LiNE COUMLING.ccuertieeuerririeesiesies seetesiesesie st see e sse st ees shesseessesbessesessesseeeseas seesneenses 21
1.5.4 WOrd COUNLING.....ceieiieiriitieieieeitesie seeteeeesee e stesressesreesees sesestessesseeseessessessesseese naesseens 22

I N 1 = Y SRS 23
L7 FUNCLIONS ...ttt sttt ettt sttt e e e st e se e e eaensesbeebeeseeneen s nbeeseenseeneeeeeneenes 25
1.8 ArgumentS - Call DY VEUE.......cooiiieeeee e s 28
1.9 CharaCLEr ATTAYS ..eueeueieeeeiesiese ettt sttt b e bt es she et e e e st s b e seeseebe b e e ene s seesaesaeneas 29
1.10 Externa VariableS @and SCOPEcocvrueiririieirent sttt et sae e e 31
Chapter 2 - Types, Operators and EXPreESSIONScccveuireereirieireseeereesieesessesessesesessess sessesens 35
2.1 Variable NAIMES.......ooiiiiiiee e et e 35
2.2 DAa TYPES @MU SIZES ..ot ettt st es sreeeesaestesbesresse e e e e e e ee e 35
FZC B 00 = 1SR 36
2.4 DECIAIALIONS.......ceveiesieeiesiestieies erteste et eseeeeeessestessesas seeseessessessesseeseeseesensen seneessessennsessenns 39
2.5 ANTMELIC OPEIAIOIS ...ttt ettt et st se et se e e b sae e e neeas 40
2.6 Relational and LogiCal OPEratorS.........ccuurveerireririent seesieesiesiesessesieseeesse s seesessesesseseenens 40
2.7 TYPE CONVEISIONS......cccuieiieeieeieeitiesteesseeesseesseestesessseesteeases esseessesasesssessesssesnsesnes seeseensenes 41
2.8 Increment and Decrement OPEraOrS.ccveereeerreereres eresee e see e sre e e s sreesseenee s a4
2.9 BItWiSE OPEIELIOIS. ..c.veveeeeeueeeesiestesteste seeseetestessessessesseeseesses seseesesseessessessessessessenns seeneesenses 46
2.10 Assignment Operators and EXPreSSIONS..........coveererieiereriens seeiesieseeesie s seee seeeas 47
2.11 CoNditioNal EXPrESSIONS........ooueueruerueeeuirierees suesteseeessesseseesessesseees seeseesessessesseessessesssnens 49
2.12 Precedence and Order Of EVAlUBLION..........ccoiiiiriiiniees e e 49
Chapter 3 - CONIOl FIOW ..o ettt et er e e eneeenes 52
3.1 Statements and BIOCKScoiiiiiiiiicinis e e 52
L2 H- Bl SRttt e bbbt £ eae bttt ae et se e 52
T I = SO 53
B3 o o PSSR 54
35 L00PS- WhIlE @NA FOF ...t ettt e e 56
3.6 LOOPS - DOWHIIE.....eiieiiiesiee e st ettt sreseene e 58
3.7 Break and COMLINUE.coviiriiieiriiites sttt sr et sne s e nre s 59
3.8 GO0 AN TAELS.......eeee e e 60
Chapter 4 - Functions and Program SITUCLUIE...........c.coeeeririeieee e e 62
4.1 BESICS Of FUNCLIONSecuveiieieiesie et et se sttt et sse e e e e saeseesresseene seenreens 62
4.2 Functions Returning NOMINTEOEN'Sccririiririerieent sttt s et 65
4.3 EXtErNal Varialls.c.cooiieicicece e et sttt en e ne e 67
4.4 SCOPE RUIES.......oeceieiecieceee e ettt st ettt e seestesreabeebeese e s e sessesae sensesseensesseeneans 72
A5 HEAOEN FIlES......eoieeie e e ettt b bt nn e b 73
4.6 SLAIC VATADIES ...t et ettt s s s ereesaeenreens 75
4.7 REQISIEr VaiaDIES......c.eciieeeeeeee e e e e 75
4.8 BIOCK SITUCLUIE.......cueceeeeieieiesie et sttt te et e stesteeseeseeseeeesaesaessees sreeseenennennas 76
e TN F= T2 () o SO 76
4,10 RECUISION.uervuiaeteiiteteisteis et se et se st se st e et seehe e s st e b et e bt e b et £ s esenbennese st e e enen 78

A.11 THE C PrEPIOCESSONccuveiveeiteetieteseesies teeteseesseesseesseassesseesse steestesssssseesseessesssssness sensees 79

4101 FlE INCIUSION.....oniiieee et et et e 79

2 I 2V = o {0 TS o1 1 (1 1o RS 80
4.11.3 Conditional INCIUSIONccueiuieieieriesiese e e e ae e sse e nae s s 82
Chapter 5 - POINTEIS @N0 ATTEYS ...couoivierierierieesiesiee ettt b s se b b e s e e 83
5.1 POINtErS @nd AQUrESSES......c.coveieiesiecieeieie ettt ss sreese e e e saesaestesresneeneenen seee 83
5.2 Pointers and FUNCLION ATQUMENES.........ccueiiieiecreceeee erte st sre e es sne e e enne s 84
NG o 0l 010 £ 00 [N 1 = Y2 T 87
5.4 AAAreSS ATTAMELICc..oeiiiiieiie et s e e nne e 0
5.5 Character Pointers and FUNCLIONS.........c.voieieieerenis ceeieeeese e sseesee e seeseennas 93
5.6 Pointer Arrays, POINTErS t0 POINTEIS.........ccceieririrereees e es sre e sneseennas 96
5.7 MUIt-AIMENSIONA ATTAYS ...ttt ettt st e e st st sbe e e e 9
5.8 Initialization Of POINTEr ATTAYS......coceiiiieiriirieiees ettt et sresae e 101
5.9 Pointers vs. Multi-dimensional ATTAYS........cceoeeeeieieseses eeeeeseesie e s e esee s sreesreens 101
5.10 Command-1iNE ATQUIMENTScoiueiuiriieieiesiesieet et see st e ses e eseesseensesseensesneens 102
5.11 POINEIS 10 FUNCHIONS......cueiiiieiesiisie st ettt v seeneessesnesnesneeneenes ses 106
5.12 Complicated DECIaratioNScceieruiriirieirient sttt e 108
ChEapLer 6 - SITUCIUIES.........ciuieeeeieeiesie et ettt sttt ettt b et e s et b neen saeennennennas 114
6.1 BaSICS Of SITUCLUIES......c.eeiieieeceiceieete st ettt s ve st aesaestesneene ee e 114
6.2 SIrUCLUreS and FUNCLIONS ..ot et et 116
6.3 AITAYS OF SHUCIUIES ... oo cueeieeecteccte ettt ettt et e e e eatesaeesbeesreenbesaeesneense nreeas 118
6.4 POINTErS 1O SITUCIUIEScveeueeieie sttt ettt st s sreeseeneeneensesteseessesneenes seen 12
6.5 SAf-referential SITUCIUIMESoc.eeieeeeece et e et sne e 124
6.6 TADIE LOOKUD ...ttt sttt ettt s e nn s 127
6.7 TYPEUES ..o e ettt bbb e 129
(3S T8 0 T USRS 131
6.9 BI-TIEIOS ...t e s bt 132
Chapter 7 - INPUL @NA OULPULoveieriesieeiieieie et e se e st st sneeneen e s 135
7.1 Standard INPUt @Nd OULPULcoueeieierieiiesieeiees et e sresre e e eneeneeneeneas 135
7.2 Formatted OULPUL - PRINET ..o e e 137
7.3 Variable-1ength Argument LiSES......cccoiverirereines et e 13
7.4 FOrmatied INPUL - SCANFceiiirieeeisieie e s st 140
7.5 FIIE ACCESS ...t ettt bbbt ehe e b e n s 142
7.6 Error Handling - Stderr and EXit........ooveiieiiie s et e 145
7.7 Line INPUL @NA OULPUL........eeueeeeieiesiesieeies eree st st ee e sae et sresseeseeseessessessessesseenes ses 146
7.8 MisCEllan@0US FUNCLIONS........cciiieiieieieie e e eee e ee e sneeeesneeeeeneens 147
7.8.1 SHING OPEILONS.ccuitiieiirierieieiestes sttt et se s seesbe e e e besbe e sessessenees e 147
7.8.2 Character Class Testing and CONVEISIONccoereeererieiereres cesiesee e seeseeseesseseeseens 148
8.3 UNQELC ...ttt ettt e e bt e s e sb e e s b e e nesaneene sreenesneenreennens 148
7.8.4 CommMaNd EXECULION.........cceiiiiiieiniiiteies e e 148
7.8.5 Storage ManaQEMENLoceiee e ettt st et e b e be e saee b nneas 148
7.8.6 MathematiCal FUNCLIONS..........cceiieieieieie st st e sre e sne e 149
7.8.7 Random NUMDEr GENEIaLIONccerieeeriirieierie et e e s e e 149
Chapter 8 - The UNIX System INterface.........coeiireiriines e s 151
ST L= DTS o] o) o] £ SRS 151
8.2 Low Level 1/0- Read @and WIIE.........ciiirieiieeieieries et e 152
8.3 Open, Creat, ClOSe, UNINKcocuiiiiiiiiiinierie et e sneens 153
8.4 RANUOM ACCESS - LSBEK.....eiuiiuieierieeiieieitesies ettt sttt e e st s s s e e e neas 155
8.5 Example - An implementation of Fopen and GELC...........ccoeeererereiene e 156
8.6 Example - LiSting DIr€CLOMIES.........coueeririiieirieris ettt e 19
8.7 Example - A StOrage AlTOCEEONccoivreriiieiririe e e 163
Appendix A - REFErENCE ManUalccooeiiiiiiices et e 168

AU I g (0o 18 Tox 1T R 168

A2 LEXICA CONVENMLIONScviuieiiriiteieiisieees seease st s e ese s she st sbesn e e esesn s e e ane s e 168
N R 0 (. PSSR 168
AL 2.2 COMIMENES ..ottt et et e et e te e te et e eae sae e et eneeseeesseenseeneeaneess 2aneeenseennes 168
F 2 B o (= 0|) 1= £ S ST 163
A2 KEYWOITS......ccuireieeieriesieeeie st ettt sttt e et se e £ebe s b e et s be b e e e be b et ene e eseeneenseneas 169
AL2.5 CONSLANES.......ooiiiitiiiiiiirer s s s a e 169
A.2.6 SING LITEralS....oeceecee et sttt et et s re et esaeesre e eereens 171

WANRC RS0 = e N[0 = 1 o] o FO SRR 171

A.AMeaNing Of 1ABNTITIENS... ..ot e e e 171
A 4L SHOFBGE ClBSS.....ueieieeieeieieeeesiese ettt et s et se e b e e e ne e e enenes 171
A L2 BESIC TYPES ..ottt ettt b et es she bttt et b et ne s sheene e 172
F N A BT (1 o I 1Y/ o= U SPRUR 173
A LA TYPE QUEIITIEIS. ..ottt et et e e sresre s eneas 173

A.50DJECIS ANA LVAIUES ...t et et e 173

E N @] 1V7= £ o] TSRS 173
A.6.1INtegral PromMOLiON........cccovririeieerie e ettt e see e 174
A.6.2 INtEgral COMNVEISIONS.......ciuieieriirieeeiertens seriesieseeessesee e ssesseseeas e ssessessessessessesaesseseas 174
A.6.3 Integer and FlOAING........covririieirie et e e 174
F R = To = g To T Y/ 0= SRR 174
A.6.5 AritNMELIC CONVEISIONS.cueiiiiieciiititeieie et e 174
A.6.6 POINIErS @Nd INTEJENS.coviieirieeieeieeieeees ettt st es seesse e e e stesseeneesneeneas 175
ALB.T VOI0 ... ettt et b et b bt st e e e e e nne e 176
A.B.8POINLEISTO VOIcueeeeieciieieeeeeeriest sttt e sae e s e sne e eseeneenee s srees 176

A LT EXPIESSIONS......ceuiitiiesieiesieseeests seeesesaesse e sbesbeeesesbe e £esesbesseneebesbe e esesbessene £eseeneennenseneens 176
A. 7.1 POINTEr CONVEISION....c.ooiviiiiiiietieietesie et sre st et e e e saesressesseeses sesestesressessesneensensessens 177
A 72 Primary EXPrESSIONS......ccciieiieeieiiesteesie ceeeeeste e s e etesaesseeste et saseesseessassnsesssesssessnns 177
A.7.3 POSLTIX EXPIESSIONS ..ottt ettt et s b e e 177
AT A UNSNY OPEIEIOIS.....ccitiieiieeiteeseeie e seeesteetesee st e seeesteseeas sabeebeseesseeseeenseeneesnees eeen 179
A LTS5 GBS ...ttt et h et h e h e e e Rt s e bbb naenne e 181
A.7.6 MUILIPHICALIVE OPEIELONS........ueeeuereeieiirieriees etestee et see et see e i sesesesbeseeesseseeneas 181
A.7.7 AUCItIVE OPEIELOIS.cueivieeiirtiieiriesie sttt et et e sse e eeneas 1
A.T7.8 SNift OPEIGLOISecveeieceieiecie ettt sttt e beebe e e e sesaesresre s eaneas 1
A.7.9 REIAiONal OPEIAlOrS.....cceeiveecieeieeeecteesis et e st e s e ste e s et es sreesreesreesnreesreesreeenns 183
A.7.10 EQUAlILY OPEIELOIS......ccueeueeeeriesiestenieese seestestestesseesesseeseessesses seseessessssseensesseessesnees 183
A.7.11 BitwiSe AND OPEIEIONcoueeeueriereeierieriees etestesesieseeseeesseseesesses sesssesseseenessesesneas 183
A.7.12 Bitwise EXCIUSIVE OR OPEIELONcccrueiriirieieeriese seeesiesiesesie s see s e seeee e 134
A.7.13 Bitwise INCIUSIVE OR OPEIELONcoveuiriirieirierieies et ss e sseeeas 134
A.7.14 LOQICAl AND OPEIEIONcoveueeierieieseriesiees erestesesieseeseeeseeseesesses sesesesseseesessessesens 134
AN LR oo o= I @ 2 @0 1= - (0] g 131
A.7.16 CONAitioNal OPEIEIONccueiueeeiriiriieieiesis ceeresieseeee e see s sre s s ssbesseesreesesneessesneas 13
A.7.17 ASSIGNMENE EXPIESSIONS.......eeeeiirtiieieriisieees seeseeseeie e see e sse e s s seesaessestesaesseneas 185
A.7.18 COMMEA OPEIEIONccueeueiierierieeiieees st sre e eeesr e s snessesseenennennee s 185
A.7.19 CoNStant EXPrESSIONScouiiueueriirieirieriees eiestesese e sesses seseste e ssessesaesseseas 186

A B DECIArALIONS......cueeieieiiecte et ettt es st et et e ste e r e aeeae e e et et e eneeereenreenean 186
A.8.1 Storage Class SPECITIENS......coiiiiicicieices ettt e ereas 187
F R S I Y o TSRS o= ol 1= £ S PTR 183
A.8.3 Structure and Union DEClarationsccoeeeeierienenis cerieeeeeesee e see e siessees sseeeneas 183
A B4 ENUMETELIONSoveeuienieieeiesiesieetees eeesteseestesseeseeseeeesseses sesseeseeneensessessessessessens sasesnees 191
J RSN D= o - (o TSRS 192
A.8.6 Meaning Of DECIAratOrS.cccveueiririeires et e 193
ALBT INITIAIHZALON. ...t e ettt e 1%

ALB.B TYPE NAIMES. ...ttt e e e e saee e s ae e erbe e sateesaeeenaeeen sereenreans 198

A B TYPEUE ... e e et e e 19
A.8.10 TYPE EQUIVBIENCE.cceeieeieeeieieieie st ettt eee st st sse e neeneennens 19

F S S = 110 P 199
A.9.1 Labeled SIaOMENLS.......cieieeeeeeeieeeriens seeee e ee e sae st e e s eeestesressesseeseenaensensens 200
A.9.2 EXPression SEAEMENTcooiiiririeieteriee sttt et et saeneeneas 200
A.9.3 CoMPOUNT SEEEEMENTcueeeeeeieee e et e e e re e re e e e e eaenrenrens 200
A.9.4 SElECION SEALEMENLS.......ccvieeieitirei et e et 201
ALO.5 ITEration SEALEMENES.cviiiiieieiirierieeet e e 201
ALO.6 JUMP SLALEIMENTS ... e e e n e nenresre e e 22
A.10 EXternal DECIAralionS........ccceiveeeeereerienis cesteeseeseeseeseeseessessessens snsessessessessessessseseessesses 203
A.10.1 FUNCtiON DEfINITIONS.......ceeiieieiesicie e et et e e nne s 208
A.10.2 EXternal DECIarations.........ccccceveiiiieiees cere sttt es s sre e e sreennas 04
A.11 SCOPE AN LINKAGEveeeeeeeiiecte ettt sttt ettt st e ae e s teebeeneenn e s ene s sneas 205
A.LL T LEXICA SCOPE ...viivirterieeiieiesiesiesiess sreeseeseessestesbesiessesee e e sbesbessesseeneensenaessesbees sanees 205
ALLL2 LINKAOE ...cveieeeeeeteeiieiesie st st ceeieeee e ee st sbe s eseen setestesseeseeseeneeneeseessesss seesessessessens 206
ALL2 PrEPIOCESSING. .. .ecveueeuerteeeuesieseeees saesseeesessessesessesseseasess seeseesessesseseasessenessessans seessessessens 206
A.12. 1 Trigraph SEOUENCES.......cceuiiueeeierteseeieie ettt et e e e e se e sse e 207
A.12.2 LiNE SPHICIG ettt ettt ettt s 207
A.12.3 Macro Definition and EXPanSIONcoccceieieeecieeie et sne e seveneas 207
AL2.4 FIE INCIUSION.....cuiiiiiiitisieeeses et ettt s 209
A.12.5 Conditional COMPIELION.........cciiieiieeeieee e e e sneeneas 210
A.12.6 LiNE CONIOl ..ot et ee et seestestesse e eseeneeneessesses eesenens 21
A.L2.7 EITOr GENEFBLION....c..iiveiieeieeeieieriesiess seeeseeseessessestesseesesseees sessessesseeseessessessessessens on 21
ALL28 PragIMES.....coueeeeieieieiieieeieie ettt sttt as e e s e s e st e st e bt se e e e e e ennenanenneas 212
ALL2.9 NUH GITECHIVE. ...t ettt ettt ettt e nes 212
A.12.10 Predefined NBIMESccoiiiiiieiiiris ettt et 22
ALLS GIaIMIMEL ...t s e e r e b e b e e e s e renre e eresneenenreeanas 212
Appendix B - Standard Library ... et et 220
B.1 Input and OULPUL: <SEAIO.N> ... e s 220
B.1.1 FilE OPEIALIONScueeuiriiieieeiesieeeiest sttt see et sbe s et be s sb e b neebesaeneene e 220
B.1.2 FOrMEEd OULPUL........c.eeeeeriirieiriisies sttt bbb s sbe e e 22
B.1.3 FOMEEd INPULc.ooveiecieceieeece e e e e 223
B.1.4 Character Input and OULPUL FUNCLIONS...........cceeviieeieerie ettt e 225
B.1.5 Direct Input and OULPUL FUNCLIONScccoruiiirinineneen e e 225
B.1.6 File POSItiONiNg FUNCLIONScouiiiiiriiiceeese et e 226

o I A (T Vo o S 226
B.2 Character Class TeStS: <CLYPE.N> ..o e s 226
B.3 String FUNCLIONS: <SENQ.N> ... e s 27
B.4 Mathematical FUNCLIONS: <KMath.N>..........cccoiiiiiii e e 228
B.5 Utility FUnctions: <StAIiD.0> ..o s 229
B.6 DiagnOStiCS, <@SSEIT.N>.....cuiiiiiiiieecee e e et 231
B.7 Variable Argument Lists: <stdarg.n>ccoooiiiiinini e e 231
B.8 Non-local JUmps: <SEMP.N>......c.ooiicieeeee e s YRV
B.9 SIgnals: <SIGNal.N> ..o e e s YRV
B.10 Date and Time FUNCLiONS, <IME.N>.........ciiiiiiiiiiee e s 233

B.11 Inplenentati on-defined Limts: <limts.h> and <fl oat. h>

Preface

The computing world has undergone a revolution since the publication of The C
Programming Language in 1978. Big computers ae much bigger, and persond computers
have capabilities that rivdl manframes of a decade ago. During this time, C has changed too,
dthough only modesily, and it has soread far beyond its origins as the language of the UNIX
operating system.

The growing popularity of C, the changes in the language over the years, and the creation of
compilers by groups not involved in its desgn, combined to demondrate a need for a more
precise and more contemporary definition of the language than the firg edition of this book
provided. In 1983, the American Naiond Standards Inditute (ANSl) edtablished a committee
whose god was to produce “an unambiguous and machine-independent definition of the
language C', while il retaining its spirit. The result isthe ANSI standard for C.

The dandard formalizes congructions that were hinted but not described in the first edition,
paticularly dructure assgnment and enumeraions. It provides a new form of function
declaration that permits crosschecking of definition with use It secifies a sandard library,

with an extersve st of functions for peforming input and output, memory management,
gring manipulation, and Smilar tasks. It makes precise the behavior of festures that were not

spdled out in the origind définition, and a the same time dates explicitly which aspects of
the language remain machine-dependent.

This Second Edition of The C Programming Language describes C as defined by the ANS
dandard. Although we have noted the places where the language has evolved, we have chosen
to write exdusvdy in the new form. For the mogt part, this mekes no sgnificant difference;
the mogt visble change is the new form of function declaration and definition. Modern

compilers dready support most festures of the sandard.

We have tried to retain the brevity of the firg edition. C is not a big language, and it is not
wdl saved by a big book. We have improved the expostion of criticd festures, such as
pointers, that are centrd to C programming. We have refined the origind examples, and have
added new examples in sverd cheptars. For ingance, the treatment of complicated
decdlarations is augmented by programs tha convert declarations into words and vice versa
As before, dl examples have been tested directly from the text, which is in machine-readable
form.

Appendix A, the reference manud, is not the dandard, but our atempt to convey the
esentids of the dandard in a smdler space. It is meant for essy comprehenson by
programmers, but not as a definition for compiler writers -- that role properly beongs to the
dandard itsdf. Appendix B is a summay of the fadlities of the sandard library. It too is
meant for reference by programmers, not implementers. Appendix C is a concise summary of
the changes from the origind version.

As we sad in the preface to the firg edition, C “wears wel as ones experience with it
grows'. With a decade more experience, we dill fed that way. We hope that this book will
help you learn C and useit wdll.

7

We ae deeply indebted to friends who helped us to produce this second edition. Jon Bertly,
Doug Gwyn, Doug Mcllroy, Peter Nelson, and Rob Pike gave us perceptive comments on
dmog every page of draft manuscripts. We are grateful for careful reading by Al Aho, Dennis
Allison, Joe Campbdl, GR. Emlin, Karen Fortgang, Allen Holub, Andrev Hume, Dave
Krigol, John Linderman, Dave Prosser, Gene Spafford, and Chris van Wyk. We dso received
hdpful suggesions from Bill Cheswick, Mak Kemnighan, Andy Koenig, Robin Lake, Tom
London, Jm Reeds Clovis Tondo, and Peter Weinberger. Dave Prosser answered many
detailled quedions about the ANS dandard. We used Bjane Stroustrup's C++ trandator
extengvey for locd tesing of our programs and Dave Krigol provided us with an ANS C
compiler for find testing. Rich Drechder helped greetly with typesetting.

Our sincerethanksto Al.

Brian W. Kernighan
Dennis M. Ritchie

Prefaceto thefirst edition

C is a generdpurpose programming language with features economy of expresson, modern
flow control and data Structures, and a rich st of operators. C is not a “very high levd"
language, nor a “hig" one, and is not specidized to any paticular area of gpplication. But its
absence of redrictions and its generdity make it more convenient and effective for many
tasks than supposedly more powerful languages.

C was origindly desgned for and implemented on the UNIX operating sysem on the DEC
PDP-11, by Dennis Ritchie. The operating sysem, the C compiler, and essentidly dl UNIX
goplications programs (including dl of the software used to prepare this book) are written in
C. Production compilers ds0 exig for saverd other mechines, including the IBM Systemy370,
the Honeywdl 6000, and the Interdata 8/32. C is not tied to any paticular hardware or
sysem, however, and it is essy to write programs tha will run without change on any
meachine that supports C.

This book is meant to hdp the reeder lean how to program in C. It contans a tutorid
introduction to get new users dated as soon as possble, separate chapters on each mgor
fedture, and a reference manud. Mogt of the trestment is based on reading, writing and
revisng examples, rather than on mere datements of rules For the mogt part, the examples
ae complete, red programs raher than isolated fragments. All examples have been tested
directly from the text, which is in meachine-reedable form. Besdes showing how to make
effective use of the language, we have dso tried where possble to illusrate ussful agorithms
and principles of good style and sound design.

The book is not an introductory programming maenud; it assumes some familiarity with basc
progranming concepts like varidbles, assgnment datements, loops, and functions
Nonethdess, a novice programmer should be adle to read dong and pick up the language,
athough access to more knowledgegble colleague will help.

In our experience, C has proven to be a plessant, expressve and versdile language for a wide

variety of programs. It is easy to learn, and it wears well as on's experience with it grows. We
hope that this book will hep you to useit well.

The thoughtful criticiams and suggestions of many friends and colleagues have added greetly
to this book and to our plessure in writing it. In paticular, Mike Bianchi, Jm Blue, Su
Feldman, Doug Mcllroy Bill Roome, Bob Rosn and Lary Roder dl reed multiple volumes
with care. We are dso indebted to Al Aho, Steve Bourne, Dan Dvorak, Chuck Haey, Debbie
Hdey, Maion Haris Rick Holt, Steve Johnson, John Mashey, Bob Mitze, Raph Muha,
Peer Nedson, Hliot Pinson, Bill Pauger, Jary Spivack, Ken Thompson, and Peer
Weinberger for helpful comments a various stages, and to Mile Lesk and Joe Ossanna for
invauable assstance with typesetting.

Brian W. Kernighan
DennisM. Ritchie

Chapter 1- A Tutorial Introduction

Let us begin with a quick introduction in C. Our am is to show the essntid dements of the
language in red programs, but without getting bogged down in detals rules and exceptions
At this point, we are not trying to be complete or even precise (save tha the examples are
meant to be correct). We want to get you as quickly as possble to the point where you can
write useful programs, and to do tha we have to concentrate on the badcs variables and
congants, aithmetic, control flow, functions and the rudiments of input and output. We are
intentiondly leaving out of this cheapter features of C that are important for writing bigger
programs. These include pointers, dructures, mogt of C's rich sat of operators, severd controk
flow statements, and the standard library.

This gpproach and its drawbacks. Mogt noteble is that the complete story on any particular
fegture is not found here, and the tutorid, by beng brief, may dso be mideading. And
because the examples do not use the full power of C, they are not as concise and degant as
they might be. We have tried to minimize these effects, but be warned. Another drawback is
that later chapters will necessxily repeat some of this chapter. We hope that the repetition
will hep you more than it annoys.

In any case, experienced programmers should be able to extrgpolate from the materid in this
chepter to ther own programming needs. Beginners should supplement it by writing samdl,
smilar programs of ther own. Both groups can use it as a framework on which to hang the
more detalled descriptions that begin in Chapter 2.

1.1 Getting Started

The only way to learn anew programming language is by writing programsin it. The firgt
program to write isthe same fa dl languages:

Print the words

hello, world

This is a big hurdle; to legp over it you have to be able to create the program text somewhere,
compile it successfully, load it, run it, and find out where your output went. With these
mechanicd detals magtered, everything eseis comparatively essy.

In C, the program to print ““hel I o, worl d"is

#i ncl ude <stdi o. h>
nai n()

printf("hello, worldn");
}

Just how to run this program depends on the system you are using. As a specific exanple on
the UNIX opeaing sysem you must cregte the program in a file whose name ends in ™. ¢",
such as hel | o. ¢, then compile it with the commeand

cc hello.c

10

If you havent botched anything, such as omitting a character or misspdling something, the
compilation will proceed slently, and meke an executable file cdled a. out. If you run a. out
by typing the command

a. out
it will prirt
hello, world

On other systems;, the rules will be different; check with aloca expert.

Now, for some explargtions about the program itsdf. A C program, whatever its Sze, conssts
of functions and variables. A function contans dSatements that specify the computing
operdtions to be done, and variables store vaues used during the computation. C functions are
like the subroutines and functions in Fortran or the procedures and functions of Pascd. Our
example is a function named main. Normdly you ae a liberty to give functions whatever
names you like but “main" is specid - your program begins executing a the beginning of
main. This means that every program must have anmai n Somewhere.

mai n Will usudly cdl other functions to hdp peform its job, some tha you wrote, and others
from libraries that are provided for you. The firgt line of the program,

#i ncl ude <stdio. h>
tdls the compiler to incdude information about the standard input/output library; the line
aopears @ the beginning of many C source files The standard library is described in Chapter
7and Appendix B.

One method of communicating data between functions is for the cdling function to provide a
lig of vaues, cdled arguments, to the function it cdls. The parentheses after the function
name surround the argument lig. In this example, mai n is defined to be a function that expects
no arguments, which isindicated by the empty list().

#i ncl ude <stdi o. h> i ncl ude i nformation about standard
library
mai n() define a function called nain

that received no argurent val ues
statenents of nain are enclosed in braces
printf("hello, worldn"); main calls library function printf
to print this sequence of characters
} \n represents the new ine character

Thefirg C program

The gatements of a function are enclosed in braces { }. The function mai n contains only one
Satement,

printf("hello, world\n");

11

A furction is cdled by naming it, followed by a parentheszed lis of arguments so this cdls
the function printf with the argument "hello, world\n". printf is a library function that
prints output, in this case the string of characters between the quotes.

A sequence of characters in double quotes, like "hello, world\n“, is cdled a character
dring or string constant. For the moment our only use of character drings will be as
arguments for pri nt f and other functions.

The sequence \n in the dring is C notation for the newline character, which when printed
advances the output to the left margin on the next line. If you leave out the \ n (a worthwhile
expeariment), you will find that there is no line advance dter the output is printed. You must
use\ n to indude a newline character inthe pri nt f argument; if you try something like

printf("hello, world

);
the C compiler will produce an error message.

printf never supplies a newline character automdicaly, so0 severd cdls may be used to
build up an output linein stages. Our firgt program could just as well have been written

#i ncl ude <stdi o. h>

nai n()

{
printf("hello, ");
printf("world");
printf("\n");

}
to produce identical output.
Notice that \n represents only a dngle character. An escape sequence like \n provides a
gened and extensble mechanism for representing hardtotype or invisble characters

Among the others that C provides are \t for tab, \b for backspace, * for the double quote
and\\ for the backdash itsdf. Thereisacompletelist in Section 2.3

Exercise 1-1. Run the “hello, world" program on your sysem. Experiment with leaving
out parts of the program, to see what error messages you get.

Exercise 1-2. Experiment to find out what happens when prints's argument gring contains
\c, where c is some character not listed above.

1.2 Variablesand Arithmetic Expressions

The next program uses the formula °C=(5/9)(°F32) to print the following table of Fahrenhet
temperatures and their centigrade or Celsus equivaents:

1 -17

20 -6

40 4

60 15

80 26

100 37

120 48

140 60

160 71

180 82

200 93

220 104

240 115

260 126

280 137

300 148
The program itsdf ill condsts of the definition of a single function named nai n. It is longer
than the one that printed “hello, world", but not complicated. It introduces severd new
idess, incduding comments, dedaraions, vaidiles aithmetic expressons, loops , ad
formaited output

#i ncl ude <stdi o. h>

[* print Fahrenheit-Celsius table

for fahr = 0, 20, ..., 300 */
mai n()
{
int fahr, celsius;
int |ower, upper, step;
| oner = 0; /* lower linmt of tenperature scale */
upper = 300; [* upper limt */
step = 20; [* step size */
fahr = | owver;

whil e (fahr <= upper) {
celsius =5 * (fahr-32) / 9;
printf("%\t%\n", fahr, celsius);
fahr = fahr + step;
}
}
Thetwo lines

/* print Fahrenheit-Celsius table
for fahr = 0, 20, ..., 300 */
are a comment, which in this case explains briefly what the program does. Any characters
between /* and */ ae ignored by the compiler; they may be used fredy to meke a program
easier to understand. Comments may gppear anywhere where a blank, tab or newline can.

In C, dl vaiables mus be dedlaed before they are used, usudly a the beginning of the
function before any executadble datements A declaration announces the propeties of
varigbles, it consgs of aname and alist of variables, such as

int fahr, celsius;

int |ower, upper, step;
The type int means that the varigbles lised are integers, by contrast with float, which
means floating poirt, i.e, numbers tha may have a fractiond pat. The range of both int and
float depends on the machine you ae udng; 16-bits ints which lie between -32768 and

13

+32767, ae common, as ae 32-bit ints A float number is typicaly a 32-bit quantity, with
a least six significant digits and magnitude generally between about 10 and 10%.,

C provides severd other datatypes besdesint and f1 oat , induding:

|char | character - asingle byte

| short ‘ short integer

|Iong \Iongin&xﬁ!

| doubl e | double-precision floating poirt

The dze of these objects is dso mechine-dependent. There are dso arrays structures and
unions of these basic types, pointers to them, and functions that return them, al of which we
will meet in due course.

Computation in the temperature converson program begins with the assignment statements

| ower = 0;
upper = 300;
step = 20;

which st the vaiables to ther initid vaues Individud datements are terminated by
semicolons.

Each line of the table is computed the same way, so we use a loop that repeats once per output
ling; thisisthe purpose of the whi | e loop

while (fahr <= upper) {

}
The whil e loop operates as follows The condition in parentheses is tested. If it is true ahr
is less than or equd to upper), the body of the loop (the three statements enclosed in braces)

is executed. Then the condition is retested, and if true, the body is executed again. When the
tet becomes fase (fahr exceeds upper) the loop ends and execution continues a the

datement that follows the loop. There ae no further Satements in this program, o it
terminates.

The body of a while can be one or more statements enclosed in braces, as in the temperature
converter, or asingle statement without braces, asin

while (i <j)
i =2*1i;

In ether case, we will dways indent the statements controlled by the while by one tab sop
(which we have shown as four spaces) 0 you can see a a glance which statements are inside
the loop. The indentaion empheszes the logicd dructure of the program. Although C
compilers do not care about how a program looks, proper indentation and spacing are critica
in making programs essy for people to reed. We recommend writing only one Statement per
line, and using blanks around operaors to darify grouping. The podtion of braces is less
important, dthough people hold passonae bdiefs We have chosen one of severd popular
syles. Pick agylethat suits you, then useit consstently.

14

Mog of the work gets done in the body of the loop. The Cesus temperature is computed and
assgned to the varidble cel si us by the statement

celsius =5 * (fahr-32) / 9;
The reason for multiplying by 5 and dividing by 9 ingead of jus multiplying by 5/9 is thet in
C, a in many other languages integer divison truncates. any fractiond part is discarded.
Snce 5 ad 9 are integers. 5/9 would be truncated to zero and 0 dl the Cdgus temperatures
would be reported as zero.

This example dso shows a bit more of how printf works. printf is a genera-purpose
output formatting function, which we will describe in detall in Chapter 7. Its firsd argument is
a dring of characters to be printed, with each % indicating where one of the other (second,
third, ...) arguments is to be subdituted, and in what form it is to be printed. For ingance, %
specifies an integer argument, so the statement

printf("%N\t%\n", fahr, celsius);
causes the vaues of the two integers fahr and cel sius to be printed, with a tab (t) between
them.

Each % condruction in the firg argument of printf is pared with the corresponding second
argument, third argument, etc,; they must match up properly by number and type, or you will
get wrong answvers.

By the way, printf is not pat of the C language there is no input or output defined in C
itsdf. printf is just a useful function from the standard library of functions that are normaly
accessible to C programs. The behaviour of printf is defined in the ANS standard, however,
0 its properties should be the same with any compiler and library that conforms to the
standard.

In order to concentrate on C itsdf, we dont tak much about input and output until chapter 7
In paticular, we will defer formatted input until then. If you have to input numbers, reed the
discusson of the function scanf in Section 74 scanf is like printf, except that it reads
input instead of writing output.

There are a couple of problems with the temperaiure converson program. The smpler one is

that the output isn't very pretty because the numbers are not right-judtified. Thet's easy to fix;
if we augment each % in the printf Statement with a width, the numbers printed will be

right-justified in their fidlds. For instance, we might say

printf("%d 9%dn", fahr, celsius);
to print the firs number of each line in a fidd three digits wide, and the second in a fidd sx
digitswide, like this

0 -17
20 -6
40 4
60 15
80 26

100 37

15

The more serious problem is that because we have used integer aithmetic, the Cesus
temperatures are not very accurate; for instance, OF is actudly about -17.8'C, not -17. To get
more accurate answers we should use floging-point aithmetic ingeed of integer. This
requires some changesin the program. Here is the second version:

#i ncl ude <stdi o. h>

[* print Fahrenheit-Celsius table
for fahr = 0, 20, ..., 300; floating point version */
mai n()
{
float fahr, celsius;
float |ower, upper, step;

| ower = 0; /* lower limt of tenperatuire scale */
upper = 300; [* upper limt */

step = 20; [* step size */

fahr = | ower;

while (fahr <= upper) {
celsius = (5.0/9.0) * (fahr-32.0);
printf("98.0f 9. 1f\n", fahr, celsius);
fahr = fahr + step;

}

}
This is much the same as before, except that fahr and cel sius ae declared to be float and
the formula for converson is written in a more naturd way. We were unagble to use 5/9 in the
previous verson because integer divison would truncate it to zero. A decimd point in a
condant indicates tha it is floating point, however, 0 5.0/9.0 is not truncated because it is
theratio of two floating-point vaues

If an aithmetic operator has integer operands, an integer operation is peformed. If an
aithmetic operator has one floatingpoint operand and one integer operand, however, the
integer will be converted to floating point before the operaion is done If we had written
(fahr-32), the 32 would be automaticdly converted to floating point. Neverthdess writing
floating-point congants with explict decimad points even when they have integrd vaues
emphasizes thar floaing-point nature for human readers.

The detailed rules for when integers are converted to floating point are in Chapter 2 For now,
notice that the assgnment

fahr = | ower;
and the test

whil e (fahr <= upper)
dsowork inthe natural way - thei nt isconvertedto f1 oat before the operation is done.

The printf converson secification 98.0f says that a floating-point number (here fahr) is
to be printed & least three characters wide, with no decimd point and no fradion digits
9. 1f describes another number (cel sius) that is to be printed a least Sx characters wide,
with 1 digit &fter the decima point. The output looks like this:

0 -17.8
20 6.7
.4

40 4

16

Width and precison may be omitted from a specification: 96f Says that the number is to be &
leest Sx characters wide, % 2f Specifies two characters after the decima point, but the width
isnot condrained; and % merdy says to print the number as floating point.

lod | print as decimal integer

|96d | print as decimal integer, a leest 6 characters wide

% | print as floating point

|96t | print asfloating point, &t least 6 characters wide

lo2f | print asfloating point, 2 characters after decimal poirt
|96.2f | print asfloating point, at least 6 wide and 2 after decimal point

Among others printf aso recognizes % for octd, % for hexadecimd, % for character, us
for character string and os4for itself.

Exer cise 1-3. Modify the temperature converson program to print a heading above the table.

Exer cise 1-4. Write a program to print the corresponding Cdsus to Fahrenheit table.

1.3 Thefor statement

There are plenty of different ways to write a program for a particular task. Let's try a variaion
on the temperature corverter.

#i ncl ude <stdio. h>

[* print Fahrenheit-Celsius table */
mai n()
{

int fahr;

for (fahr = 0; fahr <= 300; fahr = fahr + 20)
printf("9%d 9. 1f\ n", fahr, (5.0/9.0)*(fahr-32));

}
This produces the same answers, but it certanly looks different. One mgor change is the
dimination of mogt of the vaiables only fahr remans and we have made it an int. The
lower and upper limits and the step Sze appear only as condants in the for Satement, itsdf a
new condruction, and the expression that computes the Cedus temperature now gopears as
the third argument of pri nt f instead of a separate assgnment statement.

This lagt change is an ingance of a generd rule - in any context where it is permissible to use
the vdue of some type, you can use a more complicated expresson of that type Since the
third argument of printf must be a floding-point vdue to mach the 9. 1f, any floating
point expresson can occur here.

The for Satement is a loop, a generdization of the while. If you compare it to the earlier

whi l e, its operation should be clear. Within the parentheses, there are three parts, separated
by semicalons. Thefirg part, theinitidization

fahr = 0

17

is done once, bhefore the | oop proper is entered. The second part is the
test or condition that controls the | oop:

fahr <= 300
This condition is evduaed; if it is true, the body of the loop (here a sngle ptintf) is
executed. Then theincrement step

fahr = fahr + 20
is executed, and the condition re-evduated. The loop terminates if the condition has become
fdse. As with the while, the body of the loop can be a sngle datement or a group of
datements enclosed in braces. The initidization, condition and increment can be any
expressons.

The choice between while and for is abitrary, based on which seems clearer. The for is
usudly appropriste for loops in which the initidizetion and increment are Sngle datements
and logicdly rdaed, snce it is more compact than while and it keeps the loogp control
Satements together in one place.

Exer cise 1-5. Modify the temperature conversion program to print the table in reverse order,
that is, from 300 degreesto O.

1.4 Symbolic Constants

A find obsarvation before we leave temperature converson forever. It's bad practice to bury
“magic numbers' like 300 and 20 in a program; they convey little information to someone
who might have to read the program later, and they are hard to change in a sysematic way.
One way to ded with magic numbers is to give them meaningful names. A #define line
defines asymbolic name or symbolic constant to be a particular string of characters:

#def i ne name replacement list

Theredfter, any occurrence of name (not in quotes and not pat of another name) will be
replaced by the corresponding replacement text The name has the same form as a variadle
name a sequence of letters and digits that begins with a letter. The replacement text can be
any sequence of characters; it is not limited to numbers.

#i ncl ude <stdio. h>

#define LOER O /* lower limt of table */
#define UPPER 300 /* upper limt */
#define STEP 20 /* step size */

[* print Fahrenheit-Celsius table */
nai n()
{

int fahr;

for (fahr = LOMER fahr <= UPPER fahr = fahr + STEP)
printf("9d 9. 1f\n", fahr, (5.0/9.0)*(fahr-32));

}
The quantities LO¥R, WPPER and STEP are symbolic condants, not variables so they do not
aopear in dedaraions. Symbolic consant names are conventiondly written in upper case S0
they can be readily diginguished from lower case variable names. Notice that there is no
semicolon a the end of a#def i ne line

18

1.5 Character Input and Output

We are going to condder a family of related programs for processing character data. You will
find that many programs are just expanded versions of the prototypes that we discuss here.

The modd of input and output supported by the sandard library is very ample Text input or
output, regardless of where it originates or where it goes to, is dedt with as dreams of
characters. A text stream is a sequence of characters divided into lines, each line condsts of
zero or more characters followed by a newline character. It is the responghility of the library
to make eech input or output stream confirm this mode; the C programmer using the library
need not worry about how lines are represented outside the program.

The sandard library provides saverd functions for reading or writing one character a a time,
of which getchar and putchar are the dmplest. Each time it is cdled, getchar reads the
next input character from atext stream and returnsthat asitsvaue. That is, after

c = getchar();
the varigble ¢ contains the next character of input. The characters normaly come from the
keyboard; input from filesis discussed in Chapter 7.

Thefunction put char prints a character each timeit is cdled:

put char (c);
prints the contents of the integer varidble ¢ as a character, usualy on the screen. Cdls to
putchar and printf may be interleaved; the output will appear in the order in which the cdls
are made.

1.5.1 File Copying

Given getchar and putchar, you can write a surprisng amount of useful code without
knowing anything more about input and output. The smplest example is a program that
copiesitsinput to its output one character & atime:

read a character
while (charater is not end-of-file indicator)
out put the character just read
read a character

Converting thisinto C gives
#i ncl ude <stdio. h>

/* copy input to output; 1st version */
mai n()
{

int c;

¢ = getchar();
while (c !'= EQF) {
put char (c);
c = getchar();
}

}
Therelationa operator ! = means not equa to".

19

What appears to be a character on the keyboard or screen is of course, like everything dse,
dored interndly just as a hit pattern. The type char is specificdly meant for doring such
charecter data, but any integer type can be used. We usad int for a subtle but important
reason.

The problem is diginguishing the end of input from vdid data The solution is tha get char
returns a didinctive vaue when there is no more input, a vaue tha cannot be confused with
any red character. This vaue is cdled ecr, for “end of file". We must declare ¢ to be a type
big enough to hold any vadue tha getchar returns. We can't use char since ¢ mud be big
enough to hold ECF in addition to any possible char. Therefore we useint .

ECF is an integer defined in <ddio.h>, but the specific numeric value doesnt metter as long as
it is not the same as any char vadue. By usng the symbolic congant, we are assured that
nothing in the program depends on the pecific numeric vaue.

The program for copying would be written more concisey by experienced C programmers. In
C, any assgnment, such as

c = getchar();
is an expresson and has a vaue, which is the vaue of the left hand dde after the assgnment.
This means that a assgnment can appear as pat of a larger expresson. If the assgnment of a
character to c is put indde the test part of a while loop, the copy program can be written this

way:
#i ncl ude <stdi o. h>

/* copy input to output; 2nd version */
mai n()
{

int c;

while ((c = getchar()) != ECF)
put char (c);

}
The whi | e gets a character, assgns it to ¢, and then tests whether the character was the end-

of-file sgnd. If it was not, the body of the while is executed, printing the character. The
whi I e then repeats. When the end of the input is findly reached, the while terminates and so
does mai n.

This verson centrdizes the input - there is now only one reference to getchar - and shrinks
the program. The resulting program is more compect, and, once the idiom is mastered, easier
to reed. Youll see this style often. (It's possble to get caried away and creste impenetrable
code, however, atendency that we will try to curb.)

The parentheses around the assgnment, within the condition are necessary. The precedence
of 1= is higher then that of = which means that in the absence of parentheses the relaiond
test ! = would be done before the assgnment =. So the statement

c = getchar() != ECF
isequivaent to

c = (getchar() !'= ECF)

20

This has the undesred effect of setting ¢ to O or 1, depending on whether or not the cdl of
get char returned end of file. (More on thisin Chapter 2)

Exercsise 1-6. Veify tha the expression get char () '= ECFisOor 1.
Exercise 1-7. Write apr ogram to print the vaue of ECF.
1.5.2 Character Counting

The next program counts characters it is Smilar to the copy program.
#i ncl ude <stdio. h>

/* count characters in input; 1st version */
mai n()

| ong nc;

nc = 0;
while (getchar() !'= ECF)
++HnC;
printf("%dn", nc);
}
The statement

++ncC;
presents a new operator, ++, which means increment by one. You could instead write nc = nc
+ 1 but ++nc is more concise and often more efficient. There is a corresponding operator - -
to decrement by 1. The operators ++ and -- can be ether prefix operators ¢+nc) or postfix
operators (nc++); these two forms have different vaues in expressons, as will be shown in
Chapter 2, but ++nc and nc++ both increment nc. For the moment we will will dick to the
prefix form.

The character counting program accumulates its count in a I ong vaiadle ingead of an int.
long integers are & least 32 hits. Although on some machines, int and 1 ong are the same
sze, on others an int is 16 bits with a maximum vaue of 32767, and it would take rdaivey
litle input to overflow an int counter. The converson specification %d tdls printf that the
corresponding argument is al ong integer.

It may be possble to cope with even bigger numbers by usng a doubl e (double precison
float). We will dso use a for dtatement ingead of a whil e, to illustrate another way to write
the loop.

#i ncl ude <stdio. h>

/* count characters in input; 2nd version */
mai n()

doubl e nc
for (nc = 0; gechar() != ECQF, ++nc)

prinif("@@Of\n", nc);

21

printf uses 9% for both float and doubl e; % 0f Suppresses the printing of the decimd point
and the fraction part, which is zero.

The body of this for loop is empty, because dl the work is done in the test and increment
parts. But the grammatica rules of C require that a for datement have a body. The isolated
samicolon, cdled a null statement, is there to satisfy that requirement. We put it on a separate
lineto makeit visble

Before we leave the character counting program, observe that if the input contans no
characters, the while or for test fals on the very fird cdl to getchar, and the program
produces zero, the right answer. This is important. One of the nice things dout while and
for is tha they tes a the top of the loop, before proceeding with the body. If there is nothing
to do, nothing is done, even if that means never going through the loop body. Programs
shoud act intdligently when given zero-length input. The while and for dSaements hep
ensure that programs do reasonable things with boundary conditions.

1.5.3Line Counting

The next program counts input lines As we mentioned above, the standard library ensures
that an input text stream gppears as a sequence of lines, each terminated by a newline. Hence,
counting linesis just counting newlines

#i ncl ude <stdio. h>

/* count lines in input */
nmai n()

{

int ¢, nl;

nl =0;
vwhile ((c = getchar()) !'= ECGF)
if (c=='\n)
++nl ;
printf("%\n", nl);
}

The body of the while now condds of an i f, which in turn controls the increment ++nl. The
if dSaement teds the parentheszed condition, and if the condition is true, executes the
datement (or group of datements in braces) that follows We have again indented to show
whét is controlled by what.

The double equas sgn == is the C notaion for “is equd to" (like Pascd's single = or
Fortran's . EQ). This symbd is usad to didinguish the egudity tet from the dngle = tha C
uses for assgnment. A word of caution: newcomers to C occesondly write = when they
mean ==. As we will see in Chapter 2 the result is usudly a legd expresson, so you will get
no warning.

A character written between sngle quotes represents an integer vaue equd to the numerica
vdue of the character in the machine's character sat. This is cdled a character constant,
dthough it is just another way to write a amdl integer. So, for example ' A is a character
condant; in the ASCIl charecter st its vaue is 65, the internd representation of the character
A Of course, ' A is to be preferred over 65: its meaning is obvious, and it is independent of a
particular character st.

22

The escgpe sequences used in dring condants are dso legd in character condants, o0 '\ n'
dands for the value of the newline character, which is 10 in ASCIIl. You should note carefully
that '\n' is a dngle cleracter, and in expressons is just an integer; on the other hand, "\ n' is
a dring condant tha happens to contain only one character. The topic of grings versus
charactersis discussed further in Chapter 2

Exer cise 1-8. Write a program to count blanks, tabs, and newlines.

Exercise 1-9. Write a program to copy its input to its output, replacing eech gring of one or
more blanks by asingle blank.

Exercise 1-10. Write a program to copy its input to its output, replacing each tab by \t, each
backspace by \b, and each backdash by \\. This makes tabs and backspaces visble in an
unambiguous way.

1.54Word Counting

The fourth in our series of useful programs counts lines, words, and characters, with the loose
Oefinition that a word is any sequence of characters that does not contan a blank, tab or
newline. Thisis abare-bones verson of the UNIX program wc.

#i ncl ude <stdio. h>

#define IN 1 /* inside a word */
#define QJT O /* outside a word */

/* count lines, words, and characters in input */
mai n()

int ¢, nl, nw, nc, state;

state = QUT;
nl =nw=nc =0
while ((c = getchar()) !'= EOF) {
++nc;
if (c="\n")
++nl ;
if (c=""1]] c="\n" || ¢ ="\t")
state = QUT;
else if (state == @JI) {
state = IN
++nw,
}

}
printf("% %l %\n", nl, nw nc);
}
Every time the program encounters the firg character of a word, it counts one more word. The

variable state records whether the program is currently in a word or not; initidly it is “not in
a word", which is assigned the vdue aJr. We prefer the symbolic congtants | N and QUT to the
literd vdues 1 and O because they make the program more reedable. In a program as tiny as
this, it mekes little difference, but in larger programs, the increase in darity is wel worth the
modest extra effort to write it this way from the beginning. Youll dso find that it's esser to
maeke extendgve changes in programs where magic numbes gopear only as symboalic
congants.

23

Theline

nl =nw=nc =0;
sts dl three variables to zero. This is not a specia case, but a consequence of the fact that an
assgnment is an expresson with the vaue and assgnments associated from right to left. It's
asif we had written

n = (nw=(nc =0));
Theoperator | | meansOR, sotheline

if (c=""1 c ="\n c ="\t")

sys if ¢ isablalnlk or c isallqle/vline or ¢ is atab". (Recdl tha the escgpe sequence \t isa
vighle representation of the tab character.) There is a corresponding operator && for AND; its
precedence is just higher than ||. Expressons connected by && or || ae evduaed left to
right, and it is guaranteed that evauation will sop as soon as the truth or fasehood is known.
If ¢ is a blank, there is no need to test whether it is a newline or tab, S0 these tests are not
made. This isnt particulaly important here, but is sgnificant in more complicated Stuaions,
aswewill soon see,

The example dso shows an el se, which gpecifies an dternative action if the condition part of
ani f gatement isfdse. The generd formis

i f (expression)
st at enent

el se
st at enent,

One and only one of the two Statements associated with an if-el se is performed. If the
expression is true, statement is executed; if not, statement, is executed. Each statement can
be a sngle statement or severd in braces. In the word count program, the one after the el se is
ani f that controls two statementsin braces.

Exercise 1-11. How would you test the word count program? What kinds of input are most
likely to uncover bugs if there are any?

Exer cise 1-12. Write aprogram thet prints itsinput one word per line.

1.6 Arrays

Let is write a program to count the number of occurrences of esch digit, of white space
characters (blank, tab, newling), and of al other characters This is atificid, but it permits us
to illudtrate severd aspects of C in one pogram.

There are twelve categories of input, S0 it is convenient to use an array to hold the number of
occurrences of each digit, rather than ten individud varidbles. Here is one verson of the

program:

24

#i ncl ude <stdio. h>

/* count digits, white space, others */
nai n()

{
int ¢, i, nwhite, nother;
int ndigit[10];

nwhite = nother = 0;
for (i =0; i <10; ++i)
ndigit[i] = 0;

while ((c = getchar()) !'= ECF)
if (c>'0 & c <="'9")
++ndigit[c-'0'];
elseif (c=""1]] c="\n" || c ="\t")
++nwhi te;
el se
++not her;

printf("digits =");

for (i =0; i <10; ++i)
printf(" %", ndigit[i]);

printf(", white space = %, other = %l\n",
nwhi te, nother);

}
The output of this program on itsdf is

digits =9300000001, white space = 123, other = 345
Thedeclaration

int ndigit[10];
declares ndigit to be an aray of 10 integers. Array subscripts dways sart a zero in C, 0
the dements are ndigit[0], ndigit[1], ..., ndigit[9]. This is reflected in the for
loops thet initidize and print the array.

A subscript can be any integer expression, which includes integer variddeslikei , and integer
congants.

This particular program relies on the properties of the character representation of the digits.
For example, the test

if (c>'0 & c<='9)
determines whether the character in ¢ isadigit. If it is the numeric vaue of that digit is

c-'0o
This works only if 'o, '1', ..., '9 have consecutive increesng vaues Fortunaely,
thisistrue for al character sets.

By ddfinition, chars ae jus amdl integers, 0 char vaiables and condants are identica to
ints in aithmetic expressons. This is naurd and convenient; for example c-'0° is an
integer expresson with a vaue between 0 and 9 corresponding to the character '0° to ' @
doredin ¢, and thus avalid subscript for the array ndi gi t.

The decison as to whether a character is a digit, white space, or something else is made with
the sequence

25

if (c>'0 &&c<='9")
++ndigit[c-'0'];

elseif (c=""|] c="\n || c ="\t")
++nwhi t e;

el se
++not her ;

The pattern

if (condition)
st at ement ;

el se if (condition)
st at enent ,

el se
st at enent

occurs frequently in programs as a way to express a multi-way decison. The conditions are
evduated in order from the top untii sone condition is saidfied; a that point the
corregponding statement part is executed, and the entire condruction is finished. (Any
statement can be severd datements enclosed in braces) If none of the conditions is satisfied,
the statement after the find el se is executed if it is present. If the find el se and statement
are omitted, asin the word count program, no action takes place. There can be any number of

el se if (condition)
statement

groups between theinitid i f and thefind el se.

As a matter of dyle, it is advisable to format this congtruction as we have shown; if each i f
were indented past the previous el se, a long sequence of decisons would march off the right
Sde of the page.

The switch Statement, to be discussed in Chapter 4, provides another way to write a multi-
way branch tha is particulay suitable when the condition is whether some integer or
character expresson matches one of a set of congants. For contrast, we will present a switch
verson of thsprogramin Section 34.

Exercise 1-13. Write a program to print a hisogram of the lengths of words in its input. It is
easy to draw the hisogram with the bars horizontd; avertica orientation is more chalengng.

Exercise 1-14. Write a program to print a hisogram of the frequencies of different characters
initsinput.

