

201 West 103rd St., Indianapolis, Indiana, 46290 USA

Teach Yourself

in 24
Hours

Tony Zhang

C

SECOND EDITION

Sams Teach Yourself C in 24 Hours,
Second Edition

Copyright ©2000 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a

retrieval system, or transmitted by any means, electronic, mechanical, photo-

copying, recording, or otherwise, without written permission from the pub-

lisher. No patent liability is assumed with respect to the use of the information

contained herein. Although every precaution has been taken in the preparation

of this book, the publisher and author assume no responsibility for errors or

omissions. Nor is any liability assumed for damages resulting from the use of

the information contained herein.

International Standard Book Number: 0-672-31861-x

Library of Congress Catalog Card Number: 99-067311

Printed in the United States of America

First Printing: February, 2000

05 04 03 6 5 4 3

Trademarks
All terms mentioned in this book that are known to be trademarks or service

marks have been appropriately capitalized. Sams Publishing cannot attest to the

accuracy of this information. Use of a term in this book should not be regarded

as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as

possible, but no warranty or fitness is implied. The information provided is on

an “as is” basis. The author and the publisher shall have neither liability nor

responsibility to any person or entity with respect to any loss or damages aris-

ing from the information contained in this book.

ASSOCIATE PUBLISHER

Michael Stephens

ACQUISITIONS EDITOR

Carol Ackerman

DEVELOPMENT EDITOR

Gus A. Miklos

MANAGING EDITOR

Charlotte Clapp

PROJECT EDITOR

Andy Beaster

COPY EDITOR

Kate Givens

INDEXERS

Christine Nelsen

Deborah Hittel

PROOFREADER

Candice Hightower

TECHNICAL EDITOR

Bill Mitchell

TEAM COORDINATOR

Pamalee Nelson

INTERIOR DESIGNER

Gary Adair

COVER DESIGNER

Aren Howell

COPYWRITER

Eric Borgert

EDITORIAL ASSISTANT

Angela Boley

PRODUCTION

Stacey DeRome

Mark Walchle

Contents at a Glance
Introduction 1

Part I The Basics of C 9

Hour 1 Taking the First Step 11

2 Writing Your First C Program 27

3 Learning the Structure of a C Program 41

4 Understanding Data Types and Keywords 55

5 Handling Standard Input and Output 71

Part II Operators and Control-flow Statements 89

Hour 6 Manipulating Data 91

7 Working with Loops 105

8 Using Conditional Operators 121

9 Working with Data Modifiers and Math Functions 141

10 Controlling Program Flow 155

Part III Pointers and Arrays 173

Hour 11 Understanding Pointers 175

12 Understanding Arrays 189

13 Manipulating Strings 207

14 Understanding Scope and Storage Classes 223

Part IV Functions and Dynamic Memory Allocation 241

Hour 15 Working with Functions 243

16 Applying Pointers 259

17 Allocating Memory 279

18 Using Special Data Types and Functions 295

Part V Structure, Union, File I/O, and More 311

Hour 19 Understanding Structures 313

20 Understanding Unions 333

21 Reading and Writing with Files 355

22 Using Special File Functions 373

23 Compiling Programs: The C Preprocessor 391

24 Where Do You Go from Here? 409

Part VI Appendixes 437

Appendix A ANSI Standard Header Files 439

B Answers to Quiz Questions and Exercises 441

Index 503

Table of Contents
Introduction 1

Who Should Read This Book? ..1

Special Features of This Book ..1

Programming Examples ..2

Q&A and Workshop ..4

Conventions Used in This Book ..4

What You’ll Learn in 24 Hours..4

Part I The Basics of C 9

Hour 1 Taking the First Step 11

What Is C? ..12

The ANSI C Standard ..15

Assumptions About You ..16

Setting Up Your System ..16

Hardware ..16

Software..16

A Sample C Programming Setup ..17

Using Microsoft’s Compiler ..18

Using Borland’s Compiler..21

Summary ..24

Q&A ..25

Workshop ..25

Quiz ..25

Hour 2 Writing Your First C Program 27

A Simple C Program..28

Comments ..29

The #include Directive ..31

Header Files..32

Angle Brackets (< >) and Double Quotes (“ “) ..32

The main() Function..33

The Newline Character (\n) ..33

The return Statement ..34

The exit() Function ..34

Compiling and Linking..34

What’s Wrong with My Program? ..36

Debugging Your Program ..37

Summary ..37

Q&A ..38

Workshop ..38

Quiz ..38

Exercises ..39

Hour 3 Learning the Structure of a C Program 41

The Basics of a C Program..42

Constants and Variables..42

Expressions ..42

Statements ..45

Statement Blocks ..45

Anatomy of a C Function ..46

Determining a Function’s Type ..46

Giving a Function a Valid Name ..47

Passing Arguments to C Functions ..47

The Beginning and End of a Function ..48

The Function Body ..48

Making Function Calls ..49

Summary ..51

Q&A ..52

Workshop ..52

Quiz ..52

Exercises ..53

Hour 4 Understanding Data Types and Keywords 55

C Keywords ..56

The char Data Type ..57

Character Variables ..58

Character Constants..58

The Escape Character (\) ..59

Printing Characters ..60

The int Data Type ..62

Declaring Integer Variables ..62

Showing the Numeric Values of Characters ..63

The float Data Type ..64

Declaring Floating-Point Variables ..64

The Floating-Point Format Specifier (%f) ..65

The double Data Type ..67

Using Scientific Notation ..67

Naming a Variable..68

Summary ..68

Q&A ..68

vi Sams Teach Yourself C in 24 Hours

Workshop ..69

Quiz ..69

Exercises ..70

Hour 5 Handling Standard Input and Output 71

Understanding Standard I/O ..72

Getting Input from the User ..72

Using the getc() Function ..72

Using the getchar() Function ..74

Printing Output on the Screen ..75

Using the putc() Function ..75

Another Function for Writing: putchar() ..77

Revisiting the printf() Function..78

Converting to Hex Numbers ..79

Specifying the Minimum Field Width..81

Aligning Output..83

Using the Precision Specifier ..84

Summary ..85

Q&A ..86

Workshop ..86

Quiz ..87

Exercises ..87

Part II Operators and Control-flow Statements 89

Hour 6 Manipulating Data 91

Arithmetic Assignment Operators ..92

The Assignment Operator (=) ..92

Combining Arithmetic Operators with = ..92

Getting Negations of Numeric Values ..95

Incrementing or Decrementing by One ..96

Greater Than or Less Than? ..98

Using the Cast Operator ..101

Summary ..102

Q&A ..102

Workshop ..103

Quiz ..103

Exercises ..103

Hour 7 Working with Loops 105

The while Loop ..106

The do-while Loop..107

Looping Under the for Statement ..109

Contents vii

The Null Statement ..112

Using Complex Expressions in a for Statement..113

Using Nested Loops ..116

Summary ..118

Q&A ..118

Workshop ..119

Quiz ..119

Exercises ..120

Hour 8 Using Conditional Operators 121

Measuring Data Sizes ..122

Everything Is Logical ..124

The Logical AND Operator (&&) ..124

The Logical OR Operator (||) ..126

The Logical NEGATION Operator (!) ..128

Manipulating Bits ..129

Converting Decimal to Hex or Binary ..129

Using Bitwise Operators ..130

Using Shift Operators ..133

What Does x?y:z Mean? ..135

Summary ..137

Q&A ..137

Workshop ..138

Quiz ..138

Exercises ..138

Hour 9 Working with Data Modifiers and Math Functions 141

Enabling or Disabling the Sign Bit..142

The signed Modifier ..142

The unsigned Modifier ..143

Changing Data Sizes..145

The short Modifier ..145

The long Modifier ..145

Adding h, l, or L to printf and fprintf Format Specifiers..........................147

Mathematical Functions in C ..148

Calling sin(), cos(), and tan() ..149

Calling pow() and sqrt() ..150

Summary ..152

Q&A ..153

Workshop ..154

Quiz ..154

Exercises ..154

viii Sams Teach Yourself C in 24 Hours

Hour 10 Controlling Program Flow 155

Always Saying “if…” ..156

The if-else Statement ..158

Nested if Statements..160

The switch Statement..161

The break Statement..164

Breaking an Infinite Loop..166

The continue Statement ..167

The goto Statement..168

Summary ..170

Q&A ..170

Workshop ..171

Quiz ..171

Exercises ..172

Part III Pointers and Arrays 173

Hour 11 Understanding Pointers 175

What Is a Pointer?..176

Address (Left Value) Versus Content (Right Value) ..176

The Address-of Operator (&) ..177

Declaring Pointers..179

The Dereference Operator (*) ..182

Null Pointers ..183

Updating Variables via Pointers ..183

Pointing to the Same Memory Location..184

Summary ..186

Q&A ..187

Workshop ..188

Quiz ..188

Exercises ..188

Hour 12 Understanding Arrays 189

What Is an Array? ..190

Declaring Arrays ..190

Indexing Arrays ..190

Initializing Arrays ..191

The Size of an Array..192

Arrays and Pointers..194

Displaying Arrays of Characters ..196

The Null Character (‘\0’)..198

Multidimensional Arrays ..199

Contents ix

x Sams Teach Yourself C in 24 Hours

Unsized Arrays ..201

Summary ..203

Q&A ..203

Workshop ..204

Quiz ..204

Exercises ..205

Hour 13 Manipulating Strings 207

Declaring Strings ..208

What Is a String? ..208

Initializing Strings ..208

String Constants versus Character Constants ..209

How Long Is a String? ..212

The strlen() Function ..212

Copying Strings with strcpy()..213

Reading and Writing Strings ..215

The gets() and puts() Functions..215

Using %s with the printf() Function ..217

The scanf() Function ..217

Summary ..219

Q&A ..220

Workshop ..221

Quiz ..221

Exercises ..221

Hour 14 Understanding Scope and Storage Classes 223

Hiding Data..224

Block Scope..224

Nested Block Scope..225

Function Scope ..226

Program Scope..227

The Storage Class Specifiers ..229

The auto Specifier ..229

The static Specifier ..230

File Scope and the Hierarchy of Scopes ..232

The register Specifier ..233

The extern Specifier ..233

The Storage Class Modifiers ..234

The const Modifier ..234

The volatile Modifier ..235

Summary ..236

Q&A ..237

Contents xi

Workshop ..238

Quiz ..238

Exercises ..239

Part IV Functions and Dynamic Memory Allocation 241

Hour 15 Working with Functions 243

Declaring Functions ..244

Declaration Versus Definition ..244

Specifying Return Types ..244

Using Prototypes ..245

Making Function Calls ..245

Prototyping Functions..247

Functions with No Arguments..248

Using time(), localtime(), and asctime()..249

Functions with a Fixed Number of Arguments ..251

Prototyping a Variable Number of Arguments ..251

Processing Variable Arguments ..252

Learning Structured Programming ..255

Summary ..255

Q&A ..256

Workshop ..257

Quiz ..257

Exercises ..257

Hour 16 Applying Pointers 259

Pointer Arithmetic..259

The Scalar Size of Pointers ..260

Pointer Subtraction ..263

Pointers and Arrays..264

Accessing Arrays via Pointers..264

Pointers and Functions ..266

Passing Arrays to Functions ..266

Passing Pointers to Functions ..268

Passing Multidimensional Arrays as Arguments..270

Arrays of Pointers ..272

Pointing to Functions ..274

Summary ..276

Q&A ..276

Workshop ..277

Quiz ..277

Exercises ..278

xii Sams Teach Yourself C in 24 Hours

Hour 17 Allocating Memory 279

Allocating Memory at Runtime ..280

The malloc() Function..280

Releasing Allocated Memory with free() ..283

The calloc() Function..286

The realloc() Function ..288

Summary ..291

Q&A ..292

Workshop ..293

Quiz ..293

Exercises ..294

Hour 18 Using Special Data Types and Functions 295

The enum Data Type ..296

Declaring the enum Data Type ..296

Assigning Values to enum Names ..296

Making typedef Definitions..300

Why Use typedef? ..300

Recursive Functions ..303

Revisiting the main() Function..305

Command-Line Arguments ..305

Receiving Command-Line Arguments ..306

Summary ..308

Q&A ..308

Workshop ..309

Quiz ..309

Exercises ..310

Part V Structure, Union, File I/O, and More 311

Hour 19 Understanding Structures 313

What Is a Structure? ..314

Declaring Structures ..314

Defining Structure Variables ..315

Referencing Structure Members with the Dot Operator315

Initializing Structures ..317

Structures and Function Calls..319

Referencing Structures with Pointers ..322

Referencing a Structure Member with -> ..324

Arrays of Structures ..324

Nested Structures..327

Summary ..330

Q&A ..330

Workshop ..331

Quiz ..331

Exercises ..332

Hour 20 Understanding Unions 333

What Is a Union? ..334

Declaring Unions..334

Defining Union Variables ..334

Referencing a Union with . or -> ..335

Unions versus Structures ..337

Initializing a Union ..337

The Size of a Union..339

Using Unions ..341

Referencing the Same Memory Location Differently....................................341

Making Structures Flexible ..343

Defining Bit Fields with struct ..347

Summary ..350

Q&A ..351

Workshop ..352

Quiz ..352

Exercises ..353

Hour 21 Reading and Writing with Files 355

Files Versus Streams ..356

What Is a File?..356

What Is a Stream? ..356

Buffered I/O..356

The Basics of Disk File I/O ..357

Pointers of FILE ..357

Opening a File ..357

Closing a File..358

Reading and Writing Disk Files ..360

One Character at a Time ..360

One Line at a Time ..363

One Block at a Time ..366

Summary ..370

Q&A ..370

Workshop ..371

Quiz ..371

Exercises ..372

Contents xiii

Hour 22 Using Special File Functions 373

Random Access to Disk Files ..374

The fseek() and ftell() Functions..374

The rewind() Function ..378

More Examples of Disk File I/O ..378

Reading and Writing Binary Data ..378

The fscanf() and fprintf() Functions ..381

Redirecting the Standard Streams with freopen() ..384

Summary ..387

Q&A ..387

Workshop ..388

Quiz ..388

Exercises ..389

Hour 23 Compiling Programs: The C Preprocessor 391

What Is the C Preprocessor?..392

The C Preprocessor versus the Compiler ..392

The #define and #undef Directives ..393

Defining Function-Like Macros with #define ..394

Nested Macro Definitions ..396

Compiling Your Code Under Conditions ..397

The #ifdef and #endif Directives ..397

The #ifndef Directive ..397

The #if, #elif, and #else Directives ..399

Nested Conditional Compilation ..402

Summary ..405

Q&A ..405

Workshop ..406

Quiz ..406

Exercises ..407

Hour 24 Where Do You Go from Here? 409

Creating a Linked List ..410

Programming Style ..418

Modular Programming ..419

Debugging..420

What You Have Learned ..420

C Keywords ..420

Operators ..421

Constants ..422

Data Types ..423

Expressions and Statements ..426

Control Flow Statements ..426

xiv Sams Teach Yourself C in 24 Hours

Pointers ..430

Functions ..432

Input and Output (I/O)..433

The C Preprocessor ..434

The Road Ahead… ..434

Summary ..435

Part VI Appendixes 437

Appendix A ANSI Standard Header Files 439

Appendix B Answers to Quiz Questions and Exercises 441

Hour 1, “Taking the First Step” ..441

Quiz ..441

Hour 2, “Writing Your First C Program” ..442

Quiz ..442

Exercises ..442

Hour 3, “Learning the Structure of a C Program” ..443

Quiz ..443

Exercises ..444

Hour 4, “Understanding Data Types and Keywords”..445

Quiz ..445

Exercises ..445

Hour 5, “Handling Standard Input and Output”..447

Quiz ..447

Exercises ..447

Hour 6, “Manipulating Data” ..449

Quiz ..449

Exercises ..449

Hour 7, “Working with Loops” ..451

Quiz ..451

Exercises ..451

Hour 8, “Using Conditional Operators” ..453

Quiz ..453

Exercises ..453

Hour 9, “Working with Data Modifiers and Math Functions”............................455

Quiz ..455

Exercises ..456

Hour 10, “Controlling Program Flow” ..458

Quiz ..458

Exercises ..458

Contents xv

Hour 11, “Understanding Pointers” ..460

Quiz ..460

Exercises ..461

Hour 12, “Understanding Arrays” ..462

Quiz ..462

Exercises ..463

Hour 13, “Manipulating Strings” ..465

Quiz ..465

Exercises ..466

Hour 14, “Understanding Scope and Storage Classes”467

Quiz ..467

Exercises ..468

Hour 15, “Working with Functions”..470

Quiz ..470

Exercises ..470

Hour 16, “Applying Pointers”..473

Quiz ..473

Exercises ..474

Hour 17, “Allocating Memory” ..476

Quiz ..476

Exercises ..476

Hour 18, “Using Special Data Types and Functions” ..480

Quiz ..480

Exercises ..480

Hour 19, “Understanding Structures”..482

Quiz ..482

Exercises ..482

Hour 20, “Understanding Unions” ..486

Quiz ..486

Exercises ..486

Hour 21, “Reading and Writing with Files”..490

Quiz ..490

Exercises ..490

Hour 22, “Using Special File Functions”..494

Quiz ..494

Exercises ..494

Hour 23, “Compiling Programs: The C Preprocessor”499

Quiz ..499

Exercises ..500

Index 503

xvi Sams Teach Yourself C in 24 Hours

About the Author
TONY ZHANG has more than 15 years experience in computer programming and enter-

prise-wide information system design. He is currently working for one of the “big 5”

consulting firms focusing on e-business related infrastructure design, development, and

implementation.

With a Masters degree in Physics, he has published dozens of research papers on lasers

and computer programming. Among his broad interests are oil painting and photography,

the two things that Tony enjoys most.

You can reach Tony through Sams Publishing, or by emailing him at

tyc24h@hotmail.com.

About the Contributing Author
JOHN SOUTHMAYD is a Software Design Engineer with experience in areas ranging from

systems-level programming and device drivers to Windows development and Internet

technologies. He currently works as a consultant with Excell Data Corporation and lives

with his wife in Kirkland, Washington.

Dedication
To my wife, Ellen, and my parents, Zhi-ying and Bing-rong, for their love and inspirations.

—Tony Zhang

Acknowledgments
First, I’d like to thank the readers of the first edition of the book for their encouragement,

patience, comments, and especially, criticisms, which made the second edition more suit-

able for people who want to start a journey in the C programming world.

It’s my great pleasure to work with editor Sharon Cox for the second time. I’d like to

thank editors Carol Ackerman and Gus Miklos, and contributing author John Southmayd

for their excellent work that made the second edition of the book more accessible, and

largely, if not completely, error-free. Also, I’d like to express my appreciation to the great

work of the other editing team members. Together, they made the second edition possible.

I greatly appreciate the love and support of my wife, Ellen, who inspires me to look at

the technology world from different perspectives. It’s always a great joy to discuss issues

on philosophy and literature with her. My parents, whom I can never thank enough, gave

me not only love and affection, but also the opportunity of receiving the best education I

could ever have when I was in China.

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value

your opinion and want to know what we’re doing right, what we could do better, what

areas you’d like to see us publish in, and any other words of wisdom you’re willing to

pass our way.

As an Associate Publisher for Sams, I welcome your comments. You can fax, email, or

write me directly to let me know what you did or didn’t like about this book—as well as

what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this

book, and that due to the high volume of mail I receive, I might not be able to reply to

every message.

When you write, please be sure to include this book’s title and author as well as your

name and phone or fax number. I will carefully review your comments and share them

with the author and editors who worked on the book.

Fax: 317-581-4770

Email: michael.stephens@macmillanusa.com

Mail: Michael Stephens

Associate Publisher

Sams Publishing

201 West 103rd Street

Indianapolis, IN 46290 USA

Introduction
If one learns from others but does not think, one will be bewildered;

If one thinks but does not learn from others, one will be in peril.

—Confucius

Welcome to the second edition of Teach Yourself C in 24 Hours!

Based on the success of the first edition of the book and the feedback from the readers,

we have re-written or modified every single chapter of the book to make the second edi-

tion more suitable for beginners like you who want to get started with the C program-

ming language as quickly as possible.

Of course, it’s very normal to spend more than 24 hours to really understand the con-

cepts and programming skills introduced in the book. However, the good news is that

this book offers many sample programs and exercises with clear explanations and

answers, which makes the concepts of the C language easier to understand.

In fact, Teach Yourself C in 24 Hours provides a good starting point for you in C pro-

gramming. It covers important topics in C programming, and lays a solid foundation for

a serious beginner like you. After reading this book, you’ll be able to write basic C pro-

grams on your own.

You will profit from reading the book when you start to apply C programs to real prob-

lems or move on to learn other programming languages, such as Perl, C++, and Java.

Who Should Read This Book?
If this is your first time learning C, this book is written for you. In fact, in writing this

book I assume that the readers have no previous programming experience. Of course, it’s

always a big plus if you have some knowledge of computers.

Special Features of This Book
This book contains the following special elements that make it simpler and clearer for

you to digest the rudimentary features and concepts of C as they are introduced:

• Syntax boxes

• Notes

• Cautions

• Tips

Syntax boxes explain some of the more complicated features of C, such as control struc-

tures. Each syntax box consists of a formal definition of the feature followed by an

explanation. Here is an example of a syntax box:

The syntax for the malloc() function is

#include <stdlib.h>
void *malloc(size_t size);

Here, size specifies the number of bytes of storage to allocate. The header file,

stdlib.h, has to be included before the malloc() function can be called. Because the

malloc() function returns a void pointer, its type is automatically converted to the type

of pointer on the left side of an assignment operator.

(You’ll learn more about the malloc() function later in the book.)

Notes are explanations of interesting properties of a particular C program feature. Let’s

have a look at the following example of a note:

2 Sams Teach Yourself C in 24 Hours

,
S

Y
N

TA
X

,

In left-justified output, the value being displayed appears at the left end of

the value field. In right-justified output, the value being displayed appears

at the right end of the value field.

Warnings warn you of programming pitfalls you should avoid. Here is a typical warning:

Never use the reserved keywords in C, nor names of the C library functions

as variable names in your program.

Tips are hints on how to write your C programs better. The following is an example of

a tip:

If you have a complex programming project, break it into smaller pieces.

And try to make one function do one thing and do it very well.

Programming Examples
As mentioned earlier, this book contains many useful programming examples with expla-

nations. These examples are meant to show you how to use different data types and func-

tions provided in C.

Each example has a listing of the C program; the output generated from that listing will

follow. The example also offers an analysis of how the program works. Special icons are

used to point out each part of the example: Type, Input/Output, and Analysis.

In the example shown in Listing IN.1, there are some special typographic conventions.

The input you enter is shown in bold monospace type, and the output generated by the

executable program of Listing IN.1 is shown in plain monospace type.

LISTING IN.1 Read in a Character Entered by the User

1: /* INL01.c: Read input by calling getc() */
2: #include <stdio.h>
3:
4: main()
5: {
6: int ch;
7:
8: printf(“Please type in one character:\n”);
9: ch = getc(stdin);
10: printf(“The character you just entered is: %c\n”, ch);
11: return 0;
12: }

The following output is displayed after the executable file, INL01.exe, is created and

executed. The user enters the H character, and the program displays what the user

entered.

Please type in one character:
H
The character you just entered is: H

In line 2 of Listing IN.1, the header file stdio.h is included for both the getc()

and printf() functions used in the program. Lines 4–12 give the name and body

of the main() function.

In line 6, an integer variable ch is declared, which is assigned to the return value from

the getc() function later in line 9. Line 8 prints out a piece of message that asks the user

to enter one character from the keyboard. The printf() function in line 8 uses the

default standard output stdout to display messages on the screen.

In line 9, the standard input stdin is passed to the getc() function, which indicates that

the file stream is from the keyboard. After the user types in a character, the getc() func-

tion returns the numeric value (that is, an integer) of the character. Note that in line 9 the

numeric value is assigned to the integer variable ch.

Introduction 3

TYPE

ANALYSIS

In line 10, the character entered is displayed on the screen with the help of printf().

Note that the character format specifier %c is used within the printf() function in line 10.

Q&A and Workshop
Each hour (that is, each chapter) ends with a Q&A section that contains answers to com-

mon questions relating to the lesson of the chapter. Following the Q&A section there is a

Workshop that consists of quiz questions and programming exercises. The answers to

these quiz questions and sample solutions for the exercises are presented in Appendix D,

“Answers to Quiz and Exercises.”

To help you solidify your understanding of each lesson, you are encouraged to try to

answer the quiz questions and finish the exercises provided in the workshop.

Conventions Used in This Book
This book uses special typefaces to help you differentiate between C code and regular

English, and to identify important concepts.

• Actual C code is typeset in a special monospace font. You’ll see this font used in

listings, Input/Ouput examples, and code snippets. In the explanation of C features,

commands, filenames, statements, variables, and any text you see on the screen are

also typeset in this font.

• Command input and anything that you are supposed to enter appears in a bold

monospace font. You’ll see this mainly in the Input/Output sections of examples.

• Placeholders in syntax descriptions appear in an italic monospace font. Replace

the placeholder with the actual filename, parameter, or whatever element it repre-

sents.

• Italics highlight technical terms when they appear for the first time in the text and

are sometimes used to emphasize important points.

What You’ll Learn in 24 Hours
Teach Yourself C in 24 Hours consists of five parts. In Part I, “The Basics of C,” you’ll

learn the basics of the C language. Here is a summary of what you’re going to learn:

Hour 1, “Taking the First Step,” introduces you to the C language, the ANSI stan-

dard, and the basic software and hardware requirements for C programming.

Hour 2, “Your First C Program,” demonstrates the entire procedure of writing,

compiling, linking, and running a C program.

4 Sams Teach Yourself C in 24 Hours

Hour 3, “Learning the Structure of a C Program,” teaches you several important

concepts, such as constants, variables, expressions, and statements. The anatomy of a

function is introduced in this hour as well.

Hour 4, “Understanding Data Types and Keywords,” lists all reserved C keywords.

Four data types, char, int, float, and double, are introduced in detail. Also, the rules

for naming a variable are explained.

Hour 5, “Handling Standard Input and Output,” teaches you to receive input from

the keyboard, and print output on the screen with the help of a set of C functions,

such as getc(), getchar(), putc(), putchar(), and printf().

Part II, “Operators and Control-flow Statements,” emphasizes operators and control-flow

statements in C. The following is a summary of what you’ll learn:

Hour 6, “Manipulating Data,” teaches you how to use arithmetic assignment opera-

tors, the unary minus operator, increment/decrement operators, relational operators,

and the cast operator.

Hour 7, “Working with Loops,” introduces looping (that is, iteration) with the for,

while, or do-while statements.

Hour 8, “Using Conditional Operators,” tells you about more operators, such as

logical operators, bitwise operators, the sizeof operator, and ?: operator, which are

frequently used in C.

Hour 9, “Working with Data Modifiers and Math Functions,” describes how to

use data modifiers to enable or disable the sign bit, or change the size of a data type.

Also, several mathematical functions provided by C are introduced.

Hour 10, “Controlling Program Flow,” introduces all the control-flow statements

used in C. They are the if, if-else, switch, break, continue, and goto statements.

Pointers and arrays are discussed in Part III, “Pointers and Arrays.” The following is a

summary of what you’ll learn:

Hour 11, “Understanding Pointers,” teaches you how to reference variables with

pointers. Concepts such as left value and right value are also introduced.

Hour 12, “Understanding Arrays,” explains how to declare and initialize arrays.

The relationship between the array and the pointer in C is discussed too.

Hour 13, “Manipulating Strings” focuses on reading and writing strings. Several C

library functions, such as strlen(), strcpy(), gets(), puts(), and scanf(), are

introduced to manipulate strings.

Hour 14, “Understanding Scope and Storage Classes,” introduces block scope, func-

tion scope, program scope, and file scope. In addition, storage class specifiers or modi-

fiers, such as auto, static, register, extern, const, and volatile are explained.

Introduction 5

Part IV, “Functions and Dynamic Memory Allocation,” focuses on functions and

dynamic memory allocations in C. The following is a summary of what you’ll learn:

Hour 15, “Working with Functions,” describes the function declaration and defini-

tion in C. The function prototyping is explained, along with the function return type

specification.

Hour 16, “Applying Pointers” teaches you how to perform pointer arithmetic opera-

tions, access elements in arrays with pointers, and how to pass pointers to functions.

Hour 17, “Allocating Memory” explains the concept of allocating memory dynami-

cally. C functions, such as malloc(), calloc(), realloc(), and free(), are intro-

duced with regard to the dynamic memory allocation.

Hour 18, “Using Special Data Types and Functions,” introduces the enum data type

and the use of typedef. Function recursion and command-line arguments to the

main() function are also taught in Hour 18.

Part V, “Structure, Union, File I/O, and More,” discusses structures, unions, and disk file

I/O in C. The following is a summary of what you’ll learn:

Hour 19, “Understanding Structures,” introduces the structure data type. You

learn to access structure members, and pass structures to functions with the help of

pointers. Nested and forward-referencing structures are also discussed in this hour.

Hour 20, “Understanding Unions,” describes the union data type, and the difference

between union and structure. The applications of unions are demonstrated in several

examples.

Hour 21, “Reading and Writing with Files,” explains the concepts of the file and

the stream in C. The basics of disk file input and output are introduced in this first

part. The following C functions, along with several examples are, introduced in this

hour: fopen(), fclose(), fgetc(), fputc(), fgets(), fputs(), fread(), fwrite(),

and feof().

Hour 22, “Using Special File Functions,” is the second part of disk file I/O, in

which fseek(), ftell(), and rewind() are introduced to show how they can help

you to get random access to disk files. In addition, the fscanf(), fprintf(), and

freopen() functions are taught and invoked in sample programs.

Hour 23, “Compiling Programs: The C Preprocessor,” describes the role played by

the C preprocessor. You can learn the preprocessor directives, such as #define,

#undef, #ifdef, #endif, #ifndef, #if, #elis, and #else through the examples given

in this hour.

6 Sams Teach Yourself C in 24 Hours

Hour 24, “Where Do You Go from Here?,” summarizes the important concepts and

features introduced in this book. In addition, programming style, modular program-

ming, and debugging are explained briefly. A list of recommended C books is pro-

vided for your further reading.

Now, you’re ready to start the journey of learning the C language, as the world has moved

into a new millennium. Have a fun in reading this book, and enjoy programming in C!

Tony Zhang

Downingtown, Pennsylvania

January, 2000

Introduction 7

Hour

1 Taking the First Step

2 Your First C Program

3 Learning the Structure of a C program

4 Understanding Data Types and Keywords

5 Handling Standard Input and Output

PART I
The Basics of C

HOUR 1
Taking the First Step

A journey of a thousand miles is started by taking the first step.

—Chinese Proverb

High thoughts must have high language.

—Aristophanes

Welcome to Teach Yourself C in 24 Hours. In this first lesson you’ll learn the

following:

• What C is

• Why you need to learn C

• The ANSI standard

• Hardware and software required to write and run C programs

What Is C?
C is a programming language. The C language was first developed in 1972 by Dennis

Ritchie at AT&T Bell Labs. Ritchie called his newly developed language C simply

because there was a B programming language already. (As a matter of fact, the B lan-

guage led to the development of C.)

C is a high-level programming language. In fact, C is one of the most popular general-

purpose programming languages.

In the computer world, the further a programming language is from the computer archi-

tecture, the higher the language’s level. You can imagine that the lowest-level languages

are machine languages that computers understand and execute directly. The high-level

programming languages, on the other hand, are closer to our human languages (see

Figure 1.1).

12 Hour 1

FIGURE 1.1

The language spec-

trum. The Human Language

(e.g., English)

The High-Level Programming

Language (e.g., C)

The Machine Language

(i.e., binary code)

If the line is

not busy, connect

to the Internet;

else, wait...

If (line ! = busy)

 connect (Internet);

else

 wait (5)...

10001111101100

01100111011000

Low

High

High-level programming languages, including C, have the following advantages:

• Readability: Programs are easy to read.

• Maintainability: Programs are easy to maintain.

• Portability: Programs are easy to port across different computer platforms.

The C language’s readability and maintainability benefit directly from its relative close-

ness to human languages, especially English.

Each high-level language needs a compiler or an interpreter to translate instructions

written in the high-level programming language into a machine language that a com-

puter can understand and execute. Different machines may need different compilers or

interpreters for the same programming language. For instance, I use Microsoft’s C com-

piler to compile the C programs in this book for my personal computer (PC). If I need to

run the C programs on a UNIX-based workstation, I have to use another type of C com-

piler to compile these programs. Therefore, the portability of programs written in C is

realized by re-compiling the programs with different compilers for different machines

(see Figure 1.2).

Taking the First Step 13

1

FIGURE 1.2

Porting programs writ-

ten in C into different

types of computers.

The C

Program

Compiler

A

Compiler

B

Compiler

C

The Computer’s Brain

You may know that the brain of a computer is the central processing unit (CPU). Some

computers may have more than one CPU inside. A CPU has millions of transistors that

make use of electronic switches. The electronic switches have only two states: off and on.

(Symbolically, 0 and 1 are used to represent the two states.) Therefore, a computer can

only understand instructions consisting of series of 0s and 1s. In other words, machine-

readable instructions have to be in binary format.

In addition, the C language has other advantages. Programs written in C can be reused.

You can save parts of your C programs into a library file and invoke them in your next

programming project simply by including the library file. Many common and useful pro-

gramming tasks are already implemented in libraries that come included with compilers.

In addition, libraries allow you to easily unleash the power and functionality of the oper-

ating system you are using. More details on using C library functions are covered in the

rest of this book.

C is a relatively small programming language, which makes life easier for you. You don’t

have to remember many C keywords or commands before you start to write programs in

C to solve problems in the real world.

For those who seek speed while still keeping the convenience and elegance of a high-

level language, the C language is probably the best choice. In fact, C allows you to get

control of computer hardware and peripherals. That’s why the C language is sometimes

called the lowest high-level programming language.

Many other high-level languages have been developed based on C. For instance, Perl is a

popular programming language in World Wide Web (WWW) design across the Internet.

Perl actually borrows a lot of features from C. If you understand C, learning Perl is a

snap. Another example is the C++ language, which is simply an expanded version of C,

although C++ makes object-oriented programming easier. Also, learning Java becomes

much easier if you already know C.

14 Hour 1

However, a computer program written in a high-level language, such as C, Java, or Perl, is

just a text file, consisting of English-like characters and words. You have to use special

programs, called compilers or interpreters, to translate such a program into a machine-

readable code. That is, the text format of all instructions written in a high-level language

has to be converted into binary format. The code obtained after the translation is called

binary code. Prior to the translation, a program in text format is called source code.

The smallest unit of binary code is called a bit (from binary digit), which can have a value

of 0 or 1. Generally, eight bits make up one byte, and half a byte (four bits) is one nibble.

There are generally two types of programming languages: compiled lan-

guages and interpreted languages.

A compiler is needed to translate a program written in a compiled language

into machine-understandable code (that is, binary code) before you can run

the program on your machine. When the translation is done, the binary

The ANSI C Standard
For many years, the de facto standard for the C programming language was the book The

C Programming Language, written by Brian Kernighan and Dennis Ritchie in 1978. This

book is commonly known in the programming community as simply K&R (referring to

the initials of the authors) and finds a place on many programmers’ bookshelves to this

day. However, the book was written as a tutorial introduction to C, not as a comprehen-

sive or official standard for the language. As different vendors offered varying implemen-

tations of the C language, differences between those implementations began to appear.

Fearing that C might lose its portability, a group of compiler vendors and software devel-

opers petitioned the American National Standards Institute (ANSI) to build a standard for

the C language in 1983. ANSI approved the application and formed the X3J11 Technical

Committee to work on the C standard. By the end of 1989, the committee approved the

ANSI standard for the C programming language.

The ANSI standard for C enhances the original K&R standard and defines a group of

commonly used C functions that known as the ANSI C standard library. In most cases, C

compilers include the standard library, along with other libraries to provide some other

compiler-specific functions.

Taking the First Step 15

1
code can be saved into an application file. You can keep running the appli-

cation file without the compiler unless the program (source code) is updated

and you have to recompile it. The binary code or application file is also

called executable code (or an executable file).

On the other hand, a program written in an interpreted language can be

run immediately after you finish writing it — or for that matter, while you

are writing it! But such a program always needs an interpreter to translate

the high-level instructions into machine-understandable instructions (binary

code) at runtime. You cannot run the program on a machine unless the right

interpreter is available.

You can think of the C language as a compiled language because most C

language vendors make only C compilers, as opposed to interpreters, to sup-

port programs written in C.

However, there is nothing inherent to a compiled language to prevent

someone from providing an interpreter for the language; likewise, people

can and often do write compilers for interpreted languages. In fact, it is not

uncommon to mix the two flavors of languages, where a programmer com-

piles source code into a small binary file which is then executed by a runtime

interpreter.

This book focuses on the C functions defined in the ANSI standard, which is supported

by all compiler vendors. All programs in this book can be compiled by any compilers

that comply with the ANSI standard. If you’re interested in a specific compiler, you can

learn the compiler-specific functions from the compiler’s reference manual.

Assumptions About You
No previous programming experience is required for you to learn the C language from this

book, although some knowledge of computers helps. Also, it’s up to you to determine how

quickly to go through the 24 hours of this book: You could sit up with a big pot of coffee

and power through the book in a sitting or you could take an hour a day for 24 days.

After you complete this book, having done all of the exercises along the way, you should

be proficient and comfortable with the syntax and features of the C language. In addition,

you’ll already have some experience with many of the tasks that are encountered in C

programming. When you’re ready to undertake your own programming projects, you’ll

be able to use C as a tool in writing the powerful and useful programs you want to cre-

ate. As you progress, you’ll find that there is always more to learn—not only about C

and how to leverage its power, but also about new technologies and programming ideas

in general. With hard work and lots of practice, you can quickly build on the skills and

technologies that you learn.

Setting Up Your System
Basically, all you need is a computer and a C compiler in order to compile and run your

own C programs or the C programs from this book. The recommended hardware and

software are listed in the following sections.

Hardware
Any type of computer that has or can access a C compiler is fine. The C compiler should

be ANSI C compliant. Most likely, you have a PC on your desktop. A 286 PC with a

50MB hard drive and 1MB memory (RAM) is probably the minimum requirement to run

a DOS-based C compiler. For a Windows-based C compiler, your computer must have a

bigger hard drive and more memory. Check your compiler vendor for more details on

hardware requirements.

Software
If you’re using a UNIX-based workstation, you might already have a C compiler loaded

on your machine, or at least you might be able to access a C compiler on a server

machine. Check with your system administrator to find out how to access an ANSI C

16 Hour 1

compliant compiler. On a UNIX-based machine, you should know how to use a text edi-

tor such as vi or emacs to write C programs.

If you have a PC running a Microsoft Windows operating system (such as Windows 95),

you need to install a C compiler and a text editor on your PC. However, most C compil-

ers come with a built-in editor. You can also use any text editor that may already be

installed on your machine.

Borland International’s Turbo C and Microsoft’s Quick C used to be very popular in the

C compiler market. These days, an ANSI-compliant C compiler is usually part of any

commercially available C++ development package, such as Microsoft Visual C++. In

addition, development packages come with an integrated development environment

(IDE), which you can use to edit, compile, run, and debug your C programs all from the

same window.

You can pick up any C compiler you like to compile the sample code given in the book,

as long as the compiler is ANSI C compliant. You shouldn’t have problems installing a C

compiler on your computer if you read the manuals that come with the compiler and fol-

low the installation instructions correctly. Most C and/or C++ compilers provide a quick

tutorial that shows you how to install the compiler and set up a working development

environment on your computer.

These days, the Linux operating system is becoming more and more popular among PC

users. In most cases, the Linux package you get contains a C compiler. The C compiler

can be installed on your PC when you’re installing the Linux operating system, or can be

added later after you finish the installation of Linux.

A Sample C Programming Setup
I have a Pentium 100MHz PC with 32MB memory and with a 2.5GB hard drive. (The

hard drive had about 1.5GB free space before I installed a copy of Microsoft Visual C++

5.0.) Also, I have Windows 95 as the operating system on the machine.

In this book, all C programs are developed with Microsoft Visual C++ version 5.0. The

reasons I chose Visual C++ are simple: All C programs in this book are written in ANSI

C and can be compiled into console-mode applications (that is, text-based programs run-

ning in a DOS window); the Visual C++ 5.0 package includes a good C compiler that is

ANSI C compliant.

I set up my development environment in such a way that all C programs in this book can

be compiled and made into console applications. Also, I test and run the applications

made from the C programs at a DOS prompt provided by Windows 95.

In the following two sections, I’ll briefly show you how to use Microsoft’s and Boralnd’s

C compilers.

Taking the First Step 17

1

Using Microsoft’s Compiler
I’m going to show you how to use the C compiler that is bundled with the Microsoft’s

Visual C++ package in this section. If you need to learn more details on how to install

Visual C++, please follow the instructions that come with the compiler.

Now I assume you’ve installed a copy of Visual C++ 5.0 on your computer. To start the

compiler, you can click the Start button from your Windows 95 (or 98 or NT), and

choose: Programs, Microsoft Visual C++ 5.0, Microsoft Visual C++ 5.0. Or, you can

simply run the application file MSDEV.EXE directly from the directory (folder) where you

installed the Visual C++ package. Figure 1.3 shows an example of the integrated devel-

opment environment (IDE) from Visual C++ 5.0.

18 Hour 1

FIGURE 1.3

An example of the IDE

from Visual C++ ver-

sion 5.0.

Then, you can open a new file within the IDE by clicking the New File button on the far

left side of the toolbar, and type the following text in the space of the new file:

#include <stdio.h>

main()
{

printf (“Howdy, neighbor! This is my first C program.\n”);
return 0;

}

Figure 1.4 shows the IDE with the text you just typed in. Don’t worry about the meaning

of the text. In the next chapter, “Your First C Program,” will explain it to you.

Taking the First Step 19

1

FIGURE 1.4

Writing code in the

Visual C++ 5.0 IDE.

Then, you need to save the text as a file. Let’s call the file MyFirstProgram.c. It is also a

good idea to create a new directory on your hard drive to store your programming pro-

jects, and save the new file there. First, click the Save button on the toolbar. In the Save

As dialog box, click the New Folder button and type in a name for your programming

folder. Then double-click that folder to open it, type MyFirstProgram.c in the File Name

box, and click Save. Note that the extension .c is used to indicate that the file you just

saved is a C program file.

Now, you need to click the Build menu and choose the Compile MyFirstProgram.c

option. By doing so, you ask the compiler to compile the text you just typed in and saved

(see Figure 1.5). At this point, Visual C++ may prompt you to create a new workspace;

just click Yes and this will be done automatically. There should be no errors or warnings

in the output window after the compiler is run.

Then, click the Build menu again, and this time, choose the Build MyFirstProgram.exe

option which will eventually produce an executable file called MyFirstProgram.exe.

Figure 1.6 shows that there are no errors or warnings after MyFirstProgram.exe is built.

FIGURE 1.5

Compiling a C pro-

gram using the IDE.

20 Hour 1

FIGURE 1.6

Creating a program

executable file.

You are now ready to run the executable file, MyFirstProgram.exe, that you just com-

piled. You can run it from the menu path: Build, Execute MyFirstProgram.exe. Because

the executable file is a console mode application, a DOS prompt window will show up

when the executable file is running (see Figure 1.7).

FIGURE 1.7

Running a C program.

Taking the First Step 21

1

You can tell that the first line in the DOS prompt window shown in Figure 1.7 is the

exact line you just typed: “Howdy neighbor! This is my first C program.” This is indeed

your first C program output! (Note that the second line shown in the DOS prompt is just

a built-in reminder from the DOS prompt window.)

Okay. I just demonstrated how to use Visual C++ compiler to write and compile a C pro-

gram, and how to make the program executable. For more details, you need to read

books such as Teach Yourself Visual C++ 5 in 21 Days that focus on teaching you how to

use Visual C++ compiler.

Using Borland’s Compiler
In this section, I’m going to show you how to use the C compiler that is bundled with

Borland’s C++ package. The procedure of the section is quite similar as the one of the

previous section. If you need to learn more details on how to install Borland C++, please

follow the instructions that come with the compiler.

I assume that you’ve installed a copy of Borland C++ 5.02 on your computer. To start the

compiler, you can click the Start button from your Windows 95 (or Windows 98 or NT)

task bar, and choose Programs, Borland C++ 5.02, Borland C++. Or, you can simply run

the application file bcw.exe directly from the directory (folder) where you installed the

Borland C++ package. Figure 1.8 shows an example of the integrated development

environment (IDE) from Borland C++ 5.02.

Then, you can open a new file within the IDE, and type the following text in the space of

the newly opened file:

#include <stdio.h>

main()
{

printf (“Howdy, neighbor! This is my first C program.\n”);
return 0;

}

FIGURE 1.8

Creating a program

with the Borland C++

IDE.

22 Hour 1

Figure 1.9 shows the IDE with the text you just typed. Don’t worry about the meaning of

the text. The next hour will explain it to you.

FIGURE 1.9

Saving C program text

with Borland’s IDE.

Now you need to save the text as a file. Let’s call the file MyFirstProgram.c. Note that

the extension .c is used to indicate that the file you just saved is a C program file.

Now, you need to click the Project menu and choose the Compile option. By doing so,

you ask the compiler to start compiling the text you just typed and saved. Figure 1.10

shows that there are no errors or warnings after MyFirstProgram.c is compiled and

MyFirstProgram.exe is created.

Taking the First Step 23

1

FIGURE 1.10

Compiling a C pro-

gram using Borland’s

IDE.

You are now ready to run the executable file, MyFirstProgram.exe, that you just com-

piled. You can run it by clicking the Run button on the toolbar. Or, you can run

MyFirstProgram.exe directly from the directory where you created it. Because the exe-

cutable file is in fact a DOS application, a DOS prompt window will show up when the

executable file is running (see Figure 1.11).

FIGURE 1.11

Running a C program

using Borland’s IDE.

Figure 1.11 displays the output exactly as you just typed it: “Howdy neighbor! This is

my first C program.” This is indeed your first C program output!

If you want to learn more details on how to use Borland C++, read a book such as Teach

Yourself Borland C++ 5 in 21 Days.

24 Hour 1

Here is a brief note on binary code and executable files. You’ll learn more

details later in this book. Basically, before you can run a C program on your

computer you need to use a C compiler to translate the C program into

machine-understandable code (that is, binary code). When the translation is

done, the binary code can be saved into an application file. The binary code

or application file is called executable code, or an executable file, because it

can be executed directly on your computer.

Summary
In this first lesson you learned the following basic things about the C language:

• C is a general-purpose programming language.

• C is a high-level language that has the advantages of readability, maintainability,

and portability.

• C is a very efficient language that allows you to control computer hardware and

peripherals.

• C is a small language that you can easily learn in a relatively short time.

• Programs written in C can be reused.

• Programs written in C must be compiled and translated into machine-readable code

before the computer can execute them.

• Many other programming languages, such as Perl, C++, and Java, have adopted

basic concepts and useful features from the C language. Once you learn C, learning

these other languages is much easier.

• The ANSI standard for C is the standard supported by C compiler vendors to main-

tain the portability of C programs.

• You can use any ANSI C compliant compiler to compile all of the C programs in

this book.

In the next lesson you’ll learn to write your first C program.

Q&A
Q What is the lowest-level language in the computer world?

A The computer’s machine language is the lowest because the machine language,

made up of 0s and 1s, is the only language that the computer can understand

directly.

Q What are the advantages of high-level programming languages?

A Readability, maintainability, and portability are the main advantages of high-level

programming languages.

Q What is C, anyway?

A C is a general-purpose programming language. It’s a high-level language that has

advantages such as readability, maintainability, and portability. Also, C allows you

to get down to the hardware level to increase the performance speed if needed. A C

compiler is needed to translate programs written in C into machine-understandable

code. The portability of C is realized by recompiling the C programs with different

C compilers intended for different types of computers.

Q Can I learn C in a short time?

A Yes. C is a small programming language. There are not many C keywords or com-

mands to remember. Also, it’s very easy to read and write C programs because C is

a high-level programming language that is close to human languages, especially

English. You can learn C in a relatively short time.

Workshop
To help solidify your understanding of this hour’s lesson, you are encouraged to answer

the quiz questions provided in the workshop before you move to next lesson. The

answers and hints to the questions are given in Appendix D, “Answers to Quiz Questions

and Exercises.”

Quiz
1. What are the lowest-level and highest-level languages mentioned in this book?

2. Can a computer directly understand a program written in C? What do you need to

translate a program written in C into the machine-understandable code (that is,

binary code)?

3. If needed, can a C program be reused in another C program?

4. Why do we need the ANSI standard for the C language?

Taking the First Step 25

1

HOUR 2
Writing Your First C
Program

Cut your own wood and it will warm you twice.

—Chinese proverb

In Hour 1, “Taking the First Step,” you learned that C is a high-level pro-

gramming language and that you need a C compiler to translate your C pro-

grams into binary code that your computer can understand and execute. In

this lesson you’ll write your first C program and learn the basics of a C pro-

gram, such as

• The #include directive

• Header files

• Comments

• The main() function

• The return statement

• The exit() function

• The newline character (\n)

• Translating a C program into an executable file

• Debugging

A Simple C Program
Let’s have a look at your first C program, demonstrated in Listing 2.1. Later in this les-

son you’re going to write your own C program for the first time.

LISTING 2.1 A Simple C Program

1: /* 02L01.c: This is my first C program */
2: #include <stdio.h>
3:
4: main()
5: {
6: printf (“Howdy, neighbor! This is my first C program.\n”);
7: return 0;
8: }

This is a very simple C program, which is saved in a file called 02L01.c. Note that the

name of a C program file must have an extension of .c. If you’ve installed a C compiler

and set up the proper development environment, you should be able to compile this C

program, and make it into an executable file. I’ll discuss how to make an executable file

later in this chapter.

In the previous hour, you learned how to enter a program into your text editor and save it

as a C program file. Here, you may notice that unlike the sample in the last chapter, each

line is numbered. This is only done here as a reference for when I discuss what each line

of a program does. Unlike other languages such as BASIC, the C language does not have

line numbers at all. In fact, if you do enter the line numbers in the listing, your program

will not work! So when you enter these programs, remember not to enter the line num-

bers that are shown in the book.

28 Hour 2

Two things you might notice by glancing at Listing 2.1 are the semicolons

and indenting on lines 6 and 7. Unlike other languages, such as BASIC, the

end of a line has no special significance in C. It is perfectly legal (and in

many cases, advisable) to break a statement into several lines for clarity.

Generally, an individual C statement ends in a semicolon, but there is more

about this later in the book. The indenting serves to identify the various lev-

I set up my development environment in such a way that all C programs in this book can

be compiled and made into console applications. For instance, 02L01.exe is the name of

the console application made from 02L01.c. Note that .exe is included as the extension

to the name of a DOS or Windows application program (that is, an executable file).

Also, on my machine, I save all the executable files made from the C programs in this

book into a dedicated directory called C:\app. Therefore, if I type in 02L01 from a DOS

prompt and press the Enter key, I can run the 02L01.exe executable file and display the

message Howdy, neighbor! This is my first C program. on the screen. The follow-

ing output is a copy from the screen:

Howdy, neighbor! This is my first C program.

Comments
Now let’s take a close look at the C program in Listing 2.1.

The first line contains a comment:

/* 02L01.C: This is my first C program */

You notice that this line starts with a combination of slash and asterisk, /*, and ends with

/. In C, / is called the opening comment mark, and */ is the closing comment mark.

The C compiler ignores everything between the opening comment mark and closing

comment mark. That means the comment in the first line of Listing 2.1, 02L01.C: This

is my first C program, is completely ignored by the compiler.

The only purpose of including comments in your C program is to help you document

what the program or some specific sections in the programs do. Remember, comments are

written for yourself and other programmers. For example, when you read someone else’s

Writing Your First C Program 29

2

els of a program in a kind of outline format. The function main() is, well,

the main level of the program, so it goes on the far left. Lines 6 and 7 are

part of main() so they are indented one level to the right. Usually, you use

your Tab key to indent a level before you start typing. It should be noted

that indenting, like line numbers, is not enforced — or even noticed! — by

the compiler. The programmer is free to use line breaks and indenting, com-

monly referred to as whitespace, to make the program look readable. It is

generally a matter of style, but it’s a good idea to follow generally accepted

conventions so that other programmers can understand your programs and

vice-versa. Take a look at the use of whitespace in the programs in this

book, and feel free to develop your own style as you go.

OUTPUT

code, the comments in the code help you to understand what the code does, or at least

what the code intends to do. As your programs get larger and more complicated, you can

use comments to write notes to yourself about what you are trying to do and why.

You don’t need to worry about the size or performance speed of your C program if you

add many comments into it. Adding comments into a C program does not increase the

size of the binary code of the program (that is, the executable file), although the size of

the program itself (that is, the source code) may become larger. The performance speed

of the executable file made from your C program is not affected in any way by the com-

ments inside your C program.

The C language allows you to write a comment that crosses more than one line. For

instance, you can write a comment in C like this:

/*
This comment does not increase the size of
the executable file (binary code), nor does
it affect the performance speed.

*/

which is equivalent to this:

/* This comment does not increase the size of */
/* the executable file (binary code), nor does */
/* it affect the performance speed. */

30 Hour 2

These days, there is another way to put comments into a C program. C++

started using two slashes (//) to mark the beginning of a comment line;

many C compilers now use this convention as well. The comment ends at the

end of the line. For instance, if I write a C program in Borland C++ or Visual

C++, the following two comments are identical:

/*
This comment does not increase the size of
the executable file (binary code), nor does
it affect the performance speed.

*/
// This comment does not increase the size of
// the executable file (binary code), nor does
// it affect the performance speed.

Note that this new style of using // as the beginning mark of a comment

has not been approved by ANSI. Make sure your C compiler supports //

before you use it.

One thing that needs to be pointed out is that the ANSI standard does not support nested

comments, that is, comments within comments. For instance, the following is not allowed

by the ANSI standard:

/* This is the first part of the first comment
/* This is the second comment */
This is the second part of the first comment */

Writing Your First C Program 31

2
You can use the opening comment mark, /*, and closing comment mark, */,

to help you test and fix any errors found in your C program. This is com-

monly referred to as commenting out a block of code. You can comment out

one or more C statements in your C program with /* and */ when you need

to focus on other statements and watch their behaviors closely. The C com-

piler will ignore the statements you comment out.

Later, you can always restore the previously commented-out statements sim-

ply by removing the opening comment and closing comment marks. In this

way, you don’t need to erase or rewrite any statements during testing and

debugging.

However, since you can’t nest comments made with /* and */, if you

attempt to comment out code that already contains these comments, your

program will not compile. One reason why the //-type comments are so use-

ful is because you can nest them, and therefore legally comment them out

with /* and */.

If your text editor supports color syntax highlighting, you can use this to tell

at a glance if sections of code are actually commented out as you intended.

The #include Directive
Let’s now move to line 2 in the C program of Listing 2.1:

#include <stdio.h>

You see that this line starts with a pound sign, #, which is followed by include. In C,

#include forms a preprocessor directive that tells the C preprocessor to look for a file

and place the contents of that file in the location where the #include directive indicates.

The preprocessor is a program that does some preparations for the C compiler before

your code is compiled. More details about the C preprocessor are discussed in Hour 23,

“Compiling Programs: The C Preprocessor.”

Also in this line, you see that <stdio.h> follows #include. You may guess that the file

the #include directive asks for is something called stdio.h. You are exactly right! Here,

the #include directive does ask the C preprocessor to look for and place stdio.h at the

location of the directive in the C program.

The name of the stdio.h file stands for standard input-output header file. The stdio.h

file contains numerous prototypes and macros to perform input or output (I/O) for C pro-

grams. You’ll see more program I/O in Hour 5, “Handling Standard Input and Output.”

32 Hour 2

Some operating systems distinguish between upper- and lowercase letters,

while others do not. For instance, stdio.h and STDIO.H are identical file-

names on a PC, while they are different in UNIX.

Header Files
The files that are included by the #include directive, like stdio.h, are called header

files because the #include directives are almost always placed at the start, or head of C

programs. Actually, the extension name of .h does mean “header” and these are some-

times referred to in conversation as dot-h files.

Besides stdio.h, there are more header files, such as stdlib.h, string.h, math.h, and

so on. Appendix A, “ANSI Standard Header Files,” gives a list of all the ANSI standard

header files. The specific header files you need to include depend on the specific library

functions you intend to call. The documentation for library functions will tell you which

header file is required.

Angle Brackets (< >) and Double Quotes (“ “)
In the second line of Listing 2.1, there are two angle brackets, < and >, that are used to

surround stdio.h. You may be wondering what the angle brackets do. In C, the angle

brackets ask the C preprocessor to look for a header file in a directory other than the cur-

rent one.

For instance, the current directory containing the 02L01.C file is called C:\code on my

computer. Therefore, the angle brackets around <stdio.h> tell the C preprocessor to look

for stdio.h in a directory other than C:\code.

If you want to let the C preprocessor look into the current directory first for a header file

before it starts to look elsewhere, you can use double quotes to surround the name of the

header file. For instance, when the C preprocessor sees “stdio.h”, it looks in the current

directory, which is C:\code on my machine, first before it looks elsewhere for the

stdio.h header file.

Normally, the header files are saved in a subdirectory called include. For instance, I

install a Microsoft C compiler in the directory MSVC on my hard drive, which is labeled

as the C drive. Then the path to access the header files becomes C:\MSVC\include.

The path where header files are kept is usually determined by your compiler when you

install it. This is commonly referred to as the include directory or include path of your

environment. Normally, you never need to worry about the include directory until you

create your own header files. For now, you just need to specify the name of the header

file you wish to include.

The main() Function
In line 4 of Listing 2.1, you see this function:

main ()

This is a very special function in C. Every C program must have a main() function, and

every C program can only have one main() function. More generic discussions about

functions are given in Hour 3, “Learning the Structure of a C Program.”

You can put the main() function wherever you want in your C program. However, the

execution of your program always starts with the main() function. If you create other

functions in your program, main() will always execute first, even if it is at the bottom of

your program file.

In Listing 2.1, the main() function body starts in line 4 and ends in line 8. Because this is

a very simple program, the main() function is the only function defined in the program.

Within the main() function body, a C library function, printf(), is called in order to print

out a greeting message (see line 6). More details about printf() are covered in Hour 5.

One more important thing about main() is that the execution of every C program ends

with main(). A program ends when all the statements within the main() function have

been executed.

The Newline Character (\n)
In the printf() function, one thing worth mentioning at this point is the newline charac-

ter, \n. Usually suffixed at the end of a message, the newline character tells the computer

to move the cursor to the beginning of the next line so that anything printed out after the

message will start on the next line on the screen.

In a UNIX environment, \n by itself goes to a new line but leaves the cursor at the position

it was on the previous line. In this case, it is necessary to print \r\n rather than just \n. The

\r character is the carriage return character. When you run the sample programs in this

book, you will be able to tell right away whether the cursor is returning to the beginning of

the new line; if it is not, simply use \r\n wherever you see \n in the program listings.

Exercise 3 in this lesson gives you a chance to use the newline character to break a one-

line message into two lines.

Writing Your First C Program 33

2

The return Statement
All functions in C can return values. For instance, when you create a function to add two

numbers, you can make such a function that returns to you the value of the addition.

The main() function itself returns an integer value. In C, integers are decimal numbers

without fraction portions.

Therefore, in line 7 of Listing 2.1, there is a statement, return 0;, that indicates that 0 is

returned from the main() function and the program is terminated normally. There are

cases when you must end your program due to an error condition. When that happens,

you can return values other than 0 to tell the operating system (or the program that ran

your program) that there was an error.

The exit() Function
There is also a C library function, exit(), that can be used to end a program. Because

the exit() function is defined in a header file, stdlib.h, you have to include the header

file at the beginning of your program in order to use the function. The exit() function

itself does not return a value to your program.

Note that return and exit() can also be used in other functions. You’ll see more exam-

ples of the return keyword in the rest of the book.

Compiling and Linking
You may already be anxious to know how an executable file is made. Let’s have a

look how a C program is compiled and translated into an executable file. As shown in

Figure 2.1, there are at least three steps needed to create an executable file.

First, a program file written in C, called source code, is made. The name of the source

code file ends with the extension .c.

Then the source code file is compiled by a C compiler, which creates a new file. The

new file is an object file. In UNIX operating system, the name of an object file ends with

the extension .o; In the DOS and Windows operating systems, the extension is .obj.

You cannot execute the object file because there is some function code missing. You have

to finish the next step: linking. Linking is done by invoking a special program called a

linker, which normally comes with the compiler package.

A linker is used to link together the object file, the ANSI standard C library, and other

user-generated libraries to produce an executable file—the binary code. In this stage,

the binary code of the library functions that are called in the source code is combined

34 Hour 2

with the object file; the result is saved into a new file—an executable file. As you

learned in the first chapter of the book, the name of an executable file usually ends with

the extension .exe in DOS and Windows. (.com is another extension used for an DOS

executable filename.) In UNIX, it’s not necessary to include such an extension to an

executable filename.

Writing Your First C Program 35

2

FIGURE 2.1

Make an executable

file by the compiler

and linker.

The C Compiler

The Linker

/* 02L01.C */

stdio.h

stdlib.h

.....

10011111001

0111000011

110001100

Library files

&

Other object files

The executable file

The header files The C program

Later, you’ll learn that in many cases, there may be several object files that have to be

linked together in order to make an executable program.

Note that the object file and executable file are both machine-dependent. You cannot

simply move an executable file from the current computer platform to another one

that is operated by a different operating system, although the source code of the exe-

cutable file, presumably written in ANSI C, might be machine independent (that is,

portable).

What’s Wrong with My Program?
When you finish writing a C program and start to compile it, you might get some error

or warning messages. Don’t panic when you see error messages. We’re human beings.

Everybody makes mistakes. Actually, you should appreciate that your compiler catches

some errors for you before you go any further.

Usually, your compiler can help you check the grammar — that is, syntax — of your C

program and make sure you’ve followed the C programming rules properly. For instance,

if you forget to put the ending brace on the main() function in line 8 of Listing 2.1,

you’ll get an error message something like this: syntax error : end of file found.

Also, the linker will issue an error message if it cannot find the missing code for a

needed function in the libraries. For instance, if you misspell printf() as pprintf() in

the program of Listing 2.1, you’ll see an error message: ‘_pprintf’: unresolved

external (or something similar).

All errors found by the compiler and linker must be fixed before an executable file

(binary code) can be made.

36 Hour 2

Portability is an important concept in C, as it was one of the original design

goals of the language. The portability of C code is what fueled its wide-

spread use and popularity. Back in the days when applications and operating

systems were hand-tailored to a specific computer system, software had to

be written from scratch every time a new computer came along. The advent

of the C language abstracted software away from hardware, and in a very

real sense, helped give rise to the software industry as we know it today.

Portability, in essence, refers to the process of porting a program to a differ-

ent computer and/or operating system. Software development is an expen-

sive and time-consuming process, and rewriting an existing program to work

on a new computer is often a daunting task that is best avoided. Assuming

that each operating system and compiler combination is tailored to the spe-

cific computer where it was intended to run, a C program should be easily

portable with only minimal changes to the code. Portability is mentioned

throughout this book, as it is important that C programs not make assump-

tions about the specific computer system where they are running.

Fortunately, the ANSI C standard provides many features and functions that

allow your program to essentially adapt to its environment, as opposed to

acting on assumptions made by you, the programmer. If you get into the

habit of maintaining portability early on, then as you progress with C, the

idea will become second nature.

Debugging Your Program
In the computer world, program errors are also called bugs. In many cases, your C com-

piler and linker do not find any errors in your program, but the result made by running

the executable file of the program is not what you expect. In order to find those “hidden”

errors in your program, you may need to use a debugger.

Normally, your C compiler already includes a debugger software program. The debugger

can execute your program one line at a time so that you can watch closely what’s going

on with the code in each line, or so that you can ask the debugger to stop running your

program on any line. For more details about your debugger, refer to the instructions that

come with your C compiler.

Later in this book, you’ll learn that debugging is a very necessary and important step in

writing software programs. (This topic is covered in Hour 24, “Where Do You Go From

Here.”)

Summary
In this lesson you learned the following concepts and statements about the C language:

• Some header files should be included at the beginning of your C program.

• Header files, such as stdio.h and stdlib.h, contain the declarations for functions

used in your C program; for example, the printf() and exit() functions.

• Comments in your C programs are needed to help you in documenting your pro-

grams. You can put comments anywhere you like in your programs.

• In ANSI C, a comment starts with the opening comment mark, /*, and ends with

the closing comment mark, */.

• Every C program must have one but only one main() function. The program exe-

cution starts and ends with the main() function.

• The return statement can be used to return a value to indicate to the operating sys-

tem whether an error has occurred. The exit() function terminates a program; the

argument to the function indicates the error status, too.

• Compiling and linking are consecutive steps that have to be finished before an exe-

cutable file is produced.

• Everybody, including you and me, makes mistakes in programming. Debugging is

a very important step in your program design and coding.

In the next lesson you’ll learn more about the essentials of C programs.

Writing Your First C Program 37

2

Q&A
Q Why do you need to put comments into your programs?

A Comments help you document what a program does. Especially when a program

becomes very complex, you need to write comments to explain different parts in

the program.

Q Why is the main() function needed in a program?

A The execution of a C program starts and ends with the main() function. Without

the main() function, the computer does not know where to start to run a program.

Q What does the #include directive do?

A The #include directive is used to include header files that contain the declarations

to the functions used in your C program. In other words, the #include directive

tells the C preprocessor to look into the include path to find the specified header

file.

Q Why do you need a linker?

A After compiling, some function code may still be missing in the object file of a

program. A linker must then be used to link the object file to the C standard library

or other user-generated libraries and include the missing function code so that an

executable file can be created.

Workshop
To help solidify your understanding of this hour’s lesson, you are encouraged to answer

the quiz questions and finish the exercises provided in the workshop before you move to

the next lesson. The answers and hints to the questions and exercises are given in

Appendix D, “Answers to Quiz Questions and Exercises.”

Quiz
1. Can a C compiler see the comments within your C program?

2. What kind of files does a C compiler actually produce?

3. Does the exit() function return a value? What about the return statement?

4. What is a header file?

38 Hour 2

Exercises
1. Is #include <stdio.h> the same as #include “stdio.h”?

2. It’s time for you to write a program on your own. Referring to the program in

Listing 2.1, write a C program that can print out a message: It’s fun to write

my own program in C.

3. Update the program in Listing 2.1 by adding one more newline character into the

message printed out by the printf() function. You should see two lines of the

message on the screen after running the updated executable file:

Howdy, neighbor!
This is my first C program.

4. What warning or error messages, if any, will you get when you’re compiling the

following program?

#include <stdlib.h>
#include <stdio.h>
main()
{

printf (“Howdy, neighbor! This is my first C program.\n”);
exit(0);

}

5. What error messages will you get for the following program when you’re trying to

compile it?

void main()
{

printf (“Howdy, neighbor! This is my first C program.\n”);
return 0;

}

Writing Your First C Program 39

2

HOUR 3
Learning the Structure of
a C Program

The whole is equal to the sum of its parts.

—Euclid

In Hour 2, “Writing Your First C Program,” you saw and wrote some simple

C programs. You also learned about the basic structure of a C program. You

know that a program written in C has to be compiled before it can be exe-

cuted. In this lesson you’ll learn more essentials within a C program, such as

• Constants and variables

• Expressions

• Statements

• Statement blocks

• C function types and names

• Arguments to functions

• The body of a function

• Function calls

The Basics of a C Program
As a building is made of bricks, a C program is made of basic elements, such as expres-

sions, statements, statement blocks, and function blocks. These elements are discussed in

the following sections. But first, you need to learn two smaller but important elements,

constant and variable, which make up expressions.

Constants and Variables
As its name implies, a constant is a value that never changes. A variable, on the other

hand, can be used to present different values.

You can think of a constant as a music CD-ROM; the music saved in the CD-ROM is

never changed. A variable is more like an audio cassette: You can always update the con-

tents of the cassette by simply overwriting the old songs with new ones.

You can see many examples in which constants and variables are in the same statement.

For instance, consider the following:

i = 1;

where the symbol 1 is a constant because it always has the same value (1), and the sym-

bol i is assigned the constant 1. In other words, i contains the value of 1 after the state-

ment is executed. Later, if there is another statement,

i = 10;

after it is executed, i is assigned the value of 10. Because i can contain different values,

it’s called a variable in the C language.

Expressions
An expression is a combination of constants, variables, and operators that are used to

denote computations.

For instance, the following:

(2 + 3) * 10

is an expression that adds 2 and 3 first, and then multiplies the result of the addition by

10. (The final result of the expression is 50.)

Similarly, the expression 10 * (4 + 5) yields 90. The 80/4 expression results in 20.

Here are some other examples of expressions:

42 Hour 3

Expression Description

6 An expression of a constant.

i An expression of a variable.

6 + i An expression of a constant plus a variable.

exit(0) An expression of a function call.

Operators

As you’ve seen, an expression can contain symbols such as +, *, and /. In the C lan-

guage, these symbols are called arithmetic operators. Table 3.1 lists all the arithmetic

operators and their meanings.

TABLE 3.1 C Arithmetic Operators

Symbol Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder (or modulus)

You might already be familiar with all the arithmetic operators, except the remainder (%)

operator. % is used to obtain the remainder of the first operand divided by the second

operand. For instance, the expression

6 % 4

yields a value of 2 because 4 goes into 6 once with a remainder of 2.

The remainder operator, %, is also called the modulus operator.

Among the arithmetic operators, the multiplication, division, and remainder operators

have a higher precedence than the addition and subtraction operators. For example, the

expression

2 + 3 * 10

yields 32, not 50, because of the higher precedence of the multiplication operator.

3 * 10 is calculated first, and then 2 is added into the result of the multiplication.

Learning the Structure of a C Program 43

3

As you might know, you can put parentheses around an addition (or subtraction) to force

the addition (or subtraction) to be performed before a multiplication, division, or modu-

lus computation. For instance, the expression

(2 + 3) * 10

performs the addition of 2 and 3 first before it multiplies the result by 10.

Other operators, which are used for syntax, include the comma and semicolon. The semi-

colon is generally used to indicate the end of a statement, as you will see later. The

comma is used in certain instances where a statement is comprised of a list of expres-

sions or declarations.

You’ll learn more C language operators in Hours 6, “Manipulating Data,” and 8, “Using

Conditional Operators.”

Identifiers

Along with numbers (such as the constant 7) and operators (such as the symbol +),

expressions can also contain words that are called identifiers. Function names (such as

exit) and variable names (such as i), as well as reserved keywords, are all identifiers

in C.

The following is the set of characters you can use to make a valid identifier. Any charac-

ters or symbols that do not follow these rules are illegal to use in an identifier.

• Characters A through Z and a through z.

• Digit characters 0 through 9 (but these can not be used as the first character of an

identifier).

• The underscore character (_).

For instance, stop_sign, Loop3, and _pause are all valid identifiers.

The following are illegal characters; that is, they do not meet the above set of rules for

identifiers:

• C arithmetic signs (+, -, *, /).

• Period, or dot character (.).

• Apostrophes (‘) or quotes (“).

• Any other special symbols such as *, @, #, ?, and so on.

Some invalid identifiers, for example, are 4flags, sum-result, method*4, and

what_size?.

44 Hour 3

You’ve already seen the return keyword in the previous hour. Hour 4, “Understanding

Data Types and Keywords,” lists all of the reserved keywords.

Statements
In the C language, a statement is a complete instruction, ending with a semicolon. In

many cases, you can turn an expression into a statement by simply adding a semicolon at

the end of the expression.

For instance, the following:

i = 1;

is a statement. You might have already figured out that the statement consists of an

expression of i = 1 and a semicolon (;).

Here are some other examples of statements:

i = (2 + 3) * 10;
i = 2 + 3 * 10;
j = 6 % 4;
k = i + j;

Also, in the first lesson of this book you learned statements such as

return 0;
exit(0);
printf (“Howdy, neighbor! This is my first C program.\n”);

Statement Blocks
A group of statements can form a statement block that starts with an opening brace ({)

and ends with a closing brace (}). A statement block is treated as a single statement by

the C compiler.

For instance, the following:

for(. . .) {
s3 = s1 + s2;
mul = s3 * c;
remainder = sum % c;

}

Learning the Structure of a C Program 45

3

Never use the reserved keywords, or the names of the standard C library

functions, for variable names or function names that you create in your own

C programs.

is a statement block that starts with { and ends with }. Here for is a keyword in C that

determines the statement block. The for keyword is discussed in Hour 7, “Working

with Loops.”

A statement block provides a way to group one or more statements together as a single

statement. Many C keywords can only control one statement. If you want to put more

than one statement under the control of a C keyword, you can add those statements into a

statement block so that the block is considered as one statement by the C keyword.

Anatomy of a C Function
Functions are the building blocks of C programs. Besides the standard C library func-

tions, you can also use some other functions made by you or another programmer in your

C program. In Hour 2 you saw the main() function, as well as two C library functions,

printf() and exit(). Now, let’s have a closer look at functions.

As shown in Figure 3.1, a function consists of six parts: the function type, the function

name, arguments to the function, the opening brace, the function body, and the closing

brace.

46 Hour 3

FIGURE 3.1

The anatomy of a func-

tion in the C language.

int integer_add (int x, int y)

{

int result;

result = x + y;

return result;

}

Function

Type

Function

Name

Argument List

to Function

Start of Function

Function Body

End of Function Body

and Function

The six parts of a function are explained in the following sections.

Determining a Function’s Type
The function type is used to signify what type of value a function is going to return after

its execution. In Hour 2 for instance, you learned that the default function type of main()

is int.

In C, int is used as the keyword for the integer data type. In the next hour, you’ll learn

more about data types.

Besides the int type, a function type can be one of the other types, such as the character

type (keyword: char), the floating type (float), and so on. You will learn more about

those types later in this book.

When you call a C function which returns a data type, the value it returns (return value)

can then be used in an expression. You can assign it to a variable, such as

int a = func();

or use it in an expression, like this

a = func() + 7;

Giving a Function a Valid Name
A function name is normally given in such a way that it reflects what the function can

do. For instance, the name of the printf() function means “print formatted data.”

Since a function name is an identifier, when creating your own functions you must fol-

low the rules for creating valid identifiers when naming your function.

In addition, you cannot use the names of standard C functions such as printf() or

exit() to name your own functions. They are already defined, and it is illegal to use the

same function name in defining more than one function.

Passing Arguments to C Functions
Functions are useful because you can call them over and over from different points in

your program. However it’s likely that you call a certain function for a slightly different

reason each time.

For example, in Listing 2.1 in Hour 2, a character string, “Howdy, neighbor! This is

my first C program.\n”, is passed to the printf() function, and then printf() prints

the string on the screen. The entire purpose of printf() is to print a string on the screen,

but each time you call it, you pass the specific string that you want it to print this time

around.

Pieces of information passed to functions are known as arguments. As you’ve seen, the

argument of a function is placed between the parentheses that immediately follow the

function name.

The number of arguments to a function is determined by the declaration of the function,

which in turn is determined by the task the function is going to perform. If a function

needs more than one argument, arguments passed to the function must be separated by

commas; these arguments are considered an argument list.

Learning the Structure of a C Program 47

3

If no information needs to be passed to a function, you just leave the argument field

between the parentheses blank. For instance, the main() function in Listing 2.1 of Hour

2 has no argument, so the field between the parentheses following the function name is

empty. See the copy of Listing 3.1 below:

LISTING 3.1. A Simple C Program.

1: /* 02L01.c: This is my first C program */
2: #include <stdio.h>
3:
4: main()
5: {
6: printf (“Howdy, neighbor! This is my first C program.\n”);
7: return 0;
8: }

The Beginning and End of a Function
As you might have already figured out, braces are used to mark the beginning and end of

a function. The opening brace ({) signifies the start of a function body, whereas the clos-

ing brace (}) marks the end of the function body.

As mentioned earlier, the braces are also used to mark the beginning and end of a state-

ment block. You can think of it as a natural extension to use braces with functions

because a function consists of one or several statements.

The Function Body
The function body in a function is the place that contains variable declarations and other

C statements. The task of a function is accomplished by executing the statements inside

the function body one at a time.

It is important to remember that any variable declarations must be placed at the begin-

ning of the function body. It is illegal to put variable declarations anywhere other than

the very beginning of a statement block.

48 Hour 3

If your function body contains variable declarations, they must all be placed

first, before any other statements.

Listing 3.2 demonstrates a function that adds two integers specified by its arguments and

returns the result of the addition.

LISTING 3.2 A Function that Adds Two Integers

1: /* 03L01.c: This function adds two integers and returns the result */
2: int integer_add(int x, int y)
3: {
4: int result;
5: result = x + y;
6: return result;
7: }

As you learned in Hour 2, line 1 of Listing 3.1 is a comment that describes what

the function can do.

In line 2, you see that the int data type is prefixed prior to the function name. Here int

is used as the function type, which signifies that an integer is returned by the function.

The function name shown in line 2 is integer_add. The argument list contains two argu-

ments, int x and int y, in line 2, where the int data type specifies that the two argu-

ments are both integers.

Line 3 contains the opening brace ({) that marks the start of the function.

The function body is in lines 4–6 in Listing 3.1. Line 4 gives the variable declaration of

result, and is specified by the int data type as an integer. The statement in line 5 adds

the two integers represented by x and y and assigns the computation result to the result

variable. The return statement in line 6 then returns the computation result represented

by result.

Last, but not least, the closing brace (}) in line 7 is used to close the function.

Learning the Structure of a C Program 49

3

ANALYSIS

When you create a function in your C program, don’t assign the function

too much work. If a function has too much to do, it will be very difficult to

write and debug. If you have a complex programming project, break it into

smaller pieces. Try your best to make sure that each function has just one

task to do.

Making Function Calls
Based on what you’ve learned so far, you can write a C program that calls the

integer_add() function to calculate an addition and then print out the result on the

screen. An example of such a program is demonstrated in Listing 3.3.

LISTING 3.3 A C Program that Calculates an Addition and Prints the Result to the
Screen

1: /* 03L02.c: Calculate an addition and print out the result */
2: #include <stdio.h>
3: /* This function adds two integers and returns the result */
4: int integer_add(int x, int y)
5: {
6: int result;
7: result = x + y;
8: return result;
9: }
10:
11: int main()
12: {
13: int sum;
14:
15: sum = integer_add(5, 12);
16: printf(“The addition of 5 and 12 is %d.\n”, sum);
17: return 0;
18: }

The program in Listing 3.2 is saved as a source file called 03L02.c. After this program is

compiled and linked, an executable file for 03L02.c is created. On my machine, the exe-

cutable file is named 03L02.exe. The following is the output printed on the screen after I

run the executable on my machine:

The addition of 5 and 12 is 17.

Line 1 in Listing 3.2 is a comment about the program. As you learned in Hour 2,

the include directive in line 2 includes the stdio.h header file because of the

printf() function in the program.

Lines 3–9 represent the integer_add() function that adds two integers, as discussed in

the previous section.

The main() function, prefixed with the int data type, starts in line 11. Lines 12 and 18

contain the opening brace and closing brace for the main() function, respectively. An

integer variable, sum, is declared in line 13.

The statement in line 15 calls the integer_add() function that you examined in the pre-

vious section. Note that two integer constants, 5 and 12, are passed to the integer_add()

function, and that the sum variable is assigned the return result from the

integer_add() function.

50 Hour 3

OUTPUT

ANALYSIS

You first saw the C standard library function printf() in Hour 2. If you thought you

found something new added to the function in line 16, you’re correct. This time, there

are two arguments that are passed to the printf() function. They are the string “The

addition of 5 and 12 is %d.\n” and the variable sum.

Note that a new symbol, %d, is added into the first argument. The second argument is the

integer variable sum. Because the value of sum is going to be printed out on the screen,

you might think that the %d has something to do with the integer variable sum. You’re right

again. %d tells the computer the format in which sum should be printed on the screen.

More details on %d are covered in Hour 4. The relationship between %d and sum is dis-

cussed in Hour 5, “Handling Standard Input and Output.”

More importantly, you should focus on the program in Listing 3.2 and pay attention to

how to call either a user-generated function or a standard C library function from the

main() function.

Summary
In this lesson you learned the following important concepts and operators:

• A constant in C is a value that never changes. A variable, on the other hand, can

present different values.

• A combination of constants, variables, and operators is called an expression in the

C language. An expression is used to denote different computations.

• The arithmetic operators include +, -, *, /, and %.

• A statement consists of a complete expression suffixed with a semicolon.

• The C compiler treats a statement block as a single statement, although the state-

ment block might contain more than one statement.

• The function type specified in the declaration of a function determines the type of

the value returned by the function.

• You have to follow certain rules to make a valid function name.

• An argument contains information that you want to pass to a function. An argu-

ment list contains two or more arguments that are separated by commas.

• The opening brace ({) and closing brace (}) are used to mark the start and end of a

C function.

• A function body contains variable declarations and statements.

• Usually, a function should accomplish just one task.

In the next lesson you’ll learn more about data types in the C language.

Learning the Structure of a C Program 51

3

Q&A
Q What is the difference between a constant and a variable?

A The major difference is that the value of a constant cannot be changed, whereas the

value of a variable can. You can assign different values to a variable whenever it’s

necessary in your C program.

Q Why do you need a statement block?

A Many C keywords can only control one statement. A statement block provides a

way to put more than one statement together, and put the statement block under the

control of a C keyword. Then, the statement block is treated as a single statement.

Q Which arithmetic operators have a higher precedence?

A Among the five arithmetic operators, the multiplication, division, and remainder

operators have a higher precedence than the addition and subtraction operators.

Q How many parts does a function normally have?

A A function normally has six parts: the function type, the function name, the argu-

ments, the opening brace, the function body, and the closing brace.

Workshop
To help solidify your understanding of this hour’s lesson, you are encouraged to answer

the quiz questions and finish the exercises provided in the workshop before you move to

the next lesson. The answers and hints to the questions and exercises are given in

Appendix D, “Answers to Quiz Questions and Exercises.”

Quiz
1. In the C language, is 74 a constant? How about 571?

2. Is x = 570 + 1 an expression? How about x = 12 + y?

3. Are the following function names valid?

2methods

m2_algorithm

*start_function

Room_Size

.End_Exe

_turbo_add

4. Is 2 + 5 * 2 equal to (2 + 5) * 2?

5. Does 7 % 2 produce the same result as 4 % 3?

52 Hour 3

Exercises
1. Given two statements, x = 3; and y = 5 + x;, how can you build a statement

block with the two statements?

2. What is wrong with the following function?

int 3integer_add(int x, int y, int z)
{

int sum;
sum = x + y + z;
return sum;

}

3. What is wrong with the following function?

int integer_add(int x, int y, int z)
{

int sum;
sum = x + y + z
return sum;

}

4. Write a C function that can perform a multiplication of two integers and return the

calculated result.

5. Write a C program that calls the C function you just wrote in Exercise 4 to calcu-

late the multiplication of 3 times 5 and then print out the return value from the

function on the screen.

Learning the Structure of a C Program 53

3

HOUR 4
Understanding Data
Types and Keywords

What’s in a name? That which we call a rose

By any other name would smell sweet.

—W. Shakespeare

You learned how to make a valid name for a C function in Hour 3,

“Learning the Structure of a C Program.” Now, you’re going to learn more

about naming a variable and the C keywords reserved by the C compiler in

this hour.

Also in this hour you’re going to learn about the four data types of the C

language in detail:

• char data type

• int data type

• float data type

• double data type

C Keywords
The C language reserves certain words that have special meanings to the language. Those

reserved words are sometimes called C keywords. You should not use the C keywords for

your own variable, constant, or function names in your programs. Table 4.1 lists the 32

reserved C keywords.

TABLE 4.1 Reserved Keywords in C

Keyword Description

auto Storage class specifier

break Statement

case Statement

char Type specifier

const Storage class modifier

continue Statement

default Label

do Statement

double Type specifier

else Statement

enum Type specifier

extern Storage class specifier

float Type specifier

for Statement

goto Statement

if Statement

int Type specifier

long Type specifier

register Storage class specifier

return Statement

short Type specifier

signed Type specifier

sizeof Operator

static Storage class specifier

struct Type specifier

switch Statement

56 Hour 4

Keyword Description

typedef Statement

union Type specifier

unsigned Type specifier

void Type specifier

volatile Storage class modifier

while Statement

Don’t worry if you can’t remember all the C keywords the first time through. In the rest

of the book, you’ll become more familiar with them and start to use many of the key-

words through examples and exercises.

Note that all C keywords are written in lowercase letters. As I’ve mentioned, C is a case-

sensitive language. Therefore, int, as shown in the list here, is considered as a C key-

word, but INT is not.

The char Data Type
An object of the char data type represents a single character of the character set used by

your computer. For example, A is a character, and so is a. But 7 is a number.

However, a computer can only store numeric code. Therefore, characters such as A, a, B,

b, and so on all have a unique numeric code that is used by computers to represent the

characters. Usually, a character takes 8 bits (that is, 1 byte) to store its numeric code.

For many computers, the ASCII codes are the de facto standard codes to represent a

character set. (ASCII, just for your information, stands for American Standard Code for

Information Interchange.) The original ASCII character set has only 128 characters

because it uses the lower 7 bits that can represent 27 (that is, 128) characters.

On IBM-compatible PCs, however, the character set is extended to contain a total of 256

(that is, 28) characters.

Understanding Data Types and Keywords 57

4

One thing I’d like to mention here is that the ANSI C standard specifies only

the value of the null character, which is always zero (i.e., a byte with all bits

set to 0.) The other characters’ numeric values are determined by the types

of computers, operating systems, and C compilers. You are encouraged to

explore the character set of the computer you are using. This can be done

with the program in Listing 4.1.

Character Variables
A variable that can represent different characters is called a character variable.

You can set the data type of a variable to char by using the following declaration format:

char variablename;

where variablename is the name you provide in which to store values of this type.

If you have more than one variable to declare, you can either use the following format:

char variablename1;
char variablename2;
char variablename3;

or this one:

char variablename1, variablename2, variablename3;

For example, the following statement declares MyCharacter and sets it to ‘A’:

char MyCharacter = ‘A’;

Similarly, the following statements declare x, y, and z as character variables and then

assign values to them:

char x, y, z;
x = ‘A’;
y = ‘f’;
z = ‘7’;

Note the last assignment, z = ‘7’, sets z to equal the numeric value representing the

character ‘7’ in the character set — not the actual number 7.

You’ll learn more about the character variable and how to use it in your C programs later

in this book.

Character Constants
A character enclosed in single quotes (‘) is called a character constant. For instance,

‘A’, ‘a’, ‘B’, and ‘b’, are all character constants that have their unique numeric values

58 Hour 4

In the computer world, a bit is the smallest unit of data storage, and it can

only have one of two values: 0 or 1. These values represent two states of

electronic switches used in the computer’s memory and CPU. A byte is a

larger unit than a bit. In fact, eight bits are equal to one byte.

in a given character set. For instance, you may see the unique numeric values from the

ASCII character set.

It is important to remember that character constants are always surrounded by single

quote characters (‘) while a string of more than one character uses the double quote (“).

If this sounds confusing, just remember that single quotes go with single characters. You

saw an example of double quotes and character strings with the printf() function calls

in the previous hour.

From the ASCII character set, you will find that the unique numeric (decimal) values of

‘A’, ‘a’, ‘B’, and ‘b’ are 65, 97, 66, and 98, respectively. Therefore, given x as a char-

acter variable, and given the ASCII character set, for instance, the following two assign-

ment statements are equivalent:

x = ‘A’;
x = 65;

So are the following two statements:

x = ‘a’;
x = 97;

Later in this hour you’ll see a program, shown in Listing 4.2, that converts the numeric

values back to the corresponding characters.

Understanding Data Types and Keywords 59

4

Don’t confuse x = ‘a’; with x = a;. The first statement assigns the

numeric value of character a to variable x, that is, x will contain the value of

97 (the ASCII value of the letter ‘a’) after the assignment. Statement x = a;

however assigns whatever value is contained in variable a into variable x.

You’ll learn more about the difference later in this book.

The Escape Character (\)
Actually, you first saw the escape character (\) in Hour 2, “Your First C Program,” when

you learned to use the newline character (\n) to break a message into two pieces.

Therefore, the backslash (\) is called the escape character in the ASCII character set.

The escape character is used in the C language to tell the computer that a special charac-

ter follows.

For instance, when the computer sees \ in the newline character \n, it knows that the

next character, n, causes a sequence of a carriage return and a line feed.

Besides the newline character, some of the other special characters in the C language are

as follows:

Character Description

\b The backspace character; moves the cursor to the left one character.

\f The form-feed character; goes to the top of a new page.

\r The return character; returns to the beginning of the current line.

\t The tab character; advances to the next tab stop.

Printing Characters
You already know that the printf() function, defined in the C header file stdio.h, can

be used to print out messages on the screen. (Ref. Listing 2.1 in Hour 2.) In this section,

you’re going to learn to use the character format specifier, %c, which indicates to the

printf() function that the argument to be printed is a character. (You’ll learn more

about the format specifier in Hour 5, “Handling Standard Input and Output.” Here, you

just get your feet wet.) The important thing to know for now is that each format specifier

in the string you pass to printf() will correspond to one of the variables you pass in to

the function. Let’s first have a look at the program in Listing 4.1, which prints out char-

acters on the screen.

LISTING 4.1 Printing Characters on the Screen

1: /* 04L01.c: Printing out characters */
2: #include <stdio.h>
3:
4: main()
5: {
6: char c1;
7: char c2;
8:
9: c1 = ‘A’;
10: c2 = ‘a’;
11: printf(“Convert the value of c1 to character: %c.\n”, c1);
12: printf(“Convert the value of c2 to character: %c.\n”, c2);
13: return 0;
14: }

After the executable file of 04L01.c in Listing 4.1 is created, you can run it to see what

will be printed out on the screen. On my machine, the executable file is named as

04L01.exe. The following is the output printed on the screen of my computer after I run

the executable:

60 Hour 4

TYPE

Convert the value of c1 to character: A.
Convert the value of c2 to character: a.

As you know, line 2 includes the header file, stdio.h, for the printf() function.

Lines 5–15 make up the main() function body.

Lines 6 and 7 declare two character variables, c1 and c2, while lines 9 and 10 assign c1

and c2 with the character constants ‘A’ and ‘a’, respectively.

Note that the %c format specifier is used in the printf() function in lines 11 and 12,

which tells the computer that the contents contained by c1 and c2 should be printed as

characters. When the two statements in lines 11 and 12 are executed, two characters are

formatted and output to the screen, based on the numeric values contained by c1 and c2,

respectively.

Now look at the program shown in Listing 4.2. This time, %c is used to convert the

numeric values back to the corresponding characters.

LISTING 4.2 Converting Numeric Values Back to Characters

1: /* 04L02.c: Converting numeric values back to characters */
2: #include <stdio.h>
3:
4: main()
5: {
6: char c1;
7: char c2;
8:
9: c1 =65;
10: c2 =97;
11: printf(“The character that has the numeric value of 65 is: %c.\n”, c1);
12: printf(“The character that has the numeric value of 97 is: %c.\n”, c2);
13: return 0;
14: }

The following is the output printed on the screen of my computer after I run the exe-

cutable file, 04L02.exe. (You might receive different output from your computer; it is

implementation-dependent. That is, it’s up to the type of your computer, the operating

system, and the C computer you’re using):

The character that has the numeric value of 65 is: A.
The character that has the numeric value of 97 is: a

The program in Listing 4.2 is similar to the one in Listing 4.1 except for the two

statements in lines 9 and 10. Note that in lines 9 and 10 of Listing 4.2, the char-

acter variables c1 and c2 are assigned 65 and 97, respectively.

Understanding Data Types and Keywords 61

4

OUTPUT

ANALYSIS

OUTPUT

ANALYSIS

TYPE

As you know, 65 is the numeric value (decimal) of the A character in the ASCII character

set; 97 is the numeric value of a. In lines 11 and 12, the %c format specifier converts the

numeric values, 65 and 97, into the A and a, respectively. The A and a characters are then

printed out on the screen.

The int Data Type
You saw the integer data type in Hour 3. The int keyword is used to specify the type of

a variable as an integer. Integer numbers are also called whole numbers, which have no

fractional part or decimal point. Therefore, the result of an integer division is truncated,

simply because any fraction part is ignored.

Depending on the operating system and the C compiler you’re using, the length of an

integer varies. On most UNIX workstations, for example, an integer is 32 bits long,

which means that the range of an integer is from 2147483647 (that is, 231–1)

to -2147483648. The range of a 16-bit integer is from 32767 (that is, 215–1) to -32768.

Again, this can vary among different systems, so you can check the reference materials

for your compiler to be sure.

