
Learning GNU C

Learning GNU C
A C programming tutorial for users of the GNU operating system.

Ciaran O’Riordan

http://ciaran.compsoc.com/

A C programming tutorial for users of the GNU operating system.

Copyright c© 2002, 2003, 2008 Ciaran O’Riordan

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the licence is included
in the section entitled “GNU Free Documentation License”.

Published by... (not published yet)

Cover art non existant

http://ciaran.compsoc.com/

i

Short Contents

Preface . 1

1 Introduction to C . 3

2 Getting Started . 7

3 Variables . 15

4 Flow Control . 20

5 Pointers . 25

6 Structured Data Types . 28

7 Run-time Memory Allocation . 32

8 Strings and File I/O . 33

9 Storage Classes . 34

10 The C Preprocessor . 37

11 Variable Length Arguments . 40

12 Tricks with Functions . 41

13 Taking Command Line Arguments . 43

14 Using and Writing Libraries . 46

15 Writing Good Code . 47

16 Speed . 48

A Who defines Valid C? . 49

B Copying This Manual . 51

Index . 58

ii

Table of Contents

Preface . 1
Target Audience . 1
Scope of this text . 1
Why learn C? . 1
Why Free Software? . 2
Why use GNU? . 2

1 Introduction to C . 3
1.1 What are Programming Languages? . 3
1.2 What is C? . 3

C vs. Assembly language . 3
1.3 Programming Tools . 5
1.4 Introducing GCC . 5

tiny.c . 5
tiny2.c . 6

1.5 Conclusion . 6

2 Getting Started . 7
2.1 titlesdf . 7

hello.c . 7
2.2 A Line-by-Line Dissection . 8
2.3 Comments . 9

hello2.c . 9
2.4 cowsdf . 9

bicycles.c . 10
2.5 Bicycle Dissection . 10
2.6 Data Types . 11

sizeof types.c . 11
2.7 Another Example of Assignment . 12

displaying variables.c . 12
2.8 Quick Explanation of printf . 12

more printf.c. 13
2.9 Simple arithmetic . 13

wages.c . 13
2.10 Global Variables . 13
2.11 Static Variables . 13
2.12 Constant Variables . 14

iii

3 Variables . 15
3.1 What are functions? . 15
3.2 Making your own Functions . 15

three functions.c . 15
3.3 Multiple Files . 16
3.4 Header Files . 16
3.5 A Larger (non)Program . 17

main.c . 17
display.c . 17
display.h . 18
prices.c . 18
prices.h . 18

3.6 Another new Function . 18
3.7 Primer Summary . 19

4 Flow Control . 20
4.1 Branching. 20

using if.c . 20
4.2 if ... else . 21

cows2.c . 21
4.3 Loops . 21
4.4 while . 22

guess my number.c . 22
4.5 for . 22

for ten.c . 22
4.6 do .. while . 23

guess my number.c . 23
4.7 Switch . 23
4.8 The Conditional Operator . 23

apples.c . 23
4.9 break & continue . 24

5 Pointers . 25
5.1 The Basics . 25

pointers are simple.c . 25
5.2 The Address of a Variable . 26
5.3 Pointers as Function Arguments . 26

swap ints.c . 26
5.4 Pointer Arithmetic . 27
5.5 Generic Pointers . 27

generic pointer.c . 27

iv

6 Structured Data Types . 28
6.1 What is Structured data? . 28
6.2 Arrays . 28
6.3 Declaring and Accessing Arrays . 28

first arrays.c . 28
6.4 Initialising Arrays . 28

initialise array.c . 29
6.5 Multidimensional Arrays . 29

number square.c . 29
6.6 Arrays of Characters (Text) . 30
6.7 Defining data types . 30
6.8 Structured Data . 30

person struct.c . 30
6.9 Unions . 31

7 Run-time Memory Allocation 32
7.1 Why you need this . 32
7.2 Dynamic Memory Functions . 32
7.3 Run-time Memory Summary . 32

8 Strings and File I/O . 33
8.1 Introduction . 33

9 Storage Classes . 34
9.1 What are Storage Classes? . 34
9.2 auto . 34
9.3 static . 34

list squares.c . 34
9.4 extern . 35
9.5 register . 35
9.6 the restrict type qualifier . 35
9.7 typedef . 35

battleships.c . 35

10 The C Preprocessor . 37
10.1 What is the C Prepressor . 37
10.2 What is it used for? . 37

box of stars.c . 37
10.3 Some sample macros . 38
10.4 Caveats for macros . 38

max macro.c . 38
max macro problem.c . 38

10.5 Are macros necessary? . 39
10.6 Replacing Simple Macros . 39
10.7 Replacing Complex Macros . 39

v

11 Variable Length Arguments 40
11.1 What are Variable Length Arguments? . 40

12 Tricks with Functions . 41
12.1 What are Virtual Functions? . 41

virtual function.c . 41
12.2 Nesting functions . 41
12.3 The Benefits of Nested Functions . 41
12.4 Declaring and Defining Nested Functions . 41

simple nested function . 41
12.5 Scope . 42

13 Taking Command Line Arguments 43
13.1 How does C handle command line arguments? 43

list args.c . 43
13.2 Argp . 43

simple argp.c . 43
13.3 Using More of the Argp Functionality . 43

better argp.c . 44
13.4 Environment Variables . 45

14 Using and Writing Libraries 46
14.1 What are Libraries? . 46
14.2 Using Libraries . 46
14.3 Stages of Compilation . 46
14.4 Writing a library . 46
14.5 Dynamic or Static . 46

15 Writing Good Code . 47
15.1 Readability . 47

16 Speed . 48
16.1 About Optimising . 48
16.2 What are function attributes? . 48
16.3 Function Attribute Syntax . 48
16.4 What are pure and const? . 48

Appendix A Who defines Valid C? 49
A.0.1 K&R C . 49
A.0.2 ISO C . 49
A.0.3 C99 . 49
A.0.4 GNU C . 49
A.0.5 Choosing a Dialect . 49
A.0.6 Future Standards . 50

vi

Appendix B Copying This Manual 51

Index . 58

Preface 1

Preface

Target Audience

Welcome to Learning GNU C. The aim of this book is to teach GNU users how to write
software in C. It is written primarily as a tutorial for beginners but it should be thorough
enough to be useful as a reference by intermediate programmers. The basics are layed down
in full in the first few chapters, beginners will read these chapters carefully while those with
prior experience can skim through them. All the information is there, no prior knowledge of
programming is assumed. Because the goal of this book is to make you a software developer,
we’ll then move on to some very practical usages, the likes of which normally aren’t taught
until much later in other books.

It is assumed that you have access to a computer with a GNU system installed. Users
of FreeBSD, OpenBSD, or NetBSD should also find this manual useful. Some familiarity
with using your computer from the command line shell would be helpful but all neccessary
commands will be shown along side programming examples. The only piece of software
you do need experience with is a text editor. Any text editor will do. GNU Emacs is an
especially good one for programmers. It has been in development for over twenty years and
contains thousands of useful features. GNU Nano is a simple text editor you could use, some
programmers like to use ViM or vi (pronounced vee eye). If you already have a favourite text
editor, you can use that. There are also graphical text editors geared towards programmers
such as Anjuta and KDevelop but most programmers prefer text based editors.

Most GNU systems use Linux as a kernel. These systems are often known as GNU/Linux
systems.

Scope of this text

The contents of this book can be divided into two topics: the core C language, and the
standard functionality made available to the programmer. The standard functionality I
mention is provided by GNU Libc, this is a standard library of C functionality that is part
of every GNU system. Neither of these topics is of much use without the other but there is
a focus on the core language near the beginning and more discussion on Libc near the end.
The ordering of topics is designed to teach C programming in an incremental fashion where
each chapter builds on the previous one. Some aspects of the core language are only really
of use to experienced programmers and so appear near the end.

The C language on it’s own can make decisions, repeat commands, store data, and
perform mathematics. Equally importantly, it provides a method to make use of extra
functionality such as Libc.

Libc provides functionality such as reading and writing files, sorting and searching data,
getting input from the user, displaying data to the user, communicating across networks,
creating easily translatable programs, and many other things.

Why learn C?

C is a standard, it is the programmers programming language. The majority of of software
that makes up GNU and BSD systems and the applications that run on them, is written in
C.

Preface 2

C was developed over thirty years ago for writing operating systems and applications.
It’s small, extensible design has allowed it to evolve with the computer industry. Because
of it’s age and popularity, C is a very well supported language. Many tools exist to make C
programming easier and these tools are often very mature and of a high standard. All the
software we will use in this book is written in C.

Why Free Software?

Software is Free Software when the user has the freedom to: Use the software for any
purpose, make changes to the software, share the software with others, and distribute
modified versions of the software. Today, copyright law allows a software developer to
restrict what a user can do with a piece of software. In 1984, Richard Stallman started the
Free Software movement to reject this behaviour.

Free Software empowers it’s users by allowing them to help themselves and each other by
making changes they want to the software or getting someone else to make these changes.
Software that is not Free Software is often called proprietary software. Proprietary software
says that cooperating is wrong. Producers of proprietary software use copyright law to
make it a criminal offense to help others by sharing software.

The goal of proprietary software is profit maximisation for one entity. In contrast, the
goal of Free Software is to be as useful as possible to as many people as possible. The GNU
project was started to reject proprietary software, thus freeing computer users from having
to choose between being a criminal and betraying their community.

Finally there are the technical benefits. Free Software is free from marketing plots. It
doesn’t restrict itself to force users to buy extra pieces of software. Each piece of GNU is
designed to be as useful as possible. As a programmer you can use the same C programming
software that is used in major projects.