1.7 Functions

In C, a function is equivdent to a subroutine or function in Fortran, or a procedure or function
in Pascd. A function provides a convenient way to encgpsulate some computation, which can
then be used without worrying about its implementation. With properly desgned functions it
is possble to ignore how a job is done knowing what is done is sufficient. C makes the sue of
functions easy, convinient and efficient; you will often see a short function defined and caled
only once, just because it darifies some piece of code.

26

S fa we have used only functions like printf, getchar and putchar that have been
provided for us now it's time to write a few of our own. Since C has no exponentiation
operator like the ** of Fortran, let us illudrate the mechanics of function definition by writing
a function pover (mn) to rase an integer mto a pogtive integer power n. That is, the vaue of
pover (2,5) is 32. This function is not a practicd exponentidion routing, since it handles
only postive powes of sndl integers but its good enough for illugraion.(The dandard
library contains afunction pow(x, y) that computes X'.)

Here is the function power and a man program to exercise it, SO you can see the whole

gructure a once.

#i ncl ude <stdio. h>
int power(int m int n);

/* test power function */

mai n()
{
int i;
for (i =0; i <10; ++)
printf("%l % %\ n", i, power(2,i), power(-3,i));
return O;

}

/* power: raise base to n-th power; n >= 0 */
int power(int base, int n)

{
int i, p;
p=1
for (i =1, i <=n; +H)
p =p * base;
return p;
} - - - .
A function definition has thisform:
return-type function-name(parareter declarations, if any)
{
decl arations
stat enent s
}

Function definitions can appear in any order, and in one source file or severd, dthough no
function can be plit between files If the source program appears in severd files, you may
have to say more to compile and load it then if it dl gopears in one, but that is an operaing
sysem mdter, not a language atribute. For the moment, we will assume that both functions
arein the samefile, so whatever you have learned about running C programs will il work.

Thefunction power iscaledtwiceby mai n, intheline

printf("%l %l %\ n", i, power(2,i), power(-3,i));
Each cdl passes two arguments to power, which each time returns an integer to be formatted
and printed. In an expresson, power (2,i) is an integer just as 2 and i ae (Not al functions
produce an integer vaue; we will take this up in Chapter 4)

Thefird line of pover itdf,

27

int power(int base, int n)
declares the parameter types and names, and the type of the result that the function returns.
The names used by power for its parameters are locad to power, and ae not visble to any
other function: other routines can use the same names without conflict. This is dso true of the
varidblesi and p:thei in pover isunrdaedtothei in mai n.

We will gengrdly use parameter for a varidble named in the parenthesized lig in a function.
Theterms formal argument and actual argument are sometimes used for the same ditinction.

The vdue tha power computes is returned to nai n by the return: Satement. Any expresson
may follow r et ur n:

return expression;
A function need not return a vaue a return statement with no expresson causes control, but
no useful vaue, to be returned to the cdler, as does “fdling off the end" of a function by
reeching the terminating right brace. And the cdling function can ignore a vaue returned by a
function.

You may have noticed tha there is a return Satement a the end of main. Since main is a
function like any other, it may return a vaue to its cdler, which is in effect the environment in
which the progran was executed. Typicdly, a retun vaue of zero implies normd
termingtion; nontzero vaues dgnd unusud or eroneous termination conditions. In the
interests of amplicity, we have omitted ret urn statements from our mai n functions up to this

point, but we will indude them heredfter, as a reminder thet programs should return gatus to
thelr environment.

Thedeclaration

int power(int base, int n);
just before mai n says that power is a function that expects two int arguments and returns an
int. This declardtion, which is cdled a function prototype, has to agree with the definition
and uses of pover. It is an eror if the definition of a function or any uses of it do not agree

with its prototype.

paameter names need not agree. Indeed, parameter names are optiond in a function
prototype, so for the prototype we could have written

int power(int, int);

Wl-chosen names are good documentation however, so we will often use them.

A note of higory: the biggest change between ANS C and ealier versons is how functions
ae declaed and defined. In the origind definition of C, the power function would have been
written like this

28

/* power: raise base to n-th power; n >= 0 */

/* (ol d-style version) */
power (base, n)
int base, n;
{ - .

int i, p;

p=1

for (i =1; i <=n; +H)

p =p* base;
return p;

}
The parameters are named between the parentheses, and their types are declared before

opening the left brace; undeclared parameters are taken as int. (The body of the function is
the same as before.)

Thededaration of pover a the beginning of the program would have looked like this

int power();
No paameter lis was permitted, so the compiler could not reedily check that power was
being cdled correctly. Indeed, snce by default power would have been assumed to return an
i nt , the entire declaration might well have been omitted.

The new syntax of function prototypes makes it much esser for a compiler to detect errors in
the number of arguments or their types The old style of dedaation and definition ill works
in ANS C, a lesst for a trangtion period, but we strongly recommend that you use the new
form when you have a compiler that supportsit.

Exercise 1.15. Rewrite the temperature converson program of Section 1.2 to use a function
for converson.

1.8 Arguments - Call by Value

One agpect of C functions may be unfamiliar to programmers who are used to some other
languages, paticulay Fortran. In C, dl function arguments ae passed by vadue" This
means tha the cdled function is given the vadues of its arguments in temporary variables
rather than the originds. This leads to some different properties than are seen with “cal by
reference’ languages like Fortran or with var parameters in Pascd, in which the cdled routine
has access to the origind argument, not aloca copy.

Cdl by vdue is an ast, however, not a liability. It usudly leads to more compact programs
with fewer extraneous variables, because parameters can be treated as conveniently initidized
locd variables in the cdled routine. For example, here is a verson of power that makes use of

this property.

/* power: raise base to nth power; n >= 0; version 2 */
int power(int base, int n)

{
int p;

for (p=1, n>0; --n)
p =p* base;
return p;

29

The parameter n is used as a temporary vaiable, and is counted down (a for loop that runs

backwards) until it becomes zero; there is no longer a need for the variable i. Whatever 5
doneto n ingde pover has no effect on the argument that power was originaly caled with.

When necessary, it is possble to arange for a function to modify a variable in a cdling
routine. The cdler mugt provide the address of the varidble to be set (technicdly a pointer to
the variable), and the cdled function must declare the parameter to be a pointer and access the
variableindirectly through it. Wewill cover pointersin Chapter 5

The gory is different for arrays. When the name of an array is used as an argument, the vaue
pased to the function is the location or address of the beginning of the aray - there is no
copying of aray dements By subscripting this vaue the function can access and dter any
argument of the array. Thisisthe topic of the next section.

1.9 Character Arrays

The most common type of aray in C is the aray of chaacters To illudrae the use of
character arrays and functions to manipulate them, let's write a program that reads a set of text
lines and prints the longest. The outline is Smple enough:

while (there's another |ine)
if (it's longer than the previous |ongest)
(save it)
(save its length)
print longest line

This outline mekes it dear tha the program divides naturdly into pieces. One piece geis a
new line, another savesit, and the rest controls the process.

Snce things divide 0 nicdy, it would be wel to write them that way too. Accordingly, let us
fird write a separate function get 1 i ne to fetch the next line of input. We will try to make the
function ussful in other contexts At the minimum, getline has to return a sgna about
possble end of file a more ussful desgn would be to return the length of the ling or zero if
end of file is encountered. Zero is an acceptable end-of-file return because it is never a vdid
line length. Every text line has a least one character; even a line containing only a newline
has length 1.

When we find a line that is longer than the previous longest ling, it must be saved somewhere.
This suggests a second function, copy, to copy the new lineto a safe place.

Fndly, we need a main program to control get I i ne and copy. Hereisthe result.

#i ncl ude <stdio. h>
#define MAXLINE 1000 /* maxi muminput |ine length */

int getline(char line[], int maxline);
voi d copy(char to[], char froni]);

/* print the longest input line */

mai n()
{
int len; /* current line length */
int nax; /* maxi mum| ength seen so far */
char |ine[MAXLI NE| ; /* current input line */
char | ongest[MAXLINE]; /* longest |ine saved here */
max = 0;
while ((len = getline(line, MMLINE)) > 0)
if (len > nax) {
max = |en;
copy(l ongest, line);

if (mx >0) /* there was a line */
printf("9%", |ongest);
return O;

}

/* getline: read alineintos, return length */
int getline(char s[],int lin
{

int c, i;

for (i=0; i <liml & (c=getchar())!=ECF && c!="\n"; ++i)
s[i] =c;

if (c="\n") {
s[i] =c¢;
++i

}

s[i] ="'\0";

return i;

}

/* copy: «copy 'from into 'to'; assume to is big enough */
voi d copy(char to[], char fronj])

int i;

i =0;
while ((to[i] = froni]) !="\0")
++i

}
The functions getline and copy ae dedaed a the beginning of the program, which we
assumeis contained in onefile.

main and getline communicate through a par of aguments and a retuned vadue In
get | i ne, the arguments are declared by the line

int getline(char s[], int lim;
which specifies that the first argument, s, is an array, and the second, Iim is an integer. The
purpose of supplying the Sze of an aray in a declardtion is to set asde sorage. The length of
an aray s IS not necessAy in getline dnce its Sze is &t in main. getline USES return to

31

send a vaue back to the cdler, just as the function power did. This line dso declares that
getline refurnsanint ; Snceint isthe default return type, it could be omitted.

Some functions return a usgful vdue others, like copy, are used only for their effect and
retcurn no vaue The return type of copy is void, which dates explicitly that no vdue is
returned.

getline puts the character '\0' (the null character, whose vaue is zero) a the end of the
aray it is credting, to mark the end of the string of characters. This conversion is dso used by
the C language: when a string congtant like

"hel | o\n"
aopears in a C program, it is sored as an aray of characters containing the characters in the
string and terminated with a' \ 0 to mark the end.

h|e |l |1l |o | \n|\O

The »s format specification in printf expects the corresponding argument to be a dring
represented in this form. copy aso relies on the fact tha its input argument is terminated with
a'\ 0', and copiesthis character into the output.

It is worth metioning in passing tha even a progran as gmdl as this one presents some
dicky dedgn problems. For example, what should main do if it encounters a line which is

bigger then its limit? getline works safdy, in that it dops collecting when the aray is full,
even if no newline has been seen. By testing the length and the last character returned, main
can determine whether the line was too long, and then cope as it wishes. In the interests of
brevity, we have ignored thisissue.

There is no way for a user of getline to know in advance how long an input line might be, o
getline checks for overflow. On the other hand, the user of copy dready knows (or can find
out) how big the strings are, so we have chosen not to add error checking to it.

Exercise 1-16. Revise the man routine of the longest-line program so it will correctly print
the length of arbitrary long input lines, and as much as possible of the text.

Exercise 1-17. Write aprogram to print al input lines thet are longer than 80 characters.

Exercise 1-18. Write a program to remove traling blanks and tabs from each line of input,
and to delete entirdly blank lines.

Exercise 1-19. Write a function reverse(s) that reverses the character string s. Use it to
write a program that reversesitsinput aline a atime.

1.10 External Variablesand Scope

The varidbles in mai n, such as Iine, | ongest, €c., are privaie or locd to mai n. Because they
ae declared within mai n, no other function can have direct access to them. The same is true
of the varidbles in other functions;, for example, the varidble i in getline is unrdated to the i

32

in copy. Each locd vaiddle in a function comes into exisence only when the function is
cdled, and disgppears when the function is exited. This is why such vaigbles are usudly
known as automatic varidbles, following terminology in other languages We will use the
term automatic henceforth to refer to these locd varidbles. (Chapter 4 discusses the static
dorage dass, in which locd variables do retain their vaues between calls)

Because automaiic variables come and go with function invocaion, they do not retan ther
vaues from one cdl to the next, and must be explicitly set upon each entry. If they are not s,

they will contain garbage.

As an dternative to automdic varidbles, it is possble to define varidbles that are external to
dl functions that is varidbles tha can be accessed by name by any function. (This
mechaniam is raher like Fortran COMMON or Pascd vaiadbdles declared in the outermost
block.) Because extend vaiables ae globdly accessble they can be used ingead of
agument liss to communicate data between functions. Furthermore, because externd
vaidbles reman in exigence permanently, rather than appearing and disgppearing as
functions are cdled and exited, they retain ther vaues even after the functions that set them
have returned.

An extend vaidble must be defined, exactly once, outsde of any function; this sets asde
dorage for it. The vaidble must ds0 be declared in each function that wants to access it; this
dates the type of the variable. The declaration may be an explicit ext ern Statement or may be
implicit from context. To meke the discusson concrete, let us rewrite the longest-line
program with 1ine, | ongest, and max as externd variables. This requires changing the cdls,
declarations, and bodies of dl three functions

#i ncl ude <stdio. h>
#defi ne MAXLI NE 1000 /* maxi numinput line size */

int nmax; /* maxi numlength seen so far */
char |ine[MAXLI NE] ; /* current input line */
char |ongest[MAXLINE]; /* longest |ine saved here */

int getline(void);
voi d copy(void);

/* print longest input |line; specialized version */
mai n()
{

int len;

extern int nax;

extern char |ongest[];

max = 0;
while ((len = getline()) > 0)
if (len > nax) {
max = |en;
copy();

if (mx >0) /* there was a line */
printf("%", |ongest);
return O;

/* getline: specialized version */
int getline(void)

{
int c, i;
extern char line[];
for (i =0; i <MWINE- 1
& (c=getchar)) != ECF & c !="'\n"; ++)
line[i] = c¢;
if (c="\n) {
line[i] = c;
++H
}
ling[i] ="'\0";
return i;
}

/* copy: specialized version */
voi d copy(voi d)
{
int i;
extern char line[], longest[];
i =0;
while ((longest[i] =1line[i]) '="\0")
++i
}
The externd vaidbles in main, getline and copy ae defined by the firg lines of the example
above, which dae ther type and cause dorage to be dlocated for them. Syntacticaly,
externa definitions are jug like definitions of locd variables, but snce they occur outdde of
functions, the variables are externd. Before a function can use an externa variable, the name
of the varidble must be made known to the function; the declaaion is the same as before
except for the added keyword ext er n.

In cetan circumstances, the extern declardtion can be omitted. If the definition of the
externd variable occurs in the source file before its use in a particular function, then there is
no need for an extern dedadion in the function. The extern dedardions in main, getline
and copy ae thus redundant. In fact, common practice is to place definitions of al externd
variables at the beginning of the source file, and then omit al extern dedarations.

If the program is in severd source files, and a variable is defined in filel and usad in file2 and
file3, then extern declarations are needed in file2 and file3 to connect the occurrences of the
variable. The usud practice is to collect extern dedaations of varigbles and functions in a
separate file, higoricdly cdled a header, that is induded by #include a the front of each
source file The auffix . h is conventiond for heeder names. The functions of the standard
library, for example, are dedlared in headers like <stdio. h>. This topic is discussed a length
in Chapter 4 and the library itsdf in Chapter 7and Appendix B.

Snce the specidized versons of getline and copy have no aguments logic would suggest
that ther prototypes a the beginning of the file should be getline() and copy(). But for
compdibility with older C prograns the dandard tekes an empty lig as an oldgyle
declaration, and turns off dl argumert lig checking; the word void must be used for an
explicitly empty list. Wewill discussthis further in Chapter 4

You should note that we ae using the words definition and declaration carefully when we
refer to externd varidbles in this section.” Definition” refers to the place where the varidble is

A

created or assigned storage; declaration” refers to places where the nature of the variable is
dated but no storage is dlocated.

By the way, there is a tendency to make everything in Sght an extern variable because it
gopears to amplify communications - argument lists are short and variables are dways there
when you want them. But externd variables are dways there even when you dont want them.
Rdying too heavily on extend vaiadles is fraught with peril dnce it leads to programs
whose data connections are not al obvious - varigbles can be changed in unexpected and even
inadvertent ways, and the program is hard to modify. The second verson of the longestline
program is inferior to the first, partly for these reasons and patly because it dedtroys the
generdity of two usgful functions by writing into them the names of the variables they
manipulate.

At this point we have covered what might be cdled the convertiond core of C. With this
hendful of building blocks it's possble to write ussful programs of condderdble sze, and it
would probably be a good idea if you paused long enough to do s0. These exerdises suggest
programs of somewhat greater complexity then the ones earlier in this chapter.

Exercise 1-20. Write a program detab that replaces tabs in the input with the proper number
of blanks to space to the next tab stop. Assume a fixed set of tab dops, say every n columns
Should n be avariable or a symbolic parameter?

Exercise 1-21. Write a program entab thet replaces grings of blanks by the minimum
number of tabs and blanks to achieve the same spacing. Use the same tab stops as for det ab.
When dther a tab or a sngle blank would suffice to reach a tab sop, which should be given
preference?

Exercise 1-22. Write a program to ~fold" long input lines into two or more shorter lines after
the lag non-blank character that occurs before the n-th column of input. Make sure your

program does something intdligent with very long lines, and if thee ae no blanks or tabs
before the specified column.

Exercise 1-23. Write a program to remove al comments from a C program. Don't forget to
handle quoted strings and character congtants properly. C comments don't nest.

Exercise 1-24. Write a progran to check a C program for rudimentary syntax erors like
unmaiched parentheses, brackets and braces Don't forget about quotes, both sngle and
double, excape sequences, and comments. (This program is had if you do it in full

generdity.)

Chapter 2 - Types, Operators and
EXpressions

Vaiables and congants are the basic data objects manipulated in a program. Declardtions list
the variables to be used, and date what type they have and perhgps what their initid vaues
ae Opedors secify what is to be done to them. Expressons combine varigbles and
condants to produce new vaues. The type of an object determines the set of vaues it can
have and what operaions can be performed on it. These building blocks are the topics of this

chapter.

The ANS dandad has made many smdl changes and additions to basc types and
expressions. There are now signed and unsi gned forms of dl integer types, and notations for
unsgned congants and hexadecima character congdants. Hoding-point operations may be
done in single precison; there is ds0 a long double type for extended precison. String
condants may be concatenated & compile time Enumerations have become pat of the
language, formdizing a feature of long sanding. Objects may be declared const, which
prevents them from being changed. The rules for automatic coercions among arithmetic types
have been augmented to handle the richer set of types.

2.1 Variable Names

Although we didnt say s0 in Chapter 1, there are some redtrictions on the names of varigbles
and symbolic congtants. Names are made up of letters and digits, the first character must be a
letter. The underscore " counts as a letter; it is sometimes useful for improving the
reedebility of long varidble names. Dont begin vaidble names with underscore, however,
ance library routines often use such names. Upper and lower case letters are distinct, 0 x ad
X are two different names. Traditiond C practice is to use lower case for varidble names, and
al upper case for symbolic constants.

At leagt the firg 31 characters of an internd name are dgnificant. For function names and
extena vaiables, the number may be less than 31, because externd names may be used by
as=mblers and loaders over which the language has no control. For externd names, the
dandard guarantees uniqueness only for 6 charecters and a single case. Keywords like if,
el se, int, float, €c., ae resrved: you cant use them as variable names. They must be in
lower case.

It's wise to choose varigble names that are rdlated to the purpose of the variable, and that are
unlikely to get mixed up typogrgphicaly. We tend to use short names for locd variables
especidly loop indices, and longer names for extemd variables.

2.2 Data Types and Sizes

There are only afew basic daatypesin C:
char asngle byte, cgpable of holding one character in the local character st

int an integer, typicaly reflecting the neturd Sze of integers on the host machine
float dnge-precson floating point

doubl e - double-precison floating point

In addition, there are a number of qudifiers that can be gpplied to these basic types short
and| ong gpply to integers

short int sh;
long int counter;

Theword i nt can be omitted in such declarations, and typicdly it is

The intent is that short and | ong should provide different lengths of integers where precticd;
int will normdly be the naturd Sze for a paticular machine. short is often 16 bits long, and
int dther 16 or 32 hits Each compiler is free to choose gppropriste Szes for its own
hardware, subject only to the the redriction that short s and ints are a least 16 hits, | ongs are
a least 32 bits, and short isno longer than i nt, which isno longer than | ong.

The qudifier signed or unsigned may be goplied to char or any integer. unsi gned numbers
are dways podtive or zero, and obey the laws of aithmetic modulo 2", where n is the number
of bits in the type. So, for indance, if chars are 8 bits, unsigned char vaidies have vaues
between 0 and 255, while signed chars have vadues between -128 and 127 (in a two's
complement machine) Whether plan chars are dgned or undgned is machine-dependent,
but printable characters are dways positive.

The type long doubl e Specifies extendedprecison floating point. As with integers, the Szes
of floaing-point objects are implementation-defined; float, double and long doubl e could
represent one, two or three distinct Sizes.

The standard headers <linits.h> and <fl oat. h> contan symbolic condants for dl of these
gzes, dong with other propeties of the mechine and compiler. These are discussed in
Appendix B.

Exercise 2-1. Write a progran to determine the ranges of char, short, int, and long
vaiables, both signed and unsigned, by printing appropriate vaues from dandard heeders
and by direct computation. Harder if you compute them: determine the ranges of the various

floating-point types.

2.3 Constants

An integer condant like 1234 is an int. A 1ong condant is written with a termind 1 (dl) or
L, & in 123456789L; an integer condant too big to fit into an int will aso be taken as a long.
Undggned condants are written with a termind u or u, and the suffix ul or u indicaes
unsi gned | ong.

Hoaingpoint condants contan a decimd point (123.4) or an exponent (le-2) or both; ther
type is doubl e, unless suffixed. The suffixes f or F indicate a float condant; | or L indicate
al ong doubl e.

The vaue of an integer can be specified in octd or hexadecimd indead of decdma. A leading
0 (zero) on an integer condant means octd; a leading ox or 0x means hexadecimd. For
example, decima 31 can be written as 037 in octd and oxif or ox1F in hex. Octd and

37

hexadecima condants may aso be followed by L to make them 1ong and U to make them
unsi gned: OXFUL isan unsigned long congtant with value 15 decimdl.

A character constant IS an integer, written as one character within single quotes, such as
'x'. The value of a character congtant & the numeric vaue of the character in the machines
character set. For example, in the ASCII character set the character congtant ' o' has the value
48, which is unrdaed to the numeric vdue 0. If we write ' 0 indead of a numeric vaue like
48 that degends on the character set, the program is independent of the particular vaue and
ease to read. Character condants participate in numeric operations just as any other integers,
dthough they are most often used in comparisons with other characters.

Certain characters can be represented in character and string congtants by escape sequences
like \n (newline); these sequences look like two characters, but represent only one In
addition, an arhitrary byte-szed bit pattern can be specified by

"\ ooo'
where 000 isoneto three octd digits (0...7) or by

"\ xhh
where hhisone or more hexadecimd digits(0...9, a...f, A ..F). Sowemight write

#define VTAB '\ 013' /* ASA| vertical tab */
#defi ne BELL '\ 007 /* ASA | bell character */
or, inhexadecimd,

#defi ne VTAB '\ xb' /* ASA | vertical tab */
#define BELL '\ x7' /* ASA | bell character */

The complete set of escape sequencesis

\a | dert (bdl) character |\\ | backdlash

\b | backspace \? | question mark

\f | formfeed |\ | sngequote

\n | newline '\ | doublequote

\\r | carriage return 11000 | octal number

'\t | horizontal tab |\xhh | hexadecimal number
‘ \v ‘ verticd tab

The character congtant ' \0' represents the character with vaue zero, the null charecter. '\ o'
is often written ingead of 0 to emphasize the character nature of some expression, but the
numeric vaueisjug 0.

A constant expression is an expresson that involves only congtlants. Such expressons may be
evduged a during compilaion raher than run-time, and accordingly may be used in any
place that a congtant can occur, asin

#defi ne MAXLI NE 1000
char |ine[MAXLI NE+1] ;
or

#define LEAP 1 /* in leap years */
i nt days[31+28+LEAP+31+30+31+30+31+31+30+31+30+31] ;

38

A dring constant, or string literal, is a sequence of zero or more characters surrounded by
double quotes, asin

"I ama string"
or

" /* the enpty string */
The quotes are not part of the dring, but serve only to ddimit it. The same escgpe sequences
used in character congtants gpply in gtrings, \ " represents the double-quote character. String
congtants can be concatenated & compile time:

"hello, " "world"
isequivaent to

"hel l o, world"
Thisisuseful for splitting up long strings across severd sourcelines.

Technicdly, a gtring congant is an array of charecters. The interna representation of a gtring
has a null character '\ 0" a the end, so the physcd sorage required is one more than the
number of characters written between the quotes. This representation means that there is no
limit to how long a dring can be, but programs must scan a dring completely to determine its
length. The dandard library function strlen(s) returns the length of its character string
argument s, exduding the termind ' \ 0' . Hereis our version:

/* strlen: return length of s */
int strlen(char s[])

{
int i;
while (s[i] '="\0")
++i
return i;

}
st rl en and other gtring functions are declared in the standard header <st ri ng. h>.

Be caeful to didinguish between a character condant and a dring that contains a sngle
character: ' x' is not the same as "x". The former is an integer, used to produce the numeric

vadue of the letter x in the machings character set. The latter is an array of characters that
contains one character (the letter x) anda* \o' .

There is one other kind of condant, the enumeration constant An enumeraion is a lig of
congtant integer vaues, asin

enum bool ean { NQ YES };
The fird name in an enum has vdue O, the next 1, and 0 on, unless explict vaues ae
gpecified. If not dl vaues are secified, unspecified vaues continue the progresson from the
last specified vaue, as the second of these examples:

enum escapes { BELL = '\a', BACKSPACE ='\b', TAB = "\t"',
NEWINE = '\n', VTIAB="\v', RETURN="\r" };

enumnonths { JAN = 1, FEB, MAR APR DMAY, JW
JU, AUG SEP, OCT, NOV, DEC};
/* FEB = 2, MMR = 3, etc. */

39

Names in dfferent enumerations must be diginct. Vdues need not be diginct in the same
enumeraion.

Enumerations provide a convenient way to associate condant vaues with names an
dterndive to #define with the advantage that the vaues can be generated for you. Although
vaidbles of enum types may be declared, compilers need not check tha what you dore in
such a vaiable is a vdid vdue for the enumeration. Neverthdess, enumerdion varigbles offer
the chance of checking and so are often better than #defi nes In addition, a debugger may be
ableto print vaues of enumeration variablesin their symbolic form.

2.4 Declarations

All vaiadbles must be dedaed before use, dthough certan dedarations can be made
implicitty by content. A declaation specifies a type, and contains a lis of one or more
variables of thet type, asin

int |ower, upper, step;
char ¢, 1ine[1000];
Vaiables can be digributed among declaations in any fashion; the ligs above could wel be

written as

int |ower;
int upper;
int step;
char c;
char |ine[1000];
The latter form takes more space, but is convenient for adding a comment to each declaration

for subsequent modifications.

A vaigdle may dso be initidized in its declaration. If the name is followed by an eguds sgn
and an expression, the expression serves as aninitidizer, asin

char esc = "\\";

i nt i =0;

int limt = MAXLINE+L;

float eps = 1.0e-5;
If the vaiable in quedion is not automatic, the initidization is done once only, conceptiondly
before the program darts executing, and the initidizer must be a congant expresson. An
expliatly initidized automatic varidble is initidized each time the function or block it is in is
entered; the initidizer may be any expresson. Extend and ddic vaiables are initidized to
zero by default. Automdic variadles for which is no explict initidizer have undefined (i.e,

garbage) vaues.

The qudifier const can be gpplied to the dedadion of any vaiadle to specify tha its vaue
will not be changed. For an aray, the const qudifier says that the dements will not be
dtered.

const doubl e e = 2. 71828182845905;
const char nsg[] = "warning: "

The const dedaraion can dso be used with aray aguments, to indicate that the function
does not change that array:

int strlen(const char[]);

Thereault isimplementation-defined if an attempt is made to change aconst .

2.5 Arithmetic Operators

The binary aithmetic operators are +, -, *, /, and the modulus operaor % Integer divison
truncates any fractiond part. The expression

X %y
produces the remainder when x is divided by y, and thus is zero when y divides x exactly. For
example, a year is a legp year if it is divigble by 4 but not by 100, except that years divisble
by 400 are legp years. Therefore

if ((year %4 == 0 && year %100 !=0) || year %400 == 0)
printf("%l is a leap year\n", year);

el se
printf("% is not a |leap year\n", year);

The % operator cannot be applied to a float or doubl e. The direction of truncation for / and
the sign of the result for % are machine-dependent for negative operands, as is the action taken
on overflow or underflow.

The binary + and - operators have the same precedence, which is lower than the precedence
of *, / ad 9% which is in turn lower than unary + and - . Arithmetic operators associate left to
right.

Table 2.1 a the end of this chapter summarizes precedence and associdivity for dl operators.

2.6 Relational and L ogical Operators

Therdaiond operaorsare

> >= < <=

They dl have the same precedence. Just below them in precedence are the equdity operators:

Rdationd operaors have lower precedence than aithmetic operators, S0 an expression like i
<lim1listkenasi < (1im1),aswould beexpected.

More intereting are the logica operators && and | |. Expressons connected by && or || ae
evaduaed left to right, and evauation stops as soon as the truth or fasehood of the result is
known. Mogt C programs rely on these properties For example, here is a loop from the input
functionget | i ne that we wrotein Chapter 1

for (i=0; i <liml & (c=getchar()) '="'\n" && c != ECF, ++)
s[i] =¢;
Before reading a new character it is necessary to check that there is room to dore it in the
aray s, 0thetet i < Iim1 must be made fird. Moreover, if this tet fals we must not go
on and read another character.

Smilarly, it would be unfortunate if ¢ were tested againgt ECF before getchar is cdled;
therefore the call and assgnment must occur before the character in ¢ is tested.

41

The precedence of && is higher then that of ||, and both are lower than relationd and equality
operators, S0 expressonslike

i <liml & (c=getchar()) '="\n" && c !'= ECF
need no extra parentheses. But since the precedence of !'= is higher than assgnment,
parentheses are needed in

(c=getchar()) !'="\n'
to achieve the desired result of assgnment to ¢ and then comparison with *\ n' .

By definition, te numeric vadue of a rdaiond or logicd expresson is 1 if the rdation is true
and Oif therdation isfdse.

The unary negation operator | converts a non-zero operand into 0, and a zero operand in 1. A
common useof ! isin condructions like

if (Mvalid)
rather than

if (valid == 0)
Its hard to generdize about which form is better. Congructions like !valid read nicdy (if
not vaid"), but more complicated ones can be hard to understand.

Exercise 2-2. Write aloop eguivaent to thef or loop above without usng &&.or | | .

2.7 Type Conversions

When an operdtor has operands of different types they ae converted to a common type
according to a smdl number of rules. In generd, the only automatic conversons are those that
convet a narrowe” opeand into a “wide" one without lodng information, such as
converting an integer into floaing point in an expresson like f + i. Expressons that don't
make sense, like usng a float as a subscript, are disdlowed. Expressons tha might lose
information, like asigning a longer integer type to a shorter, or a floatingpoint type to an
integer, may draw awarning, but they are not illegd.

A char is jus a smdl integer, SO chars may be fredy usad in aithmetic expressons. This
permits condderdble flexibility in cetan kinds of chaacter trandformations. One is
exemplified by this nave implementation of the function atoi, which converts a gring of
digitsinto its numeric equivaent.

/* atoi: convert s to integer */
int atoi (char s[])

{

int i, n

n =0,

for (i =0; s[i] >"'0" && s[i] <='9"; +H)
n=10* n+ (s[i] - '0);

return n;

}
Aswe discussed in Chapter 1, the expresson

42
s[i] - 'O
gives the numeric vaue of the character stored in s[i], because the vdues of "0, ' 1', €tc,,
form a contiguous increasing sequence.

Another example of char to int converson is the function |ower, which mgps a sngle
character to lower case for the ASCII character set. If the character is not an upper case |etter,
| over returnsit unchanged.

/* lower: convert c to lower case; ASOI| only */
int lower(int c)

{
if (c>"'A & c <='Z)
returnc +'a - 'A;
el se
return c;

}
This works for ASCIl because corresponding upper case and lower case letters are a fixed

digance gpat as numeric vaues and each dphabet is contiguous -- there is nothing but letters
between A and z. This laiter observation is not true of the EBCDIC character set, however, 0
this code would convert more than just lettersin EBCDIC.

The standard header <ctype. h>, described in Appendix B, defines a family of functions that
provide tests and conversons that are indgendent of character sat. For example, the function
tol over isa portable replacement for the function | over shown above. Smilarly, the test

c>"'0 & c<="'9
can bereplaced by

isdigit(c)
Wewill usethe <ct ype. h> functions from now on.

There is one subtle point aout the converson of characters to integers. The language does
not specify whether varidbles of type char are dgned or unsgned quantities When a char is
conveted to an int, can it ever produce a negdive integer? The answer varies from machine
to machine, reflecting differences in architecture. On some machines a char whose leftmost
bit is 1 will be conveted to a negative integer ("sgn extenson”). On others a char is
promoted to an int by adding zeros at the left end, and thusis dways positive,

The definition of C guarantees that any character in the machings standard printing character
st will never be negdive 0 thee chaactas will dways be pogtive quantities in
expressons. But arbitrary bit paiterns stored in character varigbles may gppear to be negative
on some mechines, yet podtive on others. For portability, specify signed or unsi gned if non
character dataisto be stored in char variables.

Rdationd expressions like i > j and logicd expressons conneced by && and || are defined
to have vaue 1if true, and O if false. Thus the assgnment

d=c>'0 &c<="'9
sets dto 1 if ¢ is a digit, and O if not. However, functions like isdigit may reun any non-
zero vadue for true In the test part of if, while, for, €c, " trug' jusd means ~"non-zero", SO
this makes no difference.

43

Implicit arithmetic conversons work much as expected. In generd, if an operator like + or *
that takes two operands (a binary operator) has operands of different types the “lower" type
is promoted to the “highe" type before the operation proceeds. The result is of the integer
type. Section 6 of Appendix A sates the converson rules precisdy. If there are no unsi gned
operands, however, the following informa set of rules will suffice

If either operand isl ong doubl e, convert the other to 1 ong doubl e.
Otherwise, if ether operand isdoubl e, convert the other to doubl e.
Otherwisg, if @ther operand isf | oat , convert the other to f1 oat .
Otherwise, convert char and short toint .

Then, if ether operand is| ong, convert the other to | ong.

Notice that floats in an expresson ae not automaicaly converted to doubl e; this is a
change from the origind definition. In generd, mahematica functions like those in <mat h. h>
will use double precison. The man reason for usng float is to save sorage in large arrays,
or, less often, to save time on machines where double-precison aithmetic is particulaly

expensve.

Converson rules are more complicated when unsigned operands ae involved. The problem
is that comparisons between signed and unsigned vaues are machine-dependent, because they
depend on the Szes of the various integer types. For example, supposetha int is 16 bits and
long is 32 hits Then -1L < 1y because 1U, which is an unsigned int, iS promoted to a
signed long. But -1L > 1W because -1L is promoted to unsigned |ong and thus appears
to be alarge postive number.

Conversons take place across assignments, the vaue of the right sde is converted to the type
of the left, which is the type of the result.

A character is converted to an integer, either by sign extenson or not, as described above.

Longer integers are converted to shorter ones or to chars by dropping the excess high-order
bits. Thusin

int i;

char c;

i =c;

c=i;
the vadue of ¢ is unchanged. This is true whether or not 9gn extenson is involved. Reversng
the order of assgnments might lose informetion, however.

If xis float and i is int, then x = i and i = x both cause conversons, float to int
causes truncetion of any fractiond part. When a doubl e is converted to float, whether the
vaueis rounded or truncated is implementation dependent.

Snce an agumet of a function cdl is an expresson, type converson dso tekes place when
aguments are passed to functions. In the abosence of a function prototype, char and short
become int, and float becomes doubl e. This is why we have dedared function arguments to
bei nt and doubl e even when the function is cdled with char and f1 oat .

Findly, explicit type conversons can be forced (“coerced”) in any expresson, with a unary
operator called acast . In the congtruction

(type name) expression

the expression is converted to the named type by the converson rules aove. The precise
meaning of a cast is as if the expresson were assigned to a varidble of the specified type,
which is then usad in place of the whole condruction. For example, the library routine sart
expects a doubl e agument, and will produce nonsense if inedvertently handled something
ese (sqrt isdedaredin <nat h. h>.) Soif n is an integer, we can use

sqgrt((doubl e) n)
to convert the value of n to doubl e before pasing it to sqgrt. Note that the cast produces the
value of n in the proper type n itsdf is not dtered. The cast operator has the same high
precedence as other unary operators, as summarized in the table a the end of this chapter.

If arguments are declared by a function prototype, as the normdly should be, the declaration
caues automatic coercion of any aguments when the function is cdled. Thus given a
function prototype forsart :

doubl e sqrt (doubl e)
thecdl

root2 = sqrt(2)
coerces the integer 2 into the doubl e value 2. 0 without any need for acast.

The dandard libray incdudes a portable implementation of a pseudo-random number
generator and afunction for initializing the seed; the former illustrates a cast:

unsigned long int next = 1;

/* rand: return pseudo-randominteger on 0..32767 */
int rand(void)

{
next = next * 1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;
}

/* srand: set seed for rand() */
voi d srand(unsi gned int seed)

{

next = seed;

}
Exercise 2-3. Write a function htoi(s), which convets a dring of hexadecimd digits
(induding an optiond ox or 0X) into its equivdent integer vaue The dlowable digits ae 0
through 9, a through , and Athrough F.

2.8 Increment and Decrement Operators

C provides two unusud opeaors for incrementing and decrementing vaiables The
increment operator ++ adds 1 to its operand, while the decrement operator - - subtracts 1. We
have frequently used ++ to increment variables, asin

if (c="\n)
+nl

45

The unusud aspect is that ++ and -- may be used ether as prefix operators (before the
variable, asin ++n), or podtfix operators (after the varigble: n++). In both cases, the effect is to
increment n. But the expresson ++n increments n before its vaue is used, while n++

increments n after its vaue has been used. This means that in a context where the vdue is
being used, not just the effect, ++n and n++ are different. If nis5, then

X = n++;

setsx to 5, but

X = ++n;
sets x to 6. In both cases, n becomes 6. The increment and decrement operators can only be
applied to variables, an expresson like(i +) ++ isillegd.

In a context where no vaue iswanted, just the incrementing effect, asin

if (c ="\n)
nl ++;
prefix and podtfix are the same. But there are Stuations where one or the other is specificaly
cdled for. For indance, condder the function squeeze(s,c), which removes dl occurrences

of the character ¢ fromthedring s.

/* squeeze: delete all ¢ froms */
voi d squeeze(char s[], int c)

{ . . .
int i, j;
for (i =) =0; s[i] '="\0"; i++)
if (s[i] '=¢)
s[j++ = s[i];
s[j] ="\0';
}

Each time a nonc occurs, it is copied into the current j podtion, and only then is j
incremented to be ready for the next character. Thisis exactly equivdent to

if (s[i] '=c¢) {
s[j] = s[i];
]+
}
Ancther example of a Imilar condruction comes from the getline function that we wrote in

Chapter 1, where we can replace

if (c =="\n) {
s[i] =¢;
++i
}
by the more compact

if (c ="\n)
s[i++] = c;
As a third example, condder the dandard function strcat(s,t), which concatenaes the
gring t to the end of dring s. strcat assumes that there is enough space in s to hold the
combingtion. As we have written it, strcat returns no vaue the dandard library verson

returns a pointer to the resulting string.

/* strcat: concatenatet to end of s; s nmust be big enough */
voi d strcat(char s[], char t[])

{

int i, j;
i =j =0;
while (s[i] !'="'\0") /* find end of s */
i ++;
while ((s[i++] =t[j++]) !'="'\0") /* copy t */

}
As each member is copied from t to s, the podtfix ++ is goplied to both i and j to make sure

thet they arein pogition for the next pass through the loop.

Exercise 2-4. Write an dternaive verson of squeeze(sl,s2) that deetes each character in
s1 that matches any character inthe string s2.

Exercise 2-5. Write the function any(s1, s2), which returns the firg location in a dring s1
where any character from the string s2 occurs, or -1 if s1 contans no characters from s2.
(The gdandard library function strpbrk does the same job but returns a pointer to the
location.)

2.9 Bitwise Operators

C provides Sx operators for bit manipulaion; these may only be goplied to integrd operands,
that is, char, short ,int ,ad | ong, whether sgned or unsigned.

& bitwiss AND

| bitwiseindusve OR

A hitwise exdudve OR

<< |eft shift

>> right shift

~ ones complement (unary)

The bitwise AND operator & is often used to mask off some s&t of bits, for example

n=n & 0177,
ststo zero dl but the low-order 7 bits of n.

The bitwise OR operator | isusad to turn bits on:

X = x | SET_ON
satstoonein x the bitsthat are set to onein SET_ON.

The bitwise exdusve OR operaor ~ sets a one in each bit postion where its operands have
different bits, and zero where they are the same.

One mug didinguish the bitwise operaiors & and | from the logica operators && and ||,
which imply left-to-right evduation of a truth vaue For example, if x is 1 and y is 2, then x
&y iszerowhilex && y isone

The shift operators << and >> perform left and right shifts of their left operand by the number
of bit pogtions given by the right operand, which mugt be nontnegative. Thus x << 2 shifts

47

the vdue of x by two pogtions filling vacaed bits with zero; this is equivdent to
multiplication by 4. Right shifting an unsigned quantity dways fits the vacaed bits with
zero. Right shifing a dgned quantity will fill with bit dgns (Taithmetic shift”) on some
meachines and with G-bits ("logicd shift”) on others.

The unary operatar ~ yields the on€s complement of an integer; that is, it converts each thit
into aG-bit and vice versa. For example

X =X & ~077
sts the last Sx bits of x to zero. Note that x & ~077 is indegpendent of word length, and is
thus preferable to, for example, x & 0177700, which assumes that x is a 16-bit quantity. The
portable form involves no extra cod, Snce ~077 is a condtant expression that can be evauated
a compiletime.

As an illudration of some of the bit operators, consder the function getbits(x,p,n) that
returns the (right adjusted) n-bit fidd of x that begins a pogtion p. We assume tha bit
podtion O is a the right end and that n and p ae sendble postive vaues. For example,
get bi t s(x, 4, 3) returns the three bitsin postions 4, 3and 2, right-adjusted.

/* getbits: get n bits fromposition p */
unsi gned getbits(unsigned x, int p, int n)

{

}
The expression x >> (p+1-n) moves the dedred fidd to the right end of the word. ~0 is dl

l-hits dhifting it left n podtions with ~0<<n places zeros in the rightmogt n hits
complementing that with ~ makes amask with onesin the rightmost n bits.

return (x >> (p+1l-n)) & ~(~0 << n);

Exercise 2-6. Write a function setbits(x, p,n,y) that retuns x with the n bits that begin at
position p st to the rightmost n bits of y, leaving the other bits unchanged.

Exercise 2-7. Write a function invert(x, p,n) tha returns x with the n bits that begin a
pogtion p inverted (i.e., 1 changed into O and vice versa), leaving the others unchanged.

Exercise 2-8. Write a function rightrot (x,n) tha returns the vaue of the integer x rotated
to theright by n postions.

2.10 Assignment Operators and Expressions

An expression such as

i =i +2
in which the variable on the left dde is repeated immediady on the right, can be written in
the compressed form

i +=2
Theoperator += is cdled an assignment operator .

Mogt binary operators (operators like + tha have a left and right operand) have a
corresponding assgnment operator op=, where op is one of

+ - * / % << >> & N
If expr; and expr, are expressons, then

expri op= expr,
isequivaent to

expri = (expri) op (expry)
except that expr 1 is computed only once. Notice the parentheses around expr:

X*=y+1
means

X =x*(y+1)
rather than

X=x*y+1
As an example, the function bi t count counts the number of Z-bitsin itsinteger argument.

/* bitcount: count 1 bits in x */
i nt bitcount (unsigned x)

{
int b;
for (b=0; x!'=0; x >>=1)
if (x &01)
b++;
return b;

}
Declaring the argument x to be an unsi gned ensures that when it is right-shifted, vacated bits

will befilled with zeros, not sign hits, regardiess of the machine the program isrun on.

Quite apart from conciseness, assgnment operators have the advantage that they correspond
better to the way people think. We say "add 2 toi" or “increment i by 2", not “take i, add
2, then put the result back in i". Thus the expresson i += 2 is preferable toi = i+2. In
addition, for a complicated expression like

yyval [yypv[p3+p4] + yypv[pl]] +=2 _
the assgnment operator makes the code eeser to understand, since the reader doesnt have to

check paingakingly that two long expressons are indeed the same, or to wonder why they're
not. And an assgnment operator may even help a compiler to produce efficient code.

We have dready seen that the assgnment statement has a vaue and can occur in expressons,
the mogt common exampleis

while ((c = getchar()) !'= ECGF)

The other assgnment operators (+=, -=, €c) can adso occur in expressons, dthough this is
less frequent.

In dl such expressons, the type of an assgnment expresson is the type of its left operand,
and the vaue is the vaue after the assgnment.

Exercise 2-9. In a two's complement number sysem, x & (x-1) ddetes the rigntmost 1-bit
inx. Explain why. Use this observation to write a faster verson of bi t count .

49
2.11 Conditional Expressons

The statements

if (a>b)
Z = a,
el se
z = b;
compute in z the maximum of a and b. The conditional expression, written with the ternary
operaor “?:", provides an dternate way to write this and dmilar condructions. In the

expression

expri ? exprp : exprs
the expresson expr: is evduaed fird. If it is nonzero (true), then the expresson expr: is
evduated, and that is the vaue of the conditiond expresson. Otherwise exprs is evauated,
and that is the vaue. Only one of expr, and exprs is evduaed. Thus to set z to the maximum
of aand b,

z=(a>h) ?2a: b [* z = max(a, b) */
It should be noted that the conditiond expression is indeed an expresson, and it can be used
wherever any other expresson can be. If expr, and expr; are of different types, the type of the
result is determined by the converson rules discussed earlier in this chapter. For example, if f
isafloat ad n anint, then the expresson

(n>0) ?2f :n
isof typefloat regardless of whether n is pogtive.

Parentheses are not necessary around the first expresson of a conditiond expresson, since
the precedence of 2: is very low, jus above assgnment. They ae advissble anyway,
however, snce they make the condition part of the expression easier to see.

The conditiond expresson often leads to succinct code. For example, this loop prints n
eements of an aray, 10 per ling, with each column separated by one blank, and with each line
(induding the lagt) terminated by anewline.

for (i =0; i <n; i++)
prlntf(%d%", a[i], (i940==9 || i==n-1) ? "\n" : ' ');
A newline is printed after every tenth dement, and &fter the n-th. All other dements are
followed by one blank. This might look tricky, but it's more compact than the equivdent if-

el se. Another good exampleis

printf("You have %l itens%.\n", n, n==1 2?2 "" : "s");
Exercise 2-10. Rewrite the function | ower, which converts upper case letters to lower case,
with a conditiona expressoningead of i f- el se.

2.12 Precedence and Order of Evaluation

Table 21 summarizes the rules for precedence and asodiativity of al operators, including
those that we have not yet discussed. Operators on the same line have the same precedence;
rows ae in order of decreasing precedence, so, for example *, /, and % dl have the same
precedence, which is higher than that of binary + and -. The “operator“ () refers to function
cal. The operators -> and . are used to access members of sructures, they will be covered in

50

Chapter 6, dong with si zeof (Sze of an object). Chapter 5 discusses * (indirection through a
pointer) and & (address of an object), and Chapter 3 discusses the comma operator.

| Operators \Associativity
011 ->. ' eft to right
|~ ++ -+ - = (type) si zeof | right to left
* | % | left to right
[+ - | left to right
<< >> | left to right
|< <= > >= ‘ eft to right
= 1= | Ieft to right
& | eft to right
" | Ieft to right
[| left to right
&& | left to right
i [left to right
2 | right to left
4= == /=% & "= |= <<= >>= || righttoleft
| | left to right

Unary & +, -, and * have higher precedence than the binary forms.
Table 2.1: Precedence and Associativity of Oper ators

Note that the precedence of the bitwise operators &, ~, and | fdls bdow == and ! =. This
impliesthat bit-testing expressons like

if ((x & MASK) == 0) ...
must be fully parenthesized to give proper results.

C, like mog languages does not gecify the order in which the operands of an operaor are
evauated. (The exceptions are&s, | |,2: , and | ') For example, in a statement like

x =f() +90);
f may be evauaed before g or vice versg thus if either f or g dters a variable on which the

other depends, x can depend on the order of evaudion. Intermediate results can be stored in
temporary varigbles to ensure a particular sequence.

Smilaly, the order in which function arguments are evduaed is not pecified, 0 the
Satement

printf("% %\n", ++n, power(2, n)); /* WRONG */
can produce different results with different compilers, depending on whether n is incremented
beforepowver iscdled. The solution, of coursg, isto write

++n;

51

printf("%l %l\n", n, power(2, n));
Function cdls, nested assgnment Statements, and increment and decrement operators cause
“dde dffects’ - some vaiable is changed as a by-product of the evdudion of an expresson.
In any expresson involving dde effects, there can be subtle dependencies on the order in
which variables taking pat in the expresson are updated. One unhgppy Stuation is typified
by the statement

ali] =i++

The [qdestion is whether the subscript is the old value of i or the new. Compilers can interpret
this in different ways, and generate different answers depending on their interpretetion. The
dandard intentionaly leaves most such meatters ungpecified. When sde effects (assgnment to
vaidbles) take place within an expresson is left to the discretion of the compiler, since the
best order depends srongly on machine architecture. (The standard does specify that dl sde
effects on arguments take effect before a function is cdled, but that would not help in the cal
toprintf above)

The mord is that writing code that depends on order of evaudtion is a bad programming
practice in any language. Naturdly, it is necessry to know what things to avoid, but if you
dont know how they are done on various machines, you wont be tempted to take advantage
of aparticular implementation.

52

Chapter 3- Control Flow

The controtflow of a language specify the order in which computations are peformed. We
have dready met the most common control-flow condructions in ealier examples here we
will complete the set, and be more precise about the ones discussed before.

3.1 Statements and Blocks

An expresson such as x = 0 or i+ or printf(...) becomes a statement when it is
followed by asemicolon, asin

X =0;

i ++

printf(...);
In C, the samicolon is a datement terminator, rather than a separator as it is in languages like
Pascal.

Braces { and } ae used to group declarations and dtatements together into a compound
statement, or block, so that they are syntacticdly equivdent to a single statement. The braces

that surround the dtatements of a function are one obvious example, braces around multiple
datements after an if, el se, while, or for ae ancther. (Variables can be declared indde any

block; we will tak aout this in Chepter 4) There is no semicolon after the right brace that
ends ablock.

3.2If-Else

Thei - el se Satement is used to express decisons. Formally the syntax is

i f (expression)
st at enent ;
el se
st at enent,

where the el se part is optiond. The expression is evduated; if it is true (thet is, if expression
has a non-zero vdue), statement; is executed. If it is fase (expression is zero) and if there is
anel se part, statement; is executed instead.

Snce an if tests the numeric vaue of an expresson, certain coding shortcuts are possible.
The mogt obviousiswriting

i f (expression)

insteed of

if (expression != 0)
Sometimesthisis naturd and clear; a other timesit can be cryptic.

Because the el se pat of an if-el se is optiona,there § an ambiguity when an dse if omitted
from a nested i f sequence. This is resolved by associating the el se with the dosest previous

el se-lessi . For example, in

if (n>0)
if (a>Dh)
zZ = a
el se
z = b;

the el se goes to the inner if, as we have shown by indentation. If that isnt what you want,
braces must be used to force the proper association:

if (n>0) {
if (a>Dh)
zZ = a
}
el se
z = b;

The ambiguity is espedidly pernicious in Stuations like this

if (n>0)
for (i =0; i <n; i+
if (s[i] >0 {
printf("...");
return i
}
el se /* WRONG */
printf("error -- nis negative\n");

The indentation shows unequivocdly what you want, but the compiler doesnt get the
message, and associates the el se with the inner i f. This kind of bug can be hard to find; it's a
good idea to use braces when there are nestedi £ s.

By theway, notice that thereisa semicolon &fter z = a in

if (a>Dh)
zZ = a
el se
z = b;

This is because grammdicdly, a statement follows the if, and an expresson saement like
"z = a;" isdwaysterminated by a semicolon.

3.3 Elself

The condruction

i f (expression)
st at enent
el se if (expression)
st at enent
else if (expression)
st at enent
else if (expression)
st at enent
el se
st at enent
occurs o often that it is worth a brief separaie discusson. This sequence of i f staementsis
the most generd way of writing a multi-way decison. The expressions are evaduaed in order;
if an expression is true, the statement associated with it is executed, and this terminates the
whole chain. As dways, the code for each statement is either a Sngle statement, or a group of

themin braces.

A4

The lagt el se pat handles the "none of the above' or default case where none of the other
conditions is satisfied. Sometimes there is no explicit action for the default; in that case the
traling

el se
st at enent

can be omitted, or it may be used for error checking to catch an “impossible” condition.

To illugrate a three-way decison, here is a binary search function that decides if a particular
vadue x occurs in the sorted array v. The dements of v must be in increesng order. The
function returns the position (a number between 0 and n- 1) if x occursin v, and -1 if not.

Binary search first compares the input value x to the middle dement of the aray v. If x isless
then the midde vaue, searching focuses on the lower hdf of the table, otherwise on the upper
hdf. In ether case, the next step is to compare x to the middle dement of the sdected half.
This process of dividing the range in two continues until the vadue is found or the range is
empty.

/* binsearch: find x in v[0] <=v[1l] <= ... <=v[n1] */
int binsearch(int x, int v[], int n)
{

int low high, nid;

| ow = 0;

high =n - 1;

while (I ow <= high) {

md = (I owthigh)/2;

if (x <v[md])
high = md + 1;

elseif (x >v[md])
low=md + 1;

el se /* found match */
return md;

}

return -1; /* no match */

}
The fundamentd decison is whether x is less than, greater than, or equad to the middle
eementv[i d] a each Sep; thisisanaurd for el se-i f .

Exercise 3-1. Our binary search makes two tests ingde the loop, when one would suffice (a
the price of more tests outsde) Write a verson with only one tes indde the loop and
measure the differencein runtime.

3.4 Switch

The swi tch datement is a multi-way decison that tests whether an expresson matches one of
anumber of constant integer values, and branches accordingly.

swi tch (expression) {
case const - expr: statenents
case const - expr: statements
defaul t: statenents

55

Each case is labded by one or more integer-valued constants or congtant expressons. If a case
maiches the expresson vadue, eecution darts a that case All case expressons must be
different. The case labeled default is executed if none of the other cases are satisfied. A
defaul t is optiond; if it isnt there and if none of the cases match, no action at al takes place.
Cases and the default dlause can occur in any order.

In Chapter 1 we wrote a program to count the occurrences of each digit, white space, and al
other characters, usng a sequence of if ... else if ... else. Hee is the same progam
with aswi t ch:

#i ncl ude <stdi o. h>

main() /* count digits, white space, others */

{
int ¢, i, nwhite, nother, ndigit[10];

nwhite = nother = O;
for (i =0; i <10; i++)
ndigit[i] = 0;
while ((c = getchar()) '= EQF) {
switch (c) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8 : case '9':
ndigit[c-'0"]++
br eak;
case ' '
case '\n':
case '\t':
nwhi t e++;
br eak;
defaul t:
not her ++;
br eak;

}

}

printf("digits =");

for (i =0; i <10; i++)
printf(" %", ndigit[i]);

printf(", white space = %l, other = %\n",
nwhi te, nother);

return O;

}
The break Statement causes an immediate exit from the switch. Because cases serve just as

labels, after the code for one case is done, execution falls through to the next unless you teke
explicit action to escgpe. break and return ae the most common ways to leave a switch. A
break Statement can ds0 be used to force an immediate exit from while, for, axd do loops
aswill be discussed later in this chapter.

Faling through cases is a mixed blessng. On the pogdtive sde, it dlows severd cases to be
atached to a dngle action, as with the digits in this example. But it dso implies that normaly
each case must end with a break to prevent faling through b the next. Fdling through from
one cax to ancther is not robug, being prone to digntegration when the program is modified.
With the exception of multiple labes for a sngle computation, fdl-throughs should be used
sparingly, and commented.

56

As a matter of good form, put a break after the last case (the default here) even though it's

logicdly unnecessry. Some day when another case gets added a the end, this bit of
defengve programming will save you.

Exercise 3-2. Write a function escape(s,t) that converts characters like newline and tab
into visble escape sequences like \n and \t as it copies the dring t to s. Use a swi t ch. Write
afunction for the other direction as well, converting escape sequences into the redl characters.

3.5 Loops- Whileand For

We have aready encountered thewhi | e and for loops. In

whi | e (expression)
st at enent
the expression is evaduated. If it is non-zero, statement is executed and expression is re
evduated. This cyde continues until expresson becomes zero, a which point execution
resumes after statement.

Thefor Statement

for (expri; expry; exprs)
st at enent
isequivaent to

expr i;

whil e (expry) {
st at enent
exprs;

}
except for the behaviour of cont i nue, which is described in Section 3.7.

Granmaiicdly, the three components of a for loop ae expressons. Most commonly, expri
and exprz ae assgnments or function cdls and expr, is a rddiond expresson. Any of the
three parts can be omitted athough the semicolons must remain. If expry; or exprs is omitted,
it is gmply dropped from the expandon. If the tedt, exprp, IS not present, it is teken as
permanently true, O

for (;;) {

}
isan “infinite" loop, presumably to be broken by other means, such as abr eak Of ret ur n.

