

C
FOR

DUMmIES
‰

2ND EDITION

by Dan Gookin

C
FOR

DUMmIES
‰

2ND EDITION

C
FOR

DUMmIES
‰

2ND EDITION

by Dan Gookin

C For Dummies®, 2nd Edition

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy
fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 646-8600. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447,
e-mail: permcoordinator@wiley.com.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDER-
STANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER
PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPE-
TENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR
SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR
WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER
INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMA-
TION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact
our Customer Care Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax
317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2004101965

ISBN: 0-7645-7068-4

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

2B/RZ/QU/QU/IN

About the Author
Dan Gookin has been writing about technology for 20 years. He has contributed
articles to numerous high-tech magazines and written more than 90 books
about personal computing technology, many of them accurate.

He combines his love of writing with his interest in technology to create books
that are informative and entertaining, but not boring. Having sold more than
14 million titles translated into more than 30 languages, Dan can attest that
his method of crafting computer tomes does seem to work.

Perhaps Dan’s most famous title is the original DOS For Dummies, published
in 1991. It became the world’s fastest-selling computer book, at one time
moving more copies per week than the New York Times number-one best
seller (although, because it’s a reference book, it could not be listed on the
NYT best seller list). That book spawned the entire line of For Dummies
books, which remains a publishing phenomenon to this day.

Dan’s most recent titles include PCs For Dummies, 9th Edition; Buying a Com
puter For Dummies, 2004 Edition; Troubleshooting Your PC For Dummies; Dan
Gookin’s Naked Windows XP; and Dan Gookin’s Naked Office. He also pub-
lishes a free weekly computer newsletter, “Weekly Wambooli Salad,” full of
tips, how-tos, and computer news. He also maintains the vast and helpful
Web page www.wambooli.com.

Dan holds a degree in communications and visual arts from the University
of California, San Diego. He lives in the Pacific Northwest, where he enjoys
spending time with his four boys in the gentle woods of Idaho.

Publisher’s Acknowledgments

We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Media

Development

Project Editor: Rebecca Whitney

Acquisitions Editor: Gregory Croy

Technical Editors: Greg Guntle, Kip Warner
(http://TheVertigo.com)

Editorial Manager: Carol Sheehan

Media Development Supervisor:
Richard Graves

Editorial Assistant: Amanda M. Foxworth

Cartoons: Rich Tennant (www.the5thwave.com)

Production

Project Coordinator: Maridee Ennis

Layout and Graphics: Amanda Carter,
Andrea Dahl, Lauren Goddard,
Denny Hager, Michael Kruzil,
Lynsey Osborn

Proofreaders: Laura Albert, Andy Hollandbeck,
TECHBOOKS Production Services

Indexer: Johnna VanHoose

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

Contents at a Glance
Introduction ...1

Part I: Introduction to C Programming............................7
Chapter 1: Up from the Primordial C ...9

Chapter 2: C of Sorrow, C of Woe..19

Chapter 3: C Straight..29

Chapter 4: C What I/O ..39

Chapter 5: To C or Not to C ...55

Chapter 6: C More I/O with gets() and puts() ..65

Part II: Run and Scream from Variables and Math73
Chapter 7: A + B = C..75

Chapter 8: Charting Unknown Cs with Variables ...93

Chapter 9: How to C Numbers ..107

Chapter 10: Cook That C Variable Charred, Please..121

Part III: Giving Your Programs the Ability
to Run Amok ..131
Chapter 11: C More Math and the Sacred Order of Precedence133

Chapter 12: C the Mighty if Command...147

Chapter 13: What If C==C? ...165

Chapter 14: Iffy C Logic..175

Chapter 15: C You Again ..185

Chapter 16: C the Loop, C the Loop++...201

Chapter 17: C You in a While Loop...215

Chapter 18: Do C While You Sleep..225

Chapter 19: Switch Case, or, From ‘C’ to Shining ‘c’...239

Part IV: C Level ..251
Chapter 20: Writing That First Function..253

Chapter 21: Contending with Variables in Functions...265

Chapter 22: Functions That Actually Funct ..275

Chapter 23: The Stuff That Comes First ..293

Chapter 24: The printf() Chapter ...305

Chapter 25: Math Madness!...313

Chapter 26: The Old Random-Number Function ..325

Part V: Part of Tens ..337
Chapter 27: Ten More Things You Need to Know about the C Language................339

Chapter 28: Ten Tips for the Budding Programmer...347

Chapter 29: Ten Ways to Solve Your Own Programming Problems353

Appendix A: The Stuff You Need to Know before You
Read All the Other Stuff in This Book.........................359

Appendix B: ASCII Table ...371

Index ...377

Table of Contents
Introduction ..1

“What Will Understanding C Do for Me?”..1
About This Here Dummies Approach..2
How to Work the Examples in This Book ..2
Foolish Assumptions ...3
Icons Used in This Book..3
What’s New with This Edition?...4
Final Thots ..4

Part I: Introduction to C Programming7

Chapter 1: Up from the Primordial C .9

An Extremely Short and Cheap History of the C Language9
The C Development Cycle...11
From Text File to Program...11

The source code (text file) ..12
Creating the GOODBYE.C source code file..13
The compiler and the linker..14
Compiling GOODBYE.C..15
Running the final result ...16

Save It! Compile and Link It! Run It!..16

Chapter 2: C of Sorrow, C of Woe .19

The Required Woes of Editing and Recompiling ..19
Reediting your source code file..20
Recompiling (or the C equivalent of the “do-over”)21

Dealing with the Heartbreak of Errors ..22
Yikes! An error! But, before you shoot yourself.22
The autopsy ..23
Repairing the malodorous program...24
Now try this error!..26

Chapter 3: C Straight .29

The Big Picture ...29
C Language Pieces’ Parts ..30
The C Language Itself — the Keywords...32
Other C Language Components ...34
Pop Quiz! ...35
The Helpful RULES Program ...36

The importance of being \n ..36
Breaking up lines\ is easy to do ...37

x C For Dummies, 2nd Edition

Chapter 4: C What I/O .39

Introduce Yourself to Mr. Computer ..39
Compiling WHORU.C..40
The reward ..41

More on printf() ...41
Printing funky text..42
Escape from printf()! ...44
The f means “formatted” ...46
A bit of justification..47

scanf Is Pronounced “Scan-Eff”...49
Putting scanf together..49
The miracle of scanf() ...51
Experimentation time! ...52

Chapter 5: To C or Not to C .55

Adding Comments..55
A big, hairy program with comments ..56
Why are comments necessary? ..58

Comment Styles of the Nerdy and Not-Quite-Yet-Nerdy58
Bizarr-o comments ...59
C++ comments ..60

Using Comments to Disable..61
The Perils of “Nested” Comments..62

Chapter 6: C More I/O with gets() and puts() 65

The More I Want, the More I gets() ...65
Another completely rude program example.....................................66
And now, the bad news about gets()...67

The Virtues of puts() ...67
Another silly command-prompt program ...68
puts() and gets() in action...68
More insults ..69
puts() can print variables ...70

Part II: Run and Scream from Variables and Math73

Chapter 7: A + B = C .75

The Ever-Changing Variable..75
Strings change ..76
Running the KITTY ...77

Welcome to the Cold World of Numeric Variables.....................................77
Hello, integer...78
Using an integer variable in the Methuselah program79

Table of ContentsTable of Contents xi
Assigning values to numeric variables ..80
Entering numeric values from the keyboard81
The atoi() function ..81
So how old is this Methuselah guy, anyway?....................................83
You and Mr. Wrinkles ...85

A Wee Bit o’ Math ...86
Basic mathematical symbols ..86
How much longer do you have to live to break the

Methuselah record?..88
Bonus modification on the final Methuselah program!90
The direct result ...91

Chapter 8: Charting Unknown Cs with Variables 93

Cussing, Discussing, and Declaring Variables ..93
“Why must I declare a variable?” ...94
Variable names verboten and not ..95
Presetting variable values ...96
The old random-sampler variable program......................................98
Maybe you want to chance two pints? ..99
Multiple declarations ...100

Constants and Variables..101
Dreaming up and defining constants ...101
The handy shortcut ...102
The #define directive...104
Real, live constant variables ...106

Chapter 9: How to C Numbers .107

There Are Numbers, and Then There Are Numbers................................107
Numbers in C ..108
Why use integers? Why not just make every number

floating-point? ...110
Integer types (short, long, wide, fat, and so on)110
Signed or unsigned, or “Would you like a minus sign

with that, Sir?”...111
How to Make a Number Float ...113

“Hey, Carl, let’s write a floating-point number program!”114
The E notation stuff..116

Bigger than the Float, It’s a Double! ...118
Formatting Your Zeroes and Decimal Places..119

Chapter 10: Cook That C Variable Charred, Please 121

The Other Kind of Variable Type, the char ..121
Single-character variables...122
Char in action ...123
Stuffing characters into character variables124

xii C For Dummies, 2nd Edition

Reading and Writing Single Characters ...125
The getchar() function ...126
The putchar() function ...127

Character Variables As Values..128

Part III: Giving Your Programs the Ability
to Run Amok ...131

Chapter 11: C More Math and the Sacred Order of Precedence . . .133

An All-Too-Brief Review of the Basic C Mathematical Operators133
The old “how tall are you” program...135
Unethical alterations to the old “how tall are you” program136

The Delicate Art of Incrementation (Or, “Just Add One to It”)137
Unhappily incrementing your weight ..138
Bonus program! (One that may even have a purpose in life).......140

The Sacred Order of Precedence ...141
A problem from the pages of the dentistry final exam..................141
What’s up, Sally?...142
The confounding magic-pellets problem...144
Using parentheses to mess up the order of precedence...............145

Chapter 12: C the Mighty if Command .147

If Only.147
The computer-genie program example ...148
The if keyword, up close and impersonal150
A question of formatting the if statement154
The final solution to the income-tax problem155

If It Isn’t True, What Else? ...157
Covering all the possibilities with else ..158
The if format with else ...159
The strange case of else-if and even more decisions160
Bonus program! The really, really smart genie...............................163

Chapter 13: What If C==C? .165

The World of if without Values ...165
Which is greater: S or T, $ or –? ..166
The problem with getchar()...168
Fixing GREATER.C to easily read standard input170
“Can I get getchar() to read only one character?”171
Meanwhile, back to the GREATER problem171
Another, bolder example ...173

Using the if Keyword to Compare Two Strings174

Table of ContentsTable of Contents xiii
Chapter 14: Iffy C Logic .175

Exposing Flaws in logic ...175
If, And, Or, But ..177

A solution (but not the best one)...177
A better solution, using logic..178
The if command’s logical friends ...180
A logical AND program for you ..183

Chapter 15: C You Again .185

For Going Loopy ...185
Repetitive redundancy, I don’t mind..187
For doing things over and over, use the for keyword188
Tearing through OUCH.C a step at a time190
Having fun whilst counting to 100 ..192

I’m Bustin’ Outta Here! ..193
At last — the handy ASCII program ...193
Beware of infinite loops! ..195
Breaking out of a loop..197
The break keyword..198

Chapter 16: C the Loop, C the Loop++ .201

The Art of Incrementation ..201
Cryptic C operator symbols, Volume I: The inc operator (++) ...202
Another look at the LARDO.C program ...203

The Mysterious Practice of Decrementation..204
O, to count backward...205
How counting backward fits into the for loop206
Cryptic C operator symbols, Volume II: The dec operator (--) ..207
A final improvement to OLLYOLLY.C ...208

More Incrementation Madness...209
Leaping loops! ...210
Counting to 1,000 by fives ...211
Cryptic C operator symbols, Volume III:

The madness continues ...211
The answers ..213

Chapter 17: C You in a While Loop .215

The Lowdown on while Loops ..215
Whiling away the hours ...216
The while keyword (a formal introduction)218
Deciding between a while loop and a for loop219
Replacing those unsightly for(;;) loops

with elegant while loops...220
C from the inside out ...222

Not to Beat a Dead Horse or Anything.223

xiv C For Dummies, 2nd Edition

Chapter 18: Do C While You Sleep .225

The Down-Low on Upside-Down do-while Loops225
The devil made me do-while it! ..226
do-while details ..227
A flaw in the COUNTDWN.C program ..228
The always kosher number-checking do-while loop229

Nested Loops and Other Bird-Brained Concepts.....................................231
Adding a tense, dramatic delay to the COUNTDWN.C

program..231
The nitty GRID.C of nested loops ...234

Break the Brave and Continue the Fool ..235
Please continue.236
The continue keyword ...237

Chapter 19: Switch Case, or, From ‘C’ to Shining ‘c’ 239

The Sneaky switch-case Loops ...239
The switch-case Solution to the LOBBY Program241
The Old switch-case Trick ...243
The Special Relationship between while and switch-case.................248

Part IV: C Level...251

Chapter 20: Writing That First Function .253

Meet Mr. Function ..253
A silly example you don’t have to type ...254
A potentially redundant program in need of a function................255
The noble jerk() function ...256
How the jerk() function works in BIGJERK2.C.............................257

Prototyping Your Functions..258
Prototypical prototyping problems ...259
A sneaky way to avoid prototyping problems................................260

The Tao of Functions ...262
The function format ...262
How to name your functions...263

Chapter 21: Contending with Variables in Functions 265

Bombs Away with the BOMBER Program! ..265
Will the dual variable BOMBER.C program bomb?267
Adding some important tension...267

How We Can All Share and Love with Global Variables...........................269
Making a global variable..270
An example of a global variable in a real, live program271

Table of Contents xv
Chapter 22: Functions That Actually Funct .275

Marching a Value Off to a Function..275
How to send a value to a function..276
An example (and it’s about time!) ..277
Avoiding variable confusion (must reading)279

Sending More than One Value to a Function...280
Functions That Return Stuff..282

Something for your troubles...282
Finally, the computer tells you how smart it thinks you are284
Return to sender with the return keyword285
Now you can understand the main() function287
Give that human a bonus!..288

No Need to Bother with This C Language Trivia
If You’re in a Hurry ...289

Chapter 23: The Stuff That Comes First .293

Please Don’t Leave Me Out! ..294
Say! Aren’t you the #include construction?294
What’s up with STDIO.H?...297
Writing your own dot-H file ...298
A final warning about header files ...300

What the #defines Are Up To ...302
Avoiding the Topic of Macros...303

Chapter 24: The printf() Chapter .305

A Quick Review of printf() ..305
The Old Displaying-Text-with-printf() Routine306
The printf() Escape Sequences..306

The printf() escape-sequence testing program deluxe.............307
Putting PRINTFUN to the test ...308

The Complex printf() Format ...310
The printf() Conversion Characters..311

Chapter 25: Math Madness! .313

More on Math ...313
Taking your math problems to a higher power314
Putting pow() into use...315
Rooting out the root...317

Strange Math? You Got It! ..319
Something Really Odd to End Your Day ..320

The perils of using a++ ..320
Oh, and the same thing applies to a -- ...322
Reflections on the strange ++a phenomenon322

xvi C For Dummies, 2nd Edition

Chapter 26: The Old Random-Number Function325

On Being Random...325
Using the rand() function ..326
Planting a random-number seed ..328
Randoming up the RANDOM program...329
Streamlining the randomizer ..331

The Diabolical Dr. Modulus...333
Rolling the Dice with the Final RANDOM Program335

Part V: Part of Tens ...337

Chapter 27: Ten More Things You Need to Know
about the C Language .339

Arrays ..339
Strings..340
Structures..341
Pointers ...343
Linked Lists...343
Binary Operators ...344
Interacting with the Command Line ..345
Disk Access ...345
Interacting with the Operating System ...345
Building Big Programs ...346

Chapter 28: Ten Tips for the Budding Programmer 347

Use the Command-Line History ...347
Keep Your Editor Open in Another Window...348
Use a Context-Colored Text Editor ..348
Know the Line-Number Commands in Your Editor..................................349
Keep a Command Prompt Window Open If You’re Using the IDE..........350
Know a Few Handy Command-Prompt Commands350
Carefully Name Your Variables ...351
Know Your Post- and Pre-Incrementing and Decrementing Riddles......351
Breaking Out of a Loop..352

Chapter 29: Ten Ways to Solve Your Own Programming
Problems .353

Work on One Thing at a Time ...354
Break Up Your Code...354
Simplify..355
Talk through the Program ...355
Set Breakpoints ..356

Table of Contents xvii
Monitor Your Variables..356
Document Your Work...356
Use Debugging Tools ...357
Use a C Optimizer...357
Read More Books! ..358

Appendix A: The Stuff You Need to Know before
You Read All the Other Stuff in This Book359

Setting Things Up ...359
The C language compiler...360
The place to put your stuff..361

Making Programs ...363
Finding your learn directory or folder...363
Running an editor...364
Compiling and linking ..365

Appendix B: ASCII Table ..371

Index ..377

xviii C For Dummies, 2nd Edition

Introduction

Welcome to C For Dummies, 2nd Edition — your last, desperate, and
final attempt to understand the C programming language.

Although I can’t promise that you’ll become a C guru after wading through
this text, I can guarantee that you will

� Know how to recognize a C program and, when one is grouped with an IRS
Form 1040, the morning stock report, baseball statistics, and anything
written in Braille, you’ll be able to pick out which one is the C program.

� Be able to write C programs that no other publisher would let an author
print in its C books.

� Appreciate the following code, but be unable to use it at cocktail parties
to impress your friends:

while(dead_horse)
beat();

� Find out how to speak in C Talk, which is the ability to look at character
groupings, such as printf, putchar, and clock, and pronounce them
as “print-f,” “put-kar,” and “see-lock.”

� Have fun.

I can’t really guarantee that last point. However, this book was written minus the
sword of mathematics hanging over anyone’s head. Let’s leave stern program-
ming up to those who fuss over Avogadro’s number and Fibonacci sequences
and who debate the merits of how to indent their C program source code.
Serious work is for the nerds. Fun happens when you read C For Dummies,
2nd Edition.

“What Will Understanding C Do for Me?”
Look at your computer screen. Imagine something happening there. Anything.
As long as you know how to program a computer, what you imagine will take
place. Okay, maybe not as fast as you like — but it can be done.

Programming is the ultimate way to get even with a computer. You are in charge.
You tell the beast what to do. And it will obey you, even when you tell it to do
something stupid. Computers are fast and obedient, not smart.

2 C For Dummies, 2nd Edition

Anything your computer does, any devices it talks with or controls, can be
manipulated by using a programming language and writing programs that pull
the right levers. The C programming language has been crowned the best and
most common way to program any personal computer. C may not be the easi-
est programming language to figure out, but it’s not the most difficult, either.
It’s tremendously popular and well supported, which makes it a good choice.

About This Here Dummies Approach
Most programming books start out by assuming that you don’t know anything.
The author may remember that for, oh, maybe two or three chapters. Then,
after that initial pressure is off, there he goes! Chapter 4 is written not to teach
you how to program, but, rather, to impress the author’s programming buddies
back at college. So your learning journey ends with a whimper. You will not find
that problem in this book.

The best way to learn something is one piece at a time. With programming, I
prefer to show you things by using small programs, tiny models, and quick-
to-type examples. That way, you’re not overwhelmed with an initial program
that’s three pages long, and you don’t get lost after a few chapters. That’s
because the pace stays the same throughout the book. I insist on it!

This book also gets you started right away. When researching other books, I
noticed that often the first program you have to type is not only several dozen
lines long, but also nearly 50 pages into the book on average! In this book, you
get started right away with a program example on Page 13. That quick!

How to Work the Examples in This Book
Part of the fun of finding out how to program by reading a book is that you
type the programs yourself. That’s the way I figured out how to program a com-
puter. I sat down with Dr. David Lien’s Learning TRS80 BASIC (Compusoft) and,
36 solid hours later, I finished. Then I slept. Then I did it again because I com-
pletely forgot everything, but remembered enjoying doing it the first time.

Your first task is to read Appendix A. It tells you how to set up a C language
compiler on your computer and get things all ready to work.

Next, you need to know how to type stuff. This stuff looks like this:

Here I go, typing some stuff. La, la, la.

3 Introduction

Mostly, you type complete programs, consisting of several lines like the one
before this paragraph. Type them all, and press Enter at the end of each line.
Because this book is only so wide, however, occasionally you see a line split
in two. It looks like this:

This is an example of a very long line that was painfully
split in two by this book’s cruel typesetters.

When you see that, don’t type two lines. If you just keep typing, everything fits
on one line on your screen. If you forget this advice, your programs mess up,
so I toss in several reminders throughout this book whenever such a thing
happens.

Foolish Assumptions
This book makes the following assumptions about you, your computer, your
compiler, and — most important — your state of mind:

� You have a computer, or at least you have access to one. It can be just
about any computer; this book is not specific to Windows.

� You’re pretty good with the computer. You understand things. You may
even fix your own problems or help others with their problems.

� You know how to look things up on the Web, download stuff, and find
things you need.

� You have a passing familiarity with your operating system’s command
prompt or terminal window. This is important, and it’s explained in
Appendix A.

� You’re willing to find out how to program — perhaps even desperate to
do so!

Icons Used in This Book

Technical information you can merrily skip over.

Something you should remember to do.

4 C For Dummies, 2nd Edition

Something you should remember not to do.

A healthy suggestion worthy of note.

What’s New with This Edition?
This book isn’t really the second edition of any previous book, but it does
borrow material from the old C For Dummies books, Volumes I and II. This
book represents a compilation of basic material from both books. And, by
reading this book, you’ll have a broad, basic knowledge of the C language.

Unlike the older books, this one is organized on a chapter-by-chapter level,
not by lessons. Each chapter is self-contained and, where necessary, cross
references to other chapters are included.

Gone are the quizzes and tests. This book has no homework, per se.

Alas, this book is only so big, and only so much ground could be covered, given
this book’s gentle pace. Because of that, those interested in pursuing the C
language further should check out the companion book, C AllinOne Desk
Reference For Dummies (Wiley). That book is for more experienced program-
mers, which is what you will become after reading this book.

Final Thots
Understanding how to use C is an ongoing process. Only a dweeb would say “I
know everything about programming in C.” There are new things to be learned
every day and different approaches to the same problems. Nothing is perfect,
but many things are close.

My thoughts on the matter are this: Sure, people who took 20 years of C pro-
gramming and paid too much per semester at A Major University will have
some C snobbishness in them. Whatever. Ask yourself this question: Does my
program run? Okay. Does it do what I want? Better. Does it meet their artifi-
cial standards? Who cares? I’ll be happy if your sloppy C program works. But
keep this in mind: The more you learn, the better you get. You’ll discover new
tricks and adapt your programming style to them.

5 Introduction

This book has a companion Web page, replete with bonus material and all
sorts of fun information:

http://www.c-for-dummies.com

I hope that you enjoy the journey you’re about to begin. Crack your knuckles,
power up that compiler, and prepare yourself for a few solid hours of eyeball
frazzle. You’re going C programming!

C For Dummies, 2nd Edition6

Introduction to C
Programming

Part I

In this part . . .

Y
can punch numbers into your cell phone and hit the Send

dungeon of programming

nothing

your turn to tell the computer exactly what to do

wait until it bellows “Uncle! UNCLE!

ou have never programmed anything in your life. The
VCR? Forget it! On your microwave oven, you use the

Popcorn and Add a Minute buttons. You know that you

button, yet you dare not touch any of the other buttons,
for fear of entering that dark realm, that dank and musty

. If that’s you, get ready to turn
your life around.

Contrary to what you may believe, it’s to program
a computer. Anyone can do it. Programmers may carry
themselves with an air of mysticism and treat their skills
like priests performing sacred religious rites. Poppycock.
Programming is painless. It’s easy. It’s fun.

It’s now
with itself. In just a few pages, you will be programming
your PC. It’s time to get even! Time to twist its arm and

” Get ready to take
charge.

Chapter 1

Up from the Primordial C
In This Chapter
� Hysterical C history

� How C programs are created

� Building the source code

� Compiling and linking

� Running the result

As the most useful device you have ever used, a computer can become
anything — as long as you have the ability to program it. That’s what

makes computers unique in the pantheon of modern devices. And although
most computer users shy away from programming — confusing it with math-
ematics or electrical engineering — the fact is that programming a computer
is really a rather simple and straightforward thing. It’s easy.

This chapter introduces you to the basics of programming. Although it has
some yabber-yabber and background information, the meat of the chapter
involves creating, compiling, and running your first program. Feel the power!
Finally, it’s you who can tell the computer what to do with itself!

Because you probably didn’t read this book’s Introduction (for shame), know
that you should preview Appendix A before starting here.

An Extremely Short and Cheap
History of the C Language

First, there was the B programming language. Then there was the C program-
ming language.

10 Part I: Introduction to C Programming

Programming languages have different levels,
depending on how much they resemble human
languages. Programming languages that use
common words and are relatively easy for
most folks to read and study are called high
level languages. The opposite of those are
lowlevel languages, which are not easy to

High-level languages include the popular BASIC
programming language as well as other lan-

BASIC reads almost like English, and all its com-
mands and instructions are English words — or
at least English words missing a few vowels or
severely disobeying the laws of spelling.

The lowest of the low-level programming lan-
guages is machine language. That language is
the actual primitive grunts and groans of the
microprocessor itself. Machine language con-
sists of numbers and codes that the micro-
processor understands and executes. Therefore,
no one really writes programs in machine lan-

which is one step above the low-level machine

language because the grunts and groans are
spelled out rather than entered as raw numbers.

Why would anyone use a low-level language
when high-level languages exist? Speed! Pro-
grams written in low-level languages run as fast
as the computer can run them, often many times
faster than their high-level counterparts. Plus,

the same program written in assembly language
may be 896 bytes long. On the other hand, the
time it takes to develop an assembly language
program is much longer than it would take to

The C programming language is considered a
mid-level language. It has parts that are low-
level grunting and squawking, and also many
high-level parts that read like any sentence in a
Michael Crichton novel, but with more charac-
ter development. In C, you get the best of the
high-level programming languages and the

get the compact program size and speed of a

Stuff you don’t need to know about language levels

read or study.

guages that just aren’t that popular any more.

guage; rather, they use assembly language,

the size of the program is smaller. A program
written in Visual Basic may be 34K in size, but

write the same program in a higher-level lan-
guage. It’s a trade-off.

speed of development they offer, and you also

low-level language. That’s why C is so bitchen.

No, I’m not being flip. C was developed at AT&T Bell Labs in the early 1970s.
At the time, Bell Labs had a programming language named B — B for Bell. The
next language they created was C — one up on B.

� C is the offspring of both the B programming language and a language
named BCPL, which stood for Basic Combined Programming Language.
But you have to admit that the B story is cute enough by itself.

� You would think that the next, better version of C would be called the D
language. But, no; it’s named C++, for reasons that become apparent in
Chapter 16.

� C is considered a midlevel language. See the nearby sidebar, “Stuff you
don’t need to know about language levels,” for the boring details.

Chapter 1: Up from the Primordial C 11
� The guy who created the C programming language at Bell Labs is Dennis

Ritchie. I mention him in case you’re ever walking on the street and you
happen to bump into Mr. Ritchie. In that case, you can say “Hey, aren’t
you Dennis Ritchie, the guy who invented C?” And he’ll say “Why — why,
yes I am.” And you can say “Cool.”

The C Development Cycle
Here is how you create a C program in seven steps — in what’s known as the
development cycle:

1. Come up with an idea for a program.

2. Use an editor to write the source code.

3. Compile the source code and link the program by using the C compiler.

4. Weep bitterly over errors (optional).

5. Run the program and test it.

6. Pull out hair over bugs (optional).

7. Start over (required).

No need to memorize this list. It’s like the instructions on a shampoo bottle,
though you don’t have to be naked and wet to program a computer. Eventually,
just like shampooing, you start following these steps without thinking about it.
No need to memorize anything.

� The C development cycle is not an exercise device. In fact, program-
ming does more to make your butt fit more snugly into your chair than
anything.

� Step 1 is the hardest. The rest fall naturally into place.

� Step 3 consists of two steps: compiling and linking. For most of this book,
however, they are done together, in one step. Only later — if you’re still
interested — do I go into the specific differences of a compiler and a
linker.

From Text File to Program
When you create a program, you become a programmer. Your friends or rela-
tives may refer to you as a “computer wizard” or “guru,” but trust me when I
say that programmer is a far better title.

12 Part I: Introduction to C Programming

As a programmer, you job is not “programming.” No, the act of writing a pro-
gram is coding. So what you do when you sit down to write that program is
code the program. Get used to that term! It’s very trendy.

The job of the programmer is to write some code! Code to do what? And what
type of code do you use? Secret code? Morse Code? Zip code?

The purpose of a computer program is to make the computer do something.

The object of programming is to “make it happen.” The C language is only a
tool for communicating with the PC. As the programmer, it’s your job to trans-
late the intentions of the computer user into something the computer under-
stands and then give users what they want. And if you can’t give them what
they want, at least make it close enough so that they don’t constantly com-
plain or — worse — want their money back.

The tool you have chosen to make it happen is the C programming language.
That’s the code you use to communicate with the PC. The following sections
describe how the process works. After all, you can just pick up the mouse
and say “Hello, computer!”

� Programming is what TV network executives do. Computer programmers
code.

� You use a programming language to communicate with the computer,
telling it exactly what to do.

The source code (text file)
Because the computer can’t understand speech and, well, whacking the
computer — no matter how emotionally validating that is for you — does little
to the PC, your best line of communications is to write the computer a note —
a file on disk.

To create a PC epistle, you use a program called a text editor. This program is a
primitive version of a word processor minus all the fancy formatting and print-
ing controls. The text editor lets you type text — that’s about all.

Using your text editor, you create what’s called a source code file. The only spe-
cial thing about this file is that it contains instructions that tell the computer
what to do. And although it would be nice to write instructions like “Make a
funny noise,” the truth is that you must write instructions in a tongue the com-
puter understands. In this case, the instructions are written in the C language.

Chapter 1: Up from the Primordial C 13
� The source code file is a text file on disk. The file contains instructions

for the computer that are written in the C programming language.

� You use a text editor to create the source code file. See Appendix A for
more information on text editors.

Creating the GOODBYE.C source code file
Use your text editor to create the following source code. Carefully type each
line exactly as written; everything you see below is important and necessary.
Don’t leave anything out:

#include <stdio.h>

int main()
{

printf(“Goodbye, cruel world!\n”);
return(0);

}

As you review what you have typed, note how much of it is familiar to you.
You recognize some words (include, main, “Goodbye, cruel world!”,
and return), and some words look strange to you (stdio.h, printf, and
that \n thing).

When you have finished writing the instructions, save them in a file on disk.
Name the file GOODBYE.C. Use the commands in your text editor to save this
file, and then return to the command prompt to compile your instructions
into a program.

� See Appendix A for information on using a text editor to write C language
programs as well as for instructions on where you should save the source
code file on disk.

� In Windows Notepad, you must ensure that the file ends in .C and not in
.TXT. Find a book about Windows for instructions on showing the file-
name extensions, which makes saving a text file to disk with a .C exten-
sion easier.

� Note that the text is mostly in lowercase. It must be; programming lan-
guages are more than case sensitive — they’re case-fussy. Don’t worry
when English grammar or punctuation rules go wacky; C is a computer
language, not English.

� Also note how the program makes use of various parentheses: the angle
brackets, < and >; the curly braces, { and }; and the regular parentheses,
(and).

14 Part I: Introduction to C Programming

Extra help in typing the GOODBYE.C source code
The first line looks like this:

#include <stdio.h>

include
stdio, a

period, h, and a right angle bracket. Everything
must be in lowercase — no capitals! Press
Enter to end this line and start the second line.

Press the Enter key alone on the second line to
make it blank. Blank lines are common in pro-
gramming code; they add space that separates
pieces of the code and makes it more readable.
And, trust me, anything that makes program-
ming code more readable is okay by me!

int, a space, main, and then two
parentheses hugging nothing:

int main()

There is no space between main and the
parentheses and no space inside the parenthe-
ses. Press Enter to start the fourth line.

{

This character is on a line by itself, right at the
start of the line. Press Enter to start the fifth line.

printf(“Goodbye, cruel
world!\n”);

If your editor was smart enough to automati-

key to indent. Then type printf, the word print
with a little f

Goodbye, cruel world, followed by
an exclamation point. Then type a backslash, a
little n, double quotes, a right parenthesis, and,

line.

return(0);

an indent. Then type return, a paren, 0 (zero), a

On the seventh line, type the right curly brace:

}

Some editors automatically unindent this brace
for you. If not, use your editor to back up the

Enter key to end this line.

Leave the eighth line blank.

Type a pound sign (press Shift+#) and then
and a space. Type a left angle bracket

(it’s above the comma key) and then

Type the word

Type a left curly brace:

cally indent this line, great. If not, press the Tab

at the end. (It’s pronounced “print-
eff.”) Type a left parenthesis. Type a double
quote. Type

finally, a semicolon. Press Enter to start the sixth

If the editor doesn’t automatically indent the
sixth line, press the Tab key to start the line with

paren, and a semicolon. Press Enter.

brace so that it’s in the first column. Press the

The compiler and the linker
After the source code is created and saved to disk, it must be translated into
a language the computer can understand. This job is tackled by the compiler.

The compiler is a special program that reads the instructions stored in the
source code file, examines each instruction, and then translates the information
into the machine code understood only by the computer’s microprocessor.

Chapter 1: Up from the Primordial C 15
If all goes well and the compiler is duly pleased with your source code, the
compiler creates an object code file. It’s a middle step, one that isn’t necessary
for smaller programs but that becomes vital for larger programs.

Finally, the compiler links the object code file, which creates a real, live com-
puter program.

If either the compiler or the linker doesn’t understand something, an error
message is displayed. At that point, you can gnash your teeth and sit and stew.
Then go back and edit the source code file again, fixing whatever error the
compiler found. (It isn’t as tough as it sounds.) Then you attempt to compile
the program again — you recompile and relink.

� The compiler translates the information in the source code file into instruc-
tions the computer can understand. The linker then converts that infor-
mation into a runnable program.

� The GCC compiler recommended and used in this book combines the
compiling and linking steps. An object file is created by GCC, but it is
automatically deleted when the final program file is created.

� Object code files end in OBJ or sometimes just O. The first part of the
object file name is the same as the source code filename.

� Feel free to cheerfully forget all this object code nonsense for now.

� Text editor➪Compiler.

� Source code➪Program.

Compiling GOODBYE.C
The gritty details for compiling a program are in Appendix A. Assuming that
you have thumbed through it already, use your powerful human memory to
recall the proper command to compile and link the GOODBYE.C source code.
Here’s a hint:

gcc goodbye.c -o goodbye

Type that command at your command prompt and see what happens.

Well?

Nothing happens! If you have done everything properly, the GCC compiler
merely creates the final program file for you. The only time you see a mes-
sage is if you goof up and an error occurs in the program.

16 Part I: Introduction to C Programming

If you do get an error, you most likely either made a typo or forgot some tiny
tidbit of a character: a missing “ or ; or \ or) or (or — you get the idea. Very
carefully review the source code earlier in this chapter and compare it with
what you have written. Use the editor to fix your mistake, save the code to
disk, and then try again.

Note that GCC reports errors by line number, or it may even specifically list
the foul word it found. In any event, note that Chapter 2 covers error-hunting
in your C programs.

Running the final result
If you used the proper compiling command, the name of the program to run is
identical to the first part of your source code. So why not run that program!

In Windows, the command to type is

goodbye

In the Unix-like operating systems, you must specify the program’s path or
location before the program name. Type this command:

./goodbye

Press the Enter key and the program runs, displaying this marvelous text on
your screen:

Goodbye, cruel world!

Welcome to C language programming!

(See Appendix A for more information on running programs.)

Save It! Compile and Link It! Run It!
Four steps are required in order to build any program in C. They are save, com-
pile, link, and run. Most C programming language packages automatically per-
form the linking step, though whether or not it’s done manually, it’s still in there.

Save! Saving means to save your source code. You create that source code in
a text editor and save it as a text file with the C (single letter C) extension.

Chapter 1: Up from the Primordial C 17
Compile and link! Compiling is the process of transforming the instructions
in the text file into instructions the computer’s microprocessor can under-
stand. The linking step is where the instructions are finally transformed into
a program file. (Again, your compiler may do this step automatically.)

Run! Finally, you run the program you have created. Yes, it’s a legitimate pro-
gram, like any other on your hard drive.

You have completed all these steps in this chapter, culminating in the cre-
ation of the GOODBYE program. That’s how C programs are built. At this
stage, the hardest part is knowing what to put in the source file, which gets
easier as you progress through this book. (But by then, getting your program
to run correctly and without errors is the hardest part!)

You find the instructions to save, compile, and run often in this book. That’s
because these steps are more or less mechanical. What’s more important is
understanding how the language works. That’s what you start to find out
about in the next chapter.

18 Part I: Introduction to C Programming

Chapter 2

C of Sorrow, C of Woe
In This Chapter
� Reediting and recompiling

� Fixing an error

� Understanding the error message

� Dealing with heinous linker errors

Don’t let the success of a first-time compile spoil an otherwise normal
day of programming.The fact is, most of your programming time is

spent dealing with errors, from typos to flaws in logic. Those errors have
to be fixed. It happens so often that one guru I know commented that the
process should be called debugging and not programming.

This chapter gets you used to the idea of errors and how to deal with them.
As you may note, it’s the second chapter of this book. That must mean that
dealing with errors is a larger part of the programming picture than you may
have otherwise imagined.

The Required Woes of Editing
and Recompiling

As a human, you may commit the vocal sin of pronouncing the t in often or
adding an r after the a in Washington. Big deal! But just once, type pirntf
rather than printf and your entire programming world becomes unglued.
Or, worse, forget a curly brace. One missing curly brace can lead to a screen
full of embarrassing error messages.

20 Part I: Introduction to C Programming

Before you cower in shame, fear not, gentle programmer newbie person. Errors
happen. You deal with them. Like this:

1. Reedit your source code, saving the fixed-up file to disk.

2. Recompile the source code.

3. Run the result.

Errors can still happen. Heck, you may never get to Step 3! But these steps
show you how to deal with them.

� It happens.

� I might remind you to look at the C language development cycle from
Chapter 1. Note Steps 4 and 6. Nod your head wisely in agreement.

Reediting your source code file
Source code is not carved in stone — or silicon, for that matter. It can be
changed. Sometimes, the changes are necessary, in the case of errors and
boo-boos. At other times, you may just want to modify your program, adding
a feature or changing a message or prompt — what the hard-core C geeks call
tweaking or twiddling. To do that, you have to reedit your source code file.

For example, the GOODBYE program from Chapter 1 displays a message on
the screen:

Goodbye, cruel world!

This program can easily be modified to show any message you like. To do so,
use your editor and change the source code file, replacing the original mes-
sage with your newer, pithier message. Follow these steps:

1. Use your text editor to reedit the GOODBYE.C source code.

2. Edit Line 5, which looks like this:

printf(“Goodbye, cruel world!\n”);

3. Replace the text Goodbye, cruel world! with Farewell, you ugly
toad!

printf(“Farewell, you ugly toad!\n”);

Change only the text between the double quotes. That’s the information
that is displayed on the screen. Everything else — don’t touch!

Chapter 2: C of Sorrow, C of Woe 21
4. Double-check your work.

5. Save the file to disk.

It’s okay to overwrite the original; your modified file becomes the new
GOODBYE.C source code file.

Now you’re ready to recompile your source code, as covered in the next
section.

� “Reedit your source code file” means to use your text editor to modify
the source code, the text file that contains the C language instructions.

� You reedit the source code file to repair an error caught by the compiler
or linker or to modify the program. This situation happens a lot.

� If you’re using the command prompt to run your editor, don’t forget that
you can use the up-arrow key to recall previous commands (in certain
command-prompt environments). In this case, press the up-arrow key a
few times until the original command to edit the GOODBYE.C source
code file reappears at the prompt.

Recompiling (or the C equivalent
of the “do-over”)
Recompiling means to make the program one more time — to rework the steps
you went through to create the program originally. This process usually hap-
pens after you modify or change the source code, such as you do in the pre-
ceding section. Because the source code is different, you have to feed it to the
compiler again to generate the new, better (and, hopefully, bug-free) program.

To recompile the new GOODBYE.C source code, use your compiler as outlined
in Appendix A. For most everyone, that’s

gcc goodbye.c -o goodbye

Press the Enter key and pray that no error messages appear, and then you’re
done. The new program has been created.

Run the program! Type the proper command — either goodbye or ./goodbye —
at the prompt to see the new, stunning output.

Who knew that it would be so darn easy to display such crap on the computer’s
screen?

22 Part I: Introduction to C Programming

� After you reedit your source code file, you have to recompile to re-create
the program file. That is how you fix an error or modify the program.

� If you’re programming in an IDE (Integrated Development Environment)
such as Dev-C++ or Microsoft Visual C++, you may need to use a Rebuild
or Rebuild All command to create a new program after modifying your
source code.

� If you see any errors after recompiling, you must re-reedit your source
code and then re-recompile again. (You only “reedit” and “recompile”; no
sense in getting re-happy.)

Dealing with the Heartbreak of Errors
Errors happen. Even the best of programmers get errors, from the innocent
code-writing cog at Microsoft to the sneering, snooty Linux programmer whose
only contact with humanity is the pizza guy — they all get errors. Every day.

Errors are nothing to be embarrassed about. Consider them learning tools or
gentle reminders. That’s because the compiler tells you, with uncanny accu-
racy, just what the error is and where it is. Contrast this with your most night-
marish math class: The wicked pedant would write only “WRONG!” next to your
calculations, no matter how innocent a mistake you made. Yes, computers
can be forgiving — and this can even teach you something.

Yikes! An error! But, before
you shoot yourself. . . .
Here is a new program, ERROR.C. Note the optimism in its name. It’s a flawed
C program, one that contains an error (albeit an on-purpose error):

#include <stdio.h>

int main()
{
printf(“This program will err.\n”)
return(0);

}

Type the source code exactly as it appears here. Do not use the GOODBYE.C
source code as a base; start over here with a clean editor window.

When you’re done entering the source code, save it to disk as ERROR.C. Com-
pile it, and then. . . .

Chapter 2: C of Sorrow, C of Woe 23
Unfortunately, when you compile this program, it produces an error. The next
section provides the autopsy.

� Pay careful attention as you type! Each little oddball character and nutty
parenthesis is important to the C language!

� Here’s a hint on the common GCC command to compile this source code:

gcc error.c -o error

That’s the last compiling hint you get in this book!

The autopsy
The ERROR.C program erred! What a shock.

Don’t be alarmed — it was expected. (In fact, you may have seen this type of
error before.) Here is a sample of what the cruel message may look like:

error.c: In function `main’:
error.c:6: parse error before “return”

How rude! It’s not that reassuring hand on your shoulder and the kind, avun-
cular voice explaining that you boo-booed. Still, what the error message lacks
in personality, it makes up for in information.

On the up side, though the error message is cryptic, it’s informative. What-
ever your compiler, you should be able to single out the following bits of
information:

� The source code file that contained the error, error.c

� The line that contains the error, Line 6 (though it may not be — you
can’t really trust computers too much)

� The type of error, a parse error or syntax error or something similar

� The location of the error (before the word return)

It still may not be clear exactly what’s wrong, but you’re given many clues.
Most important, you’re given a line number: The error is in Line 6.

Okay, it’s really in Line 5, but the C programming language is flexible, and the
compiler doesn’t discover that “something’s missing” until Line 6. (You can
cut the compiler some slack here.)

The error type is also important. A parse, or syntax, error means that an item
of C language punctuation is missing, and, therefore, two things that aren’t
supposed to run together have run together. In this case, a missing semicolon
character at the end of Line 5 is to blame.

24 Part I: Introduction to C Programming

The solution? You have to reedit the source code file and fix what’s wrong.
In this case, you would reedit ERROR.C and add the semicolon to the end of
Line 5. Even if you looked at Line 6 (per the output’s insistence), you would
see nothing wrong there. If so, your eyes would wander back and — because
you’re aware of the Missing Semicolon Syndrome — you would see the prob-
lem and mend it.

� Errors are not the end of the world! Everyone gets them.

� Syntax refers to the way a language is put together. Some compilers use
that term rather than parse, which means “the order in which things are
put together.” Eh.

� Some versions of GCC put double quotes around “return” rather than
the tick marks shown in the preceding example. Beyond that, GCC is
remarkably consistent with its error messages.

� Missing semicolons are one of the most popular types of errors in the C
language. You find out in the next chapter more about semicolons and the
role they play.

� The error message’s line number refers to a line in the source-code text
file. That’s why nearly all text editors use line numbers, which you can
see at the top or bottom of the screen or editing window.

� The line number may or may not be accurate. In the case of a missing
semicolon, the next line may be the “error line.” This statement holds
true with other types of errors in C. Oh, well — at least it’s close and not
a generic honk of the speaker and “ERRORS GALORE, YOU FOOL” plas-
tered onscreen.

� A good habit is to fix the first error listed and then recompile. Often, the
first error is the only real one, but the compiler lists others that follow
because it becomes confused.

� Of course, you may be thinking “Okay, smarty-pants computer, you know
what’s wrong — fix it!” But computers don’t just jump to conclusions like
that. That is the evil of the statement “Do what I mean”: Computers can’t
read minds, so you must be precise. They are champs, however, at point-
ing out what’s wrong (and almost snobbishly so).

Repairing the malodorous program
To make the world right again, you have to fix the program. This process
requires editing the source code file, making the needed correction, saving
the source code file back to disk, and then recompiling.

Chapter 2: C of Sorrow, C of Woe 25

No need to fill your head with this
C programming has two degrees of errors:
warnings and errors. Some compilers call the
errors critical errors. (Sounds like a mistake
Roger Ebert would make.) Other times, they’re
fatal errors, like opening a creepy closet in one
of those Scream movies.

Chances are, your program runs, but it may not

ers, you can switch off some of the more per-
snickety warning error messages.

to do something so criminal that I cannot

stand your instructions.

The warning error means “Ooo, this doesn’t
look tasty, but I’ll serve it to you anyway.”

do what you intend. Or, it may just be that the

compiler is being touchy. With most C compil-

The critical error means “Dear Lordy, you tried

morally complete this program.” Okay, maybe
it’s not that severe. But the compiler cannot
complete its task because it just doesn’t under-

You can fix the ERROR.C program by adding a semicolon. Edit Line 5 and add
a semicolon to the end of the line. Also correct the sentence displayed on the
screen so that it reads as follows:

printf(“This program will no longer err.\n”);

Other than changing Line 5, everything else in the program remains
untouched.

Save ERROR.C back to disk. Recompile the program and then run it:

This program will no longer err.

Indeed, it does not!

� I can’t always tell you where to fix your programs. ERROR.C is the only
program listed in this book that contains an on-purpose error. When you
get an error message, you should check it to see where the error is in your
source code. Then cross-check your source code with what’s listed in this
book. That way, you find what’s wrong. But when you venture out on your
own and experiment, you have only the error message to go by when
you’re hunting down your own errors.

� Pull two Rs out of ERRORS and you have Eros, the Greek god of love. The
Roman god of love was Cupid. Replace the C in Cupid with St and you have
Stupid. Stupid errors — how lovely!

26 Part I: Introduction to C Programming

Now try this error!
Don’t dispense with the ERROR.C file just yet. Don’t close the window, and
don’t zap the project. (If you did, use your editor to load the ERROR.C file and
prepare to reedit.)

Change Line 6 in the ERROR.C source code file to read this way:

retrun(0);

In case you don’t see it, the word return has been mangled to read retrun;
the second r and the u are transposed. Otherwise, the zero in the parentheses
and the semicolon are unchanged.

The way C works is that it just assumes that retrun is something you’re seri-
ous about and not a typo. The compiler couldn’t care less. But the linker goes
nuts over it. That’s because it’s the linker that glues program files together. It
catches the error when it doesn’t find the word retrun in any of its libraries.
And, like any frazzled librarian, the linker spews forth an error message.

Save the modified ERROR.C file to disk. Then recompile. Brace yourself for an
error message along the lines of

temporary_filename.o: In function ‘main’:
temporary_filename.o: undefined reference to ‘retrun’

Or, the message may look like this:

temporary_filename.o(blah-blah):error.c: undefined reference
to ‘retrun’

It’s harder to tell where the error took place here; unlike compiler errors,
linker errors tend to be vague. In this case, the linker is explaining that the
error is in reference to the word retrun. So, rather than use a line-number
reference, you can always just search for the bogus text.

To fix the error, reedit the source code and change retrun back to return.
Save. Recompile. The linker should be pleased.

� As I mention elsewhere in this book, the GCC compiler both compiles
and links.

� If the linker is run as a separate program, it obviously produces its own
error messages.

� A temporary file is created by the compiler, an object code file that ends
in .O — which you can see in the error message output. This object code
file is deleted by GCC.

Chapter 2: C of Sorrow, C of Woe 27
�

retrun

All about errors!

write computer programs as much as you
remove errors from them. Errors are every-
where, and removing them is why it can take
years to write good software.

Compiler errors:
tially discovered by the compiler as it tries to
churn the text you write into instructions the
computer can understand. These errors are the
friendly ones, generally self-explanatory with
line numbers and all the trimmings. The errors
are caught before the program is built.

Linker errors: Primarily involve misspelled com-
mands. In advanced C programming, when
you’re working with several source files, or mod-
ules, to create a larger program, linker errors
may involve missing modules. Also, if your linker

another type of error message is displayed.
Pieces of the program are built, but errors pre-

Run-time errors: Generated by the program

things that look totally acceptable to the com-

intended. (This happens often in C.) The most
common run-time error is a null pointer assign-
ment.
program is built, but usually gets shut down by

Bugs:
compiler diligently creates the program you
wrote, but whether that program does what you

work on the source code some more. Bugs
include everything from things that work slowly
to ones that work unintentionally or not at all.
These are the hardest things to figure out and
are usually your highest source of frustration.

behave the way you think it would.

The linker’s job is to pull together different pieces of a program. If it
spots something it doesn’t recognize, such as , it assumes, “Hey,
maybe it’s something from another part of the program.” So the error
slides by. But, when the linker tries to look for the unrecognized word, it
hoists its error flags high in the full breeze.

A common programming axiom is that you don’t

The most common error, ini-

requires some “library” file and it can’t be found,

vent it from them being glued together.

when it runs. They aren’t bugs; instead, they’re

piler and linker but just don’t do quite what you

You aggravate over this one later. The

the operating system when it’s run.