Proprietary software is generally distributed in a machine readable form only. This
means that the user cannot see what what a program is really doing. Free Software is
required to come with source code in a human readable format. As a programmer you can
read the source code for any piece os Free Software you like. If there are errors in a program,
you can fix them.

The peer review, and collaboration of thousands of programmers around the world has
created a lot of high quality Free Software. The GNU/Linux operating system is one of it’s
greatest achievments.

Free Software will change the world for the better.

Why use GNU?

GNU is a complete, Unix-like operating system that has been in development for just
over twenty years. GNU software is known for it’s stability, standard compliance, and the
freedom it gives to computer users.

Chapter 1: Introduction to C 3

1 Introduction to C

1.1 What are Programming Languages?

A programming language is a way to give a computer a sequence of instructions to do
something. Programming languages can be sorted into three three categories: machine
languages, Assembly languages, and High-Level languages. Of these types only machine
languages can be understood directly by a computer.

A machine language is the set of instructions that a computer’s central processing unit
(CPU) understands. All instructions and information are represented by numbers; very fast
for computers, very hard for human brains to read or write. To ease the task of computer
programming, people designed easier languages called assembly languages. An assembly
language is one which provides textual names for the available machine language commands.
This, along with the fact that assembly languages allowed programmers to add spaces and
tabs to their code, made assembly languages far easier to program with. Assembly code
can then be fed to an assembler which translates it into the machine language of the target
computer’s CPU.

The use of assembly languages spread very fast, they became known as second generation
languages but there were still two problems with assembly languages. Firstly, each command
does only a very basic task such as add two numbers or load a value from memory. Using
these small commands was quite tedious. The second problem was much bigger. Programs
written in an assembly language are bound to a particular type of CPU. Each type of CPU
has it’s own machine language and, therefore, it’s own assembly language.

Finally, machine independant languages were developed, known as third generation or
high-level languages. Designed to be easy to read, these languages were made up of English
words, basic mathematical symbols, and a few punctuation characters. These languages
allow simple statements to be expressioned concisely, for example, adding two numbers and
storing the result in memory could be expressed as:

data = 10 + 200;

Instead of:
Load R1, 10

Load R2, 200

Addi R1, R2

Store R2, L1

1.2 What is C?

C is one such high-level language. A tool called a compiler is used to convert C into machine
code. A program can be written in C and compiled for any computer, it’s up to the compiler
to get the hardware-specific instructions right.

To see just how readable C is compared to Assembly language, take a look at the following
tiny program written in each:

C vs. Assembly language
.section .rodata

.LC0:

.string "Tax Due: %d\n"

Chapter 1: Introduction to C 4

.text

.align 2

.globl main

.type main,@function

main:

pushl %ebp

movl %esp, %ebp

subl $24, %esp

andl $-16, %esp

movl $0, %eax

subl %eax, %esp

movl $1000, %eax

movl $400, %edx

movl $0x3e6147ae, -12(%ebp)

subl %edx, %eax

pushl %eax

fildl (%esp)

leal 4(%esp), %esp

fmuls -12(%ebp)

fnstcw -18(%ebp)

movw -18(%ebp), %ax

movb $12, %ah

movw %ax, -20(%ebp)

fldcw -20(%ebp)

fistpl -16(%ebp)

fldcw -18(%ebp)

subl $8, %esp

pushl -16(%ebp)

pushl $.LC0

call printf

addl $16, %esp

movl $1, %eax

leave

ret

.Lfe1:

.size main,.Lfe1-main

And the same program in C:

#include <stdio.h>

int

main()

{

int wages = 1000;

int tax_allowance = 400;

float tax_rate = 0.22;

int tax_due;

tax_due = (wages - tax_allowance) * tax_rate;

printf("Tax Due: %d euro\n", tax_due);

return 0;

}

The output of both programs is the same: Tax Due: 131 euro. The readability winner is
obvious. What’s more, the Assembly code shown is written in the 80386 instruction set, it

Chapter 1: Introduction to C 5

will not work on machines that use a different instruction set. The C code can be compiled
for almost any computer.

1.3 Programming Tools

GNU comes with a compiler called GCC. Originally this stood for GNU C Compiler but
since it can now compile languages other than C it’s name was changed to GNU Compiler
Collection. To check if you have GCC installed, type “gcc –version” at a command line. If
you get a message like:

ciaran@pooh:~/book$ gcc --version

bash: gcc: command not found

ciaran@pooh:~/book$

Then you don’t have GCC installed. If you do, you’ll see a version number and maybe
some copyright and warranty information, like this:

ciaran@pooh:~/book$ gcc --version

gcc (GCC) 4.2.3 (Debian 4.2.3-1)

Copyright (C) 2007 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

ciaran@pooh:~/book$

The version of GCC you have installed may be different, anything similar, such as 2.95.2
or 3.3.0, is ok. If you got an error message saying command not found then you don’t have
GCC installed. If you installed GNU from a CD, you should find GCC there. If you don’t
know how to install applications from a CD then get a friend or the person who installed
your GNU system to do it for you.

1.4 Introducing GCC

Now we’re going to show you a tiny bit of C code and how to compile it. The point here

is to show you how to use GCC so we won’t explain the C code yet. Here’s the smallest C

program that GCC will compile. It does nothing.

tiny.c
main()

{

}

Type this piece of code into your text editor and save it to a file called ‘tiny.c’. You
can choose any name so long as it ends with ‘.c’, this is the extension used by C programs,
GCC checks for this extension when compiling a program. With the file saved, you can now
compile it into an executable program by typing:

ciaran@pooh:~/book$ gcc tiny.c

ciaran@pooh:~/book$

This command should succeed with no output. If you got any error messages check that
you typed the program in correctly. Weighing in at eight characters we’ll assume you’ve
gotten this much correct and move on. A file called ‘a.out’ should have appeared in your
directory. This is the machine language program created from the above code, if you run it

Chapter 1: Introduction to C 6

you will see that it really does nothing at all. The name ‘a.out’ exists for historical reasons,
it is short for assembler output.

Although GCC will compile this code, it isn’t strictly complete. If we enable GCC’s
warnings we will be told what is missing. You are not expected to understand the warning
messages right now, we show this only to demonstrate GCC’s warnings. You enable warnings
by adding the -Wall switch to your compilation command.

ciaran@pooh:~/book$ gcc -Wall tiny.c

tiny.c:2: warning: return-type defaults to ‘int’

tiny.c: In function ‘main’:

tiny.c:3: warning: control reaches end of non-void function

ciaran@pooh:~/book$

These warnings appear because our program is not strictly complete. To get rid of these
warnings we must add two more lines. So here’s the smallest valid C program.

tiny2.c
int

main()

{

return 0;

}

When we compile this with the -Wall option we will get no warnings. Another option:
-o filename can be used to specify the name you want to give to your program (instead of
‘a.out’).

ciaran@pooh:~/book$ gcc -Wall -o tiny-program tiny2.c

ciaran@pooh:~/book$ ls

tiny2.c tiny-program

ciaran@pooh:~/book$./tiny-program

ciaran@pooh:~/book$

The “return” command ends the program’s execution because it tell the program to
return to whoever called it. Functions always return with a value. Unless otherwise defined,
a return value of zero means there were no errors encountered. You can check this at the
command line with the command “echo $?”. If you change “return 0” to “return 7”, and
then recompile and run the program, then an “echo $?” command will diplay 7. Not very
exiting, but that’s proof that your first program did something.

1.5 Conclusion

This concludes our introduction. Hopefully you now have a grasp of what programming
is. In the next chapter we’ll start writing basic programs that actually do something and
explain how they do it.

If you’re interested in more background and compiler details, you might like to read
the appendixes at the end of this book. Otherwise, let’s go straight to writing your first
program.

Chapter 2: Getting Started 7

2 Getting Started

All C programs are broken down into blocks of code called functions. Say you wanted
to write a simple program to add three numbers supplied by the user; you would need a
function to get a value from the user, a function to perform the math, and a function to
display the answer. C programs are mostly made up of two things: functions and data.
Functions are blocks of code that complete a task while data is information stored in the
program. are pieces of memory that store information. This information can be changed
at any time within the program hence the name variable. The purpose of programs can
usually be broken down into three actions: accept some data as input, manipulate that
data, output it. A simple example would be the command ls you type into your shell. ls
is a program, written in C, that gathers directory information from your operating system,
converts it to a human readable format, and outputs it to your terminal.

2.1 titlesdf

The first thing we will look at is outputing data. Data is a very broad term, but in C is
all comes down to numbers. Rather than get bogged down in the theory we’ll jump into a
quick program that displays a message to your screen.

The first piece of useful code we will look at is a classic. When compiled and run it will
display a simple greeting to your screen. This program defines a function called main() and
calls (uses) a function called printf(). printf() is a function provided for us by the Standard
Device Input/Output library. This library comes with every GNU system. Here’s our little
program:

hello.c
#include <stdio.h>

int

main()

{

printf("hello, world\n");

return 0;

}

Compile and run this program before moving on. If all goes well, it will display the text
string “hello, world” to your terminal (the standard output device). Here’s the compilation
command just in case you’ve forgotten:

ciaran@pooh:~/book$ gcc -Wall -o hello hello.c

ciaran@pooh:~/book$./hello

hello, world

ciaran@pooh:~/book$

If you got any error or warning messages check that your code matches the code in this
book exactly. Any messages you got should tell you the line of code where your mistake is.
If you’ve typed the code in correctly you will get no such messages.

In this example we placed the text string "hello, world" in the parenthesis following the
printf(). A printing function wouldn’t be much good if you couldn’t tell it what to print.
Many standard functions require you to pass arguments to them that will tell them how
you want their job done.

Chapter 2: Getting Started 8

2.2 A Line-by-Line Dissection

We’ll do a quick description of what each line does. Don’t worry if your not sure about
some parts, we’ll do plenty more examples.