Whether to use whi I e or for islargey amatter of persond preference. For example, in

while ((c = getchar()) ==" "' [| ¢ ="\n" || ¢c ="\t")
; /* skip white space characters */
there is noinitidization or re-initidization, S0 the whi | e ismogt naturd.

The for is preferable when there is a smple initidization and increment since it keeps the
loop control gatements close together and visble & the top of the loop. This is most obvious
in

57

for (i =0; i <n; i+

which is the C idiom for processng the firs n eements of an aray, the andog of the Fortran
DO loop or the Pascd for. The andogy is not pefect, however, snce the index varigble i
retans its vaue when the loop terminates for any reason. Because the components of the for
are abitrary expressons, for loops are not redtricted to arithmetic progressions. Nonetheess,
it is bad dyle to force unrdated computations into the initidization and increment of a for,
which are better reserved for loop control operations.

As a larger example, here is ancther verson of atoi for conveting a ring to its numeric
equivdent. This one is dightly more generd than the one in Chapter 2 it copes with optiond
leading white gpace and an optiond + or - sign. (Chapter 4shows at of , which does the same
conversion for floaing-point numbers)

The structure of the program reflects the form of the input:
skip white space, if any
get sign, if any
get integer part and convert it

Each step does its part, and leaves things in a cean date for the next. The whole process
terminates on the firgt character that could not be part of a number.

#i ncl ude <ctype. h>

/* atoi: convert s to integer; version 2 */
int atoi (char s[])
{

int i, n, sign;

for (i = 0; isspace(s[i]); i++) /* skip white space */

sign = (s[i] ="'-") ?2-1: 1,

if (s[i] ="+ || s[i] ="-") [* skip sign */
i ++;

for (n=0; isdigit(s[i]); i++)
n=10*n+ (s[i] - '0);

return sign * n;

}
The dandard library provides a more daborate function strtol for converson of drings to
long integers, see Section 5 of Appendix B.

The advantages of keeping loop control centrdized are even more obvious when there are
svead nesed loops The following function is a Shell sort for sorting an aray of integers.
The badsc idea o this sorting dgorithm, which was invented in 1959 by D. L. Shel, is tha in
ealy dages, far-gpat dements are compared, rather than adjacent ones as in Smpler
interchange sorts. This tends to diminate large amounts of disorder quickly, 0 laer dages
have less work to do. The intervd between compared dements is gradudly decressed to one,
a which point the sort effectively becomes an adjacent interchange method.

/* shellsort: sort v[0]...v[n1] into increasing order */
void shellsort(int v[], int n)

{

int gap, i, j, tenp;
for (gap = n/2; gap > 0; gap /= 2)
for (i =gap; i <n; i++)
for (j=i-gap; j>=0 && v[j]>Vv[]+gap]; j-=gap) {
tenp = v[j];

v[j] = v[j+gap];
v[j+gap] = tenp;
}
}
There are three nested loops. The outermost controls the gap between compared dements,

ghrinking it from n/2 by a factor of two esch pass until it becomes zero. The middle loop
deps dong the dements The innermost loop compares each pair of dements that is separaied
by gap and reverses any that are out of order. Since gap is eventudly reduced to one dl
eements are eventudly ordered correctly. Notice how the generdity of the for makes the
outer loop fit in the same form as the others, even though it is not an arithmetic progression.

One find C operaor is the comma ™, *, which mogt often finds use in the for Statement. A
par of expressons separaied by a comma is evauated left to right, and the type and vaue of
the result are the type and vaue of the right operand. Thus in a for satement, it is possble to
place multiple expressons in the various parts, for example to process two indices in pardld.
Thisisillugrated in the function r ever se(s) , which reversesthe tring s in place.

#i ncl ude <string. h>

/* reverse: reverse string s in place */
voi d reverse(char s[])

{ . . .
int c, i, J;
for (i =0, j =strlen(s)-1; i <j; i+t j--) {
c =s[i];
sli] = s[j];
s[il =¢;
}
}

The commeas that separate function arguments, variables in declarations, eic., are not comma
operators, and do not guarantee | eft to right evauation.

Comma operators should be used sparingly. The most suiteble uses are for congructs strongly
related to esch other, as in the for loop in reverse, and in macros where a multisgep

computation has to be a dngle expresson. A comma expresson might aso be appropriate for
the exchange of dements in reverse, where the exchange can be thought of a dngle
operation:

for (i =0, j =strlen(s)-1;, i <j; i++ j--)
c =s[i], s[i] =s[j], sli] =c;
Exercise 3-3. Write a function expand(si1,s2) tha expands shorthand notations like a-z in
the dtring s1 into the equivdent complete lig abc...xyz in s2. Allow for leters of ether
cae and digits, and be prepared to handle cases like a-b-c and a-z0-9 and -a-z. Arrange
thet aleading or traling - istaken literdly.

3.6 Loops- Do-While

59

As we discussed in Chapter 1, the while and for loops test the termination condition & the

top. By contradt, the third loop in C, the do-whil e, tests at the bottom after making each pass
through the loop body; the body is aways executed at least once.

The syntax of thedo is

do
st at enent
whi | e (expression);
The statement is executed, then expression is evauated. If it is true, Statement is evduaed
agan, and 0 on. When the expresson becomes fdse the loop terminates. Except for the
sense of thetedt, do- whi | e isequivaent to the Pascd repeat- unti | Statement.

Experience shows that do-while is much less used than while and for. Nonethdess from
time to time it is vaudble as in the following function itoa, which converts a number to a
character dring (the inverse of atoi). The job is dightly more complicated than might be
thought at firdt, because the easy methods of generating the digits generate them in the wrong
order. We have chosen to generate the string backwards, then reverseit.

/* itoa: convert n to characters in s */
void itoa(int n, char s[])

{ . . .
int i, sign;
if ((sign =n) <0) /* record sign */
n=-n; /* make n positive */
i =0;
do { /* generate digits in reverse order */
s[i++] =n %10 + '0'; /* get next digit */
} while ((n /= 10) > 0); /* delete it */
if (sign < 0)
sfi++] ="'-";
s[i] ="\0;
reverse(s);
}

The do-while IS necessry, or a least convenient, snce & leest one character must be
inddled in the aray s, even if n is zero. We dso usad braces around the single statement thet
mekes up the body of the do-while, even though they are unnecessary, so the hasty reader
will not migtake thewni | e part for thebeginning of awhi | e loop.

Exercise 3-4. In a two's complement number representation, our verson of itoa does not
handle the largest negative number, that is, the vaue of n equd to -(2'“*1). Explan why
not. Modify it to print that vaue correctly, regardiess of the machine on which it runs.

Exercise 35. Write the function itob(n,s,b) tha converts the integer n into a base b
character representetion in the dring s. In paticular, itob(n,s, 16) formas s as a
hexadecimd integer ins.

Exercise 3-6. Write a verson of itoa that accepts three arguments ingtead of two. The third

agument is a minimum field width; the converted number must be padded with blanks on the
left if necessary to make it wide enough.

3.7 Break and Continue

60

It is sometimes convenient to be adle to exit from a loop other than by teding a the top or
bottom. The break Statement provides an ealy exit from for, while, and do, just as from
swi t ch. A break causestheinnermog enclosing loop or swi t ch to be exited immediately.

The following function, trim removes traling blanks, tabs and newlines from the end of a
dring, usng a break to exit from a loop when the rightmost non-blank, non-tab, non-newline
is found.

/* trim renove trailing blanks, tabs, newines */
int trin{char s[])

{

int n;

for (n =strlen(s)-1; n>=0; n--)
if (s[n] '=" " & s[n] !'="\t" & s[n] !="\n")
br eak;
s[n+l] ="'\0';
return n;
}
strlen returrs the length of the sring. The for loop darts a the end and scans backwards

looking for the first cheracter that is not a blank or tab or newline. The loop is broken when
one is found, or when n becomes negdive (that is, when the entire string has been scanned).

You should verify that this is correct behavior even when the dring is empty or contains only
white space characters.

The continue Statement is related to break, but less often used; it causes the next iteration of
the endosing for, while, or do loop to begin. In the while and do, this means that the test
pat is executed immediately; in the for, control passes to the increment step. The conti nue

datement gpplies only to loops not to switch. A continue indde a switch indde a loop
causesthe next loop iteration.

As an example this fragment processes only the non-negative dements in the aray a;
negative vaues are skipped.

for (i =0; i <n; i+
if (a[i] <0) /* skip negative el ements */
conti nue;

... /* do positive el enents */
The continue Statement is often used when the part of the loop that follows is complicated,
50 that reversang atest and indenting another level would nest the program too deeply.

3.8 Goto and labdls

C provides the infinitdy-abusalde goto Statement, and labds to branch to. Formdly, the goto
datement is never necessary, and in practice it is dmost dways easy to write code without it.
We have not used got o in thisbook.

Neverthdess, there are a few dtuations where got os may find a place. The most common is
to abandon processing in some deeply nested dructure, such as bresking out of two or more
loops @ once. The break Statement cannot be used directly snce it only exits from the
innermogt loop. Thus

61

for (...)
for (...) {
i.f”(disaster)
goto error;
}
erro.r.:.

/* clean up the nmess */
This organizetion is handy if the error-handling code is non-trivid, and if errors can occur in
severd places.

A labe has the same form as a variable name, and is followed by a colon. It can be atached to
any statement in the same function asthegot o. The scope of alabd isthe entire function.

As another example, consder the problem o determining whether two arrays a and b have an
dement in common. One possibility is

for (i =0; i <n; i+
for (j =0;] <m j++)
if (a[i] ==b[j])
goto found;
/[* didn't find any common el ement */

f ound:
/* got one: a[i] == b[j] */

Code iri\)dvirlg a goto can adways be written without one, though perheps a the price of
some repested tests or an extravariable. For example, the array search becomes

found = O;
for (i =0; i <n & !found; i++)
for (j =0;] <mé&k !found; j++)
if (a[i] ==b[j])
found = 1;
i f (found)
/* got one: afi-1] == b[j-1] */

el se
/* didn't find any common el enent */

With a few exceptions like those cited here, code that relies on got o Statements is generdly
harder to undersand and to maintain than code without got os. Although we are not dogmatic
about the matter, it does seem that got o Statements should be used rardly, if & al.

62

Chapter 4 - Functionsand Program
Structure

Functions bresk large computing tasks into smdler ones, and endble people to build on what
others have done ingead of gdating over from scraich. Appropriste functions hide details of
operation from pats of the program that dont need to know about them, thus darifying the
whole, and easing the pain of making changes.

C has been designed to make functions efficient and easy to use, C programs generdly consst
of many smdl functions rather than a few big ones A program may reside in one or more
source files Source files may be compiled separady and loaded together, dong with
previoudy compiled functions from libraries We will not go into that process here, however,
since the detls vary from system to system.

Function declaration and definition is the area where the ANS dandard has meade the most
changes to C. As we saw first in Chapter 1 it is now possble to dedare the type of arguments
when a function is dedared. The syntax of function declaation dso changes o that
declarations and definitions match. This makes it possble for a compiler to detect many more
errors than it could before. Furthermore, when arguments are properly declared, gpropriate
type coercions are performed autometically.

The gandard darifies the rules on the scope of names, in particular, it requires that there be
only one definition of each externd object. Initidization is more generd: automatic arays
and structures may now beinitidized.

The C preprocessor has aso been enhanced. New preprocessor facilities include a more
complete st of conditiond compilation directives, a way to create quoted grings from macro
arguments, and better control over the macro expanson process.

4.1 Basics of Functions

To begin with, let us design and write a program to print eech line of its input that contains a
paticular “patern' or sring of characters. (This is a specid case of the UNIX program
gr ep.) For example, searching for the pattern of letters “oul d" in the set of lines

Ah Love! could you and | with Fate conspire
To grasp this sorry Schene of Things entire,
Wul d not we shatter it to bits -- and then
Re-nmould it nearer to the Heart's Desirel!

will produce the output

Ah Love! could you and | with Fate conspire
Wul d not we shatter it to bits -- and then
Re-nould it nearer to the Heart's Desirel

Thejob fdls neetly into three pieces

while (there's another |ine)
if (the line contains the pattern)
print it

63

Although it's certainly possble to put the code for dl of this in mai n, a better way is to use the
Sructure to advantage by making each part a separate function. Three smal pieces are better
to ded with than one big one, because irrdevant details can be buried in the functions, and the
chance of unwanted interactions is minimized. And the pieces may even be useful in other

programs.

“While there's another ling" is getline, a function that we wrote in Chapter 1, and “print it"
is printf, which someone has dready provided for us This means we need only write a
routine to decide whether the line contains an occurrence of the pattern.

We can solve that problem by writing a function strindex(s,t) tha returns the postion or
index in the dring s where the dring t begins, or -1 if s does not contain t. Because C arrays
begin a pogtion zero, indexes will be zero or pogdtive, and 0 a negdive vaue like -1 is
convenient for sggnding falure. When we later need more sophidticated pattern meatching, we
only have to replace strindex; the rest of the code can reman the same. (The standard
library provides a function strstr that is smilar to strindex, except tha it returns a pointer
ingtead of anindex.)

Given this much desgn, filling in the deals of the program is draghtforward. Here is the
whole thing, so you can see how the pieces fit together. For now, the pattern to be searched
for is a literd gtring, which is not the most generd of mechanisms. We will return shortly to a
discusson of how to initidize character arays, and in Chapter 5 will show how to meke the
paitern a parameter that is st when the program is run. There is dso a dightly different
verson of get | i ne; you might find it ingructive to compareit to the one in Chapter 1.

#i ncl ude <stdio. h>
#define MAXLINE 1000 /* maxi numinput line length */

int getline(char line[], int max)
int strindex(char source[], char searchfor[]);

char pattern[] = "oul d"; /* pattern to search for */
/* find all lines nmatching pattern */

mai n()

{

char 1ine[MAXLI NE] ;
int found = O;

while (getline(line, MAXLINE) > 0)
if (strindex(line, pattern) >= 0) {
printf("9%", line);
f ound++;
}

return found

}

/* getline: get lineintos, return length */
int getline(char s[], int Iim

{ - .
int c, i;
i =0;
while (--1im> 0 & (c=getchar()) !'= ECF & ¢ !'="\n")
s[i++] = c;
if (c ="'"\n")

s[i++] = c;

s[i] ="\0";
return i;

}

[* strindex: returnindex of t ins, -1if none */
int strindex(char s[], char t[])

{
int i, j, k;
for (i =0; s[i] '="\0"; i++) {
for (j=i, k=0; t[Kk]!'='\0" && s[j]==t[Kk]; j++ k++)
if (’k >0 && t[k] == "\0")
return i;
}
return -1;
}
Each function definition hasthe form

return-type function-name(argunent decl arations)

decl arations and statenents

}
Various parts may be absent; aminima function is

dumy() {}
which does nothing and retuns nothing. A do-nothing function like this is sometimes useful

as aplace holder during program developmert. If the return type is omitted, i nt is assumed.

A program is just a set of definitions of variables and functions. Communication between the
functions is by aguments and vdues returned by the functions and through externd
vaiables The functions can occur in any order in the source file, and the source program can
be solit into multiple files, so long as no function is split.

The return Saement is the mechanism for returning a vaue from the cdled function to its
cdler. Any expresson can follow r et ur n:

return expr ession;
The expression will be converted to the return type of the function if necessary. Parentheses
are often used around theexpression, but they are optiond.

The cdling function is free to ignore the returned vaue. Furthermore, there need to be no
expresson after return; in that case, no vaue is returned to the cdler. Control dso returns to
the cdler with no vadue when execution “fdls off the end" of the function by reaching the
cosng right brace. It is not illegd, but probably a sgn of trouble, if a function returns a vaue
from one place and no vaue from ancther. In any casg, if a function fals to return a vaue, its
“vaue' is certain to be garbage.

The patternsearching program returns a staus from mai n, the number of meatches found. This
vaueis avalable for use by the environment that caled the program

The mechanics of how to compile and load a C program that resides on multiple source files
vay from one sysem to the next. On the UNIX sysem, for example the cc command
mertioned in Chapter 1 does the job. Suppose that the three functions are stored in three files
cdledmai n. c,getline. c,ad st ri ndex. c. Thenthe command

cc main.c getline.c strindex.c
compiles the three files placing the resulting object code in files main.o, getline. o, axd
strindex. o, then loads them dl into an executable file cdled a. out . If there is an error, say
in mai n. c, the file can be recompiled by itsdf and the result loaded with the previous object
files, with the command

cc main.c getline.o strindex.o
The cc command uses the . c¢" versus . o" naming conventtion to diginguish source files
from object files

Exercise 4-1. Write the function strindex(s,t) which returns the postion of the rightmost
occurrenceof t ins, or -1 if thereisnone

4.2 Functions Returning Non-integers

So far our examples of functions have returned ether no vaue (void) or an int. Wha if a
function mugt return some other type? many numerica functions like sqrt, sin, and cos
return doubl e; other specidized functions return other types. To illudrate how to ded with
this, let us write and use the function atof (s), which converts the dring s to its double-
precison floating-point eguivaent. atof if an extendon of atoi, which we showed versons
of in Chapters 2 and 3. It handles an optiond sgn and decimd point, and the presence or
absence of ether pat or fractiond pat. Our verson is not a high-qudity input converson
routing, that would take more space than we care to use. The sandard library includes an
at of ; the header <st dl i b. h> declaresiit.

Frg, atof itsdf must declare the type of vadue it returns, since it is not int. The type name
precedes the function name:

#i ncl ude <ctype. h>

/* atof: convert string s to double */
doubl e atof (char s[])

doubl e val, power;
int i, sign

for (i = 0; isspace(s[i]); i++) /* skip white space */

sign’z (s[i] ="'-") ?2-1:1
if (s[i] =="+ [] s[i] ="-")
| ++;
for (val = 0.0; isdigit(s[i]); i+
val = 10.0 * val + (s[i] - '0");
if (s[i] ==".")
i ++;
for (power = 1.0; isdigit(s[i]); i++) {
val = 10.0 * val + (s[i] - '0");
power *= 10;
}
return sign * val / power
}
Second, and just as important, the cdling routine must know thet at of returns a non-int vaue,
One way to ensure this is to declare atof explidtly in the cdling routine. The dedaaion is

shown in this primitive cdculator (bardy adequate for checkbook baancing), which reads

66

one number per ling optiondly prececed with a Sgn, and adds them up, printing the running
sum after eechinput:

#i ncl ude <stdi o. h>
#def i ne MAXLI NE 100

/* rudinentary cal cul ator */
mai n()

doubl e sum atof(char []);
char |ine[MAXLI NE] ;
int getline(char line[], int max);

sum = O;

while (getline(line, MAXLINE) > 0)
printf("\t%\n", sum+= atof (line));

return O;

}
Thedeclaration

doubl e sum atof (char []);
says that sumis a doubl e variadle, and that at of is a function that takes one char[] agument
and returnsa doubl e.

The function at of must be declared and defined consigtently. If atof itsdf and the cdl to it in
mai n have incondgent types in the same source file, the eror will be detected by the
compiler. But if (as is more likdy) atof were compiled separady, the mismaich would not
be detected, atof would return a doubl e that main would trest as an int, and meaningless
answers would resuilt.

In the light of what we have sad about how declarations must maich definitions, this might
seem surprisng. The reason a mismatch can hgppen is that if there is no function prototype, a
function isimplicitly declared by itsfirst gppearance in an expresson, such as

sum += atof (1ine)
If a name that has not been previoudy declared occurs in an expresson and is followed by a
left parentheses, it is declared by context to be a function name, the function is assumed to
retcurn an int, ad nothing is assumed &bout its aguments Furthermore, if a function
declaration does not include arguments, asin

doubl e atof ();
that too is taken to mean that nothing is to be assumed about the arguments of atof; dl
paameter checking is turned off. This specid meaning of the empty argument ligt is intended
to pamit oder C programs to compile with new compilers. But it's a bad idea to use it with
new C programs. If the function takes arguments, declare them; if it takes no arguments, use

voi d.

Givenat of , properly declared, we could write at oi (convert astringtoint) intermsof it:

/* atoi: convert string s to integer using atof */
int atoi (char s[])

doubl e atof (char s[]);

67

return (int) atof(s);
}
Notice the dructure of the declarations and the return statement. The vaue of the expresson

in

return expr essi on;
is converted to the type of the function before the return is teken. Therefore, the vdue of
atof, a doubl e, is conveted automdicaly to int when it gopears in this return, snce the
function atoi returns an int. This operation does potentiondly discard information, however,
0 some compilers wan of it. The cast daes explicitly that the operation is intended, and
SUppresses any warning.

Exercise 4-2. Extend at of to handle scientific notation of the form

123. 45e- 6
where a floaing-point number may be followed by e or E and an optiondly Sgned exponent.

4.3 External Variables

A C program congsts of a st of externd objects, which are either varidbles or functions The
adjective “externd" is usad in contrast to Cinternd”, which describes the arguments and
vaiables defined indde functions Externd varigbles are defined outsde of any function, and
are thus potentiondly avalable to many functions. Functions themsdves are dways externd,
because C does not dlow functions to be defined indde other functions By default, externd
vaiables and functions have the property that al references to them by the same name, even
from functions compiled separately, are references to the same thing. (The standard cdls this
propety external linkage.) In this sense, extend vaiadbles are andogous to Fortran
COMMON blocks or varidbles in the outermost block in Pascd. We will see later how to
define extend varidbles and functions that are visble only within a dngle source file
Becaue externd variables ae globadly accessble, they provide an dternative to function
aguments and return vaues for communicating daia between functions. Any function may
access an externd varidble by referring to it by name if the name has been declared
somehow.

If a large number of variables must be shared among functions, externd varigbles are more
convenient and efficient than long argument ligs As pointed out in Chapter 1, however, this
ressoning should be applied with some caution, for it can have a bad effect on program
Sructure, and lead to programs with too many data connections between functions.

Externd variadbles ae ds0 useful because of ther grester scope and lifetime. Automaic
vaiddes are internd to a function; they come into exisence when the function is entered, and
dissopear when it is left. Externd varidbles, on the other hand, are permanent, so they can
retain vaues from one function invocaion to the next. Thus if two functions must share some
data, yet nether cdls the other, it is often most convenient if the shared daa is kept in
externd variables rather than being passed in and out via arguments.

Let us examine this issue with a larger example. The problem is to write a caculator program
that provides the operators +, -, * and /. Because it is eeder to implement, the cdculaor will
use reverse Polish notaion ingead of infix. (Reverse Polish notation is used by some pocket
cdculaors, and in languages like Forth and Postscript.)

In reverse Polish notation, each operator followsiits operands; an infix expression like

(1-2) * (4+05)
isentered as

12-45+*
Parentheses are not needed; the notation is unambiguous as long as we know how many
operands each operator expects.

The implementation is Smple. Each operand is pushed onto a stack; when an operator arives,
the proper number of operands (two for binary operators) is popped, the operator is applied to
them, and the result is pushed back onto the stack. In the example above, for ingtance, 1 and 2
are pushed, then replaced by their difference, -1. Next, 4 and 5 are pushed and then replaced
by their sum, 9. The product of -1 and 9, which is -9, replaces them on the sack. The vaue on
the top of the stack is popped and printed when the end of the input line is encountered.

The dructure of the program is thus a loop tha peforms the proper operation on each
operator and operand as it gppears.

while (next operator or operand is not end-of-file indicator)
i f (nunber)
push it
else if (operator)
pop oper ands
do operation
push result
else if (newine)
pop and print top of stack
el se
error

The operation of pushing and popping a sack are trivid, but by the time eror detection and
recovery are added, they are long enough tha it is better to put each in a separate function
than to repeat the code throughout the whole program. And there should be a sepaate
function for fetching the next input operator or operand.

The man desgn decison that has not yet been discussed is where the dack is, that is, which
routines access it directly. On possbility is to keep it in main, and pass the sack and the
current dack pogtion to the routines that push and pop it. But mai n doesnt need to know
about the varidbles that control the stack; it only does push and pop operaions. So we have
decided to dore the dack and its asociated information in externd variables accessible to the
push and pop functions but ot to mai n.

Trandating this outline into code is easy enough. If for now we think of the program as
exiging in one sourcefile, it will look likethis

#i ncl udeS
#defi neS

function declarationsfor nai n
min() { ...}

external variables for push and pop

69

voi d push(double f) { ... }
doubl e pop(void) { ... }

int getop(char s[]) { ... }
routines called by get op

Later we will discuss how this might be split into two or moresource files.

The function nai n is a loop containing a big swi tch on the type of operator or operand; this is
amoretypica useof swi t ch than the one shown in Section 34.

#i ncl ude <stdio. h>
#include <stdlib.h> /* for atof() */

#define MAXCP 100 /* max size of operand or operator */
#define NUMBER 'O /* signal that a nunber was found */

int getop(char []);
voi d push(doubl e);
doubl e pop(void);

/* reverse Polish cal culator */

mai n()

{
int type;
doubl e op2;
char s[MAXCF| ;

while ((type = getop(s)) !'= ECF) {
switch (type) {
case NUMBER
push(atof (s));
br eak;
case '+':
push(pop() + pop());
br eak;
case '*':
push(pop() * pop());
br eak;
op2 = pop();
push(pop() - op2);
br eak;
case '/':
op2 = pop();
if (op2 !'=10.0)
push(pop() / op2);

case

el se
printf("error: zero divisor\n");
br eak;
case '\n":
printf("\t%8g\n", pop());
br eak;
defaul t:
printf("error: unknown conmand %\n", s);
br eak;
}
}
return O;

70

Because + and * are commutative operators, the order in which the popped operands ae
combinedisirrdevant, but for - and / theleft and right operand must be distinguished. In

push(pop() - pop()); /* WRONG */
the order in which the two cdls of pop are evauated is not defined. To guarantee the right
order, it is necessary to pop thefirg vaue into atemporary variable aswe did in nai n.

#define MAXVAL 100 /* maxi rumdepth of val stack */

int sp =0; /* next free stack position */
doubl e val [MAXVAL]; /* value stack */

/* push: push f onto val ue stack */
voi d push(doubl e f)

{
if (sp < MAXVAL)
val [sp++] = f;
el se
printf("error: stack full, can't push %\ n", f);
}

/* pop: pop and return top value fromstack */
doubl e pop(voi d)

if (sp>0)
return val [--sp];

el se {
printf("error: stack enpty\n");
return 0.0;

}

}
A vaiddle is externd if it is defined outsde of any function. Thus the stack and stack index

that must be shared by push and pop are defined outsde these functions. But nai n itsdf does
not refer to the stack or stack position - the representation can be hidden.

Let us now tun to the implementation of get op, the function tha fetches the next operator or
operand. The task is easy. Skip blanks and tas If the next character is not a digit or a
hexadecdmd point, return it. Othewise, collect a gring of digits (which might indude a
decimd point), and return NUMBER the signd that a number has been collected.

#i ncl ude <ctype. h>

int getch(void);
voi d ungetch(int);

/* getop: get next character or nureric operand */
int getop(char s[])

int i, c
while ((s[0] =c =getch()) =" " || ¢ ="\t")
s[1] ="\0';
if (lisdigit(c) & c !=".")
return c; /* not a nunber */
i =0;

if (isdigit(c)) /* collect integer part */
while (isdigit(s[++H] = c = getch()))

if (c ==) /* collect fraction part */

71
while (isdigit(s[++i] = ¢ = getch()))

s[i] ="\0';
if (c!=E
unget ch(c);
return NUMBER
}
What are getch and ungetch? It is often the case that a program cannot determine that it has

read enough input until it has reed too much. One ingtance is collecting characters that make
up a number: until the firg nondigit is seen, the number is not complete But then the
program has read one character too far, acharacter that it is not prepared for.

The problem would be solved if it were possble to “unread" the unwanted character. Then,
every time the program reads one character too many, it could push it back on the input, o
the rest of the code could behave as if it had never been read. Fortunadly, it's easy to Smulate
ungetting a character, by writing a par of cooperding functions getch ddivers the next
input character to be consdered; unget ch will return them before reading new input.

How they work together is smple. ungetch puts the pushed-back characters into a shared
buffer -- a character array. getch reads from the buffer if there is anything dse, and cdls
getchar if the buffer is empty. There must dso be an index variable that records the postion
of the current character in the buffer.

Snce the buffer and the index are shared by getch and ungetch and mug retain ther vaues
between cdls, they mugt be externd to both routines. Thus we can write get ch, unget ch, and
their shared variables as.

#def i ne BUFSI ZE 100

char buf [BUFSI ZE] ; /* buffer for ungetch */
int bufp = 0; /* next free position in buf */

int getch(void) /* get a (possibly pushed-back) character */
{

}

return (bufp > 0) ? buf[--bufp] : getchar();

voi d ungetch(int c) /* push character back on input */

if (bufp >= BUFSI ZE)
printf("ungetch: too many characters\n");
el se
buf [buf p++] = c;
}
The gandard library includes a function unget ch that provides one character of pushback; we
will discuss it in Chapter 7. We have used an aray for the pushback, rather than a single
character, to illustrate a more generd gpproach.

Exercise 4-3. Given the basic framework, it's sraghtforward to extend the cdculaor. Add
the modulus (%) operator and provisions for negetive numbers.

Exercise 4-4. Add the commands to print the top edements of the stack without popping, to
duplicate it, and to swap the top two dements. Add a command to clear the stack.

72

Exercise 4-5. Add access to library functions like sin, exp, ad pow. See <math.h> in
Appendix B, Section 4

Exercise 4-6. Add commands for handling varidbles (It's easy to provide twenty-9x variables
with angle-letter names.) Add a variable for the most recently printed vaue.

Exercise 4-7. Write a routine unget s(s) that will push back an entire sring onto the input.
Should unget s know about buf and buf p, or should it just useunget ch?

Exercise 4-8. Suppose that there will never be more than one character of pushback. Modify
get ch and unget ch accordingly.

Exercise 4-9. Our getch and ungetch do not handle a pushed-back ECF correctly. Decide
what their properties ought to be if an ECF is pushed back, then implement your design.

Exercise 4-10. An dternate organization uses getline to read an entire input ling this makes
get ch and unget ch unnecessary. Revise the calculator to use this approach.

4.4 Scope Rules

The functions and externd variables that make up a C program need not dl be compiled a the
same time the source text of the progran may be kept in severd files and previoudy
compiled routines may be loaded from libraries. Among the questions of interest are

How ae decaations written s that variables ae propely dedaed during
compilaion?

How ae declarations arranged s0 that dl the pieces will be properly connected when
the program is loaded?

How are declarations organized so there is only one copy?

How are externd variablesinitidized?

Let us discuss these topics by reorganizing the cdculator program into severd files As a
practicd meatter, the cdculator is too smdl to be worth splitting, but it is a fine illudration of
the issuesthat arise in larger programs.

The scope of a name is the pat of the program within which the name can be used. For an
automdic varidble dedared a the beginning of a function, the scope is the function in which
the name is declared. Locd variables of the same name in different functions are unrdated.
The sameistrue of the parameters of the function, which arein effect locd variables.

The scope of an externd varigble or a function lagts from the point a which it is declared to
the end of the file being compiled. For example, if main, sp, val , push, and pop ae defined
in onefile, in the order shown above, that is,

min() { ...}

int sp =0
doubl e val [MAXVAL] ;

voi d push(double f) { ... }

doubl e pop(void) { ... }

73

then the variables sp and val may be usad in push and pop Imply by naming them; no
further declarations are needed. But these names are not visble in mai n, nor are push and pop
themsdves.

On the other hand, if an externd varidble is to be refered to before it is defined, or if it is
defined in a different source file from the one where it is being used, then an extern
declaration is mandetory.

It is important to didinguish between the declaration of an externd variable and its definition.
A dedaaion announces the propeties of a vaidble (primarily its type); a definition dso
causes storageto be set aside. If the lines

int sp;

doubl 2 val [MAXVAL] ;
aopear outsde of any function, they define the externd varidbles sp and val , cause storage to
be st asde, and dso sarve as the declarations for the rest of that source file. On the other
hand, thelines

extern int sp;
extern double val[];
declare for the rest of the source file that spisan int and tha val isa doubl e aray (whose

sSzeisdetermined esawhere), but they do not create the variables or reserve storage for them.

There mugt be only one definition of an externd varidble among dl the files that make up the
source program; other files may contain extern declarations to access it. (There may dso be
extern dedardtions in the file containing the definition) Array Szes must be specified with
the definition, but are optiond with an ext er n declaration.

Initidization of an externd variable goes only with the definition.

Although it is not a likely organizetion for this program, the functions push and pop could be
defined in one file, and the variables val and sp defined and initidized in another. Then these
definitions and declarations would be necessary to tie them together:

infilel:

extern int sp;
extern doubl e val[];

voi d push(double f) { ... }

doubl e pop(void) { ... }
infile2:

int sp =0;

doubl e val [MAXVAL] ;

Because the extern dedaraions in filel lie ahead of and outsde the function definitions, they

aoply to dl functions, one set of declarations suffices for # of filel This same organization
would aso bee needed if the definition of sp and val followed their usein onefile

4.5 Header Files

74

Let is now condder dividing the caculaor program into severd source files, as it might be is
eech of the components were subgtantidly bigger. The main function would go in one file
which we will cdl main.c; push, pop, ad ther varigbles go into a second file stack.c;
getop goes into a third, getop.c. Fndly, getch and ungetch go into a fourth file, getch.c;
we sgpaae them from the others because they would come from a separatey-compiled
library in aredigtic program.

There is one more thing to worry about - the definitions and dedarations shared among files.
As much as posshle, we want to centrdize this, so that there is only one copy to get and keep
right as the program evolves. Accordingly, we will place this common materid in a header
file, calc. h, which will be induded as necessary. (The #incl ude line is described in Section
4.11) The resulting program then looks like this

calc.h

#define NUMBER 'O’
void push(double);
double pop(void);
int getop(char [1);
int getch(veoid);
void ungetch(int);

main.c

getop.c

stack.c

#inclnde <stdio.h>
#inclnde <stdlib.h>

#include "“calc.h"
##define MAXDP 100

main() {

}

#include <stdic.h>
#inclnde <ctype.h>
#include "“calc.h"
getop() {

}

getch.c

#include <stdioc.h>
#define BUFSIZE 100
char buf [RUFSIZE];

int bufp = 0;

int getch(void) {

}

void ungetch(int) {

1

#include <stdic.h>
#inclunde "“calc.h"
#define MAIVAL 100
int sp = 0;

double val[MAXVAL];
void push(double) {

}

double pop(woid) {

}

There is a tradeoff between the dedsire that each file have access only to the information it
needs for its job and the practica redity that it is harder to maintain more header files Up to
some moderate program dze, it is probably best to have one header file that contains

75

everything that is to be shared between any two parts of the program; thet is the decison we
mede here. For amuch larger program, more organization and more headers would be needed.

4.6 Static Variables

The variables sp ad val in stack.c, and buf axd bufp in getch. c, are for the private use of
the functions in their respective source files, and ae not meant to be accessed by anything
edse The static dedaaion, goplied to an externd variable or function, limits the scope of
that object to the rest of the source file being compiled. Externd static thus provides a way
to hide names like buf and bufp in the getch-ungetch combinaion, which must be extend
50 they can be shared, yet which should not be visble to usars of get ch and unget ch.

Satic dorage is specified by prefixing the norma declaration with the word static. If the
two routines and the two variables are compiled in onefile, asin

static char buf[BUFSI ZE]; [/* buffer for ungetch */
static int bufp = 0; /* next free position in buf */

int getch(void) { ... }

void ungetch(int ¢) { ... }
then no other routine will be able to access buf and buf p, and those names will not conflict
with the same names in other files of the same program. In the same way, the vaiables that
push and pop use for sack manipulation can be hidden, by dedaing sp axd val to be

static.

The extend static dedaation is most often used for variables but it can be gpplied to
functions as wel. Normdly, function names ae globd, visble to any pat of the entire
program. If a function is declared static, however, its name is invisble outsde of the file in
which it is declared.

The static declaration can dso be goplied to internd varigbles Internd static variabdles are
locd to a paticular function jus as automatic varidbles ae, but unlike autometics they
reman in exigence raher than coming and going each time the function is activated. This
means that intend static vaidbles provide private pemanent dorage within a sngle
function.

Exercise 4-11. Modify getop S0 that it doesn't need to use ungetch. Hint: use an internd
static vaiddle.

4.7 Register Variables

A register declaration advises the campiler tha the varidble in quesion will be heavily
used. The idea is that register vaiadles are to be placed in machine regigers, which may
result in smdler and fagter programs. But compilers are free to ignore the advice.

Ther egi st er dedaraion lookslike

register int x;
register char c;

76

and 0 on. The register dedaation can only be goplied to automatic variables and to the
forma parameters of afunction. In thislater case, it lookslike

f(register unsigned m register |long n)

{

register int i;

}
In practice, there are redrictions on regider vaiables reflecting the redities of underlying

hadware. Only a few variables in each function may be kept in regigers and only certan
types ae dlowed. Excess regider declaaions ae harmless, however, snce the word
register is ignored for excess or disdlowed dedarations. And it is not possble to teke the
address of a regiger varidble (a topic covered in Chapter 5, regardiess of whether the variable
is actudly placed in a regiger. The gpecific redtrictions on number and types of register
variables vary from machine to machine.

4.8 Block Structure

C is not a block-gructured language in the sense of Pascd or Smilar languages, because
functions may not be defined within other functions On the other hand, varidbles can be
defined in a blockdructured fashion within a function. Dedaations of variables (including
initidizations) may follow the left brace that introduces any compound Statement, not just the
one that begins a function. Vaidiles dedared in this way hide any identicdly named
vaiables in outer blocks and reman in exigence until the matching right brace. For example,
in

if (n>0) {
int i; /* declare a newi */

for (i =0; i <n; i+

}
the scope of the varidble i is the “true" branch of the if; this i is unrdaed to any i outsde

the block. An autométic variable dedared and initidized in a block is initidized each time the
block is entered.

Automatic varidbles, including formad parameters dso hide extend vaiables and functions
of the same name. Given the declarations

int x;

int vy;

f (doubl e x)
doubl e v;

}
then within the function f, occurrences of x refer to the parameter, which is a doubl e; outsde
f, they refer tothe externd i nt . The same istrue of the variableyy.

As a matter of gyle, it's best to avoid variable names that conced names in an outer scope; the
potentid for confuson and error istoo grest.

4.9 Initialization

7

Initidizetion has been mentioned in passng many times 0 fa, but dways peiphedly to
some other topic. This section summarizes some of the rules, now that we have discussed the
various sorage classes.

In the absence of explicit initidization, externd and ddic varigbles are guaranteed to be
initidized to zero, automatic and regider vaiables have undefined (i.e, gabage) initid
vaues

Scdar vaiddes may be initidized when they are defined, by following the name with an
equals Sgn and an expresson:

int x = 1;

char squota = '\"'";

long day = 1000L * 60L * 60L * 24L; /* mlliseconds/day */
For extend and datic variables, the initidizer must be a condat expresson; the
intidization is done once, conceptiondly before the program begins execution. For automatic
and regider vaiddes the initidizer is not redricted to beng a condant: it may be any
expresson involving previoudy defined vdues, even function cdls For example the
initidization of the binary search program in Section 3.3 could be written as

int binsearch(int x, int v[], int n)
{
int low=0;
int high=n- 1,
int md;
)
ingtead of

int low high, nid;

low = 0;

high =n - 1;
In effect, initidization of automdtic variables are just shorthand for assgnment Satements.
Which form to prefer is lagdy a mater of tase We have generdly used explict
assgnments, because initidizers in dedlarations ae harder to see and further away from the
point of use.

An aray may be initidized by following its dedaration with a lig of initidizers endosed in
braces and separated by commas. For example, to initidize an aray days with the number of
days in eech month:

int days[] ={ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
When the sze of the aray is omitted, the compiler will compute the length by counting the
initidizers, of which thereare 12 in this case.

If there are fewer initidizers for an aray than the specified sze, the others will be zero for
externd, datic and automatic varidbles. It is an eror to have too many initidizers. There is no
way to soecify repetition of an initializer, nor to initidize an dement in the middle of an aray
without supplying dl the preceding vaues as well.

Character arrays are a gpecid case of initidization; a string may be used instead of the braces
and commeas notation:

78

char pattern = "oul d";

isashorthand for the longer but equivaent

char pattern[] ={ "o, '"u, 'I', "d, "\0 };
Inthis case, the aray Szeisfive (four characters plusthe terminating '\ 0').

4.10 Recursion

C functions may be used recursvdy; that is a function may cdl itsdf ether directly or
indirectly. Congder printing a number as a character dring. As we mentioned before, the
digits ae generated in the wrong order: low-order digits are avalable before high-order digits,
but they have to be printed the other way around.

There are two solutions to this problem. On is to dore the digits in an aray as they ae
generated, then print them in the reverse order, as we did with itoa in section 3.6, The
dterndtive is a recurdve solution, in which printd firg cdls itsdf to cope with any leading
digits, then prints the traling digit. Agan, this verson can fal on the largest negative
number.

#i ncl ude <stdio. h>

[* printd: print nin decimal */
void printd(int n)

if (n<0) {
putchar('-');
n=-n;

}

if (n/ 10)
printd(n / 10);

putchar(n %10 + '0');

}
When a function cdls itsdf recursvely, each invocation gets a fresh set of dl the automaic
vaiables, independent of the previous set. This in printd(123) the firs printd receives the
agument n = 123. It passes 12 to a second printd, which in turn passes 1 to a third. The
thirdtlevd printd prints 1, then returns to the second level. That printd prints 2, then returns
to thefirdt leve. That one prints 3 and terminates.

Ancther good example of recurson is quicksort, a sorting dgorithm developed by CAR.
Hoare in 1962. Given an aray, one dement is chosen and the others partitioned in two
subsets - those less than the partition dement and those grester than or equd to it. The same
process is then gpplied recursvely to the two subsets. When a subset has fewer than two
elements, it doesn't need any sorting; this stops the recursion.

Our verson of quicksort is not the fadest possble but it's one of the smplest. We use the
middle dement of each subarray for partitioning.

/* gsort: sort v[left]...v[right] into increasing order */
void gsort(int v[], int left, int right)
{

int i, |ast;

void swap(int v[], int i, int j);

79

if (left >>right) /* do nothing if array contains */

return; /* fewer than two el ements */
swap(v, left, (left + right)/2); /* nove partition el em?*/
last = left; /* to v[0] */
for (i =left +1; i <=right; i++) [* partition */

if (v[i] <v[left])
swap(v, ++ ast, i);
swap(v, left, last); /* restore partition elem?*/
gsort(v, left, last-1);
gsort(v, last+l, right);

}
We moved the swapping operdion into a separate function swap because it occurs three times
ingsort .

/* swap: interchange v[i] and v[j] */

void swap(int v[], int i, int j)
{

int tenp;

tenp = v[i];

v[i] = VIjl;

v[j] = tenp;

}
The standard library includes aversion of gsort that can sort objects of any type.

Recurson may provide no saving in dorage, Snce somewhere a dack of the vaues being
processed must be maintained. Nor will it be faster. But recursve code is more compect, and
often much esser to write and undersand than the non-recursve equivaent. Recurson is
especidly convenient for recursvely defined data dructures like trees, we will see a nice
examplein Section 6.6.

Exercise 412. Adapt the ideas of printd to write a recursive verson of it oa; that is, convert
an integer into a gring by cdling arecursve routine,

Exercise 4-13. Write a recursive verson of the function reverse(s), which reversss the
grings in place.

4.11 The C Preprocessor

C provides certain language facilities by means of a preprocessor, which is conceptiondly a
separae fird gep in compilaion. The two most frequently used features are #incl ude, to
indude the contents of a file during compilation, and #define, to replace a token by an
abitrary sequence of characters. Other festures described in this section include conditiona
compilation and macros with arguments.

411.1 Filelnclusion

Fle induson makes it essy to handle collections of #defines and declarations (among other
things). Any source line of the form

#i ncl ude "fil enane"
or

#i ncl ude < il enane>
is replaced by the contents of the file filename. If the filename is quoted, searching for the file

typicdly begins where the source program was found; if it is not found there, or if the name is

80

endosd in < and >, seaching follows an implementation-defined rule to find the file An
induded file may itsdf contain#i ncl ude lines.

There are often severa #include lines a the beginning of a source file, to indude common
#define Statements and extern declarations, or to access the function prototype declarations
for library functions from headers like <stdio. h>. (Strictly spesking, these need not be files
the details of how headers are accessed are implementati on-dependent.)

#include is the prefered way to tie the declardtions together for a large program. It
guarantees that dl the source files will be supplied with the same definitions and variable
dedaations, and thus diminates a particulaly nesty kind of bug. Naturdly, when an induded
fileis changed, al files that depend on it must be recompiled.

4.11.2 Macro Substitution

A definition has theform

#defi ne name repl acenent text

It cdls for a macro subdtitution of the smplest kind - subsequent occurrences of the token
nare Will be replaced by the replacement text The name in a #defi ne has the same form as a
vaiadble name the replacement text is arbitrary. Normaly the replacement text is the rest of
the line, but a long definition may be continued onto severd lines by placing a \ & the end of
each line to be continued. The scope of a name defined with #define is from its point of
definition to the end of the source file being compiled. A definition may use previous
definitions. Subdtitutions are made only for tokens, and do not teke place within quoted
drings For example if YES is a defined name thee would be no subditution in
printf("YES') Orin YESMAN

Any name may be defined with any replacement text. For example

#define forever for (;;) [* infinite | oop */
defines anew word, f or ever , for an infinite loop.

It is ds0 possble to define macros with arguments, 0 he replacement text can be different
for different cals of the macro. As an example, define ameacro caled nax:

#define nmax(A B ((A > (B ? (A : (B)
Although it looks like a function cdl, a use of nax expands into in-line code. Each occurrence
of a foomad parameter (here A or B) will be replaced by the corresponding actud argument.

Thustheline

X = nax(p+q, r+s);

will be replaced by theline

x = ((pta) > (r+s) ? (p+q) : (r+s));
So long as the arguments are treated consigtently, this macro will serve for any data type

there is no need for different kinds of nax for different deta types as there would be with
functions.

81

If you examine the expanson of nmax, you will notice some pitfdls The expressons ae
evauated twice this is bad if they involve dde effects like increment operators or input and
output. For instance

max(i++, j++) /* WRONG */
will increment the larger twice. Some care ds0 has to be taken with parentheses to make sure
the order of evauation is preserved; consder what happens when the macro

#define square(x) x * x [/* WRONG */
isinvoked as squar e(z+1).

Nonethdess, macros are vauable One practicd example comes from <stdio. h>, in which
getchar and putchar ae often defined as macros to avoid the run-time overhead of a
function cdl per character processed. The functions in <ctype.h> ae dso usudly
implemented as macros.

Names may be undefined with #undef, usudly to ensure that a routine is redly a function, not
amacro:

#undef get char

int getchar(void) { ... }
Formd parameters are not replaced within quoted grings If, however, a paameer name is
preceded by a # in the replacement text, the combination will be expanded into a quoted string
with the parameter replaced by the actud agument. This can be combined with gring
concatendtion to make, for example, adebugging print macro:

#define dprint(expr) printf(#expr " = %\ n", expr)
When thisisinvoked, asin

dprint (x/y)
the mecro is expanded into

printf("x/y" " = &\n", x/y);
and the strings are concatenated, so the effect is

printf("x/y = &\n", x/y);
Within the actud argument, each * is replaced by * and each\ by \\, s0 the result is a legd
string condarn.

The preprocessor operator ## provides a way to concatenate actud arguments during macro
expanson. If a parameter in the replacement text is adjacent to a ##, the parameter is replaced
by the actud argument, the ## and surrounding white space are removed, and the reault is re-
scanned. For example, themacro past e concatenates its two arguments:

#define paste(front, back) front ## back
P paste(name, 1) createsthetoken nanel.

The rulesfor nested uses of ## are arcane; further details may be found in Appendix A.

Exercise 4-14. Define a macro swap(t,x,y) that interchanges two arguments of type t.
(Block structurewill help.)

82
4.11.3 Conditional Inclusion

It is possble to control preprocessng itsdf with conditiond datements that are evauated
during preprocessng. This provides a way to indude code sHectively, depending on the vadue
of conditions evauated during compilation.

The #f line evaluates a condtant integer expresson (which may not incude si zeof , cads, or
enum condants). If the expresson is non-zero, subsequent lines until an #endif or #elif or
#else are included. (The preprocessor statement #elif is like else-if.) The expresson
defined(name) ina#if is1if the name has been defined, and O otherwise.

For example, to make sure that the contents of a file hdr.h ae incduded only once, the
contents of the file are surrounded with aconditiond like this:

#if !defi ned(HDR
#defi ne HDR

/* contents of hdr.h go here */

#endi f
The firg induson of hdr.h defines the name HDR; subsequent indusons will find the name
defined and skip down to the #endif. A smila style can be used to avoid induding files
multiple times. If this syle is used consgently, then each header can itsdf indude any other
heeders on which it depends, withou the user of the header having to ded with the
interdependence.

This sequence tests the name SysTEMto decide which verson of aheader to indude:

#if SYSTEM == SYSV

#define HDR "sysv. h"
#elif SYSTEM == BSD

#defi ne HDR "bsd. h"
#el i f SYSTEM == MBDCS

#defi ne HDR "nsdos. h"
#el se

#define HDR "defaul t. h"
#endi f
#i ncl ude HDR

The #ifdef and #ifndef lines are specidized forms that tes whether a name is defined. The

first exampleof #i f above could have been written

#i f ndef HDR
#defi ne HDR

/* contents of hdr.h go here */

#endi f

Chapter 5- Pointersand Arrays

A pointer is a variable tha contains the address of a variable. Pointers are much usad in C,
partly because they are sometimes the only way to express a computaion, and partly because
they usudly lead to more compact and efficient code than can be obtained in other ways.
Pointers and arays are closdy related; this chepter dso explores this rdationship and shows
how to explait it.

Pointers have been lumped with the got o Satement as a marvelous way to create impossible-
to-understand programs. This is certainly true when they are used cardesdy, and it is essy to
cregie pointers that point somewhere unexpected. With discipline, however, pointers can aso
be usad to achieve darity and smplicity. Thisisthe agpect that we will try to illustrate.

The man change in ANS C is to make explicit the rules about how pointers can be
manipulated, in effect mandaing wha good progranmes dready prectice and good
compilers dready enforce. In addition, the type void * (pointer to voi d) replaces char * as
the proper type for a generic pointer.

5.1 Pointers and Addresses

Let us begin with a amplified picture of how memory is organized. A typicd machine has an
argy of consecutively numbered or addresssd memory cdls tha may be meanipulaied
individudly or in contiguous groups. One common Stuation is that any byte can be a char, a
par of one-byte cels can be treated as a short integer, and four adjacent bytes form a | ong.
A pointer is a group of cels (often two or four) that can hold an address. So if c isa char and
p isapoainter that pointsto it, we could represent the Situation this way:

p: ,f"’*q

The unary operator & gives the address of an olject, o the statement

p = &;
assigns the address of ¢ to the variable p, and p is sad to “point t0" c. The & operator only
goplies to objects in memory: vaidbles and aray dements It cannot be goplied to
expressons, congants, orr egi st er varables.

The unary operator * isthe indirection or dereferencing operator; when applied to a pointer, it
accesses the object the pointer points to. Suppose that x and y are integers and i p is a pointer
toint. Thisartificid sequence shows how to declare a pointer and how to use &and *:

int x =1, y =2, z[10];
int *ip; /* ipis apointer toint */

ip = &; /* ip nowpoints to x */
y = *ip; /[* yis nowl */

ip =0; / X is now O */

ip = &[0]; /* ip now points to z[0] */

Thededaration of x, y,and z are wha we've seen dl dong. The declaration of the pointeri p,

int *ip;
is intended as a mnemonic; it says that the expresson *ip is an int. The syntax of the
declaration for a vaidie mimics the syntax of expressons in which the variade might
aopear. This reasoning gpplies to function declarations as wel. For example,

doubl e *dp, atof(char *);
says that in an expresson *dp ad atof (s) have vaues of doubl e, and tha the argument of
at of isapointer to char .

You should dso note the implication that a pointer is condrained to point to a particular kind
of object: every pointer points to a specific data type. (There is one exception: a ~pointer to
voi d" is used to hold any type of pointer but cannot be dereferenced itsdf. Well come back to
itinSection 5.11)

If i p pointsto the integer x, then*i p can occur in any context where x could, so

*Ip =*ip+ 10;
increments*i p by 10.

Theunary operators* and & bind more tightly than arithmetic operators, so the assignment

y=xip+1
takeswhatever i p pointsat, adds 1, and assgnstheresult toy, while

*ip+=1
increments what i p pointsto, asdo

++*ip

and

(*ip)++
The paretheses ae necessay in this lagt example without them, the expresson would
increment i p indead of what it points to, because unary operaors like * and ++ asociae right
to left.

Findly, snce pointers are varidbles they can be used without dereferencing. For example if
i g isanother pointer toi nt

iq=ip
copiesthe contents of i pinto i g, thusmaking i g point to whatever i p pointed to.

5.2 Pointers and Function Arguments

Snce C pases aguments to functions by vaue, there is no direct way for the caled function
to dter a variable in the cdling function. For indance, a sorting routine might exchange two
out-of-order arguments with afunction cdled swap. It is not enough to write

swap(a, b);
wherethe swap function is defined as

void swap(int x, int y) /* WRONG */

{
int tenp;

}
Because of cdl by vdue swap can't affect the arguments a and b in the routine that cdled it.
The function above swaps copies of a ad b.

The way to obtain the desred effect is for the cdling program to pass pointers to the vaues to
be changed:

swap(&a, &b);
Since the operator & produces the address of a varidble, &a is a pointer to a. In swap itsdf, the
parameters are declared as pointers, and the operands are accessed indirectly through them.

void swap(int *px, int *py) /* interchange *px and *py */
int tenp;
tenp = *px;
*px = *py;
*py = tenp;

}
Fictoridly:

in caller:
b: ..
\\
.
™,
a: .
.
™
In swap:
PX: | o1
L] .o-F"'_FFf
PY: | &

Pointer arguments enable a function to access and change objects in the function that cdled it.
As an example, condder a function getint that peforms free-forma input converson by
breeking a stream of characters into integer vaues, one integer per cal. getint has to return
the vaue it found and dso dgnd end of file when there is no more input. These vaues have
to be passed back by separate peths, for no matter what vaue is used for EcF, that could dso
be the vaue of an input integer.

One solution is to have getint return the end of file datus as its function vaue, while usng a

pointer agument to dore the converted integer back in the cdling function. This is the
scheme used by scanf aswel; see Section 7.4.

Thefdlowing loop fillsan array with integers by calsto geti nt:

int n, array[SlZE], getint(int *);
for (n =0; n< SIZE & getint(&urray[n]) != ECF n++)

Each cél sets array[n] to the next integer found in the input and increments n. Notice thet it
is essentid to pass the address of array[n] to getint. Otherwise there is no way for getint
to communicate the converted integer back to the cdler.

Our verson of getint returns EcF for end of file zero if the next input is not a number, and a
pasitive vaue if the input contains avalid number.

#i ncl ude <ctype. h>

87

int getch(void);
voi d ungetch(int);

/* getint: get next integer frominput into *pn */
int getint(int *pn)
{

int c, sign;

while (isspace(c = getch())) /* skip white space */

if (lisdigit(c) & c !=EGF && c !="+ & c!="'-") {
ungetch(c); /* it is not a nunber */
return O;

}

sign = (c ="'-") ? -1: 1,

if (c="+|] c="-")
c = getch();

for (*pn = 0; isdigit(c), c = getch())
*pn = 10 * *pn + (c - '0");

*pn *= sign;

if (c!=EQH)
unget ch(c);

return c;

}
Throughout getint, *pn is used as an ordinay int vaiable We have ds0 used getch ad
unget ch (described in Section 4.3 so0 the one extra character that must be read can be pushed
back onto the input.

Exercise 51. As written, getint treats a + or - not followed by a digit as a valid
representation of zero. Fix it to push such a character back on the input.

Exercise 52. Write getfloat, the floatingpoint andog of getint. Wha type does
get f| oat return asits function value?

5.3 Pointersand Arrays

In C, there is a drong rdationship between pointers and arrays, strong enough that pointers
and arays should be discussed smultaneoudy. Any operation that can be achieved by aray
subscripting can dso be done with pointers. The pointer verson will in generd be fader but,
a leadt to the uninitiated, somewhat harder to understand.

Thedeclaration

int a[10];
defines an aray of dze 10, tha is a block of 10 consecutive objects named a[0], a[1],
-»a[9].

al[0] a[1] al9]

88

The notation a[i] refers to the i-th dement of the aray. If pa is a pointer to an integer,
declared as

int *pa;

then the assgnment

pa = &|[0];
setspa to point to dement zero of a; that is, pa contains the address of a[0] .

pa:

r—

N

alo]

Now the assgnment

X = *pa;
will copy the contents of a[0] into x.