Some C compilers, such as Visual C++ 1.5, provide only the 16-bit integer, whereas

other 32-bit C compilers, such as Visual C++ 5.0, support the 32-bit integer.

Declaring Integer Variables
You also saw the declaration of an integer in Hour 3. The following shows the basic dec-

laration format:

int variablename;

Similar to the character declaration, if you have more than one variable to declare, you

can either use the format like this:

int variablename1;
int variablename2;
int variablename3;

or like this:

int variablename1, variablename2, variablename3;

Here variablename1, variablename2, and variablename3 indicate the places where you

put the names of int variables.

For example, the following statement declares MyInteger as an integer variable and

assigns it a value:

int MyInteger = 2314;

62 Hour 4

Similarly, the following statement declares A, a, B, and b as integer variables:

int A, a, B, b;
A = 37;
a = –37;
B = -2418;
b = 12 ;

You’ll learn more about the integer data type later in the book.

Showing the Numeric Values of Characters
Like the character format specifier (%c) that is used to format a single character, %d,

called the integer format specifier, is used to format an integer. You might recall that in

line 16 of Listing 3.2, %d is used in the printf() function to format the second argument

to the function to an integer.

In this section you’re going to study a program, shown in Listing 4.3, that can print out

the numeric values of characters by using the integer format specifier %d with printf().

LISTING 4.3 Showing the Numeric Values of Characters

1: /* 04L03.c: Showing the numeric values of characters */
2: #include <stdio.h>
3:
4: main()
5: {
6: char c1;
7: char c2;
8:
9: c1 = ‘A’;
10: c2 = ‘a’;
11: printf(“The numeric value of A is: %d.\n”, c1);
12: printf(“The numeric value of a is: %d.\n”, c2);
13: return 0;
14: }

I get the following output on the screen of my computer after running the executable file,

04L03.exe. (You may get a different output if your machine is not using the ASCII char-

acter set.)

The numeric value of A is: 65.
The numeric value of a is: 97.

You may find that the program in Listing 4.3 is quite similar to the one in Listing

4.1. As a matter of fact, I simply copied the source code from Listing 4.1 to

Listing 4.3 and made changes in lines 11 and 12. The major change I made was to

replace the character format specifier (%c) with the integer format specifier (%d).

Understanding Data Types and Keywords 63

4

OUTPUT

ANALYSIS

TYPE

Both format specifiers do basically the same thing — insert some data into the string you

pass to printf() — but the difference is in the way printf() displays that data. The %c

specifier always prints a character; the %d specifier always prints a number. Even when

they refer to the exact same data, it will be printed the way you indicate in the format

specifier regardless of the actual data type.

The two statements in lines 11 and 12 format the two character variables (c1 and c2) by

using the integer format specifier %d, and then print out two messages showing the

numeric values 65 and 97 that represent, respectively, the characters A and a in the ASCII

character set.

The float Data Type
The floating-point number is another data type in the C language. Unlike an integer num-

ber, a floating-point number contains a decimal point. For instance, 7.01 is a floating-

point number; so are 5.71 and –3.14. A floating-point number is also called a real

number.

A floating-point number is specified by the float keyword in the C language. Floating-

pointer constants can be suffixed with f or F to specify float. A floating-pointer number

without a suffix is double by default. The double data type is introduced later in this

lesson.

Like an integer number, a floating-point number has a limited range. The ANSI standard

requires that the range be at least plus or minus 1.0 × 1037. In most cases, a floating-point

number is represented by taking 32 bits. Therefore, a floating-point number in C is of at

least six digits of precision. That is, for a floating-point number, there are at least six dig-

its (or decimal places) on the right side of the decimal point.

Unlike an integer division from which the result is truncated and the fraction is dis-

carded, a floating-point division produces another floating-point number. A floating-point

division is carried out if both the divisor and the dividend, or one of them, are floating-

point numbers.

For instance, 571.2 / 10.0 produces another floating-point number, 57.12. So do 571.2

/ 10 and 5712 / 10.0.

Declaring Floating-Point Variables
The following shows the declaration format for a floating-point variable:

float variablename;

64 Hour 4

Similar to the character or integer declaration, if you have more than one variable to

declare, you can either use the format like this:

float variablename1;
float variablename2;
float variablename3;

or like the following one:

float variablename1, variablename2, variablename3;

For example, the following statement declares myFloat as a float variable and assigns it a

value:

float myFloat = 3.14;

Similarly, the following statement declares a, b, and c as float variables:

float a, b, c;
a = 10.38;
b = –32.7;
c = 12.0f;

The Floating-Point Format Specifier (%f)
You can also use the floating-point format specifier (%f) to format your output. Listing

4.4 shows an example of how to use the format specifier %f with the printf() function.

LISTING 4.4 Printing the Results of Integer and Floating-Point Division

1: /* 04L04.c: Integer vs. floating-point divisions */
2: #include <stdio.h>
3:
4: main()
5: {
6: int int_num1, int_num2, int_num3; /* Declare integer

variables */
7: float flt_num1, flt_num2, flt_num3; /* Declare floating

-point variables */
8:
9: int_num1 = 32 / 10; /* Both divisor and dividend are

integers */
10: flt_num1 = 32 / 10;
11: int_num2 = 32.0 / 10; /* The divisor is an integer */
12: flt_num2 = 32.0 / 10;
13: int_num3 = 32 / 10.0; /* The dividend is an integer */
14: flt_num3 = 32 / 10.0;
15:
16: printf(“The integer divis. of 32/10 is: %d\n”, int_num1);

Understanding Data Types and Keywords 65

4

continues

TYPE

17: printf(“The floating-point divis. of 32/10 is: %f\n”, flt_num1);
18: printf(“The integer divis. of 32.0/10 is: %d\n”, int_num2);
19: printf(“The floating-point divis. of 32.0/10 is: %f\n”, flt_num2);
20: printf(“The integer divis. of 32/10.0 is: %d\n”, int_num3);
21: printf(“The floating-point divis. of 32/10.0 is: %f\n”, flt_num3);
22: return 0;
23: }

The following output is from the screen of my computer after the executable file,

04L04.exe, is run on my machine:

66 Hour 4

LISTING 4.4 continued

I did get several warning messages about type conversions while I was com-

piling the program in Listing 4.4, but I ignored them all because I wanted to

create an executable file in order to show you the differences between the

int data type and the float data type.

The integer divis. of 32/10 is: 3
The floating-point divis. of 32/10 is: 3.000000
The integer divis. of 32.0/10 is: 3
The floating-point divis. of 32.0/10 is: 3.200000
The integer divis. of 32/10.0 is: 3
The floating-point divis. of 32/10.0 is: 3.200000

Inside the main() function, the two statements in lines 6 and 7 declare three inte-

ger variables, int_num1, int_num2, and int_num3, and three floating-point vari-

ables, flt_num1, flt_num2, and flt_num3.

Lines 9 and 10 assign the result of 32/10 to int_num1 and flt_num1, respectively;

32.0/10 to int_num2 and flt_num2 in lines 11 and 12, and 32/10.0 to int_num3 and

flt_num3 in lines 13 and 14.

Then, lines 16–21 print out the values contained by the three int variables and the three

floating-point variables. Note that %d is used for the integer variables, and the floating-

point specifier (%f) is used for formatting the floating-point variables in the printf()

function.

Because the truncation occurs in the integer division of 32/10, flt_num1 contains

3.000000, not 3.200000, which you can see from the second line of the output. However,

flt_num2 and flt_num3 are assigned 3.200000 because both 32.0/10 and 32/10.0 are

considered as the floating-point division.

OUTPUT

ANALYSIS

But int_num2 and int_num3, as integer variables, discard respectively the fraction parts

of the floating-point divisions of 32.0/10 and 32/10.0. Therefore, you just see the inte-

ger 3 in both the third and fifth lines of the output.

The double Data Type
In the C language, a floating-point number can also be represented by another data type,

called the double data type. In other words, you can specify a variable by the double

keyword, and assign the variable a floating-point number.

The difference between a double data type and a float data type is that the former uses

twice as many bits as the latter. Therefore, a double floating-point number is of at least

10 digits of precision, although the ANSI standard does not specify it for the double data

type.

In Hour 8, “Using Conditional Operators,” you’ll learn to use the sizeof operator to

obtain the length in bytes of a data type, such as char, int, float, or double, specified

on your computer system.

Using Scientific Notation
The C language uses scientific notation to help you write lengthy floating-point numbers.

In scientific notation, a number can be represented by the combination of the mantissa

and the exponent. The format of the notation is that the mantissa is followed by the expo-

nent, which is prefixed by e or E. Here are two examples:

mantissaeexponent

and

mantissaEexponent

Please note that mantissa and exponent above are both placeholders and you need to

replace them with numerical values.

For instance, 5000 can be represented by 5e3 in scientific notation. Likewise, -300 can

be represented by -3e2, and 0.0025 by 2.5e-3.

Correspondingly, the format specifier, %e or %E, is used to format a floating-point num-

ber in scientific notation. The usage of %e or %E in the printf() function is the same

as %f.

Understanding Data Types and Keywords 67

4

Naming a Variable
There are a few things to keep in mind when creating your own variable names.

Remember that since variable names are identifiers, you must follow the rules for identi-

fiers that were outlined in the previous hour.

Just as function names should ideally reflect the task that the function performs, variable

names should describe the value stored in the variable and what purpose it serves in your

program or function. Most of the code samples so far have used single-letter variable

names such as i, but as you write larger programs and more complicated functions it

becomes increasingly more important to give your variables meaningful names.

68 Hour 4

Never use the C keywords reserved in the C language, or the names of the

standard C library functions, as variable names in your C program.

Summary
In this lesson you learned about the following important C keywords and data types:

• The C keywords reserved in the C language

• The char data type and the %c format specifier

• The int data type and the %d format specifier

• The float data type and the %f format specifier

• Floating-point numbers can be suffixed with f or F to specify float. A floating-

point number without a suffix is double by default.

• The possible ranges of the char, int, and float data types

• The double data type

• Scientific notation and the %e and %E format specifiers

• The rules you have to follow to make a valid variable name

In the next lesson you’ll learn more about the printf() function and other functions to

deal with input and output.

Q&A
Q Why do characters have their unique numeric values?

A Characters are stored in computers in the form of bits. The combinations of bits

can be used to represent different numeric values. A character has to have a unique

numeric value in order to distinguish itself. Many computer systems support the

ASCII character set, which contains a set of unique numeric values for up to

256 characters.

Please note that your computer may use a different character set than the ASCII

character set. Then, all characters used by the C language except the null character

may have different numeric values from the values represented by the ASCII char-

acter set.

Q How can you declare two character variables?

A There are two ways to do the declaration. The first one is

...char variable-name1, variable-name2;

The second one is

char variable-name1;
char variable-name2;

Q What are %c, %d, and %f?

A These are format specifiers. %c is used to obtain the character format; %d is for the

integer format; %f is for the floating-point format. %c, %d, and %f are often used

with C functions such as printf().

Q What are the main differences between the int data type (integer) and the

float data type (floating-point)?

A First, an integer does not contain any fraction parts, but a floating-point number

does. A floating-point number must have a decimal point. In C, the float data type

takes more bits than the int data type. In other words, the float data type has a

larger range of numeric values than the int data type.

Also, the integer division truncates the fraction part. For instance, the integer divi-

sion of 16/10 produces a result of 1, not 1.6.

Workshop
To help solidify your understanding of this hour’s lesson, you are encouraged to answer

the quiz questions and finish the exercises provided in the workshop before you move to

the next lesson. The answers and hints to the questions and exercises are given in

Appendix C, “Answers to Quiz Questions and Exercises.”

Quiz
1. Are the integer divisions of 134/100 and 17/10 equal?

2. Is the result of 3000 + 1.0 a floating-point number? How about 3000/1.0?

Understanding Data Types and Keywords 69

4

3. How can you represent the following numbers in scientific notation?

• 3500

• 0.0035

• –0.0035

4. Are the following variable names valid?

• 7th_calculation

• Tom’s_method

• _index

• Label_1

Exercises
1. Write a program that prints out the numeric values of characters Z and z.

2. Given two numeric values, 72 and 104, write a program to print out the corre-

sponding two characters.

3. For a 16-bit integer variable, can you assign the variable with an integer value of

72368?

4. Given the declaration double dbl_num = 123.456;, write a program that prints

out the value of dbl_num in both floating-point and scientific notation formats.

5. Write a program that can print out the numeric value of the newline character (\n).

(Hint: assign ‘\n’ to a character variable.)

70 Hour 4

HOUR 5
Handling Standard Input
and Output

I/O, I/O, it’s off to work we go…

—The Seven Dwarfs (sort of)

In the last lesson you learned how to print out characters, integers, and float-

ing-point numbers to the screen by calling the printf() function. In this

lesson you’re going to learn more about printf(), as well as about the fol-

lowing functions, which are necessary to receive the input from the user or

to print the output to the screen:

• The getc() function

• The putc() function

• The getchar() function

• The putchar() function

Before we jump into these new functions, let’s first get an idea about stan-

dard input and output (I/O) in C.

Understanding Standard I/O
A file contains related characters and numbers. Because all characters and numbers are

represented in bits on computers, and a byte is a series of bits, the C language treats a

file as a series of bytes. A series of bytes is also called a stream. In fact, the C language

treats all file streams equally, although some of the file streams may come from a disk or

tape drive, from a terminal, or even from a printer.

Additionally, in C, there are three file streams that are pre-opened for you — that is to

say, they are always available for use in your programs:

• stdin—The standard input for reading.

• stdout—The standard output for writing.

• stderr—The standard error for writing error messages.

Usually, the standard input (stdin) file stream links to your keyboard, while the standard

output (stdout) and the standard error (stderr) file streams point to your terminal

screen. Also, many operating systems allow the user to redirect these file streams.

In fact, you’ve already used stdout. When you called the printf() function in the last

lesson, you were actually sending the output to the default file stream, stdout, which

points to your screen.

You’ll learn more on stdin and stdout in the following sections.

72 Hour 5

The C language provides many functions to manipulate file reading and

writing (I/O). The header file stdio.h contains the declarations for those

functions. Therefore, always include the header file stdio.h in your C pro-

gram before doing anything with file I/O.

Getting Input from the User
These days, typing on the keyboard is still the de facto standard way to input information

into computers. The C language has several functions to tell the computer to read input

from the user (typically through the keyboard.) In this lesson the getc() and getchar()

functions are introduced.

Using the getc() Function
The getc() function reads the next character from a file stream, and returns the character

as an integer.

Syntax Entry
The syntax for the getc() function is
#include <stdio.h>
int getc(FILE *stream);

Here FILE *stream declares a file stream (that is, a variable). The function returns the

numeric value of the character read. If an end-of-file or error occurs, the function returns

EOF.

For now, don’t worry about the FILE structure. More details about it are introduced in

Hours 21, “Reading and Writing with Files,” and 22, “Using Special File Functions.” In

this section, the standard input stream stdin is used as the file stream specified by

FILE *stream.

Handling Standard Input and Output 73

5

S
Y

N
TA

X

Defined in the header file stdio.h, EOF is a constant. EOF stands for end-of-

file. Usually, the value of EOF is -1. But keep using EOF, instead of -1, to indi-

cate the end-of-file in your programs. That way, if you later use a compile or

operating system that uses a different value, your program will still work.

Listing 5.1 shows an example that reads a character typed in by the user from the key-

board and then displays the character on the screen.

LISTING 5.1 Reading in a Character Entered by the User

1: /* 05L01.c: Reading input by calling getc() */
2: #include <stdio.h>
3:
4: main()
5: {
6: int ch;
7:
8: printf(“Please type in one character:\n”);
9: ch = getc(stdin);
10: printf(“The character you just entered is: %c\n”, ch);
11: return 0;
12: }

The following is the output displayed on the screen of my computer after I run the exe-

cutable file, 05L01.exe, enter the character H, and press the Enter key:

Please type in one character:
H
The character you just entered is: H

TYPE

OUTPUT

You see in line 2 of Listing 5.1 that the header file stdio.h is included for both

the getc() and printf() functions used in the program. Lines 4–12 give the

name and body of the main() function.

In line 6, an integer variable, ch, is declared; it is assigned the return value from the

getc() function later in line 9. Line 8 prints out a message that asks the user to enter one

character from the keyboard. As I mentioned earlier in this lesson, the printf() function

call in line 8 uses the default standard output stdout to display messages on the screen.

In line 9, the standard input stream stdin is passed to the getc() function, which indi-

cates that the file stream is from the keyboard. After the user types in a character, the

getc() function returns the numeric value (that is, an integer) of the character. You see

that, in line 9, the numeric value is assigned to the integer variable ch.

Then, in line 10, the character entered by the user is displayed on the screen via the help

of printf(). Note that the character format specifier (%c) is used within the printf()

function call in line 10. (Exercise 1 in this lesson asks you to use %d in a program to print

out the numeric value of a character entered by the user.)

Using the getchar() Function
The C language provides another function, getchar(), that performs a similar function

to getc(). More precisely, the getchar() function is equivalent to getc(stdin).

Syntax Entry
The syntax for the getchar() function is
#include <stdio.h>
int getchar(void);

Here void indicates that no argument is needed for calling the function. The function

returns the numeric value of the character read. If an end-of-file or error occurs, the func-

tion returns EOF.

The program in Listing 5.2 demonstrates how to use the getchar() function to read the

input from the user.

LISTING 5.2 Reading in a Character by Calling getchar()

1: /* 05L02.c: Reading input by calling getchar() */
2: #include <stdio.h>
3:
4: main()
5: {
6: int ch1, ch2;
7:

74 Hour 5

ANALYSIS
S

Y
N

TA
X

TYPE

8: printf(“Please type in two characters together:\n”);
9: ch1 = getc(stdin);
10: ch2 = getchar();
11: printf(“The first character you just entered is: %c\n”, ch1);
12: printf(“The second character you just entered is: %c\n”, ch2);
13: return 0;
14: }

After running the executable file, 05L02.exe, and entering two characters (H and i)

together without spaces, I press the Enter key and have the following output displayed on

the screen of my computer:

Please type in two character together:
Hi
The first character you just entered is: H
The second character you just entered is: i

The program in Listing 5.2 is quite similar to the one in Listing 5.1, except that

this one reads in two characters.

The statement in line 6 declares two integers, ch1 and ch2. Line 8 displays a message

asking the user to enter two characters together.

Then, the getc() and getchar() functions are called in lines 9 and 10, respectively, to

read in two characters entered by the user. Note that in line 10, nothing is passed to the

getchar() function. This is because, as mentioned earlier, getchar() uses the default

input file stream—stdin. You can replace the getchar() function in line 10 with

getc(stdin) because getc(stdin) is equivalent to getchar().

Lines 11 and 12 send two characters (kept by ch1 and ch2, respectively) to the screen.

Printing Output on the Screen
Besides getc() and getchar() for reading, the C language also provides two functions,

putc() and putchar(), for writing. The following two sections introduce these functions.

Using the putc() Function
The putc() function writes a character to the specified file stream, which, in your case,

is the standard output pointing to your screen.

Handling Standard Input and Output 75

5

OUTPUT

ANALYSIS

Syntax Entry
The syntax for the putc() function is
#include <stdio.h>
int putc(int c, FILE *stream);

Here the first argument, int c, indicates that the output is a character saved in an integer

variable c; the second argument, FILE *stream, specifies a file stream. If successful,

putc() returns the character written; otherwise, it returns EOF.

In this lesson the standard output stdout is specified as the output file stream in putc().

The putc() function is used in Listing 5.3 to put the character A on the screen.

LISTING 5.3 Putting a Character on the Screen

1: /* 05L03.c: Outputting a character with putc() */
2: #include <stdio.h>
3:
4: main()
5: {
6: int ch;
7:
8: ch = 65; /* the numeric value of A */
9: printf(“The character that has numeric value of 65 is:\n”);
10: putc(ch, stdout);
11: return 0;
12: }

The following output is what I get from my machine:

The character that has numeric value of 65 is:
A

As mentioned, the header file stdio.h, containing the declaration of putc(), is

included in line 2.

The integer variable, ch, declared in line 6, is assigned the numeric value of 65 in line 8.

The numeric value of character A is 65 in the ASCII character set.

Line 9 displays a message to remind the user of the numeric value of the character that is

going to be put on the screen. Then, the putc() function in line 10 puts character A on

the screen. Note that the first argument to the putc() function is the integer variable (ch)

that contains 65, and the second argument is the standard output file stream, stdout.

76 Hour 5

S
Y

N
TA

X

TYPE

OUTPUT

ANALYSIS

Another Function for Writing: putchar()
Like putc(), putchar() can also be used to put a character on the screen. The only dif-

ference between the two functions is that putchar() needs only one argument to contain

the character. You don’t need to specify the file stream because the standard output

(stdout) is set as the file stream to putchar().

Syntax Entry
The syntax for the putchar() function is
#include <stdio.h>
int putchar(int c);

Here int c is the argument that contains the numeric value of a character. The function

returns EOF if an error occurs; otherwise, it returns the character that has been written.

An example of using putchar() is demonstrated in Listing 5.4.

LISTING 5.4 Outputting Characters with putchar().

1: /* 05L04.c: Outputting characters with putchar() */
2: #include <stdio.h>
3:
4: main()
5: {
6: putchar(65);
7: putchar(10);
8: putchar(66);
9: putchar(10);
10: putchar(67);
11: putchar(10);
12: return 0;
13: }

After running the executable file, 05L04.exe, I get the following output:

A
B

The way to write the program in Listing 5.4 is a little bit different. There is no

variable declared in the program. Rather, integers are passed to putchar()

directly, as shown in lines 6–11.

As you might have figured out, 65, 66, and 67 are, respectively, the numeric values of

characters A, B, and C in the ASCII character set. From exercise 5 of Hour 4,

“Understanding Data Types and Keywords,” you can find out that 10 is the numeric value

of the newline character (\n).

Handling Standard Input and Output 77

5

S
Y

N
TA

X

TYPE

OUTPUT

ANALYSIS

Therefore, respectively, lines 6 and 7 put character A on the screen and cause the com-

puter to start at the beginning of the next line. Likewise, line 8 puts B on the screen, and

line 9 starts a new line. Then, line 10 puts C on the screen, and line 11 starts another new

line. Accordingly, A, B, and C, are put at the beginning of three consecutive lines, as

shown in the output section.

Revisiting the printf() Function
The printf() function is the first C library function you used in this book to print out

messages on the screen. printf() is a very important function in C, so it’s worth it to

spend more time on it.

Syntax Entry
The syntax for the printf() function is
#include <stdio.h>
int printf(const char *format-string, . . .);

Here const char *format-string is the first argument that contains the format speci-

fier(s); ... indicates the expression section that contains the expression(s) to be format-

ted according to the format specifiers. The number of expressions is determined by the

number of the format specifiers inside the first argument. The function returns the num-

ber of expressions formatted if it succeeds. It returns a negative value if an error occurs.

const char * is explained later in this book. For the time being, consider the first argu-

ment to the printf() function as a string (a series of characters surrounded with double

quotes) with some format specifiers inside. For instance, you can pass “The sum of two

integers %d + %d is: %d.\n” to the function as the first argument.

Figure 5.1 shows the relationship between the format string and expressions. Note that

the format specifiers and the expressions are matched in order from left to right.

78 Hour 5

S
Y

N
TA

X

FIGURE 5.1

The relation between

the format string and

the expressions in

printf().

Format string Expressions

printf(“A floating-point: %f; An integer: %d.”, 123.45, 12345);

Please remember that you should use exactly the same number of expressions as the

number of format specifiers within the format string.

The following are all the format specifiers that can be used in printf():

%c The character format specifier.

%d The integer format specifier.

%i The integer format specifier (same as %d).

%f The floating-point format specifier.

%e The scientific notation format specifier (note the lowercase e).

%E The scientific notation format specifier (note the uppercase E).

%g Uses %f or %e, whichever result is shorter.

%G Uses %f or %E, whichever result is shorter.

%o The unsigned octal format specifier.

%s The string format specifier.

%u The unsigned integer format specifier.

%x The unsigned hexadecimal format specifier (note the lowercase x).

%X The unsigned hexadecimal format specifier (note the uppercase X).

%p Displays the corresponding argument that is a pointer.

%n Records the number of characters written so far.

%% Outputs a percent sign (%).

Among the format specifiers in this list, %c, %d, %f, %e, and %E have been introduced so

far. Several others are explained later in this book. The next section shows you how to

convert decimal numbers to hexadecimal numbers by using %x or %X.

Converting to Hex Numbers
Since all data in a computer consists of binary data (a series of zeroes and ones), any

data we work with or print out is really just some kind of human-readable representation

of the binary data. As a programmer, it is often necessary to deal with binary data

directly, but it is extremely time consuming to decipher a string of zeroes and ones and

try to convert them to meaningful numeric or character data.

Handling Standard Input and Output 79

5

The solution to this problem is hexadecimal notation (or hex), which is a kind of short-

hand to represent binary numbers. Hex is a compromise between the computer-readable

base-2 (or binary) number system, and our more familiar base-10 (or decimal) system.

Converting numbers from hex to decimal (or from binary to hex) and back is far easier

(not to mention quicker) than converting directly from binary to decimal or vice-versa.

The difference between a decimal number and a hexadecimal number is that the hexa-

decimal is a base-16 numbering system. A hexadecimal number can be represented by

four bits. (24] is equal to 16, which means four bits can produce 16 unique numbers.)

The hexadecimal numbers 0 through 9 use the same numeric symbols found in the deci-

mal numbers 0 through 9. A, B, C, D, E, and F are used to represent, respectively, the num-

bers 10 through 15 in uppercase. (Similarly, in lowercase, a, b, c, d, e, and f are used to

represent these hex numbers. Uppercase and lowercase hex are interchangeable and

really just a matter of style.)

Listing 5.5 provides an example of converting decimal numbers to hex numbers by using

%x or %X in the printf() function.

LISTING 5.5 Converting to Hex Numbers

1: /* 05L05.c: Converting to hex numbers */
2: #include <stdio.h>
3:
4: main()
5: {
6: printf(“Hex(uppercase) Hex(lowercase) Decimal\n”);
7: printf(“%X %x %d\n”, 0, 0, 0);
8: printf(“%X %x %d\n”, 1, 1, 1);
9: printf(“%X %x %d\n”, 2, 2, 2);
10: printf(“%X %x %d\n”, 3, 3, 3);
11: printf(“%X %x %d\n”, 4, 4, 4);
12: printf(“%X %x %d\n”, 5, 5, 5);
13: printf(“%X %x %d\n”, 6, 6, 6);
14: printf(“%X %x %d\n”, 7, 7, 7);
15: printf(“%X %x %d\n”, 8, 8, 8);
16: printf(“%X %x %d\n”, 9, 9, 9);
17: printf(“%X %x %d\n”, 10, 10, 10);
18: printf(“%X %x %d\n”, 11, 11, 11);
19: printf(“%X %x %d\n”, 12, 12, 12);
20: printf(“%X %x %d\n”, 13, 13, 13);
21: printf(“%X %x %d\n”, 14, 14, 14);
22: printf(“%X %x %d\n”, 15, 15, 15);
23: return 0;
24: }

80 Hour 5

TYPE

The following output is obtained by running the executable file, 05L05.exe, on my

computer:

Hex(uppercase) Hex(lowercase) Decimal
0 0 0
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 8
9 9 9
A a 10
B b 11
C c 12
D d 13
E e 14
F f 15

Don’t panic when you see so many printf() function calls being used in Listing

5.5. In fact, the program in Listing 5.5 is very simple. The program has just one

function body from lines 5–23.

The printf() function in line 6 prints out a headline that contains three fields:

Hex(uppercase), Hex(lowercase), and Decimal.

Then, lines 7–22 print out the hex and decimal numbers 0 through 15. Sixteen

printf()calls are made to accomplish the job. Each of the printf() calls has a format

string as the first argument followed by three integers as three expressions. Note that the

hex format specifiers %X and %x are used within the format string in each of the printf()

calls to convert the corresponding expressions to the hex format (both uppercase and

lowercase).

In reality, nobody would write a program like the one in Listing 5.5. Instead, a loop can

be used to call the printf() function repeatedly. Looping (or iteration) is introduced in

Hour 7, “Working with Loops.”

Specifying the Minimum Field Width
The C language allows you to add an integer between the percent sign (%) and the letter

in a format specifier. The integer is called the minimum field width specifier because it

specifies the minimum field width and ensures that the output reaches the minimum

width. For example, in %10f, 10 is a minimum field width specifier that ensures that the

output is at least 10 character spaces wide. This is especially useful when printing out a

column of numbers.

Handling Standard Input and Output 81

5

OUTPUT

ANALYSIS

The example in Listing 5.6 shows how to use the minimum field width specifier.

LISTING 5.6 Specifying the Minimum Field Width

1: /* 05L06.c: Specifying minimum field width */
2: #include <stdio.h>
3:
4: main()
5: {
6: int num1, num2;
7:
8: num1 = 12;
9: num2 = 12345;
10: printf(“%d\n”, num1);
11: printf(“%d\n”, num2);
12: printf(“%5d\n”, num1);
13: printf(“%05d\n”, num1);
14: printf(“%2d\n”, num2);
15: return 0;
16: }

The following is the output I obtain by running the executable file 05L06.exe:

12
12345

12
00012
12345

In Listing 5.6, two integer variables, num1 and num2, are declared in line 6, and

assigned 12 and 12345, respectively, in lines 8 and 9.

Without using any minimum field width specifiers, lines 10 and 11 print out the two inte-

gers by calling the printf() function. You can see in the output section that the output

from the statement in line 10 is 12, which takes two character spaces, while the output

12345 from line 11 takes five character spaces.

In line 12, a minimum field width, 5, is specified by %5d. The output from line 12 there-

fore takes five character spaces, with three blank spaces plus two character spaces of 12.

(See the third output line in the output section.)

The %05d in printf(), shown in line 13, indicates that the minimum field width is 5, and

the 0 indicates that zeros are used to fill, or “pad,” the spaces. Therefore, you see the out-

put made by the execution of the statement in line 13 is 00012.

82 Hour 5

TYPE

OUTPUT

ANALYSIS

The %2d in line 14 sets the minimum field width to 2, but you still see the full-size output

of 12345 from line 14. This means that when the minimum field width is shorter than the

width of the output, the latter is taken, and the output is still printed in full.

Aligning Output
As you might have noticed in the previous section, all output is right-justified. In other

words, by default, all output is placed on the right edge of the field, as long as the field

width is longer than the width of the output.

You can change this and force output to be left-justified. To do so, you need to prefix the

minimum field specifier with the minus sign (-). For example, %-12d specifies the mini-

mum field width as 12, and justifies the output from the left edge of the field.

Listing 5.7 gives an example aligning output by left- or right-justification.

LISTING 5.7 Left- or Right-Justified Output

1: /* 05L07.c: Aligning output */
2: #include <stdio.h>
3:
4: main()
5: {
6: int num1, num2, num3, num4, num5;
7:
8: num1 = 1;
9: num2 = 12;
10: num3 = 123;
11: num4 = 1234;
12: num5 = 12345;
13: printf(“%8d %-8d\n”, num1, num1);
14: printf(“%8d %-8d\n”, num2, num2);
15: printf(“%8d %-8d\n”, num3, num3);
16: printf(“%8d %-8d\n”, num4, num4);
17: printf(“%8d %-8d\n”, num5, num5);
18: return 0;
19: }

I get the following output displayed on the screen of my computer after I run the exe-

cutable 05L07.exe:

1 1
12 12
123 123
1234 1234
12345 12345

Handling Standard Input and Output 83

5

TYPE

OUTPUT

In Listing 5.7, there are five integer variables, num1, num2, num3, num4, and num5,

that are declared in line 6 and are assigned values in lines 8–12.

These values represented by the five integer variables are then printed out by the

printf() functions in lines 13–17. Note that all the printf() calls have the same first

argument: “%8d %-8d\n”. Here the first format specifier, %8d, aligns the output at the

right edge of the field, and the second specifier, %-8d, aligns the output to the left edge of

the field.

After the execution of the statements in lines 13–17, the alignment is accomplished and

the output is put on the screen like this:

1 1
12 12
123 123
1234 1234
12345 12345

Using the Precision Specifier
You can put a period . and an integer right after the minimum field width specifier. The

combination of the period (.) and the integer makes up a precision specifier. You can use

the precision specifier to determine the number of decimal places for floating-point num-

bers, or to specify the maximum field width (or length) for integers or strings. (Strings in

C are introduced in Hour 13, “Manipulating Strings.”)

For instance, with %10.3f, the minimum field width length is specified as 10 characters

long, and the number of decimal places is set to 3. (Remember, the default number of

decimal places is 6.) For integers, %3.8d indicates that the minimum field width is 3, and

the maximum field width is 8.

Listing 5.8 gives an example of using precision specifiers.

LISTING 5.8 Using Precision Specifiers

1: /* 05L08.c: Using precision specifiers */
2: #include <stdio.h>
3:
4: main()
5: {
6: int int_num;
7: double flt_num;
8:
9: int_num = 123;
10: flt_num = 123.456789;
11: printf(“Default integer format: %d\n”, int_num);

84 Hour 5

ANALYSIS

TYPE

12: printf(“With precision specifier: %2.8d\n”, int_num);
13: printf(“Default float format: %f\n”, flt_num);
14: printf(“With precision specifier: %-10.2f\n”, flt_num);
15: return 0;
16: }

After running the executable file 05L08.exe on my computer, I get the following output

on the screen:

Default integer format: 123
With precision specifier: 00000123
Default float format: 123.456789
With precision specifier: 123.46

The program in Listing 5.8 declares one integer variable, int_num, in line 6, and

one floating-point number, flt_num, in line 7. Lines 9 and 10 assign 123 and

123.456789 to int_num and flt_num, respectively.

In line 11, the default integer format is specified for the integer variable, int_num, while

the statement in line 12 specifies the integer format with a precision specifier that indi-

cates that the maximum field width is eight characters long. Therefore, you see that five

zeros are padded prior to the integer 123 in the second line of the output.

For the floating-point variable, flt_num, line 13 prints out the floating-point value in the

default format, and line 14 reduces the decimal places to two by putting the precision

specifier .2 within the format specifier %-10.2f. Note here that left-justification is also

specified by the minus sign (-) in the floating-point format specifier.

The floating-point number 123.46 in the fourth line of the output is produced by the

statement in line 14 with the precision specifier for two decimal places. Therefore,

123.456789 rounded to two decimal places becomes 123.46.

Summary
In this lesson you’ve learned the following important concepts, specifiers, and functions:

• The C language treats a file as a series of bytes.

• stdin, stdout, and stderr are three file streams that are pre-opened and always

available for you to use.

• The C library functions getc() and getchar() can be used to read in one character

from the standard input.

• The C library functions putc() and putchar() can be used to write one character

to the standard output.

Handling Standard Input and Output 85

5

OUTPUT

ANALYSIS

• %x or %X can be used to convert decimal numbers to hex numbers.

• A minimum field width can be specified and ensured by adding an integer into a

format specifier.

• An output can be aligned at either the left or right edge of the output field.

• A precision specifier can be used to specify the decimal place number for floating-

point numbers, or the maximum field width for integers or strings.

In next lesson you’ll learn about some important operators in C.

Q&A
Q What are stdin, stdout, and stderr?

A In C, a file is treated as a series of bytes that is called file stream. stdin, stdout,

and stderr are all pre-opened file streams. stdin is the standard input for reading;

stdout is the standard output for writing; stderr is the standard error for out-

putting error messages.

Q How much is the hex number 32?

A Hexadecimal, or hex for short, is a base-16 numerical system. Therefore, 32 (hex)

is equal to 3*161+2*160, or 50 in decimal.

Q Are getc(stdin) and getchar() equivalent?

A Because the getchar() function reads from the file stream stdin by default,

getc(stdin) and getchar() are equivalent in this case.

Q In the function printf(“The integer %d is the same as the hex %x”, 12,

12), what is the relation between the format specifiers and the expressions?

A The two format specifiers, %d and %x, specify the formats of numeric values con-

tained in the expression section. Here the first numeric value of 12 is going to be

printed out in integer format, while the second 12 (in the expression section) will

be displayed in the hex format. Generally speaking, the number of format speci-

fiers in the format section should match the number of expressions in the expres-

sion section.

Workshop
To help solidify your understanding of this hour’s lesson, you are encouraged to answer

the quiz questions and finish the exercises provided in the workshop before you move to

the next lesson. The answers and hints to the questions and exercises are given in

Appendix D, “Answers to Quiz Questions and Exercises.”

86 Hour 5

Quiz
1. Can you align your output at the left edge, rather than the right edge, of the output

field?

2. What is the difference between putc() and putchar()?

3. What does getchar() return?

4. Within %10.3f, which part is the minimum field width specifier, and which one is

the precision specifier?

Exercises
1. Write a program to put the characters B, y, and e together on the screen.

2. Display the two numbers 123 and 123.456 and align them at the left edge of the

field.

3. Given three integers, 15, 150, and 1500, write a program that prints the integers on

the screen in the hex format.

4. Write a program that uses getchar() and putchar() to read in a character entered

by the user and write the character to the screen.

5. If you compile the following C program, what warning or error messages will you

get?

main()
{

int ch;
ch = getchar();
putchar(ch);
return 0;

}

Handling Standard Input and Output 87

5

Hour

6 Manipulating Data

7 Working with Loops

8 Using Conditional Operators

9 Working with Data Modifiers and Math
Functions

10 Controlling Program Flow

PART II
Operators and Control-
flow Statements

HOUR 6
Manipulating Data

“The question is,” said Humpty Dumpty,

“which is to be master—that’s all.”

—L. Carroll

You can think of operators as verbs in C that let you manipulate data (which

are like nouns). In fact, you’ve learned some operators, such as + (addition),

- (subtraction), * (multiplication), / (division), and % (remainder), in Hour 3,

“Learning the Structure of a C Program.” The C language has a rich set of

operators. In this hour, you’ll learn about more operators, such as

• Arithmetic assignment operators

• Unary minus operator

• Increment and decrement operators

• Relational operators

• Cast operator

Arithmetic Assignment Operators
Before jumping into the arithmetic assignment operators, let’s first take a closer look at

the assignment operator itself.

The Assignment Operator (=)
In the C language, the = operator is called an assignment operator, which you’ve seen

and used for several hours.

The general statement form to use an assignment operator is

left-hand-operand = right-hand-operand;

Here the statement causes the value of the right-hand-operand to be assigned (or writ-

ten) to the memory location of the left-hand-operand. Thus, after the assignment,

left-hand-operand will be equal to the value of right-hand-operand. Additionally, the

entire assignment expression evaluates to the same value that is assigned to the left-

hand-operand.

For example, the statement a = 5; writes the value of the right-hand operand (5) into the

memory location of the integer variable a (which is the left-hand operand in this case).

Similarly, the statement b = a = 5; assigns 5 to the integer variable a first, and then to

the integer variable b. After the execution of the statement, both a and b contain the value

of 5.

It is important to remember that the left-hand operand of the assignment operator must

be an expression to which you can legally write data. An expression such as 6 = a,

although it may look correct at a glance, is actually backwards and will not work. The =

operator always works from right to left; therefore the value on the left must be some

form of a variable that can receive the data from the expression on the right.

92 Hour 6

Don’t confuse the assignment operator (=) with the relational operator, ==

(called the equal-to operator). The == operator is introduced later in this

hour.

Combining Arithmetic Operators with =
Consider this example: Given two integer variables, x and y, how do you assign the addi-

tion of x and y to another integer variable, z?

By using the assignment operator (=) and the addition operator (+), you get the following

statement:

z = x + y;

As you can see, it’s pretty simple. Now, consider the same example again. This time,

instead of assigning the result to the third variable, z, let’s write the result of the addition

back to the integer variable, x:

x = x + y;

Remember, the = operator always works from right to left, so the right side will be evalu-

ated first. Here, on the right side of the assignment operator (=), the addition of x and y is

executed; on the left side of =, the previous value of x is replaced with the result of the

addition from the right side.

The C language gives you a new operator, +=, to do the addition and the assignment

together. Therefore, you can rewrite the statement x = x + y; as

x += y;

The combinations of the assignment operator (=) with the arithmetic operators, +, -, *, /,

and %, give you another type of operators—arithmetic assignment operators:

Operator Description

+= Addition assignment operator

-= Subtraction assignment operator

*= Multiplication assignment operator

/= Division assignment operator

%= Remainder assignment operator

The following shows the equivalence of statements:

x += y; is equivalent to x = x + y;

x -= y; is equivalent to x = x - y;

x *= y; is equivalent to x = x * y;

x /= y; is equivalent to x = x / y;

x %= y; is equivalent to x = x % y;

Note that the statement

Manipulating Data 93

6

z = z * x + y;

is not equivalent to the statement

z *= x + y;

because

z *= x + y

multiplies z by the entire right-hand side of the statement, so the result would be the

same as

z = z * (x + y);

Listing 6.1 gives an example of using some of the arithmetic assignment operators.

LISTING 6.1 Using Arithmetic Assignment Operators

1: /* 06L01.c: Using arithemtic assignment operators */
2: #include <stdio.h>
3:
4: main()
5: {
6: int x, y, z;
7:
8: x = 1; /* initialize x */
9: y = 3; /* initialize y */
10: z = 10; /* initialize z */
11: printf(“Given x = %d, y = %d, and z = %d,\n”, x, y, z);
12:
13: x = x + y;
14: printf(“x = x + y assigns %d to x;\n”, x);
15:
16: x = 1; /* reset x */
17: x += y;
18: printf(“x += y assigns %d to x;\n”, x);
19:
20: x = 1; /* reset x */
21: z = z * x + y;
22: printf(“z = z * x + y assigns %d to z;\n”, z);
23:
24: z = 10; /* reset z */
25: z = z * (x + y);
26: printf(“z = z * (x + y) assigns %d to z;\n”, z);
27:
28: z = 10; /* reset z */
29: z *= x + y;
30: printf(“z *= x + y assigns %d to z.\n”, z);
31:
32: return 0;

33: }

94 Hour 6

TYPE

After this program is compiled and linked, an executable file is created. On my machine,

this executable file is named as 06L01.exe. The following is the output displayed after I

run the executable:

Given x = 1, y = 3, and z = 10,
x = x + y assigns 4 to x;
x += y assigns 4 to x;
z = z * x + y assigns 13 to z;
z = z * (x + y) assigns 40 to z;
z *= x + y assigns 40 to z.

Line 2 in Listing 6.1 includes the header file stdio.h by using the include

directive. The stdio.h header file is needed for the printf() function used in

lines 4–33.

Lines 8–10 initialize three integer variables, x, y, and z, which are declared in line 6.

Line 11 then prints out the initial values assigned to x, y, and z.

The statement in line 13 uses one addition operator and one assignment operator to add

the values contained by x and y, and then assigns the result to x. Line 14 displays the

result on the screen.

Similarly, lines 17 and 18 do the same addition and display the result again, after the

variable x is reset to the value 1 in line 16. This time, the arithmetic assignment operator,

+=, is used.

The value of x is reset again in line 20. Line 21 performs a multiplication and an addition

and saves the result to the integer variable z; that is, z = z * x + y;. The printf()

call in line 22 displays the result, 13, on the screen. Again, the x = 1; statement in line

20 resets the integer variable, x.

Lines 24–30 display two results from two computations. The two results are actually the

same (that is, 40) because the two computations in lines 25 and 29 are equivalent. The

only difference between the two statements in lines 25 and 29 is that the arithmetic

assignment operator, *=, is used in line 29.

Getting Negations of Numeric Values
If you want to change the sign of a number, you can put the minus operator (-) right

before the number. For instance, given an integer of 7, you can get its negative value by

changing the sign of the integer like this: -7. Here, - is the minus operator.

The - symbol used in this way is called the unary minus operator. This is because the

operator takes only one operand: the expression to its immediate right. The data type of

the operand can be any integer or floating-point number.

Manipulating Data 95

6

OUTPUT

ANALYSIS

You can apply the unary minus operator to an integer or a floating-point variable as well.

For example, given x = 1.234, -x equals -1.234. Or, given x = -1.234, -x equals

1.234 since negating a negative value results in a positive number.

96 Hour 6

Don’t confuse the unary minus operator with the subtraction operator,

although both operators use the same symbol. For instance, the following

statement:

z = x - -y;

is actually the same as this statement:

z = x - (-y);

or this one:

z = x + y;

Here, in both statements, the first - symbol is used as the subtraction opera-

tor, while the second - symbol is the unary minus operator.

Incrementing or Decrementing by One
The increment and decrement operators are very handy to use when you want to add or

subtract 1 from a variable. The symbol for the increment operator is ++. The decrement

operator is --.

For instance, you can rewrite the statement x = x + 1; as ++x;, or you can replace x =

x - 1; with --x;.

Actually, there are two versions of the increment and decrement operators. In the ++x;

statement, where ++ appears before its operand, the increment operator is called the pre-

increment operator. This refers to the order in which things happen: the operator first

adds 1 to x, and then yields the new value of x. Likewise, in the statement --x;, the pre-

decrement operator first subtracts 1 from x and then yields the new value of x.

If you have an expression like x++, where ++ appears after its operand, you’re using the

post-increment operator. Similarly, in x--, the decrement operator is called the post-

decrement operator.

For example, in the statement y = x++;, y is assigned the original value of x first, then x

is increased by 1.

The post-decrement operator has a similar story. In the statement y = x--; the assign-

ment of y to the value of x takes place first, then x is decremented. The program in

Listing 6.2 shows the differences between the two versions of increment operators and

decrement operators.

LISTING 6.2 Using Pre- or Post-Increment and Decrement Operators

1: /* 06L02.c: pre- or post-increment(decrement) operators */
2: #include <stdio.h>
3:
4: main()
5: {
6: int w, x, y, z, result;
7:
8: w = x = y = z = 1; /* initialize x and y */
9: printf(“Given w = %d, x = %d, y = %d, and z = %d,\n”, w, x, y, z);
10:
11: result = ++w;
12: printf(“++w evaluates to %d and w is now %d\n”, result, w);
13: result = x++;
14: printf(“x++ evaluates to %d and x is now %d\n”, result, x);
15: result = --y;
16: printf(“--y evaluates to %d and y is now %d\n”, result, y);
17: result = z--;
18: printf(“z-- evaluates to %d and z is now %d\n”, result, z);
19: return 0;
20: }

The following result is obtained by running the executable file 06L02.exe:

Given w = 1, x = 1, y = 1, and z = 1,
++w evaluates to 2 and w is now 2
x++ evaluates to 1 and x is now 2
--y evaluates to 0 and y is now 0
z-- evaluates to 1 and z is now 0

Inside the main() function, line 8 in Listing 6.2 assigns 1 to each of the integer

variables, w, x, y, and z. The printf() call in line 9 displays the values contained

by the four integer variables.

Then, the statement in line 11 is executed and the result of the pre-increment of w is

assigned to the integer variable result. In line 12, the value of result, which is 2, is

printed out to the screen, along with the value of w after the pre-increment statement.

Note that w is still 2 since the increment took place before the new value of w was

assigned to result.

Lines 13 and 14 get the post-increment of x and print out the result. As you know, the

result is obtained before the value of x is increased. Therefore, you see the value 1 (the

old value of x) from the result of x++, while the new value of x is 2 since it was incre-

mented after the assignment to result in line 13 The pre-decrement operator in line 15

causes the value of y to be reduced by 1 before the new value is assigned to the integer

variable result. Therefore, you see 0 as the result of --y shown on the screen, which

reflects the new value of y, which is also 0.

Manipulating Data 97

6

TYPE

OUTPUT

ANALYSIS

In line 17, however, the post-decrement operator has no effect on the assignment because

the original value of z is given to the integer variable result before z is decreased by 1.

The post-decrement acts as if line 17 was simply result = z, with z then being decre-

mented by 1 after the statement was executed. Line 18 thus prints out the result 1, which

is of course the original value of z, along with 0, the value of z after the post-decrement.

Greater Than or Less Than?
There are six types of relations between two expressions: equal to, not equal to, greater

than, less than, greater than or equal to, and less than or equal to. Accordingly, the C lan-

guage provides these six relational operators:

Operator Description

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

All the relational operators have lower precedence than the arithmetic operators.

Therefore, all arithmetic operations on either side of a relational operator are carried out

before any comparison is made. You should use parentheses to enclose operations of

operators that have to be performed first.

Among the six relational operators, the >, <, >=, and <= operators have higher precedence

than the == and != operators.

For example, the expression

x * y < z + 3

is interpreted as

(x * y) < (z + 3)

Another important point is that all relational expressions produce a result of either 0 or 1.

In other words, a relational expression evaluates to 1 if the specified relationship holds.

Otherwise, 0 is yielded.

Given x = 3 and y = 5, for instance, the relational expression x < y gives a result of 1.

Listing 6.3 shows more examples of using relational operators.

98 Hour 6

LISTING 6.3 Results Produced by Relational Expressions

1: /* 06L03.c: Using relational operators */
2: #include <stdio.h>
3:
4: main()
5: {
6: int x, y;
7: double z;
8:
9: x = 7;
10: y = 25;
11: z = 24.46;
12: printf(“Given x = %d, y = %d, and z = %.2f,\n”, x, y, z);
13: printf(“x >= y produces: %d\n”, x >= y);
14: printf(“x == y produces: %d\n”, x == y);
15: printf(“x < z produces: %d\n”, x < z);
16: printf(“y > z produces: %d\n”, y > z);
17: printf(“x != y - 18 produces: %d\n”, x != y - 18);
18: printf(“x + y != z produces: %d\n”, x + y != z);
19: return 0;

20: }

Manipulating Data 99

6

When several different operators appear together in an expression, the

operands in between are associated with operators in a given order.

Operator precedence refers to the order in which operators and operands

are grouped together. Operators that have the highest precedence within an

expression are grouped with their operands first,

For example, in the expression

z + x * y - 3

The * operator has higher precedence than the + and - operators. Therefore,

x * y will be evaluated first, and its result becomes the right-hand operand

of the + operator. The result of that is then given to the - operator as its left-

hand operand.

If you want to override the default operator precedence, you can use

parentheses to group operands within an expression. If, for example, you

actually wanted to multiply z + x by y - 3, you could rewrite the above

expression as

(z + x) * (y - 3)

In addition, you can always use the parentheses when you aren’t quite sure

about the effects of operator precedence, or you just want to make your

code easier to read.

TYPE

After the executable 06L03.exe is executed, the following output is displayed on the

screen of my computer:

Given x = 7, y = 25, and z = 24.46,
x >= y produces: 0
x == y produces: 0
x < z produces: 1
y > z produces: 1
x != y - 18 produces: 0
x + y != z produces: 1

There are two integer variables, x and y, and one floating-point variable z,

declared in lines 6 and 7, respectively.

Lines 9–11 initialize the three variables. Line 12 prints out the values assigned to the

variables.

Because the value of x is 7 and the value of y is 25, y is greater than x. Therefore, line 13

prints out 0, which is the result yielded by the relational expression x >= y.

Likewise, in line 14, the relational expression x == y yields 0.

Lines 15 and 16 print out the result of 1,which is yielded by the evaluations of both

x < z and y > z.

The statement in line 17 displays 0, which is the result of the relational expression

x != y - 18. Since y - 18 yields 7, and the value of x is 7, the != relationship does

not hold. In line 18, the expression x + y != z produces 1, which is displayed on the

screen.

100 Hour 6

OUTPUT

ANALYSIS

Be careful when you compare two values for equality. Because of truncation

or rounding, some relational expressions, which are algebraically true, might

yield 0 stead of 1. For example, look at the following relational expression:

1 / 2 + 1 / 2 == 1

This is algebraically true and one would expect it to evaluate to 1.

The expression, however, yields 0, which means that the equal-to relation-

ship does not hold. This is because the truncation of the integer division—

that is, 1 / 2—produces an integer: 0, not 0.5.

Another example is 1.0 / 3.0, which produces 0.33333.... This is a number

with infinite number of decimal places. But the computer can only hold a

limited number of decimal places. Therefore, the expression

1.0 / 3.0 + 1.0 / 3.0 + 1.0 / 3.0 == 1.0

might not yield 1 on some computers, although the expression is alge-

braically true.

Using the Cast Operator
In C, you can convert the data type of a variable, expression, or constant to a different

one by prefixing the cast operator. This conversion does not change the operand itself;

when the cast operator is evaluated, it yields the same value (but represented as a differ-

ent type), which you can then use in the rest of an expression.

The general form of the cast operator is

(data-type) x

Here data-type specifies the new data type you want. x is a variable (or constant or

expression) of a different data type. You have to include the parentheses (and) around

the new data type to make a cast operator.

For example, the expression (float)5 converts the integer 5 to a floating-point number,

5.0.

The program in Listing 6.4 shows another example of using the cast operator.

LISTING 6.4 Playing with the Cast Operator

1: /* 06L04.c: Using the cast operator */
2: #include <stdio.h>
3:
4: main()
5: {
6: int x, y;
7:
8: x = 7;
9: y = 5;
10: printf(“Given x = %d, y = %d\n”, x, y);
11: printf(“x / y produces: %d\n”, x / y);
12: printf(“(float)x / y produces: %f\n”, (float)x / y);
13: return 0;
14: }

The following output is obtained by running the executable 06L04.exe on my computer:

Given x = 7, y = 5
x / y produces: 1
(float)x / y produces: 1.400000

In Listing 6.4, there are two integer variables, x and y, declared in line 6, and ini-

tialized in lines 8 and 9, respectively. Line 10 then displays the values contained

by the integer variables x and y.

Manipulating Data 101

6

TYPE

OUTPUT

ANALYSIS

The statement in line 11 prints out the integer division of x/y. Because the fractional part

is truncated, the result of the integer division is 1.

However, in line 12, the cast operator (float) converts the value of x to a floating-point

value. Therefore, the (float)x/y expression becomes a floating-point division that

returns a floating-point number. That’s why you see the floating-point number 1.400000

shown on the screen after the statement in line 12 is executed.

Summary
In this lesson you learned about the following important operators:

• The assignment operator =, which has two operands (one on each side). The value

of the right-side operand is assigned to the operand on the left side. The operand

on the left side must be some form of a variable which can accept the new value.

• The arithmetic assignment operators +=, -=, *=, /=, and %=, which are combina-

tions of the arithmetic operators with the assignment operator.

• The unary minus operator (-), which evaluates to the negation of a numeric value.

• The two versions of the increment operator, ++. You know that in ++x, the

++ operator is called the pre-increment operator; and in x++, ++ is the post-

increment operator.

• The two versions of decrement operator, --. You have learned that, for example, in

--x, the -- operator is the pre-decrement operator, and in x--, -- is called the post-

decrement operator.

• The six relational operators in C: == (equal to), != (not equal to), > (greater than),

< (less than), >= (greater than or equal to), and <= (less than or equal to).

• How to change the data type of an expression by prefixing a cast operator to the

data.

In the next lesson, you’ll learn about loops in the C language.

Q&A
Q What is the difference between the pre-increment operator and the post-incre-

ment operator?

A The pre-increment operator increases the operand’s value by 1 first, and then yields

the modified value. On the other hand, the post-increment operator yields the origi-

nal value of its operand first, then increments the operand. For instance, given

x = 1, the ++x expression yields 2, whereas the expression x++ evaluates to 1

before actually modifying x.

102 Hour 6

Q Is the unary minus operator (-) the same as the subtraction operator (-)?

A No, they are not the same, although the two operators share the same symbol. The

meaning of the symbol is determined by the context in which it appears. The unary

minus operator is used to change the sign of a numeric value. In other words, the

unary minus operator yields the negation of the value. The subtraction operator is

an arithmetic operator that performs a subtraction between its two operands.

Q Which one has a higher precedence, a relational operator or an arithmetic

operator?

A An arithmetic operator has a higher precedence than a relational operator. For

instance, in the expression x * y + z > x + y,the operator precedence from

highest to lowest goes from * to + and finally >. The entire expression is therefore

interpreted as ((x * y) + z) > (x + y).

Q What value is yielded by a relational expression?

A A relational expression evaluates to either 0 or 1. If the relation indicated by a rela-

tional operator in an expression is true, the expression evaluates to 1; otherwise, the

expression evaluates to 0.

Workshop
To help solidify your understanding of this hour’s lesson, you are encouraged to answer

the quiz questions and finish the exercises provided in the workshop before you move to

the next lesson. The answers and hints to the questions and exercises are given in

Appendix C, “Answers to Quiz Questions and Exercises.”

Quiz
1. What is the difference between the = operator and the == operator?

2. In the expression x + - y - - z, which operator(s) are subtraction operators, and

which one(s) are unary minus operator(s)?

3. Given x = 15 and y = 4, what values do the expressions x / y and

(float)x / y yield, respectively?

4. Is the expression y *= x + 5 equivalent to the expression y = y * x + 5?

Exercises
1. Given x = 1 and y = 3, write a program to print out the results of these expres-

sions: x += y, x += -y, x -= y, x -= -y, x *= y, and x *= -y.

Manipulating Data 103

6

2. Given x = 3 and y = 6, what is the value of z after the statement

z = x * y == 18;

is executed?

3. Write a program that initializes the integer variable x with 1 and outputs results

with the following two statements:

printf(“x++ produces: %d\n”, x++);
printf(“Now x contains: %d\n”, x);

4. Rewrite the program you wrote in exercise 3. This time, include the following two

statements:

printf(“x = x++ produces: %d\n”, x = x++);
printf(“Now x contains: %d\n”, x);

What do you get after running the executable of the program? Can you explain

why you get such a result?

5. The following program is supposed to compare the two variables, x and y, for

equality. What’s wrong with the program? (Hint: Run the program to see what it

prints out.)

#include <stdio.h>

main()
{

int x, y;

x = y = 0;
printf(“The comparison result is: %d\n”, x = y);
return 0;

}

104 Hour 6

HOUR 7
Working with Loops

Heaven and earth:

Unheard sutra chanting

Repeated…

—Zen saying

In the previous lessons, you learned the basics of the C program, several

important C functions, standard I/O, and some useful operators. In this les-

son you’ll learn a very important feature of the C language—looping.

Looping, also called iteration, is used in programming to perform the same

set of statements over and over until certain specified conditions are met.

Three statements in C are designed for looping:

• The while statement

• The do-while statement

• The for statement

The following sections explore these statements.

The while Loop
The purpose of the while keyword is to repeatedly execute a statement over and over

while a given condition is true. When the condition of the while loop is no longer logi-

cally true, the loop terminates and program execution resumes at the next statement fol-

lowing the loop.

The general form of the while statement is

while (expression)
statement;

Here expression is the condition of the while statement. This expression is evaluated

first. If the expression evaluates to a nonzero value, then statement is executed. After

that, expression is evaluated once again. The statement is then executed one more time

if the expression still evaluates to a nonzero value. This process is repeated over and over

until expression evaluates to zero, or logical false.

The idea is that the code inside the loop, (statement; above) will eventually cause

expression to be logically false the next time it is evaluated, thus terminating the loop.

Of course, you often want to use a while keyword to control looping over several state-

ments. When this is the case, use a statement block surrounded by braces { and }. Each

time the while expression is evaluated, the entire statement block will be executed if the

expression evaluates as true.

Now, let’s look at an example of using the while statement. The program in listing 7.1

uses a while loop to continually read, and then display, character input while the charac-

ter input does not equal ‘x’.

LISTING 7.1 Using a while Loop

1: /* 07L01.c: Using a while loop */
2: #include <stdio.h>
3:
4: main()
5: {
6: int c;
7:
8: c = ‘ ‘;
9: printf(“Enter a character:\n(enter x to exit)\n”);
10: while (c != ‘x’) {
11: c = getc(stdin);
12: putchar(c);
13: }
14: printf(“\nOut of the while loop. Bye!\n”);
15: return 0;
16: }

106 Hour 7

TYPE

The following is a copy of the output from my computer’s screen. (Note that the charac-

ters I entered are in bold.)

Enter a character:
(enter x to exit)
H
H
i
i
x
x
Out of the while loop. Bye!

As you can see in the output, the program prints back every character that is

typed in, and then stops after x.

Line 8 sets the variable c to the value ‘ ‘ (a space character). This is known as initializ-

ing the variable, and we just need to initialize it to something other than ‘x’.

Line 10 is the while statement. The condition inside the parentheses, c != ‘x’, means

the loop will continue executing over and over until c is actually equal to ‘x’. Since we

had just initialized c to equal the ‘ ‘ character, the relation c != x is of course true.

Following the closing parenthesis is an opening brace, so the loop will execute until a

closing brace is encountered.

Line 11 and line 12 read a character and print it back out, and in doing so assign the

character’s value to the variable c. Line 13 is the closing brace, so the loop is done and

execution goes back to line 10, the while statement. If the character that was typed is

anything other than “x” the loop will continue; otherwise, c != x will be logically false,

and execution goes to the next statement after the closing brace at line 13. In this case it

moves on to the printf() call at line 14.

The do-while Loop
In the while statement that we’ve seen, the conditional expression is set at the very top

of the loop. However, in this section, you’re going to see another statement used for

looping, do-while, which puts the expression at the bottom of the loop. In this way, the

statements in the loop are guaranteed to be executed at least once before the expression

is tested. Note that statements in a while loop are not executed at all if the conditional

expression evaluates to zero the first time through.

Working with Loops 107

7

OUTPUT

ANALYSIS

The general form for the do-while statement is

do {
statement1;
statement2;
.
.
.

} while (expression);

Here, the statements inside the statement block are executed once, and then expression

is evaluated in order to determine whether the looping is to continue. If the expression

evaluates to a nonzero value, the do-while loop continues; otherwise, the looping stops

and execution proceeds to the next statement following the loop.

Note that the do-while statement ends with a semicolon, which is an important distinc-

tion from the if and while statements.

The program in Listing 7.2 displays the characters A through G by using a do-while loop

to repeat the printing and adding.

LISTING 7.2 Using a do-while Loop

1: /* 07L02.c: Using a do-while loop */
2: #include <stdio.h>
3:
4: main()
5: {
6: int i;
7:
8: i = 65;
9: do {
10: printf(“The numeric value of %c is %d.\n”, i, i);
11: i++;
12: } while (i<72);
13: return 0;
14: }

After running the executable 07L02.exe of Listing 7.6, I have the characters A through G,

along with their numeric values, shown on the screen as follows:

The numeric value of A is 65.
The numeric value of B is 66.
The numeric value of C is 67.
The numeric value of D is 68.
The numeric value of E is 69.
The numeric value of F is 70.
The numeric value of G is 71.

108 Hour 7

OUTPUT

TYPE

The statement in line 8 of Listing 7.6 initializes the integer variable i with 65.

The integer variable was declared in line 6.

Lines 9–12 contain the do-while loop. The expression i<72 is at the bottom of the loop

in line 12. When the loop first starts, the two statements in lines 10 and 11 are executed

before the expression is evaluated. Because the integer variable i contains the initial

value of 65, the printf() function in line 10 displays the numeric value as well as the

corresponding character A on the screen.

After the integer variable i is increased by 1 in line 11, the program control reaches the

bottom of the do-while loop. Then the expression i<72 is evaluated. If the relationship

in the expression still holds, the program control jumps up to the top of the do-while

loop, and then the process is repeated. When the expression evaluates to 0 after i is

increased to 72 (i then equals 72 and is therefore not less than 72), the do-while loop is

terminated immediately.

Looping Under the for Statement
The general form of the for statement is

for (expression1; expression2; expression3) {
statement;

}

or

for (expression1; expression2; expression3) {
statement1;
statement2;
.
.
.

}

You see from this example that the for statement uses three expressions (expression1,

expression2, and expression3) that are separated by semicolons.

A for loop can control just one statement as in the first example, or several statements,

such as statement1 and statement2, placed within the braces ({ and }).

The first time the for statement is executed, it first evaluates expression1, which is typi-

cally used to initialize one or more variables.

The second expression, expression2, acts in the same way as the conditional

expression of a do or do-while loop. This second expression is evaluated immediately

after expression1, and then later is evaluated again after each successful looping by the

Working with Loops 109

7

ANALYSIS

for statement. If expression2 evaluates to a nonzero (logical true) value, the statements

within the braces are executed. Otherwise the looping is stopped and the execution

resumes at the next statement after the loop.

The third expression in the for statement, expression3, is not evaluated when the for

statement is first encountered. However, expression3 is evaluated after each looping and

before the statement goes back to test expression2 again.

In Hour 5, “Handling Standard Input and Output,” you saw an example (Listing 5.5) that

converts the decimal numbers 0 through 15 into hex numbers. Back then, the conversions

had to be written in separate statements. Now, with the for statement, you can rewrite

the program in Listing 5.5 in a very efficient way. Listing 7.3 shows the rewritten version

of the program.

LISTING 7.3 Converting 0 through 15 to Hex Numbers

1: /* 07L03.c: Converting 0 through 15 to hex numbers */
2: #include <stdio.h>
3:
4: main()
5: {
6: int i;
7:
8: printf(“Hex(uppercase) Hex(lowercase) Decimal\n”);
9: for (i=0; i<16; i++){
10: printf(“%X %x %d\n”, i, i, i);
11: }
12: return 0;
13: }

After creating the executable file 07L03.exe, I obtain the following output by running

07L03.exe. (The output is in fact the same as the one from 05L05.exe in Hour 5.)

Hex(uppercase) Hex(lowercase) Decimal
0 0 0
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 8
9 9 9
A a 10
B b 11

110 Hour 7

TYPE

OUTPUT

C c 12
D d 13
E e 14
F f 15

Now, let’s have a look at the code in Listing 7.3. As you know, line 2 includes

the header file stdio.h for the printf() function used later in the program.

Inside the body of the main() function, the statement in line 6 declares an integer vari-

able, i. Line 8 displays the headline of the output on the screen.

Lines 9–11 contain the for statement. Note that the first expression in the for statement

is i = 0, which is an assignment expression that initializes the integer variable i to 0.

The second expression in the for statement is i < 16, which is a relational expression.

This expression evaluates to nonzero (true) as long as the relation indicated by the less-

than operator (<) holds. As mentioned earlier, the second expression is evaluated by the

for statement each time after a successful looping. If the value of i is less than 16,

which means the relational expression remains true, the for statement will start another

loop. Otherwise, it will stop looping and exit.

The third expression in the for statement is i++. When this expression is evaluated, the

integer variable i is increased by 1. This is done after each statement inside the body of

the for statement is executed. Here it doesn’t make a big difference whether the post-

increment operator (i++) or the pre-increment operator (++i) is used in the third expres-

sion.

In other words, when the for loop is first encountered, i is set to 0, the expression i<16

is evaluated and found to be true, and therefore the statements within the body of the for

loop are executed. Following execution of the for loop, the third expression i++ is exe-

cuted incrementing i to 1, and i<16 is again evaluated and found to be true, thus the

body of the loop is executed again. The looping lasts until the conditional expression

i<16 is no longer true.

There is only one statement inside the for statement body, as you can see in line 10. The

statement contains the printf() function, which is used to display the hex numbers

(both uppercase and lowercase) converted from the decimal values by using the format

specifiers, %X and %x.

The decimal value is provided by the integer variable i. As explained earlier, i contains

the initial value of 0 right before and during the first looping. After each looping, i is

increased by 1 because of the third expression, i++, in the for statement. The last value

provided by i is 15. When i reaches 16, the relation indicated by the second expression,

Working with Loops 111

7

ANALYSIS

i<16, is no longer true. Therefore, the looping is stopped and the execution of the for

statement is completed.

Then, the statement in line 12 returns 0 to indicate a normal termination of the

program, and finally, the main() function ends and returns the control back to the

operating system.

As you see, with the for statement you can write a very concise program. In fact, the

program in Listing 7.3 is more than 10 lines shorter than the one in Listing 5.5, although

the two programs end up doing exactly the same thing.

Actually, you can make the program in Listing 7.3 even shorter by discarding the braces

({ and }) since there is only one statement inside the statement block.

The Null Statement
As you may notice, the for statement does not end with a semicolon. The for statement

has within it either a statement block that ends with the closing brace (}), or a single

statement that ends with a semicolon. The following for statement contains a single

statement:

for (i=0; i<8; i++)
sum += i;

Note that the braces ({ and }) are discarded because the for statement only contains one

statement.

Now let us consider a statement like this:

for (i=0; i<8; i++);

Here the for statement is followed by a semicolon immediately.

In the C language, there is a special statement called the null statement. A null statement

contains nothing but a semicolon. In other words, a null statement is a statement with no

expression.

Therefore, when you review the statement for (i=0; i<8; i++);, you can see that it is

actually a for statement with a null statement. In other words, you can rewrite it as

for (i=0; i<8; i++)
;

Because the null statement has no expression, the for statement actually does nothing

but loop. You’ll see some examples using the null statement with the for statement later

in the book.

112 Hour 7

Just remember that the do-while loop is the only looping statement that uses a semi-

colon immediately after it as part of its syntax. The while and for statements are fol-

lowed immediately by a loop, which could be a single statement followed by a

semicolon, a statement block which has no semicolon afterwards, or just a semicolon

(null statement) by itself.

Using Complex Expressions in a for Statement
The C language allows you to use the comma operator to combine multiple expressions

into the three parts of the for statement.

For instance, the following form is valid in C:

for (i=0, j=10; i!=j; i++, j--){
/* statement block */

}

Here, in the first expression, the two integer variables i and j are initialized, respectively,

with 0 and 10 when the for statement is first encountered. Then, in the second field, the

relational expressions i!=j is evaluated and tested. If it evaluates to zero (false), the loop

is terminated. After each iteration of the loop, i is increased by 1 and j is reduced by 1

in the third expression. Then the expression i!=j is evaluated to determine whether or

not to execute the loop again.

Now, let’s look at a real program. Listing 7.4 shows an example of using multiple

expressions in the for statement.

Working with Loops 113

7

Because the null statement is perfectly legal in C, you should pay attention

to placing semicolons in your for statements. For example, suppose you

intended to write a for loop like this:

for (i=0; i<8; i++)
sum += i;

If you accidentally put a semicolon at the end of the for statement like this,

however,

for (i=0; i<8; i++);
sum += i;

your C compiler will still accept it, but the results from the two for state-

ments will be quite different. (See exercise 1 in this lesson for an example.)

LISTING 7.4 Adding Multiple Expressions to the for Statement

1: /* 07L04.c: Multiple expressions */
2: #include <stdio.h>
3:
4: main()
5: {
6: int i, j;
7:
8: for (i=0, j=8; i<8; i++, j--)
9: printf(“%d + %d = %d\n”, i, j, i+j);
10: return 0;
11: }

I get the following output displayed on the screen after running the executable file,

07L04.exe:

0 + 8 = 8
1 + 7 = 8
2 + 6 = 8
3 + 5 = 8
4 + 4 = 8
5 + 3 = 8
6 + 2 = 8
7 + 1 = 8

In Listing 7.4, line 6 declares two integer variables, i and j, which are used in a

for loop.

In line 8, i is initialized with 0 and j is set to 8 in the first expression of the for state-

ment. The second expression contains a condition, i < 8, which tells the computer to

keep looping as long as the value of i is less than 8.

Each time, after the statement controlled by for in line 9 is executed, the third expres-

sion is evaluated, causing i is increase (increment) by 1 while j is reduced

(decremented) by 1. Because there is only one statement inside the for loop, no braces

({ and }) are used to form a statement block.

The statement in line 9 displays the addition of i and j on the screen during the looping,

which outputs eight results during the looping by adding the values of the two variables,

i and j.

Adding multiple expressions into the for statement is a very convenient way to manipu-

late more than one variable in a loop. To learn more about using multiple expressions in

a for loop, look at the example in Listing 7.5.

114 Hour 7

TYPE

OUTPUT

ANALYSIS

LISTING 7.5 Another Example of Using Multiple Expressions in the
for Statement

1: /* 07L05.c: Another example of multiple expressions */
2: #include <stdio.h>
3:
4: main()
5: {
6: int i, j;
7:
8: for (i=0, j=1; i<8; i++, j++)
9: printf(“%d - %d = %d\n”, j, i, j - i);
10: return 0;
11: }

The following output is displayed on the screen after the executable 07L05.exe is run on

my machine:

1 - 0 = 1
2 - 1 = 1
3 - 2 = 1
4 - 3 = 1
5 - 4 = 1
6 - 5 = 1
7 - 6 = 1
8 - 7 = 1

In the program shown in Listing 7.5, two integer variables, i and j, are declared

in line 6.

Note that in line 8, there are two assignment expressions, i=0 and j=1, in the first expres-

sion of the for statement. These two assignment expressions initialize the i and j integer

variables, respectively.

There is one relational expression, i<8, in the second field, which is the condition that

has to be met before the looping can be carried out. Because i starts at 0 and is incre-

mented by 1 after each loop, there are total of 8 loops that will be performed by the for

statement.

The third expression contains two expressions, i++ and j++, that increase the two integer

variables by 1 each time after the statement in line 9 is executed.

The printf() function in line 9 displays the subtraction of the two integer variables, j

and i, within the for loop. Because there is only one statement in the statement block,

the braces ({ and }) are not needed.

Working with Loops 115

7

TYPE

OUTPUT

ANALYSIS

Using Nested Loops
It’s often necessary to create a loop even when you are already in a loop. You can put a

loop (an inner loop) inside another one (an outer loop) to make nested loops. When the

program reaches an inner loop, it will run just like any other statement inside the outer

loop.

Listing 7.6 is an example of how nested loops work.

LISTING 7.6 Using Nested Loops

1: /* 07L06.c: Demonstrating nested loops */
2: #include <stdio.h>
3:
4: main()
5: {
6: int i, j;
7:
8: for (i=1; i<=3; i++) { /* outer loop */
9: printf(“The start of iteration %d of the outer loop.\n”, i);
10: for (j=1; j<=4; j++) /* inner loop */
11: printf(“ Iteration %d of the inner loop.\n”, j);
12: printf(“The end of iteration %d of the outer loop.\n”, i);
13: }
14: return 0;
15: }

The following result is obtained by running the executable file 07L06.exe:

The start of iteration 1 of the outer loop.
Iteration 1 of the inner loop.
Iteration 2 of the inner loop.
Iteration 3 of the inner loop.
Iteration 4 of the inner loop.

The end of iteration 1 of the outer loop.
The start of iteration 2 of the outer loop.

Iteration 1 of the inner loop.
Iteration 2 of the inner loop.
Iteration 3 of the inner loop.
Iteration 4 of the inner loop.

The end of iteration 2 of the outer loop.
The start of iteration 3 of the outer loop.

Iteration 1 of the inner loop.
Iteration 2 of the inner loop.
Iteration 3 of the inner loop.
Iteration 4 of the inner loop.

The end of iteration 3 of the outer loop.

116 Hour 7

TYPE

OUTPUT

In Listing 7.6, two for loops are nested together. The outer for loop starts in

line 8 and ends in line 13, while the inner for loop starts in line 10 and ends in

line 11.

The inner loop is only one statement that prints out the iteration number according to the

numeric value of the integer variable j. As you see in line 10, j is initialized with 1, and

is increased by 1 after each looping (that is, iteration). The execution of the inner loop

stops when the value of j is greater than 4.

Besides the inner loop, the outer loop has two statements in lines 9 and 12, respectively.

The printf() function in line 9 displays a message showing the beginning of an itera-

tion from the outer loop. An ending message is sent out in line 12 to show the end of the

iteration from the outer loop.

From the output, you can see that the inner loop is finished before the outer loop starts

another iteration. When the outer loop begins another iteration, the inner loop is encoun-

tered and run again. The output from the program in Listing 7.6 clearly shows the execu-

tion orders of the inner and outer loops.

Working with Loops 117

7

ANALYSIS

Don’t confuse the two relational operators (< and <=) and misuse them in

the expressions of loops.

For instance, the following

for (j=1; j<10; j++){
/* statement block */

}

means if j is less than 10, keep looping. Thus, the total number of iterations

is 9. However, in the following example,

for (j=1; j<=10; j++){
/* statement block */

}

the total number of iterations is 10 because the relational expression j<=10

is evaluated in this case. Note that the expression evaluates to 1 (logical

true) as long as j is less than or equal to 10.

Therefore, you see the difference between the operators < and <= causes

the looping in the first example to be one iteration shorter than the looping

in the second example.

Summary
In this lesson you learned the following important concepts and statements:

• Looping can be used to perform the same set of statements over and over until

specified conditions are met.

• Looping makes your program more concise.

• There are three statements, while, and do-while, and for, that are used for loop-

ing in C.

• The while statement contains one expression, which is the conditional expression

which controls the loop.

• The while statement does not end with a semicolon.

• The do-while statement places its conditional expression at the bottom of the loop.

• The do-while statement ends with a semicolon.

• There are three expressions in the for statement. The second expression is the con-

ditional expression.

• The for statement does not end with a semicolon.

• Multiple expressions, combined via commas, can be used as one expression in the

for statement.

• In a nested loop, inner loop finishes before the outer loop resumes its iteration in

nested loops.

In the next lesson you’ll learn about more operators used in the C language.

Q&A
Q What is the difference between the while and do-while statements?

A The main difference is that in the while statement, the conditional expression is

evaluated at the top of the loop, while in the do-while statement, the conditional

expression is evaluated at the bottom of the loop. Therefore, the statements con-

trolled by the do-while statement are guaranteed to be executed at least once

whereas the loop in a while statement may never be executed at all.

Q How does a for loop work?

A There are three expressions in the for statement. The first field contains an initial-

izer that is evaluated first and only once before the iteration. The second expression

the conditional expression that must evaluate to nonzero (logical true) before the

statements controlled by the for statement are executed. If the conditional

118 Hour 7

expression evaluates to a nonzero (true) value, which means the specified condition

is met, one iteration of the for loop is carried out. After each iteration, the third

expression is evaluated, and then the second field is evaluated again. This process

with the second and third expressions is repeated until the conditional expression

evaluates to zero (logical false).

Q Can the while statement end with a semicolon?

A By definition, the while statement does not end with a semicolon. However, it’s

legal in C to put a semicolon right after the while statement like this:

while(expression);, which means there is a null statement controlled by the

while statement. Remember that the result will be quite different from what you

expect if you accidentally put a semicolon at the end of the while statement.

Q If two loops are nested together, which one must finish first, the inner loop or

the outer loop?

A The inner must finish first. Then the outer loop will continue until the end, and

then start another iteration if its specified condition is still met.

Workshop
To help you solidify your understanding of this hour’s lesson, you are encouraged to try

to answer the quiz questions and finish the exercises provided in the workshop before

you move to next lesson. The answers and hints to the questions and exercises are given

in Appendix D, “Answers to Quizzes and Exercises.”

Quiz
1. Can the following while loop print out anything?

int k = 100;
while (k<100){

printf(“%c”, k);
k++;

}

2. Can the following do-while loop print out anything?

int k = 100;
do {

printf(“%c”, k);
k++;

} while (k<100);

3. Do the following two for loops have the same number of iterations?

for (j=0; j<8; j++);
for (k=1; k<=8; k++);

Working with Loops 119

7

4. Is the following for loop

for (j=65; j<72; j++) printf(“%c”, j);

equivalent to the following while loop?

int k = 65;
while (k<72)

printf(“%c”, k);
k++;

}

Exercises
1. What is the difference between the following two pieces of code?

for (i=0, j=1; i<8; i++, j++)
printf(“%d + %d = %d\n”, i, j, i+j);

for (i=0, j=1; i<8; i++, j++);
printf(“%d + %d = %d\n”, i, j, i+j);

2. Write a program that contains the two pieces of code shown in Exercise 1, and

then execute the program. What are you going to see on the screen?

3. Rewrite the program in Listing 7.1. This time, you want the while statement to

keep looping until the user enters the character K.

4. Rewrite the program shown in Listing 7.2 by replacing the do-while loop with a

for loop.

5. Rewrite the program in Listing 7.6. This time, use a while loop as the outer loop,

and a do-while loop as the inner loop.

120 Hour 7

HOUR 8
Using Conditional
Operators

Civilization advances by extending the number of important operations we

can perform without thinking about them.

—A. N. Whitehead

In Hour 6, “Manipulating Data,” you learned about some important opera-

tors in C, such as the arithmetic assignment operators, the unary minus oper-

ator, the increment and decrement operators, and the relational operators. In

this lesson you’ll learn more operators that are very important in C program-

ming, including

• The sizeof operator

• Logical operators

• Bit-manipulation operators

• The conditional operator

Measuring Data Sizes
You may remember in Hour 4, “Understanding Data Types and Keywords,” I mentioned

that each data type has its own size. Depending on the operating system and the C com-

piler you’re using, the size of a data type varies. For example, on most UNIX worksta-

tions, an integer is 32 bits long, whereas most C compilers only support 16-bit integers

on a DOS-based machine.

So, how do you know the size of a data type on your machine? The answer is that you

can measure the data type size by using the sizeof operator provided by C.

The general form of the sizeof operator is

sizeof (expression)

Here expression is the data type or variable whose size is measured by the sizeof oper-

ator. The sizeof operator evaluates the size, in bytes, of its operand. The operand of the

sizeof operator may be a C language keyword naming a data type (such as int, char, or

float), or it may be an expression which refers to a data type whose size can be deter-

mined (such as a constant or the name of a variable).

The parentheses are optional in the general form of the operator. If the expression is not

a C keyword for a data type, the parentheses can be discarded. For instance, the follow-

ing statement:

size = sizeof(int);

Places the size, in bytes, of the int data type into a variable named size.The program in

Listing 8.1 finds the sizes of the char, int, float, and double data types on my

machine.

LISTING 8.1 Using the sizeof Operator

1: /* 08L01.c: Using the sizeof operator */
2: #include <stdio.h>
3:
4: main()
5: {
6: char ch = ‘ ‘;
7: int int_num = 0;
8: float flt_num = 0.0f;
9: double dbl_num = 0.0;
10:
11: printf(“The size of char is: %d-byte\n”, sizeof(char));
12: printf(“The size of ch is: %d-byte\n”, sizeof ch);
13: printf(“The size of int is: %d-byte\n”, sizeof(int));
14: printf(“The size of int_num is: %d-byte\n”, sizeof int_num);

122 Hour 8

TYPE

15: printf(“The size of float is: %d-byte\n”, sizeof(float));
16: printf(“The size of flt_num is: %d-byte\n”, sizeof flt_num);
17: printf(“The size of double is: %d-byte\n”, sizeof(double));
18: printf(“The size of dbl_num is: %d-byte\n”, sizeof dbl_num);
19: return 0;
20: }

After this program is compiled and linked, an executable file, 08L01.exe, is created. The

following is the output printed on the screen after the executable is run on my machine:

The size of char is: 1-byte
The size of ch is: 1-byte
The size of int is: 2-byte
The size of int_num is: 2-byte
The size of float is: 4-byte
The size of flt_num is: 4-byte
The size of double is: 8-byte

The size of dbl_num is: 8-byte[ic:analysis]Line 2 in Listing 8.1 includes the header file

stdio.h for the printf() function used in the statements inside the main() function

body. Lines 6–9 declare a char variable (ch), an int variable (int_num), a float variable

(flt_num), and a double variable (dbl_num), respectively. Also, these four variables are

initialized. Note that in line 8, the initial value to flt_num is suffixed with f to specify

float. (As you learned in Hour 4, you can use f or F to specify the float type for a

floating-point number.)

Lines 11 and 12 display the size of the char data type, as well as the char variable ch.

Note that the sizeof operator is used in both line 11 and line 12 to obtain the number of

bytes the char data type or the variable ch can have. Because the variable ch is not a

keyword in C, the parentheses are discarded for the sizeof operator in line 12.

The first two lines in the output are printed out by the two statements in lines 11 and 12,

respectively. From the output, you see that the size of the char data type is 1 byte, which

is the same as the size of the variable ch. This is not surprising because the variable ch is

declared as the char variable.

Likewise, lines 13 and 14 print out the sizes of the int data type and the int variable

int_num by using the sizeof operator. You see that the size of each is 2 bytes.

Also, by using the sizeof operator, lines 15–18 give the sizes of the float data type, the

float variable flt_num, the double data type, and the double variable dbl_num, respec-

tively. The results in the output section show that the float data type and the variable

flt_num have the same size (4 bytes). The sizes of the double data type and the variable

dbl_num are both 8 bytes.

Using Conditional Operators 123

8

OUTPUT

Everything Is Logical
Now, it’s time to learn about a new set of operators: logical operators.

There are three logical operators in the C language:

&& The logical AND operator

|| The logical OR operator

! The logical NEGATION operator

The first two, the AND and OR operators, are binary operators; that is, they both take

two operands (one to the left and one to the right of the operator). The logical AND

operator (&&) is used to evaluate the truth or falsity of a pair of expressions. If either

expression evaluates to 0 (that is, logically false), the operator yields a value of 0.

Otherwise, if — and only if — both operand expressions evaluate to nonzero values, the

logical AND operator yields a value of 1 (logically true).

The logical OR operator (||) yields a value of 1 whenever one or both of the operand

expressions evaluates to nonzero (logically true). The || operator yields 0 only if both

operand expressions evaluate to 0 (false). The logical negation operator (!) is a unary

operator; that is, it only takes one operand (the expression to its right). If the operand

evaluates to any nonzero value, the ! operator yields 0 (logically false); only when

the operand expression evaluates to 0, does the operator yield 1 (logically true).

The following three sections contain examples that show you how to use the three logical

operators.

The Logical AND Operator (&&)
A general format of the logical AND operator is:

exp1 && exp2

where exp1 and exp2 are two operand expressions evaluated by the AND operator.

A good way to understand the AND operator is to look at a table that shows the values

yielded by the AND operator depending on the possible values of exp1 and exp2. See

Table 8.1, which can be called the truth table of the AND operator.

TABLE 8.1 The Values Returned by the AND Operator

exp1 exp2 && Yields

nonzero nonzero 1

nonzero 0 0

nonzero 0

0 0 0

124 Hour 8

Listing 8.2 is an example of using the logical AND operator (&&).

LISTING 8.2 Using the Logical AND Operator (&&)

1: /* 08L02.c: Using the logical AND operator */
2: #include <stdio.h>
3:
4: main()
5: {
6: int num;
7:
8: num = 0;
9: printf(“The AND operator yields: %d\n”,
10: (num%2 == 0) && (num%3 == 0));
11: num = 2;
12: printf(“The AND operator yields: %d\n”,
13: (num%2 == 0) && (num%3 == 0));
14: num = 3;
15: printf(“The AND operator yields: %d\n”,
16: (num%2 == 0) && (num%3 == 0));
17: num = 6;
18: printf(“The AND operator yields: %d\n”,
19: (num%2 == 0) && (num%3 == 0));
20:
21: return 0;
22: }

After this program is compiled and linked, an executable file, 08L02.exe, is created. The

following output is displayed after the executable is run on my machine:

The AND operator yields: 1
The AND operator yields: 0
The AND operator yields: 0
The AND operator yields: 1

In Listing 8.2, an integer variable, num, is declared in line 6 and initialized for the

first time in line 8. Lines 9 and 10 print out the value yielded by the logical AND

operator in the following expression:

(num%2 == 0) && (num%3 == 0)

Here you see two relational expressions, num%2 == 0 and num%3 == 0. In Hour 3

“Learning the Structure of a C Program,” you learned that the arithmetic operator % can

be used to obtain the remainder after its first operand is divided by the second operand.

Therefore, num%2 yields the remainder of num divided by 2. The relational expression

num%2 == 0 yields 1 if the remainder is equal to 0—that is, the value of num can be

divided by 2 completely. Likewise, if the value of num can be divided by 3, the relational

Using Conditional Operators 125

8

OUTPUT

ANALYSIS

TYPE

expression num%3 == 0 yields 1 as well. Then, according to the truth table of the &&

operator (see Table 8.1), you know that the combination of the logical AND operator (&&)

and the two relational expressions yields 1 if the two relational expressions both evaluate

to nonzero; otherwise, it yields 0.

In our case, when num is initialized to 0 in line 8, both 0%2 and 0%3 yield remainders of

zero so that the two relational expressions evaluate to 1. Therefore, the logical AND

operator yields 1.

However, when num is assigned the value of 2 or 3 as shown in lines 11 and 14, the logi-

cal AND operator in line 13 or line 16 yields 0. The reason is that 2 or 3 can not be

divided by both 2 and 3.

Line 17 then assigns num the value of 6. Because 6 is a multiple of both 2 and 3, the logi-

cal AND operator in line 19 yields 1 which is printed out by the printf() function in

lines 18 and 19.

The Logical OR Operator (||)
As mentioned earlier, the logical OR operator yields 1 (logically true) if one or both

of the expressions evaluates to a nonzero value. The || operator yields 0 if (and only if)

both expressions yield 0.

A general format of the logical OR operator is:

exp1 || exp2

where exp1 and exp2 are two operand expressions evaluated by the OR operator.

Table 8.2 is the truth table of the OR operator.

TABLE 8.2 The Values Returned by the OR Operator

exp1 exp2 || Yields

nonzero nonzero 1

nonzero 0 1

0 nonzero 1

0 0 0

The program in Listing 8.3 shows how to use the logical OR operator (||).

LISTING 8.3 Using the Logical OR Operator ||

1: /* 08L03.c: Using the logical OR operator */
2: #include <stdio.h>

126 Hour 8

TYPE

3:
4: main()
5: {
6: int num;
7:
8: printf(“Enter a single digit that can be divided\nby both 2 and 3:\n”);
9: for (num = 1; (num%2 != 0) || (num%3 != 0);)
10: num = getchar() – ‘0’;
11: printf(“You got such a number: %d\n”, num);
12: return 0;
13: }

The following is the output displayed after the executable file 08L03.exe is run on my

machine. The numbers in bold are what I entered. (The Enter key is pressed each time

after one of the numbers is entered.) In the range of 0–9, 0 and 6 are the only two num-

bers that can be completely divided by both 2 and 3:

Enter a single digit that can be divided
by both 2 and 3:
2
3
4
5
6

You got such a number: 6 In Listing 8.3, an integer variable, num, is declared in

line 6. Line 8 of Listing 8.3 prints out two headlines asking the user to enter a

single digit.

In line 9, the integer variable num is initialized in the first expression of the for state-

ment. The reason to initialize num with 1 is because 1 is such a number that is divisible

by neither 2 nor 3. This way, the for loop is guaranteed to be executed at least once.

The key part of the program in Listing 8.3 is the logical expression in the for statement:

(num%2 != 0) || (num%3 != 0)

Here the two relational expressions num%2 != 0 and num%3 != 0 are evaluated.

According to the truth table of the || operator (see Table 8.2), you know that if one of

the relational expression evaluates to nonzero, indicating in this case that the value of

num cannot be divided completely by either 2 or 3, then the logical OR expression evalu-

ates to 1, which allows the for loop to continue.

The for loop stops only if the user enters a digit that can be divided by both 2 and 3. In

other words, when both of the relational expressions evaluate to 0, the logical OR opera-

tor yields 0, which causes the termination of the for loop.

Using Conditional Operators 127

8

OUTPUT

ANALYSIS

The Logical NEGATION Operator (!)
The general format of using the logical NEGATION operator is:

!expression

where expression is the operand of the NEGATION operator.

The truth table of the NEGATION operator is shown in Table 8.3.

TABLE 8.3 The Values Returned by the ! Operator

expression Value Returned by !

nonzero 0

0 1

Now, let’s take a look at the example shown in Listing 8.4, which demonstrates how to

use the logical negation operator (!).

LISTING 8.4 Using the Logical Negation Operator (!)

1: /* 08L04.c: Using the logical negation operator */
2: #include <stdio.h>
3:
4: main()
5: {
6: int num;
7:
8: num = 7;
9: printf(“Given num = 7\n”);
10: printf(“!(num < 7) yields: %d\n”, !(num < 7));
11: printf(“!(num > 7) yields: %d\n”, !(num > 7));
12: printf(“!(num == 7) yields: %d\n”, !(num == 7));
13: return 0;
14: }

The following result is displayed by running the executable file 08L04.exe:

Given num = 7
!(num < 7) returns: 1
!(num > 7) returns: 1
!(num == 7) returns: 0

In line 8, note that an integer variable num is initialized to 7, which is then dis-

played by the printf() function in line 9.

128 Hour 8

OUTPUT

ANALYSIS

TYPE

In line 10, the relational expression num < 7 evaluates to 0 because the value of num is

not less than 7. However, by using the logical negation operator, !(num < 7) yields 1.

(Refer to the truth table of the ! operator shown in Table 8.3.)

Similarly, the logical expression !(num > 7) evaluates to 1 in line 11.

Because num has the value of 7, the relational expression num == 7 yields 1; however, the

logical expression !(num == 7) in line 12 evaluates to 0.

Manipulating Bits
In previous hours, you learned that computer data and files are made of bits. In this sec-

tion, you’ll learn about a set of operators that enable you to access and manipulate spe-

cific bits. But before we go further, let us learn more about binary and hex numbers, and

how to convert a decimal number to its binary or hex representation.