#include <stdio.h>

This line tells GCC to include information about how to use the functions from the
Standard Device Input/Output library. Usually the standard input device is your keyboard
and the standard output device a terminal (which is displayed on your monitor). This
library is very widely used, we’ll come across a lot of functions from it in this book.

int

main()

These two lines begin the definition of the function main. We’ll explain the first of these
two lines later.

{

The open curly braces signals the beginning of a block of code. All code between this
curly brace and it’s matching closing brace is part of the function main.

printf("hello, world\n");

This line is a function call, the function is already defined for you.

return 0;

The return statement ends execution of the function main, any statements after this line
would not be executed. When main() ends, your program exits. When a function ends, it
can pass a value back to whoever called it, this is done by placing the value after return.
main always returns an integer (a positive or negative number with no decimal point). We
tell the compiler to expect this by preceding the definition of main with int. When returning
from main() it is convention to return zero if no problems were encountered.

}

The closing curly brace signals the end of the block of code that makes up main.

The two lines that make up the body of main are known as statements. More specifically
they are simple statements (as opposed to compound statements which we will encounter
in chapter 4). Statements are to C what sentences are to spoken languages. A semi-colon
ends a simple statement. The blank lines in the program are optional, C never requires a
blank line but they make code much easier to read.

We mentioned that our function main returns the value zero. For most functions the
return value can be used within the program but since returning from main ends the pro-
gram, it returns the value to the shell. Your shell stores this value, if you’d like to see it
just type:

ciaran@pooh:~/book$ gcc -Wall -o hello hello.c

ciaran@pooh:~/book$./hello

hello, world

ciaran@pooh:~/book$ echo $?

0

ciaran@pooh:~/book$

To verify this you can change the value in the program from zero to ninety-nine, recompile
and re-run the program. You’ll see 99 on your screen.

Chapter 2: Getting Started 9

2.3 Comments

Comments are a way to add explanatory text to your program. Just like blank lines, they

are ignored by the compiler so they don’t affect your program in any way. As the programs

you write get larger you will find it helpful to have comments in your code to remind you

what you were thinking. In the examples in this book we will use comments to explain what

is going on. There are two ways to insert a comment into your program, the most common

way is to start and end your comments with /* and */ respectively. Comments of this sort

can span multiple lines. The second way is by placing // at the start of your comment.

Comments of this sort are terminated at the end of a line. Here’s our hello, world program

with comments.

hello2.c
/* The purpose of this program is to

* display some text to the screen

* and then exit.

*/

#include <stdio.h>

int

main()

{

/* printf displays a string */

printf("hello, world\n");

return 0; //zero indicates there were no errors

}

When compiled, this code will produce exactly the same executable. Lines 2 and 3 of
the comment at the top start with an asterisk, this is not necessary but it makes it clear
that the comment extends for four lines.

2.4 cowsdf

variables to store data. C programs can change the data stored in a variable at any time,
hence the name. Every variable has an identifier which you can use to refer to it’s data when
you want to use or change it’s value. An expression is anything that can be evaluated i.e.
1 + 1 is an expression of the value 2. In this expression, the plus sign is a binary operator;
it operates on two values to create a single value.

The rules for naming a variable are the same as for naming a function, you can use letters,

numbers, and the underscore character and the first character must not be a number. Also

like functions, variables must be declared before they can be used. The identifier you give to

a variable should say what the the variable will be used for, this makes you code much easier

to read. You can define your own variables or you can use one of the types already defined

for you. Before we get bogged down in terminology let’s look at a quick code example to

show how simple it all is. In this example we will use two variables of the pre-defined type

int.

Chapter 2: Getting Started 10

bicycles.c
#include <stdio.h>

int

main()

{

int number_of_bicycles;

int number_of_wheels;

number_of_bicycles = 6;

number_of_wheels = number_of_bicycles * 2;

printf("I have %d bicycles\n", number_of_bicycles);

printf("So I have %d wheels\n", number_of_wheels);

return 0;

}

2.5 Bicycle Dissection

There are a few new things to look at here, we’ll break the program into chunks to explain
them.

int number_of_bicycles;

int number_of_wheels;

These two lines each declare a variable. int is one of the built-in data types of the C
language. Variables of type int can store positive or negative whole numbers.

number_of_bicycles = 6;

This line stores the value 6 in the variable number_of_bicycles. The equals sign is
known as the assignment operator, it assigns the value on the right hand side of it to the
variable on the left hand side.

number_of_wheels = number_of_bicycles * 2;

Again, this line uses the assignment operator but it also uses the multiplication operator.
The asterisk is another binary operator, it multiplies two values to create a single value. In
this case it creates the value 12 which is then stored in number_of_wheels.

printf("I have %d bicycles\n", number_of_bicycles);

printf("So I have %d wheels\n", number_of_wheels);

Here we see printf again but it’s being used unlike we have seen before. Here it is
taking two arguments which are separated by a comma. The first argument to printf is
known as the format string. When a %d is encountered in the format string printf knows
to expect an extra argument. The %d is replaced by the value of this extra argument. One
addition argument is expected for each %d encountered.

With this new knowledge it should be no surprise that when we compile and run this
piece of code we get the following:

I have 6 bicycles

So I have 12 wheels

As always, don’t worry if you are unsure about certain parts. We’ll do plenty more
examples.

Chapter 2: Getting Started 11

2.6 Data Types

All the data types defined by C are made up of units of memory called bytes. On most
computer architectures a byte is made up of eight bits, each bit stores a one or a zero.
These eight bits with two states give 256 combinations (28). So an integer which takes up
two bytes can store a number between 0 and 65535 (0 and 216. Usually however, integer
variables use the first bit to store whether the number is positive or negative so their value
will be between -32768 and +32767.

As we mentioned, there are eight basic data types defined in the C language. Five types
for storing integers of varying sizes and three types for storing floating point values (values
with a decimal point). C doesn’t provide a basic data type for text. Text is made up of
individual characters and characters are represented by numbers. In the last example we
used one of the integer types: int. This is the most commonly used type in the C language.

The majority of data used in computer programs is made up of the integer types, we’ll
discuss the floating point types a little later. In order of size, starting with the smallest, the
integer types are char, short, int, long and long long. The smaller types have the advantage
of taking up less memory, the larger types incur a performance penalty. Variables of type
int store the largest possible integer which does not incur this performance penalty. For
this reason, int variables can be different depending what type of computer you are using.

The char data type is usually one byte, it is so called because they are commonly used
to store single characters. The size of the other types is dependent on the hardware of your
computer. Most desktop machines are 32-bit, this refers to the size of data that they are
designed for processing. On 32-bit machines the int data type takes up 4 bytes (232). The
short is usually smaller, the long can be larger or the same size as an int and finally the
long long is for handling very large numbers.

The type of variable you use generally doesn’t have a big impact on the speed or memory
usage of your application. Unless you have a special need you can just use int variables. We
will try to point out the few cases where it can be important in this book. A decade ago,
most machines had 16-bit processors, this limited the size of int variables to 2 bytes. At
the time, short variables were usually also 2 bytes and long would be 4 bytes. Nowadays,
with 32-bit machines, the default type (int) is usually large enough to satisfy what used to
require a variable of type long. The long long type was introduced more recently to handle
very large numeric values.

Some computers are better at handling really big numbers so the size of the data types

will be bigger on these machines. To find out the size of each data type on your machine

compile and run this piece of code. It uses one new language construct sizeof. This tells

you how many bytes a data type takes up.

sizeof types.c
int

main()

{

printf("sizeof(char) == %d\n", sizeof(char));

printf("sizeof(short) == %d\n", sizeof(short));

printf("sizeof(int) == %d\n", sizeof(int));

printf("sizeof(long) == %d\n", sizeof(long));

printf("sizeof(long long) == %d\n", sizeof(long long));

Chapter 2: Getting Started 12

return 0;

}

2.7 Another Example of Assignment

Time for another example. This bit of code demonstrates a few more new things which

we’ll explain in a minute.

displaying variables.c
#include <stdio.h>

int

main ()

{

short first_number = -5;

long second_number, third_number;

second_number = 20000 + 10000;

printf ("the value of first_number is %hd\n", first_number);

printf ("the value of second_number is %ld\n", second_number);

printf ("the value of third_number is %ld\n", third_number);

return 0;

}

We’ve used a short and two long variables. We could have used int variables but chose
to use other types to show how similar they are. In the first line of main we declare a
variable and give it a value all in one line. This is pretty normal. The second line declares
two variables at once by separating them with a comma. This can be handily but code is
often more readable when variable declarations get a line to themselves.

The third line is very like some code from the first example, the addition operator
produces the value 30000 which gets stored in second number. The last thing to point
out is that instead of %d, the format string of printf contains %hd for the short variable
and %ld for the long variables. These little groupings of characters are called conversion

specifiers. Each type of variable has it’s own conversion specifier. If you want to print a
single percent sign (%) you must write %%.

When you compile and run this you will see the value of your variables. The value of
third number will be strange. This is because it was never assigned a value. When you
declare a variable, the operating system allocates some memory for it. You have no way
of know what this memory was used for previously. Until you give your variable a value,
the data stored in it is essentially random. Forgetting to assign a value to a variable is a
common mistake among beginning programmers.

2.8 Quick Explanation of printf

You may have noticed two characters near the end of our printf statements \n. These
don’t get displayed to the screen, they are the notation printf uses to represent newline.
’\’ is the c escape character when it is encountered within quotes the following character
usually has a special meaning. Another example is \t which is used to represent a TAB.