The final type of error you encounter. The

intended is up to the test. If it doesn’t, you must

The program is built and runs, but it doesn’t

28 Part I: Introduction to C Programming

Chapter 3

C Straight
In This Chapter
� Looking at the C language

� Dissecting source code

� Obeying the RULES

� Using \n

� Splitting up lines with \

Any new language looks weird to you. Your native tongue has a certain
cadence or word pattern. And the letters all fit together in a certain way.

Foreign languages, they have weird characters: ç, ü, and ø and letter combi-
nations that look strange in English — Gwynedd, Zgierz, Qom, and Idaho.

Strange new things require getting used to. You need a road map to know
what’s what. There’s really no point in blindly typing in a C program unless
you have a faint idea of what’s going on. That’s what this chapter shows.
After reading through two chapters and compiling two different C programs
and dealing with the heartbreak of errors, this chapter finally and formally
introduces you to the C language.

The Big Picture
Figure 3-1 outlines the GOODBYE.C program’s source code, which I use as an
example in Chapter 1.

Each program must have a starting point. When you run a program, the operat-
ing system (OS) sends it off on its way — like launching a ship. As its last dock-
master duty, the OS hurls the microprocessor headlong into the program. The
microprocessor then takes the program’s helm at a specific starting point.

30 Part I: Introduction to C Programming

Main
function

Figure 3-1:

GOODBYE.C
and its

pieces’
parts.

#include <stdio.h>

int main()

{

 printf("Goodbye, cruel world!\n");

 return(0);

}

1 2

3

4

5

6

7

8

10

In all C programs, the starting point is the main() function. Every C program
has one; GOODBYE.C, ERROR.C, and all the other C programs you ever create.
The main() function is the engine that makes the program work. The main()
function is also the skeleton upon which the rest of the program is built.

� main() is the name given to the first (or primary) function in every C pro-
gram. C programs can have other functions, but main() is the first one.

� In C, functions are followed by parentheses. The parentheses can be
empty, or they can contain information — it all depends on the individ-
ual function.

� When I write about C language functions in this book, I include the paren-
theses, as in main().

� A function is a machine — it’s a set of instructions that does something.
C programs can have many functions in them, though the main() func-
tion is the first function in a C program. It’s required.

Function. Get used to that word.

C Language Pieces’ Parts
Here are some interesting pieces of the C program shown in Figure 3-1:

1. #include is known as a preprocessor directive, which sounds impressive,
and it may not be the correct term, but you’re not required to memorize it
anyhow. What it does is tell the compiler to “include” text from another
file, stuffing it right into your source code. Doing this avoids lots of little,
annoying errors that would otherwise occur.

9

Chapter 3: C Straight 31
2. <stdio.h> is a filename hugged by angle brackets (which is the C lan-

guage’s attempt to force you to use all sorts of brackets and whatnot). The
whole statement #include <stdio.h> tells the compiler to take text
from the file STDIO.H and stick it into your source code before the source
code is compiled. The STDIO.H file itself contains information about the
STanDard Input/Output functions required by most C programs. The H
means “header.” You read more about header files in Chapter 23.

3. int main does two things. First, the int identifies the function main as
an integer function, meaning that main() must return an integer value
when it’s done. Second, that line names the function main, which also
identifies the first and primary function inside the program.

You find out more about functions returning values in Chapter 22.

4. Two empty parentheses follow the function name. Sometimes, items may
be in these parentheses, which I cover in Chapter 22.

5. All functions in C have their contents encased by curly braces. So, the
function name comes first (main in Item 3), and then its contents — or
the machine that performs the function’s job — is hugged by the curly
braces.

6. printf is the name of a C language function, so I should write it as
printf(). It’s job is to display information on the screen. (Because
printers predated computer monitors, the commands that display infor-
mation on the screen are called print commands. The added f means
“formatted,” which you find out more about in the next few chapters.)

7. Like all C language functions, printf() has a set of parentheses. In the
parentheses, you find text, or a “string” of characters. Everything between
the double quote characters (“) is part of printf’s text string.

8. An interesting part of the text string is \n. That’s the backslash character
and a little n. What it represents is the character produced by pressing
the Enter key, called a newline in C. You read more about this and other
weird backslash-character combinations in Chapter 7.

9. The printf line, or statement, ends with a semicolon. The semicolon is
C language punctuation — like a period in English. The semicolon tells
the C compiler where one statement ends and another begins. Note that
all statements require semicolons in C, even if only one statement is in a
program or function.

10. The second statement in GOODBYE.C is the return command. This
command sends the value 0 (zero) back to the operating system when
the main() function is done. Returning a value is required as part of the
main() function. You read why in Chapter 22. Note that even though
this command is the last one in the program, this statement ends in a
semicolon.

32 Part I: Introduction to C Programming

� Text in a program is referred to as a string. For example, “la-de-da” is a
string of text. The string is enclosed by double quotes.

� A C language function starts with the function type, such as int, and
then the function name and parentheses, as in main(). Then come a set
of curly braces, { and }. Everything between the { and } is part of the
function.

� The C language is composed of keywords that appear in statements. The
statements end in semicolons, just as sentences in English end in periods.
(Don’t frazzle your wires over memorizing this right yet.)

The C Language Itself — the Keywords
The C language is really rather brief. C has only 32 keywords. If only French
were that easy! Table 3-1 shows the keywords that make up the C language.

Table 3-1 C Language Keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Not bad, eh? But these aren’t all the words you use when writing programs in
C. Other words or instructions are called functions. These include jewels like
printf() and several dozen other common functions that assist the basic C
language keywords in creating programs.

Beyond keywords, programming languages (like human languages) also involve
grammar, or properly sticking together the words so that understandable ideas
are conveyed. This concept is completely beyond the grasp of the modern
legal community.

Chapter 3: C Straight 33

Even more keyword madness!
Keywords are worth noting because their use is
restricted or reserved. For example, you cannot
think up your own function and name it short.

short is a keyword, reserved
only for its specific purpose in the core C lan-

are these two depreciated C language keywords:

fortran

entry

I would avoid using them in your programs.

Also, the C++ language has a hoard of reserved
words. If you plan to study C++, include these

words in your do-not-use, reserved C language
vocabulary:

asm false private throw

bool friend protected true

catch inline public try

class mutable

const_cast using

delete new template virtual

this

them than to use one (such as new or friend)
and run into trouble later when you eventually
find out how to use C++.

That’s because

guage. That’s one way the keywords are special.

In addition to the 32 keywords shown in Table 3-1

C once had these keywords, but no longer. Still,

(That’s what “depreciated” means.)

reinterpret_cast typeid

namespace static_cast

dynamic_cast operator

It’s better to know these words now and not use

In addition to grammar, languages require rules, exceptions, jots and tittles,
and all sorts of fun and havoc. Programming languages are similar to spoken
language in that they have various parts and lots of rules.

� The keywords can also be referred to as reserved words.

� Note that all keywords are lowercase. This sentence is always true for C:
Keywords, as well as the names of functions, are lowercase. C is case sen-
sitive, so there is a difference between return, Return, and RETURN.

� You are never required to memorize the 32 keywords.

� In fact, of the 32 keywords, you may end up using only half on a regular
basis.

� Some keywords are real words! Others are abbreviations or combinations
of two or more words. Still others are cryptograms of the programmers’
girlfriends’ names.

� Each of the keywords has its own set of problems. You don’t just use the
keyword else, for example; you must use it in context.

34 Part I: Introduction to C Programming

� Functions such as printf() require a set of parentheses and lots of stuff
inside the parentheses. (Don’t fret over this statement right now; just nod
your head and smile in agreement, “Yes, printf() does require lots of
stuff.”)

� By the way, the fact that printf() is a C function and not a keyword is
why the #include <stdio.h> thing is required at the beginning of a pro-
gram. The STDIO.H file contains instructions telling the compiler what
exactly printf() is and does. If you edit out the #include <stdio.h>
line, the compiler produces a funky “I don’t know what to do with this
printf() thing” type of error.

Other C Language Components
The C language has many other parts, making it look rather bizarre to the new
programmer. Right now, all that’s standing between ignorance and knowledge
is time, so don’t dwell on what you don’t know. Instead, keep these few points
rolling around in your mind, like so many knowledge nuggets:

� The C language uses words — keywords, functions, and so forth — as its
most basic elements.

� Included with the words are symbols. Sometimes these symbols are called
operators, and at other times they’re called something else. For example,
the plus sign (+) is used in C to add things.

� The words have options and rules about how they’re used. These rules
are all referenced in the C reference material that came with your compiler.
You don’t have to memorize all of them, though a few of them become
second nature to you as you study and use C.

� Parentheses are used to group some of the important items required by
C words.

The words are put together to create statements, which are similar to
sentences in English. The statements all end with a semicolon.

� Braces are used to group parts of a program. Some words use braces to
group their belongings, and all the separate functions you create within
a program are grouped by braces. In Figure 3-1 and in all your C programs
in the first two chapters, for example, the braces have been used to con-
tain the belongings of the main() function.

� All this stuff put together (and more stuff I dare not discuss at this point)
makes up the syntax of the C language. Syntax is how languages are put
together.

Chapter 3: C Straight 35

Pop Quiz!
1. The core function in every C language program is called

A. numero_uno().

B. main().

C. primus().

D. core().

2. C language keywords are

A. The “words” of the C language.

B. Held together with string and earwax.

C. Uttered only in candlelit reverence by the C Language Gurus.

D. As numerous as the stars and nearly as distant.

3. In addition to keywords are

A. Functions, such as printf().

B. Operators, such as +, -, and other weird things.

C. Curly braces or brackets, angle brackets — all sorts of brackets.
Man, do we have a bracket problem!

D. Probably all of the above.

4. Functions require parentheses because

A. They talk in whispers.

B. The parentheses keep the function warm.

C. The parentheses hold various things required by or belonging to
the function.

D. What’s a function?

5. A telltale sign of any C program is its curly braces. Using what you know of
C, draw in the braces where they should appear in the following program:

int main()

printf(“Goodbye, cruel world!\n”);
return(0);

Answers on page 516.

36 Part I: Introduction to C Programming

The Helpful RULES Program
I just can’t let you go without a program in this chapter. To help you under-
stand the most easily offended C rules, I have summarized them in the follow-
ing program. It displays several lines of text that remind you of the basic rules
of C that you know about:

#include <stdio.h>

int main()
{
printf(“Braces come in pairs!”);
printf(“Comments come in pairs!”);
printf(“All statements end with a semicolon!”);
printf(“Spaces are optional!”);
printf(“Must have a main function!”);
printf(“C is done mostly in lowercase.\

It’s a case-sensitive language.”);
return(0);

}

Type the preceding source code into your editor. Save the code to disk as
RULES.C. Compile and run.

The resulting program is named RULES, and you can run it whenever you
need a reminder about some basic C do’s and don’ts.

� This program is really no different from those shown in previous chap-
ters. It merely has more printf() functions.

� The final printf() function (in Line 10) may seem a little odd. That’s
because it’s split between two lines. This weird contraption is covered
later in this chapter.

The importance of being \n
Did you notice something odd about the output of the RULES program? Yes, it
resembles an ugly clot of text:

Braces come in pairs!Comments come in pairs!All statements
end with a semicolon!Spaces are optional!Must have
a main function!C is done mostly in lowercase.
It’s a case-sensitive language.

The source code looks okay, but what’s missing from the output is the char-
acter you get when you press the Enter key, or what’s called the newline char-
acter. You have seen it before. It’s that weird \n thing:

Chapter 3: C Straight 37

\n

This line is C-speak for “Gimme a new line of text.” The n stands for new in new
line (though they write it as one word: newline).

The program you just created, RULES.C, needs the \n character at the end of
each line to ensure that each line is displayed on a line by itself on the screen.
This addition makes the output of the RULES program easy to read.

Edit the RULES.C source code file again. Before the last double-quote in each
printf() string, add the \n newline character.

If you’re good with search and replace, search for the “) (quote-paren) and
replace it with \n”).

Save the file to disk and recompile it. The output should now be more pleasing:

Braces come in pairs!
Comments come in pairs!
All statements end with a semicolon!
Spaces are optional!
Must have a main function!
C is done mostly in lowercase. It’s a case-sensitive

language.

� In C, the \n character is used in a text string as though the Enter key were
pressed.

� It’s always \n with a little n. C is mostly lowercase.

� The \n is called newline, though calling it “slash-n” or “backslash-n” is
acceptable as long as you don’t say it aloud.

� Table 24-1, in Chapter 24, lists other characters of a similar nature to \n.

Breaking up lines\ is easy to do
Another anomaly of the RULES program is that rogue \ character found at the
end of the tenth line. When used to end a line, the sole \ tells the compiler
that the rest of the line is merely continued on the line that follows. So, these
two lines:

printf(“C is done mostly in lowercase\
It’s a case-sensitive language.\n”);

are both seen as one single line when it comes time to compile; all the compiler
sees is this:

printf(“C is done mostly in lowercase It’s a case-sensitive
language.\n”);

38 Part I: Introduction to C Programming

You may find such a trick necessary for extra-long lines as your programs grow
more complex. The \ simply lets you split up a long line between several lines
in your source code. That can be handy.

Depending on how your editor and compiler behave, the result of splitting a
line with a string of text in it may not be what you want. For example, the
output on your screen may look like this:

Braces come in pairs!
Comments come in pairs!
All statements end with a semicolon!
Spaces are optional!
Must have a main function!
C is done mostly in lowercase. It’s a case-

sensitive language.

That happens because the split line includes a few tabs to indent things —
which looks pretty in your source code, but looks like blech when the pro-
gram runs. The solution is merely to edit the source code so that the extra
tabs are removed from the string of text.

To wit, change Lines 10 and 11 in the source code from this:

printf(“C is done mostly in lowercase.\
It’s a case-sensitive language.”);

to this:

printf(“C is done mostly in lowercase. \
It’s a case-sensitive language.”);

Note the extra space after the period in the first line (before the backslash),
which keeps the two lines of text from running into each other. Save that
mess. Compile and run. The output shall be most pleasing to the eye.

� Do note that some programs elsewhere in this book may use the \ to
split long lines.

� Don’t worry about using the \ to split any lines. It’s a trick you see others
use occasionally, but in my travels I prefer using a sideways-scrolling
editor to splitting up long lines.

� Although split lines are treated as a single line, any errors that happen on
either line are given their proper line number in the source code file. So, if
a semicolon were missing at the end of Line 11 in the RULES.C example,
the compiler would flag it on that line, not on the line before it.

Chapter 4

C What I/O
In This Chapter
� Reading the keyboard

� Understanding printf()

� Creating formatted output

� Understanding scanf()

Computers are all about input and output — the old I/O of days gone by,
what the pioneers once sang about. The wimminfolk would want to dance

real slow. Maybe cry. It was a sentimental thing, y’all — something that fancy,
dooded-up city slickers read about in dime magazines.

A-hem!

Input and output: You type something in and get a response, ask a question
and get an answer, put in two dollars in coins and get your soda pop — things
along those lines. This goes along with what I present in Chapter 3: It is your
job as a programmer to write a program that does something. At this point in
the learning process, triviality is okay. Soon, however, you begin to write pro-
grams that really do something.

Introduce Yourself to Mr. Computer
To meet the needs of input and output — the old I/O — you can try the follow-
ing program, WHORU.C — which is “who are you” minus a few letters. Please
don’t go calling this program “horror-you” (which could be spelled another
way, but this is a family book).

40 Part I: Introduction to C Programming

The purpose of this program is to type your name at the keyboard and then
have the computer display your name on the screen, along with a nice, friendly
greeting:

#include <stdio.h>

int main()
{

char me[20];

printf(“What is your name?”);
scanf(“%s”,&me);
printf(“Darn glad to meet you, %s!\n”,me);

return(0);
}

Type the preceding source code into your editor. Double-check everything.
Don’t bother with any details just yet. Type and hum, if it pleases you.

Save the file to disk. Name it WHORU.C.

Don’t compile this program just yet. That happens in the next section.

� The char me[20]; thing is a variable declaration. It provides storage for
the information you enter (the I in I/O). You find out more about variables
in Chapter 8.

� The new function here is scanf(), which is used to read input from the
keyboard and store it in the computer’s memory.

� Left paren is the (character. Right paren is the) character. Paren is short
for parenthesis or a type of steak sauce. (It’s also not a “real” word and
is frowned on by English teachers of the high-and-tight bun.)

Compiling WHORU.C
Compile the WHORU.C source code. If you see syntax or other errors, double-
check your source code with what is listed in this book. Ensure that you entered
everything properly. Be on the lookout for jots and tittles — parentheses,
double quotes, backslashes, percent signs, sneeze splotches, or other unusual
things on your monitor’s screen.

If you need to fix any errors, do so now. Otherwise, keep reading in the next
section.

Chapter 4: C What I/O 41
� Refer to Chapter 2 for more information on fixing errors and recompiling.

� A common beginner error: Unmatched double quotes! Make sure that you
always use a set of “s (double quotes). If you miss one, you get an error.
Also make sure that the parentheses and curly braces are included in
pairs; left one first, right one second.

The reward
Enough waiting! Run the WHORU program now. Type whoru or ./whoru at
the command prompt and press the Enter key. The output looks like this:

What is your name?

The program is now waiting for you to type your name. Go ahead: Type your
name! Press Enter.

If you typed Buster, the next line is displayed:

Darn glad to meet you, Buster!

� If the output looks different or the program doesn’t work right or gener-
ates an error, review your source code again. Reedit to fix any errors and
then recompile.

� I/O is input/output, what computers do best.

� I/O, I/O, it’s off to code I go. . . .

� This program is an example that takes input and generates output. It
doesn’t do anything with the input other than display it, but it does qual-
ify for I/O.

The WHORU.C source code mixes two powerful C language functions to get
input and provide output: printf() and scanf(). The rest of this chapter
tells more about these common and useful functions in detail.

More on printf()
The printf() function is used in the C programming language to display
information on the screen. It’s the all-purpose “Hey, I want to tell the user
something” display-text command. It’s the universal electric crayon for the
C language’s scribbling muscles.

42 Part I: Introduction to C Programming

The format for using the basic printf function is

printf(“text”);

printf is always written in lowercase. It’s a must. It’s followed by parentheses,
which contain a quoted string of text, text (see the example). It’s printf()’s
job to display that text on the screen.

In the C language, printf()is a complete statement. A semicolon always fol-
lows the last parenthesis. (Okay, you may see an exception, but it’s not worth
fussing over at this point in the game.)

� Although text is enclosed in double quotes, they aren’t part of the mes-
sage that printf() puts up on the screen.

� You have to follow special rules about the text you can display, all of which
are covered in Chapter 24.

� The format shown in the preceding example is simplified. A more advanced
format for printf() appears later in this chapter.

Printing funky text
Ladies and gentlemen, I give you the following:

Ta da! I am a text string.

It’s a simple collection of text, numbers, letters, and other characters — but
it’s not a string of text. Nope. For those characters to be considered as a unit,
they must be neatly enclosed in double quotes:

“Ta da! I am a text string.”

Now you have a string of text, but that’s still nothing unless the computer can
manipulate it. For manipulation, you need to wrap up the string in the bun-
like parentheses:

(“Ta da! I am a text string.”)

Furthermore, you need an engine — a function — to manipulate the string.
Put printf on one side and a semicolon on the other:

printf(“Ta da! I am a text string.”);

And, you have a hot dog of a C command to display the simple collection of
text, numbers, letters, and other characters on the screen. Neat and tidy.

Chapter 4: C What I/O 43
Consider this rabble:

He said, “Ta da! I am a text string.”

Is this criminal or what? It’s still a text string, but it contains the double-quote
characters. Can you make that text a string by adding even more double
quotes?

“He said, “Ta da! I am a text string.””

Now there are four double quotes in all. That means eight tick marks hovering
over this string’s head. How can it morally cope with that?

“”Damocles” if I know.”

The C compiler never punishes you for “testing” anything. There is no large
room in a hollowed-out mountain in the Rockies where a little man sits in a
chair looking at millions of video screens, one of which contains your PC’s
output, and, no, the little man doesn’t snicker evilly whenever you get an
error. Errors are safe! So why not experiment?

Please enter the following source code, DBLQUOTE.C. The resulting program
is another “printf() displays something” example. But this time, what’s dis-
played contains a double quote. Can you do that? This source code is your
experiment for the day:

#include <stdio.h>

int main()
{

printf(“He said, “Ta da! I am a text string.””);
return(0);

}

Type the source code exactly as it appears, including the double quotes — four
in all. (You notice right away that something is wrong if your editor color-codes
quoted text. But work with me here.)

Save the source code file to disk as DBLQUOTE.C.

Compile and run the preceding program — if you can. Chances are that you
encounter one of these errors instead:

dblequote.c: In function ‘main’:
dblequote.c:5: parse error before “Ta”

or

dblequote.c: In function ‘main’:
dblequote.c:6: syntax error before “Ta”

44 Part I: Introduction to C Programming

The printf() function requires a text string enclosed in double quotes. Your
compiler knows that. After the second double quote in the string was encoun-
tered (before the word Ta), the compiler expected something else — something
other than “Ta.” Therefore, an error was generated. Figure 4-1 illustrates this
in a cute way.

Figure 4-1:

The C
compiler

detects
something

amiss in the
printf()

statement.

printf("He said, "Ta da! I am a text string."");

The error happened
right here, Officer.

Obviously, there is a need to use the double-quote character in a string of text.
The question is how to pass that character along to printf() without it ruin-
ing the rest of your day. The answer is to use an escape sequence.

In the olden days, programmers would have simply gone without certain char-
acters. Rather than trip up a string with a double quote, they would have used
two single quotes. Some ancient programmers who don’t know about escape
sequences still use these tricks.

Escape from printf()!
Escape sequences are designed to liven up an otherwise dull action picture
with a few hard-cutting, loud-music moments of derring-do. In a programming
language, escape sequences are used to sneak otherwise forbidden characters,
or characters you cannot directly type at the keyboard, into text strings.

In the C language, escape sequences always begin with the backslash charac-
ter (\). Locate this character on your keyboard now. It should be above the
Enter key, though they often hide it elsewhere.

The backslash character signals the printf() function that an escape
sequence is looming. When printf() sees the backslash, it thinks, “Omigosh,
an escape sequence must be coming up,” and it braces itself to accept an
otherwise forbidden character.

Chapter 4: C What I/O 45
To sneak in the double-quote character without getting printf() in a tizzy,
you use the escape sequence \” (backslash, double quote). Behold, the new
and improved Line 5:

printf(“He said, \”Ta da! I am a text string.\””);

Notice the \” escape sequences in the text string. You see two of them, pre-
fixing the two double quotes that appear in the string’s midsection. The two
outside double quotes, the ones that really are bookmarks to the entire string,
remain intact. Looks weird, but it doesn’t cause an error.

(If your text editor color-codes strings, you see how the escaped double quotes
appear as special characters in the string, not as boundary markers, like the
other double quotes.)

Edit your DBLQUOTE.C source code file. Make the escape-sequence modifica-
tion to Line 5, as just shown. All you have to do is insert two backslash char-
acters before the rogue double quotes: \”.

Save the changed source code file to disk, overwriting the original DBLQUOTE.C
file with the newer version.

Compile and run. This time, it works and displays the following output:

He said, “Ta da! I am a text string.”

� The \” escape sequence produces the double-quote character in the
middle of a string.

� Another handy escape sequence you may have used in Chapter 1 is \n.
That produces a “new line” in a string, just like pressing the Enter key.
You cannot “type” the Enter key in a text string, so you must use the \n
escape sequence.

� All escape sequences start with the backslash character.

� How do you stick a backslash character into a string? Use two of them:
\\ is the escape sequence that sticks a backslash character into a string.

� An escape sequence can appear anywhere in a text string: beginning,
middle, or end and as many times as you want to use them. Essentially,
the \ thing is a shorthand notation for sticking forbidden characters into
any string.

� Other escape sequences are listed in Chapter 24 (in Table 24-1).

46 Part I: Introduction to C Programming

The f means “formatted”
The function is called printf() for a reason. The f stands for formatted. The
advantage of the printf function over other, similar display-this-or-that func-
tions in C is that the output can be formatted.

Earlier in this chapter, I introduce the format for the basic printf function as

printf(“text”);

But the real format — shhh! — is

printf(“format_string”[,var[,...]]);

What appears in the double quotes is really a formatting string. It’s still text
that appears in printf()’s output, but secretly inserted into the text are var-
ious conversion characters, or special “placeholders,” that tell the printf()
function how to format its output and do other powerful stuff.

After the format string comes a comma (still inside the parentheses) and then
one or more items called arguments. The argument shown in the preceding
example is var, which is short for variable. You can use printf() to display
the content or value of one or more variables. You do this by using special
conversion characters in format_string. Figure 4-2 illustrates this concept
rather beautifully.

printf("blah blah %s blah %i.\n",str, num);

First variable uses
first conversion character

Second variable uses
second conversion character

Figure 4-2:

How
printf()

solves
arguments.

The [,...] doohickey means that you can have any number of var items
specified in a single printf function (before the final paren). Each var item,
however, must have a corresponding placeholder (or conversion character)
in format_string. They must match up, or else you get an error when the
program is compiled.

Chapter 4: C What I/O 47

A bit of justification
To demonstrate how printf() can format text, as well as use those handy
conversion characters and var things I scared you with in the preceding sec-
tion, how about a sample program?

For your consideration is the following source code, which I have named
JUSTIFY.C. Marvel at it:

#include <stdio.h>

int main()
{

printf(“%15s”,”right\n”);
printf(“%-15s”,”left\n”);
return(0);

}

What JUSTIFY.C does is to display two strings: right is right-justified, and left
is left-justified. This makes more sense when you see the program’s output
rather than just look at the source code.

Enter this source code into your text editor.

In the first printf statement, the first string is %15s (percent sign, 15, little s).
That’s followed by a comma and then right, followed by the newline escape
sequence, \n (backslash, little n).

The second printf statement is nearly the same thing, though with a minus
sign before the 15 and the string left rather than right.

This program contains more C doodads than any other program introduced
in the first three chapters in this book. Be careful with what you type! When
you’re certain that you have it right, save the file to disk as JUSTIFY.C.

Compile JUSTIFY.C. Fix any errors if you need to. Then run the program. Your
output should look something like this:

right
left

The word right is right-justified 15 spaces over; left is left-justified. This
arrangement was dictated by the %15s formatting command in printf().
The %15s part of the formatting string didn’t print at all. Instead, it controlled
how the other string’s contents appeared on the screen. That’s the formatting
power of printf() at work.

48 Part I: Introduction to C Programming

Maybe a little more help in understanding
conversion characters

printf() uses its format-
ting string and arguments, bring up the source
code for the GOODBYE.C program into your text

printf(“%s”,”Goodbye, cruel
world!\n”);

printf() has been modified to contain a for-
matting string and an argument.

The formatting string is %s, which is the string
(for s

The argument is a string of text: “Goodbye,
cruel world\!n”.

Save the source code under a new filename,
BYE.C. Compile and run. The output is the same

as the original; you have merely used the %s in
the printf() function to “format” the output.

printf(“%s, %s
%s\n”,”Goodbye”,”cruel”,
”world!”);

the preceding line. It has three string place-
holders, %s, and three strings in double quotes
(with commas between them). Save. Compile.
Run. The output should be the same.

put a comma inside the double quotes, rather
than between them.)

To drive home how

editor. Change Line 5 to read:

) placeholder.

Try this modification of Line 5:

Carefully edit Line 5 to look like what’s shown in

(If you get a compiling error, you probably have

The JUSTIFY.C program shows you only a hint of what the printf() function
can do. printf() can also format numbers in a remarkable number of ways,
which is a little overwhelming to present right now in this chapter.

� In the printf() function, the first item in quotes is a formatting string,
though it can also contain text to be displayed right on the screen.

� The percent character holds special meaning to printf(). It identifies a
conversion character — what I call a “placeholder” — that tells printf
how to format its output.

� The conversion character s means string: %s.

� Any numbers between the % and the s are used to set the width of the text
string displayed. So, %15s means to display a string of text using 15 char-
acters. A minus sign before the 15 means to left-justify the string’s output.

� Doesn’t “left-justify” sound like a word processing term? Yup! It’s
formatting!

� printf() doesn’t truncate or shorten strings longer than the width
specified in the %s placeholder.

Chapter 4: C What I/O 49
� All this conversion-character stuff can get complex. Rest assured that

seldom does anyone memorize it. Often, advanced programmers have to
consult their C language references and run some tests to see which for-
matting command does what. Most of the time, you aren’t bothered with
this stuff, so don’t panic.

scanf Is Pronounced “Scan-Eff”
Output without input is like Desi without Lucy, yang without yin, Caesar salad
without the garlic. It means that the seven dwarves would be singing “Oh, Oh,
Oh” rather than “I/O, I/O.” Besides — and this may be the most horrid aspect
of all — without input, the computer just sits there and talks at you. That’s just
awful.

C has numerous tools for making the computer listen to you. A number of
commands read input from the keyboard, from commands that scan for indi-
vidual characters to the vaunted scanf() function, which is used to snatch a
string of text from the keyboard and save it in the cuddly, warm paws of a
string variable.

� scanf() is a function like printf(). Its purpose is to read text from the
keyboard.

� Like the f in printf(), the f in scanf() means formatted. You can use
scanf() to read a specifically formatted bit of text from the keyboard. In
this chapter, however, you just use scanf() to read a line of text, noth-
ing fancy.

Putting scanf together
To make scanf() work, you need two things. First, you need a storage place
to hold the text you enter. Second, you need the scanf function itself.

The storage place is called a string variable. String means a string of
characters — text. Variable means that the string isn’t set — it can be what-
ever the user types. A string variable is a storage place for text in your pro-
grams. (Variables are discussed at length in Chapter 8.)

The second thing you need is scanf() itself. Its format is somewhat similar
to the advanced, cryptic format for printf(), so there’s no point in wasting
any of your brain cells covering that here.

50 Part I: Introduction to C Programming

An example of using scanf() reads in someone’s first name. First, you create
a storage place for the first name:

char firstname[20];

This C language statement sets aside storage for a string of text — like creating
a safe for a huge sum of money that you wish to have some day. And, just like
the safe, the variable is “empty” when you create it; it doesn’t contain anything
until you put something there.

Here’s how the preceding statement breaks down:

char is a C language keyword that tells the compiler to create a character
variable, something that holds text (as opposed to numbers).

firstname is the name of the storage location. When the source code
refers to the variable, it uses this name, firstname.

[20] defines the size of the string as being able to hold as many as 20
characters. All told, you have set aside space to hold 20 characters and
named that space — that variable — firstname.

The semicolon ends the C language statement.

The next step is to use the scanf() function to read in text from the keyboard
and store it in the variable that is created. Something like the following line
would work:

scanf(“%s”,&firstname);

Here’s how this statement works:

scanf() is the function to read information from the keyboard.

%s is the string placeholder; scanf() is looking for plain old text input
from the keyboard. Pressing the Enter key ends input.

The text input is stored in the string variable named firstname. The
ampersand is required here to help scanf() find the location of the
string variable in memory.

The semicolon ends the C language statement.

Between the variable and scanf(), text is read from the keyboard and
stored in the computer’s memory for later use. The next section coughs up
an example.

Chapter 4: C What I/O 51
� If you’re writing a C program that requires input, you must create a place

to store it. For text input, that place is a string variable, which you create
by using the char keyword.

� Variables are officially introduced in Chapter 8 in this book. For now, con-
sider the string variable that scanf() uses as merely a storage chamber
for text you type.

� The formatting codes used by scanf() are identical to those used by
printf(). In real life, you use them mostly with printf() because
there are better ways to read the keyboard than to use scanf(). Refer
to Table 24-2 in Chapter 24 for a list of the formatting percent-sign place-
holder codes.

� Forgetting to stick the & in front of scanf()’s variable is a common mis-
take. Not doing so leads to some wonderful null pointer assignment errors
that you may relish in the years to come. As a weird quirk, however, the
ampersand is optional when you’re dealing with string variables. Go
figure.

The miracle of scanf()
Consider the following pointless program, COLOR.C, which uses two string
variables, name and color. It asks for your name and then your favorite color.
The final printf() statement then displays what you enter.

#include <stdio.h>

int main()
{

char name[20];
char color[20];

printf(“What is your name?”);
scanf(“%s”,name);
printf(“What is your favorite color?”);
scanf(“%s”,color);
printf(“%s’s favorite color is %s\n”,name,color);
return(0);

}

Enter this source code into your editor. Save this file to disk as COLOR.C.
Compile.

If you get any errors, double-check your source code and reedit the file. A
common mistake: forgetting that there are two commas in the final printf()
statement.

52 Part I: Introduction to C Programming

Run the program! The output looks something like this:

What is your name?dan
What is your favorite color?brown
dan’s favorite color is brown

In Windows XP, you have to run the command by using the following line:

.\color

The reason is that COLOR is a valid console command in Windows XP, used
to change the foreground and background color of the console window.

Experimentation time!
Which is more important: the order of the %s doodads or the order of the
variables — the arguments — in a printf statement? Give up? I’m not going
to tell you the answer. You have to figure it out for yourself.

Make the following modification to Line 12 in the COLOR.C program:

printf(“%s’s favorite color is %s\n”,color,name);

The order of the variables here is reversed: color comes first and then name.
Save this change to disk and recompile. The program still runs, but the output
is different because you changed the variable order. You may see something
like this:

brown’s favorite color is Dan.

See? Computers are stupid! The point here is that you must remember the
order of the variables when you have more than one listed in a printf()
function. The %s thingies? They’re just fill-in-the-blanks.

How about making this change:

printf(“%s’s favorite color is %s\n”,name,name);

This modification uses the name variable twice — perfectly allowable. All
printf() needs are two string variables to match the two %s signs in its for-
matting string. Save this change and recompile. Run the program and exam-
ine the output:

Dan’s favorite color is Dan

Chapter 4: C What I/O 53
Okay, Lois — have you been drinking again? Make that mistake on an IRS
form and you may spend years playing golf with former stockbrokers and
congressmen. (Better learn to order your variables now.)

Finally, make the following modification:

printf(“%s’s favorite color is %s\n”,name,”blue”);

Rather than the color variable, a string constant is used. A string constant is
simply a string enclosed in quotes. It doesn’t change, unlike a variable, which
can hold anything. (It isn’t variable!)

Save the change to disk and recompile your efforts. The program still works,
though no matter which color you enter, the computer always insists that it’s
“blue.”

� The string constant “blue” works because printf()’s %s placeholder
looks for a string of text. It doesn’t matter whether the string is a variable
or a “real” text string sitting there in double quotes. (Of course, the advan-
tage to writing a program is that you can use variables to store input;
using the constant is a little silly because the computer already knows
what it’s going to print. I mean, ladies and gentlemen, where is the I/O?)

� The %s placeholder in a printf() function looks for a corresponding
string variable and plugs it in to the text that is displayed.

� You need one string variable in the printf() function for each %s that
appears in printf()’s formatting string. If the variable is missing, a
syntax boo-boo is generated by the compiler.

� In addition to string variables, you can use string constants, often called
literal strings. That’s kind of dumb, though, because there’s no point in
wasting time with %s if you already know what you’re going to display.
(I have to demonstrate it here, however, or else I have to go to C Teacher’s
Prison in Connecticut.)

� Make sure that you get the order of your variables correct. This advice
is especially important when you use both numeric and string variables
in printf.

� The percent sign (%) is a holy character. Om! If you want a percent sign
(%) to appear in printf’s output, use two of them: %%.

54 Part I: Introduction to C Programming

Chapter 5

To C or Not to C
In This Chapter
� Inserting notes for yourself

� Using fancy commenting techniques

� Borrowing C++ comments

� Disabling code with comments

� Avoiding nested comments

An important part of programming is remembering what the heck it is
you’re doing. I’m not talking about the programming itself — that’s easy

to remember, and you can buy books and references galore in case you don’t.
Instead, the thing you have to remember is what you are attempting to make
a program do at a specific spot. You do that by inserting a comment in your
source code.

Comments aren’t really necessary for the small programs you’re doing in
this book. Comments don’t begin to become necessary until you write larger
programs — on the scope of Excel or Photoshop — where you can easily lose
your train of thought. To remind yourself of what you’re doing, you should
stick a comment in the source code, explaining your approach. That way, when
you look at the source code again, your eyes don’t glaze over and the drool
doesn’t pour, because the comments remind you of what’s going on.

Adding Comments
Comments in a C program have a starting point and an ending point. Every-
thing between those two points is ignored by the compiler, meaning that you
can stick any text in there — anything — and it doesn’t affect how the pro-
gram runs.

/* This is how a comment looks in the C language */

56 Part I: Introduction to C Programming

This line is a fine example of a comment. What follows is another example of
a comment, but the type that gives this book its reputation:

/*
Hello compiler! Hey, error on this: pirntf!
Ha! Ha! You can’t see me! Pbbtbtbt!
Nya! Nya! Nya!
*/

� The beginning of the comment is marked by the slash and the asterisk: /*.

� The end of the comment is marked by the asterisk and the slash: */.

� Yup, they’re different.

� The comment is not a C language statement. You do not need a semi-
colon after the */.

A big, hairy program with comments
The following source code is MADLIB1.C. It uses the printf() and scanf()
functions described in Chapter 4 to create a short yet interesting story:

/*
MADLIB1.C Source Code
Written by (your name here)
*/

#include <stdio.h>

int main()
{

char adjective[20];
char food[20];
char chore[20];
char furniture[20];

/* Get the words to use in the madlib */

printf(“Enter an adjective:”); /* prompt */
scanf(“%s”,&adjective); /* input */
printf(“Enter a food:”);
scanf(“%s”,&food);
printf(“Enter a household chore (past tense):”);
scanf(“%s”,&chore);
printf(“Enter an item of furniture:”);
scanf(“%s”,&furniture);

/* Display the output */

Chapter 5: To C or Not to C 57

printf(“\n\nDon’t touch that %s %s!\n”,adjective,food);
printf(“I just %s the %s!\n”,chore,furniture);

return(0);
}

Type the source code exactly as written. The only thing new should be the
comments. Each one begins with /* and ends with */. Make sure that you get
those right: A slash-asterisk begins the comment, and an asterisk-slash ends
it. (If you’re using a color-coded editor, you see the comments all coded in
the same color.)

Save the file to disk and name it MADLIB1.C.

Compile. Run.

Here is a sample of the program’s output:

Enter an adjective:hairy
Enter a food:waffle
Enter a household chore (past tense):vacuumed
Enter an item of furniture:couch

Don’t touch that hairy waffle!
I just vacuumed the couch!

Oh, ha-ha! Ouch! My sides!

� This program is long and looks complex, but it doesn’t use any new tricks.
Everything here, you have seen already: char to create string variables,
printf() to display text and string variables, and scanf() to read the
keyboard. Yawn.

� MADLIB1.C uses these four string variables: adjective, food, chore, and
furniture. All four are created by the char keyword, and 20 characters
of storage are set aside for each one. Each of the string variables is filled
by scanf() with your keyboard input.

� Each of the final printf() functions contains two %s placeholders. Two
string variables in each function supply the text for the %s placeholders.

� The second-to-last printf() function begins with two newline characters,
\n \n. These characters separate the input section, where you enter the
bits of text, from the program’s output. Yes, newlines can appear any-
where in a string, not just at the end.

� MADLIB1.C has five comments. Make sure that you can find each one.
Notice that they’re not all the same, yet each one begins with /* and
ends with */.

58 Part I: Introduction to C Programming

Why are comments necessary?
Comments aren’t necessary for the C compiler. It ignores them. Instead, com-
ments are for you, the programmer. They offer bits of advice, suggestions for
what you’re trying to do, or hints on how the program works. You can put any-
thing in the comments, though the more useful the information, the better it
helps you later on.

with information such as the following:

/* COOKIES.C
Dan Gookin, 1/20/05 @ 2:45 a.m.
Scan Internet cookie files for expired
dates and delete.
*/

Most C programs begin with a few lines of comments. All my C programs start

These lines tell me what the program is about and when I started working on it.

In the source code itself, you can use comments as notes to yourself, such as

/* Find out why this doesn’t work */

or this:

save=itemv; /* Save old value here */

or even reminders to yourself in the future:

/*
Someday you will write the code here that makes
the computer remember what it did last time this
program ran.
*/

The point is that comments are notes for yourself. If you were studying C pro-
gramming in school, you would write the comments to satiate the fixations of
your professor. If you work on a large programming project, the comments
placate your team leader. For programs you write, the comments are for you.

Comment Styles of the Nerdy
and Not-Quite-Yet-Nerdy

The MADLIB1.C program contains five comments and uses three different com-
menting styles. Though you can comment your programs in many more ways,
these are the most common:

Chapter 5: To C or Not to C 59

/*
MADLIB1.C Source Code
Written by Mike Rowsoft
*/

Ever popular is the multiline approach, as just shown. The first line starts
the comment with the /* all by itself. Lines following it are all comments,
remarks, or such and are ignored by the compiler. The final line ends the
comment with */ all by itself. Remember that final /*; otherwise, the C
compiler thinks that your whole program is just one big, long comment
(possible, but not recommended).

/* Get the words to use in the madlib */

This line is a single-line comment, not to be confused with a C language state-
ment. The comment begins with /* and ends with */ all on the same line. It’s
100 percent okey-dokey, and, because it’s not a statement, you don’t need a
semicolon.

Finally, you can add the “end of line” comment:

printf(“Enter an adjective:”); /* prompt */

After the preceding printf statement plus a few taps of the Tab key, the /*
starts a comment, and */ ends it on the same line.

Bizarr-o comments
During my travels, I have seen many attempts to make comments in C programs
look interesting. Here’s an example:

/***
** Commander Zero’s Excellent Program **
**/

This comment works. It contains lots of asterisks, but they’re all still stuck
between /* and */, making it a viable comment.

I have used this before in my programs:

/*
* This is a long-winded introduction to an
* obscure program written by someone at a
* university who’s really big on himself and
* thinks no mere mortal can learn C -- and who
* has written three “C” books to prove it.
*/

60 Part I: Introduction to C Programming

The idea in this example is to create a “wall of asterisks” between the /* and
*/, making the comment stick out on the page.

Another example I often use is this:

/***/

That line of asterisks doesn’t say anything, yet it helps to break up different
sections in a program. For example, I may put a line of asterisks between dif-
ferent functions so that I can easily find them.

The bottom line: No matter what you put between them, a comment must
start with /* and end with */.

C++ comments
Because today’s C compilers also create C++ code, you can take advantage
of the comment style used by C++ in your plain old C programs. I mention it
simply because the C++ comment style can be useful, and it’s permitted if you
want to borrow it.

In C++, comments can start with a double slash, //. That indicates that the rest
of the text on the line is a comment. The end of the line marks the end of the
comment:

//This is another style of comment,
//one used in C++

This commenting style has the advantage that you don’t have to both begin
and end a comment, making it ideal for placing comments at the end of a C
language statement, as shown in this example:

printf(“Enter an adjective:”); // prompt
scanf(“%s”,&adjective); // input

These modifications to the MADLIB1.C program still keep the comments
intact. This method is preferred because it’s quick; however, /* and */ have
the advantage of being able to rope in a larger portion of text without typing
// all over the place.

Chapter 5: To C or Not to C 61

Using Comments to Disable
Comments are ignored by the compiler. No matter what lies between the /*
and the */, it’s skipped over. Even vital, lifesaving information, mass sums of
cash, or the key to eternal youth — all these are ignored if they’re nestled in a
C language comment.

Modify the MADLIB1.C source code, changing the last part of the program to
read:

/* Display the output */

/*
printf(“\n\nDon’t touch that %s %s!\n”,adjective,food);
printf(“I just %s the %s!\n”,chore,furniture);

*/

To make the modification, follow these cinchy steps:

1. Insert a line with /* on it before the first printf() function in this
example.

2. Insert a line with */ on it after the second printf() function.

With the last two printf() statements disabled, save the file to disk and
recompile it. It runs as before, but the resulting “mad lib” isn’t displayed.
The reason is that the final two printf() functions are “commented out.”

� You can use comments to disable certain parts of your program. If some-
thing isn’t working correctly, for example, you can “comment it out.” You
may also want to include a note to yourself, explaining why that section
is commented out.

� Sometimes you may notice that something which should be working
isn’t working. The reason is that you may have accidentally commented
it out. Always check your /* and */ comment bookends to make sure
that they match up the way you want them to.

� By using an editor with color-coded text, you can easily spot missing */
characters to end a comment. If you notice that a greater chunk of your
source code is colored as a comment, a misplaced */ is probably to
blame.

62 Part I: Introduction to C Programming

The Perils of “Nested” Comments
The most major of the faux pas you can commit with comments is to “nest”
them, or to include one set of comments inside another. To wit, I present the
following C program fragment:

if(all_else_fails)
{

display_error(erno); /* erno is already set */
walk_away();

}
else

get_mad();

Don’t worry about understanding this example; it all comes clear to you later
in this book. However, notice that the display_error function has a comment
after it: erno is already set. But suppose that, in your advanced under-
standing of C that is yet to come, you want to change the gist of this part of the
program so that only the get_mad() function is executed. You comment out
everything except that line to get it to work:

/*
if(all_else_fails)

{
display_error(erno); /* erno is already set */
walk_away();
}

else
*/

get_mad();

Here, the C compiler sees only the get_mad function, right?

Wrong! The comment begins on the first line with the /*. But it ends on the line
with the display_error() function. Because that line ends with */ — the
comment bookend — that’s the end of the “comment.” The C compiler then
starts again with the walk_away function and generates a parse error on the
rogue curly brace floating in space. The second comment bookend (just above
the get_mad() function) also produces an error. Two errors! How heinous.

This example shows a nested comment, or a comment within a comment. It just
doesn’t work. Figure 5-1 illustrates how the C compiler interprets the nested
comment.

To avoid the nested-comment trap, you have to be careful when you’re dis-
abling portions of your C program. The solution in this case is to uncomment
the erno is already set comment. Or, you can comment out each line
individually, in which case that line would look like this:

Chapter 5: To C or Not to C 63

/* display_error(erno); /* erno is already set */

This method works because the comment still ends with */. The extra /*
inside the comment is safely ignored.

� Yeah, nested comments are nasty, but nothing you need to worry about
at this point in the game.

� Note that the C++ style of comments, //, doesn’t have a nesting problem.

/*

if(all_else_fails)

 {

 display_error(erno); /* erno is already set */

 walk_away();

 }

else

*/

 get_mad();

 walk_away();

 }

else

*/

 get_mad();

What you wrote:

What the compiler sees:

OOPS!

ACK!

More errors!

/*

if(all_else_fails)

 {

 display_error(erno); /* erno is already set */

Figure 5-1:

The perils of
a nested

comment.

64 Part I: Introduction to C Programming

Chapter 6

C More I/O with gets()
and puts ()

In This Chapter
� Reading strings of text with gets()

� Avoiding some gets() problems

� Using puts() to display text

� Displaying variables with puts()

� Knowing whether to use puts() or printf()

The printf() and scanf() functions aren’t the only way you can display
information or read text from the keyboard — that old I/O. No, the C lan-

guage is full of I/O tricks, and when you find out how limited and lame printf()
and scanf() are, you will probably create your own functions that read the
keyboard and display information just the way you like. Until then, you’re
stuck with what C offers.

This chapter introduces the simple gets() and puts() functions. gets()
reads a string of text from the keyboard, and puts() displays a string of text
on the screen.

The More I Want, the More I gets()
Compared to scanf(), the gets() function is nice and simple. Both do the
same thing: They read characters from the keyboard and save them in a vari-
able. gets() reads in only text, however. scanf() can read in numeric values
and strings and in a number of combinations. That makes it valuable, but for
reading in text, clunky.

66 Part I: Introduction to C Programming

Like scanf() reading in text, gets() requires a char variable to store
what’s entered. It reads everything typed at the keyboard until the Enter key
is pressed. Here’s the format:

gets(var);

gets(), like all functions, is followed by a set of parentheses. Because gets()
is a complete statement, it always ends in a semicolon. Inside the parentheses
is var, the name of the string variable text in which it is stored.

Another completely rude program example
The following is the INSULT1.C program. This program is almost identical to
the WHORU.C program, introduced in Chapter 4, except that gets() is used
rather than scanf().

#include <stdio.h>

int main()
{

char jerk[20];

printf(“Name some jerk you know:”);
gets(jerk);
printf(“Yeah, I think %s is a jerk, too.\n”,jerk);
return(0);

}

Enter this source code into your editor. Save the file to disk and name it
INSULT1.C.

Compile the program. Reedit the text if you find any errors. Remember your
semicolons and watch how the double quotes are used in the printf()
functions.

Run the resulting program. The output looks something like this:

Name some jerk you know:Bill
Yeah, I think Bill is a jerk, too.

� gets() reads a variable just like scanf() does. Yet no matter what
reads it, the printf() statement can display it.

� gets(var) is the same as scanf(“%s”,var).

� If you get a warning error when compiling, see the next section.

Chapter 6: C More I/O with gets() and puts() 67
� You can pronounce gets() as “get-string” in your head. “Get a string of

text from the keyboard.” However, it probably stands for “Get stdin,” which
means “Get from standard input.” “Get string” works for me, though.

And now, the bad news about gets()
The latest news from the C language grapevine is not to use the gets() func-
tion, at least not in any serious, secure programs you plan on writing. That’s
because gets() is not considered a safe, secure function to use.

The reason for this warning — which may even appear when you compile a
program using gets() — is that you can type more characters at the keyboard
than were designed to fit inside the char variable associated with gets(). This
flaw, known as a keyboard overflow, is used by many of the bad guys out there
to write worms and viruses and otherwise exploit well-meaning programs.

For the duration of this book, don’t worry about using gets(). It’s okay here
as a quick way to get input while finding out how to use C. But for “real” pro-
grams that you write, I recommend concocting your own keyboard-reading
functions.

The Virtues of puts()
In a way, the puts() function is a simplified version of the printf() function.
puts() displays a string of text, but without all printf()’s formatting magic.
puts() is just a boneheaded “Yup, I display this on the screen” command.
Here’s the format:

puts(text);

puts() is followed by a left paren, and then comes the text you want to dis-
play. That can either be a string variable name or a string of text in double
quotes. That’s followed by a right paren. The puts() function is a complete
C language statement, so it always ends with a semicolon.

The puts() function’s output always ends with a newline character, \n. It’s
like puts() “presses Enter” after displaying the text. You cannot avoid this
side effect, though sometimes it does come in handy.

68 Part I: Introduction to C Programming

Another silly command-prompt program
To see how puts() works, create the following program, STOP.C. Yeah, this
program is really silly, but you’re just starting out, so bear with me:

#include <stdio.h>

int main()
{

puts(“Unable to stop: Bad mood error.”);
return(0);

}

Save this source code to disk as STOP.C. Compile it, link it, run it.