Converting Decimal to Hex or Binary
As I mentioned before, a bit is the smallest storage unit in the computer world. A bit can

only hold the values 0 and 1 (0 and 1 are used to represent the off and on states of elec-

tronic switches that make up a computer’s CPU and memory.) Each digit of a hex num-

ber consists of 4 bits. It is easy to convert a decimal number into a hex or a binary

number. Table 8.4 shows the hex numbers from 0 to F and their corresponding binary and

decimal representations.

TABLE 8.4 Numbers Expressed in Different Formats

Hex Binary Decimal

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

A 1010 10

Using Conditional Operators 129

8

continues

B 1011 11

C 1100 12

D 1101 13

E 1110 14

F 1111 15

Let’s see how to convert a decimal number into a binary or a hex number, or vice versa.

As you know, binary is a 2-based numbering system. Each digit in a binary number is

called a bit and can be 1 or 0. If the position of a bit in a binary number is n, the bit can

have a value of either 0 or 2 to the power of n. The position of a bit in a binary number is

counted from the right of the binary number. The rightmost bit is at the position of zero.

Thus, given a binary number 1000 (its hex value is 8), we can calculate its decimal value

like this:

1000 → 1 * 2
3

+ 0 * 2
2

+ 0 * 2
1

+ 0 * 2
0

→ 2
3

→ 8 (decimal)

That is, the decimal value of the binary number 1000 is 8.

Similarly, given a binary number 1110, its hex value is E, you can calculate its decimal

value like this:

1110 → 1 * 2
3

+ 1 * 2
2

+ 1 * 2
1

+ 0 * 2
0

→ 2
3

→ 14 (decimal)

In other words, the decimal value of the binary number 1110 is 14.

If you want to convert a decimal number, for example 10, to its binary counterpart, you

have the following process:

10 → 2
3

+ 2
1

→ 1 * 2
3

+ 0 * 2
2

+ 1 * 2
1

+ 0 * 2
0

→ 1010 (binary) or A (hex)

Likewise, you can convert the rest of decimal numbers in Table 8.4 to their binary coun-

terparts, or vice versa.

Using Bitwise Operators
There are six bit-manipulation operators in the C language:

Operator Description

& The bitwise AND operator

| The bitwise OR operator

^ The bitwise exclusive OR (XOR) operator

130 Hour 8

TABLE 8.4 continued

Hex Binary Decimal

Operator Description

~ The bitwise complement operator

>> The right-shift operator

<< The left-shift operator

This section and the next one give explanations and examples of the bit-manipulation

operators.

The general forms of the bitwise operators are as follows:

x & y
x | y
x ^ y
~x

Here x and y are operands.

The & operator compares each bit of x to the corresponding bit in y. If both bits are 1, 1

is placed at the same position of the bit in the result. If one or both of the bits is 0, 0 is

placed in the result.

For instance, the expression with two binary operands, 01 & 11, yields 01.

The | operator places 1 in the result if either operand is 1. For example, the expression

01 | 11 yields 11. The | operator yields a 0 bit if — and only if — both operand bits

are 0.

The ^ operator places 1 in the result if exactly one operand, but not both, is 1. Therefore,

the expression 01 ^ 11 yields 10.

Finally, the ~ operator takes just one operand. This operator reverses each bit in the

operand. For instance, ~01 gives 10.

Table 8.5 shows more examples of using the bitwise operators in decimal, hex, and binary

formats (in the left three columns). The corresponding results, in binary, hex, and decimal

formats, are listed in the right three columns. The hex numbers are prefixed with 0x.

TABLE 8.5 Examples Using Bitwise Operators

Expressions Results

Decimal Hex Binary Decimal Hex Binary

12 & 10 0x0C & 0x0A 1100 & 1010 8 0x08 1000

12 | 10 0x0C | 0x0A 1100 | 1010 14 0x0E 1110

12 ^ 10 0x0C ^ 0x0A 1100 ^ 1010 6 0x06 0110

~12 ~0x000C ~0000000000001100 65523 FFF3 1111111111110011

Using Conditional Operators 131

8

Note that the complementary value of 12 is 65523 because the unsigned integer data type

(16-bit) has the maximum number 65535. In other words, 65,523 is the result of subtract-

ing 12 from 65,535. (The unsigned data modifier is introduced in Hour 9, “Working with

Data Modifiers and Math Functions.”)

The program in Listing 8.5 demonstrates the usage of the bitwise operators.

LISTING 8.5 Using Bitwise Operators

1: /* 08L05.c: Using bitwise operators */
2: #include <stdio.h>
3:
4: main()
5: {
6: int x, y, z;
7:
8: x = 4321;
9: y = 5678;
10: printf(“Given x = %u, i.e., 0X%04X\n”, x, x);
11: printf(“ y = %u, i.e., 0X%04X\n”, y, y);
12: z = x & y;
13: printf(“x & y returns: %6u, i.e., 0X%04X\n”, z, z);
14: z = x | y;
15: printf(“x | y returns: %6u, i.e., 0X%04X\n”, z, z);
16: z = x ^ y;
17: printf(“x ^ y returns: %6u, i.e., 0X%04X\n”, z, z);
18: printf(“ ~x returns: %6u, i.e., 0X%04X\n”, ~x, ~x);
19: return 0;
20: }

After the executable file, 08L05.exe, is created and run on my computer, the following

output is shown on the screen:

Given x = 4321, i.e., 0X10E1
y = 5678, i.e., 0X162E

x & y returns: 4128, i.e., 0X1020
x | y returns: 5871, i.e., 0X16EF
x ^ y returns: 1743, i.e., 0X06CF
~x returns: 61214, i.e., 0XEF1E

In Listing 8.5, three integer variables, x, y, and z, are declared in line 6. Lines 8

and 9 set x and y to 4321 and 5678, respectively. Lines 10 and 11 then print out

the values of x and y in both decimal and hex formats. The hex numbers are prefixed

with 0X.

The statement in line 12 assigns the result of the operation made by the bitwise AND

operator (&) with the variables x and y. Then, line 13 displays the result in both decimal

and hex formats.

132 Hour 8

OUTPUT

ANALYSIS

TYPE

Lines 14 and 15 perform the operation specified by the bitwise OR operator (|) and print

out the result in both decimal and hex formats. Similarly, lines 16 and 17 give the result

of the operation made by the bitwise XOR operator (^).

Last, the statement in line 18 prints out the complementary value of x by using the bit-

wise complement operator (~). The result is displayed on the screen in both decimal and

hex formats.

Note that the unsigned integer format specifier with a minimum field width of 6, %6u,

and the uppercase hex format specifier with the minimum width of 4, %04X, are used in

the printf() function. The unsigned integer data type is used here so that the comple-

mentary value of an integer can be shown and understood easily. More details on the

unsigned data modifier are introduced in Hour 9.

Using Conditional Operators 133

8

Don’t confuse the bitwise operators & and | with the logical operators &&

and ||. For instance,

(x=1) & (y=10)

is a completely different expression from

(x=1) && (y=10)

Using Shift Operators
There are two shift operators in C. The >> operator shifts the bits of an operand to the

right; the << operator shifts the bits to the left.

The general forms of the two shift operators are

x >> y
x << y

Here x is an operand that is going to be shifted. y contains the specified number of places

to shift.

For instance, the expression 8 >> 2 tells the computer to shift the operand 8 to the right

2 bits, which yields the number 2 in decimal. The following:

8 >> 2 which is equivalent to (1 * 23 + 0 * 22 + 0 * 21 + 0 * 20) >> 2

produces the following:

(0 * 23 + 0 * 22 + 1 * 21 + 0 * 20) which is equivalent to 0010 (in the binary format) or

2 (in the decimal format).

Likewise, the 5 << 1 expression shifts the operand 5 to the left 1 bit, and yields 10 in

decimal.

The program in Listing 8.6 prints out more results by using the shift operators.

LISTING 8.6 Using the Shift Operators

1: /* 08L06.c: Using shift operators */
2: #include <stdio.h>
3:
4: main()
5: {
6: int x, y, z;
7:
8: x = 255;
9: y = 5;
10: printf(“Given x = %4d, i.e., 0X%04X\n”, x, x);
11: printf(“ y = %4d, i.e., 0X%04X\n”, y, y);
12: z = x >> y;
13: printf(“x >> y yields: %6d, i.e., 0X%04X\n”, z, z);
14: z = x << y;
15: printf(“x << y yields: %6d, i.e., 0X%04X\n”, z, z);
16: return 0;
17: }

The following output is obtained by running the executable file 08L06.exe on my

computer:

Given x = 255, i.e., 0X00FF
y = 5, i.e., 0X0005

x >> y yields: 7, i.e., 0X0007
x << y yields: 8160, i.e., 0X1FE0

Three integer variables, x, y, and z, are declared in line 6 of Listing 8.6. x is ini-

tialized to 255 in line 8; y is initialized to 5 in line 9. Then, lines 10 and 11 dis-

play the values of x and y on the screen.

The statement in line 12 shifts y bits of the operand x to the right, and then assigns the

result to z. Line 13 prints out the result of the shifting made in line 12. The result is 7 in

decimal, or 0X0007 in hex.

Lines 14 and 15 shift the operand x to the left by y bits, and display the result on the

screen too. The result of the left-shifting is 8160 in decimal, or 0x1FE0 in hex.

134 Hour 8

OUTPUT

ANALYSIS

TYPE

What Does x?y:z Mean?
The operator ?: is called the conditional operator, which is the only operator that takes

three operands. The general form of the conditional operator is

x ? y : z

Here x, y, and z are three operand expressions. Among them, x contains the test condi-

tion, and y and z represent the two possible final values of the expression. If x evaluates

to nonzero (logically true), then y is chosen; otherwise, z is the result yielded by the con-

ditional expression. The conditional operator is used as a kind of shorthand for an if

statement.

For instance, the expression

x > 0 ? ‘T’ : ‘F’

evaluates to ‘T’ if the value of x is greater than 0. Otherwise, the conditional expression

evaluates to the value ‘F’.

Listing 8.7 demonstrates the usage of the conditional operator.

LISTING 8.7 Using the Conditional Operator

1: /* 08L07.c: Using the ?: operator */
2: #include <stdio.h>
3:
4: main()
5: {

Using Conditional Operators 135

8
The operation of the shift-right operator (>>) is equivalent to dividing by

powers of two. In other words, the following:

x >> y

is equivalent to the following:

x / 2

Here x is a non-negative integer.

On the other hand, shifting to the left is equivalent to multiplying by pow-

ers of two; that is,

x << y

is equivalent to

x * 2

continues

TYPE

6: int x;
7:
8: x = sizeof(int);
9: printf(“%s\n”,
10: (x == 2)
11: ? “The int data type has 2 bytes.”
12: : “int doesn’t have 2 bytes.”);
13: printf(“The maximum value of int is: %d\n”,
14: (x != 2) ? ~(1 << x * 8 - 1) : ~(1 << 15));
15: return 0;
16: }

The following output is displayed on the screen when I run the executable file 08L07.exe

on my machine:

The int data type has 2 bytes
The maximum value of int is: 32767

In Listing 8.7, the size of the int data type is measured first in line 8 by using the

sizeof operator, and the number of bytes is assigned to the integer variable x.

Lines 9–12 contain one statement, in which the conditional operator (?:) is used to test

whether the number of bytes saved in x is equal to 2, and the result is printed. If the

x == 2 expression evaluates to nonzero, the string The int data type has 2 bytes is

printed out by the printf() function in the statement. Otherwise, the second string, int

doesn’t have 2 bytes, is displayed on the screen.

In addition, the statement in lines 11 and 12 tries to find out the maximum value of the

int data type on the current machine. The x != 2 expression is evaluated first in the

statement. If the expression returns nonzero (that is, the byte number of the int data type

is not equal to 2), the ~(1 << x * 8 - 1) expression is evaluated, and the result is cho-

sen as the return value. Here the ~(1 << x * 8 - 1) expression is a general form to

calculate the maximum value of the int data type, which is equivalent to 2

[ic:super](x * 8 - 1) - 1. (The complement operator, ~, and the shift operator, <<,

were introduced in the previous sections of this hour.)

On the other hand, if the test condition x != 2 in line 12 returns 0, which means the

value of x is indeed equal to 2, the result of the ~(1 << 15) expression is chosen. Here

you may have already figured out that ~(1 << 15) is equivalent to 215–1, which is the

maximum value that the 16-bit int data type can have.

The result displayed on the screen shows that the int data type on my machine is 2 bytes

(or 16 bits) long, and the maximum value of the int data type is 32767.

136 Hour 8

LISTING 8.7 continued

OUTPUT

ANALYSIS

Summary
In this lesson you learned the following very important logical and bit-manipulation

operators in C:

• The sizeof operator evaluates to the number of bytes that a specified data type

has. You can use this operator to measure the size of a data type on your machine.

• The logical AND operator (&&) yields 1 (logical true) only if both of its two

operand expressions) evaluate to nonzero values. Otherwise, the operator yields 0.

• The logical OR operator (||) yields 0 only if both of its two operands evaluate to

0. Otherwise, the operator yields 1.

• The logical negation operator (!) yields 0 when its operand evaluates to nonzero,

and yields 1 only if its operand evaluates to 0.

• There are six bit-manipulation operators: the bitwise AND operator (&), the bitwise

OR operator (|), the bitwise XOR operator (^), the bitwise complement operator

~), the right-shift operator (>>), and the left-shift operator (<<).

• The conditional operator (?:) is the only operator in C that can take three

operands.

In the next lesson you’ll learn about the data type modifiers in the C language.

Q&A
Q Why do we need the sizeof operator?

A The sizeof operator can be used to measure the sizes of all data types defined in

C. When you write a portable C program that needs to know the size of an integer

variable, it’s a bad idea to hard-code the size based on the machine you are cur-

rently using. The better way to tell the program the size of the variable is to use the

sizeof operator, which yields the size of the integer variable at runtime.

Q What’s the difference between | and ||?

A | is the bitwise OR operator that takes two operands. The | operator compares

each bit of one operand to the corresponding bit in another operand. If both bits are

0, 0 is placed at the same position of the bit in the result. Otherwise, 1 is placed in

the result.

On the other hand, ||, as the logical OR operator, requires two operands

(or expressions). The operator yields 0 only if both of its operands evaluate to 0.

Otherwise, the operator yields 1.

Using Conditional Operators 137

8

Q Why is 1 << 3 equivalent to 1 * 23?

A The 1 << 3 expression tells the computer to shift 3 bits of the operand 1 to the

left. The binary format of the operand is 0001. (Note that only the lowest four bits

are shown here.) After being shifted 3 bits to left, the binary number becomes

1000, which is equivalent to 1 * 23+0 * 22+0 * 21+0 * 20; that is, 1 * 23.

Q What can the conditional operator (?:) do?

A If there are two possible answers under certain conditions, you can use the ?: oper-

ator to pick up one of the two answers based on the result made by testing the con-

ditions. For instance, the expression (age > 65) ? “Retired” : “Not retired”

tells the computer that if the value of age is greater than 65, the string of Retired

should be chosen; otherwise, Not retired is chosen.

Workshop
To help solidify your understanding of this hour’s lesson, you are encouraged to answer

the quiz questions and finish the exercises provided in the workshop before you move to

the next lesson. The answers and hints to the questions and exercises are given in

Appendix D, “Answers to Quiz Questions and Exercises.”

Quiz
1. What do the (x=1) && (y=10) and (x=1) & (y=10) expressions yield, respec-

tively?

2. Given x = 96, y = 1, and z = 69, to what does the expression !y ? x == z : y

evaluate?

3. If you have two int variables x and y, with x set to the binary value

0011000000111001 and y set to the binary value 1100111111000110, what values

are yielded by the two expressions ~x and ~y?

4. Given x=9, what does (x%2==0)||(x%3==0) yield? How about

(x%2==0)&&(x%3==0)?

5. Is 8 >> 3 equivalent to 8 / 23? How about 1 << 3?

Exercises
1. Given x = 0xEFFF and y = 0x1000 (that is, EFFF and 1000 as hex values), what

hex values do you get by evaluating ~x and ~y?

2. Taking the values of x and y assigned in Exercise 1, write a program that prints

out the values of !x and !y by using both the %d and %u formats in the printf()

function.

138 Hour 8

3. Given x = 123 and y = 4, write a program that displays the results of the expres-

sions x << y and x >> y.

4. Write a program that shows the values (in hex) of the expressions 0xFFFF^0x8888,

0xABCD & 0x4567, and 0xDCBA | 0x1234.

5. Use the ?: operator and the for statement to write a program that keeps taking the

characters entered by the user until the character q is accounted. (Hint: Put x!=’q’

? 1 : 0 expression as the second expression in a for statement.)

Using Conditional Operators 139

8

HOUR 9
Working with Data
Modifiers and Math
Functions

If at first you don’t succeed, transform your data.

—Murphy’s Laws of Computers

In Hour 4, “Understanding Data Types and Keywords,” you learned about

several data types, such as char, int, float, and double, in the C language.

In this hour, you’ll learn about four data modifiers that enable you to have

greater control over the data. The C keywords for the four data modifiers are

• signed

• unsigned

• short

• long

You’re also going to learn about several mathematical functions provided by the C

language, such as

• The sin() function

• The cos() function

• The tan() function

• The pow() function

• The sqrt() function

Enabling or Disabling the Sign Bit
As you know, it’s very easy to express a negative number in decimal. All you need to do

is put a minus sign in front of the absolute value of the number. (The absolute value

being the distance of the number from zero.) But how does the computer represent a

negative number in the binary format?

Normally, one bit can be used to indicate whether the value of a number represented in

the binary format is negative. This bit is called the sign bit. The following two sections

introduce two data modifiers, signed and unsigned, that can be used to enable or disable

the sign bit.

It should be noted that some computers may not express negative numbers in the manner

described; in fact the C language standard makes no requirement that a sign bit be used,

although this is a common method. The important thing to understand is the differences

between signed and unsigned data types.

The signed Modifier
For integers, the leftmost bit can be used as the sign bit. For instance, if the int data type

is 16 bits long and the rightmost bit is counted as bit 0, you can use bit 15 as a sign bit.

When the sign bit is set to 1, the C compiler knows that the value represented by the data

variable is negative.

There are several ways to represent a negative value of the float or double data types.

The implementations of the float and double data types are beyond the scope of this

book. You can refer to Kernighan and Ritchie’s book The C Programming Language for

more details on the implementations of negative values of the float or double type.

The C language provides a data modifier, signed, that can be used to indicate to the

compiler that the integer data types (char, int, short int, and long int) use the sign

142 Hour 9

bit. (The short and long modifiers are introduced later in this chapter). By default, all the

integer data types except the char data type are signed quantities. But the ANSI standard

does not require the char data type be signed; it’s up to the compiler vendors. Therefore,

if you want to use a signed character variable, and make sure the compiler knows it, you

can declare the character variable like this:

signed char ch;

so that the compiler knows that the character variable ch is signed, which means the vari-

able can hold both negative and positive values. If the char type is 8 bits in length, then a

signed char would hold values from -128 (that is, 2
7

) to 127 (2
7

-1). By contrast, an

unsigned character in this case would range from 0 to 255 (2
8

-1).

The unsigned Modifier
The C language also gives you the unsigned modifier, which can be used to tell the C

compiler that the specified data type is only capable of holding non-negative values.

Like the signed modifier, the unsigned modifier is meaningful only to the integer data

types (char, int, short int, and long int).

For instance, the declaration

unsigned int x;

tells the C compiler that the integer variable x can only assume positive values from 0

to 65535 (that is, 2
16

-1), if the int data type is 16 bits long; a (signed) int would hold

values from -32768 (-2
15

-1) to 32767 (2
15

).

In fact, unsigned int is equivalent to unsigned (by itself) according to the ANSI

standard. In other words, unsigned int x; is the same as unsigned x;.

Also, the ANSI standard allows you to indicate that a constant is of type unsigned by

suffixing u or U to the constant. For instance,

unsigned int x, y;
x = 12345U;
y = 0xABCDu;

Here, the unsigned integer constants 12345U and 0xABCDu are assigned to variables x and

y, respectively.

The program in Listing 9.1 is an example of using the signed and unsigned modifiers.

Working with Data Modifiers and Math Functions 143

9

LISTING 9.1 Modifying Data with signed and unsigned

1: /* 09L01.c: Using signed and unsigned modifiers */
2: #include <stdio.h>
3:
4: main()
5: {
6: signed char ch;
7: int x;
8: unsigned int y;
9:
10: ch = 0xFF;
11: x = 0xFFFF;
12: y = 0xFFFFu;
13: printf(“The decimal of signed 0xFF is %d.\n”, ch);
14: printf(“The decimal of signed 0xFFFF is %d.\n”, x);
15: printf(“The decimal of unsigned 0xFFFFu is %u.\n”, y);
16: printf(“The hex of decimal 12345 is 0x%X.\n”, 12345);
17: printf(“The hex of decimal -12345 is 0x%X.\n”, -12345);
18: return 0;
19: }

On my machine, the executable file of the program in Listing 9.1 is named 09L01.exe.

(Note that when you compile the program in Listing 9.1, you may see a warning mes-

sage regarding the assignment statement ch = 0xFF; in line 10 due to the fact that ch is

declared as a signed char variable. You can ignore the warning message.)

The following is the output displayed on the screen after I run the executable on my

computer:

The decimal of signed 0xFF is -1
The decimal of signed 0xFFFF is -1.
The decimal of unsigned 0xFFFFu is 65535.
The hex of decimal 12345 is 0x3039.
The hex of decimal -12345 is 0xCFC7.

As you see in Listing 9.1, line 6 declares a signed char variable, ch. The int

variable x and the unsigned int variable y are declared in lines 7 and 8, respec-

tively. The three variables, ch, x, and y, are initialized in lines 10–12. Note that in line

12, u is suffixed to 0xFFFF to indicate that the constant is an unsigned integer.

The statement in line 13 displays the decimal value of the signed char variable ch. The

output on the screen shows that the corresponding decimal value of 0xFF is -1 for the

signed char variable ch.

Lines 14 and 15 print out the decimal values of the int variable x (which is signed by

default) and the unsigned int variable y, respectively. Note that for the variable y, the

unsigned integer format specifier %u is used in the printf() function in line 15.

144 Hour 9

OUTPUT

ANALYSIS

(Actually, you might recall that %u was used to specify the unsigned int data type as

the display format in the previous hour.)

Based on the output, you see that 0xFFFF is equal to -1 for the signed int data type, and

65535 for the unsigned int data type. Here, the integer data type is 16 bits long.

Lines 16 and 17 print out 0x3039 and 0xCFC7, which are the hex formats of the decimal

values of 12345 and -12345, respectively. According to the method mentioned in the last

section, 0xCFC7 is obtained by adding 1 to the complemented value of 0x3039.

You may receive different results from this example, depending on the width of the

various data types on your system. The important thing to understand is the difference

between signed and unsigned data types.

Changing Data Sizes
Sometimes, you want to reduce the memory taken by variables, or you need to increase

the storage space of certain data types. Fortunately, the C language gives you the flexibil-

ity to modify sizes of data types. The two data modifiers, short and long, are introduced

in the following two sections.

The short Modifier
A data type can be modified to take less memory by using the short modifier. For

instance, you can apply the short modifier to an integer variable that is 32 bits long,

which might reduce the memory taken by the variable to as little as 16 bits.

You can use the short modifier like this:

short x;

or

unsigned short y;

By default, a short int data type is a signed number. Therefore, in the short x;

statement, x is a signed variable of short integer.

The long Modifier
If you need more memory to keep values from a wider range, you can use the long

modifier to define a data type with increased storage space.

For instance, given an integer variable x that is 16 bits long, the declaration

long int x;

increases the size of x to at least 32 bits.

Working with Data Modifiers and Math Functions 145

9

The ANSI standard allows you to indicate that a constant has type long by suffixing l or

L to the constant:

long int x, y;
x = 123456789l;
y = 0xABCD1234L;

Here, the constants of the long int data type, 123456789l and 0xABCD1234L, are

assigned to variables x and y, respectively.

Also, you can declare a long integer variable simply like this:

long x;

which is equivalent to

long int x;

Listing 9.2 contains a program that can print out the numbers of bytes provided by the C

compiler used to compile the program for different modified data types.

LISTING 9.2 Modifying Data with short and long

1: /* 09L02.c: Using short and long modifiers */
2: #include <stdio.h>
3:
4: main()
5: {
6: printf(“The size of short int is: %d.\n”,
7: sizeof(short int));
8: printf(“The size of long int is: %d.\n”,
9: sizeof(long int));
10: printf(“The size of float is: %d.\n”,
11: sizeof(float));
12: printf(“The size of double is: %d.\n”,
13: sizeof(double));
14: printf(“The size of long double is: %d.\n”,
15: sizeof(long double));
16: return 0;
17: }

I obtain the following output after I run the executable 09L02.exe on my computer:

The size of short int is: 2.
The size of long int is: 4.
The size of float is: 4.
The size of double is: 8.
The size of long double is: 10.

146 Hour 9

OUTPUT

In Listing 9.2, the sizeof operator and printf() function are used to measure

the sizes of the modified data types and display the results on the screen.

For instance, lines 6 and 7 obtain the size of the short int data type and print out the

number of bytes, 2, on the screen. From the output, you know that the short int data

type is 2 bytes long on my machine.

Likewise, lines 8 and 9 find the size of the long int data type is 4 bytes long, which is

the same length as the float data type obtained in lines 10 and 11.

Lines 12 and 13 obtain the size of the double data type, which is 8 bytes on my

machine. Then, after being modified by the long modifier, the size of the double data

type is increased to 10 bytes (that is, 80 bits), which is printed out by the printf() call

in lines 14 and 15.

As with the previous example, your results will likely be different if your system

supports data widths that are different from the ones on my machine. By running this

program on your own machine, you can determine the widths of these data types for

your system.

Adding h, l, or L to printf and fprintf Format
Specifiers
The printf and fprintf functions need to know the exact data type of the arguments

passed to them in order to properly evaluate those arguments and print their values in a

meaningful way. The format string for the printf and fprintf functions uses the con-

version specifiers d, i, o, u, x, or X to indicate that the corresponding argument is an

integer, and is of type int or unsigned int.

You can add h into the integer format specifier (like this: %hd, %hi, or %hu) to specify that

the corresponding argument is a short int or unsigned short int.

On the other hand, using %ld or %Ld specifies that the corresponding argument is long

int. %lu or %Lu is then used for the long unsigned int data.

The program in Listing 9.3 shows the usage of %hd, %lu, and %ld.

LISTING 9.3 Using %hd, %ld, and %lu

1: /* 09L03.c: Using %hd, %ld, and %lu specifiers */
2: #include <stdio.h>
3:
4: main()
5: {
6: short int x;

Working with Data Modifiers and Math Functions 147

9

ANALYSIS

continues

7: unsigned int y;
8: long int s;
9: unsigned long int t;
10:
11: x = 0xFFFF;
12: y = 0xFFFFU;
13: s = 0xFFFFFFFFl;
14: t = 0xFFFFFFFFL;
15: printf(“The short int of 0xFFFF is %hd.\n”, x);
16: printf(“The unsigned int of 0xFFFF is %u.\n”, y);
17: printf(“The long int of 0xFFFFFFFF is %ld.\n”, s);
18: printf(“The unsigned long int of 0xFFFFFFFF is %lu.\n”, t);
19: return 0;

20: }

After the executable file 09L03.exe is created and run on my machine, the following

output is displayed on the screen:

The short int of 0xFFFF is -1.
The unsigned int of 0xFFFF is 65535.
The long int of 0xFFFFFFFF is -1.
The unsigned long int of 0xFFFFFFFF is 4294967295

There are four data types declared in Listing 9.3: the short int variable x, the

unsigned int variable y, the long int variable s, and the unsigned long int

variable t. The four variables are initialized in lines 6–9.

To display the decimal values of x, y, s, and t, the format specifiers %hd, %u, %ld, and

%lu are used, respectively, in lines 15–18 to convert the corresponding hex numbers to

decimal numbers. The output from the program in Listing 9.3 shows that values con-

tained by x, y, s, and t have been correctly displayed on the screen.

Mathematical Functions in C
Basically, the math functions provided by the C language can be classified into three

groups:

• Trigonometric and hyperbolic functions, such as acos(), cos(), and cosh().

• Exponential and logarithmic functions, such as exp(), pow(), and log10().

• Miscellaneous math functions, such as ceil(), fabs(), and floor().

You have to include the header file math.h in your C program before you can use any

math functions defined in the header file.

The following two sections introduce several math functions and describe how to use

them in your programs.

148 Hour 9

LISTING 9.3 continued

OUTPUT

ANALYSIS

Calling sin(), cos(), and tan()
You may skip the following two sections if you are not a math fan, as they are not vital

to understanding the C language itself. However, if you do need to make mathematical

calculations, you may appreciate that C gives you this set of math functions.

For instance, given an angle x in radians, the sin expression returns the sine of the angle.

The following formula can be used to convert the value of an angle in degrees into the

value in radians:

radians = degree * (3.141593 / 180.0).

Here, 3.141593 is the approximate value of pi. If needed, you can use more decimal

digits from pi.

Now, let’s look at the syntax of the sin(), cos(), and tan() functions.

The syntax for the sin() function is

#include <math.h>
double sin(double x);

Here, the double variable x contains the value of an angle in radians. The sin() function

returns the sine of x in the double data type.

The syntax for the cos() function is

#include <math.h>
double cos(double x);

Here, the double variable x contains the value of an angle in radians. The cos() function

returns the cosine of x in the double data type.

The syntax for the tan() function is

#include <math.h>
double tan(double x);

Here, the double variable x contains the value of an angle in radians. The tan() function

returns the tangent of x in the double data type.

Listing 9.4 demonstrates how to use the sin(), cos(), and tan() functions.

LISTING 9.4 Calculating Trigonometric Values with sin(), cos(), and tan()

1: /* 09L04.c: Using sin(), cos(), and tan() functions */
2: #include <stdio.h>
3: #include <math.h>
4:

Working with Data Modifiers and Math Functions 149

9

S
Y

N
TA

X
S

Y
N

TA
X

S
Y

N
TA

X

continues

5: main()
6: {
7: double x;
8:
9: x = 45.0; /* 45 degree */
10: x *= 3.141593 / 180.0; /* convert to radians */
11: printf(“The sine of 45 is: %f.\n”, sin);
12: printf(“The cosine of 45 is: %f.\n”, cos);
13: printf(“The tangent of 45 is: %f.\n”, tan);
14: return 0;
15: }

The following output is displayed on the screen when the executable file 09L04.exe is

executed:

The sine of 45 is: 0.707107.
The cosine of 45 is: 0.707107.
The tangent of 45 is: 1.000000.

Note that the header file math.h is included in line 3, which is required by the C

math functions.

The double variable x in Listing 9.4 is initialized with 45.0 in line 9. Here, 45.0 is the

value of the angle in degrees, which is converted into the corresponding value in radians

in line 10.

Then, the statement in line 11 calculates the sine of x by calling the sin() function

and prints out the result on the screen. Similarly, line 12 obtains the cosine of x and

shows it on the screen as well. Because x contains the value of a 45-degree angle, it’s not

surprising to see that both the sine and cosine values are the same, about 0.707107.

Line 13 gives the tangent value of x by using the tan() function. As you might know, the

tangent of x is equal to the sine of x divided by the cosine of x. Because the sine of a 45-

degree angle is the same as the cosine of a 45-degree angle, the tangent of a 45-degree

angle is equal to 1. The result (in the floating-point format) of 1.000000, in the third line

of the listing’s output, proves it.

To make things simpler, you could declare a variable PI initialized to 3.141593, and

another variable initialized to 180.0, and use those in your calculations. Or, simply

declare a single constant initialized to the result of 3.141593/180.0.

Calling pow() and sqrt()
The pow() and sqrt() functions are two other useful math functions in C. Unlike some

other languages, C has no intrinsic operator for raising a number to a power.

150 Hour 9

OUTPUT

ANALYSIS

LISTING 9.4 continued

The syntax for the pow() function is

#include <math.h>
double pow(double x, double y);

Here, the value of the double variable x is raised to the power of y. The pow() function

returns the result in the double data type.

The syntax for the sqrt() function is

#include <math.h>
double sqrt(double x);

Here, the sqrt() function returns the non-negative square root of x in the double data

type. An error occurs if x is negative.

If you pass 0.5 to the pow() function as its second argument, and x contains a non-nega-

tive value, the two expressions, pow(x, 0.5) and sqrt, are equivalent.

Now, take a look at how to call the pow() and sqrt() functions in the program shown in

Listing 9.5.

LISTING 9.5 Applying the pow() and sqrt() Functions

1: /* 09L05.c: Using pow() and sqrt() functions */
2: #include <stdio.h>
3: #include <math.h>
4:
5: main()
6: {
7: double x, y, z;
8:
9: x = 64.0;
10: y = 3.0;
11: z = 0.5;
12: printf(“pow(64.0, 3.0) returns: %7.0f\n”, pow(x, y));
13: printf(“sqrt(64.0) returns: %2.0f\n”, sqrt);
14: printf(“pow(64.0, 0.5) returns: %2.0f\n”, pow(x, z));
15: return 0;
16: }

Then, the following output is displayed on the screen after the executable file 09L05.exe

is executed:

pow(64.0, 3.0) returns: 262144
sqrt(64.0) returns: 8
pow(64.0, 0.5) returns: 8

The three double variables in Listing 9.5, x, y, and z, are initialized with 64.0,

3.0, and 0.5, respectively, in lines 9–11.

Working with Data Modifiers and Math Functions 151

9

S
Y

N
TA

X
S

Y
N

TA
X

OUTPUT

ANALYSIS

The pow() function in line 12 takes x and y and then calculates the value of x raised to

the power of y. Because the result is a double, yet I know the fractional part will be

all decimal digits of 0s, the format specifier %7.0f is used in the printf() function to

convert only the non-fractional part of the value. The result is shown on the screen as

262144.

In line 13, the non-negative square root of x is calculated by calling the sqrt() function.

As in line 12, the format specifier %2.0f is used in line 13 to convert the non-fractional

part of the value returned from the sqrt() function because the fractional part consists of

all 0s. As you see in the output, the non-negative square root of x is 8.

As I mentioned earlier, the expression pow(x, 0.5) is equivalent to the expression sqrt.

Thus, it’s no surprise to see that pow(x, z) in the statement of line 14 produces the same

result as sqrt does in line 13.

152 Hour 9

All floating-point calculations, including both the float and double data

types, are done in double-precision arithmetic. That is, a float data vari-

able must be converted to a double in order to carry on the calculation.

After the calculation, the double has to be converted back to a float

before the result can be assigned to the float variable. Therefore, a float

calculation may take more time.

The main reason that C supports the float data type at all is to save mem-

ory space because the double data type takes twice as much memory space

for storage as the float data type does. In many cases, precision beyond

what is provided by float is simply unnecessary.

Summary
In this lesson you learned the following important modifiers and math functions:

• The signed modifier can be used to declare char and int data types that are able

to hold negative as well as non-negative values.

• All int variables in C are signed by default.

• The unsigned modifier can be used to declare char and int data types that are not

able to hold negative values. Doing this effectively doubles the range of positive

values that the variable can hold.

• The memory space taken by a data variable may be reduced or increased by using

the short or long data modifier, respectively.

• There is a set of C library functions, such as sin(), cos(), and tan(), that can be

used to perform trigonometric or hyperbolic computations.

• There is another group of math functions in C—for example, pow()—that can

perform exponential and logarithmic calculation.

• The sqrt() function returns a non-negative square root. The expression sqrt is

equivalent to the pow(x, 0.5) expression, if x has a non-negative value. You

cannot pass a negative value to the sqrt() function, as this will cause an error.

• The header file math.h must be included in your C program if you call any math

functions declared in that header file.

In the next lesson you’ll learn several very important control flow statements in C.

Q&A
Q Which bit can be used as the sign bit in an integer?

A The leftmost bit can be used as the sign bit for an integer. For instance, assume the

int data type is 16 bits long. If you count the bit position from right to left, and the

first bit counted is bit 0, then bit 15 is the leftmost bit that can be used as the sign

bit.

Q What can the %lu format specifier do?

A The %lu format specifier can be used in a printf() string to convert the corre-

sponding argument to the unsigned long int data type. In addition, the %lu for-

mat specifier is equivalent to %Lu.

Q When do I use short and long?

A If you need to save memory space, and you know the value of an integer data vari-

able stays within a smaller range, you can try to use the short modifier to tell the

C compiler to reduce the default memory space assigned to the variable, for

instance, from 32 bits to 16 bits.

On the other hand, if a variable has to hold a number that is beyond the current

range of a data type, you can use the long modifier to increase the storage space of

the variable in order to hold the number.

Q Does the sin() function take a value in degrees or in radians?

A Like other trigonometric math functions in C, the sin() function takes a value in

radians. If you have an angle in degrees, you have to convert it into the form of

radians. The formula is:

radians = degree * (3.141593 / 180.0).

Working with Data Modifiers and Math Functions 153

9

Workshop
To help solidify your understanding of this hour’s lesson, you are encouraged to answer

the quiz questions and finish the exercises provided in the workshop before you move to

the next lesson. The answers and hints to the questions and exercises are given in

Appendix D, “Answers to Quiz Questions and Exercises.”

Quiz
1. Given an int variable x and an unsigned int variable y, as well as x = 0x8765

and y = 0x8765, and if the leftmost bit is used as a sign bit, is x equal to y?

2. What should you do if you try to assign a large value to an int variable, but the

value you assign is too large and you end up with a negative number that you

didn’t expect?

3. Which format specifier, %ld or %lu, should be used to specify an unsigned long

int variable?

4. What is the name of the header file you have to include if you’re calling some C

math functions from your C program?

Exercises
1. Given the following statements,

int x;
unsigned int y;
x = 0xAB78;
y = 0xAB78;

write a program to display the decimal values of x and y on the screen.

2. Write a program to measure the sizes of short int, long int, and long double

on your machine.

3. Write a program to multiply two signed int variables with positive values, and

display the result as a long int.

4. Write a program to display negative integers in hex format along with their signed

int equivalents.

5. Given an angle of 30 degrees, write a program to calculate its sine and tangent

values.

6. Write a program to calculate the non-negative square root of 0x19A1.

154 Hour 9

HOUR 10
Controlling Program
Flow

It is harder to command than to obey.

—F. Nietzsche

In Hour 7, “Working with Loops,” you learned to use the while, do-while,

and for statements to do the same things over and over. These three state-

ments can be grouped into the category of looping statements that are used

for control flow in C.

In this lesson you’ll learn about the statements that belong to another group

of the control flow statements—conditional branching (or jumping), such as

• The if statement

• The if-else statement

• The switch statement

• The break statement

• The continue statement

• The goto statement

Always Saying “if…”
If life were a straight line, it would be very boring. The same thing is true for program-

ming. It would be too dull if the statements in your program could only be executed in

the order in which they appear.

In fact, an important task of a program is to instruct the computer to branch (that is,

jump) to different portions of the code and work on different jobs whenever the specified

conditions are met.

However, in most cases, you don’t know in advance what will come next. What you do

know is that something is bound to happen if certain conditions are met. Therefore, you

can just write down tasks and conditions in the program. The decisions of when to per-

form the tasks are made by the conditional branching statements.

In C, the if statement is the most popular conditional branching statement; it can be

used to evaluate the conditions as well as to make the decision whether the block of code

controlled by the statement is going to be executed.

The general form of the if statement is

if (expression) {
statement1;

statement2;

.

.

.
}

Here expression is the conditional criterion. If expression evaluates to a nonzero value,

the statements inside the braces ({ and }), such as statement1 and statement2, are exe-

cuted. If expression evaluates to a value of zero, the statements are skipped.

Note that the braces ({ and }) form a block of statements that is under the control of the

if statement. If there is only one statement inside the block, the braces can be omitted.

The parentheses ((and)), however, must be always used to enclose the conditional

expression.

For instance, the following expression:

if (x > 0.0)
printf(“The square root of x is: %f\n”, sqrt);

tells the computer that if the value of the floating point variable x is greater than 0.0

(that is, positive), it should calculate the square root of x by calling the sqrt() function,

and then print out the result. Here the conditional criterion is the relational expression

156 Hour 10

x > 0.0, which evaluates to a value of 1 (logically true) if x is greater than zero, and

evaluates to a value of 0 (logically false) if x is less than or equal to zero.

Listing 10.1 gives you another example of using the if statement.

LISTING 10.1 Using the if Statement in Decision Making

1: /* 10L01.c Using the if statement */
2: #include <stdio.h>
3:
4: main()
5: {
6: int i;
7:
8: printf(“Integers that can be divided by both 2 and 3\n”);
9: printf(“(within the range of 0 to 100):\n”);
10: for (i=0; i<=100; i++){
11: if ((i%2 == 0) && (i%3 == 0))
12: printf(“ %d\n”, i);
13: }
14: return 0;
15: }

After 10L01.exe, the executable of the program in Listing 10.1, is created and run, the

following output is displayed on the screen:

Integers that can be divided by both 2 and 3
(within the range of 0 to 100):

0
6
12
18
24
30
36
42
48
54
60
66
72
78
84
90
96

As you see in Listing 10.1, line 6 declares an integer variable, i. Lines 8 and 9

print out two headlines. Starting in line 10, the for statement keeps looping 101

times.

Controlling Program Flow 157

10

OUTPUT

ANALYSIS

Within the for loop, the if statement in lines 11 and 12 evaluates the logical expression

(i%2 == 0) && (i%3 == 0). If the expression evaluates to 1 (that is, the value of i can

be divided by both 2 and 3 completely), the value of i is displayed on the screen by

calling the printf() function in line 12. Otherwise, the statement in line 12 is skipped.

Note that the braces ({ and }) are not used because there is only one statement under the

control of the if statement.

The result shown on the screen gives all integers within the range of 0 to 100 that can be

evenly divided by both 2 and 3.

The if-else Statement
In the if statement, when the conditional expression evaluates to a nonzero value, the

computer will jump to the statements controlled by the if statement and execute them

right away. If the expression evaluates to a value of zero, the computer will ignore those

statements controlled by the if statement.

You will often want the computer to execute an alternate set of statements when the con-

ditional expression of the if statement evaluates to logically false. To do so, you can use

another conditional branching statement in C—the if-else statement.

As an expansion of the if statement, the if-else statement has the following form:

if (expression) {
statement1;

statement2;

.

.

.
}
else {

statement_A;

statement_B;

.

.

.
}

If expression evaluates to a nonzero value, the statements controlled by if, including

statement1 and statement2, are executed. However, if expression evaluates to a value

of zero, statement_A and statement_B following the else keyword are executed

instead.

The program in Listing 10.2 shows how to use the if-else statement.

158 Hour 10

LISTING 10.2 Using the if-else Statement

1: /* 10L02.c Using the if-else statement */
2: #include <stdio.h>
3:
4: main()
5: {
6: int i;
7:
8: printf(“Even Number Odd Number\n”);
9: for (i=0; i<10; i++)
10: if (i%2 == 0)
11: printf(“%d”, i);
12: else
13: printf(“%14d\n”, i);
14:
15: return 0;
16: }

The following result is obtained by running the executable file 10L02.exe:

Even Number Odd Number
0 1
2 3
4 5
6 7
8 9

Line 6 of Listing 10.2 declares an integer variable, i. The printf() function in

line 8 displays a headline on the screen.

The integer variable i is initialized in the first expression of the for statement in line 9.

Controlled by the for statement, the if-else statement in lines 10–13 is executed 10

times. According to the if-else statement, the printf() call in line 11 prints out even

numbers if the relational expression i%2 == 0 in line 10 evaluates to 1 (logically true). If

the relational expression evaluates to 0 (logically false), the printf() call controlled by

the else keyword in line 13 outputs odd numbers to the standard output.

Because the if-else statement is treated as a single statement, the braces { and } are not

needed to form a block of statements under the for statement. Likewise, there are no

braces used in the if-else statement because the if and else keywords each control a

single statement in lines 11 and 13 respectively.

Note that the minimum width of 14 is specified in the printf() function in line 13, so

the output of the odd numbers is listed to the right side of the even numbers, as you can

see in the output section. The program in Listing 10.2 checks numbers in a range of 0 to

9, and shows that 0, 2, 4, 6, and 8 are even numbers, and 1, 3, 5, 7, and 9 are odd ones.

Controlling Program Flow 159

10

OUTPUT

ANALYSIS

Nested if Statements
As you saw in the previous sections, one if statement enables a program to make one

decision. In many cases, a program has to make a series of related decisions. For this

purpose, you can use nested if statements.

Listing 10.3 demonstrates the usage of nested if statements.

LISTING 10.3 Using Nested if Statements

1: /* 10L03.c Using nested if statements */
2: #include <stdio.h>
3:
4: main()
5: {
6: int i;
7:
8: for (i=-5; i<=5; i++){
9: if (i > 0)
10: if (i%2 == 0)
11: printf(“%d is an even number.\n”, i);
12: else
13: printf(“%d is an odd number.\n”, i);
14: else if (i == 0)
15: printf(“The number is zero.\n”);
16: else
17: printf(“Negative number: %d\n”, i);
18: }19: return 0;
20: }

After running the executable file 10L03.exe, I obtain the following output:

Negative number: -5
Negative number: -4
Negative number: -3
Negative number: -2
Negative number: -1
The number is zero.
1 is an odd number.
2 is an even number.
3 is an odd number.
4 is an even number.
5 is an odd number.

Listing 10.3 contains a for loop, starting in line 8 and ending in line 18.

According to the expressions of the for statement in line 8, any tasks controlled

by the for statement are executed up to 11 times.

160 Hour 10

OUTPUT

ANALYSIS

First, a decision has to be made based on the evaluation of the relational expression i > 0

in the if statement of line 9. The i > 0 expression is used to test whether the value of i

is positive or anything else (negative numbers including zero.) If the expression evaluates

to 1, the computer jumps to the second (that is, nested) if statement in line 11.

Note that line 11 contains another relational expression, i%2 == 0, which tests whether

the integer variable i is even or odd. Therefore, the second decision of displaying even

numbers or odd numbers has to be made according to the evaluation of the second rela-

tional expression, i%2 == 0. If this evaluation yields 1, the printf() call in line 11

prints out an even number. Otherwise, the statement in line 13 is executed, and an odd

number is shown on the screen.

The computer branches to line 14 if the i > 0 expression from line 9 evaluates to 0; that

is, if the value of i is not greater than 0. In line 14, another if statement is nested within

an else phrase, and the relational expression i == 0 is evaluated. If i == 0 evaluates to

logically true, which means i does contain the value of zero, the string The number is

zero is displayed on the screen. Otherwise, the value of i must be negative, according to

the previous evaluation of the i > 0 expression in line 9. The statement in line 17 then

outputs the negative number to the standard output.

As you can see in the example, the value of i is within the range of 5 to -5. Thus, -5, -4,

-3, -2, and -1 are printed out as negative numbers. Then a message is printed when i is

zero, and then the odd numbers 1, 3, and 5, as well as the even numbers 2 and 4 are

printed out.

The switch Statement
In the last section, you saw that nested if statements are used when there are successive,

related decisions to be made. However, the nested if statements can become very

complex if there are many decisions that need to be made. Sometimes, a programmer

will have problems just keeping track of a series of complex nested if statements.

Fortunately there is another statement in C, the switch statement, which you can use to

make unlimited decisions or choices based on the value of a conditional expression and

specified cases.

The general form of the switch statement is

switch (expression) {
case constant-expression1:

statement1;

case constant-expression2:

Controlling Program Flow 161

10

statement2;

.

.

.
default:

statement-default;
}

Here the conditional expression, expression, is evaluated first. The switch statement will

then jump to the proper case label and execute, in order, whatever statements follow. If

expression yields a value equal to the constant expression constant-expression1, the

statement statement1 is executed, followed by statement2 and everything on down to

statement-default. If the value yielded by expression is the same as the value of

constant-expression2, statement2 is executed first. If, however, the value of expression

is not equal to any values of the constant expressions labeled by the case keyword, the state-

ment (statement-default) following the default keyword is executed.

You have to use the case keyword to label each case. Note that each case label ends

with a colon, not a semicolon. This is the syntax for labels in C. The default keyword

should be used for the “default” case — that is, when no case label matches with the

conditional expression. Note that none of the constant expressions associated with case

labels may be identical within the switch statement.

162 Hour 10

In C, a label is used as a kind of bookmark in your code for use by the condi-

tional branching statement. A label is not, itself, a statement; rather, it

points to a place to jump when you want to depart from the normal top-

down flow of execution.

The proper syntax for a label is a unique identifier followed by a colon —

not a semicolon . In this chapter you will see several ways to use labels, as

well as the reserved label names case expression: and default:.

The program in Listing 10.4 gives you an example of using the switch statement. The

program also demonstrates an important feature of the switch statement.

LISTING 10.4 Using the switch Statement

1: /* 10L04.c Using the switch statement */
2: #include <stdio.h>
3:
4: main()
5: {
6: int day;

7:
8: printf(“Please enter a single digit for a day\n”);
9: printf(“(within the range of 1 to 3):\n”);
10: day = getchar();
11: switch (day){
12: case ‘1’:
13: printf(“Day 1\n”);
14: case ‘2’:
15: printf(“Day 2\n”);
16: case ‘3’:
17: printf(“Day 3\n”);
18: default:
19: ;
20: }
21: return 0;
22: }

If I run the executable file 10L04.exe and enter 3, I obtain the following output:

Please enter a single digit for a day
(within the range of 1 to 3):
3
Day 3

As you can see in line 6, an int variable, day, is declared; it is assigned the input

entered by the user in line 10.

In line 11, the value of the integer variable day is evaluated in the switch statement. If

the value is equal to one of the values of the constant expressions, the computer starts to

execute statements from there. The constant expressions are labeled by prefixing case in

front of them.

For instance, I entered 3 and then pressed the Enter key. The numeric value of 3 is

assigned to day in line 10. Then, after finding a case in which the value of the constant

expression matches the value contained by day, the computer jumps to line 17 to execute

the printf() function and display Day 3 on the screen.

Note that under the default label in Listing 10.4, there is an empty (that is, null) state-

ment ending with semicolon in line 19. The computer does nothing with the empty

statement. This means that if none of the constant expressions apply, then the switch

statement ends up doing nothing at all.

However, if I enter 1 from my keyboard and then press the Enter key when running

executable file 10L04.exe, I get the following output:

Please enter a single digit for a day

Controlling Program Flow 163

10

OUTPUT

ANALYSIS

(within the range of 1 to 3):
1
Day 1
Day 2
Day 3

From the output, you can see that the statement controlled by the selected case, case 1,

and the statements controlled by the rest of the cases, are executed, because Day 1,

Day 2, and Day 3 are displayed on the screen. Likewise, if I enter 2 from my keyboard,

I have Day 2 and Day 3 shown on the screen.

This is an important feature of the switch statement: The computer continues to execute

the statements following the selected case until the end of the switch statement.

You’re going to learn how to exit early from the execution of the switch statement in the

next section.

The break Statement
If you want to exit the switch entirely after each case label, you can add a break state-

ment at the end of the statement list that follows every case label. The break statement

simply exits the switch and resumes execution after the end of the switch statement

block.

The program in Listing 10.5 looks similar to the one in Listing 10.4, but this time, the

break statement is used and there are different results.

LISTING 10.5 Adding the break Statement

1: /* 10L05.c Adding the break statement */
2: #include <stdio.h>
3:
4: main()
5: {
6: int day;
7:
8: printf(“Please enter a single digit for a day\n”);
9: printf(“(within the range of 1 to 7):\n”);
10: day = getchar();
11: switch (day){
12: case ‘1’:
13: printf(“Day 1 is Sunday.\n”);
14: break;
15: case ‘2’:
16: printf(“Day 2 is Monday.\n”);
17: break;
18: case ‘3’:
19: printf(“Day 3 is Tuesday.\n”);

164 Hour 10

20: break;
21: case ‘4’:
22: printf(“Day 4 is Wednesday.\n”);
23: break;
24: case ‘5’:
25: printf(“Day 5 is Thursday.\n”);
26: break;
27: case ‘6’:
28: printf(“Day 6 is Friday.\n”);
29: break;
30: case ‘7’:
31: printf(“Day 7 is Saturday.\n”);
32: break;
33: default:
34: printf(“The digit is not within the range of 1 to 7.\n”);
35: break;
36: }
37: return 0;
38: }

With help from the break statement, I can run the executable file 10L05.exe and obtain

only the output of the selected case:

Please enter a single digit for a day
(within the range of 1 to 7):
1
Day 1 is Sunday.

This program has seven case labels followed by the constant expressions of ‘1’,

‘2’, ‘3’, ‘4’, ‘5’, ‘6’, and ‘7’, respectively. (See lines 12, 15, 18, 21, 24, 27,

and 30.)

In each case, there is one statement followed by a break statement. As mentioned, the

break statements will exit the switch construct before the computer ever gets to the next

case label and the statements that follow it.

For example, after the int variable day is assigned the value of 1 and evaluated in the

switch statement, the case with ‘1’ is selected, and the statement in line 13 is executed.

Then, the break statement in line 14 is executed, which breaks the control of the switch

statement and returns the control to the next statement outside the switch construct. In

Listing 10.5, the next statement is the return statement in line 37, which ends the main

function.

The printf() call in line 13 outputs a string of Day 1 is Sunday. on the screen.

Note that in a switch statement, braces are not needed to group the statements within an

individual case, since case is just a label and does not control the statements that follow

it. They are simply executed in order, starting with the label.

Controlling Program Flow 165

10

OUTPUT

ANALYSIS

Breaking an Infinite Loop
You can also use the break statement to break an infinite loop. An infinite loop is one in

which the conditional expression is left out entirely; thus, it is up to the code inside the

loop to determine the conditions for ending the loop. The following are examples of

infinite for and while loops:

for (;;){
statement1;

statement2;

.

.

.
}

while {
statement1;

statement2;

.

.

.
}

The for loop above leaves out all three expressions. This causes the for statement to

always execute the loop. The while statement uses 1 as its conditional expression, and

since this of course never evaluates to 0, the while statement always continues the loop.

The program in Listing 10.6 shows an example of using the break statement in an

infinite while loop.

LISTING 10.6 Breaking an Infinite Loop

1: /* 10L06.c: Breaking an infinite loop */
2: #include <stdio.h>
3:
4: main()
5: {
6: int c;
7:
8: printf(“Enter a character:\n(enter x to exit)\n”);
9: while {
10: c = getc(stdin);
11: if (c == ‘x’)
12: break;
13: }
14: printf(“Break the infinite while loop. Bye!\n”);
15: return 0;
16: }

166 Hour 10

The following is the result I got after running the executable file (10L06.exe) on my

machine:

Enter a character:
(enter x to exit)
H
I
x
Break the infinite while loop. Bye!

There is an infinite while loop in Listing 10.6, which starts in line 9 and ends in

line 13. Within the infinite loop, the characters entered by the user are assigned,

one at a time, to the integer variable c (see line 10.)

The relational expression c == ‘x’ in the if statement (see line 11) is evaluated each

time during the looping. If the expression evaluates to a value of 0 (that is, the user has

not entered the letter x), the looping continues. Otherwise, the break statement in line 12

is executed, which causes the computer to jump out of the infinite loop and start execut-

ing the next statement, which is shown in line 14.

You can see in the sample output, the while loop continues until I have entered the letter

x, which causes the infinite loop to be broken and a message, Break the infinite

while loop. Bye!, to be displayed on the screen.

The continue Statement
Instead of breaking a loop, there are times when you want to stay in a loop but skip over

some statements within the loop. To do this, you can use the continue statement. The

continue statement causes execution to jump to the bottom of the loop immediately.

For example, Listing 10.7 demonstrates how to use the continue statement in a loop

doing sums.

LISTING 10.7 Using the continue Statement

1: /* 10L07.c: Using the continue statement */
2: #include <stdio.h>
3:
4: main()
5: {
6: int i, sum;
7:
8: sum = 0;
9: for (i=1; i<8; i++){
10: if ((i==3) || (i==5))
11: continue;

Controlling Program Flow 167

10

OUTPUT

continues

ANALYSIS

12: sum += i;
13: }
14: printf(“The sum of 1, 2, 4, 6, and 7 is: %d\n”, sum);
15: return 0;
16: }

After the executable file 10L07.exe is run on my computer, the following output is

shown on the screen:

The sum of 1, 2, 4, 6, and 7 is: 20

In Listing 10.7, we want to calculate the sum of the integer values of 1, 2, 4, 6,

and 7. Because the integers are almost consecutive, a for loop is built in lines

9–13. The statement in line 12 sums all consecutive integers from 1 to 7 (except for 3

and 5, which aren’t in the listing and are skipped in the for loop).

To skip these two numbers, the expression (i==3) || (i==5) is evaluated in the if

statement of line 10. If the expression evaluates to 1 (that is, the value of i is equal to

either 3 or 5), the continue statement in line 11 is executed, which causes the sum oper-

ation in line 12 to be skipped, and another iteration to be started at the for statement. In

this way, you obtain the sum of the integer values of 1, 2, 4, 6, and 7, but skip 3 and 5,

automatically by using one for loop.

After the for loop, the value of sum, 20, is displayed on the screen by the printf() call

in the statement of line 14.

The goto Statement
This book would not be complete without mentioning the goto statement, although I do

not recommend that you use the goto statement. The main reason that the goto statement

is discouraged is because its usage is likely to make the C program unreliable and hard to

debug.

Programmers are often tempted to use the goto statement, especially if they have used

other languages without the rich set of structured conditional branching statements that

C provides. The fact is, any use of goto can be avoided entirely by using the other

branching statements.

If nothing else, you should know what a goto statement is so that you can properly

cringe when you see one in somebody else’s code.

168 Hour 10

LISTING 10.7 continued

OUTPUT

ANALYSIS

The following is the general form of the goto statement:

labelname:
statement1;

statement2;

.

.

.
goto labelname;

Here labelname is a label name that tells the goto statement where to jump. You have to

place labelname in two places: One is at the place where the goto statement is going to

jump (note that a colon must follow the label name), and the other is the place following

the goto keyword.

The label for the goto statement to jump to can appear either before or after the statement.

Controlling Program Flow 169

10

One of the best things about C is that it encourages structured program-

ming. Programs should act predictably and their behavior should be reason-

ably evident from merely reading over the source code.

Of course, one of the other best things about C is that the language itself

does not enforce this ideal. It is left up to you, the programmer, to use the

tools you are given to write clean, elegant, readable, structured code.

In this chapter we have seen the break, continue, and goto statements.

The improper use of these branching statements can lead to what is known

as “spaghetti code.” (If you printed out the source code and drew arrows

on the page to indicate the flow of execution, you would end up with a

drawing of spaghetti.) When a program’s execution jumps around in unpre-

dictable ways, it makes it very difficult (or for a large, complex project, often

nearly impossible) to determine the intended or actual behavior of a pro-

gram.

The use of the goto statement can easily lead to spaghetti code, especially if

it is used to jump backwards, or jump out of flow-control statements. When

you see a random label just sitting there in the code, you know only that

some other code is going to jump there using goto — you just don’t know

when, or why, without stopping to search the rest of the function.

The effects of the continue statement, at least, are limited to the looping

statement where it is used. However, complex loops can be hard to decipher

unless you know exactly when and why the loop will terminate.

The same goes for break. Aside from switch statements, it can be used to

jump out of for, while, or do-while loops. Generally, this should only be

used to break out of an infinite loop. Otherwise, use your conditional

expression to terminate the loop.

Summary
In this lesson you learned the following important statements and keywords for condi-

tional branching and looping in C:

• An important task of a program is to instruct the computer to jump to different

portions of the code according to the specified branch conditions.

• The if statement is a very important statement for conditional branching in C.

• The if statement can be nested for making a series of related decisions in your

program.

• The if-else statement is an expansion of the if statement.

• The switch statement helps you to keep your program more readable when there

are more than just a couple of related decisions to be made in your code.

• The case keyword, followed by a colon and an integral constant value, is used as

a label in the switch statement. The default: label is used at the end of a switch

statement when no case applies to the condition.

• The break statement can be used to exit the switch construct or a loop (usually, an

infinite loop).

• The continue statement is used to let you stay within a loop while skipping over

some statements.

• The goto statement is to enable the computer to jump to some other spot in your

code. Using this statement is not recommended because it may make your program

unreliable and hard to debug.

In the next lesson you’ll learn about a very important concept—pointers.

Q&A
Q How many expressions are there in the if statement?

A The if statement takes only one expression to hold the conditional criteria. When

the expression evaluates to a nonzero value (that is, the conditions are met), the

statements controlled by the if statement are executed. Otherwise, these statements

are skipped and the next statement following the if statement block is executed.

Q Why is the if-else statement an expansion of the if statement?

A When the conditional expression in the if statement evaluates to a value of zero,

the program control flow is returned back to the original track. However, when the

conditional expression in the if-else statement evaluates to zero, the program

control flow branches to the statement block under the else keyword and returns

170 Hour 10

to its original track after the statements controlled by else are executed. In other

words, the if statement allows a single statement block to be executed or skipped

entirely, whereas the if-else statement executes one of the two statement blocks

under the control of the if-else statement.

Q Why do you normally need to add the break statement into the switch

statement?

A When one of the cases within the switch statement is selected, the program control

will branch to the case and execute all statements within the selected case and the

rest of the cases that follow it. Therefore, you might get more results than you

expected. To tell the computer to execute only the statements inside a selected

case, you can put a break statement at the end of the case so that the program

control flow will exit the switch construct after the statements within the case are

executed.

Q What can the continue statement do inside a loop?

A When the continue statement inside a loop is executed, the program control is

branched to the end of the loop so that the controlling while or for statement can

be executed and another iteration can be started if the conditional expression still

holds. Inside the loop, any statements following the continue statement will be

skipped over each time the continue statement is executed.

Workshop
To help solidify your understanding of this hour’s lesson, you are encouraged to answer

the quiz questions and finish the exercises provided in the workshop before you move to

the next lesson. The answers and hints to the questions and exercises are given in

Appendix B, “Answers to Quiz Questions and Exercises.”

Quiz
1. Given x = 0, will the arithmetic operations inside the following if statement be

performed?

if (x != 0)
y = 123 / x + 456;

2. Given x = 4, y = 2, and operator = ‘-’, what is the final value of x after the

following switch statement is executed?

switch (operator){
case ‘+’: x += y;
case ‘-’: x -= y;
case ‘*’: x *= y;

Controlling Program Flow 171

10

case ‘/’: x /= y;
default: break;

}

3. Similar to question 2, using x = 4, y = 2, and operator = ‘-’, what is the final

value of x after the following switch statement is executed?

switch (operator){
case ‘+’: x += y; break;
case ‘-’: x -= y; break;
case ‘*’: x *= y; break;
case ‘/’: x /= y; break;
default: break;

}

4. What is the value of the integer variable x after the following code is executed?

x = 1;
for (i=2; i<10; i++){

if (i%3 == 0)
continue;

x += i;
}

Exercises
1. Rewrite the program in Listing 10.1. This time, use the logical expression i%6 ==

0 in the if statement.

2. Rewrite the program in Listing 10.1 by using nested if statements.

3. Write a program to read characters from the standard I/O. If the characters are A, B,

and C, display their numeric values on the screen. (The switch statement is

required.)

4. Write a program that keeps reading characters from the standard input until the

character q is entered.

5. Rewrite the program in Listing 10.7. This time, instead of skipping 3 and 5, skip

the integer that can be evenly divided by both 2 and 3.

172 Hour 10

Hour

11 Understanding Pointers

12 Understanding Arrays

13 Manipulating Strings

14 Understanding Scope and Storage Classes

PART III
Pointers and Arrays

HOUR 11
Understanding Pointers

The duties of the Pointer were to point out, by calling their names, those in

the congregation who should take note of some point made in the sermon.

—H. B. Otis, Simple Truth

You’ve learned about many important C data types, operators, functions, and

loops in the past 10 hours. In this lesson you’ll learn about one of the most

important and powerful features in C: pointers. The topics covered in this

hour are

• Pointer variables

• Memory addresses

• The concept of indirection

• Declaring a pointer

• The address-of operator

• The dereference operator

More examples of applying pointers will be demonstrated in the next several

hours of the book, especially in Hour 16, “Applying Pointers.”

What Is a Pointer?
Understanding pointers is vital to being an effective C programmer. Until now, you have

only dealt with variables directly, by assigning values to them. This hour introduces a

new concept, known as indirection.

Instead of assigning values directly to variables, you can indirectly manipulate a variable

by creating a variable called a pointer, which contains the memory address of another

variable.

So, why is this so important? For starters, using the memory address of your data is often

the quickest and simplest way to access it. There are many things that are difficult, if not

outright impossible, to do without pointers, such as dynamically allocating memory, pass-

ing large data structures between functions, even talking to your computer’s hardware.

In fact, you have already used a pointer — in Hour 1, of this book “Taking the First

Step”! Do you remember the string “Howdy, neighbor! This is my first C

program.\n”? A string is actually an array, which is itself a kind of pointer.

There is a lot more discussion later on in this book about arrays, memory allocation, and

the wonderful things you can do with pointers. For now, the first step is to understand

what a pointer is, and how to work with one in your programs.

From the definition of a pointer, you know two things: first, that a pointer is a variable,

so you can assign different values to a pointer variable, and second, that the value con-

tained by a pointer must be an address that indicates the location of another variable in

the memory. That’s why a pointer is also called an address variable.

Address (Left Value) Versus Content (Right
Value)

As you might know, the memory inside your computer is used to hold the binary code of

your program, which consists of statements and data, as well as the binary code of the

operating system on your machine.

Each memory location must have a unique address so that the computer can read from or

write to the memory location without any confusion. This is similar to the concept that

each house in a city must have a unique address.

When a variable is declared, a piece of unused memory will be reserved for the vari-

able, and the unique address to the memory will be associated with the name of the

variable. The address associated with the variable name is usually called the left value

of the variable.

176 Hour 11

Then, when the variable is assigned a value, the value is stored into the reserved memory

location as the content. The content is also called the right value of the variable.

For instance, after the integer variable x is declared and assigned to a value like this:

int x;
x = 7;

the variable x now has two values:

Left value: 1000

Right value: 7

Here the left value, 1000, is the address of the memory location reserved for x. The right

value, 7, is the content stored in the memory location. Note that depending on computers

and operating systems, the left value of x can be different from one machine to another.

You can imagine that the variable x is the mailbox in front of your house, which has the

address (normally the street number) 1000. The right value, 7, can be thought of as a let-

ter delivered to the mailbox.

Note that when your C program is being compiled and a value is being assigned to a

variable, the C compiler has to check the left value of the variable. If the compiler cannot

find the left value, it will issue an error message saying that the variable is undefined in

your program. That’s why, in C, you have to declare a variable before you can use it.

(Imagine a letter carrier complaining that he or she cannot drop the letters addressed to

you because you haven’t built a mailbox yet.)

By using a variable’s left value, the C compiler can easily locate the appropriate memory

storage reserved for a variable, and then read or write the right value of the variable.

The Address-of Operator (&)
The C language even provides you with an operator, &, in case you want to know the left

value of a variable. This operator is called the address-of operator because it evaluates to

the address (that is, the left value) of a variable.

The following code, for example,

long int x;
long int *y;
y = &x;

assigns the address of the long integer variable x to a pointer variable, y. (More on this

and the significance of *y will be discussed later in this chapter.)

Understanding Pointers 177

11

Listing 11.1 shows another example of obtaining addresses (that is, left values) of

variables.

LISTING 11.1 Obtaining the Left Values of Variables

1: /* 11L01.c: Obtaining addresses */
2: #include <stdio.h>
3:
4: main()
5: {
6: char c;
7: int x;
8: float y;
9:
10: printf(“c: address=%p, content=%c\n”, &c, c);
11: printf(“x: address=%p, content=%d\n”, &x, x);
12: printf(“y: address=%p, content=%5.2f\n”, &y, y);
13: c = ‘A’;
14: x = 7;
15: y = 123.45;
16: printf(“c: address=%p, content=%c\n”, &c, c);
17: printf(“x: address=%p, content=%d\n”, &x, x);
18: printf(“y: address=%p, content=%5.2f\n”, &y, y);
19: return 0;
20: }

After the executable file (11L01.exe) of this program is created and run on my computer,

the following output is displayed on the screen:

178 Hour 11

You might get different result, depending on your computer and operating

system, and especially depending on the memory situation in your computer

when you’re running the program.

c: address=0x1AF4, content=@
x: address=0x1AF2, content=-32557
y: address=0x1AF6, content=0.00
c: address=0x1AF4, content=A
x: address=0x1AF2, content=7
y: address=0x1AF6, content=123.45

As you can see in Listing 11.1, there are three variables, c, x, and y, declared in

lines 6–8, respectively.

OUTPUT

ANALYSIS

TYPE

The statement in line 10 displays the address (that is, the left value) and the content (that

is, the right value) of the character variable c on the screen. Here the &c expression pro-

duces the address of c.

Note that the format specifier %p is used in the printf() function of line 10 for display-

ing the address produced by &c.

Likewise, lines 11 and 12 print out the addresses of x and y, as well as the contents of x

and y. From the first part of the output, you see that the addresses of c, x, and y are

0x1AF4, 0x1AF2, and 0x1AF6. My computer printed these addresses in hex format.

However, the %p format specifier does not guarantee to print the addresses in hex format,

just to convert the addresses to a sequence of printable characters. You should consult the

manual for your C compiler to see what format to expect. Because these three variables

have not been initialized yet, the contents contained in their memory locations are left

there from the last memory writing.

However, after the initializations that are carried out in lines 13–15, the memory slots

reserved for the three variables have the contents of the initial values. Lines 16–18 dis-

play the addresses and contents of c, x, and y after the initialization.

You can see in the second part of the output, the contents of c, x, and y are now ‘A’, 7,

and 123.45, respectively, with the same memory addresses.

Understanding Pointers 179

11

The format specifier %p used in the printf() function is supported by the

ANSI standard. If, somehow, your compiler does not support %p, you can try

to use %u or %lu in the printf() function to convert and print out a left

value (that is, an address).

Also, the addresses printed out by the examples in this lesson are obtained

by running the examples on my machine. The values may be different from

what you can get by running the examples on your machine. This is because

the address of a variable may vary from one type of computer to another.

Declaring Pointers
As mentioned at the beginning of this lesson, a pointer is a variable, which means that a

pointer has a left value and a right value as well. However, both the left and right values

are addresses. The left value of a pointer is used to refer to the pointer itself, whereas

the right value of a pointer, which is the content of the pointer, is the address of another

variable.

The general form of a pointer declaration is

data-type *pointer-name;

Here data-type specifies the type of data to which the pointer points. pointer-name is

the name of the pointer variable, which can be any valid variable name in C.

Note that right before the pointer name is an asterisk *, which indicates that the variable

is a pointer. When the compiler sees the asterisk in the declaration, it makes a note that

the variable can be used as a pointer.

The following shows different types of pointers:

char *ptr_c; /* declare a pointer to a character */

int *ptr_int; /* declare a pointer to an integer */

float *ptr_flt; /* declare a pointer to a floating-point */

The program in Listing 11.2 demonstrates how to declare pointers and assign values to

them.

LISTING 11.2 Declaring and Assigning Values to Pointers

1: /* 11L02.c: Declaring and assign values to pointers */
2: #include <stdio.h>
3:
4: main()
5: {
6: char c, *ptr_c;
7: int x, *ptr_x;
8: float y, *ptr_y;
9:
10: c = ‘A’;
11: x = 7;
12: y = 123.45;
13: printf(“c: address=%p, content=%c\n”, &c, c);
14: printf(“x: address=%p, content=%d\n”, &x, x);
15: printf(“y: address=%p, content=%5.2f\n”, &y, y);
16: ptr_c = &c;
17: printf(“ptr_c: address=%p, content=%p\n”, &ptr_c, ptr_c);
18: printf(“*ptr_c => %c\n”, *ptr_c);
19: ptr_x = &x;
20: printf(“ptr_x: address=%p, content=%p\n”, &ptr_x, ptr_x);
21: printf(“*ptr_x => %d\n”, *ptr_x);
22: ptr_y = &y;
23: printf(“ptr_y: address=%p, content=%p\n”, &ptr_y, ptr_y);
24: printf(“*ptr_y => %5.2f\n”, *ptr_y);
25: return 0;
26: }

180 Hour 11

TYPE

I get the following output displayed on the screen after running the executable file

11L02.exe from on my machine:

c: address=0x1B38, content=A
x: address=0x1B36, content=7
y: address=0x1B32, content=123.45
ptr_c: address=0x1B30, content=0x1B38
*ptr_c => A
ptr_x: address=0x1B2E, content=0x1B36
*ptr_x => 7
ptr_y: address=0x1B2C, content=0x1B32
*ptr_y => 123.45

In Listing 11.2, there are three variables, c, x, and y, and three pointer variables,

ptr_c, ptr_x, and ptr_y, declared in lines 6–8, respectively.

The statements in lines 10–12 initialize the three variables c, x, and y. Then, lines 13–15

print out the addresses as well as the contents of the three variables.

In line 16, the left value of the character variable c is assigned to the pointer variable

ptr_c. The output made by the statement in line 17 shows that the pointer variable ptr_c

contains the address of c. In other words, the content (that is, the right value) of ptr_c is

the address (that is, the left value) of c.

Then in line 18, the value referred to by the pointer *ptr_c is printed out. The output

proves that the pointer *ptr_c does point to the memory location of c.

Line 19 assigns the left value of the integer x to the integer pointer variable ptr_x. The

statements in lines 20 and 21 print out the left value and right value of the pointer vari-

able ptr_x, as well as the value referred to by the pointer *ptr_x.

Similarly, the left value of the float variable y is assigned to the float pointer variable

ptr_y in line 22. To prove that ptr_y contains the address of y, and *ptr_y gives the con-

tent held by y, lines 23 and 24 print out the right values of ptr_y and *ptr_y, respectively.

The statements in lines 16, 19, and 22 show you how to assign the value of one variable

to another—in an indirect way. In other words, the left value of a variable can be

assigned to another variable so that the latter can be used as a pointer variable to obtain

the right value of the former. In this case, the variable name and the pointer refer to the

same memory location. Accordingly, if either the variable name or the pointer is used in

an expression to change the contents of the memory location, the contents of the memory

location have also changed for the other.

To help you understand the indirection of assigning values, Figure 11.1 demonstrates the

memory image of the relationships between c and ptr_c, x and ptr_x, and y and ptr_y,

based on the output obtained on my machine.

Understanding Pointers 181

11

OUTPUT

ANALYSIS

182 Hour 11

FIGURE 11.1

The memory image of

variables and their

pointers.

The Dereference Operator (*)
You’ve seen the asterisk (*) in the declaration of a pointer. In C, the asterisk is called the

dereference operator when it is used as a unary operator. (Sometimes, it’s also called the

indirection operator.) The value of a variable can be referenced by the combination of

the * operator and its operand, which contains the address of the variable.

For instance, in the program shown in Listing 11.2, after the address of the character

variable c is assigned to the pointer variable ptr_c, the expression *ptr_c refers to the

value contained by c. Therefore, you can use the *ptr_c expression, instead of using the

variable c directly, to obtain the value of c.

Likewise, given an integer variable x and x = 1234, you can declare an integer pointer

variable, ptr_x, for instance, and assign the left value (address) of x to ptr_x—that is,

ptr_x = &x. Then, the expression *ptr_x produces 1234, which is the right value (con-

tent) of x.

c

x

y

ptr_c

ptr_x

ptr_y
0x1B2C

0x1B32

0x1B36

0x1B38

123.45

7

‘A’

*ptr_y

*ptr_x

*ptr_c

0x1B2E

0x1B30

0x1B32

0x1B36

0x1B38

.

.

.

.

.

.

Don’t confuse the dereference operator with the multiplication operator,

although they share the same symbol, *.

The dereference operator is a unary operator, which takes only one

operand. The operand contains the address (that is, left value) of a variable.

On the other hand, the multiplication operator is a binary operator that

requires two operands to perform the operation of multiplication.

The meaning of the * symbol is determined by the context in which you use it.

Null Pointers
A pointer is said to be a null pointer when its right value is 0. Remember, a null pointer

can never point to valid data. For this reason, you can test a pointer to see if it’s assigned

to 0; if it is, you know that it is a null pointer and isn’t valid.

To set a null pointer, simply assign 0 to the pointer variable. For example:

char *ptr_c;
int *ptr_int;

ptr_c = ptr_int = 0;

Here ptr_c and ptr_int become null pointers after the integer value of 0 is assigned to

them.

You’ll see applications of null pointers used in control-flow statements and arrays later in

this book.

Updating Variables via Pointers
As you learned in the previous section, as long as you link up a variable to a pointer vari-

able, you can obtain the value of the variable by using the pointer variable. In other

words, you can read the value by pointing to the memory location of the variable and

using the dereferencing operator.

This section shows you that you can write a new value to the memory location of a vari-

able using a pointer that contains the left value of the variable. Listing 11.3 shows an

example.

LISTING 11.3 Changing Variable Values Via Pointers

1: /* 11L03.c: Changing values via pointers */
2: #include <stdio.h>
3:
4: main()
5: {
6: char c, *ptr_c;
7:
8: c = ‘A’;
9: printf(“c: address=%p, content=%c\n”, &c, c);
10: ptr_c = &c;
11: printf(“ptr_c: address=%p, content=%p\n”, &ptr_c, ptr_c);
12: printf(“*ptr_c => %c\n”, *ptr_c);
13: *ptr_c = ‘B’;
14: printf(“ptr_c: address=%p, content=%p\n”, &ptr_c, ptr_c);

Understanding Pointers 183

11

continues

TYPE

15: printf(“*ptr_c => %c\n”, *ptr_c);
16: printf(“c: address=%p, content=%c\n”, &c, c);
17: return 0;

18: }

After running the executable file 11L03.exe on my machine, I get the following output

displayed on the screen:

c: address=0x1828, content=A
ptr_c: address=0x1826, content=0x1828
*ptr_c => A
ptr_c: address=0x1826, content=0x1828
*ptr_c => B
c: address=0x1828, content=B

A char variable, c, and a char pointer variable, ptr_c, are declared in line 6 of

Listing 11.3.

The variable c is initialized with ‘A’ in line 8, which is printed out, along with the

address of the variable, by the printf() function in line 9.

In line 10, the pointer variable ptr_c is assigned the left value (address) of c. It’s not sur-

prising to see the output printed out by the statements in lines 11 and 12, where the right

value of ptr_c is the left value of c, and the pointer *ptr_c points to the right value of c.

In line 13 the expression *ptr_c = ‘B’ asks the computer to write ‘B’ to the location

pointed to by the pointer ptr_c. The output printed by the statement in line 15 proves

that the content of the memory location pointed to by ptr_c is updated. The statement in

line 14 prints out the left and right values of the pointer variable ptr_c and shows that

these values remain the same. As you know, the location pointed to by ptr_c is where

the character variable c resides. Therefore, the expression *ptr_c = ‘B’ actually updates

the content (that is, the right value) of the variable c to ‘B’. To prove this, the statement

in line 16 displays the left and right values of c on the screen. Sure enough, the output

shows that the right value of c has been changed.

Pointing to the Same Memory Location
A memory location can be pointed to by more than one pointer. For example, given

that c = ‘A’ and that ptr_c1 and ptr_c2 are two character pointer variables,

ptr_c1 = &c and ptr_c2 = &c set the two pointer variables to point to the same

location in the memory.

184 Hour 11

LISTING 11.3 continued

OUTPUT

ANALYSIS

The program in Listing 11.4 shows another example of pointing to the same thing with

several pointers.

LISTING 11.4 Pointing to the Same Memory Location with More
Than One Pointer

1: /* 11L04.c: Pointing to the same thing */
2: #include <stdio.h>
3:
4: main()
5: {
6: int x;
7: int *ptr_1, *ptr_2, *ptr_3;
8:
9: x = 1234;
10: printf(“x: address=%p, content=%d\n”, &x, x);
11: ptr_1 = &x;
12: printf(“ptr_1: address=%p, content=%p\n”, &ptr_1, ptr_1);
13: printf(“*ptr_1 => %d\n”, *ptr_1);
14: ptr_2 = &x;
15: printf(“ptr_2: address=%p, content=%p\n”, &ptr_2, ptr_2);
16: printf(“*ptr_2 => %d\n”, *ptr_2);
17: ptr_3 = ptr_1;
18: printf(“ptr_3: address=%p, content=%p\n”, &ptr_3, ptr_3);
19: printf(“*ptr_3 => %d\n”, *ptr_3);
20: return 0;
21: }

The following output is displayed on the screen by running the executable file 11L04.exe

on my machine (note that you might get different address values depending on the your

system):

x: address=0x1838, content=1234
ptr_1: address=0x1834, content=0x1838
*ptr_1 => 1234
ptr_2: address=0x1836, content=0x1838
*ptr_2 => 1234
ptr_3: address=0x1832, content=0x1838
*ptr_3 => 1234

As shown in Listing 11.4, line 6 declares an integer variable, x, and line 7

declares three integer pointer variables, ptr_1, ptr_2, and ptr_3.

The statement in line 10 prints out the left and right values of x. On my machine, the left

value (address) of x is 0x1838. The right value (content) of x is 1234, which is the initial

value assigned to x in line 9

Understanding Pointers 185

11

OUTPUT

ANALYSIS

TYPE

Line 11 assigns the left value of x to the pointer variable ptr_1 so that ptr_1 can be used

to refer to the right value of x. To make sure that the pointer variable ptr_1 now contains

the address of x, line 12 prints out the right value of ptr_1, along with its left value. The

output shows that ptr_1 does hold the address of x, 0x1838. Then, line 13 prints out the

value 1234, which is referred to by the *ptr_1 expression. Note that the asterisk * in the

expression is the dereference operator

In line 14, the *ptr_2 = &x expression assigns the left value of x to another pointer vari-

able, ptr_2; that is, the pointer variable ptr_2 is now linked with the address of x. The

statement in line 16 displays the integer 1234 on the screen by using the dereference

operator * and its operand, ptr_2. In other words, the memory location of x is referred to

by the second pointer *ptr_2.

In line 17, the pointer variable ptr_3 is assigned the right value of ptr_1. Because ptr_1

now holds the address of x, the expression ptr_3 = ptr_1 is equivalent to ptr_3 = &x.

Then, from the output made by the statements in lines 18 and 19, you see the integer

1234 again on the screen. This time the integer is referred to by the third pointer, ptr_3.

Summary
In this lesson you learned the following very important concepts about pointers in C:

• A pointer is a variable whose value points to another variable.

• A variable declared in C has two values: the left value and the right value.

• The left value of a variable is the address; the right value is the content of

the variable.

• The address-of operator (&) can be used to obtain the left value (address) of

a variable.

• The asterisk (*) in a pointer declaration tells the compiler that the variable is a

pointer variable.

• The dereference operator (*) is a unary operator; as such, it requires only

one operand.

• The *ptr_name expression evaluates to the value pointed to by the pointer variable

ptr_name, where ptr_name can be any valid variable name in C.

• If the pointer variable’s right value has been assigned the value 0, the pointer is a

null pointer. A null pointer cannot point to valid data.

• You can update the value of a variable referred by a pointer variable.

• Several pointers can point to the same location of a variable in the memory.

186 Hour 11

You will see more examples of using pointers in the rest of the book.

In the next lesson you’ll learn about an aggregate type—an array, which is closely related

to pointers in C.

Q&A
Q What are the left and right values?

A The left value is the address of a variable, and the right value is the content stored

in the memory location of a variable. There are two ways to get the right value of a

variable: use the variable name directly, or use the left value of the variable and the

dereference operator to refer to where the right value resides. The second way is

also called the indirect way.

Q How can you obtain the address of a variable?

A By using the address-of operator, &. For instance, given an integer variable x, the

&x expression evaluates to the address of x. To print out the address of x, you can

use the %p format specifier in the printf() function.

Q What is the concept of indirection in terms of using pointers?

A Before this hour, the only way you knew for reading from or writing to a variable

was to invoke the variable directly. For instance, if you wanted to write a decimal,

16, to an integer variable x, you could use the statement x = 16;.

As you learned in this hour, C allows you to access a variable in another way—

using pointers. Therefore, to write 16 to x, you can first declare an integer pointer

(ptr) and assign the left value (address) of x to ptr—that is, ptr = &x;. Then,

instead of executing the statement x = 16;, you can use another statement:

*ptr = 16;

Here the pointer *ptr refers to the memory location reserved by x, and the content

stored in the memory location is updated to 16 after the statement is executed. So,

you see, making use of pointers to access the memory locations of variables is a

way of indirection.

Q Can a null pointer point to valid data?

A No. A null pointer cannot point to valid data. This is because the value contained

by a null pointer has been set to 0. You’ll see examples of using null pointers in

arrays, strings, and memory allocation later in the book.

Understanding Pointers 187

11

Workshop
To help solidify your understanding of this hour’s lesson, you are encouraged to answer

the quiz questions and finish the exercises provided in the workshop before you move to

the next lesson. The answers and hints to the questions and exercises are given in

Appendix B, “Answers to Quiz Questions and Exercises.”

Quiz
1. How can you obtain the left value of a character variable ch?

2. In the following expressions, which asterisk (*) is a dereference operator, and

which one is a multiplication operator?

• *ptr

• x * y

• y *= x + 5

• *y *= *x + 5

3. Given that x = 10, the address of x is 0x1A38, and ptr_int = &x, what will

ptr_int and *ptr_int produce, respectively?

4. Given that x = 123, and ptr_int = &x after the execution of *ptr_int = 456,

what does x contain?

Exercises
1. Given three integer variables, x = 512, y = 1024, and z = 2048, write a program

to print out their left values as well as their right values.

2. Write a program to update the value of the double variable flt_num from 123.45

to 543.21 by using a double pointer.

3. Given a character variable ch and ch = ‘A’, write a program to update the value of

ch to decimal 66 by using a pointer.

4. Given that x=5 and y=6, write a program to calculate the multiplication of the two

integers and print out the result, which is saved in x, all in the way of indirection

(that is, using pointers).

188 Hour 11

HOUR 12
Understanding Arrays

Gather up the fragments that remain, that nothing be lost.

—John 6:12

In last hour’s lesson you learned about pointers and the concept of indirec-

tion. In this lesson you’ll learn about arrays, which are collections of similar

data items and are closely related to pointers. The main topics covered in

this lesson are

• Single-dimension arrays

• Indexing arrays

• Pointers and arrays

• Character arrays

• Multidimensional arrays

• Unsized arrays

What Is an Array?
You now know how to declare a variable with a specified data type, such as char, int,

float, or double. In many cases, you have to declare a set of variables that have the

same data type. Instead of declaring them individually, C allows you to declare a set of

variables of the same data type collectively as an array.

An array is a collection of variables that are of the same data type. Each item in an array

is called an element. All elements in an array are referenced by the name of the array and

are stored in a set of consecutive, adjacent memory slots.

Declaring Arrays
The following is the general form to declare an array:

data-type Array-Name[Array-Size];

Here data-type is the type specifier that indicates what data type the declared array will

be. Array-Name is the name of the declared array. Array-Size defines how many ele-

ments the array can contain. Note that the brackets ([and]) are required in declaring an

array. The bracket pair ([and]) is also called the array subscript operator.

For example, an array of integers is declared in the following statement,

int array_int[8];

where int specifies the data type of the array whose name is array_int. The size of the

array is 8, which means that the array can store eight elements (that is, integers in

this case).

In C, you have to declare an array explicitly, as you do for other variables, before you

can use it.

Indexing Arrays
After you declare an array, you can access each of the elements in the array separately.

For instance, the following declaration declares an array of characters:

char day[7];

You can access the elements in the array of day one after another. To do this, you use the

array name in an expression followed by a number, called an index, enclosed in brackets.

The important thing to remember is that all arrays in C are indexed starting at 0. In other

words, the index to the first element in an array is 0, not 1. Therefore, the first element in

the array of day is day[0]. Because there are 7 elements in the day array, the last element

is day[6], not day[7].

190 Hour 12

The seven elements of the array have the following expressions: day[0], day[1], day[2],

day[3], day[4], day[5], and day[6].

Because these expressions reference the elements in the array, they are sometimes called

array element references.

Initializing Arrays
With the help of the array element references, you can initialize each element in an array.

For instance, you can initialize the first element in the array of day, which was declared

in the last section, like this:

day[0] = ‘S’;

Here the numeric value of S is assigned to the first element of day, day[0].

Likewise, the statement day[1] = ‘M’; assigns ‘M’ to the second element, day[1], in

the array.

The second way to initialize an array is to initialize all elements in the array together. For

instance, the following statement initializes an integer array, arInteger:

int arInteger[5] = {100, 8, 3, 365, 16};

Here the integers inside the braces ({ and }) are correspondingly assigned to the ele-

ments of the array arInteger. That is, 100 is given to the first element (arInteger[0]),

8 to the second element (arInteger[1]), 3 to the third (arInteger[2]), and so on.

Listing 12.1 gives another example of initializing arrays.

LISTING 12.1 Initializing an Array

1: /* 12L01.c: Initializing an array */
2: #include <stdio.h>
3:
4: main()
5: {
6: int i;
7: int list_int[10];
8:
9: for (i=0; i<10; i++){
10: list_int[i] = i + 1;
11: printf(“list_int[%d] is initialized with %d.\n”, i, list_int[i]);
12: }
13: return 0;

14: }

Understanding Arrays 191

12

TYPE

The following output is displayed on the screen after the executable (12L01.exe) of the

program in Listing 12.1 is created and run on my computer:

list_int[0] is initialized with 1.
list_int[1] is initialized with 2.
list_int[2] is initialized with 3.
list_int[3] is initialized with 4.
list_int[4] is initialized with 5.
list_int[5] is initialized with 6.
list_int[6] is initialized with 7.
list_int[7] is initialized with 8.
list_int[8] is initialized with 9.
list_int[9] is initialized with 10.

As you can see in Listing 12.1, there is an integer array, called list_int, which

is declared in line 7. The array list_int contains 10 elements.

Lines 9–12 make up a for loop that iterates 10 times. The statement in line 10 initial-

izes list_int[i], the ith element of the array list_int, with the result of the expres-

sion i + 1.

Line 11 then prints out the name of the element, list_int[i], and the value assigned to

the element.

The Size of an Array
As mentioned earlier in this lesson, an array consists of consecutive memory locations.

Given an array, like this:

data-type Array-Name[Array-Size];

you can then calculate the total bytes of the array by the following expression:

sizeof(data-type) * Array-Size

Here data-type is the data type of the array; Array-Size specifies the total number of

elements the array can take. This expression evaluates to the total number of bytes the

array takes.

Another way to calculate the total bytes of an array is simpler; it uses the following

expression:

sizeof(Array-Name)

Here Array-Name is the name of the array.

The program in Listing 12.2 shows how to calculate the memory space taken by an array.

192 Hour 12

OUTPUT

ANALYSIS

LISTING 12.2 Calculating the Size of an Array

1: /* 12L02.c: Total bytes of an array */
2: #include <stdio.h>
3:
4: main()
5: {
6: int total_byte;
7: int list_int[10];
8:
9: total_byte = sizeof (int) * 10;
10: printf(“The size of int is %d-byte long.\n”, sizeof (int));
11: printf(“The array of 10 ints has total %d bytes.\n”, total_byte);
12: printf(“The address of the first element: %p\n”, &list_int[0]);
13: printf(“The address of the last element: %p\n”, &list_int[9]);
14: return 0;
15: }

After running the executable 12L02.exe, I have the following output displayed on the

screen of my computer:

The size of int is 2-byte long.
The array of 10 ints has total 20 bytes
The address of the first element: 0x1806
The address of the last element: 0x1818

Note that you might get different address values when you run the program in

Listing 12.2 on your machine. However, the difference between the address of

the first element and the address of the last element should equal the total number of

bytes in the array.

In Listing 12.2, there is an integer array, list_int, which is declared in line 7. The total

memory space taken by the array is the result of multiplying the size of int and the total

number of elements in the array. As declared in this example, there are a total of 10 ele-

ments in the array list_int.

The statement in line 10 prints out the size of int on my machine. You can see from the

output that each integer element in the array takes 2 bytes. Therefore, the total memory

space (in bytes) taken by the array is 10 * 2. In other words, the statement in line 9

assigns the value of 20, produced by the expression sizeof (int) * 10, to the integer

variable total_byte. Line 11 then displays the value contained by the total_byte vari-

able on the screen.

To prove that the array does take the consecutive memory space of 20 bytes, the address

of the first element in the array is printed out by the statement in line 12. Note that the

ampersand (&), which was introduced as the address-of operator in Hour 11,

“Understanding Pointers,” is used in line 12 to obtain the address of the first element,

Understanding Arrays 193

12

OUTPUT

ANALYSIS

TYPE

list_int[0], in the array. Here the address of the first element is the starting address of

the array. From the output, you can see that the address of the list_int[0] element is

0x1806 on my machine.