If pa points to a paticua dement of an aray, then by definition pa+1 points to the next
dement, pa+i points i dements after pa, and pa-i points i dements before Thus, if pa
pointsto af 0] ,

*(pa+l)
refers to the contents of a[1], pa+i is the address of a[i], and *(pati) is the contents of

alil.
pa: pati: pat2:

alo]

These remarks are true regardiess of the type or size of the variables in the aray a. The
meaning of “adding 1 to a pointer,’ and by extenson, dl pointer aithmetic, is that pa+1
points to the next objed, and pa+i pointsto thei -th object beyond pa.

89

The correspondence between indexing and pointer arithmetic is very cose By ddfinition, the
vaue of a vaiable or expresson of type aray is the address of dement zero of the aray.
Thus after the assgnment

pa = &a[0];
pa and a have identica vdues Since the name of an aray is a synonym for the location of the
initid dement, the assgnment pa=&a[0] can aso be written as

a = a;

Ratﬁer more surprising, a first sght, is the fact that a eferenceto a[i] can dso be written as
*(at+i). In evduding a[i], C convets it to *(a+i) immediady; the two forms ae
equivdent. Applying the operator & to both parts of this equivdence, it follows that &afi]
and a+i ae d0 identicd: a+i is the address of the i -th dement beyond a. As the other sde
of this cain, if pa is a pointer, expressons might use it with a subscript; pa[i] Is identicd to
*(pat+i). In ghort, an aray-and-index expresson is equivaent to one written as a pointer and
offset.

There is one difference between an aray name and a pointer that must be kept in mind. A
pointer is a vaidile S0 pa=a and pa++ ae legd. But an aray name is not a vaiabdle
condructions likea=paand a++ areillegd.

When an aray name is passed to a function, wha is passed is the location of the initid
eement. Within the caled function, this argument is a locd variable, and so an aray name
parameter is a pointer, that is, a variable contaning an address. We can use this fact to write
another verson of st r 1 en, which computes the length of a gring.

/* strlen: return length of string s */
int strlen(char *s)

{

int n;

for (n =0; *s !'="\0", s++)
n++;
return n;

}
Snce s is a pointer, incrementing it is perfectly legd; s++ has no effect on the character dring

in the function that cdled strlien, but merdy increments strlen's private copy of the
pointer. That means that cdls like

strlen("hello, world"); /* string constant */
strlen(array); /* char array[100]; */
strlen(ptr); [* char *ptr; */

al work.

Asformd parametersin afunction definition,

char s[];

and

char *s;
ae equivdent; we prefer the latter because it says more explicitly that the varidble is a
pointer. When an aray name is passed to a function, the function can a its convenience

D0

beieve that it has been handed ether an aray or a pointer, and manipulate it accordingly. It
can even use both notationsiif it seems gppropriate and clear.

It is possible to pass pat of an aray to a function, by passing a pointer to the beginning of the
Subarray. For example, if a isan aray,

f(&a[2])

f (a+2)
both pass to the function f the address of the subarray that darts a a[2]. Within £, the
parameter declaration can read

f(int arr[]) { ... }
or

f(int *arr) { ... }
So as far as f is concerned, the fact that the parameter refers to part of a larger aray is of no
conseguence.

If one is sure that the dements exig, it is dso possble to index backwards in an aray; p[-1],
p[-2], ard 0 on ae syntacticdly legd, and refer to the dements that immediady precede
p[0]. Of coursg, it isillegd to refer to objects that are not within the array bounds.

5.4 Address Arithmetic

If p is a pointer to some dement of an aray, then p++ increments p to point to the next
dement, and p+=i increments it to point i dements beyond where it currently does. These
and smilar condructions are the smples forms of pointer or address arithmetic.

C is condgent and regular in its gpproach to address aithmetic; its integration of pointers,
arays, and address aithmetic is one of the drengths of the language. Let us illudrate by
writing a rudimentary storage dlocator. There are two routines. The fird, al | oc(n), returns a
pointer to n consecutive character podtions, which can be used by the cdler of alloc for

goring characters. The second, afree(p), redeases the storage thus acquired so it can be re-
used laer. The routines are “rudimentary” because the cals to afree must be made in the
opposte order to the cdls made on alloc. That is, the storage managed by alloc ad afree
is a dack, or lastin, fird-out. The dandard libray provides andogous functions cdled
mal | oc ad free tha have no such redrictions, in Section 8.7 we will show how they can be
implemented.

The essest implementetion is to have alloc hand out pieces of a large character array that we
will cdl allocbuf. This aray is private t0 alloc and afree. Since they ded in pointers, not

aray indices no other routine need know the name of the aray, which can be dedaed
static in the source file contaning alloc and afree, and thus be invisble outsde it. In
practicd implementations, the aray may wdl not even have a name it might indead be
obtained by cdling malloc or by asking the operating system for a pointer to some unnamed
block of storage.

The other information needed is how much of allocbuf has been used. We use a pointer,
cdled all ocp, tha points to the next free dement. When all oc is asked for n characters, it

91

checks to see if there is enough room left in all ocbuf. If SO, alloc returns the current vaue
of allocp (i.e, the beginning of the free block), then increments it by n to point to the next
free area If there is N0 room, all oc returns zero. afree(p) merdy sts allocp to p if p is
inddeal | ocbuf .

before call to alloc:

allecp: ~
allocbuf:
-«— in 1se > free
after call to alloc:
allocp: ~
allocbuf:
- in use > free —

#define ALLOCSI ZE 10000 /* size of availabl e space */

static char allocbuf [ALLOCSI ZE]; /* storage for alloc */
static char *allocp = allochuf; /* next free position */

char *alloc(int n) /* return pointer to n characters */

if (allocbuf + ALLOCSIZE - allocp >=n) { /* it fits */
allocp += n;
return allocp - n; /* old p */

} else /* not enough room */
return O;

}

void afree(char *p) /* free storage pointed to by p */

if (p>= allocbuf & p < allocbuf + ALLCOCSI ZE)
allocp = p;

}
In generd a pointer can be initidized just as any other varidde can, though normdly the only

meaningful vaues are zero or an expression involving the address of previoudy defined data
of appropriate type. The declaration

static char *allocp = all ocbuf;
defines allocp to be a character pointer and initidizes it to point to the beginning of
al | ocbuf, which is the next free postion when the program darts. This could dso have been
written

static char *allocp = &allocbuf[0];
snce the array name isthe address of the zeroth eement.

Thetest

if (allocbuf + ALLOCSIZE - allocp >=n) { /* it fits */

92

checks if theré's enough room to satisfy a request for n characters. If there is, the new vaue of

allocp would be @ mogt one beyond the end of allocbuf. If the request can be satisfied,
alloc returns a pointer to the beginning of a block of characters (notice the dedaration of the

function itsdf). If not, alloc must return some signd that there is no space left. C guarantees
that zero is never a vdid address for data, 0 a return vaue of zero can be used to signd an
abnormd event, in this case no space.

Pointers and integers are not interchangesble. Zero is the sole exception: the congtant zero
may be assgned to a pointer, and a pointer may be compared with the condant zero. The
symbolic congant NuLL is often usad in place of zero, as a mnemonic to indicate more dearly
that this is a specid vdue for a pointer. NULL is defined in <stdio. h> We will use NULL
henceforth.

Testslike

if (allocbuf + ALLGCSIZE - allocp >=n) { /* it fits */
and

if (p>= allocbuf & p < allocbuf + ALLOCSI ZE)
show severd important facets of pointer aithmetic. Frd, pointers may be compared under
certain circumstances. If p and g point to members of the same aray, then rdations like ==,
I =, <, >=, ec., work properly. For example,

p<gq
is true if p points to an ealier dement of the aray than q does. Any pointer can be
meaningfully compared for equdity or inequdity with zero. But the behavior is undefined for
aithmetic or comparisons with pointers that do not point to members of the same aray.
(There is one exception: the address of the first dement past the end of an array can be used in
pointer arithmetic.)

Second, we have dready obsaved that a pointer and an integer may be added or subtracted.
The condruction

+n
mea%s the address of the n-th object beyond the one p currently points to. This is true
regardless of the kind of object p points to; n is scded according to the sze of the objects p
points to, which is determined by the declaration of p. If an int is four bytes for example the
int will be scaled by four.

Pointer subtraction is dso vdid: if p and q point to dements of the same aray, and p<q, then
g-p+1 is the number of dements from p to q inclusve. This fact can be used to write yet
another verson of strl en:

/* strlen: return length of string s */
int strlen(char *s)

{

char *p = s;

while (*p I="'\0)
p++;
return p-S;

93

In its decdlaration, p is intidized to s, that is to point to the first character of the gring. In the

whil e loop, eech character in turn is examined until the *\0' at the end is seen. Because p
points to characters, p++ advances p to the next character each time, and p-s gives the number
of characters advanced over, that is, the string length. (The number of characters in the dring
could be too large to dtore in an int. The header <stddef.h> defines a type ptrdiff_t tha
is large enough to hold the sgned difference of two pointer vaues If we were being cautious,
however, we would use size_t for the return vaue of strien, to match the standard library
verson. si ze_t isthe unsgned integer type returned by the si zeof operator.

Pointer arithmetic is condgent: if we had been deding with floats which occupy more
dorage that chars, and if p were a pointer to float, p++ would advance to the next fl oat .
Thus we could write another verson of alloc tha mantans float S instead of chars merely
by changing char to float throughout alloc and afree. All the pointer manipulaions
automaticaly take into account the Sze of the objects pointed to.

The vdid pointer operations ae assgnment of pointers of the same type, adding or
Subtracting a pointer and an integer, subtracting or compaing two pointers to members of the
same aray, and assgning or comparing to zero. All other pointer aithmetic is illegd. It is not
legd to add two pointers or to multiply or divide or shift or mask them, or to add float or
doubl e to them, or even, except for void *, to assign a pointer of one type to a pointer of
ancther type without a cest.

5.5 Character Pointers and Functions

A string constant, written as

"l ama string"
is an aray of characters. In the internd representation, the array is terminated with the null
character '\ 0' =0 that programs can find the end. The length in Storage is thus one more than
the number of characters between the double quotes.

Perhaps the most common occurrence of string condantsis as arguments to functions, asin

printf("hello, world\n");
When a character dring like this gopears in a program, access to it is through a character

pointer; printf receves a pointer to the beginning of the character aray. That is, a dring
congtant is accessed by a pointer to its first ement.

String congtants need not be function arguments. If pressage is declared as

char *pnessage;
then the statement

pnessage = "now is the time";
asdgns to pressage a pointer to the character array. This is not a dring copy; only pointers
are involved. C does not provide any operators for processing an entire string of characters as
aunit.

Thereis an important difference between these definitions:

char anessage[] = "nowis the time"; /* an array */

char *pmessage = "nowis the tine"; /* a pointer */
anessage IS an aray, jud big enough to hold the sequence of characters and '\ o' that
initidizes it. Individud characters within the aray may be changed but anessage will adways
refer to the same gtorage. On the other hand, pressage is a pointer, initidized to point to a
dring condant; the pointer may subsequently be modified to point dsewhere, but the result is
undefined if you try to modify the string contents.

amessage: . now is the time\0

pmessage: | now is the time\0

We will illustrate more aspects of pointers and arays by studying versons of two useful
functions adgpted from the standard library. The firgt function is strcpy(s,t), which copies
the string t to the string s. It would be nice just to say s=t but this copies the pointer, not the
characters. To copy the characters, we need aloop. The array version first:

/* strcpy: copy t tos; array subscript version */
voi d strcpy(char *s, char *t)

int i;
i =0;

while ((s[i] =t[i]) !'="\0")
i ++;

}
For contragt, hereisaverson of st r cpy with pointers

/* strcpy: copy t to s; pointer version */
voi d strcpy(char *s, char *t)

int i;

i =0;
while ((*s = *t) 1="\0") {
S++;
t++;
} }
Because arguments are passed by vaue, strcpy can use the parameters s and t in ay way it
pleases. Here they are conveniently initidized pointers, which are marched dong the arays a
character a atime, until the' \ o' that terminatest hasbeen copiedinto s.

In practice, strcpy would not be written as we showed it aove. Experienced C programmers
would prefer

/* strcpy: copy t to s; pointer version 2 */
voi d strcpy(char *s, char *t)

while ((*s++ = *t++) 1="\0")

95

}
This moves the increment of s and t into the test part of the loop. The vaue of *t++ isthe
character that t pointed to before t was incremented; the podtfix ++ doesn't change t until
after this character has been fetched. In the same way, the character is sored into the old s
podtion before s is incremented. This charecter is dso the vdue that is compared aganst
'\0' to control the loop. The net effect is that characters are copied from t to s, up ad
induding theterminating ' \ 0" .

As the find abbreviation, observe that a comparison againgt '\0' is redundant, since the
guestion is merely whether the expresson is zero. So the function would likely be written as

/* strcpy: copy t to s; pointer version 3 */
void strcpy(char *s, char *t)

while (*s++ = *t++)

}
Although this may seem cayptic & fird dght, the notationd convenience is condgderable, and
the idiom should be mastered, because you will seeit frequently in C programs.

The strcpy in the sandard library (<string.h>) returns the target string as its function
vaue.

The second routine that we will examine is strcnp(s,t), which compares the character
drings s and t, and returns negdtive, zero or pogdtive if s is lexicogrgphicaly less than, equd
to, or greater than t. The vaue is obtained by subtrecting the characters at the first postion
wheres and t disagree.

/* strenp: return <0 if s<t, Oif s==t, >0 if s>t */
int strcnp(char *s, char *t)

{ . .
int i;
for (i =0; s[i] =t[i]; i+
if (s[i] =="\0)
return O;
return s[i] - t[i];
}
The pointer verson of st r cnp:

/* strenp: return <O if s<t, Oif s==t, >0 if s>t */
int strcnp(char *s, char *t)

{
for (; *s == *t; s++, t++)
if (*s ="'\0)
return O;
return *s - *t;
}

Snce ++ ad -- ae dther prefix or podfix operators, other combinations of * and ++ and --
occur, dthough less frequently. For example,

*--p
decrementsp before fetching the character that p pointsto. In fact, the pair of expressons

p++ =val; / push val onto stack */
val = *--p; [/* pop top of stack into val */

are the gandard idiom for pushing and popping a sack; see Section 4.3.

The header <string. h> contans declaraions for the functions mentioned in this section, plus
avariety of other gtring-handling functions from the sandard library.

Exercise 5-3. Write a pointer verson of the funcion strcat that we showed in Chapter 2
strcat(s,t) copiesthedringt totheend of s.

Exercise 5-4. Write the function strend(s,t), which returns 1 if the string t occurs at the
end of thedtring s, and zero otherwise,

Exercise 5-5. Write versons of the library functions strncpy, strncat, and strncnp, which
operate on a& mod the fird n characters of ther argument drings For example,
strncpy(s,t, n) copiesa most n characters of t to s. Full descriptionsarein Appendix B.

Exercise 5-6. Rewrite gppropriate programs from earlier chapters and exercises with pointers
ingeed of aray indexing. Good posshilities include getline (Chapters 1 and 4), atoi, itoa,
and ther vaiants (Chapters 2, 3, ad 4), reverse (Chapter 3), and strindex and getop
(Chapter 4).

5.6 Pointer Arrays,; Pointersto Pointers

Since pointers are variables themsdlves, they can be dored in arays just as other variables
can. Let us illugrate by writing a program that will sort a st of text lines into aphabetic
order, a stripped-down verson of the UNIX program sort.

In Chapter 3 we presented a Shel sort function that would sort an aray of integers, and in
Chapter 4 we improved on it with a quicksort. The same agorithms will work, except thet
now we have to ded with lines of text, which are of different lengths and which, unlike
integers, can't be compared or moved in a single operation. We need a data representation that
will cope efficently and conveniently with varigble-length text lines.

This is where the array of pointers enters. If the lines to be sorted are stored end-to-end in one
long character aray, then each line can be accessed by a pointer to its first character. The

pointers themselves can bee gored in an aray. Two lines can be compared by passing their
pointers to strcnp. When two out-of-order lines have to be exchanged, the pointers in the
pointer aray are exchanged, not the text lines themsalves.

4-{ jklmnopgrst |

This diminates the twin problems of complicated Sorage management and high overhead thet
would go with moving the lines themsalves

jklmnopgrst |

11
(R

The sorting process has three steps:

97

read all the lines of input
sort them
print themin order

As usud, it's best to divide the program into functions that match this naturd divison, with
the man routine controlling the other functions Let us defer the sorting step for a moment,
and concentrate on the data structure and the input and output.

The input routine has to collect and save the characters of eech line, and build an array of
pointers to the lines It will dso have to count the number of input lines dnce that
information is needed for sorting and printing. Since the input function can only cope with a
finite number of input lines it can return some illegd count like -1 if too much input is
presented.

The output routine only has to print the lines in the order in which they gppear in the aray of
pointers.

#i ncl ude <stdio. h>
#i ncl ude <string. h>

#def i ne MAXLI NES 5000 /* max #lines to be sorted */

char *lineptr[MAXLINES]; /* pointers to text lines */

int readlines(char *lineptr[], int nlines);
void witelines(char *lineptr[], int nlines);

void gsort(char *lineptr[], int left, int right);

/* sort input lines */
mai n()
{

int nlines; /* nunber of input lines read */

if ((nlines = readlines(lineptr, MAXLINES)) >= 0) {
gsort(lineptr, O, nlines-1);
witelines(lineptr, nlines);
return O;

} else {
printf("error: input too big to sort\n");
return 1;

}

#defi ne MAXLEN 1000 /* max length of any input line */
int getline(char *, int);
char *alloc(int);

/* readlines: read input lines */
int readlines(char *lineptr[], int maxlines)
{

int len, nlines;

char *p, |ine[NAXLEN ;

nlines = 0;
while ((len = getline(line, MMAXLEN) > 0)
if (nlines >= naxlines || p = alloc(len) == NULL)
return -1;

el se {

ling[len-1] = '\0"; /* delete newine */

strcpy(p, line);
lineptr[nlines++t] = p;

return nlines;

}

/* witelines: wite output |ines */
void witelines(char *lineptr[], int nlines)

{
int i;
for (i =0; i <nlines; i++)
printf("9%\n", lineptr[i]);

}
Thefunction get | i ne isfrom Section 1.9.

The main new thing isthe declaration for I i nept r :

char *Ii neptr[MAXLI NES]
saysthat lineptr is an aray of MAXLINES dements, each dement of which is a painter to a
char. That is lineptr[i] IS a character pointer, and *lineptr[i] is the character it points
to, the first character of thei -th saved text line.

Snce lineptr is itsdf the name of an array, it can be treated as a pointer in the same manner
asinour earlier examples andwri tel i nes can be written instead as

/* witelines: wite output lines */
void witelines(char *lineptr[], int nlines)

while (nlines-- > 0)
printf("9%\n", *lineptr++);
}
Initidly, *1ineptr points to the firg line each dement advances it to the next line pointer

whilenl i nes is counted down.

With input and output under control, we can proceed to sorting. The quicksort from Chapter 4
needs minor changes the dedaaions have to be modified, and the comparison operaion
must be done by cdling strcnp. The dgorithm remains the same which gives us some
confidencethat it will till work.

/* gsort: sort v[left]...v[right] into increasing order */
void gsort(char *v[], int left, int right)
{

int i, last;

voi d swap(char *v[], int i, int j);

if (left >=right) /* do nothing if array contains */

return; /* fewer than two el enents */
swap(v, left, (left +right)/2);
last = left;
for (i =1left+l; i <=right; i++)

if (strenp(v[i], v[left]) < 0)
swap(v, ++l ast, i);
swap(v, left, last);
gsort(v, left, last-1);

gsort(v, last+1, right);

}
Smilarly, the swep routine needs only trivid changes

/* swap: interchange v[i] and v[j] */
voi d swap(char *v[], int i, int j)
{

char *tenp;

tenp = v[i];

VIi] = Vil

v[j] = tenp;

}
Snce ay individud dement of v (dlias Iineptr) is a character pointer, tenp must be dso, 0
one can be copied to the other.

Exercise 57. Rewrite readlines to dore lines in an aray supplied by main, rather than
cdlingal I oc to maintain storage. How much faster is the program?

5.7 Multi-dimensional Arrays

C provides rectangular multrdimensona arays, dthough in practice they are much less used
than arrays of pointers. In this section, we will show some of their properties.

Condder the problem of date converson, from day of the month to day of the year and vice
vasa For example, March 1 is the 60th day of a non-legp year, and the 61t day of a legp
year. Let us define two functions to do the conversons day_of _year converts the month and
day into the day of the year, and nonth_day converts the day of the year into the month and
day. Since this later function computes two vaues, the month and day arguments will be
pointers

nont h_day(1988, 60, &m &d)
setsmto 2 and d to 29 (February 29th).

These functions both need the same information, a table of the number of days in each month
("thirty days hath September ..."). Since the number of days per month differs for legp years
and nonHleap years, it's eader to separate them into two rows of a two-dimendond aray than
to keep track of what happens to February during computetion. The aray and the functions
for performing the transformetions are as follows

static char daytab[2][13] = {
{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}

b

/* day_of year: set day of year fromnmonth & day */
int day_of year(int year, int nonth, int day)

{
int i, leap;
leap = year% == 0 && year%d00 != 0 || year%400 == 0;
for (i =1; i <nonth; i++)
day += daytab[leap][i];
return day;

/* nonth_day: set nonth, day fromday of year */
void nonth_day(int year, int yearday, int *pnonth, int *pday)
{

int i, |eap;

leap = year% == 0 && year%d00 !'= 0 || year%400 == O;
for (i = 1; yearday > daytab[leap][i]; i++)
yearday -= daytab[leap][i];
*pnonth = i;
*pday = year day;

}
Recal that the arithmetic vaue of a logicd expresson, such as the one for | eap, is ether zero
(false) or one (true), so it can be used as a subscript of the array dayt ab.

The array daytab has to be externd to both day_of year and nonth_day, SO they can both
use it. We made it char to illudrate a legitimate use of char for doring smdl non-character
integers.

dayt ab is the firg two-dimensond aray we have dedt with. In C, a two-dimendond aray is
redly a one-dimensond aray, eech of whose dements is an aray. Hence subscripts are
written as

daytabl[i][j] /* [row[col] */
rather than
daytab[i,j] /* WRONG */

Other than this notationd digtinction, a two-dimendond aray can be trested in much the
same way as in other languages. Elements are stored by rows, s0 the rightmost subscript, or
column, varies fastest as elements are accessed in Storage order.

An aray is initidized by a lig of initidizers in braces, each row of a twodimensond aray is
iniidized by a correponding sub-list. We started the array daytab with a column of zero s
that month numbers can run from the naturd 1 to 12 indead of 0 to 11. Since space is not a a
premium here, thisis dearer than adjusting the indices.

If a twodimensond aray is to be passed to a function, the parameter dedaation in the
function mugt include the number of columns the number of rows is irrdevant, snce what is
pasd is, as before, a pointer to an array of rows, where each row is an array of 13 ints In
this paticular case it is a pointer to objects that are arays of 13 ints Thus if the aray
dayt ab isto be passed to afunction f , the declaration of f would be:

f(int daytab[2][13]) { ... }
It could dso be

f(int daytab[][13]) { ... }
gnce the number of rowsisirrdevant, or it could be

f(int (*daytab)[13]) { ... }
which says that the parameter is a pointer to an aray of 13 integers. The parentheses are
necessry snce brackets [] have higher precedence than *. Without parentheses, the
declaration

int *daytab[13]

101

is an aray of 13 pointers to integers. More generdly, only the fird dimenson (subscript) of
an array isfreg dl the others have to be specified.

Section 5.12 has a further discussion of complicated declarations.

Exercise 5-8. Thereisno error checkingin day_of _year or nont h_day. Remedy this defect.

5.8 Initialization of Pointer Arrays

Condder the problem of writing a function nonth_nane(n), which returns a pointer to a
character dring containing the name of the n-th month. This is an ided application for an
internd static array. nonth_nane contans a private array of character drings, and returns a
pointer to the proper one when cdled. This section shows how that aray of names is
initidized.

The syntax issmilar to previousinitidizations.
/* nonth_nane: return nane of n-th nonth */

char *nont h_nane(int n)

{

static char *nane[] = {

"Il egal nonth",
"January", "February", "March",
“April®, "May", "June",

"July", "August", "Septenber",
"Qctober", "Novenber", "Decenber"
}s

return (n <1 || n>12) ? nane[0] : nane[n];

}
The declaration of nane, which is an array of character pointers, is the same as lineptr in the
sorting example. The initidizer is a lis of chaacter drings each is assgned to the
corresponding pogtion in the aray. The characters of the i-th dring are placed somewhere,
and a pointer to them is dored in nane[i]. Since the size of the aray nane is not Specified,
the compiler countsthe initidizers and fillsin the correct number.

5.9 Pointersvs. Multi-dimensional Arrays

Newcomers to C are sometimes confused about the difference between a two-dimensond
array and an array of pointers, such asnane in the example above. Given the definitions

int a[10][20];

int *b[10];
then a[3][4] and b[3][4] ae both syntacticdly legd references to a Sngleint. But a is a
true two-dimensgond aray: 200 int-gzed locdions have been set adde, and the conventiond
rectangular subscript caculation 20 * row +col is used to find the dement a[row col] . For b,
however, the ddfinition only dlocaes 10 pointers and does nat initidize them; initidization
must be done expliatly, ether daicdly or with code Assuming that each dement of b does
point to a twenty-dement aray, then there will be 200 ints sat aside, plus ten cdls for the
pointers. The important advantage of the pointer array is that the rows of the array may e of
different lengths. That is, each dement of b need not point to a twenty-element vector; some
may point to two dements, some to fifty, and someto none at dl.

102

Although we have phrased this discusson in terms of integers, by far the most frequent use of
arays of pointers is to dore character drings of diverse lengths, as in the function
nmont h_nane. Compare the declaration and picture for an array of pointers:

char *name[] ={ "lIllegal month", "Jan", "Feb", "Mar" };
name:
e—+——+Illegal month\0 |
. » JaJ:L\O
«——*{Feb\0 |
. HEII\O

with those for atwo-dmensiond aray:

char anane[][15] = { "lllegal nonth", "Jan", "Feb", "Mar" };
aname :
Illegal month'0 Jan\0 Feb\0 Mat\0
o 15 30 45

Exercise 59. Rewrite the routines day_of _year and nonth_day with pointers ingead of
indexing.

5.10 Command-line Arguments

In environments that support C, there is a way to pass command-line arguments or parameters
to a program when it begins executing. When nai n is cdled, it is cdled with two arguments.
The firg (conventiondly cdled argc, for argument count) is the number of command-line
arguments the program was invoked with; the second (argv, for argument vector) is a pointer
to an aray of character strings that contain the arguments, one per dring. We customarily use
multiple levels of pointers to manipulate these character strings.

The dmples illudration is the program echo, which echoes its command-line arguments on a
singleline, separated by blanks. That is, the command

echo hello, world

prints the output

hell o, world
By convention, argv[0] is the name by which the program was invoked, 0 argc is a least 1.
If argc is 1, thee ae no command-line arguments after the program name. In the example
above, argc is 3, and argv[0], argv[1], ad argv[2] are "echo", "hello,", and "world"
repectivdy. The firg optiond agument is argv[1] and the lag is argv[arge-1];
additiondly, the sandard requires thet ar gv[argc] beanull pointer.

argv:

e+ ¢ [*lecho\0]

hello,\0

«—[——+world\0]

o

Thefirst verson of echo treatsar gv asan array of character pointers:

#i ncl ude <stdi o. h>

/* echo command-line argunents; 1st version */
main(int argc, char *argv[])

{ . .
int i;
for (i =1; i < argc; i++)
printf("%9%", argv[i], (i <argc-1) 2" " : "");
printf("\n");
return O;
}

Snce argv is a pointer to an aray of pointers we can manipulate the pointer rether than
index the array. This next vaiant is based on incrementing ar gv, which is a pointer to pointer
to char, whilear gc is counted down:

#i ncl ude <stdi o. h>

/* echo command-1ine arguments; 2nd version */
mai n(int argc, char *argv[])

while (--argc > 0)

printf("9%9%", *++argv, (argc > 1) ? " " : "");
printf("\n");
return O;

}
Since argv is a pointer to the beginning of the aray of argument grings, incrementing it by 1
(++argv) mekes it point & the origind argv[1] indead of argv[0]. Each successive
increment moves it dong to the next agument; *argv is then the pointer to that argument. At
the same time, argc is decremented;, when it becomes zero, there are no arguments left to

print.

Alternatively, we could write thepri nt f Statement as

printf((argc > 1) ? "% " : "9%", *++argv);
This shows that the format argument of pri nt f can be an expresson too.

As a second example, let us make some enhancements to the patternfinding program from
Section 4.1 If you recdl, we wired the search pattern deep into the program, an obvioudy
unsatisfactory arrangement. Following the lead of the UNIX program grep, let us enhance the
program so the pattern to be matched is specified by the firg argument on the command line,

#i ncl ude <stdio. h>
#i ncl ude <string. h>
#def i ne MAXLI NE 1000

int getline(char *line, int max);

/* find: print lines that natch pattern from1st arg */
nmai n(int argc, char *argv[])

{
char |ine[MAXLI NE] ;
int found = O;

if (argc !'=2)
printf("Usage: find patternin");
el se
while (getline(line, NAXLINE) > 0)
if (strstr(line, argv[1]) '= NULL) {
printf("9%", line);
f ound++;

return found;

}
The gandard library function strstr(s,t) returns a pointer to the firg occurrence of the
dringt inthedrings, or NULL if thereisnone. It isdeclared in <st ri ng. h>.

The modd can now be daborated to illustrate further pointer congructions. Suppose we want
to dlow two optiond aguments One says print dl the lines except those that match the
pattern;" the second says ™ precede each printed line by itsline number."”

A common convertion for C programs on UNIX sysems is tha an argument that begins with
a minus dgn introduces an optiond flag or parameter. If we choose -x (for “except”) to
sgnd theinverson, and -n (" number”) to request line numbering, then the command

find -x -npattern

will print each line that doesn't match the paitern, preceded by its line number.

Optiona arguments should be permitted in any order, and the rest of the program should be
independent of the number of arguments that we present. Furthermore, it is convenient for
usrsif option arguments can be combined, asin

find -nx pattern
Hereisthe program:

#i ncl ude <stdio. h>
#i ncl ude <string. h>
#def i ne MAXLI NE 1000

int getline(char *line, int max);

[* find: print lines that match pattern from1lst arg */
nmai n(int argc, char *argv[])
{

char |ine[MAXLI NE] ;

long lineno = O;

int ¢, except = 0, nunber = 0, found = O;

while (--argc > 0 & (*++argv)[0] =="'-")

while (c = *++argv[0])

switch (c) {
case 'Xx':
except = 1;
br eak;
case 'n':
nunber = 1;
br eak;
defaul t:
printf("find: illegal option %\n", c);
argc = 0;
found = -1;
br eak;
}
if (argc != 1)
printf("Usage: find -x -n pattern\n");
el se
while (getline(line, MXLINE) > 0) {
| i neno++;
if ((strstr(line, *argv) != NUL) != except) {
i f (nunber)
printf("%d:", lineno);
printf("%", line);
f ound++;
}
}

return found;

}
argc is decremented and argv is incremented before each optiond argument. At the end of

the loop, if there are no erors, arge tdls how many arguments remain unprocessed and ar gv
points to the fird of these. Thus argc should be 1 and *argv should point a the pattern.
Notice that *++argv iS a pointer to an argument dring, O (*++argv)[0] is its first character.
(An dternate vdid form would be **++argv.) Because [] binds tighter than * and ++, the
parentheses are necessary; without them the expresson would be taken as *++(argv[0]). In
fact, that is wha we have used in the inner loop, where the task is to wak dong a spedific
agument dring. In the inner loop, the expresson *++argv[0] increments the pointer
argv[0] !

It is rae that one uses pointer expressons more complicated than these, in such cases,
bresking them into two or three tepswill be more intuitive,

Exercise 510. Write the program expr, which evduaes a reverse Polish expresson from the
command line, where each operator or operand is a separate argument. For example,

expr 234 +*
evauates 2 * (3+4).

Exercise 5-11. Modify the program entab and detab (written as exercises in Chapter 1) to
accept alist of tab stops as arguments. Use the default tab settings if there are no arguments.

Exercise 5-12. Extend ent ab and det ab to accept the shorthand

entab -m+n
to mean tab dops every n columns dating a column m Choose convenient (for the user)
default behavior.

106

Exercise 513. Write the program tai |, which prints the lat n lines of its input. By default, n
isset to 10, let us say, but it can be changed by an optiona argument so that

tail -n
prints the last n lines. The program should betave rationdly no matter how unreasonable the
input or the vdue of n. Write the program o it makes the best use of available storage; lines
should be dored as in the sorting program of Section 5.6, not in a twodimensond aray of
fixed 5ze

5.11 Pointersto Functions

In C, a function itsdf is not a variable, but it is possble to define pointers to functions, which
can be assgned, placed in arays, passed to functions, returned by functions, and so on. We
will illugrate this by modifying the sorting procedure written earlier in this chepter 0 that if
the optiond agument -n is given, it will sort the input lines numenicdly ingeed of
lexicographicaly.

A sort often conggts of three parts - a comparison hat determines the ordering of any pair of
objects, an exchange that reverses ther order, and a sorting agorithm that maekes comparisons
and exchanges until the objects are in order. The sorting adgorithm is independent of the
comparison and exchange opedions S0 by passng different comparison and exchange
functions to it, we can arange to sort by different criteria This is the gpproach taken in our
new sort.

Lexicographic comparison of two lines is done by strcnp, as before; we will dso need a
routine nuncnp that compares two lines on the bass of numeric vdue and returns the same
kind of condition indication as strcnp does. These functions are declared ahead of main and

a pointer to the gppropriate one is pased to gsort . We have skimped on eror processng for
arguments, o as to concentrate on the main issues.

#i ncl ude <stdio. h>
#i ncl ude <string. h>

#def i ne MAXLI NES 5000 /* max #lines to be sorted */
char *lineptr[MAXLINES]; /* pointers to text lines */

int readlines(char *lineptr[], int nlines);
void witelines(char *lineptr[], int nlines);

void gsort(void *lineptr[], int left, int right,
int (*comp)(void *, void *));
int nuncnp(char *, char *);

/* sort input lines */

mai n(int argc, char *argv[])

{
int nlines; /* nunber of input lines read */
int nuneric = 0O; /* 1 if nuneric sort */

if (argc > 1 & strcnp(argv[1], "-n") == 0)
nuneric = 1;
if ((nlines = readlines(lineptr, MAXLINES)) >= 0) {
gsort((void**) lineptr, O, nlines-1,
(int (*)(void*,void*))(nuneric ? nuntnp : strcnp));
witelines(lineptr, nlines);

return O;

} else {
printf("input too big to sort\n");
return 1;

}

}
In the cal to gsort, strenp and nunenp are addresses of functions. Since they are known to
be functions, the & is not necessary, in the same way that it is not needed before an aray
name.

We have written gsort S0 it can process any daa type, not just character drings. As indicated
by the function prototype, gsort expects an aray of pointers, two integers, and a function
with two pointer arguments. The geneic pointer type void * is used for the pointer
arguments. Any pointer can be cast to void * and back agan without loss of information, so
we can cdl gsort by ceding aguments to void *. The eaborate cast of the function
argument cadts the arguments of the comparison function. These will generdly have no effect
on actua representation, but assure the compiler thet dl iswell.

/* gsort: sort v[left]...v[right] into increasing order */
void gsort(void *v[], int left, int right,
int (*conp)(void *, void *))
{
int i, last;

voi d swap(void *v[], int, int);

if (left >=right) /* do nothing if array contains */
return; /* fewer than two el ements */

swap(v, left, (left + right)/2);

last = left;

for (i =left+l;, i <=right; i++)

if ((*comp)(v[i], v[left]) < 0)
swap(v, ++ast, i);
swap(v, left, last);
gsort(v, left, last-1, conp);
gsort(v, last+l, right, conp);

}
The dedlarations should be studied with some care. The fourth parameter of gsort is

int (*conp)(void *, void *)
which says that conp is a pointer to a function that has two voi d * arguments and returns an
int.

The use of conp intheline
if ((*conp)(v[i], v[left]) < 0)
is conggtent with the declaration: conp isapointer to afunction, *conp isthe function, and
(*comp) (v[i], v[left])
is the cdl to it. The parentheses are needed so the components are correctly associated;
without them,

int *conp(void *, void *) /* WRONG */
says that conp isafunction returning a pointer to ani nt , which is very different.

108

We have dready shown strcnp, which compares two drings Here is nuncnp, which
compares two grings on aleading numeric vaue, computed by calling at of :

#incl ude <stdlib. h>

/* nuntnp: conpare sl and s2 nunerically */
int numcnp(char *sl1, char *s2)

{
doubl e v1, vZ2;

vl = atof (s1);
v2 = atof (s2);
if (vl <v2
return -1,
else if (vl > v2)
return 1;
el se
return O;

}
The swap function, which exchanges two pointers, is identicd to what we presented earlier in

the chapter, except that the declarations are changed to voi d *.

void swap(void *v[], int i, int j;)
{
voi d *tenp;

tenp = v[i];
viil = v[jl;
v[j] = tenp;

}
A vaiely of other options can be added to the sorting program; some make chdlenging
exercises.

Exercise 5-14. Modify the sort program to handle a -r flag, which indicates sorting in reverse
(decreasing) order. Be surethat -r workswith - n.

Exercise 515. Add the option -f to fold upper and lower case together, 0 that case
digtinctions are not made during sorting; for example, a and Acompare equd.

Exercise 516. Add the -d (directory orde) option, which makes comparisons anly on
letters, numbers and blanks. Make sure it worksin conjunction with -f .

Exercise 517. Add a fidd-searching capability, so sorting may bee done on fidds within
lines, each fidd sorted according to an independent st of options. (The index for this book
was sorted with -df for theindex category and - n for the page numbers))

5.12 Complicated Declarations

C is someimes cadigated for the syntax of its dedlaraions particulaly ones tha involve
pointers to functions. The syntax is an atempt to make the declaration and the use agree; it
works wdl for smple cases, but it can be confusng for the harder ones, because dedlarations
cannot be read |eft to right, and because parentheses are over-used. The difference between

int *f(); /* f: function returning pointer to int */

109

int (*pf)(); /* pf: pointer to function returning int */
illustrates the problem: * is a prefix operator and it has lower precedence than (), 0
parentheses are necessary to force the proper association.

Although truly complicated dedardtions rardy aise in practice, it is important to know how
to undersand them, and, if necessry, how to create them. One good way to synthesize
declardtions is in gndl geps with typedef, which is discussed in Section 6.7 As an
dternative, in this section we will present a par of programs that convert from vdid C to a
word description and back again. The word description reeds left to right.

The fird, dcl, is the more complex It converts a C dedaation into a word description, as in
these examples:

char **argv
argv: pointer to char
int (*daytab)[13]
daytab: pointer to array[13] of int
i nt *dayt ab[13]
daytab: array[13] of pointer to int
voi d *conp()
conp: function returning pointer to void
void (*conp) ()
conp: pointer to function returning void
char (*(*x())[1)()
x: function returning pointer to array[] of
pointer to function returning char
char (*(*x[3])())[5]
x: array[3] of pointer to function returning
pointer to array[5] of char

dcl is based on the grammar that specifies a declaraior, which is spdled out precisdy in
Appendix A, Section 85 thisisasmplified form:

dcl : optional *'s direct-dcl
direct-dcl nane

(dcl)

direct -dcl ()

direct -dcl [optional size]

In words a dcl is a direct-dcl, perhaps preceded by *'s A direct-dcl is a name, or a
paentheszed dcl, or a direct-dcl followed by parentheses, or a direct-dcl followed by
brackets with an optiond Sze.

This grammar can be used to parse functions. For instance, condder this declarator:

(*pfal]) ()
pfa will be idatified as a name and thus as a direct-dcl. Then pfa[] is dso adirect-dcl. Then

*pfa[] IS recognized as a dcl, so (*pfa[]) is a direct-dcl. Then (*pfa[])() isa directdcl
and thus a dcl. We can ds0 illudtrate the parse with a tree like this (where direct-dcl has been
abbreviated to dir-dcl):

dir-del
|

dir|—dcf

d|c?

dir|—dcf
dir|—dcf

del

The heart of the dcI program is a par of functions dcl and dirdcl, that parse a declaration
according to this grammar. Because the grammar is recursvely defined, the functions cal

each other recurdvely as they recognize pieces of a dedardion; the program is cdled a
recursve-descent parser.

/* dcl: parse a declarator */
voi d dcl (voi d)

{
int ns;
for (ns = 0; gettoken() =="*";) /* count *'s */
ns++;
dirdcl ();
while (ns-- > 0)
strcat(out, " pointer to")
}
[* dirdcl: parse a direct declarator */
voi d dirdcl (void)
{
int type
if (tokentype =="(") { /[* (dcl) */
del ();

if (tokentype I=")")
printf("error: mssing)\n");
} else if (tokentype == NAME) /* variable nane */
strcpy(nane, token);

el se
printf("error: expected nane or (dcl)\n");

while ((type=gettoken()) == PARENS || type == BRACKETS)
if (type == PARENS)

strcat(out, " function returning");
el se {

strcat(out, " array");

strcat (out, token);

strcat(out, " of");

}

}
Snce the programs ae intended to be illudrative, not bulletproof, there are dgnificant
regrictions on dcl . It can only handle a smple daa type line char or int. It does not handle
agument types in functions, or qudifiers like const . Spurious blanks confuse it. It doesnt do
much error recovery, 0 invaid declarations will aso confuse it. These improvements are left
as exercises.

Here are the globa variables and the main routine:

#i ncl ude <stdio. h>

#i ncl ude <string. h>

#i ncl ude <ctype. h>

#defi ne MAXTCKEN 100

enum { NAME, PARENS, BRACKETS };

voi d dcl (void);
voi d dirdcl (void);

int gettoken(void);

int tokentype; /* type of last token */
char token[NAXTCKEN ; /* last token string */
char narre[NAXTCKEN ; /* identifier name */

char datatype[MMXTCKEN ; /* data type = char, int, etc. */
char out[1000];

main() /* convert declaration to words */

while (gettoken() '= ECGF) { /* 1st token on line */
strcpy(datatype, token); /* is the datatype */
out[0] ="'\0";
decl (); /* parse rest of line */
if (tokentype !'="'\n")
printf("syntax error\n");
printf("%: % 9%\n", nane, out, datatype);
}

return O;

}
The function gett oken skips blanks and tabs, then finds the next token in the input; a “token”
iS a name, a par of parentheses, a par of brackets perhaps including a number, or any other
sngle character.

int gettoken(void) /* return next token */
{

int ¢, getch(void);

voi d ungetch(int);

char *p = token;

while ((c = getch()) ==" " || ¢ =="\t")

if (c="(){
if ((c =getch()) ==")") {
strcpy(token, "()");
return tokentype = PARENS;
} else {
unget ch(c);
return tokentype

G
}

} elseif (¢ ="["){
for (*p++ = c; (*p++
*p="\0;
return tokentype = BRACKETS;

} else if (isalpha(c)) {
for (*p++ = c¢; isalnun{c = getch());)

*p++ = c;
*p ="'\0;
unget ch(c);
return tokentype = NAME

} else

return tokentype = c;

getch()) '="1";)

}
get ch and unget ch are discussed in Chapter 4.

Going in the other direction is esser, egpeddly if we do not worry about generding
redundant parentheses. The program undcl converts a word destription like “x is a function
returning a pointer to an array of pointers to functions returning char," which we will express

as

x () * [T * () char
o

char (*(*x())[1) ()
The abbreviated input syntax lets us reuse the gettoken function. undcl aso uses the same

externd variablesasdcl does.

/* undcl: convert word descriptions to declarations */
nai n()
{

int type;

char tenp[MAXTOKEN ;

while (gettoken() !'= ECQF) {
strcpy(out, token);
while ((type = gettoken()) '="\n")

if (type == PARENS || type == BRACKETS)
strcat (out, token);

elseif (type =="'*") {
sprintf(tenp, "(*%)", out);
strcpy(out, tenp);

} elseif (type == NAME) {
sprintf(tenp, "% 9", token, out);
strcpy(out, tenp);

} else
printf("invalid input at 9%\n", token);

}

return O;

Exercise 5-18. Makedcl recover from input errors.
Exer cise 5-19. Modify undcl S0 that it does not add redundant parentheses to declarations.

Exercise 520. Expand dcI to handle declarations with function argument types qudifiers
likeconst , and so on.

114

Chapter 6 - Structures

A dructure is a collection of one or more variables posshly of differet types grouped
together under a sngle name for convenient handling. (Structures are cdled “records' in
some languages, notably Pascd.) Structures help to organize complicated data, paticularly in
large programs, because they permit a group of related varigbles to be trested as a unit insteed
of as separate entities.

One traditiond example of a dructure is the payroll record: an employee is described by a set
of atributes such as name, address, socid security number, sdary, etc. Some of these in tun
could be dructures a name has severd components, as does an address and even a sdary.
Another example, more typica for C, comes from graphics a point is a par of coordinate, a
rectangleisapair of points, and so on.

The man change made by the ANS dandard is to define dtructure assignment - structures
may be copied and assgned to, passed to functions, and returned by functions This has been
supported by most compilers for many years, but the properties are now precisdy defined.
Automatic structures and arrays may now aso beinitidized.

6.1 Basics of Structures

Let us creste a few dructures suitable for graphics. The basic object is a point, which we will
assume has an x coordinate and ay coordinate, both integers.

(0,0)

The two companents can be placed in astructure declared like this

struct point {
int x;
intvy;

b
The keyword struct introduces a dructure declaration, which is a lig of dedardions
enclosad in braces. An optiond name cdled a structure tag may follow the word struct (as
with point here). The tag names this kind of sructure, and can be used subsequently as a
shorthand for the part of the declaration in braces.

115

The variables named in a dructure are cadled members. A dructure member or tag and an
ordinary (i.e, non-member) vaiable can have the same name without conflict, snce they can
dways be diginguished by context. Furthermore, the same member names may occur in
different dtructures, dthough as a matter of syle one would normdly use the same names
only for closdly related objects.

A struct dedadion defines a type. The right brace that terminates the lig of members may
be followed by alis of variables, just asfor any basic type. That is,

struct { ... } X, vy, z;

is syntacticaly andogousto

int x, y, z;
in the sense that each dtatement declares x, y ad z to be variables of the named type and
causes space to be set aside for them.

A dructure dedlaration that is not followed by a ligt of variabdles reserves no sorege; it merdy
describes a template or shape of a dructure. If the declaration is tagged, however, the tag can
be usad laer in definitions of ingances of the dructure. For example, given the dedlaration of
poi nt above,

struct point pt;
defines a variable pt which is a dructure of type struct point. A dructure can be initidized
by following its definition with a lig of intidizers esch a condant expresson, for the
members

struct maxpt = { 320, 200 };
An automatic sructure may dso be initidized by assignment or by cdling a function that
returns a structure of the right type.

A member of a paticular dructure is referred to in an expresson by a condruction of the
form

structure-name.member

The sructure member operator —." canects the structure name and the member name. To
print the coordinates of the point pt , for instance,

printf("%l, %", pt.x, pt.y);
or to compute the distance from the origin (0,0) to pt ,

doubl e dist, sqrt(double);

dist = sqgrt((double)pt.x * pt.x + (double)pt.y * pt.y);
Structures can be nested. One representetion of a rectangle is a pair of points that denote the

diagondly opposite cormners:

116

pti

struct rect {
struct point ptl;
struct point pt2;

b
Ther ect structure containstwo poi nt structures. If we declare scr een as

struct rect screen;

then

screen. pt 1. x
refers to the x coordinate of the pt 1 member of scr een.

6.2 Structures and Functions

The only legd operdions on a dructure are copying it or assgning to it as a unit, taking its
address with &, and accessng its members. Copy and assgnment include passng arguments
to functions and returning vaues from functions as well. Structures may not be compared. A
dructure may be initidized by a lig of congant member vdues, an automatic Structure may
a0 beinitidized by an assgnment.

Let us invedigate Sructures by writing some functions to manipulate points and rectangles.
There are a least three possble approaches pass components separately, pass an entire
dructure, or pass apointer to it. Each hasits good points and bad points.

Thefirg function, makepoi nt, will take two integers and return a poi nt structure;

/* makepoint: nake a point fromx and y conponents */
struct point makepoi nt(int x, int y)

{
struct point tenp;
tenp. x = X;
tenp.y =vy;
return tenp;

}

Notice that there is no conflict between the argument name and the member with the same
name; indeed the re-use of the names stresses the relationdhip.

makepoi nt Can now be usad to initidize any dructure dynamicdly, or to provide dructure
argumentsto afunction:

struct rect screen;

17

struct point mddle;
struct point makepoi nt(int, int);

screen. pt1 = nakepoi nt (0, 0);
screen. pt 2 = nmakepoi nt (XVAX, YMAX) ;
m ddl e = nmakepoi nt ((screen. ptl.x + screen. pt2.x)/2,
(screen.ptl.y + screen.pt2.y)/2);
The next gep isaset of functionsto do arithmetic on points. For instance,

/* addpoints: add two points */
struct addpoi nt(struct point pl, struct point p2)

{
pl. x += p2.x;

pl.y += p2.y;
return pil,

}
Here both the arguments and the return vaue are dructures. We incremented the components
in p1 raher than udng an explicit temporary variable to emphasize tha dructure parameters

are pased by vdue like any others.

As ancther example, the function ptinrect tests whether a point is indde a rectangle, where
we have adopted the convention that a rectangle includes its left and bottom sides but not its
top and right Sides:

/* ptinrect: return 1if pinr, Oif not */
int ptinrect(struct point p, struct rect r)

{
return p.x >=r.ptl.x & p.x < r.pt2.x

&& p.y >=r.ptly & p.y <r.pt2.y;

}
This assumes that the rectangle is presented in a standard form where the pt1 coordinates are
less than the pt2 coordinates. The following function returns a rectangle guaranteed to be in
canonicd form:

#define mn(a, b) ((a) < (b) ? (a) : (b))
#define max(a, b) ((a) > (b) ? (a) : (b))

/* canonrect: canonicalize coordinates of rectangle */
struct rect canonrect(struct rect r)

{

struct rect tenp;

tenp.ptl.x = mn(r.ptl. x, r.pt2.x);
tenp.ptl.y = mn(r.ptly, r.pt2.y);
tenp.pt2.x = max(r.ptl.x, r.pt2.x);

tenp.pt2.y = max(r.ptl.y, r.pt2.y);
return tenp;

}
If alarge gtructure is to be passed to a function, it is generdly more efficient to pass a pointer
than to copy the whole structure. Structure pointers are just like pointers to ordinary variables.
Thedeclaration

struct point *pp;
says tha pp is a pointer to a dructure of type struct point. If pp points to a poi nt Structure,
*pp is the dructure, and (*pp).x and (*pp).y ae the members. To use pp, we might write,
for example,

struct point origin, *pp;

= &origin;
gfi ntf("o?i ginis (%, %)\n", (*pp).Xx, (*pp).y);
The parentheses are necessary in (*pp).x because the precedence of the sructure member
operator . is higher then *. The expresson *pp.x means *(pp.x), which is illegd here
becausex is not a pointer.

Pointers to dructures are 0 frequently used that an dterndive notation is provided as a
shorthand. If p isapointer to a structure, then

p- >menber- of - structure
refersto the particular member. So we could write instead

printf("originis (%, %)\n", pp->x, pp->Yy);
Both . and - > associate from left to right, so if we have

struct rect r, *rp = &r;
then these four expressons are equivaent:

r.ptl.x

rp->ptl.x

(r.ptl).x

(rp->ptl).x
The dructure operators . and - >, together with () for function cdls and [] for subscripts, are
a the top of the precedence hierarchy and thus bind very tightly. For example, given the
declaration

struct {
int len;
char *str;
} e
then

++p- >l en
increments 1en, not p, because the implied parentheszaion is ++(p->len). Parentheses can
be used to dter binding: (++p)->len increments p before accessng len, and (p++)->len
incrementsp afterward. (Thislast set of parentheses is unnecessary.)

In the same way, *p->str fetches whatever str points to; *p->str++ increments str after
accessing whatever it points to (just like *s++); (*p->str)++ increments whatever str points
to; and *p++ >st r incrementsp after accessng whatever str pointsto.

6.3 Arraysof Structures

Consder writing a program to count the occurrences of each C keyword. We need an aray of
character drings to hold the names, and an aray of integers for the counts. One possbility is
to use twopardld arays, keywor d and keycount , asin

char *keywor d[NKEYS] ;

int keycount [NKEYS];
But the very fact that the arays are padld suggests a different organization, an aray of
dructures. Each keyword isapair:

char *word;
int cout;
and thereisan array of pairs. The structure declaration

struct key {
char *word;
int count;
} keyt ab[NKEYS] ;
declares a dructure type key, defines an aray keytab of structures of this type, and sets aside
storage for them. Each eement of the array isastructure. This could dso be written

struct key {
char *word;
int count;

b

struct key keytab[NKEYS];
Since the structure keyt ab contains a condtant set of names, it is eadest to make it an externd
varidble and initidize it once and for dl when it is ddfined. The dructure initidization is
andogous to earlier ones- the definition isfollowed by alig of initidizers enclosad in braces

struct key {
char *word;
int count;

} keytab[] = {
"auto", O,
"break", O,
"case", 0,
"char", O,
"const", O,
"continue", O,
"default", O,
[* ... %
"unsi gned", O,
"void", O,
"volatile", O,
"while", 0

b
The intidizers are liged in pars corresponding to the dructure members. It would be more
precise to enclose the initidizers for each "row" or sructure in braces, asin

{ "auto", 0},
{ "break", 0},
{ "case", 0},

but inner braces are not necessaty when the initidizers are smple varigbles or character
drings, and when dl are present. As usud, the number of entries in the array keytab will be
computed if theinitidizersare present and the [] isleft empty.

The keyword counting progran begins with the definition of keytab. The man routine reads
the input by repestedly cdling a function getword that fetches one word a a time. Each word
is looked up in keytab with a verson of the binary search function that we wrote in Chapter
3 Theligt of keywords must be sorted in increasing order in the teble.

#i ncl ude <stdio. h>
#i ncl ude <ctype. h>
#i ncl ude <string. h>

#def i ne MAXWIRD 100

int getword(char *, int);
int binsearch(char *, struct key *, int);

/* count C keywords */
mai n()
{

int n;

char wor d[MMXWRD ;

whi | e (getword(word, MMXWRD) != ECF)
if (isalpha(word[Q]))
if ((n = binsearch(word, keytab, NKEYS)) >= 0)
keyt ab[n] . count ++;
for (n = 0; n < NKEYS, n++)
if (keytab[n].count > 0)
printf("%d %\n",
keytab[n] . count, keytab[n].word);
return O;

}

/* binsearch: find word in tab[0]...tab[n-1] */
int binsearch(char *word, struct key tab[], int n)

{

int cond;
int low high, nid;

low = 0;
high =n - 1;
while (I ow <= high) {
md = (lowthigh) / 2;
if ((cond = strcnp(word, tab[md].word)) < 0)
high = md - 1,
elseif (cond > 0)
low=md + 1;
el se
return md;

}

return -1;

}
We will show the function getword in @ moment; for now it suffices to say that each cdl to
get wor d finds aword, which is copied into the array named asits first argument.

The quantity NKEYS is the number of keywords in keytab. Although we could count this by
hend, it's a lot eeser and safer to do it by machine, especidly if the list is subject to change.
Ore posshility would be to teminate the lig of initidizers with a null pointer, then loop
dongkeyt ab until the end isfound.

But this is more than is needed, snce the Sze of the aray is compleidy determined at
compile time. The dze of the aray is the Sze of one entry times the number of entries, so the
number of entriesisjust

sizeof keytab / Sizeof struct key

C provides a compile-time unary operator cdled si zeof that can be used to compute the size
of any object. The expressons

si zeof obj ect

and

si zeof (type name)

121

yiedd an integer equd to the Sze of the specified object or type in bytes (Strictly, sizeof
produces an undgned integer value whose type size_t, iS defined in the header
<stddef.h>) An object can be a variable or aray or structure. A type name can be the name
of abasctypelikeint or doubl e, or aderived type like a Structure or a pointer.

In our caxe, the number of keywords is the Sze of the aray divided by the sze of one
element. This computation isused in a#def i ne Satement to set the vaue of NKEYS:

#defi ne NKEYS (sizeof keytab / sizeof (struct key))
Ancther way to write thisisto divide the array Sze by the Sze of a specific dement:

#defi ne NKEYS (si zeof keytab / sizeof (keytab[0]))
This has the advantage that it does not need to be changed if the type changes.

A sizeof can not be used in a #f line because the preprocessor does not parse type names.
But the expresson in the #define is not evauated by the preprocessor, S0 the code here is

legdl.

Now for the function getword. We have written a more generd getword than is necessary for
this program, but it is not complicated. getword fetches the next “word" from the input,
where a word is ether a string of letters ad digits beginning with a letter, or a sngle non
white space character. The function vaue is the first character of the word, or EcF for end of
file, or the character itsdlf if it is not dphabetic.