This program produces the following output when you type stop or ./stop at
the command prompt:

Unable to stop: Bad mood error.

Ha, ha.

� puts() is not pronounced “putz.”

� Like printf(), puts() slaps a string of text up on the screen. The text
is hugged by double quotes and is nestled between two parentheses.

� Like printf(), puts() understands escape sequences. For example,
you can use \” if you want to display a string with a double quote in it.

� You don’t have to put a \n at the end of a puts() text string. puts()
always displays the newline character at the end of its output.

� If you want puts() not to display the newline character, you must use
printf() instead.

puts() and gets() in action
The following program is a subtle modification to INSULT1.C. This time, the
first printf() is replaced with a puts() statement:

#include <stdio.h>

int main()
{

char jerk[20];

Chapter 6: C More I/O with gets() and puts() 69

puts(“Name some jerk you know:”);
gets(jerk);
printf(“Yeah, I think %s is a jerk, too.”,jerk);
return(0);

}

Load the source code for INSULT1.C into your editor. Change Line 7 so that it
reads as just shown; the printf is changed to puts.

Use your editor’s Save As command to give this modified source code a new
name on disk: INSULT2.C. Save. Compile. Run.

Name some jerk you know:
Rebecca
Yeah, I think Rebecca is a jerk, too.

Note that the first string displayed (by puts()) has that newline appear after-
ward. That’s why input takes place on the next line. But considering how many
command-line or text-based programs do that, it’s really no big deal. Other-
wise, the program runs the same as INSULT1. But you’re not done yet; con-
tinue reading with the next section.

More insults
The following source code is another modification to the INSULT series of pro-
grams. This time, you replace the final printf() with a puts() statement.
Here’s how it looks:

#include <stdio.h>

int main()
{

char jerk[20];

puts(“Name some jerk you know:”);
gets(jerk);
puts(“Yeah, I think %s is a jerk, too.”,jerk);
return(0);

}

Load the source code for INSULT2.C into your editor. Make the changes just
noted, basically replacing the printf in Line 9 with puts. Otherwise, the rest
of the code is the same.

Save the new source code to disk as INSULT3.C. Compile and run.

70 Part I: Introduction to C Programming

Whoops! Error! Error!

Insult3.c:9: too many arguments to function ‘puts’

The compiler is smart enough to notice that more than one item appears to
be specified for the puts() function; it sees a string, and then a variable is
specified. According to what the compiler knows, you need only one or the
other, not both. Oops.

� puts() is just not a simpler printf().

� If you got the program to run — and some compilers may — the output
looks like this:

Name some jerk you know:
Bruce
Yeah, I think that %s is a jerk, too.

Ack! Who is this %s person who is such a jerk? Who knows! Remember
that puts() isn’t printf(), and it does not process variables the same
way. To puts(), the %s in a string is just %s — characters — nothing
special.

puts() can print variables
puts() can display a string variable, but only on a line by itself. Why a line by
itself? Because no matter what, puts() always tacks on that pesky newline
character. You cannot blend a variable into another string of text by using the
puts() function.

Consider the following source code, the last in the INSULT line of programs:

#include <stdio.h>

int main()
{

char jerk[20];

puts(“Name some jerk you know:”);
gets(jerk);
puts(“Yeah, I think”);
puts(jerk);
puts(“is a jerk, too.”);
return(0);

}

Chapter 6: C More I/O with gets() and puts() 71
Feel free to make the preceding modifications to your INSULT3.C program in
your editor. Save the changes to disk as INSULT4.C. Compile. Run.

Name some jerk you know:
David
Yeah, I think
David
is a jerk, too.

The output looks funky, like one of those “you may be the first person on
your block” sweepstakes junk mailers. But the program works the way it was
intended.

� Rather than replace printf() with puts(), you have to rethink your
program’s strategy. For one, puts() automatically sticks a newline on
the end of a string it displays. No more strings ending in \n! Second,
puts() can display only one string variable at a time, all by itself, on its
own line. And, last, the next bit of code shows the program the way it
should be written by using only puts() and gets().

� You must first “declare” a string variable in your program by using the
char keyword. Then you must stick something in the variable, which
you can do by using the scanf() or gets function. Only then does dis-
playing the variable’s contents by using puts() make any sense.

� Do not use puts() with a nonstring variable. The output is weird. (See
Chapter 8 for the lowdown on variables.)

When to use puts()
When to use printf()

� Use puts() to display a single line of

� Use puts() to display the contents of a
string variable on a line by itself.

� Use printf() to display the contents of a
variable nestled in the middle of another
string.

� Use printf() to display the contents of
more than one variable at a time.

� Use printf()
newline (Enter) character to be displayed
after every line, such as when you’re
prompting for input.

� Use printf() when fancy formatted
output is required.

text — nothing fancy.

when you don’t want the

72 Part I: Introduction to C Programming

Run and Scream

and Math

Part II

from Variables

In this part . . .

P
of mathematics or engineering. After all, computers have

on the moon.

that does the math. Unlike those sweaty days in the back

for you.

ishly make the computer do your math puzzles. And, if it

rogramming a computer involves more than just
splattering text on a screen. In fact, when you ask

most folks, they assume that programming is some branch

their roots in the calculators and adding machines of years
gone by. And, early computers were heavily involved with
math, from computing missile trajectories to landing men

I have to admit: Programming a computer does involve
math. That’s the subject of the next several chapters, along
with an official introduction to the concept of a variable
(also a math thing). Before you go running and screaming
from the room, however, consider that it’s the computer

of eighth-grade math class, with beady-eyed Mr. Perdomo
glowering at you like a fat hawk eyeing a mouse, you merely
have to jot down the problem. The computer solves it

Relax! Sit back and enjoy reading about how you can slav-

gets the answer wrong, feel free to berate it until the com-
puter feels like it’s only about yay high.

Chapter 7

A + B = C
In This Chapter
� Changing a variable’s value

� Introducing the int

� Converting text with the atoi() function

� Using +, -, *, and /

� Struggling with basic math

It’s time to confirm your worst fears. Yes, computers have something to do
with math. But it’s more of a passing fancy than the infatuation you’re now

dreading. Unless you’re some hard-core type of engineer (the enginerd), math-
ematics plays only a casual role in your programs. You add, subtract, divide,
multiply, and maybe do a few other things. Nothing gets beyond the skills of
anyone who can handle a calculator. It’s really fourth-grade stuff, but because
we work with variables— which is more like eighth-grade algebra stuff — this
material may require a little squeezing of the brain juices. In this chapter, I try
to make it as enjoyable as possible for you.

The Ever-Changing Variable
A variable is a storage place. The C compiler creates the storage place and
sets aside room for you to store strings of text or values — depending on the
type of storage place you create. You do this by using a smattering of C lan-
guage keywords that you soon become intimate with.

What’s in the storage place? Could be anything. That’s why it’s called a vari-
able. Its contents may depend on what’s typed at the keyboard, the result of
some mathematical operation, a campaign promise, or a psychic prediction.
The contents can change too — just like the psychic prediction or campaign
promise.

76 Part II: Run and Scream from Variables and Math

It’s by juggling these variables that work gets done in most programs. When
you play PacMan, for example, his position on the screen is kept in a vari-
able because, after all, he moves (his position changes). The number of
points PacMan racks up are stored in a variable. And, when you win the
game, you enter your name, and that too is stored in a variable. The value
of these items — PacMan’s location, your points, your name — are changing
or can change, which is why they’re stored in variables.

� Variables are information-storage places in a program. They can con-
tain numbers, strings of text, and other items too complex to get into
right now.

� The contents of a variable? It depends. Variables are defined as being
able to store strings of text or numbers. Their contents depend on what
happens when the program runs, what the user types, or the computer’s
mood, for example. Variables can change.

� Where are variables stored? In your computer’s memory. This informa-
tion isn’t important right now; the computer makes room for them as long
as you follow proper variable-creating procedures in your C programs.

Strings change
The following program is brought to you by the keyword char and by the
printf() and gets() functions. In this program, a string variable, kitty, is
created, and it’s used twice as the user decides what to name her cat. The
changing contents of kitty show you the gist of what a variable is:

#include <stdio.h>

int main()
{

char kitty[20];

printf(“What would you like to name your cat?”);
gets(kitty);
printf(“%s is a nice name. What else do you have in

mind?”,kitty);
gets(kitty);
printf(“%s is nice, too.\n”,kitty);
return(0);

}

Enter the source code for KITTY.C into your text editor. Save the file to disk
as KITTY.C.

Chapter 7: A + B = C 77
Compile KITTY.C. If you get any errors, reedit your source code. Check for
missing semicolons, misplaced commas, and so on. Then recompile.

Running the program is covered in the next section.

� The char keyword is used to create the variable and set aside storage
for it.

� Only by assigning text to the variable can its contents be read.

� It’s the gets() function that reads text from the keyboard and sticks it
into the string variable.

Running the KITTY
After compiling the source code for KITTY.C in the preceding section, run the
final program. The output looks something like this:

What would you like to name your cat?Rufus
Rufus is a nice name. What else do you have in mind?Fuzzball
Fuzzball is nice, too.

The kitty variable is assigned one value by using the first gets() function.
Then, it’s assigned a new value by the second gets() function. Though the
same variable is used, its value changes. That is the idea behind variables.

� A single variable can be used many times in a program. It can be used
over and over with the same value, or used over and over to store differ-
ent values.

� It’s the contents of the string variable that are displayed — not the vari-
able name. In the KITTY.C program, the variable is named kitty. That’s
for your reference as a programmer. What’s stored in the variable is
what’s important.

Welcome to the Cold World of
Numeric Variables

Just as strings of text are stored in string variables, numbers are stored in
numeric variables. This allows you to work with values in your program and
to do the ever-dreaded math.

78 Part II: Run and Scream from Variables and Math

To create a numeric variable and set aside storage space for a number, a spe-
cial C language keyword is used. Unlike char, which creates all types of strings,
different keywords are used to create variables for storing different types of
numbers. It all depends on how big or how weird the number is.

Hello, integer
To keep things sane for now, I show you only one of the numeric variable
types. It’s the simplest form of a number, the integer. Just say “IN-tuh-jur.”
Integer.

Here’s how the typical C compiler defines an integer type of number:

� An integer is a whole number — no fractions, decimal parts, or funny
stuff.

� An integer can have a value that ranges from 0 to 32,767.

� Negative numbers, from –32,768 up to 0 are also allowed.

Any other values — larger or smaller, fractions, or values with a decimal
point, such as 1.5 — are not integers. (The C language can deal with such
numbers, but I don’t introduce those types of variables now.)

To use an integer variable in a program, you have to set aside space for it.
You do this with the int keyword at the beginning of the program. Here’s
the format:

int var;

The keyword int is followed by a space (or a press of the Tab key) and then
the name of the variable, var. It’s a complete statement in the C language, and
it ends with a semicolon.

� Some compilers may define the range for an int to be much larger than
–32,768 through 32,767. To be certain, check with your compiler’s docu-
mentation or help system.

� On older, 16-bit computers, an integer ranges in value from –32,768
through 32,767.

� On most modern computers, integer values range from –2,147,483,647
through 2,147,483,647.

� More information about naming a variable — and other C language trivia
about variables — is offered in Chapter 8. For now, forgive me for the
unofficial introduction.

Chapter 7: A + B = C 79
� Yes! You’re very observant. This type of int is the same one used to

declare the main() function in every program you have written in this
book — if you have been reading the chapters in order. Without getting
too far ahead, you should now recognize that main() is known as an
“integer function.” It also ties into the 0 value in the return statement,
but I tell you more about that in a few chapters.

� Computer geeks worldwide want you to know that an integer ranges from
–32,768 up to 0 and then up to 32,767 only on personal computers. If, per-
chance, you ever program on a large, antique computer — doomed to
ever-dwindling possibilities of employment, like those losers who pro-
gram them — you may discover that the range for integers on those
computers is somewhat different. Yeah, this information is completely
optional; no need cluttering your head with it. But they would whine if I
didn’t put it in here.

Using an integer variable in
the Methuselah program
If you need only small, whole-number values in a C program, you should use
integer variables. As an example, the following program uses the variable age
to keep track of someone’s age. Other examples of using integer variables are
to store the number of times something happens (as long as it doesn’t happen
more than 32,000-odd times), planets in the solar system (still 9), corrupt
congressmen (always less than 524), and number of people who have seen
Lenin in person (getting smaller every day). Think “whole numbers, not big.”

The following program displays the age of the Biblical patriarch Methuselah,
an ancestor of Noah, who supposedly lived to be 969 years old — well
beyond geezerhood. The program is METHUS1.C, from Methus, which was
his nickname:

#include <stdio.h>

int main()
{

int age;

age=969;
printf(“Methuselah was %d years old.\n”,age);
return(0);

}

Enter the text from METHUS1.C into your editor. Save the file to disk as
METHUS1.C.

80 Part II: Run and Scream from Variables and Math

Compile the program. If you get any errors, reedit the source code and make
sure that everything matches the preceding listing. Recompile.

Run the program and you see the following:

Methuselah was 969 years old.

The variable age was assigned the value 969. Then, the printf() statement
was used, along with the %d placeholder, to display that value in a string.

� The fifth line creates the age variable, used to store an integer value.

� The seventh line assigns the value 969 to the age variable by using the
equal sign (=). The variable age comes first, and then the equal sign, and
then the value (969) to be placed in the age variable.

� In the eighth line, the printf function is used to display the value of the
age variable. In printf()’s formatting string, the %d conversion charac-
ter is used as a placeholder for an integer value. %d works for integers,
just as %s is a placeholder for a string.

Assigning values to numeric variables
One thing worth noting in the METHUS1 program is that numeric variables
are assigned values by using the equal sign (=). The variable goes on the left,
and then the equal sign, and then the “thing” that produces the value on the
right. That’s the way it is, was, and shall be in the C language:

var=value;

var is the name of the numeric variable. value is the value assigned to that
variable. Read it as “The value of the variable var is equal to the value value.”
(I know, too many values in that sentence. So shoot me.)

What could value be? It can be a number, a mathematical equation, a C lan-
guage function that generates a value, or another variable, in which case var
has that variable’s same value. Anything that pops out a value — an integer
value, in this case — is acceptable.

In METHUS1.C, the value for the variable age is assigned directly:

age=969;

Lo, the value 969 is safely stuffed into the age variable.

Chapter 7: A + B = C 81

� The equal sign is used to assign a non-string value to a variable. The
variable goes on the left side of the equal sign and gets its value from
whatever’s on the right side.

� String variables cannot be defined in this way, by using an equal sign.
You cannot say

kitty=”Koshka”;

It just doesn’t work! Strings can be read into variables from the keyboard
by using the scanf(), gets(), or other C language keyboard-reading
functions. String variables can also be preset, but you cannot use an
equal sign with them, like you can with numeric variables!

Entering numeric values
from the keyboard
Keep the METHUS1.C program warm in your editor’s oven for a few seconds.
What does it really do? Nothing. Because the value 969 is already in the pro-
gram, there’s no surprise. The real fun with numbers comes when they’re
entered from the keyboard. Who knows what wacky value the user may enter?
(That’s another reason for a variable.)

A small problem arises in reading a value from the keyboard: Only strings are
read from the keyboard; the scanf() and gets() functions you’re familiar
with have been used to read string variables. And, there’s most definitely a dif-
ference between the characters “969” and the number 969. One is a value, and
the other is a string. (I leave it up to you to figure out which is which.) The
object is to covertly transform the string “969” into a value — nay, an integer
value — of 969. The secret command to do it is atoi, the A-to-I function.

The atoi() function
The atoi() (pronounced “A-to-I”) function converts numbers at the begin-
ning of a string into an integer value. The A comes from the acronym ASCII,
which is a coding scheme that assigns secret code numbers to characters.
So atoi means “convert an ASCII (text) string into an integer value.” That’s
how you can read integers from the keyboard. Here’s the format:

var=atoi(string);

var is the name of a numeric variable, an integer variable created by the int
keyword. That’s followed by an equal sign, which is how you assign a value to
a variable.

82 Part II: Run and Scream from Variables and Math

On the difference between numbers and strings,

you find lurking in a numeric variable. This book
calls those things values, and not numbers.

national debt, and the number of pounds you
can lose on celebrity diets featured in this

Those are values.

Numbers are what appear in strings of text.
When you type 255, for example, you’re enter-
ing a string. Those are the characters 2, 5, and
5, as found on your keyboard. The string “255”

atoi() function in the C language, you can
translate it into a value, suitable for storage in a
numeric variable.

There are numbers and there are values. Which
is which? It depends on how you’re going to use

if you dare to care
You have to know when a number in C is a value
and when it’s a string. A numeric value is what

A value is 5 apples, 3.141 (for example), the

week’s Star.

is not a value. I call it a number. By using the

it. Obviously, if someone is entering a phone
number, house number, or zip code, it’s probably
a string. (My zip code is 94402, but that doesn’t
mean that it’s the 94-thousandth-something
post office in the United States.) If some-
one enters a dollar amount, percentage, size,
or measurement — anything you work with
mathematically — it’s probably a value.

The atoi() function follows the equal sign. Then comes the string to con-
vert, hugged by atoi()’s parentheses. The string can be a string variable or
a string “constant” enclosed in double quotes. Most often, the string to convert
is the name of a string variable, one created by the char keyword and read
from the keyboard by using gets() or scanf() or some other keyboard-
reading function.

The line ends in a semicolon because it’s a complete C language statement.

The atoi function also requires a second number-sign thingy at the begin-
ning of your source code:

#include <stdlib.h>

This line is usually placed below the traditional #include <stdio.h> thing —
both of them look the same, in fact, but it’s stdlib.h in the angle pinchers
that’s required here. The line does not end with a semicolon.

� atoi is not pronounced “a toy.” It’s “A-to-I,” like what you see on the spine
of Volume One of a 3-volume encyclopedia.

� Numbers are values; strings are composed of characters.

� If the string that atoi() converts does not begin with a number, or if the
number is too large or too weird to be an integer, atoi spits back the
value 0 (zero).

Chapter 7: A + B = C 83
� The purpose of #include <stdlib.h> is to tell the compiler about the

atoi() function. Without that line, you may see some warning or “no
prototype” errors, which typically ruin your programming day.

� STDLIB.H is the standard library header file, don’t you know.

� Other C language functions are available for converting strings into non-
integer numbers. That’s how you translate input from the keyboard into
a numeric value: You must squeeze a string by using a special function
(atoi) and extract a number.

So how old is this Methuselah
guy, anyway?
The following program is METHUS2.C, a gradual, creeping improvement over
METHUS1.C. In this version of the program, you read a string that the user
types at the keyboard. That string — and it is a string, by the way — is then
magically converted into a numeric value by the atoi() function. Then, that
value is displayed by using the printf() function. A miracle is happening
here, something that the ancients would be truly dazzled by, probably to the
point of offering you food and tossing fragrant posies your way.

#include <stdio.h>
#include <stdlib.h>

int main()
{

int age;
char years[8];

printf(“How old was Methuselah?”);
gets(years);
age=atoi(years);
printf(“Methuselah was %d years old.\n”,age);
return(0);

}

Hunt and peck the METHUS2.C source code into your editor. You can edit the
original METHUS1.C source code, but be careful to save it to disk under the
new name, METHUS2.C.

Compile the program. Repair any errors you may have encountered.

Run the program. The output you see may look something like this:

How old was Methuselah?26
Methuselah was 26 years old.

84 Part II: Run and Scream from Variables and Math

but I encourage you to try this
Surgery For

Dummies. Unlike that sober tome, this book
allows you to freely fiddle, poke, pull, experi-

Surgery For Dummies,

Run the METHUS2.C program again, and when

type the following value:

10000000000

commas. Press Enter and the output tells you
that the old guy was 1,410,065,408 years old —
or some other value, not what you typed. The
reason is that you entered a value greater than
an integer can hold. The value returned is the
remainder of what you entered divided by the

How about typing the following value:

-64

old, but the program accepts it. The reason is
that integer values include negative numbers.

4.5

Probably at one time. Still, the program insists

tions, so all the atoi() function reads is the 4.

old

old into the
program, it claims that he was only zero. The
reason is that the atoi()
number in your response. Therefore, it gener-
ates a value of zero.

No, you don’t have to experiment with METHUS2.C,

Thank goodness this book isn’t

ment, and have fun. Trying that with a cadaver is
okay, but in Chapter 14 of
“Finding That Pesky Appendix on Your Nephew,”
it’s frowned on.

the program asks you for Methuselah’s age,

That’s ten billion — a one with 10 zeroes and no

maximum size of an integer in your compiler.

Yes, Mr. M. could never be negative 64 years

Here’s one you need to try:

Is the oldest human really four-and-a-half?

that he was only four. That’s because the point-
5 part is a fraction. Integers don’t include frac-

Finally, the big experiment. Type the following as
Methus’s age:

Yes, he was old. But when you enter

function didn’t see a

In this example, the user typed 26 for the age. That was entered as a string,
transformed by atoi() into an integer value and, finally, displayed by
printf(). That’s how you can read in numbers from the keyboard and
then fling them about in your program as numeric values. Other sections
in this chapter, as well as in the rest of this book, continue to drive home
this message.

� Okay, legend has it that the old man was 969 when he finally (and prob-
ably happily) entered into the hereafter. But by using this program, you
can really twist history (though Methuselah probably had lots of con-
temporaries who lived as long as you and I do).

� If you forget the #include <stdlib.h> thing or you misspell it, a few
errors may spew forth from your compiler. Normally, these errors are
tame “warnings,” and the program works just the same. Regardless, get

Chapter 7: A + B = C 85
in the habit of including the stdlib thing when you use the atoi()
function.

� The age=atoi(years) function is how the string years is translated
into a numeric value. The atoi() function examines the string and spits
up a number. That number is then placed in the age variable as a numeric
value.

� Why not just print the string years? Well, you can. By replacing age with
years and %d with %s in the final printf() function, the program dis-
plays the same message. To wit:

printf(“Methuselah was %s years old.\n”,years);

The output is the same. However, only with a numeric variable can you
perform mathematical operations. Strings and math? Give up now and
keep your sanity!

You and Mr. Wrinkles
Time to modify the old Methuselah program again. This time, you create the
METHUS3.C source code, as shown next. As with METHUS2.C, only subtle
modifications are made to the original program. Nothing new, though you’re
building up to something later in this chapter.

#include <stdio.h>
#include <stdlib.h>

int main()
{

int methus;
int you;
char years[8];

printf(“How old are you?”);
gets(years);
you=atoi(years);

printf(“How old was Methuselah?”);
gets(years);
methus=atoi(years);

printf(“You are %d years old.\n”,you);
printf(“Methuselah was %d years old.\n”,methus);
return(0);

}

Double-check your source code carefully and save the file to disk as
METHUS3.C.

86 Part II: Run and Scream from Variables and Math

Compile METHUS3.C. Fix any errors that sneak into the picture.

Run the program. You’re asked two questions, and then two strings of text
are displayed — something like the following:

How old are you?29
How old was Methuselah?969
You are 29 years old.
Methuselah was 969 years old.

Of course, this data is merely regurgitated. The true power of the computer is
that math can be done on the values — and it’s the computer that does the
math, not you. Don’t sweat it!

� You’re not really 29.

� Yes, the years string variable is used twice. First, it reads in your age,
and then the atoi() function converts it and saves the value in the you
variable. Then, years is used again for input. This strategy works because
the original value was saved in another variable — a cool trick.

� The METHUS3.C program has been divided into four sections. This is
more of a visual organization than anything particular to the C program-
ming language. The idea is to write the program in paragraphs — or
thoughts — similar to the way most people try to write English.

A Wee Bit o’ Math
Now is the time for all good programmers to do some math. No, wait! Please
don’t leave. It’s cinchy stuff. The first real math explanation is several pages
away.

When you do math in the C programming language, it helps to know two
things: First, know which symbols — or, to be technical, unique doodads —
are used to add, subtract, multiply, and divide numbers. Second, you have
to know what to do with the results. Of course, you never have to do the
math. That’s what the computer is for.

Basic mathematical symbols
The basic mathematical symbols are probably familiar to you already if you
have been around computers a while. Here they are:

Chapter 7: A + B = C 87
� Addition symbol: +

� Subtraction symbol: –

� Multiplication symbol: *

� Division symbol: /

Incidentally, the official C language term for these dingbats is operators. These
are mathematical (or arithmetic — I never know which to use) operators.

+ Addition: The addition operator is the plus sign, +. This sign is so basic
that I can’t really think of anything else you would use to add two numbers:

var=value1+value2;

Here, the result of adding value1 to value2 is calculated by the computer
and stored in the numeric variable var.

– Subtraction: The subtraction operator is the minus sign, –:

var=value1-value2;

Here, the result of subtracting value2 from value1 is calculated and gently
stuffed into the numeric variable var.

* Multiplication: Here’s where we get weird. The multiplication operator is
the asterisk — not the × character:

var=value1*value2;

In this line, the result of multiplying value1 by value2 is figured out by the
computer, and the result is stored in the variable var.

/ Division: For division, the slash, /, is used; the primary reason is that the ÷
symbol is not on your keyboard:

var=value1/value2;

Here, the result of dividing value1 by value2 is calculated by the computer
and stored in the variable var.

Note that in all cases, the mathematical operation is on the right side of the
equal sign — something like this:

value1+value2=var;

88 Part II: Run and Scream from Variables and Math

Why the multiplication symbol is an asterisk

means × symbol,

nounced “times,” as in “four times nine” for 4×9.
In higher math, where it was harder for you to
get an “easy A,” the dot was also used for mul-
tiplication: 4•9 for “four times nine.” I have even
seen that expressed as 4(9) or (4)(9), though I fell
right back asleep.

know when you mean X as in “ecks” and × as in
“times.” So, the asterisk (*) was accepted as a
substitute. (The keyboard has no dot • character

Using the * for multiplication takes some getting
used to. The slash is kind of common — 3/$1 for

not a problem. But the * takes some chanting
and bead counting.

(if you care to know)
In school, you probably learned that the X symbol

multiply. More properly, it’s the
not the character X (or even little x). It’s pro-

Why can’t computers use the X? Primarily
because they’re stupid. The computer doesn’t

either.)

“three for a dollar” or 33 cents each — so that’s

It just doesn’t work in the C language. The preceding line tells the C compiler
to take the value of the var variable and put it into some numbers. Huh? And
that’s the kind of error you see when you try it: Huh? (It’s called an Lvalue
error, and it’s shamefully popular.)

� More mathematical symbols, or operators, are used in C programming.
This chapter introduces only the four most common symbols.

� Having trouble remembering the math operators? Look at your key-
board’s numeric keypad! The slash, asterisk, minus, and plus symbols
are right there, cornering the number keys.

� Unlike in the real world, you have to keep in mind that the calculation is
always done on the right, with the answer squirted out the equal sign to
the left.

� You don’t always have to work with two values in your mathematical
functions. You can work with a variable and a value, two variables,
functions — lots of things. C is flexible, but at this stage it’s just impor-
tant to remember that * means “multiply.”

How much longer do you have to live
to break the Methuselah record?
The following METHUS4.C source code uses a bit of math to figure out how
many more years you have to live before you can hold the unofficial title of
the oldest human ever to live (or at least tie with him).

Chapter 7: A + B = C 89
Before you do this, I want you to think about it. What are the advantages
of being the oldest person ever to live? What else do we know about
Methuselah? He died before the flood. He was a good man, well received
by The Man Upstairs. But, what else? I mean, like, did he eat weird or some-
thing? Did he avoid the grape? The Bible offers no hints.

#include <stdio.h>
#include <stdlib.h>

int main()
{

int diff;
int methus;
int you;
char years[8];

printf(“How old are you?”);
gets(years);
you=atoi(years);

methus=969; /* Methuselah was 969 years old */

diff=methus-you;

printf(“You are %d years younger than
Methuselah.\n”,diff);

return(0);
}

The METHUS4.C program is eerily similar to METHUS3.C. It has only a few
deviations, so you can edit the METHUS3.C source code and then save it to
disk as METHUS4.C. Cross-check your work with the preceding source code
listing, just to be sure.

Compile the program. Fix any errors that may crop up. Then run the final
product. Your output may look something like the following:

How old are you?29
You are 940 years younger than Methuselah.

Try entering a different age to see how it compares with Methuselah’s.

� It does math! It does math!

� This program uses four — four! — variables: diff, methus, and you are
all integer variables. years is a string variable.

� What happens if you enter a negative age — or an age greater than 969?

90 Part II: Run and Scream from Variables and Math

� To figure out how much longer you have to live to match Methuselah’s
record, you subtract your age from his. Pay special attention to the order
of events in the following statement:

diff=methus-you;

The math part always goes on the right side of the equal sign. Your age,
stored in the you numeric variable, is subtracted from Methuselah’s and
stored in the diff numeric variable. The result then slides through the
equal sign and into the diff numeric variable.

Bonus modification on the final
Methuselah program!
Methuselah works hard until he’s 65, and then he retires. Because he got his
first job at 19, he has been contributing to Social Security. As soon as he hits
65, he starts drawing his money out. And out. And out. And out some more.

How about writing a program that can do what no bureaucrat in Washington
can do: Figure out how much money Methuselah is drawing from the system?
(We leave the “whether he earned it all” question up to future generations
because, of course, if you ask Methuselah himself, he says that he did.)

#include <stdio.h>
#include <stdlib.h>

int main()
{

int contributed;
int received;

contributed=65-19;
received=969-65;

printf(“Methuselah contributed to Social Security for
%i years.\n”,contributed);

printf(“Methuselah collected from Social Security for
%i years.\n”,received);

return(0);
}

Type into your editor the source code for METHUS5.C — which I promise is
the last of the Methuselah suite of programs. Double-check your typing and
all that stuff.

Your fine sense of logic wants you to type i before e in received, though the
illogic of English dictates otherwise.

Save the file as METHUS5.C.

Chapter 7: A + B = C 91
Compile it! Check for any errors or small pieces of meat the compiler may
choke on. Dislodge them (reedit the source code) and compile again if you
need to.

Run the program! Here’s a sample of the output:

Methuselah contributed to Social Security for 46 years.
Methuselah collected from Social Security for 904 years.

� It seems fair to him.

� Line 10 calculates how long Methuselah has been receiving Social
Security. If he died at 969 and began receiving checks at 65, the differ-
ence is the value you want. That’s stored in the received variable.

� Notice how the smaller value is subtracted from the larger? C works
from left to right with math: 65 minus 19; 969 minus 65. Still, the math
part of the equation must be on the right. The variable that holds the
result is on the left.

� When math is used in a program with numbers rather than variables, the
numbers are called constants.

� You can find more information on the subject of constants in Chapter 8.

The direct result
Are variables necessary? Yes, when the value isn’t known. In the last few
Methuselah programs, the values were known, for the most part. Only when
you enter your own age is there truly a need for a variable. Otherwise, con-
stant values can be used.

For example, the following program is another version of METHUS5. You
don’t have to type this program, but look at the only two statements in the
program. Gone are the variables and the statements that assigned them
values, as well as the #include <stdlib.h> because atoi() isn’t being
used:

#include <stdio.h>

int main()
{

printf(“Methuselah contributed to Social Security for
%d years.\n”,65-19);

printf(“Methuselah collected from Social Security for
%d years.\n”,969-65);

return(0);
}

92 Part II: Run and Scream from Variables and Math

The %d in the first printf() function looks for an integer value to “fill in the
blank.” The printf() function expects to find that value after the comma —
and it does! The value is calculated by the C compiler as 65–19, which is 46.
The printf() statement plugs the value 46 into the %d’s placeholder. The
same holds true for the second printf() function.

You can do the same thing without the math. You can figure out 65–19 and
969–65 in your head and then plug in the values directly:

printf(“Methuselah contributed to Social Security for
%d years.\n”,46);

printf(“Methuselah collected from Social Security for
%d years.\n”,904);

Again, the result is the same. The %d looks for an integer value, finds it, and
plugs it in to the displayed string. It doesn’t matter to printf() whether the
value is a constant, a mathematical equation, or a variable. It must, however,
be an integer value.

Chapter 8

Charting Unknown Cs
with Variables

In This Chapter
� Declaring variables

� Naming variables

� Using float variables

� Declaring several variables at once

� Understanding constants

� Creating constants with #define

� Using the const keyword

Variables are what make your programs zoom. Programming just can’t get
done without them. You may have just dabbled with variables, but not

been formally introduced. In this chapter, you’re formally introduced!

Cussing, Discussing, and Declaring
Variables

Along comes Valerie Variable. . . .

Valerie is a numeric variable. She loves to hold numbers — any number —
it doesn’t matter. Whenever she sees an equal sign, she takes to a value and
holds it tight. But see another equal sign, and she takes on a new value. In
that way, Valerie is a little flaky. You could say that Valerie’s values vary,
which is why she’s a variable.

94 Part II: Run and Scream from Variables and Math

Victor is a string variable. He contains bits of text — everything from one char-
acter to several of them in a row. As long as it’s a character, Victor doesn’t
mind. But which character? Victor doesn’t care — because he’s a variable, he
can hold anything.

� Yes, I have a point here. C has two main types of variables: numeric vari-
ables, which hold only numbers or values, and string variables, which
hold text, from one to several characters long.

� The C language has several different types of numeric variables, depend-
ing on the size and precision of the number. The details are in Chapter 9.

� Before you use a variable, it must be declared. This is — oh, just read
the next section.

“Why must I declare a variable?”
You’re required to announce your variables to the C compiler before you use
them. You announce them by providing a list of variables near the top of the
source code. That way, the compiler knows what the variables are called and
what flavor of variables they are (what values they can contain). Officially,
this process is known as declaring your variables.

For example:

int count;
char key;
char lastname[30];

Three variables are declared in this example: an integer variable, count; a
character variable, key; and a character variable, lastname, which is a string
that can be as many as 30 characters long.

Declaring variables at the beginning of the program tells the compiler several
things. First, it says “These things are variables!” That way, when the compiler
sees lastname in a program, it knows that it’s a string variable.

Second, the declarations tell the compiler which type of variable is being
used. The compiler knows that integer values fit into the count variable,
for example.

Third, the compiler knows how much storage space to set aside for the vari-
ables. This can’t be done “on the fly,” as the program runs. The space must
be set aside as the program is created by the compiler.

Chapter 8: Charting Unknown Cs with Variables 95
� Declare your variables near the beginning of your program, just after the

line with the initial curly brace. Cluster them all up right there.

� Obviously, you don’t know all the variables a program requires before
you write it. (Though they teach otherwise at the universities, such
mental overhead isn’t required by you and me.) If you need a new vari-
able, use your editor to declare it in the program. Rogue variables —
those undeclared — generate syntax or linker errors (depending on
how they’re used).

� If you don’t declare a variable, your program doesn’t compile. A suitable
complaint message is issued by the proper authorities.

� Most C programmers put a blank line between the variable declarations
and the rest of the program.

� There’s nothing wrong with commenting a variable to describe what it
contains. For example:

int count; /* busy signals from tech support. */

� However, cleverly named variables can avoid this situation:

int busysignals;

Or, even better:

int busy_signal_count;

Variable names verboten and not
What you can name your variables depends on your compiler. You have to
follow a few rules, and you cannot use certain names for variables. When you
break the rules, the compiler lets you know by flinging an error message your
way. To avoid that, try to keep the following guidelines in the back of your
head when you create new variables:

� The shortest variable name is a letter of the alphabet.

� Use variable names that mean something. Single-letter variables are just
hunky-dory. But index is better than i, count is better than c, and name
is better than n. Short, descriptive variable names are best.

� Variables are typically in lowercase. (All of C is lowercase, for the most
part.) They can contain letters and numbers.

� Uppercase letters can be used in your variables, but most compilers
tend to ignore the differences between upper- and lowercase letters.
(You can tell the compiler to be case-sensitive by setting one of its
options; refer to your compiler’s online help system for the details.)

96 Part II: Run and Scream from Variables and Math

� You shouldn’t begin a variable name with a number. It can contain num-
bers, but you begin it with a letter. Even if your compiler says that it’s
okay, other C compilers don’t, so you should not begin a variable name
with a letter.

� C lords use the underline, or underscore, character in their variable
names: first_name and zip_code, for example. This technique is fine,
though it’s not recommended to begin a variable name with an under-
line.

� Avoid naming your variables the same as C language keywords or func-
tions. Don’t name your integer variable int, for example, or your string
variable char. This may not generate an error with your compiler, but it
makes your source code confusing. (Refer to Table 3-1, in Chapter 3, for
a list of the C language keywords.)

� Also avoid using the single letters l (lowercase L) and o (lowercase O) to
name variables. Little L looks too much like a 1 (one), and O looks too
much like a 0 (zero).

� Don’t give similar names to your variables. For example, the compiler
may assume that forgiveme and forgivemenot are the same variable.
If so, an ugly situation can occur.

� Buried somewhere in the cryptic help files that came with your compiler
are the official rules for naming variables. These rules are unique to each
compiler, which is why I’m not mentioning them all here. After all, I’m not
paid by the hour. And it’s not part of my contract.

Presetting variable values
Suppose that this guy named Methuselah is 969 years old. I understand that
this may be a new, bold concept to grasp, but work with me here.

If you were going to use Methuselah’s age as a value in a program, you could
create the variable methus and then shove the value 969 into it. That requires
two steps. First comes the declaration:

int methus;

This line tells the compiler that methus is capable of holding an integer-size
value in its mouth and all that. Then comes the assignment, when 969 is put
into the variable methus:

methus=969;

Chapter 8: Charting Unknown Cs with Variables 97
In C, you can combine both steps into one. For example:

int methus=969;

This statement creates the integer variable methus and assigns it the value
969 — all at once. It’s your first peek at C language shortcut. (C is full of short-
cuts and alternatives — enough to make you kooky.)

You can do the same thing with string variables — but it’s a little weird.
Normally, string variables are created and given a size. For example:

char prompt[22];

Here, a character string variable, prompt, is created and given room for 22
characters. Then you use gets() or scanf() to stick text into that variable.
(You don’t use an equal sign!) When you create the variable and assign it a
string, however, it’s given this format:

char prompt[] = “So how fat are you, anyway?”

This command creates a string variable, prompt. That string variable already
contains the text “So how fat are you, anyway?” Notice that you see no number
in the brackets. The reason is that the compiler is smart enough to figure out
how long the string is and use that value automatically. No guesswork —
what joy!

� Numeric variables can be assigned a value when they’re declared. Just
follow the variable name with an equal sign and its value. Remember to
end the line with a semicolon.

� You can even assign the variable a value concocted by using math. For
example:

int video=800*600;

This statement creates the integer variable video and sets its value
equal to 800 times 600, or 480,000. (Remember that * is used for multi-
plication in C.)

� Even though a variable may be assigned a value, that value can still
change. If you create the integer variable methus and assign it the value
969, there’s nothing wrong with changing that value later in the program.
After all, a variable is still a variable.

� Here’s a trick that’s also possible, but not necessary, to remember:

int start = begin = first = count = 0;

98 Part II: Run and Scream from Variables and Math

This statement declares four integer variables: start, begin, first, and
count. Each of them is set equal to 0. start is equal to begin, which is equal
to first, which is equal to count, which is equal to 0. You probably see this
type of declaration used more often than you end up using it yourself.

The old random-sampler variable program
To demonstrate how variables can be defined with specific values, the
ICKYGU.C program was concocted. It works like those old Chinese all-you-
can-eat places, where steaming trays of yummy glop lie waiting under grease-
smeared panes of sneeze-protecting glass. Ah . . . reminds me of my college
days and that bowel infection I had. Here’s the source code:

#include <stdio.h>

int main()
{

char menuitem[] = “Slimy Orange Stuff \”Icky Woka
Gu\””;

int pints=1;
float price = 1.45;

printf(“Today special - %s\n”,menuitem);
printf(“You want %d pint.\n”,pints);
printf(“That be $%f, please.\n”,price);
return(0);

}

Type this source code into your editor. Double-check everything. Save the
program as ICKYGU.C.

Compile the program. Repair any unexpected errors — as well as those you
may have been expecting — and recompile if need be.

Run the final program. You see something like the following example displayed:

Today special - Slimy Orange Stuff “Icky Woka Gu”
You want 1 pint.
That be $1.450000, please.

Whoa! Is that lira or dollars? Of course, it’s dollars — the dollar sign in
printf()’s formatting string is a normal character, not anything special. But
the 1.45 value was printed with four extra zeroes. Why? Because you didn’t
tell the compiler not to. That’s just the way the %f, or floating-point conver-
sion character, displays numbers.

Chapter 8: Charting Unknown Cs with Variables 99
To have the output make more dollars and sense, edit Line 11 and change the
%f placeholder to read %.2f:

printf(“That be $%.2f, please.\n”,price);

Squeezing extra characters between the % and the f should be familiar to
you; I show you how to it a few chapters back, to limit the formatting for the
%s placeholder. Here, you’re telling printf() to format the floating-point
number to only two places after the decimal point.

Save the change to disk. Recompile and run. The output is more appealing:

Today special - Slimy Orange Stuff “Icky Woka Gu”
You want 1 pint.
That be $1.45, please.

� This program contains three types of variables: a string, menuitem; an
integer value, pints; and a floating-point value, price.

� The price is a floating-point value because it contains a decimal part. It’s
another type of numeric variable. Unlike an integer, floating-point values
can contain a decimal part.

� The “floating point” is that dot in the middle of the number — 1.45 —
which is technically incorrect, but it’s the way I remember it.

� Table 24-2 in Chapter 24 contains a list of the printf() function’s place-
holders. There, you find that %f is used to display a floating-point number,
such as the one that appears in ICKYGU.C.

� The final printf() statement is used to display the value of the floating-
point price variable:

printf(“That be $%.2f, please.\n”,price);

To do that, you use the %f (f for float) placeholder. However, %f requires
some extra formatting power to display the value as a monetary amount.
To meet this end, you insert a “dot-2” between the % and the little f. That
formats the output to only two decimal places. Rather than use %f, the
formatting string uses %.2f.

Maybe you want to chance two pints?
You can easily twist ICKYGU.C into doing some math for you. Suppose that
you want to figure out how much two pints of the orange stuff is. First, you
change the pints variable in the sixth line to read

int pints=2;

100 Part II: Run and Scream from Variables and Math

That fills the pints variable with 2. Then you have to stick some math into
the final printf() function, which calculates how much two pints of the sticky
stuff would be. Make these alterations:

printf(“That be $%.2f, please.\n”,pints*price);

The only true change is in the last part of the line. Before, you had only the
price variable. Now, you have pints*price, which multiplies the value in
price by the value in pints. Because price is a floating-point, or decimal,
value, the result still is floating-point. That is the reason that the %f place-
holder is still used in the formatting string.

Save these changes and recompile the program. You have to pay more, but —
mmmm — your tummy will thank you.

Multiple declarations
C is full of abbreviations and shortcuts. That’s one reason that no two C pro-
grams look alike: Programmers always take advantage of the different ways of
doing things. One such trick is to declare several variables in one statement. I
know — this used to be illegal in parts of the South, but it’s now done above-
board everywhere in the Union.

The following three int statements create three integer variables: methus,
you, and diff:

int methus;
int you;
int diff;

The following single-line statement does the same thing:

int methus,you,diff;

Each of the variables is specified after the int keyword and a space. Each is
followed by a comma, with the final variable followed by a semicolon to end
the statement.

This shortcut is primarily a space-saving technique. It just takes up less screen
space to declare all variables of one type on a single line than to have individ-
ual, itsy-bitsy int statements lining up at the beginning of a program.

example:

int top,bottom,right,left;
float national_debt,pi;

You can declare variables of only the same type in a multiple declaration. For

Chapter 8: Charting Unknown Cs with Variables 101

int first=1;
int the_rest;

The integer variables are declared on one line, and the floating-point (non-
integer) variables on another.

Keep variables that are defined with a value on a line by themselves. To wit:

Constants and Variables
In addition to the variable, the C language has something called a constant.
It’s used like a variable, though its value never changes.

Suppose that one day someone dupes you into writing a trigonometry pro-
gram. In this type of program, you have to use the dreaded value π (pi). That’s
equal to 3.1415926 (and on and on). Because it never changes, you can create
a constant named pi that is equal to that value.

Another example of a constant is a quoted string of text:

printf(“%s”,”This is a string of text”);

The text “This is a string of text” is a constant used with this
printf() function. A variable can go there, though a string constant —
a literal, quoted string — is used instead.

� A constant is used just like a variable, though its value never changes.

� A numeric constant is a number value, like π, that remains the same
throughout your program.

� π is pronounced “pie.” It’s the Greek letter p. We pronounce the English
letter p as “pee.”

� A string constant is a bit of text that never changes, though that’s really
true of most text in a C language program. This chapter, therefore, con-
centrates primarily on numeric constants.

Dreaming up and defining constants
All this constant nonsense can seem silly. Then one day, you’re faced with a
program like SPEED.C — except that the program is much longer — and you
truly come to realize the value of a C language constant and the nifty #define
directive you read about later in this chapter:

102 Part II: Run and Scream from Variables and Math

#include <stdio.h>

int main()
{

printf(“Now, the speed limit here is %i.\n”,55);
printf(“But I clocked you doin’ %i.\n”,55+15);
printf(“Didn’t you see that %i MPH sign?\n”,55);
return(0);

}

Start over with a new slate in your editor. Carefully type the preceding source
code. There’s nothing new or repulsive in it. Save the file to disk as SPEED.C.

Compile it! Fix it (if you have to)! Run it!

The output is pretty plain; something like this example is displayed:

Now, the speed limit here is 55.
But I clocked you doin’ 70.
Didn’t you see that 55 MPH sign?

Eh? No big deal.

But what if the speed limit were really 45? That would mean that you would
have to edit the program and replace 55 with 45 all over. Better still, what if
the program were 800 lines long and you had to do that? Not only that, but
what if you had to change several other instances in which constants were
used, and using your editor to hunt down each one and replace it properly
would take months or years? Fortunately, the C language has a handy way
around this dilemma.

� You can easily argue that this isn’t a problem. After all, most editors have
a search-and-replace command. Unfortunately, searching and replacing
numbers in a computer program is a dangerous thing to do! Suppose that
the number is 1. Searching and replacing it would change other values
as well: 100, 512, 3.141 — all those would be goofed up by a search-and-
replace.

� For all you Mensa people out there, it’s true that the nature of the pro-
gram changes if the speed limit is lowered to 45. After all, was the scofflaw
doing 70 or 60? To me, it doesn’t matter. If you’re wasting your excess IQ
points on the problem, you can remedy it on your own.

The handy shortcut
The idea in this section is to come up with a handy shortcut for using
number constants in C. I give you two solutions.

Chapter 8: Charting Unknown Cs with Variables 103
The first solution is to use a variable to hold the constant value:

int speed=55;

This line works because the compiler sticks the value 55 into the speed inte-
ger variable, and you can then use speed rather than 55 all over your program.
To change the speed, you have to make only one edit:

int speed=45;

Although this line works, it’s silly because a variable is designed to hold a
value that changes. The compiler goes to all that work, fluffing up the pillows
and making things comfy for the variable, and then you misuse it as a con-
stant. No, the true solution is to define the constant value as a symbolic con
stant. It’s really cinchy, as the updated SPEED.C program shows:

#include <stdio.h>

#define SPEED 55

int main()
{

printf(“Now, the speed limit here is %i.\n”,SPEED);
printf(“But I clocked you doin’ %i.\n”,SPEED+15);
printf(“Didn’t you see that %i MPH sign?\n”,SPEED);
return(0);

}

Several changes are made here:

� The program’s new, third line is another one of those doohickeys that
begins with a pound sign (#). This one, #define, sets up a numeric con-
stant that can be used throughout the program:

#define SPEED 55

As with the #include thing, a semicolon doesn’t end the line. In fact,
two big boo-boos with #define are using an equal sign and ending the
line with a semicolon. The compiler will surely hurl error-message chunks
your way if you do that.

� The shortcut word SPEED is then used in the program’s three printf()
statements to represent the value 55. There, it appears just like a number
or variable in the printf statement.

Secretly, what happens is that the compiler sees the #define thing and all by
itself does a search-and-replace. When the program is glued together, the value
55 is stuck into the printf() statements. The advantage is that you can easily
update the constant values by simply editing the #define directive.

104 Part II: Run and Scream from Variables and Math

Carefully edit your SPEED.C source code so that it matches what you see
listed here. Save the file to disk again and then recompile. It has the same
output because your only change was to make the value 55 a real, live con-
stant rather than a value inside the program.

� Again, the key is that it takes only one, quick edit to change the speed
limit. If you edit Line 3 to read

#define SPEED 45

you have effectively changed the constant value 45 in three other places
in the program. This change saves some time for the SPEED.C program —
but it saves you even more time for longer, more complex programs that
also use constant values.

� Symbolic constant is C technospeak for a constant value created by the
#define directive.

The #define directive
The #define construction (which is its official name, though I prefer to call
it a directive) is used to set up what the C lords call a symbolic constant — a
shortcut name for a value that appears over and over in your source code.
Here’s the format:

#define SHORTCUT value

SHORTCUT is the name of the constant you’re defining. It’s traditional to name
it like a variable and use ALL CAPS (no spaces).

value is the value the SHORTCUT takes on. It’s replaced by that value globally
throughout the rest of your source code file. The value can be a number, equa-
tion, symbol, or string.

No semicolon is at the end of the line, but notice that the line absolutely must
begin with a pound sign. This line appears at the beginning of your source
code, before the main() function.

You should also tack a comment to the end of the #define line to remind you
of what the value represents, as in this example:

#define SPEED 55 /* the speed limit */

Here, SPEED is defined to be the value 55. You can then use SPEED anywhere
else in your program to represent 55.

Chapter 8: Charting Unknown Cs with Variables 105
A string constant can be created in the same way, though it’s not as popular:

#define GIRLFRIEND “Brenda” /* This week’s babe */

The only difference is that the string is enclosed in double quotes, which is a
traditional C-string thing.

� The shortcut word is usually written in ALL CAPS so as not to confuse
it with a variable name. Other than that, the rules that apply to variable
names typically apply to the shortcut words. Keep ’em short and simple
is my recommendation.

� You have to keep track of which types of constants you have defined and
then use them accordingly, as shown in this example:

printf(“The speed limit is %i.\n”,SPEED);

� And in this one:

puts(GIRLFRIEND);

� These lines may look strange, but they’re legit because the compiler
knows what SPEED and GIRLFRIEND are shortcuts for.

� No equal sign appears after the shortcut word!