Chapter 2: Getting Started 13

Another special character that printf looks out for is ’%’, this tells it to look at the
next few characters and be ready to replace them with the value of a variable. %d is the
character sequence that represents a variable of type int to be displayed using the decimal
counting system (0 .. 9). For every %d in the format string you must tell printf what
variable you want it replaced with. Here’s some more use of printf in code:

more printf.c
int

main()

{

int one = 1;

int two = 2;

int three = 4; /* the values are unimportant here */

printf ("one ==\t%d\ntwo ==\t%d\nthree ==\t%d\n", one, two, three);

return 0;

}

2.9 Simple arithmetic

We mentioned at the start of this chapter that point of a program usually involves perform-
ing actions on data. By using standard mathematical symbols, arithmetic in C is easily
readable.

wages.c
int

main()

{

int hours_per_day;

int days_per_week;

hours_per_day = 8;

days_per_week = 5;

printf ("I work %d hours a week.\n", (days_per_week * hours_per_day));

printf ("%d %d hour days\n", days_per_week, hours_per_day);

return 0;

}

2.10 Global Variables

These have there place but are often used to fix badly written code. If two functions need
to operate on a variable you should use pointers to share this variable rather than make it
available to every function.

2.11 Static Variables

text.

Chapter 2: Getting Started 14

2.12 Constant Variables

A good rule to follow is to never use numbers other than 1 and 0 in your code. If you
require another numeric constant you should make it a const variable; this way it gets a
nice meaningful name. The number 40 has little meaning, however, the identifier HOURS_

WORKED_PER_WEEK tells us something about what a function is doing. Another benefit is
that you can change the value of a const variable in one place rather than having to change
all occurrences of 40. Using the latter method it is easy to make a mistake by changing an
unrelated occurrence of 40 or forgetting to change an occurrence.

Chapter 3: Variables 15

3 Variables

3.1 What are functions?

C programs are generally broken down into tasks. To calculate the bill at a resteraunt you
need some code to ask for the costs of each dish, calculate the total, and then display the
answer. Each of these tasks is taken care of by a function.

In the last chapter we wrote a do-nothing program, this program consisted on one func-
tion, main. When writing real software your programs will be made up of tens or hundreds
of functions. When you write a program you will write many functions to perform the tasks
you need. There are, however, a lot of common tasks such as displaying text to the screen
that a lot of programmers will need. Instead of having everyone reinventing the wheel, GNU
systems come with libraries of pre-defined functions for many of these tasks. Over the years,
thousands of such functions have accumulated. If you were writing a program that plays the
game, BINGO, you would have to write the game specific functions yourself but you would
find that others have already written functions for generating random numbers, displaying
results to the screen, getting input from the player etc.

Every C program must have a function called main, this is where execution of the
program begins. The code of a program could be completely contained in main but it is
more usual to split a program into many small functions.

3.2 Making your own Functions

In that last example we defined just one function. To add another function you must
generally do two things. First you must define the function, just like we defined main. Also
you you must declare it. Declaring a function is like telling GCC to expect it, we didn’t have
to declare main because it is a special function and GCC knows to expect it. The name, or
identifier, you give to a function must appear in both the definition and the declaration.

Functions identifiers can be made up of the alphabetic characters a-z and A-Z, the
numeric characters 0-9 and the underscore character . These can be used in any order so
long as the first character of the identifier is not a number. As we said earlier, C is case-
sensitive so My_Function is completely different to my_function. A functions identifier
must be unique. Identifiers can safely be up to 63 characters long or as short as 1 character.

Along with it’s identifier you must give each function a type and a block of code. The
type tells the compiler what sort of data it returns. The return value of a function can be
ignored, printf returns an integer saying how many character it displayed to the terminal.
This information wasn’t important to us so we ignored it in our program. In the next
chapter we’ll discuss types of data in detail, until then we’ll gloss over return values.

Here’s a program that defines three functions:

three functions.c
#include <stdio.h>

/* function declarations */

int first_function (void);

int goodbye (void);

Chapter 3: Variables 16

int

main () // function definition

{

printf ("the program begins...\n");

first_function ();

goodbye ();

return 0;

}

int

first_function () // function definition

{

/* this function does nothing */

return 0;

}

int

goodbye () // function definition

{

printf ("...and the program ends.\n");

return 0;

}

In the above example we wrote first_function which does nothing and goodbye which
displays a message. Functions must be declared before they can be called are called, in our
case this means they must appear our definition of main. In practice, function declarations
are generally grouped at the top of a file after any #include lines and before any function
definitions.

3.3 Multiple Files

Programs do not have to be written in just one file, your code can split up into as many
files as you want, if a program is comprised of forty functions you could put each function
into a separate file. This is a bit extreme though. Often functions are grouped by topic
and put into separate files. Say you were writing a program that worked out the price of
a pizza and displayed the result, you could put the calculation functions into one file, the
display functions into another and have main in a third one. The command you would use
to compile your program would look something like this:

ciaran@pooh:~/book$ gcc -o pizza_program main.c prices.c display.c

Remember: If you define a function in ‘prices.c’ and you want to call this function in
‘main.c’ you must declare the function in ‘main.c’.

3.4 Header Files

Keeping track of function declarations can get messy, for this reason Header files are used
to house C code that you wish to appear in multiple files. You have actually already
used a header file. ‘stdio.h’ is a header file which contains many function declarations,
it contains the function declarations for printf and printf. Once you have placed the
function declarations you wish to share into a header file you can #include your header

Chapter 3: Variables 17

in each C file that needs the information. The only difference being that you surround
your filename in quotes instead of angle brackets ("my_header.h" instead of <system_

header.h>). To illustrate these points we’ll write that pizza program I mentioned earlier.

3.5 A Larger (non)Program

The small amount of programming we have shown so far isn’t enough to make a decent
interactive program. To keep it simple, we will write just a skeleton program so you can
see the structure and usage of header files without getting bogged down in new concepts.
In Chapter 3 we will write a full version of this program. The code here can be compiled
and run but it will not ask the user for any input or calculate the price.

First we have ‘main.c’, this will only contain the function main. main will call some

of the functions we define in other files. Note that ‘main.c’ doesn’t have a line #include

<stdio.h> as it does not use any of the functions in the Standard Device I/O library.

main.c
#include "display.h"

#include "prices.h"

int

main()

{

display_options ();

calculate_price ();

display_price ();

return 0;

}

Next we have ‘display.c’. This contains two functions, both of which are called from

main and so we put there declarations in a header file ‘display.h’.

display.c
#include <stdio.h>

int

display_options ()

{

printf ("Welcome to the pizza parlor\n");

printf ("What size pizza would you like? (in inches)");

return 0;

}

int

display_price ()

{

printf ("Your pizza will cost 0.00\n");

return 0;

}

Chapter 3: Variables 18

display.h
/* header file just contains function declarations, an file that wants

* to use either of these functions just has to #include this file */

int display_options (void);

int display_price (void);

Finally we have ‘prices.c’ which contains the functions for getting input from the user

and calculating the total cost of the pizza. Only one of these functions is called from main,

the declarations for the other two are therefore put at the top of the file. We’ll fill in the

code for these functions in Chapter 3.

prices.c
int get_size (void);

int get_toppings (void);

int

calculate_price ()

{

/* insert code here. Will call get_size() and get_toppings(). */

return 0;

}

int

get_size ()

{

/* insert code here */

return 0;

}

int get_toppings ()

{

/* insert code here */

return 0;

}

prices.h
int calculate_price (void);

This can then be compiled with the command: gcc -Wall -o pizza_program main.c

prices.c display.c. When run, it will display a greeting and announce that your pizza
costs E0.00.

3.6 Another new Function

Before we move on, let’s take a look at one more function from the Standard Device I/O
Library: printf. The Print Formatted command is an advanced form of printf. The
string you pass to printf can contain character sequences which have special meanings.
Unlike printf, there is no automatic new-line at the end of a string displayed by printf

to insert a new-line you add the characters \n.

Chapter 3: Variables 19

3.7 Primer Summary

What we’ve covered so far shouldn’t be too hard. If you’d like to experiment, try writing
similar programs that output a few lines. Split your program into a couple of functions and
divide them into two files.

Always enable GCC’s warnings when compiling your program. Warnings mean your
code is unclear or incomplete, GCC will guess at the correct meaning and will usually get
it right but you should not rely on this. Looking at and correcting the warnings will help
you get used to the language. Most warnings are accompanied by the line number where
the problem is. If you can’t see anything wrong with that line check the line above it;
if a statement is incomplete GCC won’t notice that it is an error until it encounters the
beginning of the following statement. Don’t forget your semi-colons.

Chapter 4: Flow Control 20

4 Flow Control

Taking actions based on decisions

C provides two sytles of decision making: branching and looping. Branching is deciding
what actions to take and looping is deciding how many times to take a certain action.

4.1 Branching

Branching is so called because the program chooses to follow one branch or another. The
if statement is the most simple of the branching statements. It takes an expression in
parenthesis and an statement or block of statements (surrounded by curly braces). if the
expression is true (evaluates to non-zero) then the statement or block of statements gets
executed. Otherwise these statements are skipped. if statements take the following form:

if (expression)

statement;

or

if (expression)

{

statement1;

statement2;

statement3;

}

Here’s a quick code example:

using if.c
#include <stdio.h>

int

main()

{

int cows = 6;

if (cows > 1)

printf("We have cows\n");

if (cows > 10)

printf("loads of them!\n");

return 0;

}

When compiled and run this program will display:

ciaran@pooh:~/book$ gcc -Wall -Werror -o cows using_if.c

ciaran@pooh:~/book$./cows

We have cows

ciaran@pooh:~/book$

The second printf statement does not get executed because it’s expression is false
(evaluates to zero).

Chapter 4: Flow Control 21

4.2 if ... else

A second form of if statement exists which allows you to also specify a block of code to

execute if the test expression is false. This is known as an if ... else statement and is formed

by placing the reserved word else and another block of code after the usual if statment.