/* getword: get next word or character frominput */
int getword(char *word, int lin
{

int c, getch(void);

voi d ungetch(int);

char *w = word;

whi l e (isspace(c = getch()))

if (c!=EM®
*WH = C;

if (lisalpha(c)) {
*w="\0;
return c;

}
for (; --lim>0; w+)
if (lisal num(*w = getch())) {
unget ch(*w);
br eak;

}
*w="\0;
return word[0];

}
getword Uses the getch and ungetch that we wrote in Chapter 4. When the collection of an

dphanumeric token dops getword has gone one character too far. The cdl to ungetch
pushes that character back on the input for the next cal. getword aso usesS isspace t0 Kip
whitespace, i sal pha to identify letters, and isal num to identify letters and digits, dl are from
the standard header <ct ype. h>.

Exercise 6-1. Our verdon of getword does not properly handle underscores, sring congants,
comments, or preprocessor control lines. Write a better version.

6.4 Pointersto Structures

To illugrate some of the condgderations involved with pointers to and arays of dructures, let
us write the keywordcounting program agan, this time usng pointers indead of aray
indices.

The extend declaration of keytab need not change, but main and binsearch do need
modification.

#i ncl ude <stdio. h>
#i ncl ude <ctype. h>
#i ncl ude <string. h>
#def i ne MAXWIRD 100

int getword(char *, int);
struct key *binsearch(char *, struct key *, int);

/* count C keywords; pointer version */
mai n()

char wor d[MMXWIRD ;
struct key *p;

whil e (getword(word, MMXWRD) != ECF)
if (isalpha(word[Q]))
i f ((p=binsearch(word, keytab, NKEYS)) != NULL)
p- >count ++;
for (p = keytab; p < keytab + NKEYS, p++)
if (p->count > 0)
printf("%d %\n", p->count, p->word);
return O;

}

/* binsearch: find word in tab[0Q]...tab[n-1] */
struct key *bi nsearch(char *word, struck key *tab, int n)
{

int cond;

struct key *low = & ab[0] ;

struct key *high = &ab[n];

struct key *md;

while (low < high) {
md =1low+ (high-low / 2;
if ((cond = strcnp(word, md->word)) < 0)
high = md;
elseif (cond > 0)
low=md + 1;
el se
return md;
}
return NULL;
}
There ae severd things worthy of note here. Frg, the dedaraion of binsearch must

indicate that it returns a pointer to struct key ingead of an integer; this is dedared both in
the function prototype and in bi nsearch. If binsearch finds the word, it returns a pointer to
it; if it fals, it returns NULL.

123

Second, the dements of keytab ae now accessed by pointers. This requires sgnificant
changesin bi nsear ch.

The initidizers for 1ow and hi gh ae now pointers to the beginning and just pagt the end of the
table.

The computation of the middle dement can nolonger be smply

md = (lowhigh) / 2 /* WRONG */
because the addition of pointers is illegd. Subtrection is legd, however, 0 high-1ow is the
number of dements, and thus

md=1low+ (highlow / 2
setsmi d to the eement halfway between | owand hi gh.

The mogt important change is to adjugt the dgorithm to make sure that it does not generae an
illegd pointer or atempt to access an dement outsde the array. The problem is that & abf -
1] and &ab[n] ae both outsde the limits of the aray tab. The former is drictly illegd, and
it is illegd to dereference the later. The language definition does guarantee, however, thet
pointer aithmetic that involves the firs dement beyond the end of an aray (that is & ab[n])
will work correctly.

In mai n wewrote

for (p = keytab; p < keytab + NKEYS, p++)
If p is a pointer to a dructure, arithmetic on p takes into account the size of the structure, 0
p++ increments p by the correct amount to get the next dement of the array of Structures, ad
the test gops the loop at the right time,

Dont assume, however, that the size of a Sructure is the sum of the szes of its members.
Because of dignment requirements for different objects, there may be unnamed “holes’ in a
gructure. Thus, for instance, if achar isonebyteand an i nt four bytes, the ructure

struct {
char c;
int i;
b
might well require eight bytes, not five. Thesi zeof operator returns the proper vaue.

Fndly, an asde on program formet: when a function returns a complicated type like a
dructure pointer, asin

struct key *bi nsearch(char *word, struct key *tab, int n)
the function name can be hard to see, and to find with a text editor. Accordingly an dternate
dyle is sometimes used:

struct key *
bi nsearch(char *word, struct key *tab, int n)

Thisisamatter of persond taste; pick theform you like and hold to it.

124

6.5 Sdf-referential Structures

Suppose we want to handle the more generd problem of counting the occurrences of all the
words in some input. Since the lig of words isnt known in advance, we cant conveniently
sort it and use a binary search. Yet we cant do a linear search for each word as it arives, to
see if it's dready been seen; the program would take too long. (More precisdy, its running
time is likdy to grow quedraicdly with the number of input words) How can we organize
the data to copy efficiently with alist or arbitrary words?

One solution is to keep the st of words seen w0 far sorted a dl times, by placing each word
into its proper postion in the order as it arives. This shouldnt be done by shifting words in a

lineer aray, though - that dso takes too long. Ingtead we will use a data dructure cdled a
binary tree.

The tree contains one " node" per dstinct word; each node contains

A pointer to thetext of the word,

A count of the number of occurrences,
A pointer to the left child node,

A pointer to the right child node.

No node may have more than two children; it might have only zero or one.

The nodes are maintained o0 that a any node the left subtree contains only words that are
lexicogrephicdly less than the word a the node, and the right subtree contains only words
that are greater. This is the tree for the sentence “"now is the time for d good men to come to
the aid of their party", as built by inserting each word asit is encountered:

18 /HDW\the
/N /N

men of time

AR NN

all good party their to
aid

cormne

To find out whether a new word is dready in the tree, Sart a the root and compare the new
word to the word gtored a that node. If they match, the question is answered afirmativey. If
the new record is less than the tree word, continue searching a the left child, otherwise a the
right child. If there is no child in the required direction, the new word is not in the treg, and in
fact the empty dot is the proper place to add the new word. This process is recursive, snce
the search from any node uses a search from one of its children. Accordingly, recurdve
routines for insertion and printing will be most naturd.

Going back to the description of a node, it is most conveniently represented as a dtructure
with four components.

struct tnode { /* the tree node: */
char *word; /* points to the text */
int count; /* nunber of occurrences */
struct tnode *left; /* left child */

struct tnode *right; /* right child */

h
This recursve dedaration of a node might look chancy, but it's correct. It is illegd for a

gructure to contain an instance of itsdf, but

struct tnode *left;
declares| ef t to be apointer to at node, not at node itsalf.

Occasiondly, one needs a vaiaion of sf-referentid ructures two sructures that refer to
each other. Theway to handle thisis

struct t {

struct s *p; /* p points to an s */
|3
struct s {

struct t *q; /* g points toat */

h
The code for the whole program is surprisngly smdl, given a handful of supporting routines
like getword that we have dready written. The main routine reads words with getword and
ingdlstheminthetreewith addt r ee.

#i ncl ude <stdio. h>
#i ncl ude <ctype. h>
#i ncl ude <string. h>

#defi ne MAXWCRD 100

struct tnode *addtree(struct tnode *, char *);
void treeprint(struct tnode *);

int getword(char *, int);

/* word frequency count */
nmai n()

{

struct tnode *root;

char wor d[MVXWIRD ;

root = NULL;
whi | e (getword(word, MMWRD) != ECF)
if (isalpha(word[0]))
root = addtree(root, word);
treeprint(root);
return O;

Th(-j function addtree is recursve. A word is presented by main to the top level (the root) of
the tree. At each stage, that word is compared to the word dready dtored at the node, and is
percolated down to ether the left or right subtree by a recursive cdl to adtree. Eventudly,
the word dther maiches something dready in the tree (in which case the count is
incremented), or a null pointer is encountered, indicating that a node must be crested and
added to the tree. If a new node is created, addtree returns a pointer to it, which is ingdled
in the parent node.

struct tnode *tall oc(void);

char *strdup(char *);

/* addtree: add a node with w, at or below p */
struct treenode *addtree(struct tnode *p, char *w)

{
int cond;
if (p == NLL) { /* a newword has arrived */
p =talloc(); /* nmake a new node */

p->word = strdup(w;
p->count = 1,
p->left = p->right = NULL;

} elseif ((cond = strcnp(w, p->word)) == 0)
p- >count ++; /* repeated word */

elseif (cond <0) /* less than into |eft subtree */
p->left = addtree(p->left, w;

el se /* greater than into right subtree */
p->right = addtree(p->right, w;

return p;

}
Storage for the new node is fetched by a routine tal | oc, which returns a pointer to a free
soace slitable for holding a tree node, and the new word is copied into a hidden space hy
strdup. (We will discuss these routines in a moment.) The count is initidized, and the two
children are made null. This part of the code is executed only a the leaves of the tree, when a
new node is being added. We have (unwisdy) omitted error checking on the vaues returned
bystrdupandtall oc.

treeprint prints the tree in sorted order; a each node, it prints the left subtree (dl the words
less than this word), then the word itsdf, then the right subtree (al the words greater). If you
fed dheky about how recurson works, Smulate treeprint as it operates on the tree shown
above.

/* treeprint: inorder print of tree p */
void treeprint(struct tnode *p)
{

if (p!=NdLL) {
treeprint(p->left);
printf("%d %\n", p->count, p->word);
treeprint(p->right);

}

}
A practicd note if the tree becomes “unbadanced" because the words dont arrive in random
order, the running time of the program can grow too much. As a word casg, if the words are
dready in order, this progran does an expensve smulation of liner seerch. There ae
generdizaions of the binary tree that do not suffer from this worst-case behavior, but we will
not describe them here.

Before leaving this example, it is dso worth a brief digresson on a poblem related to Sorage
dlocators. Clearly it's desrable that there be only one dtorege dlocator in a program, even
though it dlocates different kinds of objects But if one dlocator is to process requests for,
Say, pointers to chars and pointers to struct tnodeS, two questions arise. First, how does it
meet the requirement of most red mechines that objects of certan types must saisy
dignment redrictions (for example, integers often must be located a even addresses)?
Second, what declarations can cope with the fact that an dlocator must necessarily return
different kinds of pointers?

127

Alignment requirements can generdly be sdisfied eesly, & the cost of some wasted space, by
ensuring that the dlocator dways returns a pointer that meets all dignment redrictions. The
alloc of Chapter 5 does not guarantee any paticular dignment, 0 we will use the standard
library function nmalloc, which does. In Chepter 8 we will show one way to implement

nal | oc.

The quedion of the type dedaaion for a function like malloc is a vexing one for any
language that tekes its type-checking serioudy. In C, the proper method is to dedae thet
mal | oc returns a pointer to voi d, then explicitly coerce the pointer into the dedred type with
a cast. malloc and related routines are declared in the standard header <stdlib. h>. Thus
tal | oc can bewritten as

#i ncl ude <stdlib. h>

/* talloc: make a tnode */
struct tnode *tall oc(void)

{

}
st r dup merely copies the string given by its argument into a safe place, obtained by acdl on

nal | oc:

return (struct tnode *) nalloc(sizeof(struct tnode));

char *strdup(char *s) /* make a duplicate of s */

{

char *p;

p = (char *) malloc(strlen(s)+1); /* +1 for '"\0" */
if (p!= NULL)

strepy(p, s);
return p;

}
mal l oc returns NULL if no gpece is avdlable strdup passes tha vaue on, leaving error-

handling to its caler.

Sorage obtained by cdling malloc may be freed for re-use by cdling free; see Chapters 8
and7.

Exercise 6-2. Write a program that reads a C program and prints in dphabetica order each
group of vaiable names tha are ideticd in the fird 6 characters, but different somewhere
thereafter. Don't count words within strings and comments. Make 6 a parameter that can be
st from the command line.

Exercise 6-3. Write a cross-referencer that prints a list of dl words in a document, and for
eech word, a lig of the line numbers on which it occurs. Remove noise words like “the”
“and," and so on.

Exercise 6-4. Write a program that prints the distinct words in its input sorted into decressing
order of frequency of occurrence. Precede each word by its count.

6.6 Table Lookup

In this section we will write the innards of a table-lookup package, to illustrate more aspects
of dructures This code is typical of what might be found in the symbol table management

128

routines of a macro processor or a compiler. For example, congder the #define Statement.
When alinelike

#define IN 1
is encountered, the name I N and the replacement text 1 are stored in a table. Later, when the

namel Nappearsin a saement like

state = IN
it must bereplaced by 1.

There are two routines that manipulate the names and replacement texts install(s,t)
records the name s and the replacement text t in atable s and t are just character strings.
I ookup(s) searches for s in the table, and returns a pointer to the place where it was found,
or NULL if it wasn't there.

The dgorithm is a heshrsearch - the incoming name is converted into a smdl nonnegative
integer, which is then used to index into an aray of pointers. An aray dement points to the
beginning of a linked lig of blocks describing names thet have that hash vaue It is NULL if no

names have hashed to that vaue.

. - » = 0

n o &= Tame
0 T N defn
. » 0

0 :—-— name

™. defn

A block in the lig is a dtructure containing pointers to the name, the replacement text, and the
next block in the ligt. A null next-pointer marksthe end of theligt.

struct nlist { /* table entry: */
struct nlist *next; /* next entry in chain */
char *nane; /* defined nane */
char *defn; /* replacenment text */

b

The pointer aray isjust
#def i ne HASHSI ZE 101

static struct nlist *hashtab[HASHSI ZE]; /* pointer table */
The hashing function, which is used by both 1 ookup and install, adds each character vaue
in the dring to a scrambled combination of the previous ones and returns the remander
modulo the array size. Thisis not the best possible hash function, but it is short and effective.

/* hash: formhash value for string s */
unsi gned hash(char *s)

{

unsi gned hashval ;

for (hashval = 0; *s !="\0"; s++)
hashval = *s + 31 * hashval ;

return hashval % HASHS ZE;

}
Unsigned arithmetic ensuresthat the hash value is nonnegdtive.

The hashing process produces a darting index in the aray hashtab; if the dring is to be
found anywhere, it will be in the lig of blocks beginning there. The search is performed by
I ookup. If 1 ookup finds the entry dready present, it returns a pointer to it; if not, it returns

NULL.

/* lookup: look for s in hashtab */
struct nlist *Iookup(char *s)

{

struct nlist *np;

for (np = hashtab[hash(s)]; np != NALL; np = np->next)
if (strcnp(s, np->nane) == 0)
return np; [* found */
return NULL; /* not found */

}
Thefor loopin| ookup isthe gandard idiom for walking dong alinked list:
for (ptr = head; ptr !'= NULL; ptr = ptr->next)

install USeS | ookup to determine whether the name being inddled is dready present; if <o,
the new definition will supersede the old one. Otherwise, a new entry is created. instal |
returns NULL if for any reason thereis no room for anew entry.

struct nlist *lookup(char *);
char *strdup(char *);

/* install: put (nanme, defn) in hashtab */
struct nlist *install(char *nane, char *defn)
{

struct nlist *np;
unsi gned hashval ;

if ((np = lookup(nane)) == NLL) { /* not found */
np = (struct nlist *) malloc(sizeof (*np));
if (np=NJLL || (np->nane = strdup(name)) == NUL)
return NULL;
hashval = hash(nane);
np->next = hasht ab[hashval] ;
hasht ab[hashval] = np;

} else /* already there */

free((void *) np->defn); [*free previous defn */
if ((np->defn = strdup(defn)) == NULL)

return NULL;
return np;

}
Exercise 6-5. Write a function undef tha will renove a name and definition from the table

maintained by | ookup ad i nstal | .
Exercise 6-6. Implemett a smple verson of the #define processor (i.e, no arguments)

auitable for use with C programs based on the routines of this section. You may dso find
get ch and unget ch hepful.

6.7 Typedef

130

C provides a fadlity cdled typedef for creaing new data type names For example, the
declaration

typedef int Length;
makes the name Length a synonym for int. The type Length can be usad in declarations,
cadts, etc., in exactly the same ways thet thei nt type can be:

Length I en, naxlen;
Length *lengths[];
Smilarly, thededaration

typedef char *String;
mekes String a synonym for char * or character pointer, which may then be used in
declarations and cadts:

String p, lineptr[MAXLINES], alloc(int);

int strenp(String, String);

p = (String) nalloc(100);
Notice that the type beng declared in a typedef appears in the pogtion of a vaidble name,
not right after the word typedef. Syntacticaly, typedef is like the Storage classes extern,

stati c, etc. We have used capitaized namesfor t ypedef S, to make them stand out.

As a more complicated example, we could make typedef s for the tree nodes shown earlier in
this chapter:

typedef struct tnode *Treeptr;

typedef struct tnode { /* the tree node: */

char *word; /* points to the text */
int count; /* nunber of occurrences */
struct tnode *left; [* left child */
struct tnode *right; /* right child */

} Treenode;

This creates two new type keywords cdled Treenode (a structure) and Treeptr (a pointer to
the structure). Then theroutinet al | oc could become

Treeptr talloc(void)

{

}
It must be emphaszed tha a typedef declaration does not cregte a new type in any sensg it
meredly adds a new name for some exising type. Nor are there any new semantics variables
declared this way have exactly the same properties as varidbles whose declarations are spelled
out expliatly. In effect, typedef is like #define, except that snce it is interpreted by the
compiler, it can cope with textud subditutions that ae beyond the cgpabilities of the
preprocessor. For example,

return (Treeptr) malloc(sizeof (Treenode));

typedef int (*PFl)(char *, char *);
cregtes the type pr, for “pointer to function (of two char * aguments) returning int,"
which can be used in contextslike

PFl strcnp, nuntnp;
in the sort program of Chapter 5.

Besides purdy aesthetic issues, there are two main reasons for using typedef S. The fird is to
paameerize a program againg portability problems. If typedef s are used for data types that

131

may be machine-dependent, only the typedef S need change when the program is moved. One
common dStuation is to use typedef names for various integer quantities, then meke an
appropriate set of choices of short, int, and 1ong for each host machine. Types like size_t
andpt rdi ff_t from the sandard library are examples.

The second purpose of typedef S is to provide better documentation for a program - a type
cdled Treeptr may be esser to undersand than one declared only as a pointer to a
complicated structure.

6.8 Unions

A union is a vaiade that may hold (at different times) objects of different types and dzes,
with the compiler kesping track of dze and dignment reguirements. Unions provide a way to
manipulae different kinds of data in a sngle aea of dorage, without embedding any
mechine-dependent information in the program. They ae andogous to vaiant records in
pascal.

As an example such as might be found in a compiler symbol table manager, suppose that a
condtant mey be an int, a float, or a character pointer. The value of a particular constant
must be gored in a varidble of the proper type, yet it is most convenient for table management
if the value occupies the same amount of storage and is stored in the same place regardless of
its type. This is the purpose of a union - a Sngle vaiable that can legitimatdy hold any of one
of severd types. The syntax is based on sructures.

union u_tag {
int ival;
float fval;
char *sval;

Py
The \aiadble u will be large enough to hold the largest of the three types, the specific Sze is
implementation-dependent. Any of these types may be assgned to u and then used in
expressons, 0 long as the usage is condgent: the type retrieved must be the type mogt
recently gtored. It is the programmer's responshility to keep track of which type is currently
gored in a union; the results are implementation-dependent if something is dored as one type
and extracted as another.

Syntacticaly, members of awnion are accessed as
union-name. member

or
union-pointer- >member

just as for structures. If the variable utype is used to keep track of the current type stored in u,
then one might see code such as

if (utype == INI)
printf("%\n", u.ival);

if (utype == FLQOAT)
printf("%\n", u.fval);

if (utype == STRING
printf("9%\n", u.sval);
el se
printf("bad type %l in utype\n", utype);
Unions may occur within dructures and arays, and vice versa The notation for accessng a
member of a union in a dructure (or vice versd) is identica to that for nested dructures. For

example, in the structure array defined by

struct {
char *nane;
int flags;
int utype;
uni on {
int ival;
float fval;
char *sval;
o
} syntab[NSYM ;
the memberi val isreferred to as

syntab[i].u.ival
and thefirst character of thestring sval by ether of

*syntab[i].u.sval

syntab[i].u.sval [0]
In effect, a union is a dructure in which al members have offsst zero from the base, the
gructure is big enough to hold the “widest" member, and the dignment is appropriate for al
of the types in the union. The same operaions are permitted on unions as on dructures
assgnment to or copying as a unit, taking the address, and accessng a member.

A union may only be initidized with a vdue of the type of its fird member; thus union u
described above can only be initidized with an integer vaue.

The dorage dlocator in Chapter 8 shows how a union can be used to force a vaiadle to be
digned on aparticular kind of storage boundary.

6.9 Bit-fidds

When dtorage space is @ a premium, it may be necessary to pack severa objects into a single
mechine word; one common use is a s&t of dngle-bit flags in goplications like compiler
symbol tables. Extendly-imposed data formats, such as interfaces to hardware devices, dso
often require the ability to get a pieces of aword.

Imagine a fragment of a compiler that manipulates a symbol table Each identifier in a
program has cetan information associated with it, for example, whether or not it is a
keyword, whether or not it is externd and/or datic, and so on. The most compact way to
encode such information isaset of one-bit flagsinasingle char orint .

The usud way this is done is to define a st of “masks' corresponding to the reevant bit
postions, asin

#defi ne KEYWORD 01
#defi ne EXTRENAL 02
#define STATIC 04

enum{ KEYWRD = 01, EXTERNAL = 02, STATIC = 04 };
The numbers must be powers of two. Then accessng the bits becomes a mater of “hit-
fiddling" with the <hifting, masking, and complementing operators tha were described in
Chapter 2.

Certain idioms gppear frequently:

flags | = EXTERNAL | STATIG
turns on the EXTERNAL and STATI chitsinf | ags, while

flags & ~(EXTERNAL | STATIO);
turnsthem off, and

if ((flags & (EXTERNAL | STATIQ) == 0) ...
istrueif both bits are off.

Although thee idioms are readily medered, as an dtenaive C offers the cgpability of
defining and accessng fidds within a word directly rather then by bitwise logicd operators
A hit-field, or field for short, is a set of adjacent bits within a sngle implementation-defined
dorage unit that we will cdl a “word." For example, the symbol table #defi nes above could
be replaced by the definition of threefidds:

struct {
unsigned int is_keyword : 1;
unsigned int is_extern : 1,
unsigned int is_static : 1;
} flags;
This defines a vaiable table cdled flags that contains three 1-bit fidds The number
following the colon represents the fidd width in bits. The fidds are decdlared unsigned int

to ensure that they are unsigned quantities.

Individud fidds ae referenced in the same way as other dructure members
flags.is_keyword, flags.is_extern, €c Hedds behave like smdl integers, and may
paticipate in aithmetic expressons just like other integars Thus the previous examples may
be written more naturdly as

flags.is_extern = flags.is_static = 1;
to turn the bitson;
flags.is_extern = flags.is_static = 0;

to turn them off; and
if (flags.is_extern == 0 && flags.is_static == 0)

to test them.

Almog everything about fidds is implementaiondependent. Whether a fiddld may overlgp a
word boundary is implementation-defined. Feds need not be names unnamed fidds (a colon
and width only) are used for padding. The specid width O may be used to force dignment a
the next word boundary.

134

Felds are assgned left to right on some machines and right to left on others. This means that
dthough fidds ae usful for mantaning internaly-defined data dructures, the question of
which end comes fird has to be caefully consdered when picking gpart externdly-defined
data; programs that depend on such things are not portable Fieds may be decdlared only as
ints for portability, specify signed or unsigned explicitly. They are not arays and they do
not have addresses, so the & operator cannot be applied on them.

Chapter 7 - Input and Output

Input and output are not pat of the C language itsdf, so we have not emphasized them in our
presentation thus far. Nonethdess, programs interact with ther environment in much more
complicated ways than those we have shown before. In this chepter we will describe the
dandard library, a set of functions thet provide input and output, dring handling, Sorage
management, mathematica routines, and a variety of other services for C programs. We will
concentrate on input and output

The ANS dandad defines these library functions precisdy, so that they can exig in
compatible form on any sysem whee C exigs Programs tha confine ther sysem
interactions to facilities provided by the standard library can be moved from one system to
another without change.

The properties of library functions are specified in more than a dozen headers we have
dready seen severd of these, including <stdio. h> <string.h>, ad <ctype.h> We will
not present the entire library here, snce we are more interested in writing C programs that use
it. Thelibrary isdescribed in detail in Appendix B.

7.1 Standard Input and Output

As we sad in Chapter 1, the library implements a sSmple modd of text input and output. A
text stream condsts of a sequence of lines, each line ends with a newline charecter. If the
system doesn't operate that way, the library does whatever necessary to make it gppear as if it
does. For ingance, the library might convert cariage return and linefeed to newline on input
and back again on output.

The smplest input mechanism is to read one character a a time from the standard input,
normdly the keyboard, with get char :

i nt getchar (voi d)
getchar returns the next input character esch time it is cdled, or ECF when it encounters end
of file The symbolic condat ECF is defined in <stdio. h> The vdue is typicdly -1, bus
tests should be written in terms of ECF S0 as to be independent of the specific vaue.

In many environments, a file may be subdituted for the keyboard by udng the < convention
for input redirection: if aprogram pr og USes get char , then the commeand line

rog <infile
ceugasgprog to read characters from infile indead. The switching of the input is done in
such a way tha prog itsdf is oblivious to the change in paticular, the sring “<infile" is
not induded in the commandine arguments in argv. Input switching is dso invisble if the
input comes from another program via a pipe mechanism: on some sysems, the command
line

otherprog | prog

136

runs the two programs ot herprog and prog, ad pipes the sandard output of ot her prog into
the standard input for pr og.

Thefuction

int putchar(int)
is used for output: putchar(c) puts the character ¢ on the standard output, which is by
default the screen. putchar returns the character written, or ECF is an error occurs. Agan,
output can usudly be directed to afile with >filename: if pr og USES put char

prog >outfile

will write the standard output to out fi | e instead. If pipes are supported,

prog | anot herprog

puts the tandard output of pr og into the standard input of anot her pr og.

Output produced by printf dso finds its way to the sandard output. Cdls to putchar and
print f may beinterleaved - output happensin the order in which the cdls are made.

Each sourcefile that refers to an input/output library function must contain the line

#i ncl ude <stdio. h>
before the firgt reference. When the name is bracketed by < and > a search is made for the
header in a standard st of places (for example, on UNIX systems, typicdly in the directory
/ usr/i ncl ude).

Many programs read only one input sSreem and write only one output sream; for such
programs, input and output with getchar, putchar, and printf may be entirdy adequae,
and is cetanly enough to get darted. This is particularly true if redirection is used to connect
the output of one program to the input of the next. For example, condder the program | ower ,
which convertsitsinput to lower case

#i ncl ude <stdio. h>
#i ncl ude <ctype. h>

main() /* lower: convert input to | ower case*/

{ .
int c
while ((c = getchar()) !'= ECGF)
put char (t ol ower (c));
return O;
}

The function tol over is defined in <ctype. h>; it converts an upper case letter to lower case,
and returns other characters untouched. As we mentioned earlier, “functions' like get char
and putchar in <stdio.h> and tolower in <ctype. h> ae often macros, thus avoiding the
overhead of a function cal per character. We will show how this is done in Section 85
Regardiess of how the <ctype. h> functions are implemented on a given machine, programs
that use them are shielded from knowledge of the character set.

Exercise 7-1. Write a program that converts upper case to lower or lower case to upper,
depending on the name it isinvoked with, asfound inargv[0] .

7.2 Formatted Output - printf

The output function printf trandates internd vaues to characters. We have used printf
informdly in previous chapters The description here covers mogt typica uses but is not
complete; for the full story, see Appendix B.

int printf(char *format, argl, arg2, ...);
printf converts formas, and prints its arguments on the standard output under control of the
f or mat . It returns the number of characters printed.

The format gring contains two types of objects ordinary characters, which are copied to the
output stream, and conversion specifications, each of which causes converson and printing of
the next successve argument to printf. Each converson specification begins with a % and

ends with a converson character. Between the % and the converson character there may be,
in order:

A minus sign, which specifies left adjusment of the converted argumen.

A number that specifies the minimum fidd width. The converted argument will be
printed in a fidd a leest this wide. If necessary it will be padded on the left (or right,
if left adjusment is cdled for) to make up the field width.

A period, which separates the fidd width from the precision.

A number, the precisgon, tha specifies the maximum number of charaders to be
printed from a dring, or the number of digits after the decimd point of a floaing-point
vaue, or the minimum number of digits for an integer.

Annh if theinteger isto be printed asashort , or | (letter €l) if asal ong.

Converson characters are shown in Table 7.1. If the character after the % is not a conversion
specification, the behavior is undefined.

Table 7.1 Basic Printf Conversions

\Char acter \ Argument type; Printed As

d,i iint ; decimal number

0 lint ; unsigned octal number (without a leading zero)

X i nt ; unggned hexadecima number (without aleading ox or 0X), using abcdef or

' ABcoer for 10, ..., 15.

u iint ; unsigned decimal number

c ii nt ; single character

s char *; print characters from the gring until a*\ o' or the number of characters
given by the precison.

. doubl €; [-] m.dddddd, where the number of d'sis given by the precison (default
6).

£ doubl g; [-]1 m.dddddde+/ - xx or [-] m.dddddde+/ - xx, where the number of d'sis

& given by the precision (defauilt 6).
doubl e; Use % or % if the exponent islessthan -4 or grester than or equd to the

g, G precison; otherwise use % . Trailing zeros and atraling decimd point are not
printed.

p voi d *; pointer (implementation-dependent representation).

% Ino argument is converted; print a % |

A width or precison may be specified as *, in which case the vaue is computed by
converting the next argument (which must be an int). For example to print & most nax
charactersfrom astring s,

printf("%*s", max, s);
Mog of the forma conversons have been illustrated in earlier chepters. One exception is the
precison as it redaes to drings The following table shows the effect of a vaiety of
specificaions in printing “hdlo, world" (12 characters). We have put colons around each
field S0 you can seeit extent.

7R chello, world:

1 %40s: chello, world:

1 % 10s: chello, wor:

1% 10s: chello, world:
1% 15s: :hello, world:
1% 15s: chello, world :
1 945. 10s: : hel l 0, wor:
1% 15. 10s: :hell o, wor

A waning. printf uses its firg argument to decide how many arguments follow and what
ther type is. It will get confused, and you will get wrong answers, if there are not enough
arguments of if they are the wong type. You should dso be awvare of the difference between
thesetwo cdls

printf(s); /* FALSif s contains %*/

printf("%", s); /* SAFE */
The function sprintf does the same conversons as printf does but stores the output in a
string:

int sprintf(char *string, char *format, argl, arg2, ...);
sprintf formats the arguments in argi, arg2, €c., according to format as before, but places
the result in string indead of the standard output; string must be big enough to receive the
result.

Exercise 7-2. Write a program that will print arbitrary input in a sensble way. As a
minimum, it should print nongraphic characters in octd or hexadecima according to locd
cugtom, and bresk long text lines.

7.3 Variable-length Argument Lists

This section contans an implementation of a minima verdon of printf, to show how to
write a function that processes a variable-length argument lig in a portable way. Since we are
manly interested in the argument processng, minprintf will process the format dring and
arguments but will cadl thered print f to do the format conversons.

The proper declaration for print f is

int printf(char *fm, ...)
where the declaration ... means that the number and types of these arguments may vary. The
declaraion . .. can only gppear a the end of an argument list. Our mi nprint f is declared as

void mnprintf(char *fnmt, ...)
since we will not return the character count that pri nt f does.

The tricky bit is how mnprintf waks dong the argument lig when the list doesnt even have
a name. The standard header <stdarg. h> contains a set of macro definitions that define how
to gep through an argument lig. The implementation of this header will vary from meachine to
machine, but the interface it presentsis unif orm.

The type va list is used to declare a variable that will refer to each argument in turn; in
mnprintf, this vaiadle is cdled ap, for “argument pointer." The macro va_start initidizes
ap to point to the fird unnamed argument. It must be cdled once before ap is used. There
must be a leest one named argument; the find named argument is used by va_start to get
darted

Each cdl of va_arg returns one argument and steps ap to the next; va_arg Uses a type name
to determine what type to return and how big a sep to take Findly, va_end does whatever
cleanup is necessary. It must be called before the program returns.

These properties form the badis of our smplified pri nt f:

#i ncl ude <stdarg. h>

/* mnprintf: mnimal printf with variable argument Iist */
void mnprintf(char *fm, ...)
{
va list ap; /* points to each unnaned arg in turn */
char *p, *sval;
int ival;
doubl e dval ;

va_start(ap, fnt); /* nmake ap point to 1st unnanmed arg */
for (p = fnt; *p; p++) {
if (*pt="%) {
put char (*p);
conti nue;

switch (*++p) {
case 'd':
ival = va arg(ap, int);
printf("%", ival);
br eak;
case 'f':
dval = va_ arg(ap, double);
printf("%", dval);
br eak;
case 's':
for (sval = va_arg(ap, char *); *sval; sval ++)
put char (*sval) ;
br eak;
defaul t:
put char (*p);
br eak;

}

va_end(ap); /* clean up when done */

}
Exercise 7-3. Revise i npri nt f to handle more of the other fadilities of print f.

140

7.4 Formatted I nput - Scanf

The function scanf is the input andog of printf, providing many of the same converson
fadilitiesin the opposite direction.
int scanf(char *format, ...)

scanf reads characters from the standard input, interprets them according to the specification
in format, and dores the results through the remaining arguments. The format argument is
described below; the other arguments, each of which must be a pointer, indicate where the
corresponding converted input should be gored. As with printf, this section is a summary of
the most useful features, not an exhaudtive lig.

scanf Sops when it exhauds its forma gtring, or when some input fails to match the control
specification. It returns as its vaue the number of successfully matched and assgned input
items. This can be used to decide how many items were found. On the end of file ECF is
returned; note that this is different from O, which means that the next input character does not
maich the first specification in the format dring. The next cdl to scanf resumes searching
immediately after the last character dready converted.

Thereisdso afunction sscanf that reads from a string instead of the standard input:

int sscanf(char *string, char *fornat, argl, arg2, ...)
It scans the string according to he format in format and dores the resulting vaues through

ar g1, ar g2, etc. These arguments must be pointers.

The format ring usudly contains converson specifications, which ae used to control
converson of input. The format string may contain:

Blanks or tabs, which are not ignored.

Ordinary characters (not %), which are expected to maich the next nonwhite space
character of the input stream.

Converson gpecifications, congsing of the character % an optiond assgnment
suppression character *, an optiond number specifying a maximum fidd width, an
optiond h, | or L indicating the width of the target, and a conversion character.

A converson specification directs the converson of the next input fidd. Normdly the result
is places in the varidble pointed to by the corresponding argument. If assgnment suppresson
is indicated by the * character, however, the input fidd is kipped; no assgnment is made. An
input fidd is defined as a dring of non-white space characters; it extends ether to the next
white space character or until the fidd width, is specified, is exhausted. This implies tha
scanf Will read across boundaries to find its input, Snce newlines are white space. (White
gpace characters are blank, tab, newline, carriage return, vertica tab, and formfeed.)

The converson character indicates the interpretation of the input field. The corresponding
agument must be a pointer, as required by the cdl-by-vdue semantics of C. Converson
charactersare shown in Table 7.2,

Table 7.2: Basic Scanf Conversions

|Char acter | Input Data; Argument type

141

d decimdl integer; i nt *

i integer; i nt *. Theinteger may bein octa (leading 0) or hexadecimd (leeding
0x OF 0X).

0 loctal integer (with or without leading zero); i nt *

‘u \uns'gned decimd integer; unsi gned int *

‘x \h@(&jedmd integer (with or without leading ox or 0X); int *
characters; char *. The next input characters (default 1) are placed at the

c indicated spot. The normd skip-over white space is suppressed; to read the next

non-white space character, use %s

character string (not quoted); char *, pointing to an array of characterslong
enough for the string and aterminating ' \ 0' that will be added.
floating-point number with optiond sign, optiond decima point and optional
exponent; fl oat *

% literal %; no assignment is made,

e,f,g

The converson characters d, i, o, u,axd x may be preceded by h to indicate tha a pointer to
short rather than int gopears in the argument lig, or by 1 (letter dl) to indicate that a pointer
to 1 ong appearsin the argument lig.

As a fird example, the rudimentary caculaor of Chapter 4 can be written with scanf to do
the input conversion:

#i ncl ude <stdi o. h>

main() /* rudinentary cal cul ator */

{

doubl e sum v;

sum = O;

while (scanf("%f", &) == 1)
printf("\t%2f\n", sum+=v);

return O;

}
Suppose we want to read input lines that contain dates of the form

25 Dec 1988
Thescanf Satementis

int day, year;
char nont hnane[20] ;

scanf ("%l % %", &day, nonthname, &year);
No & isused with nont hnane, Snce an array nameis a pointer.

Literd characters can appear in the scanf format sring; they must match the same characters
intheinput. So we could read dates of the form nmi dd/ yy with the scanf statement:

int day, nonth, year;

scanf ("%l/ %/ %", &nonth, &day, &year);

142

scanf ignores blanks and tabs in its forma dring. Furthermore, it skips over white space
(blanks, tabs, newlines, etc.) as it looks for input vaues To read input whose format is not
fixed, it is often best to read a line & a time, then pick it gpat with scanf. For example,
uppose we want to reaed lines that might contain a date in ether of the forms above. Then we
could write

while (getline(line, sizeof(line)) > 0) {
if (sscanf(line, "%l % %", &day, nonthnare, &year) == 3)
printf("valid: 9%\n", line); /* 25 Dec 1988 form */
else if (sscanf(line, "%/ %/ %", &month, &day, &year) == 3)
printf("valid: 9%\n", line); /* nmdd/yy form*/
el se
printf("invalid: 9%\n", line); /* invalid form*/
}
Cdls to scanf can be mixed with cdls to other input functions The next cdl to any input

function will begin by readingthe first character not read by scanf .

A find waning: the arguments to scanf and sscanf must be pointers. By far the most
common error iswriting

scanf ("%", n);

insteed of

scanf ("%l", &n);
Thiseror isnot generaly detected at compile time.

Exercise 7-4. Write a private verson of scanf andogous to minprintf from the previous
section.

Exercise 5-5. Rewrite the postfix cdculator of Chapter 4 to use scanf and/or sscanf to do
the input and number converson.

7.5 File Access

The examples s0 fa have dl read the dandard input and written the dtandard output, which
are autométically defined for aprogram by the loca operating system.

The next gep is to write a program that accesses a file that is not aready connected to the
program. One program that illustrates the need for such operations is cat , which concatenates
a st of named files into the standard output. cat is used for printing files on the screen, and
as a generd-purpose input collector for programs that do not have the capability of accessng
files by name. For example, the command

cat x.c y.c

prints the contents of thefiles x. c and y. ¢ (and nothing else) on the standard output.

The quegtion is how to arange for the named files to be read - tha is, how to connect the
externa names that a user thinks of to the statements that read the data.

The rules are smple. Before it can be read or written, a file has to be opened by the library
function fopen. fopen takes an externd name like x.c or y.c, does some housekesping and

143

negotiation with the operating sysem (details of which neednt concern us), and returns a
pointer to be used in subsequent reads or writes of thefile.

This pointer, cdled the file pointer, points to a Sructure that contains information about the
file, such as the location of a buffer, the current character podtion in the buffer, whether the
file is being read or written, and whether errors or end of file have occurred. Usars don't need
to know the ddals because the definitions obtaned from <stdio. h> include a dSructure
declaration caled FI LE. The only dedaration needed for afile pointer is exemplified by

FI LE *fp;

FI LE *fopen(char *nane, char *node);
This says tha fp is a pointer to a FILE and fopen retuns a pointer to a FI LE. Notice that
FILE is a type name, like int, not a dructure tag; it is defined with a typedef . (Details of

how f open can be implemented on the UNIX system are given in Section 8.5.)

Thecall tof open inaprogramis

fp = fopen(nane, node);
The first argument of fopen is a character gring containing the name of the file The second
argument is the mode, dso a character gring, which indicates how one intends to use the file.
Allowable modes incdude reed ('r), write ("*w), ad gpend ("a'). Some sysems
diginguish between text and binary files for the later, a "b* must be gopended to the mode

gring.

If a file tha does not exig is opened for writing or agppending, it is created if possble
Opening an exiding file for writing causes the old contents to be discarded, while opening for
gopending preserves them. Trying to read a file that does not exist is an error, and there may
be other causes of eror as well, like trying to read a file when you dont have permisson. If
there is any eror, fopen will return NULL. (The error can be identified more precisdy; see the
discusson of error-handling functions at the end of Section 1 in Appendix B.)

The next thing needed is a way to read or write the file once it is open. get ¢ returns the next
character from afile it needsthe file pointer to tdl it which file.

int getc(FlILE *fp)
get ¢ returns the next character from the stream referred to by fp; it returns ECF for end of file
or error.

put ¢ isan output function:

int putc(int c, FILE *fp)
put ¢ writes the character ¢ to the file fp and returns the character written, or EOF if an error
occurs. Like get char and put char , get ¢ and put ¢ may be macrosingtead of functions.

When a C program is darted, the operating sysem environment is responsble for opening
three files and providing pointers for them. These files are the standard input, the standard
output, and the standard error; the corresponding file pointers are cdled stdin, stdout, and
stderr, and are declared in <stdio.h> Normdly stdin is connected to the keyboard and

144

stdout and stderr ae connected to the screen, but stdin and stdout may be redirected to
filesor pipes asdescribed in Section 7.1.

get char and put char can be defined interms of get c, put ¢, st di n, and st dout asfollows

#defi ne getchar () get c(stdin)

#def i ne putchar(c) putc((c), stdout)
For formetted input or output of files the functions fscanf and fprintf may be used. These
are identicd to scanf and printf, except that the firs argument is a file pointer that specifies
the file to be read or written; the format string is the second argument.

int fscanf(FlLE *fp, char *format, ...)

int fprintf(F LE *fp, char *format, ...)
With these prdiminaries out of the way, we are now in a pogdtion to write the program cat to
concatenate files The design is one tha has been found convenient for many programs. If
there are command-line arguments, they are interpreted as filenames, and processed in order.
If there are no arguments, the standard input is processed.

#i ncl ude <stdi o. h>

/* cat: concatenate files, version 1 */
nmai n(int argc, char *argv[])
{

FI LE *fp;

void filecopy(FlLE *, FILE *)

if (argc == 1) /* no args; copy standard input */
filecopy(stdin, stdout);
el se
while(--argc > 0)
if ((fp = fopen(*++argv, "r")) == NUL) {
printf("cat: can't open %\n, *argv);
return 1;
} else {
filecopy(fp, stdout);
fclose(fp);

}

return O;

}

/* filecopy: copy fileifp to file ofp */
voi d fil ecopy(Fl LE *ifp, FILE *ofp)
{

int c;

while ((c = getc(ifp)) !'= ECF)
putc(c, ofp);

}
The file pointers stdin and stdout ae objects of type FILE *. They are condants, however,
not variables, o it is not possble to assign to them.

Thefunction

int fclose(FlLE *fp)
is the inverse of fopen, it bresks the connection between the file pointer and the externd
name tha was edablished by fopen, freeing the file pointer for another file Since most
operating systems have some limit on the number of files that a program may have open

145

amultaneoudy, it's a good idea to free the file pointers when they are no longer needed, as we
dd in cat. There is ds0 another reason for fcl ose on an output file - it flushes the buffer in
which putc is collecting output. fclose is cdled autometicadly for each open file when a
program terminates normaly. (You can dose stdin and stdout if they are not needed. They
can dso bereassigned by the library function f r eopen.)

7.6 Error Handling - Stderr and Exit

The treatment of errors in cat is not ided. The trouble is that if one of the files can't be
accessed for some reason, the diagnodic is printed a the end of the concatenated output. That
might be acceptable if the output is going to a screen, but not if it's going into a file or into
another program viaa pipdine.

To handle this dtuation better, a second output dream, cdled stderr, is asdgned to a
program in the same way that stdin and stdout are. Output written on stderr normaly
gppears on the screen even if the standard output is redirected.

Let usrevise cat to write its error messages on the standard error.

#i ncl ude <stdi o. h>

/* cat: concatenate files, version 2 */
mai n(int argc, char *argv[])

{
FI LE *fp;
void filecopy(FILE *, FILE *);
char *prog = argv[0Q]; /* programnane for errors */
if (argc == 1) /* no args; copy standard input */
filecopy(stdin, stdout);
el se
while (--argc > 0)
if ((fp = fopen(*++argv, "r")) == NULL) {
fprintf(stderr, "%: can't open %\n",
prog, *argv);
exit(1);
} else {
filecopy(fp, stdout);
fcl ose(fp);
}
if (ferror(stdout)) {
fprintf(stderr, "%: error witing stdout\n", prog);
exit(2);
}
exit(0);
}

The program sgnds erors in two ways Fird, the diagnogic output produced by fprintf
goes to stderr, S0 it finds its way to the screen indead of disgppearing down a pipdine or
into an output file We incdluded the program name, from argv[0], in the message, o if this
program is used with others, the source of an error isidentified.

Second, the program uses the dandard library function exit, which terminetes program
execution when it is cdled. The argument of exit is avalable to whatever process cdled this
one, S0 the success or falure of the program can be tested by another program that uses this
one as a ub-process. Conventiondly, a return vaue of O dgnds tha dl is wel; nonzero

146

vaues usudly dgnd abnormd Stuations. exit cdls fclose for each open output file to
flush out any buffered outpui.

Within main, return expr is eguivdent to exit(expr). exit has the advantage that it can be
cdled from other functions, and that cdls to it can be found with a pattern-searching program
likethosein Chapter 5

Thefunction f er r or returns non-zero if an error occurred on the stream f p.

int ferror(FlLE *fp)
Although output erors are rare, they do occur (for example, if a disk fills up), so a production
program should check this as well.

The function feof (FILE *) is andogous to ferror; it returns non-zero if end of file has
occurred on the specified file.

int feof (FILE *fp)
We have gengdly not worried about exit datus in our smdl illudrative programs, but any
serious program should take care to return sengble, useful status values.

7.7 Linelnput and Output

The standard library provides an input and output routine fgets that is smilar to the getline
function that we have used in erlier chepters:

char *fgets(char *line, int maxline, FILE *fp)
fgets reads the next input line (induding the newling) from file fp into the charecter array
line; & modt naxline-1 characters will be read. The resulting line is terminated with *\ o' .
Normaly fgets returns 1ine; on end of file or eror it returns NULL. (Our getline returns the
line length, which is a more useful vaue, zero means end of file)

For output, the function f put s writes astring (which need not contain anewline) to afile:

int fputs(char *line, FILE *fp)
It returnsECF if an error occurs, and nortnegetive otherwise.

The library functions gets and puts ae smilar to fgets and fputs, but operate on stdin
and st dout . Confusingly, get s deletesthe terminating ' \ n' , and put s addsit.

To show that there is nothing specid about functions like fgets and fputs, here they are,
copied from the standard library on our system:

/* fgets: get at nost n chars fromiop */
char *fgets(char *s, int n, FILE *iop)
{

register int c;

regi ster char *cs;

cs = s;
while (--n >0 & (c = getc(iop)) != ECF)

147

if ((*cs++ =¢) =="\n")
br eak;
*cs ='\0";
return (¢ == ECF && cs =='s) ? NULL : s;
}

[* fputs: put string s on file iop */
int fputs(char *s, FILE *iop)

{
int c;
while (c = *s+t)
putc(c, iop);
return ferror(iop) ? ECF : O;
}

For no obvious reason, the standard specifies different return valuesforferror and f puts.

It isessy to implement our get | i ne fromf get s:

/* getline: read aline, return length */
int getline(char *line, int max)

if (fgets(line, max, stdin) == NJUL)
return O;

el se
return strlen(line);

}
Exer cise 7-6. Write aprogram to compare two files, printing the first line where they differ.

Exercise 7-7. Modify the patern finding program of Chapter 5to teke its input from a sat of
named files or, if no files are named as arguments, from the standard input. Should the file
name be printed when a matching lineis found?

Exercise 7-8. Write a program to print a st of files, sarting each new one on a new page,
with aftitle and a running page count for each file.

7.8 Miscellaneous Functions

The gandard library provides a wide variety of functions. This section is a brief synopss of
the mogt useful. More details and many other functions can be found in Appendix B.

7.8.1 String Oper ations

We have dready mentioned the dring functions strlen, strcpy, strcat, and strcnp, found
in<string. h> Inthefdlowing, sandt arechar *'s,andc axdd nareints.

strcat(s,t) concatenatet toend of s

strncat(s,t,n) concatenaten charactersof t to end of s

stremp(s,t) return negative, zero, or podtivefors <t,s ==t,s > t
strncnp(s,t,n) sameasstrcnp but only infird n characters
strepy(s,t) copyttos

strncpy(s,t,n) copy @ most ncharactersof t tos

strlen(s) return length of s

148

strchr(s, c) return pointer to first ¢ in's, or NULL if not present
strrchr(s,c) return pointer to last ¢ in's, or NULL if not present

7.8.2 Character Class Testing and Conversion

Severd functions from <ctype. h> peform character tests and conversons In the following,
cisanint that can be represented as an unsi gned char or ECF. The function returns i nt .

i sal pha(c) non-zero if ¢ isdphabetic, Oif not

i supper (c) non-zero if ¢ isupper case, Oif not

i slover(c) hon-zeroif c islower cass Qif not

isdigit(c) nonzeoifcisdigit, Oif not

i sal nun{c) hon-zeroif i sal pha(c) orisdigit(c),QOif not

i sspace(c) non-zero if c isblank, tab, newling, return, formfeed, verticd tab
toupper (¢) return c converted to upper case

tolower(c) return c converted to lower case

7.8.3 Ungetc

The dandard library provides a rather redtricted verson of the function ungetch that we
wrotein Chapter 4; it iscdled unget c.

int ungetc(int c, FlILE *fp)
pushes the character ¢ back onto file fp, and returns ether ¢, or ecF for an eror. Only one
character of pushback is guaranteed per file ungetc may be used with any of the input
functionslike scanf , get ¢, Or get char .

7.8.4 Command Execution

The function systen{char *s) executes the command contained in the character dring s,
then resumes execution of the current program. The ontents of s depend srongly on the locd
operating system. Asatrivid example, on UNIX systems, the statement

systen("date");
causes the program date to be run; it prints the date and time of day on the sandard outpt.
syst em returns a system-dependent integer status from the command executed. In the UNIX
system, the status return isthe value returned by exi t.

7.8.5 Storage M anagement

Thefunctionsmal | oc ad cal | oc obtain blocks of memory dynamicdly.

void *mal | oc(size_t n)
returns a pointer to n bytes of uninitidized storage, or NULL if the request cannot be stisfied.

void *cal loc(size_t n, size t size)
returns a pointer to enough free space for an array of n objects of the specified sze, or NULL if
the request cannot be satisfied. The sorage isinitiaized to zero.

149

The pointer returned by nal 1 oc or call oc has the proper dignment for the object in question,
but it must be cast into the appropriate type, asin

int *ip;

ip=(int *) calloc(n, sizeof(int));
free(p) frees the goace pointed to by p, where p was origindly obtained by a cdl to nall oc
or calloc. There are no redrictions on the order in which space is freed, but it is a ghastly
error to free something not obtained by caling mal | oc or cal | oc.

It is ds0 an era to use something after it has been freed. A typicd but incorrect piece of
codeisthisloop that fressitemsfrom alist:

for (p = head; p != NULL; p = p->next) /* WRONG */
free(p);
Theright way isto save whatever is needed before freeing:

for (p=head; p!=NLL;, p=q) {
g = p->next;
free(p);

}
Section 8.7 shows the implementation of a Sorage dlocator like mal | oc, in which dlocated

blocks may be freed in any order.

7.8.6 Mathematical Functions

There are more than twenty mathematicd functions declared in <mat h. h>; here are some of
the more frequently used. Each takes one or two doubl e arguments and returns adoubl e.

si n(x) sneof x, X in radians

cos(x) cosineof X, X inradians

atan2(y,x) arctangent of y/x, in radians

exp(x) exponentid function e*

| og(x) natura (base €) logarithm of x (x>0)

| 0g10(x) common (base 10) logarithm of x (x>0)
pow(x,y) X

sqrt (x) square root of x (x>0)

f abs(x) dbsolute vaue of x

7.8.7 Random Number generation

Thefunction rand() computes a sequence of pseudo-random integers in the range zero to
RAND MAX, whichiisdefined in <st dl i b. h>. One way to produce random floating-paint
numbers greater than or equd to zero but lessthen oneis

#define frand() ((double) rand() / (RAND MAX+1.0))
(If your library dready provides a function for floaing-point random numbers it islikdy to
have better datigtica properties than this one))

150
The function srand(unsigned) sets the seed for rand. The portable implementaion of rand
and srand suggested by the standard appearsin Section 2.7.

Exercise 7-9. Functions like isupper can be implemented to save space or to save time.
Explore both possihilities.

151

Chapter 8- The UNIX System Interface

The UNIX operating system provides its services through a st of system calls which are in
effect functions within the operaiing sysem that may be cdled by user programs. This
chepter describes how to use some of the most important sysem cdls from C programs. If
you use UNIX, this should be directly hepful, for it is sometimes necessary to employ system
cdls for maximum efficency, or to access some fadility thet is not in the library. Even if you
ue C on a diffeent operding sysem, however, you should be ale to gleen indght into C
progranming from sudying these examples dthough detals vary, smilar code will be found
on ay sydem. Since the ANS C library is in many cases modded on UNIX fadilities, this
code may help your understanding of the library aswell.

This chepter is divided into three mgor pats input/output, file sysem, and dorage dlocation.
The fird two pats assume a modest familiaity with the externd characteritics of UNIX
systems.

Chapter 7 was concerned with an input/output interface that is uniform across operating
gysems. On any paticular sysem the routines of the sandard library have to be written in
terms of the facilities provided by the host sysem. In the next few sections we will describe
the UNIX system cdls for input and output, and show how parts of the standard library can be
implemented with them.

8.1 File Descriptors

In the UNIX opeaing sysem, dl input ad output is dore by reading or writing files
because dl peripherd devices, even keyboard and screen, are files in the file sysem. This
means that a sngle homogeneous interface handles dl communication between a program
and peripherd devices.

In the most general @2, before you read and write a file, you mugt inform the sysem of your
intent to do 0, a process cdled opening the file. If you are going to write on a file it may dso
be necessary to create it or to discard its previous contents. The system checks yur right to
do 0 (Does the file exig? Do you have permisson to access it?) and if dl is wdl, returns to
the program a andl nonnegative integer cdled a file descriptor. Whenever input or output is
to be done on the file, the file destriptor is used indead of the name to identify the file. (A file
descriptor is andogous to the file pointer used by the standard library, or to the file handle of
MSDQOS) All information about an open file is maintained by the sysem; the user program
refers to the file only by the file descriptor.

Snce input and output involving keyboard and screen is SO common, specid arangements
exig to make this convenient. When the command interpreter (the “shell”) runs a program,
three files are open, with file descriptors O, 1, and 2, cdled the standard input, the standard
output, and the standard error. If a program reads O and writes 1 and 2, it can do input and
output without worrying about opening files

The user of aprogram can redirect 1/0 to and from files with <and >:

prog <infile >outfile

152

In this case, the shell changes the default assgnments for the file descriptors O and 1 to the
named files. Normaly file descriptor 2 remains attached to the screen, SO error messages can
go there. Smilar obsarvations hold for input or output associsted with a pipe. In al cases, the
file assgnments are changed by the shel, not by the program. The program does not know
where its input comes from nor where its output goes, 0 long as it uses file O for input and 1
and 2 for output.

82Low Leve I/0 - Read and Write

Input and output uses the read and wite System cdls, which are accessed from C programs
through two functions cdled read ad wite. For both, the fird argument is a file descriptor.
The second argument is a character array in your program where the data is to go to or to
come from. The third argument is the number is the number of bytesto be trandferred.

int nread =read(int fd, char *buf, int n);

int nwitten = wite(int fd, char *buf, int n);
Each cdl returns a count of the number of bytes transferred. On reading, the number of bytes
returned may be less than the number requested. A return vaue of zero bytes implies end of
file and -1 indicates an eror of some sort. For writing, the return vaue is the number of
bytes written; an error has occurred if thisisn't equa to the number requested.

Any number of bytes can be reed or written in one cdl. The mosg common vaues ae 1,
which means one character & a time (" unbuffered”), and a number like 1024 or 409 that

correponds to a physicd block size on a peripherd device. Larger sizes will be more eficient
because fewer system cdls will be made.

Putting these facts together, we can write a Smple program to copy its input to its output, the

equivalent of the file copying program written for Chapter 1 This program will copy anything
to anything, since the input and output can be redirected to any file or device,

#i ncl ude "syscal | s. h"

main() /* copy input to output */
{

char buf [BUFSI Z] ;

int n;

while ((n =read(0, buf, BUFSIZ)) > 0)
wite(l, buf, n);
return O;

}
We have collected function prototypes for the sysem cdls into a file cdled syscalls.h so
we can include it in the programs of this chepter. This nameis not Sandard, however.