� The line doesn’t end with a semicolon (it’s not a C language statement)!

� You can also use escape-sequence, backslash-character things in a
defined string constant.

� String constants that are set up with #define are rare. Only if the string
appears many times over and over in your program is it necessary to
make it a constant. Otherwise, most programs use printf() or puts()
to display text on the screen.

� You can also use math and other strangeness in a defined numeric con-
stant. This book doesn’t go into that subject, but something as obnox-
ious as the following line is entirely possible:

#define SIZE 40*35

Here, the shortcut word SIZE is set up to be equal to 40*35, whatever
that figures out to be.

� Using the #define thing isn’t required, and you’re not penalized if
you don’t use it. Sure, you can stick the numbers in there directly. And,
you can use variables to hold your constants. I won’t pout about it. You
won’t go to C prison.

106 Part II: Run and Scream from Variables and Math

Real, live constant variables
Using #define to create a constant for use throughout your program is a
handy thing to do. In fact, I recommend using it whenever you have some-
thing in your program that you figure may change. For example:

#define NUMBER_OF_USERS 3
#define COLUMN_WIDTH 80
#define US_STATES 50

Each of these examples makes it possible to change aspects of your entire
program merely by editing a single #define declaration. But are they really
constants — the opposite of variables?

No! That’s because they have the const keyword, which converts a mild-
mannered variable into an unyielding constant. To wit:

const int senses = 6;

The preceding statement creates a variable named senses, but fixes that vari-
able’s value at 6. The value cannot be changed or used for something else later
in the program; if you try, a “read-only variable” error pops up.

Most often you don’t see const used to create constant values. Instead, this
statement is quite common:

const char prompt[] = “Your command:”;

This statement creates the string variable prompt and sets its contents equal
to Your command:. The const keyword ensures that this variable cannot be
reused or its contents ever changed — a good idea for this type of variable.

Chapter 9

How to C Numbers
In This Chapter
� Using different variables for different numbers

� Understanding the long and short of int

� Knowing your signed and unsigned variables

� Floating a number

� Double floating a number

� Formatting a huge value

Put on your safety goggles, my greenhorn companion! I have danced around
the flaming inferno of numbers far too long. It’s time to dive headlong into

that hellfire of values and digits. Far down from the comfy safety of the int lie
numbers large and loathsome. Terrifying values you can gingerly place into
your puny programs. Numbers lethal and toxic, but which you can also tame,
as long as you obey my gentle advice in this chapter.

Fear not! Instead, don your asbestos suit and follow me. Watch your step.

There Are Numbers, and Then
There Are Numbers

Welcome to what will soon be one of many new, frustrating aspects of the C
programming language. It’s known as the C Numeric Data Type Puzzle. Unlike
in real life, where we can just pull any number out of the ethers and be joyously
happy with it, in C you must pull numbers from specific parts of the ethers
based on which type of number it is. This makes the frustration factor begin
rising, with the logical question “What’s a number type?”

108 Part II: Run and Scream from Variables and Math

Okay. It isn’t a “number type.” It’s a numeric data type, which is how you say
“number type” if you work at the Pentagon. You have to tell the C compiler
which type of number you’re using because it thinks about numbers differently
from the way humans do. For example, you have to know the following things
about the number:

� Is it a whole number — without a fraction or decimal part?

� How big is the number (as in value-large, not big-on-the-page-large)?

� If the number does have a fractional part, how precise must the number
be? (Like to the thousandths, millionths, or gazillionths decimal place.
Scientists have to know the precision when they send missiles to coun-
tries with opposing ideologies.)

I know that this stuff is all alien to you. What most programmers want to do is
say “I need a number variable — just give me one, quick — before this value
slips out the back of the computer and becomes a government statistic!” But
you have to think a little more before you do that.

� The most common numeric data type is the integer.

� If you’re going to work with decimal numbers, such as a dollar amount,
you need the floatingpoint number.

� Keep reading.

Numbers in C
A number of different types of numbers are used in C — different numeric data
types, so to speak. Table 9-1 lists them all, along with other statistical informa-
tion. Flag the table with a sticky note. This table is something you refer to now
and again because only the truly insane would memorize it.

Table 9-1 C Numeric Data Types

Keyword Variable Type Range

char Character (or string) –128 to 127

int Integer –32,768 to 32,767

short Short integer –32,768 to 32,767

short int Short integer –32,768 to 32,767

Chapter 9: How to C Numbers 109

Keyword Variable Type Range

long Long integer –2,147,483,648 to 2,147,483,647

unsigned char Unsigned character 0 to 255

unsigned int Unsigned integer 0 to 65,535

unsigned short Unsigned short integer 0 to 65,535

unsigned long Unsigned long integer 0 to 4,294,967,295

float Single-precision
floating-point

±3.4 ∞ 1038 to
±3.4 ∞ 10–38

(accurate to 7 digits)

double Double-precision
floating-point

±1.7 ∞ 10–308 to
±1.7 ∞ 10308

(accurate to 15 digits)

� The keyword is the C language keyword used to declare the variable
type. If you have been reading the chapters in this book in order, you
have used int, char, and float already.

� The variable type tells you which type of variable the keyword defines.
For example, char defines a character (or string) variable, and int
defines integers. C has many variable types, each of which depends on
the type of number or value being described.

� The range tells you how big of a number fits into the variable type. For
example, integers range from –32,768 up to 0 and up again to 32,767.
Other types of variables handle larger values. This value may be differ-
ent on your compiler; use the values in Table 9-1 for reference only.

Table 9-1 isn’t that complex. In all, C has really only four types of variables:

� char

� int

� float

� double

The int can be modified with either short or long, and both char and int are
modified with unsigned. The float and double variables are both floating-
point, though the values held by double are larger.

110 Part II: Run and Scream from Variables and Math

Why use integers? Why not just make
every number floating-point?
Obviously, if you have a double-precision floating-point number that can handle,
essentially, numbers up to one gazillion, why bother declaring any variables
as integers? Heck, make everything a double-whammy floating point and be
done with it! Sounds good. Is bad.

Integers are truly the handiest and most common types of numeric variables.
Oftentimes, you need only small, whole-number values when you’re program-
ming. Floating-point numbers are okay, but they require more overhead from
the computer and take longer to work with. By comparison, integers are far
quicker. For this reason, God saw fit to create integers (which He did on the
third day, by the way).

Integer types (short, long,
wide, fat, and so on)
You have to concern yourself with only two types of integers: the normal
integer — the int — and the long integer — the long. (The signed and
unsigned aspects are chewed over slowly later in this chapter.)

The int (rhymes with “bent”) is a whole-number value, normally ranging from
–32,768 to 32,767. It’s ideally put to use for small numbers without a fractional
part. In some versions of C, you may see this value referred to as a short or
short int.

The long is a whole-number value, ranging from –2,147,483,648 to
2,147,483,647 — a big range, but not big enough to encompass the national
debt or Madonna’s ego. This type of numeric variable is referred to as a long,
or long int in some versions of C.

� You use the int and long keywords to declare integer variables. int is
for smaller values; long is for larger values.

� The %d placeholder is used in the printf() function to display int vari-
ables. (You can also use the %i placeholder; refer to Table 24-2 in Chap-
ter 24.)

� int = short = short int

� long = long int

� Integer variables (int) are shorter, faster, and easier for the computer to
deal with. If Soup for One were a variable, it would be an int. Use an
int whenever you need a small, whole numeric value.

Chapter 9: How to C Numbers 111
� In some C compilers, the ranges for int and long int are the same.

That’s because the compiler (usually a 32-bit model) can more efficiently
handle long values than it can handle smaller int values. It’s merely
technical junk; don’t memorize it or let it otherwise ruin your day.

� Negative numbers — why bother? Sometimes, you need them, but most
of the time you don’t. See the next section.

� The char variable type can also be used as a type of integer, though it
has an extremely small range. These variables are used mostly to store
single characters (or strings), which is discussed somewhere else. (Give
me a second to look.) Oh, it’s in Chapter 10.

Signed or unsigned, or “Would you
like a minus sign with that, Sir?”
I have this thing against negative numbers. They’re good only when you play
Hearts. Even so, that’s justification because you may someday write a program
that plays Hearts on the computer, in which case you will be in dire need of
negative numbers (because you can write the program so that you always win).

When you declare a numeric variable in C, you have two choices: signed and
unsigned. Everything is signed unless you specifically type unsigned before
the variable type:

unsigned int shoot_the_moon = 26;

A signed type of number means that a variable can hold a negative value. The
standard int variable can hold values from –32,768 up to 32,767. That’s half
negative numbers, from –32,786 to –1, and then half positive numbers, from 0
up to 32,767. (Zero is considered positive in some cults.)

An unsigned number means that the variable holds only positive values. This
unsigned number moves the number range all up to the positive side — no
negatives (the C language equivalent of Prozac). Your typical unsigned int
has a range from 0 to 65,535. Negative numbers aren’t allowed.

The int variable elephants holds the value 40,000. Try that with a signed
int! Ha!

unsigned int elephants 40000;

Table 9-2 illustrates the differences between the variable types as far as the
values they can hold are concerned.

112 Part II: Run and Scream from Variables and Math

The whole painful spiel on why
we have signed integers

The signed-unsigned business all has to do with

secret is that everything, no matter how it looks
on the screen or in your program, is stored in

counting in base 2 (ones and zeroes).

Binary numbers are composed of bits, or binary
digits. Suppose that your C language compiler

bytes contain 16 binary digits, or bits. (Eight bits
are in a byte.) For example:

0111 0010 1100 0100

This value is written as 29,380 in decimal (the

zeroes represent various multiples of two,
which can get quite complex before your eyes,

Look at this number:

0111 1111 1111 1111

ones. If you add 1 to this value, you get the fol-
lowing amazing figure:

1000 0000 0000 0000

How the computer interprets this binary value
depends on how you define your variable. For a
signed value, a 1 in the far left position of the

1 at all. The pre-
ceding number becomes –32,768 in binary math.

preted as positive 32,768.

The deal with signed and unsigned numbers all

binary counting tongue. If you’re working with a

Otherwise, the first bit is just another droll bit in

minus sign.

how numbers are stored inside a computer. The

the binary tongue inside the computer. That’s

uses two bytes to store an integer. Those two

human counting system). In binary, the ones and

but is like eating ice cream to the computer.

It’s the value 32,767 — almost a solid bank of

number isn’t a It’s a minus sign.

If the variable is an unsigned value, it’s inter-

depends on that pesky first bit in the computer’s

signed number, the first bit is the minus sign.

the computer, happy to be a value and not a

Table 9-2 What Signed and Unsigned Variables Can Hold

Signed Range Unsigned Range

char –128 to 127 unsigned char 0 to 255

int –32768 to 32,767 unsigned int 0 to 65,535

long –2,147,483,648 unsigned long 0 to 4,294,967,295 to 2,147,483,647

� Floating-point numbers (numbers with a decimal part or fractions) can be
positive or negative without regard to any signed or unsigned nonsense.

� Floating-point numbers are covered in the following section.

� Normally, the differences between signed and unsigned values shouldn’t
bother you.

Chapter 9: How to C Numbers 113
� Signed variables can be maddening and the source of frustration as far

as creepy errors are concerned. It works like this: Suppose that you add
1 to a signed integer variable. If that variable already holds the value
32,767, its new value (after you add 1) is –32,768. Yes, even though
you add a number, the result is negative. In that instance, you should be
using an unsigned int variable type to avoid the problem.

� To use an unsigned variable and skirt around the negative-number issue,
you must declare your variables by using either the unsigned int or
unsigned long keyword. Your C compiler may have a secret switch
that allows you to always create programs by using unsigned variables;
refer to the online documentation to see what it is.

How to Make a Number Float
Two scoops of ice cream. . . .

Integer variables are the workhorses in your programs, handling most of the
numeric tasks. However, when you have to deal with fractions, numbers that
have a decimal part, or very large values, you need a different type of
numeric variable. That variable is the float.

The float keyword is used to set aside space for a variable designed to con-
tain a floating-point, or noninteger, value. Here’s the format:

float var;

The keyword float is followed by a space or a tab, and then comes the vari-
able name, var. The line ends in a semicolon.

Or, you can declare a float variable and give it a value, just as you can any
other variable in C:

float var=value;

In this format, the variable var is followed by an equal sign and then a value
to be assigned to it.

Float is short for floating point. That term somehow refers to the decimal point
in the number. For example, the following number is a floating-point value:

123.4567

An integer variable wouldn’t cut it for this number. It could be only 123 or 124.
When you have a decimal, you need a floating-point variable.

114 Part II: Run and Scream from Variables and Math

The range for floating-point numbers is quite large. With most C compilers,
you can store any number in the range ±3.4 × 10–38 to ±3.4 × 1038. In English,
that’s a value between negative 340 undecillion and positive 340 undecillion.
An undecillion is a 1 with 36 zeroes after it. That’s a true, Mr. Spock-size
value, though most numbers you use as floats are far less.

� Rules for naming variables are in Chapter 8.

� Noninteger values are stored in float variables.

� Even though 123 is an integer value, you can still store it in a float vari-
able. However. . . .

� float variables should be used only when you need them. They require
more internal storage and more PC processing time and power than inte-
gers do. If you can get by with an integer, use that type of variable instead.

“Hey, Carl, let’s write a floating-point
number program!”
Suppose that you and I are these huge, bulbous-headed creatures, all slimy and
green and from the planet Redmond. We fly our UFO all over the galaxy, drink
blue beer, and program in C on our computers. I’m Dan. Your name is Carl.

One day, while assaulting cows in Indiana, we get into this debate:

Dan: A light-year is 5,878,000,000,000 miles long! That’s 5 trillion, 878 bil-
lion, plus change! I’m not walking that!

Carl: Nay, but it’s only a scant 483,400,000 miles from the sun to Jupiter.
That is but a fraction of a light-year.

Dan: How much of a fraction?

Carl: Well, why don’t you type the following C program and have your
computer calculate the distance for you?

Dan: Wait. I’m the author of this book. You type the program, JUPITER.C,
and you figure it out. Sheesh.

#include <stdio.h>

int main()
{

float lightyear=5.878E12;
float jupiter=483400000;
float distance;

Chapter 9: How to C Numbers 115

distance=jupiter/lightyear;

printf(“Jupiter is %f light years from the
sun.\n”,distance);

return(0);
}

Enter this program into your text editor. Be careful! Check spelling, odd char-
acters, other stuff. Save the file to disk as JUPITER.C.

Compile the program. If you see any errors, fix ’em up and recompile.

Run the program. The output looks something like this:

Jupiter is 0.000082 light years from the sun.

Carl: A mere stumble!

Dan: I’m still not walking it.

� You use the float keyword to declare a floating-point variable.

� In scientific notation, which is how scientists sneak around the require-
ment of typing zeroes and commas, the length of a light year is written
as 5.878E12. That means that the decimal in 5.878 should be shifted to
the right 12 times. (The next section covers this ugly E-notation thing.)

� The variable jupiter is set equal to the mean distance between Jupiter
and the sun, which is 484 million miles. In the source code, that’s 4834 fol-
lowed by 5 zeroes. There’s no need to mess with scientific notation here
because the compiler can eat this relatively small-size number. (Anything
over 100 billion usually requires the scientific E notation; you have to refer
to your compiler’s manual to check the size of its mouth.)

� The distance variable contains the result of dividing the distance
between the sun and Jupiter by the length of a light-year — to find out
how many light-years Jupiter is from the sun. The number is extremely
small.

� The %f placeholder is used in the printf() function to display floating-
point values.

� The float variables are used in this program for two reasons: because
of the humongous size of the numbers involved and because division
usually produces a noninteger result — a number with a decimal part.

116 Part II: Run and Scream from Variables and Math

The E notation stuff
When you deal with very large and very small numbers, the old scientific E
notation stuff crops up. I assume that it’s okay to discuss this subject, because
if you’re interested in programs that deal with these types of numbers, you
probably already have one foot in the test tube.

E notation is required in C (or even in the Excel spreadsheet) when some num-
bers get incredibly huge. Those numbers are floating-point numbers — or the
floats, as you have come to know them. Integers don’t count.

When you get a number over about eight or nine digits long, it must be
expressed in E notation or else the compiler doesn’t eat it. For example, take
the length of a light-year in miles:

5,878,000,000,000

That’s 5 trillion, 878 billion. In C, you don’t specify the commas, so the number
should be written as follows:

5878000000000

That’s 5878 followed by nine zeroes. The value is still the same; only the
commas — conveniently added to break up large numbers for your human
eyeballs — have been removed. And though this number is within the range
of a float, if you were to compile it, the compiler would moan that it’s too large.
It’s not the value that bugs the compiler — it’s the number of digits in the
number.

To make the compiler understand the value, you have to express it by using
fewer digits, which is where scientific notation comes in handy. Here’s the same
value in E notation, as you specify it in the JUPITER.C program, from the pre-
ceding section:

5.878E12

Scientific, or E, notation uses a number in the following format:

x.xxxxEnn

The x.xxxx is a value; it’s one digit followed by a decimal point and then more
digits. Then comes big E and then another value (nn). To find out the number’s
true size, you have to hop the decimal point in the x.xxxx value to the right nn
places. Figure 9-1 illustrates how this concept works with the light-year value.

Chapter 9: How to C Numbers 117

5.878 E12

58.78 E11

587.8 E10

5878. E9

58780. E8

587800. E7

5878000. E6

58780000. E5

587800000. E4

5878000000. E3

58780000000. E2
Figure 9-1:

Scientific 587800000000. E1
notation

5878000000000. E0 and the
light year. 5,878,000,000,000

When you enter E numbers in the compiler, use the proper E format. To dis-
play the numbers in E format with printf(), you can use the %e placeholder.
To see how it works, replace the %f in the JUPITER.C program with %e, save
the change to disk, recompile, and run the result. The output is in E notation,
something like the following:

Jupiter is 8.223886e-05 light years from the sun.

If the E has a negative number in front of it, as shown in this example, you hop
the decimal point to the left nn places, to indicate very small numbers. You
would translate the preceding value into the following:

.00008223886

� Scientific, or E, notation is required when numbers contain too many
digits for the C compiler to eat.

� A negative E number means that the value is very small. Remember to
move the decimal point to the left rather than to the right when you see
this type of number.

� Some compilers allow you to use the %E (big E) placeholder in printf()
to display scientific-notation numbers with a big E in them.

118 Part II: Run and Scream from Variables and Math

Bigger than the Float, It’s a Double!
For handling really huge numbers, C has its largest data type, the double.
These types of variables can contain absolutely huge values and should be
used only when you must work with those outer-space-size values or when
you require a mathematical operation that must be precise.

Double variables are declared by using the double keyword. Double comes
from the term double precision, which means that the numbers are twice as
accurate as floats, which are also known as single-precision numbers.

What’s precision? It deals with how decimal numbers, fractions, and very small
and huge numbers are stored in a computer. Keep in mind that the computer
uses only ones and zeroes to store information. For integers, that’s great. For
non-integers, it means that some tomfoolery must take place. That tomfool-
ery works, but it tends to get inaccurate, or “fuzzy,” after a time, especially on
the details.

As an example, gawk at this number:

123.4567891234

That’s a float if I ever saw one. But if you define that value as a float variable
in C, the computer can store it only as a single-precision value. It can accu-
rately hold only the first eight digits. The rest — it makes them up! To wit:

123.45678422231

The first eight digits are precise. The rest — eh? After the 8, the value gets
screwy. It’s single precision in action. Double precision can be accurate to
maybe 12 or 16 decimal places (but after that, it begins acting goofy as well).

The moral of this story is twofold: First, if you have to make float calculations
with your computer, remember that the number can be only so accurate. After
about eight digits or so, the rest of the output is meaningless. Second, if you
need precise calculations, use the double type of variable. It still has its prob-
lems, but it’s more precise than the float.

� You use the double keyword to declare a double-precision floating-point
variable in your C programs.

� If you ever print a value — 123.456, for example — and the output you see
is something like 123.456001, that extra 001 is the lack of precision the
computer has when it’s dealing with floating-point numbers. For the most
part, any extra value that’s added is insignificant, so don’t let it bug you.

Chapter 9: How to C Numbers 119
� Being accurate to eight digits is more than enough for most noninteger

calculations. For sending people to Mars, however, I recommend the
double. (I know that NASA reads these books intently.)

� Some compilers may offer quadruple-precision numbers with their own
unique keywords and other rules and regulations.

� The greater the precision, the longer it takes the computer to deal with
the numbers. Don’t use more precision than you have to.

Formatting Your Zeroes
and Decimal Places

Floating-point values can sure look gross when they’re displayed by using the
%f in the printf() function. Ugh. Now you have to plug your nose and plunge
a little deeper into the murky waters of printf() formatting. Fortunately, this
is about the only time you have to do that.

Between the % and the f, you can insert some special formatting characters.
They control the printf() function’s output and may help you get rid of some
excess zeroes or trim up the number that is displayed.

The following few examples show you how to trim up your numbers with
printf() and avoid the cavalcade of zeroes that appears sometimes when
you’re dealing with floats and doubles.

The following placeholder displays the float number by using only two deci-
mal places. It’s ideal for displaying dollar amounts. Without it, you may have
$199.9500 displayed as a price — which doesn’t appease your customer’s
sense of thrift any.

%.2f

If you need to display more decimal places, specify that number after the dot:

%.4f

This placeholder formats floating-point numbers to display four digits after
the decimal point. If the value isn’t that small, zeroes pad out the four deci-
mal places.

The following format information tells printf() to display the number by
using six digits — which includes the decimal point:

%6f

120 Part II: Run and Scream from Variables and Math

No matter how big the number is, it’s always displayed by using six digits.
Rather than leading zeroes, the number is padded on the left with spaces.
The number 123 is displayed as

123.

This line begins with two spaces, or is indented two spaces, depending on how
you look at it.

Sometimes the %f may display a number that looks like this:

145000.000000

In that case, you can trim up the number by using either %.2f, which displays
only two zeroes after the decimal point, or something like %6f, which limits
the output to only six digits.

� An alternative to messing with numbers and other characters between
the % and little f is to use the %e placeholder. It displays numbers in sci-
entific format, which is usually shorter than the %f placeholder’s output.

� Then there’s the %g placeholder. That thing displays a floating-point
number in either the %f or %e (scientific) format, depending on which is
shorter.

Yes, I know that this chapter is short on examples. But numbers are boring.
So there.

Chapter 10

Cook That C Variable
Charred, Please

In This Chapter
� Using the char declaration

� Assigning characters to variables

� Understanding getchar() and putchar()

� Treating char as a tiny integer variable

Too many C language books seem to fixate on numbers and avoid com-
pletely the other type of variable — the character, or string, variable. It’s

definitely more fun. Rather than hold values — values, bah! — character vari-
ables hold individual characters or letters of the alphabet and complete strings
of text. This certainly opens the floodgates of creativity over pounding the
sand with numbers.

This chapter rounds off your variable declaration journey with an official hello
to the char variable, suited for storing both single characters and strings of
text. In this chapter, it’s only single characters you have to worry about.

The Other Kind of Variable
Type, the char

Though I talk about both single-character and string variables, C language
has only one variable type, the char, which is defined by the keyword char.
And I think, though I’m not certain, that it’s pronounced “care” and not “char,”
as in “charred beyond all recognition.”

122 Part II: Run and Scream from Variables and Math

Single-character variables
Like a string of text, the single-character variable is declared by using the
char keyword. Unlike a string, the single-character variable holds only one
character — no more. In a way, the character variable is like a padded cell.
The string variable is merely several padded cells one after the other — like
an asylum.

The char keyword is used to set aside storage space for a single-character
variable. Here’s the format:

char var;

char is written in lowercase, followed by a space and then var, the name of
the variable to be created.

In the following format, you can predefine a single-character value:

or entered by using escape sequences. For
example, the extended ASCII characters used
on most PCs — which include the line-drawing
characters, math symbols, and some foreign
characters — require some extra effort to stuff

little technical. Follow these steps:

hexadecimal values are usually shown in
the ASCII tables and charts.)

long, after the \x escape sequence.

Remember to enclose the entire escape
sequence — four characters long — in
single quotes.

Suppose that you want to use the British pound

secret code number is 156. Look it up in Appendix

(Hex numbers contain letters.) So you specify the
following escape sequence in your program:

‘\x9C’

or lowercase. When the escape sequence is
assigned to a character variable, the C compiler
takes the preceding number and converts it into
a character — the £ — which sits snugly until
needed.

char var=’c’;

Typing those hard-to-reach characters
Some characters can’t be typed at the keyboard

into character variables. It’s possible — just a

1. Look up the character’s secret code value —
its ASCII or extended ASCII code number.

2. Convert that code number into base 16, the
hexadecimal, or “hex,” system. (That’s why

3. Specify that hex value, which is two digits

4.

symbol, £, in your program. That character’s

B. You can see that the hexadecimal value is 9C.

Notice that it’s enclosed in single quotes. The C,
or any other hexadecimal letter, can be upper-

Chapter 10: Cook That C Variable Charred, Please 123
char is followed by a space. The name of the variable you’re creating, var, is
followed by an equal sign and then a character in single quotes. The statement
ends in a semicolon.

Inside the single quotes is a single character, which is assigned to the vari-
able var. You can specify any single character or use one of the escape
sequences to specify a nontypable character, such as a double-quote, a single
quote, or the Enter key press. (See Table 24-1 in Chapter 24 for the full list
of escape sequences; also see the nearby sidebar, “Typing those hard-to-
reach characters.”)

The single-character variable is ideal for reading one character (obviously)
from the keyboard. By using miracles of the C language not yet known, you
can compare that character with other characters and make your programs
do wondrous things. This is how a menu system works, how you can type
single-key commands without having to press Enter, and how you can write
your own keyboard-reading programs. Oh, it can be fun.

Char in action
The following statement creates the character variable ch for use in the pro-
gram (you can also predefine the variable if need be):

char ch;

This next statement creates the character variable x and assigns to it the char-
acter value ‘X’ (big X):

char x=’X’;

When you assign a character to a single-character variable, you use single
quotes. It’s a must!

Some characters, you can’t really type at the keyboard. For example, to pre-
define a variable and stick the Tab key into it, you use an escape sequence:

char tab=’\t’;

This statement creates the character variable tab and places in that variable
the tab character, represented by the \t escape sequence.

� Single-character variables are created by using the char keyword.

� Don’t use the square brackets when you’re declaring single-character
variables.

124 Part II: Run and Scream from Variables and Math

� If you predefine the variable’s value with a character, enclose that char-
acter in single quotes. Don’t use double quotes.

� You can assign almost any character value to the character variable.
Special, weird, and other characters can be assigned by using the escape
sequences.

� Information about creating string variables is presented in Chapter 4. This
chapter deals primarily with single-character variables.

Stuffing characters into
character variables
You can assign a character variable a value in one of several ways. The first
way is to just stuff a character in there, similar to the way you stuff a value
into a numeric variable or your foot into a sock. If key is a character variable,
for example, you can place the character ‘T’ in it with this statement:

key=’T’;

The T, which must be in single quotes, ladies and gentlemen, slides through
the equal sign and into the key variable’s single-character holding bin. The
statement ends in a semicolon. (I assume that key was defined as a character
variable by using the char key; statement, earlier in the program.)

In addition to single characters, you can specify various escape sequences
(the \-character things), values, and whatnot. As long as it’s only one charac-
ter long, you’re hunky-dory.

Another way to stick a character into a single-character variable is to slide one
from another character variable. Suppose that both old and new are charac-
ter variables. The following is acceptable:

old=new;

The character in new squirts through the equal sign and lands in the charac-
ter variable old. After the preceding statement, both variables hold the same
character. (It’s a copy operation, not a move.)

� You can assign single characters to single-character variables. But. . . .

� You still cannot use the equal sign to put a string of text into a string
variable. Sorry. It just can’t be done.

Chapter 10: Cook That C Variable Charred, Please 125

Reading and Writing Single Characters
This book introduces you to two C language functions used to read text from
the keyboard: scanf() and gets(). Both read text from the keyboard, usually
as full sentences. However, scanf() can be used to read in single characters,
which is part of its charm — and flexibility:

scanf(“%c”,&key);

In this format, scanf() reads the keyboard for a single character, specified by
the placeholder %c. That value is stored in the char variable key, which you
can assume was already declared earlier in the program. To wit:

#include <stdio.h>

int main()
{

char key;

puts(“Type your favorite keyboard character:”);
scanf(“%c”,&key);
printf(“Your favorite character is %c!\n”,key);
return(0);

}

Carefully enter this source code into your editor. Save it to disk as FAVKEY1.C.

Compile and run. Here’s the sample output:

Type your favorite keyboard character:

Press a key, such as m (or whatever your favorite is), and then press the Enter
key. You see this:

M
Your favorite character is M!

The M key is read from the keyboard, stored in the char variable key, and then
displayed by printf().

� Yes, you have to press the Enter key to finish your input — that’s the way
the scanf() function works.

� You can type a whole string of text, but only the first character that’s
typed is read by scanf() as the favorite key.

126 Part II: Run and Scream from Variables and Math

The getchar() function
Fortunately, you’re not stuck with scanf() for reading in individual keys from
the keyboard. The C language also has a function named getchar(), which
is used specifically to read a single character from the keyboard. Here’s the
format:

var=getchar();

var is a character variable. It holds whatever character is typed at the key-
board. var is followed by an equal sign and then getchar and two parenthe-
ses hugging nothing. This function is a complete statement and ends with a
semicolon.

The getchar() function causes your program to pause and wait for a key to
be typed at the keyboard. getchar() sits and waits. Sits and waits. Sit. Wait.
Sit. Wait. When a key is typed and then Enter is pressed, that character’s
“value” slides across the equal sign and is stored in the character variable.

The following is the update to the FAVKEY1.C program, this time replacing the
sordid scanf() function with the better getchar() function:

#include <stdio.h>

int main()
{

char key;

puts(“Type your favorite keyboard character:”);
key=getchar();
printf(“Your favorite character is %c!\n”,key);
return(0);

}

Edit the source code for FAVKEY1.C, changing only Line 8 and replacing the
scanf() function with getchar(), as just shown. Save the new file to disk as
FAVKEY2.C. Compile and run!

The output is the same as for the first version of the program; and you still
have to press the Enter key to enter your favorite key value.

� Yes, it seems silly that you have to type Enter when entering a single char-
acter. That’s just the way getchar() works. (And I hate it.)

� There are ways to read the keyboard more interactively, where pressing
the Enter key isn’t required. I cover these methods in my book C Allin
One Desk Reference For Dummies (Wiley).

Chapter 10: Cook That C Variable Charred, Please 127

The putchar() function
The putchar() function, pronounced “püt-care,” for “put character,” is the
opposite of the getchar() function; getchar() reads in a character from
the keyboard, and putchar() displays a character on the screen. Here’s the
format, though you probably could have guessed it:

putchar(c);

c can be either a single-character variable or a character constant in single
quotes:

putchar(‘c’);

The character ‘c’ is displayed on the screen.

The following program shows how putchar() can be put to use in tossing up
characters on the screen:

#include <stdio.h>

int main()
{

puts(“Press Enter:”);
getchar();
putchar(‘H’);
putchar(‘e’);
putchar(‘l’);
putchar(‘l’);
putchar(‘o’);
putchar(‘!’);
putchar(‘\n’);
return(0);

}

Enter this source code as PUTHELLO.C. Double-check for errors. Compile
and run:

Press Enter.

Do so. Then:

Hello!

Note that getchar() is used here merely to read the Enter key press; any value
returned by getchar() isn’t stored. When used in this format, getchar() still
returns a value, but because it’s not stored in a variable, the value is “lost.”
That’s perfectly okay.

128 Part II: Run and Scream from Variables and Math

Beyond the getchar() dilemma, the program uses seven putchar() functions
to display Hello! (plus a newline character) to the screen. It’s a rather silly
use of putchar(), but it works.

� The putchar() function is used to display a single character on the
screen.

� You can also specify a character as an escape sequence or a code value
with putchar() (see the next section).

Character Variables As Values
If you want, you can live your life secure in the knowledge that the char key-
word sets aside storage space for single-character variables and strings. That’s
all well and good, and it gets you an A on the quiz. You can stop reading now,
if you want.

The horrible truth is that a single-character variable is really a type of integer.
It’s a tiny integer, but an integer nonetheless. The reason that it isn’t obvious
is that treating a char as an integer is really a secondary function of the single-
character variable. The primary purpose of single-character variables is to
store characters. But they can be used as integers. It’s twisted, so allow me to
explain in detail.

The basic unit of storage in a computer is the byte. Your computer has so
many bytes (or megabytes) of memory, the hard drive stores so many giga-
bytes, and so on. Each one of those bytes can be looked at as storing a single
character of information. A byte is a character.

Without boring you with the details, know that a byte is capable of storing a
value, from 0 to 255. That’s the range of an unsigned char integer: from 0 to
255 (refer to Table 9-1, in Chapter 9). Because a character is a byte, the char
can also be used to store those tiny integer values.

When the computer deals with characters, it doesn’t really know an A from a
B. It does, however, know the difference between 65 and 66. Internally, the
computer uses the number 65 as a code representing the letter A. The letter
B is code 66. In fact, all letters of the alphabet, number characters, symbols,
and other assorted jots and tittles each have their own character codes. The
coding scheme is referred to as ASCII, and a list of the codes and characters
is in Appendix B.

Essentially, when you store the character A in a char variable, you place the
value 65 into that variable. Internally, the computer sees only the 65 and, lo,
it’s happy. Externally, when the character is “displayed,” an A shows up. That
satisfies you and me, supposing that an A is what we want.

Chapter 10: Cook That C Variable Charred, Please 129
This is how char variables can be both integers and characters. The truth
is, they are integers. However, they are treated like characters. The following
program, WHICH.C, reads a character from the keyboard and displays it by
using the printf() function. The trick with WHICH.C is that the character is
displayed as both a character and a numeric, integer value. Such duality! Can
you cope?

#include <stdio.h>

int main()
{

char key;

printf(“Press a key on your keyboard:”);
key=getchar();
printf(“You pressed the ‘%c’ key.\n”,key);
printf(“Its ASCII value is %d.\n”,key);
return(0);

}

Save the file to disk, naming it WHICH.C.

Compile WHICH.C. If you get any errors, double-check the source code, fix it
up, and recompile.

Run the final program. If you press the A key (and then Enter), the output on
your screen looks something like this:

Press a key on your keyboard:A
You pressed the ‘A’ key.
Its ASCII value is 65.

The second printf() statement displays the key variable by using the %c
placeholder. This placeholder tells printf() to display the variable as a char-
acter. In the third printf() statement, the variable is displayed by using the
%d placeholder. That one tells printf() to display the variable as an integer
value — which it does.

� All letters of the alphabet, symbols, and number keys on the keyboard
have ASCII codes.

� ASCII code values range from 0 to 127.

� Code values higher than 127 — from 128 to 255 — are called extended
ASCII codes. Those characters aren’t standard on all computers, though
they’re pretty consistent on Windows PCs. It’s just a technical snit.

� Appendix B lists all the ASCII characters and their values.

� Chapter 13 shows you how to “compare” one letter or ASCII character
with another. What’s being compared is really the character’s code
value, not its aesthetics.

130 Part II: Run and Scream from Variables and Math

Programs the
Ability to Run

Amok

Part III

Giving Your

In this part . . .

T
than that.

sion machine inside of it. That decision machine lets the

such as “If the user types L, then go left and get eaten

In addition to making decisions, the computer is good at
doing things over and over — without complaining! Com-

amok time!

he programs illustrated in the first two parts of this
book have been top-down. That is, they are executed

one line after another, from top to bottom. They make no
deviations and have no change in the pattern, no creativ-
ity, no choice. Boring! But computer programs can do more

To really make a program run amok, you can place a deci-

program do one thing or another based on a comparison,

by the hungry elf.” It’s not a choice that the computer
makes; the computer is dumb. But it’s an alternative,
which means that the program is capable of more than
just chomping through instructions, one after the other.

bine decision-making with this love of repetition, and pretty
soon you have programs that spin off into alternative uni-
verses, taking control of the computer with them! It’s run-

Chapter 11

C More Math and the Sacred
Order of Precedence

In This Chapter
� Reviewing the C math operators

� Incrementing variables

� Understanding the order of precedence

� Introducing My Dear Aunt Sally

� Using parentheses to control your math

Beware ye the dreadful math chapter! Bwaa-ha-ha!

Math is so terrifying to some people that I’m surprised there isn’t some
math-themed horror picture, or at least a ride at Disneyland. Pirates. Ghosts.
Screaming Dolls. Disneyland needs math in order to terrify and thrill children
of all ages. Ludwig von Drake would host. But I digress.

This chapter really isn’t the dreadful math chapter, but it’s my first lecture
that dwells on math almost long enough to give you a headache. Don’t panic!
The computer does all the work. You’re only required to assemble the math
in the proper order for the answers to come out right. And, if you do it wrong,
the C compiler tells you and you can start over. No embarrassment. No
recriminations. No snickering from the way-too-smart female exchange stu-
dent from Transylvania.

An All-Too-Brief Review of the Basic
C Mathematical Operators

Table 11-1 shows the basic C mathematical operators (or it could be arith-
metic operators — whatever). These symbols and scribbles make basic math
happen in a C program.

134 Part III: Giving Your Programs the Ability to Run Amok

Table 11-1 C’s Mathematical Doodads

Operator What You As Pronounced
or Symbol Expect by Sixth Graders Task

+ + “Plus” Addition

- – “Minus” Subtraction

* × “Times” Multiplication

/ ÷ “Divided by” Division

You use the symbols to do the following types of math operations:

� Work with values directly:

total = 6 + 194;

The integer variable total contains the result of adding 6 and 194.

In this example:

result = 67 * 8;

the variable result (which can be either an integer or a float variable)
contains the result of multiplying 67 by 8:

odds = 45/122;

The float variable odds contains the result of dividing 45 by 122:

In all cases, the math operation to the right of the equal sign is per-
formed first. The math is worked from left to right by the C compiler.
The value that results is placed in the numeric variable.

� Work with values and variables:

score = points*10;

The variable score is set equal to the value of the variable points
times 10.

� Work with just about anything; functions, values, variables, or any
combination:

height_in_cm = atoi(height_in_inches)*2.54;

The variable height_in_cm is set equal to the value returned by the
atoi function times 2.54. The atoi() function manipulates the variable
height_in_inches (which is probably a string input from the keyboard).

Chapter 11: C More Math and the Sacred Order of Precedence 135
� The math part of the equation is calculated first and is worked from left

to right. The result is then transferred to the variable sitting on the left
side of the equal sign.

The old “how tall are you” program
You can use “the power of the computer” to do some simple yet annoying
math. As an example, I present the HEIGHT.C program, with its source code
shown next. This program asks you to enter your height in inches and then
spits back the result in centimeters. Granted, it’s a typically dull C language
program. But, bear with me for a few pages and have some fun with it. Enter
this trivial program into your editor:

#include <stdio.h>
#include <stdlib.h>

int main()
{

float height_in_cm;
char height_in_inches[4];

printf(“Enter your height in inches:”);
gets(height_in_inches);
height_in_cm = atoi(height_in_inches)*2.54;
printf(“You are %.2f centimeters tall.\n”,height_in_cm);
return(0);

}

Be careful with what you type; some long variable names are in there. Also,
it’s height, not hieght. (I mention it because I tried to compile the program
with that spelling mistake — not once, but twice!) Save the file to disk as
HEIGHT.C.

Compile the program. Watch for any syntax or other serious errors. Fix them
if they crop up.

Run the HEIGHT program. Your output looks something like this:

Enter your height in inches:60
You are 152.40 centimeters tall.

If you’re 60 inches tall (5 feet exactly), that’s equal to 152.40 centimeters — a
bigger number, but you’re still hovering at the same altitude. The program is
good at converting almost any length in inches to its corresponding length in
centimeters.

136 Part III: Giving Your Programs the Ability to Run Amok

� Height. It has e before i. It’s another example of why English is the worst-
spelled language on the planet. (It’s your number-one typo possibility if
you get a syntax error in the program.)

� The atoi() function reaches into the string you enter and pulls out an
integer value. And, it’s atoi(), not atio() (another reason, though
invalid, to hate English spelling).

� The atoi() function translates the value held in the string variable,
height_in_inches, into an integer. Then that value is multiplied by
2.54. (The asterisk is used for multiplication.) The result is then slid
through the equal sign and stored in the float variable, height_in_cm.

� The value 2.54 is obviously a float because it contains a decimal part.
height_in_inches is an integer because that’s the type of value the
atoi() function returns. When you multiply an integer by a float, how-
ever, the result is a float. That’s why the height_in_cm variable is a float.

� An inch has 2.54 centimeters in. It’s not that this knowledge gets you
anywhere, at least not in the United States. However, if you’re on
Jeopardy! and the Final Jeopardy answer is 2.54, you’ll know the ques-
tion. (By the way, an easy mnemonic device for remembering how many
centimeters are in an inch is to scream “two-point-five-four centimeters
per inch” at the top of your lungs 30 times.)

� A centimeter equals 0.39 inches. A centimeter is really about as long as
your thumbnail is wide —as long as you don’t have colossal thumbs, of
course.

Unethical alterations to the old
“how tall are you” program
Though I’m not standing behind you, I can clearly see the HEIGHT.C program
source code sitting in your editor. Good. Change Line 11 as follows:

height_in_cm = atoi(height_in_inches)*2.54*1.05;

After the 2.54 and before the semicolon, insert *1.05 (“times one point-oh-
five”). This increases your height by five-hundredths of a centimeter for each
centimeter you have in height. The result? Wait! Save the file and recompile it.
Then run it again:

Enter your height in inches:60
You are 160.02 centimeters tall.

That may not mean much to you. But suppose that you’re corresponding
with some French person who’s romantically interested in you. If so, you can
tell him or her that, according to a program run on your computer, you’re

Chapter 11: C More Math and the Sacred Order of Precedence 137
160.02 centimeters tall. That means nothing to an American, but it means that
you’re three whole inches taller in France. If you were 5'10" (70 inches), the
program would produce the following:

Enter your height in inches:70
You are 186.69 centimeters tall.

Now, you’re 186.69 centimeters tall — or 6'11⁄2" tall! They’ll swoon!

And now, the confession:

The purpose of this discussion is not to tell you how to cheat when you’re
programming a computer, nor is there any value in deceiving the French. For
the most part, people who run programs want accurate results. However, it
does show you the following:

height_in_cm = atoi(height_in_inches)*2.54*1.05;

The variable height_in_cm is equal to the result of three mathematical oper-
ations: First, an integer is produced based on the value of the string variable
height_in_inches. That’s multiplied by 2.54, and the result is multiplied
again by 1.05.

Having a long mathematical formula is perfectly okay in C. You can add, mul-
tiply, divide, and whatnot all the time. To ensure that you always get the
result you want, however, you must pay special attention to something called
the order of precedence. That’s the topic of a section later in this chapter.

� An equation in C can have more than two items. In fact, it can have a
whole chorus line of items in it. The items must all be on the right, after
the equal sign.

� To increase the height value by .05 (five-hundredths, or 5 percent), the
number must be multiplied by 1.05. If you just multiply it by .05, you
decrease it by 95 percent. Instead, you want to increase it by 5 percent,
so you multiply it by 105 percent, or 1.05. I stumbled on this knowledge
accidentally, by the way.

The Delicate Art of Incrementation
(Or, “Just Add One to It”)

The mathematical concept of “just add 1 to it” is called incrementation. You
move something up a notch by incrementing it — for example, shifting from
first to second, racking up another point in Gackle Blaster, or increasing your
compensation by a dollar an hour. These are examples of incrementation.

138 Part III: Giving Your Programs the Ability to Run Amok

Increasing the value of a variable in C happens all the time. It involves using
this funky equation:

i=i+1;

This math problem serves one purpose: It adds 1 to the value of the variable
i. It looks funny, but it works.

Suppose that i equals 3. Then i+1 (which is 3 + 1) equals 4. Because the right
side of the equal sign is worked out first in C, the value 4 is slid over and put
into the i variable. The preceding statement increments the value of the i
variable by 1.

You can also use the equation to add more than 1 to a value. For example:

i=i+6;

This equation increments the value of the i variable by 6. (Purists will argue,
though, that the word increment means strictly to “add one to.” Then again,
true purists wouldn’t put any dressing on their salad, so what do they know
anyway?)

� To add 1 to a variable — i, in this instance — you use the following C
language mathematical-statement thing:

i=i+1;

This is known as incrementation.

� No, that’s not incrimination. Different subject.

� Some examples of incrementing values are altitude as a plane (or space-
ship) climbs; miles on an odometer; your age before and after your
birthday; the number of fish the cat has eaten; and your weight over the
holidays.

� Incrementation — i=i+1 — works because C figures out what’s on the
right side of the equal sign first. i+1 is done first. Then it replaces the
original value of the i variable. It’s when you look at the whole thing all
at once (from left to right) that it messes with your brain.

Unhappily incrementing your weight
The following program is LARDO.C, a rather rude interactive program that
uses math to increment your weight. You enter what you weigh, and then
LARDO calculates your newfound bulk as you consume your holiday feast:

Chapter 11: C More Math and the Sacred Order of Precedence 139

#include <stdio.h>
#include <stdlib.h>

int main()
{

char weight[4];
int w;

printf(“Enter your weight:”);
gets(weight);
w=atoi(weight);

printf(“Here is what you weigh now: %d\n”,w);
w=w+1;
printf(“Your weight after the potatoes: %d\n”,w);
w=w+1;
printf(“Here you are after the mutton: %d\n”,w);
w=w+8;
printf(“And your weight after dessert: %d pounds!\n”,w);
printf(“Lardo!\n”);
return(0);

}

Type the preceding source code into your text editor. The only truly new
material in this example is the w=w+1 equation, which increments the value
of the w variable by one. The final equation, w=w+8, adds eight to the value of
the w variable.

Check your typing and be mindful of semicolons and double quotes. Save the
file to disk as LARDO.C.

Compile LARDO.C. Fix any errors, if need be.

The following sample of the program’s final run uses 175 as the user’s weight:

Enter your weight:175
Here is what you weigh now: 175
Your weight after the potatoes: 176
Here you are after the mutton: 177
And your weight after dessert: 185 pounds!
Lardo!

� This program doesn’t need to be insulting — but what the hey! The idea
in this example is to show how the w=w+1 equation is used to add 1 to
the value of a variable. It’s called incrementation. (It’s what God does to
your weight every morning that you lug your pudgy legs onto the scale.)

� Yeah, 175 pounds! I’m sure that you typed an equally modest value
rather than something more representative of your true girth.

140 Part III: Giving Your Programs the Ability to Run Amok

Bonus program! (One that may
even have a purpose in life)
Monopoly is perhaps one of the greatest board games ever invented, and it
can be terrific fun — especially when you own rows of hotels and your pitiful
opponents land on them like witless flies on a discarded all-day sucker. The
only problem at that point is drawing the Community Chest card that pro-
claims the following:

You are assessed for street repairs — $40 per house, $115 per hotel.

You count up all your houses and multiply that number by $40 and all the
hotels by $115 (which is a strange number), and then you add the two values.
It’s a terrible thing to do to one’s brain in the middle of a Monopoly game. But
the mental drudgery can be easily abated by a simple computer program,
one such as ASSESSED.C:

#include <stdio.h>
#include <stdlib.h>

int main()
{

int houses, hotels, total;
char temp[4];

printf(“Enter the number of houses:”);
gets(temp);
houses=atoi(temp);

printf(“Enter the number of hotels:”);
gets(temp);
hotels=atoi(temp);

total=houses*40+hotels*115;

printf(“You owe the bank $%d.\n”,total);
return(0);

}

Carefully type this program into your editor on a new screen. Double-check
your semicolons, parentheses, and quotes. Then save it to disk as
ASSESSED.C.

Compile! Fix any errors, if need be. Then run the program. Suppose that you
have nine houses and three hotels. Here’s what your output looks like:

Enter the number of houses:9
Enter the number of hotels:3
You owe the bank $705.

Chapter 11: C More Math and the Sacred Order of Precedence 141
Amazing how easy the computer could figure that out! Of course, at this point
in the game, you can easily afford the $705 in funny money. All you need is for
some poor sap to land on St. Charles Place with its hotel, and you make the
money back jiffy-pronto.

� Notice how the temp variable is used to hold and help convert two dif-
ferent strings into numbers? This example illustrates how variables can
change and, well, be variable.

� The mathematical computation in Line 17 works because of something
called the Sacred Order of Precedence, which is covered in the very next
section.

� You may think, and rightly so, that the total displayed by the program
should be a float variable. After all, dollar amounts usually have a deci-
mal part: $705.00 rather than $705. But, in this case, because all the
values are integers, it just makes more sense to stick with a total inte-
ger variable. Keep in mind that integers are faster, which is especially
apparent in larger programs.

The Sacred Order of Precedence
Precedence refers to what comes first. The fact that the theater is on fire, for
example, takes precedence over the fact that you’ll miss the second act if you
leave in a hurry.

The order of precedence is a double redundancy (which in itself is redundant
several times over). It refers to which of the mathematical operators has prior-
ity over the others. For example, a plus sign just can’t march into the middle of
a group of numbers and expect to add things the way it wants to. In C, other
mathematical operations are done before addition. It’s just proper.

A problem from the pages
of the dentistry final exam
Witness with your own eyes the following long and complex mathematical
equation that may one day slink into one of your C programs:

answer = 100 + 5 * 2 - 60 / 3;

This question is one of those tough math questions from the dentistry final
exam. Yes, most dentists would rather be pulling teeth — even their own. The
preceding problem isn’t really a problem for you, though. The computer fig-
ures the answer. But what is it?

142 Part III: Giving Your Programs the Ability to Run Amok

Is the answer 50? One hundred plus 5 is 105; times 2 is 210; minus 60 is 150;
divided by 3 is 50. Does the compiler force the computer to do that for you
automatically? Or should the value 90 be placed into the answer variable?

Ninety? Yes, the value of the answer variable is 90. This all has to do with My
Dear Aunt Sally and the order of precedence. Before getting into that, I show
you the following program, DENTIST.C, which you can type to prove that the
answer is 90 and not 50:

#include <stdio.h>

int main()
{

printf(“%d”,100+5*2-60/3);
return(0);

}

Enter this short and sweet program into your editor. Compile it. Run it. It’s
a printf() statement, with only %d in double quotes. That’s followed by a
comma and then the math question from the dentistry final.