Then, the &list_int[9] expression in line 13 evaluates to the address of the final ele-

ment in the array, which is 0x1818 on my machine. Thus, the distance between the last

element and the first element is 0x1818–0x1806, or 18 bytes.

As mentioned earlier in the book, hexadecimal is a 16-based numbering system. We

know that 0x1818 minus 0x1806 produces 0x0012 (that is, 0x12). Then 0x12 in hexadeci-

mal is equal to 1*16 + 2 that yields 18 in decimal.

Because each element takes 2 bytes, and the address of the final element is the beginning

of that 2-byte element, the total number of bytes taken by the array list_int is indeed

20 bytes. You can calculate it another way: The distance between the last element and the

first element is 18 bytes. The total number of bytes taken by the array should be counted

from the very first byte in the first element to the last byte in the last element. Therefore,

the total number bytes taken by the array is equal to 18 plus 2, that is 20 bytes.

Figure 12.1 shows you the memory space taken by the array list_int

194 Hour 12

&list_int[0]

&list_int[9]

0x1806 1 byte

1 byte

1 byte

1 byte

1 byte

1 byte

0x1818

2 bytes

2 bytes

2 bytes

}
}

}

FIGURE 12.1

The memory space

taken by the array

list_int.

Arrays and Pointers
As I mentioned earlier in this hour, pointers and arrays have a close relationship in C. In

fact, you can make a pointer that refers to the first element of an array by simply assign-

ing the array name to the pointer variable. If an array is referenced by a pointer, the ele-

ments in the array can be accessed with the help of the pointer.

For instance, the following statements declare a pointer and an array, and assign the

address of the first element to the pointer variable:

char *ptr_c;
char list_c[10];
ptr_c = list_c;

Because the address of the first element in the array list_c is the beginning address of

the array, the pointer variable ptr_c is actually now referencing the array via the begin-

ning address.

Listing 12.3 demonstrates how to reference an array with a pointer.

LISTING 12.3 Referencing an Array with a Pointer

1: /* 12L03.c: Referencing an array with a pointer */
2: #include <stdio.h>
3:
4: main()
5: {
6: int *ptr_int;
7: int list_int[10];
8: int i;
9:
10: for (i=0; i<10; i++)
11: list_int[i] = i + 1;
12: ptr_int = list_int;
13: printf(“The start address of the array: %p\n”, ptr_int);
14: printf(“The value of the first element: %d\n”, *ptr_int);
15: ptr_int = &list_int[0];
16: printf(“The address of the first element: %p\n”, ptr_int);
17: printf(“The value of the first element: %d\n”, *ptr_int);
18: return 0;
19: }

After the executable 12L03.exe is run on my computer, the following output is displayed

on the screen:

The start address of the array: 0x1802
The value of the first element: 1
The address of the first element: 0x1802
The value of the first element: 1

In Listing 12.3, an integer pointer variable, ptr_int, is declared in line 6. Then,

an integer array, list_int, which is declared in line 7, is initialized by the

list_int[i] = i + 1 expression in a for loop. (See lines 10 and 11.)

Understanding Arrays 195

12

OUTPUT

ANALYSIS

TYPE

The statement in line 12 assigns the address of the first element in the array to the

pointer variable ptr_int. To do so, the name of the array list_int is simply placed on

the right side of the assignment operator (=) in line 12.

Line 13 displays the address assigned to the pointer variable ptr_int. The output shows

that 0x1802 is the start address of the array. (You might get a different address on your

machine.) The *ptr_int expression in line 14 evaluates to the value referenced by the

pointer. This value is the same value contained by the first element of the array, which is

the initial value, 1, assigned in the for loop. You can see that the output from the state-

ment in line 14 shows the value correctly.

The statement in line 15 is equivalent to the one in line 12, which assigns the address of

the first element to the pointer variable. Lines 16 and 17 then print out the address and

the value kept by the first element, 0x1802 and 1, respectively.

In Hour 16, “Applying Pointers,” you’ll learn to access an element of an array by incre-

menting or decrementing a pointer.

Displaying Arrays of Characters
This subsection focuses on arrays of characters. The char data type takes one byte.

Therefore, each element in a character array is one byte long. The total number of ele-

ments in a character array is the total number of bytes the array takes in the memory.

More importantly in C, a character string is defined as a contiguous sequence of charac-

ters terminated by, and including, the first null character (‘\0’). Hour 13, “Manipulating

Strings,” introduces more details about strings.

In Listing 12.4, you see various ways to display an array of characters on the screen.

LISTING 12.4 Printing an Array of Characters

1: /* 12L04.c: Printing out an array of characters */
2: #include <stdio.h>
3:
4: main()
5: {
6: char array_ch[7] = {‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘!’, ‘\0’};
7: int i;
8:
9: for (i=0; i<7; i++)
10: printf(“array_ch[%d] contains: %c\n”, i, array_ch[i]);
11: /*--- method I ---*/
12: printf(“Put all elements together(Method I):\n”);
13: for (i=0; array_ch[i] != ‘\0’ && i<7; i++)
14: printf(“%c”, array_ch[i]);

196 Hour 12

TYPE

15: /*--- method II ---*/
16: printf(“\nPut all elements together(Method II):\n”);
17: printf(“%s\n”, array_ch);
18:
19: return 0;
20: }

When I run executable 12L04.exe, the following output is displayed:

array_ch[0] contains: H
array_ch[1] contains: e
array_ch[2] contains: l
array_ch[3] contains: l
array_ch[4] contains: o
array_ch[5] contains: !
array_ch[6] contains:
Put all elements together(Method I):
Hello!
Put all elements together(Method II):
Hello!

As you can see from Listing 12.4, a character array, array_ch, is declared and

initialized in line 6. Each element in the character array is printed out by the

printf() call in a for loop shown in lines 9 and 10. There is a total of seven elements in

the array; they contain the following character constants: ‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘!’,

and ‘\0’.

There are two ways to display this array: display all the characters individually, or treat

them as a character string.

Lines 12–14 show the first way, which fetches each individual element, array_ch[i],

consecutively in a loop, and prints out one character next to another by using the charac-

ter format specifier %c in the printf() call in line 14.

Whenever you are dealing with a character array, as was mentioned earlier, the null char-

acter ‘\0’ signals the end of the string (even though it may not yet be the end of the

array). It is a good idea to watch for the null character so you know when to stop print-

ing, so the conditional expression in line 13 will terminate the for loop if the current ele-

ment is a null character.

The second way is simpler. You simply tell the printf() function where to find the first

element the array (the address of its first element). Also, you need to use the string for-

mat specifier %s in the printf() call as shown in line 17. Note that the array_ch expres-

sion in line 17 contains the address of the first element in the array—that is, the starting

address of the array. The name of the array, by itself, is a shorthand way of saying

array_ch[0]; they mean the same thing.

Understanding Arrays 197

12

OUTPUT

ANALYSIS

You may be wondering how the printf() function knows where the end of the character

array is. Do you remember that the last element in the character array array_ch is a ‘\0’

character? It’s this null character that marks the end of the string. As I mentioned earlier,

a contiguous sequence of characters ending with a null character is called a character

string in C. We don’t tell printf() how many elements are in the array, so the %s format

specifier tells printf() to keep printing characters until it finds a null character—just as

we did, ourselves, in the first method.

The Null Character (‘\0’)
The null character (‘\0’) is treated as one character in C; it is a special character that

marks the end of a string. Therefore, when functions like printf() act on a character

string, they process one character after another until they encounter the null character.

(You’ll learn more about strings in Hour 13.)

The null character (‘\0’), which is always evaluated as a value of zero, can also be used

for a logical test in a control-flow statement. Listing 12.5 shows an example of using the

null character in a for loop.

LISTING 12.5 Ending Output at the Null Character

1: /* 12L05.c: Stopping at the null character */
2: #include <stdio.h>
3:
4: main()
5: {
6: char array_ch[15] = {‘C’, ‘ ‘,
7: ‘i’, ‘s’, ‘ ‘,
8: ‘p’, ‘o’, ‘w’, ‘e’, ‘r’,
9: ‘f’, ‘u’, ‘l’, ‘!’, ‘\0’};
10: int i;
11: /* array_ch[i] in logical test */
12: for (i=0; array_ch[i]; i++)
13: printf(“%c”, array_ch[i]);
14:
15: printf(“\n”);
16: return 0;
17: }

By running the executable 12L05.exe, I obtain the following output:

C is powerful!

198 Hour 12

TYPE

OUTPUT

In Listing 12.5, a character array, array_ch, is declared and initialized, with the

characters (including the space characters) from the string C is powerful!, in

lines 6–9.

Note that the last element in the array contains the null character (‘\0’), which is needed

to terminate the string.

The for loop in lines 12 and 13 prints out each element in the array array_ch to show

the string C is powerful! on the screen. So in the first expression of the for statement,

the integer variable i, which is used as the index to the array, is initialized to 0.

Then, the conditional expression, array_ch[i], is evaluated. If the expression evaluates

to a nonzero value, the for loop iterates; otherwise, the loop stops. Starting at the first

element in the array, the array_ch[i] expression keeps producing a nonzero value until

the null character is encountered. Therefore, the for loop can put all characters of the

array on the screen, and stop printing right after the array_ch[i] expression produces a

value of zero, when it finds the null character

Multidimensional Arrays
So far, all the arrays you’ve seen have been one-dimensional arrays, in which the dimen-

sion sizes are placed within a pair of brackets ([and]).

In addition to one-dimensional arrays, the C language also supports multidimensional

arrays. You can declare arrays with as many dimensions as your compiler allows.

The general form of declaring a N-dimensional array is

data-type Array-Name[Array-Size1][Array-Size2]. . . [Array-SizeN];

where N can be any positive integer.

Because the two-dimensional array, which is widely used, is the simplest form of the mul-

tidimensional array, let’s focus on two-dimensional arrays in this section. Anything you

learn from this section can be applied to arrays of more than two dimensions, however.

For example, the following statement declares a two-dimensional integer array:

int array_int[2][3];

Here there are two pairs of brackets that represent two dimensions with a size of 2 and 3

integer elements, respectively.

You can initialize the two-dimensional array array_int in the following way:

array_int[0][0] = 1;
array_int[0][1] = 2;

Understanding Arrays 199

12

ANALYSIS

array_int[0][2] = 3;
array_int[1][0] = 4;
array_int[1][1] = 5;
array_int[1][2] = 6;

which is equivalent to the statement

int array_int[2][3] = {1, 2, 3, 4, 5, 6};

Also, you can initialize the array_int array in the following way:

int array_int[2][3] = {{1, 2, 3}, {4, 5, 6}};

Note that array_int[0][0] is the first element in the two-dimensional array array_int;

array_int[0][1] is the second element in the array; array_int[0][2] is the third ele-

ment; array_int[1][0] is the fourth element; array_int[1][1] is the fifth element; and

array_int[1][2] is the sixth element in the array.

The program in Listing 12.6 shows a two-dimensional integer array that is initialized and

displayed on the screen.

LISTING 12.6 Printing a Two-Dimensional Array

1: /* 12L06.c: Printing out a 2-D array */
2: #include <stdio.h>
3:
4: main()
5: {
6: int two_dim[3][5] = {1, 2, 3, 4, 5,
7: 10, 20, 30, 40, 50,
8: 100, 200, 300, 400, 500};
9: int i, j;
10:
11: for (i=0; i<3; i++){
12: printf(“\n”);
13: for (j=0; j<5; j++)
14: printf(“%6d”, two_dim[i][j]);
15: }
16: printf(“\n”);
17: return 0;
18: }

The following output is obtained by running the executable 12L06.exe:

1 2 3 4 5
10 20 30 40 50
100 200 300 400 500

200 Hour 12

TYPE

OUTPUT

As you can see in Listing 12.6, there is a two-dimensional integer array, two_dim,

declared and initialized in lines 6–8.

In lines 11–15, two for loops are nested together. The outer for loop increments the

integer variable i and prints out the newline character ‘\n’ in each iteration. Here the

integer variable i is used as the index to the first dimension of the array, two_dim.

The inner for loop in lines 13 and 14 prints out each element, represented by the expres-

sion two_dim[i][j], by incrementing the index to the second dimension of the array.

Therefore, I obtain the following output:

1 2 3 4 5
10 20 30 40 50
100 200 300 400 500

after the two nested for loops are run successfully.

Unsized Arrays
As you’ve seen, the size of a dimension is normally given during the declaration of an

array. It means that you have to count each element in an array to determine the size. It

could be tedious to do so, though, especially if there are many elements in an array.

The good news is that the C compiler can actually calculate a dimension size of an array

automatically if an array is declared as an unsized array. For example, when the com-

piler sees the following unsized array:

int list_int[] = { 10, 20, 30, 40, 50, 60, 70, 80, 90};

it will create an array big enough to store all the elements.

Likewise, you can declare a multidimensional unsized array. However, you have to spec-

ify all but the leftmost (that is, the first) dimension size. For instance, the compiler can

reserve enough memory space to hold all elements in the following two-dimensional

unsized array:

char list_ch[][2] = {
‘a’, ‘A’,
‘b’, ‘B’,
‘c’, ‘C’,
‘d’, ‘D’,
‘e’, ‘E’,
‘f’, ‘F’,
‘g’, ‘G’};

The program in Listing 12.7 initializes a one-dimensional character unsized array and a

two-dimensional unsized integer array, and then measures the memory spaces taken for

storing the two arrays.

Understanding Arrays 201

12

ANALYSIS

LISTING 12.7 Initializing Unsized Arrays

1: /* 12L07.c: Initializing unsized arrays */
2: #include <stdio.h>
3:
4: main()
5: {
6: char array_ch[] = {‘C’, ‘ ‘,
7: ‘i’, ‘s’, ‘ ‘,
8: ‘p’, ‘o’, ‘w’, ‘e’, ‘r’,
9: ‘f’, ‘u’, ‘l’, ‘!’, ‘\0’};
10: int list_int[][3] = {
11: 1, 1, 1,
12: 2, 2, 8,
13: 3, 9, 27,
14: 4, 16, 64,
15: 5, 25, 125,
16: 6, 36, 216,
17: 7, 49, 343};
18:
19: printf(“The size of array_ch[] is %d bytes.\n”, sizeof (array_ch));
20: printf(“The size of list_int[][3] is %d bytes.\n”, sizeof (list_int));
21: return 0;
22: }

The following output is obtained when the executable 12L07.exe is run on my computer:

The size of array_ch[] is 15 bytes.
The size of list_int[][3] is 42 bytes.

A character unsized array, array_ch, is declared and initialized in lines 6–9. In

lines 10–17, a two-dimensional unsized integer array, list_int, is declared and

initialized too.

The statement in line 19 measures and prints out the total memory space (in bytes) taken

by the array array_ch. The result shows that the unsized character array is assigned 15

bytes in memory to hold all its elements after compiling. When you calculate the total

number of the elements in the character array manually, you find that there are indeed 15

elements. Because each character takes one byte in the memory, the character array

array_ch takes total of 15 bytes accordingly.

Likewise, the statement in line 20 gives the total number of bytes reserved in the mem-

ory for the unsized two-dimensional integer array list_int. Because there are a total of

21 integer elements in the array, and an integer takes 2 bytes on my machine, the com-

piler should allocate 42 bytes for the integer array list_int. The result printed out by

the printf() function in line 20 proves that there are 42 bytes reserved in the memory

202 Hour 12

TYPE

OUTPUT

ANALYSIS

for the two-dimensional integer array. (If the size of int is different on your machine,

you may get different values for the size of the list_int array in program Listing 12.7.)

Summary
In this lesson you learned the following very important concepts about arrays in C:

• An array is a collection of variables that are of the same data type.

• In C, the index to an array starts at 0.

• You can initialize each individual element of an array after the declaration of the

array, or you can place all initial values into a data block surrounded by { and }

during the declaration of an array.

• The memory storage taken by an array is determined by multiplying the size of the

data type and the dimensions of the array.

• A pointer is said to refer to an array when the address of the first element in the

array is assigned to the pointer. The address of the first element in an array is also

called the start address of the array.

• To assign the start address of an array to a pointer, you can put either the combina-

tion of the address-of operator (&) and the first element name of the array, or sim-

ply use the array name on the right side of an assignment operator (=).

• The null character (‘\0’) marks the end of a string. C functions, such as printf(),

will stop processing the string when the null character is encountered.

• C supports multidimensional arrays, too. An empty pair of brackets (the array sub-

script operator—[and]) indicates a dimension.

• The compiler can automatically calculate the memory space needed by an unsized

array.

In the next lesson you’ll learn more about strings in C.

Q&A
Q Why do you need to use arrays?

A In many cases, you need to declare a set of variables that are of the same data type.

Instead of declaring each variable separately, you can declare all variables collec-

tively in the format of an array. Each variable, as an element of the array, can be

accessed either through the array element reference or through a pointer that refer-

ences the array.

Understanding Arrays 203

12

Q What is the minimum index in an array?

A In C, the minimum index of a one-dimensional array is 0, which marks the first

element of the array. For instance, given an integer array,

int array_int[8];

the first element of the array is array_int[0].

Likewise, for a multidimensional array, the minimum index of each dimension

starts at 0.

Q How do you reference an array by using a pointer?

A You can use a pointer to reference an array by assigning the start address of an

array to the pointer. For example, given a pointer variable ptr_ch and a character

array array_ch, you can use one of the following statements to reference the array

by the pointer:

ptr_ch = array_ch;

or

ptr_ch = &array_ch[0];

Q What can the null character do?

A The null character (‘\0’) in C can be used to mark the end of a string. For

instance, the printf() function keeps putting the next character on the screen until

the null character is encountered. Also, the null character always evaluates to a

value of zero.

Workshop
To help solidify your understanding of this hour’s lesson, you are encouraged to answer

the quiz questions and finish the exercises provided in the workshop before you move to

the next lesson. The answers and hints to the questions and exercises are given in

Appendix B, “Answers to Quiz Questions and Exercises.”

Quiz
1. What does the following statement do?

int array_int[4] = {12, 23, 9, 56};

2. Given an array, int data[3], what’s wrong with the following initialization?

data[1] = 1;
data[2] = 2;
data[3] = 3;

204 Hour 12

3. How many dimensions do the following arrays have?

• char array1[3][19];

• int array2[];

• float array3[][8][16];

• char array4[][80];

4. What’s wrong with the following declaration?

char list_ch[][] = {
‘A’, ‘a’,
‘B’, ‘b’,
‘C’, ‘c’,
‘D’, ‘d’,

Exercises
1. Given this character array:

char array_ch[5] = {‘A’, ‘B’, ‘C’, ‘D’, ‘E’};

write a program to display each element of the array on the screen.

2. Rewrite the program in Exercise 1, but this time use a for loop to initialize the

character array with ‘a’, ‘b’, ‘c’, ‘d’, and ‘e’, and then print out the value of

each element in the array.

3. Given this two-dimensional unsized array:

char list_ch[][2] = {
‘1’, ‘a’,
‘2’, ‘b’,
‘3’, ‘c’,
‘4’, ‘d’,
‘5’, ‘e’,
‘6’, ‘f’};

write a program to measure the total bytes taken by the array, and then print out all

elements of the array.

4. Rewrite the program in Listing 12.5. This time put a string of characters, I like

C!, on the screen.

5. Given the following array:

double list_data[6] = {
1.12345,
2.12345,
3.12345,
4.12345,
5.12345};

use the two equivalent ways taught in this lesson to measure the total memory

space taken by the array, and then display the results on the screen.

Understanding Arrays 205

12

HOUR 13
Manipulating Strings

I have made this letter longer than usual, because I lack the time to make it

short.

—B. Pascal

In the last hour’s lesson you learned how to use arrays to collect variables of

the same type. You also learned that a character string is actually a character

array, with a null character \0 marking the end of the string. In this lesson

you’ll learn more about strings, and C functions that can be used to manipu-

late strings. The following topics are covered:

• Declaring a string

• The length of a string

• Copying strings

• Reading strings with scanf()

• The gets() and puts() functions

Declaring Strings
This section teaches you how to declare and initialize strings, as well as the difference

between string constants and character constants. First, let’s review the definition of a

string.

What Is a String?
As introduced in Hour 12, “Understanding Arrays,” a string is a character array, with a

null character (\0) used to mark the end of the string. (The length of a string can be

shorter than its character array.)

For instance, a character array, array_ch, declared in the following statement, is consid-

ered as a character string:

char array_ch[7] = {‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘!’, ‘\0’};

In C, the null character is used to mark the end of a string, and it always evaluates to 0. C

treats \0 as one character. Each character in a string takes only 1 byte.

A series of characters enclosed in double quotes (“”) is called a string constant. The C

compiler will automatically add a null character (\0) at the end of a string constant to

indicate the end of the string.

For example, the character string “A character string.” is considered a string con-

stant; so is “Hello!”.

Initializing Strings
As taught in the last lesson, a character array can be declared and initialized like this:

char arr_str[6] = {‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘!’};

Here the array arr_str is treated as a character array. However, if you add a null charac-

ter (\0) into the array, you can have the following statement:

char arr_str[7] = {‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘!’, ‘\0’};

Here the array arr_str is expanded to hold seven elements; the last element contains a

null character. Now, the character array arr_str is considered a character string because

of the null character that is appended (added to the end) of the character data.

You can also initialize a character array with a string constant, instead of a list of charac-

ter constants. For example, the following statement initializes a character array, str, with

a string constant, “Hello!”:

char str[7] = “Hello!”;

208 Hour 13

The compiler will automatically append a null character (\0) to the end of “Hello!”, and

treat the character array as a character string. Note that the size of the array is specified

to hold up to seven elements, although the string constant has only six characters

enclosed in double quotes. The extra space is reserved for the null character that will be

added later by the compiler.

You can declare an unsized character array if you want the compiler to calculate the total

number of elements in the array. For instance, the following statement:

char str[] = “I like C.”;

initializes an unsized character array:, str, with a string constant. Later, when the com-

piler sees the statement, it will figure out the total memory space needed to hold the

string constant plus an extra null character added by the compiler itself.

If you like, you can also declare a char pointer and then initialize the pointer with a

string constant. The following statement is an example:

char *ptr_str = “I teach myself C.”;

Manipulating Strings 209

13

Don’t specify the size of a character array as too small. Otherwise, it cannot

hold a string constant plus an extra null character. For instance, the follow-

ing declaration is considered illegal:

char str[4] = “text”;

Note that many C compilers will not issue a warning or an error message on

this incorrect declaration. The runtime errors that could eventually arise as a

result could be very difficult to debug. Therefore, it’s your responsibility to

make sure to specify enough space for a string.

The following statement is a correct one, because it specifies the size of the

character array str that is big enough to hold the string constant plus an

extra null character:

char str[5] = “text”;

String Constants versus Character Constants
As you already know, a string constant is a series of characters enclosed in double quotes

(“ “). On the other hand, a character constant is a character enclosed in single quotes

(‘ ‘).

When a character variable ch and a character array str are initialized with the same

character, x, such as the following:

char ch = ‘x’;
char str[] = “x”;

1 byte is reserved for the character variable ch, and two bytes are allocated for the char-

acter array str. The reason that an extra byte is needed for str is that the compiler has to

append a null character to the array.

Another important thing is that a string, since it is an array, is really a char pointer.

Therefore, you can assign a character string to a pointer variable directly, like this:

char *ptr_str;
ptr_str = “A character string.”;

However, you cannot assign a character constant to the pointer variable, as shown in the

following :

ptr_str = ‘x’; /* It’s wrong. */

In other words, the character constant ‘x’ contains a right value, and the pointer variable

ptr_str expects a left value. But C requires the same kinds of values on both sides of an

assignment operator =.

It’s legal to assign a character constant to a dereferenced char pointer like this:

char *ptr_str;
*ptr_str = ‘x’;

Now the values on both sides of the = operator are of the same type.

The program in Listing 13.1 demonstrates how to initialize, or assign, character arrays

with string constants.

LISTING 13.1 Initializing Strings

1: /* 13L01.c: Initializing strings */
2: #include <stdio.h>
3:
4: main()
5: {
6: char str1[] = {‘A’, ‘ ‘,
7: ‘s’, ‘t’, ‘r’, ‘i’, ‘n’, ‘g’, ‘ ‘,
8: ‘c’, ‘o’, ‘n’, ‘s’, ‘t’, ‘a’, ‘n’, ‘t’, ‘\0’};
9: char str2[] = “Another string constant”;
10: char *ptr_str;
11: int i;
12:
13: /* print out str1 */
14: for (i=0; str1[i]; i++)
15: printf(“%c”, str1[i]);

210 Hour 13

16: printf(“\n”);
17: /* print out str2 */
18: for (i=0; str2[i]; i++)
19: printf(“%c”, str2[i]);
20: printf(“\n”);
21: /* assign a string to a pointer */
22: ptr_str = “Assign a string to a pointer.”;
23: for (i=0; *ptr_str; i++)
24: printf(“%c”, *ptr_str++);
25: return 0;
26: }

The following output is displayed after the executable 13L01.exe of the program in

Listing 13.1 is created and run.

A string constant
Another string constant
Assign a string to a pointer.

As you can see from Listing 13.1, there are two character arrays, str1 and str2,

that are declared and initialized in lines 6–9. In the declaration of str1, a set of

character constants, including a null character, is used to initialize the array. For str2, a

string constant is assigned to the array in line 9. The compiler will append a null charac-

ter to str2. Note that both str1 and str2 are declared as unsized arrays for which the

compiler will automatically figure out how much memory is needed. The statement in

line 10 declares a char pointer variable, ptr_str.

The for loop in lines 14 and 15 then prints out all the elements in str1. Because the last

element contains a null character (\0) that is evaluated as 0, str1[i] is used as the con-

ditional expression of the for statement. The expression str1[i] evaluates to nonzero

for each element in str1 except the one holding the null character. After the execution of

the for loop, the string A string constant is shown on the screen..

Likewise, another for loop in lines 18 and 19 displays the string constant assigned to

str2 by putting every element of the array on the screen. Because the compiler appends

a null character to the array, the expression str2[i] is evaluated in the for statement.

The for loop stops iterating when str2[i] evaluates to 0. By that time, the content of

the string constant, Another string constant, has already been displayed on the

screen.

The statement in line 22 assigns a string constant, “Assign a string to a pointer.”, :

to the char pointer variable ptr_str. Also, a for loop is used to print out the string con-

stant by putting every character in the string on the screen (see lines 23 and 24). Note that

the dereferenced pointer *ptr_str is used to refer to one of the characters in the string

Manipulating Strings 211

13

OUTPUT

ANALYSIS

constant. When the null character appended to the string is encountered, *ptr_str evalu-

ates to 0, which causes the iteration of the for loop to stop. In line 24, the expression

*ptr_str++ moves the pointer to the next character of the string after the current character

referred to by the pointer is fetched. In Hour 16, “Applying Pointers,” you’ll learn more

about pointer arithmetic.

How Long Is a String?
Sometimes, you need to know how many bytes are taken by a string, since its length can

be less than the length of its char array. In C, you can use a function called strlen() to

measure the length of a string.

The strlen() Function
Let’s have a look of the syntax of the strlen() function.

The syntax for the strlen() function is

#include <string.h>
size_t strlen(const char *s);

Here s is a char pointer variable. The return value from the function is the number

of bytes in the string, not counting the null character ‘\0’. size_t is a data type

defined in the string.h header file. The size of the data type depends on the partic-

ular computer system. Note that string.h has to be included in your program

before you can call the strlen() function.

Listing 13.2 gives an example of using the strlen() function to measure string lengths.

LISTING 13.2 Measuring String Lengths

1: /* 13L02.c: Measuring string length */
2: #include <stdio.h>
3: #include <string.h>
4:
5: main()
6: {
7: char str1[] = {‘A’, ‘ ‘,
8: ‘s’, ‘t’, ‘r’, ‘i’, ‘n’, ‘g’, ‘ ‘,
9: ‘c’, ‘o’, ‘n’, ‘s’, ‘t’, ‘a’, ‘n’, ‘t’, ‘\0’};
10: char str2[] = “Another string constant”;
11: char *ptr_str = “Assign a string to a pointer.”;
12:
13: printf(“The length of str1 is: %d bytes\n”, strlen(str1));
14: printf(“The length of str2 is: %d bytes\n”, strlen(str2));
15: printf(“The length of the string assigned to ptr_str is: %d bytes\n”,
16: strlen(ptr_str));

212 Hour 13

,
S

Y
N

TA
X

,

17: return 0;
18: }

I get the following output by running the executable, 13L02.exe, of the program in

Listing 13.2.

The length of str1 is: 17 bytes
The length of str2 is: 23 bytes
The length of the string assigned to ptr_str is: 29 bytes

In Listing 13.2, two char arrays, str1 and str2, and one pointer variable,

ptr_str, are declared and initialized in lines 7–11, respectively.

Then, the statement in line 13 obtains the length of the string constant held by str1, and

prints out the result. From the result, you can see that the null character (\0) at the end of

str1 is not counted by the strlen() function.

In lines 14–16, the lengths of the string constants referenced by str2 and ptr_str are

measured and shown on the screen. The results indicate that the strlen() function does

not count the null characters appended to the two string constants by the compiler, either.

Copying Strings with strcpy()
If you want to copy a string from one array to another, you can copy each item of the

first array to the corresponding element in the second array, or you can simply call the C

function strcpy() to do the job for you.

The syntax for the strcpy() function is

#include <string.h>
char *strcpy(char *dest, const char *src);

Here the content of the string src is copied to the array referenced by dest. The

strcpy() function returns the value of src if it is successful. The header file

string.h must be included in your program before the strcpy() function is called.

The program in Listing 13.3 demonstrates how to copy a string from one array to another

by either calling the strcpy() function or doing it yourself.

LISTING 13.3 Copying Strings

1: /* 13L03.c: Copying strings */
2: #include <stdio.h>
3: #include <string.h>
4:
5: main()

Manipulating Strings 213

13

OUTPUT

continues

ANALYSIS

,
S

Y
N

TA
X

,

6: {
7: char str1[] = “Copy a string.”;
8: char str2[15];
9: char str3[15];
10: int i;
11:
12: /* with strcpy() */
13: strcpy(str2, str1);
14: /* without strcpy() */
15: for (i=0; str1[i]; i++)
16: str3[i] = str1[i];
17: str3[i] = ‘\0’;
18: /* display str2 and str3 */
19: printf(“The content of str2 using strcpy: %s\n”, str2);
20: printf(“The content of str3 without using strcpy: %s\n”, str3);
21: return 0;

22: }

After the executable, 13L03.exe, is created and run, the following output is displayed:

The content of str2 using strcpy: Copy a string.
The content of str3 without using strcpy: Copy a string.

Three char arrays, str1, str2, and str3, are declared in Listing 13.3. In addi-

tion, str1 is initialized with a string constant, “Copy a string.”, in line 7.

The statement in line 13 calls the strcpy() function to copy the content of str1 (includ-

ing the null character appended by the compiler) to the array referenced by str2.

Lines 15–17 demonstrate another way to copy the content of str1 to an array referenced

by str3. To do so, the for loop in lines 15 and 16 keeps copying characters of str1 to

the corresponding elements in str3 one after another, until the null character (\0)

appended by the compiler is encountered. When the null character is encountered, the

str1[i] expression used as the condition of the for statement in line 15 evaluates to 0,

which terminates the loop.

Because the for loop does not copy the null character from str1 to str3, the statement

in line 17 appends a null character to the array referenced by str3. In C, it’s very impor-

tant to make sure that any array that is used to store a string has a null character at the

end of the string.

To prove that the string constant referenced by str1 has been copied to str2 and str3

successfully, the contents held by str2 and str3 are displayed on the screen. Note that

214 Hour 13

LISTING 13.3 continued

OUTPUT

ANALYSIS

the string format specifier %s and the start addresses of str2 and str3 are passed to the

printf() call in lines 19 and 20 to print out all characters, except the null character,

stored in str2 and str3. The results displayed on the screen show that str2 and str3

have the exact same content as str1.

Reading and Writing Strings
Now let’s focus on how to read or write strings with the standard input and output

streams—that is, stdin and stdout. In C, there are several functions you can use to deal

with reading or writing strings. The following subsections introduce some of these func-

tions.

The gets() and puts() Functions
The gets() function can be used to read characters from the standard input stream.

The syntax for the gets() function is

#include <stdio.h>
char *gets(char *s);

Here the characters read from the standard input stream are stored in the character

array identified by s. The gets() function stops reading, and appends a null charac-

ter \0 to the array, when a newline or end-of-file (EOF) character is encountered.

The function returns s if it concludes successfully. Otherwise, a null pointer is

returned.

The puts() function can be used to write characters to the standard output stream (that

is, stdout) .

The syntax for the puts function is

#include <stdio.h>
int puts(const char *s);

Here s refers to the character array that contains a string. The puts() function

writes the string to stdout. If the function is successful, it returns 0. Otherwise, a

nonzero value is returned.

The puts() function appends a newline character to replace the null character at the

end of a character array.

Both the gets() and puts() functions require the header file stdio.h. In Listing 13.4,

you can see the application of the two functions.

Manipulating Strings 215

13

,
S

Y
N

TA
X

,

,
S

Y
N

TA
X

,

LISTING 13.4 Using the gets() and puts() Functions

1: /* 13L04.c: Using gets() and puts() */
2: #include <stdio.h>
3:
4: main()
5: {
6: char str[80];
7: int i, delt = ‘a’ - ‘A’;
8:
9: printf(“Enter a string less than 80 characters:\n”);
10: gets(str);
11: i = 0;
12: while (str[i]){
13: if ((str[i] >= ‘a’) && (str[i] <= ‘z’))
14: str[i] -= delt; /* convert to upper case */
15: ++i;
16: }
17: printf(“The entered string is (in uppercase):\n”);
18: puts(str);
19: return 0;
20: }

While running the executable 13L04.exe, I enter a line of characters (in bold below)

from the keyboard and have the characters (all in uppercase) shown on the screen.

Enter a string less than 80 characters:
This is a test.
The entered string is (in uppercase):
THIS IS A TEST.

The program in Listing 13.4 accepts a string of characters entered from the key-

board (that is, stdin), and then converts all lowercase characters to uppercase

ones. Finally, the modified string is put back to the screen..

In line 6, a character array (str) is declared that can hold up to 80 characters. The

gets() function in line 10 reads any characters entered by the user from the keyboard

until the user presses the Enter key, which is interpreted as a newline character. The char-

acters read in by the gets() function are stored into the character array indicated by str.

The newline character is not saved into str. Instead, a null character is appended to the

array as a terminator.

The while loop in lines 12–15 has a conditional expression, str[i]. The while loop

keeps iterating as long as str[i] evaluates to a nonzero value. Within the loop, the value

of each character represented by str[i] is evaluated in line 13, to find out whether the

216 Hour 13

OUTPUT

ANALYSIS

character is a lowercase character within the range of a through z. If the character is one

of the lowercase characters, it is converted into uppercase by subtracting the value of an

int variable, delt, from its current value in line 14. The delt variable is initialized in

line 7 by the value of the expression ‘a’ - ‘A’, which is the difference between the

numeric value of a lowercase character and its uppercase counterpart. In other words, by

subtracting the difference of ‘a’ and ‘A’ from the lower case integer value, we obtain

the uppercase integer value.

Then the puts() function in line 18 outputs the string with all uppercase characters to

stdout, which goes to the screen by default. A newline character is appended by the

puts() function when it encounters the null character at the end of the string..

Using %s with the printf() Function
We’ve used the printf() function in many program examples in this book. As you

know, many format specifiers can be used with the printf() function to specify different

display formats for data of various types.

For instance, you can use the string format specifier, %s, with the printf() function to

display a character string saved in an array. (Refer to the example in Listing 13.3.)

In the next section, the scanf() function is introduced as a way to read values of various

data types with different format specifiers, including the format specifier %s.

The scanf() Function
The scanf() function provides another way to read strings from the standard input

stream. Moreover, this function can actually be used to read various types of input data.

The formats of arguments to the scanf() function are quite similar to those used in the

printf() function.

The syntax for the scanf() function is

#include <stdio.h>
int scanf(const char *format,...);

Here various format specifiers can be included inside the format string referenced

by the char pointer variable format. If the scanf() function concludes successfully,

it returns the number of data items read from stdin. If an error occurs, the scanf()

function returns EOF (end-of-file).

Using the string format specifier %s tells the scanf() function to continue reading char-

acters until a space, a newline, a tab, a vertical tab, or a form feed is encountered.

Characters read by the scanf() function are stored into an array referenced by the corre-

sponding argument. The array should be big enough to store the input characters.

Manipulating Strings 217

13

,
S

Y
N

TA
X

,

A null character is automatically appended to the array after the string is read.

Note that with scanf(), unlike printf(), you must pass pointers to your arguments so

that the scanf() function can modify their values.

The program in Listing 13.5 shows how to use various format specifiers with the

scanf() function.

LISTING 13.5 Using the scanf() Function with Various Format Specifiers

1: /* 13L05.c: Using scanf() */
2: #include <stdio.h>
3:
4: main()
5: {
6: char str[80];
7: int x, y;
8: float z;
9:
10: printf(“Enter two integers separated by a space:\n”);
11: scanf(“%d %d”, &x, &y);
12: printf(“Enter a floating-point number:\n”);
13: scanf(“%f”, &z);
14: printf(“Enter a string:\n”);
15: scanf(“%s”, str);
16: printf(“Here are what you’ve entered:\n”);
17: printf(“%d %d\n%f\n%s\n”, x, y, z, str);
18: return 0;
19: }

The following output is displayed on the screen after I run the executable 13L05.exe and

enter data (which appears in bold) from my keyboard:

Enter two integers separated by a space:
10 12345
Enter a floating-point number:
1.234567
Enter a string:
Test
Here are what you’ve entered:
10 12345
1.234567
Test

In Listing 13.5, there are one char array (str), two int variables (x and y), and a

float variable declared in lines 6–8.

218 Hour 13

OUTPUT

ANALYSIS

Then, the scanf() function in line 11 reads in two integers entered by the user and saves

them into the memory locations reserved for the integer variables x and y. The address-of

operator is used to obtain the memory addresses of the variables. The statement in line

13 reads and stores a floating-point number into z. Note that the format specifiers, %d and

%f, are used to specify proper formats for entered numbers in lines 11 and 13.

Line 15 uses the scanf() function and the format specifier %s to read a series of charac-

ters entered by the user, and then saves the characters (plus a null character as the termi-

nator) into the array pointed to by str. The address-of operator is not used here, since

str itself points to the starting address of the array.

To prove that the scanf() function reads all the numbers and characters entered by the

user, the printf() function in line 17 displays the contents saved in x, y, z, and str on

the screen. Sure enough, the result shows that the scanf() has done its job.

One thing you need to be aware of is that the scanf() function doesn’t actually start

reading the input until the Enter key is pressed. Data entered from the keyboard is placed

in an input buffer. When the Enter key is pressed, the scanf() function looks for its

input in the buffer. You’ll learn more about buffered input and output in Hour 21,

“Reading and Writing with Files.”

Summary
In this lesson you learned the following important functions and concepts about strings

in C:

• A string is a character array with a null character marking the end of the string.

• A string constant is a series of characters enclosed by double quotes.

• The C compiler automatically appends a null character to a string constant that has

been used to initialize an array.

• You cannot assign a string constant to a dereferenced char pointer.

• The strlen() function can be used to measure the length of a string. This function

does not count the null character.

• You can copy a string from one array to another by calling the C function

strcpy().

• The gets() function can be used to read a series of characters. This function stops

reading when the newline character or end-of-file (EOF) is encountered. The func-

tion adds a null character to the end of the string.

Manipulating Strings 219

13

• The puts() function sends all characters, except the null character, in a string to

the stdout, and appends a newline character to the output.

• You can read different data items with the scanf() function by using various for-

mat specifiers.

In the next lesson you’ll learn about the concepts of scope and storage in C.

Q&A
Q What is a string? How do you know its length?

A In C, a string is stored in a character array and is terminated by a null character

(‘\0’). The null character tells the string functions (such as puts() and strcpy

that they have reached the end of the string.

The C function strlen() can be used to measure the length of a string. If it is

successful, the strlen() function returns the total number of bytes taken by the

string; however, the null character in the string is not counted.

Q What are the main differences between a string constant and a character

constant?

A A string constant is a series of characters enclosed by double quotes, while a char-

acter constant is a single character surrounded by single quotes. The compiler will

append a null character to the string when it is used to initialize an array.

Therefore, an extra byte has to be reserved for the null character. On the other

hand, a character constant takes only 1 byte in memory and is not stored in an

array.

Q Does the gets() function save the newline character from the standard input

stream?

A No. The gets() function keeps reading characters from the standard input stream

until a newline character or end-of-file is encountered. Instead of saving the new-

line character, the gets() function appends a null character to the string and stores

it in the array that is referenced by the argument to the gets() function.

Q What types of data can the scanf() function read?

A Depending on the printf()-style format specifiers that you pass to the function,

scanf() can read various types of data, such as a series of characters, integers, or

floating-point numbers. Unlike gets(), scanf() stops reading the current input

item (and moves to the next input item if there is any) when it encounters a space,

a newline, a tab, a vertical tab, or a form feed.

220 Hour 13

Workshop
To help solidify your understanding of this hour’s lesson, you are encouraged to answer

the quiz questions and finish the exercises provided in the workshop before you move to

the next lesson. The answers and hints to the questions and exercises are given in

Appendix B, “Answers to Quiz Questions and Exercises.”

Quiz
1. In the following list, which statements are legal?

• char str1[5] = “Texas”;

• char str2[] = “A character string”;

• char str3[2] = “A”;

• char str4[2] = “TX”;

2. Given a char pointer variable ptr_ch, are the following statements legal?

• *ptr_ch = ‘a’;

• ptr_ch = “A character string”;

• ptr_ch = ‘x’;

• *ptr_ch = “This is Quiz 2.”;

3. Can the puts() function print out the null character in a character array?

4. Which format specifier do you use with the scanf() function to read in a string,

and which one do you use to read a floating-point number?

Exercises
1. Given a character array in the following statement,

char str1[] = “This is Exercise 1.”;

write a program to copy the string from str1 to another array, called str2.

2. Write a program to measure the length of a string by evaluating the elements in a

character array one by one until you reach the null character. To prove you get the

right result, you can use the strlen() function to measure the same string again.

3. Rewrite the program in Listing 13.4. This time, convert all uppercase characters to

their lowercase counterparts.

4. Write a program that uses the scanf() function to read in two integers entered by

the user, adds the two integers, and then prints out the sum on the screen.

Manipulating Strings 221

13

HOUR 14
Understanding Scope
and Storage Classes

Nobody owns anything and all anyone has is the use of his presumed

possessions.

—P. Wylie

In the previous hours, you learned how to declare variables of different data

types, as well as to initialize and use those variables. It’s been assumed that

you can access variables from anywhere. Now, the question is: Can you

declare variables that are accessible only to certain portions of a program? In

this lesson you’ll learn about the scope and storage classes of data in C. The

main topics covered in this lesson are

• Block scope

• Function scope

• File scope

• Program scope

• The auto specifier

• The static specifier

• The register specifier

• The extern specifier

• The const modifier

• The volatile modifier

Hiding Data
To solve a complex problem in practice, the programmer normally breaks the problem

into smaller pieces and deals with each piece of the problem by writing one or two func-

tions (or routines). Then, all the functions are put together to form a complete program

that can be used to solve the complex problem.

In the complete program, there might be variables that have to be shared by all the func-

tions. On the other hand, the use of some other variables might be limited to only certain

functions. That is, the visibility of those variables is limited, and values assigned to those

variables are hidden from many functions.

Limiting the scope of variables is very useful when several programmers are working on

different pieces of the same program. If they limit the scope of their variables to their

pieces of code, they do not have to worry about conflicting with variables of the same

name used by others in other parts of the program.

In C, you can declare a variable and indicate its visibility level by designating its scope.

Thus, variables with local scope can only be accessed within the block in which they are

declared.

The following sections teach you how to declare variables with different scopes.

Block Scope
In this section, a block refers to any sets of statements enclosed in braces ({ and }). A

variable declared within a block has block scope. Thus, the variable is active and accessi-

ble from its declaration point to the end of the block. Sometimes, block scope is also

called local scope.

For example, the variable i declared within the block of the following main function has

block scope:

int main()
{

int i; /* block scope */

224 Hour 14

.

.

.
return 0;

}

Usually, a variable with block scope is called a local variable. Note that local variables

must be declared at the beginning of the block, before other statements.

Nested Block Scope
You can also declare variables within a nested block. If a variable declared in the outer

block shares the same name with one of the variables in the inner block, the variable

within the outer block is hidden by the one within the inner block. This is true for the

scope of the inner block.

Listing 14.1 shows an example of variable scopes in nested blocks.

LISTING 14.1 Printing Variables with Different Scope Levels

1: /* 14L01.c: Scopes in nested block */
2: #include <stdio.h>
3:
4: main()
5: {
6: int i = 32; /* block scope 1*/
7:
8: printf(“Within the outer block: i=%d\n”, i);
9:
10: { /* the beginning of the inner block */
11: int i, j; /* block scope 2, int i hides the outer int i*/
12:
13: printf(“Within the inner block:\n”);
14: for (i=0, j=10; i<=10; i++, j--)
15: printf(“i=%2d, j=%2d\n”, i, j);
16: } /* the end of the inner block */
17: printf(“Within the outer block: i=%d\n”, i);
18: return 0;
19: }

The following output is displayed on the screen after the executable (14L01.exe) of the

program in Listing 14.1 is created and run:

Within the outer block: i=32
Within the inner block:
i= 0, j=10
i= 1, j= 9
i= 2, j= 8

Understanding Scope and Storage Classes 225

14

TYPE

OUTPUT

i= 3, j= 7
i= 4, j= 6
i= 5, j= 5
i= 6, j= 4
i= 7, j= 3
i= 8, j= 2
i= 9, j= 1
i=10, j= 0
Within the outer block: i=32

The purpose of the program in Listing 14.1 is to show you the different scopes

of variables in nested blocks. As you can see, there are two nested blocks in

Listing 14.1. The integer variable i declared in line 6 is visible within the outer block

enclosed by the braces ({ and }) in lines 5 and 19. Two other integer variables, i and j,

are declared in line 11 and are visible only within the inner block from line 10 to line 16.

Although the integer variable i within the outer block has the same name as one of the

integer variables within the inner block, the two integer variables cannot be accessed at

the same time due to their different scopes.

To prove this, line 8 prints out the value, 32, contained by i within the outer block for

the first time. Then, the for loop in lines 14 and 15 displays 10 pairs of values assigned

to i and j within the inner block. At this point, there is no sign that the integer variable i

within the outer block has any effects on the one within the inner block. When the inner

block is exits, the variables within the inner block are no longer accessible. In other

words, any attempt to access j from the outer block would be illegal.

Finally, the statement in line 17 prints out the value of i within the outer block again to

find out whether the value has been changed due to the integer variable i within the

inner block. The result shows that these two integer variables hide from each other, and

no conflict occurs..

Function Scope
Function scope indicates that a variable is active and visible from the beginning to the

end of a function.

In C, only a goto label has function scope. For example, the goto label, start, shown in

the following code portion has function scope:

int main()
{

int i; /* block scope */
.
.
.
start: /* A goto label has function scope */

226 Hour 14

ANALYSIS

.

.

.
goto start; /* the goto statement */
.
.
.
return 0;

}

Here the label start is visible from the beginning to the end of the main() function.

Therefore, there should not be more than one label having the same name within the

main() function.

Program Scope
A variable is said to have program scope when it is declared outside a function. For

instance, look at the following code:

int x = 0; /* program scope */
float y = 0.0; /* program scope */
int main()
{

int i; /* block scope */
.
.
.
return 0;

}

Here the int variable x and the float variable y have program scope.

Variables with program scope are also called global variables, which are visible among

all the source files that make up an executable program. Note that a global variable is

declared with an initializer outside a function.

The program in Listing 14.2 demonstrates the relationship between variables with pro-

gram scope and variables with block scope.

LISTING 14.2 The Relationship Between Program Scope and Block
Scope

1: /* 14L02.c: Program scope vs block scope */
2: #include <stdio.h>
3:
4: int x = 1234; /* program scope */
5: double y = 1.234567; /* program scope */

Understanding Scope and Storage Classes 227

14

TYPE

continues

6:
7: void function_1()
8: {
9: printf(“From function_1:\n x=%d, y=%f\n”, x, y);
10: }
11:
12: main()
13: {
14: int x = 4321; /* block scope 1*/
15:
16: function_1();
17: printf(“Within the main block:\n x=%d, y=%f\n”, x, y);
18: /* a nested block */
19: {
20: double y = 7.654321; /* block scope 2 */
21: function_1();
22: printf(“Within the nested block:\n x=%d, y=%f\n”, x, y);
23: }
24: return 0;

25: }

I have the following output shown on the screen after the executable 14L02.exe is cre-

ated and run on my machine:

From function_1:
x=1234, y=1.234567

Within the main block:
x=4321, y=1.234567

From function_1:
x=1234, y=1.234567

Within the nested block:
x=4321, y=7.654321

As you can see in Listing 14.2, there are two global variables, x and y, with pro-

gram scope; they are declared in lines 4 and 5.

In lines 7–10, a function, called function_1(), is declared. (More details about function

declarations and prototypes are taught in the next hour.) The function_1() function con-

tains only one statement; it prints out the values held by both x and y. Because there is

no variable declaration made for x or y within the function block, the values of the global

variables x and y are used for the statement inside the function. To prove this,

function_1() is called twice in lines 16 and 21, respectively, from two nested blocks.

The output shows that the values of the two global variables x and y are passed to

printf() within the function_1() function body.

Then, line 14 declares another integer variable, x, with block scope, which can replace

the global variable x within the block of the main() function. The result made by the

228 Hour 14

LISTING 14.2 continued

OUTPUT

ANALYSIS

statement in line 17 shows that the value of x is the value of the local variable x with

block scope, whereas the value of y is still that of the global variable y.

There is a nested block in lines 19 and 23, within which another double variable y, with

block scope, is declared and initialized. Like the variable x within the main() block, this

variable, y, within the nested block replaces the global variable y. The statement in line

22 displays the values of the local variables x and y on the screen

Understanding Scope and Storage Classes 229

14

Because a global variable is visible among different source files of a pro-

gram, using global variables increases your program’s complexity, which in

turn makes your program hard to maintain or debug. Generally, it’s not rec-

ommended that you declare and use global variables, unless it’s absolutely

necessary. For instance, you can declare a global variable whose value is

used (but never changed) by several subroutines in your program. (In Hour

23, “Compiling Programs: The C Preprocessor,” you’ll learn to use the

#define directive to define constants that are used in many places in a pro-

gram.)

Before I introduce file scope, let me first talk about the storage class specifiers.

The Storage Class Specifiers
In C, the storage class of a variable refers to the combination of its spatial and temporal

regions.

You’ve learned about scope, which specifies the spatial region of a variable. Now, let’s

focus on duration, which indicates the temporal region of a variable.

There are four specifiers and two modifiers that can be used to indicate the duration of a

variable. These specifiers and modifiers are introduced in the following sections.

The auto Specifier
The auto specifier is used to indicate that the memory location of a variable is

temporary. In other words, a variable’s reserved space in the memory can be erased or

relocated when the variable is out of its scope.

Only variables with block scope can be declared with the auto specifier. The auto key-

word is rarely used in practice, however, because the duration of a variable with block

scope is temporary by default.

The static Specifier
The static specifier, on the other hand, can be applied to variables with either block

scope or program scope. When a variable within a function is declared with the static

specifier, the variable has a permanent duration. In other words, the memory storage allo-

cated for the variable is not destroyed when the scope of the variable is exited, the value

of the variable is maintained outside the scope. If execution ever returns to the scope of

the variable, the last value stored in the variable is still there.

For instance, in the following code portion:

int main()
{

int i; /* block scope and temporary duration */
static int j; /* block scope and permanent duration */
.
.
return 0;

}

the integer variable i has temporary (auto) duration by default. But the other integer vari-

able, j, has permanent duration due to the storage class specifier static.

The program in Listing 14.3 shows the effect of the static specifier on variables.

LISTING 14.3 Using the static Specifier

1: /* 14L03.c: Using the static specifier */
2: #include <stdio.h>
3: /* the add_two function */
4: int add_two(int x, int y)
5: {
6: static int counter = 1;
7:
8: printf(“This is the function call of %d,\n”, counter++);
9: return (x + y);
10: }
11: /* the main function */
12: main()
13: {
14: int i, j;
15:
16: for (i=0, j=5; i<5; i++, j--)
17: printf(“the addition of %d and %d is %d.\n\n”,
18: i, j, add_two(i, j));
19: return 0;
20: }

230 Hour 14

TYPE

The following output is displayed on the screen after the executable (14L03.exe) is run:

This is the function call of 1,
the addition of 0 and 5 is 5.

This is the function call of 2,
the addition of 1 and 4 is 5.

This is the function call of 3,
the addition of 2 and 3 is 5.

This is the function call of 4,
the addition of 3 and 2 is 5.

This is the function call of 5,
the addition of 4 and 1 is 5.

The purpose of the program in Listing 14.3 is to call a function to add two inte-

gers and then print out the result returned by the function on the screen. The

function is called several times. A counter is set to keep track of how many times the

function has been called.

This function, called add_two(), is declared in lines 4–10. There are two int arguments,

x and y, that are passed to the function, and the addition of the two arguments is returned

in line 9. Note that there is an integer variable, counter, which is declared with the

static specifier in line 6. Values stored by counter are retained because the duration of

the variable is permanent. In other words, although the scope of counter is within the

block of the add_two() function, the memory location of counter and value saved in the

location are not changed after the add_two() function is called and the execution control

is returned back to the main() function. Note that the initialization of counter to 1 only

takes place the first time add_two() is called; after that, it retains its previous value each

time the function is called.

Therefore, the counter variable is used as a counter to keep track of the number of calls

received by the add_two() function. In fact, the printf() function in line 8 prints out the

value saved by the counter variable each time the add_two() function is called. In addi-

tion, counter is incremented by one each time after the printf() function is executed.

The for loop, declared in lines 16–18 within the main() function, calls the add_two()

function five times. The values of the two integer variables, i and j, are passed to the

add_two() function where they are added. Then, the return value from the add_two()

function is displayed on the screen by the printf() call in lines 17 and 18.

From the output, you can see that the value saved by counter is indeed incremented by

one each time the add_two() function is called, and is retained after the function exits

because the integer variable counter is declared with static. You can see that counter

is only initialized to 1 once, when the add_two() function is called for the first time.

Understanding Scope and Storage Classes 231

14

OUTPUT

ANALYSIS

File Scope and the Hierarchy of Scopes
In the first part of this hour, I mentioned three of the four types of scopes: block scope,

function scope, and program scope. It’s time now to introduce the fourth scope—file

scope.

In C, a global variable declared with the static specifier is said to have file scope. A

variable with file scope is visible from its declaration point to the end of the file. Here

the file refers to the program file that contains the source code. Most large programs con-

sist of several program files.

The following portion of source code shows variables with file scope:

int x = 0; /* program scope */
static int y = 0; /* file scope */
static float z = 0.0; /* file scope */
int main()
{

int i; /* block scope */
.
.
.
return 0;

}

Here the int variable y and the float variable z both have file scope.

Figure 14.1 shows the hierarchy of the four scopes. As you can see, a variable with block

scope is the most limited and is not visible outside the block within which the variable is

declared. On the other hand, a variable with program scope is visible within all files,

functions, and other blocks that make up the program.

232 Hour 14

FIGURE 14.1

The hierarchy of the

four scopes.

Block

Scope

Function Scope

File Scope

Program Scope

The register Specifier
The word register is borrowed from computer hardware terminology. Each computer has

a certain number of registers to hold data and perform arithmetic or logical calculations.

Because registers are located within the CPU (central processing unit) chip, it’s much

quicker to access a register than a memory location which resides outside the chip.

Therefore, storing variables in registers might help to speed up your program.

The C language provides you with the register specifier. You can apply this specifier to

variables when you think it’s necessary to put the variables into the computer registers.

However, the register specifier only gives the compiler a suggestion. In other words, a

variable specified by the register keyword is not guaranteed to be stored in a register.

The compiler can ignore the suggestion if there is no register available, or if some other

restrictions apply.

It’s illegal to take the address of a variable that is declared with the register specifier

because the variable is intended to be stored in a register, not in memory. A CPU register

does not have a memory address that you can access.

In the following portion of code, the integer variable i is declared with the register

specifier:

int main()
{

/* block scope with the register specifier */
register int i;
. . .
for (i=0; i<MAX_NUM; i++){

/* some statements */
}
. . .
return 0;

}

The declaration of i suggests that the compiler stores the variable in a register. Because i

is intensively used in the for loop, storing i in a register might increase the speed of the

code shown here.

The extern Specifier
As introduced in the section titled “Program Scope,” earlier in this hour, a variable with

program scope is visible through all source files that make up an executable program. A

variable with program scope is also called a global variable.

Here is a question: How can a global variable declared in file A be seen in file B? In

other words, how does the compiler know that the variable used in file B is actually the

same variable declared in file A?

Understanding Scope and Storage Classes 233

14

The solution is to use the extern specifier provided by the C language to allude to a

global variable defined elsewhere. In this case, you declare a global variable in file A,

and then declare the variable again using the extern specifier in file B. This isn’t a sepa-

rate declaration, but specifies the original declaration in file A.

For instance, suppose you have two global int variables, y and z, that are defined in one

file, and then, in another file, you might have the following declarations:

int x = 0; /* a global variable */
extern int y; /* an allusion to a global variable y */
int main()
{

extern int z; /* an allusion to a global variable z */
int i; /* a local variable */
.
.
.
return 0;

}

As you can see, there are two integer variables, y and z, that are declared with the

extern specifier, both outside and inside the main() function, respectively. When the

compiler sees the two declarations, it knows that the declarations are actually allusions to

the global variables y and z that are defined elsewhere.

234 Hour 14

To make your program portable across different computer platforms, you

can apply the following rules in your program when you declare or allude to

global variables:

• You can ignore the extern specifier, but include an initializer, when

you declare a global variable.

• You should use the extern specifier (without an initializer) when you

allude to a global variable defined elsewhere.

The Storage Class Modifiers
Besides the four storage class specifiers introduced in the previous sections, C also pro-

vides you with two storage class modifiers (or qualifiers, as they’re sometimes called)

that you can use to indicate to the C compiler how variables might be accessed.

The const Modifier
If you declare a variable with the const modifier, the content of the variable cannot be

changed after it is initialized.

For instance, the following expression indicates to the compiler that circle_ratio is a

variable whose value should not be changed:

const double circle_ratio = 3.141593;

Likewise, the value of the character array str declared in the following statement cannot

be changed, either:

const char str[] = “A string constant”;

Therefore, it’s illegal to do something like this:

str[0] = ‘a’; /* It’s not allowed here. */

In addition, you can declare a pointer variable with the const modifier so that an object

pointed to by the pointer cannot be changed. For example, consider the following pointer

declaration with the const modifier:

char const *ptr_str = “A string constant”;

After the initialization, you cannot change the content of the string pointed by the pointer

ptr_str. For instance, the following statement is not allowed:

ptr_str = ‘a’; / It’s not allowed here. */

However, the ptr_str pointer itself can be assigned a different address of a string that is

declared with char const.

The volatile Modifier
Sometimes, you want to declare a variable whose value can be changed without any

explicit assignment statement in your program. This is especially true when you are deal-

ing directly with hardware. For instance, you might declare a global variable that con-

tains characters entered by the user. The address of the variable is passed to a device

register that accepts characters from the keyboard. However, when the C compiler opti-

mizes your program automatically, it intends to not update the value held by the variable

unless the variable is on the left side of an assignment operator (=). In other words, the

value of the variable is likely not changed even though the user is typing in characters

from the keyboard.

To ask the compiler to turn off certain optimizations on a variable, you can declare the

variable with the volatile specifier. For instance, in the following code portion, a vari-

able, keyboard_ch, declared with the volatile specifier, tells the compiler not to opti-

mize any expressions of the variable because the value saved by the variable might be

changed without execution of any explicit assignment statement:

void read_keyboard()
{

Understanding Scope and Storage Classes 235

14

volatile char keyboard_ch; /* a volatile variable */
.
.
.

}

Summary
In this lesson you learned the following important concepts about scopes and storage

classes in C:

• A variable declared within a block has block scope. Such a variable is also called a

local variable and is only visible within the block.

• A goto label has function scope, which means that it is visible through the whole

block of the function within which the label is placed. No two goto labels share

the same name within a function block.

• A variable declared with the static specifier outside a function has file scope,

which means that it is visible throughout the entire source file in which the variable

is declared.

• A variable declared outside a function is said to have program scope. Such a vari-

able is also called a global variable. A global variable is visible in all source files

that make up an executable program.

• A variable with block scope has the most limited visibility. On the other hand, a

variable with program scope is the most visible, and can be seen through all files,

functions, and other blocks that make up the program.

• The storage class of a variable refers to the combination of its spatial and temporal

regions (that is, its scope and duration.)

• By default, a variable with block scope has an auto duration, and its memory stor-

age is temporary.

• A variable declared with the static specifier has permanent memory storage, even

after the function in which the variable is declared has been called and the function

scope has exited.

• A variable declared with the register specifier might be stored in a register to

speed up the performance of a program; however, the compiler can ignore the

specifier if there is no register available or if some other restrictions apply.

• You can also allude to a global variable defined elsewhere by using the extern

specifier from the current source file.

236 Hour 14

• To make sure the value saved by a variable cannot be changed, you can declare the

variable with the const modifier.

• If you want to let the compiler know that the value of a variable can be changed

without an explicit assignment statement, declare the variable with the volatile

modifier so that the compiler will turn off optimizations on expressions involving

the variable.

In the next lesson you’ll learn about function declarations and prototypes in C.

Q&A
Q Can a global variable be hidden by a local variable with block scope?

A Yes. If a local variable shares the same name with a global variable, the global

variable can be hidden by the local variable for the scope of the block within which

the local variable is defined with block scope. However, outside the block, the local

variable cannot be seen, but the global variable becomes visible again.

Q Why do you need the static specifier?

A In many cases, the value of a variable is needed, even if the scope of the block, in

which the variable is declared, has exited. By default, a variable with block scope

has a temporary memory storage—that is, the lifetime of the variable starts when

the block is executed and the variable is declared, and ends when the execution of

that block is finished. Therefore, to declare a variable with permanent duration, you

have to use the static specifier to indicate to the compiler that the memory loca-

tion of the variable and the value stored in the memory location should be retained

after the execution of the block.

Q Does using the register specifier guarantee to improve the performance of a

program?

A Not really. Declaring a variable with the register specifier only suggests to the

compiler that the variable should be stored in a register. But there is no guarantee

that the variable will be stored in a register. The compiler can ignore the request

based on the availability of registers or other restrictions.

Q When you declare a variable with the extern specifier, do you define the vari-

able or allude to a global variable elsewhere?

A When a variable is declared with the extern specifier, the compiler considers the

declaration of the variable as an allusion rather than a definition. The compiler will

therefore look somewhere else to find a global variable to which the variable with

extern alludes.

Understanding Scope and Storage Classes 237

14

Workshop
To help solidify your understanding of this lesson, you are encouraged to answer the quiz

questions and finish the exercises provided in the workshop before you move to the next

lesson. The answers and hints to the questions and exercises are given in Appendix B,

“Answers to Quiz Questions and Exercises.”

Quiz
1. Given the following code portion, which variables are global variables, and which

ones are local variables with block scope?

int x = 0;
float y = 0.0;
int myFunction()
{

int i, j;
float y;
. . .
{

int x, y;
. . .

}
. . .

}

2. When two variables with the same name are defined, how does the compiler know

which one to use?

3. Identify the storage class of each declaration in the following code portion:

int i = 0;
static int x;
extern float y;
int myFunction()
{

int i, j;
extern float z;
register long s;
static int index;
const char str[] = “Warning message.”;
. . .

}

4. Given the following declaration:

const char ch_str[] = “The const specifier”;

is the ch_str[9] = ‘-’; statement legal?

238 Hour 14

Exercises
1. Given the following:

• An int variable with block scope and temporary storage

• A constant character variable with block scope

• A float local variable with permanent storage

• A register int variable

• A char pointer initialized with a null character

write declarations for all of them.

2. Rewrite the program in Listing 14.2. This time, pass the int variable x and the

float variable y as arguments to the function_1() function. What do you get on

your screen after running the program?

3. Compile and run the following program. What do you get on the screen, and why?

#include <stdio.h>
int main()
{

int i;

for (i=0; i<5; i++){
int x = 0;
static int y = 0;
printf(“x=%d, y=%d\n”, x++, y++);

}
return 0;

}

4. Rewrite the add_two() function in Listing 14.3 to print out the previous result of

the addition, as well as the counter value.

Understanding Scope and Storage Classes 239

14

Hour

15 Working with Functions

16 Applying Pointers

17 Allocating Memory

18 Using Special Data Types and Functions

PART IV
Functions and Dynamic
Memory Allocation

HOUR 15
Working with Functions

Form follows function.

—L. H. Sullivan

In Hour 14, “Understanding Scope and Storage Classes,” you might have

noticed that a function definition is always given first, before the function is

called from a main() function. In fact, you can put a function definition any-

where you want, as long as you put the function declaration before the first

place where the function is called. You’ll learn about many features of func-

tions from the following topics covered in this lesson:

• Function declarations

• Prototyping

• Values returned from functions

• Arguments to functions

• Structured programming

In addition, several C library functions and macros, such as time(),

localtime(), asctime(), va_start(), va_arg(), and va_end() are

introduced in this hour.

Declaring Functions
As you know, you have to declare or define a variable before you can use it. This is also

true for functions. In C, you have to declare or define a function before you can call it.

Declaration Versus Definition
According to the ANSI standard, the declaration of a variable or function specifies the

interpretation and attributes of a set of identifiers. The definition, on the other hand,

requires the C compiler to reserve storage for a variable or function named by an identifier.

A variable declaration is a definition, but a function declaration is not. A function decla-

ration alludes to a function that is defined elsewhere and specifies what kind of value is

returned by the function. A function definition defines what the function does, as well as

gives the number and type of arguments passed to the function.

A function declaration is not a function definition. If a function definition is placed in

your source file before the function is first called, you don’t need to make the function

declaration. Otherwise, the declaration of a function must be made before the function is

invoked.

For example, I’ve used the printf() function in almost every sample program in this

book. Each time, I had to include a header file, stdio.h, because the header file contains

the declaration of printf(), which indicates to the compiler the return type and proto-

type of the function. The definition of the printf() function is placed somewhere else.

In C, the definition of this function is saved in a library file that is invoked during the

linking states.

Specifying Return Types
A function can be declared to return any data type, except an array or function. The

return statement used in a function definition returns a single value whose type should

match the one declared in the function declaration.

By default, the return type of a function is int, if no explicit data type is specified for the

function. A data type specifier is placed prior to the name of a function like this:

data_type_specifier function_name();

Here data_type_specifier specifies the data type that the function should return.

function_name is the function name that should follow the rules of naming identifiers

in C.

In fact, this declaration form represents the traditional function declaration form before

the ANSI standard was created. After setting up the ANSI standard, the function proto-

type is added to the function declaration.

244 Hour 15

Using Prototypes
Before the ANSI standard was created, a function declaration only included the return

type of the function. With the ANSI standard, the number and types of arguments passed

to a function can be added into the function declaration. The number and types of an

argument are called the function prototype.

The general form of a function declaration, including its prototype, is as follows:

data_type_specifier function_name(
data_type_specifier argument_name1,
data_type_specifier argument_name2,
data_type_specifier argument_name3,
.
.
.
data_type_specifier argument_nameN,

);

The purpose of using a function prototype is to help the compiler check whether the data

types of arguments passed to a function match what the function expects. The compiler

issues an error message if the data types do not match.

Although argument names, such as argument_name1, argument_name2, and so on, are

optional, it is recommended that you include them so that the compiler can identify any

mismatches of argument names.

Making Function Calls
As shown in Figure 15.1, when a function call is made, the program execution jumps to

the function and finishes the task assigned to the function. Then the program execution

resumes after the called function returns.

A function call is an expression that can be used as a single statement or within other

statements.

Listing 15.1 gives an example of declaring and defining functions, as well as making

function calls.

LISTING 15.1 Calling Functions After They Are Declared and Defined

1: /* 15L01.c: Making function calls */
2: #include <stdio.h>
3:
4: int function_1(int x, int y);
5: double function_2(double x, double y)
6: {
7: printf(“Within function_2.\n”);

Working with Functions 245

15

TYPE

continues

LISTING 15.1 continued

8: return (x - y);
9: }
10:
11: main()
12: {
13: int x1 = 80;
14: int y1 = 10;
15: double x2 = 100.123456;
16: double y2 = 10.123456;
17:
18: printf(“Pass function_1 %d and %d.\n”, x1, y1);
19: printf(“function_1 returns %d.\n”, function_1(x1, y1));
20: printf(“Pass function_2 %f and %f.\n”, x2, y2);
21: printf(“function_2 returns %f.\n”, function_2(x2, y2));
22: return 0;
23: }
24: /* function_1() definition */
25: int function_1(int x, int y)
26: {
27: printf(“Within function_1.\n”);
28: return (x + y);
29: }

246 Hour 15

Start

End

Function

Call

Function

Return

Function

Execution

P
ro

g
ra

m
 E

x
e
c
u
tio

n
 F

lo
w

FIGURE 15.1

Program execution

jumps to an invoked

function when a func-

tion call is made.

The following output is displayed after the executable (15L01.exe) of the program in

Listing 15.1 is created and run:

Pass function_1 80 and 10.
Within function_1.
function_1 returns 90.
Pass function_2 100.123456. and 10.123456.
Within function_2.
function_2 returns 90.000000.

The purpose of the program in Listing 15.1 is to show you how to declare and

define functions. The statement in line 4 is a function declaration with a proto-

type. The declaration alludes to the function_1 defined later in Listing 15.1. The return

type of function_1 is int, and the function prototype includes two int variables, called

x and y.

In lines 5–9, the second function, function_2, is defined before it is called. As you can

see, the return type of function_2 is double, and two double variables are passed to the

function. Note that the names of the two variables are also x and y. Don’t worry because

function_1 and function_2 share the same argument names. There is no conflict

because these arguments are in different function blocks and arguments to functions have

block scope.

Then, in the main() function defined in lines 11–23, two int variables, x1 and y1, and

two double variables, x2 and y2, are declared and initialized in lines 13–16, respectively.

The statement in line 18 shows the values of x1 and y1 that are passed to the function_1

function. Line 19 calls function_1 and displays the return value from function_1.

Likewise, lines 20 and 21 print out the values of x2 and y2 that are passed to

function_2, as well as the value returned by function_2 after the function is called and

executed.

Lines 25–29 contain the definition of the function_1 function, specifying that the func-

tion can perform an addition of two integer variables (see line 28) and print out the string

of Within function_1. in line 27.

Prototyping Functions
In the following subsections, you’re going to study three cases regarding arguments

passed to functions. The first case is that functions take no argument; the second one is

that functions take a fixed number of arguments; the third case is that functions take a

variable number of arguments.

Working with Functions 247

15

OUTPUT

ANALYSIS

Functions with No Arguments
The first case is a function that takes no argument. For instance, the C library function

getchar() does not need any arguments. It can be used in a program like this:

int c;
c = getchar();

As you can see, the second statement is left blank between the parentheses ((and))

when the function is called.

In C, the declaration of the getchar() function can be something like this:

int getchar(void);

Note that the keyword void is used in the declaration to indicate to the compiler that no

argument is needed by this function. The compiler will issue an error message if there is

any argument passed to getchar() later in a program when this function is called.

Therefore, for a function with no argument, the void data type is used as the prototype in

the function declaration.

The program in Listing 5.2 shows another example of using void in function

declarations.

LISTING 15.2 Using void in Function Declarations

1: /* 15L02.c: Functions with no arguments */
2: #include <stdio.h>
3: #include <time.h>
4:
5: void GetDateTime(void);
6:
7: main()
8: {
9: printf(“Before the GetDateTime() function is called.\n”);
10: GetDateTime();
11: printf(“After the GetDateTime() function is called.\n”);
12: return 0;
13: }
14: /* GetDateTime() definition */
15: void GetDateTime(void)
16: {
17: time_t now;
18:
19: printf(“Within GetDateTime().\n”);
20: time(&now);
21: printf(“Current date and time is: %s\n”,
22: asctime(localtime(&now)));
23: }

248 Hour 15

TYPE

I obtain the following output after I run the executable file, 15L02.exe, of the program in

Listing 15.2:

Before the GetDateTime() function is called.
Within GetDateTime().
Current date and time is: Sat Apr 05 11:50:10 1997

After the GetDateTime() function is called.

The purpose of the program in Listing 15.2 is to show you how .to declare and

call a function without passing arguments. The program prints out the current

date and time on your computer by calling the function GetDateTime(), declared in line

5. Because no argument needs to be passed to the function, the void data type is used as

the prototype in the declaration of GetDateTime().

Additionally, another void keyword is used in front of the name of the GetDateTime()

function to indicate that this function does return any value either (see line 5.)

The statements in lines 9 and 11 print out messages both before and after the

GetDateTime() function is called from within the main() function.

In line 10, the function is called by the statement GetDateTime();. Note that no argu-

ment should be passed to this function because the function prototype is void.

The definition of GetDateTime() is in lines 15–23; it obtains the calendar time and con-

verts it into a character string by calling several C library functions: time(), local-

time(), and asctime(). Then, the character string containing the current date and time is

printed out on the screen by the printf() function with the format specifier %s. As you

can see, the output on my screen shows that at the moment the executable file 15L02.exe

is being executed, the date and time are

Sat Apr 05 11:50:10 1997

time(), localtime(), and asctime() are date and time functions provided by the C lan-

guage. These functions are discussed in the following subsection. You might notice that

the header file time.h is included at the beginning of the program in Listing 15.2 before

these time functions can be used.

Using time(), localtime(), and asctime()
There is a group of C functions known as date and time functions. The declarations of all

date and time functions are included in the header file time.h. These functions can give

three types of date and time:

• Calendar time

• Local time

• Daylight savings time

Working with Functions 249

15

OUTPUT

ANALYSIS

Here calendar time gives the current date and time based on the Gregorian calendar.

Local time represents the calendar time in a specific time zone. Daylight savings time is

the local time under the daylight savings rule.

In this section, three date and time functions—time(), localtime(), and asctime()—

are briefly introduced.

The time() function returns the calendar time.

The syntax for the time() function is

#include <time.h>
time_t time(time_t *timer);

Here time_t is the arithmetic type that is used to represent time. timer is a pointer vari-

able pointing to a memory storage that can hold the calendar time returned by this func-

tion. The time() function returns -1 if the calendar time is not available on the

computer.

The localtime() function returns the local time converted from the calendar time.

The syntax for the localtime() function is

#include <time.h>
struct tm *localtime(const time_t *timer);

Here tm is a structure that contains the components of the calendar time. struct is the

keyword for structure, which is another data type in C. (The concept of structures is

introduced in Hour 19, “Understanding Structures.”) timer is a pointer variable pointing

to a memory storage that holds the calendar time returned by the time() function.

To convert the date and time represented by the structure tm, you can call the asctime()

function..

The syntax for the asctime() function is

#include <time.h>
char *asctime(const struct tm *timeptr);

Here timeptr is a pointer referencing the structure tm returned by date and time func-

tions like localtime(). The asctime() function converts the date and time represented

by tm into a character string..

As shown in Listing 15.2, the statement in line 17 declares a time_t variable called now.

Line 20 stores the calendar time in the memory location referenced by the now variable.

Note that the argument passed to the time() function should be the left value of a vari-

able; therefore, the address-of operator (&) is used prior to now. Then, the expression in

250 Hour 15

,
S

Y
N

TA
X

,
S

Y
N

TA
X

,

,

,

S
Y

N
TA

X

line 22, asctime(localtime(&now)), obtains the local time expression of the calendar

time by calling localtime(), and converts the local time into a character string with help

from asctime(). The character string representing the date and time is then printed out

by the printf() call in lines 21 and 22, which has the following format:

Sat Apr 05 11:50:10 1997\n\0

Note that there is a newline character appended right before the null character in the

character string that is converted and returned by the asctime() function..

Functions with a Fixed Number of Arguments
You have actually seen several examples that declare and call functions with a fixed

number of arguments. For instance, in Listing 15.1, the declaration of the function_1()

function in line 4

int function_1(int x, int y);

contains the prototype of two arguments, x and y.

To declare a function with a fixed number of arguments, you need to specify the data

type of each argument. Also, it’s recommended to indicate the argument names so that

the compiler can check to make sure that the argument types and names declared in a

function declaration match with the implementation in the function definition.

Prototyping a Variable Number of Arguments
As you may remember, the syntax of the printf() function is

int printf(const char *format[, argument, ...]);

Here the ellipsis token ... (that is, three dots) represents a variable number of argu-

ments. In other words, besides the first argument that is a character string, the printf()

function can take an unspecified number of additional arguments, as many as the com-

piler allows. The brackets ([and]) indicate that the unspecified arguments are optional.

The following is a general form to declare a function with a variable number of argu-

ments:

data_type_specifier function_name(
data_type_specifier argument_name1, ...

);

Note that the first argument name is followed by the ellipsis (...) that represents the rest

of unspecified arguments.

Working with Functions 251

15

For instance, the declaration of the printf() function would look something like this:

int printf(const char *format, ...);

Processing Variable Arguments
There are three routines declared in the header file stdarg.h that enable you to write

functions that take a variable number of arguments. They are va_start(), va_arg(), and

va_end().

Also included in stdarg.h is a data type, va_list, which defines an array type suitable

for containing data items needed by va_start(), va_arg(), and va_end().

To initialize a given array that is needed by va_arg() and va_end(), you have to use the

va_start() macro routine before any arguments are processed.

The syntax for the va_start() macro is

#include <stdarg.h>
void va_start(va_list ap, lastfix);

Here ap is the name of the array that is about to be initialized by the va_start() macro

routine. lastfix should be the argument before the ellipsis (...) in the function decla-

ration.

By using the va_arg() macro, you’re able to deal with an expression that has the type

and value of the next argument. In other words, the va_arg() macro can be used to get

the next argument passed to the function.

The syntax for the va_arg() macro is

#include <stdarg.h>
type va_arg(va_list ap, data_type);

Here ap is the name of the array that is initialized by the va_start() macro routine.

data_type is the data type of the argument passed to function.

To facilitate a normal return from your function, you have to use the va_end() function

in your program after all arguments have been processed.

The syntax for the va_end() function is

#include <stdarg.h>
void va_end(va_list ap);

Here ap is the name of the array that is initialized by the va_start() macro

routine.

Remember to include the header file stdarg.h in your program before you call

va_start(), va_arg(), or va_end().

252 Hour 15

,
S

Y
N

TA
X

,

S
Y

N
TA

X
S

Y
N

TA
X

,

,

Listing 5.3 demonstrates how to use va_start(), va_arg(), and va_end() in a function

that takes a variable number of arguments.

LISTING 15.3 Processing Variable Arguments

1: /* 15L03.c: Processing variable arguments */
2: #include <stdio.h>
3: #include <stdarg.h>
4:
5: double AddDouble(int x, ...);
6:
7: main ()
8: {
9: double d1 = 1.5;
10: double d2 = 2.5;
11: double d3 = 3.5;
12: double d4 = 4.5;
13:
14: printf(“Given an argument: %2.1f\n”, d1);
15: printf(“The result returned by AddDouble() is: %2.1f\n\n”,
16: AddDouble(1, d1));
17: printf(“Given arguments: %2.1f and %2.1f\n”, d1, d2);
18: printf(“The result returned by AddDouble() is: %2.1f\n\n”,
19: AddDouble(2, d1, d2));
20: printf(“Given arguments: %2.1f, %2.1f and %2.1f\n”, d1, d2, d3);
21: printf(“The result returned by AddDouble() is: %2.1f\n\n”,
22: AddDouble(3, d1, d2, d3));
23: printf(“Given arguments: %2.1f, %2.1f, %2.1f, and %2.1f\n”,
24: d1, d2, d3, d4);
25: printf(“The result returned by AddDouble() is: %2.1f\n”,
26: AddDouble(4, d1, d2, d3, d4));
27: return 0;
28: }
29: /* definition of AddDouble() */
30: double AddDouble(int x, ...)
31: {
32: va_list arglist;
33: int i;
34: double result = 0.0;
35:
36: printf(“The number of arguments is: %d\n”, x);
37: va_start (arglist, x);
38: for (i=0; i<x; i++)
39: result += va_arg(arglist, double);
40: va_end (arglist);
41: return result;
42: }

Working with Functions 253

15

TYPE

The following output is displayed on the screen after the executable file, 15L03.exe, is

run:

Given an argument: 1.5
The number of arguments is: 1
The result returned by AddDouble() is: 1.5

Given arguments: 1.5 and 2.5
The number of arguments is: 2
The result returned by AddDouble() is: 4.0

Given arguments: 1.5, 2.5, and 3.5
The number of arguments is: 3
The result returned by AddDouble() is: 7.5

Given arguments: 1.5, 2.5, 3.5, and 4.5
The number of arguments is: 4
The result returned by AddDouble() is: 12.0

The program in Listing 15.3 contains a function that can take a variable number

of double arguments, perform the operation of addition on these arguments, and

then return the result to the main() function.

The declaration in line 5 indicates to the compiler that the AddDouble() function takes a

variable number of arguments. The first argument to AddDouble() is an integer variable

that holds the number of the rest of the arguments passed to the function each time

AddDouble() is called. In other words, the first argument indicates the number of remain-

ing arguments to be processed.

The definition of AddDouble() is given in lines 29–41, in which a va_list array,

arglist, is declared in line 31. As mentioned, the va_start() macro has to be called

before the arguments are processed. Thus, line 36 invokes va_start() to initialize the

array arglist. The for loop in lines 37 and 38 fetches the next double argument saved

in the array arglist by calling va_arg(). Then, each argument is added into a local

double variable called result.

The va_end() function is called in line 39 after all arguments saved in arglist have

been fetched and processed. Then, the value of result is returned back to the caller of

the AddDouble() function, which is the main() function in this case.

The va_end() function must be called in a C program to end variable argument process-

ing. Otherwise, the behavior of the program is undefined.

As you can see, within the main() function, AddDouble() is called four times, with a dif-

ferent number of arguments each time. These arguments passed to AddDouble() are dis-

played by the printf() calls in lines 14, 17, 20, and 23. Also, the four different results

returned by AddDouble() are printed out on the screen.

254 Hour 15

OUTPUT

ANALYSIS

Learning Structured Programming
Now you’ve learned the basics of function declaration and definition. Before we go to

the next hour, let’s talk a little bit about structured programming in program design.

Structured programming is one of the best programming methodologies. Basically, there

are two types of structured programming: top-down programming and bottom-up pro-

gramming.

When you start to write a program to solve a problem, one way to do it is to work on the

smallest pieces of the problem. First, you define and write functions for each piece. After

each function is written and tested, you begin to put them together to build a program

that can solve the problem. This approach is normally called bottom-up programming.

On the other hand, to solve a problem, you can first work out an outline and start your

programming at a higher level. For instance, you can work on the main() function at the

beginning, and then move to the next lower level until the lowest-level functions are writ-

ten. This type of approach is called top-down programming.

You’ll find that it’s useful to combine these two types of structured programming and use

them alternately in order to solve real problems.

Summary
In this lesson you learned the following important concepts about functions in C:

• A function declaration alludes to a function that is defined elsewhere, and specifies

what type of arguments and values are passed to and returned from the function as

well.

• A function definition reserves the memory space and defines what the function

does, as well as the number and type of arguments passed to the function.

• A function can be declared to return any data type, except an array or a function.

• The return statement used in a function definition returns a single value whose

type must be matched with the one declared in the function declaration.

• A function call is an expression that can be used as a single statement or within

other expressions or statements.

• The void data type is needed in the declaration of a function that takes no argu-

ment.

• To declare a function that takes a variable number of arguments, you have to spec-

ify at least the first argument, and use the ellipsis (...) to represent the rest of the

arguments passed to the function.

Working with Functions 255

15

• va_start(), va_arg(), and va_end(), all included in stdarg.h, are needed in pro-

cessing a variable number of arguments passed to a function.

• time(), localtime(), and asctime() are three time functions provided by C. They

can be used together to obtain a character string that contains information about the

local date and time based on the calendar time.

In the next lesson you’ll learn more about pointers and their applications in C.

Q&A
Q What is the main difference between a function declaration and a function

definition?

A The main difference between a function declaration and a function definition is that

the former does not reserve any memory space, nor does it specify what a function

does. A function declaration only alludes to a function definition that is placed

elsewhere. It also specifies what type of arguments and values are passed to and

returned from the function. A function definition, on the other hand, reserves the

memory space and specifies tasks the function can complete.

Q Why do we need function prototypes?

A By declaring a function with prototypes, you specify not only the data type

returned by the function, but also the types and names of arguments passed to the

function. With the help of a function prototype, the compiler can automatically per-

form type checking on the definition of the function, which saves you time in

debugging the program.

Q Can a function return a pointer?

A Yes. In fact, a function can return a single value that can be any data type except an

array or a function. A pointer value—that is, the address—returned by a function

can refer to a character array, or a memory location that stores other types of data.

For instance, the C library function asctime() returns a character pointer that

points to a character string converted from a date-time structure.

Q Can you use top-down programming and bottom-up programming together to

solve a problem?

A Yes. In practice, you can find that it’s actually a good idea to combine the top-

down and bottom-up programming approaches together to solve problems. Using

the two types of structured programming can make your program easy to write and

understand.

256 Hour 15

Workshop
To help solidify your understanding of this hour’s lesson, you are encouraged to answer

the quiz questions and finish the exercises provided in the workshop before you move to

the next lesson. The answers and hints to the questions and exercises are given in

Appendix B, “Answers to Quiz Questions and Exercises.”

Quiz
1. Given the following function declarations, which ones are functions with fixed

number of arguments, which ones are functions with no arguments, and which ones

are functions with a variable number of arguments?

• int function_1(int x, float y);

• void function_2(char *str);

• char *asctime(const struct tm *timeptr);

• int function_3(void);

• char function_4(char c, ...);

• void function_5(void);

2. Which one in the following two expressions is a function definition?

int function_1(int x, int y);
int function_2(int x, int y){return x+y;}

3. What is the data type returned by a function when a type specifier is omitted?

4. In the following function declarations, which ones are illegal?

• double function_1(int x, ...);

• void function_2(int x, int y, ...);

• char function_3(...);

• int function_4(int, int, int, int);

Exercises
1. Rewrite the program in Listing 15.2. This time use the format specifier %c, instead

of %s, to print out the character string of the local time on your computer.

2. Declare and define a function, called MultiTwo(), that can perform multiplication

on two integer variables. Call the MultiTwo() function from the main() function

and pass two integers to MultiTwo(). Then print out the result returned by the

MultiTwo() function on the screen.

Working with Functions 257

15

3. Rewrite the program in Listing 15.3. This time, make a function that takes a vari-

able number of int arguments and performs the operation of multiplication on

these arguments.

4. Rewrite the program in Listing 15.3 again. This time, print out all arguments

passed to the AddDouble() function. Does va_arg() fetch each argument in the

same order (that is, from left to right) of the argument list passed to AddDouble()?

258 Hour 15

HOUR 16
Applying Pointers

Think twice and do once.

—Chinese proverb

In Hour 11, “Understanding Pointers,” you learned the basics of using point-

ers in C. Because pointers are very useful in programming, it’s worth spend-

ing another hour to learn more about them. In this lesson, the following

topics are discussed:

• Pointer arithmetic

• Passing arrays to functions

• Passing pointers to functions

• Pointing to functions

Pointer Arithmetic
In C, you can move the position of a pointer by adding or subtracting inte-

gers to or from the pointer. For example, given a character pointer variable

ptr_str, the following expression:

ptr_str + 1

moves the pointer to the memory location that is one byte away from the current position

of ptr_str.

Note that for pointers of different data types, the integers added to or subtracted from the

pointers have different sizes. In other words, adding (or, subtracting) 1 to a pointer is not

necessarily instructing the compiler to add (or subtract) one byte to the address, but

rather to adjust the address so that it skips over one element of the type of the pointer.

You’ll see more details in the following sections.

The Scalar Size of Pointers
The general format to change the position of a pointer is

pointer_name + n

Here n is an integer whose value can be either positive or negative. pointer_name is the

name of a pointer variable that has the following declaration:

data_type_specifier *pointer_name;

When the C compiler reads the expression pointer_name + n, it interprets it as

pointer_name + n * sizeof(data_type_specifier)

Note that the sizeof operator is used to obtain the number of bytes of the specified data

type. Therefore, for the char pointer variable ptr_str, the expression ptr_str + 1 actu-

ally means

ptr_str + 1 * sizeof(char).

Because the size of a character is one byte long, ptr_str + 1 tells the compiler to move

to the memory location that is 1 byte after the current location referenced by the pointer.

The program in Listing 16.1 shows how the scalar sizes of different data types affect the

offsets added to or subtracted from pointers.

LISTING 16.1 Moving Pointers of Different Data Types

1: /* 16L01.c: Pointer arithmetic */
2: #include <stdio.h>
3:
4: main()
5: {
6: char *ptr_ch;
7: int *ptr_int;
8: double *ptr_db;
9: /* char pointer ptr_ch */
10: printf(“Current position of ptr_ch: %p\n”, ptr_ch);

260 Hour 16

TYPE

11: printf(“The position after ptr_ch + 1: %p\n”, ptr_ch + 1);
12: printf(“The position after ptr_ch + 2: %p\n”, ptr_ch + 2);
13: printf(“The position after ptr_ch - 1: %p\n”, ptr_ch - 1);
14: printf(“The position after ptr_ch - 2: %p\n”, ptr_ch - 2);
15: /* int pointer ptr_int */
16: printf(“Current position of ptr_int: %p\n”, ptr_int);
17: printf(“The position after ptr_int + 1: %p\n”, ptr_int + 1);
18: printf(“The position after ptr_int + 2: %p\n”, ptr_int + 2);
19: printf(“The position after ptr_int - 1: %p\n”, ptr_int - 1);
20: printf(“The position after ptr_int - 2: %p\n”, ptr_int - 2);
21: /* double pointer ptr_ch */
22: printf(“Current position of ptr_db: %p\n”, ptr_db);
23: printf(“The position after ptr_db + 1: %p\n”, ptr_db + 1);
24: printf(“The position after ptr_db + 2: %p\n”, ptr_db + 2);
25: printf(“The position after ptr_db - 1: %p\n”, ptr_db - 1);
26: printf(“The position after ptr_db - 2: %p\n”, ptr_db - 2);
27:
28: return 0;
29: }

The following output is obtained by running the executable file 16L01.exe of the pro-

gram in Listing 16.1 on my machine. You might get different addresses on your com-

puter, as well as different offsets depending on the sizes of the data types on your

system:

Current position of ptr_ch: 0x000B
The position after ptr_ch + 1: 0x000C
The position after ptr_ch + 2: 0x000D
The position after ptr_ch - 1: 0x000A
The position after ptr_ch - 2: 0x0009
Current position of ptr_int: 0x028B
The position after ptr_int + 1: 0x028D
The position after ptr_int + 2: 0x028F
The position after ptr_int - 1: 0x0289
The position after ptr_int - 2: 0x0287
Current position of ptr_db: 0x0128
The position after ptr_db + 1: 0x0130
The position after ptr_db + 2: 0x0138
The position after ptr_db - 1: 0x0120
The position after ptr_db - 2: 0x0118

As you can see in Listing 16.1, there are three pointers of different types—

ptr_ch, ptr_int, and ptr_db—declared in lines 6–8. Among them, ptr_ch is a

pointer to a character, ptr_int is a pointer to an integer, and ptr_db is a pointer to a

double.

Then the statement in line 10 shows the memory address, 0x000B, contained by the char

pointer variable ptr_ch. Lines 11 and 12 display the two addresses, 0x000C and 0x000D,

when ptr_ch is added with 1 and 2, respectively. Similarly, lines 13 and 14 give 0x000A

Applying Pointers 261

16

OUTPUT

ANALYSIS

and 0x0009 when ptr_ch is moved down to lower memory addresses. Because the size

of char is 1 byte, ptr_ch+1 means to move to the memory location that is 1 byte higher

than the current memory location, 0x000B, referenced by the pointer ptr_ch.

Line 16 shows the memory location referenced by the int pointer variable ptr_int at

0x028B. Because the size of int is 2 bytes long on my system, the expression ptr_int+1

moves ptr_int to the memory location that is 2 bytes higher than the current one

pointed to by ptr_int. That’s exactly the result you see in line 17. Likewise, line 18

shows that ptr_int+2 moves the reference to 0x028F, which is 4 bytes higher

(2*sizeof(int)) than 0x028B. The memory location 0x0289 is referenced by the expres-

sion ptr_int-1 in line 19; 0x0287 is referenced by ptr_int-2 in line 20.