You program will execute one of the two blocks of code based on the test condition after

the if. Here’s what it looks like:

cows2.c
int

main()

{

int cows = 0;

if (cows > 1)

{

printf("We have cows\n");

printf("%d cows to be precise\n", cows);

}

else

{

if (cows == 0)

printf("We have no cows at all\n");

else

printf("We have only one cow\n");

}

if (cows > 10)

printf("Maybe too many cows.\n");

return 0;

}

You should be able to guess the output by now:

ciaran@pooh:~/book$./cows2

We have no cows at all

ciaran@pooh:~/book$

In the last example there was an if .. else statement inside another if .. else state-
ment. This is perfectly legal in C and is quite common. There is another form of branching
you can use but it’s a little more complex so we’ll leave it to to end of the chapter.

4.3 Loops

Loops provide a way to repeat commands and control how many times they are repeated.
Say you wanted to print the alphabet to the screen, you could do this with a call to printf.
This is one solution but it doesn’t scale very well, what if you wanted to print all the
numbers between one and one thousand in a column? this could be handled by one big
printf or loads of printf calls but repetitive work should be done by the computer, leaving
you more time to work on the interesting parts of your program.

Chapter 4: Flow Control 22

4.4 while

The most basic loop in C is the while loop. A while statement is like a repeating if statement.
Like an If statement, if the test condition is true: the statments get executed. The difference
is that after the statements have been executed, the test condition is checked again. If it
is still true the statements get executed again. This cycle repeats until the test condition
evaluates to false. If the test condition is false the first time, the statments don’t get
executed at all. On the other hand if it’s test condition never evaluates to false it may
continue looping infinitely. To control the number of times a loop executes it’s code you
usually have at least one variable in the test condition that gets altered in the subsequent
block of code. This allows the test condition to become false at some point.

Here’s the quick example you are probably expecting. It’s a simple guessing game, very

simple for the person who is writing the code as they know the answer. When testing this

program remember to guess the wrong answer a few times.

guess my number.c
#include <stdio.h>

int

main()

{

const int MAGIC_NUMBER = 6;

int guessed_number;

printf("Try to guess what number I’m thinking of\n");

printf("HINT: It’s a number between 1 and 10\n");

printf ("enter your guess: ");

scanf ("%d", &guessed_number);

while (guessed_number != MAGIC_NUMBER)

{

printf ("enter your guess: ");

scanf ("%d", &guessed_number);

}

printf ("you win.\n");

return 0;

}

The block of code following the while statement will be executed repeatedly until the
player guesses the number six.

4.5 for

for is similar to while, it’s just written differently. for statements are often used to proccess

lists such a range of numbers:

for ten.c
#include <stdio.h>

int

Chapter 4: Flow Control 23

main()

{

int i;

/* display the numbers from 0 to 9 */

for (i = 0; i < 10; i++)

printf ("%d\n", i);

return 0;

}

4.6 do .. while

do .. while is just like a while loop except that the test condition is checked at the end of

the loop rather than the start. This has the effect that the content of the loop are always

executed at least once.

guess my number.c
#include <stdio.h>

int

main()

{

const int MAGIC_NUMBER = 6;

int guessed_number;

printf ("Try to guess what number I’m thinking of\n");

printf ("HINT: It’s a number between 1 and 10\n");

do

{

printf ("enter your guess: ");

scanf ("%d", &guessed_number);

}

while (guessed_number != MAGIC_NUMBER);

printf ("you win.\n");

return 0;

}

4.7 Switch

The switch statement is much like a nested if .. else statement. Its mostly a matter of
preference which you use, switch statement can be slightly more efficient and easier to read.

4.8 The Conditional Operator

The ?: operator is just like an if .. else statement except that because it is an operator
you can use it within expressions.

Blah, blah, here’s an example:

apples.c
#include <stdio.h>

Chapter 4: Flow Control 24

int

main()

{

int apples = 6;

printf ("I have %d apple%s\n", apples, (apples == 1) ? "" : "s");

return 0;

}

?: is a ternary operator in that it takes three values, this is the only ternary operator
C has.

4.9 break & continue

You’ve seen break already, we ended each case of our switch statement with one. break

exits out of a loop.

continue is similar to break in that it short circuits the execution of a code block but
continue brings execution back to the start of a loop.

Chapter 5: Pointers 25

5 Pointers

sorting the programmers from the students

5.1 The Basics

A limitation you may have noticed is that functions can only affect your program via their
return value, so what do you do when you want a function to alter more than one variable?
You use pointers. A pointer is a special kind of variable. Pointers are designed for storing
memory address i.e. the address of another variable. Declaring a pointer is the same as
declaring a normal variable except you stick an asterisk ’*’ in front of the variables identifier.
There are two new operators you will need to know to work with pointers. The address of
operator ’&’ and the dereferencing operator ’*’. Both are prefix unary operators. When
you place an ampersand in front of a variable you will get it’s address, this can be store
in a pointer. When you place an asterisk in front of a pointer you will get the value at
the memory address pointed to. As usual, we’ll look at a quick code example to show how
simple this is.

pointers are simple.c
#include <stdio.h>

int

main()

{

int my_variable = 6, other_variable = 10;

int *my_pointer;

printf ("the address of my_variable is : %p\n", &my_variable);

printf ("the address of other_variable is : %p\n", &other_variable);

my_pointer = &my_variable;

printf ("\nafter \"my_pointer = &my_variable\":\n");

printf ("\tthe value of my_pointer is %p\n", my_pointer);

printf ("\tthe value at that address is %d\n", *my_pointer);

my_pointer = &other_variable;

printf ("\nafter \"my_pointer = &other_variable\":\n");

printf ("\tthe value of my_pointer is %p\n", my_pointer);

printf ("\tthe value at that address is %d\n", *my_pointer);

return 0;

}

The output shows you the address of the two variables, the addresses your system assigns
to the variables will be different to mine. In printf you’ll notice we used %p to display the
addresses. This is the conversion specifier for all pointers. Anyway, here’s the output I got:

the address of my_variable is : 0xbffffa18

the address of other_variable is : 0xbffffa14

after "my_pointer = &my_variable":

the value of my_pointer is 0xbffffa18

the value at that address is 6

Chapter 5: Pointers 26

after "my_pointer = &other_variable":

the value of my_pointer is 0xbffffa14

the value at that address is 10

There. That’s not too complicated. Once you are comfortable with pointers you’re well
on your way to mastering C.

5.2 The Address of a Variable

When your program is running and a variable declaration is encountered, you program
makes a request for some memory. The operating system finds a spare piece of memory
that is large enough and tells your program the address of this piece of memory. Any time
your program wants to read the data stored in that variable, it looks at it’s memory address
and reads the number of bytes equal to the size of the data type of that variable.

If you run the example from the start of this chapter a second time you may or may
not get the same result for the addresses, this depends on your system but even if you
repeatably get the same addresses right now there is no guarantee that you will get the
same result tomorrow, in fact it’s rather unlikely.

5.3 Pointers as Function Arguments

One of the best things about pointers is that they allow functions to alter variables outside
of there own scope. By passing a pointer to a function you can allow that function to read
and write to the data stored in that variable. Say you want to write a function that swaps
the values of two variables. Without pointers this would be practically impossible, here’s
how you do it with pointers:

swap ints.c
#include <stdio.h>

int swap_ints (int *first_number, int *second_number);

int

main()

{

int a = 4, b = 7;

printf ("pre-swap values are: a == %d, b == %d\n", a, b);

swap_ints (&a, &b);

printf ("post-swap values are: a == %d, b == %d\n", a, b)

return 0;

}

int

swap_ints (int *first_number, int *second_number)

{

int temp;

/* temp = "what is pointed to by" first_number; etc... */

temp = *first_number;

Chapter 5: Pointers 27

*first_number = *second_number;

*second_number = temp;

return 0;

}

As you can see, the function declaration of swap_ints tells GCC to expect two pointers
(address of variables). Also, the address-of operator (&) is used to pass the address of the
two variables rather than their values. swap_ints then reads

5.4 Pointer Arithmetic

Arithmetic can be performed on pointers just like any other variable, this is only useful in a
few cases though. If you were (for some reason) to divide a pointer by two it would then point
to an area of your computers memory that would probably not belong to your program. If
your program tried to read or write to this area of memory the text segmentation fault will
display and your program will abort. A segmentation fault occurs when a program tries to
access a segment of memory that it does not have permission to access.

There are times however when simple addition can be used on a pointer. We’ll see
this in the next chapter when we discuss arrays (multiple variables at consecutive memory
addresses). In the case of addition (and subtraction), arithmetic is performed in units equal
to the size of the pointers data type.

5.5 Generic Pointers

When a variable is declared as being a pointer to type void it is known as a generic pointer.
Since you cannot have a variable of type void, the pointer will not point to any data and
therefore cannot be dereferenced. It is still a pointer though, to use it you just have to cast
it to another kind of pointer first. Hence the term Generic pointer.

This is very useful when you want a pointer to point to data of different types at different
times.

Here is some code using a void pointer:

generic pointer.c
int

main()

{

int i;

char c;

void *the_data;

i = 6;

c = ’a’;

the_data = &i;

printf ("the_data points to the integer value %d\n", *(int*) the_data);

the_data = &c;

printf ("the_data now points to the character %c\n", *(char*) the_data);

return 0;

}

Chapter 6: Structured Data Types 28

6 Structured Data Types

contiguous and structured data

6.1 What is Structured data?

C provides two methods for defining structured, or aggregate data types: arrays and structs.
Both can contain any of the standard data types including pointers as other structs and
arrays. Arrays contain many variables of the same type while structs can contain any
mixture of types.

6.2 Arrays

An array is a data type which contains many variables of the same type. Each element of
the array is given a number by which you can access that element. For an array of 100
elements, the first element is 0 (zero) and the last is 99. This indexed access makes it very
convenient to loop through each element of the array.