Run the program. The result should shock you:

90

� The order of your mathematical equations is important. Not knowing
how the C compiler works out its math means that you may not get the
answer you want. That’s why you have to know the order of precedence
and, more importantly, My Dear Aunt Sally.

� When the DENTIST.C program runs, the computer works on the equation
100+5*2-60/3 first in the printf() function. The result is then passed
over to the fill-in-the-blanks %d and is displayed on the screen.

� I could have expanded DENTIST.C to declare the answer integer vari-
able, assign the value to that variable, and then use printf() to display
the variable’s contents. But, naaah. That would be too long of a program.
The C language is full of short ways to do things. The printf() state-
ment in DENTIST.C is just one example of a scrunched-up C program.

What’s up, Sally?
My Dear Aunt Sally is a mnemonic device, or “a silly thing we say to remem-
ber something we would forget otherwise, which isn’t saying much because
we nearly always forget our own phone number and family birthdays.” In this
case, My Dear Aunt Sally is a mnemonic for

Chapter 11: C More Math and the Sacred Order of Precedence 143
Multiplication

Division

Addition

Subtraction

MDAS is the order in which math is done in a long C language mathematical
equation — the order of precedence.

The compiler scopes out an entire equation — the whole line — and does the
multiplication first and then the division and then the addition and subtrac-
tion. Things just aren’t from left to right any more. Figure 11-1 illustrates how
the mathematical example in the preceding section figures out to be 90.

Figure 11-1:

How the C
compiler

figures out a
long math

function.

answer = 100 + 5 * 2 - 60 / 3;

answer = 100 + 10 - 60 / 3;

answer = 100 + 10 - 20;

answer = 110 - 20;

answer = 90;

Here’s another puzzle:

answer = 10 + 20 * 30 / 40;

In this statement, the multiplication happens first and then the division and
then the addition. When the multiplication and division are next to each
other, as in the preceding line, it goes from left to right.

When the computer is finished counting its thumbs and the preceding state-
ment is resolved, the answer variable contains the value 25. You can prove it
by editing the DENTIST.C program and replacing the math that’s already there,
in the preceding math equation. Recompile and run the program to confirm
that the answer is 25. Or, just trust me and let it go at that.

144 Part III: Giving Your Programs the Ability to Run Amok

� My Dear Aunt Sally. Multiplication (*), division (/), addition (+), and sub-
traction (–) are done in that order in the C language’s long mathematical
equations.

� The reason that the order of precedence is important is that you must
organize your mathematical equations if you expect the proper answer
to appear.

� The ASSESSED.C program, from the preceding section, also takes advan-
tage of the order of precedence:

total=houses*40+hotels*115;

The number of houses times 40 is worked out first, and then hotels
times 115 is done second. The last step is to add the two.

� A way to control the order of precedence is by using parentheses, as dis-
cussed in the obviously named section “Using parentheses to mess up
the order of precedence,” later in this chapter.

The confounding magic-pellets problem
I hated those math-class story problems when I was a kid. In fact, I still do. In
any event, here I am, in my adulthood, making up something like the following:

Suppose that you have 100 of these magic pellets. They double in quantity
every 24 hours. After a day, you have 200. But, first you have to give 25 to the
butcher in exchange for three dozen lamb’s eyeballs for a casserole you want
to surprise your spouse with. If so, how many magic pellets would you have
the next day?

Don’t bother stewing over the problem. The equation is

100 - 25 * 2;

That’s 100 magic pellets minus 25 for the eyeballs and then times 2 (doubled)
the next day. In your head, you can figure that 100 minus 25 is 75. Multiply 75
by 2 and you have 150 magic pellets the next day. But in C, this just wouldn’t
work; the order of precedence (that Sally person) would multiply 25 by 2
first. That would calculate to 50 magic pellets the next day. What a gyp!

The following C program, PELLETS.C, illustrates how the magic-pellet prob-
lem is confounded by C’s order of precedence. This program is a somewhat
more complex version of the basic DENTIST.C program, presented earlier in
this chapter:

Chapter 11: C More Math and the Sacred Order of Precedence 145

#include <stdio.h>

int main()
{

int total;

total=100-25*2;
printf(“Tomorrow you will have %d magic

pellets.\n”,total);
return(0);

}

Enter this program in your editor. Double-check everything. Save the file to
disk as PELLETS.C.

Compile PELLETS.C. Fix any errors.

Run the PELLETS program. Your output looks like this:

Tomorrow you will have 50 magic pellets.

Uh-huh. Try explaining that to the IRS. Your computer program, diligently
entered, tells you that there are 50 pellets, when tomorrow you will really
have 150. The extra 100? They were lost to the order of precedence. In the
PELLETS.C program, addition must come first. The way that works is by
using parentheses.

Using parentheses to mess up
the order of precedence
My Dear Aunt Sally can be quite overbearing. She’s insistent. Still, even though
she means well, she goofs up sometimes. In the PELLETS.C program, for exam-
ple, she tells the C compiler to multiply 25 by 2 first and then subtract the
result from 100. Anyone who reads the problem knows that you must subtract
25 from 100 first and then multiply what’s left by 2. The problem is convincing
the C compiler — and Aunt Sally — how to do that.

You can circumvent the order of precedence by using parentheses. When the
C compiler sees parentheses, it quickly darts between them, figures out the
math, and then continues with multiplication, division, addition, and subtrac-
tion, in that order, from left to right, outside the parentheses.

To fix the PELLETS.C program, you have to change the seventh line to read:

total=(100-25)*2;

146 Part III: Giving Your Programs the Ability to Run Amok

The C compiler does the math in the parentheses first. So, at once, 25 is sub-
tracted by 100, to equal 75. Then, the rest of the math is done: 75 times 2 is
150 — the correct number of magic pellets.

I beg of you to make the preceding change to Line 7 in your PELLETS.C pro-
gram. Stick the left parenthesis before 100, and insert the right one after 25.
Save the changes to disk, recompile, and then run the program. The result
should please you:

Tomorrow you will have 150 magic pellets.

� The math that appears in the parentheses is always done first. It doesn’t
matter whether it’s addition, subtraction — whatever. It’s always done
first in the equation.

� Inside the parentheses, the math is still worked from left to right. Also,
multiplication and division still have priority inside the parentheses. It’s
just that whatever is in the parentheses is done before whatever is out-
side. Here’s a summary for you:

1. Work inside the parentheses first.

2. Multiplication and division first, and addition and subtraction
second.

3. Work from left to right.

� If you have ever worked with complex spreadsheet equations, you’re
familiar with the way parentheses can be used to force some math oper-
ations to be done before others. And, if you don’t use spreadsheets,
then, hey — you have read about something in a C book that you can
apply to your spreadsheeting. Such value.

� Yeah, you can even put parentheses inside parentheses. Just make sure
that they match up; rogue parentheses produce syntax errors, just like
missing double quotes and absent curly braces do.

� It doesn’t matter where the parentheses are in the math equation; what’s
in them is always done first. For example:

total=2*(100-25);

In this statement, 100 minus 25 is calculated first. The result, 75, is then
multiplied by 2. This holds true no matter how complex the equation gets —
though I’m afraid that you may run away or faint if I show you a more complex
example.

Chapter 12

C the Mighty if Command
In This Chapter
� Using the if statement

� Comparing values with if

� Formatting the if statements

� Handling exceptions with else

� Making multiple decisions

O kay, if isn’t a command. It’s another keyword in the C programming
language, one that you can use in your program to make decisions —

although it really makes comparisons, not decisions. It’s the program that
decides what to do based on the results of the comparison.

This chapter is about adding decision-making power to your programs by
using the if command.

Keep in mind that the computer doesn’t decide what to do. Instead, it follows
a careful path that you set down for it. It’s kind of like instructing small chil-
dren to do something, though with the computer, it always does exactly what
you tell it to and never pauses eternally in front of the TV set or wedges a Big
Hunk into the sofa.

If Only. . . .
The idea behind the if command is to have the computer handle some pre-
dictable yet unknown event: A choice is made from a menu; the little man in
some game opens the door with the hydra behind it; or the user types some-
thing goofy. These are all events that happen, which the computer must deal
with.

148 Part III: Giving Your Programs the Ability to Run Amok

The if keyword allows you to put these types of decisions into your pro-
grams. The decisions are based on a comparison. For example:

� If the contents of variable X are greater than variable Y, scream like
they’re twisting your nose.

� If the contents of the variable calories are very high, it must taste very
good.

� If it ain’t broke, don’t fix it.

� If Doug doesn’t ask me out to the prom, I’ll have to go with Charley.

All these examples show important decisions, similar to those you can make
in your C programs by using the if keyword. However, in the C programming
language, the if keyword’s comparisons are kind of, sort of — dare I say it? —
mathematical in nature. Here are more accurate examples:

� If the value of variable A is equal to the value of variable B

� If the contents of variable ch are less than 132

� If the value of variable zed is greater than 1,000,000

These examples are really simple, scales-of-justice evaluations of variables
and values. The if keyword makes the comparison, and if the comparison is
true, your program does a particular set of tasks.

� if is a keyword in the C programming language. It allows your programs
to make decisions.

� if decides what to do based on a comparison of (usually) two items.

� The comparison that if makes is mathematical in nature: Are two items
equal to, greater than, less than — and so on — to each other? If they
are, a certain part of your program runs. If not, that part of the program
doesn’t run.

� The if keyword creates what is known as a selection statement in the C
language. I wrote this topic down in my notes, probably because it’s in
some other C reference I have read at some time or another. Selection
statement. Impress your friends with that term if you can remember it. Just
throw your nose in the air if they ask what it means. (That’s what I do.)

The computer-genie program example
The following program is GENIE1.C, one of many silly computer guess-the-
number programs you write when you find out how to program. Computer
scientists used to play these games for hours in the early days of the com-
puter. They would probably drop dead if we could beam a Sony PlayStation
back through time.

Chapter 12: C the Mighty if Command 149
What GENIE1.C does is to ask for a number, from 0 through 9. You type that
number at the keyboard. Then, using the magic of the if statement, the com-
puter tells you whether the number you entered is less than 5. This program
was a major thigh-slapper when it was first written in the early 1950s.

Enter the following source code into your text editor. The only new stuff
comes with the if statement cluster, near the end of the program. Better
double-double-check your typing.

#include <stdio.h>
#include <stdlib.h>

int main()
{

char num[2];
int number;

printf(“I am your computer genie!\n”);

printf(“Enter a number from 0 to 9:”);
gets(num);
number=atoi(num);

if(number<5)
{

printf(“That number is less than 5!\n”);
}

printf(“The genie knows all, sees all!\n”);
return(0);

}

Save the file to disk as GENIE1.C.

Compile GENIE1.C. If you see any errors, run back to your editor and fix them.
Then recompile.

Run the final program. You see these displayed:

I am your computer genie!
Enter a number from 0 to 9:

Type a number, somewhere in the range of 0 through 9. For example, you can
type 3. Press Enter and you see:

That number is less than 5!
The genie knows all, sees all!

150 Part III: Giving Your Programs the Ability to Run Amok

� The #include <stdlib.h> part is necessary because the program uses
the atoi() function.

� The if command is followed by parentheses, which contain the compar-
ison that the if keyword tests.

� The comparison that if makes tests the value of the variable number
with 5. The < symbol between them means “less than.” The test reads “If
the value of the variable number is less than 5.” If this is true, the cluster
of statements following the if keyword is executed. If the test proves
false, the cluster of statements is skipped.

� Remember the < — less than — from school? Good!

� Notice that the if test isn’t followed by a semicolon! Instead, it’s fol-
lowed by a statement enclosed in curly braces. The statements (there
can be more than one) “belong” to the if command and are executed
only if the condition is true.

� If you see only the line The genie knows all, sees all!, you proba-
bly typed a number greater than 4 (which includes 5 and higher). The
reason is that the if statement tests only for values less than 5. If the
value is less than 5, That number is less than 5! is displayed. The
next section elaborates on how it all works.

� No, the computer genie doesn’t know all and see all if you type a number
5 or greater.

� Did you notice the extra set of curly braces in the middle of this pro-
gram? That’s part of how the if statement works. Also notice how
they’re indented.

The if keyword, up close and impersonal
It’s unlike any other C language word you have seen. The if keyword has a
unique format, with plenty of options and room for goofing things up. Yet, it’s
a handy and powerful thing that you can put in your programs — something
you use a lot.

The if keyword is used to make decisions in your programs. It makes a com-
parison. If the result is true, the rest of the if statement is executed. If the
comparison isn’t true, the program skips over the rest of the if statement,
as shown in Figure 12-1.

The if statement is a statement “block” that can look like this:

if(comparison)
{

statement;
[statement;...]

}

Chapter 12: C the Mighty if Command 151

Figure 12-1:

How if
affects a
program.

printf("whatever");

if(chins>3)

{

 printf("Where is your neck?");

}

printf("something else");

Program
execution

?
False True

if is followed by a set of parentheses in which a comparison is made. The
comparison is mathematical in nature, using the symbols shown in Table 12-1.
What’s being compared is usually the value of a variable against a constant
value, or two variables against each other. (See Table 12-1 for examples.)

If the result of the comparison is true, the statement (or group of statements)
between the curly braces is executed. If the result is false, the stuff in the
curly braces is conveniently skipped over — ignored like a geeky young lad
at his first high school dance and with a zit the size of Houston on his chin.

Yes, the curly braces that follow if can contain more than one statement.
And, each of the statements ends with a semicolon. All are enclosed in the
curly braces. It’s technically referred to as a code block. It shows you which
statements “belong” to if. The whole darn thing is part of the if statement.

Table 12-1 Operators Used in if Comparisons

Comparison Meaning or Pronunciation “True” Examples

< Less than 1 < 5

8 < 9

== Equal to 5 == 5

0 == 0

(continued)

152 Part III: Giving Your Programs the Ability to Run Amok

Table 12-1 (continued)

Comparison Meaning or Pronunciation “True” Examples

> Greater than 8 > 5

10 > 0

<= Less than or equal to 4 <= 5

8 <= 8

>= Greater than or equal to 9 >= 5

2 >= 2

!= Not equal to 1 != 0

4 != 3.99

The GENIE1 program, from the preceding section, uses this if statement:

if(number<5)
{

printf(“That number is less than 5!\n”);
}

The first line is the if keyword and its comparison in parentheses. What’s
being compared is the value of the numeric variable number and the constant
value 5. The comparison is “less than.” Is number less than 5? If so, the state-
ment in curly braces is executed. If not, the whole deal is skipped over.

Consider these modifications:

if(number==5)
{

printf(“That number is 5!\n”);
}

Now, the comparison is number==5? (Is the number that is entered equal to
five?) If it is, the printf() statement displays That number is 5!

These changes compare the value of number with 5 again:

if(number>=5)
{

printf(“That number is more than 4!\n”);
}

Chapter 12: C the Mighty if Command 153
This time, the test is greater than or equal to: Is the number that is entered 5
or more than 5? If the number is greater than or equal to 5, it must be more
than 4, and the printf() statement goes on to display that important info on
the screen.

The following modification to the GENIE1.C program doesn’t change the if
comparison, as in the previous examples. Instead, it shows you that more
than one statement can belong to if:

if(number<5)
{

printf(“That number is less than 5!\n”);
printf(“By goodness, aren’t I smart?\n”);

}

Everything between the curly braces is executed when the comparison is true.
Advanced C programs may have lots of stuff in there; as long as it’s between
the curly braces, it’s executed only if the comparison is true. (That’s why it’s
indented — so that you know that it all belongs to the if statement.)

� The comparison that if makes is usually between a variable and a value.
It can be a numeric or single-character variable.

� if cannot compare strings. For information on comparing strings, refer
to my book C AllinOne Desk Reference For Dummies (Wiley).

� Less than and greater than and their ilk should be familiar to you from
basic math. If not, you should know that you read the symbols from left
to right: The > symbol is greater than because the big side comes first;
the < is less than because the lesser side comes first.

� The symbols for less than or equal to and greater than or equal to always
appear that way: <= and >=. Switching them the other way generates an
error.

� The symbol for “not” in C is the exclamation point. So, != means “not
equal.” What is !TRUE (not-true) is FALSE. “If you think that it’s butter,
but it’s !.” No, I do ! want to eat those soggy zucchini chips.

� When you’re making a comparison to see whether two things are equal,
you use two equal signs. I think of it this way: When you build an if
statement to see whether two things are equal, you think in your head
“is equal” rather than “equals.” For example:

if(x==5)

Read this statement as “If the value of the x variable is equal to 5,
then. . . .” If you think “equals,” you have a tendency to use only one
equal sign — which is very wrong.

154 Part III: Giving Your Programs the Ability to Run Amok

� If you use one equal sign rather than two, you don’t get an error; how-
ever, the program is wrong. The nearby Technical Stuff sidebar attempts
to explain why.

� If you have programmed in other computer languages, keep in mind that
the C language has no 2ewd or fi word. The final curly brace signals to
the compiler that the if statement has ended.

� Also, no then word is used with if, as in the if-then thing they have in
the BASIC or Pascal programming language.

A question of formatting the if statement
The if statement is your first “complex” C language statement. The C lan-
guage has many more, but if is the first and possibly the most popular,
though I doubt that a popularity contest for programming language words
has ever been held (and, then again, if would be great as Miss Congeniality
but definitely come up a little thin in the swimsuit competition).

Though you probably have seen the if statement used only with curly
braces, it can also be displayed as a traditional C language statement. For
example, consider the following — one of the modifications from the GENIE1
program:

if(number==5)
{

printf(“That number is 5!\n”);
}

In C, it’s perfectly legitimate to write this as a more traditional type of state-
ment. To wit:

if(number==5) printf(“That number is 5!\n”);

This line looks more like a C language statement. It ends in a semicolon.
Everything still works the same; if the value of the number variable is equal
to 5, the printf() statement is executed. If number doesn’t equal 5, the rest
of the statement is skipped.

Although all this is legal and you aren’t shunned in the C programming com-
munity for using it, I recommend using curly braces with your if statements
until you feel comfortable reading the C language.

Chapter 12: C the Mighty if Command 155

Clutter not thy head with this
comparison nonsense

The comparison in the if
have to use any symbols at all! Strange but true.
What the C compiler does is to figure out what
you have put between the parentheses. Then it

For a comparison using <, >, ==, or any of the

whether the comparison is true or false.

any valid C statement — between the paren-
theses and the compiler determines whether it
works out to true or false. For example:

if(input=1)

This if
the value of the input variable is equal to 1.

No, you need two equal signs for that. Instead,
what happens between these parentheses is
that the numeric variable input is given the
value 1

input=1;

The C compiler obeys this instruction, stuffing 1
into the input variable. Then, it sits back and
strokes its beard and thinks, “Does that work
out to be true or false?” Not knowing any

true. It tells the if keyword, and the cluster of
statements that belong to the if statement are
then executed.

statement doesn’t

weighs whether it’s true or false.

horde in Table 12-1, the compiler figures out

However, you can stick just about anything —

statement doesn’t figure out whether

. It’s the same as

better, it figures that the statement must be

The final solution to the
income-tax problem
I have devised what I think is the fairest and most obviously well-intentioned
way to decide who must pay the most in income taxes. You should pay more
taxes if you’re taller and more taxes if it’s warmer outside. Yessir, it would be
hard to dodge this one.

This problem is ideal for the if keyword to solve. You pay taxes based on
either your height or the temperature outside, multiplied by your favorite
number and then 10. Whichever number is higher is the amount of tax you
pay. To figure out which number is higher, the program TAXES.C uses the if
keyword with the greater-than symbol. It’s done twice — once for the height
value and again for the temperature outside:

156 Part III: Giving Your Programs the Ability to Run Amok

#include <stdio.h>
#include <stdlib.h>

int main()
{

int tax1,tax2;
char height[4],temp[4],favnum[5];

printf(“Enter your height in inches:”);
gets(height);
printf(“What temperature is it outside?”);
gets(temp);
printf(“Enter your favorite number:”);
gets(favnum);

tax1 = atoi(height) * atoi(favnum);
tax2 = atoi(temp) * atoi(favnum);

if(tax1>tax2)
{

printf(“You owe $%d in taxes.\n”,tax1*10);
}
if(tax2>=tax1)
{

printf(“You owe $%d in taxes.\n”,tax2*10);
}
return(0);

}

This program is one of the longer ones in this book. Be extra careful when
you’re typing it. It has nothing new in it, but it covers almost all the informa-
tion I present in the first several chapters. Double-check each line as you type
it into your editor.

Save the file to disk as TAXES.C.

Compile TAXES.C. Fix any errors you see.

Run the program:

Enter your height in inches:

Type your height in inches. Five feet is 60 inches; six feet is 72 inches. The
average person is 5'7" tall or so — 67 inches. Press Enter.

What temperature is it outside?

Right now, in the bosom of winter in the Pacific Northwest, it’s 18 degrees.
That’s Fahrenheit, by the way. Don’t you dare enter the smaller Celsius number.
If you do, the IRS will hunt you down like a delinquent country music star and
make you pay, pay, pay.

Chapter 12: C the Mighty if Command 157

Enter your favorite number:

Type your favorite number. Mine is 11. Press Enter.

If I type 72 (my height), 18, and 11, for example, I see the following result, due
April 15:

You owe $7920 in taxes.

Sheesh! And I thought the old system was bad. I guess I need a smaller
favorite number.

� The second if comparison is “greater than or equal to.” This catches
the case when your height is equal to the temperature. If both values are
equal, the values of both the tax1 and tax2 variables are equal. The
first if comparison, “tax1 is greater than tax2,” fails because both are
equal. The second comparison, “tax1 is greater than or equal to tax2,”
passes when tax1 is greater than tax2 or when both values are equal.

� If you enter zero as your favorite number, the program doesn’t say that
you owe any tax. Unfortunately, the IRS does not allow you to have zero —
or any negative numbers — as your favorite number. Sad, but true.

If It Isn’t True, What Else?
Hold on to that tax problem!

No, not the one the government created. Instead, hold on to the TAXES.C
source code introduced in the preceding section. If it’s already in your text
editor, great. Otherwise, open it in your editor for editing.

The last part of the TAXES.C program consists of two if statements. The
second if statement, which should be near Line 23 in your editor, really isn’t
necessary. Rather than use if in that manner, you can take advantage of
another word in the C language, else.

Change Line 23 in the TAXES.C program. It looks like this now:

if(tax2>=tax1)

Edit that line: Delete the if keyword and the comparison in parentheses and
replace it with this:

else

That’s it — just else by itself. No comparison and no semicolon, and make
sure that you type it in lowercase.

158 Part III: Giving Your Programs the Ability to Run Amok

Save the file back to disk.

Compile TAXES.C. Run the final result. The output is the same because the
program hasn’t changed (and assuming that it hasn’t gotten any warmer and
you haven’t grown any taller in the past few moments). What you have done
is to create an if-else structure, which is another way to handle the decision-
making process in your C programs.

� The else keyword is a second, optional part of an if cluster of state-
ments. It groups together statements that are to be executed when the
condition that if tests for isn’t true.

� Or else what?

� Alas, if you enter the same values as in the old program, you still owe
the same bundle to Uncle Sam.

Covering all the possibilities with else
The if-else keyword combination allows you to write a program that can
make either-or decisions. By itself, the if keyword can handle minor deci-
sions and execute special instructions if the conditions are just so. But when
if is coupled with else, your program takes one of two directions, depend-
ing on the comparison if makes. Figure 12-2 illustrates how this can happen.

printf("whatever");

if(chins>3)

{

 printf("Where is your neck?");

}

else

{

 printf("My, but what a slender neck.");

}

printf("something else");

Program
execution

?

False

True

Figure 12-2:

How if and
else affect

a program.

Chapter 12: C the Mighty if Command 159
If the comparison is true, the statements belonging to the if statement are
executed. But, if the comparison is false, the statements belonging to the
else are executed. The program goes one way or the other, as illustrated
in Figure 12-2. Then, after going its own way, the statement following the
else’s final curly brace is executed, like this: “You guys go around the left
side of the barn, we’ll go around the right, and we’ll meet you on the other
side.”

The if format with else
The else keyword is used in an if statement. The keyword holds its own
group of statements to be executed (okay, “obeyed”) when the if compari-
son isn’t true. Here’s the format:

if(comparison)
{

statement(s);
}
else
{

statement(s);
}

The if keyword tests the comparison in parentheses. If it’s a true
comparison — no foolin’ — the statements that appear in curly braces
right after the if statement are executed. But, if the comparison is false,
those statements following the else keyword and enclosed in curly braces
are executed. One way or another, one group of statements is executed and
the other isn’t.

The else keyword, like all words in the C language, is in lowercase. It isn’t
followed by a semicolon. Instead, a set of curly braces follows the else. The
curly braces enclose one or more statements to be run when the comparison
that if makes isn’t true. Notice that those statements each must end in a
semicolon, obeying the laws of C first etched in stone by the ancient Palo
Altoites.

The statements belonging to the else keyword are executed when the condi-
tion that the if keyword evaluates is false. Table 12-2 illustrates how it works,
showing you the opposite conditions for the comparisons that an if keyword
would make.

160 Part III: Giving Your Programs the Ability to Run Amok

Table 12-2 if Comparisons and Their Opposites

if Comparison else Statement Executed By This Condition

< >= (Greater than or equal to)

== != (Not equal to)

> <= (Less than or equal to)

<= > (Greater than)

>= < (Less than)

!= == (Is equal to)

� I don’t know about you, but I think that all those symbols in Table 12-2
would certainly make an interesting rug pattern.

� The else keyword is used only with if.

� Both if and else can have more than one statement enclosed in their
curly braces. if’s statements are executed when the comparison is true;
else’s statements are executed when the comparison is false.

� To execute means to run. C programs execute, or run, statements from
the top of the source code (the first line) to the bottom. Each line is
executed one after the other unless statements like if and else are
encountered. In that case, the program executes different statements,
depending on the comparison that if makes.

� When your program doesn’t require an either-or decision, you don’t
have to use else. For example, the TAXES program has an either-or deci-
sion. But, suppose that you’re writing a program that displays an error
message when something doesn’t work. In that case, you don’t need
else; if an error doesn’t occur, the program should continue as normal.

� If you’re the speaker of another programming tongue, notice that the C
language has no end-else word in it. This isn’t smelly old Pascal, for
goodness’ sake. The final curly brace signals the end of the else state-
ment, just as it does with if.

The strange case of else-if
and even more decisions
The C language is rich with decision making. The if keyword helps if you
need to test for only one condition. True or false, if handles it. And, if it’s
true, a group of statements is executed. Otherwise, it’s skipped over. (After
the if’s group of statements is executed, the program continues as before.)

Chapter 12: C the Mighty if Command 161

Silly formatting trivia
The if-else structure need not be heavy-
laden with curly braces. Just as you can abbre-
viate an if statement to one line, you can also
abbreviate else

program that illustrates examples this crudely:

if(tax1>tax2)
{

printf(“You owe $%i in
taxes.\n”,tax1*10);

}
else
{

printf(“You owe $%i in
taxes.\n”,tax2*10);

}

In this example, you see the meat and potatoes
if-else struc-

ture. Because both if and else have only one
statement belonging to them, you can abbrevi-
ate the source code this way:

if(tax1>tax2)
printf(“You owe $%i in
taxes.\n”,tax1*10);

else
printf(“You owe $%i in
taxes.\n”,tax2*10);

This format keeps the indenting intact, which is
one way to see what belongs to what (and also
to easily identify the if-else structure). The
following format is also possible, though it
makes the program hard to read:

if(tax1>tax2) printf(“You owe
$%i in taxes.\n”,tax1*10);

else printf(“You owe $%i in
taxes.\n”,tax2*10);

Everything is scrunched up on two lines; the if
statement has its own line, and the else has its
own line. Both lines end with a semicolon,
which is how this works as two statements in

braces — whenever only one statement
appears with an if or else keyword. If multi-
ple statements must be executed, you’re

why I recommend them all the time: No sense

if(tax1>tax2)
printf(“You owe $%i in
taxes.\n”,tax1*10);

else
{

printf(“You owe $%i in
taxes.\n”,tax2*10);
printf(“It pays to live
where it’s cold!\n”);

}

Because two printf statements belong to the
preceding else, the curly braces are required.

. I don’t recommend it, which
is why I’m terribly brief and don’t ever show a

of the TAXES.C program: the

the C language. But, look-it. It’s gross! Please
don’t write your programs this way.

You can do this trick — eliminating the curly

required by law to use the curly braces. That’s

risking prison over brevity. To wit:

Either-or conditions are the daily bread of the if-else duo. Either way, one
set of statements is executed and not the other, depending on the compari-
son made by if.

What about “one, two, or the third” types of decisions? For them, you need
the miraculous and overly versatile else-if combination. It really drives you
batty, but it’s handy.

162 Part III: Giving Your Programs the Ability to Run Amok

The following program is a modification of the GENIE1.C source code, as
shown earlier in this chapter. This time, the else-if combination is used to
allow the computer genie to accurately report whether the number is less
than 5, equal to 5, or greater than 5:

#include <stdio.h>
#include <stdlib.h>

int main()
{

char num[2];
int number;

printf(“I am your computer genie!\n”);

printf(“Enter a number from 0 to 9:”);
gets(num);
number=atoi(num);

if(number<5)
{

printf(“That number is less than 5!\n”);
}
else if(number==5)
{

printf(“You typed in 5!\n”);
}
else
{

printf(“That number is more than 5!\n”);
}

printf(“The genie knows all, sees all!\n”);
return(0);

}

Start working on this source code by loading the GENIE1.C source code I
show you how to create earlier in this chapter. Make modifications so that
the latter part of the program looks like the new, GENIE2.C source code that
was just listed.

Watch your indenting. Pay attention to everything; two equal signs are in the
else-if comparison. Pay attention to where semicolons go and where they
don’t go.

After inserting the new lines, save the file to disk as GENIE2.C.

Compile GENIE2.C. If the error monster rears its ugly head, reedit the source
code and then recompile.

Chapter 12: C the Mighty if Command 163
Run the final result and see how much more clairvoyant the computer genie
has become. Type 3 and see That number is less than 5! Type 9 and
see That number is more than 5! Type 5 and the genie knows: You
typed in 5!

� The else-if comparison resembles combined else and if statements.
The second if comes right after else and a space. Then, it has its own
comparison statement, which is judged either true or false.

� In GENIE2.C, the else-if comparison is number==5, testing to see
whether the value of the number variable is 5. Two equal signs are used
for this comparison.

� You can do else-if, else-if, else-if all day long, if you want. How-
ever, the C language has a better solution in the select-case structure.
I cover this topic in this book’s companion volume, C AllinOne Desk
Reference For Dummies (Wiley).

Bonus program! The really,
really smart genie
A solution always exists. If you wanted to, you could write a program that
would if-compare any value, from zero to infinity and back again, and the
“computer genie” would accurately guess it. But, why bother with if at all?

Okay, the if keyword is the subject of this section, along with if-else and
else-if and so on. But, the following source code for GENIE3.C doesn’t use
if at all. It cheats so that the genie always guesses correctly:

#include <stdio.h>

int main()
{

char num;

printf(“I am your computer genie!\n”);

printf(“Enter a number from 0 to 9:”);
num = getchar();

printf(“You typed in %c!\n”,num);

printf(“The genie knows all, sees all!\n”);
return(0);

}

164 Part III: Giving Your Programs the Ability to Run Amok

You can create this source code by editing either GENIE1.C or GENIE2.C.
Make the necessary modifications and then save the source code to disk
as GENIE3.C.

Compile the program. Fix any errors that you (hopefully) don’t get. Run the
result:

I am your computer genie!
Enter a number from 0 to 9:8
You typed in 8!
The genie knows all, sees all!

Run the program again and again with different numbers. Hey! That genie
knows exactly what you typed! I wonder how that happened? It must be your
deftness with the C language. Tame that computer!

� The problem with GENIE3.C? It doesn’t make a decision. The genie isn’t
smart at all — it’s just repeating what you already know. The purpose
behind if, else, and the others is that they allow you to make a deci-
sion in your program.

� Refer to Chapter 10 for more information about the getchar() function.

Chapter 13

What If C==C?
In This Chapter
� Comparing characters with if

� Understanding standard input

� Fixing the flaws of getchar()

� Making a yes-or-no decision

Apologies are in order for the preceding chapter. Yes, I definitely drift into
Number Land while introducing the virtues of the if command. Computer

programs aren’t all about numbers, and the judgment that the if keyword
makes isn’t limited to comparing dollar amounts, ecliptic orbits, subatomic
particle masses, or calories in various fudgy cookie snacks. No, you can also
compare letters of the alphabet in an if statement. That should finally answer
the mystery of whether the T is “greater than” the S and why the dollar sign is
less than the minus sign. This chapter explains the details.

The World of if without Values
I ask you: How can one compare two letters of the alphabet? Truly, this sub-
ject is right up there with “How many angels can dance on the head of a pin?”
and “Would it be a traditional dance, gavotte, rock, or perhaps heavenly
hokey-pokey?”

Yet, comparing letters is a necessary task. If you write a menu program, you
have to see whether the user selects option A, B, or C. That’s done by using
the handy if keyword. For example:

if(key==’A’)

166 Part III: Giving Your Programs the Ability to Run Amok

Here, key is a single-character variable holding input from the keyboard. The
comparison that if makes is to see whether the content of that variable is
equal to (two equal signs) the letter A, which is enclosed in single quotes.
This comparison is legitimate. Did the user type an A?

� To compare a single-character variable with a character — letter, number,
or symbol — you must enclose that character in single quotes. Single
character, single quotes.

� When if tests to see whether two things are equal, two equal signs are
used. Think “is equal to” rather than “equals.”

� When you compare a variable — numeric or single character — to a con-
stant, the variable always comes first in the comparison.

� On a good day, 4.9E3 angels can dance on the head of a pin, given the rela-
tive size of the pin and the size of the angels and whether they’re dancing
all at once or taking turns.

� When you compare two letters or numbers, what you’re ‘really compar-
ing are their ASCII code values. This is one of those weird instances when
the single-character variable acts more like an integer than a letter, num-
ber, or symbol.

Which is greater: S or T, $ or –?
Is the T greater than the S? Alphabetically speaking, yes. T comes after S. But,
what about the dollar sign and the minus sign? Which of those is greater? And,
why should Q be lesser than U, because everyone knows that U always follows
Q? Hmmm.

Computers and math (do I even have
to remind you to skip this stuff?)

with math. The computer evolved from the cal-

is somehow related to human fingers and
thumbs. After all, working with numbers is called
computing, which comes from the ancient Latin
term computare. That word literally means “hire

a few more accountants and we’ll never truly

Another word for compute is reckon, which is
popular in the South as “I reck’n.” Another word
for compute is figure, which is popular in the
!South (not-South) as “I figure.” Computers
reckon. Go figure.

Sad to say, too much about computers does deal

culator, which has its roots in the abacus, which
know what’s going on.”

Chapter 13: What If C==C? 167
To solve this great mystery of life, I list next the source code for a program,
GREATER.C. It asks you to enter two single characters. These characters are
compared by an if statement as well as by if-else. The greater of the two
is then displayed. Although this program doesn’t lay to rest the angels-on-the-
head-of-a-pin problem, it soothes your frayed nerves over some minor alpha-
betic conundrums:

#include <stdio.h>

int main()
{

char a,b;

printf(“Which character is greater?\n”);
printf(“Type a single character:”);
a=getchar();
printf(“Type another character:”);
b=getchar();

if(a > b)
{

printf(“‘%c’ is greater than ‘%c’!\n”,a,b);
}
else if (b > a)
{

printf(“‘%c’ is greater than ‘%c’!\n”,b,a);
}
else
{

printf(“Next time, don’t type the same character
twice.”);

}
return(0);

}

Enter the source code for GREATER.C into your editor. Make sure that you
enter all the proper curly braces, confirm the locations of semicolons, watch
your double quotes, and pay attention to the other minor nuances (or nui-
sances) of the C language.

Save the file to disk as GREATER.C.

Compile GREATER.C.

Run the final program. You’re asked this question:

Which character is greater?
Type a single character:

168 Part III: Giving Your Programs the Ability to Run Amok

Type a character, such as the $ (dollar sign). Press Enter after typing the
character.

Uh-oh! What happened? You see something like this:

Type another character:’$’ is greater than ‘
‘$

What? What? What?

You bet! A problem. Right in the middle of the chapter that talks about compar-
ing single-character variables, I have to totally pick up the cat and talk about
something else vital in C programming: properly reading single characters from
the keyboard.

The problem with getchar()
Despite what it says in the brochure, getchar() does not read a single char-
acter from the keyboard. That’s what the getchar() function returns, but it’s
not what the function does.

Internally, getchar() reads what’s called standard input. It grabs the first char-
acter you type and stores it, but afterward it sits and waits for you to type
something that signals “the end.”

Two characters signal the end of input: The Enter key is one. The second is
the EOF, or end-of-file, character. In Windows, it’s the Ctrl+Z character. In the
Unix-like operating systems, it’s Ctrl+D.

Run the GREATER program, from the preceding section. When it asks for
input, type 123 and then press the Enter key. Here’s what you see for output:

Which character is greater?
Type a single character:123
Type another character:’2’ is greater than ‘1’

When you’re first asked to type a single character, you provide standard
input for the program: the string 123 plus the press of the Enter key.

The getchar() function reads standard input. First, it reads the 1 and places
it in the variable a (Line 9 in GREATER.C). Then, the program uses a second
getchar() function to read again from standard input — but it has already
been supplied; 2 is read into the variable b (refer to Line 11).

Chapter 13: What If C==C? 169
The 3? It’s ignored; there’s no place to store it. But, the Enter key press signi-
fies to the program that standard input was entered and the program contin-
ued, immediately displaying the result, all on the final line:

Type another character:’2’ is greater than ‘1’!

You may think that one way around this problem is to terminate standard input
by pressing the Enter key right after entering the first character. After all, Enter
ends standard input. But, it doesn’t work that way.

Run the GREATER program again — this time, entering $ and pressing the Enter
key at the first prompt. Here’s the output:

Which character is greater?
Type a single character:$

Type another character:’$’ is greater than ‘
‘!

This matches what you probably saw the first time you entered the program.
See the Enter key displayed? It’s what separates the ‘ at the end of the third
line and the ‘ at the beginning of the fourth line.

In this case, the Enter key itself is being accepted as standard input. After all,
Enter is a key on the keyboard and a proper character code, just like anything
else. That rules out Enter as a proper way to end standard input. That leaves
you with the EOF character.

Run the GREATER program one more time:

Which character is greater?
Type a single character:

In Windows, type $ and then press Ctrl+Z and Enter.

In Unix, type $ and then pressCtrl+D.

Type another character:

Then you can type 2 and press Enter:

‘2’ is greater than ‘$’!

The program finally runs properly, but only after you brute-force the end
of standard input so that getchar() can properly process it. Obviously,
explaining something like that to the users who run your programs would
be bothersome. You have a better solution. Keep reading.

170 Part III: Giving Your Programs the Ability to Run Amok

� In Windows, the end-of-file (EOF) character is Ctrl+Z. That’s ASCII code 27.

� In Unix (Linux, FreeBSD, Mac OS, and so on), the end-of-file (EOF) char-
acter is Ctrl+D. That’s ASCII code 4.

� To properly enter Ctrl+Z in Windows, you must press Ctrl+Z and then the
Enter key. In Unix, the Ctrl+D combo works instantly.

� Be careful when you press Ctrl+D at your Unix command prompt! In
many instances, Ctrl+D is also the key that terminates the shell, logging
you off.

Fixing GREATER.C to easily
read standard input
The easy way to fix GREATER.C is to ensure that all standard input is cleared
out — purged or flushed — before the second getchar() function reads it.
That way, old characters hanging around aren’t mistakenly read.

The C language function fflush() is used to clear out information waiting to
be written to a file. Because C treats standard input as a type of file, you can
use fflush() to clear out standard input. Here’s the format:

fflush(stdin);

You can insert this statement into any program at any point where you want
to ensure that no leftover detritus can accidentally be read from the keyboard.
It’s a handy statement to know.

To fix the GREATER.C source code, you need to stick the fflush() function
in after the first getchar() function — at Line 10. This code snippet shows
you how the fixed-up source code should look:

printf(“Type a single character:”);
a=getchar();
fflush(stdin);
printf(“Type another character:”);
b=getchar();

Add the new Line 10, as shown here, to your source code for GREATER.C. Save
the changes to disk. Compile and run the result. The program now properly
runs — and you can continue reading about comparing characters with the
if command.

If using fflush(stdin) doesn’t work, replace it with this function:

fpurge(stdin);

Chapter 13: What If C==C? 171
The fpurge() function specifically erases text waiting to be read. I have
noticed that it’s required for Unix, Linux, and Mac OS programs.

“Can I get getchar() to read
only one character?”
Alas, the getchar() function isn’t a keyboard-reading function per se. What it
really does is read standard input, which for nearly all computers I have used
is text typed at the keyboard.

To read the keyboard, you need a specific function. Some versions of GCC
for Windows use the getch() and getche() functions, which can read text
directly from the keyboard and lack the standard input problems of getchar().
The problem with illustrating these functions in this book is that they don’t
have a Unix counterpart.

To read the keyboard directly in Unix, you have to access the terminal being
used and then interpret which keyboard codes are being generated. Another
solution is to use the Curses programming library.

Alas, this book doesn’t have room to describe all these keyboard-reading func-
tions. Instead, I recommend that you pick up this book’s companion, C Allin
One Desk Reference For Dummies (Wiley).

Meanwhile, back to the GREATER problem
Now that you may have ironed out the problem with getchar() in the
GREATER program, it’s time to examine the output. Run the program again,
just for old time’s sake. Try to see whether the ‘–’ character is greater than
the ‘$’.

Which character is greater?
Type a single character:-

Type another character:$
‘-’ is greater than ‘$’!

And, why is that?

You see, the if command doesn’t know squat about letters, numbers, or
symbols. Rather than compare the character’s physique, if compares the
character’s corresponding ASCII code values.

172 Part III: Giving Your Programs the Ability to Run Amok

The ASCII code value for the minus sign is 45. The code value for the dollar sign
is 36. Because 36 is less than 45, the computer thinks that the ‘–’ is greater
than the ‘$’. This also holds true for letters of the alphabet and their ASCII
code values.

In real life, rarely do you compare one letter to another. Instead, you compare
whatever keystroke was entered with a known, desired choice. I cover this topic
in the next section.

� See Appendix B for a gander at ASCII values.

� a (little a) and
Z. The big Z is less than the little A, even though A Z in the

“a-z”
than “A-Z”.

Severely boring trivia on the nature
of “alphabetical order”

So why is it A, B, C first, and why does Z come
last? The answer is buried in the bosom of trivia,
which most computer junkies are also fond of
memorizing. Because I was curious, I thought I

Our alphabet is based on ancient alphabets,

age alphabets. Back in those days, the letters
they used were based on symbols for various
things they encountered in everyday life, and the
symbols were often named after those things as
well: The letter A was named after and shaped
like the ox, an important beast. B was named

the early Semitic languages, which used phon-
ics rather than pictographs or ideographs.

The Greeks borrowed their alphabet from the
Semites. The Romans stole their alphabet from

the Greeks (the Romans stole just about every-

important, so they added them to the end of
their alphabet in the order in which they were
accepted. (The theta was never added by the
Romans, though some middle English scripts

Shop.”)

That sort of explains how the alphabet got to be

scheme came about from the early teletype
days as a way to encode numbers, common

story to tell there, but at this stage in the book,
I’m just too lazy to look it up.

Run the program again and try typing these two letters:
comes before

alphabet. The reason is that the ASCII code has two alphabets: one for
uppercase letters and another for lowercase. The uppercase letters have
smaller values than the lowercase letters do, so always is greater

would look it up. And, lo, here’s what I found.

which in turn are based on even older, dinosaur-

after a house and shaped like a door. And so on
for all the letters. That’s how it was for most of

thing). But the Romans didn’t really steal all of
Greek. They left out a few sounds they didn’t
think they needed: (theta), U, V, X, Y, and Z.
Eventually, they realized that the sounds were

used a Y symbol to represent it. That’s why, for
example, you have “Ye Old Shop” for “The Old

in alphabetical order. The ASCII numbering

symbols, and secret codes. There’s probably a

Chapter 13: What If C==C? 173

Another, bolder example
About the most common use of the if command to compare characters is in
answer to the old yes-or-no question. Here’s an example:

#include <stdio.h>

int main()
{

char c;

printf(“Would you like your computer to explode?”);
c=getchar();
if(c==’N’)
{

printf(“Okay. Whew!\n”);
}
else
{

printf(“OK: Configuring computer to explode now.\n”);
printf(“Bye!\n”);

}
return(0);

}

Oh! Such jocularity!

Enter the preceding source code. Save it to disk as BLOWUP1.C.

Compile and run. Here’s what you see:

Would you like your computer to explode?

Thanks to your years of computer training, you know that the answer is No.
What can the user type? Who cares! As the programmer you know that you
type a big N to make the computer not explode. Any other key makes it go
Boom. Type N and press Enter:

Okay. Whew!

Run the program again and type any other key except N. (Even little N works.)
Boom! There goes the computer!

� Only if the user types a capital N does the computer not explode.

� Well, the computer doesn’t explode, which you should have figured out
by now.

174 Part III: Giving Your Programs the Ability to Run Amok

� Even to compare a single character variable with a single character, two
equal signs are used.

� Yes, this program has its limitations. Most of them are covered in
Chapter 14.

Using the if Keyword to
Compare Two Strings

The if keyword cannot be used to compare strings. It can be used only to
compare single-character variables.

� If you try to use if to compare two strings, the result is, as they say,
unpredictable. The program is compiled without any errors (maybe),
but it definitely doesn’t run the way you anticipated.

� C AllinOne Desk Reference For Dummies (Wiley) has information about
comparing strings.

Chapter 14

Iffy C Logic
In This Chapter
� Helping your program make sense

� Using logical comparisons in an if statement

� Understanding logical OR, ||

� Understanding logical AND, &&

There’s more to the if command than you can C, or than you may have
seen in earlier chapters in this book. That extra stuff involves good old-

fashioned Mr. Spock-like logic.

Unlike with math, most people don’t go running and screaming from logic.
That’s because people don’t have the foggiest idea what logic really is. If they
did, no one would ever play the lottery or visit Las Vegas. That’s because it’s
illogical to assume that odds of 1 in 80 million mean anything. But I digress.

You can apply two types of logic in a computer program. First is the logic of
properly laying out the decision that if makes: whether to use < or >= and
other silly things like that. But beyond that is the logic of either-or and and-
both and various mixtures of each one. It’s enough to drive you insane! This
chapter helps prevent that.

Exposing Flaws in Logic
Sometimes, programmers get so involved in whether their programs run that
they forget about using the programs.

Once upon a time, a study was done on the “usability” of a particular program.
In the program, users were asked a vital question and had to respond by press-
ing the Tab key. Normally, it’s the Enter key that users expect to press, but with
that one program, pressing the Enter key caused something odd to happen,
which required three or four steps to undo and returned users to the original
question.

176 Part III: Giving Your Programs the Ability to Run Amok

The odd thing is that the users tended to blame themselves for pressing Enter
rather than Tab. They blamed themselves rather than assume that the pro-
gram behaved in an illogical way. Had the programmer been using logic, the
program would have used the Enter key rather than Tab. But, as the budding
programmer you’re becoming, even you know that such a thing is really easy
to change.

Take a moment to review the flow of the BLOWUP1.C program, which I show
you how to create in Chapter 13. The program asks a vital question:

Would you like your computer to explode?

I believe that it’s safe to assume in most cases that the user would not want
their computer to explode. Yet the program was written so that only the N
key press — one key of many possible keys — prevents the computer from
blowing up. This is a great example of misapplied logic.

When giving the user a choice and one option is better than another, make it
very easy for them to accidentally select the best option. In the case of the
BLOWUP1.C program, the code should probably look like this:

printf(“Would you like your computer to explode?”);
c=getchar();
if(c==’Y’)
{

printf(“OK: Configuring computer to explode now.\n”);
printf(“Bye!\n”);

}
else
{

printf(“Okay. Whew!\n”);
}

The only option in this example that truly blows up the computer is pressing
the Y key. Any other key causes the computer not to blow up — the better
option.

Of course, the best option is to limit input precisely. To do that, you need to
know a few more if command tricks, which are introduced starting in the
next section.

� You may have noticed this illogic in Chapter 13, when you first ran the
BLOWUP1 program. Pressing even the little N key causes the blow-up
message to be displayed.

� Most Yes or No questions wait for either Y or N to be pressed and ignore
any other key (except for maybe Esc).

Chapter 14: Iffy C Logic 177

If, And, Or, But
The BLOWUP1.C program also presents an interesting problem. No, not how to
blow up the computer. That’s easy! Instead, I mean what about the little Y key?

In the preceding section, when the program runs, the user can only press the
Y key to blow up the computer. But, how can you be certain that a capital Y is
pressed rather than a baby Y? Or vice versa: What if only the little Y is being
checked for?

A solution (but not the best one)
This section shows modified source code for BLOWUP1.C:

#include <stdio.h>

int main()
{

char c;

printf(“Would you like your computer to explode?”);
c=getchar();
if(c==’Y’)
{

printf(“OK: Configuring computer to explode now.\n”);
printf(“Bye!\n”);

}
else if(c==’y’)
{

printf(“OK: Configuring computer to explode now.\n”);
printf(“Bye!\n”);

}
else
{

printf(“Okay. Whew!\n”);
}
return(0);

}

Edit the original source code for BLOWUP1.C and make the changes shown in
this example. Primarily, you’re checking for Y to begin with, and an else if
block is added to confirm checking for baby Y. Oh, and the printf() state-
ments are all switched around from the first program example to improve the
program’s overall logic.

Save the modified source code to disk as BLOWUP2.C.

178 Part III: Giving Your Programs the Ability to Run Amok

Compile and run.

Anything you type, other than a Y or a (highlight), is “safe.” But, if you type a
Y or a y, the computer blows up (supposedly).

� Why check for both upper- and lowercase? Logic! You never know
whether the user has the Caps Lock key turned on.

� By making the program specifically check for the Y/y key press, you make
every other key on the keyboard a No selection. That’s wise. Logical, even.

� For another improvement, tell users about their options. For example,
the following modification to Line 7 adds a common key-choice gizmo to
the question:

printf(“Would you like your computer to explode? (Y/N)”);

This line lets users know that they can press Y or N. (This is fine despite
the fact the program doesn’t specifically check for N; you don’t need to!)