The size of the double data type is 8 bytes long on my system. Therefore, the expression

ptr_db+1 is interpreted as the memory address referenced by ptr_db plus 8 bytes—that

is, 0x0128+8, which gives 0x0130 in hex format ,as you can see in line 23.

Lines 24–26 print out the memory addresses referenced by ptr_db+2, ptr_db-1, and

ptr_db-2, respectively, which prove that the compiler has used the same scalar size of

double in the pointer arithmetic.

262 Hour 16

Pointers are very useful when used properly. However, a pointer can get you

into trouble quickly if it contains the wrong value. A common error, for

instance, is to assign a right value to a pointer that actually expects a left

one. Fortunately, many C compilers will find such errors and issue a warning

message.

There is another common error that the compiler does not always pick up

for you: using uninitialized pointers. For example, the following code has a

potential problem:

int x, *ptr_int;
x = 8;
*ptr_int = x;

The problem is that the ptr_int pointer is not initialized; it points to some

unknown memory location. Therefore, assigning a value, like 8 in this case,

to an unknown memory location is dangerous. It may overwrite some

important data that are already saved at the memory location, thus causing

a serious problem. The solution is to make sure that a pointer is pointing at

a legal and valid memory location before it is used.

You can rewrite the above code to avoid the potential problem like this:

int x, *ptr_int;
x = 8;
ptr_int = &x; /* initialize the pointer */

Pointer Subtraction
You can subtract one pointer value from the other to obtain the distance between the two

memory locations. For instance, given two char pointer variables, ptr_str1 and

ptr_str2, you can calculate the offset between the two memory locations pointed to by

the two pointers like this:

ptr_str2 - ptr_str1

To get meaningful results, it is best to only subtract pointers of the same data type.

Listing 16.2 shows an example of performing subtraction on an int pointer variable.

LISTING 16.2 Performing Subtraction on Pointers

1: /* 16L02.c: Pointer subtraction */
2: #include <stdio.h>
3:
4: main()
5: {
6: int *ptr_int1, *ptr_int2;
7:
8: printf(“The position of ptr_int1: %p\n”, ptr_int1);
9: ptr_int2 = ptr_int1 + 5;
10: printf(“The position of ptr_int2 = ptr_int1 + 5: %p\n”, ptr_int2);
11: printf(“The subtraction of ptr_int2 - ptr_int1: %d\n”, ptr_int2 -
ptr_int1);
12: ptr_int2 = ptr_int1 - 5;
13: printf(“The position of ptr_int2 = ptr_int1 - 5: %p\n”, ptr_int2);
14: printf(“The subtraction of ptr_int2 - ptr_int1: %d\n”, ptr_int2 -
ptr_int1);
15:
16: return 0;
17: }

After running the executable (16L02.exe) of the program in Listing 16.2 on my machine,

I have the following output shown on the screen:

The position of ptr_int1: 0x0128
The position of ptr_int2 = ptr_int1 + 5: 0x0132
The subtraction of ptr_int2 - ptr_int1: 5
The position of ptr_int2 = ptr_int1 - 5: 0x011E
The subtraction of ptr_int2 - ptr_int1: -5

The program in Listing 16.2 declares two int pointer variables, ptr_int1 and

ptr_int2, in line 6. The statement in line 8 prints out the memory position held

by ptr_int1. Line 9 assigns the memory address referenced by ptr_int1+5 to ptr_int2.

Then, the content of ptr_int2 is printed out in line 10.

Applying Pointers 263

16

TYPE

OUTPUT

ANALYSIS

The statement in line 11 shows the difference between the two int pointers—that is, the

subtraction of ptr_int2 and ptr_int1. The result is 5.

Line 12 then assigns another memory address, referenced by the expression ptr_int1-5,

to the ptr_int2 pointer. Now, ptr_int2 points to a memory location that is 10 bytes

lower than the memory location pointed by ptr_int1 (see the output made by line 13.)

The difference between ptr_int2 and ptr_int1 is obtained by the subtraction of the two

pointers, which is -5 (since an int on my machine is two bytes) as printed out by the

statement in line 14.

Pointers and Arrays
As indicated in previous lessons, pointers and arrays have a close relationship. You can

access an array through a pointer that contains the start address of the array. The follow-

ing subsection introduces how to access array elements through pointers.

Accessing Arrays via Pointers
Because an array name that is not followed by a subscript is interpreted as a pointer to

the first element of the array, you can assign the start address of the array to a pointer of

the same data type; then you can access any element in the array by adding a proper inte-

ger to the pointer. The value of the integer you use is the same as the subscript value of

the element that you want to access.

In other words, given an array, array, and a pointer, ptr_array, if array and ptr_array

are of the same data type, and ptr_array contains the start address of the array, that is

ptr_array = array;

then the expression array[n] is equivalent to the expression

*(ptr_array + n)

Here n is a subscript number in the array.

Listing 16.3 demonstrates how to access arrays and change values of array elements by

using pointers.

LISTING 16.3 Accessing Arrays by Using Pointers

1: /* 16L03.c: Accessing arrays via pointers */
2: #include <stdio.h>
3:
4: main()
5: {

264 Hour 16

TYPE

6: char str[] = “It’s a string!”;
7: char *ptr_str;
8: int list[] = {1, 2, 3, 4, 5};
9: int *ptr_int;
10:
11: /* access char array */
12: ptr_str = str;
13: printf(“Before the change, str contains: %s\n”, str);
14: printf(“Before the change, str[5] contains: %c\n”, str[5]);
15: *(ptr_str + 5) = ‘A’;
16: printf(“After the change, str[5] contains: %c\n”, str[5]);
17: printf(“After the change, str contains: %s\n”, str);
18: /* access int array */
19: ptr_int = list;
20: printf(“Before the change, list[2] contains: %d\n”, list[2]);
21: *(ptr_int + 2) = -3;
22: printf(“After the change, list[2] contains: %d\n”, list[2]);
23:
24: return 0;
25: }

The following output is displayed after the executable file 16L03.exe is created and run

on my computer:

Before the change, str contains: It’s a string!
Before the change, str[5] contains: a
After the change, str[5] contains: A
After the change, str contains: It’s A string!
Before the change, list[2] contains: 3
After the change, list[2] contains: -3

The purpose of the program in Listing 16.3 is to show you how to access a char

array, str, and an int array, list. In lines 6 and 8, str and list are declared

and initialized with a string and a set of integers, respectively. A char pointer, ptr_str,

and an int pointer, ptr_int, are declared in lines 7 and 9.

Line 12 assigns the start address of the str array to the ptr_str pointer. The statements

in lines 13 and 14 demonstrate the content of the string saved in the str array, as well as

the character contained by the str[5] element in the array before any changes are made

to str.

The statement in line 15 shows that the character constant, ‘A’, is assigned to the ele-

ment of the str array pointed by the expression

*(ptr_str + 5)

To verify that the content of the element in str has been updated, lines 16 and 17 print

out the element and the whole string, respectively. The output indicates that ‘A’ has

replaced the original character constant, ‘a’.

Applying Pointers 265

16

OUTPUT

ANALYSIS

The start address of the int array list is assigned to the ptr_int pointer in line 19.

Before I do anything with the list[2] element of the list array, I print out its value,

which is 3 at this moment (see the output made by line 20). In line 21, the list[2] ele-

ment is given another value, -3, through the dereferenced pointer *(ptr_int + 2). The

printf() call in line 22 prints the updated value of list[2] .

Pointers and Functions
Before I start to talk about passing pointers to functions, let’s first have a look how to

pass arrays to functions.

Passing Arrays to Functions
In practice, it’s usually awkward if you pass more than five or six arguments to a func-

tion. One way to save the number of arguments passed to a function is to use arrays. You

can put all variables of the same type into an array, and then pass the array as a single

argument.

The program in Listing 16.4 shows how to pass an array of integers to a function.

LISTING 16.4 Passing Arrays to Functions

1: /* 16L04.c: Passing arrays to functions */
2: #include <stdio.h>
3:
4: int AddThree(int list[]);
5:
6: main()
7: {
8: int sum, list[3];
9:
10: printf(“Enter three integers separated by spaces:\n”);
11: scanf(“%d%d%d”, &list[0], &list[1], &list[2]);
12: sum = AddThree(list);
13: printf(“The sum of the three integers is: %d\n”, sum);
14:
15: return 0;
16: }
17:
18: int AddThree(int list[])
19: {
20: int i;
21: int result = 0;
22:
23: for (i=0; i<3; i++)
24: result += list[i];
25: return result;
26: }

266 Hour 16

TYPE

The following output is obtained after I run the executable, 16L04.exe, and enter three

integers, 10, 20, and 30, on my machine:

Enter three integers separated by spaces:
10 20 30
The sum of the three integers is: 60

The purpose of the program in Listing 16.4 is to obtain three integers entered by

the user, and then pass the three integers as an array to a function called

AddThree() to perform the operation of addition.

Line 4 gives the declaration of the AddThree() function. Note that the unsized array,

list[], is used in the argument expression, which indicates that the argument contains

the start address of the list array.

The list array and an integer variable, sum, are declared in line 8. The printf() call in

line 10 displays a message asking the user to enter three integers. Then, line 11 uses

scanf() to retrieve the integers entered by the user and stores them into the three mem-

ory locations of the elements in the integer array referenced by &list[0], &list[1], and

&list[2], respectively.

The statement in line 12 calls the AddThree() function with the name of the array as the

argument. The AddThree(list) expression is actually passing the start address of the

list array (&list[0]) to the AddThree() function.

The definition of the AddThree() function is in lines 18–26; it adds the values of all

three elements in the list array and returns the result of the addition. The result returned

from the AddThree() function is assigned to the integer variable sum in line 12 and is

printed out in line 13.

Applying Pointers 267

16

OUTPUT

ANALYSIS

You can also specify the size of an array that is passed to a function. For

instance, the following:

function(char str[16]);

is equivalent to the following statement:

function(char str[]);

Remember that the compiler can figure out the size for the unsized

array str[].

For multidimensional arrays, the format of an unsized array should be

always used in the declaration. (See the section titled “Passing

Multidimensional Arrays as Arguments,” later in this hour.)

Passing Pointers to Functions
As you know, an array name that is not followed by a subscript is interpreted as a pointer

to the first element of the array. In fact, the address of the first element in an array is the

start address of the array. Therefore, you can assign the start address of an array to a

pointer, and then pass the pointer name, instead of the unsized array, to a function.

Listing 16.5 shows an example of passing pointers to functions, which is similar to pass-

ing arrays that are passed to functions.

LISTING 16.5 Passing Pointers to Functions

1: /* 16L05.c: Passing pointers to functions */
2: #include <stdio.h>
3:
4: void ChPrint(char *ch);
5: int DataAdd(int *list, int max);
6: main()
7: {
8: char str[] = “It’s a string!”;
9: char *ptr_str;
10: int list[5] = {1, 2, 3, 4, 5};
11: int *ptr_int;
12:
13: /* assign address to pointer */
14: ptr_str = str;
15: ChPrint(ptr_str);
16: ChPrint(str);
17:
18: /* assign address to pointer */
19: ptr_int = list;
20: printf(“The sum returned by DataAdd(): %d\n”,
21: DataAdd(ptr_int, 5));
22: printf(“The sum returned by DataAdd(): %d\n”,
23: DataAdd(list, 5));
24: return 0;
25: }
26: /* function definition */
27: void ChPrint(char *ch)
28: {
29: printf(“%s\n”, ch);
30: }
31: /* function definition */
32: int DataAdd(int *list, int max)
33: {
34: int i;
35: int sum = 0;
36:

268 Hour 16

TYPE

37: for (i=0; i<max; i++)
38: sum += list[i];
39: return sum;
40: }

After executing the 16L05.exe program, I obtain the following output displayed on the

screen of my computer:

It’s a string!
It’s a string!
The sum returned by DataAdd(): 15
The sum returned by DataAdd(): 15

The purpose of the program in Listing 16.5 is to demonstrate how to pass two

pointers—an integer pointer that points to an integer array and a character

pointer that references a character string—to two functions that are declared in lines 4

and 5.

Note that expressions such as char *ch and int *list are used as arguments in the

function declarations, which indicates to the compiler that a char pointer and an int

pointer are respectively passed to the functions ChPrint() and DataAdd().

Inside the main() function body, lines 8 and 9 declare a char array (str) that is initial-

ized with a character string, and a char pointer variable (ptr_str). Line 10 declares and

initializes an int array (list) with a set of integers. An int pointer variable, ptr_int, is

declared in line 11.

The start address of the str array is assigned to the ptr_str pointer by the assignment

statement in line 14. Then, the ptr_str pointer is passed to the ChPrint() function as

the argument in line 15. According to the definition of ChPrint() in lines 27–30, the

content of the str array whose start address is passed to the function as the argument is

printed out by the printf() call inside the ChPrint() function in line 29.

In fact, you can still use the name of the str array as the argument and pass it to the

ChPrint() function. Line 16 shows that the start address of the character array is passed

to ChPrint() via the name of the array.

The statement in line 19 assigns the start address of the integer array list to the integer

pointer ptr_int. Then, the ptr_int pointer is passed to the DataAdd() function in line

21, along with 5, which is the maximum number of elements contained by the list

array. The max argument is used because the function can’t determine the size of the

array given only the start address. From the definition of the DataAdd() function in lines

32–40, you can see that DataAdd() adds all the integer elements in list and returns the

sum to the caller. Thereafter, the statement in lines 20 and 21 prints out the result

returned from DataAdd().

Applying Pointers 269

16
OUTPUT

ANALYSIS

The expression in line 23 also invokes the DataAdd() function, but this time, the name of

the list array is used as the argument to the function. Not surprisingly, the start address

of the list array is passed to the DataAdd() function successfully, and the printf()

statement in lines 22 and 23 displays the correct result on the screen.

Passing Multidimensional Arrays as Arguments
In Hour 12, “Understanding Arrays,” you learned about multidimensional arrays. In this

section, you’re going to see how to pass multidimensional arrays to functions.

As you might have guessed, passing a multidimensional array to a function is similar to

passing a one-dimensional array to a function. You can either pass the unsized format of

a multidimensional array or a pointer that contains the start address of the multidimen-

sional array to a function. Listing 16.6 is an example of these two methods.

LISTING 16.6 Passing Multidimensional Arrays to Functions

1: /* 16L06.c: Passing multidimensional arrays to functions */
2: #include <stdio.h>
3: /* function declarations */
4: int DataAdd1(int list[][5], int max1, int max2);
5: int DataAdd2(int *list, int max1, int max2);
6: /* main() function */
7: main()
8: {
9: int list[2][5] = {1, 2, 3, 4, 5,
10: 5, 4, 3, 2, 1};
11: int *ptr_int;
12:
13: printf(“The sum returned by DataAdd1(): %d\n”,
14: DataAdd1(list, 2, 5));
15: ptr_int = &list[0][0];
16: printf(“The sum returned by DataAdd2(): %d\n”,
17: DataAdd2(ptr_int, 2, 5));
18:
19: return 0;
20: }
21: /* function definition */
22: int DataAdd1(int list[][5], int max1, int max2)
23: {
24: int i, j;
25: int sum = 0;
26:
27: for (i=0; i<max1; i++)
28: for (j=0; j<max2; j++)
29: sum += list[i][j];
30: return sum;
31: }

270 Hour 16

TYPE

32: /* function definition */
33: int DataAdd2(int *list, int max1, int max2)
34: {
35: int i, j;
36: int sum = 0;
37:
38: for (i=0; i<max1; i++)
39: for (j=0; j<max2; j++)
40: sum += *(list + i*max2 + j);
41: return sum;
42: }

The following output is displayed on the screen of my computer after the executable

(16L06.exe) is executed:

The sum returned by DataAdd1(): 30
The sum returned by DataAdd2(): 30

At the beginning of the program in Listing 16.6, I declare two functions,

DataAdd1() and DataAdd2(), in lines 4 and 5. Note that the first argument to

DataAdd1() in line 4 is the unsized array of list. In fact, list is a two-dimensional

integer array declared in lines 9 and 10 inside the main() function body. The other two

arguments, max1 and max2, are two dimension sizes of the list array.

As you can tell from the definition of DataAdd1() in lines 22–31, each element of the

list array, expressed as list[i][j], is added and assigned to a local variable called sum

that is returned at the end of the DataAdd1() function in line 30. Here i goes from 0 to

max1 - 1, and j is within the range of 0 to max2 - 1.

The DataAdd1() function is called in line 14, with the name of the list array and the

two dimension sizes, 2 and 5. The result returned by DataAdd1() is printed out by the

statement in lines 13 and 14. So you see, passing a multidimensional array to a function

is quite similar to passing a one-dimensional array to a function. The function, in this

case, needs both dimension sizes to determine the total number of elements in the array.

Another way to do the job is to pass a pointer that contains the start address of a multidi-

mensional array to a function. In this example, the DataAdd2() function is declared in

line 5 with a pointer expression, int *list, as the function’s first argument. The defini-

tion of DataAdd2() is given in lines 33–42.

Note that in line 40, each element in the list array is fetched by moving the pointer to

point to the memory location of the element. That is, the dereferenced pointer *(list +

i*max2 + j) evaluates to the value of an element that is located at row i and column j,

if you imagine that the two-dimensional array is a matrix with both horizontal and verti-

cal dimensions. Therefore, adding i*max2 to list calculates the address of row i (that is,

Applying Pointers 271

16

OUTPUT

ANALYSIS

skipping rows 0 through i-1), and then adding j calculates the address of element j (that

is, column j) within the current row (i). In this example, the range of the row is from 0

to 1 (that is, a total of 2 rows); the range of the column is from 0 to 4 (that is, a total of 5

columns). See Figure 16.1.

The result returned by the DataAdd2() function is displayed on the screen by the

printf() statement in lines 16 and 17.

272 Hour 16

FIGURE 16.1

The two-dimensional

coordinate shows the

locations of the ele-

ments in the list

array.
Row

Column

0

0

1

1 2 3 4

1 2 3 4 5

5 4 3 2 1

Arrays of Pointers
In many cases, it’s useful to declare an array of pointers and access the contents pointed

by the array by dereferencing each pointer. For instance, the following declaration

declares an array of int pointers:

int *ptr_int[3];

In other words, the variable ptr_int is a three-element array of pointers to integers. In

addition, you can initialize the array of pointers. For example:

int x1 = 10;
int x2 = 100;
int x3 = 1000;
ptr_int[0] = &x1;
ptr_int[1] = &x2;
ptr_int[2] = &x3;

Listing 16.7 shows another example. Here an array of pointers is used to access an array

of strings.

LISTING 16.7 Using an Array of Pointers to Character Strings

1: /* 16L07.c: Using an array of pointers */
2: #include <stdio.h>
3: /* function declarations */
4: void StrPrint1(char **str1, int size);
5: void StrPrint2(char *str2);

TYPE

6: /* main() function */
7: main()
8: {
9: char *str[4] = {“There’s music in the sighing of a reed;”,
10: “There’s music in the gushing of a rill;”,
11: “There’s music in all things if men had ears;”,
12: “There earth is but an echo of the spheres.\n”
13: };
14: int i, size = 4;
15:
16: StrPrint1(str, size);
17: for (i=0; i<size; i++)
18: StrPrint2(str[i]);
19:
20: return 0;
21: }
22: /* function definition */
23: void StrPrint1(char **str1, int size)
24: {
25: int i;
26: /* Print all strings in an array of pointers to strings */
27: for (i=0; i<size; i++)
28: printf(“%s\n”, str1[i]);
29: }
30: /* function definition */
31: void StrPrint2(char *str2)
32: {
33: /* Prints one string at a time */
34: printf(“%s\n”, str2);
35: }

A piece of a poem written by Lord Byron is printed out after the executable (16L07.exe)

of the program in Listing 16.7 is created and executed:

There’s music in the sighing of a reed;
There’s music in the gushing of a rill;
There’s music in all things if men had ears;
There earth is but an echo of the spheres.
There’s music in the sighing of a reed;
There’s music in the gushing of a rill;
There’s music in all things if men had ears;
There earth is but an echo of the spheres.

Let’s first have a look at the array of pointers, str, which is declared and initial-

ized in lines 9–13 inside the main() function body of the program in Listing

16.7. As you can see, str is a four-element array of pointers to a set of character strings.

I have adopted four sentences of a poem written by Lord Byron and used them as four

character strings in the program.

Applying Pointers 273

16

OUTPUT

ANALYSIS

You can access a character string by using a corresponding pointer in the array. In fact,

there are two functions, StrPrint1() and StrPrint2(), in Listing 16.7. Both of them

can be called to access the character strings. From the function declaration in line 4, you

can see that the StrPrint1() function takes a pointer of pointers—that is, **str1, which

is dereferenced inside the StrPrint1() function to represent the four pointers that point

to the four character strings. The definition of StrPrint1() is in lines 23–29.

The StrPrint2() function, on the other hand, only takes a pointer variable as its argu-

ment, and prints out a character string referenced by the pointer. Lines 31–35 give the

definition of the StrPrint2() function.

Now let’s move back to the main() function. The StrPrint1() function is called in line

16 with the name of the array of pointers, str, as the argument. StrPrint1() then dis-

plays the four sentences of Byron’s poem on the screen. The for loop in lines 17 and 18

does the same thing by calling the StrPrint2() function four times. Each time, the start

address of a sentence is passed to StrPrint2(). Therefore, you see all the sentences of

the poem printed on the screen twice..

Pointing to Functions
Before you finish the course for this hour, there is one more interesting thing you need to

learn about: pointers to functions.

As with pointers to arrays, you can declare a pointer that is initialized with the left value

of a function. (The left value is the memory address at which the function is located.)

Then you can call the function via the pointer.

The program in Listing 16.8 is an example that declares a pointer to a function.

LISTING 16.8 Pointing to a Function

1: /* 16L08.c: Pointing to a function */
2: #include <stdio.h>
3: /* function declaration */
4: int StrPrint(char *str);
5: /* main() function */
6: main()
7: {
8: char str[24] = “Pointing to a function.”;
9: int (*ptr)(char *str);
10:
11: ptr = StrPrint;
12: if (!(*ptr)(str))

274 Hour 16

TYPE

13: printf(“Done!\n”);
14:
15: return 0;
16: }
17: /* function definition */
18: int StrPrint(char *str)
19: {
20: printf(“%s\n”, str);
21: return 0;
22: }

After the executable 16L08.exe of the program in Listing 16.8 is created and

executed on my computer, the following output is shown on the screen:

Pointing to a function.
Done!

As usual, a function declaration comes first in Listing 16.8. The StrPrint() function is

declared with the int data type specifier and an argument of a char pointer in line 4.

The statement in line 9 gives the declaration of a pointer (ptr) to the StrPrint() func-

tion: that is, int (*ptr)(char *str);.

Note that the pointer, ptr, is specified with the int data type and passed with a char

pointer. In other words, the format of the pointer declaration in line 9 is quite similar to

the declaration of StrPrint() in line 4. Please remember that you have to put the *ptr

expression between a pair of parentheses ((and)) so that the compiler won’t confuse it

with a function name.

In line 11, the left value (that is, the address) of the StrPrint() function is assigned to

the ptr pointer. Then, the (*ptr)(str) expression in line 12 calls the StrPrint() func-

tion via the dereferenced pointer ptr, and passes the address of the string declared in line

8 to the function.

From the definition of the StrPrint() function in lines 18–22, you can tell that the func-

tion prints out the content of a string whose address is passed to the function as the argu-

ment. Then, 0 is returned at the end of the function.

In fact, the if statement in lines 12 and 13 checks the value returned by the StrPrint()

function. When the value is 0, the printf() call in line 13 displays the string Done! on

the screen.

The output of the program in Listing 16.8 shows that the StrPrint() function has been

invoked successfully by using a pointer that holds the address of the function.

Applying Pointers 275

16

OUTPUT

ANALYSIS

Summary
In this lesson you’ve learned the following very important concepts and applications of

pointers and arrays in C:

• You should always make sure that a pointer is pointing to a legal and valid memory

location before you use it.

• The position of a pointer can be moved by adding or subtracting an integer.

• The scalar size of a pointer is determined by the size of its data type, which is

specified in the pointer declaration.

• For two pointers of the same type, you can subtract one pointer value from the

other to obtain the offset between them.

• The elements in an array can be accessed via a pointer that holds the start address

of the array.

• You can pass an unsized array as a single argument to a function.

• Also, you can pass an array to a function through a pointer. The pointer should

hold the start address of the array.

• You can either pass the unsized format of a multidimensional array, or a pointer

that contains the start address of the multidimensional array, to a function.

• A function that takes an array as an argument does not know how many elements

are in the array. You should also pass the number of elements as another argument

to the function.

• Arrays of pointers are useful in dealing with character strings.

• You can assign a pointer to the address of a function, and then call the function

using that pointer.

In the next lesson you’ll learn how to allocate memory in C.

Q&A
Q Why do you need pointer arithmetic?

A The beauty of using pointers is that you can move pointers around to get access to

valid data that are saved in those memory locations referenced by the pointers. To

do so, you can perform pointer arithmetic to add (or subtract) an integer to (or

from) a pointer. For example, if a character pointer, ptr_str, holds the start

address of a character string, the ptr_str+1 expression moves to the next memory

location, which contains the second character in the string.

276 Hour 16

Q How does the compiler determine the scalar size of a pointer?

A The compiler determines the scalar size of a pointer by its data type, which is spec-

ified in the declaration. When an integer is added to or subtracted from a pointer,

the actual value the compiler uses is the multiplication of the integer and the size

of the pointer type. For instance, given an int pointer ptr_int, the expression

ptr_int + 1 is interpreted by the compiler as ptr_int + 1 * sizeof(int). If

the size of the int type is 2 bytes, the ptr_int + 1 expression really means to

move 2 bytes higher from the memory location referenced by the ptr_int pointer.

Q How do you get access to an element in an array by using a pointer?

A For a one-dimensional array, you can assign the start address of an array to a

pointer of the same type, and then move the pointer to the memory location that

contains the value of an element in which you’re interested. Then you dereference

the pointer to obtain the value of the element. For multidimensional arrays, the

method is similar, but you have to think about the other dimensions at the same

time (See the example shown in Listing 16.6.)

Q Why do you need to use arrays of pointers?

A In many cases, it’s helpful to use arrays of pointers. For instance, it’s convenient to

use an array of pointers to point to a set of character strings so that you can access

any one of the strings referenced by a corresponding pointer in the array.

Workshop
To help solidify your understanding of this hour’s lesson, you are encouraged to answer

the quiz questions and finish the exercises provided in the workshop before you move to

the next lesson. The answers and hints to the questions and exercises are given in

Appendix B, “Answers to Quiz Questions and Exercises.”

Quiz
1. Given a char pointer, ptr_ch, an int pointer, ptr_int, and a float pointer,

ptr_flt, how many bytes will be added, respectively, in the following expressions

on your machine?

• ptr_ch + 4

• ptr_int + 2

• ptr_flt + 1

• ptr_ch + 12

• ptr_int + 6

• ptr_flt + 3

Applying Pointers 277

16

2. If the address held by an int pointer, ptr1, is 0x100A, and the address held by

another int pointer, ptr2, is 0x1006, what will you get from the subtraction of

ptr1–ptr2?

3. Given that the size of the double data type is 8 bytes long, and the current address

held by a double pointer variable, ptr_db, is 0x0238, what are the addresses held,

respectively, by ptr_db–1 and ptr_db+5?

4. Given the following declarations and assignments:

char ch[] = {‘a’, ‘b’, ‘c’, ‘d’, ‘A’, ‘B’, ‘C’, ‘D’};
char *ptr;
ptr = &ch[1];

what do each of these expressions do?

• *(ptr + 3)

• ptr - ch

• *(ptr - 1)

• *ptr = ‘F’

Exercises
1. Given a character string, I like C!, write a program to pass the string to a func-

tion that displays the string on the screen.

2. Rewrite the program in exercise 1. This time, change the string of I like C! to I

love C! by moving a pointer that is initialized with the start address of the string

and updating the string with new characters. Then, pass the updated string to the

function to display the content of the string on the screen.

3. Given a two-dimensional character array, str, that is initialized as

char str[2][15] = { “You know what,”, “C is powerful.” };

write a program to pass the start address of str to a function that prints out the

content of the character array.

4. Rewrite the program in Listing 16.7. This time, the array of pointers is initialized

with the following strings:

“Sunday”, “Monday”, “Tuesday”, “Wednesday”, “Thursday”, “Friday”, and

“Saturday”.

278 Hour 16

HOUR 17
Allocating Memory

It’s just as unpleasant to get more than you bargain for as to get less.

—G. B. Shaw

So far you’ve learned how to declare and reserve a piece of memory space

before it is used in your program. For instance, you have to specify the size

of an array in your program (or the compiler has to figure out the size if you

declare an unsized array) before you assign any data to it at runtime. In this

lesson you’ll learn to allocate memory space dynamically when your pro-

gram is running. The four dynamic memory allocation functions covered in

this lesson are

• The malloc() function

• The calloc() function

• The realloc() function

• The free() function

Allocating Memory at Runtime
There are many cases when you do not know the exact sizes of arrays used in your pro-

grams, until much later when your programs are actually being executed. You can specify

the sizes of arrays in advance, but the arrays can be too small or too big if the numbers

of data items you want to put into the arrays change dramatically at runtime.

Fortunately, C provides you with four dynamic memory allocation functions that you can

employ to allocate or reallocate certain memory spaces while your program is running.

Also, you can release allocated memory storage as soon as you don’t need it. These four

C functions, malloc(), calloc(), realloc(), and free(), are introduced in the follow-

ing sections

The malloc() Function
You can use the malloc() function to allocate a specified size of memory space.

The syntax for the malloc() function is

#include <stdlib.h>
void *malloc(size_t size);

Here size indicates the number of bytes of storage to allocate. The malloc() function

returns a void pointer.

Note that the header file, stdlib.h, has to be included before the malloc() function can

be called. Because the malloc() function itself returns a void pointer, its type is then

automatically converted to the type of the pointer on the left side of an assignment opera-

tor, according to the ANSI C standard.

280 Hour 17

S
Y

N
TA

X

,

There are some C compilers in the market, usually old versions, which are

not 100% ANSI C compliant. If you use one of those C compilers, you may

get warning or error messages complaining about your declarations of mal-

loc(), calloc(), or realloc(). For example, if you write something like this:

int *ptr;
ptr = malloc (10 * sizeof(int));

you may get an error message about the return type from the malloc()

function when you try to compile the code. This is because that the C com-

piler that you’re using may not be 100% ANSI C compliant, and it does not

know how to covert the return type of malloc(). If it is the case, what you

can do is to use the casting operator (int *) shown here:

int *ptr;
ptr = (int *) malloc (10 * sizeof(int));

If the malloc() function fails to allocate a piece of memory space, it returns a null

pointer. Normally, this happens when there is not enough memory. Therefore, you should

always check the returned pointer from malloc() before you use it.

Listing 17.1 demonstrates the use of the malloc() function.

LISTING 17.1 Using the malloc() Function

1: /* 17L01.c: Using the malloc function */
2: #include <stdio.h>
3: #include <stdlib.h>
4: #include <string.h>
5: /* function declaration */
6: void StrCopy(char *str1, char *str2);
7: /* main() function */
8: main()
9: {
10: char str[] = “Use malloc() to allocate memory.”;
11: char *ptr_str;
12: int result;
13: /* call malloc() */
14: ptr_str = malloc(strlen(str) + 1);
15: if (ptr_str != NULL){
16: StrCopy(str, ptr_str);
17: printf(“The string pointed to by ptr_str is:\n%s\n”,
18: ptr_str);
19: result = 0;
20: }
21: else{
22: printf(“malloc() function failed.\n”);
23: result = 1;
24: }
25: return result;

Allocating Memory 281

17

This indicates to the compiler the type of the pointer returned by malloc(),

and shuts off the complaint from the C compiler. Here, you have to make

sure the type of the allocated memory, the type of the pointer, and the type

of the casting operator, are all the same. Similarly, you can add a casting

operator in front of the calloc() or realloc() functions when you use a

non–ANSI C compiler.

Because this book focuses on the ANSI C, which is the industry standard, I

don’t use casting operators in the example programs using malloc(), cal-

loc(), or realloc(), in the book.

TYPE

continues

26: }
27: /* function definition */
28: void StrCopy(char *str1, char *str2)
29: {
30: int i;
31:
32: for (i=0; str1[i]; i++)
33: str2[i] = str1[i];
34: str2[i] = ‘\0’;
35: }

The following output is shown on the screen after the executable program, 17L01.exe, in

Listing 17.1 is created and executed.

The string pointed to by ptr_str is:
Use malloc() to allocate memory.

The purpose of the program in Listing 17.1 is to use the malloc() function to

allocate a piece of memory space that has the same size as a character string.

Then, the content of the string is copied to the allocated memory referenced by the

pointer returned from the malloc() function. The content of the memory is displayed on

the screen to prove that the memory space does contain the content of the string after the

allocation and duplication.

Note that two more header files, stdlib.h and string.h, are included in lines 3 and 4,

respectively, for the functions malloc() and strlen(), which are called in line 14.

Line 10 declares a char array, str, that is initialized with a character string of “Use

malloc() to allocate memory.”. A char pointer variable, ptr_str, is declared in

line 11.

The statement in line 14 allocates a memory space of strlen(str)+1 bytes by calling

the malloc() function. Because the strlen() function does not count the null character

at the end of a string, adding 1 to the value returned by strlen(str) gives the total num-

ber of bytes that need to be allocated. The value of the returned pointer is assigned to the

char pointer variable ptr_str after the malloc() function is called in line 14.

The if-else statement in lines 15–24 checks the returned pointer from the malloc()

function. If it’s a null pointer, an error message is printed out, and the return value of the

main() function is set to 1 in lines 22 and 23. (Remember that a nonzero value returned

by the return statement indicates an abnormal termination.)

282 Hour 17

LISTING 17.1 continued

OUTPUT

ANALYSIS

But if the returned pointer is not a null pointer, the start address of the str array and the

pointer ptr_str are passed to a function called StrCopy() in line 16. The StrCopy()

function, whose definition is given in lines 28–35, copies the content of the str array to

the allocated memory pointed to by ptr_str. Then, the printf() call in lines 17 and 18

prints out the copied content in the allocated memory. Line 19 sets the return value to 0

after the success of the memory allocation and string duplication.

The output on my screen shows that a piece of memory has been allocated and that the

string has been copied to the memory.

There is a potential problem if you keep allocating memory, because there is always a

limit. You can easily run out of memory when you just allocate memory without ever

releasing it. In the next section, you’ll learn how to use the free() function to free up

memory spaces allocated for you when you don’t need them anymore.

Releasing Allocated Memory with free()
Because memory is a limited resource, you should allocate an exactly sized piece of

memory right before you need it, and release it as soon as you are through using it.

The program in Listing 17.2 demonstrates how to release allocated memory by calling

the free() function.

LISTING 17.2 Using the free() and malloc() Functions Together

1: /* 17L02.c: Using the free() function */
2: #include <stdio.h>
3: #include <stdlib.h>
4: /* function declarations */
5: void DataMultiply(int max, int *ptr);
6: void TablePrint(int max, int *ptr);
7: /* main() function */
8: main()
9: {
10: int *ptr_int, max;
11: int termination;
12: char key = ‘c’;
13:
14: max = 0;
15: termination = 0;
16: while (key != ‘x’){
17: printf(“Enter a single digit number:\n”);

Allocating Memory 283

17

TYPE

continues

18: scanf(“%d”, &max);
19:
20: ptr_int = malloc(max * max * sizeof(int)); /* call malloc() */
21: if (ptr_int != NULL){
22: DataMultiply(max, ptr_int);
23: TablePrint(max, ptr_int);
24: free(ptr_int);
25: }
26: else{
27: printf(“malloc() function failed.\n”);
28: termination = 1;
29: key = ‘x’; /* stop while loop */
30: }
31: printf(“\n\nPress x key to quit; other key to continue.\n”);
32: scanf(“%s”, &key);
33: }
34: printf(“\nBye!\n”);
35: return termination;
36: }
37: /* function definition */
38: void DataMultiply(int max, int *ptr)
39: {
40: int i, j;
41:
42: for (i=0; i<max; i++)
43: for (j=0; j<max; j++)
44: *(ptr + i * max + j) = (i+1) * (j+1);
45: }
46: /* function definition */
47: void TablePrint(int max, int *ptr)
48: {
49: int i, j;
50:
51: printf(“The multiplication table of %d is:\n”,
52: max);
53: printf(“ “);
54: for (i=0; i<max; i++)
55: printf(“%4d”, i+1);
56: printf(“\n “);
57: for (i=0; i<max; i++)
58: printf(“----”, i+1);
59: for (i=0; i<max; i++){
60: printf(“\n%d|”, i+1);
61: for (j=0; j<max; j++)
62: printf(“%3d “, *(ptr + i * max + j));
63: }
64: }

284 Hour 17

LISTING 17.2 continued

Whilethe executable 17L02.exe is being run, I enter two integers, 4 and 2 (highlighted in

the following output), to obtain a multiplication table for each; then I quit running the

program by pressing the x key:

Enter a single digit number:
4
The multiplication table of 4 is:

1 2 3 4

1| 1 2 3 4
2| 2 4 6 8
3| 3 6 9 12
4| 4 8 12 16
Press x key to quit; other key to continue.
C
Enter a single digit number:
2
The multiplication table of 2 is:

1 2

1| 1 2
2| 2 4
Press x key to quit; other key to continue.
x
Bye!

The purpose of the program in Listing 17.2 is to build a multiplication table

based on the integer given by the user. The program can continue building multi-

plication tables until the user presses the x key to quit. The program also stops execution

if the malloc() function fails.

To show you how to use the free() function, the program allocates temporary memory

storage to hold the items of a multiplication table. As soon as the content of a multiplica-

tion table is printed out, the allocated memory is released by calling the free() function.

Lines 5 and 6 declare two functions, DataMultiply() and TablePrint(), respectively.

The former is for performing multiplication and building a table, whereas the latter prints

out the table on the screen. The definitions of the two functions are given in lines 38–45

and lines 47–64, respectively.

Inside the main() function, there is a while loop in lines 16–33 that keeps asking the

user to enter an integer number (see lines 17 and 18) and then builds a multiplication

table based on the integer.

To hold the result of the multiplication, the statement in line 20 allocates a memory stor-

age that has the size of max*max*sizeof(int), where the int variable max contains the

Allocating Memory 285

17

OUTPUT

ANALYSIS

integer value entered by the user. Note that the sizeof(int) expression gives the byte

size of the int data type for the computer on which the program is being run.

If the malloc() function returns a null pointer, the return value of the main() function is

set to 1 to indicate an abnormal termination (see line 28), and the while loop is stopped

by assigning the key variable with ‘x’ in line 29.

Otherwise, if the malloc() function allocates memory storage successfully, the

DataMultiply() function is called in line 22 to calculate each multiplication. The results

are saved into the memory storage pointed to by the ptr_int pointer. Then the multipli-

cation table is printed out by calling the TablePrint() function in line 23.

As soon as I no longer need to keep the multiplication table, I call the free() function in

line 24 to release the allocated memory storage pointed by the ptr_int pointer.

If I did not release the memory, the program would take more and more memory as the

user keeps entering integer numbers to build more multiplication tables. Eventually, the

program would either crash the operating system or be forced to quit. By using the

free() and malloc() functions, I am able to keep running the program by taking the

exact amount of memory storage I need, no more and no less.

The calloc() Function
Besides the malloc() function, you can also use the calloc() function to allocate mem-

ory storage dynamically. The differences between the two functions are that the latter

takes two arguments and that the memory space allocated by calloc() is always initial-

ized to 0. There is no such guarantee that the memory space allocated by malloc() is ini-

tialized to 0.

The syntax for the calloc() function is

#include <stdlib.h>
void *calloc(size_t nitem, size_t size);

Here nitem is the number of items you want to save in the allocated memory space. size

gives the number of bytes that each item takes. The calloc() function returns a void

pointer too.

If the calloc() function fails to allocate a piece of memory space, it returns a null

pointer.

Listing 17.3 contains an example of using the calloc() function. The initial value of the

memory space allocated by calloc() is printed out.

286 Hour 17

,
S

Y
N

TA
X

,

LISTING 17.3 Using the calloc() Function

1: /* 17L03.c: Using the calloc() function */
2: #include <stdio.h>
3: #include <stdlib.h>
4: /* main() function */
5: main()
6: {
7: float *ptr1, *ptr2;
8: int i, n;
9: int termination = 1;
10:
11: n = 5;
12: ptr1 = calloc(n, sizeof(float));
13: ptr2 = malloc(n * sizeof(float));
14: if (ptr1 == NULL)
15: printf(“malloc() failed.\n”);
16: else if (ptr2 == NULL)
17: printf(“calloc() failed.\n”);
18: else {
19: for (i=0; i<n; i++)
20: printf(“ptr1[%d]=%5.2f, ptr2[%d]=%5.2f\n”,
21: i, *(ptr1 + i), i, *(ptr2 + i));
22: free(ptr1);
23: free(ptr2);
24: termination = 0;
25: }
26: return termination;
27: }

The following output appears on the screen after running the executable program

17L03.exe.

ptr1[0] = 0.00, ptr2[0] = 7042.23
ptr1[1] = 0.00, ptr2[1] = 1427.00
ptr1[2] = 0.00, ptr2[2] = 2787.14
ptr1[3] = 0.00, ptr2[3] = 0.00
ptr1[4] = 0.00, ptr2[4] = 5834.73

The purpose of the program in Listing 17.3 is to use the calloc() function to

allocate a piece of memory space. To prove that the calloc() function initializes

the allocated memory space to 0, the initial values of the memory are printed out. Also,

another piece of memory space is allocated by using the malloc() function, and the ini-

tial values of the second memory space are printed out too.

As you see in line 12, the calloc() function is called with two arguments passed to it:

the int variable n and the sizeof(float) expression. The float pointer variable ptr1 is

assigned the value returned by the calloc() function.

Allocating Memory 287

17

TYPE

OUTPUT

ANALYSIS

Likewise, the malloc() function is called in line 13. This function only takes one argu-

ment that specifies the total number of bytes that the allocated memory should have. The

value returned by the malloc() function is then assigned to another float pointer vari-

able, ptr2.

From lines 12 and 13, you can tell that the calloc() and malloc() functions actually

plan to allocate two pieces of memory space with the same size.

The if-else-if-else statement in lines 14–25 checks the two values returned from the

calloc() and malloc() functions and then prints out the initial values from the two allo-

cated memory spaces if the two return values are not null.

I ran the executable program of Listing 17.3 several times. Each time, the initial value

from the memory space allocated by the calloc() function was always 0. But there is no

such guarantee for the memory space allocated by the malloc() function. The output

shown here is one of the results from running the executable program on my machine.

You can see that there is some “garbage” in the memory space allocated by the malloc()

function. That is, the initial value in the memory is unpredictable. (Sometimes, the initial

value in a memory block allocated by the malloc() function happens to be 0. But it is

not guaranteed that the initial value is always zero each time the malloc() function is

called.)

The realloc() Function
The realloc() function gives you a means to change the size of a piece memory space

allocated by the malloc() function, the calloc() function, or even realloc() itself.

The syntax for the realloc() function is

#include <stdlib.h>
void *realloc(void *block, size_t size);

Here block is the pointer to the start of a piece of memory space previously allocated.

size specifies the total byte number you want to change to. The realloc() function

returns a void pointer.

The realloc() function returns a null pointer if it fails to reallocate a piece of memory

space.

The realloc() function is equivalent to the malloc() function if the first argument

passed to realloc() is NULL. In other words, the following two statements are equivalent:

ptr_flt = realloc(NULL, 10 * sizeof(float));
ptr_flt = malloc(10 * sizeof(float));

288 Hour 17

,
S

Y
N

TA
X

,

Also, you can use the realloc() function in place of the free() function. You do this by

passing 0 to realloc() as its second argument. For instance, to release a block of mem-

ory pointed to by a pointer ptr, you can either call the free() function like this:

free(ptr);

or use the realloc() function in the following way:

realloc(ptr, 0);

The program in Listing 17.4 demonstrates the use of the realloc() function in memory

reallocation.

LISTING 17.4 Using the realloc() Function

1: /* 17L04.c: Using the realloc() function */
2: #include <stdio.h>
3: #include <stdlib.h>
4: #include <string.h>
5: /* function declaration */
6: void StrCopy(char *str1, char *str2);
7: /* main() function */
8: main()
9: {
10: char *str[4] = {“There’s music in the sighing of a reed;”,
11: “There’s music in the gushing of a rill;”,
12: “There’s music in all things if men had ears;”,
13: “There earth is but an echo of the spheres.\n”
14: };
15: char *ptr;
16: int i;
17:
18: int termination = 0;
19:
20: ptr = malloc((strlen(str[0]) + 1) * sizeof(char));
21: if (ptr == NULL){
22: printf(“malloc() failed.\n”);
23: termination = 1;
24: }
25: else{
26: StrCopy(str[0], ptr);
27: printf(“%s\n”, ptr);
28: for (i=1; i<4; i++){
29: ptr = realloc(ptr, (strlen(str[i]) + 1) * sizeof(char));
30: if (ptr == NULL){
31: printf(“realloc() failed.\n”);
32: termination = 1;

Allocating Memory 289

17

TYPE

continues

33: i = 4; /* break the fro loop */
34: }
35: else{
36: StrCopy(str[i], ptr);
37: printf(“%s\n”, ptr);
38: }
39: }
40: }
41: free(ptr);
42: return termination;
43: }
44: /* funciton definition */
45: void StrCopy(char *str1, char *str2)
46: {
47: int i;
48:
49: for (i=0; str1[i]; i++)
50: str2[i] = str1[i];
51: str2[i] = ‘\0’;
52: }

The following output is obtained by running the executable program 17L04.exe.

There’s music in the sighing of a reed;
There’s music in the gushing of a rill;
There’s music in all things if men had ears;
There earth is but an echo of the spheres.

The purpose of the program in Listing 17.4 is to allocate a block of memory

space to hold a character string. There are four strings in this example, and the

length of each string may vary. I use the realloc() function to adjust the size of the pre-

viously allocated memory so it can hold a new string.

As you can see in lines 10–13, there are four character strings containing a lovely poem

written by Lord Byron. (You can tell that I love Byron’s poems.) Here I use an array of

pointers, str, to refer to the strings.

A piece of memory space is first allocated by calling the malloc() function in line 20.

The size of the memory space is determined by the (strlen(str[0])+1)*sizeof(char)

expression. As mentioned earlier, because the C function strlen() does not count the

null character at the end of a string, you have to remember to allocate space for one more

character to hold the full size of a string. The sizeof(char) expression is used here for

portability, although the char data type is 1 byte.

290 Hour 17

LISTING 17.4 continued

OUTPUT

ANALYSIS

Exercise 4 at the end of this lesson asks you to rewrite the program in Listing 17.4 and

replace the malloc() and free() functions with their equivalent formats of the real-

loc() function.

If the malloc() function doesn’t fail, the content of the first string pointed to by the

str[0] pointer is copied to the block of memory allocated by malloc(). To do this, a

function called StrCopy() is called in line 26. Lines 45–52 give the definition of

StrCopy().

The for loop, in lines 28–39, copies the remaining three strings, one at a time, to the

block of memory pointed to by ptr. Each time, the realloc() function is called in line

29 to reallocate and adjust the previously allocated memory space based on the length of

the next string whose content is about to be copied to the memory block.

After the content of a string is copied to the memory block, the content is also printed

out (see lines 27 and 37).

In this example, a block of memory space is allocated and adjusted based on the length

of each of the four strings. The realloc() function, as well as the malloc() function,

does the memory allocation and adjustment dynamically.

Summary
In this lesson you’ve learned the following very important functions and concepts for

memory management in C:

• In C, there are four functions that can be used to allocate, reallocate, or release a

block of memory space dynamically at runtime.

• The malloc() function allocates a block of memory whose size is specified by the

argument passed to the function.

• The free() function is used to free up a block of memory space previously allo-

cated by the malloc(), calloc(), or realloc() function.

• The calloc() function can do the same job as the malloc() function. In addition,

the calloc() function can initialize the allocated memory space to 0.

• The realloc() function is used to reallocate a block of memory that has been allo-

cated by the malloc() or calloc() function.

• If a null pointer is passed to the realloc() function as its first argument, the func-

tion acts like the malloc() function.

• If the second argument of the realloc() function is set to 0, the realloc() func-

tion is equivalent to the free() function that releases a block of allocated memory.

Allocating Memory 291

17

• You have to first include the header file stdlib.h before you can call the

malloc(), calloc(), realloc(), or free() function.

• You should always check the values returned from the malloc(), calloc(), or

realloc() function, before you use the memory allocated by these functions.

In the next lesson you’ll learn more about data types in C.

Q&A
Q Why do you need to allocate memory at runtime?

A Very often, you don’t know exact sizes of arrays until your program is being run.

You might be able to estimate the sizes for those arrays, but if you make those

arrays too big, you waste the memory. On the other hand, if you make those arrays

too small, you’re going to lose data. The best way is to allocate blocks of memory

dynamically and precisely for those arrays when their sizes are determined at run-

time. There are four C library functions, malloc(), calloc(), realloc(), and

free(), which you can use for memory allocation at runtime.

Q What does it mean if the malloc() function returns a null pointer?

A If the malloc() function returns a null pointer, it means the function failed to allo-

cate a block of memory whose size is specified by the argument passed to the func-

tion. Normally, the failure of the malloc() function is caused by the fact that there

is not enough memory left to allocate. You should always check the value returned

by the malloc() function to make sure that the function has succeeded before you

attempt to use the block of memory allocated by the function.

Q What are the differences between the calloc() and malloc() functions?

A Basically, there are two differences between the calloc() and malloc() functions,

although both functions can do the same job. The first difference is that the cal-

loc() function takes two arguments, while the malloc() function takes only one.

The second difference is that the calloc() function initializes the allocated mem-

ory space to 0, whereas there is no such guarantee made by the malloc() function.

Q Is the free() function necessary?

A Yes. The free() function is very necessary, and you should use it to free up allo-

cated memory blocks as soon as you don’t need them. As you know, memory is a

limited resource in a computer. Your program shouldn’t take too much memory

space when it allocates blocks of memory. One way to reduce the size of memory

taken by your program is to use the free() function to release the unused allocated

memory in time.

292 Hour 17

Workshop
To help solidify your understanding of this hour’s lesson, you are encouraged to answer

the quiz questions and finish the exercises provided in the workshop before you move to

the next lesson. The answers and hints to the questions and exercises are given in

Appendix B, “Answers to Quiz Questions and Exercises.”

Quiz
1. Provided that the char data type is 1 byte, the int data type is 2 bytes, and the

float data type is 4 bytes, how many bytes of memory do the following functions

try to allocate?

• malloc(100 * sizeof(int))

• calloc(200, sizeof(char))

• realloc(NULL, 50 * sizeof(float))

• realloc(ptr, 0)

2. Given an int pointer, ptr, that is pointing to a block of memory that can hold 100

integers, if you want to reallocate the memory block to hold up to 150 integers,

which of the two following statements do you use?

• ptr = realloc(ptr, 50 * sizeof(int));

• ptr = realloc(ptr, 150 * sizeof(int));

3. After the following statements are executed successfully, what is the final size of

the allocated memory block pointed to by the ptr pointer?

. . .
ptr = malloc(300 * sizeof(int));
. . .
ptr = realloc(ptr, 500 * sizeof(int));
. . .
ptr = realloc(ptr, 60 * sizeof(int));

4. What is the final size of the allocated memory block pointed to by the ptr pointer,

if the following statements are executed successfully?

. . .
ptr = calloc(100 * sizeof(char));
. . .
free(ptr);
ptr = realloc(NULL, 200 * sizeof(char));
. . .
ptr = realloc(ptr, 0);

Allocating Memory 293

17

Exercises
1. Write a program to ask the user to enter the total number of bytes he or she wants

to allocate. Then, initialize the allocated memory with consecutive integers, starting

from 1. Add all the integers contained by the memory block and print out the final

result on the screen.

2. Write a program that allocates a block of memory space to hold 100 items of the

float data type by calling the calloc() function. Then, reallocate the block of

memory in order to hold 50 more items of the float data type.

3. Write a program to ask the user to enter the total number of float data. Then use

the calloc() and malloc() functions to allocate two memory blocks with the

same size specified by the number, and print out the initial values of the two mem-

ory blocks.

4. Rewrite the program in Listing 17.4. This time, use the two special cases of the

realloc() function to replace the malloc() and free() functions.

294 Hour 17

HOUR 18
Using Special Data Types
and Functions

That’s all there is, there isn’t any more.

—E. Barrymore

In Hour 4, “Understanding Data Types and Keywords,” you learned about

most of the data types, such as char, int, float, and double. In Hour 15,

“Working with Functions,” you learned the basics of using functions in C. In

this hour, you’ll learn more about data types and functions from the follow-

ing topics:

• The enum data type

• The typedef statement

• Function recursion

• Command-line arguments

The enum Data Type
The C language provides you with an additional data type—the enum data type. enum is

short for enumerated. The enumerated data type can be used to declare named integer

constants. The enum data type makes the C program more readable and easier to main-

tain. (Another way to declare a named constant is to use the #define directive, which is

introduced later in this book.)

Declaring the enum Data Type
The general form of the enum data type declaration is

enum tag_name {enumeration_list} variable_list;

Here tag_name is the name of the enumeration. variable_list gives a list of variable

names that are of the enum data type. enumeration_list contains defined enumerated

names that are used to represent integer constants. (Both tag_name and variable_list

are optional.)

For instance, the following declares an enum data type with the tag name of automobile:

enum automobile {sedan, pick_up, sport_utility};

Given this, you can define enum variables like this:

enum automobile domestic, foreign;

Here the two enum variables, domestic and foreign, are defined.

Of course, you can always declare and define a list of enum variables in a single state-

ment, as shown in the general form of the enum declaration. Therefore, you can rewrite

the enum declaration of domestic and foreign like this:

enum automobile {sedan, pick_up, sport_utility} domestic, foreign;

Assigning Values to enum Names
By default, the integer value associated with the leftmost name in the enumeration list

field, surrounded by the braces ({ and }), starts with 0, and the value of each name in the

rest of the list increases by one from left to right. Therefore, in the previous example,

sedan, pick_up, and sport_utility have the values of 0, 1, and 2, respectively.

In fact, you can assign integer values to enum names. Considering the previous example,

you can initialize the enumerated names like this:

enum automobile {sedan = 60, pick_up = 30, sport_utility = 10};

296 Hour 18

,
S

Y
N

TA
X

,

Now, sedan represents the value of 60, pick_up has the value of 30, and sport_utility

assumes the value of 10.

The program shown in Listing 18.1 prints out the values of enum names.

LISTING 18.1 Defining enum Data Types

1: /* 18L01.c: Defining enum data types */
2: #include <stdio.h>
3: /* main() function */
4: main()
5: {
6: enum language {human=100,
7: animal=50,
8: computer};
9: enum days{SUN,
10: MON,
11: TUE,
12: WED,
13: THU,
14: FRI,
15: SAT};
16:
17: printf(“human: %d, animal: %d, computer: %d\n”,
18: human, animal, computer);
19: printf(“SUN: %d\n”, SUN);
20: printf(“MON: %d\n”, MON);
21: printf(“TUE: %d\n”, TUE);
22: printf(“WED: %d\n”, WED);
23: printf(“THU: %d\n”, THU);
24: printf(“FRI: %d\n”, FRI);
25: printf(“SAT: %d\n”, SAT);
26:
27: return 0;
28: }

The following output is shown on the screen after the executable file, 18L01.exe, of the

program in Listing 18.1 is created and executed on my computer:

human: 100, animal: 50, computer: 51
SUN: 0
MON: 1
TUE: 2
WED: 3
THU: 4
FRI: 5
SAT: 6

Using Special Data Types and Functions 297

18

TYPE

OUTPUT

The purpose of the program in Listing 18.1 is to show you the default values

of the enum names, as well as the values assigned to some enum names by the

programmer.

As you can tell, there are two enum declarations, in lines 6–8 and lines 9–15, respectively.

Note that the variable lists in the two enum declarations are omitted because there is no

need for the variable lists in the program.

The first declaration has a tag name called language and three enumerated names,

human, animal, and computer. In addition, human is assigned the value of 100; animal

is initialized with 50. According to the enum definition, the default value of computer is

the value of animal increased by 1. Therefore, in this case, the default value of

computer is 51.

The output made by the statement in line 17 shows that the values of human, animal, and

computer are indeed 100, 50, and 51.

The second enum declaration in the program contains seven items with their default val-

ues. Then, lines 19–25 print out these default values one at a time. It is not surprising to

see that the values represented by the enumerated names, SUN, MON, TUE, WED, THU, FRI,

and SAT, are 0, 1, 2, 3, 4, 5, and 6, respectively.

Now, let’s look at another example, shown in Listing 18.2, which demonstrates how to

use the enum data type.

LISTING 18.2 Using the enum Data Type

1: /* 18L02.c: Using the enum data type */
2: #include <stdio.h>
3: /* main() function */
4: main()
5: {
6: enum units{penny = 1,
7: nickel = 5,
8: dime = 10,
9: quarter = 25,
10: dollar = 100};
11: int money_units[5] = {
12: dollar,
13: quarter,
14: dime,
15: nickel,
16: penny};
17: char *unit_name[5] = {
18: “dollar(s)”,
19: “quarter(s)”,

298 Hour 18

ANALYSIS

TYPE

20: “dime(s)”,
21: “nickel(s)”,
22: “penny(s)”};
23: int cent, tmp, i;
24:
25: printf(“Enter a monetary value in cents:\n”);
26: scanf(“%d”, ¢); /* get input from the user */
27: printf(“Which is equivalent to:\n”);
28: tmp = 0;
29: for (i=0; i<5; i++){
30: tmp = cent / money_units[i];
31: cent -= tmp * money_units[i];
32: if (tmp)
33: printf(“%d %s “, tmp, unit_name[i]);
34: }
35: printf(“\n”);
36: return 0;
37: }

While the executable file (18L02.exe) is being executed, I enter 141 (for 141 cents) and

obtain the following output on the screen:

Enter a monetary value in cents:
141
Which is equivalent to:
1 dollar(s) 1 quarter(s) 1 dime(s) 1 nickel(s) 1 penny(s)

The purpose of the program in Listing 18.2 is to use the enum data type to repre-

sent the value of the amount of money entered by the user.

Inside the main() function, an enum declaration with a tag name of units is made in

lines 6–10. The numbers assigned to the enumerated names are based on their ratios to

the unit of cent. For instance, one dollar is equal to 100 cents. Therefore, the enum name

dollar is assigned the value of 100.

After the enum declaration, an int array, called money_units, is declared, and is initial-

ized with the enumerated names from the enum declaration. According to the definition

of the enum data type, the declaration of the money_units array in the program is actually

equivalent to the following one:

int money_units[5] = {
100,
25,
10,
5,
1};

So now you see that you can use enumerated names, instead of integer numbers, to make

up other expressions or declarations in your program.

Using Special Data Types and Functions 299

18OUTPUT

ANALYSIS

In lines 17–22, an array of pointers, unit_name, is declared and initialized. (The usage of

arrays of pointers was introduced in Hour 16, “Applying Pointers.”)

Then, the statement in line 15 asks the user to enter an integer number in the unit of cent.

The scanf() call in line 26 stores the number entered by the user to an int variable

called cent.

The for loop in lines 29–34 divides the entered number and represents it in a dollar-

quarter-dime-nickel-penny format.

Note that the integer constants represented by the enumerated names are used in lines 30

and 31, through the money_units array. If the value of a unit is not 0, a corresponding

string pointed to by the array of pointers, unit_name, is printed out in line 33. Therefore,

when I enter 141 (in unit of cent), I see its equivalent in the output: 1 dollar(s) 1

quarter(s) 1 dime(s) 1 nickel(s) 1 penny(s).

Making typedef Definitions
You can create your own names for data types with the help of the typedef keyword in

C, and make those name synonyms for the data types. Then, you can use the name syn-

onyms, instead of the data types themselves, in your programs. Often, the name syn-

onyms defined by typedef can make your program more readable.

For instance, you can declare TWO_BYTE as a synonym for the int data type:

typedef int TWO_BYTE;

Then, you can start to use TWO_BYTE to declare integer variables like this:

TWO_BYTE i, j;

which is equivalent to

int i, j;

Remember that a typedef definition must be made before the synonym created in the

definition is used in any declarations in your program.

Why Use typedef?
There are several advantages to using typedef definitions. First, you can consolidate

complex data types into a single word and then use the word in variable declarations in

your program. In this way, you don’t need to type a complex declaration over and over,

which helps to avoid typing errors.

300 Hour 18

The second advantage is that you just need to update a typedef definition, which fixes

every use of that typedef definition if the data type is changed in the future.

typedef is so useful, in fact, that there is a header file called stddef.h included in the

ANSI-standard C that contains a dozen typedef definitions. For instance, size_t is a

typedef for the value returned by the sizeof operator.

The program shown in Listing 18.3 is an example of using typedef definitions.

LISTING 18.3 Using typedef Definitions

1: /* 18L03.c: Using typedef definitions */
2: #include <stdio.h>
3: #include <stdlib.h>
4: #include <string.h>
5:
6: enum constants{ITEM_NUM = 3,
7: DELT=’a’-’A’};
8: typedef char *STRING[ITEM_NUM];
9: typedef char *PTR_STR;
10: typedef char CHAR;
11: typedef int INTEGER;
12:
13: void Convert2Upper(PTR_STR str1, PTR_STR str2);
14:
15: main()
16: {
17: STRING str;
18: STRING moon = {“Whatever we wear”,
19: “we become beautiful”,
20: “moon viewing!”};
21: INTEGER i;
22: INTEGER term = 0;
23:
24: for (i=0; i<ITEM_NUM; i++){
25: str[i] = malloc((strlen(moon[i])+1) * sizeof(CHAR));
26: if (str[i] == NULL){
27: printf(“malloc() failed.\n”);
28: term = 1;
29: i = ITEM_NUM; /* break the for loop */
30: }
31: Convert2Upper(moon[i], str[i]);
32: printf(“%s\n”, moon[i]);
33: }
34: for (i=0; i<ITEM_NUM; i++){
35: printf(“\n%s”, str[i]);

Using Special Data Types and Functions 301

18

TYPE

continues

36: free (str[i]);
37: }
38: printf(“\n”);
39: return term;
40: }
41: /* function definition */
42: void Convert2Upper(PTR_STR str1, PTR_STR str2)
43: {
44: INTEGER i;
45:
46: for (i=0; str1[i]; i++){
47: if ((str1[i] >= ‘a’) &&
48: (str1[i] <= ‘z’))
49: str2[i] = str1[i] - DELT;
50: else
51: str2[i] = str1[i];
52: }
53: str2[i] = ‘\0’; /* add null character */

54: }

I have the following output displayed on the screen after running the executable file,

18L03.exe, of the program in Listing 18.3:

Whatever we wear
we become beautiful
moon viewing!

WHATEVER WE WEAR
WE BECOME BEAUTIFUL
MOON VIEWING!

The purpose of the program in Listing 18.3 is to show you how to create your

own names for data types such as char and int. The program in Listing 18.3

converts all characters in a Japanese haiku into their uppercase counterparts.

In lines 3 and 4, two more header files, stdlib.h and string.h, are included for the

malloc(), and strlen()functions that are invoked later in the program.

An enum declaration is made in lines 6 and 7 with two enumerated name, ITEM_NUM and

DELT. ITEM_NUM is assigned the value of 3 because there are three strings in the haiku.

DELT contains the value of the difference between a lowercase character and its uppercase

counterpart in the ASCII code. In line 7, the values of ‘a’ and ‘A’ are used to calculate

the difference. In lines 8–11, I define the names STRING, PTR_STR, CHAR, and INTEGER, for

a char array of pointers with three elements, a char pointer, a char, and an int data

type, respectively, so that I can use these names as synonyms to these data types in the

program.

302 Hour 18

LISTING 18.3 continued

OUTPUT

ANALYSIS

For instance, the prototype of the Convert2Upper() function in line 13 contains two

arguments that are all char pointers declared with PTR_STR.

In lines 17–20, two arrays of pointers, str and moon, are declared with STRING. moon is

initialized to point to the strings of the Japanese haiku. In lines 21 and 22, two int vari-

ables, i and term, are declared with INTEGER.

The for loop in lines 24–33 allocates enough memory space dynamically based on the

size of the haiku. The Conver2Upper() function is then called in line 31 to copy strings

referenced by moon to the memory locations pointed by str and to convert all lowercase

characters to their uppercase counterparts as well. Line 32 prints out the strings refer-

enced by moon. The definition of the Conver2Upper() function is shown in lines 42–54.

In lines 34–37, another for loop prints out the content from the memory locations refer-

enced by str. There are a total of three strings with uppercase characters in the content.

After a string is displayed on the screen, the memory space allocated for the string is

released by calling the free() function. Because line 35 prints out each string with a

newline at its beginning instead of the end, a newline that will follow the final string is

printed on line 38.

On the screen, you see two copies of the haiku—the original one and the one with all-

uppercase characters.

Recursive Functions
You already know that in C a function can be called by another function. But can a func-

tion call itself? The answer is yes. A function can call itself from a statement inside the

body of the function itself. Such a function is said to be recursive.

Listing 18.4 contains an example of calling a recursive function to add integers from 1

to 100.

LISTING 18.4 Calling a Recursive Function

1: /* 18L04.c: Calling a recursive function */
2: #include <stdio.h>
3:
4: enum con{MIN_NUM = 0,
5: MAX_NUM = 100};
6:
7: int fRecur(int n);
8:
9: main()

Using Special Data Types and Functions 303

18

TYPE

continues

10: {
11: int i, sum1, sum2;
12:
13: sum1 = sum2 = 0;
14: for (i=1; i<=MAX_NUM; i++)
15: sum1 += i;
16: printf(“The value of sum1 is %d.\n”, sum1);
17: sum2 = fRecur(MAX_NUM);
18: printf(“The value returned by fRecur() is %d.\n”, sum2);
19:
20: return 0;
21: }
22: /* function definition */
23: int fRecur(int n)
24: {
25: if (n == MIN_NUM)
26: return 0;
27: return fRecur(n - 1) + n;
28: }

After the executable file 18L04.exe is created and executed, the following output is dis-

played on the screen of my computer:

The value of sum1 is 5050.
The value returned by fRecur() is 5050.

In the program in Listing 18.4, a recursive function, fRecur(), is declared in line

7 and defined in lines 23–28.

You can see from the definition of the fRecur() function that the recursion is stopped in

line 26 if the incoming int variable, n, is equal to the value contained by the enum name

MIN_NUM. Otherwise, the fRecur() function is called by itself over and over in line 27.

Note that each time the fRecur() function is called, the integer argument passed to the

function is decreased by one.

Now, let’s have a look at the main() function of the program. The for loop, shown in

lines 14 and 15, adds integers from 1 to the value represented by another enum name,

MAX_NUM. In lines 4 and 5, MIN_NUM and MAX_NUM are respectively assigned 0 and 100 in

an enum declaration. The printf() call in line 16 then prints out the sum of the addition

made by the for loop.

In line 17, the recursive function, fRecur(), is called and passed an integer argument

starting at the value of MAX_NUM. The value returned by the fRecur() function is then

assigned to an int variable, sum2.

304 Hour 18

LISTING 18.4 continued

OUTPUT

ANALYSIS

When the fRecur() function returns, the value of sum2 is printed out in line 18. From the

output, you can see that the execution of the recursive function fRecur() produces the

same result as the for loop inside the main() function.

Using Special Data Types and Functions 305

18

Recursive functions are useful in making clearer and simpler implementa-

tions of algorithms. On the other hand, however, recursive functions may

run slower than their iterative equivalents due to the overhead of repeated

function calls.

Function arguments and local variables of a program are usually stored tem-

porarily by the computer, in a block of memory called the stack. Each call to

a recursive function makes a new copy of the arguments and local variables.

The new copy is then put on the stack. If you see your recursive function

behaving strangely, it’s probably overwriting other data stored on the stack.

Although it’s possible that the recursive function is simply being executed

too many times and exhausting the stack resource, this kind of problem

often occurs when you have a case of “runaway recursion.” In Listing 18.4,

the if statement in line 25 stops the recursion when n is equal to MIN_NUM. In

your own recursive functions, always remember to have such a condition in

place to stop the recursion so that the function will return back to the origi-

nal caller.

Revisiting the main() Function
As you’ve learned, each C program must have one and only one main() function. The

execution of a program starts and ends at its main() function.

As with other functions in C, you can pass arguments to a main() function. So far, I’ve

been using the void keyword in the definition of the main() function to indicate that

there are no arguments passed to the function. Now, the question is what to do if you

want to pass information to the main() function.

Command-Line Arguments
Because each C program starts at its main() function, information is usually passed to

the main() function via command-line arguments.

A command-line argument is a parameter that follows a program’s name when the pro-

gram is invoked from the operating system’s command line. For instance, given a C pro-

gram, test.c, whose executable file is called test.exe, if you are using a PC, you might

run the program from a DOS prompt like this:

test argument1 argument2 argument3

argument1, argument2, and argument3 are called command-line arguments to the

main() function in the test.c program.

The next subsection teaches you how to receive command-line arguments.

Receiving Command-Line Arguments
There are two built-in arguments in the main() function that can be used to receive com-

mand-line arguments. Usually, the name of the first argument is argc, and it is used to

store the number of arguments on the command line. The second argument is called argv

and is a pointer to an array of char pointers. Each element in the array of pointers points

to a command-line argument that is treated as a string.

In order to use argc and argv, declare your main() function in your program like this:

main(int argc, char *argv[])
{

. . .
}

Let’s continue to use the example shown in the last section. Suppose that the main()

function defined in the test.c program looks like this:

main(int argc, char *argv[])
{

. . .
}

If you run the executable file of the program from a prompt like this:

test argument1 argument2 argument3

the value received by argc is 4 because the name of the program itself is counted as the

first command-line argument. Accordingly, argv[0] holds a representation of the pro-

gram name, and argv[1], argv[2], and argv[3] contain the strings of argument1, argu-

ment2, and argument3, respectively.

The program in Listing 18.5 is another example of passing command-line arguments to

the main() function.

LISTING 18.5 Passing Command-Line Arguments to the main()
Function

1: /* 18L05.c: Command-line arguments */
2: #include <stdio.h>
3:
4: main (int argc, char *argv[])
5: {

306 Hour 18

TYPE

6: int i;
7:
8: printf(“The value received by argc is %d.\n”, argc);
9: printf(“There are %d command-line arguments passed to main().\n”,
10: argc);
11: if(argc) {
12: printf(“The first command-line argument is: %s\n”, argv[0]);
13: printf(“The rest of the command-line arguments are:\n”);
14: for (i=1; i<argc; i++)
15: printf(“%s\n”, argv[i]);
16: }
17: return 0;
18: }

After the executable file 18L05.exe is executed with several command-line arguments,

the following output is displayed on the screen of my computer (I entered “Hello,

world!” in this example.):

18L05.exe Hello, world!
The value received by argc is 3.
There are 3 command-line arguments passed to main().
The first command-line argument is: C:\app\18L05.EXE
The rest of the command-line arguments are:
Hello,
world!

The first line of the output shown above contains the executable file 18L05.exe,

and the command-line arguments, Hello, world!, from a DOS prompt on my

computer. The purpose of the program in Listing 18.5 is to show you how to check the

number of command-line arguments and print out the strings that hold the arguments

entered by the user.

Note that there are two arguments, argc and argv, that are declared in line 4 for the

main() function. Then, the statements in lines 8 and 9 print out the value of the total

number of arguments held by argc. If the program was run with no command-line argu-

ments, argc can be 0, in which case argv is a null pointer. Line 11 makes sure that argc

and argv contain data; if not, we return 0 and end the program.

Line 12 prints out the first string saved in the memory location pointed to by argv[0].

As you can see from the output, the content of the first string is the executable file name

of the program in Listing 18.5, plus the path to the executable file.

The for loop in lines 14 and 15 displays the rest of the strings that contain the com-

mand-line arguments entered by the user. In this example, I enter two command-line

argument strings, “Hello,” and “world!”, which are shown back on the screen after the

execution of the for loop.

Using Special Data Types and Functions 307

18

OUTPUT

ANALYSIS

Summary
In this lesson you’ve learned the following important data type, keywords, and concepts

in C:

• The enum (that is, enumerated) data type can be used to declare named integer con-

stants.

• By default, the first enum name starts with the value of 0. Each name in the rest of

the list increases by one from the value contained by the name on its left side.

• If needed, you can assign any integer values to enumerated names.

• You can create your own names for data types with the help of the typedef key-

word. Those names can then be used as synonyms for the data types.

• In ANSI C, there is a header file called stddef.h that contains a dozen typedef

definitions.

• A function in C can be made to call itself. Such a function is said to be recursive.

• You can use command-line arguments to pass information to the main() function

in your program.

• There are two built-in arguments to the main() function.

• The first built-in argument receives the number of command-line arguments

entered by the user. The second built-in argument is a pointer to an array of point-

ers that refers to the strings of command-line arguments.

In the next lesson you’ll learn about collecting variables of different types with structures.

Q&A
Q What can you do with the enum data type?

A The enum data type can be used to declare names that represent integer constants.

You can use the default values held by enum names, or you can assign values to

enum names and use them later in the program. The enum data type makes the C

program more readable and easier to maintain because you can use words that you

understand as the names of enum, and you will only have to go to one place to

update the values when needed.

308 Hour 18

argc and argv are normally used as the two built-in arguments in the main()

function, but you can use other names to replace them in their declarations.

As long as the data types are correct, your main() function will still be able

to receive the command line arguments.

Q Why do you need to use the typedef keyword?

A By using the typedef keyword, you can define your own names to represent the

data types in C. You can represent complex data types in a single word and then

use that word in subsequent variable declarations. In this way, you can avoid typing

errors when writing a complex declaration over and over. Also, if a data type is

changed in the future, you just need to update the typedef definition of the data

type, which fixes every use of the typedef definition.

Q Does a recursive function help to improve the performance of a program?

A Not really. Normally, a recursive function only makes the implementations of some

algorithms clearer and simpler. A recursive function may slow down the speed of a

program because of the overhead of repeated function calls.

Workshop
To help solidify your understanding of this hour’s lesson, you are encouraged to answer

the quiz questions and finish the exercises provided in the workshop before you move to

the next lesson. The answers and hints to the questions and exercises are given in

Appendix B, “Answers to Quiz Questions and Exercises.”

Quiz
1. What are the values represented by the following enum names?

enum months { Jan, Feb, Mar, Apr,
May, Jun, Jul, Aug,
Sep, Oct, Nov, Dec };

2. What are the values represented by the following enum names?

enum tag { name1,
name2 = 10,
name3,
name4 };

3. Which of the following statements have equivalent variable declarations?

• typedef long int BYTE32; BYTE32 x, y, z;

• typedef char *STRING[16]; STRING str1, str2, str3;

• long int x, y, z;

• char *str1[16], *str2[16], *str3[16];

4. Can you pass some command-line arguments to a main() function that has the fol-

lowing definition?

int main(void)
{

. . .
}

Using Special Data Types and Functions 309

18

Exercises
1. Write a program to print out the values represented by the enumerated names

declared in Quiz question 2 in this hour.

2. Given the following declarations:

typedef char WORD;
typedef int SHORT;
typedef long LONG;
typedef float FLOAT;
typedef double DFLOAT;

write a program to measure the sizes of the synonyms to the data types.

3. Rewrite the program in Listing 18.4. This time, add integers starting at the value of

MIN_NUM instead of the value of MAX_NUM.

4. Write a program that accepts command-line arguments. If the number of com-

mand-line arguments, not including the name of the executable itself, is less than

two, print out the usage format of the program and ask the user to reenter the com-

mand-line arguments. Otherwise, display all command-line arguments entered by

the user.

310 Hour 18

Hour

19 Understanding Structures

20 Understanding Unions

21 Reading and Writing with Files

22 Using Special File Functions

23 Compiling Programs: The C Preprocessor

24 Where Do You Go from Here?

PART V
Structure, Union, File I/O,
and More

HOUR 19
Understanding
Structures

The art of programming is the art of organizing complexity.

—W. W. Dijkstra

In Hour 12, “Understanding Arrays,” you learned how to store data of the

same type into arrays. In this hour, you’ll learn to use structures to collect

data items that have different data types. The following topics are covered in

this lesson:

• Declaring and defining structures

• Referencing structure members

• Structures and pointers

• Structures and functions

• Arrays of structures

What Is a Structure?
As you’ve learned, arrays can be used to collect groups of variables of the same type.

The question now is how to aggregate pieces of data that are not identically typed.

The answer is that you can group variables of different types with a data type called a

structure. In C, a structure collects different data items in such a way that they can be

referenced as a single unit.

There are several major differences between an array and a structure. Besides the fact

that data items in a structure can have different types, each data item has its own name

instead of a subscript value. In fact, data items in a structure are called members of the

structure.

The next two subsections teach you how to declare structures and define structure vari-

ables.

Declaring Structures
The general form to declare a structure is

struct struct_tag {
data_type1 variable1;
data_type2 variable2;
data_type3 variable3;
.
.
.
};

Here struct is the keyword used in C to start a structure declaration. struct_tag is the

tag name of the structure. variable1, variable2, and variable3 are the members of the

structure. Their data types are specified respectively by data_type1, data_type2, and

data_type3. As you can see, the declarations of the members have to be enclosed within

the opening and closing braces ({ and }) in the structure declaration, and a semicolon (;)

has to be included at the end of the declaration.

The following is an example of a structure declaration:

struct automobile {
int year;
char model[8];
int engine_power;
float weight;
};

314 Hour 19

Here struct is used to start a structure declaration. automobile is the tag name of the

structure. In this example, there are three types of variables, char, int, and float. The

variables have their own names, such as year, model, engine_power, and weight.

Note that a structure tag name, like automobile, is the name of a structure. The compiler

uses the tag name to identify the structure labeled by that tag name.

Defining Structure Variables
After declaring a structure, you can define the structure variables. For instance, the fol-

lowing structure variables are defined with the structure data type of automobile from

the previous section:

struct automobile sedan, pick_up, sport_utility;

Here three structure variables, sedan, pick_up, and sport_utility, are defined by the

structure of automobile. All these three structure variables contain the four members of

the structure automobile.

Also, you can combine the structure declaration and definition into one statement like

this:

struct automobile {
int year;
char model[8];
int engine_power;
float weight;
} sedan, pick_up, sport_utility;

Here three structure variables, sedan, pick_up, and sport_utility, are defined along

with the structure automobile in the single statement.

Referencing Structure Members with the Dot
Operator

Now, let’s see how to reference a structure member. Given the structure automobile and

the structure variable sedan, for instance, I can access its member, year, and assign an

integer to it in the following way:

sedan.year = 1997;

Here the structure name and its member’s name are separated by the dot (.) operator so

that the compiler knows that the integer value of 1997 is assigned to the member called

year, which is a member of the structure variable called sedan.

Understanding Structures 315

19

Likewise, the following statement assigns the start address of the character array of

model, which is another member of the structure variable sedan, to a char pointer ptr:

ptr = sedan.model;

The program in Listing 19.1 gives another example to reference the members of a struc-

ture.

LISTING 19.1 Referencing the Members of a Structure

1: /* 19L01.c Access to structure members */
2: #include <stdio.h>
3:
4: main(void)
5: {
6: struct computer {
7: float cost;
8: int year;
9: int cpu_speed;
10: char cpu_type[16];
11: } model;
12:
13: printf(“The type of the CPU inside your computer?\n”);
14: gets(model.cpu_type);
15: printf(“The speed(MHz) of the CPU?\n”);
16: scanf(“%d”, &model.cpu_speed);
17: printf(“The year your computer was made?\n”);
18: scanf(“%d”, &model.year);
19: printf(“How much you paid for the computer?\n”);
20: scanf(“%f”, &model.cost);
21:
22: printf(“Here are what you entered:\n”);
23: printf(“Year: %d\n”, model.year);
24: printf(“Cost: $%6.2f\n”, model.cost);
25: printf(“CPU type: %s\n”, model.cpu_type);
26: printf(“CPU speed: %d MHz\n”, model.cpu_speed);
27:
28: return 0;
29: }

I have the following output shown on the screen after I run the executable (19L01.exe)

of the program in Listing 19.1 and enter my answers to the questions (in the output, the

bold characters or numbers are the answers entered from my keyboard):

316 Hour 19

TYPE

The type of the CPU inside your computer?
Pentium

The speed(MHz) of the CPU?
100

The year your computer was made?
1996

How much you paid for the computer?
1234.56

Here are what you entered:
Year: 1996
Cost: $1234.56
CPU type: Pentium
CPU speed: 100 MHz

The purpose of the program in Listing 19.1 is to show you how to reference

members of a structure. As you can see from the program, there is a structure

called model that is defined with a type of struct computer in lines 6–11. The structure

has one float variable, two int variables, and one char array. The statement in line 13

asks the user to enter the type of the CPU (central processing unit) used inside his or her

computer. Then, line 14 receives the string of the CPU type entered by the user and saves

the string into the char array called cpu_type. Because cpu_type is a member of the

model structure, the model.cpu_type expression is used in line 14 to reference the mem-

ber of the structure. Note that the dot operator (.) is used to separate the two names in

the expression.

Lines 15 and 16 ask for the CPU speed and store the value of an integer entered by the

user to another member of the model structure—the int variable cpu_speed. Note that in

line 16, the address-of operator (&) is prefixed to the model.cpu_speed expression inside

the scanf() function because the argument should be an int pointer.

Likewise, lines 17 and 18 receive the value of the year in which the user’s computer was

made, and lines 19 and 20 get the number for the cost of the computer. After the execu-

tion, the int variable year and the float variable cost in the model structure contain the

corresponding values entered by the user.

Then, lines 23–26 print out all values held by the members of the model structure. From

the output, you can tell that each member of the structure has been accessed and assigned

a number or string correctly.

Initializing Structures
A structure can be initialized by a list of data called initializers. Commas are used to sep-

arate data items in a list of data.

Understanding Structures 317

19

OUTPUT

ANALYSIS

Listing 19.2 contains an example of initializing a structure before it’s updated by the

user.

LISTING 19.2 Initializing a Structure

1: /* 19L02.c Initializing a structure */
2: #include <stdio.h>
3:
4: main(void)
5: {
6: struct employee {
7: int id;
8: char name[32];
9: };
10: /* structure initialization */
11: struct employee info = {
12: 1,
13: “B. Smith”
14: };
15:
16: printf(“Here is a sample:\n”);
17: printf(“Employee Name: %s\n”, info.name);
18: printf(“Employee ID #: %04d\n\n”, info.id);
19:
20: printf(“What’s your name?\n”);
21: gets(info.name);
22: printf(“What’s your ID number?\n”);
23: scanf(“%d”, &info.id);
24:
25: printf(“\nHere are what you entered:\n”);
26: printf(“Name: %s\n”, info.name);
27: printf(“ID #: %04d\n”, info.id);
28:
29: return 0;
30: }

When the executable 19L02.exe is being run, the initial content saved in a structure is

displayed. Then, I enter my answers to the questions and get the updated information

shown on the screen:

Here is a sample:
Employee Name: B. Smith
Employee ID #: 0001

What’s your name?
T. Zhang

What’s your ID number?
1234

318 Hour 19

TYPE

OUTPUT

Here are what you entered:
Name: T. Zhang
ID #: 1234

The purpose of the program in Listing 19.2 is to initialize a structure and then

ask the user to update the content held by the structure.

The structure data type, labeled as employee, is declared in lines 6–9. Then, the variable,

info, is defined with the structure data type and initialized with the integer 1 and the

string “B. Smith” in lines 11–14.

You can also combine the declaration, definition, and initialization of a structure into a

single statement. Here’s an example:

struct employee {
int id;
char name[32];
} info = {
1,
“B. Smith”
};

The statements in lines 17 and 18 display the initial contents stored by the two members

of the info structure on the screen. Then, lines 20–23 ask the user to enter his or her

name and employee ID number and save them into the two structure members, name and

id, respectively.

Before the end of the program, the updated contents contained by the two members are

printed out by the statements in lines 26 and 27.

Again, the dot operator (.) is used in the program to reference the structure members.

Structures and Function Calls
The C language allows you to pass an entire structure to a function. In addition, a func-

tion can return a structure back to its caller.

To show you how to pass a structure to a function, I rewrote the program in Listing 19.1

and created a function called DataReceive() in the program. The upgraded program is

shown in Listing 19.3.

Understanding Structures 319

19

ANALYSIS

LISTING 19.3 Passing a Structure to a Function

1: /* 19L03.c Passing a structure to a function */
2: #include <stdio.h>
3:
4: struct computer {
5: float cost;
6: int year;
7: int cpu_speed;
8: char cpu_type[16];
9: };
10: /* create synonym */
11: typedef struct computer SC;
12: /* function declaration */
13: SC DataReceive(SC s);
14:
15: main(void)
16: {
17: SC model;
18:
19: model = DataReceive(model);
20: printf(“Here are what you entered:\n”);
21: printf(“Year: %d\n”, model.year);
22: printf(“Cost: $%6.2f\n”, model.cost);
23: printf(“CPU type: %s\n”, model.cpu_type);
24: printf(“CPU speed: %d MHz\n”, model.cpu_speed);
25:
26: return 0;
27: }
28: /* function definition */
29: SC DataReceive(SC s)
30: {
31: printf(“The type of the CPU inside your computer?\n”);
32: gets(s.cpu_type);
33: printf(“The speed(MHz) of the CPU?\n”);
34: scanf(“%d”, &s.cpu_speed);
35: printf(“The year your computer was made?\n”);
36: scanf(“%d”, &s.year);
37: printf(“How much you paid for the computer?\n”);
38: scanf(“%f”, &s.cost);
39: return s;
40: }

After I run the executable, 19L03.exe, and enter my answers to the questions, I get the

following output, which is the same as the output from the executable program of

Listing 19.1:

320 Hour 19

TYPE

The type of the CPU inside your computer?
Pentium

The speed(MHz) of the CPU?
100

The year your computer was made?
1996

How much you paid for the computer?
1234.56

Here are what you entered:
Year: 1996
Cost: $1234.56
CPU type: Pentium
CPU speed: 100 MHz

The purpose of the program in Listing 19.3 is to show you how to pass a struc-

ture to a function. The structure in Listing 19.3, with the tag name of computer,

is declared in lines 4–9.

Note that in line 11 the typedef keyword is used to define a synonym, SC, for struct

computer. Then SC is used in the sequential declarations. Here, the structure and typedef

are placed outside the main() function so that SC can be used in any function in the

program.

The DataReceive() function is declared in line 13, with the structure of computer as its

argument (that is, the synonym SC and the variable name s), so that a copy of the struc-

ture can be passed to the function.

In addition, the DataReceive() function returns the copy of the structure back to the

caller after the content of the structure is updated. To do this, SC is prefixed to the func-

tion in line 13 to indicate the data type of the value returned by the function.

The statement in line 17 defines the structure variable model with SC. The model struc-

ture is passed to the DataReceive() function in line 19, and then the value returned by

the function is assigned back to model as well. Note that if the DataReceive() function

return value is not assigned to model, the changes made to s in the function will not be

evident in model.

The definition of the DataReceive() function is shown in lines 29–40, from which you

can see that the new data values entered by the user are saved into the corresponding

members of the structure that is passed to the function. At the end of the function, the

copy of the updated structure is returned in line 39.

Then, back to the main() function of the program, lines 21–24 print out the updated con-

tents held by the members of the structure. Because the program in Listing 19.3 is basi-

cally the same as the one in Listing 19.1, I see the same output on my screen after

running the executable file 19L03.exe.

Understanding Structures 321

19

OUTPUT

ANALYSIS

Referencing Structures with Pointers
As you can pass a pointer that refers to an array in a function call, you can also pass a

pointer that points to a structure.

However, unlike passing a structure to a function, which sends an entire copy of the

structure to the function, passing a pointer to a structure sends only the address of the

structure to the function. The function can then use the address to access the structure

members directly, avoiding the overhead of duplicating the structure. Therefore, it’s more

efficient to pass a pointer to a structure, than it is to pass the structure itself to a function.

Accordingly, the program in Listing 19.3 can be rewritten to pass the DataReceive()

function a pointer that points to the structure. The rewritten program is shown in Listing

19.4.

LISTING 19.4 Passing a Function with a Pointer that Points to a
Structure

1: /* 19L04.c Pointing to a structure */
2: #include <stdio.h>
3:
4: struct computer {
5: float cost;
6: int year;
7: int cpu_speed;
8: char cpu_type[16];
9: };
10:
11: typedef struct computer SC;
12:
13: void DataReceive(SC *ptr_s);
14:
15: main(void)
16: {
17: SC model;
18:
19: DataReceive(&model);
20: printf(“Here are what you entered:\n”);
21: printf(“Year: %d\n”, model.year);
22: printf(“Cost: $%6.2f\n”, model.cost);
23: printf(“CPU type: %s\n”, model.cpu_type);
24: printf(“CPU speed: %d MHz\n”, model.cpu_speed);
25:
26: return 0;
27: }
28: /* function definition */
29: void DataReceive(SC *ptr_s)
30: {

322 Hour 19

TYPE

31: printf(“The type of the CPU inside your computer?\n”);
32: gets((*ptr_s).cpu_type);
33: printf(“The speed(MHz) of the CPU?\n”);
34: scanf(“%d”, &(*ptr_s).cpu_speed);
35: printf(“The year your computer was made?\n”);
36: scanf(“%d”, &(*ptr_s).year);
37: printf(“How much you paid for the computer?\n”);
38: scanf(“%f”, &(*ptr_s).cost);
39: }

Similarly, I obtain output that is the same as the one from the program in Listing 19.3

after I run the executable (19L04.exe) of the program in Listing 19.4:

The type of the CPU inside your computer?
Pentium

The speed(MHz) of the CPU?
100

The year your computer was made?
1996

How much you paid for the computer?
1234.56

Here are what you entered:
Year: 1996
Cost: $1234.56
CPU type: Pentium
CPU speed: 100 MHz

The program in Listing 19.4 is almost identical to the one in Listing 19.3, except

that the argument passed to the DataReceive() function is a pointer defined with

SC—that is, struct computer. (Refer to lines 11 and 13.) Also, the DataReceive()

function does not need to return a copy of the structure because the function can directly

access and modify all members of the original structure, not a copy, via the pointer

passed to it. That’s why the void keyword is prefixed to the function name in line 13.

The statement in line 17 defines the structure variable model. And in line 19, the address

of the model structure is passed to the DataReceive() function by applying the address-

of operator (&).

When you look at the definition of the DataReceive() function in lines 29–39, you see

that the dereferenced pointer *ptr_s is used to reference the members of the model struc-

ture. For instance, to access the char array of cpu_type, (*ptr_s) is used in the

(*ptr_s).cpu_type expression to indicate to the compiler that cpu_type is a member in

the structure pointed to by the pointer ptr_s. Note that the dereferenced pointer *ptr_s

has to be enclosed within the parentheses ((and)). This is because the default order of

operator precedence would evaluate the . (dot) operator before the * operator, which in

this case is not what we intend.

Understanding Structures 323

19

OUTPUT

ANALYSIS

Another example is the expression &(*ptr_s).cpu_speed in line 34, which evaluates to

the address of the cpu_speed member of the structure pointed to by the pointer ptr_s.

Again, the dereferenced pointer *ptr_s is surrounded by the parentheses ((and)).

The next subsection shows you how to use the arrow operator (->) to refer to a structure

member with a pointer.

Referencing a Structure Member with ->
You can use the arrow operator -> to refer to a structure member associated with a

pointer that points to the structure.

For instance, you can rewrite the (*ptr_s).cpu_type expression in Listing 19.4 with

this:

ptr_s -> cpu_type

or you could replace the &(*ptr_s).cpu_speed expression with this:

&(ptr_s->cpu_speed)

Since the -> operator has higher precedence than the & operator, you can leave out the

parentheses in the above expression, writing it instead like this:

&ptr_s->cpu_speed

Because of its better clarity, the -> operator is more frequently used in programs that

access structure members via pointers to structures, rather than the dot operator. Exercise

3, later in this hour, gives you a chance to rewrite the entire program in Listing 19.4

using the -> operator.

Arrays of Structures
In C, you can declare an array of structures by preceding the array name with the struc-

ture name. For instance, given a structure with the tag name of x, the following state-

ment:

struct x array_of_structure[8];

declares an array, called array_of_structure, of struct x. The array has eight elements,

each element being a single instance of struct x.