6.3 Declaring and Accessing Arrays

Declaring an array is much the same as declaring any other variable except that you must
specify the array size. The size (or number of elements) is an integer value placed in square
brackets after the arrays identifier.

first arrays.c
int

main ()

{

int person[10];

float hourly_wage[4] = {2, 4.9, 10, 123.456};

int index;

index = 4;

person[index] = 56;

printf ("the %dth person is number %d and earns $%f an hour\n",

(index + 1), person[index], hourly_wage[index]);

return 0;

}

NOTE: it is up to you to make sure you don’t try to access an element that is not in
the array such as the eleventh element of a ten element array. Attempting to access a value
past the end of an array will either crash your program or worse, it could retrieve garbage
data without telling you that an error occurred.

6.4 Initialising Arrays

In the above example we initialised the array hourly wage by placing a comma separated
list of values in curly braces. Using this method you can initialise as few or as many array
elements as you like however you cannot initialise an element without initialising all the
previous elements. If you initialise some but not all elements of an array the remaining
elements will be automatically initialised to zero.

Chapter 6: Structured Data Types 29

To get around this inconvenience, a GNU extension to the C language allows you to
initialise array elements selectively by number. When initialised by number, the elements
can be placed in any order withing the curly braces preceded by [index]=value. Like so:

initialise array.c
#include <stdio.h>

int

main()

{

int i;

int first_array[100] = { [90]=4, [0]=5, [98]=6 };

double second_array[5] = { [3] = 1.01, [4] = 1.02 };

printf ("sure enough, first_array[90] == %d\n\n", first_array[90]);

printf ("sure enough, first_array[99] == %d\n\n", first_array[99]);

for (i = 0; i < 5; i++)

printf ("value of second_array[%d] is %f\n", i, second_array[i]);

return 0;

}

6.5 Multidimensional Arrays

The array we used in the last example was a one dimensional array. Arrays can have more

than one dimension, these arrays-of-arrays are called multidimensional arrays. They are

very similar to standard arrays with the exception that they have multiple sets of square

brackets after the array identifier. A two dimensional array can be though of as a grid of

rows and columns.

number square.c
#include <stdio.h>

const int num_rows = 7;

const int num_columns = 5;

int

main()

{

int box[num_rows][num_columns];

int row, column;

for (row = 0; row < num_rows; row++)

for (column = 0; column < num_columns; column++)

box[row][column] = column + (row * num_columns);

for (row = 0; row < num_rows; row++)

{

for(column = 0; column < num_columns; column++)

{

printf("%4d", box[row][column]);

}

Chapter 6: Structured Data Types 30

printf("\n");

}

return 0;

}

If you compile and run this example you’ll get a box of numbers like this:
0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

The above array has two dimensions and can be called a doubly subscripted array. GCC
allows arrays of up to 29 dimensions although actually using an array of more than three
dimensions is very rare.

6.6 Arrays of Characters (Text)

Text in C is represented by a number of consecutive variables of type char terminated with
the null character ’\0’.

6.7 Defining data types

The C language provides only the most basic, commonly used types, many languages provide
a larger set of types but this is only for convenience. C’s way of handling text strings is a
good example of this. At times you may think it would be handy if there were other data
types which could store complex data. C allows you to define your own.

6.8 Structured Data

In C you can create a new type e.g. Person. Person can store an int called age, a string
called name and another int called height_in_cm. Here’s the code to make this new type:

struct Person

{

char[40] name;

int age;

int height_in_cm;

};

This code creates a variable called struct Person. You can declare variable and pointers

to variables of this type in the usual way. Say you declared a variable john of type struct

Person. To access the age field you would use john.age. I’ll make this clearer with a quick

example using the previous definition of struct Person:

person struct.c
int

main()

{

struct Person hero = { 20, "Robin Hood", 191 };

struct Person sidekick;

john.age = 31;

Chapter 6: Structured Data Types 31

john.name = "John Little"

john.height_in_cm = 237;

printf ("%s is %d years old and stands %dcm tall in his socks\n",

sidekick.name, sidekick.age, sidekick.height_in_cm);

printf ("He is often seen with %s.\n", hero.name);

return 0;

}

When compiled and executed this will display:
John Little is 31 years old and stands 237cm tall in his socks

He is often seen with Robin Hood.

6.9 Unions

C also supports types that can have dynamic types, a variable that can be and int at one
point, a double later and an unsigned long long after that. These data types are declared
just like a struct except they use the union keyword. Their behavior is completely different
to a struct.

Chapter 7: Run-time Memory Allocation 32

7 Run-time Memory Allocation

Requesting memory at run-time

7.1 Why you need this

Often when you write a program you don’t actually know how much data is will have to
store or process. In previous examples we’ve read in some text from the user. We’ve used
large character arrays to store this data but what happens if the user enters more text than
we can handle? your program crashes. Disaster. At run-time an application can make a
request for more memory.

7.2 Dynamic Memory Functions

Glibc provides functions for requesting extra memory, malloc is the fist one we will show
you. You must have a pointer to start with.

7.3 Run-time Memory Summary

Forgetting to free memory when your finished with it is one of the worst programming
mistakes you can make. Is losing pointers a common problem? pointer falls out of scope?

Chapter 8: Strings and File I/O 33

8 Strings and File I/O

Reading and writing to files

8.1 Introduction

Place Holder

Chapter 9: Storage Classes 34

9 Storage Classes

Changing the behavior of variables

9.1 What are Storage Classes?

You will have noticed that variables in functions lose their values every time the function
exists, this is done for reasons of efficiency, the operating system doesn’t know if you will
need the data again so it releases the memory allocated to your program back to the system.

9.2 auto

By default, variables in C use the auto storage class. This is so called because the variables
are automatically created when needed and deleted when they fall out of scope.

You can specify a variable to have the auto storage class by prefixing the variables
declaration with the auto keyword but this has no effect, the keyword was introduced into
the language for symmetry with the other storage specifiers.

9.3 static

static variables are variables that don’t get deleted when they fall out of scope, they are
permanent and retain their value between calls to the function. Here’s an example:

list squares.c
#include <stdio.h>

int get_next_square(void);

int

main()

{

int i;

for (i = 0; i < 10; i++)

printf ("%6d\n", get_next_square ());

printf ("and %6d\n", get_next_square ());

return 0;

}

int

get_next_square ()

{

static int count = 1;

count += 1;

return count * count;

}

This will list the squares of the numbers from zero to ten. Zero to nine are printed by
the loop and the square of ten is printed afterwards just to show it still has it’s value.

Chapter 9: Storage Classes 35

9.4 extern

When you declare a variable as extern your program doesn’t actually reserve any memory
for it, extern means that the variable already exits external to the function or file.

If you want to make a variable available to every file in a project you declare it globally
in one file, that is, not inside a function, and add an extern declaration of that variable to
a header file that is included in all the other files.

9.5 register

The register storage class is used as a hint to the compiler that a variable is heavily used and
access to it should be optimised if possible. Variables are usually stored in normal memory
(RAM) and passed back and forth to the computers processor as needed, the speed the data
is sent at is pretty fast but can be improved on. Almost all computer processors contain
cpu registers, these are memory slots on the actual processor, storing data there gets rid
of the overhead of retrieving the data from normal memory. This memory is quite small
compared to normal memory though so only a few variables can be stored there. GCC will
always make use of registers by deciding what variables it thinks will be accessed often,
this works well but will never be perfect because GCC doesn’t know the purpose of your
program. By using the register keyword you can tell GCC what needs to be optimised.

One problem with placing a variable into a cpu register is that you can’t get a pointer to
it, pointers can only point to normal memory. Because of this restriction GCC will ignore
the register keyword on variables whos address is taken at any point in the program.

The resulting program will contain a request, on creation of the variable that it be placed
in a cpu register, the operating system may ignore or honour this request.

9.6 the restrict type qualifier

This is something to do with pointers, I think it tells the compiler that a specific pointer
is the only pointer to a section of memory, the compiler can optimise code better with this
knowledge. I think.

9.7 typedef

typedef isn’t much like the others, it’s used to give a variable type a new name. There are
two main reasons for doing this. The most common is to give a name to a struct you have
defined so that you can use your new data type without having to always precede it with
the struct keyword.

The second use for typedef is for compatibility. Say you want to store a 32-bit number.
If you use int you are not guaranteed that it will be 32-bit on every machine. To get around
this you can use preprocessor directives to selectively typedef a new type to the right size.

battleships.c
#include <stdio.h>

/* type, position coordinates and armament */

struct _ship

{

int type;

Chapter 9: Storage Classes 36

int x;

int y;

int missiles;

};

typedef struct _ship ship;

int

main ()

{

ship battle_ship_1;

ship battle_ship_2 = {1, 60, 66, 8};

battle_ship_1.type = 63;

battle_ship_1.x = 54;

battle_ship_1.y = 98;

battle_ship_1.missiles = 12;

/* More code to actually use this data would go here */

return 0;

}

Chapter 10: The C Preprocessor 37

10 The C Preprocessor

When & how to use them

10.1 What is the C Prepressor

The C Preprocessor is a simple macro-expander that is run on source code files before
passing them to the compiler. Lines that begin with the hash symbol ’#’ are directives to
the C preprocessor.

When you create a macro you assign a name to a C expression. You can then use this
name in your code just as you would have used the expression. The preprocessor replaces
all occurences of that name with the expression.