A better solution, using logic
I want to believe that there’s no right or wrong way to program a computer,
but there are more efficient ways. For example, the BLOWUP2.C source code
has several statements that are repeated:

{
printf(“OK: Configuring computer to explode now.\n”);
printf(“Bye!\n”);

}

Whenever you see repetition like that in a program, it generally means that you
have a better way to do things. In this case, the problem lies with the two if
commands: one to look for ‘Y’ and the other to look for ‘y’. A better option is
to use the OR logical operator so that the if command reads like this:

If variable a is equal to ‘Y’ or if variable a is equal to
‘y’

which becomes

if(a==’Y’ OR a==’y’)

Then, all you need to know is that, in C, the logical operator for OR is two pipe
characters: ||. The equation becomes

if(a==’Y’ || a==’y’)

Chapter 14: Iffy C Logic 179
This line reads as just described: “If variable a is equal to ‘Y’ or if variable a
is equal to ‘y’.” If either one is true, the set of statements belonging to the if
command is executed.

Here’s your updated source code:

#include <stdio.h>

int main()
{

char c;

printf(“Would you like your computer to explode?”);
c=getchar();
if(c==’Y’ || c==’y’)
{

printf(“OK: Configuring computer to explode now.\n”);
printf(“Bye!\n”);

}
else
{

printf(“Okay. Whew!\n”);
}
return(0);

}

The major modification is with the if condition, which now compares two
operations with a logical OR. That cuts down on the program’s redundancy.

Save the changes to disk as BLOWUP3.C. Compile. Fix any errors. Then run it:

It’s logically cured twice!

� The pipe character is also known as the vertical bar. It’s on the same key
as the backslash character, usually right above the Enter or Return key,
on the main part of the keyboard.

� Sometimes the pipe character has a break in the middle, and sometimes
it’s a solid line.

� Two pipe characters mean OR in the C language, a logical choice between
two different conditions.

� A condition must be on either side of the ||, logical OR, comparison.

� The || means that either condition specified must be true for the if
command to be true. Each condition must be its own comparison, using
the operators in Table 12-1, over in Chapter 12.

180 Part III: Giving Your Programs the Ability to Run Amok

The if command’s logical friends
You can use the logical operators && and || to help the if command make
multiple decisions in one statement:

The && is the logical AND operator.

The || is the logical OR operator.

Table 14-1 explains both.

Table 14-1 Logical Operators Used in if Comparisons

Operator Meaning “True” Examples

|| Or true || true

true || false

false || true

&& And true || true

The logical operator is used on two standard if command comparisons. For
example:

if(temperature>65 && temperature<75)
{

printf(“My, but it’s nice weather outside\n”);
}

In this example, the if command makes two comparisons: temperature>65
and temperature<75. If both are true, the &&, logical AND condition is also
true and the entire statement passes; the printf() function then displays
the string. Table 14-2 shows the possibilities of how you can figure it out.

Table 14-2 Figuring Out a Logical AND Operation

Temperature temperature>65 (and) temperature<75 Logical AND result

45 45>65 45<75

FALSE && TRUE FALSE

72 72>65 72<75

Chapter 14: Iffy C Logic 181

Temperature temperature>65 (and) temperature<75 Logical AND result

TRUE && TRUE TRUE

90 90>65 90<75

TRUE && FALSE FALSE

According to Tables 14-1 and 14-2, both conditions that if evaluates must be
true for the logical AND to work. (Not shown, and not possible in the given pro-
gram, is when both conditions are FALSE. In that case, the AND test also fails.)

Here’s a logical OR puzzle, which is used in an if statement to test two
conditions:

if(score>100 || cheat_code==’Y’)
{

printf(“You have defeated the level boss!\n”);
}

The logical OR tests two different conditions — making two utterly different
comparisons. That’s fine; as long as they’re valid if command comparisons,
they’ll work. Table 14-3 plods through the potential results.

Table 14-3 Figuring Out a Logical OR Operation

Score, cheat_code score>100 (or) cheat_code==’Y’ Logical OR result

50,Z 50>100 ‘Z’==’Y’

FALSE || FALSE FALSE

200,Z 200>100 ‘Z’==’Y’

TRUE || FALSE TRUE

50,Y 50>100 ‘Y’==’Y’

FALSE || TRUE TRUE

200,Y 200>100 ‘Y’==’Y’

TRUE || TRUE TRUE

Table 14-3 shows how the logical OR judges comparisons. If only one of them
is TRUE, the entire statement is proven true. Unlike the logical AND, where
both (or all) conditions must be true, it takes only one comparison to make
the entire if statement true.

182 Part III: Giving Your Programs the Ability to Run Amok

Most of the time, you probably compare only two conditions with && or ||. You
can, however, compare more than one. It works, though it can look sloppy. All
the following examples are legal, though they may take some mental work to
figure out:

if(key==’A’ || key==’B’ || key==’C’)

In the preceding line, the if statement is true if the value of the character vari-
able key is either A, B, or C. Any one that’s true works.

In the following example, all three conditions must work out TRUE for the entire
statement to be true: The temperature value must be greater than 70 and the
value of sun must equal the value of shining and the value of weekend must
equal the constant YES. If all three are true, the statement is true.

if(temperature>70 && sun==shining && weekend==YES)

The next one takes a little brain grease:

if(status==1 || user==ROOT && timer<MAX)

Logical statements read from left to right. Each condition is evaluated as you
read it: status can be 1, or the user can be ROOT — either one must be true.
But then that is evaluated against timer being less than MAX, which must be
true for the entire statement to be true. Whew!

� Yeah: If you’re brain is fried now, please do take a break.

� You can easily remember that the && means “logical AND” because the
ampersand character is used to mean “and” in English.

� It’s not easy to remember that || means “logical OR.”

� Multiple && and || conditions are evaluated from left to right (just like you
read). Any single condition that fails the text makes the entire statement
false.

� There’s a difference between && and & (a single ampersand). The & serves
a different purpose in C, so be sure to use && when making logical deci-
sions in an if statement. The same goes for || and |; use || in an if
statement.

� The | and & are bit-wise operators, performing logical operations on bits.
These may or may not be covered in this book’s companion, C AllinOne
Desk Reference For Dummies (Wiley).

� The ampersand itself is a contraction of the Latin et, which means and.
The & character is simply a stylized combination of an e and a t.

Chapter 14: Iffy C Logic 183

A logical AND program for you
The following source code demonstrates how a logical AND operation works.
It’s another — the final — modification to the BLOWUP series of programs:

#include <stdio.h>

int main()
{

char c,d;

printf(“Enter the character code for self-destruct?”);
c=getchar();
fflush(stdin); /* use fpurge(stdin) in unix */

printf(“Input number code to confirm self-destruct?”);
d=getchar();

if(c==’G’ && d==’0’)
{

printf(“AUTO DESTRUCT ENABLED!\n”);
printf(“Bye!\n”);

}
else
{

printf(“Okay. Whew!\n”);
}
return(0);

}

Start editing with the source code from BLOWUP3.C if you like, or just enter
this code on a blank slate. Save the final result to disk as BLOWUP4.C.

Compile. Fix any errors. Run.

You know the codes from entering the source code: Big G and Zero. Both
must be typed at the keyboard to properly authorize the computer to blow
up. Cinchy.

� This program uses the fflush(stdin) command (in Line 9) to clear
input from the first getchar() function. Refer to Chapter 13 for more
information on why this command is needed.

� If you’re using a Unix-like operating system, substitute fpurge(stdin)
for Line 9. Again, refer to Chapter 13.

� The logical AND operator && ensures that both variables c and d must
equal the proper values for that part of the if statement to be true.

184 Part III: Giving Your Programs the Ability to Run Amok

� You can also test for a little G by making the following change to Line 14
in your editor:

if(c==’G’ || c==’g’ && d==’0’)

First, variable c is compared with either G or g — either one can be true.
Then, that result is compared with d==0, which must be true. If either of
the first comparisons is false, or if the last comparison is false by itself,
the entire statement is false. Funky.

Chapter 15

C You Again
In This Chapter
� Understanding the loop

� Repeating chunks of code with for

� Using a loop to count

� Displaying an ASCII table by using a loop

� Avoiding the endless loop

� Breaking a loop with break

One thing computers enjoy doing more than anything else is repeating
themselves. Humans? We think that it’s punishment to tell a kid to write

“National Geographic films are not to be giggled at” 100 times on a chalkboard.
Computers? They don’t mind a bit. They enjoy it, in fact.

Next to making decisions with if, the power in your programs derives from
their ability to repeat things. The only problem with that is getting them to
stop, which is why you need to know how if works before you progress into
the looping statements. This chapter begins your looping journey by intro-
ducing you to the most ancient of the loopy commands, for.

� To find out about the if statement, refer to Chapters 12 though 14.

� It may behoove you to look at Table 12-1, in Chapter 12, which contains
comparison functions used by both the if and for commands.

For Going Loopy
Doing things over and over is referred to as looping. When a computer program-
mer writes a program that counts to one zillion, he writes a loop. The loop is
called such because it’s a chunk of programming instructions — code — that
is executed a given number of times. Over and over.

186 Part III: Giving Your Programs the Ability to Run Amok

As an example of a loop, consider the common Baby-Mother interaction
program:

Baby picks up spoon.
Baby throws spoon on floor; Baby laughs.
Mommy picks up spoon from floor.
Mommy places spoon before Baby.
Repeat.

This primitive program contains a loop. The loop is based on “Repeat,” which
tells you that the entire sequence of steps repeats itself.

Unfortunately, the steps in the preceding primitive program don’t contain any
stopping condition. Therefore, it’s what is known as an endless loop. Most loop-
ing statements in computer programming languages have some sort of condi-
tion — like an if statement — that tells the program when to stop repeating
(or that, at least, such a thing is desired.)

A simple modification to the program can fix the endless loop situation:

Repeat until Mommy learns not to put spoon before Baby.

Now, the program has a stopping condition for the loop.

In conclusion, loops have three parts:

� A start

� The middle part (the part that is repeated)

� An end

These three parts are what make up a loop. The start is where the loop is set
up, usually some programming-language instruction that says “I’m going to
do a loop here — stand by to repeat something.” The middle part consists of
the instructions that are repeated over and over. Finally, the end marks the
end of the repeating part or a condition on which the loop ends (“until Mommy
learns,” in the preceding example).

� The C language has several different types of loops. It has for loops,
which you read about in this chapter; while loops and do-while loops;
and the ugly goto keyword, covered elsewhere in this book and in more
detail in its companion book, C AllinOne Desk Reference For Dummies
(Wiley).

� The instructions held within a loop are executed a specific number of
times, or they can be executed until a certain condition is met. For
example, you can tell the computer, “Do this a gazillion times” or “Do
this until your thumb gets tired.” Either way, several instructions are
executed over and over.

Chapter 15: C You Again 187
� After the loop has finished going through its rounds, the program contin-

ues. But while the loop is, well, “looping,” the same part of the program
is run over and over.

Repetitive redundancy, I don’t mind
The following source code is for OUCH.C, a program which proves that com-
puters don’t mind doing things over and over again. No, not at their expense.
Not while you sit back, watch them sweat, and laugh while you snarf popcorn
and feast on carbonated beverages.

What this program does is to use the for keyword, one of the most basic loop-
ing commands in the C language. The for keyword creates a small loop that
repeats a single printf() command five times:

#include <stdio.h>

int main()
{

int i;

for(i=0 ; i<5 ; i=i+1)
{

printf(“Ouch! Please, stop!\n”);
}
return(0);

}

Enter this source code into your editor.

The new deal here is the for keyword, at Line 7. Type what happens in there
carefully. Notice that the line which begins with for doesn’t end with a semi-
colon. Instead, it’s followed by a set of curly braces — just like the if state-
ment. (It’s exactly like the if statement, in fact.)

Save the file as OUCH.C.

Compile OUCH.C by using your compiler. Be on the lookout for errors. A
semicolon may be missing in for’s parentheses.

Run the final program. You see the following displayed:

Ouch! Please, stop!
Ouch! Please, stop!
Ouch! Please, stop!
Ouch! Please, stop!
Ouch! Please, stop!

188 Part III: Giving Your Programs the Ability to Run Amok

See? Repetition doesn’t hurt the PC. Not one bit.

� The for loop has a start, a middle, and an end. The middle part is the
printf() statement — the part that gets repeated. The rest of the loop,
the start and end, are nestled within the for keyword’s parentheses.
(The next section deciphers how this stuff works.)

� Just as with the if structure, when only one statement belongs to the
for command, you could write it like this:

for(i=0 ; i<5 ; i=i+1)
printf(“Ouch! Please, stop!\n”);

The curly braces aren’t required when you have only one statement
that’s repeated. But, if you have more than one, they’re a must.

� The for loop repeats the printf() statement five times.

� Buried in the for loop is the following statement:

i=i+1

This is how you add 1 to a variable in the C language. It’s called incre-
mentation, and you should read Chapter 11 if you don’t know what it is.

� Don’t worry if you can’t understand the for keyword just yet. Read
through this whole chapter, constantly muttering “I will understand this
stuff” over and over. Then go back and reread it if you need to. But read
it all straight through first.

For doing things over and over,
use the for keyword
The word for is one of those words that gets weirder and weirder the more
you say it: for, for, fore, four, foyer. . . . For he’s a jolly good fellow. These are
for your brother. For why did you bring me here? An eye for an eye. For the
better to eat you with, my dear. Three for a dollar. And on and on. For it can
be maddening.

In the C programming language, the for keyword sets up a loop, logically called
a for loop. The for keyword defines a starting condition, an ending condition,
and the stuff that goes on while the loop is being executed over and over. The
format can get a little deep, so take this one step at a time:

for(starting; while_true; do_this)
statement;

Chapter 15: C You Again 189
After the keyword for comes a set of parentheses. Inside the parentheses are
three items, separated by two semicolons. A semicolon doesn’t end this line.

The first item is starting, which sets up the starting condition for the loop.
It’s usually some variable that is initialized to a value. In OUCH.C, it’s i=0.

The second item is while_true. It tells for to keep looping; as long as the
condition specified by while_true is true, the loop is repeated. Typically,
while_true is a comparison, similar to one found in an if command. In
OUCH.C, it’s i<5.

The final item, do_this, tells the for keyword what to do each time the loop
is executed once. In OUCH.C, the job that is done here is to increment variable
i one notch: i=i+1.

The statement item is a statement that follows and belongs to the for key-
word. statement is repeated a given number of times as the for keyword
works through its loops. This statement must end with a semicolon.

If more than one statement belongs to the for structure, you must use curly
braces to corral them:

for(starting; while_true; do_this)
{
statement;
statement;
/* etc. */
}

Note that the statements are optional. You can have a for loop that looks
like this:

for(starting; while_true; do_this)
;

In this case, the single semicolon is the “statement” that for repeats.

� One of the most confusing aspects of the for keyword is what happens to
the three items inside its parentheses. Take heart: It confuses both begin-
ners and the C lords alike (though they don’t admit to it).

� The biggest mistake with the for loop? Using commas rather than semi-
colons. Those are semicolons inside them thar parentheses!

� Some C programmers leave out the starting and do_this parts of the
for command. Although that’s okay for them, I don’t recommend it for
beginners. Just don’t let it shock you if you ever see it. Remember that
both semicolons are always required inside for’s parentheses.

190 Part III: Giving Your Programs the Ability to Run Amok

Tearing through OUCH.C a step at a time
I admit that the for loop isn’t the easiest of C’s looping instructions to under-
stand. The problem is all the pieces. It would be easier to say, for example:

for(6)
{
/* statements */

}

and then repeat the stuff between the curly braces six times. But what that
does is limit the power of the for command’s configuration.

To help you better understand how for’s three parentheses’ pieces’ parts
make sense, I use the following for statement from OUCH.C as an example:

for(i=0 ; i<5 ; i=i+1)

The for loop uses the variable i to count the number of times it repeats its
statements.

The first item tells the for loop where to begin. In this line, that’s done by
setting the integer variable i equal to 0. This plain old C language statement
stuffs a variable with a value:

i=0

The value 0 slides through the parentheses into the integer variable i. No
big deal.

The second item is a condition — like you would find in an if statement —
that tells the for loop how long to keep going; to keep repeating itself over and
over as long as the condition that’s specified is true. In the preceding code, as
long as the statement i<5 (the value of the variable i is less than 5) is true, the
loop continues repeating. It’s the same as the following if statement:

if (i<5)

If the value of variable i is less than 5, keep going.

The final item tells the for loop what to do each time it repeats. Without this
item, the loop would repeat forever: i is equal to 0, and the loop is repeated
as long as i<5 (the value of i is less than 5). That condition is true, so for
would go on endlessly, like a federal farm subsidy. However, the last item tells
for to increment the value of the i variable each time it loops:

i=i+1

Chapter 15: C You Again 191
The compiler takes the value of the variable i and adds 1 to it each time the
for loop is run through once. (Refer to Chapter 11 for more info on the art of
incrementation.)

Altogether, the for loop works out to repeat itself — and any statements that
belong to it — a total of five times. Table 15-1 shows how it works.

Table 15-1 How the Variable i Works Its Way through the for Loop

Value of i Is i<5 true? Statement Do This

i=0 Yes, keep looping← printf() . . . (1) i=0+1

i=1 Yes, keep looping← printf() . . . (2) i=1+1

i=2 Yes, keep looping← printf() . . . (3) i=2+1

i=3 Yes, keep looping← printf() . . . (4) i=3+1

i=4 Yes, keep looping← printf() . . . (5) i=4+1

i=5 No — stop now!

In Table 15-1, the value of the variable i starts out equal to 0, as set up in the
for statement. Then, the second item — the comparison — is tested. Is i<5
true? If so, the loop marches on.

As the loop works, the third part of the for statement is calculated and the
value of i is incremented. Along with that, any statements belonging to the for
command are executed. When those statements are done, the comparison i<5
is made again and the loop either repeats or stops based on the results of that
comparison.

� The for loop can be cumbersome to understand because it has so many
parts. However, it’s the best way in your C programs to repeat a group of
statements a given number of times.

� The third item in the for statement’s parentheses — do_this — is exe-
cuted only once for each loop. It’s true whether for has zero, one, or
several statements belonging to it.

� Where most people screw up with the for loop is the second item. They
remember that the first item means “start here,” but they think that the
second item is “end here.” It’s not! The second item means “keep looping
while this condition is true.” It works like an if comparison. The compiler
doesn’t pick up and flag it as a boo-boo, but your program doesn’t run
properly when you make this mistake.

192 Part III: Giving Your Programs the Ability to Run Amok

� Don’t forget to declare the variable used in for’s parentheses. This
common mistake is another one made by just about everyone. Refer to
Chapter 8 for more information about declaring variables.

� Here’s a handy plug-in you can use for loops. Just substitute the big X in
the following line for the number of times you want the loop to work:

for(i=1 ; i<=X ; i=i+1)

You must declare i to be an integer variable. It starts out equal to 1 and
ends up equal to the value of X. To repeat a loop 100 times, for example,
you use this command:

for(i=1 ; i<=100 ; i=i+1)

Having fun whilst counting to 100
This section has the source code for a program named 100.C. This program uses
a for loop to count to 100 and display each number on the screen. Indeed, it’s
a major achievement: Early computers could count up to only 50 before they
began making wild and often inaccurate guesses about what number came
next. (Refer to your phone bill to see what I mean.)

The core of 100.C is similar to OUCH.C. In fact, the only reason I have tossed it
in here is that for loops are so odd to some folks that you need two program
examples to drive home the point:

#include <stdio.h>

int main()
{

int i;

for(i=1 ; i<=100 ; i=i+1)
printf(“%d\t”,i);

return(0);
}

Type this source code into your editor. Watch your indentations; it’s traditional
in the C language to indent one statement belonging to another (as shown in
the example), even when the curly braces are omitted.

In the for statement, the i variable starts out equal to 1. The while_true
condition is i<=100 — which means that the loop works, although the value
of variable i is less than or equal to 100. The final part of the statement incre-
ments the value of i by 1 each time the loop works.

Chapter 15: C You Again 193
The printf statement displays the value of the integer variable i by using the
%d placeholder. The \t escape sequence inserts a tab into the output, lining up
everything by nice, neat columns.

Save the file to disk as 100.C. (It’s a chess-club joke; C in Roman numerals is
100. Hardy-har-har.)

Compile the program and run it. You see 10 rows of 10 columns and numbers 1
through 100 neatly displayed. It’s amazing how fast the computer can do that.

� The output shows you the value of the variable i as the for loop works,
repeating the printf() statement 100 times and incrementing the value
of the i variable 100 times as well.

� Change the for statement in Line 5 of your 100.C source code to make
the loop go up to 10,000. Use your editor to make it read

for(i=1 ; i<=10000 ; i=i+1)

Just insert 2 extra zeroes after the 100 that are already there. Save the
change to disk and recompile. It doesn’t take the computer that much
longer to count to 10,000; but it does take longer to display all those
numbers.

I’m Bustin’ Outta Here!
Loops are one of the handiest things you can toss into a program — like rich,
creamy, high-fat dressing on top of dull (yet cold and crisp) lettuce. It’s only
by using loops that programs become useful. Just about anything useful a
computer can do for you is accomplished by using a loop: sorting, searching,
listing, getting “hung” up. It’s all thanks to loops.

I save the completely loopy lessons for Chapter 17. My task in this section is
to round out coverage of the lovely yet foreboding for keyword and show
you some interesting anti-loop devices, designed to let you foil the attempts
of even the most (over)diligent computer program.

At last — the handy ASCII program
This section has the source code for ASCII.C — which I proudly proclaim as
the first useful program in this book. What ASCII.C does is to display the ASCII
characters and their corresponding codes, from Code 32 on up to Code 127.

194 Part III: Giving Your Programs the Ability to Run Amok

This program proves handy because you can more easily type ASCII at the
DOS prompt to see the codes than keep looking them up in appendixes. (If
you program for any length of time, you look up ASCII codes almost hourly.)

#include <stdio.h>

int main()
{

unsigned char a;

for(a=32;a<128;a=a+1)
printf(“%3d = ‘%c’\t”,a,a);

return(0);
}

Enter this source code into your editor. It contains a basic for loop that
repeats a printf() statement several dozen times.

After double-checking your work, save the source code to disk as ASCII.C.

Compile the program by using your compiler.

When you run the final result, you see a 5-column display on your screen,
illustrating the ASCII characters and their codes, from Code 32 (the “space”
character) up to Code 127, which looks like a little house but is really sup-
posed to be the Greek letter Delta (as in ∆ Burke).

� I use this program all the time to quickly scope out ASCII code values.

� The for loop in the ASCII.C program starts with the value 32. It incre-
ments (by 1) up to the value 127, which is the last stop before a<128.
The incrementation is done by the handy a=a+1 equation in the for key-
word’s parentheses.

� Notice how the printf() function uses the character variable a twice —
once as an integer and again as a character. To avoid duplicate output,
however, both the %d and %c placeholders are used in printf()’s format
string.

� The number 3 in printf()’s %3d placeholder directs printf() to always
display three characters when it prints the integer value. When you set
the display width to three characters, all the code values line up right-
justified (a space is inserted before the 2-digit numbers).

� Here’s a secret: The a variable in ASCII.C can be either an integer or a
character variable. Whichever way you declare it, the program works.
That’s because in the for loop, a is used as a value, and in the printf()
function, it’s used as both a character and a value. This type of duplicity
works for both ints and chars, as long as the value never rises higher
than 255 (the largest “value” you can store in a char variable).

Chapter 15: C You Again 195
� Here’s another secret: The variable a must be declared as an unsigned

character. By being unsigned, the possibility of the program dealing with
negative numbers is eliminated. If variable a were just a char variable,
the loop would repeat endlessly; adding 1 to a when it equals 127 gives
a value of –127, and the loop just repeats forever. (To prove it, edit out
the word unsigned in the ASCII.C source code and recompile, and then
the program runs forever, which probably isn’t what you want.)

� Speaking of looping forever. . . .

Beware of infinite loops!
Some things are eternal. Love, they say. Diamonds, of course. Death and taxes,
yup. And, some loops can be eternal, though you don’t really want them to be.
Eternal is too endearing a term. Moody programmers prefer the term infinite,
as in “It goes on forever and never stops.” Yes, it’s kind of like the Energizer
bunny.

The infinite loop is a repeating section of your program that is repeated with-
out end. I can think of no practical application for this. In fact, the infinite loop
is usually an accident — a bug — that pops up in a well-meaning program. You
don’t really know that it’s there until you run the program. Then, when the
program just sits there and doesn’t do anything or when something is splashed
on the screen again and again, with no hint of stopping, you realize that you
have created an infinite loop. Everybody does it.

The following program is FOREVER.C, an on-purpose infinite loop that you can
type and try out. Using a misguided for command, the program repeats the
printf() statement ad infinitum:

#include <stdio.h>

int main()
{

int i;

for(i=1;i=5;i=i+1)
printf(“The computer has run amok!\n”);

return(0);
}

Type this source code into your text editor. It’s similar to the first for-loop pro-
gram in this chapter, OUCH.C. The difference is in the for loop’s “while true”
part and the message that is repeated. Save the source code to disk with the
name FOREVER.C.

196 Part III: Giving Your Programs the Ability to Run Amok

Compile the program. Even though the for statement contains a deliberate
infinite loop, no error message is displayed (unless you goofed up and typed
something else). After all, the compiler may think that you’re attempting to do
something forever as part of your master plan. How would it know otherwise?

When you run the program, forever, you see the following messages scrolling
madly up your screen:

The computer has run amok!

Indeed, it has! Press Ctrl+C to stop the madness.

� Most loops are designed with a condition on which they end. In an end-
less loop, either they don’t have a condition or the condition is set up in
some fashion as to be unobtainable. That’s bad.

� Infinite loops are insidious! Often, you don’t detect them until the program
runs, which is a great argument for testing every program you create.

� The Ctrl+C keyboard combination works in both Windows and Unix to
cancel a command that is producing standard output, which is what
FOREVER.C is doing (over and over). Other types of programs with infi-
nite loops, particularly those that don’t produce standard output, are
much harder to stop. If Ctrl+C doesn’t work, often you have to use your
operating system’s abilities to kill off the program run amok.

� In the olden days, you often had to restart the entire computer to regain
control from a run-amok endlessly looping program.

� The program loops forever because of a flaw in the for loop’s “while true”
part — the second item in the parentheses:

for(i=1;i=5;i=i+1)

The C compiler sees i=5 and figures, “Okay, I’ll put 5 into the i variable.”
It isn’t a true-false comparison, like something you find with an if state-
ment, which was expected, so the compiler supposes that it’s true and
keeps looping — no matter what. Note that the variable i is always equal
to 5 for this reason; even after it’s incremented with i=i+1, the i=5 state-
ment resets it back to 5.

� Here’s what the for statement should probably look like:

for(i=1;i<=5;i=i+1)

This line repeats the loop five times.

� Some compilers may detect the “forever” condition in the for statement
and flag it as an infinite loop. If so, you’re lucky. For example, the old Bor-
land C++ compiler flagged FOREVER.C as having a Possibly incorrect
assignment error. The compiler still produces the finished (and flawed)
program, though.

Chapter 15: C You Again 197

Breaking out of a loop
Loops aren’t infinite if you have a way to break out of them. For most loops,
that escape clause is provided in the looping statement itself. In the for state-
ment, the escape condition is the middle item, as in

for(a=32;a<128;a=a+1)

The escape clause is a<128, which is the condition on which the loop ends.

Some loops, however, are designed without an end. That’s because the condi-
tion that ends the loop happens elsewhere. In that case, the loop is designed
to be eternal — which is fine, as long as some condition elsewhere eventually
breaks the loop.

As an example, most word processors work with an infinite loop hidden inside
their programs. The loop sits and scans the keyboard, over and over, waiting
for you to type a command. Only when you type the proper “I want to quit”
command does the thing stop and you return to DOS. It’s like a controlled infi-
nite loop — it’s not really infinite because you have a way out.

The following program is TYPER1.C, a first stab at a word processor, though
you can do nothing in the program except type and see what you type on the
screen. The program is set up with an on-purpose infinite for loop. The break
keyword is then used with the if command to bust out of the loop when you
press the ~ (tilde) key:

#include <stdio.h>

int main()
{

char ch;

puts(“Start typing”);
puts(“Press ~ then Enter to stop”);

for(;;)
{

ch=getchar();
if(ch==’~’)
{

break;
}

}
printf(“Thanks!\n”);
return(0);

}

198 Part III: Giving Your Programs the Ability to Run Amok

This program wins the award for having the most indentation and curly braces
to this point in this book. Be careful as you type it into your editor. Save the file
to disk as TYPER1.C.

Compile TYPER1.C.

Run the resulting program, which works somewhat like a typewriter. You can
type away and fill the screen with text.

When you’re done typing, press the tilde (~) key and then Enter. (This is
TYPER’s only “command.”) You’re done.

� The for(;;) statement doesn’t error. The reason is that the semicolons
are required, but what’s between them isn’t (a peculiarity of the for
keyword).

� I read the for(;;) command aloud as “for ever.”

� The for loop in TYPER1.C is infinite because its “while true” condition is
missing. Gone! The compiler therefore assumes that the condition is true
all the time and that the program loops infinitely.

� The first and last parts of the for statement’s items aren’t included either,
though the semicolons inside the parentheses are still required in order
to meet the demands of C etiquette.

� Because several statements belong to the for loop, they’re enclosed in
curly braces.

� The getchar function waits for a key to be pressed on the keyboard and
displays that character. The character is then saved in the ch variable.

� The if statement tests the ch variable to see whether it’s equal to the
~ (tilde) character. Note that two equal signs are used. If the comparison
is true, indicating that the user pressed the ~ key, the break command is
executed. Otherwise, break is skipped and the loop is repeated, reading
another character from the keyboard.

The break keyword
The break keyword gets you out of a loop — any loop in C, not just a for loop.
No matter what the loop’s ending condition is, break immediately issues a
“parachute out of this plane” command. The program continues with the next
statement after the loop:

break;

Chapter 15: C You Again 199
The break keyword is a C language statement unto itself and must end prop-
erly with a semicolon.

The loop that break breaks you out of doesn’t have to be an endless loop.
break can stop any loop, at any time. It’s often used with an if statement to
test some condition. Based on the results of the test, the loop is stopped by
using break (just as was done with TYPER1.C in the preceding section).

� break stops only the loop it’s in. It doesn’t break out of a nested loop, or a
loop within a loop. See Chapter 18 for more information on nested loops.

� If you use break outside of a loop — when there’s nothing to break out
of — the compiler goes berserk and generates an error.

� It’s funny how the word is break and not brake. The same twisted logic
applies to the Break key on your keyboard.

200 Part III: Giving Your Programs the Ability to Run Amok

Chapter 16

C the Loop, C the Loop++
In This Chapter
� Incrementing variables with ++

� Decrementing variables with --

� Using other math operator shortcuts

Looping is a core part of programming, just as compromising your princi-
ples is central to getting ahead in politics. And, closely tied to looping is

a concept you have already been exposed to: incrementation, which I’m not
certain is a real word, but it means to increment something.

Just as loops flip through various iterations, variables are incremented or
decremented to help the computer keep track of things. In fact, the concepts
of looping and incrementation are so closely linked that it was tough to write
the preceding chapter about the for command while utterly avoiding the issue.
The time has come for your full exposure to that ancient art and mysterious
practice of incrementation.

The Art of Incrementation
When a for loop repeats something seven times, a variable somewhere gets
incremented seven times. For example:

for(i=0;i<7;i=i+1)

This for statement sets up a loop that is repeated seven times, from i=0 and
up by 1 seven times as long as the value of i is less than 7 (i<7).

If you find the concept of starting the loop at 0 strange, the following for state-
ment performs the same trick, working itself out, over and over, seven times:

for(i=1;i<=7;i=i+1)

202 Part III: Giving Your Programs the Ability to Run Amok

In this example, i increments from 1 up to 7. The C lords prefer to start loops
with the counting variable at 0 because that’s where the computer itself starts
counting internally. Either way, incrementing is central to the idea of looping.

Keep in mind that the for statement is merely a frame for a loop. It repeats a
group of statements a given number of times. The for statement itself only
controls the looping.

Cryptic C operator symbols, Volume I:
The inc operator (++)
The art of incrementation involves taking a variable and adding 1 to its value.
So, no matter what the original value of the variable count, it’s 1 greater after
this equation:

count=count+1;

Face it: This equation is an awkward thing to look at. Yet, no loop happens
without it, which means that incrementing happens frequently in C programs.
Even so, few C programmers use the preceding statement. Instead, they resort
to a shortcut, the incrementation operator, which is two plus signs holding
hands:

count++;

The incrementation operator, ++, works like other mathematical operators you
may have seen in other horrid math chapters: the +, -, *, and / for addition,
subtraction, multiplication, and division, respectively. The difference here is
that ++ works without an equal sign. It just tells the compiler, “Yo! Add 1 to
the value of this variable. Thank you. Thank you very much.” It’s quick and
tidy, but a bit cryptic (which is why I didn’t throw it at you right away).

� Yes, you can say “plus plus” in your head when you see ++ in a program.

� Yes, that’s why C++ is called “See plus plus.” It’s also the punch line of the
joke: C++ is “one more” than regular C.

� You don’t need an equal sign when you use ++. Just stick it at the end of
a variable and that variable is incremented by 1.

� The equation i++ is the same as i=i+1.

� Here we go:

var=3; /* the variable var equals three */
var++; /* Oops! var is incremented here */

/* From here on, var equals four */

Chapter 16: C the Loop, C the Loop++ 203
� The ++ operator is used this way in a for statement:

for(i=0;i<7;i++)

This line means that variable i is incremented every iteration of the loop.

� This area is where the C language begins to get truly cryptic. Given the
separate pieces of a for loop, most knowledgeable humans can detect
that i=1 means “i equals 1” and that i<7 means “i is less than 7,” and
even that i=i+1 is “i equals i plus 1.” But toss i++ at them and they
think “i plus plus? Weird.”

Another look at the LARDO.C program
Chapter 11 touches on the idea of incrementing a variable in a program. That
program is LARDO.C, which I’m certain is near and dear to your heart and has
impressed many a friend and family member. Unfortunately, now that you know
the ++ thing, the program would really be an embarrassment if you showed it to
a C guru. Seriously, all those gauche w=w+1 things need to be properly changed
to w++ commands. Short. Sweet. Cryptic. It’s what computers are all about!

The following program is an update to the LARDO.C source code, which is
probably still sitting on your hard drive somewhere. Load that old file into
your editor and make the necessary changes so that the program looks like
the source code listed here:

#include <stdio.h>
#include <stdlib.h>

int main()
{

char weight[4];
int w;

printf(“Enter your weight:”);
gets(weight);
w=atoi(weight);

printf(“Here is what you weigh now: %i\n”,w);
w++;
printf(“Your weight after the potatoes: %i\n”,w);
w++;
printf(“Here you are after the mutton: %i\n”,w);
w=w+8;
printf(“And your weight after dessert: %i pounds!\n”,w);
printf(“Lardo!\n”);
return(0);

}

204 Part III: Giving Your Programs the Ability to Run Amok

Edit your source code. The only changes are to Lines 14 and 16.

Save the file to disk again, using the same name, because this program is so
much more superior to the original. Then compile.

Fix any errors if you got ’em. Otherwise, the program runs the same as it did
before. The only true difference? You took advantage of the incrementation
operator, ++, and earned the clever wink of sophisticated C language pro-
grammers worldwide.

Notice that the w=w+8 statement wasn’t modified. The reason is that the vari-
able w is increased by 8, not just by 1. Yes, I have a shortcut for that, but you
aren’t exposed to it until the end of this chapter.

The Mysterious Practice
of Decrementation

Loops don’t necessarily have to go forward. They can also count down, which
is definitely more dramatic and required in some occupations — such as
launching spacecraft and many other common things you find yourself doing
every day.

Consider OLLYOLLY.C, a program that counts backward. And, that’s about all
it’s good for:

#include <stdio.h>

int main()
{

int count;

for(count=10;count>0;count=count-1)
printf(“%d\n”,count);

printf(“Ready or not, here I come!\n”);
return(0);

}

Start off your editor with a new slate and carefully type this source code.
The only strange stuff you encounter is in the for loop’s parentheses, which
may look a little funky — but it’s counting backward! Will the loop work? Will
the computer explode? Is Jane really cheating on Ralph? How can this be
happening?

Chapter 16: C the Loop, C the Loop++ 205
Quit pondering and type.

Save the file to disk as OLLYOLLY.C. Compile it. Run it.

The output looks like this:

10
9
8
7
6
5
4
3
2
1
Ready or not, here I come!

Yes, indeed, the computer can count backward. And, it did it in a for loop with
what looks like a minimum of fuss — but still a little techy. The following sec-
tion discusses the details.

� To prove that you’re not going crazy, refer to Chapter 15’s 100.C program.
It counted from 1 to 100 using a for loop. The only difference now, aside
from the printf() statements, is that the loop worked itself backward.

� Backward-counting loops in C are rare. Most of the time, whenever you
have to do something 10 times, you do it forward, from 0 through 9 or
from 1 through 10 or however you set up your for loop.

O, to count backward
Counting backward or forward makes no difference to the computer. You just
have to tell the C language in which direction you want to go.

To count forward, you increment a variable’s value. So, if you have the vari-
able f, you do this:

f=f+1;

or even this:

f++;

Either way, the value of variable f is 1 greater than it was before; it has been
incremented.

206 Part III: Giving Your Programs the Ability to Run Amok

To count backward, you subtract 1 from a variable’s value, which is exactly
the way you do it in your head: 10, 9, 8, 7, and so on. It looks identical to the
incrementing statement, except for the minus sign:

b=b-1;

The value of variable b is 1 less than it was before. If b came in with a value of
5, this statement sets b’s value to 4. This process is known as decrementing a
variable’s value.

� Decrementing, or subtracting 1 (or any number) from a variable’s value
is just common subtraction. The only big deal here is that decrementing
is done in a loop, which makes the loop count backward.

� Incrementing means adding (1) to a variable’s value.

� Decrementing means subtracting (1) from a variable’s value.

� Decrementing works because C first figures out what’s on the right side
of the equal sign:

b=b-1;

First comes b-1, so the computer subtracts 1 from the value of variable b.
Then, that value is slid through the equal signs, back into the variable b.
The variable is decremented.

How counting backward
fits into the for loop
Take another look at Line 7 from the OLLYOLLY.C program:

for(count=10;count>0;count=count-1)

It’s basic for loop stuff. The loop has a starting place, a while-true condition,
and a do-this thing. The parts are listed in Table 16-1.

Table 16-1 How the for Loop Counts Backward

Loop Part Condition

Starting count=10

While-true count>0

Do-this count=count-1

Chapter 16: C the Loop, C the Loop++ 207
Everything in the backward-counting for loop works per specifications. The
loop begins by setting the value of the count variable equal to 10. And, it loops
as long as the value of the count variable is greater than 0 (count>0). But,
each time the loop repeats, the value of the count variable is decremented. It
works backward.

Again, you have no reason to loop backward — except that the printf() state-
ment belonging to the loop displays the numbers 10 through 1 in a countdown
manner. Normally (which means about 99 percent of the time), you only loop
forward. It’s not only easier to do in your head, but it’s also less likely to be a
source for programming boo-boos than when you try to loop backward.

� Most loops count forward. The backward-counting loop in C is possible
but rarely used, mostly because counting is counting and it’s just easier
(for humans) to do it forward.

� You can’t do a backward loop without decrementing the loop’s variable.

� Other than decrementing the loop’s variable, the only difference is in the
loop’s while-true condition (the one in the middle). That requires a little
more mental overhead to figure out than with normal for loops. It’s
another reason that this type of loop is rare.

� Okay. The question arises: “Why bother?” Because you have to know about
decrementing and the cryptic -- operator, covered in the next section.

Cryptic C operator symbols, Volume II:
The dec operator (--)
Just as C has a shortcut for incrementing a variable’s value, there is also a
shortcut for decrementing a variable’s value. (If you read the first half of this
chapter, you saw this coming from a mile back, most likely.) As a quick review,
you can add 1 to a variable’s value — increment it — by using the following C
language statement:

i=i+1;

Or, if you’re cool and remember the shortcut, you can use the cryptic ++ opera-
tor to do the same thing:

i++;

Both examples add 1 to the value of variable i.

Consider this example:

d=d-1

208 Part III: Giving Your Programs the Ability to Run Amok

This statement subtracts 1 from the value of variable d, decrementing it. Here’s
the whiz-bang, cryptomic shortcut:

d––;

The -- is the decrement operator, which subtracts 1 from a variable’s value.

Just like the incrementation operator, ++, the decrementing operator, --, works
like other mathematical operators in the C language. In keeping with the theme
of being cryptic, however, there is no equal sign. The -- tells the compiler to
subtract 1 from the associated variable’s value and — poof! — it’s done.

� I pronounce -- as “deck deck,” though I may be the only one in the
world who does so. I haven’t heard anyone say “minus-minus” — at least
not aloud.

� The equation d-- is the same as d=d-1.

� You suffer no penalty for using d=d-1 if you forget about the -- thing.

� Don’t bother with an equal sign when you use the decrementing opera-
tor, --. Glue it to the end of the variable you want to decrement and
you’re done.

� Here we go (again):

var=3; /* the value of variable var is three */
var--; /* Whoa! var is decremented here */

/* Now the value of var equals two */

� The -- operator is used this way in a for looping statement:

for(d=7;d>0;d--)

The d-- replaces the d=d-1, as I demonstrate in the past few sections.

A final improvement to OLLYOLLY.C
Now that you know about --, you can improve the awkward and potentially
embarrassing OLLYOLLY.C program, by spiffing it up with the decrementation
operator.

Load OLLYOLLY.C into your editor again (if it’s not there right now) and
clickety-clack the down-arrow key to Line 7, where the for loop starts. Edit
the for statement there, replacing the count=count-1 part with the cryptic,
though proper, count-- thing. Here’s how that line should look when you’re
done editing:

Chapter 16: C the Loop, C the Loop++ 209

for(count=10;count>0;count--)

Save the source code file back to disk and then recompile it.

The program runs the same, but your C programming buddies will nod their
heads in amazement at your deft use of the decrementation operator.

More Incrementation Madness
Incrementation and looping go hand in hand like (this week’s) Hollywood’s
hottest couple.

Looping is an important part of programming — doing things over and over,
like a famous actor rehearses his lines. (Make that famous stage actor.) In C,
that can be done only with the for loop if you increment (or decrement) a
variable’s value.

Tied in with looping are the ++ and -- operators, which you can also use
independently from looping to increase or decrease a variable’s value — like
some actresses increase their bust size through various surgical techniques,
and their age via bald-faced lying.

Given that, you should still keep in mind that incrementing and decrementing
don’t have to be done one tick at a time. For example, the LARDO.C program
boosts the w variable’s value by 8 by using the following statement in Line 18:

w=w+8;

The value of the variable w is increased by 8. The following statement
decreases w by 3:

w=w-3;

This is still a form of incrementing and decrementing, though values larger than
1 are used. It’s perfectly legit. And — as a bonus — you can use these types of
incrementing or decrementing in loops. An example is coming forthwith.

� Although you can increment a variable by a value larger than 1, the ++
operator increases a variable’s value by only 1. The same holds true for --,
which always decreases a variable’s value by 1.

� Fortunately, the C language lacks a +++ or --- operator. Forget about it!

210 Part III: Giving Your Programs the Ability to Run Amok

Leaping loops!
After losing or wining the game, the kids get together as a team and chant:

2, 4, 6, 8, who do we appreciate?

This chant is followed by the other team’s name. It’s a nice, polite, all-American
athletic chant that means either “You sad sacks were easy to beat and, if we
were unsupervised, we would be vandalizing your bicycles by now” or “You
defeated us through treachery and deceit and, if we were unsupervised, we
would be pummeling your heads with our aluminum bats.”

Anyway, the following program uses a for loop to generate the “2, 4, 6, 8”
part of the chant. It’s a for loop that, yes, skips a bit as it counts. It’s what I
call a leaping loop:

#include <stdio.h>

int main()
{

int i;

for(i=2;i<10;i=i+2)
printf(“%d “,i);

printf(“who do we appreciate? GNU!\n”);
return(0);

}

Choose New in your editor and type the preceding source code. In the
printf() statement in the for loop, note the space after the %d. It goes
“double quote, percent sign, little d, space, double quote.” Save the file to
disk as CHANT.C.

Compile and run the program. Here’s what your output should look like:

2 4 6 8 who do we appreciate? GNU!

� The loop starts at 2 and increments up to 10 by using the i=i+2 formula.
The loop reads like this: “Start with i equal to 2, and while the value of i
is less than 10, repeat the following, adding 2 to variable i each time you
loop.”

� You can change Line 7 of the program to have the loop count by even
numbers to any value. For example:

for(i=2;i<1000;i=i+2)

This modification makes the computer count by twos from 2 to 998. It
doesn’t do much for the chant, but it works. (Indeed, it would take for-
ever to get to The Pizza Place if that were the case.)

Chapter 16: C the Loop, C the Loop++ 211

Counting to 1,000 by fives
The following program is an update to the old 100.C program, from Chapter 15.
In this case, the program counts to 1,000 by fives — a task that would literally
take days without a computer:

#include <stdio.h>

int main()
{

int i;

for(i=5;i<=1000;i=i+5)
printf(“%d\t”,i);

return(0);
}

Start off with a new, clean slate in your editor. Type the preceding source code.
It’s nothing fancy. Indeed, it’s just a take-off from the old 100.C program. Save
the file to disk as 1000.C.

Compile 1000.C and run the result. Your screen fills with values from 5 to 1000,
all lined up in rows and columns.

� This leaping loop counts by fives because of the i=i+5 part of the for
statement. The i=i+5 operation keeps increasing the value of the i vari-
able by 5.

� The loop begins counting at 5 because of the i=5 part of the for loop. It
stops counting at 1,000 because of the i<=1000 part of the loop. That’s
“less than or equal to 1000,” which is how you get to 1,000.

Cryptic C operator symbols, Volume III:
The madness continues
C is full of shortcuts, and mathematical operations are where you find most of
them clustered like bees over a stray Zagnut bar. I feel that the two most cryp-
tic shortcuts are for changing a variable’s value by 1: ++ to increment and -- to
decrement. But there are more!

To add 5 to a variable’s value, for example, such as in the 1000.C program, you
use the following:

i=i+5

212 Part III: Giving Your Programs the Ability to Run Amok

The cryptic C language shortcut for this operation is

i+=5

This line means “Increase the value of variable i by five.” Unfortunately, it just
doesn’t look like that’s what it means.

Although I can swallow ++ to increment and -- to decrement, the += thing seri-
ously looks like a typo. Sad news: It’s not. Even sadder: There are more of them,
one each for adding, subtracting, multiplying, or dividing a variable’s value by a
certain amount (or by another variable). Table 16-2 lists the lot of them.

Table 16-2 Cryptic Shortcuts for Common Math Operations

Long, Boring Way Cryptic Shortcut

var=var+5 var+=5

x=x+y x+=y

var=var-5 var-=5

x=x-y x-=y

var=var*5 var*=5

x=x*y x*=y

var=var/5 var/=5

x=x/y x/=y

In Table 16-2, you see two examples for each cryptic shortcut. The first one
uses the variable var, which is modified by a constant value, 5. The second
uses two variables; the first one, x, is modified by another variable, y.

Yes, the shortcuts for incrementing, decrementing, or changing a variable are
cryptic. You don’t have to use them. You suffer no penalty for forgetting about
them. I refer to them here for two reasons: It can be done, and C gurus love
tossing this stuff into programs; so don’t let the shortcuts scare you when you
see them.

On your own: Modify the preceding two programs, CHANT.C and 1000.C.
Replace the long math condition in the for loop with a shortcut version.
Answers are provided at the end of this chapter.

Chapter 16: C the Loop, C the Loop++ 213
� Technically, these doojabbies are referred to as assignment operators.

Don’t memorize that term. Even I had to look it up.

� Hey: It’s a good idea to stick a sticky note on Table 16-2 or flag it by dog-
earing the page. These cryptic shortcuts aren’t easy to remember.

� One way to remember that the operator (+, –, *, or /) comes first is to
look at the wrong way for subtraction:

var=-5

This is not a shortcut for var=var-5. Instead, it sets the value of variable
var equal to negative-five. Ipso fasto, var-=5 must be the proper way to
do it.

� Remember that these mathematical-shortcut cryptic operators aren’t nec-
essarily limited to use in for loops. Each of them can be a C language
statement unto itself, a mathematical operation to somehow pervert a
variable’s value. To wit:

term+=4;

This statement increases the value of the variable term by 4.

The answers
In CHANT.C, modify Line 7 to read:

for(i=2;i<10;i+=2)

In 1000.C, modify Line 7 to read:

for(i=2;i<10;i+=5)

In both cases, you change the longer equation i=i+x to its shorter variation,
i+=x.

214 Part III: Giving Your Programs the Ability to Run Amok

Chapter 17

C You in a While Loop
In This Chapter
� Using a while loop

� Choosing between for and while

� Making infinite while loops

� Beating a dead horse

When it comes time to create a loop, the C language gives you a choice.
You can go with the complex for loop, which has all the gizmos and

options to make most programmers happy, or you can choose the more exotic,
free-wheeling while loop for your programs. Whereas for is more official and
lays out all its plans in one spot, while is fanciful and free — like those care-
free days of youth when Mommy would kiss your boo-boos and make them
better and Daddy paid for everything.

This chapter introduces you to the happy-go-lucky while loop. Looping is a
concept you should already be familiar with if you have been toiling with for
loops for the past few chapters. But, I have good news! while loops are a heck
of a lot simpler to understand. Ha-ha! Now, I tell you. . . .

The Lowdown on while Loops
While loops shouldn’t be strange to you. Consider the following:

While the light is red, keep your foot on the brake.

This simple example shows a while loop in real life. It means, roughly, “While
this thing is true, keep repeating this action” (that is, a loop). Your foot is
stepping on the brake as long as the light is red — a loop. Easy enough.

216 Part III: Giving Your Programs the Ability to Run Amok

If you want to rewrite this instruction by using a C-like syntax and a while
loop, it could look like this:

while(light==RED)
{

foot_on_brake();
light = check_light();

}

light==RED is a condition that can be either TRUE or FALSE — as in an if
statement. While that condition is TRUE, the statements held in the while
loop’s curly braces are repeated.

One of the statements in the while loop checks the condition the loop repeats
on: light=check_light() updates the status of the light variable. When it
changes to something not RED, the while statement becomes FALSE, the block
of statements is skipped, and the next part of the program is run. This is the
essence of a while loop in C.