The program shown in Listing 19.5 demonstrates how to use an array of structs by print-

ing out two pieces of Japanese haiku and their authors’ names.

324 Hour 19

LISTING 19.5 Using Arrays of Structures

1: /* 19L05.c Arrays of structures */
2: #include <stdio.h>
3:
4: struct haiku {
5: int start_year;
6: int end_year;
7: char author[16];
8: char str1[32];
9: char str2[32];
10: char str3[32];
11: };
12:
13: typedef struct haiku HK;
14:
15: void DataDisplay(HK *ptr_s);
16:
17: main(void)
18: {
19: HK poem[2] = {
20: { 1641,
21: 1716,
22: “Sodo”,
23: “Leading me along”,
24: “my shadow goes back home”,
25: “from looking at the moon.”
26: },
27: { 1729,
28: 1781,
29: “Chora”,
30: “A storm wind blows”,
31: “out from among the grasses”,
32: “the full moon grows.”
33: }
34: };
35: int i;
36:
37: for (i=0; i<2; i++)
38: DataDisplay(&poem[i]);
39:
40: return 0;
41: }
42: /* function definition */
43: void DataDisplay(HK *ptr_s)
44: {
45: printf(“%s\n”, ptr_s->str1);
46: printf(“%s\n”, ptr_s->str2);

Understanding Structures 325

19

TYPE

continues

47: printf(“%s\n”, ptr_s->str3);
48: printf(“--- %s\n”, ptr_s->author);
49: printf(“ (%d-%d)\n\n”, ptr_s->start_year, ptr_s->end_year);
50: }

After running the executable (19L05.exe) of the program in Listing 19.5, I see the two

pieces of Japanese haiku displayed on the screen of my computer:

Leading me along
my shadow goes back home
from looking at the moon.
--- Sodo

(1641-1716)

A storm wind blows
out from among the grasses
the full moon grows.
--- Chora

(1729-1781)

In Listing 19.5, a structure data type, with the tag name of haiku, is declared in

lines 4–11. The structure data type contains two int variables and four char

arrays as its members. The statement in line 13 creates a synonym, HK, for the struct

haiku data type.

Then, in lines 19–34, an array of two elements, poem, is declared and initialized with two

pieces of haiku written by Sodo and Chora, respectively. The following is a copy of the

two pieces of haiku from poem:

“Leading me along”,
“my shadow goes back home”,
“from looking at the moon.”

and

“A storm wind blows”,
“out from among the grasses”,
“the full moon grows.”

The initializer also includes the author’s names and the years of their birth and death

(refer to lines 20–22, and lines 27–29). Note that the poem array, declared with HK, is

indeed an array of the haiku structure.

The DataDisplay() function is called twice in a for loop in lines 37 and 38. Each time,

the address of an element of poem is passed to the DataDisplay() function. According to

the definition of the function in lines 43–50, DataDisplay() prints out three strings of a

haiku, the author’s name, and the period of time in which he lived.

326 Hour 19

LISTING 19.5 continued

OUTPUT

ANALYSIS

From the output, you can see that the contents stored in the poem array of the haiku

structure are displayed on the screen properly.

Nested Structures
You can declare a structure member that is itself a structure. For instance, given a struc-

ture data type of x, the following statement:

struct y {
int i;
char ch[8];
struct x nested;

};

declares a nested structure with tag name of y. One of the members of the y structure is a

structure with the variable name of nested that is defined by the structure data type of x.

Listing 19.6 contains an example of using a nested structure to receive and print out

information about an employee.

LISTING 19.6 Using Nested Structures

1: /* 19L06.c Using nested structures */
2: #include <stdio.h>
3:
4: struct department {
5: int code;
6: char name[32];
7: char position[16];
8: };
9:
10: typedef struct department DPT;
11:
12: struct employee {
13: DPT d;
14: int id;
15: char name[32];
16: };
17:
18: typedef struct employee EMPLY;
19:
20: void InfoDisplay(EMPLY *ptr);
21: void InfoEnter(EMPLY *ptr);
22:
23: main(void)
24: {
25: EMPLY info = {

Understanding Structures 327

19

TYPE

continues

26: { 1,
27: “Marketing”,
28: “Manager”
29: },
30: 1,
31: “B. Smith”
32: };
33:
34: printf(“Here is a sample:\n”);
35: InfoDisplay(&info);
36:
37: InfoEnter(&info);
38:
39: printf(“\nHere are what you entered:\n”);
40: InfoDisplay(&info);
41:
42: return 0;
43: }
44: /* function definition */
45: void InfoDisplay(EMPLY *ptr)
46: {
47: printf(“Name: %s\n”, ptr->name);
48: printf(“ID #: %04d\n”, ptr->id);
49: printf(“Dept. name: %s\n”, ptr->d.name);
50: printf(“Dept. code: %02d\n”, ptr->d.code);
51: printf(“Your position: %s\n”, ptr->d.position);
52: }
53: /* function definition */
54: void InfoEnter(EMPLY *ptr)
55: {
56: printf(“\nPlease enter your information:\n”);
57: printf(“Your name:\n”);
58: gets(ptr->name);
59: printf(“Your position:\n”);
60: gets(ptr->d.position);
61: printf(“Dept. name:\n”);
62: gets(ptr->d.name);
63: printf(“Dept. code:\n”);
64: scanf(“%d”, &(ptr->d.code));
65: printf(“Your employee ID #:\n”);
66: scanf(“%d”, &(ptr->id));
67: }

When the executable file, 19L06.exe, is running, the initial content of the nested struc-

ture is printed out first. Then, I enter my employment information, which is in bold in the

following output and displayed back on the screen too:

328 Hour 19

LISTING 19.6 continued

Here is a sample:
Name: B. Smith
ID #: 0001
Dept. name: Marketing
Dept. code: 01
Your position: Manager

Please enter your information:\n”);
Your name:
T. Zhang

Your position:\n”);
Engineer

Dept. name:
R&D

Dept. code:
3

Your employee ID #:
1234

Here are what you entered:
Name: T. Zhang
ID #: 1234
Dept. name: R&D
Dept. code: 03
Your position: Engineer

There are two structure data types in Listing 19.6. The first one, called depart-

ment, is declared in lines 4–8. The second one, employee, declared in lines

12–16, contains a member of the department structure data type. Therefore, the

employee structure data type is a nested structure data type.

Two synonyms, DPT for the struct department data type, and EMPLY for the struct

employee data type, are created in two typedef statements respectively in lines 10 and

18. In the program, there are two functions, InfoDisplay() and InfoEnter(), whose

prototypes are declared with a pointer to an EMPLY as an argument (see lines 20 and 21).

The statements in 25–32 initialize a nested structure, which is called info and has a data

type of EMPLY. Note that the nested braces ({ and }) in lines 26 and 29 enclose the initial-

izers for the d structure of DPT that is nested inside the info structure.

Then, the statement in line 35 displays the initial contents held by the nested info struc-

ture by calling the InfoDisplay() function. Line 37 calls the InfoEnter() function to

ask the user to enter his or her employment information and then save it into the info

structure. The InfoDisplay() function is called again in line 40 to display the informa-

tion that was entered by the user and is now stored in the nested structure.

The definitions for the two functions, InfoDisplay() and InfoEnter(), are listed in

lines 45–52 and lines 54–67, respectively.

Understanding Structures 329

19

OUTPUT

ANALYSIS

Summary
In this lesson you learned the following very important concepts about structures in C:

• You can group variables of different types with a data type called a structure.

• The data items in a structure are called members of the structure.

• The struct keyword is used to start a structure declaration or a structure variable

definition.

• The dot operator (.) is used to separate a structure name and a member name in

referencing the structure member.

• The arrow operator (->) is commonly used to reference a structure member using a

pointer to the structure.

• A structure can be passed to a function, and a function can return a structure back

to the caller.

• Passing a pointer that points to a structure when calling a function is more efficient

than passing the entire structure as an argument. Also, if a pointer is used, the func-

tion can modify the structure’s contents directly.

• Arrays of structures are permitted in C.

• You can enclose a structure within another structure. This is called a nested struc-

ture.

In the next lesson you’ll learn to use unions to collect dissimilar data items in C.

Q&A
Q Why do you need structures?

A You often need to collect and group data items that are relevant to each other, but

of different data types. The struct data type provides a convenient way to aggre-

gate differently typed data items.

Q How do you reference a structure member?

A You can reference a structure member by prefixing the structure member’s name

with the structure variable name and a dot operator (.). If you are accessing the

structure via a pointer, you can use the pointer name, the arrow operator (->), and

then the member name to reference the structure member.

330 Hour 19

Q Why is it more efficient to pass a pointer that refers to a structure to a func-

tion?

A When an entire structure is passed to a function, a copy of the structure is made

and saved in a temporary block of storage. After the copy is modified by the func-

tion, it has to be returned and written back to the storage that holds the original

content of the structure. Passing a function with a pointer that points to a structure,

on the other hand, simply passes the address of the structure to the function instead

of passing a copy of the entire structure. The function can then access the original

memory location of the structure and modify the content held by the structure

without duplicating the structure in temporary storage. Therefore, it’s more effi-

cient to pass a pointer of a structure than to pass the structure itself to a function.

Workshop
To help solidify your understanding of this hour’s lesson, you are encouraged to answer

the quiz questions and finish the exercises provided in the workshop before you move to

the next lesson. The answers and hints to the questions and exercises are given in

Appendix B, “Answers to Quiz Questions and Exercises.”

Quiz
1. What’s wrong with the following structure declaration?

struct automobile {
int year;
char model[8];
int engine_power;
float weight;
}

2. How many structure variables are defined in the following statement?

struct x {int y; char z} u, v, w;

3. Given a structure declaration

struct automobile {
int year;
char model[8]};

and two car models, Taurus and Accord, which are made in 1997, initialize an

array of two elements, car, of the automobile structures.

Understanding Structures 331

19

Exercises
1. Given the following declaration and definition of a structure:

struct automobile {
int year;
char model[10];
int engine_power;
double weight;
} sedan = {
1997,
“New Model”,
200,
2345.67};

write a program to display on the screen the initial values held by the structure.

2. Rewrite the program in Listing 19.2. This time, create a function that can display

the content in the employee structure. Then, make calls to the function by passing

the structure to it.

3. Rewrite the program in Listing 19.4. This time, use the arrow operator (->) with

the pointers to structures.

4. Rewrite the program in Listing 19.5. This time, add an array of pointers that is

declared with HK. Then pass each element in the array of pointers to the

DataDisplay() function.

332 Hour 19

HOUR 20
Understanding Unions

Coming together is a beginning;

keeping together is progress;

working together is success.

—T. Roosevelt

In the previous hour’s lesson you learned how to store data of different types

into structures. In this hour you’ll learn another way to collect differently

typed data items by using unions. You’ll learn about the following topics in

this lesson:

• How to declare and define unions

• How to initialize unions

• The differences between unions and structures

• Nested unions with structures

• Manipulating the bit field with struct

What Is a Union?
A union is a block of memory that is used to hold data items of different types. In C, a

union is similar to a structure, except that the data items saved in the union are overlaid

in order to share the same memory location. That is, they all share the same starting

address, unlike a structure where each member gets its own area of memory. More

details on the differences between unions and structures are discussed in the following

sections. First, let’s look at the syntax of unions.

Declaring Unions
The syntax for declaring a union is similar to the syntax for a structure. The following is

an example of a union declaration:

union automobile {
int year;
char model[8];
int engine_power;
float weight;

};

Here union is the keyword that specifies the union data type. automobile is the tag name

of the union. The variables year, model, engine_power, and weight, are members of the

union, and are declared within the braces ({ and }). The union declaration ends with a

semicolon (;).

Like a structure tag name, a union tag name is a label to a union, which is used by the

compiler to identify the union.

Defining Union Variables
You can define union variables after declaring a union. For instance, the following union

variables are defined with the union labeled with automobile from the previous section:

union automobile sedan, pickup, sport_utility;

Here the three variables, sedan, pickup, and sport_utility, are defined as union vari-

ables.

Of course, you can declare a union and define variables of the union in a single statement.

For instance, you can rewrite the previous union declaration and definition like this:

union automobile {
int year;
char model[8];
int engine_power;
float weight;

} sedan, pickup, sport_utility;

334 Hour 20

Here three union variables, sedan, pickup, and sport_utility, are defined by the union

of automobile in which there are four members of different data types. If you declare a

union and define variables of the union in a single statement, and there are no further

union variable definitions made with the union, you can omit the tag name of the union.

For instance, the tag name automobile can be omitted in the union definition like this:

union {
int year;
char model[8];
int engine_power;
float weight;

} sedan, pickup, sport_utility;

Referencing a Union with . or ->
As well as being used to reference structure members, the dot operator (.) can be used in

referencing union members. For example, the following statement assigns the value of

1997 to one of the members of the sedan union:

sedan.year = 1997;

Here the dot operator is used between the union name sedan and the member name year.

In addition, if you define a pointer ptr like this:

union automobile *ptr;

you can reference one of the union members in the following way:

ptr->year = 1997;

Here the arrow operator (->) is used to reference the union member year with the pointer

ptr.

The program in Listing 20.1 gives another example of how to reference and assign values

to the members of a union.

LISTING 20.1 Referencing the Members of a Union

1: /* 20L01.c Referencing a union */
2: #include <stdio.h>
3: #include <string.h>
4:
5: main(void)
6: {
7: union menu {
8: char name[23];

Understanding Unions 335

20
TYPE

continues

9: double price;
10: } dish;
11:
12: printf(“The content assigned to the union separately:\n”);
13: /* reference name */
14: strcpy(dish.name, “Sweet and Sour Chicken”);
15: printf(“Dish Name: %s\n”, dish.name);
16: /* reference price */
17: dish.price = 9.95;
18: printf(“Dish Price: %5.2f\n”, dish.price);
19:
20: return 0;
21: }

After running the executable 20L01.exe of the program in Listing 20.1, I have the fol-

lowing output shown on the screen of my computer:

The content assigned to the union separately:
Dish Name: Sweet and Sour Chicken
Dish Price: 9.95

The purpose of the program in Listing 20.1 is to show you how to reference

union members with the dot operator.

Inside the main() function, a union, called dish, is first defined with the union data type

of menu in lines 7–10. There are two members, name and price, in the union.

Then the statement in line 14 copies the string “Sweet and Sour Chicken” into the

character array name that is one of the union members. Note that the dish.name expres-

sion is used as the first argument to the strcpy() function in line 14. When the compiler

sees the expression, it knows that you want to reference the memory location of name

that is a member of the dish union.

The strcpy() function is a C function that copies the contents of a string, pointed to by

the function’s second argument, into the memory storage pointed to by the function’s

first argument. I included the header file string.h in the program before calling the

strcpy() function. (See line 3.)

Line 15 prints out the contents copied to the name array by using the dish.name expres-

sion one more time.

The statement in line 17 assigns the value 9.95 to the double variable price, which is

another member for the dish union. Note that the dish.price expression is used to refer-

ence the union member. Then line 18 displays the value assigned to price by calling the

printf() function and passing the dish.price expression as an argument to the function.

336 Hour 20

LISTING 20.1 continued

OUTPUT

ANALYSIS

According to the results shown in the output, the two members of the dish union, name

and price, have been successfully referenced and assigned corresponding values.

Unions versus Structures
You might notice that in Listing 20.1, I assigned a value to one member of the dish

union, and then immediately printed out the assigned value before I moved to the next

union member. In other words, I didn’t assign values to all the union members together

before I printed out each assigned value from each member in the union.

I did this purposely because of the reason that is explained in the following section. So

keep reading. (In Exercise 1 at the end of this lesson, you’ll see a different output when

you rewrite the program in Listing 20.1 by exchanging the order between the statements

in lines 15 and 17.)

Initializing a Union
As mentioned earlier in this lesson, data items in a union are overlaid at the same mem-

ory location. In other words, the starting memory location of a union is shared by all the

members of the union at different times. The size of a union is at least as large as the size

of the largest data item in the list of the union members. This way, it is large enough to

hold any members of the union, one at a time. Therefore, it does not make sense to ini-

tialize all members of a union together because the value of the latest initialized member

overwrites the value of the preceding member. You initialize a member of a union only

when you are ready to use it. The value contained by a union is always the value that was

last assigned to a member of the union.

For instance, if you declare and define a union on a 16-bit machine (that is, the int data

type is 2 bytes long) like this:

union u {
char ch;
int x;

} a_union;

then the following statement initializes the char variable ch with the character constant

‘H’:

a_union.ch = ‘H’;

and the value contained by the a_union union is the character constant ‘H’. However, if

the int variable x is initialized by the following statement:

a_union.x = 365;

Understanding Unions 337

20

then the value contained by the a_union union becomes the value of 365. Figure 20.1

demonstrates the content change of the union during the two initializations.

338 Hour 20

FIGURE 20.1

The content of the

a_union union is the

same as the content

assigned to one of its

members.

'H'

0x1000 0x1001 0x1002

365

0x1000 0x1001 0x1002

a_union.ch = 'H'

a_union.x = 365

The memory block

of the union (in bytes)

(Assume that 0x1000 is the start address

of the union.)

According to the ANSI C standard, a union can be initialized by assigning the first union

member with a value. For instance, in the following statement:

union u {
char ch;
int x;

} a_union = {‘H’};

the a_union union is said to be initialized because the character constant ‘H’ is assigned

to the first union member, ch.

If the first member of a union is a structure, the entire structure has to be initialized with

a list of values before the union is said to be initialized.

Let’s see what will happen if you try to assign values to all members of a union together.

Listing 20.2 gives such an example.

LISTING 20.2 The Members of a Union Share the Same Memory
Location

1: /* 20L02.c: Memory sharing in unions */
2: #include <stdio.h>
3:
4: main(void)
5: {
6: union employee {
7: int start_year;
8: int dpt_code;
9: int id_number;
10: } info;

TYPE

11:
12: /* initialize start_year */
13: info.start_year = 1997;
14: /* initialize dpt_code */
15: info.dpt_code = 8;
16: /* initialize id */
17: info.id_number = 1234;
18:
19: /* display content of union */
20: printf(“Start Year: %d\n”, info.start_year);
21: printf(“Dpt. Code: %d\n”, info.dpt_code);
22: printf(“ID Number: %d\n”, info.id_number);
23:
24: return 0;
25: }

After the executable 20L02.exe is created and executed, the following output is

displayed on the screen:

Start Year: 1234
Dpt. Code: 1234
ID Number: 1234

As you can see in Listing 20.2, a union called info has three int variable mem-

bers, start_year, dpt_code, and id_number. (See lines 6–10.) Then, these three

union members are assigned with different values consecutively in lines 13, 15, and 17.

And in lines 20–22, you try to print out the values assigned to the three members.

However, the output shows that every member in the info union has the same value,

1234, which is the integer assigned to the third member of the union, id_number. Note

that id_number is the member that is assigned with 1234 last; the info union does indeed

hold the latest value assigned to its members.

The Size of a Union
You’ve been told that the members of a union all share the same memory location. The

size of a union is at least as large as the size of the largest member in the union.

In contrast with a union, all members of a structure can be initialized together without

any overwriting. This is because each member in a structure has its own memory storage.

The size of a structure is at least equal to the sum of the sizes of its members, instead of

the size of the largest member as is the case with a union.

Listing 20.3 contains a program that measures the size of a union as well as the size of a

structure. The structure has exactly the same members as the union.

Understanding Unions 339

20

OUTPUT

ANALYSIS

LISTING 20.3 Measuring the Size of a Union

1: /* 20L03.c The size of a union */
2: #include <stdio.h>
3: #include <string.h>
4:
5: main(void)
6: {
7: union u {
8: double x;
9: int y;
10: } a_union;
11:
12: struct s {
13: double x;
14: int y;
15: } a_struct;
16:
17: printf(“The size of double: %d-byte\n”,
18: sizeof(double));
19: printf(“The size of int: %d-byte\n”,
20: sizeof(int));
21:
22: printf(“The size of a_union: %d-byte\n”,
23: sizeof(a_union));
24: printf(“The size of a_struct: %d-byte\n”,
25: sizeof(a_struct));
26:
27: return 0;
28: }

The compiler on your machine may generate several warning messages, something like

“unreferenced local variables.” This is because the a_union union and the a_struct

structure are not initialized in the program. You can ignore the warning messages because

they don’t apply to what we’re doing here. The following output is displayed on the

screen of my computer after the executable 20L03.exe is created and executed:

The size of double: 8-byte
The size of int: 2-byte
The size of a_union: 8-byte
The size of a_struct: 10-byte

The purpose of the program in Listing 20.3 is to show the difference between a

union memory allocation and a structure memory allocation, although both the

union and the structure consist of the same members.

A union, called a_union, is defined in lines 7–10; it has two members, a double variable

x and an int variable y. In addition, a structure, called a_structure and defined in lines

12–15, also consists of two members, a double variable x and an int variable y.

340 Hour 20

TYPE

OUTPUT

ANALYSIS

The statements in lines 17–20 first measure the sizes of the double and int data types on

the host machine. For instance, on my machine, the size of the double data type is 8

bytes long and the int data type is 2 bytes long.

Then lines 22–25 measure the sizes of the a_union union and the a_structure structure,

respectively. From the output, you see that the size of a_union is 8 bytes long on my

machine.

The size of the structure, on the other hand, is 10 bytes on my machine, because there

has to be enough memory space for both the double and the int in the structure.

Using Unions
Now let’s focus on the applications of unions. Basically, there are two kinds of union

applications, which are introduced in the following two sections.

Referencing the Same Memory Location Differently
The first application of unions is to reference the same memory location with different

union members.

To get a better idea about referencing the same memory with different union members,

let’s have a look at the program in Listing 20.4, which uses the two members of a union

to reference the same memory location. (You assume that the char data type is 1 byte

long, and the int data type is 2 bytes long.)

LISTING 20.4 Referencing the Same Memory Location with Different
Union Members

1: /* 20L04.c: Referencing the same memory in different ways */
2: #include <stdio.h>
3:
4: union u{
5: char ch[2];
6: int num;
7: };
8:
9: int UnionInitialize(union u val);
10:
11: main(void)
12: {
13: union u val;
14: int x;
15:

Understanding Unions 341

20

TYPE

continues

16: x = UnionInitialize(val);
17:
18: printf(“The two characters held by the union:\n”);
19: printf(“%c\n”, x & 0x00FF);
20: printf(“%c\n”, x >> 8);
21:
22: return 0;
23: }
24: /* function definition */
25: int UnionInitialize(union u val)
26: {
27: val.ch[0] = ‘H’;
28: val.ch[1] = ‘i’;
29:
30: return val.num;
31: }

The following output is displayed on the screen of my computer after the executable

20L04.exe is created and executed:

The two characters held by the union:
H
i

As you see from the program in Listing 20.4, a union called val is defined in

line 13, which contains two members. One is a char array ch and the other is an

int variable num. If a char data type is 1 byte long and an int data type is 2 bytes long,

the ch array and the integer variable num have the same length of memory storage on

those machines.

A function named UnionInitialize()is called and passed the union name val in line

16. The definition of the UnionInitialize() function is shown in lines 25–31.

From the function definition, you can see that the two elements of the char array ch are

initialized with two character constants, ‘H’ and ‘i’ (in lines 27 and 28). Because the

char array ch and the int variable num share the same memory location, you can return

the value of num that contains the same content as the ch array. (See line 30.) Here

you’ve used the two members, ch and num, in the val union to reference the same mem-

ory location and the same contents of the union.

The value returned by the UnionInitialize() function is assigned to an int variable x

in line 16 inside the main() function. The statements in lines 19 and 20 print out the two

bytes of the int variable num. Each byte of num corresponds to a character that was used

to initialize the ch array because num and ch are both in the same union and have the

same content as the union. Line 19 displays the low byte of num, obtained by evaluating

342 Hour 20

LISTING 20.4 continued

OUTPUT

ANALYSIS

the x & 0x00FF expression. In line 20, the high byte of num is obtained by shifting the x

variable to the right by 8 bits, that is, by using the shift-right operator in the x >> 8

expression. (The bitwise operator (&) and the shift operator (>>) were introduced in Hour

8, “Using Conditional Operators.”)

From the output, you can see that the content of the val union is shown on the screen

correctly.

Figure 20.2 shows the locations of the two character constants in memory.

Understanding Unions 343

20

FIGURE 20.2

The memory locations

of the two character

constants.

0x1000

0x1001

0x1002

'H'

' i '

Low

High

(Assume that 0x1000 is the start address.)

Making Structures Flexible
The second application of unions is to nest a union inside a structure so that the structure

can hold different types of values.

For example, suppose you want to write a program that asks the user about the name of a

cable company or a satellite dish company that provides service to the user. Assume that

the user either uses a cable or a satellite dish at home, but not both. Then, if you define

There are two formats to store a multiple-byte quantity, such as the int vari-

able num in Listing 20.4. One of the formats is called the little-endian format;

the other is the big-endian format.

For the little-endian format, the high bytes of a multiple-byte quantity are

stored at higher memory addresses and the low bytes are saved at lower

addresses. The little-endian format is used by Intel’s 80x86 microprocessors.

My computer’s CPU is a Pentium microprocessor, which is one of the mem-

bers in the 80x86 family. Therefore, in Listing 20.4, the character constant

‘H’, which is a low byte, is stored at the lower address. ‘i’ is stored at the

higher address because it’s a high byte.

The big-endian format is just the opposite. That is, the high bytes are stored

at lower addresses; the low bytes are stored at higher addresses. Motorola’s

68000 microprocessor family uses the big-endian format.

two character arrays to store the cable company and satellite dish company names

respectively, one of the arrays will be empty due to the assumption. In this case, you can

declare a union with the two character arrays as its members so that the union can hold

either a cable company name or a satellite dish company name, depending on the user’s

input. Listing 20.5 demonstrates how to write a program with such a union.

LISTING 20.5 Making a Structure Flexible

1: /* 20L05.c: Using unions */
2: #include <stdio.h>
3: #include <string.h>
4:
5: struct survey {
6: char name[20];
7: char c_d_p;
8: int age;
9: int hour_per_week;
10: union {
11: char cable_company[16];
12: char dish_company[16];
13: } provider;
14: };
15:
16: void DataEnter(struct survey *s);
17: void DataDisplay(struct survey *s);
18:
19: main(void)
20: {
21: struct survey tv;
22:
23: DataEnter(&tv);
24: DataDisplay(&tv);
25:
26: return 0;
27: }
28: /* function definition */
29: void DataEnter(struct survey *ptr)
30: {
31: char is_yes[4];
32:
33: printf(“Are you using cable at home? (Yes or No)\n”);
34: gets(is_yes);
35: if ((is_yes[0] == ‘Y’) ||
36: (is_yes[0] == ‘y’)){
37: printf(“Enter the cable company name:\n”);
38: gets(ptr->provider.cable_company);
39: ptr->c_d_p = ‘c’;
40: } else {
41: printf(“Are you using a satellite dish? (Yes or No)\n”);

344 Hour 20

TYPE

42: gets(is_yes);
43: if ((is_yes[0] == ‘Y’) ||
44: (is_yes[0] == ‘y’)){
45: printf(“Enter the satellite dish company name:\n”);
46: gets(ptr->provider.dish_company);
47: ptr->c_d_p = ‘d’;
48: } else {
49: ptr->c_d_p = ‘p’;
50: }
51: }
52: printf(“Please enter your name:\n”);
53: gets(ptr->name);
54: printf(“Your age:\n”);
55: scanf(“%d”, &ptr->age);
56: printf(“How many hours you spend on watching TV per week:\n”);
57: scanf(“%d”, &ptr->hour_per_week);
58: }
59: /* function definition */
60: void DataDisplay(struct survey *ptr)
61: {
62: printf(“\nHere’s what you’ve entered:\n”);
63: printf(“Name: %s\n”, ptr->name);
64: printf(“Age: %d\n”, ptr->age);
65: printf(“Hour per week: %d\n”, ptr->hour_per_week);
66: if (ptr->c_d_p == ‘c’)
67: printf(“Your cable company is: %s\n”,
68: ptr->provider.cable_company);
69: else if (ptr->c_d_p == ‘d’)
70: printf(“Your satellite dish company is: %s\n”,
71: ptr->provider.dish_company);
72: else
73: printf(“You don’t have cable or a satellite dish.\n”);
74: printf(“\nThanks and Bye!\n”);
75: }

When the executable program 20L05.exe is being run, I enter my answers to the survey

and the following output is displayed (my answers are shown in bold type in the output):

Are you using cable at home? (Yes or No)
No
Are you using a satellite dish? (Yes or No)
Yes
Enter the satellite dish company name:
ABCD company
Please enter your name:
Tony Zhang
Your age:
30
How many hours you spend on watching TV per week:
8

Understanding Unions 345

20

OUTPUT

Here’s what you’ve entered:
Name: Tony Zhang
Age: 30
Hour per week: 8
Your satellite dish company is: ABCD company

Thanks and Bye!

As you can see in lines 5–14, a structure data type with the tag name survey

is declared, and in it a nested union called provider has two members, the

cable_company array and the dish_company array. The two members of the union are

used to hold the names of cable or satellite dish companies, depending on the user’s

input.

The statements in lines 16 and 17 declare two functions, DataEnter() and

DataDisplay(), in which a pointer with struct survey is passed to each function as its

argument.

A structure called tv is defined in line 21 inside the main() function. Then in lines 23

and 24, the DataEnter() and DataDisplay() functions are each called with the address

of the tv structure as the argument.

Lines 29–58 contain the definition of the DataEnter() function, which asks the user to

enter proper information based on the survey questions. Under the assumption you made

earlier, the user can use either cable or a satellite dish, but not both. If the user does use

cable, line 38 receives the cable company name entered by the user and saves it into

the memory storage referenced by one of the members in the provider union,

cable_company.

If the user uses a satellite dish, line 46 stores the satellite dish company name entered by

the user into the same location of the provider union. But this time the name of another

union member, dish_company, is used to reference the memory location. Now you see

how to save the memory by putting two exclusive data items into a union.

In fact, the program supports another situation in which the user neither has cable nor a

satellite dish. In this case, the char variable c_d_p, which is a member of the structure, is

assigned with the character constant ‘p’.

Lines 60–75 give the definition of the DataDisplay() function that prints out the infor-

mation entered by the user back to the screen. The output shown here is a sample I made

by running the executable program of Listing 20.5 on my machine.

346 Hour 20

ANALYSIS

Defining Bit Fields with struct
In this section, you’ll revisit our old friend the struct keyword to declare a very small

object. Then you’ll use the object with unions.

As you know, char is the smallest data type in C. The char data type is one byte long.

However, with the help of the struct keyword, you can declare a smaller object—a bit

field—which allows you to access a single bit. A bit is able to hold only one of two val-

ues, 1 or 0.

The general form to declare and define bit fields is

struct tag_name {
data_type name1: length1;
data_type name2: lenght2;
. . .
data_type nameN: lengthN;

} variable_list;

Here the struct keyword is used to start the declaration. tag_name is the tag name of the

struct data type. data_type, which must be either int, unsigned int, or signed int,

specifies the data type of the bit fields. name1, name2, and nameN are names of bit fields.

length1, length2, and lengthN indicate the lengths of bit fields, specified in bits. The

length of any one bit field may not exceed the length of the int data type.

variable_list contains the variable names of the bit field.

For instance, the following statement defines a structure called jumpers with three bit

field members:

struct bf {
int jumper1: 1;
int jumper2: 2;
int jumper3: 3;

} jumpers;

Here jumper1, jumper2, and jumper3 are the three bit fields with lengths of 1 bit, 2 bits,

and 3 bits, respectively. Figure 20.3 demonstrates the memory allocations of the 3 bit

fields.

Understanding Unions 347

20

jumper1

1 bit

jumper2

2 bits

jumper3

3 bits

unused

10 bitsFIGURE 20.3

The memory alloca-

tions of jumper1,

jumper2, and jumper3

in a 16-bit int.

The program in Listing 20.6 is an example of using the bit fields defined with struct. In

fact, the program in Listing 20.6 is a modified version of the program in Listing 20.5.

LISTING 20.6 Applying Bit Fields

1: /* 20L06.c: Applying bit fields */
2: #include <stdio.h>
3: #include <string.h>
4:
5: struct bit_field {
6: int cable: 1;
7: int dish: 1;
8: };
9:
10: struct survey {
11: char name[20];
12: struct bit_field c_d;
13: int age;
14: int hour_per_week;
15: union {
16: char cable_company[16];
17: char dish_company[16];
18: } provider;
19: };
20:
21: void DataEnter(struct survey *s);
22: void DataDisplay(struct survey *s);
23:
24: main(void)
25: {
26: struct survey tv;
27:
28: DataEnter(&tv);
29: DataDisplay(&tv);
30:
31: return 0;
32: }
33: /* function definition */
34: void DataEnter(struct survey *ptr)
35: {
36: char is_yes[4];
37:
38: printf(“Are you using cable at home? (Yes or No)\n”);
39: gets(is_yes);
40: if ((is_yes[0] == ‘Y’) ||
41: (is_yes[0] == ‘y’)){
42: printf(“Enter the cable company name:\n”);
43: gets(ptr->provider.cable_company);

348 Hour 20

TYPE

44: ptr->c_d.cable = 1;
45: ptr->c_d.dish = 0;
46: } else {
47: printf(“Are you using a satellite dish? (Yes or No)\n”);
48: gets(is_yes);
49: if ((is_yes[0] == ‘Y’) ||
50: (is_yes[0] == ‘y’)){
51: printf(“Enter the satellite dish company name:\n”);
52: gets(ptr->provider.dish_company);
53: ptr->c_d.cable = 0;
54: ptr->c_d.dish = 1;
55: } else {
56: ptr->c_d.cable = 0;
57: ptr->c_d.dish = 0;
58: }
59: }
60: printf(“Please enter your name:\n”);
61: gets(ptr->name);
62: printf(“Your age:\n”);
63: scanf(“%d”, &ptr->age);
64: printf(“How many hours you spend on watching TV per week:\n”);
65: scanf(“%d”, &ptr->hour_per_week);
66: }
67: /* function definition */
68: void DataDisplay(struct survey *ptr)
69: {
70: printf(“\nHere’s what you’ve entered:\n”);
71: printf(“Name: %s\n”, ptr->name);
72: printf(“Age: %d\n”, ptr->age);
73: printf(“Hour per week: %d\n”, ptr->hour_per_week);
74: if (ptr->c_d.cable && !ptr->c_d.dish)
75: printf(“Your cable company is: %s\n”,
76: ptr->provider.cable_company);
77: else if (!ptr->c_d.cable && ptr->c_d.dish)
78: printf(“Your satellite dish company is: %s\n”,
79: ptr->provider.dish_company);
80: else
81: printf(“You don’t have cable or a satellite dish.\n”);
82: printf(“\nThanks and Bye!\n”);
83: }

Because the program in Listing 20.6 is basically the same as the one in Listing 20.5, I

have the same output shown on the screen after I run the executable 20L06.exe and enter

the same answers to the survey:

Are you using cable at home? (Yes or No)
No
Are you using a satellite dish? (Yes or No)

Understanding Unions 349

20

OUTPUT

Yes
Enter the satellite dish company name:
ABCD company
Please enter your name:
Tony Zhang
Your age:
30
How many hours you spend on watching TV per week:
8

Here’s what you’ve entered:
Name: Tony Zhang
Age: 30
Hour per week: 8
Your satellite dish company is: ABCD company

Thanks and Bye!

[ic:analysis]The purpose of the program in Listing 20.6 is to show you how to declare bit

fields and how to use them. As you can see in lines 5–8, two bit fields, cable and dish,

are declared with the struct data type. Each of the bit fields is 1 bit long. Then a struc-

ture called c_d is defined with the two bit fields in line 12, which is within another struc-

ture declaration from line 10 to line 19.

The bit fields cable and dish are used as flags to indicate whether the user is using cable

or a satellite dish based on the answers made by the user. If the user has cable, the cable

bit field is set to 1 and the dish bit field is set to 0. (See lines 44 and 45.) On the other

hand, if the user has a satellite dish, dish is set to 1 and cable is set to 0, as shown in

lines 53 and 54. If, however, the user has neither cable nor a satellite dish, both cable

and dish are set to 0 in lines 56 and 57.

So you see, you’ve used the combinations of the two bit fields, cable and dish, to repre-

sent the three situations: having cable, having a satellite dish, or having neither cable nor

a satellite dish.

Because the program in Listing 20.6 is basically the same as the one in Listing 20.5, I

get the same output after I run the executable program of Listing 20.6 and enter the same

information as I did to the executable 20L05.exe.

Summary
In this hour you’ve learned the following very important concepts about unions in C:

• A union is a block of memory that is used to hold data items of different types.

350 Hour 20

• A union is similar to a structure, except that data items saved in the union are over-

laid in order to share the same starting memory location.

• The size of a union is at least the size of the size of the largest member in the

union.

• The union keyword is used to specify the union data type in a union declaration or

a union variable definition.

• To reference a union member, you can use either a dot operator (.) to separate the

union name and the union member name or an arrow operator (->) to separate the

name of a pointer that points to the union and the union member name.

• The ANSI C standard allows you to initialize a union by assigning the first union

member a value.

• You can access the same memory location with different union members.

• To make a structure flexible, you can nest a union inside a structure so that the

structure can hold different types of values.

• You can define bit fields, which can be a single bit or any number of bits up to the

number of bits in an integer, by using the struct data type.

In the next hour you’ll learn how to read from and write to disk files.

Q&A
Q What are the differences between a union and a structure?

A Basically, the difference between a union and a structure is that the members in a

union are overlaid and they share the same starting memory location, whereas the

members in a structure have their own memory locations. Like a structure, you ref-

erence a union’s members by using one of its member names.

Q What will happen if you initialize all members of a union together?

A The value that is assigned to a union member last will be the value that stays in the

memory storage of the union until the next assignment to the union. In ANSI C,

you can initialize a union by initializing its first member.

Q How do you reference a union member?

A If the name of a union is used to reference the union members, the dot operator (.)

can be used in between the union name and the name of a union member. If it is a

pointer which points to a union, the arrow operator (->) can be used between the

pointer name and the name of a union member.

Understanding Unions 351

20

Q Can you access the same memory location with different union members?

A Yes. Because all union members in a union share the same memory location, you

can access the memory location with different union members. For example, in

the program in Listing 20.4, two character constants are assigned to a union mem-

ory storage through one of the union members, and then the two characters saved

at the memory location of the union are printed out with the help of another union

member.

Workshop
To help solidify your understanding of this hour’s lesson, you are encouraged to answer

the quiz questions and finish the exercises provided in the workshop before you move to

the next lesson. The answers and hints to the questions and exercises are given in

Appendix B, “Answers to Quiz Questions and Exercises.”

Quiz
1. Of the following two statements, which one is the declaration of a union and which

one is the definition of union variables?

union a_union {
int x;
char y;
};

union a_union x, y;

2. What’s wrong with the following union declaration?

union automobile {
int year;
char model[8]
float weight;
}

3. In the following statement, what are the values contained by the two union mem-

bers?

union u {
int date;
char year;

} a_union = {1997};

352 Hour 20

Exercises
1. Rewrite the program in Listing 20.1 by switching the order between the statement

in line 15 and the statement in line 17. What do you get after running the rewritten

program? Why?

2. Rewrite the program in Listing 20.2. This time, print out values held by all the

members in the info union each time one of the members is assigned a value.

3. Write a program to ask the user to enter his or her name. Then ask the user

whether he or she is a U.S. citizen. If the answer is Yes, ask the user to enter the

name of the state where he or she comes from. Otherwise, ask the user to enter the

name of the country he or she comes from. (You’re required to use a union in your

program.)

4. Modify the program you wrote in Exercise 3. Add a bit field and use it as a flag. If

the user is a U.S. citizen, set the bit field to 1. Otherwise, set the bit field to 0. Print

out the user’s name and the name of country or state by checking the value of the

bit field.

Understanding Unions 353

20

HOUR 21
Reading and Writing
with Files

I can only assume that a “Do Not File” document is filed in a “Do Not

File” file.

—F. Church

In Hour 5, “Handling Standard Input and Output,” you learned how to read

and write characters through standard input or output. In this lesson you’ll

learn to read data from and write data to disk files. The following topics are

discussed in this lesson:

• Files and streams

• Opening a file with fopen()

• Closing a file with fclose()

• The fgetc() and fputc() functions

• The fgets() and fputs() functions

• The fread() and fwrite() functions

• The feof() function

Files Versus Streams
The C language provides a rich set of library functions to perform input and output (I/O)

operations. Those functions can read or write any type of data to files. Before we go any

further in discussing the C I/O functions, let’s first understand the definitions of files and

streams in C.

What Is a File?
In C, a file can refer to a disk file, a terminal, a printer, or a tape drive. In other words, a

file represents a concrete device with which you want to exchange information. Before

you perform any communication to a file, you have to open the file. Then you need to

close the opened file after you finish exchanging information with it.

What Is a Stream?
The data flow you transfer from your program to a file, or vice versa, is called a stream,

which is a series of bytes. Unlike a file, which targets a specific I/O device, a stream is

device independent. All streams have the same behavior regardless of whatever device

they are associated with. To perform I/O operations, you can read from or write to any

type of file by simply associating a stream to the file.

There are two formats of streams. The first one is called the text stream, which consists

of a sequence of characters (that is, text data). Depending on the system, each line of

characters in a text stream may be terminated by a newline character (‘\n’). Text streams

are used for textual data, which has a consistent appearance from one environment to

another, or from one machine to another.

The second format of streams is called the binary stream, which is a series of bytes, for

example, the content of an executable program file. Binary streams are primarily used

for nontextual data, where the exact contents of the data are maintained without regard to

appearance.

Buffered I/O
In C, a memory area that is temporarily used to store data before it is sent to its destina-

tion is called a buffer. With the help of buffers, the operating system can improve effi-

ciency by reducing the number of accesses to I/O devices (that is, files).

Access to a disk or other I/O device is generally much slower than direct access to mem-

ory. Several I/O operations can be performed on a buffer that represents the I/O file,

instead of the file itself. For example, if several write operations are sent to a buffer, they

are kept in memory until it is time to save, or commit, the new data to the actual device.

356 Hour 21

(This process is known as flushing the buffer.) So instead of several write operations in a

row, each going to the slow disk device, they all take place in the memory buffer and the

disk device will only be accessed once—when the buffer is flushed.

By default, all I/O streams are buffered. Buffered I/O is also called high-level I/O,

whereas unbuffered I/O (directly to the device) is called low-level I/O.

The Basics of Disk File I/O
Now let’s focus on how to open and close a disk data file and how to interpret error mes-

sages returned by I/O functions.

Pointers of FILE
The FILE structure is the file control structure defined in the header file stdio.h. A

pointer of type FILE is called a file pointer, which references a disk file. A file pointer is

used by a stream to conduct the operation of the I/O functions. For instance, the follow-

ing defines a file pointer called fptr:

FILE *fptr;

In the FILE structure there is a member, called the file position indicator, which points to

the position in a file where data will next be read from or written to. You’ll learn how to

move the file position indicator in the next lesson.

Opening a File
The C I/O function fopen()opens a file and associates a stream with the opened file. You

need to specify the method of opening the file and the filename as arguments to the

fopen() function.

The syntax for the fopen() function is

#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);

Here filename is a char pointer that references a string containing a filename. The file-

name is given to the file that is about to be opened by the fopen() function. mode points

to another string that specifies the way to open the file. The fopen() function returns a

pointer of type FILE. If an error occurs during the procedure to open a file, the fopen()

function returns a null pointer.

The mode parameter is made by a combination of the characters r (read), w (write), b

(binary), a (append), and + (update). When you use append mode, and the file already

exists, the contents of the file will be preserved and new data that you write will be

Reading and Writing with Files 357

21

,
S

Y
N

TA
X

,

added to the end. If the file does not already exist, it will be created. This is in contrast to

w, which always attempts to create a new file, and will discard whatever data may already

be in the file. Using the + character sets the mode to both reading and writing. When you

use r, the file must already exist; if it does not, the call will fail.

The following list shows the possible ways to open a file by various strings of modes:

• “r” opens an existing text file for reading.

• “w” creates a text file for writing.

• “a” opens an existing text file for appending.

• “r+” opens an existing text file for reading or writing.

• “w+” creates a text file for reading or writing.

• “a+” opens or create a text file for appending.

• “rb” opens an existing binary file for reading.

• “wb” creates a binary file for writing.

• “ab” opens an existing binary file for appending.

• “r+b” opens an existing binary file for reading or writing.

• “w+b” creates a binary file for reading or writing.

• “a+b” opens or creates a binary file for appending.

Note that you might see code where the mode is given as “rb+” instead of “r+b”. These

two strings are equivalent. Similarly, “wb+” is the same as “w+b”; “ab+” is equivalent to

“a+b”.

The following statements try to open a file called test.txt:

FILE *fptr;
if ((fptr = fopen(“test.txt”, “r”)) == NULL){

printf(“Cannot open test.txt file.\n”);
exit(1);

}

Here “r” is used to indicate that a text file is about to be opened for reading only. If an

error occurs when the fopen() function tries to open the file, the function returns a null

pointer. (This will happen if test.txt does not already exist.) Then an error message is

printed out by the printf() function and the program is aborted by calling the exit()

function with a nonzero value.

Closing a File
After a disk file is read, written, or appended with some new data, you have to disassoci-

ate the file from a specified stream by calling the fclose() function.

358 Hour 21

The syntax for the fclose() function is

#include <stdio.h>
int fclose(FILE *stream);

Here stream is a file pointer that is associated with a stream to the opened file. If

fclose() closes a file successfully, it returns 0. Otherwise, the function returns EOF.

Normally, the fclose() function fails only when the disk is removed before the function

is called or there is no more space left on the disk.

Because all high-level I/O operations are buffered, the fclose() function flushes data

left in the buffer to ensure that no data will be lost before it disassociates a specified

stream with the opened file.

Note that a file that is opened and associated with a stream has to be closed after the I/O

operation. Otherwise, the data saved in the file may be lost; some unpredictable errors

might occur during the execution of your program. In addition, failing to close a file

when you are done with it may prevent other programs (or users of your program) from

accessing the file later.

The program in Listing 21.1 shows you how to open and close a text file and how to

check the value of the file pointer returned from fopen() as well.

LISTING 21.1 Opening and Closing a Text File

1: /* 21L01.c: Opening and closing a file */
2: #include <stdio.h>
3:
4: enum {SUCCESS, FAIL};
5:
6: main(void)
7: {
8: FILE *fptr;
9: char filename[]= “haiku.txt”;
10: int reval = SUCCESS;
11:
12: if ((fptr = fopen(filename, “r”)) == NULL){
13: printf(“Cannot open %s.\n”, filename);
14: reval = FAIL;
15: } else {
16: printf(“The value of fptr: 0x%p\n”, fptr);
17: printf(“Ready to close the file.”);
18: fclose(fptr);
19: }
20:
21: return reval;
22: }

Reading and Writing with Files 359

21

,
S

Y
N

TA
X

,

TYPE

The following output displays onscreen after running the executable 21L01.exe of the

program in Listing 21.1 on my computer. (Note that the value of the fptr is likely to be

different on your machine. That’s okay.)

The value of fptr: 0x013E
Ready to close the file.

The purpose of the program in Listing 21.1 is to show you how to open a text

file. From the expression in line 12, you can see that the fopen() function tries

to open a text file with the name contained by the character array filename for reading.

The filename array is defined and initialized with the name haiku.txt in line 9.

If an error occurs when you try to open the text file, the fopen() function returns a null

pointer. Line 13 then prints a warning message, and line 14 assigns the value represented

by the enum name FAIL to the int variable reval. From the declaration of the enum data

type in line 4, you know that the value of FAIL is 1.

If, however, the fopen() function opens the text file successfully, the statement in line 16

prints the value contained by the file pointer fptr. Line 17 tells the user that the program

is about to close the file, and line 18 then closes the file by calling the fclose() function.

In line 21, the return statement returns the value of reval that contains 0 if the text file

has been opened successfully, or 1 otherwise.

From the output shown on my screen, I see that the value held by the file pointer fptr is

0x013E after the text file is opened.

Reading and Writing Disk Files
The program in Listing 21.1 does not do anything with the text file, haiku.txt, except

open and close it. In fact, there are two pieces of Japanese haiku, written by Sodo and

Chora, saved in the haiku.txt file. So how can you read them from the file?

In C, you can perform I/O operations in the following ways:

• Read or write one character at a time.

• Read or write one line of text (that is, one character line) at a time.

• Read or write one block of characters at a time.

The following three sections explain the three ways to read from, and write to, disk files.

One Character at a Time
Among the C I/O functions, there is a pair of functions, fgetc() and fputc(), that can

be used to read from or write to a disk file one character at a time.

360 Hour 21

OUTPUT

ANALYSIS

The syntax for the fgetc() function is

#include <stdio.h>
int fgetc(FILE *stream);

Here stream is the file pointer that is associated with a stream. The fgetc() function

fetches the next character from the stream specified by stream. The function then returns

the value of an int that is converted from the character. EOF is returned if fgetc()

encounters the end of the file, or if there is an error.

The syntax for the fputc() function is

#include <stdio.h>
int fputc(int c , FILE *stream);

Here c is an int value that represents a character. In fact, the int value is converted to an

unsigned char before being outputted. stream is the file pointer that is associated with

a stream. The fputc() function returns the character written if the function is successful;

otherwise, it returns EOF. After a character is written, the fputc() function advances the

associated file pointer.

To learn how to use the fgetc() and fputc() functions, let’s have a look at Listing 21.2,

which contains a program that opens a text file, and then reads and writes one character

at a time.

LISTING 21.2 Reading and Writing One Character at a Time

1: /* 21L02.c: Reading and writing one character at a time */
2: #include <stdio.h>
3:
4: enum {SUCCESS, FAIL};
5:
6: void CharReadWrite(FILE *fin, FILE *fout);
7:
8: main(void)
9: {
10: FILE *fptr1, *fptr2;
11: char filename1[]= “outhaiku.txt”;
12: char filename2[]= “haiku.txt”;
13: int reval = SUCCESS;
14:
15: if ((fptr1 = fopen(filename1, “w”)) == NULL){
16: printf(“Cannot open %s.\n”, filename1);
17: reval = FAIL;
18: } else if ((fptr2 = fopen(filename2, “r”)) == NULL){
19: printf(“Cannot open %s.\n”, filename2);

Reading and Writing with Files 361

21

,
S

Y
N

TA
X

,
S

Y
N

TA
X

,

,

TYPE

continues

20: reval = FAIL;
21: } else {
22: CharReadWrite(fptr2, fptr1);
23: fclose(fptr1);
24: fclose(fptr2);
25: }
26:
27: return reval;
28: }
29: /* function definition */
30: void CharReadWrite(FILE *fin, FILE *fout)
31: {
32: int c;
33:
34: while ((c=fgetc(fin)) != EOF){
35: fputc(c, fout); /* write to a file */
36: putchar(c); /* put the character to the screen */
37: }
38: }

After running the executable, 21L02.exe, on my machine, I get the following output:

Leading me along
my shadow goes back home
from looking at the moon.
--- Sodo

(1641-1716)

A storm wind blows
out from among the grasses
the full moon grows.
--- Chora

(1729-1781)

The purpose of the program in Listing 21.2 is to read one character from a file,

write the character to another file, and then display the character on the screen.

Before running the program, you need to create a text file called haiku.txt with the

contents shown above, and save it in the same directory as the executable program.

In Listing 21.2 there is a function called CharReadWrite(), which has two file pointers

as its arguments. (See the declaration of the CharReadWrite() function in line 6.)

The statement in line 10 defines two file pointers, fptr1 and fptr2, which are used later

in the program. Lines 11 and 12 define two character arrays, filename1 and filename2,

and initialize the two arrays with two strings containing filenames, outhaiku.txt and

haiku.txt.

362 Hour 21

LISTING 21.2 continued

OUTPUT

ANALYSIS

In line 15, a text file with the name outhaiku.txt is opened for writing. outhaiku.txt

is contained by the filename1 array. The file pointer fptr1 is associated with the file. If

the fopen() function returns NULL, which means an error has occurred, a warning mes-

sage is printed out in line 16. Also, in line 17, the reval variable is assigned 1 and is rep-

resented by the enum name FAIL.

If the file outhaiku.txt is opened successfully, another text file, called haiku.txt, is

opened for reading in line 18. The file pointer fptr2 is associated with the opened text

file.

If no error occurs, the CharReadWrite() function is called in line 22 with two file point-

ers, fptr1 and fptr2, passed to the function as arguments. From the definition of the

CharReadWrite() function in lines 30 and 38, you see that there is a while loop that

keeps calling the fgetc() function to read the next character from the haiku.txt

text file until the function reaches the end of the file (see line 34).

Within the while loop, the fputc() function in line 35 writes each character read from

the haiku.txt file to another text file, outhaiku.txt, which is pointed to by fout. In

addition, putchar() is called in line 36 in order to put the character returned by the

fgetc() function on the screen.

After the CharReadWrite() function finishes its job, the two opened files, which are

associated with fptr1 and fptr2, are each closed with a call to the fclose() function

respectively in lines 23 and 24.

As mentioned earlier, the haiku.txt file contains two pieces of Japanese haiku written

by Sodo and Chora. If the program in Listing 21.2 is run successfully, you will see the

two pieces of haiku shown on the screen, and they are written into the outhaiku.txt file

as well. You can view outhaiku.txt in a text editor to confirm that the content of

haiku.txt has been correctly copied to outhaiku.txt.

One Line at a Time
Besides reading or writing one character at a time, you can also read or write one charac-

ter line at time. There is a pair of C I/O functions, fgets() and fputs(), that allows you

to do so.

The syntax for the fgets() function is

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

Here s references a character array that is used to store characters read from the opened

file pointed to by the file pointer stream. n specifies the maximum number of array ele-

ments. If it is successful, the fgets() function returns the char pointer s. If EOF is

Reading and Writing with Files 363

21

,
S

Y
N

TA
X

,

encountered, the fgets() function returns a null pointer and leaves the array untouched.

If an error occurs, the function returns a null pointer, and the contents of the array are

unknown.

The fgets() function can read up to n-1 characters, and can append a null character

after the last character fetched, until a newline or an EOF is encountered. Note that if a

newline is encountered during the read operation, the fgets() function includes the new-

line in the array. This is different from what the gets() function does. The gets() func-

tion just replaces the newline character with a null character. (The gets() function was

introduced in Hour 13, “Manipulating Strings.”)

The syntax for the fputs() function is

#include <stdio.h>
int fputs(const char *s, FILE *stream);

Here s points to the array that contains the characters to be written to a file associated

with the file pointer stream. The const modifier indicates that the content of the array

pointed to by s cannot be changed by the fputs() function. (You learned about the

const modifier in Hour 14, “ Understanding Scope and Storage Classes.”) If it fails, the

fputs() function returns a nonzero value; otherwise, it returns zero.

Note that the character array must include a null character at the end of the string as the

terminator to the fputs() function. Also, unlike the puts() function, the fputs() func-

tion does not insert a newline character to the string written to the file. (The puts() func-

tion was introduced in Hour 13, “Manipulating Strings.”)

You can modify the program in Listing 21.2 to read or write one character line at a time by

calling the fgets() and fputs() functions. The modified version is shown in Listing 21.3.

LISTING 21.3 Reading and Writing One Character Line at a Time

1: /* 21L03.c: Reading and writing one line at a time */
2: #include <stdio.h>
3:
4: enum {SUCCESS, FAIL, MAX_LEN = 81};
5:
6: void LineReadWrite(FILE *fin, FILE *fout);
7:
8: main(void)
9: {
10: FILE *fptr1, *fptr2;
11: char filename1[]= “outhaiku.txt”;
12: char filename2[]= “haiku.txt”;
13: int reval = SUCCESS;
14:

364 Hour 21

,

,

,
S

Y
N

TA
X

,

TYPE

15: if ((fptr1 = fopen(filename1, “w”)) == NULL){
16: printf(“Cannot open %s for writing.\n”, filename1);
17: reval = FAIL;
18: } else if ((fptr2 = fopen(filename2, “r”)) == NULL){
19: printf(“Cannot open %s for reading.\n”, filename2);
20: reval = FAIL;
21: } else {
22: LineReadWrite(fptr2, fptr1);
23: fclose(fptr1);
24: fclose(fptr2);
25: }
26:
27: return reval;
28: }
29: /* function definition */
30: void LineReadWrite(FILE *fin, FILE *fout)
31: {
32: char buff[MAX_LEN];
33:
34: while (fgets(buff, MAX_LEN, fin) != NULL){
35: fputs(buff, fout);
36: printf(“%s”, buff);
37: }
38: }

Because the program in Listing 21.3 reads the same text file, haiku.txt, as the program

in Listing 21.2 did, I get the same output on the screen:

Leading me along
my shadow goes back home
from looking at the moon.
--- Sodo

(1641-1716)

A storm wind blows
out from among the grasses
the full moon grows.
--- Chora

(1729-1781)

From the program in Listing 21.3, you can see that a function called

LineReadWrite() has replaced the CharReadWrite() function.

The definition of the LineReadWrite() function is shown in lines 30–38. The fgets()

function is called repeatedly in a while loop to read one character line at a time from the

haiku.txt text file, until it reaches the end of the text file. In line 34, the array name

buff and the maximum number of the array elements MAX_LEN are passed to the fgets()

function, along with the file pointer fin that is associated with the opened haiku.txt

file.

Reading and Writing with Files 365

21

OUTPUT

ANALYSIS

Meanwhile, each line read by the fgets() function is written to another opened text file

called outhaiku.txt that is associated with the file pointer fout. This is done by calling

the fputs() function in line 35.

The statement in line 36 prints the contents of each string on the screen so that you see

the two pieces of Japanese verses after running the program in Listing 21.3. Also, you

can view the outhaiku.txt file in a text editor to make sure that the content of the

haiku.txt file has been copied to the outhaiku.txt file.

366 Hour 21

In the previous hour, we used the gets() function to read data input from

the keyboard. Since gets() does not know the size of the character array

you pass to it, it simply reads data until a newline is encountered. This is

actually quite dangerous, since the user could very easily type more charac-

ters than your array will hold. As a result, your other variables would get

overwritten and your program will crash or, at best, behave unpredictably.

Fortunately, fgets() provides a much safer way of reading input from the

keyboard, if you pass stdin as the stream from which to read.

The following code uses fgets() to read input from stdin into a string str.

int length = 80;
char str[80];
fgets(str, length, stdin);
if (str[(length = strlen(str) – 1)] == ‘\n’)
str[length] = ‘\0’; /* replace the ‘\n’ */

else
while (getchar() != ‘\n’)
; /* discard input until the newline */

As you can see, this method involves a little more work than gets() because

we have to get rid of the newline character which fgets() stores in our

array. However, it is well worth it because this is a much safer, cleaner way

of dealing with user input than using gets().

One Block at a Time
If you like, you can also read or write a block of data at a time. In C, there are two I/O

functions, fread() and fwrite(), that can be used to perform block I/O operations. The

fread() and fwrite() functions are mirror images of each other.

The syntax for the fread() function is

#include <stdio.h>
size_t fread(void *ptr, size_t size, size_t n, FILE *stream);

Here ptr is a pointer to an array in which the data is stored. size indicates the size of

each array element. n specifies the number of elements to read. stream is a file pointer

S
Y

N
TA

X
,

that is associated with the opened file for reading. size_t is an integral type defined in

the header file stdio.h. The fread() function returns the number of elements actually

read.

The number of elements read by the fread() function should be equal to the value speci-

fied by the third argument to the function, unless an error occurs or an EOF (end-of-file)

is encountered. The fread() function returns the number of elements that are actually

read during the attempt, if an error occurs or an EOF is encountered.

The syntax for the fwrite() function is

#include <stdio.h>
size_t fwrite(const void *ptr, size_t size, size_t n, FILE *stream);

Here ptr references the array that contains the data to be written to an opened file

pointed to by the file pointer stream. size indicates the size of each element in the array.

n specifies the number of elements to be written. The fwrite() function returns the

number of elements actually written.

If no error has occurred, the value returned by fwrite() should equal the third argument

in the function. The return value may be less than the specified value if an error occurs.

Note that it’s the programmer’s responsibility to ensure that the array is large enough to

hold data for either the fread() function or the fwrite() function.

In C, a function called feof() can be used to determine when the end of a file is encoun-

tered. This function is more useful when you’re reading a binary file because the values

of some bytes may be equal to the value of EOF. That is to say, the character which is

used as an end-of-file marker in a text file can easily occur in a binary file, but in that

case it is not intended to mark end of the file. If you try to determine the end of a binary

file by checking the value returned by fread(), you may end up at a wrong position.

Using the feof() function helps you to avoid mistakes in determining the end of a file,

because it checks whether the file position indicator has actually reached the end of the

file, regardless of any EOF character present.

The syntax for the feof() function is

#include <stdio.h>
int feof(FILE *stream);

Here stream is the file pointer that is associated with an opened file. The feof() func-

tion returns 0 if the end of the file has not been reached; otherwise, it returns a nonzero

integer.

Reading and Writing with Files 367

21

,

,

,

,
S

Y
N

TA
X

,
S

Y
N

TA
X

,

The program in Listing 21.4 demonstrates how to read and write one block of charac-

ters at a time by calling the fread() and fwrite() functions. In fact, the program in

Listing 21.4 is another modified version of the program from Listing 21.2.

LISTING 21.4 Reading and Writing One Block of Characters at a Time

1: /* 21L04.c: Reading and writing one block at a time */
2: #include <stdio.h>
3:
4: enum {SUCCESS, FAIL, MAX_LEN = 80};
5:
6: void BlockReadWrite(FILE *fin, FILE *fout);
7: int ErrorMsg(char *str);
8:
9: main(void)
10: {
11: FILE *fptr1, *fptr2;
12: char filename1[]= “outhaiku.txt”;
13: char filename2[]= “haiku.txt”;
14: int reval = SUCCESS;
15:
16: if ((fptr1 = fopen(filename1, “w”)) == NULL){
17: reval = ErrorMsg(filename1);
18: } else if ((fptr2 = fopen(filename2, “r”)) == NULL){
19: reval = ErrorMsg(filename2);
20: } else {
21: BlockReadWrite(fptr2, fptr1);
22: fclose(fptr1);
23: fclose(fptr2);
24: }
25:
26: return reval;
27: }
28: /* function definition */
29: void BlockReadWrite(FILE *fin, FILE *fout)
30: {
31: int num;
32: char buff[MAX_LEN + 1];
33:
34: while (!feof(fin)){
35: num = fread(buff, sizeof(char), MAX_LEN, fin);
36: buff[num * sizeof(char)] = ‘\0’; /* append a null character */
37: printf(“%s”, buff);
38: fwrite(buff, sizeof(char), num, fout);
39: }
40: }
41: /* function definition */
42: int ErrorMsg(char *str)
43: {

368 Hour 21

TYPE

44: printf(“Cannot open %s.\n”, str);
45: return FAIL;
46: }

Again, I get the same output on the screen because the program in Listing 21.4 also

reads the same text file, haiku.txt:

Leading me along
my shadow goes back home
from looking at the moon.
--- Sodo

(1641-1716)

A storm wind blows
out from among the grasses
the full moon grows.
--- Chora

(1729-1781)

The purpose of the program in Listing 21.4 is to show you how to invoke the

fread() and fwrite() functions in your program to perform block I/O opera-

tions. In Listing 21.4, the haiku.txt file is read by the fread() function, and then the

fwrite() function is used to write the contents read from haiku.txt to another file

called outhaiku.txt. You call the two C I/O functions from your own function,

BlockReadWrite().

From the definition of the BlockReadWrite() function in lines 29–40, you can see that a

character array called buff is defined with the number of elements of MAX_LEN + 1 in

line 32, although you only read MAX_LEN number of characters by calling the fread()

function in line 35. The reason is that you append a null character in line 36 after the last

character read so that you ensure the block of characters saved in buff is treated as a

string and can be printed out on the screen properly by the printf() function which is

called in line 37.

The while loop, shown in lines 34–39, keeps calling the fread() function to read a char-

acter block with MAX_LEN elements, until the feof() function in line 34 returns 0, which

means that the end of the text file has been reached. As shown in lines 35 and 38, you

use the sizof operator to measure the size of the char data type because the elements in

the buff array are all characters.

If everything goes smoothly, you should see the Japanese verses again on the screen or in

the outhaiku.txt file after running the program in Listing 21.4.

Reading and Writing with Files 369

21

OUTPUT

ANALYSIS

Summary
In this lesson you learned the following important concepts and functions regarding disk

file input and output in C:

• In C, a file can refer to a disk file, a terminal, a printer, or a tape drive.

• The data flow you transfer from your program to a file, or vice versa, is called a

stream.

• A stream is a series of ordered bytes.

• Unlike a file, a stream is device independent.

• There are two stream formats: text stream and binary stream.

• The file position indicator in the FILE structure points to the position in a file

where data will next be read from or written to.

• The fopen() function is used to open a file and associate a stream to the opened

file.

• You can specify different modes for opening a file.

• The fclose() function is responsible for closing an opened file and disassociating

a stream with the file.

• The fgetc() and fputc() functions read or write one character at a time.

• The fgets() and fputs() functions read or write one line at a time.

• The fread() and fwrite() functions read or write one block of data at a time.

• The feof() function can determine when the end of a file has been reached.

• In a binary file, the feof() function should be used to detect EOF.

In the next lesson you’ll learn more about disk file I/O in C.

Q&A
Q What are the differences between a text stream and a binary stream?

A A text stream is a sequence of characters that may not have a one-to-one relation-

ship with the data on the device. Text streams are normally used for textual data,

which have a consistent appearance from one environment to another, or from one

machine to another. For this reason, the data in a text file may be interpreted so

that it appears correctly on the screen. A binary stream, on the other hand, is a

sequence of bytes that has a one-to-one correspondence to those on the device.

Binary streams are primarily used for nontextual data that is needed to keep the

exact contents on the device.

370 Hour 21

Q Why do you need a file pointer?

A A file pointer is used to associate a stream with an opened file for reading or writ-

ing purpose. A pointer of the type FILE is called a file pointer. FILE is a typedef

for a structure that contains overhead information about a disk file. A file pointer

plays an important role in the communication between programs and disk files.

Q What does the fclose() function do before it closes an opened file?

A As you know, all high-level I/O operations are buffered. One of the jobs of the

fclose() function is to flush data left in the buffer to commit the I/O operations

and ensure that no data is lost. For instance, when you finish writing several blocks

of characters to an opened text file, you call the fclose() function to disassociate

a specified stream and close the text file. The fclose() function will first flush all

characters left in the buffer and write them into the text file before it closes the file.

In this way, all characters you write to the file will be saved properly.

Q What is the difference between fgets() and gets()?

A The major difference between the fgets() and gets() functions is that the fgets()

function includes a newline character in the array if the newline is encountered dur-

ing the read operation, whereas the gets() function just replaces the newline char-

acter with a null character. Additionally, fgets() is much safer than gets() because

it lets you specify the size of the array where the string is stored.

Workshop
To help solidify your understanding of this lesson, you are encouraged to answer the quiz

questions and finish the exercises provided in the workshop before you move to the next

lesson. The answers and hints to the questions and exercises are given in Appendix B,

“Answers to Quiz Questions and Exercises.”

Quiz
1. What do the following expressions do?

fopen(“test.bin”, “r+b”)
fopen(“test.txt” “a”)
fopen(“test.ini”, “w+”)

2. What’s wrong with the following code segment?

FILE *fptr;
int c;
if ((fptr = fopen(“test1.txt”, “r”)) == NULL){

while ((c=fgetc(fptr)) != EOF){
putchar(c);

}
}
fclose(fptr);

Reading and Writing with Files 371

21

3. What’s wrong with the following code segment?

FILE *fptr;
int c;
if ((fptr = fopen(“test2.txt”, “r”)) != NULL){

while ((c=fgetc(fptr)) != EOF){
fputc(c, fptr);

}
fclose(fptr);

}

4. What’s wrong with the following code segment?

FILE *fptr1, *fptr2;
int c;
if ((fptr1 = fopen(“test1.txt”, “r”)) != NULL){

while ((c=fgetc(fptr1)) != EOF){
putchar(c);

}
}
fclose(fptr1);
if ((fptr2 = fopen(“test2.txt”, “w”)) != NULL){

while ((c=fgetc(fptr1)) != EOF){
fputc(c, fptr2);

}
}
fclose(fptr2);

Exercises
1. Write a program to read the text file haiku.txt and count the number of characters

in the file. Also, print out the content of the file and the total character number on

the screen.

2. Write a program to receive a string entered by the user, and then save the string

into a file with the name also given by the user.

3. Given the string “Disk file I/O is fun.” write a program to write the string

into a file called test_21.txt by writing one character at a time. Meanwhile, print

out the string on the screen.

4. Rewrite exercise 3. This time, try to write one block of characters (that is, one

string) at a time.

372 Hour 21

HOUR 22
Using Special File
Functions

Disk space: the final frontier.

—Captain Kirk’s younger brother

In last hour’s lesson you learned the basics of reading and writing disk data

files. In this lesson you’ll learn more about communication with disk data

files. The main topics discussed in this hour are

• Random access to files

• Reading or writing binary data

• Redirecting the standard streams

In addition, the following C I/O functions are introduced in this lesson:

• The fseek(), ftell(), and rewind() functions

• The fscanf() and fprintf() functions

• The freopen() function

Random Access to Disk Files
So far you’ve learned how to read or write data sequentially to an opened disk file,

known as sequential access. In other words, you start with the first byte and keep reading

or writing each successive byte in order. In many cases, however, you need to access par-

ticular data somewhere in the middle of a disk file. One way to do it is to keep reading

data from the file until the particular data is fetched. Obviously, this is not an efficient

way, especially when the file contains many data items.

Random access is another way to read or write data to disk files. In random access, spe-

cific file elements can be accessed in random order (that is, without reading through all

the preceding data).

In C there are two I/O functions, fseek() and ftell(), that are designed to deal with

random access.

The fseek() and ftell() Functions
As just mentioned, you need functions that enable you to access files randomly. The

fseek() and ftell() functions provide you with such a capability.

In the previous lesson you learned that one of the members in the FILE structure is called

the file position indicator. The file position indicator has to point to the desired position

in a file before data can be read from or written to there. You can use the fseek() func-

tion to move the file position indicator to the spot you want to access in a file.

The syntax for the fseek() function is

#include <stdio.h>
int fseek(FILE *stream, long offset, int whence);

Here stream is the file pointer associated with an opened file. offset indicates the num-

ber of bytes from a fixed position specified by whence that can have one of the following

integral values represented by SEEK_SET, SEEK_CUR, and SEEK_END. If it is successful, the

fseek() function returns 0; otherwise, the function returns a nonzero value.

You can find the values represented by SEEK_SET, SEEK_CUR, and SEEK_END in the header

file stdio.h.

If SEEK_SET is chosen as the third argument to the fseek() function, the offset is counted

from the beginning of the file and the value of the offset should be greater than or equal

to zero. If, however, SEEK_END is used, the offset starts from the end of the file, and the

value of the offset should be negative. When SEEK_CUR is passed to the fseek() function,

the offset is calculated from the current value of the file position indicator.

374 Hour 22

,
S

Y
N

TA
X

,

You can obtain the current value of the file position indicator by calling the ftell()

function.

The syntax for the ftell() function is

#include <stdio.h>
long ftell(FILE *stream);

Here stream is the file pointer associated with an opened file. The ftell() function

returns the current value of the file position indicator.

The value returned by the ftell() function represents the number of bytes from the

beginning of the file to the current position pointed to by the file position indicator.

If the ftell() function fails, it returns –1L (that is, a long value of minus 1). One thing

that can cause the failure of the ftell() function is that the file is a terminal or some

other type for which the file position indicator becomes meaningless.

The program in Listing 22.1 shows how to randomly access a disk file by using the

fseek() and ftell() functions.

LISTING 22.1 Random Access to a File

1: /* 22L01.c: Random access to a file */
2: #include <stdio.h>
3:
4: enum {SUCCESS, FAIL, MAX_LEN = 80};
5:
6: void PtrSeek(FILE *fptr);
7: long PtrTell(FILE *fptr);
8: void DataRead(FILE *fptr);
9: int ErrorMsg(char *str);
10:
11: main(void)
12: {
13: FILE *fptr;
14: char filename[]= “haiku.txt”;
15: int reval = SUCCESS;
16:
17: if ((fptr = fopen(filename, “r”)) == NULL){
18: reval = ErrorMsg(filename);
19: } else {
20: PtrSeek(fptr);
21: fclose(fptr);
22: }
23:

Using Special File Functions 375

22

,

S
Y

N
TA

X

TYPE

continues

24: return reval;
25: }
26: /* function definition */
27: void PtrSeek(FILE *fptr)
28: {
29: long offset1, offset2, offset3;
30:
31: offset1 = PtrTell(fptr);
32: DataRead(fptr);
33: offset2 = PtrTell(fptr);
34: DataRead(fptr);
35: offset3 = PtrTell(fptr);
36: DataRead(fptr);
37:
38: printf(“\nRe-read the haiku:\n”);
39: /* re-read the third verse of the haiku */
40: fseek(fptr, offset3, SEEK_SET);
41: DataRead(fptr);
42: /* re-read the second verse of the haiku */
43: fseek(fptr, offset2, SEEK_SET);
44: DataRead(fptr);
45: /* re-read the first verse of the haiku */
46: fseek(fptr, offset1, SEEK_SET);
47: DataRead(fptr);
48: }
49: /* function definition */
50: long PtrTell(FILE *fptr)
51: {
52: long reval;
53:
54: reval = ftell(fptr);
55: printf(“The fptr is at %ld\n”, reval);
56:
57: return reval;
58: }
59: /* function definition */
60: void DataRead(FILE *fptr)
61: {
62: char buff[MAX_LEN];
63:
64: fgets(buff, MAX_LEN, fptr);
65: printf(“---%s”, buff);
66: }
67: /* function definition */
68: int ErrorMsg(char *str)
69: {
70: printf(“Cannot open %s.\n”, str);
71: return FAIL;

72: }

376 Hour 22

LISTING 22.1 continued

I have the following output shown on the screen of my computer after running the exe-

cutable 22L01.exe of the program in Listing 22.1:

The fptr is at 0
---Leading me along
The fptr is at 18
---my shadow goes back home
The fptr is at 44
---from looking at the moon.

Re-read the haiku:
---from looking at the moon.
---my shadow goes back home
---Leading me along

The purpose of the program in Listing 22.1 is to move the file position indicator

around in order to read different verses from the haiku.txt file.

Inside the main() function, a file pointer fptr is defined in line 13, and the name of the

haiku.txt file is assigned to the array called filename in line 14. Then, in line 17, you

try to open the haiku.txt file for reading by calling the fopen() function. If successful,

you invoke the PtrSeek() function with the fptr file pointer as the argument in line 20.

The definition of your first function, PtrSeek(), is shown in lines 27–48. The statement

in line 31 obtains the original value of the fptr file pointer by calling your other func-

tion, PtrTell(), which is defined in lines 50–58. The PtrTell() function finds and

prints out the value of the file position indicator with the help of the ftell() function.

The original value of the file position indicator contained by fptr is assigned to the long

variable offset1 in line 31.

In line 32, the third function, DataRead(), is called to read one line of characters from

the opened file and print out the line of characters on the screen. Line 33 gets the value

of the fptr file position indicator right after the read operation and assigns the value to

another long variable offset2.

Then the DataRead() function in line 34 reads the second line of characters from the

opened file. Line 35 obtains the value of the file position indicator that points to the first

byte of the third verse and assigns the value to the third long variable, offset3. Line 36

calls the DataRead() function to read the third verse and print it out on the screen.

Therefore, from the first portion of the output, you can see the three different values of

the file position indicator at three different positions, and the three verses of the haiku

written by Sodo. The three values of the file position indicator are saved respectively by

offset1, offset2, and offset3.

Using Special File Functions 377

22

OUTPUT

ANALYSIS

Now, starting from line 40 to line 47, you read Sodo’s haiku backward, one verse at a

time. That is, you read the third verse first, and then the second verse, and finally the first

verse. To do so, you first call the fseek() function to move the file position indicator to

the beginning of the third verse by passing the value contained by offset3 to the func-

tion. Then you call fseek() again and pass the value of offset2 to the function so that

the file position indicator is set to point to the first byte of the second verse. Finally, you

move the file position indicator to the beginning of the first verse by passing the value of

offset1 to the fseek() function. Therefore, in the second portion of the output, you see

the three verses of the haiku in reverse order.

The rewind() Function
Sometimes you might want to reset the file position indicator and put it at the beginning

of a file. There is a handy C function, called rewind(), which can be used to rewind the

file position indicator.

The syntax for the rewind() function is

#include <stdio.h>
void rewind(FILE *stream);

Here stream is the file pointer associated with an opened file. No value is returned by

the rewind() function.

In fact, the following statement of the rewind() function:

rewind(fptr);

is equivalent to this:

fseek(fptr, 0L, SEEK_SET);

Listing 22.2 contains an example that calls the rewind() function to move the file posi-

tion indicator to the beginning of an opened file.

More Examples of Disk File I/O
The following sections show several more examples of disk file I/O, such as reading and

writing binary data and redirecting the standard streams. Three more I/O functions,

fscanf(), fprintf(), and freopen(), are introduced too.

Reading and Writing Binary Data
As you learned in Hour 21, “Reading and Writing with Files,” you can indicate to the

compiler that you’re going to open a binary file by setting a proper mode when calling

378 Hour 22

S
Y

N
TA

X

,

the fopen() function. For instance, the following statement tries to open an existing

binary file for reading:

fptr = fopen(“test.bin”, “rb”);

Note that the “rb” mode is used to indicate that the file you’re going to open for reading

is a binary file.

Listing 22.2 contains an example of reading and writing binary data.

LISTING 22.2 Reading and Writing Binary Data

1: /* 22L02.c: Reading and writing binary data */
2: #include <stdio.h>
3:
4: enum {SUCCESS, FAIL, MAX_NUM = 3};
5:
6: void DataWrite(FILE *fout);
7: void DataRead(FILE *fin);
8: int ErrorMsg(char *str);
9:
10: main(void)
11: {
12: FILE *fptr;
13: char filename[]= “double.bin”;
14: int reval = SUCCESS;
15:
16: if ((fptr = fopen(filename, “wb+”)) == NULL){
17: reval = ErrorMsg(filename);
18: } else {
19: DataWrite(fptr);
20: rewind(fptr); /* reset fptr */
21: DataRead(fptr);
22: fclose(fptr);
23: }
24:
25: return reval;
26: }
27: /* function definition */
28: void DataWrite(FILE *fout)
29: {
30: int i;
31: double buff[MAX_NUM] = {
32: 123.45,
33: 567.89,
34: 100.11};
35:

Using Special File Functions 379

22

TYPE

continues

36: printf(“The size of buff: %d-byte\n”, sizeof(buff));
37: for (i=0; i<MAX_NUM; i++){
38: printf(“%5.2f\n”, buff[i]);
39: fwrite(&buff[i], sizeof(double), 1, fout);
40: }
41: }
42: /* function definition */
43: void DataRead(FILE *fin)
44: {
45: int i;
46: double x;
47:
48: printf(“\nRead back from the binary file:\n”);
49: for (i=0; i<MAX_NUM; i++){
50: fread(&x, sizeof(double), (size_t)1, fin);
51: printf(“%5.2f\n”, x);
52: }
53: }
54: /* function definition */
55: int ErrorMsg(char *str)
56: {
57: printf(“Cannot open %s.\n”, str);
58: return FAIL;
59: }

After running the executable 22L02.exe, I have the following output on the screen of my

computer:

The size of buff: 24-byte
123.45
567.89
100.11

Read back from the binary file:
123.45
567.89
100.11

The purpose of the program in Listing 22.2 is to write three values of the double

data type into a binary file and then rewind the file position indicator and read

back the three double values from the binary file. The two functions, DataWrite() and

DataRead(), that perform the writing and reading, are declared in lines 6 and 7.

The enum names, SUCCESS, FAIL, and MAX_NUM, are defined in line 4 with values of 0, 1,

and 3, respectively.

380 Hour 22

LISTING 22.2 continued

OUTPUT

ANALYSIS

Inside the main() function, the statement in line 16 tries to create and open a binary file

called double.bin for both reading and writing. Note that the “wb+” mode is used in the

fopen() function in line 16.

If the fopen() function is successful, the DataWrite() function is called in line 19 to

write three double data items, 123.45, 567.89, and 100.11, into the opened binary file,

according to the definition of the DataWrite() function in lines 28–41. The fwrite()

function in line 39 does the writing. Because the three double data items are saved in an

array named buff, you also measure and print out the size of the buff array in line 36.

On my machine, the size of the buff array is 24 bytes because each double data item is

8 bytes.

Right after the execution of the DataWrite() function, the file position indicator is reset

to the beginning of the binary file by calling the rewind() function in line 20 because

you want to read back all the three double data items written to the file.

Then in line 21, the DataRead() function reads the three double data items from the

opened binary file double.bin. From the definition of the DataRead() function in lines

43–53, you can see that the fread() function is used to perform the reading operation

(see line 50).

The output from running the program in Listing 22.2 shows the three double data items

before the writing and after the reading as well.

The fscanf() and fprintf() Functions
As you have learned, the two C library functions scanf() and printf() can be used to

read or write formatted data through the standard I/O (that is, stdin and stdout). Among

the C disk file I/O functions, there are two equivalent functions, fscanf() and

fprintf(), that can do the same jobs as the scanf() and printf() functions. In addi-

tion, the fscanf() and fprintf() functions allow the programmer to specify I/O streams

other than stdin and stdout.

The syntax for the fscanf() function is

#include <stdio.h>
int fscanf(FILE *stream, const char *format, …);

Here stream is the file pointer associated with an opened file. format, whose usage is

the same as in the scanf() function, is a char pointer pointing to a string that contains

the format specifiers. If successful, the fscanf() function returns the number of data

items read. Otherwise, the function returns EOF.

Using Special File Functions 381

22

,
S

Y
N

TA
X

,

The syntax for the fprintf() function is

#include <stdio.h>
int fprintf(FILE *stream, const char *format, ...);

Here stream is the file pointer associated with an opened file. format, whose usage is the

same as in the printf() function, is a char pointer pointing to a string that contains the

format specifiers. If successful, the fprintf() function returns the number of formatted

expressions. Otherwise, the function returns a negative value.

To know more about the fprintf() and fscanf() functions, you can review the expla-

nations on the printf() and scanf() functions in Hour 5, “Handling Standard Input and

Output,” and Hour 13, “Manipulating Strings.”

The program in Listing 22.3 demonstrates how to use the fscanf() and fprintf() func-

tions to read and write differently typed data items.

LISTING 22.3 Using the fscanf() and fprintf() Functions

1: /* 22L03.c: Using the fscanf() and fprintf() functions */
2: #include <stdio.h>
3:
4: enum {SUCCESS, FAIL,
5: MAX_NUM = 3,
6: STR_LEN = 23};
7:
8: void DataWrite(FILE *fout);
9: void DataRead(FILE *fin);
10: int ErrorMsg(char *str);
11:
12: main(void)
13: {
14: FILE *fptr;
15: char filename[]= “strnum.mix”;
16: int reval = SUCCESS;
17:
18: if ((fptr = fopen(filename, “w+”)) == NULL){
19: reval = ErrorMsg(filename);
20: } else {
21: DataWrite(fptr);
22: rewind(fptr);
23: DataRead(fptr);
24: fclose(fptr);
25: }
26:
27: return reval;
28: }
29: /* function definition */
30: void DataWrite(FILE *fout)

382 Hour 22

,

,
S

Y
N

TA
X

TYPE

31: {
32: int i;
33: char cities[MAX_NUM][STR_LEN] = {
34: “St.Louis->Houston:”,
35: “Houston->Dallas:”,
36: “Dallas->Philadelphia:”};
37: int miles[MAX_NUM] = {
38: 845,
39: 243,
40: 1459};
41:
42: printf(“The data written:\n”);
43: for (i=0; i<MAX_NUM; i++){
44: printf(“%-23s %d miles\n”, cities[i], miles[i]);
45: fprintf(fout, “%s %d”, cities[i], miles[i]);
46: }
47: }
48: /* function definition */
49: void DataRead(FILE *fin)
50: {
51: int i;
52: int miles;
53: char cities[STR_LEN];
54:
55: printf(“\nThe data read:\n”);
56: for (i=0; i<MAX_NUM; i++){
57: fscanf(fin, “%s%d”, cities, &miles);
58: printf(“%-23s %d miles\n”, cities, miles);
59: }
60: }
61: /* function definition */
62: int ErrorMsg(char *str)
63: {
64: printf(“Cannot open %s.\n”, str);
65: return FAIL;
66: }

The following output is shown on the screen after the executable 22L03.exe is created

and run on my computer:

The data written:
St.Louis->Houston: 845 miles
Houston->Dallas: 243 miles
Dallas->Philadelphia: 1459 miles

The data read:
St.Louis->Houston: 845 miles
Houston->Dallas: 243 miles
Dallas->Philadelphia: 1459 miles

Using Special File Functions 383

22

OUTPUT

The purpose of the program in Listing 22.3 is to write data items of different

types into a file with the help of the fprintf() function and read back the data

items in the same format by calling the fscanf() function. The two functions declared in

lines 8 and 9, DataWrite() and DataRead(), actually perform the writing and reading.

The statement of the main() function in line 18 tries to create and open a text file called

strnum.mix for both reading and writing by specifying the second argument to the

fopen() function as “w+”. If fopen() does not return a null pointer, the DataWrite()

function is called in line 21 to write strings and int data items into the strnum.mix file.

Note that the fprintf() function is invoked inside the DataWrite() function in line 45

to write the formatted data into the text file.

From the definition of the DataWrite() function in lines 30–47, you can see that there

are two arrays, cities and miles. The cities array contains three strings that indicate

three pairs of cities, and the miles array has three int values representing the corre-

sponding distances between the cities shown in the cities array. For instance, 845 in the

miles array is the distance (in miles) between the two cities expressed by the string

St.Louis->Houston: in the cities array.

In line 22, the rewind() function is called to rewind the file position indicator and reset

it to the beginning of the strnum.mix file. Then the DataRead() function in line 23 reads

back what has been saved in strnum.mix with the help of the fscanf() function. The

definition of the DataRead() function is shown in lines 49–60.

From this example, you see that it is convenient to use the fprintf() and fscanf()

functions together to perform formatted disk file I/O operations.

Redirecting the Standard Streams with freopen()
In Hour 5 you learned how to read from or write to standard I/O. Also, you were told

that the C functions, such as getc(), gets(), putc, and printf(), direct their I/O opera-

tions automatically to either stdin or stdout.

In this section you’re going to learn how to redirect the standard streams, such as stdin

and stdout, to disk files. A new C function you’re going to use is called freopen(),

which can associate a standard stream with a disk file.

The syntax for the freopen() function is

#include <stdio.h>
FILE *freopen(const char *filename, const char *mode, FILE *stream);

Here filename is a char pointer referencing the name of a file that you want to associate

with the standard stream represented by stream. mode is another char pointer pointing to

384 Hour 22

ANALYSIS
,

S
Y

N
TA

X

a string that defines the way to open a file. The values that mode can have in freopen()

are the same as the mode values in the fopen() function. (The definitions of all mode

values are given in Hour 21.)

The freopen() function returns a null pointer if an error occurs. Otherwise, the function

returns the standard stream that has been associated with a disk file identified by

filename.

Listing 22.4 demonstrates an example of redirecting the standard output, stdout, with

the help of the freopen() function.

LISTING 22.4 Redirecting the Standard Stream stdout

1: /* 22L04.c: Redirecting a standard stream */
2: #include <stdio.h>
3:
4: enum {SUCCESS, FAIL,
5: STR_NUM = 4};
6:
7: void StrPrint(char **str);
8: int ErrorMsg(char *str);
9:
10: main(void)
11: {
12: char *str[STR_NUM] = {
13: “Be bent, and you will remain straight.”,
14: “Be vacant, and you will remain full.”,
15: “Be worn, and you will remain new.”,
16: “--- by Lao Tzu”};
17: char filename[]= “LaoTzu.txt”;
18: int reval = SUCCESS;
19:
20: StrPrint(str);
21: if (freopen(filename, “w”, stdout) == NULL){
22: reval = ErrorMsg(filename);
23: } else {
24: StrPrint(str);
25: fclose(stdout);
26: }
27: return reval;
28: }
29: /* function definition */
30: void StrPrint(char **str)
31: {
32: int i;
33:

Using Special File Functions 385

22,

TYPE

continues

34: for (i=0; i<STR_NUM; i++)
35: printf(“%s\n”, str[i]);
36: }
37: /* function definition */
38: int ErrorMsg(char *str)
39: {
40: printf(“Cannot open %s.\n”, str);
41: return FAIL;
42: }

After the executable 22L04.exe is created and run, the following output is printed out on

the screen of my computer:

Be bent, and you will remain straight.
Be vacant, and you will remain full.
Be worn, and you will remain new.
--- by Lao Tzu

The purpose of the program in Listing 22.4 is to save a paragraph of Tao Te

Ching written by a Chinese philosopher, Lao Tzu, into a text file, LaoTzu.txt. To

do so, you call the printf() function instead of the fprintf() function or other disk I/O

functions after you redirect the default stream, stdout, of the printf() function to point

to the text file.

The function that actually does the writing is called StrPrint(), which calls the C func-

tion printf() to send out formatted character strings to the output stream. (See the defi-

nition of the StrPrint() function in lines 30–36.)

Inside the main() function, you call the StrPrint() function in line 20 before you redi-

rect stdout to the LaoTzu.txt file. It’s not surprising to see that the paragraph adopted

from Tao Te Ching is printed on the screen because the printf() function automatically

sends out the paragraph to stdout, which directs to the screen by default.

Then, in line 21, you redirect stdout to the LaoTzu.txt text file by calling the freopen()

function. There the “w” is used as the mode that indicates to open the text file for writ-

ing. If freopen() is successful, you then call the StrPrint() function in line 24.

However, this time, the StrPrint() function writes the paragraph into the opened text

file, LaoTzu.txt. The reason is that stdout is now associated with the text file, not the

screen, so that strings sent out by the printf() call inside StrPrint() are directed to the

text file.

After the execution of the program in Listing 22.4, you can open the LaoTzu.txt file in a

text editor and see that the paragraph of Tao Te Ching has been saved in the file.

386 Hour 22

LISTING 22.4 continued

OUTPUT

ANALYSIS

Summary
In this lesson you learned the following important concepts and functions regarding disk

file input and output in C:

• The file position indicator can be reset by the fseek() function.

• The ftell() function can tell you the value of the current file position indicator.

• The rewind() function can set the file position indicator to the beginning of a file.

• After you specify the mode of the fopen() function for a binary file, you can use

the fread() or fwrite() functions to perform I/O operations on binary data.

• Besides the fact that the fscanf() and fprintf() functions can do the same jobs

as the scanf() and printf() functions, the fscanf() and fprintf() functions

also allow the programmer to specify I/O streams.

• You can redirect the standard streams, such as stdin and stdout, to a disk file

with the help of the freopen() function.

In the next lesson you’ll learn about the C preprocessor.

Q&A
Q Why is random access to a disk file necessary?

A When you want to fetch a piece of information from a large file that contains a

huge amount of data, random access to the file is a more efficient way than sequen-

tial access to the file. The functions that perform random access can put the file

position indicator directly to the right place in the file, and then you can simply

start to fetch the required information from there. In C, the fseek() and ftell()

functions are two handy functions that help you to carry out the random access

operation.

Using Special File Functions 387

22
As mentioned previously, the I/O streams are buffered by default.

Occasionally, you may want to turn off the buffering so that you can process

the input immediately. In C there are two functions, setbuf() and

setvbuf(), that can be used to turn off the buffering, although unbuffered

I/O is beyond the scope of this book.

Also, there is a set of low-level I/O functions, such as open(), create(),

close(), read(), write(), lseek(), and tell(), which are not supported by

the ANSI C standard. You may still see them in some platform-dependent C

programs. To use them, you need to read your C compiler’s reference man-

ual to make sure they’re available.

Q How do you specify the format of a new disk file you’re going to create by call-

ing fopen()?

A You have to add b into the mode argument to the fopen() function to specify that

the file you’re going to create is a binary file. You can use “wb” to create a new file

for writing and “wb+” to create a new file for writing and reading. If, however, the

file to be created is a text file, no b is needed in the mode argument.

Q What is the difference between the printf() and fprintf() functions?

A Basically, the printf() and fprintf() functions can do a similar job: send the

formatted data items to the output streams. However, the printf() function auto-

matically sends formatted data to stdout, whereas the fprintf() function can be

assigned a file pointer that is associated with a specified output stream.

Q Can you redirect a standard stream to a disk file?

A Yes. With the help of the freopen() function, you can redirect a standard stream

and associate the stream with a disk file.