The parameter BUFSI z is d0 ddfined in syscalI's. h; its vdue is a good sze for the locd
sygem. If the file d9ze is not a multiple of BUFSI z, Some read Will return a smdler number of
bytesto bewritten by wri t e; the next cal to r ead after that will return zero.

It is indructive to see how read ad wite can be used to congruct higher-levd routines like
getchar, putchar, etc. For example, here is a verson of getchar that does unbuffered input,
by reading the sandard input one character & atime.

#i ncl ude "syscal | s. h"

/* getchar: wunbuffered single character input */
i nt getchar (voi d)

char c;

return (read(0, &, 1) == 1) ? (unsigned char) c : ECF
}
¢ mug be a char, because read needs a character pointer. Casting ¢ t0 unsi gned char in the

return Satement diminates any problem of Sign extenson.

The second verson of getchar does input in big chunks, and hands out the characters one at
atime.

#i ncl ude "syscal | s. h"

/* getchar: sinple buffered version */
i nt getchar(void)

{
static char buf[BUFSl 7] ;

static char *bufp = buf;
static int n = 0;

if (n=0) { /* buffer is enpty */
n = read(0, buf, sizeof buf);
buf p = buf;

}

return (--n >= 0) ? (unsigned char) *bufp++ : ECF;

}
If these versons of getchar were to be compiled with <stdio. h> induded, it would be

necessary to #undef the name get char in caseit isimplemented as amacro.

8.3 Open, Creat, Close, Unlink

Other then the default standard input, output and error, you must explicitly open files in order
to read or write them. There are two system callsfor this, openand creat [dc].

open is raher like the fopen discussed in Chapter 7, except that ingead of returning a file
pointer, it returns afile descriptor, which isjust ani nt . open returns - 1 if any error occurs.

#include <fcntl. h>

int fd;
int open(char *name, int flags, int perns);

fd = open(nare, flags, perns);
As with fopen, the name argument is a character dring containing the filename. The second

argument, f 1 ags, isanint that specifies how the file is to be opened; the main vaues are
O RDONLY open for reading only
O WRONLY gpen for writing only
ORDWR open for both reading and writing

154

These congants are defined in <fcntl. h> on Sysdem V UNIX sysems and in <sys/file. h>
on Berkeley (BSD) versons.

To open an exiging file for reading,

fd = open(narme, O RDOLY,0);
Theper ns argument is dways zero for the uses of open that we will discuss.

It is an error to try to open a file that does not exist. The sysem cdl creat is provided to
create new files, or to re-write old ones.

int creat(char *nane, int perns);

fd = creat (name, perns);
returns a file descriptor if it was able to cregte the file, and - 1 if not. If the file dready exids
creat Will truncate it to zero length, thereby discarding its previous contents; it is not an eror
tocreat afiletha dready exids.

If the file does not dready exid, creat creates it with the permissons specified by the perns
agument. In the UNIX file sysem, there are nine bits of permisson information associated
with a file that control read, write and execute access for the owner of the file, for the owner's
group, and for dl others. Thus a threedigit octd number is convenient for specifying the
pemissons. For example, 0775 specifies read, write and execute permisson for the owner,
and read and execute permission for the group and everyone dse.

To illugrate, here is a amplified verson of the UNIX program cp, which copies one file to
another. Our verson copies only one file it does not permit the second argumert to be a
directory, and it invents permissons ingtead of copying them.

#i ncl ude <stdio. h>

#i ncl ude <fcntl . h>

#i ncl ude "syscal | s. h"

#def i ne PERVE 0666 /* RWfor owner, group, others */

void error(char *, ...);

/* cp: copy f1to f2 */
mai n(int argc, char *argv[])

{

int f1, f2, n;

char buf [BUFSI Z] ;

if (argc !'= 3)
error("Usage: cp fromto");

if ((f1 = open(argv[1l], ORDONLY, 0)) == -1)
error("cp: can't open %", argv[1]);

if ((f2 =creat(argv[2], PERVB)) == -1)

error("cp: can't create %, node %930",
argv[2], PERVB);
while ((n =read(fl, buf, BUFSI 2)) > 0)
if (wite(f2, buf, n) '=n)
error("cp: wite error on file %", argv[2]);
return O;

155

This program creates the output file with fixed permissons of 0666. With the stat system

cdl, described in Section 8.6 we can determine the mode of an exigting file and thus give the
same mode to the copy.

Notice thet the function error is cdled with varidble argument ligs much like printf. The
implementation of eror illugrates how to use ancther member of the printf family. The
dandard library function vprintf is like printf except that the varidble argument lig is
replaced by a sngle agument tha has been initidized by cdling the va_start macro.
Smilaly, vfprintf axd vsprintf machfprintf and sprintf.

#i ncl ude <stdio. h>
#i ncl ude <stdarg. h>

/[* error: print an error nessage and die */
void error(char *fm, ...)

{

va_list args;

va_start(args, fnt);
fprintf(stderr, "error: ");
vprintf(stderr, fnm, args);
fprintf(stderr, "\n");
va_end(args);

exit(1);

}
There is a limit (often aout 20) on the number of files that a progran may open
smultaneoudy. Accordingly, any program that intends to process many files must be
prepared to reuse file descriptors The function close(int fd) bresks the connection
between a fle descriptor and an open file, and frees the file descriptor for use with some other
file; it corresponds to fclose in the gandard library except that there is no buffer to flush.
Termination of aprogram viaexi t or return from the main program closes al open files.

The function unlink(char *nane) removes the file nanme from the file sysem. It
corresponds to the Sandard library function r enove.

Exercise 81. Rewrite the program cat from Chapter 7 usng read, wite, open, and close
ingdead of ther sandard library equivdents. Perform experiments to determine the reative
speeds of thetwo versions.

8.4 Random Access - L seek

Input and output are normaly sequentid: each read or wite tekes place a a podtion in the
file right after the previous one. When necessary, however, a file can be read or written in any
arbitrary order. The system cdl 1seek provides a way to move aound in a file without
reeding or writing any data

long I seek(int fd, long offset, int orign);
sts the current position in the file whose descriptor is fd to of f set, which is teken rddive to
the location gpecified by origin. Subsequent reading or writing will begin a that postion.
origin can be 0, 1, or 2 to specify tha of fset is to be measured from the beginning, from
the current pogtion, or from the end of the file respectively. For example, to gopend to a file
(theredirection >> in the UNIX shell, or "a" for f open), Seek to the end before writing:

| seek(fd, OL, 2);

To get back tothe beginning (" “rewind”),

| seek(fd, OL, 0);
Notice the oL argument; it could aso be written as (1ong) 0o0r just as 0 if | seek is properly
declared.

With | seek, it is possble to treat files more or less like arrays, a the price of dower access.
For example, the following function reads any number of bytes from any ahitray place in a
file. It returns the number read, or- 1 on error.

#i ncl ude "syscal | s. h"

/*get: read n bytes fromposition pos */
int get(int fd, long pos, char *buf, int n)

if (Iseek(fd, pos, 0) >=0) /* get to pos */
return read(fd, buf, n);

el se
return -1;

}
The return vaue from |seek is a long tha gives the new paodtion in the file, or -1 if an error
occurs. The standard library function fseek is Smilar to | seek except that the first argument
isaFl LE * and the return is non-zero if an error occurred.

8.5 Example- An implementation of Fopen and Getc

Let us illugrate how some of these pieces fit together by showing an implementation of the
standard library routines f open ad get c.

Recdl that files in the dandard library ae described by file pointers rather than file
descriptors. A file pointer is a pointer to a structure that contains severa pieces of information
about the file a pointer to a buffer, so the file can be read in large chunks a count of the
number of characters Ieft in the buffer; a pointer to the next character postion in the buffer;
thefile descriptor; and flags describing read/iwrite mode, error status, €etc.

The data dructure that describes a file is contained in <stdi o. h>, which mugt be induded (by
#i nclude) in any source file that uses routines from the standard input/output library. It is
ds induded by functions in that library. In the following excapt from a typicd <stdio. h>,
names that are intended for use only by functions of the library begin with an underscore 0
they ae less likdy to collide with names in a usar's program. This convention is used by dl
dandard library routines

#defi ne NULL 0

#defi ne ECF (-1)

#defi ne BUFSI Z 1024

#defi ne CPEN_MAX 20 /* max #files open at once */

typedef struct _iobuf {

int cnt; /* characters left */

char *ptr; /* next character position */
char *base; /* location of buffer */

int flag; /* node of file access */

int fd; /* file descriptor */

} FILE

extern FI LE _i ob[CPEN NMAX] ;

#define stdin (&.iob[0])
#define stdout (&.iob[1])
#define stderr (&.iob[2])

enum _flags {
_READ =01, /* file open for reading */
WITE = 02, /* file open for witing */
_UNBUF = 04, /* file is unbuffered */
_ECF = 010, /* ECF has occurred on this file */
ERR =020 /* error occurred on this file */

b

int _fillbuf(FlLE *);
int _flushbuf(int, FILE *);

#defi ne feof (p) ((p)->flag & ECGF) '= 0)
#define ferror(p) ((p)->flag & _ERR) = 0)
#define fileno(p) ((p)->fd)

#define getc(p) (--(p)->cnt >= 0\

? (unsigned char) *(p)->ptr++ : _fillbuf(p))
#define putc(x,p) (--(p)->cnt >= 0 \

? *(p)->ptr++ = (x) : _flushbuf ((x),p))

#define getchar () getc(stdin)
#defi ne putcher(x) putc((x), stdout)

The getc macro normdly decrements the count, advances the pointer, and returns the
character. (Recdl that a long #define is continued with a backdash) If the count goes
negaive, however, getc cdls the function _fillbuf to replenish the buffer, reintidize the
dructure contents, and return a charecter. The characters are returned unsigned, which
ensuresthat dl characters will be positive.

Although we will not discuss any dealls, we have induded the definition of putc to show
that it operaes in much the same way as getc, cdling a function _fI ushbuf when its buffer
is full. We have ds0 included macros for accessng the error and end-of-file gatus and the file

descriptor.

The function fopen can now be written. Most of fopen is concerned with getting the file
opened and pogitioned at the right place, and setting the flag bits to indicate the proper date.
f open does not alocate any buffer space; thisisdone by _fi I 1 buf when thefileisfirg read.

#i ncl ude <fcntl. h>
#i ncl ude "syscalls. h"
#def i ne PERVS 0666 /* RWfor owner, group, others */

FI LE *fopen(char *nane, char *node)

{

int fd;

FI LE *fp;

if (*nrode !'="r' & *node !'="'wW && *node !="a'")
return NULL;

for (fp = _iob; fp < _iob + CPEN_MAX; fp++)
if ((fp>flag & (_READ| WRTE)) == 0)
br eak; /* found free slot */
if (fp >= _iob + CPEN_ MAX) /* no free slots */
return NULL;

if (*node == 'wW)
fd = creat (nane, PER\D);
elseif (*nmode =="a') {
if ((fd = open(nane, OWRO\LY, 0)) ==-1)
fd = creat(nane, PER\D);
| seek(fd, OL, 2);

} else
fd = open(nanme, O RDONLY, 0);

if (fd ==-1) /* couldn't access name */
return NULL;

fp->fd = fd;

fp->cnt = 0;

f p->base = NULL;
fp->flag = (*node == 'r') ? _READ: WRTE
return fp;

Thié verdon of fopen does not handle dl of the access mode posshiities of the sandard,
though adding them would not tske much code. In particular, our fopen does not recognize
the "b" that dgnds binary access, since that is meaningless on UNIX sysems, nor the ~+"
that permits both reeding and writing.

The fird cdl to getc for a paticular file finds a count of zero, which forces a cdl of
_fillbuf. If _fillbuf finds that the file is not open for reading, it returns ECF immediady.
Otherwisg, it triesto dlocate a buffer (if reading is to be buffered).

Once the buffer is established, _fillbuf cals read to fill it, sets the count and pointers, and
returns the character a the beginning of the buffer. Subsequent cdls to _fillbuf will find a
buffer dlocated.

#i ncl ude "syscal | s. h"

/* _fillbuf: allocate and fill input buffer */
int _fillbuf(FLE *fp)

{

int bufsize;

if ((fp->flag& READ _ECF ERR)) != _READ
return ECF;
bufsize = (fp->flag & _UNBUF) ? 1 : BUFSI Z;
if (fp->base == NULL) /* no buffer yet */
if ((fp->base = (char *) malloc(bufsize)) == NUL)
return ECF, /* can't get buffer */
fp->ptr = fp >base;
fp->cnt = read(fp->fd, fp->ptr, bufsize);
if (--fp->cnt < 0) {

if (fp>cnt == -1)
fp->flag | = _ECF;
el se
fp->flag | = _ERR
fp->cnt = 0;
return ECF;

}

return (unsigned char) *fp >ptr++

}
The only remaining loose end is how everything gets sarted. The aray _iob must be defined
and initidized for st di n, st dout ad stderr:

FILE _i ob[CPEN MAX] = { /* stdin, stdout, stderr */

{ 0, (char *) 0, (char *) 0, READ, O},
{ 0, (char *) 0, (char *) 0, WRTE 1},
{ 0, (char *) 0, (char *) 0, WRTE, | _UBU, 2}

b
The initidization of the f1ag part of the structure shows that stdin is to be read, stdout isto
be written, and st der r is to be written unbuffered.

Exercise 82. Rewrite fopen and _fillbuf with fidds indead of explict bit operations.
Compare code Sze and execution speed.

Exercise 8-3. Desgn and write_f | ushbuf, f f | ush, and f cl ose.

Exer cise 8-4. The gandard library function

int fseek(FILE *fp, long offset, int origin)
is identical to | seek except that fp is a file pointer indead of a file descriptor and return vaue
is anint daus not a podtion. Write fseek. Make sure that your fseek coordinaes properly
with the buffering done for the other functions of the library.

8.6 Example- Listing Directories

A diffeeent kind of file sysem interaction is sometimes cdled for - detlermining information
about a file, not what it contans A directory-liging program such as the UNIX command |'s
is an example - it prints the names of files in a directory, and, optiondly, other information,
such as Szes, permissions, and so on. The MSDOS di r command is andogous

Snce a UNIX directory is just a file I's need only read it to retrieve the filenames. But is is
necessary to use a system cdl to access other information about a file, such as its gze. On
other sysems, a sysem cal may be needed even to access filenames, this is the case on MS
DOS for indance. What we want is provide access to the information in a reativey system:
independent way, even though the implementation may be highly system dependent.

We will illustrate some of this by writing a program cdled fsize. fsize is a ecid form of
I's tha prints the Szes of dl files named in its commandline argument lig. If one of the files
is a directory, fsize applies itsdf recursvely to that directory. If there are no arguments at
al, it processes the current directory.

Let us begin with a short review of UNIX file sysem dructure. A directory is a file that
contains a lig of filenames and some indication of where they are located. The “location” is
an index into ancther table cdled the Tinode lig" The inode for a file is where dl
information about the file except its name is kept. A directory entry generdly congds of only
two items, the filename and an inode number.

Regrettably, the forma and precise contents of a directory are not the same on dl versons of
the sysem. So we will divide the task into two pieces to try to isolate the non-portable parts.
The outer levdl defines a dructure cdleda Dirent and three routines opendir, readdir, and
cl osedir to provide system-independent access to the name and inode number in a directory
entry. We will write fsize with this interface. Then we will show how to implement these on
systems that use the same directory dructure as Verson 7 and Sysem V UNIX; vaiants are
left as exercises.

160

The Dirent dructure contains the inode number and the name The maximum length of a
filename component is Nave Max, which is a Sysemdependent vaue opendir returns a
pointer to a dructure caled DR, andogous to FI LE, which is used by readdir and cl osedir.
Thisinformation is collected into afile caled di rent . h.

#define NAME MAX 14 /* longest filename conponent; */
/* systemdependent */

typedef struct { /* portable directory entry */
| ong ino; /* inode nunber */
char narre[NAME_NVAX+1] ; /* pname + '\0" terminator */
} Drent;
typedef struct { /* mininal DR no buffering, etc. */
int fd; /* file descriptor for the directory */
Drent d; /* the directory entry */
} DR

D R *opendir(char *dirnare);
Drent *readdir(D R *dfd);
void cl osedir(D R *dfd);
The system cdl stat tekes a filename and returns dl of the information in the inode for thet

file or- 1if thereisan eror. That is,

char *nang;
struct stat stbuf;
int stat(char *, struct stat *);

st at (name, &stbuf);
fills the dructure stbuf with the inode information for the file name. The dructure describing

thevauereturned by st at isin <sys/ st at . h>, and typically looks like this

struct stat /* inode information returned by stat */

{
dev_t st_dev; /* device of inode */
i no_t st _i no; /* inode nunber */
short st _node; /* node bits */
short st_nlink; /* nunber of links to file */
short st _uid; /* owners user id */
short st_gid; /* owners group id */
dev_t st _rdev; [* for special files */
off t st_si ze; /* file size in characters */
tinme_t st _atine; /* time | ast accessed */
tine_t st_mine; /* tine last nodified */
time_t st_ctine; /* time originally created */
¥

Mog of these vdues ae explaned by the comment fiedlds The types like dev_t and ino_t
are defined in <sys/ t ypes. h>, which must be included too.

The st_mode entry contains a st of flags describing the file. The flag definitions are dso
indudedin <sys/ t ypes. h>; we need only the part thet deals with file type:

#define S | FMI 0160000 /* type of file: */
#define SIFDR 0040000 /* directory */
#define S IFCHR 0020000 /* character special */
#define S_ | FBLK 0060000 /* bl ock special */
#define S IFREG 0010000 /* regular */

[* o0 *

161

Now we are ready to write the program fsize. If the mode obtained from st at indicates that
a file is not a directory, then the sze is a hand and can be printed directly. If the name is a
directory, however, then we have to process that directory one file a a time it may in tun
contain sub-directories, o the processisrecursive.

The man routine deds with command-line arguments, it hands each argument to the function

fsize.

#i ncl ude <stdio. h>

#i ncl ude <string. h>

#i ncl ude "syscal | s. h"

#incl ude <fcntl. h> /* flags for read and wite */
#incl ude <sys/types.h> /* typedefs */

#include <sys/stat.h> /* structure returned by stat */
#include "dirent. h"

voi d fsize(char *)

/* print file name */
nmai n(int argc, char **argv)

{
if (argc == 1) /* default: current directory */
fsize(".");
el se
while (--argc > 0)
fsize(*++argv);
return O;
}

The function fsize prints the sze of the file. If the file is a directory, however, fsize firg
cdls dirval k to handle dl the files in it. Note how the flag names s IFMr and S IFDIR are
used to decide if the file is a directory. Parenthesization matters, because the precedence of &
islower than that of ==.

int stat(char *, struct stat *);
voi d dirwal k(char *, void (*fcn)(char *));

[* fsize: print the nane of file "name" */
voi d fsize(char *nare)

{
struct stat stbuf;
if (stat(nane, &tbuf) ==-1) {
fprintf(stderr, "fsize: can't access %\n", nane);
return;
}
if ((stbuf.st_node & SIFMI) == S IFOR
di rwal k(nare, fsize);
printf("9ld %\n", stbuf.st_size, nane);
}

The function dirval k is a generd routine that gpplies a function to each file in a directory. It
opens the directory, loops through the files in it, cdling the function on each, then doses the
directory and returns. Since fsize calls dirwalk on each directory, the two functions cdl
each other recursively.

#defi ne MAX_PATH 1024

[* dirwalk: apply fcnto all files indir */
void dirwal k(char *dir, void (*fcn)(char *))

{

162

char nare[MAX_PATH ;
D rent *dp;
D R *dfd;

if ((dfd = opendir(dir)) == NLL) {
fprintf(stderr, "dirwal k: can't open %\n", dir);
return;
}
while ((dp = readdir(dfd)) !'= NLL) {
if (strenp(dp->nane, ".") =0
|| strcnp(dp->nare, ".."))
conti nue; /* skip self and parent */
if (strlen(dir)+strlen(dp->nane)+2 > sizeof (nane))
fprintf(stderr, "dirwal k: nane % 9% too | ong\n",
dir, dp->nane);
el se {
sprintf(name, "%/9%", dir, dp>nane);
(*fcn) (narre) ;

}

}
cl osedir(dfd);

}
Each cdl to readdir returns a pointer to information for the next file, or NULL when there are

no files left. Each directay dways contains entries for itsdf, cdled ». ", and its parent, .. ";
these must be skipped, or the program will loop forever.

Down to this last leve, the code is independent of how directories are formatted. The next
dep is to presant minima versons of opendir, readdir, and closedir for a specific system.
The following routines are for Verson 7 and Sysem V UNIX sysems, they use the directory
information in the header <sys/ di r. h>, which lookslike this

#i fndef DRSl Z
#define DRSIZ 14

#endi f
struct direct { /* directory entry */
ino_t d_ino; /* inode nunber */

char d_name[DRSIZ]; /* Iong name does not have '\0" */
¥
Some versons of the sytem permit much longer names and have a more complicated
drectory structure.

The type ino_t iS a typedef that describes the index into the inode lig. It happens to be
unsi gned short on the sysems we use regularly, but this is not the sort of information to
embed in a program; it might be different on a differet system, s0 the typedef is better. A
complete set of ~system” typesisfound in <sys/ t ypes. h>,

opendi r opens the directory, verifies that the file is a directory (this time by the sysem cal
fstat, which is like stat except that it goplies to a file descriptor), dlocates a directory
gructure, and records the information:

int fstat(int fd, struct stat *);

/* opendir: open a directory for readdir calls */
D R *opendi r (char *di r nane)
{

int fd;

struct stat stbuf;

163

D R *dp;
if ((fd = open(dirnane, O RDAOWLY, 0)) == -1
|| fstat(fd, &tbuf) == -1

|| (stbuf.st_node & SIFMI) = S IFDR
|| (dp = (DR *) malloc(sizeof (DR)) == NULL)
return NULL;
dp->fd = fd;
return dp;
}
cl osedi r closesthe directory file and frees the space:

/* closedir: close directory opened by opendir */
voi d cl osedir (D R *dp)

if (dp) {
cl ose(dp->fd);
free(dp);
} }
Hrdly, readdir uses read to read esch directory entry. If a directory dot is not currently in
use (because a file has been removed), the inode number is zero, and this postion is skipped.
Otherwise, the inode number and name are placed in a static Structure and a pointer to that

is returned to the user. Each cdl overwrites the information from the previous one.
#include <sys/dir.h> /* local directory structure */

/* readdir: read directory entries in sequence */

Drent *readdir(D R *dp)

{
struct direct dirbuf; /* local directory structure */
static Drent d; /* return: portable structure */

whil e (read(dp->fd, (char *) &dirbuf, sizeof(dirbuf))
== si zeof (dirbuf)) {
if (dirbuf.d ino ==0) /* slot not in use */
conti nue;
d.ino = dirbuf.d_ino;
strncpy(d. narme, dirbuf.d_namre, D RS 2);

d.nane[DRSIZ] ='\0"; /* ensure ternmnation */
return &d;

}

return NULL;

}

Although the fsize program is rather specidized, it does illustrate a couple of important
idess. Firg, many programs are not ~sysem programs’; they merdy use information that is
maintained by the operaing sysem. For such programs, it is crucid that the representation of
the information appear only in sandard heeders, and that programs include those headers
ingead of embedding the dedarations in themsdves The second observation is that with care
it is possible to creste an interface to system-dependent objects that is itsdf rdaively sysem
independent. The functions of the andard library are good examples.

Exercise 85. Modify the fsize program to print the other information contained in the inode
entry.

8.7 Example- A Storage Allocator

In Chapter 5 we presented a vary limited stack-oriented storage dlocator. The verson that we
will now write is unredricted. Cdls to mall oc and free may occur in ay order; malloc cdls

164

upon the operating sysem to obtan more memory as necessty. These routines illudrate
ome of the conddeaions involved in writing machine-dependent code in a rdaively
mechine-independent way, and adso show a redlife gpplication of dSructures unions and
t ypedef .

Rather then dlocaing from a compiledin fixedsze aray, nalloc will request space from
the operating system as needed. Since other activities in the program may aso request space
without cdling this dlocator, the space that mal | oc manages may not be contiguous. Thus its
free storage is kept as a lig of free blocks. Each block contains a Sze, a pointer to the next
block, and the space itsdf. The blocks are kept in order of increasing storage address, and the
last block (highest address) pointsto the fird.

free list
L i [| R
....... use use |1use R 1T

I:l free, owned by malloc
in use, owned by malloc
not owned by malloc

When a request is made, the free lig is scanned until a big-enough block is found. This
dgorithm is cdled “firg fit," by contrast with “best fit," which looks for the smalest block
that will satisfy the request. If the block is exactly the sze requested it is unlinked from the
lig and returned to the user. If the block is too hig, it is Slit, and the proper amount is
returned to the user while the resdue remains on the free lis. If no big-enough block is found,
another large chunk is obtained by the operating system and linked into the free lidt.

Freeing dso causes a search of the free lig, to find the proper place to insart the block being

freed. If the block being freed is adjacent to a free block on ether Sde, it is codesced with it
into a dngle bigger block, so dorage does not become too fragmented. Determining the
adjacency is easy because the free list is maintained in order of decreasing address.

One problem, which we dluded to in Chepter 5, is to ensure that the storage returned by
mal | oc IS digned propely for the objects that will be dored in it. Although machines vary,

for each machine there is a mogt regtrictive type: if the most redrictive type can be stored a a
particular address, dl other types may be dso. On some mechines, the most redtrictive type is

adoubl e; onothers, i nt orl ong suffices.

A free block contains a pointer to the next block in the chain, a record of the Sze of the block,
and then the free gpace itsdf; the control information & the beginning is caled the ~header.”
To amplify dignment, dl blocks are multiples of the heeder dze, and the heeder is digned
properly. This is achieved by a union that contans the desred heeder dructure and an
instance of the most redrictive aignment type, which we have arbitrarily made a | ong:

typedef long Aign; /* for alignnment to | ong boundary */

uni on header { /* bl ock header */

165

struct {
uni on header *ptr; /* next block if on free list */
unsi gned si ze; /* size of this block */

}s;

Aign x; /* force alignnent of blocks */

b

typedef uni on header Header;
The Aign fidd is never used; it just forces eech header to be digned on a word-case
boundary.

In mal | oc, the requested size in characters is rounded up to the proper number of heeder-9zed
units, the block that will be dlocated contains one more unit, for the header itsdf, and this is
the vaue recorded in the size field of the header. The pointer returned by nmal | oc points &
the free space, not at the header itsdlf. The user can do anything with the space requested, but
if anything is written outsde of the alocated space theligt islikely to be scrambled.

/r points to next free block

/ size

N~

A block returned by malleoc

address returned to user

The dze fidd is necessry because the blocks controlled by mal 1 oc need not be contiguous -
it isnot possible to compute Szes by pointer arithmetic.

The varidble base is used to get dtarted. If freep is NULL, as it is a the first cal of nalloc,
then a degenerate free list is created; it contains one block of Sze zero, and points to itsEf. In
any case, the free lig is then searched. The search for a free block of adequate Sze begins at
the point (freep) where the last block was found; this drategy hedps keep the ligt
homogeneous. If a too-big block is found, the tall end is returned to the user; in this way the
header of the origind needs only to have its Sze adjusted. In al cases, the pointer returned to
the user points to the free space within the block, which begins one unit beyond the header.

stati ¢ Header base; /* enpty list to get started */
static Header *freep = NUL; /* start of free list */

/* malloc: general-purpose storage all ocator */
voi d *nal | oc(unsi gned nbyt es)
{

Header *p, *prevp;

Header *noreroce(unsigned);

unsi gned nuni ts;

nunits = (nbytes+si zeof (Header)- 1)/ si zeof (header) + 1;
if ((prevp = freep) == NLL) { /* no free list yet */
base.s.ptr = freeptr = prevptr = &base;
base.s.size = 0;

166

for (p = prevp->s.ptr; ; prevp = p, p = p->s.ptr) {
if (p->s.size >=nunits) { /* big enough */

if (p->s.size == nunits) /* exactly */
prevp->s.ptr = p->s.ptr;
el se { /* allocate tail end */

p->s.size -= nunits;
p += p->s.size;
p->s.size = nunits;
}
freep = prevp;
return (void *)(p+l);
}

if (p==~"freep) /* wapped around free list */
if ((p = norecore(nunits)) == NUL)
return NULL; /* none left */
} }
The function norecore obtans sorage from the operating sysem. The detals of how it does
this vary from sygem to sysem. Since asking the sysem for memory is a comparatively
expendve operdion. we dont want to do tha on every cdl to malloc, SO norecore requests
d leest NALLOC units this larger block will be chopped up as needed. After setting the Sze
fidd, nor ecor e inserts the additiona memory into the arena by cdling f r ee.

The UNIX system cdl sbrk(n) returns a pointer to n more bytes of storage. sbrk returns -1
if there was no space, even though NULL could have been a better design. The -1 must ke cast
to char * S0 it can be compared with the return vaue. Agan, casts make the function
raivdy immune to the detalls of pointer representation on different machines. There is dill
one assumption, however, tha pointers to different blocks returned by sbrk can be
meaningfully compared. This is not guaranteed by the dSandard, which permits pointer
comparisons only within an aray. Thus this veson of malloc is portadble only among
mechines for which genera pointer comparison is meaningful.

#define NALLOC 1024 /* minimum#units to request */

/* norecore: ask systemfor nore nenory */
stati c Header *norecore(unsigned nu)
{

char *cp, *sbrk(int);

Header *up;

if (nu < NALLOO
nu = NALLGG

cp = sbrk(nu * sizeof (Header));

if (cp == (char *) -1) /* no space at all */
return NULL,;

up = (Header *) cp;

up->s.size = nu;

free((void *)(up+l));

return freep;

}
free itsdf is the lagt thing. It scans the free lig, dating a freep, looking for the place to
insart the free block. This is ether between two exiding blocks or a the end of the lig. In any
case, if the block being freed is adjacent to ether neighbor, the adjacent blocks are combined.
Theonly troubles are kesping the pointers pointing to the right things and the Sizes correct.

/* free: put block ap in free list */
voi d free(void *ap)

{

167
Header *bp, *p;

bp = (Header *)ap - 1; /* point to block header */
for (p =freep; !(bp >p & bp < p->s.ptr); p = p->s.ptr)
if (p>=p>s.ptr & (bp > p || bp < p->s.ptr))
break; /* freed block at start or end of arena */

if (bp + bp->size == p->s.ptr) { /* join to upper nbr */
bp->s. si ze += p->s. ptr->s. si ze;
bp->s.ptr = p->s.ptr->s.ptr;

} else
bp->s.ptr = p->s.ptr;
if (p+ p->size == bp) { /* join to |l ower nbr */

p- >s. si ze += bp->s. si ze;
p->s.ptr = bp->s.ptr;
} else
p->s.ptr = bp;
freep = p;
}
Although dorage dlocdtion is intrindcaly machine-dependent, the code above illustrates how
the machine dependencies can be controlled and confined to a very smdl pat of the program.
The use of typedef and union handles dignment (given tha sbrk supplies an appropriate
pointer). Cads arange tha pointer conversons are made explicit, and even cope with a
bedy-designed sysem inteface. Even though the detalls here ae rdaed to Soage
dlocation, the generd approach is gpplicable to other Stuaions as well.

Exercise 86. The dandard library function cal | oc(n, si ze) refurns a pointer to n objects of
gze size, with the dorage initidized to zero. Write calloc, by cdling malloc or by
modifying it.

Exercise 8-7. nmalloc accepts a Sze request without checking its plaughility; free believes
that the block it is asked to free contans a vdid sze fidd. Improve these routines 0 they
make more pains with error checking.

Exercise 8-8. Write a routine bfree(p, n) that will free any abitrary block p of n characters
into the free lig mantained by malloc and free. By usng bfree, a user can add a datic or
externd array to thefreeligt at any time.

168

Appendix A - Reference Manual

A.1lIntroduction

This manud destribes the C language specified by the draft submitted to ANSI on 31
October, 1988, for goprovd as ~American Standard for Informeation Systems - programming
Language C, X3159-1989." The manud is an interpretation of the proposed standard, not the
standard itsalf, dthough care has been taken to make it ardiable guide to the language.

For the most pat, this document follows the broad outline of the sandard, which in turn
folows that of the firg edition of this book, dthough the organization differs in detall. Except
for renaming a few productions and not formdizing the definitions of the lexica tokens or
the preprocessor, the grammar given here for the language proper is equivdent to that of the
standard.

Throughout this manua, commentary materia is indented and written in smaller type, as this is. Mogt
often these comments highlight ways in which ANSI Standard C differs from the language defined by
thefirst edition of thisbook, or from refinements subsequently introduced in various compilers.

A.2 Lexical Conventions

A program condgs of one or more trandation units sored in files. It is trandated in severd
phases, which ae desibed in PaA.12. The fird phases do low-levd lexicd
trandformations, carry out directives introduced by the lines beginning with the # character,
and peform macro definition and expandon. When the preprocessng of ParA.12 s
complete, the program has been reduced to a sequence of tokens.

A.21Tokens

There ae Sx dasses of tokens identifiers, keywords, condants, dring literds, operators, and
other separators. Blanks, horizontd and verticd tabs, newlines, formfeeds and comments as
described beow (collectively, “white space”) are ignored except as they separate tokens.
Some white space is required to sepade otherwise adjacent identifiers, keywords, and
congants.

If the input stream has been separated into tokens up to a given character, the next token is the
longest gtring of characters that could condtitute a token.

A.2.2 Comments

The characters /* introduce a comment, which terminates with the characters */. Comments
do not nest, and they do not occur within agtring or character literds.

A.23ldentifiers

An identifier is a sequence of letters and digits. The fird character must be a letter; the
underscore _ counts as a letter. Upper and lower case letters are different. Identifiers may
have any length, and for internd identifiers, & leest the fird 31 characters are dgnificant;

169

ome implementations may teke more characters ggnificant. Internd identifiers include
preprocessor macro names and dl other names that do not have externd linkage Par.A.11.2).
Identifiers with externd linkage are more redricted: implementations may meke as few as the
first six characters Sgnificant, and may ignore case distinctions.

A.24Keywords

The following identifiers are resarved for the use as keywords, and may not be used
otherwise:

auto doubl e i nt struct

br eak el se | ong swi tch
case enum regi ster t ypedef
char extern return uni on
const fl oat short unsi gned
conti nue for si gned voi d

def aul t goto si zeof vol atile
do i f static while

Some implementations also reserve thewords f or t ran and asm

The keywords const, signed, and vol atile ae new with the ANS standard; enum and voi d
are new dnce the firg edition, but in common use entry, formerly reserved but never used, is no
longer reserved.

A.2.5Congants
There are severd kinds of congtants. Each has a datatype; Par.A .4.2 discusses the basic types

constant:
integer-constant
character-constant
floating-constant
enumer ation-constant

A.2.5.1 Integer Constants

An integer congant condging of a sequence of digits is taken to be octd if it begins with O
(digit zero), decimd otherwise. Octd congants do not contain the digits 8 or 9. A sequence of
digits preceded by ox or ox (digit zero) is taken to be a hexadecimd integer. The hexadecima
digitsindude a or A through f or F with vaues 10 through 15.

An integer condant may be suffixed by the letter u or U, to specify thet it is unsgned. It may
aso be suffixed by the letter | or L to spedify thet it islong.

The type of an integer condant depends on its form, vaue and suffix. (See Par.A.4 for a
discussion of types). If it is unsuffixed and decimd, it hes the firgt of these types in which its
vaue can be represented: int, long int, unsigned long int. If it is unsuffixed, octa or
hexadecimd, it has the fird possble of these types int, unsigned int, long int,
unsigned long int. If it is suffixed by u or U, then unsigned int, unsigned long int. If
it is auffixed by | or L, then Iong int, unsigned long int. If an integer congtant is suffixed
by UL, itis unsi gned | ong.

The daboration of the types of integer constants goes considerably beyond the first edition, which
merely caused large integer condtantsto be | ong. The U suffixes are new.

170
A.25.2 Character Constants

A character congtant is a sequence of one or more characters enclosed in Single quotes as in
'x'. The vdue of a character congant with only one character is the numeric vaue of the
character in the machines character st a execution time. The vaue of a multi-character
congant is implementation-defined.

Character congtants do not contain the ' character or newlines, in order to represent them, and
certain other characters, the following escape sequences may be used:

Inewline INL (LF) \n |backdash |\ \\
horizontal tab |HT \t |ouesionmark 2 \?
veticd tab VT \v |sngequote |\
backspace [BS \b |doublequote [\
carriage return |CR \rJoctd number |ooo |\ 000
formfeed FF \f |hexnumber |hh \xhh
adbledet |BEL |\a

The escape \ooo condds of the backdash followed by 1, 2, or 3 octd digits which are taken
to specify the vadue of the desred character. A common example of this congdruction is \0
(not followed by a digit), which specifies the character NUL. The escape \xhh conddts of the
backdash, followed by x, followed by hexadecimd digits which are taken to ecify the
vaue of the dedred character. There is no limit on the number of digits but the behavior is
undefined if the resulting character vaue exceeds that of the largest character. For either octa
or hexadecimd excape characters, if the implementation trests the char type as sgned, the
vaue is dgn-extended as if cast to char type If the character following the \ is not one of
those specified, the behavior is undefined.

In some implementations, there is an extended st of characters that cannot be represented in
the char type. A condant in this extended st is written with a preceding L, for example L' x',
and is cdled a wide character congtant. Such a congtant has type wchar_t, an integrd type
defined in the dandad header <stddef.h>. As with ordinay character congdants,
hexadecima escapes may be used; the effect is undefined if the specified vaue exceeds thet
representable with wehar _t .

Some of these escape sEuences ae new, in paticular the hexadecima character representation.
Extended characters are dso new. The character sets commonly used in the Americas and western
Europe can be encoded to fit in the char type the man intent in adding wchar_t was to
accommodate Asan languages.

A.2.5.3 Floating Constants

A floating congtant condgs of an integer pat, a decimd pat, a fraction pat, ah e or E an
optiondly sgned integer exponent and an optiond type suffix, one of f, F, I, or L. The integer
and fraction parts both consst of a sequence of digits Either the integer part, or the fraction
pat (not both) may be missing; ether the decima point or the e and the exponent (not both)
may be missng. The type is deermined by the suffix; F or f makes it float, L Or | makes it
| ong doubl e, otherwise it isdoubl e.

A25.4 Enumeration Constants

171
Identifiers declared as enumerators (see Par.A.8.4) are constants of typei nt .

A.26StringLiterals

A dring literd, dso cdled a sring congant, is a sequence of characters surrounded by double
quotes as in "...". A gring has type “aray of characters' and storage class static (see
Par.A.3 bdow) and is initidized with the given characters Whether idertica dring literds
are diginct is implementation-defined, and the behavior of a program that atempts to dter a
gring literd is undefined.

Adjacent dring literds are concatenated into a single dring. After any concatendtion, a null
byte \0 is agended to the dring S0 that programs that scan the gring can find its end. String
literdls do not contain newline or double-quote characters, in order to represent them, the
same escape sequences as for character constants are available.

As with characler condants, gring literds in an extended character set are written with a
preceding L, a in L"...". Wide-character gring literds have type “aray of wchar_t."
Concatenation of ordinary and wide gring literds is undefined.

The specification that gring literals need not be distinct, and the prohibition againgt modifying them,
ae new in the ANS dandard, as is the concatenation of adjacent dring literals. Widecharacter string
literdlsare new.

A.3 Syntax Notation

In the syntax notation used in this manud, syntectic categories are indicated by italic type,
and literd words and characters in typewiter syle. Alternative categories are usudly listed
on sepaate lines, in a few cases, a long set of narow dternatives is presented on one ling,
maked by the phrase “one of" An optiond termind or nontermind symbol caries the
subscript T opt," so that, for example,

{ expressiongy }
means an optiond expression, enclosed in braces. The syntax is summarized in Par.A.13.

Unlike the grammar given in the firg edition of this book, the one given here makes precedence and
associativity of expression operators explicit.

A.4 Meaning of |dentifiers

Identifiers, or names, refer to a vaiety of things functions tegs of dructures, unions, and
enumerations, members of dructures or unions, enumeration condants, typedef names, and
objects. An object, sometimes cdled a vaiadle, is a location in dorage, and its interpretation
depends on two main atributes. its storage class and its type The storage class determines the
lifetime of the dorage associaed with the identified object; the type determines the meaning
of the vaues found in the identified object. A name aso has a scope, which is the region of
the program in which it is known, and a linkage, which determines whether the same name in
another scope refers to the same object or function. Scope and linkage are discussed in
Par.A.11.

A.4.1StorageClass

172

There are two dorage classes. automatic and ddic. Severd keywords, together with the
context of an object's declaration, specify its Storage class. Automatic objects are locd to a
block (Par.9.3, and ae discarded on exit from the block. Declarations within a block creste
automdtic objects if no dorage dass specification is mentioned, or if the auto pecifier is
used. Objects declared regi ster are automatic, and are (if possible) stored in fast registers of
the machine.

Satic objects may be locd to a block or externd to dl blocks, but in ether case retain their
vaues across exit from and reentry to functions and blocks. Within a block, incduding a block
that provides the code for a function, datic objects are declared with the keyword stati c.
The objects dedlared outsde dl blocks a the same levd as function definitions are dways
datic. They may be made locd to a paticular trandaion unit by use of the static keyword;
this gives them internal linkage They become globd to an entire program by omitting an
explicit sorage dass, or by using the keyword ext er n; thisgivesthem external linkage.

A.4.2BascTypes

There ae severd fundamental types. The standard header <linits. h> described in A X
B defines the larget and smdlest vdues of each type in the locd implementation. The
numbers given in Appendix B show the smalest acceptable magnitudes.

Objects declared as characters ¢har) are large enough to store any member of the execution
character set. If a genuine character from that set is dtored in a char objedt, its vaue is
equivdent to the integer code for the character, and is non-negative. Other quantities may be
dored into char variadles, but the avalable range of values, and especidly whether the vaue
isSgned, isimplementation-dependent.

Unsigned characters declared unsigned char consume the same amount of space as plan
characters, but dways appear non-negdive, explicitly sgned characters declared si gned
char likewise teke the same space as plain characters.

unsigned char type does not appear in the first edition of this book, but is in common use. si gned
char isnew.

Besdes the char types up to three Szes of integer, declared short int, int,axd long int,
ae avalable Pan int objects have the naturd sSze suggeted by the host machine
architecture, the other Szes are provided to meet specid needs Longer integers provide at
leest as much dorage as shorter ones, but the implementation may make plain integers
equivdent to ether short integers or long integers. The int types dl represent signed vaues
unless specified otherwise,

Unggned integers, declared using the keyword unsi gned, obey the laws of arithmetic modulo
2" where n is the number of bits in the representation, and thus aithmetic on unsigned
guantities can never overflow. The set of nonnegaive vaues that can be gtored in a sSgned
object is a subset of the vaues that can be gored in the corresponding unsigned object, and
the repr esentation for the overlgpping vaues isthe same.

Any of dngle precison floating point (float), double precison floaing point (doubl €), and
extra precison floating point (1ong double) may be synonymous, but the ones later in the
list are at least as precise as those before.

173

long double is new. The first edition made | ong float equivdent to doubl e; the locution has
been withdrawn.

Enumerations are unique types that have integrd vaues, associaied with each enumeration is
a set of named constants (Par.A.8.4). Enumerations behave like integers, but it is common for
a compiler to issue a waning when an object of a paticular enumerdtion is assgned
something other than one of its congtants, or an expression of itstype.

Because objects of these types can be interpreted as numbers, they will be referred to as
arithmetic types. Types char, and int of dl dzes each with or without dgn, and dso
enumeraion types will collectivdly be cdled integral types The types float, double, and
I ong doubl e will be caled floating types.

The voi d type specifies an empty st of vaues It is used as the type returned by functions
tha generate no vaue.

A.4.3Derived types

Beside the badc types, there is a conceptudly infinite class of derived types congructed from
the fundamentd typesin the following ways

arrays of objects of a given type;

functionsreturning objects of agiven type;

pointers to objects of agiven type;

structures containing a sequence of objects of various types,

unions cagpable of containing any of one of severd objects of various types.

In generd these methods of congtructing objects can be goplied recursively.
A.44TypeQualifiers

An object's type may have additiond qudifiers Declaring an object const announces that its
vaue will not be changed, dedaing it volatile announces that it has specid properties
rdevant to optimization. Nether qudifier affects the range of vadues or aithmetic properties
of the object. Qudifiers are discussedin Par.A.8.2

A.5 Objectsand Lvalues

An Object is a named region of dorage; an Ivalue is an expresson referring to an object. An
obvious example of an Ivdue expression is an identifier with suiteble type and sorage dass.
There are operaiors that yidd Ivaues, if E is an expresson of pointer type, then *E is an Ivdue
expresson referring to the object to which E points. The name lvdue' comes from the
assgnment expresson E1 = E2 in which the left operand E1 must be an lvaue expresson.
The discusson of each operator specifies whether it expects Ivaue operands and whether it
yidds an Ivdue

A.6 Conversions

Some operators may, depending on ther operands, cause converson of the vdue of an
operand from one type to another. This section explains the result to be expected from such

174

conversons. Par.6.5 summarizes the conversons demanded by mod ordinay operaors, it
will be supplemented as required by the discusson of each operator.

A.6.11ntegral Promotion

A chaacter, a short integer, or an integer bit-fidd, dl ather Sgned or not, or an object of
enumeration type, may be used in an expresson wherever an integer may be used. If an int
can represent dl the vaues of the origind type, then the vadue is converted to int ; otherwise
the valueis converted to unsi gned i nt . This processis cdled integral promotion.

A.6.2Integral Conversions

Any integer is converted to a given unggned type by finding the smdlest non-negative vaue
that is congruent to that integer, modulo one more than the largest vadue tha can be
represented in the ungigned type. In a two's complement representation, this is equivdent to
left-truncetion if the bit paitern of the unsgned type is narower, and to zerodilling unsgned
vaues and sgn-extending sgned vauesiif the unsgned type is wider.

When any integer is converted to a signed type, the vaue is unchanged if it can be represented
in the new type and is implementation-defined otherwise.

A.6.3 Integer and Floating

When a vdue of floating type is converted to integrd type, the fractiond part is discarded; if
the resulting value cannot be represented in the integra type, the behavior is undefined. In
paticular, the result of converting negative floating vaues to undgned integrd types is not

specified.

When a vdue of integrd type is converted to floating, and the vaue is in the representable
range but is not exactly representable, then the result may be ether the next higher or next
lower representable vaue. If the result is out of range, the behavior is undefined.

A.6.4 Floating Types

When a less precise floating vaue is converted to an equaly or more precise floating type, the
vaue is unchanged. When a more precise floating vaue is converted to a less precise floating
type, and the vdue is within representable range, the result may be ether the next higher or
the next lower representable value. If the result is out of range, the behavior is undefined.

A.6.5 Arithmetic Conversions

Many operators cause conversons and yied result types in a Smilar way. The effect is to
bring operands into a common type, which is ds0 the type of the result. This pattern is cdled
theusual arithmetic conversions.

Hrg, if @ther operand isl ong doubl e, the other is converted to | ong doubl e.

Otherwisg, if @ther operand isdoubl e, the other is converted to doubl e.

Otherwise, if @ther operand isf | oat , the other is converted to f | oat .

Otherwise, the integrd promotions are performed on bath operands, then, if ether
operand is unsi gned | ong i nt, the other is converted to unsi gned | ong i nt.

175

Otherwise, if one operand is long int and the other is unsigned int, the effect
depends on whether a 1ong int can represent dl vaues of an unsigned int; if S0,
the unsigned int operand is converted to long int; if not, both are converted to
unsi gned long int.

Otherwisg, if one operandisi ong i nt , the other isconvertedto | ong i nt.

Otherwise, if ether operand is unsigned int, the other is converted to unsigned
int.

Otherwise, both operands have typei nt .

There are two changes here. Firgt, arithmetic on fl oat operands may be done in single precision,
rather than double; the first edition specified that al floating arithmetic was double precision. Second,
shorter unsigned types, when combined with a larger signed type, do not propagate the unsigned
property to the result type; in the first edition, the unsgned aways dominated. The new rules are
dightly more complicated, but reduce somewhat the surprises that may occur when an unsigned
quantity meets signed. Unexpected results may ill occur when an unsigned expresson is compared to
asigned expression of the same size.

A.6.6 Pointersand Integers

An expresson of integrd type may be added to o subtracted from a pointer; in such a case
the integra expresson is converted as specified in the discusson of the addition operator
(Par.A.7.7).

Two pointers to objects of the same type, in the same aray, may be subtraced; the result is
converted to an integer as specified in the discusson of the subtraction operator (Par.A.7.7).

An integrd congant expresson with vaue 0, or such an expresson cast to type void * may
be conveted, by a cagt, by assgnment, or by compaison, to a pointer of any type. This
produces a null pointer that is equa to another null pointer of the same type but unequd to
any pointer to afunction or object.

Cetan other conversons involving pointers ae pemitted, but have implementation-defined
agpects. They must be specified by an explicit type-converson operator, or cast (PasA.7.5
and A.8.8).

A pointer may be converted to an integrd type large enough to hold it; the required Sze is
implementation-dependent. The mgpping function is dso implementation-dependent.

A pointer to one type may be converted to a pointer to ancther type. The resulting pointer may
caue addressng exceptions if the subject pointer does not refer to an object suitably adigned
in dorage. It is guaranteed that a pointer to an object may be converted to a pointer to an
object whose type requires less or equdly drict Sorage dignment and back again without
change the notion of “dignment" is implementation-dependent, but objects of the char types
have leest drict dignment requirements. As described in Par.A.6.8 a pointer may dso be
converted to typevoi d * and back again without change.

A pointer may be converted to another pointer whose type is the same except for the addition
or removd of qudifiers (PasA.44, A.8.2 of the object type to which the pointer refers. If
qudifiers are added, the new pointer is equivaent to the old except for redrictions implied by
the new qudifirs If qudifiers are removed, operations on the undelying object reman
subject to the qudifiersinits actud declaration.

176

Fndly, a pointer to a function may be converted to a pointer to ancther function type Cdling
the function specified by the converted pointer is implementationdependent; however, if the
converted pointer is reconverted to its origind type the result is identicd to the origind
pointer.

A.6.7Void

The (nonexistent) value of a void object may not be used in any way, and neither explicit nor
implicit converson to any nonvoid type may be goplied. Because a void expresson denotes a
nonexisent vaue, such an expresson may be used only where the vadue is not required, for
example as an expresson datement (Par.A.9.2) or as the left operand of a comma operator

(Pa.A.7.18).

An expresson may be converted to type voi d by a cast. For example, a void cast documents
the discarding of the vaue of afunction call used as an expresson statement.

voi d did not appear in thefirst edition of this book, but has become common since.

A.6.8 Pointersto Void

Any pointer to an object may be converted to type void * without loss of information. If the
result is converted back to the origind pointer type the origind pointer is recovered. Unlike
the pointe-to-pointer conversons discussed in ParA.6.6, which generdly require an explicit
cadt, pointers may be assigned to and from pointers of type void *, and may be compared
with them.

This interpretation of voi d * pointers is new; previoudy, char * pointers played the role of generic
pointer. The ANS standard specificaly blesses the meeting of void * pointers with object pointers in
assgnments and relationals, while requiring explicit casts for other pointer mixtures.

A.7 Expressons

The precedence of expresson operaors is the same as the order of the mgor subsections of
this section, highest precedence fird. Thus, for example, the expressons refered to as the
operands of + (Par.A.7.7) ae those expressons defined in PasA.7.1-A.7.6. Within each
subsection, the operators have the same precedence. Left- or right-associativity is specified in
eech subsection for the operators discussed therein. The grammar given in Par.13 incorporates
the precedence and associdivity of the operators.

The precedence and associativity of operators is fully specified, but the order of evauation of
expressons is with certain exceptions undefined, even if the subexpressons involve sde
effects. That is, unless the definition of the operator guarantees that its operands are evaduaed
in a paticular order, the implementation is free to evduae operands in any order, or even to
interleave their evdudion. However, each operator combines the vaues produced by its
operands in away compatible with the paraing of the expression in which it gopears.

This rule revokes the previous freedom to reorder expressons with operators that are mathematicaly
commutative and associative, but can fal to be computationally associative. The change affects only
floating point computations near the limits of their accuracy, and situations where overflow is possible.

The handling of overflow, divide check, and other exceptions in expression evadudion is not
defined by the language. Mog exiging implementations of C ignore oveflow in evdudion of
ggned integrd expressons and assgnments, but this behavior is not guaranteed. Trestment of

177

divison by O, and dl floatingpoint exceptions vaies among implementations sometimes it
is adjustable by anonstandard library function.

A.7.1 Pointer Conversion

If the type of an expresson or subexpression is “aray of T," for some type T, then the vadue
of the expresson is a pointer to the firg object in the aray, and the type of the expresson is
dteed to “pointer to T." This converson does not teke place if the expresson is in the
operand of the unary & operaor, or of ++, --, sizeof, oOr as the left operand of an assgnment
operator or the . operator. Similaly, an expresson of type “function returning T, except
when used as the operand of the & operator, is converted to ~pointer to function returning T."

A.7.2Primary Expressons
Primary expressions are identifiers, congants, strings, or expressionsin parentheses.

primary-expression
identifier
constant
string
(expression)

An identifier is a primary expresson, provided it hes been suitebly dedared as discussed
below. Its type is specified by its declaraion. An identifier is an Ivaue if it refers to an object
(Par.A.H and if itstypeisarithmetic, structure, union, or pointer.

A condant isa primary expression. Itstype depends on itsform as discussed in Par.A.2.5.

A dring literd is a primary expresson. Its type is origindly “aray of char" (for wide-char
grings, “aray of wchar_t"), but following the rule given in Par.A.7.1, this is usdly
modified to “pointer to char'' (wchar _t) and the result is a pointer to the first character in the
dring. The converson aso does not occur in certain initidizers, see Par.A.8.7.

A paentheszed expresson is a primary expresson whose type and vaue are identicd to
those of the unadorned expresson. The precedence of parentheses does not affect whether the
expression isan lvaue.

A.7.3 Postfix Expressions
The operators in postfix expressions group |eft to right.

postfix-expression:
primary-expression
postfix-expression[expression|
postfix-express on(ar gument-expression-listyy)
postfix-expression.identifier
postfix-expression- >identifier
postfix-expression++
postfix-expression- -

178

argument-expression-list:
assignment-expression
assignment-expression-list, assignment-expression

A.7.3.1 Array References

A podfix expresson followed by an expresson in square brackets is a podfix expresson
denoting a subscripted array reference. One of the two expressions mugt have type “pointer to
T, where T is some type, and the other must have integrd type the type of the subsoript
expresson is T. The expresson E1[E2] is identicd (by definition) to *((EL)+(E2)). See
Par.A.8.6.2for further discussion.

A.7.3.2 Function Calls

A function cdl is a podfix expresson, cdled the function designator, followed by parentheses
containing a possbly empty, comma-separated lig of assignment expressons (Par.A7.17),
which conditute the arguments to the function. If the podtfix expresson condsts of an
identifier for which no dedaraion exids in the current scope, the identifier is implicitly
declared asif the declaration

extern int identifier();

had been given in the innermogt block containing the function cdl. The podfix expresson
(after possible explicit declaration and pointer generation, Par.A7.1) mugt be of type pointer
to function returning T," for some type T, and the vaue of the function call hastype T.

In the firgt edition, the type was redtricted to ““function,” and an explicit * operator was required to cal
through pointers to functions. The ANSI dandard blesses the practice of some edsting compilers by
permitting the same syntax for cals to functions and to functions specified by pointers. The older
syntax is il usable.

The term argument is used for an expresson passed by a function cdl; the term parameter is
used for an input object (or its identifier) received by a function definition, or described in a
function declaration. The tems “actud agument (parameter)” and “formd argument
(parameter)” respectively are sometimes used for the same ditinction.

In preparing for the cdl to a function, a copy is made of each argument; dl argument-passing
is drictly by vdue A function may change the vadues of its parameter objects, which ae
copies of the argument expressons, but these changes cannot affect the vaues of the
aguments. However, it is possble to pass a pointer on the underganding that the function
may change the value of the object to which the pointer points.

There are two dyles in which functions may be declared. In the new gdyle the types of
parameters are explict and are pat of the type of the function; such a dedaation os dso
cdled a function prototype In the old dSyle, parameter types are not specified. Function
declaration isissued in Pars.A.8.6.3and A.10.1

If the function dedaration in scope for a cdl is old-dyle then default argument promotion is
goplied to each agument as follows integrad promotion (Par.A.6.1) is performed on each
argument of integrd type, and each float argument is converted to doubl e. The effect of the
cdl is undefined if the number of arguments disagrees with the number of parameters in the
definition of the function, or if the type of an argument after promotion disagrees with thet of
the corresponding parameter. Type agreement depends on whether the function's definition is

19

new-dyle or od-dyle If it is old-dyle then the comparison is between the promoted type of
the arguments of the cdl, and the promoted type of the parameter, if the definition is new-
dyle, the promoted type of the argument mugst be that of the parameter itsdf, without
promotion.