Whiling away the hours
As in a for loop, you can set up a while loop to repeat a chunk of statements a
given number of times. Unlike a for loop, the while loop’s controls (the doo-
jabbies that tell the loop when to start and where to finish) are blasted all over
the place. This is good because it doesn’t mean that everything is crammed
into one line, as with a for loop. This is bad because, well, I get into that in the
next section. For now, busy yourself by typing the source code for HEY.C, a bril-
liant C program shown right next:

#include <stdio.h>

int main()
{

int i;

i=1;
while(i<6)
{

printf(“Ouch! Please stop!\n”);
i++;

}
return(0);

}

Chapter 17: C You in a While Loop 217
Type this program, which is essentially an update of the OUCH.C program,
from Chapter 15. Both programs do the same thing, in fact, but by using dif-
ferent types of loops. Save the file to disk as HEY.C.

Compile. Run.

Here’s what the output looks like:

Ouch! Please stop!
Ouch! Please stop!
Ouch! Please stop!
Ouch! Please stop!
Ouch! Please stop!

Brilliant. Simply brilliant.

� A loop in the C language requires three things: a start, a middle part (the
part that is repeated), and an end. This information is from Chapter 15.

� With a for loop, the looping-control information is found right in the
for command’s parentheses.

� With a while loop, the looping-control information is found before the
loop, in the while command’s parentheses, and inside the while loop
itself.

� In HEY.C, the variable i is set up (or initialized) before the loop. Then,
it’s incremented inside the loop. The while statement itself cares only
when i is less than 6.

� The statements belonging to the while — those lines clutched by the
curly braces — are repeated only as long as the condition in parentheses
is TRUE. If the condition is FALSE (suppose that the variable i was already
greater than 6), those statements are skipped (as in an if statement).

� While loops are easy targets for the infinite-loop boo-boo. For this reason,
you have to check extra hard to make sure that the condition that while
tests for eventually becomes FALSE, which makes the loop stop repeating.

� For a while loop to quit, something must happen inside the loop that
changes the condition that while examines.

� This is probably the first time you have seen two different programs
tackle the same problem: OUCH.C uses a for loop, and HEY.C uses a
while loop. Neither one is better than the other. See the section “Deciding
between a while loop and a for loop,” later in this chapter, for more
information.

218 Part III: Giving Your Programs the Ability to Run Amok

The while keyword
(a formal introduction)
The while keyword is used in the C language to repeat a block of statements.
Unlike the for loop, while only tells the computer when to end the loop. The
loop must be set up before the while keyword, and when it’s looping, the
ending condition — the sizzling fuse or ticking timer — must be working. Then,
the loop goes on, la-de-da, until the condition that while monitors suddenly
becomes FALSE. Then, the party’s over, and the program goes on, sadder but
content with the fact that it was repeating itself for a while (sic).

Here’s the rough format:

starting;
while(while_true)
{

statement(s);
do_this;

}

First, the loop must be set up, which is done with the starting statement. For
example, this statement (or a group of statements) may declare a variable to
be a certain value, to wait for a keystroke, or to do any number of interesting
things.

while_true is a condition that while examines. If the condition is TRUE, the
statements enclosed in curly braces are repeated. while examines that condi-
tion after each loop is repeated, and only when the statement is FALSE does
the loop stop.

Inside the curly braces are statements repeated by the while loop. One of those
statements, do_this, is required in order to control the loop. The do_this part
needs to modify the while_true condition somehow so that the loop eventually
stops or is broken out of.

While loops have an advantage over for loops in that they’re easier to read
in English. For example:

while(ch!=’~’)

This statement says “While the value of variable ch does not equal the
tilde character, repeat the following statements.” For this to make sense,
you must remember, of course, that ! means not in C. Knowing which sym-
bols to pronounce and which are just decorations is important to understand-
ing C programming.

Chapter 17: C You in a While Loop 219
� The while true condition that the while loop examines is the same as

you find in an if comparison. The same symbols used there are used
with while, including ==, <, >, and !=. You can even use the logical
dojabbies && (AND) or || (OR), to evaluate multiple comparisons.

� When you apply the language of the while loop’s format to HEY.C, you
get this:

Starting Line 7 i=1

While_true Line 8 i<6

Do_this Line 11 i++

� Notice that, like the for keyword, while lacks a proper semicolon. It’s
just followed with a group of statements in curly braces.

� If the while loop contains only one statement, you can do without the
curly braces:

starting;
while(while_true)

do_this;

� Some while loops can even be constructed to have no statements. This
is rather common:

while((do_this)==TRUE)
;

In this example, the semicolon is the “statement” that belongs to the
while loop.

Deciding between a while
loop and a for loop
A while loop and a for loop have many similarities — so much so that you
would almost seem kooky to use while if you’re fond of for and vice versa.
As an example, here’s the basic for loop from the program 100.C, over in
Chapter 15:

for(i=1;i<=100;i=i+1)
printf(“%d\t”,i);

This loop counts from 1 to 100 and displays each number.

220 Part III: Giving Your Programs the Ability to Run Amok

Here’s the same loop à la while:

i=1;
while(i<=100)
{

printf(“%d\t”,i);
i=i+1;

}

See how the for loop was broken up and placed into the while loop? It’s easier
to see if I replace the pieces’ parts with big, bold letters. Take a look at this:

for(A;B;C)
printf(“%d\t”,i);

It becomes

A;
while(B)
{

printf(“%d\t”,i);
C;

}

Everything is there, but it looks as though the while loop involves even more
typing. You could say that if your fingers are tired, you can use a for loop. I
like while loops because everything isn’t jammed into one line. It’s easier to
see the different parts. Also, you can control the “C” part of the loop in differ-
ent ways, which I get into in later lessons.

Another advantage of the while loop is that it looks more graceful. That’s
especially true when you’re replacing what I think are those ugly for(;;)
structures. Speaking of which. . . .

Replacing those unsightly for(;;)
loops with elegant while loops
Do you remember the following line?

for(;;)

This for loop is repeated forever. Indefinitely. Beyond when the cows come
home. Of course, nestled within the loop is a break statement that halts it
short, such as when some condition is met. But, meeting a condition to halt
a loop — doesn’t that sound like a natural job for a while loop?

Chapter 17: C You in a While Loop 221
Without going through a lot of effort, load the TYPER1.C program into your
editor. This program is introduced in Chapter 15 to demonstrate the break key-
word, among other things. The bulk of the program is the following for loop:

for(;;)
{

ch=getchar();
if(ch==’~’)
{

break;
}

}

This example reads “Forever do the following statements.” A character, ch, is
read from the keyboard and then checked to see whether a tilde was typed. If
so (if TRUE), the loop stops with a break statement.

Go ahead and delete all those lines. Yank! Yank! Yank!

Replace them with these:

while(ch!=’~’)
{

ch=getchar();
}

Oh, this is too easy! The for statement is gone, replaced by a while statement
that says to repeat the following statement (or statements) as long as the value
of the ch variable doesn’t equal the tilde character. As long as that’s the case,
the statement is repeated. And, that sole statement simply reads characters
from the keyboard and stores them in the ch variable.

Save the changed source code to disk as TYPER2.C. Compile it and run.

After you see the Press ~ then Enter to stop message, type away. La-la-la.
Press the tilde key to stop.

� This example shows a while loop elegantly replacing an ugly for loop.

� There’s no need for a break statement in this loop because while auto-
matically halts the loop when ch equals a tilde.

� The condition checked for by the while loop is negative. It means to
keep looping as long as ch does not equal the tilde character. If you had
while(ch==’~’), the loop would be repeated only as long as someone
kept pressing the tilde key on the keyboard.

� The comparison for does not equal is !=, an exclamation point (which
means not in C) and an equal sign.

� Remember to use single quotes when you’re comparing character
constants.

222 Part III: Giving Your Programs the Ability to Run Amok

� Not that it’s worth mentioning, but the endless while loop setup, equiv-
alent to for(;;), is written while(1). In either case, the statements
belonging to the loop are repeated indefinitely or until a break statement
frees things up.

C from the inside out
Although C can be a strict language, it can also be flexible. For example, just
because a function returns a value doesn’t mean that you have to store that
value in a variable. You can use the value immediately inside another function.

As an example, consider the getchar() function, which returns a character
typed at the keyboard. You can use that character immediately and not store
it in a variable. That’s what I call “using C inside out.” It’s one of the more flex-
ible things you can do with C.

The TYPER2.C program is a useful one to illustrate the example of C code
being written from the inside out. Here’s what I mean:

while(ch!=’~’)
ch=getchar();

The variable ch is set by the getchar() function. Or, put another way, the
getchar() function generates the key press. The ch is just a holding place,
and using ch to store that value is merely an intermediate step. To wit:

while(getchar()!=’~’)
;

The drawback is that the character generated by getchar() isn’t saved any-
where. But, it does illustrate a nifty aspect of both the C language and the
while loop.

Reedit the TYPER2.C source code so that it looks like this:

#include <stdio.h>

int main()
{

puts(“Start typing.”);
puts(“Press ~ then Enter to stop”);

while(getchar() != ‘~’)
;

printf(“Thanks!\n”);
return(0);

}

Chapter 17: C You in a While Loop 223
There’s no longer a need to declare the variable ch, so that line is gone, as
are the curly braces belonging to while.

Save the changes to disk as TYPER3.C. Compile and run.

The output behaves the same — no surprises there. But, the code is much
tighter (albeit a little less readable).

� Despite this trick, it’s often better to write your code in several steps
rather than combine things on one line, “inside out.” By illustrating the
several steps, you make your code more readable.

� Write things out long-ways first. Then, after you’re certain that the code
works, think about recoding from the inside out.

� If you do use this trick at any length, be sure to make use of comments
to describe what your thinking is. That helps later, in case you ever need
to debug your code.

Not to Beat a Dead Horse or Anything. . . .
It has come to this — your first inane programmer joke in C:

while(dead_horse)
beat();

Drawing on your vast knowledge of C, you can now appreciate what humor
there is in the “no use beating a dead horse” cliché translated into the C pro-
gramming language. Here are the specifics — if you can hold your sides in
long enough:

� dead_horse is the name of a variable whose value is either TRUE or
FALSE. While dead_horse is TRUE, the loop repeats.

� I have also seen the first line written this way:

while(horse==dead)
and also
while(!alive)

In other words, “While it’s a dead horse. . . .”

� The beat() function is repeated over and over as long as the value of
dead_horse is TRUE (or as long as horse==dead, in the alternative form).

� You don’t have to enclose beat() in curly braces because it’s the only
statement belonging to the loop.

� Yuck. Yuck. Yuck.

224 Part III: Giving Your Programs the Ability to Run Amok

Chapter 18

Do C While You Sleep
In This Chapter
� Introducing the do-while loop

� Using a delay loop

� Nesting loops

� Creating a grid

� Understanding the continue keyword

You’re not done looping!
You’re not done looping!

You’re not done looping!
You’re not done looping!

The for and while commands may be an odd couple, and they may be the offi-
cial looping keywords of the C language, but that’s not the end of the story. No,
there’s more than one way to weave a loop, particularly a while loop. This
chapter covers this oddity of nature, even showing you a few situations where
the mythical “upside-down” while loop becomes a necessity.

The Down-Low on Upside-Down
do-while Loops

A while loop may not repeat — no, not ever. If the condition it examines is
false before the loop starts, the block of statements designed to repeat is
skipped over like so many between-meal snacks would be if you really knew
what’s in them.

Witness the cold, cruel while statement:

while(v==0)

226 Part III: Giving Your Programs the Ability to Run Amok

If v doesn’t equal 0, the statements clinging to the underside of the while loop
are skipped, just as though you had written this:

if(v==0)

There’s an exception, of course — a kind of loop you can fashion that always
executes at least once. It’s the upside-down while loop, called a do-while
loop. This type of loop is rare, but it has the charming aspect of always want-
ing to go through with it once.

The devil made me do-while it!
The following program contains a simple do-while loop that counts backward.
To add some drama, you supply the number it starts at:

/* An important program for NASA to properly launch
America’s spacecraft. */

#include <stdio.h>

int main()
{

int start;

printf(“Please enter the number to start\n”);
printf(“the countdown (1 to 100):”);
scanf(“%d”,&start);

/* The countdown loop */

do
{

printf(“T-minus %d\n”,start);
start--;

}
while(start>0);

printf(“Zero!\nBlast off!\n”);
return(0);

}

Type this source code into your editor. Save the file to disk as COUNTDWN.C.

Compile. Fix any errors. Notice that a semicolon is required after the end of
the do-while loop. If you forget it, you get an error.

Chapter 18: Do C While You Sleep 227
Run the program.

Please enter the number to start
the countdown (1 to 100):

Be a traditionalist and type 10. Press Enter:

T-minus 10
T-minus 9
et cetera . . .
T-minus 1
Zero!
Blast off!

� The do while loop executes once, no matter what.

� In a do-while loop, a semicolon is required at the end of the monster,
after while’s condition (see Line 21 in the program).

� Don’t forget the ampersand (&), required in front of the variable used in
a scanf statement. Without that & there, the program really screws up.

do-while details
A do-while loop has only one advantage over the traditional while loop: It
always works through once. It’s as though do is an order: “Do this loop once,
no matter what.” It’s guaranteed to repeat itself. If it doesn’t, you’re entitled
to a full refund; write to your congressman for the details.

The do keyword belongs to while when the traditional while loop stands
on its head. The only bonus is that the while loop always works through
once, even when the condition it examines is false. It’s as though the while
doesn’t even notice the condition until after the loop has wended its way
through one time.

Here’s the standard format thing:

do
{

statement(s);
}
while(condition);

228 Part III: Giving Your Programs the Ability to Run Amok

The condition is a true-or-false comparison that while examines — the same
type of deal you find in an if comparison. If the condition is true, the statements
in the loop are repeated. They keep doing so until the condition is false, and
then the program continues. But, no matter what, the statements are always
gone through once.

An important thing to remember here is that the while at the end of the loop
requires a semicolon. Mess it up and it’s sheer torture later to figure out what
went wrong.

One strange aspect of the do-while loop is that it seriously lacks the starting,
whiletrue, and dothis aspects of the traditional while and for loops. It has
no starting condition because the loop just dives right into it. Of course, this
sentence doesn’t mean that the loop would lack those three items. In fact, it
may look like this:

starting;
do
{

statement(s);
do_this;

}
while(while_true);

Yikes! Better stick with the basic while loop and bother with this jobbie only
when something needs to be done once (or upside down).

� The condition that while examines is either TRUE or FALSE, according
to the laws of C, the same as a comparison made by an if statement.
You can use the same symbols used in an if comparison, and even use
the logical doodads (&& or ||) as you see fit.

� This type of loop is really rare. It has been said that only a mere 5 percent
of all loops in C are of the do-while variety.

� You can still use break to halt a do-while loop. Only by using break, in
fact, can you halt the statements in the midst of the loop. Otherwise, as
with a while or for loop, all the statements within the curly braces
repeat as a single block.

A flaw in the COUNTDWN.C program
Run the COUNTDWN program again. When it asks you to type a number,
enter 200.

There isn’t a problem with this task; the program counts down from 200 to
0 and blasts off as normal. But, 200 is out of the range the program asks you
to type.

Chapter 18: Do C While You Sleep 229
Use your operating system’s scroll-back buffer to view the lines that have
scrolled off the screen. Hopefully, the DOS prompt or terminal window that
you’re using has this feature.

What about typing 0 or a negative number? Try that now; run the program and
type–5. You see something like this:

T-minus -5
Zero!
Blast off!

The do while loop is executed at least once, so the -5 is displayed. Ack! It
isn’t one of the great boo-boos of modern programming history, but it’s bound
to startle the astronauts, who are expecting a leisurely though suspenseful
takeoff sequence.

The way to guard against this faux pas is to write a special loop to ensure that
the value that is typed is kosher. Yes, it’s a kosher number loop. That is han-
dled quite brilliantly by do-while.

The always kosher number-checking
do-while loop
One thing you should do in all your programs is — and I have put this on a
separate line for emphasis:

Check your input bounds!

This advice makes sense only if you know what input bounds are. Okay: They’re
the range of numbers or letters or whatever that your program is looking for.
In COUNTDWN.C, they’re numbers from 1 to 100. In some database programs,
they’re the “type 40 or fewer character” limits. Stuff like that.

You want to ensure that users cannot type a wrong, or “illegal,” value — one
that would screw up your program. You have to make sure that they type only
40 or fewer characters. Any more than that, and your program may die a
strange death. You must guard against this situation — and you can, if you
write your program correctly.

Traditionally, this type of defensive programming is known as bulletproofing.
It protects the program from this type of error in advance. That’s why you
check everything the user types, to see whether it’s kosher. If not, you can
either ask politely for input again or just print a rude error message.

230 Part III: Giving Your Programs the Ability to Run Amok

To make the COUNTDWN.C program bulletproof, you have to have the pro-
gram ask for input again whenever the value that’s entered is either less than
1 or greater than 100. A do-while loop does that job nicely, and I’m willing to
argue that on two points:

� The first argument for do-while is that it repeats itself once, no matter
what. That way, you can ask the question the first time and it has to be
repeated only when the value that’s entered is out of range.

� The second argument is that the while part of the loop checks to see
whether the value that’s entered (the start variable) is less than 1 or
greater than 100.

You don’t have to change COUNTDWN.C very much. Just modify the first part
of the program to read:

do
{

printf(“Please enter the number to start\n”);
printf(“the countdown (1 to 100):”);
scanf(“%d”,&start);

}
while(start<1 || start>100);

The do-while loop asks the same question the program asked earlier. But,
after a user types a value, the while part of the loop checks to see whether
the value of the start variable is less than 1 OR greater than 100. If either
condition is true, the loop repeats, asking the same question over and over
until a proper value is entered.

Save the changed COUNTDWN.C source code to disk. Compile the program.
Run it:

Please enter the number to start
the countdown (1 to 100):

Type 0 and press Enter.

Ha! The program asks again. Type 101 and press Enter.

Golly, this program is smart! Any value outside the range from 1 to 100 causes
the program to ask again and again for the proper number to be pressed. That’s
all made possible with a nifty do-while loop.

� Bounds checking like this is done in just about every professional pro-
gram. Whenever you’re asked to type a value in a certain range or to
type fewer than so-many letters, a loop is in there, making sure that
you’re doing it right.

Chapter 18: Do C While You Sleep 231
� Most of the problems Microsoft has had with critical or fatal errors in its

software are caused by a lack of this type of bounds checking.

� Refer to Chapter 14 for more information about the logical || (OR)
comparison.

� You may want to insert the following comment into your source code,
just above the first loop:

/* This loop ensures they type in
a proper value */

Nested Loops and Other
Bird-Brained Concepts

Glorious loops within loops, wheels within wheels, spinning ’round like some
nauseating amusement park ride with a drugged-out, tattooed guy named Craig
asleep at the controls. But that’s another subject. In the C programming lan-
guage, spinning two loops is a cinchy and practical thing to do. It’s called
making a nested loop, or with one loop inside another.

Adding a tense, dramatic delay
to the COUNTDWN.C program
What’s missing from the COUNTDWN.C program is a little tension. In case you
haven’t noticed, typing any value from 1 to 100 doesn’t really affect the speed
at which the countdown is displayed; after you press Enter, the text zips on up
the screen. No suspense!

To help slow down the display, you can insert a delay loop into the program.
The purpose of the delay loop is merely to spin the computer’s CPU, burning
up clock cycles to slow down the program at a certain point. Yes, you do it on
purpose.

Modify the second do while loop in the COUNTDWN.C program to read:

do
{

printf(“T-minus %d\n”,start);
start--;
for(delay=0;delay<100000;delay++); /* delay loop */

}
while(start>0);

232 Part III: Giving Your Programs the Ability to Run Amok

And, because the program would puke if it encountered the delay variable
without its first being declared, add the following line just below the int start
statement, at the top of the source code:

long delay;

Here’s the entire, updated source code, including changes added in the previ-
ous sections:

/* An important program for NASA to properly launch
America’s spacecraft. */

#include <stdio.h>

int main()
{

int start;
long delay;
do
{

printf(“Please enter the number to start\n”);
printf(“the countdown (1 to 100):”);
scanf(“%d”,&start);

}
while(start<1 || start>100);

/* The countdown loop */

do
{

printf(“T-minus %d\n”,start);
start--;
for(delay=0;delay<100000;delay++); /* delay loop */

}
while(start>0);

printf(“Zero!\nBlast off!\n”);
return(0);

}

Ensure that your source code for COUNTDWN.C resembles this source code,
which now has a nested loop, for purposes of delaying the text display and
output.

Save. Compile. Run.

If the output still runs too fast, change the value in the for loop from 100,000 to
1,000,000 (written like this: 1000000). If that still doesn’t work, try 2,000,000.
(If you need to go to 4,000,000, you need to declare the delay variable as an
unsigned long.)

Chapter 18: Do C While You Sleep 233
� Having a for loop inside a while loop is referred to as a nested loop. Note

that both loops don’t need to be of the same type (two for loops or two
while loops).

� A nested loop is basically one loop spinning ’round inside another loop.

� The first loop, or outside loop, ticks off first. Then, the inside loop ticks
off, looping as many times as it does. After that, the outside loop ticks off
another one, and then the inside loop is repeated entirely again. That’s
how they work.

� Keep separate the variables associated with one loop or another. For
example, the following two for loops are nested improperly:

for(x=0;x<5;x++)
for(x=5;x>0;x--);

Because x is used in both loops, these nested loops don’t behave as you
expect. This loop is infinite, in fact, because both are manipulating the
same variable in different directions.

� This disaster probably isn’t apparent to you. You write some huge pro-
gram and nest two for loops miles apart without thinking about it, by
using your favorite variable x (or i) in each one. Those kind of bugs can
wreck your day.

� The way to avoid messing up nested loops is to use different variables
with each one — for example, a or b, or i1 and i2, or even something
descriptive, such as start and delay, as used in the COUNTDWN.C
example.

� That nested for loop in COUNTDWN.C ends with a semicolon, indicating
that it doesn’t “own” any statements that are repeated. Here’s another
way you could format it:

for(delay=0;delay<100000;delay++)
;

This example shows you that the for loop doesn’t have any statements
worth repeating. It just sits and spins the microprocessor, wasting time
(which is what you want).

� Although delay loops, such as the one shown in COUNTDWN.C, are
common, a better way exists. That is to use the computer’s internal
clock to time a delay of a specific duration. I show you an example in C
AllinOne Desk Reference For Dummies (Wiley).

� My first IBM PC — some 20 years ago — required a delay loop that
counted to only 10,000 for about a half-second pause between each line
displayed. Today’s computers are much, much faster — obviously!

234 Part III: Giving Your Programs the Ability to Run Amok

Sleepy time!
The C language does have a built-in delay func-
tion, so you really have no need to program a
delay loop — as long as you can stand the wait!

The sleep() function is used to pause a pro-

said seconds.
in sleep()

sleep(40);

wait time while a program is running.

DWN.C with

sleep(1);

This line adds a dramatic pause between each

dening pause. But, it works.

Note that in some implementations of GCC, the
sleep() function apparently uses millisec-

one second, for example, you use this command
in COUNTDWN.C:

sleep(1000);

Keep in mind that this implementation of the
sleep() function is nonstandard.

gram for a given number of seconds. Yes — I
You specify the seconds to wait

’s parentheses:

You can catch 40 winks — or 40 seconds — of

You can replace the for delay loop in COUNT-

line’s output — a slow, dramatic, and often mad-

onds, not seconds, as its argument. To delay

The nitty GRID.C of nested loops
Nested loops happen all the time. Most often, they happen when you’re filling
in a grid or an array. In that case, you work on rows and columns, filling up
the columns row-by-row, one after the other, or vice versa. An example of how
it’s done is shown in the GRID.C program, which displays a grid of numbers
and letters:

#include <stdio.h>

int main()
{

int a;
char b;

printf(“Here is thy grid...\n”);

for(a=1;a<10;a++)
{

for(b=’A’;b<’K’;b++)
{

printf(“%d-%c “,a,b);
}
putchar(‘\n’); /* end of line */

}
return(0);

}

Chapter 18: Do C While You Sleep 235
This program creates a 10-by-9 square (okay — grid) of numbers and letters
by using a nested-loop arrangement.

Enter the source code into your editor. Save your efforts to disk as GRID.C.

Compile the program. Notice that putting two for statements together doesn’t
cause the compiler to spew errors at you (unless you made a typo somewhere).

Run. Here’s what the output should look like:

Here is thy grid...
1-A 1-B 1-C 1-D 1-E 1-F 1-G 1-H 1-I 1-J
2-A 2-B 2-C 2-D 2-E 2-F 2-G 2-H 2-I 2-J
3-A 3-B 3-C 3-D 3-E 3-F 3-G 3-H 3-I 3-J
4-A 4-B 4-C 4-D 4-E 4-F 4-G 4-H 4-I 4-J
5-A 5-B 5-C 5-D 5-E 5-F 5-G 5-H 5-I 5-J
6-A 6-B 6-C 6-D 6-E 6-F 6-G 6-H 6-I 6-J
7-A 7-B 7-C 7-D 7-E 7-F 7-G 7-H 7-I 7-J
8-A 8-B 8-C 8-D 8-E 8-F 8-G 8-H 8-I 8-J
9-A 9-B 9-C 9-D 9-E 9-F 9-G 9-H 9-I 9-J

Wow. Such efficiency should please any government bureaucracy.

� The first, outer for loop counts from 1 to 10.

� The inner for loop may seem strange, but it’s not. It’s only taking advan-
tage of the dual-number/-character nature of letters in a computer. The
character variable b starts out equal to the letter A and is incremented
one letter at a time, up to the letter K. What happens is that b is set equal
to the letter A’s ASCII value, which is 65. The variable b then increments
up to the letter K’s ASCII value, which is 75. It’s sneaky, but doable.

� The printf() function displays the numbers and letters as the inner loop
spins. You can see this process on your screen: The outer loop stays at
one number while the letters A through K are printed. Then, the outer
loop is incremented, and the next row of letters is printed.

� Note that the printf() function has a space after the %c character. That’s
what keeps the columns in the grid from running into each other.

� The putchar() function displays a single character on the screen. In
GRID.C, it’s used to display a \n newline character at the end of each row.

Break the Brave and Continue the Fool
Two C language keywords can be used to directly control loops in your pro-
grams. The keywords are break and continue. The break keyword should
be familiar to you, having been introduced in Chapter 15 and tossed at you
every now and again since then. The continue keyword is a new beast, but it
plays an important role — one that you may even find handy.

236 Part III: Giving Your Programs the Ability to Run Amok

What continue does is to instantly repeat a loop. It works like break in that
the rest of the statements in the loop are skipped; unlike break, the continue
command sends the computer back to the beginning of the loop. The fool!

� Both break and continue are C language keywords and statements unto
themselves. They each must end with a semicolon.

� Both break and continue work inside any C loop.

� Both break and continue cause horrid errors outside a loop.

Please continue. . . .
The following program is BORC.C, which isn’t named after the Muppet’s
Swedish Chef. Instead, it’s an acronym for break or continue, the two key-
words this program fiddles with:

#include <stdio.h>

int main()
{

int x=0;

for(;;)
{

x++;
if(x<=5)
{

printf(“%d, “,x);
continue;

}
printf(“%d is greater than 5!\n”,x);
break;

}
return(0);

}

Type the source code for BORC.C into your editor. Save it to disk as BORC.C,
which stands for break or continue. (If you keep thinking of Bork-Bork-Bork,
you save it to disk as BORK.C, which isn’t what I’m after.)

Compile and run the program.

Here’s how it goes:

1, 2, 3, 4, 5, 6 is greater than 5!

Chapter 18: Do C While You Sleep 237
The BORC.C program contains an endless for loop. Furthermore, the loop is
cut short by the continue statement. After the value of x grows to be more
than 5, the continue is skipped and, finally, a break statement stops the end-
less loop.

� The for(;;) part indicates an endless loop. I read it as “for ever.”

� Notice the space after the %d and comma in the printf() statement.

� The continue statement causes the rest of the loop — the printf() and
break — to be skipped, and then the loop is repeated. The increasing
value of x proves that the loop continues to spin.

� An else condition doesn’t have to be present to complement the if in
Line 10. That’s because continue halts the program right then and there!
If no continue were present, the break in Line 16 would ensure that the
loop ran through only once.

The continue keyword
Like the break keyword, the continue keyword is used to affect how a loop
loops. This time, the job is to immediately repeat the loop, skipping over the
remaining statements and starting the loop over with the first line (the for,
while, or do or whatever started the loop in the first place):

continue;

The continue keyword is a C language statement unto itself and must end
properly with a semicolon.

The continue command comes in handy when you have statements in a loop
that you don’t want to repeat every time; continue just skips over them and
starts the loop over at the beginning.

� The continue command works in any loop, not just in while loops.

� Like break, continue affects only the loop it’s in.

� The continue keyword forces the computer to instantly repeat a loop.
The rest of the statements in the loop are just skipped, and the loop starts
all over.

� Note that continue repeats only the loop it’s in. If you have a nested
loop, keep in mind that continue affects only one loop at a time. Also,
continue cannot repeat a while loop when the loop’s condition
becomes false.

238 Part III: Giving Your Programs the Ability to Run Amok

� Keep in mind that although continue forces another spin of the loop’s
wheel, it doesn’t reinitialize the loop. It tells the compiler to “go again,”
not to “start over.”

� You should keep in mind only two real warnings about the continue
command: Don’t use it outside a loop or expect it to work on nested
loops; and be careful where you put it in a while loop, lest you skip over
the loop’s counter and accidentally create an endless loop.

� As a final, consoling point, this command is rarely used. In fact, many C
programmers may be a little fuzzy on what it does or may not know pre-
cisely how to use it.

Chapter 19

Switch Case, or, From
‘C’ to Shining ‘c’

In This Chapter
� Solving the endless else-if puzzle

� Using switch-case

� Creating a switch-case structure

Honestly, I don’t believe that switch-case is really a loop. But the word
loop works so much better than my alternative, structure thing. That’s

because the statements held inside the switch-case structure thing aren’t
really repeated, yet in a way they are. Well, anyway.

This chapter uncovers the final kind-of-loop thing in the C language, which is
called switch-case. It’s not so much a loop as it’s a wonderful method of
cleaning up a potential problem with multiple if statements. As is true with
most things in a programming language, it’s just better for me to show you an
example than to try to explain it. That’s what this chapter does.

The Sneaky switch-case Loops
Let’s all go to the lobby,
Let’s all go to the lobby,
Let’s all go to the lobby,
And get ourselves a treat!

— Author unknown

And, when you get to the lobby, you probably order yourself some goodies
from the menu. In fact, management at your local theater has just devised an

240 Part III: Giving Your Programs the Ability to Run Amok

interesting computer program to help cut down on pesky, hourly-wage employ-
ees. The program they have devised is shown right here:

/* Theater lobby snack bar program */

#include <stdio.h>

int main()
{

char c;

printf(“Please make your treat selection:\n”);
printf(“1 - Beverage.\n”);
printf(“2 - Candy.\n”);
printf(“3 - Hot dog.\n”);
printf(“4 - Popcorn.\n”);
printf(“Your choice:”);

/* Figure out what they typed in. */

c=getchar();
if(c==’1’)

printf(“Beverage\nThat will be $8.00\n”);
else if(c==’2’)

printf(“Candy\nThat will be $5.50\n”);
else if(c==’3’)

printf(“Hot dog\nThat will be $10.00\n”);
else if(c==’4’)

printf(“Popcorn\nThat will be $7.50\n”);
else
{

printf(“That is not a proper selection.\n”);
printf(“I’ll assume you’re just not hungry.\n”);
printf(“Can I help whoever’s next?\n”);

}
return(0);

}

Type this source code into your editor. Save it to disk as LOBBY1.C. This should
brighten your heart because you know that more LOBBY programs are on the
way. . . .

Compile. Fix any errors. You may get a few because it’s such a long program.
Watch your spelling and remember your semicolons. Recompile after fixing
any errors.

Chapter 19: Switch Case, or, From ‘C’ to Shining ‘c’ 241
Run:

Please make your treat selection:
1 - Beverage.
2 - Candy.
3 - Hot dog.
4 - Popcorn.
Your choice:

Press 2, for Candy. Love them Hot Tamales! You see

Candy
That will be $5.50

Gadzooks! For Hot Tamales? I’m sneaking food in next time. . . .

Run the program again and try a few more options. Then, try an option not
on the list. Type M for a margarita:

That is not a proper selection.
I’ll assume you’re just not hungry.
Can I help whoever’s next?

Oh, well.

The switch-case Solution
to the LOBBY Program

Don’t all those else-if things in the LOBBY1.C program look funny? Doesn’t
it appear awkward? Maybe not. But it is rather clumsy. That’s because you
have a better way to pick one of several choices in C. What you need is a
switch-case loop.

Right away, I need to tell you that switch-case isn’t really a loop. Instead,
it’s a selection statement, which is the official designation of what an if state-
ment is. switch-case allows you to select from one of several items, like a
long, complex string of if statements — the kind that’s now pestering the
LOBBY1.C program.

242 Part III: Giving Your Programs the Ability to Run Amok

Next is the source code for LOBBY2.C, an internal improvement to the
LOBBY1.C program. It’s internal because you’re just messing with the pro-
gram’s guts here — making them more elegant. Externally, the program still
works the same:

/* Theater lobby snack bar program */

#include <stdio.h>

int main()
{

char c;

printf(“Please make your treat selection:\n”);
printf(“1 - Beverage.\n”);
printf(“2 - Candy.\n”);
printf(“3 - Hot dog.\n”);
printf(“4 - Popcorn.\n”);
printf(“Your choice:”);

/* Figure out what they typed in. */

c=getchar();
switch(c)
{

case ‘1’:
printf(“Beverage\nThat will be $8.00\n”);
break;

case ‘2’:
printf(“Candy\nThat will be $5.50\n”);
break;

case ‘3’:
printf(“Hot dog\nThat will be $10.00\n”);
break;

case ‘4’:
printf(“Popcorn\nThat will be $7.50\n”);
break;

default:
printf(“That is not a proper selection.\n”);
printf(“I’ll assume you’re just not hungry.\n”);
printf(“Can I help whoever’s next?\n”);

}
return(0);

}

Keep the LOBBY1.C program in your editor. Use this source code for LOBBY2.C
as a guide and edit what you see on your screen.

Chapter 19: Switch Case, or, From ‘C’ to Shining ‘c’ 243
You’re changing all the if statements into a switch-case thing. Be careful
what you type. When you’re done, double-check Lines 19 through 37 in the
source code to make sure that you got it right. (The first few lines of the pro-
gram don’t change.)

Compile. Fix any errors or typos. Note that those are colons — not
semicolons — on the case lines. The character constants are enclosed in
single quotes. The word default also ends in a colon.

Run. You should see no difference in the output. Internally, however, you
have converted an ugly string of if-else statements into an elegant decision-
making structure: the switch-case loop (or “structure thing”).

� Detailed information on what happens in a switch-case loop is covered
in the next section.

� The switch command in Line 19 takes the single character typed at the
keyboard (from Line 18) and tells the various case statements in its curly
braces to find a match.

� Each of the case statements (Lines 21, 24, 27, and 30) compares its char-
acter constant with the value of variable c. If there’s a match, the state-
ments belonging to that case are executed.

� The break in each case statement tells the compiler that the switch-
case thing is done and to skip the rest of the statements.

� If the break is missing, execution falls through to the next group of case
statements, which are then executed, no matter what. Watch out for that!
Missing breaks are the bane of switch-case loops.

� The final item in the switch-case thing is default. It’s the option that
gets executed if no match occurs.

The Old switch-case Trick
This is one booger of a command to try to become comfy with. Although
switch-case things are important, they contain lots of programming finesse
that many beginners stumble over. My advice is to work through the programs
in this chapter to get a feel for things and then check mark bullets in this
section for review purposes or to figure out what went wrong when things
don’t work.

The switch keyword is used to give your programs an easy way to make
multiple-choice guesses. It should replace any long repetition of if-else
statements you’re using to make a series of comparisons.

244 Part III: Giving Your Programs the Ability to Run Amok

Using switch involves creating a complex structure that includes the case,
break, and default keywords. Here’s how it may look:

switch(choice)
{

case item1:
statement(s);
break;

case item2:
case item3:

statement(s);
break;

default:
statement(s);

}

choice must be a variable. It can be a key typed at the keyboard, a value
returned from the mouse or joystick, or some other interesting number or
character the program has to evaluate.

After the case keyword come various items; item1, item2, item3, and so on
are the various items that choice can be. Each one is a constant, either a char-
acter or a value; they cannot be variables. The case line ends in a colon, not in a
semicolon.

Belonging to each case item are one or more statements. The program exe-
cutes these statements when item matches the choice that switch is making —
like an if statement match. The statements are not enclosed in curly braces.
The statements are also optional. (More on that in a second.)

The last statement in a group of case statements is typically a break com-
mand. Without the break there, the program keeps working its way through
the next case statement.

The last item in the switch structure is default. It contains the statements
to be executed when no match occurs — like the final else in an if-else
structure. The default statements are executed no matter what (unless you
break out of the structure earlier).

The most important thing to remember about switch-case is that the pro-
gram always walks through the entire thing unless you put a break in there
when you want it to stop. For example, consider this program snippet:

switch(key)
{

case ‘A’:
printf(“The A key.\n”);
break;

Chapter 19: Switch Case, or, From ‘C’ to Shining ‘c’ 245

case ‘B’:
printf(“The B key.\n”);
break;

case ‘C’:
case ‘D’:

printf(“The C or D keys.\n”);
break;

default:
printf(“I don’t know that key.\n”);

}

Suppose that key is a single-character variable containing a character that
was just typed at the keyboard. Here are three examples of how it would
work:

Example 1: Suppose that the key variable contains the letter A. The program
works:

switch(key)

Pick a key! So, key equals big A. Mosey on down the case list:

case ‘A’:

Yup, we have a match. The value of key equals the constant, big A. Execute
those statements:

printf(“The A key.\n”);

Message printed. Then:

break;

Bail out of the switch-case thing. I’m done.

If you didn’t bail out at this point, the rest of the statements in the switch-
case structure would be executed no matter what.

Example 2: Suppose that a user presses the C key. Here’s how it works:

switch(key)

key is a C. It’s time to check the case statements for a match:

case ‘A’:

246 Part III: Giving Your Programs the Ability to Run Amok

Nope! Skip to the next case:

case ‘B’:

Nope! Skip to the next case:

case ‘C’:

Yup! There’s a match. The value of key equals the character constant ‘C’ right
here. What’s next?

case ‘D’:

The computer just goes ho-hum. There’s no match, but it’s still waiting for
instructions because it matched the case ‘C’. Because the statements after
case ‘D’ are the first that it finds, it executes those:

printf(“The C or D keys.\n”);

Message printed. Then:

break;

The rest of the switch-case structure is skipped.

Example 3: This time, the character X is entered at the keyboard. Here’s how
the switch-case thing works:

switch(key)

key is an X. The computer wends its way through the case statements for a
match:

case ‘A’:

Nope! Skip to the next case:

case ‘B’:

Nope! Skip to the next case:

case ‘C’:

Nope! Skip to the next case:

case ‘D’:

Chapter 19: Switch Case, or, From ‘C’ to Shining ‘c’ 247
Nope! All the cases are done. What’s left is the default, which supposedly
handles everything else — including the X:

default:

and the only statement:

printf(“I don’t know that key.\n”);

The switch-case structure is done.

� The thing in switch’s parentheses (choice) must work out to either a
character value or an integer value. Most programmers put a character
or integer variable there. You can also put a C language statement or
function in the parentheses, as long as it works out to a character value
or an integer value when it’s done.

� The case line ends with a colon, not a semicolon. The statements
belonging to case aren’t enclosed in curly braces.

� The last statement belonging to a group of case statements is usually
break. This statement tells the computer to skip over the rest of the
switch structure and keep running the program.

� If you forget the break, the rest of the switch structure keeps running.
That may not be what you want.

� The computer matches each item in the case statement with the choice
that switch is making. If there’s a match, the statements belonging to
that case are executed; otherwise, they’re skipped.

� It’s possible for a case to lack any statements. In that case, a match simply
“falls through” to the next case statement.

� The keyword case must be followed by a constant value — either a
number or a character. For example:

case 56: /* item 56 chosen */

or

case ‘L’: /* L key pressed */

You cannot stick a variable there. It just doesn’t work. You may want to.
You may even e-mail me, asking whether you can, but you can’t. Give
up now.

� Most C manuals refer to the command as switch, and case is just another
keyword. I use switch-case as a unit because it helps me remember that
the second word is case and not something else.

� You don’t need a default to end the structure. If you leave it off and none
of the case’s items matches, nothing happens.

248 Part III: Giving Your Programs the Ability to Run Amok

The Special Relationship between
while and switch-case

Most programs have at their core a while loop. But, within that while loop,
they usually have a nice, big switch-case structure. That’s because you can
keep choosing options over and over until you choose the option that closes
the program. The over-and-over thing is a loop handled by while, and the
selection is done by a switch-case structure. To drive this point home, I pre-
sent the final incarnation of the LOBBY.C program:

/* Theater lobby snack bar program */

#include <stdio.h>

int main()
{

char c;
int done;
float total=0;

printf(“Please make your treat selections:\n”);
printf(“1 - Beverage.\n”);
printf(“2 - Candy.\n”);
printf(“3 - Hot dog.\n”);
printf(“4 - Popcorn.\n”);
printf(“= - Done.\n”);
printf(“Your choices:\n”);

/* Figure out what they typed in. */

done=0;
while(!done)
{

c=getchar();
switch(c)
{

case ‘1’:
printf(“Beverage\t$8.00\n”);
total+=8;
break;

case ‘2’:
printf(“Candy\t\t$5.50\n”);
total+=5.5;
break;

case ‘3’:
printf(“Hot dog\t\t$10.00\n”);
total+=10;
break;

Chapter 19: Switch Case, or, From ‘C’ to Shining ‘c’ 249

case ‘4’:
printf(“Popcorn\t\t$7.50\n”);
total+=7.5;
break;

case ‘=’:
printf(“= Total of $%.2f\n”,total);
printf(“Please pay the cashier.\n”);
done=1;
break;

default:
printf(“Improper selection.\n”);

} /* end switch */
} /* end while */
return(0);

}

Please type the source code for LOBBY3.C into your editor. You can try editing
the LOBBY2.C program, if you want, but I have made many subtle changes to
the program and wouldn’t want you to miss any. Start from scratch, if you’re
willing.

Save the file to disk as LOBBY3.C.

Compile. Fix any errors that may have crept into the code.

Run:

Please make your treat selection:
1 - Beverage.
2 - Candy.
3 - Hot dog.
4 - Popcorn.
= - Done.
Your choice:

To properly run the program, type your choices all at once and then press the
equal-sign (=) key and then Enter. This strategy avoids the buffering problem
with the getchar() function, which I could address, but it’s beyond the scope
of this chapter.

For example, if you want a beverage and a hot dog, type 13= and then press
Enter.

Beverage $8.00
Hot dog $10.00
Total of $18.00
Please pay the cashier.

250 Part III: Giving Your Programs the Ability to Run Amok

Run the program again, enter 123412341234xx92431=, and then press Enter:

Beverage $8.00
Candy $5.50
Hot dog $10.00
Popcorn $7.50
Beverage $8.00
Candy $5.50
Hot dog $10.00
Popcorn $7.50
Beverage $8.00
Candy $5.50
Hot dog $10.00
Popcorn $7.50
Improper selection.
Improper selection.
Improper selection.
Candy $5.50
Popcorn $7.50
Hot dog $10.00
Beverage $8.00
Total of $124.00
Please pay the cashier.

This is the last time I’m taking all you guys to the lobby!

� Most programs employ this exact type of loop. The while(!done) spins
’round and ’round while a switch-case thing handles all the program’s
input.

� One of the switch-case items handles the condition when the loop must
stop. In LOBBY3.C, the key is the equal sign. It sets the value of the done
variable to 1. The while loop then stops repeating.

� C views the value 0 as FALSE. So, by setting done equal to 0, by using
the ! (not), the while loop is executed. The reason for all this is so that
the loop while(!done) reads “while not done” in English.

� The various case structures then examine the keys that were pressed.
For each match 1 through 4, three things happen: The item that is ordered
is displayed on the screen; the total is increased by the cost of that item
(total+=3, for example); and a break statement busts out of the switch-
case thing. At that point, the while loop continues to repeat as additional
selections are made.

� You may remember the += thing, from Chapter 16. It’s a contraction of
total = total + value.

C Level
Part IV

In this part . . .

Your C language journey has been, I hope, a fun one.

For example, why is it int main(), and what is the point
of the return(0); statement? I discuss what exactly
#include <stdio.h>
mation on printf()

Sadly, I have lots more ground to cover, but only a
scant few more pages in which to cover it. Therefore, I
collected what I feel are some important concepts that
are touched on earlier in this book and present them in
this part of the book in a more formal fashion.

This part of the book answers some questions that may
have been nagging you from other parts of this book.

does as well as provide more infor-
and give you an introduction into

arrays, strings, and lots of other fun stuff. So, crack your
knuckles and let’s get going!

Chapter 20

Writing That First Function
In This Chapter
� Understanding functions

� Creating the jerk() function

� Prototyping functions

� Using the upside-down prototype

� Formatting and naming functions

Functions are where you “roll your own” in the C language. They’re nifty
little procedures, or series of commands, that tell the computer to do

something. All that’s bundled into one package, which your program can then
use repeatedly and conveniently. In a way, writing a function is like adding
your own commands to the C language.

If you’re familiar with computer programming languages, you should recognize
functions as similar to subroutines or procedures. If you’re not familiar with
computer programming (and bless you), think of a function as a shortcut. It’s
a black box that does something wonderful or mysterious. After you construct
the function, the rest of your program can use it — just like any other C lan-
guage function or keyword. This chapter definitely puts the fun into function.

(This chapter is the first one in this book to lack a clever use of the letter C
in the title. Yeah, I was getting sick of it too — C sick, in fact.)

Meet Mr. Function
Are functions necessary? Absolutely! Every program must have at least one
function, the main() function. That’s required. Beyond that, you don’t need
to create your own functions. But, without them, often your code would con-
tain a great deal of duplicate instructions.

254 Part IV: C Level

A silly example you don’t have to type
Suppose that you write a program that plays “Alexander’s Rag Time Band”
every time a user does something pleasing. Because the programming required
to play the song is odd and unique, you decide to write a function to conduct
the PC’s orchestra. For giggles, suppose that it looks like this:

playAlex()
{

play(466,125);
play(494,375);
play(466,125);
play(494,1000);
/* and there would be more... */

}

Assume that the play() function is used to make the computer’s speaker
squawk at a specific pitch for a certain duration. A gaggle of play() functions
put together makes the computer whistle a tune.

With all that neatly tucked into a function, your program can then “call” the
function every time it wants to play the song. Rather than repeat a vast chorus
line of commands, you merely stick the following line into your code:

playAlex();

That’s a C language “command” that says “Go off yonder to said playAlex()
function, do what you must while you’re there, and then return to this here
very spot to continue a-workin’.” Lo, the function has made writing the pro-
gram easier.

� You create a function by writing it in your source code. The function has
a name, optional doodads, plus its own C language code that carries out
the function’s task. More on this later in this chapter.

� To use a function, you call it. Yoo-hoo! You do this by typing the function’s
name in your program, followed by the empty parentheses:

playAlex();

This command calls the playAlex() function, and the computer goes
off and does whatever it’s instructed to do in that function.

� Yes, that’s right. Calling (or using) a function is as easy as sticking its
name in your source code, just like any other C language statement.

� Some functions require information in their parentheses. For exam-
ple, puts:

puts(“Oh, what a great way to start the day.”);

Chapter 20: Writing That First Function 255
� Some functions return a value. That is, they produce something that your

program can use, examine, compare, or whatever. The getchar() func-
tion returns a character typed at the keyboard, which is typically stored
in a character variable; thus:

thus=getchar();

� Some functions require parentheses stuff and return a value.

� Other functions (such as playAlex()) neither require parentheses stuff
nor return a value.

� Functions are nothing new. Most C programs are full of them, such as
printf(), getchar(), atoi(), and others. Unlike your own functions,
these functions are part of the compiler’s library of functions. Even so,
the functions you write work just like those others do.

� Creating a function doesn’t really add a new word to the C language. How-
ever, you can use the function just like any other function in your pro-
grams; printf() and scanf(), for example.

A potentially redundant program
in need of a function
I like to think of functions as removing the redundancy from programs. If any-
thing must be done more than once, shuffle it off into a function. That makes
writing the program so much easier. It also breaks up the main() function in
your source code (which can get tediously long).

The following sample program is BIGJERK1.C, a litany of sorts devoted to some-
one named Bill, who is a jerk:

#include <stdio.h>

int main()
{

printf(“He calls me on the phone with nothing say\n”);
printf(“Not once, or twice, but three times a day!\n”);
printf(“Bill is a jerk!\n”);
printf(“He insulted my wife, my cat, my mother\n”);
printf(“He irritates and grates, like no other!\n”);
printf(“Bill is a jerk!\n”);
printf(“He chuckles it off, his big belly a-heavin’\n”);
printf(“But he won’t be laughing when I get even!\n”);
printf(“Bill is a jerk!\n”);
return(0);

}

Type this program into your editor. Double-check all the parentheses and
double quotes. They’re maddening. Maddening!

256 Part IV: C Level

Compile and run BIGJERK1.C. It displays the litany on the screen. Ho-hum.
Nothing big. Notice that one chunk of the program is repeated three times.
Smells like a good opportunity for a function.

� Most of the redundancy a function removes is much more complex than
a simple printf() statement. Ah, but this is a demo.

� None of the Bills I personally know is a jerk. Feel free to change the name
Bill into someone else’s name, if you feel the urge.

� In the olden days (and I’m showing my age here), every byte in a program
was vital. A message such as Bill is a jerk repeated over and over
meant that precious bytes of data were being wasted on a silly text string.
Ancient programmers, such as myself, honed their skills by removing
excess bytes from programs like this one. Shaving a program’s size from
4,096 bytes to 3,788 bytes was considered a worthy accomplishment. Of
course, with today’s mega-/gigacomputers, saving space like that is con-
sidered trivial.

The noble jerk() function
It’s time to add your first new word to the C language — the jerk() function.
Okay, jerk isn’t a C language word. It’s a function. But you use it in a program
just as you would use any other C language word or function. The compiler
doesn’t know the difference — as long as you set everything up properly.