Workshop
To help solidify your understanding of this hour’s lesson, you are encouraged to answer

the quiz questions and finish the exercises provided in the workshop before you move to

the next lesson. The answers and hints to the questions and exercises are given in

Appendix B, “Answers to Quiz Questions and Exercises.”

Quiz
1. Are the following two statements equivalent?

rewind(fptr);
fseek(fptr, 0L, SEEK_SET);

2. Are the following two statements equivalent?

rewind(fptr);
fseek(fptr, 0L, SEEK_CUR);

3. After the statement

freopen(“test.txt”, “r”, stdin);

is executed successfully, where does the scanf() function in the following state-

ment read from?

scanf(“%s%d”, str, &num);

4. Given that the size of the double data type is 8 bytes long, and you have four

double data items, if you write the four double data items into a binary file, how

many bytes do the four data items take in the file?

388 Hour 22

Exercises
1. Assume that the following paragraph of Tao Te Ching is saved in a text file called

LaoTzu.txt:

Be bent, and you will remain straight.
Be vacant, and you will remain full.
Be worn, and you will remain new.

Write a program to use ftell() to find the positions of the three strings in the file,

and then call fseek() to set the file position indicator in such a way that the three

strings are printed out in reverse order.

2. Rewrite the program you made in exercise 1 by calling the rewind() function to

reset the file position indicator at the beginning of the LaoTzu.txt file.

3. Given a double value of 123.45, and an int value of 10000, write a program to

save them into a binary file, called data.bin, and then read them back from the

binary file. Also, print out what you’re writing or reading. What do you think the

size of the binary file will be?

4. Read the text file strnum.mix, which is created by the program in Listing 22.3.

Redirect the input stream so that you can use the scanf() function to perform the

reading operation.

Using Special File Functions 389

22

HOUR 23
Compiling Programs: The
C Preprocessor

Intelligence is the faculty of making artificial objects, especially tools to

make tools.

—H. Bergson

In Hour 2, “Your First C Program,” you learned how to use the #include

preprocessor directive to include C header files. Since then, the #include

directive has been used in every program in this book. In this lesson you’ll

learn more about the C preprocessor and making macro definitions with the

preprocessor directives. The following topics are discussed in this hour:

• What the C preprocessor can do

• Macro definitions and macro substitutions

• The #define and #undef directives

• How to define function-like macros with #define

• The #ifdef, #ifndef, and #endif directives

• The #if, #elif, and #else directives

• How to nest #if and #elif directives

What Is the C Preprocessor?
If there is a constant appearing in several places in your program, it’s a good idea to

associate a symbolic name to the constant, and then use the symbolic name to replace the

constant throughout the program. There are two advantages to doing so. First, your pro-

gram will be more readable. Second, it’s easier to maintain your program. For instance, if

the value of the constant needs to be changed, you just find the statement that associates

the constant with the symbolic name and replace the constant with the new one. Without

using the symbolic name, you have to look everywhere in your program to replace the

constant. Sounds great, but can you do this in C?

Well, C has a special program called the C preprocessor that allows you to define and

associate symbolic names with constants. In fact, the C preprocessor uses the terminol-

ogy macro names and macro body to refer to the symbolic names and the constants. The

C preprocessor runs before the compiler. During the preprocessing, the operation to

replace a macro name with its associated macro body is called macro substitution or

macro expansion.

You can put a macro definition anywhere in your program. However, a macro name has

to be defined before it can be used in your program.

In addition, the C preprocessor gives you the ability to include other source files. For

instance, you’ve been using the preprocessor directive #include to include C header

files, such as stdio.h, stdlib.h, and string.h, in the programs throughout this book.

Also, the C preprocessor enables you to compile different sections of your program

under specified conditions.

The C Preprocessor versus the Compiler
One important thing you need to remember is that the C preprocessor is not part of the C

compiler.

The C preprocessor uses a different syntax. All directives in the C preprocessor begin

with a pound sign (#). In other words, the pound sign denotes the beginning of a pre-

processor directive, and it must be the first nonspace character on the line.

The C preprocessor is line-oriented. Each macro statement ends with a newline character,

not a semicolon. (Only C statements end with semicolons.) One of the most common

mistakes made by the programmer is to place a semicolon at the end of a macro state-

ment. Fortunately, many C compilers can catch such errors.

The following sections describe some of the most frequently used directives, such as

#define, #undef, #if, #elif, #else, #ifdef, #ifndef, and #endif.

392 Hour 23

The #define and #undef Directives
The #define directive is the most common preprocessor directive, which tells the pre-

processor to replace every occurrence of a particular character string (that is, macro

name) with a specified value (that is, macro body).

The syntax for the #define directive is

#define macro_name macro_body

Here macro_name is an identifier that can contain letters, numerals, or underscores.

macro_body may be a string or a data item, which is used to substitute each macro_name

found in the program.

As mentioned earlier, the operation to replace occurrences of macro_name with the value

specified by macro_body is known as macro substitution or macro expansion.

The value of the macro body specified by a #define directive can be any character string

or number. For example, the following definition associates STATE_NAME with the string

“Texas” (including the quotation marks):

#define STATE_NAME “Texas”

Then, during the preprocessing, all occurrences of STATE_NAME will be replaced by

“Texas”.

Likewise, the following statement tells the C preprocessor to replace SUM with the string

(12 + 8):

#define SUM (12 + 8)

On the other hand, you can use the #undef directive to remove the definition of a macro

name that has been previously defined.

The syntax for the #undef directive is

#undef macro_name

Here macro_name is an identifier that has been previously defined by a #define

directive.

Compiling Programs: The C Preprocessor 393

23

Macro names, especially those that will be substituted by constants, are nor-

mally represented with uppercase letters so that they can be distinguished

from other variable names in the program.

S
Y

N
TA

X

,

S
Y

N
TA

X

You can think of the #undef directive as “undefining” a macro name. For instance, the

following segment of code:

#define STATE_NAME “Texas”
printf(“I am moving out of %s.\n”, STATE_NAME);

#undef STATE_NAME

defines the macro name STATE_NAME first, and uses the macro name in the printf()

function; then it removes the macro name. From that point in the program, STATE_NAME

cannot be used again (unless, of course, it is redefined first).

Defining Function-Like Macros with #define
You can specify one or more arguments to a macro name defined by the #define direc-

tive, so that the macro name can be treated like a simple function that accepts arguments.

For instance, the following macro name, MULTIPLY, takes two arguments:

#define MULTIPLY(val1, val2) ((val1) * (val2))

When the following statement:

result = MULTIPLY(2, 3) + 10;

is preprocessed, the preprocessor substitutes the expression 2 for val1 and 3 for val2,

and then produces the following equivalent:

result = ((2) * (3)) + 10;

The program in Listing 23.1 is an example of using the #define directive to perform

macro substitution.

LISTING 23.1 Using the #define Directive

1: /* 23L01.c: Using #define */
2: #include <stdio.h>
3:
4: #define METHOD “ABS”
5: #define ABS(val) ((val) < 0 ? -(val) : (val))
6: #define MAX_LEN 8
7: #define NEGATIVE_NUM -10
8:
9: main(void)
10: {
11: char *str = METHOD;
12: int array[MAX_LEN];
13: int i;
14:
15: printf(“The orignal values in array:\n”);
16: for (i=0; i<MAX_LEN; i++){

394 Hour 23

TYPE

17: array[i] = (i + 1) * NEGATIVE_NUM;
18: printf(“array[%d]: %d\n”, i, array[i]);
19: }
20:
21: printf(“\nApplying the %s macro:\n”, str);
22: for (i=0; i<MAX_LEN; i++){
23: printf(“ABS(%d): %3d\n”, array[i], ABS(array[i]));
24: }
25:
26: return 0;
27: }

The following output appears on the screen of my computer after I run the executable

23L01.exe of the program in Listing 23.1:

The orignal values in array:
array[0]: -10
array[1]: -20
array[2]: -30
array[3]: -40
array[4]: -50
array[5]: -60
array[6]: -70
array[7]: -80

Applying the ABS macro:
ABS(-10): 10
ABS(-20): 20
ABS(-30): 30
ABS(-40): 40
ABS(-50): 50
ABS(-60): 60
ABS(-70): 70
ABS(-80): 80

The purpose of the program in Listing 23.1 is to define different macro names,

including a function-like macro, and use them in the program.

In lines 4–7, four macro names, METHOD, ABS, MAX_LEN, and NEGATIVE_NUM are defined

with the #define directive. Among them, ABS can accept one argument. The definition of

ABS in line 5 checks the value of the argument and returns the absolute value of the argu-

ment. Note that the conditional operator ?: is used to find the absolute value for the

incoming argument. (The ?: operator was introduced in Hour 8, “Using Conditional

Operators.”)

Then, inside the main() function, the char pointer str is defined and assigned with

METHOD in line 11. As you can see, METHOD is associated with the string “ABS”. In line 12,

an int array called array is defined with the element number specified by MAX_LEN.

Compiling Programs: The C Preprocessor 395

23

OUTPUT

ANALYSIS

In lines 16–19, each element of array is initialized with the value represented by the

(i + 1) * NEGATIVE_NUM expression that produces a series of negative integer numbers.

The for loop in lines 22–24 applies the function-like macro ABS to each element of

array and obtains the absolute value for each element. Then, all of the absolute values

are displayed on the screen. The output from the program in Listing 23.1 proves that

each macro defined in the program works very well.

Nested Macro Definitions
A previously defined macro can be used as the value in another #define statement. The

following is an example:

#define ONE 1
#define TWO (ONE + ONE)
#define THREE (ONE + TWO)
result = TWO * THREE;

Here the macro ONE is defined to be equivalent to the value 1, and TWO is defined to be

equivalent to (ONE + ONE), where ONE has been defined in the previous macro definition.

Likewise, THREE is defined to be equivalent to (ONE + TWO), where both ONE and TWO are

previously defined.

Therefore, the assignment statement following the macro definitions is expanded to the

following statement:

result = (1 + 1) * (1 + (1 + 1));

396 Hour 23

When you are using the #define directive with a macro body that is an

expression, you need to enclose the macro body in parentheses. For exam-

ple, if the macro definition is

#define SUM 12 + 8

then the following statement:

result = SUM * 10;

becomes this:

result = 12 + 8 * 10;

which assigns 92 to result.

However, if you enclose the macro body in parentheses like this:

#define SUM (12 + 8)

then the assignment statement becomes this:

result = (12 + 8) * 10;

and produces the result 200, which is likely what you want.

Compiling Your Code Under Conditions
You can select portions of your C program that you want to compile by using a set of

preprocessor directives. This technique is called conditional compilation. This is useful,

especially when you’re testing a piece of new code or debugging a portion of code.

The #ifdef and #endif Directives
The #ifdef and #endif directives control whether a given group of statements is to be

included as part of your program.

The general form to use the #ifdef and #endif directives is

#ifdef macro_name
statement1

statement2

. . .

statementN

#endif

Here macro_name is any character string that can be defined by a #define directive.

statement1, statement2, and statementN are statements that are included in the pro-

gram only if macro_name has already been defined. If maccro_name has not been defined,

statement1, statement2, and everything up to statementN skipped.

Unlike an if statement in C, the statements under the control of the #ifdef directive are

not enclosed in braces; instead, the #endif directive must be used to mark the end of the

#ifdef block.

For instance, the #ifdef directive in the following code segment:

. . .
#ifdef DEBUG

printf(“The contents of the string pointed to by str: %s\n”, str);
#endif
. . .

indicates that if the macro name DEBUG is defined, the printf() function in the statement

following the #ifdef directive is included in the program. The compiler will compile the

statement so that the contents of a string pointed to by str will be printed by the state-

ment. However if DEBUG has not been defined, the printf() call will be entirely left out

of your compiled program.

The #ifndef Directive
The #ifndef directive enables you to define code that is to be executed when a particular

macro name is not defined.

Compiling Programs: The C Preprocessor 397

23

The general format to use #ifndef is the same as for #ifdef:

#ifndef macro_name
statement1

statement2

. . .

statementN

#endif

Here macro_name, statement1, statement2, and statementN have the same meanings as

those in the form of #ifdef introduced in the previous section. Again, the #endif direc-

tive is needed to mark the end of the #ifndef block.

Listing 23.2 contains a program that demonstrates how to use the #ifdef, #ifndef, and

#endif directives together.

LISTING 23.2 Using the #ifdef, #ifndef, and #endif Directives

1: /* 23L02.c: Using #ifdef, #ifndef, and #endif */
2: #include <stdio.h>
3:
4: #define UPPER_CASE 0
5: #define NO_ERROR 0
6:
7: main(void)
8: {
9: #ifdef UPPER_CASE
10: printf(“THIS LINE IS PRINTED OUT,\n”);
11: printf(“BECAUSE UPPER_CASE IS DEFINED.\n”);
12: #endif
13: #ifndef LOWER_CASE
14: printf(“\nThis line is printed out,\n”);
15: printf(“because LOWER_CASE is not defined.\n”);
16: #endif
17:
18: return NO_ERROR;
19: }

The following output is shown on the screen after the executable 23L02.exe is created

and run on my computer:

THIS LINE IS PRINTED OUT,
BECAUSE UPPER_CASE IS DEFINED.

This line is printed out,
because LOWER_CASE is not defined.

The purpose of the program in Listing 23.2 is to use #ifdef and #ifndef direc-

tives to control whether a message will be displayed.

398 Hour 23

TYPE

OUTPUT

ANALYSIS

Two macro names, UPPER_CASE and NO_ERROR, are defined in lines 4 and 5.

The #ifdef directive in line 9 checks whether the UPPER_CASE macro name has been

defined. Because the macro name has been defined in line 4, the two statements in lines

10 and 11 (until the #endif directive in line 12 marks the end of the #ifdef block) are

included in the compiled program.

In line 13, the #ifndef directive tells the preprocessor to include the two statements in

lines 14 and 15 in the program if the LOWER_CASE macro name has not been defined. As

you can see, LOWER_CASE is not defined in the program at all. Therefore, the two state-

ments in lines 14 and 15 are compiled as part of the program.

The output from running the program in Listing 23.2 shows that the printf() functions

in lines 10, 11, 14, and 15 are compiled and executed accordingly, under the control of

the #ifdef and #ifndef directives. You can try modifying the program by changing line

4 so that it defines LOWER_CASE rather than UPPER_CASE. The #ifdef and #ifndef direc-

tives will then remove all four printf() calls from the program.

The #if, #elif, and #else Directives
The #if directive specifies that certain statements are to be included only if the value

represented by the conditional expression is nonzero. The conditional expression can be

an arithmetic expression.

The general form to use the #if directive is

#if expression
statement1

statement2

. . .

statementN

#endif

Here expression is the conditional expression to be evaluated. statement1, statement2,

and statementN represent the code to be included if expression is nonzero.

Note that the #endif directive is included at the end of the definition to mark the end of

the #if block, as it does for an #ifdef or #ifndef block.

In addition, the #else directive provides an alternative to choose. The following general

form uses the #else directive to put statement_1, statement_2, and statement_N into

the program if expression is zero:

#if expression
statement1

statement2

. . .

Compiling Programs: The C Preprocessor 399

23

statementN

#else
statement_1

statement_2

. . .

statement_N

#endif

Again, the #endif directive is used to mark the end of the #if block.

Also, a macro definition can be used as part of the conditional expression evaluated by

the #if directive. If the macro is defined, it has a nonzero value in the expression; other-

wise, it has the value 0.

For example, look at the following portion of code:

#ifdef DEBUG
printf(“The value of the debug version: %d\n”, debug);

#else
printf(“The value of the release version: %d\n”, release);

#endif

If DEBUG has been defined by a #define directive, the value of the debug version is

printed out by the printf() function in the following statement:

printf(“The value of the debug version: %d\n”, debug);

Otherwise, if DEBUG has not been defined, the following statement is executed:

printf(“The value of the release version: %d\n”, release);

Now consider another example:

#if 1
printf(“The line is always printed out.\n”);
#endif

The printf() function is always executed because the expression 1 evaluated by the #if

directive never returns 0.

In the following example:

#if MACRO_NAME1 || MACRO_NAME2
printf(“MACRO_NAME1 or MACRO_NAME2 is defined.\n”);

#else
printf(“MACRO_NAME1 and MACRO_NAME2 are not defined.\n”);

#endif

the logical operator || is used, along with MACRO_NAME1 and MACRO_NAME2 in the expres-

sion evaluated by the #if directive. If one of the macro names, MACRO_NAME1 or

MACRO_NAME2, has been defined, the expression evaluates to a nonzero value; otherwise, 0

is produced.

400 Hour 23

The C preprocessor has another directive, #elif, which stands for “else if.” You can use

#if and #elif together to build an if-else-if chain for multiple conditional compila-

tion.

The program shown in Listing 23.3 is an example of using the #if, #elif, and #else

directives.

LISTING 23.3 Using the #if, #elif, and #else Directives

1: /* 23L03.c: Using #if, #elif, and #else */
2: #include <stdio.h>
3:
4: #define C_LANG ‘C’
5: #define B_LANG ‘B’
6: #define NO_ERROR 0
7:
8: main(void)
9: {
10: #if C_LANG == ‘C’ && B_LANG == ‘B’
11: #undef C_LANG
12: #define C_LANG “I know the C language.\n”
13: #undef B_LANG
14: #define B_LANG “I know BASIC.\n”
15: printf(“%s%s”, C_LANG, B_LANG);
16: #elif C_LANG == ‘C’
17: #undef C_LANG
18: #define C_LANG “I only know C language.\n”
19: printf(“%s”, C_LANG);
20: #elif B_LANG == ‘B’
21: #undef B_LANG
22: #define B_LANG “I only know BASIC.\n”
23: printf(“%s”, B_LANG);
24: #else
25: printf(“I don’t know C or BASIC.\n”);
26: #endif
27:
28: return NO_ERROR;
29: }

After the executable 23L03.exe is created and run, the following output is displayed on

the screen of my computer:

I know C language.
I know BASIC.

The purpose of the program in Listing 23.3 is to use the #if, #elif, and #else

directives to select portions of code that are going to be compiled.

Compiling Programs: The C Preprocessor 401

23TYPE

OUTPUT

ANALYSIS

Inside the main() function, the #if directive in line 10 evaluates the conditional expres-

sion C_LANG == ‘C’ && B_LANG == ‘B’. If the expression evaluates to nonzero, state-

ments in lines 11–15 are selected to be compiled.

In line 11 the #undef directive is used to remove the C_LANG macro name. Line 12 then

redefines C_LANG with the string “I know the C language.\n”. Likewise, line 13

removes the B_LANG macro name and line 14 redefines B_LANG with another character

string. The printf() call in line 15 prints the two newly assigned strings associated with

C_LANG and B_LANG.

The #elif directive in line 16 starts to evaluate the expression C_LANG == ‘C’ if the

expression in line 10 has evaluated to 0. If the C_LANG == ‘C’ expression evaluates to

nonzero, the statements in lines 17–19 are compiled.

If, however, the expression in line 16 also fails to evaluate to a nonzero value, the B_LANG

== ‘B’ expression is evaluated by another #elif directive in line 20. The statements in

lines 21–23 are skipped, and the statement in line 25 is compiled finally if the B_LANG ==

‘B’ expression evaluates to 0.

In line 26 the #endif directive marks the end of the #if block that started on line 10.

From the program in Listing 23.3 you can tell that C_LANG and B_LANG have been prop-

erly defined in lines 4 and 5. Therefore, the statements in lines 11–15 are selected as part

of the program and compiled by the C compiler. The two character strings assigned to

C_LANG and B_LANG during the redefinition are displayed after the program in Listing

23.3 is executed.

You can change the value of the macros C_LANG and B_LANG to experiment with other

executions of the program.

Nested Conditional Compilation
According to the ANSI C standard, the #if and #elif directives can be nested at least

eight levels.

For example, the #if directive is nested in the following code segment:

#if MACRO_NAME1
#if MACRO_NAME2

#if MACRO_NAME3
printf(“MACRO_NAME1, MACRO_NAME2, and MACRO_NAME3\n”);

#else
printf(“MACRO_NAME1 and MACRO_NAME2\n”);

#endif
#else

printf(“MACRO_NAME1\n”);

402 Hour 23

#endif
#else

printf(“No macro name defined.\n”);
#endif

Here the #if directive is nested to three levels. Note that each #else or #endif is associ-

ated with the nearest #if.

Now let’s have a look at another example in Listing 23.4, in which the #if directives are

nested.

LISTING 23.4 Nesting the #if Directive

1: /* 23L04.c: Nesting #if */
2: #include <stdio.h>
3:
4: /* macro definitions */
5: #define ZERO 0
6: #define ONE 1
7: #define TWO (ONE + ONE)
8: #define THREE (ONE + TWO)
9: #define TEST_1 ONE
10: #define TEST_2 TWO
11: #define TEST_3 THREE
12: #define MAX_NUM THREE
13: #define NO_ERROR ZERO
14: /* function declaration */
15: void StrPrint(char **ptr_s, int max);
16: /* the main() function */
17: main(void)
18: {
19: char *str[MAX_NUM] = {“The choice of a point of view”,
20: “is the initial act of culture.”,
21: “--- by O. Gasset”};
22:
23: #if TEST_1 == 1
24: #if TEST_2 == 2
25: #if TEST_3 == 3
26: StrPrint(str, MAX_NUM);
27: #else
28: StrPrint(str, MAX_NUM - ONE);
29: #endif
30: #else
31: StrPrint(str, MAX_NUM - TWO);
32: #endif
33: #else
34: printf(“No TEST macro has been set.\n”);
35: #endif

Compiling Programs: The C Preprocessor 403

23

TYPE

continues

36:
37: return NO_ERROR;
38: }
39: /* function definition */
40: void StrPrint(char **ptr_s, int max)
41: {
42: int i;
43:
44: for (i=0; i<max; i++)
45: printf(“Content: %s\n”,
46: ptr_s[i]);
47: }

The following output is shown on the screen after the executable 23L04.exe is created

and run on my machine:

Content: The choice of a point of view
Content: is the initial act of culture.
Content: --- by O. Gasset

The purpose of the program in Listing 23.4 is to print the content of character

strings controlled by the nested #if directives.

At the beginning of the program, nine macro names are defined in lines 5–13. The proto-

type of a function, StrPrint(), is given in line 15. Lines 19–21 define and initialize an

array of char pointers called str.

The #if directives in lines 23–25 evaluate macro names, TEST_1, TEST_2, and TEST_3,

respectively. If the three macro names all evaluate to nonzero values, thenStrPrint() is

called in line 26 to print the content of all character strings pointed to by the pointers in

the str array.

If, however, only TEST_1 and TEST_2 are nonzero, the statement in line 28 prints out the

content of the MAX_NUM-ONE strings. Likewise, if only TEST_1 evaluates to a nonzero

value, the StrPrint() function is called in line 31 to print out the content of the

MAX_NUM-TWO strings.

The last case is that TEST_1, TEST_2, and TEST_3 all return zero. Then the printf() call

in line 34 is executed to display onscreen the message No TEST macro has been set.

As you can tell from the program in Listing 23.4, TEST_1, TEST_2, and TEST_3 are all

defined with nonzero constants; the content of all character strings referenced by the

pointers of the str array are printed out as the output from the program.

You can experiment with the effects of these nested directives by changing the values of

the macros TEST_1, TEST_2, and TEST_3.

404 Hour 23

LISTING 23.4 continued

OUTPUT

ANALYSIS

Summary
In this lesson you learned the following important concepts and directives regarding the

preprocessor in C:

• The C preprocessor runs before the compiler. During the preprocessing stage, all

occurrences of a macro name are replaced by the macro body that is associated

with the macro name.

• The C preprocessor also enables you to include additional source files in the pro-

gram or compile sections of C code conditionally.

• The C preprocessor is not part of the C compiler.

• A macro statement ends with a newline character, not a semicolon.

• The #define directive tells the preprocessor to replace every occurrence of a macro

name defined by the directive with a macro body that is associated with the macro

name.

• The #undef directive is used to remove the definition of a macro name that has

been previously defined.

• You can specify one or more arguments to a macro name defined by the #define

directive.

• The #ifdef directive enables you to specify code that is to be included only when

a particular macro name is defined.

• The #ifndef directive is a mirror directive to the #ifdef directive. With #ifndef,

you specify code that is to be included when a particular macro name is not

defined.

• The #endif directive is used to mark the end of an #ifdef, an #ifndef, or an #if

block.

• The #if, #elif, and #else directives enable you to select alternate portions of

code to compile.

In the next lesson you’ll see a summary of what you’ve learned and what you can do

after studying this book.

Q&A
Q Is the C preprocessor part of the C compiler?

A No. The C preprocessor is not part of the C compiler. With its own line-oriented

grammar and syntax, the C preprocessor runs before the compiler in order to han-

dle named constants, macros, and inclusion of files.

Compiling Programs: The C Preprocessor 405

23

Q How do you remove a macro name?

A By using the #undef directive with a macro name, that macro name can be

removed, or “undefined.” According to the ANSI C standard, a macro name has to

be removed before it can be redefined.

Q Why do you need the #endif directive?

A The #endif directive is used with an #if, #ifdef, or #ifndef directives because

statements under the control of a conditional preprocessor directive are not

enclosed in braces ({ and }). Therefore, #endif must be used to mark the end of

the block of statements.

Q Can the conditional expression following the #if directive be an arithmetic

expression?

A Yes. The conditional expression evaluated by the #if directive can be an arithmetic

expression. If the expression evaluates to a nonzero value, the code between the

#if directive and the next nearest conditional directive are included for compila-

tion. Otherwise, the code is skipped entirely and will not be part of the compiled

program.

Workshop
To help solidify your understanding of this hour’s lesson, you are encouraged to answer

the quiz questions and finish the exercises provided in the workshop before you move to

the next lesson. The answers and hints to the questions and exercises are given in

Appendix B, “Answers to Quiz Questions and Exercises.”

Quiz
1. What’s wrong with the following macro definition?

#define ONE 1;

2. What is the final value assigned to result after the assignment statement is exe-

cuted?

#define ONE 1
#define NINE 9
#define EXPRESS ONE + NINE
result = EXPRESS * NINE;

3. What message will be displayed by the following code segment?

#define MACRO_NAME 0
#if MACRO_NAME

printf(“Under #if.\n”);
#else

printf(“Under #else.\n”);
#endif

406 Hour 23

4. What message will be displayed by the following code segment?

#define MACRO_NAME 0
#ifdef MACRO_NAME

printf(“Under #ifdef.\n”);
#endif
#ifndef MACRO_NAME

printf(“Under #ifndef.\n”);
#endif

Exercises
1. In Hour 18, “Using Special Data Types and Functions,” you learned how to define

enum data. Rewrite the program in Listing 18.1 with the #define directive.

2. Define a macro name that can multiply two arguments. Write a program to calcu-

late the multiplication of 2 and 3 with the help of the macro. Print out the result of

the multiplication.

3. Rewrite the program in Listing 23.2 with the #if, #elif, and #else directives.

4. Rewrite the program in Listing 23.3 with nested #if directives.

Compiling Programs: The C Preprocessor 407

23

HOUR 24
Where Do You Go from
Here?

It’s not what you know, but what you can.

—A. Alekhine

Congratulations! You’re now in the last chapter of this book. You just need

to spend one more hour to complete your 24-hour journey. In this lesson

you’ll learn more about the C language from the following topics:

• Programming style

• Modular programming

• Debugging

Also, a brief review on what you’ve learned from this book is included in

this lesson. Before you start to cover these topics, let’s have a look at the last

example in this book.

Creating a Linked List
In this section, I’m going to build functions that can create a linked list, and add items to

or delete items from the created linked list. I save those functions into a source file (that

is, a module; refer to the section “Modular Programming” in this lesson). In addition, I

will set up an interface between the module file and the user. In other words, the user can

call one of the functions saved in the module via the interface. The interface is invoked

in the main() function that is saved in another source file. I will put data declarations and

function prototypes in a separate header file.

A linked list is a chain of nodes (or elements). Each node consists of data items and a

pointer that points to the next node in the list. The last item has a null pointer to signify

the end of the list.

A linked list is a very powerful, and very versatile, data structure. No matter what pro-

gramming project you eventually undertake, it’s likely that you’ll want to use a linked

list at some point. Why are linked lists so popular? For starters, they are relatively easy

to implement, unlike some other data structures that may be more powerful but get com-

plicated quickly. Secondly, it is easy to “walk” a linked list by simply following the

pointers along. It’s almost as easy as using an array, but with a linked list you have the

flexibility of dynamic memory allocation.

A linked list with N nodes is shown in Figure 24.1.

410 Hour 24

FIGURE 24.1

A linked list with N

nodes.

node 2node 1

Head

node N• • •

Null

As you can see from Figure 24.1, a start pointer points to the first node in the list. The

pointer in the last (Nth) node is a null pointer.

The linked list I’m going to build is a very simple one, in which each element only con-

tains two items: a student name and an ID number. Listing 24.1 contains the module pro-

gram, which is saved in the source file named 24L01.c.

LISTING 24.1 Putting Cohesive Functions in the Module Program

1: /* 24L01.c: A module file */
2: #include “24L02.h”
3:
4: static NODE *head_ptr = NULL;
5:

TYPE

6: /**
7: ** main_interface()
8: **/
9: void main_interface(int ch)
10: {
11: switch (ch){
12: case ‘a’:
13: list_node_add();
14: break;
15: case ‘d’:
16: if (!list_node_delete())
17: list_node_print();
18: break;
19: case ‘p’:
20: list_node_print();
21: break;
22: default:
23: break;
24: }
25: }
26: /**
27: ** list_node_create()
28: **/
29: NODE *list_node_create(void)
30: {
31: NODE *ptr;
32:
33: if ((ptr=(NODE *)malloc(sizeof(NODE))) == NULL)
34: ErrorExit(“malloc() failed.\n”);
35:
36: ptr->next_ptr = NULL; /* set the next pointer to NULL */
37: ptr->id = 0; /* initialization */
38: return ptr;
39: }
40:
41: /**
42: ** list_node_add()
43: **/
44: void list_node_add(void)
45: {
46: NODE *new_ptr, *ptr;
47:
48: new_ptr = list_node_create();
49: printf(“Enter the student name and ID: “);
50: scanf(“%s%ld”, new_ptr->name, &new_ptr->id);
51:
52: if (head_ptr == NULL){
53: head_ptr = new_ptr;
54: } else {

Where Do You Go From Here? 411

24

continues

55: /* find the last node in the list */
56: for (ptr=head_ptr;
57: ptr->next_ptr != NULL;
58: ptr=ptr->next_ptr)
59: ; /* doing nothing here */
60: /* link to the last node */
61: ptr->next_ptr = new_ptr;
62: }
63: }
64: /**
65: ** list_node_delete()
66: **/
67: int list_node_delete(void)
68: {
69: NODE *ptr, *ptr_saved;
70: unsigned long id;
71: int deleted = 0;
72: int reval = 0;
73:
74: if (head_ptr == NULL){
75: printf(“Sorry, nothing to delete.\n”);
76: reval = 1;
77: } else {
78: printf(“Enter the student ID: “);
79: scanf(“%ld”, &id);
80:
81: if (head_ptr->id == id){
82: ptr_saved = head_ptr->next_ptr;
83: free(head_ptr);
84: head_ptr = ptr_saved;
85: if (head_ptr == NULL){
86: printf(“All nodes have been deleted.\n”);
87: reval = 1;
88: }
89: } else {
90: for (ptr=head_ptr;
91: ptr->next_ptr != NULL;
92: ptr=ptr->next_ptr){
93: if (ptr->next_ptr->id == id){
94: ptr_saved = ptr->next_ptr->next_ptr;
95: free(ptr->next_ptr);
96: ptr->next_ptr = ptr_saved;
97: deleted = 1;
98: break;
99: }
100: }
101: if (!deleted){
102: printf(“Can not find the student ID.\n”);
103: }

412 Hour 24

LISTING 24.1 continued

104: }
105: }
106: return reval;
107: }
108: /**
109: ** list_node_print()
110: **/
111: void list_node_print(void)
112: {
113: NODE *ptr;
114:
115: if (head_ptr == NULL){
116: printf(“Nothing to display.\n”);
117: } else {
118: printf(“The content of the linked list:\n”);
119: for (ptr = head_ptr;
120: ptr->next_ptr != NULL;
121: ptr = ptr->next_ptr){
122: printf(“%s:%d -> “,
123: ptr->name,
124: ptr->id);
125: }
126: printf(“%s:%d ->|”,
127: ptr->name,
128: ptr->id);
129: printf(“\n”);
130: }
131: }
132: /**
133: ** list_node_free()
134: **/
135: void list_node_free()
136: {
137: NODE *ptr, *ptr_saved;
138:
139: for (ptr=head_ptr; ptr != NULL;){
140: ptr_saved = ptr->next_ptr;
141: free(ptr);
142: ptr = ptr_saved;
143: }
144: free(ptr);
145: }
146: /**
147: ** ErrorExit()
148: **/
149: void ErrorExit(char *str)
150: {
151: printf(“%s\n”, str);
152: exit(ERR_FLAG);

153: }

Where Do You Go From Here? 413

24

There is no direct output from the module program in Listing 24.1.

The purpose of the program in Listing 24.1 is to provide a module program that

contains all cohesive functions for linked list creation, node addition, and node

reduction. Figure 24.2 demonstrates the tasks performed by functions, such as

list_node_create(), list_node_add(), and list_node_delete(), from the program.

414 Hour 24

ANALYSIS

FIGURE 24.2

Use functions defined

in 24L01.c (refer to the

following paragraphs

for explanation).

Mary

7 7 7 7

head_ptr next_ptr

Null
(e)

(d)

Peter

1 2 3 4

Mary

7 7 7 7

head_ptr next_ptrnext_ptr

Null

(c)

Peter

1 2 3 4

head_ptr

(a)

Paul

5 6 7 8

Peter

1 2 3 4

next_ptr

next_ptr

next_ptr

Null

Peter

1 2 3 4

Mary

7 7 7 7

Paul

5 6 7 8

head_ptr

head_ptr next_ptr

next_ptr next_ptr

Null

(b)

As you can see in Figure 24.2 (a), the first linked list node is created by calling the

list_node_create() function, and the data items are added with the help of the

list_node_add() function. Also, the head_ptr pointer points to the node. Here Peter is

the student name; 1234 is his ID number. Because there are no more nodes linked, the

next_ptr pointer of the first node is set to be null.

In Figure 24.2 (b), another node is added to the linked list, with Paul as the student

name and 5678 as the ID number. Note that the next_ptr pointer of the first node is

reset to point to the second node, while the next_ptr pointer of the second node is set to

be null.

Likewise, in Figure 24.2 (c), the third node is added to the linked list. The next_ptr

pointer of the third node is a null pointer. The pointer in the second node is reset to point

to the third node.

If you want to delete one of the nodes, you can call the list_node_delete() function.

As shown in Figure 24.2 (d), the second node is deleted, so the pointer of the first node

has to be reset to point to the former third node that contains the student name Mary and

her ID number, 7777.

In Figure 24.2 (e), the first node is deleted by applying the list_node_delete() func-

tion again. There is only one node left in the linked list. The head_ptr pointer has to be

reset to point to the last node.

The header file, 24L02.h, included in the module program 24L01.c, is shown in Listing

24.2. (The header file is also included by the driver program in Listing 24.3.)

LISTING 24.2 Putting Data Declarations and Function Prototypes into
the Header File

1: /* 24L02.h: the header file */
2: #include <stdio.h>
3: #include <stdlib.h>
4:
5: #ifndef LNK_LIST_H
6: #define LNK_LIST_H
7: #define ERR_FLAG 1
8: #define MAX_LEN 16
9:
10: struct lnk_list_struct
11: {
12: char name[MAX_LEN];
13: unsigned long id;
14: struct lnk_list_struct *next_ptr;
15: };
16:
17: typedef struct lnk_list_struct NODE;
18:
19: NODE *list_node_create(void);
20: void list_node_add(void);
21: int list_node_delete(void);
22: void list_node_print(void);
23: void list_node_free(void);
24: void ErrorExit(char *);
25: void main_interface(int);
26:
27: #endif /* for LNK_LIST_H */

Where Do You Go From Here? 415

24

TYPE

There is no direct output from the program in Listing 24.2.

The purpose of the program in Listing 24.2 is to declare a structure with the tag

name of lnk_list_struct in lines 10–15, and define a new variable name, of

the structure NODE, in line 17.

The prototypes of the functions defined in the module program in Listing 24.1, such as

list_node_create(), list_node_add(), and list_node_delete(), are listed in

lines 19–25.

Note that the #ifndef and #endif preprocessor directives are used in lines 5 and 27. The

declarations and definitions located between the two directives are compiled only if the

macro name LNK_LIST_H has not been defined. Also, line 6 defines the macro name if it

has not been defined. It’s a good idea to put the #ifndef and #endif directives in a

header file so as to avoid cross inclusions when the header file is included by more than

one source file. In this case, the declarations and definitions in the 24L02.h header file

will not be included more than one time.

The module program in Listing 24.3 provides an interface that the user can use to call

the functions saved in the source file (24L01.c).

LISTING 24.3 Calling Functions Saved in the Module File

1: /* 24L03.c: The driver file */
2: #include “24L02.h” /* include header file */
3:
4: main(void)
5: {
6: int ch;
7:
8: printf(“Enter a for adding, d for deleting,\n”);
9: printf(“p for displaying, and q for exit:\n”);
10: while ((ch=getchar()) != ‘q’){
11: main_interface(ch); /* process input from the user */
12: }
13:
14: list_node_free();
15: printf(“\nBye!\n”);
16:
17: return 0;
18: }

I compile the source files, 24L01.c and 24L03.c, separately with Microsoft Visual C++,

and then link their object files and C library functions together to produce a single exe-

cutable program called 24L03.exe. I have the following output displayed after I run the

416 Hour 24

ANALYSIS

TYPE

executable 24L03.exe and enter or delete several student names and their ID numbers

(the bold characters or numbers in the output section are what I entered from the key-

board):

Enter a for adding, d for deleting,
p for displaying, and q for exit:
a
Enter the student name and ID: Peter 1234
a
Enter the student name and ID: Paul 5678
a
Enter the student name and ID: Mary 7777
p
The content of the linked list:
Peter:1234 -> Paul:5678 -> Mary:7777 ->|
d
Enter the student ID: 1234
The content of the linked list:
Paul:5678 -> Mary:7777 ->|
d
Enter the student ID: 5678
The content of the linked list:
Mary:7777 ->|
d
Enter the student ID: 7777
All nodes have been deleted.
q

Bye!

The purpose of the program in Listing 24.3 is to provide the user with an inter-

face to call other functions. The functions, such as list_node_create(),

list_node_add(), and list_node_delete(), can be invoked through the interface. Also,

the main() function is located inside the program of Listing 24.3.

The content of a linked list node can be printed out in the format of

name:id ->

The following is an example:

Peter:1234 -> Paul:5678 -> Mary:7777 ->|

Here the sign | is used to indicate the pointer of the last node is a null pointer.

Figure 24.3 shows the relationship among the 24L01.c, 24L02.h, and 24L03.c files.

Where Do You Go From Here? 417

24

OUTPUT

ANALYSIS

To learn to compile separate source files and link their object files together to make a

single executable program, you need to check the technical reference from your C com-

piler vendor.

Programming Style
In this section, I’d like to briefly highlight some points that can help you write clean pro-

grams that can easily be read, understood, and maintained.

First, make sure the variable or function names in your program describe the meanings

of the variables or tasks of the functions precisely and concisely.

Put comments into your code so that you or the other readers can have clues about what

your code is doing, or at least what the code intends to do but might do incorrectly.

Whenever possible, keep using local variables, not global variables. Try to avoid sharing

global data among functions; instead, pass the shared data as arguments to functions.

418 Hour 24

FIGURE 24.3

The relationship

among the 24L01.c,

24L02.h, and 24L03.c

files.

Linker

Compiler

24LO3.exe

C Library

Functions

24LO2.h

24LO1.obj 24LO3.obj

24LO1.c 24LO3.c

You should be careful in the use of C operators which use the same symbols, especially

the assignment operator (=) and the conditional operator (==), because any misuse of

these two operators can lead to an unexpected result and make debugging very difficult.

Avoid using the goto statement; instead, use other control flow statements whenever

needed.

Use named constants in your program, instead of numeric constants, because named con-

stants can make your program more readable, and you will only have to go to one place

to update the values of constants.

You should put parentheses around each constant expression or argument defined by a

preprocessor directive to avoid side effects.

Also, you should set up a reasonable rule for spacing and indentation so that you can fol-

low the rule consistently in all the programs you write. The rule should help make your

programs easy to read.

Modular Programming
It’s not a good programming practice to try to solve a complex problem with a single

function. The proper way to approach it is to break the problem into several smaller and

simpler problems that can be understood in more detail, and then start to define and build

functions to solve those smaller and simpler problems. Keep in mind that each of your

functions should do only one task, but do it well.

When your program becomes larger and larger, you should consider breaking it into sev-

eral source files, with each source file containing a small group of cohesive functions.

Such source files are also called modules. Put data declarations and function prototypes

into header files so that any changes to the declarations or prototypes can be automati-

cally signified to all source files that include the header file.

For instance, in the section “Creating a Linked List,” all functions that can be used to

create a linked list and add or delete a node are put into the same module (24L01.c).

Data structure and variable declarations and function prototypes are saved into a header

file (24L02.h). The main() function and the interface are saved into another module

(24L03.c).

You can use a software engineering technique known as information hiding to reduce the

complexity of programming. Simply speaking, information hiding requires a module to

not provide information to other modules unless it’s very necessary.

Where Do You Go From Here? 419

24

The C compiler enables you to compile and debug different source files separately. In

this way, you can focus on one source file at a time, and complete the compiling before

you move to the next one. With the separate compilation, you can compile only those

source files that have been changed and leave the source files that have already been

compiled and debugged unattached.

If you’re interested in knowing more details about software engineering, you should

study Ian Sommerville’s classic book, Software Engineering, which I’ve put into the list

of recommended books at the end of this lesson.

Debugging
I’ve mentioned debugging several times in this lesson. What is a bug, anyway?

A bug in this context refers to any erroneous behavior of a computer system or a soft-

ware program. Debugging means to find bugs and fix them. Please be aware that no com-

puter system or software program is immune from bugs. Programmers, like you and me,

make bugs because we’re human beings.

When you’re debugging your program, you should learn to isolate the erroneous behav-

ior performed by your program. Many C compilers provide built-in debuggers that you

can use to debug your program. Also, there are quite a few debugging tools made by

third-party software vendors.

As it’s said, debugging requires patience, ingenuity, and experience. I recommend that

you read a good book that will teach you all the techniques on debugging; in fact, I rec-

ommend one in the list of the books in the next section.

What You Have Learned
The following subsections provide you with a brief review on the basics of the C lan-

guage. The review is a summary that you will find useful to brush up what you’ve

learned in the previous hours.

C Keywords
In C, certain words have been reserved. These reserved words, called C keywords, have

special meanings to the C language. The following are the C keywords:

auto int

break long

case register

420 Hour 24

char return

const short

continue signed

default sizeof

do static

double struct

else switch

enum typedef

extern union

float unsigned

for void

goto volatile

if while

Operators
Operators can help you to manipulate data. C provides you with a rich set of operators.

Table 24.1 contains a list of the operators used in C.

TABLE 24.1 The Operators in C

Operator Description

= Assignment operator

+= Addition assignment operator

-= Subtraction assignment operator

*= Multiplication assignment operator

/= Division assignment operator

%= Remainder assignment operator

- Unary minus operator

++ Increment operator

-- Decrement operator

== Equal to

!= Not equal to

> Greater than

Where Do You Go From Here? 421

24

continues

< Less than

>= Greater than or equal to

<= Less than or equal to

sizeof Size-of operator

&& Logical AND operator

|| Logical OR operator

! Logical NEGATION operator

& Bitwise AND operator

| Bitwise OR operator

^ Bitwise eXclusive OR (XOR) operator

~ Bitwise complement operator

>> Right shift operator

<< Left shift operator

?: Conditional operator

Constants
Constants are elements whose values do not change in the program. In C, there are sev-

eral different types of constants.

Integer Constants

Integer constants are decimal numbers. You can suffix an integer constant with u or U to

specify that the constant is of the unsigned data type. An integer constant suffixed with l

or L is a long int constant.

An integer constant is prefixed with a 0 (zero) to indicate that the constant is in the octal

format. If an integer constant is prefixed with 0X or 0x, the constant is a hexadecimal

number.

Character Constants

A character constant is a character enclosed by single quotes. For instance, ‘C’ is a char-

acter constant.

In C, there are several character constants that represent certain special characters (see

Table 24.2).

422 Hour 24

TABLE 24.1 continued

Operator Description

TABLE 24.2 Special Characters in C

Character Meaning

\a Audible alert

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\” Double quote

\’ Single quote

\0 Null

\\ Backslash

\N Octal constant (here N is an octal constant)

\xN Hexadecimal constant (here N is a hexadecimal constant)

Floating-Point Constants

Floating-point constants are decimal numbers that can be suffixed with f, F, l, or L to

specify float or long double. A floating-point constant without a suffix is of the

double data type by default. For instance, the following statements declare and initialize

a float variable (flt_num) and a double variable (db_num):

float flt_num = 1234.56f;
double db_num = 1234.56;

A floating-point can also be represented in scientific notation.

String Constants

A string constant is a sequence of characters enclosed by double quotes. For instance,

“This is a string constant.” is a string constant. Note that the double quotes are

not part of the content of the string. Also, the C compiler automatically adds a null char-

acter (\0) at the end of a string constant to indicate the end of the string.

Data Types
The basic data types provided by the C language are char, int, float, and double. In

addition, there are array, enum, struct, and union data types that you can declare and

use in your C programs.

Where Do You Go From Here? 423

24

The general form to define a list of variables with a specified data type is

data_type variable_name_list;

Here data_type can be one of the keywords of the data types. variable_name_list rep-

resents a list of variable names separated by commas.

The Array Data Type

An array is a collection of variables that are of the same data type. The following is the

general form to declare an array:

data-type array-name[array-size];

Here data-type is the type specifier that indicates the data type of the array elements.

array-name is the name of the declared array. array-size defines how many elements

the array can contain. Note that the brackets ([and]) are required in declaring an array.

The pair of [and] is also called the array subscript operator.

In addition, C supports multidimensional arrays.

The enum Data Type

enum is a short name for enumerated. The enumerated data type is used to declare named

integer constants. The general form of the enum data type declaration is

enum tag_name {enumeration_list} variable_list;

Here tag_name is the name of the enumeration. variable_list gives a list of variable

names that are of the enum data type. Both tag_name and variable_list are optional.

enumeration_list contains defined enumerated names that are used to represent integer

constants. Names represented by variable_list or enumeration_list are separated by

commas.

The struct Data Type

In C, a structure collects different data items in such a way that they can be referenced as

a single unit. The general form to declare a structure is

struct struct_tag {
data_type1 variable1;
data_type2 variable2;
data_type3 variable3;
.
.
.
};

424 Hour 24

Here struct is the keyword used in C to start a structure declaration. struct_tag is the

tag name of the structure. variable1, variable2, and variable3 are the members of the

structure. Their data types are specified respectively by data_type1, data_type2, and

data_type3. The declarations of the members have to be enclosed within the opening

and closing braces ({ and }) in the structure declaration, and a semicolon (;) has to be

included at the end of the declaration.

The following is an example of a structure declaration:

struct automobile {
int year;
char model[8];
int engine_power;
float weight;
};

Here struct is used to start a structure declaration. automobile is the tag name of the

structure. In the example here, there are three types of variables, char, int, and float.

The variables have their own names, such as year, model, engine_power, and weight.

They are all the members of the structure, and are declared with the braces ({ and }).

The union Data Type

A union is a block of memory that is used to hold data items of different types. In C, a

union is similar to a structure, except that data items saved in the union are overlaid in

order to share the same memory location. The syntax for declaring a union is similar to

the syntax for a structure. The general form to declare a union is

union union_tag {
data_type1 variable1;
data_type2 variable2;
data_type3 variable3;
.
.
.
};

Here union is the keyword used in C to start a union declaration. union_tag is the tag

name of the union. variable1, variable2, and variable3 are the members of the union.

Their data types are specified respectively by data_type1, data_type2, and data_type3.

The union declaration is ended with a semicolon (;).

The following is an example of a union declaration:

union automobile {
int year;
char model[8];
int engine_power;
float weight;

};

Where Do You Go From Here? 425

24

Here union specifies the union data type. automobile is the tag name of the union. The

variables, such as year, model, engine_power, and weight, are the members of the union

and are declared within the braces ({ and }).

Defining New Type Names with typedef

You can create your own names for data types with the help of the typedef keyword,

and use those names as synonyms for the data types. For instance, you can declare

NUMBER as a synonym for the int data type:

typedef int NUMBER;

Then, you can start to use NUMBER to declare integer variables like this,

NUMBER i, j;

which is equivalent to

int i, j;

Remember that a typedef definition must be made before the synonym made in the defi-

nition is used in any declarations in your program.

Expressions and Statements
An expression is a combination of constants or variables that is used to denote computa-

tions.

For instance,

(2 + 3) * 10

is an expression that adds 2 and 3 first, and then multiplies the result of the addition by

10.

In the C language, a statement is a complete instruction, ended with a semicolon. In

many cases, you can turn an expression into a statement by simply adding a semicolon at

the end of the expression.

A null statement is represented by an isolated semicolon.

A group of statements can form a statement block that starts with an opening brace ({)

and ends with a closing brace (}). A statement block is treated as a single statement by

the C compiler.

Control Flow Statements
In C, there is a set of control flow statements that can be divided into two categories:

looping and conditional branching.

426 Hour 24

The for, while, and do-while Loops

The general form of the for statement is

for (expression1; expression2; expression3) {
statement1;
statement2;
.
.
.

}

The for statement first evaluates expression1, which is usually an expression that ini-

tializes one or more variables. The second expression, expression2, is the conditional

part that is evaluated and tested by the for statement for each iteration. If expression2

evaluates to a nonzero value, the statements within the braces, such as statement1 and

statement2, are executed. If expression2 evaluates to 0 (zero), the looping is stopped

and the execution of the for statement is finished. The third expression in the for state-

ment, expression3, is evaluated after each looping before the statement goes back to test

expression2 again. This third expression is often used to increment an index variable.

The following for statement makes an infinite loop because all three expressions are

empty:

for (; ;){
/* statement block */

}

The general form of the while statement is

while (expression) {
statement1;
statement2;
.
.
.

}

Here expression is the conditional expression in the while statement. The expression is

evaluated first. If it evaluates to a nonzero value, the looping continues; that is, the state-

ments inside the statement block, such as statement1 and statement2, are executed.

After the execution, the expression is evaluated again. Then the statements are executed

one more time if the expression still evaluates to a nonzero value. The process is repeated

over and over until the expression evaluates to zero.

Where Do You Go From Here? 427

24

You can also make a while loop infinite by putting 1 (one) in the expression field like

this:

while (1) {
/* statement block */

}

The general form for the do-while statement is

do {
statement1;
statement2;
.
.
.

} while (expression);

Here expression is the conditional expression that is evaluated in order to determine

whether the statements inside the statement block are executed one more time. If the

expression evaluates to a nonzero value, the do-while loop continues; otherwise, the

looping stops. Note that the do-while statement ends with a semicolon, which is an

important distinction. The statements controlled by the do-while statement are guaran-

teed to execute at least once before the conditional expression is evaluated.

Conditional Branching

The if, if-else, switch, break, continue, and goto statements fall into the conditional

branching category.

The general form of the if statement is

if (expression) {
statement1;
statement2;
.
.
.

}

Here expression is the conditional expression. If expression evaluates to nonzero, the

statements inside the braces ({ and }), such as statement1 and statement2, are exe-

cuted. If expression evaluates to 0, the statements are skipped.

As an expansion of the if statement, the if-else statement has the following form:

if (expression) {
statement1;
statement2;
.
.
.

428 Hour 24

}
else {

statement_A;
statement_B;
.
.
.

}

Here if expression evaluates to nonzero, the statements controlled by if, including

statement1 and statement2, are executed. Otherwise, the statements, such as

statement_A and statement_B, inside the statement block following the else keyword

are executed.

The general form of the switch statement is

switch (expression) {
case expression1:

statement1;
case expression2:

statement2;
.
.
.
default:

statement-default;
}

Here the conditional expression, expression, is evaluated first. If the value produced by

expression is equal to the constant expression expression1, execution begins at the

statement statement1. If the value of expression is the same as the value of

expression2, execution then begins at statement2. If, however, the value of expression

is not equal to any values of the constant expressions labeled by the case keyword, the

statement statement-default, following the default keyword, is executed.

You can add a break statement at the end of the statement list following each case label

if you want to exit the switch construct after the statements within a selected case have

been executed.

The break statement can also be used to break out of an infinite loop.

There are times when you want to stay in a loop but skip over some of the statements

within the loop. To do this, you can use the continue statement.

The following gives the general form of the goto statement:

label-name:
statement1;
statement2;

Where Do You Go From Here? 429

24

.

.

.
goto label-name;

Here label-name is a label name that tells the goto statement where to jump. You have

to place label-name in two places: at the place where the goto statement is going to

jump and at the place following the goto keyword. Also, the place for the goto statement

to jump to can appear either before or after the statement. Note that a colon (:) must fol-

low the label name at the place where the goto statement will jump to. The use of goto

is not recommended, however, because it makes your program hard to debug.

Pointers
A pointer is a variable whose value is used to point to another variable. The general form

of a pointer declaration is

data-type *pointer-name;

Here data-type specifies the type of data to which the pointer points. pointer-name is

the name of the pointer variable, which can be any valid variable name in C. When the

compiler sees the asterisk (*) prefixed to the variable name in the declaration, it makes a

note that the variable can be used as a pointer.

Usually, the address associated with a variable name is called the left value of the vari-

able. When a variable is assigned with a value, the value is stored into the reserved mem-

ory location of the variable as the content. The content is also called the right value of

the variable.

A pointer is said to be a null pointer when it has been assigned the right value of 0.

Remember that a null pointer can never point to valid data, so you can use it to test for

the validity of a pointer.

The dereference operator (*) is a unary operator that requires only one operand. For

instance, the *ptr_name expression produces the value pointed to by the pointer variable

ptr_name, where ptr_name can be any valid variable name in C.

The & operator is called the address-of operator because it can return the address (that is,

left value) of a variable.

Several pointers can point to the same location of a variable in memory. In C, you can

move the position of a pointer by adding or subtracting integers to or from the pointer.

Note that for pointers of different data types, the integers added to or subtracted from the

pointers have different scalar sizes.

430 Hour 24

Pointing to Objects

You can access an element in an array by using a pointer. For instance, given an array,

an_array, and a pointer, ptr_array, if an_array and ptr_array are of the same data

type, and ptr_array is assigned with the start address of the array like this:

ptr_array = an_array;

the expression

an_array[n]

is equivalent to the expression

*(ptr_array + n)

Here n is a subscript number in the array.

In many cases, it’s useful to declare an array of pointers and access the contents pointed

to by the array through dereferencing each pointer. For instance, the following declara-

tion declares an int array of pointers:

int *ptr_int[3];

In other words, the variable ptr_int is a three-element array of pointers with the int

type.

Also, you can define a pointer of struct and refer to an item in the structure via the

pointer. For example, given the following structure declaration:

struct computer {
float cost;
int year;
int cpu_speed;
char cpu_type[16];

};

a pointer can be defined like this:

struct computer *ptr_s;

Then, the items in the structure can be accessed by dereferencing the pointer. For

instance, to assign the value of 1997 to the int variable year in the computer structure,

you can use the following assignment statement:

(*ptr_s).year = 1997;

Or, you can use the arrow operator (->) for the assignment, like this:

ptr_s->year = 1997;

Where Do You Go From Here? 431

24

Note that the arrow operator (->) is commonly used to reference a structure member with

a pointer.

Functions
Functions are the building blocks of C programs. Besides the standard C library func-

tions, you can also use other functions made by you or by another programmer in your C

program. The opening brace ({) signifies the start of a function body, while the closing

brace (}) marks the end of the function body.

According to the ANSI standard, the declaration of a variable or function specifies the

interpretation and attributes of a set of identifiers. The definition, on the other hand,

requires the C compiler to reserve storage for a variable or function named by an identi-

fier.

In fact, a variable declaration is a definition. But the same is not true for functions. A

function declaration alludes to a function that is defined elsewhere, and specifies what

kind of value is returned by the function. A function definition defines what the function

does, as well as the number and type of arguments passed to the function.

The ANSI standard allows the number and types of arguments passed to a function to be

added into the function declaration. The number and types of arguments are called the

function prototype.

The general form of a function declaration, including its prototype, is as follows:

data_type_specifier function_name(
data_type_specifier argument_name1,
data_type_specifier argument_name2,
data_type_specifier argument_name3,
.
.
.
data_type_specifier argument_nameN,

);

Here data_type_specifier determines the type of the value returned by the function or

specifies the data types of arguments, such as argument_name1, argument_name2,

argument_name3, and argument_nameN, passed to the function named function_name.

The purpose of using a function prototype is to help the compiler to check whether the

data types of arguments passed to a function match what the function expects. The com-

piler issues an error message if the data types do not match. The void data type is needed

in the declaration of a function that takes no argument.

432 Hour 24

To declare a function that takes a variable number of arguments, you have to specify at

least the first argument and use the ellipsis (...) to represent the rest of the arguments

passed to the function.

A function call is an expression that can be used as a single statement or within other

expressions or statements.

It’s often more efficient to pass the address of an argument, instead of its copy, to a func-

tion so that the function can access and manipulate the original value of the argument.

Therefore, it’s a good idea to pass the name of a pointer, which points to an array, as an

argument to a function, instead of the array elements themselves.

You can also call a function via a pointer that holds the address of the function.

Input and Output (I/O)
In C, a file refers to a disk file, a terminal, a printer, or a tape drive. In other words, a file

represents a concrete device with which you want to exchange information. A stream, on

the other hand, is a series of bytes through which you read or write data to a file. Unlike

a file, a stream is device independent. All streams have the same behavior.

In addition, there are three file streams that are pre-opened for you:

• stdin—The standard input for reading.

• stdout—The standard output for writing.

• stderr—The standard error for writing error messages.

Usually, the standard input stdin links to the keyboard, while the standard output

stdout and the standard error stderr point to the screen. Also, many operating systems

allow you to redirect these file streams.

By default, all I/O streams are buffered. Buffered I/O is also called high-level I/O.

The FILE structure is the file control structure defined in the header file stdio.h. A

pointer of type FILE is called a file pointer and references a disk file. A file pointer is

used by a stream to conduct the operation of the I/O functions. For instance, the follow-

ing defines a file pointer called fptr:

FILE *fptr;

In the FILE structure, there is a member, called the file position indicator, which points

to the position in a file where data will be read from or written to.

The C language provides a rich set of library functions to perform I/O operations. Those

functions can read or write any types of data to files. Among them, fopen(), fclose(),

fgetc(), fputc(), fgets(), fputs(), fread(), fwrite(), feof(), fscanf(),

Where Do You Go From Here? 433

24

fprintf(), fseek(), ftell(), rewind(), and freopen() have been introduced in this

book.

The C Preprocessor
The C preprocessor is not part of the C compiler. The C preprocessor runs before the

compiler. During the preprocessing stage, all occurrences of a macro name are replaced

by the macro body that is associated with the macro name. Note that a macro statement

ends with a newline character, not a semicolon.

The C preprocessor also enables you to include additional source files to the program or

compile sections of C code conditionally.

The #define directive tells the preprocessor to replace every occurrence of a macro

name defined by the directive with a macro body that is associated with the macro name.

You can specify one or more arguments to a macro name defined by the #define direc-

tive.

The #undef directive is used to remove the definition of a macro name that has been pre-

viously defined.

The #ifdef directive controls whether a given group of statements is to be included as

part of the program. The #ifndef directive is a mirror directive to the #ifdef directive; it

enables you to define code that is to be included when a particular macro name is not

defined.

The #if, #elif, and #else directives enable you to filter out portions of code to compile.

#endif is used to mark the end of an #ifdef, #ifndef, or #if block because the state-

ments under the control of these preprocessor directives are not enclosed in braces.

The Road Ahead…
I believe that you can start to run now after you have learned to walk in the world of C

language programming through this book. Although you’re on your own, you’re not

alone. You can revisit this book whenever you feel you need to. The following books,

which I recommend to you, can also guide you in your continuous journey in the C

world:

The C Programming Language

by Brian Kernighan and Dennis Ritchie, published by Prentice Hall

C Interfaces and Implementations

by David Hanson, published by Addison-Wesley

434 Hour 24

Practical C Programming

by Steve Oualline, published by O’Reilly & Associates, Inc.

No Bugs!—Delivering Error-Free Code in C and C++

by David Thielen, published by Addison-Wesley

Software Engineering

by Ian Sommerville, published by Addison-Wesley

The Mythical Man-Month: Essays on Software Engineering

by F. P. Brooks, Jr., published by Addison-Wesley

Dynamics of Software Development: “Don’t Flip the Bozo Bit” and 53 More Rules

for Delivering Great Software on Time

by Jim McCarthy, published by Microsoft Press

ISBN: 1-55615-823-8

Code Complete: A Practical Handbook of Software Construction

by Steve McConnell, published by Microsoft Press

ISBN: 1-55615-484-4

Summary
Before you close this book, I’d like to thank you for your patience and the effort you

have put into learning the basics of the C language in the past 24 hours. (I think most of

you may have spent more than 24 hours. It is quite normal. There are still a lot more

things about C programming that you will learn as you go. But if you have already mas-

tered the basic concepts, operators, and functions taught in this book, you can learn the

new things quickly.) Now, it’s your turn to apply what you’ve learned from this book to

solving the problems in the real world. Good luck!

Where Do You Go From Here? 435

24

Hour

A ANSI Standard Header Files

B Answers to Quiz Questions and Exercises

PART VI
Appendixes

APPENDIX A
ANSI Standard Header
Files

As you have learned in the past 24 hours, the C standard library comes with

a set of include files called header files. These header files contain the decla-

rations for the C library functions and macros, as well as relevant data types.

Whenever a C function is invoked, the header file(s) with which the C func-

tion is associated has to be included in your programs.

The following are the ANSI standard header files:

File Description

assert.h Contains diagnostic functions.

ctype.h Contains character testing and mapping functions.

errno.h Contains constants for error processing.

float.h Contains constants for floating-point values.

limits.h Contains implementation-dependent values.

continues

locale.h Contains the setlocale() function, and is used to set locale

parameters.

math.h Contains mathematics functions.

setjmp.h Contains the setjmp() and longjmp() functions, and is used to

bypass the normal function call and return discipline.

signal.h Contains signal-handling functions.

stdarg.h Contains functions and macros for implementing functions that

accept a variable number of arguments.

stddef.h Contains definitions for the ptrdiff_t, size_t, NULL, and errno

macros.

stdio.h Contains input and output functions.

stdlib.h Contains general utility functions.

string.h Contains functions that are used to manipulate strings.

time.h Contains functions for manipulating time.

440 Appendix A

File Description

If the C compiler on your machine is not 100 percent ANSI-conformable,

some of the ANSI header files might not be available with the compiler.

APPENDIX B
Answers to Quiz
Questions and Exercises

Hour 1, “Taking the First Step”

Quiz
1. The lowest language mentioned in this hour that a computer can

understand directly is the machine language—that is, the binary code.

On the other hand, the highest language is the human language, such

as Chinese, English, French, and so on. Most high-level programming

languages, such as C, Java, and Perl, are close to the human language.

2. A computer cannot directly understand a program written in C. You

have to compile the program and translate it into binary code so that

the computer can read it.

3. Yes. That’s the beauty of the C language; you can write a program in

C and save it into a library file. Later, you can invoke the program in

another C program by including the library file.

4. We need the ANSI standard for C to guarantee the portability of the programs writ-

ten in C. Most C compiler vendors support the ANSI standard. If you write your

program by following the rules set up by the ANSI standard, you can port your

program to any machine by simply recompiling your program with a compiler that

supports those machines.

Hour 2, “Writing Your First C Program”

Quiz
1. No. Actually, the C preprocessor will filter out all comments you put into your pro-

gram before the compiler can see them. Comments are written for you or other

programmers who look at your program.

2. An .obj file is created after a program is compiled by the C compiler. You still

need a linker to link all .obj files and other library files together to make the final

executable file.

3. No, the exit() function doesn’t return any values. However, the return statement

does. In the main() function, if the return statement returns a value of 0, it indi-

cates to the operating system that the program has terminated normally; otherwise,

an error occurs.

4. A file that is required by the #include directive and ends with the extension .h is

called a header file in C. Later in this book, you’ll learn that a header file contains

the data or function declarations.

Exercises
1. No. The angle brackets (< and >) in the #include <stdio.h> expression ask the C

preprocessor to look for a header file in a directory other than the current one. On

the other hand, the #include “stdio.h” expression tells the C preprocessor to

check the current directory first for the header file stdio.h, and then look for the

header file in another directory.

2. The following is one possible solution:

/* 02A02.c */
#include <stdio.h>

main()
{

printf (“It’s fun to write my own program in C.\n”);
return 0;

}

442 Appendix B

The output of the program is:

It’s fun to write my own program in C.

3. The following is one possible solution:

/* 02A03.c */
#include <stdio.h>

main()
{

printf (“Howdy, neighbor!\nThis is my first C program.\n”);
return 0;

}

The output of the program is:

Howdy, neighbor!
This is my first C program.

4. The warning message I get when I try to compile the program is that the main()

function should return a value of integer because, by default, the main() function

returns an integer. Because the exit() function doesn’t return any values, you can

replace exit() with the return statement.

5. I got two error (warning) messages on my machine. The first one is ‘printf’

undefined; the second one is ‘main’ : ‘void’ function returning a value.

To fix the first error, the header file, stdio.h, has to be included first before the

printf() function can be called from the main() function; otherwise, you’ll get an

error message during the linking stage. To fix the second error, you can remove the

void keyword from the code.

Hour 3, “Learning the Structure of a C
Program”

Quiz
1. Yes. Both 74 and 571 are constants in C.

2. Yes. Both x = 571 + 1 and x = 12 + y are expressions.

3. 2methods, *start_function, and .End_Exe are not valid function names.

4. No. 2 + 5 * 2 is equivalent to 2 + 10, which gives 12; (2 + 5) * 2 is equiva-

lent to 7 * 2, which produces 14.

5. Yes. Both 7 % 2 and 4 % 3 produce 1.

Answers to Quiz Questions and Exercises 443

B

OUTPUT

OUTPUT

Exercises
1. The following is one possible solution:

{
x = 3;
y = 5 + x;

}

2. The function name, 3integer_add, is illegal in C.

3. The second statement inside the function needs a semicolon at the end of the state-

ment.

4. The following are two possible solutions:

/* Method 1: a C function */
int MyFunction(int x, int y)
{

int result;
result = x * y;
return result;

}

or

/* Method 2: a C function */
int MyFunction(int x, int y)
{

return (x * y);
}

5. The following is one possible solution:

/* 03A05.c */
#include <stdio.h>

int integer_multiply(int x, int y)
{

int result;
result = x * y;
return result;

}

int main()
{

int sum;

sum = integer_multiply(3, 5);
printf(“The multiplication of 3 and 5 is %d\n”, sum);
return 0;

}

444 Appendix B

Hour 4, “Understanding Data Types and
Keywords”

Quiz
1. Yes. Both 134/100 and 17/10 give the same result of 1.

2. Yes. The results of both 3000 + 1.0 and 3000/1.0 are floating-point values.

3. In scientific notation, we have the following expressions:

• 3.5e3

• 3.5e-3

• -3.5e-3

4. Among the four names, 7th_calculation and Tom’s_method are not valid names

in C.

Exercises
1. The following is one possible solution:

/* 04A01.c */
#include <stdio.h>

main()
{

char c1;
char c2;

c1 = ‘Z’;
c2 = ‘z’;
printf(“The numeric value of Z: %d.\n”, c1);
printf(“The numeric value of z: %d.\n”, c2);
return 0;

}

The output of the program is:

The numeric value of Z: 90.
The numeric value of z: 122.

2. The following is one possible solution:

/* 04A02.c */
#include <stdio.h>

main()
{

char c1;

Answers to Quiz Questions and Exercises 445

B

OUTPUT

char c2;

c1 = 72;
c2 = 104;
printf(“The character of 72 is: %c\n”, c1);
printf(“The character of 104 is: %c\n”, c2);
return 0;

}

The output of the program is:

The character of 72 is: H
The character of 104 is: h

3. No. 72368 is beyond the range of the int data type of 16 bits. If you assign a value

that is too large for the data type, the resulting value will wrap around and the

result will be incorrect.

4. The following is one possible solution:

/* 04A04.c */
#include <stdio.h>

main()
{

double dbl_num;;

dbl_num = 123.456;
printf(“The floating-point format of 123.456 is: %f\n”,

dbl_num);
printf(“The scientific notation format of 123.456 is: %e\n”,

dbl_num);

return 0;
}

The output of the program from my machine is:

The floating-point format of 123.456 is: 123.456000
The scientific notation format of 123.456 is: 1.234560e+002

5. The following is one possible solution:

/* 04A05.c */
#include <stdio.h>

main()
{

char ch;

ch = ‘\n’;
printf(“The numeric value of newline is: %d\n”, ch);

return 0;
}

446 Appendix B

OUTPUT

OUTPUT

The output of the program is:

The numeric value of newline is: 10

Hour 5, “Handling Standard Input and
Output”

Quiz
1. Yes. By prefixing the minimum field specifier with the minus sign -.

2. The main difference between putc() and putchar() is that putc() requires the

user to specify the file stream. For putchar(), the user doesn’t need to do so

because the standard output (stdout) is used as the file stream.

3. The getchar() function returns a value of the int data type.

4. Within the %10.3f expression, 10 is the value of the minimum field width specifier;

.3 is called the precision specifier.

Exercises
1. The following is one possible solution:

/* 05A01.c */
#include <stdio.h>

main()
{

char c1, c2, c3;

c1 = ‘B’;
c2 = ‘y’;
c3 = ‘e’;

/* Method I */
printf(“%c%c%c\n”, c1, c2, c3);

/* Method II */
putchar(c1);
putchar(c2);
putchar(c3);

return 0;
}

2. The following is one possible solution:

/* 05A02.c */
#include <stdio.h>

Answers to Quiz Questions and Exercises 447

B

OUTPUT

main()
{

int x;
double y;

x = 123;
y = 123.456;
printf(“x: %-3d\n”, x);
printf(“y: %-6.3f\n”, y);

return 0;
}

The output of the program is:

x: 123
y: 123.456

3. The following is one possible solution:

/* 05A03.c */
#include <stdio.h>

main()
{

int num1, num2, num3;

num1 = 15;
num2 = 150;
num3 = 1500;
printf(“The hex format of 15 is: 0x%04X\n”, num1);
printf(“The hex format of 150 is: 0x%04X\n”, num2);
printf(“The hex format of 1500 is: 0x%04X\n”, num3);

return 0;
}

The output of the program is:

The hex format of 15 is: 0x000F
The hex format of 150 is: 0x0096
The hex format of 1500 is: 0x05DC

4. The following is one possible solution:

/* 05A04.c */
#include <stdio.h>

main()
{

int ch;

printf(“Enter a character:\n”);
ch = getchar();

448 Appendix B

OUTPUT

OUTPUT

putchar(ch);

return 0;
}

5. You will probably get two error (warning) messages; one stating that getchar() is

undefined and another saying that putchar() is undefined. The reason is that the

header file, stdio.h, is missing in the code.

Hour 6, “Manipulating Data”

Quiz
1. The = operator is an assignment operator that assigns the value of the operand on

the right side of the operator to the one on the left side. On the other hand, == is

one of the relational operators; it just tests the values of two operands on both sides

and finds out whether they are equal to each other.

2. In the x + - y - - z expression, the first and third minus signs are unary minus

operators; the second minus sign is a subtraction operator.

3. 15/4 evaluates to 3. (float)15/4 evaluates to 3.750000.

4. No. The y *= x + 5 expression is actually equal to the y = y * (x + 5) expres-

sion.

Exercises
1. The following is one possible solution:

/* 06A01.c */
#include <stdio.h>

main()
{

int x, y;

x = 1;
y = 3;
x += y;
printf(“The result of x += y is: %d\n”, x);

x = 1;
y = 3;
x += -y;
printf(“The result of x += -y is: %d\n”, x);

x = 1;
y = 3;

Answers to Quiz Questions and Exercises 449

B

x -= y;
printf(“The result of x -= y is: %d\n”, x);

x = 1;
y = 3;
x -= -y;
printf(“The result of x -= -y is: %d\n”, x);

x = 1;
y = 3;
x *= y;
printf(“The result of x *= y is: %d\n”, x);

x = 1;
y = 3;
x *= -y;
printf(“The result of x *= -y is: %d\n”, x);

return 0;
}

The output of the program is:

The result of x += y is: 4
The result of x += -y is: -2
The result of x -= y is: -2
The result of x -= -y is: 4
The result of x *= y is: 3
The result of x *= -y is: -3

2. The value of z is 1 (one), after the expression z=x*y==18 expression is evaluated.

3. The following is one possible solution:

/* 06A03.c */
#include <stdio.h>

main()
{

int x;

x = 1;
printf(“x++ produces: %d\n”, x++);
printf(“Now x contains: %d\n”, x);

return 0;
}

The output of the program is:

x++ produces: 1
Now x contains: 2

450 Appendix B

OUTPUT

OUTPUT

4. The following is one possible solution:

/* 06A04.c */
#include <stdio.h>

main()
{

int x;

x = 1;
printf(“x = x++ produces: %d\n”, x = x++);
printf(“Now x contains: %d\n”, x);

return 0;
}

I get 1 and 1 from the two printf() calls in this program. The reason is that, in the

x = x++ expression, the original value of x is copied into a temporary location

first, and then x is incremented by 1. Last, the value saved in the temporary loca-

tion is assigned back to x. That’s why the final value saved in x is still 1.

5. The program incorrectly uses an assignment operator =, instead of an “equal to”

relational operator (==).

Hour 7, “Working with Loops”

Quiz
1. No.

2. Yes. The do-while loop prints out the character d, whose numeric value is 100.

3. Yes. Both for loops iterate 8 times.

4. Yes.

Exercises
1. The first for loop contains a statement:

printf(“%d + %d = %d\n”, i, j, i+j);

But the second for loop has a semicolon right after the for statement. This is a null

statement—a semicolon by itself, which is a statement that does nothing.

2. The following is one possible solution:

/* 07A02.c */
#include <stdio.h>

main()
{

Answers to Quiz Questions and Exercises 451

B

int i, j;

for (i=0, j=1; i<8; i++, j++)
printf(“%d + %d = %d\n”, i, j, i+j);

printf(“\n”);
for (i=0, j=1; i<8; i++, j++);

printf(“%d + %d = %d\n”, i, j, i+j);

return 0;
}

3. The following is one possible solution:

/* 07A03.c */
#include <stdio.h>

main()
{

int c;

printf(“Enter a character:\n(enter K to exit)\n”);
c = ‘ ‘;

while(c != ‘K’) {
c = getc(stdin);
putchar(c);

}
printf(“\nOut of the for loop. Bye!\n”);

return 0;
}

4. The following is one possible solution:

/* 07A04.c: Use a for loop */
#include <stdio.h>

main()
{

int i;

i = 65;
for (i=65; i<72; i++){

printf(“The numeric value of %c is %d.\n”, i, i);
}

return 0;
}

452 Appendix B

5. The following is one possible solution:

/* 07A05.c */
#include <stdio.h>

main()
{

int i, j;

i = 1;
while (i<=3) { /* outer loop */

printf(“The start of iteration %d of the outer loop.\n”, i);
j = 1;
do{ /* inner loop */

printf(“ Iteration %d of the inner loop.\n”, j);
j++;

} while (j<=4);
i++;
printf(“The end of iteration %d of the outer loop.\n”, i);

}

return 0;
}

Hour 8, “Using Conditional Operators”

Quiz
1. The (x=1)&&(y=10) expression returns 1; (x=1)&(y=10) returns 0.

2. In the !y ? x == z : y expression, !y produces 0, thus the value of the third

operand y is taken as the value of the expression. That is, the expression evaluates

to 1.

3. 1100111111000110 and 0011000000111001.

4. The (x%2==0)||(x%3==0) expression yields 1, and the (x%2==0)&&(x%3==0)

expression evaluates to 0.

5. Yes. 8 >> 3 is equivalent to 8/23. 1 << 3 is equivalent to 23.

Exercises
1. ~x yields 0x1000 because ~0xEFFF is equivalent to ~0111111111111111 (in binary),

which produces 1000000000000000 (in binary), (that is, 0x1000 in hex format).

Likewise, ~y evaluates to 0xEFFF because ~0x1000 is equivalent to

~1000000000000000 (in binary), which yields 0111111111111111 (in binary) (that

is, 0xEFFF in hex format).

Answers to Quiz Questions and Exercises 453

B

2. The following is one possible solution:

/* 08A02.c */
#include <stdio.h>

int main()
{

int x, y;

x = 0xEFFF;
y = 0x1000;

printf(“!x yields: %d (i.e., %u)\n”, !x, !x);
printf(“!y yields: %d (i.e., %u)\n”, !y, !y);

return 0;
}

The output of the program is:

!x yields: 0 (i.e., 0)
!y yields: 0 (i.e., 0)

3. The following is one possible solution:

/* 08A03.c */
#include <stdio.h>

int main()
{

int x, y;

x = 123;
y = 4;
printf(“x << y yields: %d\n”, x << y);
printf(“x >> y yields: %d\n”, x >> y);

return 0;
}

[ic:output]The output of the program is:

x << y yields: 1968
x >> y yields: 7

4. The following is one possible solution:

/* 08A04.c */
#include <stdio.h>

int main()
{

printf(“0xFFFF ^ 0x8888 yields: 0x%X\n”,

454 Appendix B

0xFFFF ^ 0x8888);
printf(“0xABCD & 0x4567 yields: 0x%X\n”,

0xABCD & 0x4567);
printf(“0xDCBA | 0x1234 yields: 0x%X\n”,

0xDCBA | 0x1234);

return 0;
}

The output of the program is:

0xFFFF ^ 0x8888 yields: 0x7777
0xABCD & 0x4567 yields: 0x145
0xDCBA | 0x1234 yields: 0xDEBE

5. The following is one possible solution:

/* 08A05.c */
#include <stdio.h>

main()
{

int x;

printf(“Enter a character:\n(enter q to exit)\n”);
for (x=’ ‘; x != ‘q’ ? 1 : 0;) {

x = getc(stdin);
putchar(x);

}
printf(“\nOut of the for loop. Bye!\n”);

return 0;
}

Hour 9, “Working with Data Modifiers and
Math Functions”

Quiz
1. No. x contains a negative number that is not the same as the number contained by

the unsigned int variable y.

2. You can use the long modifier, which increases the range of values that the int

can hold. Or, if you are storing a positive number, you can also use the unsigned

modifier to store a larger value.

3. %lu.

4. The header file is math.h.

Answers to Quiz Questions and Exercises 455

B

OUTPUT

Exercises
1. The following is one possible solution:

/* 09A01 */
#include <stdio.h>

main()
{

int x;
unsigned int y;

x = 0xAB78;
y = 0xAB78;

printf(“The decimal value of x is %d.\n”, x);
printf(“The decimal value of y is %u.\n”, y);

return 0;
}

The output of the program from my machine is:

The decimal value of x is -21640.
The decimal value of y is 43896.

2. The following is one possible solution:

/* 09A02 */
#include <stdio.h>

main()
{

printf(“The size of short int is %d.\n”,
sizeof(short int));

printf(“The size of long int is %d.\n”,
sizeof(long int));

printf(“The size of long double is %d.\n”,
sizeof(long double));

return 0;
}

3. The following is one possible solution:

/* 09A03 */
#include <stdio.h>

main()
{

int x, y;
long int result;

x = 7000;

456 Appendix B

OUTPUT

y = 12000;
result = x * y;
printf(“x * y == %lu.\n”, result);

return 0;
}

The output of the program from my machine is:

x * y == 84000000.

4. The following is one possible solution:

/* 09A04 */
#include <stdio.h>

main()
{

int x;

x = -23456;
printf(“The hex value of x is 0x%X.\n”, x);

return 0;
}

The output of the program from my machine is:

The hex value of x is 0xA460.

5. The following is one possible solution:

/* 09A05.c */
#include <stdio.h>
#include <math.h>

main()
{

double x;

x = 30.0; /* 45 degrees */
x *= 3.141593 / 180.0; /* convert to radians */
printf(“The sine of 30 is: %f.\n”, sin(x));
printf(“The tangent of 30 is: %f.\n”, tan(x));

return 0;
}

6. The following is one possible solution (note that I’ve used the type casting (dou-

ble) in the assignment statement x=(double)0x19A1;):

/* 09A06.c */
#include <stdio.h>
#include <math.h>

Answers to Quiz Questions and Exercises 457

B

OUTPUT

OUTPUT

main()
{

double x;

x = (double)0x19A1;
printf(“The square root of x is: %2.0f\n”, sqrt(x));

return 0;
}

Hour 10, “Controlling Program Flow”

Quiz
1. No.

2. The final result saved in x is 2, after the execution of three cases, ‘-’, ‘*’,

and ‘/’.

3. The final result saved in x is 2. This time, only the case of operator = ‘-’ is exe-

cuted due to the break statement.

4. The result saved by x is 27.

Exercises
1. The following is one possible solution:

/* 10A01.c Use the if statement */
#include <stdio.h>

main()
{

int i;

printf(“Integers that can be divided by both 2 and 3\n”);
printf(“(within the range of 0 to 100):\n”);
for (i=0; i<=100; i++)

if (i%6 == 0)
printf(“ %d\n”, i);

return 0;
}

2. The following is one possible solution:

/* 10A02.c Use the if statement */
#include <stdio.h>

458 Appendix B

main()
{

int i;

printf(“Integers that can be divided by both 2 and 3\n”);
printf(“(within the range of 0 to 100):\n”);
for (i=0; i<=100; i++)

if (i%2 == 0)
if (i%3 == 0)
printf(“ %d\n”, i);

return 0;
}

3. The following is one possible solution:

/* 10A03.c */
#include <stdio.h>

main()
{

int letter;

printf(“Please enter a letter:\n”);
letter = getchar();
switch (letter){

case ‘A’:
printf(“The numeric value of A is: %d\n”, ‘A’);
break;

case ‘B’:
printf(“The numeric value of B is: %d\n”, ‘B’);
break;

case ‘C’:
printf(“The numeric value of C is: %d\n”, ‘C’);
break;

default:
break;

}

return 0;
}

4. The following is one possible solution:

/* 10A04.c */
#include <stdio.h>

main()
{

int c;

Answers to Quiz Questions and Exercises 459

B

printf(“Enter a character:\n(enter q to exit)\n”);
while ((c = getc(stdin)) != ‘q’) {

/* no statements inside the while loop */
}
printf(“\nBye!\n”);

return 0;
}

5. The following is one possible solution:

/* 10A05.c */
#include <stdio.h>

main()
{

int i, sum;

sum = 0;
for (i=1; i<8; i++){

if ((i%2 == 0) && (i%3 == 0))
continue;

sum += i;
}
printf(“The sum is: %d\n”, sum);
return 0;

}

Hour 11, “Understanding Pointers”

Quiz
1. By using the address-of operator, &. That is, the &ch expression gives the left value

(the address) of the character variable ch.

2. The answers are as follows:

• Dereference operator

• Multiplication operator

• Multiplication operator

• The first and third asterisks are dereference operators; the second asterisk is a

multiplication operator.

3. ptr_int yields the value of the address 0x1A38; *ptr_int yields the value of 10.

4. x now contains the value of 456.

460 Appendix B

Exercises
1. The following is one possible solution:

/* 11A01.c */
#include <stdio.h>

main()
{

int x, y, z;

x = 512;
y = 1024;
z = 2048;

printf(“The left values of x, y, and z are:\n”);
printf(“0x%p, 0x%p, 0x%p\n”, &x, &y, &z);
printf(“The right values of x, y, and z are:\n”);
printf(“%d, %d, %d\n”, x, y, z);

return 0;
}

2. The following is one possible solution:

/* 11A02.c */
#include <stdio.h>

main()
{

int *ptr_int;
char *ptr_ch;

ptr_int = 0; /* null pointer */
ptr_ch = 0; /* null pointer */

printf(“The left value of ptr_int is: 0x%p\n”,
ptr_int);

printf(“The right value of ptr_int is: %d\n”,
*ptr_int);

printf(“The left value of ptr_ch is: 0x%p\n”,
ptr_ch);

printf(“The right value of ptr_ch is: %d\n”,
*ptr_ch);

return 0;
}

3. The following is one possible solution:

/* 11A03.c */
#include <stdio.h>

Answers to Quiz Questions and Exercises 461

B

main()
{

char ch;
char *ptr_ch;

ch = ‘A’;
printf(“The right value of ch is: %c\n”,

ch);
ptr_ch = &ch;
ptr_ch = ‘B’; / decimal 66 */
/* prove ch has been updated */
printf(“The left value of ch is: 0x%p\n”,

&ch);
printf(“The right value of ptr_ch is: 0x%p\n”,

ptr_ch);
printf(“The right value of ch is: %c\n”,

ch);

return 0;
}

4. The following is one possible solution:

/* 11A04.c */
#include <stdio.h>

main()
{

int x, y;
int *ptr_x, *ptr_y;

x = 5;
y = 6;
ptr_x = &x;
ptr_y = &y;

*ptr_x *= *ptr_y;

printf(“The result is: %d\n”,
*ptr_x);

return 0;
}

Hour 12, “Understanding Arrays”

Quiz
1. It declares an int array called array_int with four elements. The statement also

initializes the array with four integers, 12, 23, 9, and 56.

462 Appendix B

2. Because there are only three elements in the int array data, and the last element is

data[2], the third statement is illegal. It may overwrite some valid data in the

memory location of data[3].

3. The first array, array1, is a two-dimensional array, the second one, array2, is one-

dimensional, the third one, array3, is three-dimensional, and the last one, array4,

is a two-dimensional array.

4. In a multidimensional array declaration, only the size of the leftmost dimension

can be omitted. Therefore, this declaration is wrong. The correct declaration looks

like this:

char list_ch[][2] = {
‘A’, ‘a’,
‘B’, ‘b’,
‘C’, ‘c’,
‘D’, ‘d’,
‘E’, ‘e’};

Exercises
1. The following is one possible solution:

/* 12A01.c */
#include <stdio.h>

main()
{

int i;
char array_ch[5] = {‘A’, ‘B’, ‘C’, ‘D’, ‘E’};

for (i=0; i<5; i++)
printf(“%c “, array_ch[i]);

return 0;
}

2. The following is one possible solution:

/* 12A02.c */
#include <stdio.h>

main()
{

int i;
char array_ch[5];

for (i=0; i<5; i++)
array_ch[i] = ‘a’ + i;

for (i=0; i<5; i++)
printf(“%c “, array_ch[i]);

return 0;
}

Answers to Quiz Questions and Exercises 463

B

3. The following is one possible solution:

/* 12A03.c */
#include <stdio.h>

main()
{

int i, size;
char list_ch[][2] = {

‘1’, ‘a’,
‘2’, ‘b’,
‘3’, ‘c’,
‘4’, ‘d’,
‘5’, ‘e’,
‘6’, ‘f’};

/* method I */
size = &list_ch[5][1] - &list_ch[0][0] + 1;
size *= sizeof(char);
printf(“Method I: The total bytes are %d.\n”, size);

/* method II */
size = sizeof(list_ch);
printf(“Method II: The total bytes are %d.\n”, size);

for (i=0; i<6; i++)
printf(“%c %c\n”,

list_ch[i][0], list_ch[i][1]);

return 0;
}

4. The following is one possible solution:

/* 12A04.c */
#include <stdio.h>

main()
{

char array_ch[11] = {‘I’, ‘ ‘,
‘l’, ‘i’, ‘k’, ‘e’, ‘ ‘,
‘C’, ‘!’, ‘\0’};

int i;
/* array_ch[i] in logical test */
for (i=0; array_ch[i]; i++)

printf(“%c”, array_ch[i]);

return 0;
}

464 Appendix B

5. The following is one possible solution:

/* 12A05.c */
#include <stdio.h>

main()
{

double list_data[6] = {
1.12345,
2.12345,
3.12345,
4.12345,
5.12345};

int size;

/* Method I */
size = sizeof(double) * 6;
printf(“Method I: The size is %d.\n”, size);

/* Method II */
size = sizeof(list_data);
printf(“Method II: The size is %d.\n”, size);

return 0;
}

Hour 13, “Manipulating Strings”

Quiz
1. The following two statements are legal:

• char str2[] = “A character string”;

• char str3 = “A”;

2. The following two statements are illegal:

• ptr_ch = ‘x’;

• *ptr_ch = “This is Quiz 2.”;

3. No. The puts() function appends a newline character to replace the null character

at the end of a character array.

4. The %s format specifier is used for reading in a string; the %f is for a float

number.

Answers to Quiz Questions and Exercises 465

B

Exercises
1. The following is one possible solution:

/* 13A01.c: Copy a string to another */
#include <stdio.h>
#include <string.h>

main()
{

int i;
char str1[] = “This is Exercise 1.”;
char str2[20];

/* Method I */
strcpy(str2, str1);

/* confirm the copying */
printf(“from Method I: %s\n”, str2);

/* Method II */
for (i=0; str1[i]; i++)

str2[i] = str1[i];
str2[i] = ‘\0’;
/* confirm the copying */
printf(“from Method II: %s\n”, str2);

return 0;
}

2. The following is one possible solution:

/* 13A02.c: Measure a string */
#include <stdio.h>
#include <string.h>

main()
{

int i, str_length;
char str[] = “This is Exercise 2.”;

/* Method I */
str_length = 0;
for (i=0; str[i]; i++)

str_length++;
printf(“The string length is %d.\n”, str_length);

/* Method II */
printf(“The string length is %d.\n”,

strlen(str));

return 0;
}

466 Appendix B

3. The following is one possible solution:

/* 13A03.c: Use gets() and puts() */
#include <stdio.h>

main()
{

char str[80];
int i, delt;

printf(“Enter a string less than 80 characters:\n”);
gets(str);
delt = ‘a’ - ‘A’;
i = 0;
while (str[i]){
if ((str[i] >= ‘A’) && (str[i] <= ‘Z’))

str[i] += delt; /* convert to lowercase */
++i;

}
printf(“The entered string is (in lowercase):\n”);
puts(str);

return 0;
}

4. The following is one possible solution:

/* 13A04.c: Use scanf() */
#include <stdio.h>

main()
{

int x, y, sum;

printf(“Enter two integers:\n”);
scanf(“%d%d”, &x, &y);
sum = x + y;
printf(“The sum is %d\n”, sum);

return 0;
}

Hour 14, “Understanding Scope and Storage
Classes”

Quiz
1. The int variable x and float variable y, declared outside the myFunction() func-

tion, are global variables. The int variables, i and j, and the float variable y,

Answers to Quiz Questions and Exercises 467

B

declared inside the function, are local variables. Also, the two int variables, x and

y, declared within a block inside myFunction(), are local variables with scope lim-

ited to the block.

2. For two variables sharing the same name, the compiler can figure out which one to

use by checking their scopes. The latest declared variable becomes visible by

replacing the variable that has the same name but is declared in the outer block. If,

however, two variables sharing the same name are declared in the same block, the

compiler will issue an error message.

3. The int variable i declared outside the myFunction() function has the same

static storage class as the int variable x. The float variable y has an extern

storage class.

Inside the myFunction() function, the two integer variables, i and j, have the auto

storage class. The float variable z has an extern storage class, and the long vari-

able s has a register storage class. index is an integer variable with a static

storage class. The content of the character array str cannot be changed due to the

const specifier.

4. No, it’s not legal. You cannot change the content of an array specified by the const

specifier.

Exercises
1. The answers are as follows:

• { int x; }

• { const char ch; }

• { static float y; }

• register int z;

• char *ptr_str = 0;

2. The following is one possible solution:

/* 14A02.c */
#include <stdio.h>

int x = 1234; /* program scope */
float y = 1.234567f; /* program scope */

void function_1(int x, double y)
{

printf(“From function_1:\n x=%d, y=%f\n”, x, y);
}

main()

468 Appendix B

{
int x = 4321; /* block scope 1*/

function_1(x, y);
printf(“Within the main block:\n x=%d, y=%f\n”, x, y);
/* a nested block */
{

float y = 7.654321f; /* block scope 2 */
function_1(x, y);
printf(“Within the nested block:\n x=%d, y=%f\n”, x, y);

}
return 0;

}

3. The following is what I obtained from running the C program given in this exer-

cise:

x=0, y=0
x=0, y=1
x=0, y=2
x=0, y=3
x=0, y=4

Because x has a temporary storage with the block scope, and y has a permanent

storage, x is set to 0 every time the program execution enters the for loop, but the

value saved in y is kept.