If the function dedlaration in scope for a cdl is new-gyle, then the arguments are converted,
as if by assgnment, to the types of the corresponding parameters of the function's prototype.
The number of arguments must be the same as the number of explicitly described parameters,
unless the declaation's parameter lig ends with the dlipss notation (, ...). In that case, the
number of arguments must equa or exceed the number of paramees traling arguments
beyond the explicitly typed parameters suffer default argument promotion as described in the
preceding paragrgph. If the definition of the function is old-gyle then the type of each
paameter in the definition, after the definition paramee’s type has undergone argument
promotion.

Thee rules are especidly complicated because they must cater to a mixture of old and new-style
functions. Mixtures are to be avoidedif possible.

The order of evduaion of arguments is unspecified, teke note that various compilers differ.
However, the arguments and the function desgnator are completely evauaed, including dl
Sde effects, before the function is entered. Recursive calsto any function are permitted.

A.7.3.3 Structure References

A podfix expresson followed by a dot followed by an identifier is a podtfix expresson. The
fird operand expresson must be a dructure or a union, and the identifier must name a
member of the dructure or union. The vaue is the named member of the dSructure or union,
and its type is the type of the member. The expression is an Ivaue if the fird expression is an
Ivaue, and if the type of the second expression is not an array type.

A podfix expresson followed by an arow (built from - and >) followed by an identifier is a
postfix expresson. The first operand expresson must be a pointer to a sructure or union, and
the identifier must name a member of the Sructure or union. The rexllt refers to the named
member of the dructure or union to which the pointer expresson points, and the type is the
type of the member; the result isan Ivaueif the typeis not an array type.

Thus the expresson E1->Ms is the same as (*E1). Mos. Structures and unions are discussed
inPar.A.8.3

In the firgt edition of this book, it was aready the rule that a member name in such an expresson had to
belong to the structure or union mentioned in the postfix expresson; however, a note admitted that this
rulewas not firmly enforced. Recent compilers, and ANSI, do enforceiit.

A.7.3.4 Postfix I ncrementation

A podfix expression followed by a ++ or -- operaor is a podtfix expresson. The vdue of the
expresson is the vdue of the operand. After the vaue is noted, the operand is incremented ++
or decremented -- by 1. The opeand must be an Ivdue see the discusson of additive
operators (Par.A.7.7) and assgnment (Par.A.7.17) for further condraints on the operand and
details of the operation. Theresult isnot an Ivaue.

A.7.4Unary Operators

Expressonswith unary operators group right-to-left.

unary-expression:
postfix expression
++Unary expression
--unary expression
unary-operator cast-expression
si zeof Unary-expression
si zeof (type-name)

unary operator: one of
&* +- ~ 1

A.7.4.1 Prefix Incrementation Operators

A unay expression followed by a ++ or -- operaor is a unay expresson. The operand is
incremented ++ or decremented -- by 1. The vaue of the expresson is the vdue &fter the
incrementation (decrementetion). The operand must be an Ivdue see the discusson of
additive operators (Par.A.7.7) and assgnment (Par.A.7.17) for further condraints on the
operands and details of the operation. The result isnot an Ivaue.

A.7.4.2 Address Operator

The unary operator & takes the address of its operand. The operand must be an Ivaue referring
nather to a bit-fiedd nor to an object declared as register, or must be of function type. The
result is a pointer to the object or function referred to by the Ivaue. If the type of the operand
isT, thetype of the resullt is “pointer to T."

A.7.4.3 Indirection Operator

The unay * operator denotes indirection, and returns the object or function to which its
operand points. It is an Ivadue if the operand is a pointer to an object of aithmetic, structure,
union, or pointer type. If the type of the expresson is “pointer to T," the type of the result is
T.

A.7.44 Unary Plus Operator

The operand of the unary + operator must have arithmetic type, and the result is the vaue of
the operand. An integrd operand undergoes integrd promotion. The type of the result is the
type of the promoted operand.

The unary + is new with the ANS! standard. It was added for symmetry with the unary - .

A.7.45 Unary Minus Oper ator

The operand of the unary - operator must have aithmetic type, and the result is the negative
of its opaand. An integrd operand undergoes integrd promotion. The negative of an
undgned quantity is computed by subtracting the promoted vaue from the largest vdue of the
promoted type and adding one; but negative zero is zero. The type of the result is the type of
the promoted operand.

A.7.4.6 One's Complement Operator

181

The operand of the ~ operator must have integrd type, and the result is the oné's complement
of its operand. The integra promotions are performed. If the operand is unsgned, the result is
computed by subtracting the value from the largest value of the promoted type. If the operand
is sgned, the result is computed by converting the promoted operand to the corresponding
unsigned type, goplying ~, and converting back to the signed type. The type of the result is the
type of the promoted operand.

A.7.4.7 Logical Negation Operator

The operand of the ! operator must have arithmetic type or be a pointer, and the reault is 1 if
the value of its operand compares equa to 0, and 0 otherwise. The type of the result isi nt .

A.7.4.8 Sizeof Operator

The si zeof operator yidds the number of bytes required to dtore an object of the type of its
operand. The operand is either an expresson, which is not evauated, or a parenthesized type
name. When si zeof is goplied to a char, the result is 1; when gpplied to an aray, the reault is
the totd number of bytes in the array. When gpplied to a Structure or union, the result is the
number of bytes in the object, including any padding required to make the object tile an aray:
the size of an aray of n dements is n times the Sze of one dement. The operator may not be
goplied to an operand of function type, or of incomplete type, or to a hit-fidd. The result is an
undggned integrd condant; the paticular type is implementation-defined. The standard heeder

<st ddef . h> (See gopendix B) definesthistypeassi ze_t.
A.75Cads

A unary expresson preceded by the parenthesized name of a type causes converson of the
vaue of the expresson to the named type.

cast-expression:
unary expression
(type-name) cast-expression

This condruction is cdled a cast. The names are described in Par.A.8.8. The effects of
conversonsare described in Par.A.6 An expresson with acast isnot an Ivaue,

A.7.6 Multiplicative Operators
Themultiplicative operators*, / , and %group left-to-right.

multiplicative-expression:
multi plicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression %cast-expression

The operands of * and / must have aithmetic type; the operands of % must have integrd type.
The usud aithmetic conversons are peformed on the operands, and predict the type of the
result.

Thebinary * operator denotes multiplication.

182

The binary / operator yields the quotient, and the % operator the remainder, of the divison of
the firs operand by the second; if the second operand is O, the result is undefined. Otherwise,
it is dways true that (a/b)*b + a% is equd to a. If both operands are non-negative, then the
remander is nonnegdive and smdler than the divisor, if not, it is guaranteed only that the
absolute vaue of the remainder is smdler than the absolute vaue of the divisor.

A.7.7 AdditiveOperators

The additive operators + and - group left-to-right. If the operands have aithmetic type the
usud aithmetic conversons are peformed. There are some additiond type posshilities for
each operator.

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

The result of the + operator is the sum of the operands. A pointer to an object in an array and a
vaue of any integrd type may be added. The ldter is converted to an address offst by
multiplying it by the sze of the object to which the pointer points The sum is a pointer of the
same type as the origind pointer, and points to ancther object in the same aray, gopropriatey
offset from the origind object. Thus if P is a pointer to an object in an aray, the expresson
P+1 is a pointer to the next object in the array. If the sum pointer points outsde the bounds of
the array, except a the first location beyond the high end, the result is undefined.

The provision for pointers just beyond the end of an aray is new. It legitimizes a common idiom for
looping over the dements of an array .

The result of the - operator is the difference of the operands. A vaue of any integra type may
be subtracted from a pointer, and then the same conversons and conditions as for addition

aoply.

If two pointers to objects of the same type are subtracted, the result is a Sgned integrd vaue
representing the displacement between the pointedto objects pointers to successve objects
differ by 1. The type of the result is defined as ptrdiff_t in the standard header
<stddef.h>. The vdue is undefined unless the pointers point to objects within the same
aray; however, if Ppointsto thelast member of an array, then (P+1) - Phasvaue 1.

A.7.8 Shift Operators

The shift operators << and >> group left-to-right. For both operators, each operand must be
integrdl, and is subject to integrd the promotions. The type of the reault is that of the
promoted left operand. The result is undefined if the right operand is negive, or greater than
or equa to the number of bitsin the left expression's type.

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

The vaue of El<<E2 is E1 (interpreted as a bit pattern) |eft-shifted E2 bits, in the dosence of
overflow, this is equivdent to muitiplicstion by 252 The vaue of E1>>E2 is El right-shifted

183

E2 bit postions The right shift is equivdent to divison by 2% if E1 is undgned or it has a
non-negative value; otherwise the result isimplementation-defined.

A.7.9Relational Operators

The rdationd operaors group left-toright, but this fact is not useful; a<b<c is parsed as
(a<b) <c, and evaluatesto either O or 1.

relational -expression:
shiftexpression
relational-expression < shiftexpresson
relational-expression > shift-expression
relational -expression <= shift-expression
relational -expression >=shift-expression

The operators < (less), > (greater), <= (less or equd) and >= (greater or equd) dl yield O if the
specified relation is fdse and 1 if it is true The type of the result is int. The usud arithmetic
conversons are peformed on aithmetic operands. Pointers to objects of the same type
(ignoring any qudifiers) may be compared; the result depends on the rddive locations in the
address space of the pointedto objects. Pointer comparison is defined only for parts of the
same object; if two pointers point to the same smple object, they compare equd; if the
pointers are to members of the same dructure, pointers to objects declared later in the
dructure compare higher; if the pointers refer to members of an aray, the comparison is
equivdent to comparison of the the corresponding subscripts. If P points to the last member of
an aray, then P+1 compares higher than P, even though P+1 points outsde the aray.
Otherwise, pointer comparison is undefined.

These rules dightly liberdlize the redrictions stated in the first edition, by permitting comparison of
pointers to different members of a sructure or union. They aso legdize compaison with a pointer just
off the end of an array.

A.7.10 Equality Operators

equality-expression:
relational-expression
equality-expression == relational -expression
equality-expression ! = relational-expression

The == (equd to) and the ' = (not equa to) operators are andogous to the relaiond operators
except for ther lower precedence. (Thus a<b == c<d iS 1 whenever a<b and c<d have the
same truth~vaue))

The equdity operators follow the same rules as the rdationd operators, but permit additiond
posshilities a pointer may be compared to a condant integrd expresson with vaue O, or to a
pointer tovoi d. See Par.A.6.6

A.7.11 Bitwise AND Oper ator
AND-expression:

equality-expression
AND-expression & equality-expression

184

The usud aithmetic conversons are performed; the result is the bitwise AND function of the
operands. The operator gpplies only to integral operands.

A.7.12 Bitwise Exclusive OR Operator

exclusive-OR-expression:
AND-expression
exclusive-OR-expression ~ AND-expression

The usud aithmetic conversons ae peformed; the result is the hitwise excdusve OR
function of the operands. The operator gpplies only to integral operands.

A.7.13 Bitwise Inclusive OR Operator

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

The usud aithmetic conversons ae peformed;, the result is the bitwise indusve OR
function of the operands. The operabor goplies only to integrd operands.

A.7.14 Logical AND Operator

logical-AND-expression:
inclusive-OR-expression
logi cal- AND-expression && inclusive-OR-expression

The && operaor groups left-to-right. It returns 1 if both its operands compare unequd to zero,
0 otherwise. Unlike & && guarantees left-to-right evauation: the fird operand is evauated,
including dl dde effects, if it is equd to O, the vaue of the expresson is 0. Othawise, the
right operand is evauated, and if it isequd to O, the expresson's vdueis 0, otherwise 1.

The operands need not have the same type, but each must have arithmetic type or be a pointer.
Theresultisint .

A.7.15 Logical OR Operator

logical-OR-expression:
logical-AND-expression
logical-OR-expression | | logical-AND-expression

The || operator groups left-toright. It returns 1 if ether of its operands compare unequd to
zeo, and O othewise Unlike |, || guarantees left-toright evadudion: the fird operand is
evduaed, including dl dde effects if it is unequd to O, the vdue of the expression is 1.
Otherwise, the right operand is evaduated, and if it is unequd to O, the expresson's vaue is 1,
otherwise 0.

The operands need not have the same type, but each must have arithmetic type or be a pointer.
Theresultisint .

A.7.16 Conditional Operator

conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

The fird expresson is evauated, induding dl dde efects if it compares unequa to O, the
result is the vaue of the second expression, otherwise that of the third expresson. Only one of
the second and third operands is evauated. If the second and third operands are aithmetic,
the usud arithmetic conversons are performed to bring them to a common type, and that type
is the type of the result. If both are void, or structures or unions of the same type, or pointers
to objects of the same type, the result has the common type. If one is a pointer and the other
the congtant O, the 0 is converted to the pointer type, and the result has that type. If one is a
pointer to void and the other is another pointer, the other pointer is converted to a pointer to
voi d, and that isthe type of the result.

In the type comparison for pointers any type qudifiers (Par.A.8.2) in the type to which the
pointer points are inggnificant, but the result type inherits qudifiers from both ams of the
conditiond.

A.7.17 Assgnment Expressons
There are saverd assignment operators, al group right-to-left.

assignmentexpression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
=*= [= O 4= -= <<= >>= &= = | =

All require an lvdue as left operand, and the lvdue must be modifigble: it must not be an
argy, and must not have an incomplete type, or be a function. Also, its type must not be
qudified with const ; if it is a Sructure or union, it must not have any member or, recursvely,
submember qudified with const. The type of an assgnment expresson is tha of its left
operand, and the vaue is the vaue dored in the left operand after the assgnment has taken
place.

In the dample assignment with =, the vaue of the expresson replaces that of the object
referred to by the Ivdue. One of the following must be true: both operands have aithmetic
type, in which case the right operand is converted to the type of the left by the assgnment; or
both operands & dructures or unions of the same type or one operand is a pointer and the
other is a pointer to voi d, or the left operand is a pointer and the right operand is a constant
expresson with vaue O; or both operands are pointers to functions or objects whose types are
the same except for the possible absence of const or vol ati | e in the right operand.

An expresson of the foorm E1 op= E2 is equivdlent to E1 = E1 op (E2) except that E1 is
evauaed only once.

A.7.18 Comma Operator
expression:

assignment-expression
expression , assignment-expression

186

A par of expressons separdted by a comma is evauated left-to-right, and the vadue of the left
expresson is discarded. The type and vaue of the result are the type and vaue of the right
opeand. All dde effects from the evduation of the left-operand are completed before
beginning the evaduaion of the right operand. In contexts where comma is given a specid
meening, for example in ligs of function aguments (Par.A.7.3.2 and ligs of initidizers
(Par.A.8.7), the required syntectic unit is an assgnment expresson, 0 the comma operator
gopears only in aparenthetica grouping, for example,

f(a, (t=3, t+2), c)
has three arguments, the second of which has the vaue 5.

A.7.19 Congtant Expressons
Syntacticdly, a congant expression is an expression restricted to a subset of operators:

constant-expression:
conditional-expression

Expressons that evduate to a congat are required in severd contexts. after case, as array
bounds and hit-fidd lengths as the vdue of an enumeraion condant, in initidizers and in
certain preprocessor expressons.

Condant expressons may not contain assgnments increment or decrement operators,
function cdls, or comma opeaors except in an opeand of sizeof. If the congtant
expression is required to be integrd, its operands must condst of integer, enumeration,
character, and floating condants, casts must specify an integrd type and any floating
condants must be cast to integer. This necessaily rules out arays, indirection, addressof,
and structure member operations. (However, any operand is permitted for si zeof .)

More latitude is permitted for the condant expressons o initidizers, the operands may be
any type of condant, and the unary & operaor may be gpplied to externd or ddic objects, and
to externad and datic arrays subscripted with a congant expresson. The unary & operator can
d be gplied impliatly by appesrance of unsubscripted arays and functions. Initidizers
must evauate ether to a condant or to the address of a previoudy declared externd or datic
object plus or minus a condant.

Less latitude is dlowed for the integrd condtant expressions after #if; sizeof expressons,
enumeration congtants, and casts are not permitted. SeePar.A.12.5.

A.8 Declarations

Dedaations specify the interpretation given to each identifier; they do not necessarily reserve
dorage associated with the identifier. Declarations that reserve dorage are cdled definitions.
Dedaations havetheform

declaration:
declaration-specifiers init-declarator -list oy;

The dedaaors in the init-declaator lig contan the identifies being declaed;, the
declaration-gpecifiers consst of a sequence of type and storage class pecifiers.

declaration-specifiers
storage-class-specifier declaration-specifier sy
type-specifier declaration-specifier sy
type-qualifier declaration-specifier sy

init-declarator -list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator =initializer

Declarators will be discussed later (Par.A.8.5); they contain the names being declared. A
declaration must have a least one declarator, or its type specifier must declare a dructure tag,
aunion tag, or the members of an enumeration; empty declarations are not permitted.

A.8.1 Storage Class Specifiers
The storage class specifiersare:

storageclass specifier:
auto
register
static
extern
t ypedef

The meaning of the storage classes were discussed in Par.A.4.4

The auto and regi ster specifiers give the declared objects automatic storage class, and may
be used only within functions. Such dedarations dso serve as definitions and cause dorage to
be resarved. A register decladion is eguivdent to an auto declaration, but hints that the
declared objects will be accessed frequently. Only a few objects are actudly placed into
regigers, and only cetan types are digible the redrictions are implementation-dependent.
However, if an object is dedared register, the unay & operator may not be gpplied to it,
expliatly or impliatly.

The rule that it is illegd to calculate the address of an object declared regi st er, but actudly taken to

beaut o, is new.

The static Specifier gives the declared objects datic dorage cdlass, and may be used ether
indde or outsde functions. Insde a function, this specifier causes sorage to be dlocated, and
serves as adefinition; for its effect outsde a function, seePar.A.11.2.

A dedadion with extern, used indde a function, specifies that the storage for the declared
objectsis defined e sewhere; for its effects outsde a function, seePar.A.11.2.

The typedef Specifier does not reserve storage and is caled a storage class spedifier only for
syntactic convenience; it is discussed in Par.A.8.9

188

At mogt one dorage class specifier may be given in a dedadtion. If none is given, these rules
ae ud: objects declared ingde a function are taken to be aut o; functions declared within a
function are taken to be extern; objects and functions declared outsde a function are taken to
best ati ¢, with externd linkege. See Pars. A.10-A.11.

A.82Type Specifiers

Thetype-specifiersare

type specifier:
voi d
char
short
int
| ong
f1 oat
doubl e
si gned
unsi gned
struct-or-union-specifier
enumspecifier
typedef-name

At mogt one of the wards 1 ong or short may be specified together with int; the meaning is
the same if int is not mentioned. The word | ong may be specified together with doubl e. At
mos one of signed Or unsigned may be specified together with int or any of its short or
I ong varieties or with char. Either may appear done in which case int is undersood. The
signed specifier is useful for forcing char objects to cary a dgn; it is pemissble but
redundant with other integrd types.

Otherwise, & mogt one type-specifier may be given in a declardtion. If the type-specifier is
missing from adeclaration, itistakentobeint .

Typesmay aso be qudified, to indicate specia properties of the objects being declared.

type-qualifier:
const
volatile

Type qudifiers may appear with any type specifier. A const object may be initidized, but not
thereafter assgned to. Thee ae no implementaiiondependent semantics for vol atile
objects.

The const axd vol ati | e propeties are new with the ANSI standard. The purpose of const is to
announce objects that may be placed in readonly memory, and perhaps to increase opportunities for
optimization. The purpose of vol atil e is to force an implementation to suppress optimization that
could otherwise occur. For example, for a machine with memory-mapped input/output, a pointer to a
device regiser might be declared as a pointer to vol atile, in order to prevent the compiler from
removing apparently redundant references through the pointer. Except that it should diagnose explicit
attamptsto change const objects, acompiler may ignore these qudifiers.

A.8.3 Structureand Union Declar ations

189

A dructure is an object congging of a ssquence of named members of various types. A union
is an object that contains, a different times, any o severd members of various types.
Structure and union specifiers have the same form.

struct-or-union-specifier:
struct-or-union identifier ox{ struct-declaration-list }
struct-or-union identifier

struct-or-union:
struct
uni on

A dgructdeclaation-lig is a sequence of declarations for the members of the dructure or
union:

struct-declaration-list:
struct declaration
struct-declaration-list struct declaration

struct-declaration: specifier-qualifier-list struct-declarator -list;

specifier-qualifier-ligt:
type-specifier specifier-qualifier-listox
type-qualifier specifier-qualifier-listoy

struct-declarator -ligt:
struct-declarator
struct-declarator-list , struct-declarator

Usudly, a druct-declarator is just a declarator for a member of a dructure or union. A
dructure member may dso conds of a specified number of bits Such a member is dso cdled
abit-field; itslength is st off from the declarator for the field name by a colon.

struct-declarator:
declarator ~ declarator oy : constant-expression

A type specifier of the form
struct-or-union identifier { struct-declaration-list }

declares the identifier to be the tag of the Structure or union Specified by the list. A subsequent
declaration in the same or an inner scope may refer to the same type by usng the tag in a
specifier without the list:

struct-or-union identifier

If a specifier with a tag but without a list gppears when the tag is not declared, an incomplete
type is specified. Objects with an incomplete Structure or union type may be mentioned in
contexts where their Sze is not needed, for example in dedaations (not definitions), for
specifying a pointer, or for credting a typedef , but not otherwise. The type becomes complete
on occurrence of a subsequent specifier with that tag, and containing a declaration list. Even

190

in spedifiers with a lig, the Sructure or union type beng dedared is incomplete within the
ligt, and liecomes complete only at the} terminating the specifier.

A dructure may not contan a member of incomplete type. Therefore it is impossble to
dedare a dructure or union containing an indance of itsdf. However, besdes giving a name
to the sructure or union type tags dlow definition of sdf-referentid structures; a structure or
union may contain a pointer to an indance of itsdlf, because pointers to incomplete types may
be declared.

A very specid rule gppliesto dedarations of the form
druct-or-union identifier;

that declare a dructure or union, but have no dedlaration lis and no declarators. Even if the
identifier is a dructure or union tag dreedy declared in an outer scope (Par.A.11.1), this
declaration mekes the identifier the tag of a new, incompletdy-typed dructure or union in the
current scope.

This recondite is new with ANSI. It is intended to deal with mutually-recursive structures declared in an
inner scope, but whose tags might already be declared in the outer scope.

A dructure or union specifier with a list but no tag creates a unique type; it can be referred to
directly only in the declaration of which it isa part.

The names of members and tags do not conflict with each other or with ordinary variables. A
member name may not appear twice in the same dructure or union, but the same member
name may be usad in different sructures or unions.

In the first edition of this book, the names of structure and union members were not associated with
their parent. However, this association became common in compilerswell before the ANSI standard.

A nonfidd member of a Sructure or union may have any object type A fiddd member (which
need not have a decdlarator and thus may be unnamed) has type int, unsigned int, or
signed int, and is interpreted as an object of integrd type of the gpecified length in bits
whether an int fidd is trested as dgned is implementation-dependent. Adjacent fidd
members of dructures ae packed into implementation-dependent dorage units in an
implementation-dependent direction. When a fidd following another fidd will not fit into a
patidly-filled gorage unit, it may be it between units, or the unit may be padded. An
unnamed fidd with width O forces this padding, so thet the next fidd will begin a the edge of
the next dlocation unit.

The ANS gandard makes fidds even more implementation-dependent than did the first edition. It is
advisshle to read the language rules for doring hitfiedds as “implementation-dependent” without
qualification. Structures with hit-fields may be used as a portable way of atempting to reduce the
sorage required for a sructure (with the probable cost of increasing the ingtruction space, and time,
needed to access the fields), or as a non-portable way to describe a storage layout known a the hit-
level. In the second case, it is necessary to understand the rules of the local implementation.

The members of a dructure have addresses increasing in the order of ther declarations. A
non-fidd member of a dructure is digned a an addressng boundary depending on its type
therefore, there may be unnamed holes in a dructure. If a pointer to a dructure is cast to the
type of a pointer to itsfirst member, the result refers to the first member.

191

A union may be thought of as a dSructure dl of whose members begin a offsst 0 and whose
gze is aufficient to contain any of its members. At most one of the members can be sored in a
union a any time. If a pointr to a union is ca to the type of a pointer to a member, the result
refers to that member.

A dmple example of a structure declaration is

struct tnode {
char tword[20];
int count;
struct tnode *left;
struct tnode *right;
}
which contains an aray of 20 characters, an integer, and two pointers to Smilar structures.
Once this declaration has bene given, the declaration

struct tnode s, *sp;
declares s to be a dructure of the given sort, and sp to be a pointer to a structure of the given
sort. With these declarations, the expression

Sp- >count

refersto thecount fidd of the sructure to which sp points

s.left
refers to the left subtree pointer of the Structures, and

s.right->tword[0]
refersto the first character of thet word member of the right subtree of s.

In generd, a member of a union may not be ingoected unless the vaue of the union has been
assgned usng the same member. However, one specid guarantee smplifies the use of
unions if a union contains severd dructures that share a common initid sequence, and the
union currently contains one of these dructures, it is permitted to refer to the common initid
part of any of the contained structures. For example, the following isalegd fragment:

uni on {
struct {
int type;
P
struct {
int type;
i nt intnode;
}oni;
struct {
int type;
float fl oatnode;
} nf;
Py

u.nf.type = FLQAT;
u. nf. fl oat node = 3.14;

i.1.‘.(u. n.type == FLQAT)
. sin(u.nf.floatnode) ...

A.8.4Enumerations

192

Enumerations are unique types with vaues ranging over a st of named condants cdled
enumerators. The form of an enumeraion specifier borrows from that of dSructures and
unions.

enumspecifier:
enumidentifieroy { enumerator-list }
enumidentifier

enumerator-list:
enumerator
enumerator-list , enumerator

enumerator:
identifier
identifier = constant-expression

The identifiers in an enumerator lig are declared as condants of type int, and may appear
wherever conglants are required. If no enumerdions with = appear, then the vaues of the
corresponding congants begin & O and increese by 1 as the declardtion is read from left to
rignt. An enumerator with = gives the associaied identifier the vaue specified; subsequent
identifiers continue the progression from the assgned vadue.

Enumerator names in the same scope mug dl be digtinct from each other and from ordinary
variable names, but the values need not be ditinct.

The role of the identifier in the enum-specifier is andogous to that of the Structure tag in a
sruct-specifier; it names a paticular enumeration. The rules for enum-specifiers with and
without tags and ligs are the same as those for dructure or union Specifiers, except that
incomplete enumerdtion types do not exis; the tag of an enumspecifier without an
enumerator list must refer to an in-scope specifier with alist.

Enumerations are new sinee the firg edition of this book, but have been pat of the language for some
years.

A.85Declarators
Declarators have the syntax:

declarator:
pointeroy direct-declarator

directdeclarator:
identifier
(declarator)
direct-declarator [constant-expressionyy]
direct-declarator (parameter-type-lis)
direct-declarator (identifier-listox)

pointer:
* type-qualifier-listyy
* type-qualifier-listyy pointer

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

The dructure of declarators resembles that of indirection, function, and aray expressons, the
grouping isthe same.

A.8.6 Meaning of Declarators

A lig of decdlaators appears dfter a sequence of type and Storage class specifiers. Each
declarator declares a unique main identifier, the one that appears as the firg dternative of the
production for direct-declarator. The storage class specifiers goply directly to this identifier,
but its type depends on the form of its declarator. A declarator is read as an assartion that
when its identifier gopears in an expresson of the same form as the declardtor, it yidds an
object of the specified type.

Conddering only the type pats of the dedaaion specifiers (Par. A.8.2) and a particular
declarator, a declaration has the form T D" where T is a type and D is a declarator. The type
atributed to the identifier in the various forms of declarator is described inductively using this
notation.

Inadeclaration T Dwhere Dis an unedored identifier, the type of the identifier isT.
Inadeclaration T Dwhere Dhastheform
(D)

then the type of the identifier in D1 is the same as that of D. The parentheses do not dter the
type, but may change the binding of complex dedarators.
A.8.6.1 Pointer Declarators
Inadeclaration T Dwhere Dhastheform

* type-qualifier-ligtox D1
and the type of the identifier in the dedaation T D1 is “type-modifier T1," the type of the
identifier of D is “typemodifier type-qualifierig pointer to T." Qudifiers following * apply
to pointer itsdlf, rather than to the object to which the pointer points.

For example, congder the declaration

int *ap[];
Here, ap[] plays the role of D1; a dedaraion “int ap[]" (bdow) would give ap the type
Taray of int" the type-qudifier lig is empty, and the type-modifier is “aray of." Hence the
actud declaration gives ap the type “array to pointersto i nt ."

As other examples, the declarations

int i, *pi, *const cpi = & ;
const int ci =3, *pci;

14

declare an integer i and a pointer to an integer pi . The vaue of the condant pointer cpi may
not be changed; it will dways point to the same location, dthough the vaue to which it refers
may be dtered. The integer ci is condat, and may not be changed (though it may be
initidized, as here) The type of pci is “pointer to const int,"” and pci itsdf may be
changed to point to another place, but the vdue to which it points may not be dtered by
assigning throughpei .

A.8.6.2 Array Declarators

Inadeclaration T bwhere Dhastheform
DL [constant-expressionyyl

and the type of the identifier in the declaration T DL is “type-modifier 71" the type of the
identifier of D is “type-modifier aray of T." If the congtant-expression is present, it must have
integrd type, and vaue greater than 0. If the condant expresson specifying the bound is
missing, the array has an incomplete type.

An aray may be condructed from an aithmetic type, from a pointer, from a sructure or
union, or from another array (to generate a multi-dimensond aray). Any type from which an
aray is condructed must be complete; it must not be an array of Structure of incomplete type.
This implies that for a multrdimengond aray, only the fird dimendon may be missng. The
type of an object of incomplete aray type is completed by another, complete, declaration for
the object (Par.A.10.2), or by initidizing it (Par.A.8.7). For example,

float fa[17], *afp[17];
declares an array of f1 oat numbersand an aray of pointerstofl oat numbers. Also,

static int x3d[3][5][7];
declares a datic three-dimensond aray of integers, with rank 3 X 5 X 7. In complete detall,
x3d is an aray of three items. each item is an aray of five arays each of the latter arays is

an aray of seven integers. Any of the expressons x3d, x3d[i], x3d[i][j], x3d[i][j][k]
may reasonably appear in an expression. The firg three have type “aray,”, the last has type
int. More specificaly, x3d[i][j] is an aray of 7 integers, and x3d[i] is an aray of 5

arrays of 7 integers.

The aray wubscripting operaion is defined so that EL[E2] is idetticd to *(E1+E2).
Therefore, despite its asymmelric gopearance, subscripting is a commutative operation.
Because of the converson rules that apply to + and to arays (ParsA6.6 A.7.1, A.7.7), if ELis
an array and E2 an integer, then E1[E2] refersto the E2-th member of E1.

In the example, x3d[i]1[j]1[k] is equivdent to *(x3d[i][j] + k). The first subexpresson
x3d[i][j] is converted by Par.A.7.1 to type pointer to aray of integers” by Par.A.7.7, the

addition involves multiplication by the sze of an integer. It follows from the rules that arays
are gored by rows (last subscript varies fastest) and that the fird subscript in the dedaration
helps determine the amount of dorage consumed by an aray, but plays no other pat in
subscript cdculations.

A.8.6.3 Function Declarators

In anew-gyle function dedlaration T bwhere Dhastheform

D1 (parameter -type-list)

and the type of the identifier in the declaration T D1 is “type-modifier T," the type of the
identifier of D is “type-modifier function with arguments parameter -type-list returning T."

The syntax of the parametersis

parameter -typeligt:
parameter -list
parameter-ligt, ...

parameter -ligt:
parameter -declaration
parameter-list, parameter -declaration

parameter -declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declarator gy

In the new-gyle declaration, the parameter list specifies the types of the parameters. As a

specid case, the declarator for a new-gyle function with no parameters has a parameter list
congging soley of the keyword voi d. If the parameter lig ends with an dlipss —, ..." then

the function may accept more arguments than the number of parameters explicitly described,
seePar.A.7.3.2

The types of parameters that are arrays or functions are dtered to pointers, in accordance with
the rules for parameter conversons, see Par.A.10.1. The only dtorage class specifier permitted
in a parameter's declaration is register, and this specifier is ignored unless the function
declarator heads a function dedfinition. Smilaly, if the dedaaors in the paameer
dedarations contain identifiers and the function dedarator does not head a function definition,
the identifiers go out of scope immediatdly. Abdract dedarators, which do not mention the
identifiers, are discussed in Par.A.8.8

In an dd-gtyle function declaration T bwhere Dhastheform

Di(identifier-listoy)
and the type of the identifier in the dedaration T D1 is “type-modifier T," the type of the
idertifier of D is Ttype-modifier function of unspecified arguments returning T." The
parameters (if present) havetheform

identifier-list:

identifier

identifier-ligt , identifier
In the oldgyle dedlarator, the identifier lis must be absent unless the dedlarator is used in the
head of a function definition Par.A.10.1). No information about the types of the parameters is
supplied by the declaration.

For example, the declaration

196

int £(), *fpi (), (*pfi)(); _ ' _ '
declares a function f returning an integer, a function fpi returning a pointer to an integer, and
a pointer pfi to a function returning an integer. In none of these are the parameter types

Specified; they are old-style.

In the new-gtyle declaration

int strcpy(char *dest, const char *source), rand(void);
strcpy IS a function returning int, with two arguments, the first a character pointer, and the
second a pointer to congtant characters. The parameter names are effectivdly comments. The
second function r and takes no arguments and returnsi nt .

Function declarators with parameter prototypes ae, by far, the most important language change

introduced by the ANS standard. They offer an advantage over the “old-style" declarators of the first

edition by providing error-detection and coercion of arguments across function cdls, but & a cost:
turmoil and confuson during their introduction, and the necessty of accomodating both forms. Some

syntactic ugliness was required for the sake of ompatibility, namely voi d as an explicit marker of
new-style functions without parameters.

The dlipsis notation ™, ..." for variadic functions is dso new, and, together with the macros in the
dandard header <stdarg. h>, formdizes a mechaniam that was officidly forbidden but unofficidly
condoned in thefirst edition.

These notations were adapted from the C++ language.
A.8.7 Initialization
When an object is dedared, its init-declarator may specify an initid vaue for the identifier

being dedaed. The initidizer is preceded by =, and is dthe an expresson, or a lig of
initidizers nested in braces. A lig may end with acomma, a nicety for neat formatting.

initializer:
assignment-expression
{ initializerdig }

{ initializerdis , }
initializer-list:
initializer

initializer-lig , initializer

All the expressons in the initidizer for a gatic object or aray must be condant expressons as
described in Par.A.7.19. The expressons in the initidizer for an auto Or register object or
aray must likewise be condant expressons if the initidizer is a braceenclosed list. However,
if the initidizer for an automatic object is a dngle expresson, it need not be a condant
expression, but must merdly have appropriate type for assgnment to the object.

The firgt edition did not countenance initidization of automatic structures, unions, or arrays. The ANSI
standard alows it, but only by constant constructions unless the initiaizer can be expressed by a smple
expression.

A datic object not explicitly initidized is initidized as if it (or its members) were assgned the
congant 0. Theinitid vaue of an autometic object not explicitly intidized is undefined.

197

The initidizer for a pointer or an object of aithmetic type is a sngle expresson, perhgps in
braces. The expression is assgned to the object.

The initidizer for a Sructure is ether an expresson of the same type, or a braceenclosed ligt
of initidizers for its members in order. Unnamed bit-fidd members are ignored, and are not
initidized. If there are fewer initidizers in the lig than members of the dructure, the trailing
members are initidized with 0. There may not be more initidizers than members. Unnamed
hit-fiedd members are ignored,and are not initidized.

The initidizer for an aray is a brace-endosed lig of initidizers for its members If the aray
has unknown sze, the number of initidizers determines the sze of the aray, and its type
becanes complete. If the array has fixed Sze, the number of initidizers may not exceed the
number of members of the aray; if there are fewer, the tralling members are initidized with
0.

As a specid caxe, a character aray may be initidized by a sring iterd; successve characters
of the dring initidize successve members of the aray. Smilaly, a wide character literd
(Par.A.2.6) may initidize an aray of type whar_t. If the aray has unknown sze the
number of characters in the dgring, induding the terminating null character, determines its
gze if its d9ze is fixed, the number of characters in the dring, not counting the terminating
null character, must not exceed the Sze of the array.

The initidizer for a union is either a sngle expresson of the same type, or a brace-enclosed
initidizer for the firg member of the union.

The firg edition did not adlow initidization of unions. The “first-member" rule is clumsy, but is hard to
generdlize without new syntax. Besides dlowing unions to be explicitly initidized in at least a primitive
way, this ANSI rule makes definite the semantics of atic unions not explicitly initialized.

An aggregate is a dructure or aray. If an aggregate contains members of aggregate type, the
initidization rules goply recursvey. Braces may be dided in the initidizaion as follows if
the initidizer for an aggregates member that itsdf is an aggregaie begins with a left brace,
then the succeding commaseparaed lig of initidizers initidizes the members of the
subaggregate; it is erroneous for there to be more initidizers than members. If, however, the
initidizer for a subaggregete does not begin with a left brace, then only enough dements from
the lig are taken into account for the members of the subaggregate; any remaining members
are |eft to initidize the next member of the aggregate of which the subaggregate is a part.

For example,

int x[] ={1, 3 5};
dedares and initidizes x as a l-dmendond aray with three members, snce no sze was
gpecified and there are three initidizers.

b
is a compledy-bracketed initidization: 1, 3 and 5 initidize the fird row of the aray y[0],
namdy y[0][0], y[O][1], and y[0][2]. Likewise the next two lines initidize y[1] and
y[2]. The initidizer ends early, and therefore the dements of y[3] ae initidized with O.
Precisely the same effect could have been achieved by

float y[4][3] ={
1, 3, 5 2, 4, 6, 3, 5 7

¥
The initidizer for y begins with a left brace, but that for y[0] does not; therefore three
eements from the lig are used. Likewise the next three are taken successvey for y[1] ad
fory[2] . Also,

float y[4][3] = {
{1h {2} {3} {4}

initializes the firgt column of y (regarded as atwo-dimensiond array) and leavesthe rest 0.

Firdlly,

char nsg[] = "Syntax error on line %\n";
shows a character aray whose members are initidized with a gring; its Sze includes the

terminating null character.

A.8.8 Typenames

In severd contexts (to specify type conversons explicitly with a ced, to declare parameter
types in function declarators, and as argument of sizeof) it is necessary to supply the name
of a data type. This is accomplished usng a type name, which is syntacticaly a declaration for
an object of thet type omitting the name of the object.

type-name:
specifier-qualifier-list abstractdeclarator 4y

abstract-declarator:
pointer
pointerqy direct-abstract-declarator

direct-abstract-declarator:
(abstract-declarator)
direct-abstract-declarator o [constant-expressiongy]
direct-abstract-declarator o (parameter -type-listyys)

It is possble to identify uniqudy the location in the abdrect-declarator where the identifier
would appear if the congruction were a declarator in a declaration. The named type is then the
same as the type of the hypotheticd identifier. For example,

i nt

int *

int *[3]

int (*)[]

int *()

int (*[1)(void)
name respectively the types “integer," “pointer to integer," “aray of 3 pointers to integers”
“pointer to an ungpecified number of integers” “function of unspecified parameters returning
pointer to integer,” and Taray, of ungecified dze of pointers to functions with no
parameters each returning an integer.”

A.89 Typedef

Decdlaations whose dorage class specifier is typedef do not declare objects ingtead they
defineidentifiers that name types. These identifiers are cdled typedef names.

typedef-name:
identifier

A typedef declaration atributes a type to each name among its declarators in the usud way
(see Par.A.8.6). Theredfter, each such typedef name is syntacticdly equivdent to a type
specifier keyword for the associated type.

For example, after

typedef |ong Bl ockno, *Bl ockptr;
typedef struct { double r, theta; } Conplex;
the condructions

Bl ockno b;

extern Bl ockptr bp;

Conpl ex z, *zp;
are legd declarations. The type of b is 1ong, that of bp is “pointer to 1 ong," and that of z is
the specified structure; zp is apointer to such asructure.

typedef does not introduce new types only synonyms for types that could be specified in
another way. In the example, b has the same type as any | ong object.

Typedef names may be redeclared in an inner scope, but a non-empty set of type specifiers
must be given. For example,

extern Bl ockno;
does not redeclare Bl ockno, but

extern int Bl ockno;
does.

A.8.10 Type Equivalence

Two type specifier lists are equivdent if they contan the same st of type specifiers, taking
into account that some specifiers can be implied by others (for example, 1 ong done implies
long int). Structures, unions, and enumerations with different tags are didinct, and a tagless
union, sructure, or enumeration specifies a unique type.

Two types are the same if their abstract declarators @ar.A.8.8), after expanding any typedef

types, and deleting any function parameter specifiers, are the same up to the equivaence of
type specifier ligs. Array sizes and function parameter types are significant.

A.9 Statements

Except as described, statements are executed in sequence. Statements are executed for their
effect, and do not have vaues. They fdl into severd groups.

Statement
label ed-statement
express on-statement
compound-statement
sel ection-statement
iteration-statement
jurmp-statement

A.9.1L abeled Statements
Statements may carry labd prefixes.

label ed-statement:

identifier : statement

case constant-expression : statement
defaul t : Statement

A labd congding of an identifier dedlares the identifier. The only use of an identifier labd is
as a target of goto. The scope of the identifier is the current function. Because labels have

ther own name spece, they do not interfere with other identifiers and cannot be redeclared.
SeeParA1lL

Case labds and default labels are used with the switch statement (Par.A.9.4). The condant
expresson of case must have integrd type.

Labelsthemsdves do not dter the flow of contral.
A.9.2 Expresson Statement
Mog statements are expression statements, which have theform

express on-statement
EXPressiOnyy;

Most expresson daements are assgnments or function cdls. All dde effects from the
expresson are completed before the next statement is executed. If the expression is missing,
the condruction is cdled a null Satement; it is often used to supply an empty body to an
iteration Statement to place alabd.

A.9.3 Compound Statement

So that severd daements can be used where one is expected, the compound statement (also
cadled “"block") is provided. The body of afunction definition is a compound statement.

compound-statement:
{ declaration-listyy Statement-lidtoy }

declaration-lidt:
declaration
declaration-list declaration

201

statement|ist:
statement
statement|ist satement

If an identifier in the declaration-lig was in scope outsde the block, the outer declaration is
suspended within the block (see Par.A.11.1), after which it resumes its force An identifier
may be declared only once in the same block. These rules gpply to identifiers in the same
name space (Par.A.11); identifiersin different name spaces are treated as distinct.

Initidization of automatic objects is performed each time the block is entered a the top, and
proceeds in the order of the dedarators. If a jump into the block is executed, these
initidizations are not peformed. Initidization of static objects are performed only once
before the program begins execution.

A.9.4 Sdection Statements
Sdection gatements choose one of severd flows of control.

selection-statement
i f (expression) statement
i f (expression) statementel se gatement
swi t ch (expression) statement

In both forms of the if Satement, the expresson, which must have aithmetic or pointer type,
is evduated, induding dl sde effects and if it compares unequa to O, the firg subgtatement
is executed. In the second form, the second subgtatement is executed if the expresson is O.
The el se ambiguity is resolved by connecting an el se with the last encountered el se-less i f
a the same block nesting leve.

The switch statement causes control to be transferred to one of severd Statements depending
on the vaue of an expresson, which must have integrd type. The substatement controlled by
a switch is typicadly compound. Any Statement within the substatement may be labded with
one or more case labds (Par.A.9.1). The contralling expresson undergoes integrd promotion
(Par.A.6.1), and the case congants are converted to the promoted type. No two of these case
condants associated with the same switch may have the same vaue after converson. There
may dso be a most one default label associated with a switch. Switches may be nested; a
case Or defaul t labd is associated with the smalest switch that containsit.

When the switch Statement is executed, its expresson is evduaed, incduding dl Sde effects,
and compared with each case congtant. If one of the case condants is equa to the value of the
expresson, control passes to the datement of the matched case labd. If no case congant
matches the expresson, and if there is a default labd, control passes to the labeed
datement. If no case maches, and if there is no defaul t, then none of the substatements of
the switich is executed.

In the first edition of this book, the controlling expresson of sw tch, and the case congtants, were
requiredtohave i nt type.

A .95 teration Statements

Iteration Statements pecify looping.

iteration-statement

whi | e (expression) statement

do statementwhi | e (expression);

for (EXPressiongy; EXPressionyy; EXpressionyy) statement

In the while and do Staements, the substatement is executed repeatedly so long as the vaue
of the expresson remans unequa to O; the expresson must have aithmetic or pointer type.
With while, the tes, induding al dde effects from the expresson, occurs before each
execution of the statement; with do, the test follows each iteration.

In the for daement, the fird expression is evaduated once, and thus specifies initidization for
the loop. There is no redriction on its type The second expresson mugt have aithmetic or
pointer type it is evauated before each iteration, and if it becomes equd to O, the for is
terminated. The third expresson is evauated dfter each iteration, and thus specifies a re
initdizetion for the loop. There is no redriction on its type. Sde-effects from each expresson
ae compleed immediatdy after its evdudion. If the subdatement does not contain
cont i nue, a satement

for (expressionl; expression2; expression3) statement

isequivaent to

expr essi onl;

whi | e (expression?) {
st at enent
expr essi on3;

}
Any of the three expressons may be dropped. A missing second expresson makes the
implied test equivaent to tesing a nonzero dement.

A.9.6 Jump statements
Jump satements transfer control unconditionaly.

jump-statement:
got o identifier;
conti nue;
br eak;
r et ur n EXPressiongyy;

In the goto dSaement, the identifier must be a labd (Par.A.9.1) located in the current
function. Control transfers to the labded statement.

A continue Saement may gopear only within an iteration statement. It causes control to pass
to the loopcontinuation portion of the smdlet endodng such datement. More precisdy,
within each of the statements

vhile (...) { do { for (...) {

contin: ; contin: ; contin: ;

} } while (...); }

acont i nue not contained in asmaller iteration satement isthe sameas got o conti n.

A break dSatement may gopear only in an iteration datement or a switch Satement, and
terminates execution of the smdlest enclosing such satement; control passes to the Statement
fallowing the terminated statement.

A function returns to its cdler by the return statement. When return is followed by an

expresson, the vaue is returned to the caler of the function. The expresson is converted, as
by assgnment, to the type returned by thefunction in which it appears.

Howing off the end of a function is equivdent to a return with no expression. In ether case
the returned value is undefined.

A.10 External Declarations

The unit of input provided to the C compiler is cdled a trandation unit; it condsts of a
sequence of externd declarations, which are either declarations or function definitions.

trandation-unit:
external-declaration
trandation-unit exter nal-declaration

external-declaration:
function-definition
declaration

The scope of externd dedlarations perssts to the end of the trandation unit in which they are
declared, just as the effect of declarations within the blocks perdsts to the end of the block.
The syntax of externd dedaations is the same as that of dl declarations, except that only at
this levd may the code for functions be given.

A.10.1 Function Definitions
Function definitions have the form

function-definition:
declaration-specifier sy declarator declaration-listoy, compound-statement

The only dorage-dass specifiers dlowed among the dedaation specifiers ae extern or
stati c; see Par.A.11.2 for the ditinction between them.

A function may return an aithmetic type, a dructure, a union, a pointer, or void, but not a
function or an aray. The dedaaor in a function declaration must specify explicitly that the
dedared identifier has function type that is it must contan one of the forms (see
Par.A.8.6.3).

direct-declarator (parameter -typelist)
direct-declarator (identifier-listoy)

where the directdedlarator is an identifier or a parenthesized identifier. In particular, it must
not achieve function type by means of a t ypedef .

™4

In the firg form, the definition is a new-dyle function, and its parameters, together with ther
types, ae declared in its parameter type lig; the dedaation-lig folowing the function's
declarator must be absent. Unless the parameter type list conssts soldy of voi d, showing that
the function takes no parameters, each declarator in the parameter type lig must contan an
identifier. If the parameter type lig ends with ~, ..." then the function may be cdled with
more arguments than parameters, the va arg macro mechanism defined in the gandard
header <stdarg.h> and described in Appendix B must be used to refer to the extra
arguments. Variadic functions must have &t least one named parameter.

In the second form, the definition is dd-syle the identifier lig names the parameters, while
the declaration lig attributes types to them. If no declaration is given for a paramder, its type
is taken to be int. The decdaation lig must dedare only paameters named in the lig,
initidization is not permitted, and the only storage-class specifier possbleisregi ster.

In both syles of function definition, the parameters are understood to be declared just after
the beginning of the compound statement condtituting the function's body, and thus the same
identifie's mugt not be rededared there (dthough they may, like other identifiers, be
redeclared in inner blocks). If a parameter is declared to have type “aray of type" the
declaration is adjused to reed “pointer to type" smilaly, if a parameter is declared to have
type “function reurning type" the dedaraion is adjused to read “pointer to function
returning type" During the cdl to a function, the arguments are converted as necessary and
assigned to the parameters, see Par.A.7.3.2

New-gtyle function definitions are new with the ANSI sandard. There is dso a sndl change in the
details of promotion; the first edition specified that the declarations of fl oat parameters were adjusted
to read doubl e. The difference becomes noticable when a pointer to a parameter is generated within a
function.

A complete example of a new-gtyle function definition is

int max(int a, int b, int c)

{
int m

m=(a>hb) ?a: b
return (m>c¢) ? m: c;

}
Here int is the declaration specifier; max(int a, int b, int c¢) is the function's

declarator, and { ... } is the block giving the code for the function. The corresponding old-
Syle definition would be

int mx(a, b, ¢
int a, b, c;

{

}
where now int max(a, b, c) is the dedaaor, and int a, b, c; isthe dedadion lis for

the parameters.

I* o0

A.10.2 External Declarations

Externd declarations specify the characterigtics of objects, functions ard other identifiers. The
teem “extend" refers to therr location outsde functions, and is not directly connected with

25

the extern keyword; the dorage class for an externdly-declared object may be left empty, or
it may be specified asext ern or st ati c.

Severd externd dedaraions for the same identifier may exig within the same trandation unit
if they agreein type and linkege, and if thereis a most one definition for the identifier.

Two decladtions for an object or function ae deemed to agree in type under the rule
discussed in ParA.8.10. In addition, if the dedlarations differ because one type is an
incomplete dructure, union, or enumeraion type (Par.A.83 and the other is the
corresponding completed type with the same tag, the types are teken to agree. Moreover, if
one type is an incomplete array type Par.A.8.6.2) and the other is a completed array type, the
types, if othewise identicd, are dso taken to agree Findly, if one type soecifies an old-gyle
function, and the other an otherwise identicd new-dyle function, with parameter dedarations,
the types are taken to agree.

If the fird externd declarator for a function or object includes the static specifier, the
identifier has internal linkage othewise it has external linkage Linkage is discussed in
Par.11.2

An externd declaation for an object is a definition if it has an initidizer. An externd object
dedlaration that does not have an initidizer, and does not contain the extern Specifier, is a
tentative definition. If a definition for an object appears in a trandation unit, any tentative
definitions are trested merely as redundant declarations. If no definition for the object appears
in the trandation unit, dl its tentative definitions become a sngle definition with initidizer 0.

Each object must have exactly one ddfinition. For objects with internd linkage, this rule
aoplies separatdly to each trandation unit, because interndly-linked objects are unique to a
trandation unit. For objects with externd linkage, it gpplies to the entire program.

Although the onedefinition rule is formulated somewhat differently in the first edition of this book, it is
in effect identicd to the one dated here. Some implementations relax it by generdizing the notion of
tentative definition. In the dternate formulation, which is usua in UNIX systems and recognized as a
common extendon by the Standard, dl the tentative definitions for an externdly linked object,
throughout al the trandation units of the program, are consdered together instead of in each trandation
unit separately. If a definition occurs somewhere in the program, then the tentative definitions become
merely declarations, but if no definition appears, then dl its tentative definitions become a definition
withinitializer O.

A.11 Scope and Linkage

A program need not dl be compiled a one time the source text may be kept in severd files
cottaning trandaion units and precompiled routines may be loaded from libraries
Communication among the functions of a program may be caried out both through cdls and
through manipulation of externd data

Therefore, there are two kinds of scope to condder: firdt, the lexical scope of an identifier
which is the region of the program text within which the identifier's characteridics ae
understood; and second, the scope associated with objects and functions with externd linkage,
which determines the connections between identifiers in separatdy compiled trandation units.

A.11.1 Lexical Scope

206

Identifiers fdl into saverd name spaces that do not interfere with one another; the same
identifier may be used for different purposes, even in the same scope, if the uses ae in
different name gpaces These classes ae objects, functions typedef names, and enum
condants, labels tags of dructures or unions, and enumerations, and members of each

gructure or union individudly.
These rules differ in several ways from those described in the first edition of this manua. Labels did not
previoudy have their own name space; tags of gructures and unions esch had a separate space, and in
some implementations enumerations tags did as well; putting different kinds of tags into the same space
is a new redriction. The most important departure from the first edition is that each structure or union
cregtes a separate name space for its members, so that the same name may agppear in severd different
structures. This rule has been common practice for severa years.

The lexicd scope of an object or function identifier in an externd dedlaration begins a the
end of its declarator and perdsts to the end of the trandation unit in which it gopears. The
scope of a parameter of a function definition begins a the dat of the block defining the
function, and perssts through the function; the scope of a parameter in a function declaration
ends a the end of the declarator. The scope of an identifier declared a the head of a block
begins a the end of its declarator, and persdts to the end of the block. The scope of a labd is
the whole of the function in which it gppears. The scope of a gructure, union, or enumeration
tag, or an enumeration condant, begins a its gopearance in a type specifier, and perddts to the
end of a trandation unit (for declardtions at the externd leve) or to the end of the block (for
declarations within afunction).

If an identifier is explicitly declared & the head of a block, induding the block condituting a
function, any declaaion of the identifier outdde the block is suspended until the end of the
block.

A.11.2Linkage

Within a trandaion unit, dl dedaaions of the same object or function identifier with
internd linkage refer b the same thing, and the object or function is unique to that trandation
unit. All declarations for the same object or function identifier with externd linkage refer to
the same thing, and the object or function is shared by the entire program.

As discussed in Par.A.10.2, the fird externd declaration for an identifier gives the identifier
internd linkage if the static specifier is used, externd linkage otherwise. If a dedlaration for
an identifier within a block does na include the extern Specifier, then the identifier has no
linkege and is unique to the function. If it does indude extern, and an externd declaration
for is active in the scope surrounding the block, then the identifier has the same linkage as the
externd declaration, and refers to the same object or function; but if no externd declaration is
vighlg, itslinkegeisexternd.

A.12 Preprocessing

A preprocessor peforms macro subdiitution, conditiond compilation, and incduson of named
files. Lines begnmning with # perhgos preceded by white space, communicate with this
preprocessor. The syntax of these lines is independent of the rest of the language they may
gopear anywhere and have effect that lasts (independent of scope) until the end of the
trandation unit. Line boundaries are dgnificant; eech line is andyzed individudly (bus see
Par.A.12.2 for how to adjoin lines). To the preprocessor, a token is any language token, or a
character sequence giving a file name as in the #include directive (Par.A.12.4); in addition,

207

any character not otherwise defined is taken as a token. However, the effect of white spaces
other than space and horizontd tab is undefined within preprocessor lines.

Preprocessng itsdf tekes place in severd logicdly successve phases that may, in a paticular
implementation, be condensed.

1

Fird, trigraph sequences as described in Par.A.12.1 are replaced by their equivdents.
Should the operating sysem environment require it, newline characters are introduced
between the lines of the sourcefile.

Each occurrence of a backdash character \ followed by a newline is ddeted, this
solicing lines (Par.A.12.2).

The program is split into tokens sgparated by white-space characters, comments are
replaced by a dngle space. Then preprocessng directives are obeyed, and macros
(ParsA.12.3-A.12.10) are expanded

Escape sequences in character congtants and dtring literdls (Pars. A.2.5.2, A.2.6) are
replaced by their equivaents; then adjacent string literals are concatenated.

The result is trandaed, then linked together with other programs and libraries, by
collecting the necessary programs and data, and connecting externd functions and
object referencesto their definitions.

A.12.1 Trigraph Sequences

The character sat of C source programs is contained within seventbit ASCII, but is a superset
of the 1ISO 646-1983 Invariant Code Sa. In order to enable programs to be represented in the
reduced s, dl occurrences of the following trigraph sequences ae replaced by the
corresponding single character. This replacement occurs before any other processing.

7= # 22([27< |
220\ 27)] 272>}

N 7?21 | ??- -~

No other such replacements occur.

Trigraph sequences are new with the ANSI standard.

A.12.2 Line Splicing

Lines that end with the backdash character \ ae folded by deeting the backdash and the
following newline character. This occurs before divison into tokens.

A.12.3 Macr o Definition and Expansion

A contral line of theform

defi ne identifier token-sequence

causes the preprocessor to replace subsequent indances of the identifier with the given
seguence of tokens leading and tralling white space around the token sequence is discarded.
A second #define for the same identifier is erroneous unless the second token sequence is
identicd to the first, where al white space separations are taken to be equivaent.