10.2 What is it used for?

Macros are snippets of code that get processed before compilation. This is done by the C

preprocessor, #define statements are macros. Take a look at this piece of code:

box of stars.c
#define SIZE_OF_SQUARE 4

int

main ()

{

int i, j;

for (i = 0; i < SIZE_OF_SQUARE; i++)

{

for (j = 0; j < SIZE_OF_SQUARE; j++)

{

printf ("*"); // print an asterisk for each column

}

printf ("\n"); // and a newline at the end of each row

}

}

The output of this code will be a box:

The C preprocessor simply replaces the macro SIZE_OF_BOX with the value “4”. This
very useful for two reasons:

• firstly the size of the box can be changed by just editing one line. This isn’t a huge
advantage in the above example as there are just two uses of SIZE_OF_BOX but in larger
programs this make life much easier and removes the possibility of forgetting to change
one of the values.

• Secondly it makes the code more readable, meaningful names can be given to values
such as #define PI 3.142857143.

Chapter 10: The C Preprocessor 38

10.3 Some sample macros

Some of the small function in glibc are implemented as macros, getc is one

10.4 Caveats for macros

Macros can be miss-used and it’s hard to catch the bugs because the macro no longer exists
when the code gets to the compiler. The most error is the macro argument with side effect.
Take the this small example:

max macro.c
#define MAX (a, b) (a > b ? a : b)

int

main()

{

int cows = 10, sheep = 12;

printf ("we have %d of our most common animal\n", MAX (cows, sheep));

return 0;

}

We compile and execute this code and get:
ciaran@pooh:~/book$./a.out

we have 12 of our most common animal

ciaran@pooh:~/book$

Yup, everything looks good. Try this next example:

max macro problem.c
#define MAX (a, b) (a > b ? a : b)

int

main ()

{

int cows = 10, sheep = 12;

printf ("We have %d of our most common animal\n", MAX(cows, sheep));

printf ("Hang on, we just bought another one.\n");

printf ("Now we have %d.\n", MAX(cows, ++sheep));

return 0;

}

Can you see what’s going to happen?
ciaran@pooh:~/book$./a.out

We have 12 of our most common animal

Hang on, we just bought another one.

Now we have 14.

ciaran@pooh:~/book$

When the text substitution occurs there will be two instances of ++sheep. Another more
sinister way for this bug may manifest itself is when you pass use a function as an argument
to a macro. If the function modifies a global or static variable then this modification may
occur multiple times. These bugs can be very hard to find, the code is perfectly valid so

Chapter 10: The C Preprocessor 39

the compiler has nothing to complain about, the bug will only be noticed at run time and
wont occur every time the macro is called, only when it is called with an argument that has
a side effect.

10.5 Are macros necessary?

The preprocessor was commonly used to make up for small deficiencies of the language,
however, as the language has evolved these defiances have be all but done away. It’s still
good to know how to use and understand preprocessor macros, they are very common.
Macros have been part of the language for longer than their replacements and people have
gotten used to them.

10.6 Replacing Simple Macros

If you are thinking that a const int global variable could replace a simple #define you are
right. const variables have some advantages, one small advantage is that you can get their
address when you need to pass around a pointer to their value, in this way they are more
flexible than macros. If you don’t take the address of the const variable then GCC can
optimise it to a level similar to a #define.

10.7 Replacing Complex Macros

Complex macros, that is functions implemented as macros, can be replaced by inline func-
tions.

Chapter 11: Variable Length Arguments 40

11 Variable Length Arguments

The VA ARGS macros etc.

11.1 What are Variable Length Arguments?

Variable length argument lists are something you have already come across, think of printf,
how would you write the prototype for this function when you don’t know how many
arguments will be passed to it.

Chapter 12: Tricks with Functions 41

12 Tricks with Functions

pointers to functions

12.1 What are Virtual Functions?

Another use of the void data type is for making pointers to functions. This is a fairly
advanced programming technique but a very useful one once you become comfortable with
it.

Here is an example of a function pointer:

virtual function.c
int

main()

{

/* oh, crap, better go write one... */

return 0;

}

12.2 Nesting functions

GCC permits functions to be defined within other functions. Functions defined like this are
known as nested functions and obey the same scoping rules as variables. When the parent
function exits, the child function falls out of scope and is unavailable.

12.3 The Benefits of Nested Functions

Probably the main reason for nested functions being allowed by GCC for flexibilities sake
although small performance increases can be gained by using them correctly. Nested func-
tions obey Lexical scoping, they have access to the variables of the function that contains
them.

For this reason, they can accomplish tasks that would usually require functions taking
pointers as arguments. There is a slight performance loss when pointers are used because
a variable that has a pointer cannot be stored in a machine register. Pointers never point
to machine registers so how would the pointer work?

12.4 Declaring and Defining Nested Functions

If you are defining a function at the

simple nested function
#include <stdio.h>

int

main ()

{

int swap (int *a, int *b)

{

int c;

Chapter 12: Tricks with Functions 42

c = *a;

*a = *b;

*b = c;

return 0;

}

int first = 12, second = 34;

printf ("f is %d and s is %d\n", first, second);

swap (&first, &second);

printf ("f is %d and s is %d\n", first, second);

return 0;

}

You don’t have to declare nested functions like you do normal functions however you
can if you like. The only reason for doing so would be for the sake of readability, you might
like the function definition to appear near where it is used. It’s up to you, but if you do
decide to declare you nested function you must explicitly declare it as auto.

12.5 Scope

Nested functions have local scope, declaring a nested function as extern is will cause an
error. static and inline are both valid however the meaning of static escapes me.

Chapter 13: Taking Command Line Arguments 43

13 Taking Command Line Arguments

13.1 How does C handle command line arguments?

A program starts by the operating system calling a programs main function. Every one of
your programs so far have defined main as a function taking no arguments but this is not
always the case. main is the only function in C that can be defined in multiple ways. It can
take no arguments, two arguments or three arguments. The two and three argument forms
allow it to receive arguments from the shell. The three argument form is not particularly
useful and is never necessary, we’ll cover it briefly at the end of this chapter.

The two argument form takes an int and an array of strings. When defining main you
can give these arguments any name but it is convention to call them argc and argv[]. The
first argument holds a count of how many elements there are in the array of strings passed
as the second argument. The array is always null terminated so argv[argc] == NULL.

Here’s a short program demonstrating the use of

list args.c
int

main (int argc, char *argv[])

{

int i;

for (i = 0; i < argc; i++)

printf ("argv[%d] == %s\n", i, argv[i]);

return 0;

}

to be passed to main via two arguments: an int and a *char[] (an array of strings).
The int is usually called argc which is short for argument count, as the name suggests, it
stores the number of arguments passed to main. The second argument, usually called argv
is an array of strings.

13.2 Argp

C’s method of getting command line arguments is pretty simple but when your program
has a lot of options it can get complex. To solve this, Glibc provides a series of functions to
perform command tasks for you. The argp * functions perform much of the work for you
and they do it in a standard way which makes you program more familiar to users. Here’s
an short program using argp:

simple argp.c
/* put a tiny argp program here */

When you run this program you will see...

13.3 Using More of the Argp Functionality

Here’s a longer program, it uses four global variables to store information about your pro-
gram:

Chapter 13: Taking Command Line Arguments 44

better argp.c
#include <stdlib.h>

#include <argp.h>

const char *argp_program_version = "simple_argp 0.1";

const char *argp_program_bug_address =

"<some_email_address@you_care_about.com>";

static char doc[] =

"short program to show the use of argp\nThis program does little";

static char args_doc[] = "ARG1 ARG2";

/* initialise an argp_option struct with the options we except */

static struct argp_option options[] =

{

{"verbose", ’v’, 0, 0, "Produce verbose output" },

{"output", ’o’, "FILE", 0, "Output to FILE" },

{ 0 }

};

/* Used by ‘main’ to communicate with ‘parse_opt’. */

struct arguments

{

char *args[2]; /* ARG1 & ARG2 */

int silent, verbose;

char *output_file;

};

/* Parse a single option. */

static error_t

parse_opt (int key, char *arg, struct argp_state *state)

{

/* Get the INPUT argument from ‘argp_parse’, which we

know is a pointer to our arguments structure. */

struct arguments *arguments = state->input;

switch (key)

{

case ’q’: case ’s’:

arguments->silent = 1;

break;

case ’v’:

arguments->verbose = 1;

break;

case ’o’:

arguments->output_file = arg;

break;

case ARGP_KEY_ARG:

if (state->arg_num >= 2)

/* Too many arguments. */

argp_usage (state);

arguments->args[state->arg_num] = arg;

break;

Chapter 13: Taking Command Line Arguments 45

case ARGP_KEY_END:

if (state->arg_num < 2)

/* Not enough arguments. */

argp_usage (state);

break;

default:

return ARGP_ERR_UNKNOWN;

}

return 0;

}

/* Our argp parser. */

static struct argp argp = { options, parse_opt, args_doc, doc };

int main (int argc, char **argv)

{

struct arguments arguments;

/* Default values. */

arguments.silent = 0;

arguments.verbose = 0;

arguments.output_file = "-";

/* Parse our arguments; every option seen by ‘parse_opt’ will

be reflected in ‘arguments’. */

argp_parse (&argp, argc, argv, 0, 0, &arguments);

printf ("ARG1 = %s\nARG2 = %s\nOUTPUT_FILE = %s\n"

"VERBOSE = %s\nSILENT = %s\n",

arguments.args[0], arguments.args[1],

arguments.output_file,

arguments.verbose ? "yes" : "no",

arguments.silent ? "yes" : "no");

exit (0);

}

This is pretty simple. no?

13.4 Environment Variables

BLAH, talk about how to use the three argument form and the other way of getting at
environment variables, show a toy example.

Chapter 14: Using and Writing Libraries 46

14 Using and Writing Libraries

Reusable compiled code

14.1 What are Libraries?

Libraries are like programs except they don’t contain a main function for execution to begin
at. The functions in libraries can be used in other applications by linking the application
to the library.