4. The following is one possible solution:

/* 14A04.c: Use the static specifier */
#include <stdio.h>
/* the add_two function */
int add_two(int x, int y)
{

static int counter = 1;
static int sum = 0;

printf(“This is the function call of %d,\n”, counter++);
printf(“the previous value of sum is %d,\n”, sum);
sum = x + y;
return sum;

}
/* the main function */
main()
{

int i, j;

for (i=0, j=5; i<5; i++, j--)
printf(“the addition of %d and %d is %d.\n\n”,

i, j, add_two(i, j));
return 0;

}

Answers to Quiz Questions and Exercises 469

B

Hour 15, “Working with Functions”

Quiz
1. The answers are as follows:

• int function_1(int x, int y); is a function declaration with a fixed

number of arguments.

• void function_2(char *str); is a function declaration with a fixed num-

ber of arguments.

• char *asctime(const struct tm *timeptr); is a function declaration

with a fixed number of arguments.

• int function_3(void); is a function declaration with no arguments.

• void function_5(void); is a function declaration with no arguments.

• char function_4(char c, ...); is a function declaration with a variable

number of arguments.

2. The second expression is a function definition; that is,

int function_2(int x, int y) {return x+y;}

3. The int data type is the default data type returned by a function if a type specifier

is omitted.

4. The third one, char function_3(...);, is illegal.

Exercises
1. The following is one possible solution:

/* 15A01.c: */
#include <stdio.h>
#include <time.h>

void GetDateTime(void);

main()
{

printf(“Before the GetDateTime() function is called.\n”);
GetDateTime();
printf(“After the GetDateTime() function is called.\n”);
return 0;

}
/* GetDateTime() definition */
void GetDateTime(void)
{

time_t now;
int i;

470 Appendix B

char *str;

printf(“Within GetDateTime().\n”);
time(&now);
str = asctime(localtime(&now));
printf(“Current date and time is: “);
for (i=0; str[i]; i++)

printf(“%c”, str[i]);
}

2. The following is one possible solution:

/* 15A02.c */
#include <stdio.h>

int MultiTwo(int x, int y);

main ()
{

printf(“The result returned by MultiTwo() is: %d\n”,
MultiTwo(32, 10));

return 0;
}

/* function definition */
int MultiTwo(int x, int y)
{

return x * y;
}

3. The following is one possible solution:

/* 15A03.c */
#include <stdio.h>
#include <stdarg.h>

int MultiInt(int x, ...);

main ()
{

int d1 = 1;
int d2 = 2;
int d3 = 3;
int d4 = 4;

printf(“Given an argument: %d\n”, d1);
printf(“The result returned by MultiInt() is: %d\n\n”,

MultiInt(1, d1));
printf(“Given an argument: %d, %d, %d, and %d\n”, d1, d2, d3, d4);
printf(“The result returned by MultiInt() is: %d\n\n”,

MultiInt(4, d1, d2, d3, d4));

return 0;

Answers to Quiz Questions and Exercises 471

B

}

/* definition of MultiInt() */
int MultiInt(int x, ...)
{

va_list arglist;
int i;
int result = 1;

printf(“The number of arguments is: %d\n”, x);
va_start (arglist, x);
for (i=0; i<x; i++)

result *= va_arg(arglist, int);
va_end (arglist);
return result;

}

4. The va_arg() fetches arguments from left to right on my machine. The following

is one possible solution:

/* 15A04.c */
#include <stdio.h>
#include <stdarg.h>

double AddDouble(int x, ...);

main ()
{

double d1 = 1.5;
double d2 = 2.5;
double d3 = 3.5;
double d4 = 4.5;

printf(“Given an argument: %2.1f\n”, d1);
printf(“The result returned by AddDouble() is: %2.1f\n\n”,

AddDouble(1, d1));
printf(“Given arguments: %2.1f and %2.1f\n”, d1, d2);
printf(“The result returned by AddDouble() is: %2.1f\n\n”,

AddDouble(2, d1, d2));
printf(“Given arguments: %2.1f, %2.1f and %2.1f\n”, d1, d2, d3);
printf(“The result returned by AddDouble() is: %2.1f\n\n”,

AddDouble(3, d1, d2, d3));
printf(“Given arguments: %2.1f, %2.1f, %2.1f, and %2.1f\n”, d1, d2, d3,

d4);
printf(“The result returned by AddDouble() is: %2.1f\n”,

AddDouble(4, d1, d2, d3, d4));
return 0;

}

/* definition of AddDouble() */

472 Appendix B

double AddDouble(int x, ...)
{

va_list arglist;
int i;
double argument, result = 0.0;

printf(“The number of arguments is: %d\n”, x);
va_start (arglist, x);
for (i=0; i<x; i++){

argument = va_arg(arglist, double);
printf(“Argument passed to this function: %f\n”, argument);
result += argument;

}

va_end (arglist);

return result;
}

Hour 16, “Applying Pointers”

Quiz
1. I obtain the following answers from my machine:

• 4 bytes

• 4 bytes

• 4 bytes

• 12 bytes

• 12 bytes

• 12 bytes

2. Because 0x100A - 0x1006 gives 4, and one int takes 2 bytes, ptr1 and ptr2 are

two integers apart. Therefore, the answer is 2.

3. 0x0230 and 0x0260.

4. The answers are as follows:

• *(ptr + 3) fetches ‘A’.

• ptr - ch gives 1.

• *(ptr - 1) fetches ‘a’.

• *ptr = ‘F’ replaces ‘b’ with ‘F’.

Answers to Quiz Questions and Exercises 473

B

Exercises
1. The following is one possible solution:

/* 16A01.c */
#include <stdio.h>

void StrPrint(char *str);
main()
{

char string[] = “I like C!”;

StrPrint(string);

return 0;
}

void StrPrint(char *str)
{

printf(“%s\n”, str);
}

2. The following is one possible solution:

/* 16A02.c */
#include <stdio.h>

void StrPrint(char *str);
main()
{

char string[] = “I like C!”;
char *ptr;
int i;

ptr = string;
for (i=0; ptr[i]; i++){
if (ptr[i] == ‘i’)
ptr[i] = ‘o’;

if (ptr[i] == ‘k’)
ptr[i] = ‘v’;

}
StrPrint(ptr);

return 0;
}

void StrPrint(char *str)
{

printf(“%s\n”, str);
}

474 Appendix B

3. The following is one possible solution:

/* 16A03.c */
#include <stdio.h>

void StrPrint(char str[][15], int max);
main()
{

char str[2][15] = {
“You know what,”,
“C is powerful.” };

StrPrint(str, 2);

return 0;
}

void StrPrint(char str[][15], int max)
{

int i;

for (i=0; i<max; i++)
printf(“%s\n”, str[i]);

}

4. The following is one possible solution:

* 16A04.c */
#include <stdio.h>

/* function declarations */
void StrPrint1(char **str1, int size);
void StrPrint2(char *str2);

/* main() function */
main()
{

char *str[7] = {
“Sunday”,
“Monday”,
“Tuesday”,
“Wednesday”,
“Thursday”,
“Friday”,
“Saturday”};

int i, size;

size = 7;
StrPrint1(str, size);
for (i=0; i<size; i++)

StrPrint2(str[i]);

Answers to Quiz Questions and Exercises 475

B

return 0;
}

/* function definition */
void StrPrint1(char **str1, int size)
{

int i;

for (i=0; i<size; i++)
printf(“%s\n”, str1[i]);

}

/* function definition */
void StrPrint2(char *str2)
{

printf(“%s\n”, str2);
}

Hour 17, “Allocating Memory”

Quiz
1. The answers are as follows:

• 200 bytes

• 200 bytes

• 200 bytes

• 0 bytes

2. The statement is

ptr = realloc(ptr, 150 * sizeof(int));

3. The final size is 120 bytes, provided the int data type is one byte long.

4. The final size is 0. In other words, all allocated memory blocks have been released

by the last statement.

Exercises
1. The following is one possible solution:

/* 17A01.c */
#include <stdio.h>
#include <stdlib.h>

/* main() function */
main()
{

476 Appendix B

int *ptr_int;
int i, sum;
int max = 0;
int termination = 0;

printf(“Enter the total number of integers:\n”);
scanf(“%d”, &max);

/* call malloc() */
ptr_int = malloc(max * sizeof(int));
if (ptr_int == NULL){
printf(“malloc() function failed.\n”);
termination = 1;

}
else{
for (i=0; i<max; i++)
ptr_int[i] = i + 1;

}
sum = 0;
for (i=0; i<max; i++)
sum += ptr_int[i];

printf(“The sum is %d.\n”, sum);
free(ptr_int);

return termination;
}

2. The following is one possible solution:

/* 17A02.c */
#include <stdio.h>
#include <stdlib.h>

/* main() function */
main()
{

float *ptr_flt;
int termination = 0;

/* call calloc() */
ptr_flt = calloc(100, sizeof(float));
if (ptr_flt == NULL){
printf(“calloc() function failed.\n”);
termination = 1;

}
else{
ptr_flt = realloc(ptr_flt, 150 * sizeof(float));
if (ptr_flt == NULL){
printf(“realloc() function failed.\n”);
termination = 1;

}

Answers to Quiz Questions and Exercises 477

B

else
free(ptr_flt);

}
printf(“Done!\n”);

return termination;
}

3. The following is one possible solution:

/* 17A03.c */
#include <stdio.h>
#include <stdlib.h>

/* main() function */
main()
{

float *ptr1, *ptr2;
int i;
int termination = 1;
int max = 0;

printf(“Enter the total number:\n”);
scanf(“%d”, &max);

ptr1 = malloc(max * sizeof(float));
ptr2 = calloc(max, sizeof(float));

if (ptr1 == NULL)
printf(“malloc() failed.\n”);

else if (ptr2 == NULL)
printf(“calloc() failed.\n”);

else{
for (i=0; i<max; i++)

printf(“ptr1[%d]=%5.2f, ptr2[%d]=%5.2f\n”,
i, *(ptr1 + i), i, *(ptr2 + i));

free(ptr1);
free(ptr2);
termination = 0;

}
printf (“\nBye!\n”);

return termination;
}

4. The following is one possible solution:

/* 17A04.c: Use the realloc() function */
#include <stdio.h>
#include <stdlib.h>

478 Appendix B

#include <string.h>
/* function declaration */
void StrCopy(char *str1, char *str2);
/* main() function */
main()
{

char *str[4] = {“There’s music in the sighing of a reed;”,
“There’s music in the gushing of a rill;”,
“There’s music in all things if men had ears;”,
“There earth is but an echo of the spheres.\n”
};

char *ptr;
int i;

int termination = 0;

ptr = realloc(NULL, strlen((str[0]) + 1) * sizeof(char));
if (ptr == NULL){
printf(“realloc() failed.\n”);
termination = 1;

}
else{
StrCopy(str[0], ptr);
printf(“%s\n”, ptr);
for (i=1; i<4; i++){
ptr = realloc(ptr, (strlen(str[i]) + 1) * sizeof(char));
if (ptr == NULL){
printf(“realloc() failed.\n”);
termination = 1;
i = 4; /* break the for loop */

}
else{
StrCopy(str[i], ptr);
printf(“%s\n”, ptr);

}
}

}
realloc(ptr, 0);
return termination;

}
/* funciton definition */
void StrCopy(char *str1, char *str2)
{

int i;

for (i=0; str1[i]; i++)
str2[i] = str1[i];

str2[i] = ‘\0’;
}

Answers to Quiz Questions and Exercises 479

B

Hour 18, “Using Special Data Types and
Functions”

Quiz
1. The enumerated names Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, and

Dec represent the values of 0 to 11, respectively.

2. The values of 0, 10, 11, and 12 are represented by the enumerated names name1,

name2, name3, and name4, respectively.

3. The typedef long int BYTE32; and BYTE32 x, y, z; statements are equivalent

to long int x, y, z;.

typedef char *STRING[16]; and STRING str1, str2, str3; are equivalent to

char *str1[16], *str2[16], *str3[16];

4. No. The void keyword in the main() function indicates that there is no argument

passed to the function.

Exercises
1. The following is one possible solution:

/* 18A01.c */
#include <stdio.h>

main(void)
{

enum tag {name1,
name2 = 10,
name3,
name4 };

printf(“The value represented by name1 is: %d\n”,
name1);

printf(“The value represented by name2 is: %d\n”,
name2);

printf(“The value represented by name3 is: %d\n”,
name3);

printf(“The value represented by name4 is: %d\n”,
name4);

return 0;
}

2. The following is one possible solution:

/* 18A02.c */
#include <stdio.h>

480 Appendix B

main(void)
{

typedef char WORD;
typedef int SHORT;
typedef long LONG;
typedef float FLOAT;
typedef double DFLOAT;

printf(“The size of WORD is: %d-byte\n”, sizeof(WORD));
printf(“The size of SHORT is: %d-byte\n”, sizeof(SHORT));
printf(“The size of LONG is: %d-byte\n”, sizeof(LONG));
printf(“The size of FLOAT is: %d-byte\n”, sizeof(FLOAT));
printf(“The size of DFLOAT is: %d-byte\n”, sizeof(DFLOAT));

return 0;
}

3. The following is one possible solution:

/* 18A03.c */
#include <stdio.h>

enum con{MIN_NUM = 0,
MAX_NUM = 100};

int fRecur(int n);

main()
{

int i, sum1, sum2;

sum1 = sum2 = 0;
for (i=1; i<=MAX_NUM; i++)
sum1 += i;

printf(“The value of sum1 is %d.\n”, sum1);
sum2 = fRecur(MIN_NUM);
printf(“The value returned by fRecur() is %d.\n”, sum2);

return 0;
}

int fRecur(int n)
{

if (n > MAX_NUM)
return 0;

return fRecur(n + 1) + n;
}

4. The following is one possible solution:

/* 18A04.c: Command-line arguments */
#include <stdio.h>

main (int argc, char *argv[])

Answers to Quiz Questions and Exercises 481

B

{
int i;

if (argc < 2){
printf(“The usage of this program is:\n”);
printf(“18A04.EXE argument1 argument2 [...argumentN]\n”);

}
else {
printf(“The command-line arguments are:\n”);
for (i=1; i<argc; i++)
printf(“%s “, argv[i]);

printf(“\n”);
}

return 0;
}

Hour 19, “Understanding Structures”

Quiz
1. The semicolon (;) should be included at the end of the structure declaration.

2. u, v, and w are three structure variables.

3. You can initialize the array of the automobile structure like this:

struct automobile {
int year;
char model[8]} car[2] = {

{1997, “Taurus”},
{1997, “Accord”}};

Exercises
1. The following is one possible solution:

/* 19A01.c */
#include <stdio.h>

main(void)
{

struct automobile {
int year;
char model[10];
int engine_power;
double weight;
} sedan = {

1997,
“New Model”,

482 Appendix B

200,
2345.67};

printf(“year: %d\n”, sedan.year);
printf(“model: %s\n”, sedan.model);
printf(“engine_power: %d\n”, sedan.engine_power);
printf(“weight: %6.2f\n”, sedan.weight);

return 0;
}

2. The following is one possible solution:

/* 19A02.c */
#include <stdio.h>

struct employee {
int id;
char name[32];

};

void Display(struct employee s);

main(void)
{

/* structure initialization */
struct employee info = {

0001,
“B. Smith”
};

printf(“Here is a sample:\n”);
Display(info);

printf(“What’s your name?\n”);
gets(info.name);

printf(“What’s your ID number?\n”);
scanf(“%d”, &info.id);

printf(“\nHere are what you entered:\n”);
Display(info);

return 0;
}

/* function definition */
void Display(struct employee s)
{

printf(“Employee Name: %s\n”, s.name);
printf(“Employee ID #: %04d\n\n”, s.id);

}

Answers to Quiz Questions and Exercises 483

B

3. The following is one possible solution:

/* 19A03.c Use the -> operator */
#include <stdio.h>

struct computer {
float cost;
int year;
int cpu_speed;
char cpu_type[16];

};

typedef struct computer SC;

void DataReceive(SC *ptr_s);

main(void)
{

SC model;

DataReceive(&model);
printf(“Here are what you entered:\n”);
printf(“Year: %d\n”, model.year);
printf(“Cost: %6.2f\n”, model.cost);
printf(“CPU type: %s\n”, model.cpu_type);
printf(“CPU speed: %d MHz\n”, model.cpu_speed);

return 0;
}

void DataReceive(SC *ptr_s)
{

printf(“The type of the CPU inside your computer?\n”);
gets(ptr_s->cpu_type);

printf(“The speed(MHz) of the CPU?\n”);
scanf(“%d”, &(ptr_s->cpu_speed));

printf(“The year your computer was made?\n”);
scanf(“%d”, &(ptr_s->year));

printf(“How much you paid for the computer?\n”);
scanf(“%f”, &(ptr_s->cost));

}

4. The following is one possible solution:

/* 19L04.c Arrays of structures */
#include <stdio.h>

struct haiku {
int start_year;
int end_year;

484 Appendix B

char author[16];
char str1[32];
char str2[32];
char str3[32];

};

typedef struct haiku HK;

void DataDisplay(HK *ptr_s);

main(void)
{

HK poem[2] = {
{ 1641,
1716,
“Sodo”,
“Leading me along”,
“my shadow goes back home”,
“from looking at the moon.”

},
{ 1729,
1781,
“Chora”,
“A storm wind blows”,
“out from among the grasses”,
“the full moon grows.”

}
};

/* define an array of pointers with HK */
HK *ptr_poem[2] = {&poem[0], &poem[1]};
int i;

for (i=0; i<2; i++)
DataDisplay(ptr_poem[i]);

return 0;
}

void DataDisplay(HK *ptr_s)
{

printf(“%s\n”, ptr_s->str1);
printf(“%s\n”, ptr_s->str2);
printf(“%s\n”, ptr_s->str3);
printf(“--- %s\n”, ptr_s->author);
printf(“ (%d-%d)\n\n”, ptr_s->start_year, ptr_s->end_year);

}

Answers to Quiz Questions and Exercises 485

B

Hour 20, “Understanding Unions”

Quiz
1. The first statement is the declaration of a union with the tag name of _union. The

second statement defines two union variables, x and y, with the a_union data type.

2. The semicolon (;) is missed in two places: at the end of the declaration of char

model[8] and at the end of the declaration of the union.

3. The two union members have the same value, 1997.

Exercises
1. The following is the modified version. The content of the name array is partially

overwritten by the value assigned to the double variable price.

/* 20A01.c */
#include <stdio.h>
#include <string.h>

main(void)
{

union menu {
char name[23];
double price;

} dish;

printf(“The content assigned to the union separately:\n”);
/* access to name */
strcpy(dish.name, “Sweet and Sour Chicken”);
/* access to price */
dish.price = 9.95;
printf(“Dish Name: %s\n”, dish.name);
printf(“Dish Price: %5.2f\n”, dish.price);

return 0;
}

2. The following is one possible solution:

/* 20A02.c */
#include <stdio.h>

union employee {
int start_year;
int dpt_code;
int id_number;

};

void DataDisplay(union employee u);

486 Appendix B

main(void)
{

union employee info;

/* initialize start_year */
info.start_year = 1997;
DataDisplay(info);

/* initialize dpt_code */
info.dpt_code = 8;
DataDisplay(info);

/* initialize id */
info.id_number = 1234;
DataDisplay(info);

return 0;
}

/* function definition */
void DataDisplay(union employee u)
{

printf(“Start Year: %d\n”, u.start_year);
printf(“Dpt. Code: %d\n”, u.dpt_code);
printf(“ID Number: %d\n”, u.id_number);

}

The output of the program is

Start Year: 1997
Dpt. Code: 1997
ID Number: 1997
Start Year: 8
Dpt. Code: 8
ID Number: 8
Start Year: 1234
Dpt. Code: 1234
ID Number: 1234

3. The following is one possible solution:

/* 20A03.c */
#include <stdio.h>
#include <string.h>

struct survey {
char name[20];
union {

char state[32];
char country[32];

} place;
};

Answers to Quiz Questions and Exercises 487

B

OUTPUT

void DataEnter(struct survey *s);
void DataDisplay(struct survey *s);

main(void)
{

struct survey citizen;

DataEnter(&citizen);
DataDisplay(&citizen);

return 0;
}

/* definition of DataDisplay() */
void DataDisplay(struct survey *ptr)
{

printf(“\nHere is what you entered: \n”);
printf(“Your name is %s.\n”, ptr->name);
printf(“You are from %s.\n”, ptr->place.state);
printf(“\nThank you!\n”);

}

/* definition of DataEnter() */
void DataEnter(struct survey *ptr)
{

char is_yes[4];

printf(“Please enter your name:\n”);
gets(ptr->name);

printf(“Are you a U. S. citizen? (Yes or No)\n”);
gets(is_yes);

if ((is_yes[0] == ‘Y’) ||
(is_yes[0] == ‘y’)){
printf(“Enter the name of the state:\n”);
gets(ptr->place.state);

} else {
printf(“Enter the name of your country:\n”);
gets(ptr->place.country);

}
}

The following is the output of the program on my machine:

Please enter your name:
Tony
Are you a U. S. citizen? (Yes or No)
Yes

Enter the name of the state:
Texas

488 Appendix B

OUTPUT

Here is what you entered:
Your name is Tony.
You are from Texas.

Thank you!

4. The following is one possible solution:

/* 20A04.c */
#include <stdio.h>
#include <string.h>

struct bit_field {
int yes: 1;

};

struct survey {
struct bit_field flag;
char name[20];
union {

char state[32];
char country[32];

} place;
};

void DataEnter(struct survey *s);
void DataDisplay(struct survey *s);

main(void)
{

struct survey citizen;

DataEnter(&citizen);
DataDisplay(&citizen);

return 0;
}

/* function definition */
void DataEnter(struct survey *ptr)
{

char is_yes[4];

printf(“Please enter your name:\n”);
gets(ptr->name);

printf(“Are you a U.S. citizen? (Yes or No)\n”);
gets(is_yes);

if ((is_yes[0] == ‘Y’) ||
(is_yes[0] == ‘y’)){
printf(“Enter the name of the state:\n”);
gets(ptr->place.state);

Answers to Quiz Questions and Exercises 489

B

ptr->flag.yes = 1;
} else {

printf(“Enter the name of your country:\n”);
gets(ptr->place.country);
ptr->flag.yes = 0;

}
}
/* function definition */
void DataDisplay(struct survey *ptr)
{

printf(“\nHere is what you’ve entered:\n”);
printf(“Name: %s\n”, ptr->name);
if (ptr->flag.yes)

printf(“The state is: %s\n”,
ptr->place.state);

else
printf(“Your country is: %s\n”,

ptr->place.country);
printf(“\nThanks and Bye!\n”);

}

Hour 21, “Reading and Writing with Files”

Quiz
1. The first expression tries to open an existing binary file called test.bin for read-

ing and writing. The second expression tries to open an existing text file called

test.txt for appending. The last expression tries to create a text file, called

test.ini, for reading and writing.

2. The fopen() function returns a null pointer when an error occurs during the proce-

dure of opening a file. It’s not legal to do any reading or writing with a null file

pointer. Therefore, the code is wrong because it calls fgetc() when fopen()

returns a null pointer.

3. The mode is set to read only, but the code tries to write a character to the opened

file by calling the fputc() function.

4. The code still reads a text file by using the file pointer fptr1, even though the file

pointer fptr1 has been closed.

Exercises
1. The following is one possible solution:

/* 21A01.c */
#include <stdio.h>

490 Appendix B

enum {SUCCESS, FAIL};

int CharRead(FILE *fin);

main(void)
{

FILE *fptr;
char filename[]= “haiku.txt”;
int reval = SUCCESS;

if ((fptr = fopen(filename, “r”)) == NULL){
printf(“Cannot open %s.\n”, filename);
reval = FAIL;

} else {
printf(“\nThe total character number is %d.\n”,

CharRead(fptr));
fclose(fptr);

}

return reval;
}

/* definition of CharRead() */
int CharRead(FILE *fin)
{

int c, num;

num = 0;
while ((c=fgetc(fin)) != EOF){

putchar(c);
++num;

}

return num;
}

2. The following is one possible solution:

/* 21A02.c */
#include <stdio.h>
#include <string.h>

enum {SUCCESS, FAIL, MAX_LEN = 80};

void LineWrite(FILE *fout, char *str);

main(void)
{

FILE *fptr;
char str[MAX_LEN+1];
char filename[32];
int reval = SUCCESS;

Answers to Quiz Questions and Exercises 491

B

printf(“Please enter the file name:\n”);
gets(filename);

printf(“Enter a string:\n”);
gets(str);

if ((fptr = fopen(filename, “w”)) == NULL){
printf(“Cannot open %s for writing.\n”, filename);
reval = FAIL;

} else {
LineWrite(fptr, str);
fclose(fptr);

}

return reval;
}

/* definition of LineWrite() */
void LineWrite(FILE *fout, char *str)
{

fputs(str, fout);
printf(“Done!\n”);

}

3. The following is one possible solution:

/* 21A03.c */
#include <stdio.h>

enum {SUCCESS, FAIL};

void CharWrite(FILE *fout, char *str);

main(void)
{

FILE *fptr;
char filename[]= “test_21.txt”;
char str[]= “Disk file I/O is fun.”;
int reval = SUCCESS;

if ((fptr = fopen(filename, “w”)) == NULL){
printf(“Cannot open %s.\n”, filename);
reval = FAIL;

} else {
CharWrite(fptr, str);
fclose(fptr);

}

return reval;
}

492 Appendix B

/* function definition */
void CharWrite(FILE *fout, char *str)
{

int i, c;

i = 0;
while ((c=str[i]) != ‘\0’){

putchar(c);
fputc(c, fout);
i++;

}
}

4. The following is one possible solution:

/* 21A04.c */
#include <stdio.h>
#include <string.h>

enum {SUCCESS, FAIL};

void BlkWrite(FILE *fout, char *str);

main(void)
{

FILE *fptr;
char filename[]= “test_21.txt”;
char str[]= “Disk file I/O is tricky.”;
int reval = SUCCESS;

if ((fptr = fopen(filename, “w”)) == NULL){
printf(“Cannot open %s.\n”, filename);
reval = FAIL;

} else {
BlkWrite(fptr, str);
fclose(fptr);

}

return reval;
}

/* function definition */
void BlkWrite(FILE *fout, char *str)
{

int num;

num = strlen(str);
fwrite(str, sizeof(char), num, fout);
printf(“%s\n”, str);

}

Answers to Quiz Questions and Exercises 493

B

Hour 22, “Using Special File Functions”

Quiz
1. Yes. The two statements are equivalent.

2. No. The two statements are not equivalent, unless the current file position indicator

is indeed at the beginning of the file.

3. The scanf() function reads from the test.txt file, instead of the default input

stream, because the freopen() function has redirected the input stream and associ-

ated it with the test.txt file.

4. The four double data items together are going to take 32 bytes in the binary file, if

the size of the double data type is eight bytes long.

Exercises
1. The following is one possible solution:

/* 22A01.c */
#include <stdio.h>

enum {SUCCESS, FAIL, MAX_LEN = 80};

void PtrSeek(FILE *fptr);
long PtrTell(FILE *fptr);
void DataRead(FILE *fptr);
int ErrorMsg(char *str);

main(void)
{

FILE *fptr;
char filename[]= “LaoTzu.txt”;
int reval = SUCCESS;

if ((fptr = fopen(filename, “r”)) == NULL){
reval = ErrorMsg(filename);

} else {
PtrSeek(fptr);
fclose(fptr);

}

return reval;
}

/* function definition */
void PtrSeek(FILE *fptr)
{

long offset1, offset2, offset3;

494 Appendix B

offset1 = PtrTell(fptr);
DataRead(fptr);
offset2 = PtrTell(fptr);
DataRead(fptr);
offset3 = PtrTell(fptr);
DataRead(fptr);
printf(“\nRe-read the paragraph:\n”);

/* re-read the third sentence */
fseek(fptr, offset3, SEEK_SET);
DataRead(fptr);

/* re-read the second sentence */
fseek(fptr, offset2, SEEK_SET);
DataRead(fptr);

/* re-read the first sentence */
fseek(fptr, offset1, SEEK_SET);
DataRead(fptr);

}

/* function definition */
long PtrTell(FILE *fptr)
{

long reval;

reval = ftell(fptr);
printf(“The fptr is at %ld\n”, reval);

return reval;
}

/* function definition */
void DataRead(FILE *fptr)
{

char buff[MAX_LEN];

fgets(buff, MAX_LEN, fptr);
printf(“%s”, buff);

}

/* function definition */
int ErrorMsg(char *str)
{

printf(“Cannot open %s.\n”, str);

return FAIL;
}

Answers to Quiz Questions and Exercises 495

B

2. The following is one possible solution:

/* 22A02.c */
#include <stdio.h>

enum {SUCCESS, FAIL, MAX_LEN = 80};

void PtrSeek(FILE *fptr);
long PtrTell(FILE *fptr);
void DataRead(FILE *fptr);
int ErrorMsg(char *str);

main(void)
{

FILE *fptr;
char filename[]= “LaoTzu.txt”;
int reval = SUCCESS;

if ((fptr = fopen(filename, “r”)) == NULL){
reval = ErrorMsg(filename);

} else {
PtrSeek(fptr);
fclose(fptr);

}

return reval;
}

/* function definition */
void PtrSeek(FILE *fptr)
{

long offset1, offset2, offset3;

offset1 = PtrTell(fptr);
DataRead(fptr);
offset2 = PtrTell(fptr);
DataRead(fptr);
offset3 = PtrTell(fptr);
DataRead(fptr);
printf(“\nRe-read the paragraph:\n”);
/* re-read the third sentence */
fseek(fptr, offset3, SEEK_SET);
DataRead(fptr);
/* re-read the second sentence */
fseek(fptr, offset2, SEEK_SET);
DataRead(fptr);
/* re-read the first sentence */
rewind(fptr); /* rewind the file position indicator */
DataRead(fptr);

}

496 Appendix B

/* function definition */
long PtrTell(FILE *fptr)
{

long reval;

reval = ftell(fptr);
printf(“The fptr is at %ld\n”, reval);

return reval;
}

/* function definition */
void DataRead(FILE *fptr)
{

char buff[MAX_LEN];

fgets(buff, MAX_LEN, fptr);
printf(“%s”, buff);

}

/* function definition */
int ErrorMsg(char *str)
{

printf(“Cannot open %s.\n”, str);
return FAIL;

}

3. On my machine, the data.bin binary file is 10 bytes. The following is one possi-

ble solution:

/* 22A03.c */
#include <stdio.h>

enum {SUCCESS, FAIL};

void DataWrite(FILE *fout);
void DataRead(FILE *fin);
int ErrorMsg(char *str);

main(void)
{

FILE *fptr;
char filename[]= “data.bin”;
int reval = SUCCESS;

if ((fptr = fopen(filename, “wb+”)) == NULL){
reval = ErrorMsg(filename);

} else {
DataWrite(fptr);
rewind(fptr);
DataRead(fptr);

Answers to Quiz Questions and Exercises 497

B

fclose(fptr);
}

return reval;
}

/* function definition */
void DataWrite(FILE *fout)
{

double dnum;
int inum;

dnum = 123.45;
inum = 10000;

printf(“%5.2f\n”, dnum);
fwrite(&dnum, sizeof(double), 1, fout);
printf(“%d\n”, inum);
fwrite(&inum, sizeof(int), 1, fout);

}

/* function definition */
void DataRead(FILE *fin)
{

double x;
int y;

printf(“\nRead back from the binary file:\n”);
fread(&x, sizeof(double), (size_t)1, fin);
printf(“%5.2f\n”, x);
fread(&y, sizeof(int), (size_t)1, fin);
printf(“%d\n”, y);

}

/* function definition */
int ErrorMsg(char *str)
{

printf(“Cannot open %s.\n”, str);
return FAIL;

}

4. The following is one possible solution:

/* 22A04.c */
#include <stdio.h>

enum {SUCCESS, FAIL,
MAX_NUM = 3,
STR_LEN = 23};

void DataRead(FILE *fin);
int ErrorMsg(char *str);

498 Appendix B

main(void)
{

FILE *fptr;
char filename[]= “strnum.mix”;
int reval = SUCCESS;

if ((fptr = freopen(filename, “r”, stdin)) == NULL){
reval = ErrorMsg(filename);

} else {
DataRead(fptr);
fclose(fptr);

}

return reval;
}

/* function definition */
void DataRead(FILE *fin)
{

int i;
int miles;
char cities[STR_LEN];

printf(“The data read:\n”);
for (i=0; i<MAX_NUM; i++){

scanf(“%s%d”, cities, &miles);
printf(“%-23s %d\n”, cities, miles);

}
}

/* function definition */
int ErrorMsg(char *str)
{

printf(“Cannot open %s.\n”, str);
return FAIL;

}

Hour 23, “Compiling Programs: The C
Preprocessor”

Quiz
1. The semicolon (;) should not be included at the end of the macro definition

because a macro definition ends with a newline, not a semicolon.

2. The value of 82 is assigned to result due to the assignment expression result =

1 + 9 * 9.

Answers to Quiz Questions and Exercises 499

B

3. The message of Under #else. is printed out.

4. The message of Under #ifdef. is printed out.

Exercises
1. The following is one possible solution:

/* 23A01.c */
#include <stdio.h>
/* main() function */
main()
{

#define human 100
#define animal 50
#define computer 51
#define SUN 0
#define MON 1
#define TUE 2
#define WED 3
#define THU 4
#define FRI 5
#define SAT 6

printf(“human: %d, animal: %d, computer: %d\n”,
human, animal, computer);

printf(“SUN: %d\n”, SUN);
printf(“MON: %d\n”, MON);
printf(“TUE: %d\n”, TUE);
printf(“WED: %d\n”, WED);
printf(“THU: %d\n”, THU);
printf(“FRI: %d\n”, FRI);
printf(“SAT: %d\n”, SAT);

return 0;
}

2. The following is one possible solution:

/* 23A02.c */
#include <stdio.h>

#define MULTIPLY(val1, val2) ((val1) * (val2))
#define NO_ERROR 0

main(void)
{

int result;

result = MULTIPLY(2, 3);

500 Appendix B

printf(“MULTIPLY(2, 3) produces value of %d.\n”, result);

return NO_ERROR;
}

3. The following is one possible solution:

/* 23A03.c */
#include <stdio.h>

#define UPPER_CASE 0
#define NO_ERROR 0

main(void)
{

#if UPPER_CASE
printf(“THIS LINE IS PRINTED OUT,\n”);
printf(“BECAUSE UPPER_CASE IS DEFINED.\n”);

#elif LOWER_CASE
printf(“This line is printed out,\n”);
printf(“because LOWER_CASE is defined.\n”);

#else
printf(“This line is printed out,\n”);
printf(“because neither UPPER_CASE nor LOWER_CASE is defined.\n”);

#endif

return NO_ERROR;
}

4. The following is one possible solution:

/* 23A04.c: */
#include <stdio.h>

#define C_LANG ‘C’
#define B_LANG ‘B’
#define NO_ERROR 0

main(void)
{

#if C_LANG == ‘C’
#if B_LANG == ‘B’
#undef C_LANG
#define C_LANG “I know C language.\n”
#undef B_LANG
#define B_LANG “Also, I know BASIC.\n”
printf(“%s%s”, C_LANG, B_LANG);

#else
#undef C_LANG
#define C_LANG “I only know C language.\n”
printf(“%s”, C_LANG);

Answers to Quiz Questions and Exercises 501

B

#endif
#elif B_LANG == ‘B’
#undef B_LANG
#define B_LANG “I only know BASIC.\n”
printf(“%s”, B_LANG);

#else
printf(“I don’t know C or BASIC.\n”);

#endif

return NO_ERROR;
}

502 Appendix B

~ (bitwise complement

operator), 131

| (bitwise OR operator),

131

^ (bitwise XOR opera-

tor), 131

{} (braces), 45, 48

if statement, 156

if-else statement, 159

[] (brackets), 190

*/ (closing comment

mark), 29

:? (conditional operator),

135-136

-- (decrement operator),

96-98

/= (division assignment

operator), 93

. (dot operator), unions,

335-337, 351

” (double quotes), 32-33,

59

== (equal to operator),

98

\ (escape character), 59

%% format specifier, 79

> (greater than opera-

tor), 98

>= (greater than or equal

to operator), 98

++ (increment operator),

96-98

<< (left-shift operator),

133-135

< (less than operator), 98

<= (less than or equal to

operator), 98

&& (logical AND opera-

tor), 124-126

! (logical NEGATION

operator), 128-129

|| (logical OR operator),

126-127

*= (multiplication assign-

ment operator), 93

Symbols

+= (addition assignment

operator), 93

& (ampersand)

address-of operator,

177-179

bitwise AND operator,

131

<> (angle brackets), 32

-> (arrow operator),

unions, 335, 351

= (assignment operator),

92

* (asterisk)

deference operator, 182

determining meaning,

182

multiplication operator,

182

pointers, 180

INDEX

!= (not equal to opera-

tor), 98

\0 (null character), 198

/* (opening comment

mark), 29

// (opening comment

mark), 30

() (parentheses)

if statement, 156

placing around expres-

sions, 419

% (remainder operator),

43

%= (remainder assign-

ment operator), 93

>> (right-shift operator),

133-135

; (semicolons), 28

’ (single quotes), 59

-= (subtraction assign-

ment operator), 93

- (subtraction operator),

96

- (unary minus operator),

95

19L02.exe executable,

318

A

access

random

code example,

375-378

disk files, 374-377,

387

fseek() function,

374-378

ftell() function,

374-378

sequential disk files,

374

accessing

array elements, indexes,

190

arrays, via pointers,

264-266

addition assignment

operator (+=), 93

address variables. See

pointers

address-of operator (&),

177-179, 323

addresses

left value, 176

memory, 343

algorithms, implement-

ing, 305

aligning output, 83-84

allocating memory

calloc() function,

286-288

malloc() function,

280-283

American National

Standards Institute. See

ANSI

angle brackets (<>), 32

ANSI (American

National Standards

Institute), 15

C standard, 15-16

header files, 439

applying static specifiers,

230-231

argc arguments, 306

argument lists, 47

arguments

argc, 306

argv, 306

built-in

main() functions,

306

naming, 308

replacing, 308

command-line, 305

receiving, 306-308

passing to functions,

47-48, 305

variable, processing,

252-254

argv arguments, 306

arithmetic assignment

operators, 92-95

addition assignment

(+=), 93

division assignment

(/=), 93

multiplication assign-

ment (*=), 93

remainder assignment

(%=), 93

subtraction assignment

(-=), 93

arithmetic expressions,

#if directive, 406

arithmetic operators,

43-44

array data type, 424

array element references,

191

array subscript operator

([]), 190

arrays, 190

accessing via pointers,

264-266

character, 190, 210-211

displaying, 196-198

initializing, 208-209

declaring, 190

504 != (not equal to operator)

elements, 190

accessing, 190

initializing, 191-192

integers, 190

multidimensional

declaring, 199

displaying, 200-201

initializing, 199-201

multidimensional

unsized

declaring, 201

initializing, 202-203

listing, 325-326

passing to functions,

266-267, 270-272

pointers

declaring, 272

referencing with,

195-196

strings, 272-274

sizes

calculating, 192-194

specifying, 267

of structures, 324-327

unsized

calculating, 201

versus structures,

314

unsized character, 209

arrow (->) operators,

324, 335, 351

ASCII character codes,

57

asctime() function,

250-251

assert.h header file, 439

assessing structure mem-

bers, 315

assigning

character constants to

pointers, 210

character strings to

pointers, 210-211

integers to structures,

315

inter values to enum

data types, 296, 300

values

to enum data types,

299

to pointers, 180-181

assignment operator (=),

92

asterisks (*)

deference operator, 182

determining meaning,

182

multiplication operator,

182

pointers, 180

auto keyword, 56

auto specifier, variables,

229

avoiding

duplication, structures,

322

goto statements, 168

B

\b (backspace character),

60

backslash. See escape

character

big-endian format, 343

binary code, 14, 24

binary files

reading, 378-381

writing, 378-381

binary format, 13

binary numbers

converting decimal

numbers to, 129-130

negatives, 142

binary operators, multi-

plication (*), 182

binary streams, 356, 370

bit fields

code example, 348-350

declaring, 347

defining, 347

bit-manipulation opera-

tors, 130

bitwise AND (&), 131

bitwise complement

(~), 131

bitwise OR (|), 131

bitwise XOR (^), 131

left-shift (<<), 133-135

right-shift (>>),

133-135

bits, 14, 58, 142

bitwise AND operator

(&), 131

bitwise complement

operator (~), 131

bitwise OR operator (|),

131

bitwise XOR operator

(^), 131

block scope (variables),

224-225

local variables, 225

nested, 225-226

program scope compar-

ison, 227-229

BlockReadWrite() func-

tion, 369

blocks

commenting out, 31

statement, 45-46

body, functions, 48-49

books (recommended

reading), 434-435

books 505

Borland C++ compiler,

21-24

running, 23

starting, 21

bottom-up programming,

255

braces ({}), 45, 48

if statement, 156

if-else statement, 159

switch statement, 165

brackets ([]), declaring

arrays, 190

break keyword, 56

break statements, 155,

164-165

infinite loops, breaking,

166-167

listing, 164-165

location, 164

switch statements, exit-

ing, 164

breaking code lines, 28

buffered I/O, 433

buffers, 356

flushing, 356

high-level I/O, 357

low-level I/O, 357, 387

setbuf() functions, 387

setvbuf() functions, 387

bugs. See debugging

built-in arguments

main() functions, 306

naming, 308

replacing, 308

bytes, 14, 58, 192-194

C

%c (character) format

specifier, 60-62, 74, 79

.c filename extension, 28

C

advantages, 12-14

history, 12

portability, 13

programs

maintaining, 296

readability, improv-

ing, 296, 300

structured program-

ming, 169

C compiler, C preproces-

sor comparison, 392-

393, 405

C preprocessor, 392

(pound sign), 392

C compiler comparison,

392-393, 405

#define directive, 393,

434

code example,

394-396

defining function-

like macros,

394-396

expressions, 396

nested macro defini-

tions, 396

syntax, 393

#elif directive, 401-402,

434

#else directive,

399-402, 434

#endif directive,

397-402, 406, 416

code example,

398-399

syntax, 397

#if directive, 434

arithmetic expres-

sions, 406

code example,

401-402

macro definitions,

400

nested conditional

compilation,

402-404

syntax, 399

#ifdef directive,

397-399, 434

#ifndef directive,

397-399, 416

macro body, 392, 396

macro names, 392-393

macro substitution,

392-396

newline characters, 392

#undef directive,

393-394, 406, 434

C Programming

Language, The, 15

C++, 14

calculating array size,

192-194, 201

calendar time, date and

time functions, 249

calling

functions, 49-51,

245-247

no arguments, 249

recursive, 303-304

calloc() function, 286-288

listing, 287

malloc() functions,

compared, 292

case keyword, 56, 162

case sensitivity, file-

names, 32

506 Borland C++ compiler

cast operator, 101-102

central processing unit

(CPU), 13

changing variable values

via pointers, 183-184

char data type, 47, 57

char keyword, 56

character arrays. See

also strings

initializing, 208-209

string constants, initial-

izing, 208-211

unsized, 209

character codes (ACII),

57

character constants,

58-59, 422-423

pointers, assigning, 210

string constants, com-

pared, 209-212

character data type. See

char data type

character format specifi-

er (%c), 60-62, 74, 79

character strings, 196,

210-211

character variables, 58

characters

arrays, 190, 196-198

converting numeric val-

ues to, 61

null, 198. See also

strings

numeric values

converting, 61

showing, 63-64

printing, 60-62

reading

from standard input

stream, 215-217

gets() function,

215-217

writing

from standard output

stream, 217

puts() function,

215-217

to standard output

stream, 215-216

CharReadWrite() func-

tion, 362-363

checking command-line

arguments, 307

classes, storage, 229

closing files, fclose() func-

tion, 358-360, 371

closing comment mark

(*/), 29

code, 14. See also listings

binary, 14

breaking lines, 28

comments, 29-31, 418

commenting out, 31

nested, 31

performance, 30

indentation, 28, 419

saving

Borland C++, 23

Visual C++, 19

source code file, 34

spacing, 419

spaghetti, 169

syntax, checking, 36

whitespace, 29

writing

Borland C++, 21

Visual C++, 18

codes, executing if state-

ment, 156

coding style, 418-419

collecting variables,

groups, 314

combining declarations

and definitions, 315

command-line argu-

ments, 305

listing, 306-307

number, checking, 307

receiving, 306-308

comments, 29-31, 418

commenting out code,

31

nested, 31

program performance,

30

compiled languages, 14-

15

compilers, 13

accessing, 17

Borland C++, 21-24

C, C preprocessor com-

parison, 392-393, 405

choosing, 17

compliancy errors,

280-281

Microsoft, 18-21

optimizers, turning off,

235

compliancy error,

280-281

conditional branching

statements, 155,

428-430

break, 155, 164-165

continue, 155, 167-168

goto, 155, 168-169

if, 155-158

if-else, 155, 158-159

labels, 162

switch, 155, 161-164

conditional compilation,

397

#elif directive, 401-402

#else directive, 399-402

conditional compilation 507

#endif directive,

397-402, 406

code example,

398-399

syntax, 397

#if directive

arithmetic expres-

sions, 406

code example,

401-402

macro definitions,

400

nested conditional

compilation,

402-404

syntax, 399

#ifdef directive,

397-399

#ifndef directive,

397-399

conditional expressions,

switch statement,

161-162

conditional operator (:?),

135-136

conditions, evaluating (if

statement), 156

consolidating data types,

300

const keyword, 56

const modifier (vari-

ables), 234-235

constants, 42

character, 58-59,

209-212, 422-423

EOF (end-of-file), 73

floating-point, 423

integer, 422

macro body, 392

named, versus numeric,

419

named integer, declar-

ing, 296

numeric, versus named,

419

string, 209-212, 423

content, memory, 177

continue keyword, 56

continue statement, 155,

167-168

listing, 167

loops, 167, 171

control flow, 426

conditional branching

statements, 155,

428-430

break, 164-165

continue, 167-168

goto, 168-169, 419

if, 156-158

if-else, 158-159

switch, 161-164

looping statements,

155, 427-428

Convert2Upper() func-

tion, 303

converting

data types, cast opera-

tor, 101-102

dates, asctime() func-

tion, 250-251

numbers

decimal to binary,

129-130

decimal to hex,

129-130

time, asctime() func-

tion, 250-251

to uppercase, 302-303

copying strings, 213-215

cos() function, 149-150

CPU (central processing

unit) register, 233

CPUs (central processing

units), 13

creating

declarations, 299

expressions, 299

names for data types,

300-302

ctype.h header file, 439

D

%d (integer) format

specifier, 63-64, 79

data

formatted

fprintf() function,

381-384, 388

fscanf() function,

381-384

stack, overwriting, 305

data items, separating,

317

data modifiers

long, 145-147

short, 145

signed, 142-143

unsigned, 143-145

data structures, linked

lists, 410

advantages, 410

creating, 410-418

data types, 423. See also

variables

array, 424

char, 47, 57

consolidating, 300

converting, cast opera-

tor, 101-102

creating, 426

defining, variable lists,

424

double, 67

508 conditional compilation

enum, 296, 424

declaring, 296

defining variables,

296

float, 47, 64

int, 46, 62

names, 300-302

pointers, moving,

260-262

size, changing, 145-147

sizes, measuring,

122-123

struct, 424-425

bit fields, 347-350

structures, 314

union, 425-426

void, function declara-

tions, 248-249

DataDisplay() function,

326, 346

DataEnter() function,

346

DataRead() function,

377, 381, 384

DataReceive() function,

321

DataWrite() function,

381, 384

date and time functions,

249

dates, converting,

250-251

daylight savings time,

249

debugging, 37

bugs, 420

checking syntax, 36

error messages, 36

decimal numbers

converting to binary,

129-130

converting to hex,

79-81, 129-130

decisions, unlimited

(switch statements), 161

declaring. See also defin-

ing; prototyping

functions

arrays, 190

[] (brackets), 190

of pointers, 272

of structures,

324-327

bit fields, 347-350

creating declarations,

299

definitions

combining, 315

compared, 244, 432

enum data types, 296

functions, 244-249

prototypes, 245

specifying return

types, 244

getchar() function, 248

global variables, 229

main() functions, 306

members, structures,

314

multidimensional

arrays, 199

multidimensional

unsized arrays, 201

named integer con-

stants, 296

nested structures, 327

pointers, 180-181,

274-275

structures, 314-315

synonyms, 300

unions, 334

unsized character

arrays, 209

variables, 48, 177, 244

floating-point num-

bers, 64-65

integers, 62-63

decrement operator (--),

96-98

default keyword, 56

default values

enum data types, 298

integers, 296

deference operator (*),

182

#define directive, 296,

393, 434

code example, 394-396

defining function-like

macros, 394-396

expressions, 396

nested macro defini-

tions, 396

syntax, 393

defining. See also declar-

ing

bit fields, 347-350

data types, variable

lists, 424

declarations

combining, 315

compared, 244, 432

#define directive, 296,

393, 434

code example,

394-396

defining function-

like macros,

394-396

expressions, 396

function-like macros,

394-396

nested macro defini-

tions, 396

syntax, 393

functions, 244-247

macros, #if directives,

400

structure variables, 315

defining 509

synonyms, 321

variable lists, enum data

types, 296

variables, 244

enum data types, 296

unions, 334-335

dereferenced pointers,

323

directives (preprocessor)

#define, 296, 393

code example,

394-396

defining function-

like macros,

394-396

expressions, 396

nested macro defini-

tions, 396

syntax, 393

#elif, 401-402

#else, 399-402

#endif, 397-402, 406

code example,

398-399

syntax, 397

#if

arithmetic expres-

sions, 406

code example,

401-402

macro definitions,

400

nested conditional

compilation,

402-404

syntax, 399

#ifdef, 397-399

#ifndef, 397-399

#include, 31

#undef, 393-394, 406

disabling buffering, 387

displaying

arrays of characters,

196-198

multidimensional

arrays, 200-201

division, truncation, 100

division assignment oper-

ator (/=), 93

do keyword, 56

do-while loops, 107-109

dot operator (.), 315-317

unions, 335-337, 351

double data type, 67

double keyword, 56

double quotes (“), 32-33,

59

duplication, avoiding

(structures), 322

durations (variables), 229

E

%e (scientific notation)

format specifier, 67, 79

elements (arrays),

190-192

#elif directive, 401-402,

434

#else directive, 434

code example, 401-402

syntax, 399

else keyword, 56

end-of-file (EOF), 73

#endif directive, 397-402,

406, 416

code example, 398-399

syntax, 397

ending outputs, null

characters, 198-199

enum data type, 296, 424

declarations, 296

declaring, 296

defining, listing, 297

defining variables, 296

integer values, assign-

ing, 296, 300

listing, 298-299

values, 298-299

variable lists, 296

enum keyword, 56

enumerated data type.

See enum data type

EOF (end-of-file) con-

stant, 73

equal to operator (==),

98

errno.h header file, 439

error messages, 36

errors

compliancy (compilers),

280-281

pointers, uninitialized,

262

escape character (\), 59

evaluating conditions, if

statement, 156

.exe filename extension,

29

executable files, 24, 34-

35, 318

executing

codes, if statement, 156

programs, 305

statements, switch, 164

exhausting stack

resources, 305

exit() function, 34

exiting switch statements,

164

exponents, 67

510 defining

expressions, 42-43, 426.

See also operators

arithmetic, 406

conditional, switch

statement, 161-162

creating, 299

#define directive, 396

in for loops, 113-115

macro body, 396

placing parentheses

around, 419

return values in, 47

extern keyword, 56, 234

F

%f (floating-point) for-

mat specifier, 65-67, 79

\f (form-feed character),

60

fclose() function

code example, 359-360

files, closing, 358-360,

371

syntax, 359

feof() function, 367

code example, 368-369

syntax, 367

fgetc() function

code example, 361-363

files, reading, 360-363

syntax, 361

fgets() function

code example, 364-366

files, reading, 363-366

gets() function compari-

son, 364-366, 371

reading keyboard input,

366

syntax, 363

file pointers, 357, 371

file position indicators.

See FILE structure

file scope (variables), 232

file streams, 433

FILE structure, 357

file position indicators,

357

fseek() function, 374

ftell() function, 375

rewind() function,

378

filename extensions,

28-29

files, 433

binary

reading, 378-381

writing, 378-381

defined, 356

executable, 24, 34-35

fclose() function

closing files,

358-360, 371

code example,

359-360

syntax, 359

feof() function, 367-369

fgetc() function

code example,

361-363

reading files,

360-363

syntax, 361

fgets() function

code example,

364-366

gets() function com-

parison, 364-366,

371

reading files,

363-366

reading keyboard

input, 366

syntax, 363

file pointers, 357, 371

FILE structure, 357,

374-375, 378

fopen() function, 357,

381

code example,

359-360

formatting, 388

modes, 357-358, 388

opening files, 358

syntax, 357

fputc() function,

360-363

fputs() function,

364-366

fread() function, 381

code example,

368-369

reading files,

366-369

syntax, 366

fseek() function,

374-378

ftell() function, 374-378

fwrite() function, 381

code example,

368-369

syntax, 367

writing files,

366-369

header, 32

ANSI, 439

stddef.h, 301

stdio.h, 32

stdlib.h, 302

string.h, 302

naming, case sensitivity,

32

files 511

object, 34

random access,

374-378, 387

rewind() function, 378

code example,

379-384

syntax, 378

sequential access, 374

source code, 34

streams comparison,

356

float data type, 47, 64

float keyword, 56

float.h header file, 439

floating data type. See

float data type

floating-point constants,

423

floating-point format

specifier (%f), 65-67, 79

floating-point numbers,

64

calculations, 152

declaring, 64-65

flushing buffers, 356

fopen() function, 381

code example, 359-360

files, opening, 357-358

formatting new files,

388

modes, 357-358, 388

syntax, 357

for keyword, 56

for loops, 109-112

complex expressions in,

113-115

infinite, 166

null statements,

112-113

form-feed character (\f),

60

format specifiers

%%, 79

%c (character), 60-62,

79

%d (integer), 63-64, 79

%e (scientific notation),

67, 79

%f (floating-point),

65-67, 79

fprintf() function

adding h to, 147-148

adding l to, 147-148

%G (uses %f or %E),

79

%i (integer), 79

minimum field width,

81-83

%n, 79

%o (unsigned octal), 79

%p, 79

precision specifiers,

84-85

printf() function, 78-79

adding h to, 147-148

adding l to, 147-148

%p, 179

%s, 217

%s (string), 79

scanf() function, 217

%u (unsigned integer),

79

%X (unsigned hexadec-

imal), 79

formatted data

fprintf() function

code example,

382-384

printf() function

comparison, 381,

388

syntax, 382

fscanf() function

code example,

382-384

scanf() function

comparison, 381

syntax, 381

formatting files, fopen(),

388

forms, switch statement,

161

fprintf() function

code example, 382-384

format specifiers

adding h to, 147-148

adding l to, 147-148

printf() function com-

parison, 381, 388

syntax, 382

fputc() function

code example, 361-363

files, writing, 360-363

syntax, 361

fputs() function

code example, 364-366

files, writing, 363-366

puts() function compar-

ison, 364

syntax, 364

fread() function

binary files, 381

code example, 368-369

files, reading, 366-369

syntax, 366

fRecur() recursive func-

tion, 304

free() function, 283-286

freopen() function

code example, 385-386

modes, 385-386

streams, redirecting,

384-388

syntax, 384

512 files

fscanf() function

code example, 382-384

scanf() function com-

parison, 381

syntax, 381

fseek() function

code example, 375-378

random access, 374-378

syntax, 374

ftell() function

code example, 375-378

random access, 374-378

syntax, 375

function scope (vari-

ables), 226-227

functions, 46, 432-433.

See also statements

arrays, passing,

266-267, 270-272

asctime(), 250-251

beginning, 48

BlockReadWrite(), 369

body, 48-49

calling, 49-51, 245-249

calloc(), 286-288

CharReadWrite(),

362-363

complexity, 49

Convert2Upper(), 303

cos(), 149-150

DataDisplay(), 326, 346

DataEnter(), 346

DataRead(), 377, 381,

384

DataReceive(), 321

DataWrite(), 381, 384

date and time, 249

declaring, 244-247, 432

prototypes, 245

specifying return

types, 244

void data type,

248-249

defining, 245-247, 432

ending, 48

exit(), 34

fclose()

closing files,

358-360, 371

code example,

359-360

syntax, 359

feof(), 367

code example,

368-369

syntax, 367

fgetc()

code example,

361-363

reading files,

360-363

syntax, 361

fgets()

code example,

364-366

gets() function com-

parison, 364-366,

371

reading files,

363-366

reading keyboard

input, 366

syntax, 363

fopen(), 381

code example,

359-360

formatting new files,

388

modes, 357-358, 388

opening files,

357-358

syntax, 357

fprintf()

code example,

382-384

printf() function

comparison, 381,

388

syntax, 382

fputc()

code example,

361-363

syntax, 361

writing files,

360-363

fputs()

code example,

364-366

puts() function com-

parison, 364

syntax, 364

writing files,

363-366

fread()

binary files, 381

code example,

368-369

reading files,

366-369

syntax, 366

free(), 283-286

freopen()

code example,

385-386

modes, 385-386

redirecting streams,

384-388

syntax, 384

fscanf()

code example,

382-384

scanf() function

comparison, 381

syntax, 381

functions 513

fseek()

code example,

375-378

random access,

374-378

syntax, 374

ftell()

code example,

375-378

random access,

374-378

syntax, 375

fwrite()

binary files, 381

code example,

368-369

syntax, 367

writing files,

366-369

getc(), 72-74

getchar(), 74-75,

248-249

gets()

fgets() function com-

parison, 364-366,

371

syntax, 215

InfoDisplay(), 329

InfoEnter(), 329

LineReadWrite(), 365

localtime(), 250

longjmp(), 440

low-level I/O, 387

main(), 29, 33, 305-306

malloc(), 280-283, 292

naming, 47, 418

passing arguments to,

47-48

pointers to

declaring, 274-275

passing, 268-270

pow(), 150-152

printf(), 78-79, 217, 386

format specifiers,

78-79

fprintf() function

comparison, 381,

388

prototyping, 245-247,

432

fixed number of

arguments, 251

no arguments,

248-249

variable number of

arguments, 251-252

PtrSeek(), 377

PtrTell(), 377

putc(), 75-76

putchar(), 77-78

puts()

fputs() function com-

parison, 364

syntax, 215

realloc(), 288-291

recursive, 303-305

calling, 303-304

fRecur(), 304

running, 305

rewind(), 378

code example,

379-384

syntax, 378

scanf(), 217-219

fscanf() function

comparison, 381

syntax, 217

setbuf(), 387

setjmp(), 440

setlocale(), 440

setvbuf(), 387

sin(), 149-150

sqrt(), 150-152

strcpy(), 213-215, 336

strlen(), 212-213

StrPrint, 386

structures, passing,

319-321

tan(), 149-150

time(), 250

types, 46-47

variable declarations,

48

va_end(), 252

fwrite() function

binary files, 381

code example, 368-369

files, writing, 366-369

syntax, 367

G

%g format specifier, 79

getc() function, 72-74

getchar() function, 74-75,

248-249

gets() function, 215-217,

364-366, 371

global variables, 227, 233

declaring, 229

versus local, 418

goto statement, 56, 155,

168-169, 419

avoiding, 168

labels, location, 169

spaghetti code, 169

greater than operator

(>), 98

greater than or equal to

operator (>=), 98

grouping variables with

structures, 314

groups, 314

514 functions

H

h

adding to fprintf format

specifiers, 147-148

adding to printf format

specifiers, 147-148

hardware requirements,

16

header files, 32

ANSI, 439

stddef.h, 301

stdio.h, 32

gets() function, 215

puts() function, 215

stdlib.h, 302

string.h, 302

hex numbers, converting

decimal numbers to,

79-81, 129-130

high-level I/O, 357, 433

high-level programming

languages, 12-14

history of C, 12

I

%i (integer) format spec-

ifier, 79

I/O, 433-434

buffered, 433

high-level, 433

streams, 72

user input, 72

getc() function,

72-74

getchar() function,

74-75

writing output, 75

printf() function,

78-79

putc() function,

75-76

putchar() function,

77-78

IDE (integrated develop-

ment environment)

Borland C++, 21

Visual C++, 18

identifiers, 44

#if directive, 434

arithmetic expressions,

406

code example, 401-402

macro definitions, 400

nested conditional com-

pilation, 402-404

syntax, 399

if statement, 56, 155-158

braces, 156

codes, executing, 156

conditions, evaluating,

156

listing, 157

nesting, 160-161

if-else statement, 155,

158-159

#ifdef directive, 397, 434

code example, 398-399

syntax, 397

#ifndef directive,

397-399, 416

code example, 398-399

syntax, 398

illegal characters (identi-

fiers), 44

implementing algo-

rithms, 305

improving readability, C

programs, 296, 300

#include directive, 31

increasing program

portability, 234

increment operator (++),

96-98

indentation (in code), 28,

419

indexes (arrays), 190

indirection operator. See

deference operator

infinite loops, 166-167

InfoDisplay() function,

329

InfoEnter() function, 329

information hiding (mod-

ular programming), 419

initializers, 317

initializing

array elements, 191

character arrays,

208-211

elements, 192

multidimensional

arrays, 199-201

multidimensional

unsized arrays,

202-203

strings, 208-211

structures, 317-319

unions, 337-339, 351

memory sharing

code example,

338-339

structures, 338

unsized character

arrays, 209

input data, reading,

217-219

input/output. See I/O

input, user, 72

getc() function, 72-74

getchar() function,

74-75

input, user 515

int data type, 46, 62

int keyword, 56

integer constants, 422

integer format specifiers

%d, 63-64, 79

%i, 79

integer values

default, 296

enum data types,

assigning, 296, 300

integers

adding, 304

arrays, 190

declaring, 62-63

negatives, 95

pointers, 259

structures, assigning,

315

integrated development

environment. See IDE

interpreted programming

languages, 15

interpreters. See compil-

ers

iteration. See loops

J-K

jumping statements. See

conditional branching

statements

justifying. See aligning

”K & R”, 15

keyboards, input, 366

keywords, 56

auto, 56

break, 56

case, 56, 162

char, 56

const, 56

continue, 56

default, 56

do, 56

double, 56

else, 56

enum, 56

extern, 56

float, 56

for, 56

goto, 56

if, 56

int, 56

list of, 420-421

long, 56

register, 56, 233

reserved, 45

return, 56

short, 56

signed, 56

sizeof, 56

static, 56

struct, 56, , 348-350

switch, 56

typedef, 57, 300-301,

321, 426

union, 57

unsigned, 57

void, 57, 305

volatile, 57

while, 57

L

l

adding to fprintf format

specifiers, 147-148

adding to printf format

specifiers, 147-148

labels

conditional branching

statements, 162

location, goto state-

ment, 169

languages. See program-

ming languages

left values, 176

defined, 187

obtaining, 178

left-hand operands, 92

left-justifying output,

83-84

left-shift operator (<<),

133-135

legal characters (identi-

fiers), 44

lengths of strings, mea-

suring, 212-213

less than operator (<), 98

less than or equal to

operator (<=), 98

levels (programming lan-

guages), 12

libraries, 14

limits.h header file, 439

line numbers, 28

LineReadWrite() func-

tion, 365

lines (code)

breaking, 28

indenting, 28

linked lists, 410

advantages, 410

creating, 410

adding nodes, 414

calling functions in

module file,

416-418

header file, 415-416

module program

example, 410-415

516 int data type

linkers, 34-36

listings

accessing arrays via

pointers, 264-265

adding integers with a

function, 49

aligning output, 83

arithmetic assignment

operators, 94

arrays of structures,

325-326

binary files,

reading/writing,

379-380

bit fields, 348-349

bitwise operators, 132

break statement,

164-165

calculating an addition

and printing results to

the screen, 50

calculating array size,

193

calling functions after

they are declared and

defined, 245

calling recursive func-

tions, 303-304

calloc() function, 287

cast operator, 101

changing variable val-

ues via pointers, 183

command-line argu-

ments, 306-307

conditional operator,

135

continue statement, 167

converting numeric val-

ues back to characters,

61

copying strings, 213

declaring and assigning

pointer values, 180

#define directive,

394-395

defining enum data

types, 297

do-while loop example,

108

#elif directive, 401

#else directive, 401

#endif directive, 398

ending output at null

character, 198

enum data types,

298-299

fclose function,

359-360

feof() function, 368-369

fgetc() function,

361-362

fgets() function,

364-365

floating-point format

specifier, 65-66

fopen() function,

359-360

for loops, 110, 114-115

fprintf() function,

382-383

fputc() function,

361-362

fputs() function,

364-365

fread() function,

368-369

freopen() function, redi-

recting streams,

385-386

fscanf() function,

382-383

fwrite() function,

368-369

gets() function, 216

%hd, %lu, and %ld for-

mat specifiers,

147-148

hex numbers, convert-

ing to, 80

#if directive, 401

if statement in decision

making, 157

if-else statement, 159

#ifdef directive, 398

#ifndef directive, 398

increment and decre-

ment operators, 97

infinite loops, breaking,

166

initializing arrays, 191

initializing strings,

210-211

initializing structures,

318

initializing unsized

arrays, 202

integer format specifier,

63

linked lists

calling functions in

module file,

416-418

header file, 415

module program,

410-413

logical AND operator,

125

logical negation opera-

tor (!), 128

logical OR operator,

126

malloc() and free()

functions, 283-285

malloc() function,

281-282

listings 517

measuring string

lengths, 212

minimum field width

specifiers, 82

moving pointers, differ-

ent data types,

260-261

multiple pointers, 185

nested conditional com-

pilation, 403-404

nested if statements,

160

nested loops, 116

nested structures,

327-329

obtaining left values,

178

passing arrays to func-

tions, 266-267

passing functions with

pointers, 322-323

passing multidimen-

sional arrays to func-

tions, 270-271

passing pointers to

functions, 268-269

passing structures to

functions, 320

pointing to functions,

274-275

pow90 and sqrt() func-

tions, 151

precision specifiers,

84-85

printing array of char-

acters, 196

printing characters, 60

printing two-dimension-

al arrays, 200

printing variables, dif-

ferent scope levels,

225

processing variable

arguments, 253-254

put() function, 216

random access to files,

375-376

realloc() function,

289-290

referencing arrays with

pointers, 195

referencing structure

members, 316

relational operators, 99

relationship between

program and block

scope, 227

scanf() function with

various format speci-

fiers, 218

shift operators, 134

short and long data

modifiers, 146

signed and unsigned

data modifiers, 144

simple C program, 28

sizeof operator,

122-123

static specifier, 230

subtracting pointers,

263

switch statement, 162

trigonometry functions,

149

typedef definitions,

301-302

unions

measuring size,

339-340

memory sharing,

338-339

nesting in structures,

344-345

referencing, 335-336

referencing memory

locations, 341-342

user input

getc() function

example, 73

getchar() function,

74-75

using array, pointer to

character strings,

272-273

void in function decla-

rations, 248-249

while loop example,

106

writing output, putc()

function, 76

lists

linked, 410

advantages, 410

creating, 410-418

variables, enum data

types, 296

little-endian format, 343

local scope. See block

scope

local time, 249

local variables, 225, 418

locale.h header file, 440

localtime() function, 250

locations (memory), mul-

tiple pointers, 185-186

logical operators, 124

AND (&&), 124-126

NEGATION (!),

128-129

OR (||), 126-127

long data modifier,

145-147

long keyword, 56

longjmp() functions, 440

518 listings

loops, 105, 427-428

continue statement, 171

control flow, 155

do-while, 107-109

for, 109-112

complex expressions

in, 113-115

null statements,

112-113

infinite, 166-167

nesting, 116-117

skipping, continue

statement, 167

while, 106-107

low-level I/O, 357, 387

M

macro body, 392, 396

macro names, 392-393

macro substitution, 392

code example, 394-396

#define directive, 393

macros

#define directive, 393

code example,

394-396

defining function-

like macros,

394-396

expressions, 396

nested macro defini-

tions, 396

syntax, 393

#if directive, 400

#undef directive,

393-394, 406

va_arg(), 252

va_start(), 252

main() functions, 29, 33,

305

arguments, 305-306

declaring, 306

maintaining C programs,

296

malloc() function,

280-283

calloc() function, com-

pared, 292

listings, 281-285

manipulating variables

indirectly, 176

mantissas, 67

math.h header file, 440

mathematical functions,

148

cos(), 149-150

pow(), 150-152

sin(), 149-150

sqrt(), 150-152

tan(), 149-150

measuring

size

data, 122-123

structures, 339-341

unions, 339-341

string lengths, 212-213

members, structures, 314

assessing, 315

declaring, 314

referencing, 315-319

memory

addresses, 343

allocated, releasing,

283-286

allocating

calloc() function,

286-288

malloc() function,

280-283

buffers, 356

flushing, 356

high-level I/O, 357

low-level I/O, 357,

387

setbuf() function,

387

setvbuf() function,

387

locations, multiple

pointers, 185-186

reallocating, realloc()

function, 288-291

stack, 305

unions, 334, 425-426

arrow operator (->),

335, 351

declaring, 334

defining variables,

334-335

dot operator (.),

335-337, 351

initializing, 337-339,

351

memory sharing

code example,

338-339

nesting, 343-346

referencing,

335-337, 351

referencing memory

locations, 341-343,

352

size, 339-341

structures compari-

son, 351

tag names, 334

variables, 176-177

memory locations, tem-

porary, 229

memory locations 519

Microsoft compiler, 18-21

running, 19

starting, 18

minimum field width

specifiers, 81-83

modes

fopen() function,

357-358, 388

freopen() function,

385-386

modifiers (variables),

234-235. See also data

modifiers

modular programming,

419-420

modules, 419

modulus operator (%),

43

moving

file position indicators

fseek() function, 374

rewind() function,

378

pointers, 260-262

multidimensional arrays

declaring, 199

displaying, 200-201

initializing, 199-201

multidimensional unsized

arrays, 201-203

multiple pointers,

185-186

multiplication assign-

ment operator (*=), 93

multiplication operator

(*), 182

N

%n format specifier, 79

\n (newline character), 33

named constants, versus

numeric, 419

named integer constants,

declaring, 296

names

data types, 300-302

macro names, 392-393

tag, unions, 334

naming

built-in arguments, 308

functions, 47, 418

identifiers, 44

variables, 68, 418

negative numbers, 95,

142

nested block scope (vari-

ables), 225-226

nested comments, 31

nested conditional compi-

lation, 402-404

nested macro definitions

(#define directives), 396

nested structures

declaring, 327

listings, 327-329

nesting

if statements, 160-161

loops, 116-117

unions

code example,

344-345

in structures,

343-346

newline character (\n), 33

nibbles, 14

nodes (linked lists),

adding, 414

not equal to operator

(!=), 98

null characters, 198-199

null pointers, 183

null statements, 112-113

numbers

binary, negatives, 142

decimal

converting to binary,

129-130

converting to hex,

79-81, 129-130

floating-point, calcula-

tions, 152

negatives, 95

scientific notation, 67

numeric constants, ver-

sus named, 419

numeric values (of char-

acters)

converting, 61

showing, 63-64

O

%o (unsigned octal) for-

mat specifier, 79

object files, 34

objects

bit fields

code example,

348-350

declaring, 347

defining, 347

pointing to, 431-432

obtaining left values, list-

ing, 178

opening files (fopen()

function), 357-360, 381

520 Microsoft compiler

opening comment marks,

29-30

operands, 92

operators

address-of (&),

177-179, 323

arithmetic, 43-44

arithmetic assignment,

92-95

addition assignment

(+=), 93

division assignment

(/=), 93

multiplication

assignment (*=),

93

remainder assign-

ment (%=), 93

subtraction assign-

ment (-=), 93

array subscript ([]),

190

arrow (->), 324, 335,

351

assignment (=), 92

binary, multiplication

(*), 182

bit-manipulation, 130

bitwise AND (&),

131

bitwise complement

(tilde), 131

bitwise OR (|), 131

bitwise XOR (^),

131

left-shift (<<),

133-135

right-shift (>),

133-135

cast, 101-102

cautions, 419

conditional (:?),

135-136

decrement (—), 96-98

deference (*), 182

dot (.), 315-317

unions, 335-337, 351

increment (++), 96-98

logical, 124

AND (&&), 124-126

NEGATION (!),

128-129

OR (||), 126-127

precedence, 98-99

relational, 98-100

equal to (==), 98

greater than (>), 98

greater than or equal

to (>=), 98

less than (<), 98

less than or equal to

(<=), 98

not equal to (!=), 98

sizeof, 122-123

table of, 421-422

unary, deference opera-

tors (*), 182

optimizers, turning off,

235

output

aligning, 83-84

format specifiers, 79

%c, 60-62

%d, 63-64

%E, 67

%f, 65-67

minimum field width

specifiers, 81-83

precision specifiers,

84-85

writing, 75

printf() function,

78-79

putc() function,

75-76

putchar() function,

77-78

outputs, null characters,

198-199

overwriting data in stack,

305

P

%p format specifier, 79,

179

parameters, command-

line arguments, 305

parentheses

if statement, 156

placing around expres-

sions, 419

passing

arguments

to functions, 47-48

to main () functions,

305

arrays, to functions,

266-267

functions, with pointers,

322-323

multidimensional

arrays, to functions,

270-272

pointers, 268-270, 322

structures, to functions,

319-321

performance, comments,

30

performance, comments 521

Perl, 14

pointers, 176, 430

arrays

accessing, 264-266

declaring, 272

referencing with,

195-196

strings, 272-274

character constants,

assigning, 210

character strings,

assigning, 210-211

declaring, 179-181

dereferenced, 323

file pointers, 357, 371

to functions, declaring,

274-275

integers, 259

moving, 260-262

multiple, 185-186

null, 183

passing, 268-270, 322

pointing to objects,

431-432

size, 260

structures, referencing,

322-324

subtracting, 263-264

types, 180

uninitialized, errors,

262

values, assigning,

180-181

variable values, chang-

ing, 183-184

portability, 13, 36, 234

post-decrement operator

(--), 96

post-increment operator

(++), 96

pow() function, 150-152

pre-decrement operator

(--), 96

pre-increment operator

(++), 96

precedence (of opera-

tors), 43, 98-99

precision specifiers, 84-85

preprocessor. See C pre-

processor

preprocessor directives.

See directives

printf() function, 78-79,

386

format specifiers, 78-79

adding h to, 147-148

adding L to, 147-148

%c, 60-62

%d, 63-64

%e, 67

%f, 65-67

%p, 179

%s, 217

fprintf() function com-

parison, 381, 388

printing characters,

60-62

processing variable argu-

ments, 252-254

program portability,

increasing, 234

program scope (vari-

ables), 227, 233

block scope compari-

son, 227-229

global variables, 227

programming

modular, 419-420

structured

bottom-up, 255

C, 169

top-down, 255

programming languages

C++, 14

compiled, 14

high-level, 12-14

interpreted, 15

levels, 12

Perl, 14

programming style, 418-

419

programs

C preprocessor, 392

(pound sign), 392

C compiler compari-

son, 392-393, 405

directives. See direc-

tives

macro body, 392,

396

macro names,

392-393

macro substitution,

392-396

newline characters,

392

executing, 305

file names, .c extension,

28

performance, com-

ments, 30

running

Borland C++, 23

Visual C++, 20

prototyping functions,

245-247, 432

fixed number of argu-

ments, 251

no arguments, 248-249

variable number of

arguments, 251-252

PrtSeek() function, 377

PtrTell() function, 377

putc() function, 75-76

522 Perl

putchar() function, 77-78

puts() function, 215-217

fputs() function com-

parison, 364

requirements, stdio.h

header file, 215

syntax, 215

Q-R

qualifiers. See modifiers

(variables)

\r (return character), 60

random access

code example, 375-378

disk files, 374-377, 387

fseek() function,

374-378

ftell() function, 374-378

readability of code,

improving, 296, 300,

419

reading

characters, 215-217

files, 360

binary, 378-381

fgetc() function,

360-363

fgets() function,

363-366, 371

fread() function,

366-369, 381

random access,

374-377, 387

sequential access,

374

formatted data

fprintf() function,

381-384, 388

fscanf() function,

381-384

input

getc() function,

72-74

getchar() function,

74-75

scanf() function,

217-219

keyboard input, fgets()

function, 366

strings, 217

real numbers. See float-

ing-point numbers

realloc() function,

288-291

reallocating memory,

288-291

recommended reading,

434-435

recursive functions,

303-305

calling, 303-304

fRecur(), 304

running, 305

redirecting streams, fre-

open() function, 384-388

referencing

arrays, with pointers,

195-196

memory locations,

unions, 341-343, 352

structure members,

315-319

structures

with arrow operators,

324

with pointers, 322-

324

unions, 335, 351

arrow operator (->),

335, 351

code example,

335-337

dot operator (.),

335-337, 351

regions (variables), 229

register keyword, 56, 233

registers, 233

relational operators,

98-100

equal to (==), 98

greater than (>), 98

greater than or equal to

(>=), 98

less than (<), 98

less than or equal to

(<=), 98

not equal to (!=), 98

releasing allocated mem-

ory, 283-286

remainder assignment

operator (%=), 93

remainder operator (%),

43

replacing built-in argu-

ments, 308

requirements

stdio.h header file, 215

system requirements,

16-17

reserved words. See key-

words

resetting file position

indicators, 378

resources, 305, 434-435

return character (\r), 60

return keyword, 34, 56

return types, specifying,

244

return values, 47

returning times, 250

reusability, 14

rewind() function, 378

code example, 379-384

syntax, 378

rewind() function 523

right value (variables),

177, 187

right-hand operands, 92

right-justifying output,

83-84

right-shift operator (>>),

133-135

Ritchie, Dennis, 12

rounding (division), 100

running

compilers

Borland C++, 23

Visual C++, 19

programs

Borland C++, 23

Visual C++, 20

recursive functions, 305

S

%s (string format specifi-

er), 79

printf() function, 217

scanf() function, 217

saving code

Borland C++, 23

Visual C++, 19

scanf() function, 217-219

format specifiers, 217

fscanf() function com-

parison, 381

syntax, 217

scientific notation, 67

scientific notation format

specifier (%E), 67, 79

scopes (variables)

block, 224-225

file, 232

function, 226-227

nested block, 225-226

program, 227, 233

semicolons (;), 28

separating data items,

317

sequential access, disk

files, 374

setbuf() function, 387

setjmp() function, 440

setjmp.h header file, 440

setlocale() function, 440

setting null pointers, 183

setvbuf() function, 387

shift operators, 133-135

short data modifier, 145

short keyword, 56

sign bits, 142

signal.h header file, 440

signed data modifier,

142-143

signed keyword, 56

sin() function, 149-150

single quotes (‘), 59

size

pointers, 260

structures, 339-341

unions, 339

measuring, 339-341

structure size com-

parison, 339-341

sizeof keyword, 56

sizeof operator, 122-123

sizes, arrays

calculating, 192-194

specifying, 267

unsized arrays, 201

skipping loops, 167

software requirements,

16-17

software engineering, 420

source code. See code

spacing (in code), 419

spaghetti code, 169

spatial regions (vari-

ables), 229

specifiers, storage classes

auto, 229-231

extern, 234

register, 233

static, 230

specifying

sizes, arrays, 267

return types, 244

sqrt() function, 150-152

stack, 305

standard input stream

reading characters from,

215-217

reading strings from,

217

standard input-output

header file, 32

standard output stream

writing characters from,

217

writing characters to,

215-216

standards, 15-16

starting compilers

Borland C++, 21

Visual C++, 18

statement blocks, 45-46

statements, 45, 426. See

also functions; loops

break, 155, 164-165

conditional branching,

155

continue, 155, 167-168

control flow, 426

goto, 155, 168-169

if, 155-158

braces, 156

evaluating condi-

tions, 156

524 right value

executing codes, 156

nesting, 160-161

if-else, 155, 158-159

looping. See loops

null, 112-113

return, 34

switch, 155, 161-164

static keyword, 56

static specifier, 230-231

static specifiers, apply-

ing, 231

stdarg.h header file, 440

stddef.h header file, 301,

440

stderr file stream, 433

stderr stream, 72

stdin file stream, 433

stdin stream, 72

stdio.h file, 32

stdio.h header file, 440

stdlib.h header file, 302,

440

stdout file stream, 433

stdout stream, 72

storage, memory, 343

storage classes, 229

auto specifier, 229-231

extern specifier, 234

modifiers, 234-235

register specifier, 233

static specifier, 230

storing variables, regis-

ters, 233

strcpy() function,

213-215, 336

streams, 72, 433

binary, 356, 370

defined, 356

device independence,

356

files comparison, 356

freopen() function,

384-388

code example,

385-386

modes, 385-386

syntax, 384

high-level I/O, 357

low-level I/O, 357

setbuf() function, 387

setvbuf() function, 387

stderr, 72

stdin, 72

stdout, 72

text, 356, 370

string constants, 208, 423

character arrays, initial-

izing, 208-211

character constants,

compared, 209-212

string format specifier

(%s), 79

string.h header file, 302,

440

strings, 208

copying, 213-215

initializing, 208-211

lengths, measuring,

212-213

pointers, arrays,

272-274

reading, 217

strlen() function, 212-213

StrPrint() function, 386

struct data type, 424-425

bit fields

code example,

348-350

declaring, 347

struct keyword, 56, 347

structure members, ref-

erencing, 315-319

structured programming

bottom-up program-

ming, 255

C, 169

top-down programming,

255

structures

arrays

arrays of structures,

324-327

compared, 314

arrow operators, refer-

encing, 324

data types, 314

declaring, 314-315

definitions, 315

duplication, avoiding,

322

FILE, 357, 374-375,

378

functions, passing,

319-321

initializing, 317-319

integers, assigning, 315

members, 314-315

nested, declaring, 327

nesting unions, 343-346

pointers, referencing,

322-324

size, 339-341

tag names, 314

union comparison, 351

union initialization, 338

variables, 314-315

style (programming),

418-419

subtracting integers,

pointers, 259, 263-264

subtraction assignment

operator (-=), 93

subtraction operator (-),

96

subtraction operator 525

switch statement, 56, 155,

161-164

braces, 165

case keyword, 162

conditional expressions,

161-162

exiting break state-

ments, 164

form, 161

listing, 162

statement execution,

164

unlimited decisions,

161

switches, 13

synonyms

data type names, 300

declaring, 300

defining, 321

system requirements,

16-17

T

\t (tab character), 60

tag names

structures, 314

unions, 334

tan() function, 149-150

temporal regions (vari-

ables), 229

temporary memory loca-

tions, 229

text editors, require-

ments, 17

text streams, 356, 370

time, converting, 250-251

time() function, 250

time.h header file, 440

top down programming,

255

transistors, 13

trigonometry functions,

149-150

troubleshooting. See

debugging

truncation (division), 100

turning off optimizers,

235

typedef keyword, 57, 300,

321, 426

advantages, 300-301

listing, 301-302

updating, 301

U

%u (unsigned integer)

format specifier, 79

unary deference operator

(*), 182

unary minus operator (-),

95

#undef directive, 393-394,

406, 434

uninitialized pointer

errors, 262

union data type, 425-426

union keyword, 57

unions, 334

arrow operator (->),

335, 351

declaring, 334

dot operator (.),

335-337, 351

initializing, 337-339,

351

memory sharing

code example,

338-339

structures, 338

nesting

code example,

344-345

in structures,

343-346

referencing, 335-337,

351

referencing memory

locations, 341-343,

352

size, 339-341

structures comparison,

351

tag names, 334

variables, defining,

334-335

UNIX systems, require-

ments, 17

unsigned data modifier,

143-145

unsigned hexadecimal

format specifier (%x),

79

unsigned integer format

specifier (%u), 79

unsigned keyword, 57

unsigned octal format

specifier (%o), 79

unsized arrays

character arrays, 209

declaring, 201

initializing, 202-203

sizes, calculating, 201

updating definitions, 301

uppercase, converting to,

302-303

user input, 72

getc() function, 72-74

getchar() function,

74-75

526 switch statement

V

values

constants, 42

enum data types,

298-299

integers, default, 296

left, 187

pointer, assigning,

180-181

right, 187

variables, 42, 183-184

variable arguments, pro-

cessing, 252-254

variables, 42. See also

data types

assigning return values

to, 47

auto specifier, 229

character, 58

const modifiers,

234-235

declaring, 48, 177, 244

floating-point num-

bers, 64-65

integers, 62-63

defining, unions,

334-335

extern specifier, 234

global, 227, 233

declaring, 229

versus local, 418

groups, collecting, 314

indirectly manipulating,

176

left value, 176

lists, defining data

types, 424

local, 225, 418

naming, 68, 418

pointers, 176, 430-432

register specifier, 233

registers, storing, 233

right value, 177

scope

block, 225

block scope, 224

file, 232

function, 226-227

nested block scope,

225-226

program, 227

program and block

scope comparison,

227-229

spatial regions, 229

static specifier, 230-231

storage classes, 229

structures, 314-315

temporal regions, 229

values, 42, 183-184

volatile modifiers, 235

va_arg() macro, 252

va_end() function, 252

va_start() macro, 252

viewing file position indi-

cator value, 375

Visual C++, 17

compiler, 18-21

running, 19

starting, 18

IDE, 18

void data type, function

declarations, 248-249

void keyword, 57, 305

volatile keyword, 57

volatile modifier (vari-

ables), 235

W-Z

while keyword, 57

while loops, 106-107, 166

whitespace, 29

writing

characters

from standard output

stream, 217

puts() function,

215-217

to standard output

stream, 215-216

code

Borland C++, 21

Visual C++, 18

files, 360

binary, 378-381

fputc() function,

360-363

fputs() function,

363-366

fwrite() function,

366-369, 381

random access,

374-377, 387

sequential access,

374

output, 75

printf() function,

78-79

putc() function,

75-76

putchar() function,

77-78

%x (unsigned hexadeci-

mal) format specifier,

79

%x (unsigned hexadecimal) format specifier 527

	067231861X
	Copyright ©2000 by Sams Publishing
	Contents at a Glance
	Table of Contents
	About the Author
	Tell Us What You Think!

	Introduction
	Who Should Read This Book?
	Special Features of This Book
	Programming Examples
	Q&A and Workshop
	Conventions Used in This Book
	What You’ll Learn in 24 Hours

	PART I The Basics of C
	HOUR 1 Taking the First Step
	What Is C?
	The ANSI C Standard
	Assumptions About You
	Setting Up Your System
	Summary
	Q&A
	Workshop

	HOUR 2 Writing Your First C Program
	A Simple C Program
	Comments
	The #include Directive
	The main() Function
	Compiling and Linking
	What’s Wrong with My Program?
	Debugging Your Program
	Summary
	Q&A
	Workshop

	HOUR 3 Learning the Structure of a C Program
	The Basics of a C Program
	Anatomy of a C Function
	Making Function Calls
	Summary
	Q&A
	Workshop

	HOUR 4 Understanding Data Types and Keywords
	C Keywords
	The char Data Type
	The int Data Type
	The float Data Type
	The double Data Type
	Using Scientific Notation
	Naming a Variable
	Summary
	Q&A
	Workshop

	HOUR 5 Handling Standard Input and Output
	Understanding Standard I/O
	Getting Input from the User
	Printing Output on the Screen
	Revisiting the printf() Function
	Q&A
	Workshop

	PART II Operators and Controlflow Statements
	HOUR 6 Manipulating Data
	Arithmetic Assignment Operators
	Getting Negations of Numeric Values
	Incrementing or Decrementing by One
	Greater Than or Less Than?
	Using the Cast Operator
	Summary
	Q&A
	Workshop

	HOUR 7 Working with Loops
	The while Loop
	The do-while Loop
	Looping Under the for Statement
	The Null Statement
	Using Nested Loops
	Summary
	Q&A
	Workshop

	HOUR 8 Using Conditional Operators
	Measuring Data Sizes
	Everything Is Logical
	Manipulating Bits
	What Does x?y:z Mean?
	Summary
	Q&A
	Workshop

	HOUR 9 Working with Data Modifiers and Math Functions
	Enabling or Disabling the Sign Bit
	Changing Data Sizes
	Mathematical Functions in C
	Summary
	Q&A
	Workshop

	HOUR 10 Controlling Program Flow
	Always Saying “if…”
	The switch Statement
	The break Statement
	Breaking an Infinite Loop
	The continue Statement
	The goto Statement
	Summary
	Q&A
	Workshop

	PART III Pointers and Arrays
	HOUR 11 Understanding Pointers
	What Is a Pointer?
	Address (Left Value) Versus Content (Right Value)
	Declaring Pointers
	Updating Variables via Pointers
	Pointing to the Same Memory Location
	Summary
	Q&A
	Workshop

	HOUR 12 Understanding Arrays
	What Is an Array?
	The Size of an Array
	Arrays and Pointers
	Multidimensional Arrays
	Unsized Arrays
	Summary
	Q&A
	Workshop

	HOUR 13 Manipulating Strings
	Declaring Strings
	How Long Is a String? ,
	Reading and Writing Strings
	Summary
	Q&A
	Workshop

	HOUR 14 Understanding Scope and Storage Classes
	Hiding Data
	The Storage Class Specifiers
	The Storage Class Modifiers
	Summary
	Q&A
	Workshop

	PART IV Functions and Dynamic Memory Allocation
	HOUR 15 Working with Functions
	Prototyping Functions
	Learning Structured Programming
	Summary
	Q&A
	Workshop

	HOUR 16 Applying Pointers
	Pointer Arithmetic
	Pointers and Arrays
	Pointers and Functions
	Arrays of Pointers
	Pointing to Functions
	Summary
	Q&A
	Workshop

	HOUR 17 Allocating Memory
	The enum Data Type
	Allocating Memory at Runtime
	The malloc() Function
	Releasing Allocated Memory with free()
	The calloc() Function
	The realloc() Function
	Summary
	Q&A
	Workshop

	HOUR 18 Using Special Data Types and Functions
	Making typedef Definitions
	Why Use typedef?
	Recursive Functions
	Revisiting the main() Function
	Summary
	Q&A
	Workshop

	PART V Structure, Union, File I/O, and More
	HOUR 19 Understanding Structures
	What Is a Structure?
	Referencing Structure Members with the Dot Operator
	Initializing Structures
	Structures and Function Calls
	Arrays of Structures
	Summary
	Q&A
	Workshop

	HOUR 20 Understanding Unions
	What Is a Union?
	Unions versus Structures
	Using Unions
	Summary
	Q&A
	Workshop

	HOUR 21 Reading and Writing with Files
	Files Versus Streams
	The Basics of Disk File I/O
	Reading and Writing Disk Files
	Summary
	Q&A
	Workshop

	HOUR 22 Using Special File Functions
	Random Access to Disk Files
	More Examples of Disk File I/O
	Summary
	Q&A
	Workshop

	HOUR 23 Compiling Programs: The C Preprocessor
	What Is the C Preprocessor?
	The C Preprocessor versus the Compiler
	The #define and #undef Directives ,
	Compiling Your Code Under Conditions
	Summary
	Q&A
	Workshop

	HOUR 24 Where Do You Go from Here?
	Creating a Linked List
	Programming Style
	Modular Programming
	Debugging
	What You Have Learned
	The Road Ahead…
	Summary

	PART VI Appendixes
	APPENDIXA ANSI Standard Header Files
	APPENDIX B Answers to Quiz Questions and Exercises
	Hour 1, “Taking the First Step”
	Hour 2, “Writing Your First C Program”
	Hour 3, “Learning the Structure of a C Program”
	Hour 4, “Understanding Data Types and Keywords”
	Hour 5, “Handling Standard Input and Output”
	Hour 6, “Manipulating Data”
	Hour 7, “Working with Loops”
	Hour 8, “Using Conditional Operators”
	Hour 9, “Working with Data Modifiers and Math Functions”
	Hour 10, “Controlling Program Flow”
	Hour 11, “Understanding Pointers”
	Hour 12, “Understanding Arrays”
	Hour 13, “Manipulating Strings”
	Hour 14, “Understanding Scope and Storage Classes”
	Hour 15, “Working with Functions”
	Hour 16, “Applying Pointers”
	Hour 17, “Allocating Memory”
	Hour 18, “Using Special Data Types and Functions”
	Hour 19, “Understanding Structures”
	Hour 20, “Understanding Unions”
	Hour 21, “Reading and Writing with Files”
	Hour 22, “Using Special File Functions”
	Hour 23, “Compiling Programs: The C Preprocessor”

	INDEX