A lineof theform

def i ne identifier (identifier-list) token-sequence

208

where there is no space between the fird identifier and the (, is a macro definition with
paametes given by the identifier lis. As with the firgt form, leading and tralling white space
around the token sequence is discarded, and the macro may be redefined only with a
definition in which the number and spdling of parameters, and the token seguence, is
identical.

A control line of theform
undef identifier

causess the identifier's preprocessor definition to be forgotten. It is not erroneous to apply
#undef to an unknown identifier.

When a macro has been defined in the second form, subsequent textud instances of the macro
identifier followed by optiond white space, and then by (, a sequence of tokens separated by
commas, and a) conditute a cdl of the macro. The arguments of the cdl are the comma-
separated token sequences, commis that are quoted or protected by nested parentheses do not
separate arguments. During collection, arguments are not macreexpanded. The number of
aguments in the cal must mach the number of paameters in the definition. After the
aguments are isolated, leading and tralling white space is removed from them. Then the
token sequence resulting from each argument is subgtituted for each unquoted occurrence of
the corresponding parameter's identifier in the replacement token sequence of the macro.
Unless the parameter in the replacement sequence is preceded by #, or preceded or followed
by ## the argument tokens are examined for macro cdls and expanded as necessary, just
before insertion.

Two gpecid operators influence the replacement process Firs, if an occurrence of a
parameter in the replacement token sequence is immediately preceded by #, dring quotes ()
ae placed around the corresponding parameter, and then both the # and the parameter
identifier are replaced by the quoted argument. A \ character is inserted before each " or \
character that gppears surrounding, or ingde, a dring literd or character condant in the
argument.

Seoond, if the ddfinition token sequence for either kind of macro contains a ## operetor, then
just after replacement of the parameters, each ## is ddeted, together with any white soace on
gther Sde, 0 as to concatenate the adjacent tokens and form a new token. The effect is
undefined if invalid tokens are produced, or if the result depends on the order of processng of
the ## operators. Also, ## may not gopear & the beginning or end of a replacement token
sequence.

In both kinds of macro, the replacement token sequence is repeatedly rescanned for more
defined identifiers. However, once a given identifier has been replaced in a given expandon,
itisnot replaced if it turns up again during rescanning; ingtead it is left unchanged.

Even if the find vaue of a macro expanson begins with with #, it is not taken to be a
preprocessing directive.

The details of the macro-expanson process are described more precisdy in the ANSI standard than in
the first edition. The most important change is the addition of the # and ## operators, which make
guotation and concatenation admissble. Some of the new rules especidly those involving
concatendtion, are bizarre. (See example below.)

For example, this fadility may be used for ~manifest-congtants,” asin

#def i ne TABSI ZE 100

int tabl e[TABSI ZF] ;
Thedefinition

#define ABSDIFF(a, b) ((a)>(b) ? (a)-(b) : (b)-(a))
defines a macro to return the absolute vaue of the difference between its arguments. Unlike a
function to do the same thing, the arguments and returned vaue may have any aithmetic type
or even be pointers. Also, the arguments, which might have sde effects are evaduated twice,
once for the test and once to produce the vaue.

Given the definition
#define tenpfile(dir) #dir 96"
themacro cal tenpf i | e(/ usr/tmp) yidds

"[usr/tmp" "%"
which will subsequently be catenated into a single string. After

#define cat(x, y) X #Hty
the cdl cat(var, 123) yidds var123. However, the cdl cat(cat(1,2),3) is undefined:
the presence of ## prevents the arguments of the outer cdl from being expanded. Thus it
produces the token gring

cata (1 , 2)3
and) 3 (the catenation of the last token of the firg argument with the first token of the second)
isnot alegd token. If asecond leve of macro definition isintroduced,

#defi ne xcat (x, y) cat (x,Y)

things work more gmoothly; xcat(xcat(1, 2), 3) does produce 123, because the
expanson of xcat itsdf does not involve the## operator.

Likewise, ABSDI FF(ABSD FF(a, b), ¢) produces the expected, fully-expanded result.
A.12.4 FileInclusion
A control line of theform

incl ude <filename>

causes the replacement of that line by the entire contents of the file filename. The characters
in the name filename mug not indude > or newling, and the effect is undefined if it contains
anyof ", ', \,or /*. The named file is seerched for in a sequence of implementation-defined
places.

Smilaly, acontral line of the form

i ncl ude "filename"

210

saches fird in asocdion with the origind source file (a ddiberady implementation
dependent phrase), and if that search fals, then as in the firs form. The effect of usng ', \, or
/* in the filename remains undefined, but > is permitted.

Findly, adirective of the form
i ncl ude token-sequence

not matching one of the previous forms is interpreted by expanding the token sequence as for
normd text; one of the two forms with <...> or "..." mus result, and is then treated as
previoudy described.

#i ncl ude files may be nested.
A.12.5 Conditional Compilation

Pats of a program may be compiled conditiondly, according to the following schemdic
syntax.

preprocessor-conditional:
ifinetext elif-parts else-partyy #endi f

if-line:

i f constant-expression
ifdef identifier

i fndef identifier

eif-parts:
dif-linetext
eif-partsyx

if-line:
el i f constant-expression

else-part:
eselinetext

eseline
#el se

Each of the directives (if-ling dif-line, dseling and #endif) gopears done on a line. The
condant expressons in #f and subsequent #elif lines ae evduaed in order until an
expresson with a non-zero vaue is found; text following a line with a zero vaue is discarded.
The text following the successful drective line is trested normdly. “Text" here refers to any
meterid, incuding preprocessor lines, that is not part of the conditiond dructure; it may be
empty. Once a successful #if or #elif line has been found and its text processed, succeeding
#elif and #else lines, together with ther text, are discarded. If dl the expressons are zero,
and there is an #el se, the text following the #else is treated normaly. Text controlled by
inactive ams of the conditiond is ignored except for checking the nesting of conditionas.

21

The condant expresson in #f and #elif is subject to ordinary macro replacement.
Moreover, any expressons of theform

def i ned identifier
or
defined (identifier)
are replaced, before scanning for macros, by 1L if the identifier is defined in the preprocessor,

and by oL if not. Any identifiers remaning after macro expandon are replaced by oL. Findly,
eech integer condant is conddered to be suffixed with L, so that dl aithmetic is teken to be

long or unsgned long.

The resulting congant expresson (Par.A.7.19) is redricted: it must be integrd, and may not
contain si zeof , acag, or an enumeraion congant.

The control lines

#i f def identifier
#i f ndef identifier

are equivaent to

if defined identifier
#if ! definedidentifier

respectively.

#elif is new dnce the firg edition, athough it has been avalable is some preprocessors. The
def i ned preprocessor operator isaso new.

A.12.6 LineControl
For the benefit of other preprocessors that generate C programs, alinein one of the forms

i ne constant" filename"
| i ne constant

causss the compiler to believe, for purposes of eror diagnogtics, that the line number of the
next source line is given by te decimd integer constant and the current input file is named by

the identifier. If the quoted filename is absent, the remembered name does not change. Macros
in the line are expanded before it is interpreted.

A.12.7 Error Generation
A preprocessor line of theform

error token-sequencex

causes the preprocessor to write a diagnostic message that includes the token sequence.

A.12.8 Pragmas
A contral line of theform
pr agma token-sequenceyy

causes the preprocessor to peform an implementation-dependent action. An unrecognized
pragmaisignored.

A.12.9 Null directive
A contral line of theform
#

has no effect.

A.12.10 Predefined names

Severd identifiers are predefined, and expand to produce specid information. They, and dso
the preprocessor expansion operator def i ned, may not be undefined or redefined.

__LINE_ A decimd congant containing the current source line number.

__FILE__ A dring literd containing the name of the file being compiled.

__DATE A dgring litera containing the date of compiletion, intheform* Mmm dd yyyy"
__TIME__ A dring literl containing the time of compilation, in theform * hh: mm ss*

STOC Thecongant 1. It isintended thet this identifier be defined to be 1 only in gandard-
— 7 conforming implementations.

#error and #pragna are new with the ANSl sandard; the predefined preprocessor macros are new,
but some of them have been available in some implementations.

A.13 Grammar

Bdow is a recgpitulation of the grammar tha was given throughout the earlier pat of this
gppendix. It has exactly the same content, but isin different order.

The grammar has undefined termind symbols integer-constant, character-constant, floating-
constant, identifier, string, and enumeration-constant; the typewiter style words and
symbols ae terminds given literdly. This grammar can be trandformed mechanicdly into
input accepteble for an automatic parser-generator. Besdes adding whatever syntactic
marking is used to indicate dternatives in productions, it is necesary to expand the “one of"
condructions, and (depending on the rules of the pasa-generator) to duplicate each
production with an opt symbol, once with the symbol and once without. With one further
change, namely ddeting the production typedef-name: identifier and meking typedef-name a
termind symbol, this grammar is acceptable to the YACC parser-generaor. It has only one
conflict, generated by thei f - el se ambiguity.

trandation-unit:
external-declaration
trandation-unit external-declaration

external-declaration:
function-definition
declaration

function-definition:
declaration-specifiersyy declarator declaration-listyx compound-statement

declaration:
declaration-specifiers init-declarator -li Son;

declaration-lig:
declaration
declaration-list declaration

declaration-specifiers
storage-class-specifier declaration-specifier sy
type-specifier declaration-specifier sy
type-qualifier declaration-specifiersys

storage-class specifier: one of
auto register static extern typedef

type specifier: one of
voi d char short int long float double signed
unsi gned Struct-or-union-specifier enumspecifier typedef-name

type-qualifier: one of

const volatile

struct-or-union-specifier:
struct-or-union identifier ox { Struct-declaration-list }
struct-or-union identifier

struct-or-union: one of
struct union

struct-declaration-list:
struct declaration
struct-declaration-list struct declaration

init-declarator -list:
init-declarator
init-declarator-lis, init-declarator

init-declarator :
declarator
declarator =initializer

struct-declaration:
specifier-qualifier-list structdeclarator-ligt;

specifier-qualifier-list:
type-specifier specifier -qualifier-listoyx
type-qualifier specifier-qualifier-listox

struct-declarator -lit:
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator :
declarator

declarator o : constant-expression

enumspecifier:
enumidentifierox { enumerator-list }
enumidentifier

enumerator-list:
enumerator
enumerator-lis , enumerator

enumerator:
identifier
identifier = constant-expression

declarator:
pointeroy direct-declarator

directdeclarator :
identifier
(declarator)

direct-declarator [constant-expressionyy]

direct-declarator (parameter -type-list)
direct-declarator (identifier-listox)

pointer:
* type-qualifier-listyy
* type-qualifier-listyy pointer

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

parameter-typeist:
parameter -list
parameter-list, ...

parameter -ligt:
parameter -declaration
parameter-list, parameter -declaration

214

parameter -declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declarator ox

identifier-list:
identifier
identifier-list , identifier

initializer:
assignment-expression
{ initializer-lig }

{ initializerdis , }
initializer-list:
initializer

initializer-lig , initializer

type-name:
specifier-qualifier-list abstract-declarator 4y

abstract-declarator :
pointer
pointerqy direct-abstract-declarator

direct-abstract-declarator:
(abstract-declarator)
direct-abstract-declarator ox [constant-expressono]
direct-abstract-declarator o (parameter -type-liston)

typedef-name:
identifier

Statement
|abel ed-statement
express on-statement
compound-statement
sel ection-gtatement
iteration-statement
jump-statement

|abel ed-statement:

identifier : statement

case constant-expresson : statement
defaul t : Statement

expression-statement
express ONgy;

compound-statement:
{ declaration-listyy statement-listyy }

statement|ist:
statement
statement|ist satement

selection-statement
i f (expression) statement
i f (expression) statementel se Statement
swi t ch (expression) statement

iter ation-statement

whi | e (Expression) statement

do Statementwhi | e (expression);

for (EXPressionqgy; EXpressiongy; expressiongy) statement

jump-statement:
got o identifier;
conti nue;
br eak;
r et ur n EXPressionoy;

expression:
assignment-expression

expression , assignment-expression

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
=*= [= O 4= - = <<= >>= &= = |:

conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

constant-expression:
conditional-expression

logical-OR-expression:
logical-AND-expression
logical-OR-expression | | logical-AND-expression

logical-AND-expression:
inclusive-OR-expression
|ogical-AND-expression && inclusive-OR-expression

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

216

exclusive-OR-expression:
AND-expression
exclusive-OR-expression * AND-expression

AND-expression:
equality-expression
AND-expression & equality-expression

equality-expression:
reational-expression
equality-expression == relational -expression
equality-expression ! = relational-expression

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >=shift-expression

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

multiplicative-expression:
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression %cast-expression

cast-expression:
unary expression
(type-nane) cast-expression

unary-expression:
postfix expression
++Unary expression
--unary expression
unary-operator cast-expression
si zeof uUnary-expression
si zeof (type-name)

unary operator : one of
&* +- ~ 1

postfix-expression:
primary-expression

217

postfix-expression[expression]

postfix-express on(argument-expression-lisoy)
postfix-expression.identifier
postfix-expression- >+identifier
postfix-expression++

postfix-expression- -

primary-expression:
identifier
constant
string
(expression)

argument-expression-ligt:
assignment-expression
assignment-expression-list , assignment-expression

constant
integer-constant
character-constant

floating-constant
enumer ation-constant

The fallowing grammar for the preprocessor summarizes the dructure of control lines, but is
not suitsble for mechanized pardng. It incdudes the symbol text, which means ordinary
program text, nonconditional preprocessor control lines, or complete preprocessor
conditiond ingructions

control-line:
defi ne identifier token-sequence
def i ne identifier(identifier, ... , identifier) token-sequence
undef identifier
include <filename>
include "filename"
| i ne constant " filename"
|i ne congant
error token-sequenceqy
pr agnma token-sequencey
#

preprocessor -conditional

preprocessor-conditional:
ifinetext elif-parts else-partyy #endi f

if-line:

i f constant-expression
ifdef identifier

i fndef identifier

eif-parts:
dif-linetext
elif-partsyy

if-line:
el i f constant-expression

else-part:
eselinetext

eseline
#el se

Appendix B - Standard Library

This gopendix is a summary of the library defined by the ANS standard. The standard library
is not pat of the C language proper, but an environment that supports sandard C will provide
the function dedaations and type and macro definitions of this libray. We have omitted a
few functions that are of limited utility or essly syntheszed from others we have omitted
multi-byte characters, and we have omitted discusson of locde issues that is, properties thet

depend on loca language, netiondity, or culture.

Thefunctions, types and macros of the sandard library are dedlared in sandard headers:

<assert.h> <float.h> <nath.h> <stdarg.h> <stdlib. h>
<ctype.h> <limts.h> <setjnp.h> <stddef.h> <string.h>
<errno.h> <locale. h> <signal.h> <stdio.h> <ine h>

A header can be accessed by
#i ncl ude <header>

Headers may be induded in any order and any number of times. A header mus be incuded
outsde of any externd declaration or definition and before any use of anything it declares. A
header need nat be a source file.

Externd identifiers that begin with an underscore are reserved for use by the library, as are dl
other identifiers that begin with an underscore and an upper-case letter or another underscore.

B.1 Input and Output: <stdio.h>

The input and output functions, types and macros defined in <stdio. h> represent nearly one
third of the library.

A dream is a source or dedination of data that may be associsted with a disk or other
peripherd. The library supports text streams and binary dreams, dthough on some sysems,
notably UNIX, these are identicd. A text stream is a sequence of lines, each line has zero or
more characters and is terminated by '\ n'. An environment may need to convert a text stream
to or from some other representation (such as mgpping '\ n' to cariage return and linefeed).
A binary dream is a sequence of unprocessed bytes thet record interna data, with the property
that if it iswritten, then read back on the same system, it will compare equdl.

A dream is connected to a file or device by opening it; the connection is broken by closing
the dream. Opening a file returns a pointer to an object of type FI LE, which records whatever
information is necessary to control the dsream. We will use “file pointer" and sream”
interchangegbly when there is no ambiguity.

When a program begins execution, the three streams stdin, stdout, and stderr ae aready
open.

B.1.1 File Operations

221

The following functions ded with operaions on files The type size_t is the unsgned
integral type produced by the si zeof operaor.

FI LE *fopen(const char *filename, const char *mode)
fopen opens the named file, and returns a stream, or NULL if the attempt fals. Legd

vauesfor mode indude
"r* opentextfilefor reading
"w createtext file for writing; discard previous contentsif any
"a" gopend; open or cregte text file for writing a end of file
"r+" open text file for update (i.e, reading and writing)
"w+" cregtetext file for update, discard previous contentsif any
"a+" gppend; open or create text file for update, writing a end

Update mode permits reading and writing the same file ffiush or a file-pogtioning
function must be caled between a reed and a write or vice versa If the mode includes
b after the initid letter, as in "rb" or "wb", that indicates a binary file. Filenames are
limited to FI LENAME_MAX characters. At most FOPEN_ MaX files may be open at once.

FI LE *freopen(const char *filenane, const char *node, FILE *strean)
freopen opens the file with the specified mode and associates the stream with it. It
reurns stream oOr NULL if an error occurs. freopen is normdly used to change the
filesassociated with st di n, st dout , Or st derr .

int fflush(FlLE *strean)
On an output sream, fflush causes any buffered but unwritten data to be written; on
an input dream, the effect is undefined. It returns ECF for a write eror, and zero
otherwise. f f1 ush(NULL) flushesdl output Streams.

int fclose(FlLE *strean)
fclose flushes any unwritten data for stream discards any unread buffered input,
frees any automaticaly dlocated buffer, then closes the dream. It returns ecF if any
errors occurred, and zero otherwise.

int renove(const char *fil ename)
renove removes the named file so tha a subsequent atempt to open it will fail. It

returns non-zero if the attempt fails.

int renane(const char *ol dnane, const char *newnane)
r enane changes the name of afile it returns non-zero if the atempt falls.

FI LE *tnpfil e(void)
tnpfile cregtes a temporary file of mode "wb+ that will be automdicdly removed
when cdosed or when the program terminates normdly. tnpfile returns a stream, or
NuLL if it could not create thefile.

char *tnpnan(char s[L_tnpnanj)
tnpnan(NULL) Cregies a dring that is not the name of an exiding file, and returns a
pointer to an internd datic array. tnpnan(s) dores the dring in s as well as returning
it as the function vadue, s must have room for a least L_t npnam characters. t npnam
generates a different name each time it is cdled;, a most TWP_Max dfferent names are
guaranteed during execution of the program. Note that tnpnam crestes a name, not a
file.

int setvbuf (FILE *stream char *buf, int nmode, size t size)
setvbuf controls buffering for the dream; it must be cdled before reading, writing or
any other operdtion. A node of _I OFBF causes full buffering, _1 a.BrF line buffering of
text files and _1 aNeF no buffering. If buf is not NULL, it will be used as the buffer,
othewise a buffer will be dlocated. size determines the buffer Sze. setvbuf returns

non-zero for any error.
voi d setbuf (FILE *stream char *buf)

22

If buf is NuLL, buffering is turned off for the stream. Otherwise, set buf iS equivdent
to(voi d) setvbuf (stream buf, _ICFBF, BUFSI Z2).

B.1.2 Formatted Output

Theprintf functions provide formatted output converson.

int fprintf(FlLE *stream const char *fornmat, ...)
fprintf converts and writes output to stream under the control of format. The return vaue

is the number of characters written, or negetive if an error occurred.

The format gring contains two types of objects ordinary characters, which are copied to the
output stream, and conversion specifications, each of which causes converson and printing of
the next successive argument to fprintf. Each converson specification begins with the
character % and ends with a converson character. Between the % and the converson character
there may be, in order:

Hags (in any order), which modify the spedification:

-, which specifies |ft adjustment of the converted argument initsfield.

+, which specifies thet the number will dways be printed with asgn.

space: if thefirg character is not asign, a space will be prefixed.

o: for numeric conversons, spedifies padding to the fidd width with leading
Zeros.

o # which specifies an dternate output form. For o, the firg digit will become
zero. For x or X, ox or oX will be prefixed to a nonzero result. For e, E, f, g,
and G the output will dways have a decimd point; for g and G traling zeros
will not be removed.

A number gedfying a minimum fidd width. The converted argument will be printed
in a fidd a least this wide, and wider if necessary. If the converted argument has
fawer characters then the fidd width it will be padded on the left (or right, if left
adjudment has been requested) to make up the fidd width. The padding character is
normally space, but iso if the zero padding flag is present.

A period, which separates the fid width from the precision.

A number, the precison, tha specifies the maximum number of characters to be
printed from a gring, or the number of digits to be printed after the decimd point for
e, E, or f conversons, or the number of sgnificant digits for g or G converson, or the
number of digits to be printed for an integer (leading os will be added to make up the

(o]
(0]
(0]
(o]

necessary width).
A length modifier h, | (letter dl), or L. "h" indicates that the corresponding argument
is to be printed a a short Or unsigned short; 1" indicates that the argument is a

| ong Or unsi gned | ong, ~L" indicates that the argument isal ong doubl e.

Width or precison or both may be specified as *, in which case the vaue is computed by
converting the next argument(s), which must bei nt .

The converson characters and their meanings are shown in Table B.1. If the character after
the %is not a converson character, the behavior is undefined.

Table B.1 Printf Conversions

\Character \ Argument type; Printed As

‘d, i \i nt ; Sgned decima notation.
o li nt ; unsigned octal notation (without aleading zero).
x unsi gned i nt ; unggned hexadecimd notetion (without aleading 0x or 0X),
X usng abcdef for 0x or ABCDEF for ox.
u i nt ; unsigned dedimal notetion.
c lint ; Single character, after conversion to unsi gned char
s char *; characters from the string are printed util a* \ o' is reached or until the
number of charactersindicated by the precision have been printed.
doubl e; decimd notation of theform [-] mmm.ddd, where the number of d'sis
f given by the precison. The default precision is 6; aprecison of 0 suppresses the
decimd point.
doubl e; decimd notation of theform [-] m.dddddde+ - xx or [-] m.dddddde+ -
e E XX, where the number of d'sis specified by the precision. The default precison is
6; aprecison of 0 suppresses the decimad poirnt.
doubl e; % or % isused if the exponent islessthan -4 or greater than or equal to
g, G the precison; otherwise % isused. Trailing zeros and atralling decimd point are
not printed.
p lvoi d *; print as a pointer (implementation-dependent representation).
N int *;the number of characters written so far by thiscal to pri nt f iswritten
into the argument. No argument is converted.
% Ino argument is converted; print a%
int printf(const char *format, ...)
printf(...) isequivaentto fprintf(stdout, ...).
int sprintf(char *s, const char *fornat, ...)
sprintf is the same as printf except tha the output is written into the dring s,
terminated with '\0'. s mug be big enough to hold the result. The return count does
not indudethe' \o' .
i nt vprintf (const char *format, va_list arg)
i nt vfprintf(FlLE *stream const char *format, va_list arg)

int vsprintf(char *s, const char *format, va_list arg)
The functions vprintf, viprintf, and vsprintf ae eguivdent to the corresponding
printf functions, except that the varidble argument ligt is replaced by arg, which has
been initidized by the va_start macro and perhgps va_arg cdls See the discusson
of <stdarg. h>in Section B.7.

B.1.3 Formatted | nput

Thescanf function dedls with formattedinput converson.

int fscanf(FILE *stream const char *format, ...)

fscanf reads from stream under control of format, and assgns converted vaues through
subsequent arguments, each of which must be a pointer. It returns when fornat is exhaused.
fscanf returns ECF if end of file or an error occurs before any converson; otherwise it returns
the number of input items converted and assgned.

The format dring usudly contans converson gspecifictions, which ae used to direct
interpretation of input. The format string may contain:

Blanks or tabs, which are not ignored.

24

Ordinary characters (not %), which are expected to maich the next nonwhite space
character of the input stream.

Converson specifications, condding of a % an optiond asignment Suppresson
character *, an optiond number specifying a maximum fidd width, an optiond h, 1, or
L indicating the width of the target, and a converson character.

A converson specification determines the converson of the next input fidd. Normdly the
result is placed in the vaidble pointed to by the correponding argument. If assgnment
uppression is indicated by *, as in 9%s, however, the input fidd is smply skipped;, no
assgnment is made. An input fidd is defined as a dring of non-white space characters; it
extends ather to the next white space character or until the fidd width, if specified, is
exhauged. This implies that scanf will read across line boundaries to find its input, since
newlines are white space. (White space characters are blank, tab, newline, cariage return,
verticd tab, and formfeed.)

The converson character indicates the interpretation of the input field. The corresponding
argument must be a pointer. The legd conversion characters are shown in Table B.2.

The converson characters d, i, n, o, u, and x may be preceded by h if the asgument is a
pointer to short rather than int, or by | (letter dl) if the argument is a pointer to 1 ong. The
conversion characters e, f, and g may be preceded by | if a pointer to doubl e rather than
float isintheargument lig, and by L if apointertoal ong doubl e.

Table B.2 Scanf Conversions
\Character \ Input Data; Argument type
d decimal integer; i nt *
. integer; i nt *. Theinteger may bein octa (leading 0) or hexadecima (leading 0x
" ‘or 0X).
o loctal integer (with or without leading zero); i nt *.
‘u \uns'gned decimd integer; unsi gned int *.
x |hexadecimal integer (with or without leeding ox o 0X); i nt *.

characters; char * . The next input characters are placed in the indicated array, up
to the number given by the width field; the defaultis1. No' \ o' isadded. The
normal skip over white space charactersis suppressed in this case; to read the next
non-white space character, use %s.

gring of nontwhite space characters (not quoted); char *, pointing to an array of
s characters large enough to hold the string and aterminating '\ o' that will be
added.

floating-point number; f1 oat * . The input format for 1 oat 'sisan optiond sign,
ef,g adring of numbers possibly containing a decimd point, and an optiond exponent
field containing an E or e followed by apossbly sgned integer.

p \pointervdueasprintedby printf("%");,void *.

writes into the argument the number of charactersreed so far by thiscal; i nt *.
No input is read. The converted item count is not incremented.

meatches the longest non-empty string of input characters from the set between
brackets; char *. A'\0' isadded. []...] indudes] inthe s.

meatches the longest non-empty string of input characters not from the set between

(%1 orackets; char *.A*\0' isadded. [~]...] indudes] inthe et

% literdl %; no assgnment is made.
int scanf(const char *format, ...)
scanf(...) isidenticd to fscanf (stdin, ...).
int sscanf(const char *s, const char *format, ...)
sscanf(s, ...) is eguivdent to scanf(...) except that the input characters are

taken fromthedtring s.

B.1.4 Character Input and Output Functions

int fgetc(FILE *strean)
fgetc returns the next character of stream as an unsigned char (converted to an
i nt), or ECF if end of file or error occurs.

char *fgets(char *s, int n, FILE *strean)
fgets reads & mos the next n-1 characters into the array s, sopping if a newline is
encountered; the newline is incduded in the array, which is terminated by '\0'. fgets
returns s, or NULL if end of file or error occurs.

int fputc(int c, FILE *strean)
fputc writes the character ¢ (converted to an unsigend char) on stream It returns
the character written, or ECF for error.

int fputs(const char *s, FILE *strean)
fputs writes the dring s (which need not contan \n) on streanj it returns nort
negative, or ECF for an error.

int getc(FlILE *strean)
getc IS equivdent to fgetc except thet if it is a macro, it may evauae streammore
than once.

i nt getchar (voi d)
get char isequivadent to get c(stdin).

char *gets(char *s)
gets reads the next input line into the aray s; it replaces the terminaing newline with
"\ 0'.Itreturns s, or NLL if end of file or error occurs.

int putc(int c, FILE *stream
putc IS equivdent to fputc exoept thet if it is a macro, it may evduae streammore
than once.

int putchar(int c)
put char (c) iseguivaent to put c(c, stdout) .

int puts(const char *s)
puts writes the dring s and a newline to stdout. It returns ECGF if an error occurs,
nor-negative otherwise.

int ungetc(int ¢, FILE *stream
unget ¢ pushes ¢ (converted to an unsigned char) back onto stream where it will be
returned on the next reed. Only one character of pushback per stream is guaranteed.
ECF may not be pushed back. ungetc returns the character pushed back, or ECF for
error.

B.1.5 Direct Input and Output Functions

size t fread(void *ptr, size_t size, size_ t nobj, FILE *strean)
fread reads from stream into the aray ptr a most nobj objects of gze size. fread
returns the number of objects read; this may be less than the number requested. f eof

andf error must be used to determine Satus.
size_t fwite(const void *ptr, size_t size, size_t nobj, FILE *stream

226

fwite writes, from the aray ptr, nobj objects of dze size on stream It returns the
number of objects written, which islessthan nobj on error.

B.1.6 File Positioning Functions

int fseek(FILE *stream |ong offset, int origin)
fseek s&s the file pogtion for streani a subsequent read or write will access daa
beginning a the new pogstion. For a binay file the podtion is st to of fset
characters from origin, which may be SeEK SET (beginning), SEEK OUR (current
postion), or SEEK END (end of file). For a text stream, of fset must be zero, or a vaue
returned by ftell (in which case origin must be SEEK SET). fseek returns norrzero
on error.

long ftell (FILE *strean)
ftel |l refurnsthe current file podtion for st ream or - 1 on error.

voi d rew nd(Fl LE *strean)
rewi nd(fp) iseguivalentto f seek(fp, OL, SEEK SET); clearerr(fp).

int fgetpos(FlLE *stream fpos_t *ptr)
fgetpos records the current podtion in stream in *ptr, for subsequent use by
fsetpos. The type fpos_t IS suitable for recording such vaues. fgetpos returns nort
Zero on erar.

int fsetpos(FlILE *stream const fpos_t *ptr)
fsetpos pogtions stream a the postion recorded by fgetpos in *ptr. fsetpos

returns Non-zero on error.

B.1.7 Error Functions

Many of the functions in the library set gatus indicators when eror or end of file occur. These
indicators may be set and tested explicitly. In addition, the integer expression errno (declared
in <errno. h>) may contan an eror number tha gives further information about the mogt

recent error.
void clearerr(FILE *stream
clearerr clearsthe end of fileand error indicatorsfor st ream
int feof (FILE *strean)
f eof returns non-zero if the end of file indicator for st r eamis set.
int ferror(FILE *strean)
ferror reuns non-zero if the error indicator for st r eamis Set.
voi d perror(const char *s)
perror(s) prints s and an implementation-defined eror message corresponding to
theinteger in errno, asif by

fprintf(stderr, "9%: 9%\n", s, "E€TOr message');

Seestrerror in Section B.3.

B.2 Character Class Tests. <ctype.h>

The header <ctype.h> declares functions for testing characters. For each function, the
agument lig is an int, whose vaue must be ECF or representable as an unsigned char, and
the return vaue is an int. The functions return non-zero (true) if the argument ¢ satisfies the
condition described, and zero if not.

i sal nun(c) i sal pha(c) Orisdigit(c) istrue

i sal pha(c) i supper (c) orislower(c) istrue

iscntrl(c) control character

isdigit(c) decmd digit

i sgraph(c) printing character except space

i sl over (c) lower-case |etter

isprint(c) printing character induding space

ispunct(c) printing character except space or |etter or digit

i sspace(c) space, formfeed, newline, carriage return, tab, vertica tab
i supper (c) upper-case letter

isxdigit(c) hexadedmd digit

In the sevenbit ASCII character sat, the printing characters are 0x20 (°
the control characters are O NUL to ox1F (US), and ox7F (DEL).

') t0 OX7E ('-');

In addition, there are two functions that convert the case of letters;

convert ¢ to lower case
convert ¢ to upper case

int tol ower(c)

i nt toupper(c)

If ¢ is an uppe-case letter, tolower(c) returns the corresponding lower-case |etter,
t oupper (c¢) returns the corresponding upper-case letter; otherwise it returnsc.

B.3 String Functions: <string.h>

There are two groups of dring functions defined in the header <string. h>. The firs have
names beginning with str; the second have names beginning with mem Except for nmemmove,
the behavior is undefined if copying tekes place between overlapping objects Comparison
functions treat arguments asunsi gned char arrays.

In the folowing table, varidbles s and t are of type char *; cs and ct ae of type const

char *;nisof typesize_t;andc isanint convertedto char.

char *strcpy(s,ct)

char
*strncpy(s, ct, n)

char *strcat (s, ct)
char

*strncat (s, ct,n)
int strcenp(cs, ct)
i nt

strncnp(cs, ct, n)
char *strchr(cs,c)

char *strrchr(cs,c)

si ze_t
strspn(cs, ct)

copy dringct todrings,induding '\ 0 ; return s.

copy & mogt n characters of string ct to s; return s. Pad with '\ 0" 's
if ct hasfewer than n characters.

concatenatestring ct to end of Strings; return s.

concatenate at most n characters of string ct to dring s, terminate s
with*\ 0 ; return s.

compare gtring cs to gring ct, return <O if cs<ct , Oif cs==ct, or >0
if cs>ct .

compare a most n characters of string cs to string ct ; return <O if
cs<ct, Oif cs==ct, or >0 if cs>ct .

return pointer to first occurrence of ¢ in cs or NULL if not present.
return pointer to last occurrence of ¢ incs or NULL if not present.

return length of prefix of cs congding of charactersin ct .

size t ; it ;
strespn(cs, ct) return length of prefix of cs conddting of charactersnotin ct.

char return pointer to first occurrence in string cs of any character string
*strpbrk(cs, ct) ct, or NULL if not present.

char *strstr(cs, ct) return pointer to first occurrence of dring ct incs, or NULL if not

present.
size t strlen(cs) return length of cs.
char *strerror(n) r;rtérrnnpamer to implementation-defined string corresponding to

st rt ok searchess for tokens ddimited by charactersfrom ct ; see
beow.

char *strtok(s,ct)

A sequence of cdls of strtok(s,ct) Splits s into tokens, each ddimited by a character from
ct. The firg cdl in a sequence has a non-NULL s, it finds the fird token in s congding of
characters not in ct; it terminates that by overwriting the next character of s with '\0' and
returns a pointer to the token. Each subsequent cdl, indicated by a NuLL vdue of s, returns the
next such token, searching from just past the end of the previous one. strtok returns NULL
when no further token isfound. The string ct may be different on each cdll.

The mem .. functions are meant for manipulating objects as character arays, the intent is an
interface to efficient routines. In the following table, s and t ae of type void *; cs ad ct
are of type const void *; nisof type size t;and c is anint converted to an unsi gned
char.

voi d
*mencpy(s, ct, n)
voi d
*menmove(s, ct, n)

i nt mencnp(cs, ct, n) compare thefirst n characters of cs with ct ; return aswith st r cnp.

copy n charactersfrom ct to s, and return s.

same asnencpy except that it works even if the objects overlap.

voi d return pointer to first occurrence of character cincs, or NULL if not
*menchr (cs, ¢, n) present among the firstn characters.

voi d *menset (s, ¢, n) place character ¢ into fird n characters of s, return s.

B.4 Mathematical Functions: <math.h>
The header <nat h. h> declares mathematica functions and macros.

The macros EDOM and ERANGE (found in <errno. h>) are nonzero integrd condants that are
used to dgnd doman and range erors for the functions HUGE VAL is a postive doubl e
vadue. A domain error occurs if an argument is outsde the domain over which the function is
defined. On a domain earor, errno is set to EDOV the return vaue is implementation-defined.
A range error occurs if the result of the function cannot be represented as a doubl e. If the
result overflows, the function returns HUGE VAL with the right Sgn, and errno IS st to
ERANGE. If the result underflows, the function returns zero; whether errno is set to ERANGE is
implementation-defined.

In the following teble x and y are of type double, n is an int, and dl functions return
doubl e. Anglesfor trigonometric functions are expressed in radians.

si n(x) sneof x
cos(x) cosine of X
tan(x) tangent of x
asi n(x) dn™(x) in range [-pi/2,pi’2], x in[-1,1].
acos(x) oos}(x) in range [O,pi], x in [-1,1].
atan(x) tan™(x) in range [-pi/2,pi/2].
at an2(y, x) tan(y/X) in range [-pi,pi].
si nh(x) hyperbolic sne of x
cosh(x) hyperbolic cosine of x
tanh(x) hyperbalic tangent of x
exp(x) exponentia function €
I og(x) naturd logarithm In(x), x>0.
| 0g10(x) base 10 logarithm logyo(X), X>0.
x. A domain error occursif x=0 and y<=0, or if x<0 and yisnot an
pow(x. ¥) integer.
sqrt (x) sgare roat of X, x>=0.
cei | (x) gmdlest integer not lessthan x, asadoubl e.
f1 oor (x) largest integer not gregter than x, asa doubl e.
f abs(x) abolute vaue]
| dexp(x, n) x+2"

_ salits x into anormdized fraction in the interva [1/2,1) which is returned,
iire;‘p(x’ Int and apower of 2, whichisgtored in *exp. If X is zero, both parts of the
P result are zero.

nmodf (X, Flitsx into integra and fractiona parts, each with the same sgn asx. It
doubl e *ip) dorestheintegrd partin *i p, and returns the fractiond part.

floating-point remainder of Xy, with the ssmesgn asx. If y is zero, the

fmod(x,y) reult is implementation-defined.

B.5 Utility Functions: <stdlib.h>

The header <stdlib.h> dedares functions for number converson, sorage dlocation, and
dmilar tasks. doubl e at of (const char *s)
at of convertss to doubl e; itisequivdentto strtod(s, (char**)NULL).
int atoi(const char *s)
convertss to i nt ; itisequivalent to (int)strtol (s, (char**)NUL, 10).
I ong atol (const char *s)
convertss to | ong; itisequivaentto strtol (s, (char**)NULL, 10).
doubl e strtod(const char *s, char **endp)
strtod converts the prefix of s to doubl e, ignoring leading white space; it dores a
pointer to any unconverted suffix in *endp unless endp is NULL. If the answer would
overflow, HUGE VAL is returned with the proper dgn; if the answer would underflow,
zero isreturned. In either caseerrno iS St to ERANGE
long strtol (const char *s, char **endp, int base)
strtol convets the prefix of s to long, ignoring leading white space; it dores a
pointer to any unconverted suffix in *endp unless endp is NULL. If base is between 2

20

and 36, converson is done assuming that the input is written in that base If base IS
zeo, the bae is 8 10, or 16; leading O implies octd and leading ox or 0x
hexadecimd. Letters in ather case represent digits from 10 to base- 1; a leading ox or
0X is permitted in base 16. If the answver would overflow, LONG MAX O LONG M N iS
returned, depending on the sign of theresult, and errno is st to ERANGE

unsigned | ong strtoul (const char *s, char **endp, int base)
strtoul IS the same as strtol except that the result is unsigned 1ong and the error
vaueis LLONG MAX

int rand(void)
rand returns a pseudo-random integer in the range O to RAND MAX, which is a least
32767.

voi d srand(unsigned int seed)
srand uUses seed as the seed for a new sequence of pseudo-random numbers. The
initial seed is 1.

void *cal | oc(size_t nobj, size_t size)
cal l oc returns a pointer to space for an aray of nobj objects, each of Sze size, or
NULL if the request cannot be satisfied. The spaceisinitidized to zero bytes.

void *mal | oc(size_t size)
mal | oc refurns a pointer to space for an object of Sze size, or NULL if the request
cannot be stisfied. The gpace is uninitidized.

void *reall oc(void *p, size_t size)
real l oc changes the sze of the object pointed to by p to size. The contents will be
unchanged up to the minimum of the old and new szes. If the new sSze is lage, the
new gpace is uninitidized. reall oc returns a pointer to the new space, or NULL if the
request cannot be satisfied, in which case* p is unchanged.

void free(void *p)
free dedlocates the space pointed to by p; it does nothing if p is NULL. p mugt be a
pointer to space previoudy dlocated by cal | oc, nal | oc, Of real | oc.

voi d abort (voi d)
abor t causesthe program to terminate dbnormaly, asif by rai se(Sl GABRT) .

void exit(int status)
exit causes normd program termination. atexit functions are cdled in reverse order
of regigraion, open files are flushed, open dreams are closed, and control is returned
to the environment. How status is returned to the environment is implementation-
dependent, but zero is teken as successful termingion. The vaues BxI T_Suocess and
EXI T_FA LURE may a0 be used.

int atexit(void (*fcn)(void))
atexit regigers the function fcn to be cdled when the program terminates normaly;
it returns ron-zero if the registration cannot be made.

i nt systen{const char *s)
system pases the dring s to the environment for execution. If s IS NULL, system
returns non-zero if there is a command processor. If s is not NULL, the return vaue is
implementation-dependent.

char *getenv(const char *narne)
getenv reurns the environment dring associaed with name, or NULL if no gtring
exigs. Detals are implementation-dependent.

voi d *bsearch(const void *key, const void *base,
size_t n, size_t size,
int (*cnp)(const void *keyval, const void *datun))
bsearch searches base[0]...base[n-1] for an item tha maiches *key. The function
cnp mugt return negetive if its firsd argument (the search key) is less than its second (a
table entry), zero if equd, and postive if greater. Items in the array base mug be in

ascending order. bsear ch returns a pointer to amatching item, or NULL if none exigts.

void gsort(void *base, size t n, size_t size,
int (*cnp)(const void *, const void *))
gsort SOrts into ascending order an aray base[0]...base[n-1] oOf objects of dSze

si ze. The comparison function cnp isasin bsear ch.
int abs(int n)
abs returns the absolute vaue of itsi nt argument.
I ong | abs(long n)
| abs returns the absolute vaue of its! ong argument.
div_t div(int num int denon)
div computes the quotient and remainder of num denom The results are stored in the

i nt members quot and remof a structure of typediv_t .

Idiv_t Idiv(long num |ong denon
| di v computes the quotiert and remainder of nuni denom The results are tored in the
| ong members quot and remof a structure of typel div_t.

B.6 Diagnostics. <assert.h>

Theassert macro is used to add diagnogtics to programs.

voi d assert(int expression)

If expression is zerowhen
assert (. expr essi on)

isexecuted, the assert macro will print on st der r amessage, such as
Assertion failed: expression, fil e filename, Ii ne nnn

It then cdls abort to terminate execution. The source filename and line number come from
the preprocessor macros _ FILE _and __LINE_.

If NDEBUGIS defined a thetime <assert . h> isincduded, the assart macro isignored.

B.7 Variable Argument Lists. <stdarg.h>

The header <stdarg. h> provides fadlities for stepping through a lig of function arguments
of unknown number and type.

Suppose lastarg is the last named parameter of a function f with a vaiable number of
aguments. Then declare within f a variable of type va_list tha will point to each agument
inturn:

va_list ap;
ap mus be intidized once with the macro va_start before any unnamed agument is
accessed:

va_start(va_list ap, lastarg;

232

Thereafter, each execution of the macro va_arg will produce a vadue tha has the type and

vadue of the next unnamed argument, and will dso modify ap so the next use of va_arg
returns the next argument:

typeva_arg(va_list ap, type;

Themacro

void va_end(va_list ap);

must be caled once after the arguments have been processed but before f is exited.

B.8 Non-local Jumps. <setjmp.h>

The dedardions in <setjnp. h> provide a way to avoid the normd function cadl and retun

sequence, typicaly to permit an immediate return from a degply nested function call.

int setjnp(jnp_buf env)
The macro setjnp saves date information in env for use by 1ongjnp. The return is
zero from a direct cdl of setjnp, axd nonzero from a subsequent cdl of |ongjnp. A
cdl to setjnp can only occur in certain contexts, basicdly the test of if, switch, and
loops, and only in Smple rdlationd expressons.

if (setjnp(env) == 0)

/* get here on direct call */
el se

/* get here by calling |longjnp */

voi d | ongj np(j np_buf env, int val)

longjnp restores the date saved by the most recent cal to setjnp, usng the
information saved in env, and execution resumes as if the setjnp function had just
executed and returned the nontzero vadue val. The function containing the setjnp
must not have terminated. Accessble objects have the vdues they had & the time
longinp was cdled, except that nonvol atile automaic vaiddles in the function
cdlingset j np become undefined if they were changed after the set j np cdl.

B.9 Signals. <signal.h>

The header <signal.h> provides fadlities for handling exceptiond conditions that arise
during execution, such as an interrupt Sgnd from an externa source or an error in execution.

void (*signal (int sig, void (*handler)(int)))(int)
signal determines how subsequent sgnds will be haendled. If handier is SIGDFL, the
implementation-defined default behavior is used if it is SIGIa@y, the dgnd is ignored,
otherwise, the function pointed to by handi er will be cdled, with the argument of the type of
ggnd. Vdid sgndsinclude

SIGABRT abnormd termingtion, eg., from abort

S| GFPE arithmetic error, eg., zero dvide or overflow
SIaLL illegd function imege, eg., illegd indruction
SIGNT interactive atention, eg., interrupt

SI GSEG/ illegal storage access, eg., access outsde memory limits
SIGTERV termindion request sent to this program

signal returns the previous vaue of handler for the specific 9gnd, or SIGERR if an eror
OCCUrs.

When a dgnd sig subsequently occurs, the signd is retored to its default behavior; then the
sgnd-handler function is cdled, as if by (*handler)(sig). If the handler refurns, execution
will resume where it was when the sgnd occurred.

Theinitid gate of Sgnasisimplementation-defined.

int raise(int sig)
rai se sendsthe signd si g to the program; it returns non-zero if unsuccessful.

B.10 Date and Time Functions; <time.h>

The header <tine.h> dedaes types and functions for manipulating date and time. Some
functions process local time, which may differ from cdendar time for example because of
time zone clock_t and tine_t ae aithmetic types represatting times, and struct tm holds
the components of acadendar time:

int tmsec; seconds after the minute (0,61)
int tmnin; minutes after the hour (0,59)
int tmhour; hourssnce midnight (0,23)

int tmnday; day of the month (1,31)

int tmnon; months since January (0,11)
int tmyear; yearssnce 1900

int tmwday; dayssince Sunday (0,6)

int tmyday; days since January 1 (0,365)
int tmisdst; Daylight Saving Timeflag

tmisdst is podgtive if Daylignt Saving Time is in effect, zero if not, and negdive if the
information is not available,

cl ock_t cl ock(voi d)
clock retuns the processor time used by the program since the beginning of
execution, or - 1 if unavalable. cl ock()/ OLK_PER SEC isatimein seconds.

tine_t tine(time_t *tp)
time returns the current cdendar time or -1 if the time is not avalable If tp is not
NULL, the return value is d S0 assigned to *t p.

double difftine(time_t tine2, tinme_t tinel)
difftimereurnstime2-ti mel expressed in seconds.

tine_t nktine(struct tm*tp)
nktime converts the locd time in the dructure *tp into cdendar time in the same
representation used by time. The components will have vaues in the ranges shown.
nkt i e returns the calendar time or - 1 if it cannot be represented.

The next four functions return pointers to static objects that may be overwritten by other cdls.
char *asctine(const struct tm*tp)

2A

asctine</tt< converts the time in the structure *tp into a string of

the form

Sun Jan 3 15:14:13 1988\ n\0
char *ctine(const time_t *tp)

ctime converts the calendar tine *tp to local tine; it is equivalent

to

asctinme(localtinme(tp))
struct tm*gntine(const tine_t *tp)
gntine converts the calendar time *tp into Coordinated Universal

Ti me

(UrQ. It returns NUL if UIC is not available. The nane gntine has

hi storical significance.
struct tm=*localtine(const tine_t *tp)
| ocal ti ne converts the cal endar tinme *tp into |ocal tine.
size t strftine(char *s, size_t smax, const char *fnt, const struct tm*tp)

strftime formats date and time information from *tp into s according
to fm, which is analogous to a printf format. Qdinary characters

(including the termnating '\0') are «copied into s. Each %
| ocal

replaced as described below, using values appropriate for the

is

environment. No nore than smax characters are placed into s. strftime

returns the nunber of characters, excluding the '\0', or =zero if
than smax characters were produced.

%a abbreviated weekday name.

%A full weekday name.

% abbreviated month name.

o8 ful month reme.

% locd date and time representation.
%l day of themonth (01-31).

o1 hour (24-hour clock) (00- 23) .

% hour (12-hour dock) (01- 12) .

% day of theyear (001-366) .

%m month (01-12) .

oM minute (00- 59) .

% locd equivdent of AM or PM.
s second (00- 61) .

o) week number of the year (Sunday as 1st day of week) (00-53) .
owv weekday (0- 6, Sunday is Q).

ow week number of the year (Monday as 1st day of week) (00- 53) .
% locd date representation.

X locd time representation.

oy Yyear without century (00- 99) .

% year with century.

°%Z timezonename, if any.

Wo %

B.11 I nplenmentation-defined Limts:
<limts.h> and <float. h>

nore

The
The
used.

The
to

header
val ues

nanes
fl oating- poi nt
m ni num

<limt
bel ow
CHAR BI T
CHAR_MAX
CHAR M N

I NT_NAX
INT_M N

LONG MAX
LONG M N
SCHAR MAX
SCHAR M N
SHRT_MAX
SHRT_M N
UCHAR MAX

U NT_MAX
ULONG MAX
USHRT_MAX

in the

nmagni t ude

s.h> defines constants for the sizes of integral
are acceptable mninmum nmagnitudes; larger values
8 bitsinachar

UCHAR MAX OF SCHAR MAX
0 Or SCHAR M N

32767 maximum vaue of i nt

- 32767 minimum vaue of i nt

2147483647 maximum vaue of | ong

- 2147483647 minimum vaue of | ong

+127 maximum vaue of si gned char

-127 minimum vaueof si gned char

+32767 maximum vaue of short

- 32767 minimum vaue of shor t

255 maximum vaue of unsi gned char

65535 maximum vaue of unsi gned i nt

4294967295 maximum vaue of unsi gned | ong

65535 maximum vaue of unsi gned short
table below, a subset of <float.h> are constants
arithnetic. Wen a value is given, it represents

for t he cor respondi ng quantity. Each

defines appropriate val ues.

FLT_RADI X
FLT_ROUNDS
FLT DG

FLT EPS| LON
FLT MANT DI G
FLT MAX

FLT _MAX EXP
FLT M N
FLT M N EXP
DBL DI G
DBL_EPS| LON
DBL_MANT DI G
DBL_MAX
DBL_MAX_EXP
DBL_M N
DBL_M N EXP

2

1E-5

1E+37

1E-37

10
1E-9

1E+37

1E-37

maximum velue of char
maximum velue of char

radix of exponent, representetion, eg., 2, 16
floating-point rounding mode for addition

decimd digits of precison

gmdlest number x such that 1.0+x 1= 1.0

number of base FLT_RADI Xin mantissa

meaximum floating-point number

maximum n such thet FLT_RADI X" is representable
minimum normalized floating-point number
minimumn such that 10" is a normalized number
decimd digits of precison

gmdlest number x such that 1.0+x 1=1.0

number of base FLT_RAD X in mantissa

maximum doubl e floating-point number

maximum n such that FLT_RaDi X is representable
minimum normalized doubl e floating-point number
minimumn such that 10" is anormdized number

235

types.
may be

rel at ed
t he

i npl enent ati on

Appendix C - Summary of Changes

Snce the publication of the fird edition of this book, the definition of the C language has
undergone changes. Almogt dl were extensons of the origind language, and were carefully
desgned to reman compatible with exiding practice some repared ambiguities in the
origind description; and some represent modifications that change exiding practice Many of
the new fadlities were announced in the documents accompanying compilers avalable from
AT&T, and have subsequently been adopted by other suppliers of C compilers. More
recently, the ANS committee standardizing the language incorporated most of the changes
and dso introduced other dgnificant modifications. Ther report was in pat paticipated by
some commercid compilers even before issuance of the forma C standard.

This Appendix summarizes the differences between the language defined by the fird edition
of this book, and that expected to be defined by the find standard. It treats only the language
itsdf, not its environment and library; dthough these are an important pat of the standard,
there is litle to compare with, because the firg edition did not atempt to prexcribe an
environment or library.

Preprocessing is more carefully defined in the Standard then in the firgt edition, and is
extended: it is explicitly token based; there are new operators for concatenation of
tokens (##), and cregtion of srings (#); there are new control lines like #elif and
#pragma; redeclaraion of macros by the same token sequence is explicitly permitted;
parameters ingde drings ae no longer replaced. Splicing of lines by \ is permitted
everywhere, not just in strings and macro definitions. See Par.A.12.

The minimum ggnificance of dl internd identifiers increesed to 31 characters the
gndlex mandated dgnificance of identifiers with externd linkage remans 6
monocase letters. (Many implementations provide more.)

Trigraph seguences introduced by 22 dlow representation of characters lacking in
some character sets. Escapes for #A~[1{}|~ ae defined, see Par.A.12.1. Observe that
the introduction of trigrgphs may change the meening of drings containing the
sequence ?2.

New keywords (void, const, volatile, signed, enum) ae introduced. The
dillborn ent ry keyword iswithdrawn.

New escgpe sequences, for use within character condants and dring literds, are
defined. The effect of following \ by a character not pat of an approved escape
sequenceisundefined. See Par.A.2.5.2

Everyonesfavoritetrivia change 8 and 9 are not octd digits.

The gtandard introduces a larger st of suffixes to make the type of condants explicit:
uor L forintegers, For L for floating. It dso refines the rules for the type of undffixed
congtants (Par.A.2.9.

Adjacent gtring literals are concatenated.

There is a notation for wide-character gring literds and character condtants, see
Par.A.2.6

Characters as well as other types, may be explicitly declared to carry, or not to cary, a
dgn by usng the keywords signed or unsigned. The locution long float as a
synonym for doubl e is withdrawn, but 1ong double may be used to declare an extra
precison floating quantity.

For some time, type unsigned char has been avalable The standard introduces the
si gned keyword to make signedness explicit for char and other integra objects.

237

The void type has been avalade in most implementations for some yeas. The
Standard introduces the use of the void * type as a generic pointer type previoudy
char * played this role At the same time, explicit rules are enacted againg mixing
pointers and integers, and pointers of different type, without the use of casts.

The Standard places explicit minima on the ranges of the aithmetic types and
mandates headers (<limts.h> and <float.h>) giving the characteristics of each
particular implementation.

Enumerations are new since the firgt edition of this book.

The Sandard adopts from C++ the notion of type qudifier, for example const
(Par.A.8.2.

Strings are no longer modifiable, and so may be placed in read-only memory.

The “usud aithmetic conversons' ae changed, essentidly from “for integers
unsigned dways wins for floaing point, aways use doubl e" to ~promote to the
amdlest cgpacious-enough type" See Par.A.6.5

The od assgnment operators like =+ are truly gone Also, assignment operaors are
now single tokens in the fird edition, they were pars, and could be separated by
white space.

A compiler's license to trest mahemdicdly associative operaors as computationdly
associative is revoked.

A unary + operator isintroduced for symmetry with unary - .

A pointer to a function may be used as a function designator without an explicit *
operator. SeePar.A.7.3.2

Structures may be assigned, passed to functions, and returned by functions.

Applying the addressof operator to arays is permitted, and the result is a pointer to
the array.

The sizeof opedor, in the fird edition, yidded type int; subsequently, many
implementations mede it unsigned. The Sandard makes its type explicitly
implementation-dependent, but requires the type size t, to be defined in a standard
header (<stddef.h>). A dmila change occurs in the type (ptrdiff_t) of the
difference between pointers. See Par.A.7.4.8and Par.A.7.7.

The addressof operator & may not be goplied to an object decdlared regi ster, even if
the implemertation chooses not to keep the object in aregigter.

The type of a shift expresson is tha of the left operand; the right operand can't
promote the result. SeePar.A.7.8

The Standard legdizes the credtion of a pointer just beyond the end of an aray, ad
dlows arithmetic and rdationson it; see Par.A.7.7.

The Standard introduces (borrowing from C++) the notion of a function prototype
declaation that incorporates the types o the parameters, and includes an explicit
recognition of variadic functions together with an gpproved way of deding with them.
SeePars. A.7.3.2 A.8.6.3 B.7. The older Syle is Hill accepted, with redtrictions.

Empty declarations, which have no declarators and dont declare & least a Sructure,
union, or enumeration, are forbidden by the Standard. On the other hand, a dedaration
with just a dructure or union tag redeclares that tag even if it was declared in an outer
scope.

Externd data declarations without any specifiers or qudifiers (just a naked declarator)
are forbidden.

Some implementations, when presented with an extern dedaration in an inner block,
would export the declaration to the rest of the file. The Standard makes it clear thet the
scope of such adedaation isjust the block.

The scope of parameers is injected into a function's compound dSatement, so thet
variable declarations a the top leve of the function cannot hide the parameters.

23

The name spaces of identifiers are somewhat different. The Standard puts dl tags in a
gngle name space, and aAso introduces a separate name space for labes see
Par.A.11.1. Also, member names are associaed with the dtructure or union of which
they are a part. (This has been common practice from sometime,)

Unions may beinitidized; the initidizer refersto the first member.

Automatic structures, unions, and arrays may be initidized, dbeit in a restricted way.

Character arays with an explicit sze may be initidized by a dring literd with exactly
that many characters (the\ 0 is quietly squeezed out).

The controlling expresson, and the case labds of a switch may have any integrd
type.