14.2 Using Libraries

To link with a library you must use the -l switch followed by the library name. Glibc’s
math library is called ‘libm.so’, you don’t need the lib or .so arts to to use this library
you add the switch -lm o your compilation line.

14.3 Stages of Compilation

Compiling a program involves many tools, GCC takes care of this by calling other programs
to handle each stage of the process. The three main stages are preprocessing, compilation

and linking. In C code, lines that begin with the hash symbol “#” are commands for
the preprocessor, GCC includes a preprocessor called CPP (C Preprocessor). #define and
#include are by far the most common preprocessor commands The compilation process is
broken down into many smaller stages. One of these stages is confusingly called compilation.
Compilation is the process of converting source code to object code. If you invoke GCC with
“-c” it will When programs become large it can take time to compile them, by splitting a
program into smaller files you can re-compile only the files that you have changed. First
you must tell gcc to only compile the source files. This

14.4 Writing a library

Writing a library is similar to writing a program. The first obvious difference is that there
is no main. Libraries are very handy for functions you use regularly or functions you think
others may find useful.

14.5 Dynamic or Static

Libraries can be linked in a dynamic or static way. A staticly linked library gets compiled
into your application. Dynamic linking is a newer method that allows an application to
link with a library at run-time, this has many advantages. For a start, the library can be
updated without having to recompile the application and vice versa.

Chapter 15: Writing Good Code 47

15 Writing Good Code

Considerations for important projects

15.1 Readability

This is one of the most important qualities of good code, luckily, it is an art that be-
comes natural with practice. One of the biggest detractors from readability is clever code.
Scrunching multiple operations into one line or statement may have seemed like an achieve-
ment but when someone else tries to read it it will slow them down if they have to unravel
these operations in there head.

Chapter 16: Speed 48

16 Speed

Easy optimisations: Low hanging fruit

C is well know as the fastest high-level language available

16.1 About Optimising

There are two times you will optimise your code: while you’re writing it and after it’s
performance disappoints you.

As a rule, it is said that ninety percent of your an applications running time is taken
up by ten percent of it’s code. There is little point in optimising a function that is rarely
called.

16.2 What are function attributes?

Function attributes are a GNU extension to the C language. They allow you to give GCC
more information about a function. This information can be used for many purposes in-
cluding optimisation and stricter checking.

16.3 Function Attribute Syntax

Function attributes are specified as part of a function declaration. After the closing paren-
thesis of the functions arguments the keyword __attribute__ followed by the desired at-
tributes in a set of double parenthesis. Here’s a function with the pure attribute.

int my_func(int first, int second) __attribute__ ((pure));

Functions can have multiple attributes, to do this, separate the attributes with commas
inside the double parenthesis.

16.4 What are pure and const?

A pure function is one which do not affect anything outside of it’s own scope. This means it
may read global variables or variables to which it was passed a pointer but it may not write
to such variables. It should not read from volatile variables or external resources (such as
files).

const is a stricter version of pure, it tells GCC that a function will not read any data
other that of variables that are passed to it. Data cannot be read by dereferencing a pointer
passed to a const function.

The only effect a pure or const function can have on your program is it’s return value.
Having such a function return void would make it pointless.

GCC can use this information to perform common subexpression elimination (!). This
means it may call the function fewer times than it was told to as it knows the outcome
will be the same each time. For example: if you had a function which converted Celsius to
Fahrenheit, and it was placed in a loop calculating the same value each time, GCC would
could replace this function call with the value returned. GCC knows this is safe if the
conversion function is const.

Appendix A: Who defines Valid C? 49

Appendix A Who defines Valid C?

For you, the programmer, valid C is defined by the compiler. There are many dialects of
C in existence, thankfully they are all very similar. There are also other languages that
are based on C such as Objective C and C++. These languages are very like C in there
appearance but there usage is quite different. GCC understands many dialects of C as well
as many other languages (including Objective C and C++).

A.0.1 K&R C

C was created by Dennis Ritchie between 1969 and 1973. In 1978 he published, along with
Brian Kernighan, an excellent C manual: The C programming language. This was the
first formal definition of the language. Unfortunately the book left many aspects of the
language undefined, this meant that people writing compilers had to make decisions as to
how to handle these aspects. The result was that a piece of code would behave differently
depending on what compiler was used. This dialect is no longer used, GCC supports it only
for compiling very old programs. We mention it here purely for historical purposes. Being
the original C dialect it is sometimes called Traditional C.

A.0.2 ISO C

In 1983 the American National Standards Institute (ANSI) set up a committee to draw up
a more exact standard and fix a few shortcomings they saw in the language. In 1989 they
finalised this standard which was accepted by the International Standards Organisation
(ISO). This new dialect became known as C89. It is also called ISO C or ANSI C. GCC is
one of the most conforming compilers available.

A.0.3 C99

The ANSI C committee meets infrequently to update the standard. The latest updated
standard was released in 1999 and is known as C99. Few compilers fully support C99 yet;
making changes to one of the most important pieces of software to an operating system
takes time. GCC’s C99 support is mostly complete (as of 2008) but the developers are still
working on it.

A.0.4 GNU C

GNU C is most similar to C89 but has a lot of the new features of C99 added and a few
other extensions. These extensions have been added conservatively by the developers as
problems are found that C99 doesn’t provide good solutions to. GNU C is the default
dialect of GCC and is the dialect we will use in this book. We will try our best to point
out GNU extensions when we use them but in general, it is better to make full use GNU
C. Use of ISO C is limiting your programs to the lowest common denominator and should
only be used in special cases.

A.0.5 Choosing a Dialect

If you would like to use a dialect other than the default, you can specify your choice with
the -std= switch followed by name of the dialect. The names are: c89, c99, gnu89 and,
gnu99. gnu89 is the current default but gnu99 will become the default when C99 support
is complete. The change will not be very noticeable.

Appendix A: Who defines Valid C? 50

A.0.6 Future Standards

Extensions such as those added by GCC are the main source of inspiration for new ISO
C standards. When the ANSI C group see a lot of compilers implementing an extension
they review the necessity of that feature and if they decide it would be of benefit they work
out a standard way to implement it. Some of GCC’s extensions may make it into the next
standard, some will not.

Appendix B: Copying This Manual 51

Appendix B Copying This Manual

Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

Appendix B: Copying This Manual 52

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and

Appendix B: Copying This Manual 53

that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

Appendix B: Copying This Manual 54

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

Appendix B: Copying This Manual 55

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called

Appendix B: Copying This Manual 56

an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/

Appendix B: Copying This Manual 57

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Index 58

Index

B
BSD . 1

E
emacs . 1

G
GNU/Linux . 1

L
Linux . 1

N
nano . 1

V
vi . 1

	Preface
	Target Audience
	Scope of this text
	Why learn C?
	Why Free Software?
	Why use GNU?

	Introduction to C
	What are Programming Languages?
	What is C?
	C vs. Assembly language
	Programming Tools
	Introducing GCC

	tiny.c
	tiny2.c
	Conclusion
	Getting Started
	titlesdf
	hello.c
	A Line-by-Line Dissection
	Comments
	hello2.c
	cowsdf
	bicycles.c
	Bicycle Dissection
	Data Types
	sizeof_types.c
	Another Example of Assignment
	displaying_variables.c

	Quick Explanation of printf
	more_printf.c
	Simple arithmetic
	wages.c
	Global Variables
	Static Variables
	Constant Variables
	Variables
	What are functions?
	Making your own Functions
	three_functions.c
	Multiple Files
	Header Files
	A Larger (non)Program
	main.c

	display.c
	display.h
	prices.c
	prices.h
	Another new Function
	Primer Summary
	Flow Control
	Branching
	using_if.c
	if ... else
	cows2.c
	Loops
	while
	guess_my_number.c
	for
	for_ten.c

	do .. while
	guess_my_number.c
	Switch
	The Conditional Operator
	apples.c
	break & continue
	Pointers
	The Basics
	pointers_are_simple.c
	The Address of a Variable
	Pointers as Function Arguments
	swap_ints.c

	Pointer Arithmetic
	Generic Pointers
	generic_pointer.c
	Structured Data Types
	What is Structured data?
	Arrays
	Declaring and Accessing Arrays
	first_arrays.c
	Initialising Arrays
	initialise_array.c
	Multidimensional Arrays
	number_square.c
	Arrays of Characters (Text)

	Defining data types
	Structured Data
	person_struct.c
	Unions
	Run-time Memory Allocation
	Why you need this
	Dynamic Memory Functions
	Run-time Memory Summary

	Strings and File I/O
	Introduction

	Storage Classes
	What are Storage Classes?
	auto
	static
	list_squares.c
	extern
	register
	the restrict type qualifier

	typedef
	battleships.c
	The C Preprocessor
	What is the C Prepressor
	What is it used for?
	box_of_stars.c
	Some sample macros
	Caveats for macros
	max_macro.c
	max_macro_problem.c

	Are macros necessary?
	Replacing Simple Macros
	Replacing Complex Macros
	Variable Length Arguments
	What are Variable Length Arguments?

	Tricks with Functions
	What are Virtual Functions?
	virtual_function.c
	Nesting functions
	The Benefits of Nested Functions
	Declaring and Defining Nested Functions

	simple nested function
	Scope
	Taking Command Line Arguments
	How does C handle command line arguments?
	list_args.c
	Argp
	simple_argp.c

	Using More of the Argp Functionality
	better_argp.c
	Environment Variables
	Using and Writing Libraries
	What are Libraries?
	Using Libraries
	Stages of Compilation
	Writing a library
	Dynamic or Static

	Writing Good Code
	Readability

	Speed
	About Optimising
	What are function attributes?
	Function Attribute Syntax
	What are pure and const?

	Who defines Valid C?
	K&R C
	ISO C
	C99
	GNU C
	Choosing a Dialect
	Future Standards
	Copying This Manual
	Index