Next, the new, improved “Bill is a jerk” program contains the noble jerk()
function, right in there living next to the primary main() function. This pro-
gram is a major step in your programming skills — a moment to be savored.
Pause to enjoy a beverage after typing it:

#include <stdio.h>

int main()
{

printf(“He calls me on the phone with nothing say\n”);
printf(“Not once, or twice, but three times a day!\n”);
jerk();
printf(“He insulted my wife, my cat, my mother\n”);
printf(“He irritates and grates, like no other!\n”);
jerk();
printf(“He chuckles it off, his big belly a-heavin’\n”);
printf(“But he won’t be laughing when I get even!\n”);
jerk();
return(0);

}

/* This is the jerk() function */

Chapter 20: Writing That First Function 257

jerk()
{

printf(“Bill is a jerk\n”);
}

Type the source code for BIGJERK2.C in your editor. Pay special attention to
the formatting and such. Save the file to disk as BIGJERK2.C. Compile and run.
The output from this program is the same as the first BIGJERK program.

� Depending on your compiler, and how sensitive it has been set up for
error reporting, you may see a slew of warning errors when you’re compil-
ing BIGJERK2.C: You may see a no prototype error; a Function should
return a value error; a ‘jerk’ undefined error; or even a no return
value error.

� Despite the errors, the program should run. Those are mere “warning”
errors — violations of C language protocol — not the more deadly, fatal
errors, which means that the program is unable to work properly.

� I show you how to cover — and cure — the errors in a few sections.
Hold fast.

How the jerk() function
works in BIGJERK2.C
A function works like a magic box. It produces something. In the case of the
jerk() function in BIGJERK2.C, it produces a string of text displayed on the
screen. Bill is a jerk — like that.

In the BIGJERK2.C program, the computer ambles along, executing C language
instructions as normal, from top to bottom. Then, it encounters this line:

jerk();

That’s not a C language keyword, and it’s not a function known to the com-
piler. The computer looks around and finds a jerk() function defined in your
source code. Contented, it jumps over to that spot and executes those state-
ments in that function. When it reaches the last curly brace in the function,
the computer figures that it must be done, so it returns to where it was in the
main program. This happens three times in BIGJERK2.C.

Figure 20-1 illustrates what’s happening in a graphic sense. Each time the com-
puter sees the jerk() function, it executes the commands in that function.
This works just as though those statements were right there in the code (as
shown in the figure) — which, incidentally, is exactly how the BIGJERK1.C
program works.

258 Part IV: C Level

Figure 20-1:

How a
function

works in a
program.

void main()

{

 printf("He calls me on the phone with nothing say\n");

• printf("Not once, or twice, but three times a day!\n");

{

 printf("Bill is a jerk!\n"); jerk();
• printf("He insulted my wife, my cat, my mother\n");

• printf("He irritates and grates, like no other!\n");

{

 printf("Bill is a jerk!\n"); jerk();
• printf("He chuckles it off, his big belly a-heavin'\n");

• printf("But he won't be laughing when I get even!\n");

{

 printf("Bill is a jerk!\n"); jerk();
}

•

•

� The computer still reads instructions in the source code from the top
down in the main function. However, when the computer sees another
function, such as jerk(), it temporarily sidesteps to run the instructions
in that function. Then, it returns back to where it was.

� Keep in mind that not all functions are as simplistic as jerk(). Most of
them contain many lines of code — stuff that would be too complex and
redundant to use all over the place in a program.

Prototyping Your Functions
Prototyping refers to the art of telling the compiler what’s demanded of a func-
tion. It may seem like a silly thing to do, but it is in fact a good way to ensure
that functions are used properly — plus it helps you keep track of your code. I
know, it sounds a little like the compiler doesn’t trust you. But you probably
don’t trust it much either, so the respect is mutual.

� Proto comes from the Greek word for first.

� Typing comes from the Latin word for “what you do on a keyboard.”

Chapter 20: Writing That First Function 259

Prototypical prototyping problems
You have to do two things to appease the prototyping gods. First, you have to
properly configure the jerk function itself. Change Line 19 in the BIGJERK2.C
source code to read:

void jerk()

This line tells the compiler that the jerk() function returns no values. That
takes care of any function should return a value type of errors. (I cover
functions that return values in Chapter 22; functions that don’t return a value
are void. So there.)

Second, you have to tell the compiler about the jerk() function way early in
the program. Essentially, that’s what prototyping is all about: You tell the com-
piler, “Hello? There’s a jerk() function later in this program, and here’s what
you should expect to see.” You do this by sticking a line up top that looks like
the start of the jerk function — but ends with a semicolon:

void jerk(void);

Stick this line between the #include <stdio.h> and the int main() that
starts the main() function. The first part of your program looks like this:

#include <stdio.h>

void jerk(void);

int main()

The void jerk(void); line is the prototype. It tells the compiler to expect
a jerk() function later on in the source code. It also says that the function
will be of the void type, and won’t return any values. Furthermore, the
jerk() function doesn’t require any values, which is why a void is in its
parentheses. It’s heavy-duty void material. Just follow along if you don’t
understand it.

Make the editing changes per the preceding instructions. A final rendition of
the BIGJERK2.C program is shown here:

#include <stdio.h>

void jerk(void);

int main()
{

printf(“He calls me on the phone with nothing say\n”);

260 Part IV: C Level

printf(“Not once, or twice, but three times a day!\n”);
jerk();
printf(“He insulted my wife, my cat, my mother\n”);
printf(“He irritates and grates, like no other!\n”);
jerk();
printf(“He chuckles it off, his big belly a-heavin’\n”);
printf(“But he won’t be laughing when I get even!\n”);
jerk();
return(0);

}

/* This is the jerk() function */

void jerk()
{

printf(“Bill is a jerk\n”);
}

When you’re done, resave BIGJERK2.C to disk. Recompile, and you shan’t be
bothered by the various warning errors again.

� The prototype is basically a rehash of a function that appears later in
the program.

� The prototype must shout out what type of function the program is and
describe what kind of stuff should be between the parentheses.

� The prototype must also end with a semicolon. This is muy importanto.

� I usually copy the first line of the function to the top of the program,
paste it in there, and then add a semicolon. For example, in BIGJERK2.C,
I copied Line 21 (the start of the jerk function) to the top of the source
code and pasted it in, adding the necessary voids and semicolon.

� No, the main() function doesn’t have to be prototyped. The compiler is
expecting it and knows all about it. (Well, almost. . . .)

� Required prototyping is something they added to the C language after it
was first introduced. You may encounter older C source code files that
seem to lack any prototyping. Back in the days when such programs
were written (before about 1990), this was a common way of doing things.

A sneaky way to avoid
prototyping problems
Only the coolest of the C language gurus do this trick — so don’t tell anyone
that you found out about it in a For Dummies book! Shhhh!

Chapter 20: Writing That First Function 261
Face it: Prototyping is a mess. Why repeat a function’s definition at the top of
the program when it’s so obviously presented when the function is written?
Seems redundant, eh? Many others think so, which is why they code their pro-
grams upside down. To wit, here’s another rendition of the BIGJERK program:

#include <stdio.h>

/* the jerk() function */

void jerk(void)
{

printf(“Bill is a jerk\n”);
}

/* Program starts here */

int main()
{

printf(“He calls me on the phone with nothing say\n”);
printf(“Not once, or twice, but three times a day!\n”);
jerk();
printf(“He insulted my wife, my cat, my mother\n”);
printf(“He irritates and grates, like no other!\n”);
jerk();
printf(“He chuckles it off, his big belly a-heavin’\n”);
printf(“But he won’t be laughing when I get even!\n”);
jerk();
return(0);

}

Edit the source code for BIGJERK2.C and make the changes in the preceding
program. Basically, you’re removing the prototype for jerk() and replacing
it with the jerk() function itself. Note that the jerk() function is defined as
void jerk(void), just like a prototype, but it’s the function itself.

Save the changed source code to disk as BIGJERK3.C. Compile and run. The
output is the same, but by turning the function upside down, you have utterly
removed the possibility of prototyping errors.

� The program still starts at the main() function despite stacking any other
functions before it. Yes, the compiler is that smart.

� You don’t have to code your programs this way. Rarely do programmers
know in advance which functions they need, so most programmers start
out coding functions the way it was done earlier in this chapter. Only
after the function is written do they cut and paste it to the top of the file.

� Don’t add the semicolon to the function’s declaration when you list your
functions first! If you do, you get one of those nasty parse errors.

262 Part IV: C Level

� If your source code has more than one function, the order in which
they’re listed is important; you cannot use a function inside your source
code unless it has first been declared or prototyped. If you have multiple
functions in your source code, order them so that if one function calls
another, that second function is listed first. Otherwise, you’re again
saddled with prototyping errors.

The Tao of Functions
The C language allows you to put as many functions as you want in your source
code. There really is no limit, though most programmers like to keep their
source-code text files to a manageable size.

� What is “manageable size”? It depends.

� The larger the source code file, the longer it takes to compile.

� Often times, it pays to break off functions into their own, separate source
code files. It not only aids in debugging, but also makes recompiling
larger files easier.

� This book’s companion volume, C AllinOne Desk Reference For Dummies
(Wiley), contains information on creating and managing multimodule
source code files.

The function format
Here’s the format of a typical function:

type name(stuff)

The type tells the compiler whether the function returns a value. If the type
is void, the function doesn’t return any value. (It merely functs.) Otherwise,
the type describes which type of value the function returns: char, int, float,
or any of the standard C language variable declarations.

The name is the function’s name. It must be a unique name, not any keywords
or names of other C language library functions, such as printf() or atio().
(For more on names, see the next section.)

Parentheses after the function’s name are required, as they are on all C language
functions. The stuff inside the parentheses, if needed, defines whatever value
(or values) are sent off to the function for evaluation, manipulation, or mutila-
tion. I cover this subject in Chapter 22. If there’s no stuff, the parentheses can
be left empty or the word void can be used.

Chapter 20: Writing That First Function 263
The statements belonging to the function require curly braces to hug them
close. Those statements are the instructions that carry out what the function
is supposed to do. Therefore, the full format for the function is shown here:

(stuff)
{

statement(s);
/* more statements */

}

type name

The function must be prototyped before it can be used. You do that by either
listing the full function earlier than it’s first used in your source code or restat-
ing the function’s declaration at the start of your source code. For example:

type name(stuff);

This line, with a semicolon, is required in order to prototype the function
used later on in the program. It’s just a copy-and-paste job, but the semicolon
is required for the prototype. (If you forget, your compiler may ever so gently
remind you with a barrage of error messages.)

� Call it defining a function. Call it declaring a function. Call it doing a func-
tion. (The official term is defining a function.)

� Naming rules for functions are covered in the next section.

� Your C language library reference lists functions by using the preceding
format. For example:

int atoi(const char *s);

This format explains the requirements and product of the atoi() func-
tion. Its type is an int, and its stuff is a character string, which is how
you translate const char *s into English. (Also noted in the format is
that the #include <stdlib.h> thing is required at the beginning of
your source code when you use the atoi() function.)

How to name your functions
Functions are like your children, so, for heaven’s sake, don’t give them a dorky
name! You’re free to give your functions just about any name, but keep in mind
these notes:

� Functions are named by using letters of the alphabet and numbers.
Almost all compilers insist that your functions begin with a letter. Check
your compiler’s documentation to see whether this issue is something
your compiler is fussy about.

264 Part IV: C Level

� Don’t use spaces in your function names. Instead, use underlines. For
example, this isn’t a function name:

get the time()

But this is:

get_the_time()

� You can use upper- or lowercase when you’re naming your functions. A
common tactic is to capitalize key letters in the function’s name:

getTheTime()

� Most compilers are case sensitive, so if you use mixed case, be sure to
remember how you type it. For example, if the function is named
getTheTime and you type GetTheTime, you may get a linker error (the
function was not found).

� Keep your function names short and descriptive. A function named f()
is permissible yet ambiguous — it’s like saying “Nothing” when someone
asks you what you’re thinking.

� Some compilers may forbid you to begin a function name with an under-
line. It sounds bizarre, I know, but the following may be verboten:

_whatever()

� Avoid naming your functions the same as other C language functions or
keywords. Be unique!

� The function name main() is reserved for your program’s first function.

Chapter 21

Contending with Variables
in Functions

In This Chapter
� Naming variables within functions

� Understanding local variables

� Sharing one variable throughout a program

� Using global variables

Each function you create can use its own, private set of variables. It’s a must.
Just like the main() function, other functions require integer or character

variables that help the function do its job. A few quirks are involved with this
arrangement, of course — a few head-scratchers that must be properly mulled
over so that you can understand the enter function/variable gestalt.

This chapter introduces you to the strange concept of variables inside func-
tions. They’re different. They’re unique. Please avoid the desire to kill them.

Bombs Away with the
BOMBER Program!

The dropBomb() function in the BOMBER.C program uses its own, private vari-
able x in a for loop to simulate a bomb dropping. It could be an exciting ele-
ment of a computer game you may yearn to write, though you probably want
to use sophisticated graphics rather than the sloppy console screen used here:

#include <stdio.h>

void dropBomb(void); /* prototype */

int main()

266 Part IV: C Level

{
printf(“Press Enter to drop the bomb:”);
getchar();
dropBomb();
printf(“Yikes!\n”);
return(0);

}

void dropBomb()
{

int x;

for(x=20;x>1;x--)
{

puts(“ *”);
}
puts(“ BOOM!”);

}

Type the source code as listed here. In the puts() function in Line 20 are 10
spaces before the asterisk.) In Line 22 are 8 spaces before BOOM!.

Save the file to disk as BOMBER.C. Compile and run.

Press Enter to drop the bomb:
*
*
*

And so on. . . .

*
*

BOOM!
Yikes!

Yeah, it happens a little too fast to build up the nerve-tingling anticipation of
a true video game, but the point here is not dropping bombs; rather, the vari-
able x is used in the dropBomb() function. It works just fine. Nothing quirky.
Nothing new. That’s how variables are used in functions.

� See how the dropBomb() function declares the variable x:

int x;

It works just like it does in the main() function: Declare the variables
right up front. Refer to Chapter 8 for more information about declaring
variables.

� The dropBomb() function is a void because it doesn’t return any values.
It has nothing to do with any values used inside the function.

Chapter 21: Contending with Variables in Functions 267

Will the dual variable BOMBER.C
program bomb?
Modify the source code for BOMBER.C in your editor. Change the main() func-
tion so that it reads:

int main()
{

char x;

printf(“Press Enter to drop the bomb:”);
x=getchar();
dropBomb();
printf(“Key code %d used to drop bomb.\n”,x);
return(0);

}

What you’re doing is creating another x variable for use in the main() function.
This variable operates independently of the x variable in the dropBomb() func-
tion. To prove it, save your changes to disk and then compile and run the
program.

The output is roughly the same for this modified version of the program; the
key code displayed for the Enter key “character” is either 10 or 13, depending
on your computer.

� See how the two x variables don’t confuse the computer? Each one
works off by itself.

� Variables in different functions can share the same name.

� For example, you could have a dozen different functions in your program
and have each one use the same variable names. No biggie. They’re all
independent of each other because they’re nestled tightly in their own
functions.

� Variable x not only is used in two different functions — independently of
each other — but also represents two different types of variable: a char-
acter and an integer. Weird.

Adding some important tension
Face it: You’re going nowhere fast as a game programmer with BOMBER.C.
What you need is some tension to heighten the excitement as the bomb

268 Part IV: C Level

drops. Why not concoct your own delay() function to make it happen? Here’s
your updated source code:

#include <stdio.h>

#define COUNT 20000000 /* 20,000,000 */

void dropBomb(void); /* prototype */
void delay(void);

int main()
{

char x;

printf(“Press Enter to drop the bomb:”);
x=getchar();
dropBomb();
printf(“Key code %d used to drop bomb.\n”,x);
return(0);

}

void dropBomb()
{

int x;

for(x=20;x>1;x--)
{

puts(“ *”);
delay();

}
puts(“ BOOM!”);

}

void delay()
{

long int x;

for(x=0;x<COUNT;x++)
;

}

Mind the changes! Here they are:

#define COUNT 20000000 /* 20,000,000 */

A constant named COUNT is declared, equal to 20 million. It’s the delay value.
(If the delay is too long, make the value smaller; if the delay is too short, make
the value bigger.)

Chapter 21: Contending with Variables in Functions 269
Next, the delay() function must be prototyped:

void delay(void);

The delay() function is added into the dropBomb() function, right after
puts() displays the “bomb:”

delay();

Finally, the delay() function is written. A long integer named x — a different
x from any other used in any other function — is used in a for loop to create
the delay.

Double-check your source code. Save to disk. Compile. Run. This time, the
anticipation builds as the bomb slowly falls toward the ground and then —
BOOM!

� The line used to create a constant (starting with #define) does not end
with a semicolon! Go to Chapter 8 if you don’t know about this.

� You can adjust the delay by changing the constant COUNT. Note how much
easier it is than fishing through the program to find the exact delay loop
and value — one of the chief advantages of using a constant variable.

� Variables with the same names in different functions are different.

� What’s the point again? I think it’s that you don’t have to keep on think-
ing of new variable names in each of your functions. If you’re fond of using
the variable i in your for loops, for example, you can use i in all your
functions. Just declare it and don’t worry about it.

How We Can All Share and
Love with Global Variables

Sometimes, you do have to share a variable between two or more functions.
Most games, for example, store the score in a variable that’s accessible to a
number of functions: the function that displays the score on the screen; the
function that increases the score’s value; the function that decreases the value;
and functions that store the score on disk, for example. All those functions
have to access that one variable. That’s done by creating a global variable.

A global variable is one that any function in the program can use. The main()
function can use it — any function. They can change, examine, modify, or do
whatever to the variable. No problem.

270 Part IV: C Level

The opposite of a global variable is a local variable. It’s what you have seen
used elsewhere in this book. A local variable exists inside only one function —
like the variable x in the BOMBER.C program. The x is a local variable, unique
to the functions in which it’s created and ignored by other functions in the
program.

� A global variable is available to all functions in your program.

� A local variable is available only to the function in which it’s created.

� Global variables can be used in any function without having to redeclare
them. If you have a global integer variable score, for example, you don’t
have to stick an int score; declaration in each function which uses
that variable. The variable has already been declared and is ready for
use in any function.

� Because global variables exist all over the place, naming them is impor-
tant. After you declare x as a global variable, for example, no other func-
tion can declare x as anything else without ticking off the compiler.

Making a global variable
Global variables differ from local variables in two ways. First, because they’re
global variables, any function in the program can use them. Second, they’re
declared outside of any function. Out there. In the emptiness. Midst the
chaos. Strange, but true.

For example:

#include <stdio.h>

int score;

int main()
{

Etc. . . .

Think of this source code as the beginning of some massive program, the
details of which aren’t important right now. Notice how the variable score is
declared. It’s done outside of any function, traditionally just before the
main() function and after the pound-sign dealies (and any prototyping non-
sense). That’s how global variables are made.

If more global variables are required, they’re created in the same spot, right
there before the main() function. Declaring them works as it normally does;
the only difference is that it’s done outside of any function.

Chapter 21: Contending with Variables in Functions 271
� Global variables are declared outside of any function. It’s typically done

right before the main() function.

� Everything you know about creating a variable, other than being
declared outside a function, applies to creating global variables: You
must specify the type of variable (int, char, and float, for example),
the variable’s name, and the semicolon.

� You can also declare a group of global variables at one time:

int score,tanks,ammo;

� And, you can preassign values to global variables, if you want:

char prompt[]=”What?”;

An example of a global variable
in a real, live program
For your pleasure, please refer again to the BOMBER.C source code. This final
modification adds code that keeps a running total of the number of people you
kill with the bombs. That total is kept in the global variable deaths, defined
right up front. Here’s the final source code, with specific changes noted just
afterward:

#include <stdio.h>

#define COUNT 20000000 /* 20,000,000 */

void dropBomb(void); /* prototype */
void delay(void);

int deaths; /* global variable */

int main()
{

char x;

deaths=0;
for(;;)
{

printf(“Press ~ then Enter to quit\n”);
printf(“Press Enter to drop the bomb:”);
x=getchar();
fflush(stdin); /* clear input buffer */
if(x==’~’)
{

break;
}

272 Part IV: C Level

dropBomb();
printf(“%d people killed!\n”,deaths);

}
return(0);

}

void dropBomb()
{

int x;

for(x=20;x>1;x--)
{

puts(“ *”);
delay();

}
puts(“ BOOM!”);
deaths+=1500;

}

void delay()
{

long int x;

for(x=0;x<COUNT;x++)
;

}

Bring up the source code for BOMBER.C in your editor. Make the necessary
changes so that your code matches what’s shown here. Here are the details:

First, the global variable deaths is declared right before the main() function:

int deaths; /* global variable */

Second, the main() function is rewritten to contain an endless loop (refer to
the preceding code block). The loop allows you to drop bombs over and over;
pressing the ~ (tilde) key ends the loop.

Third, the global variable deaths is incremented inside the dropBomb() func-
tion by a simple addition to that function:

deaths+=1500;

Double-check your source code! Then, save BOMBER.C to disk one more time
(though you don’t quite finish it until you read Chapter 22).

Compile and run the program.

Chapter 21: Contending with Variables in Functions 273
The program effectively keeps a running tally of the dead by using the global
deaths variable. The variable is manipulated (incremented) in the dropBomb()
function and is displayed in the main() function. Both functions share that
global variable.

� See how the global variable is declared right up front? The #includes
usually come first, and then the prototyping stuff, and then the global
variables.

� No, this game doesn’t challenge you.

� For more information about the endless for loop, see Chapter 25.

� The fflush() function is used to clear extra characters that getchar()
might read. Refer to Chapter 13 for the details.

� In Unix-like operating systems, be sure to use fpurge(stdin) in Line 20
rather than fflush(stdin). Refer to Chapter 13.

274 Part IV: C Level

Chapter 22

Functions That Actually Funct
In This Chapter
� Sending a value to a function

� Sending multiple values to a function

� Using the return keyword

� Understanding the main() function

� Writing tighter code

A function is like a machine. Although the do-nothing void functions that
you probably have read about in earlier chapters are still valid functions,

the real value in a function is having it do something. I mean, functions must
chew on something and spit it out. Real meat-grinder stuff. Functions that funct.

This chapter explains how functions can be used to manipulate or produce
information. It’s done by sending a value to a function or by having a function
return a value. This chapter explains how all that kooky stuff works.

Marching a Value Off to a Function
Generally speaking, you can write four types of functions:

� Functions that work all by themselves, not requiring any extra input:
These functions are described in previous chapters. Each one is a ho-hum
function, but often necessary and every bit a function as a function can be.

� Functions that take input and use it somehow: These functions are
passed values, as either constants or variables, which they chew on and
then do something useful based on the value received.

� Functions that take input and produce output: These functions receive
something and give you something back in kind (known as generating a
value). For example, a function that computed your weight based on
your shoe size would swallow your shoe size and cough up your weight.
So to speak. Input and output.

276 Part IV: C Level

� Functions that produce only output: These functions generate a value or
string, returning it to the program — for example, a function that may tell
you where the Enterprise is in the Klingon Empire. You call the whereEnt()
function, and it returns some galactic coordinates.

Any function can fall into any category. It all depends on what you want the
function to do. After you know that, you build the function accordingly.

How to send a value to a function
Sending a value to a function is as easy as heaving Grandma through a plate
glass window. Just follow these steps:

1. Know what kind of value you’re going to send to the function.

It can be a constant value, a number or string, or it can be a C language
variable. Either way, you must declare that value as the proper type so
that the function knows exactly what type of value it’s receiving: int,
char, or float, for example.

2. Declare the value as a variable in the function’s parentheses.

Suppose that your function eats an integer value. If so, you need to
declare that value as a variable that the function will use. It works like
declaring any variable in the C language, though the declaration is made
inside the function’s parentheses following the function’s name:

void jerk(int repeat)

Don’t follow the variable declaration with a semicolon! In the preceding
example, the integer variable repeat is declared, which means that the
jerk() function requires an integer value. Internally, the function refers
to the value by using the repeat variable.

3. Somehow use the value in your function.

The compiler doesn’t like it when you declare a variable and then that
variable isn’t used. (It’s a waste of memory.) The error message reads
something like jerk is passed a value that is not used or
Parameter ‘repeat’ is never used in function jerk. It’s a
warning error — and, heck, it may not even show up — but it’s a good
point to make: Use your variables!

4. Properly prototype the function.

You must do this or else you get a host of warning errors. My advice:
Select the line that starts your function; mark it as a block. Then, copy it
to up above the main() function. After pasting it in, add a semicolon:

void jerk(int repeat);

No sweat.

Chapter 22: Functions That Actually Funct 277
5. Remember to send the proper values when you’re calling the function.

Because the function is required to eat values, you must send them along.
No more empty parentheses! You must fill them, and fill them with the
proper type of value: integer, character, floater — whatever. Only by doing
that can the function properly do its thing.

� The parameter is referred to as an argument. This term gives you a tiny
taste of C’s combative nature.

� The name you give the function’s parameter (its passed-along variable,
argument, or whatever) is used when you’re defining and prototyping
the function, and inside the function.

� You can treat the function’s parameter as a local variable. Yeah, it’s defined
in the prototype. Yeah, it appears on the first line. But, inside the func-
tion, it’s just a local variable.

� By the way, the variable name used inside the function must match the
variable name defined inside the function’s parentheses. More on this later.

� Information on passing strings to functions is provided in my book C All
inOne Desk Reference For Dummies (Wiley).

� Sending a value to a function or getting a value back isn’t the same as
using a global variable. Although you can use global variables with a
function, the values the function produces or generates don’t have to be
global variables. (Refer to Chapter 21 for more information about global
variables.)

An example (and it’s about time!)
Blindly type the following program, a modification of the BIGJERK.C cycle of
programs you work with in Chapter 20:

#include <stdio.h>

void jerk(int repeat);

int main()
{

printf(“He calls me on the phone with nothing say\n”);
printf(“Not once, or twice, but three times a day!\n”);
jerk(1);
printf(“He insulted my wife, my cat, my mother\n”);
printf(“He irritates and grates, like no other!\n”);
jerk(2);
printf(“He chuckles it off, his big belly a-heavin’\n”);
printf(“But he won’t be laughing when I get even!\n”);
jerk(3);

278 Part IV: C Level

return(0);
}

/* The jerk() function repeats the refrain for the
value of the repeat variable */

void jerk(int repeat)
{

int i;

for(i=0;i<repeat;i++)
printf(“Bill is a jerk\n”);

}

You can edit this source code from the BIGJERK2.C file, but save this file to
disk as BIGJERK4.C. It has some changes, mostly with the jerk() function
and the statements that call that function. Don’t miss anything, or else you
get some nasty error messages.

Compile and run.

The program’s output now looks something like this:

He calls me on the phone with nothing say
Not once, or twice, but three times a day!
Bill is a jerk
He insulted my wife, my cat, my mother
He irritates and grates, like no other!
Bill is a jerk
Bill is a jerk
He chuckles it off, his big belly a-heavin’
But he won’t be laughing when I get even!
Bill is a jerk
Bill is a jerk
Bill is a jerk

The jerk() function has done been modified! It can now display the litany’s
refrain any old number of times. Amazing. And look what it can do for your
poetry.

The details of how this program worked are hammered out in the rest of this
chapter. The following check marks may clear up a few key issues.

� Notice how the jerk() function has been redefined in the prototype:

void jerk(int repeat);

This line tells the compiler that the jerk() function is hungry for an
integer value, which it calls repeat.

� The new jerk() function repeats the phrase Bill is a jerk for what-
ever number you specify. For example:

Chapter 22: Functions That Actually Funct 279

jerk(500);

This statement calls the jerk() function, which then repeats the mes-
sage 500 times.

� The C-geek vernacular for sending a value of a variable to a function
is “passed.” So you pass the value 3 to the jerk() function with this
statement:

jerk(3);

� The value you send along to a function is called a parameter. It can be
said, in a nerdly way, that the jerk() function has one parameter, an
integer variable (which is a number).

� If you forget to put a value in the jerk() function, you see a Too few
parameters type of error. That’s one of the reasons that you prototype
functions. If you don’t, and you use jerk() to call the function, your
program invariably screws up.

� The variable repeat is not a global variable. Instead, it’s a value that’s
passed to the jerk function, which that function then uses to do some-
thing wonderful.

� Note that jerk() also retains its own variable, i. Nothing new there.

Avoiding variable confusion
(must reading)
You don’t have to call a function by using the same variable name the func-
tion uses. Don’t bother reading that sentence twice. It’s a confusing concept,
but work with me here.

Suppose that you’re in the main() function where a variable named count
is used. You want to pass along its value to the jerk() function. You do so
this way:

jerk(count);

This line tells the compiler to call the jerk() function, sending it along the
value of the count variable. Because count is an integer variable, this strategy
works just fine. But, keep in mind that it’s the variable’s value that is passed
along. The name count? It’s just a name in some function. Who cares! Only the
value is important.

In the jerk() function, the value is referred to by using the variable name
repeat. That’s how the jerk() function was set up:

void jerk(int repeat)

280 Part IV: C Level

Whatever value is sent, however it was sent, is always referred to as repeat
inside the function.

� I bring this concept up because it’s confusing. You can call any function
with any variable name. Only inside that function is the function’s own
variable name used.

� This topic is confusing because of the variable names used by the func-
tion. You can find this subject in your C manual as well. You see some
function listed like this:

int putchar(int c);

This line indicates that the putchar() function requires an integer value,
which it refers to as c. However, you can call this function by using any
variable name or a constant value. It makes no difference. What’s impor-
tant, however, is that it must be an integer variable.

Sending More than One
Value to a Function

The tray you use to pass values along to functions is quite large. It can hold
more than one item — several, in fact. All you have to do is declare the items
inside the function’s parentheses. It’s like announcing them at some fancy
diplomatic function; each item has a type and a name and is followed by a
lovely comma dressed in red taffeta with an appropriate hat. No semicolon
appears at the end because it’s a formal occasion.

For example:

void bloat(int calories, int weight, int fat)

This function is defined as requiring three integer values: calories, weight,
and fat. But, they don’t all have to be the same type of variable:

void jerk(int repeat, char c)

Here you see a modification of the jerk() function, which now requires two
values: an integer and a character. These values are referred to as repeat
and c inside the jerk() function. In fact, the following source code uses said
function:

#include <stdio.h>

void jerk(int repeat, char c);

int main()

Chapter 22: Functions That Actually Funct 281

{
printf(“He calls me on the phone with nothing say\n”);
printf(“Not once, or twice, but three times a day!\n”);
jerk(1,’?’);
printf(“He insulted my wife, my cat, my mother\n”);
printf(“He irritates and grates, like no other!\n”);
jerk(2,’?’);
printf(“He chuckles it off, his big belly a-

heavin’\n”);
printf(“But he won’t be laughing when I get even!\n”);
jerk(3,’!’);
return(0);

}

/* The jerk() function repeats the refrain for the
value of the repeat variable*/

void jerk(int repeat, char c)
{

int i;

for(i=0;i<repeat;i++)
printf(“Bill is a jerk%c\n”,c);

}

Type the preceding source code. You can start with the BIGJERK4.C source
code as a base. You have to edit Line 3 to modify the jerk() function proto-
type; edit Lines 9, 12, and 15 to modify the way the jerk() function is called
(remember to use single quotes); then, redefine the jerk() function itself;
and change the printf() statement inside the function so that it displays
the character variable c.

Save the file to disk as BIGJERK5.C.

Compile and run the program. The output looks almost the same, but you see
the effects of passing the single-character variable to the jerk() function in
the way the question marks and exclamation points appear:

He calls me on the phone with nothing say
Not once, or twice, but three times a day!
Bill is a jerk?
He insulted my wife, my cat, my mother
He irritates and grates, like no other!
Bill is a jerk?
Bill is a jerk?
He chuckles it off, his big belly a-heavin’
But he won’t be laughing when I get even!
Bill is a jerk!
Bill is a jerk!
Bill is a jerk!

282 Part IV: C Level

Another way to argue with a function
This book shows you the modern, convenient
way of declaring variables (or arguments) shuf-

void jerk(int repeat, char c);
{
and so on. . . .

void jerk(repeat, c)
int repeat;
char c;
{
and so on...

little more confusing because the variable name
is introduced first and then the “what it is dec-
laration” comes on the following line (or lines).
Otherwise, the two are the same.

My advice is to stick with the format used in this
book and try not to be alarmed if you see the
other format used. Older C references may use
the second format, and certain fogey C pro-
grammers may adhere to it. Beware!

fled off to a function. To wit:

You can also use the original format:

This declaration does the same thing, but it’s a

Functions That Return Stuff
For some functions to properly funct, they must return a value. You pass
along your birthday, and the function magically tells you how old you are
(and then the computer giggles at you). This process is known as returning a
value, and a heck of a lot of functions do that.

Something for your troubles
To return a value, a function must obey these two rules:

Warning! Rules approaching.

� The function has to be defined as a certain type (int, char, or float, for
example — just like a variable). Use something other than void.

� The function has to return a value.

The function type tells you what type of value it returns. For example:

int birthday(int date);

The function birthday() is defined on this line. It’s an integer function and
returns an integer value. (It also requires an integer parameter, date, which it
uses as input.)

Chapter 22: Functions That Actually Funct 283
The following function, nationalDebt(), returns the national debt of the
United States as a double value:

double nationalDebt(void)

The void in parentheses means that the function doesn’t require any input.
Likewise, when a function doesn’t produce any output, it’s defined as a void:

void USGovernment(float tax_dollars)

The USGovernment() function requires very large numbers as input, but pro-
duces nothing. Therefore, it’s a function of type void. It’s easy to remember.

� Any value produced by a function is returned by using the return key-
word. Details appear later in this chapter.

� Notice that C language functions, like atoi() or getchar() — functions
that return values — are listed in your C language library reference by
using the same format as described here:

int atoi(char *s)
char getchar(void)

This means that the atoi() function returns an integer value and that
getchar() returns a single-character value.

� Another reason functions should be prototyped: The compiler double-
checks to confirm that the function is returning the proper value and that
other parts of the program use that int, float, or char value as defined.

� You need a double-size variable to handle the national debt. The float
variable, although it’s capable of handling a number in the trillions, is
accurate to only 7 digits. The double is accurate to 15 digits. If the debt
were calculated as a float, it would lose accuracy around the $100,000
mark (like they care about values that small!).

� Although you can define a function as a type of void, you cannot declare
a void variable. It just doesn’t work that way.

� void functions don’t return values.

� Functions can return only a single value. Unlike sending a value to a func-
tion, in which the function can receive any number of values, they can
cough up only one thing in return. I know — it sounds like a gyp.

� The preceding check mark is untrue. Functions can return several values.
They do it through the miracle of pointers and structures, two advanced
subjects touched on in this book’s companion, C AllinOne Desk Reference
For Dummies (Wiley).

284 Part IV: C Level

Finally, the computer tells you
how smart it thinks you are
The following program calculates your IQ. Supposedly. What’s more important
is that it uses a function that has real meaning. If you have read the past few
chapters, you have used the following set of C language statements to get
input from the keyboard:

input=gets();
x=atoi(input);

The gets() function reads in text that’s typed at the keyboard, and atoi()
translates it into an integer value. Well, ho-ho, the getval() function in the
IQ.C program does that for you, returning the value happily to the main()
function:

#include <stdio.h>
#include <stdlib.h>

int getval(void);

int main()
{

int age,weight,area;
float iq;

printf(“Program to calculate your IQ.\n”);
printf(“Enter your age:”);
age=getval();
printf(“Enter your weight:”);
weight=getval();
printf(“Enter the your area code:”);
area=getval();

iq=(age*weight)/area;
printf(“This computer estimates your IQ to be %f.\n”,iq);
return(0);

}

int getval(void)
{

char input[20];
int x;

gets(input);
x=atoi(input);
return(x);

}

Chapter 22: Functions That Actually Funct 285
Type the source code for IQ.C into your editor. The new deal here is the
getval() function, which returns a value by using the return keyword. (Does
that look familiar? I tell you more in a second!)

Save the source code file to disk as IQ.C.

Compile. Run.

Here’s what the sample output may look like, using fictitious figures for myself:

Enter your age:33
Enter your weight:175
Enter your area code:208
The computer estimates your IQ to be 27.000000.

Of course. I knew my IQ was that high. I’m not boasting or anything. It’s only
an estimate, after all.

� By using this formula, only old, fat people living in low-numbered area
codes can get into Mensa.

� This program has some problems. For example, the IQ value that’s calcu-
lated should be a floating-point number, and it’s not (unless your age,
weight, and area code are very special). This problem is fixed in the
nearby sidebar, “Fixing IQ.C by using the old type-casting trick.”

� Note how getval() is defined as an integer function. Inside getval(),
an integer value is produced by the atoi() function. It’s saved in the
x variable, which is then returned to the main function by using the
return(x); statement. Everything is an integer, so the function is of
that type as well.

� In the main() function, getval() is used three times. The values it pro-
duces (what it functs) is saved in the age, weight, and height integer
variables, respectively.

� Yeah, you probably lied too when you entered your weight. Don’t! The
more tumid you are, the smarter the program makes you.

Return to sender with the
return keyword
Functions that return values need some type of mechanism to send those
values back. Information just can’t fall off the edge, with the compiler assum-
ing that the last curly brace means “Hey, I must return the variable, uh, x.
Yeah. That’s it. Send x back. Now I get it.”

286 Part IV: C Level

Fixing IQ.C by using the old type-casting trick
In the IQ.C source code, the computer estimates
your IQ based on this formula:

iq=(age*weight)/area;

That is, your IQ is equal to your age multiplied
by your weight, with that total divided by your
area code. All those variables are integers, and,

kids’ school district.

Alarm! Whenever you divide any two values,
the result is probably a float. No, count on it
being a float

iq is
declared as a float — right up at the begin-
ning of the source code, just as it should. But

Even though the calculated result probably has

a decimal part, all those variables are integers,

as type casting, where you tell the compiler to
temporarily forget what type of variable is there

Edit Line 19 in the IQ.C source code to read:

iq=(float)(age*weight)/area;

Insert the word float in parentheses right
after the equal sign. Save the file back to disk.
Compile and run. Notice that your IQ changes to
a more floaty number in the output:

The computer estimates your IQ
to be 27.764423.

Now the number is a true float.

incidentally, it’s the exact formula used by my

. That’s just the way math works.
Decimals and fractions — it’s messy stuff.

To make this function work, the variable

there’s a problem: The value calculated by the
equation is still stuffed into an integer. (Eh?)

and the result is an integer. (Hey, the compiler
doesn’t assume anything, remember?)

To fix the problem, you must do something known

and instead assume that it’s something else.

No. To properly return a value, you need the proper return keyword.

The return keyword is used to send a value back from a function, to return a
value from the function. Here’s the format:

return(something);

The something is a value that the function must return. What kind of value?
It depends on the type of function. It must be an integer for int functions, a
character for a char function, a string (which is tricky), a floater for a float
function, and so on. And, you can specify either a variable name or a con-
stant value.

return(total);

The value of the variable total is returned from the function.

return(0);

The function returns a value of zero.

Chapter 22: Functions That Actually Funct 287
By the way, the something is optional. For the void type of functions, you
can use the return(); statement by itself to cause the program to return,
for example, in the middle of something (see BONUS.C, later in this chapter,
for an example).

� Technically speaking, all functions can end with a single return; as their
last statement. When return isn’t there, the compiler automatically
returns when it sees the function’s last curly brace. (Execution falls off the
edge. Ahhh!)

� Functions defined as an int, char, or whatever must return that type of
value.

� void functions can use return, but it must not return anything! Just use
return(); or return; by itself in a void function. Otherwise, the com-
piler waggles its warning error finger at you.

� If your function is supposed to return something but has nothing to
return, use the return(0); statement.

� The return keyword doesn’t necessarily have to come at the end of a
function. Sometimes, you have to use it in the middle of a function, such
as in BONUS.C, shown next.

Now you can understand
the main() function
In all your programs, and in all the programs shown to this point in the book,
you have seen the main() function declared as an int and always ending the
return(0);. These are basic requirements of the C language, as defined by
the ANSI standard; main() must be an int, and it must return a value.

The value returned by main() is made available to the operating system. For
most programs, it’s not used, so any value is okay to return. But, for some
programs, a return value is the way the program communicates with the
operating system.

For example, some command-line utilities may return 0 if the program com-
pleted its task. Any value other than 0 may indicate some error condition.

� In DOS/Windows, you can write a batch file to examine the value returned
by a program’s main() function. The ERRORLEVEL variable in the batch
programming language stores the value.

� In Unix operating systems, you can use the shell scripting language to
examine the return code from any program.

288 Part IV: C Level

� Before the ANSI standard, the main() function was commonly declared
as a void:

void main()

You may see this line in some older programming books or source code
examples. Note that nothing is wrong with it; it doesn’t cause the com-
puter to error, crash, or explode. (Nor has there ever been a documented
case of declaring void main() ever being a problem on any computer.)
Even so, it’s the standard now to declare main() as an int. If you don’t,
zillions of upset university sophomores will rise from the Internet to point
fingers at you. Not that it means anything, but they will point at you.

Give that human a bonus!
The following program, BONUS.C, contains a function that has three — count
’em, three — return statements. This program proves that you can stick a
return plum-dab in the middle of a function and no one will snicker at you —
not even university sophomores:

#include <stdio.h>

float bonus(char x);

int main()
{

char name[20];
char level;
float b;

printf(“Enter employee name:”);
gets(name);
printf(“Enter bonus level (0, 1 or 2):”);
level=getchar();
b=bonus(level);
b*=100;
printf(“The bonus for %s will be $%.2f.\n”,name,b);
return(0);

}

/* Calculate the bonus */

float bonus(char x)
{

if(x==’0’) return(0.33); /* Bottom-level bonus */
if(x==’1’) return(1.50); /* Second-level bonus */
return(3.10); /* Best bonus */

}

Chapter 22: Functions That Actually Funct 289
Type this source code into your editor. Save it to disk as BONUS.C. Notice that
the bonus() function contains three return statements, each of which returns
a different value to the main() function. Also, the function is a float type,
which you haven’t yet seen in this book if you have been reading the chapters
in order.

Compile and run.

Here’s a sample of the output:

Enter employee name:Bill
Enter bonus level (0, 1, or 2):0
The bonus for Bill will be $33.00

Run the program a few more times with some new names and values. Try not
to be impressed by its flexibility.

� Poor Bill.

� You may have a temptation to type-cast the 100 in Line 15: b*=100;. But,
you don’t have to because there isn’t a variable over there. If the 100 were
saved in an int variable — rate, for example — type casting would be
necessary:

b*=(float)rate;

� Notice how the floating-point value 0.33 is written out. Values should
always begin with a number, not a decimal point. If the value .33 is spec-
ified, the compiler may choke. Always begin values with a number, 0
through 9.

� You may think of the statements in the bonus() function as being rather
brief. Ha! What do you know. . . .

Actually, they are. They’re scrunched up really tight, but that doesn’t mean
that you have to write your programs like that. In the following section,” you
can see several alternative formats that get the same job done. It’s something
you should try with your C programs constantly: See whether you can write
your programs with brevity and legibility.

No Need to Bother with This C Language
Trivia If You’re in a Hurry

C is a flexible language that offers many ways to format a solution to a particu-
lar problem. Take the bonus() function in the BONUS.C program. Here are four
different ways that function can be written and still carry out the same task.

290 Part IV: C Level

The long, boring way:

float bonus(char x)
{

int v;

if(x==’0’)
{

v=0.33;
}
else if(x==’1’)
{

v=1.50;
}
else
{

v=3.10;
}
return(v);

}

The long, boring way minus all the darn curly braces:

float bonus(char x)
{

int v;

if(x==’0’)
v=0.33;

else if(x==’1’)
v=1.50;

else
v=3.10;

return(v);
}

And, without the integer variable v:

float bonus(char x)
{

if(x==’0’)
return(0.33);

else if(x==’1’)
return(1.50);

else
return(3.10);

}

Chapter 22: Functions That Actually Funct 291
Same line, anyone?

float bonus(char x)
{

if(x==’0’) return(0.33);
else if(x==’1’) return(1.50);
else return(3.10);

}

Finally, without the else:

float bonus(char x)
{

if(x==’0’) return(0.33);
if(x==’1’) return(1.50);
return(3.10);

}

You can substitute any of the preceding bonus() functions in your BONUS.C
source code. Everything works just fine.

292 Part IV: C Level

Chapter 23

The Stuff That Comes First
In This Chapter
� Discovering how the #include thing works

� Creating your own header files

� Understanding how libraries work

� Using #define directives

� Ignoring macros

In case you haven’t noticed, there seems to be lots of detritus piling up
at the head of your C programs. There are #include things. There can be

#define things. Then you have the occasional function prototype. Perhaps a
global variable is sitting up there in the yon. Maybe some comments. All that
stuff seems to pile up at the head of your source code, right before you get
into the meat of the matter with the main() function.

Is it normal?

Is it useful?

Is it even necessary?

Welcome to the chapter that describes the Stuff That Comes First. Now that
you have most likely read all the other chapters and been roundly exposed
to the C language, a summary and description of those items is in order.
Specifically, this chapter covers the #include things.

� An introduction to the #define thingy is in Chapter 8.

� Prototyping functions is covered in Chapter 20.

� Global variables are mulled over in Chapter 21.

� Other items that may appear at the beginning of your C code include
external and public variable declarations. You use them when you write
several source code modules, which is an advanced topic, fully covered
in C AllinOne Desk Reference For Dummies (Wiley).

294 Part IV: C Level

Please Don’t Leave Me Out!
What exactly does the following line mean?

#include <stdio.h>

It’s an instruction for the compiler to do something, to include a special file
on disk, one named STDIO.H, in with your source code.

Figure 23-1 illustrates the concept for the #include <stdio.h> instruction.
The contents of the STDIO.H file are read from disk and included (inserted)
into your source code file when it’s compiled.

Figure 23-2 shows how several lines of #includes work. Each file is read from
disk and inserted into your source code, one after the other, as the source
code is compiled.

Say! Aren’t you the #include
construction?
The #include construction is used to tell the compiler to copy lines from a
header file into your source code. This instruction is required by the com-
piler for using many of the C language functions. The header file contains
information about how the functions are used (yes, prototypes), as well as
other information that helps the compiler understand your program.

Here’s the format for using #include:

#include <filename>

The #include directive is followed by a filename held in angle brackets. The
filename must be in lowercase and typically (though it’s not a rule) ends
with a period and a little h. Like all #-sign things at the start of your source
code, don’t end this line with a semicolon!

Sometimes, the filename is a partial path, in which case the partial path
needs to be included, as in

#include <sys/socket.h>

The path is sys/, followed by the header filename, socket.h.

Chapter 23: The Stuff That Comes First 295

#include <stdio.h>

void main()

{

 printf("Good-bye, cruel world!\n");

}

STDIO.H
Τηισ ισ σοµε ϖερψ σµαλλ τψπε τηατ ψο
υ προβαβλψ ωον∋τ βε αβλε το ρεαδ. ΙΦ ψ
ου χαν, τηεν ψου∋ρε ϖερψ γοοδ. ΙΦ ψου
χαν∋τ, ψου∋ρε τψπιχαλ. Αχτυαλλψ, ιφ ψ
ου∋ρε µψ εδιτορ, τηεν ψου∋λλ προβαβλψ
 βε λοοκινγ φορ σοµε βαδ στυφφ. Ρεστ ασ
συρεδ. Ιτ∋σ νοτ ιν ηερε. ΒΥΤ νοτ τηατ Ι∋µ
ωριτινγ τηισ στυφφ ιν ΓΡΕΕΚ, Ι δον∋τ τηι
νκ τηερε ωιλλ βε α προβλεµ ωιτη ιτ. Υνλε
σσ, οφ χουρσε, ψου∋ρε ΓΡΕΕΚ.

Figure 23-1:

How an
#include

thingy
affects a
program.

STDIO.H
Τηισ ισ σοµε ϖερψ σµαλλ τψπε τηατ ψο
υ προβαβλψ ωον∋τ βε αβλε το ρεαδ. ΙΦ ψ
ου χαν, τηεν ψου∋ρε ϖερψ γοοδ. ΙΦ ψου
χαν∋τ, ψου∋ρε τψπιχαλ. Αχτυαλλψ, ιφ ψ
ου∋ρε µψ εδιτορ, τηεν ψου∋λλ προβαβλψ
 βε λοοκινγ φορ σοµε βαδ στυφφ. Ρεστ ασ
συρεδ. Ιτ∋σ νοτ ιν ηερε. ΒΥΤ νοτ τηατ Ι∋µ
ωριτινγ τηισ στυφφ ιν ΓΡΕΕΚ, Ι δον∋τ τηι

σσ, οφ χουρσε, ψου∋ρε ΓΡΕΕΚ.
νκ τηερε ωιλλ βε α προβλεµ ωιτη ιτ. Υνλε

STDLIB.H
Τηισ ισ σοµε ϖερψ σµαλλ τψπε τηατ ψο
υ προβαβλψ ωον∋τ βε αβλε το ρεαδ. ΙΦ
ψου χαν, τηεν ψου∋ρε ϖερψ γοοδ. ΙΦ ψο
υ χαν∋τ, ψου∋ρε τψπιχαλ. Αχτυαλλψ, ιφ
 ψου∋ρε µψ εδιτορ, τηεν ψου∋λλ προβαβ
λψ βε λοοκινγ φορ σοµε βαδ στυφφ. Ρεστ
 ασσυρεδ. Ιτ∋σ νοτ ιν ηερε. ΒΥΤ νοτ τηατ
 Ι∋µ ωριτινγ τηισ στυφφ ιν ΓΡΕΕΚ, Ι δον∋
τ τηινκ τηερε ωιλλ βε α προβλεµ ωιτη ιτ
. Υνλεσσ, οφ χουρσε, ψου∋ρε ΓΡΕΕΚ.

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

void main()

{

 printf("Good-bye, cruel world!\n");

}

TIME.H
Τηισ ισ σοµε ϖερψ σµαλλ τψπε τηατ ψ
ου προβαβλψ ωον∋τ βε αβλε το ρεαδ. Ι
Φ ψου χαν, τηεν ψου∋ρε ϖερψ γοοδ. ΙΦ
ψου χαν∋τ, ψου∋ρε τψπιχαλ. Αχτυαλλψ
, ιφ ψου∋ρε µψ εδιτορ, τηεν ψου∋λλ προ
βαβλψ βε λοοκινγ φορ σοµε βαδ στυφφ.
Ρεστ ασσυρεδ. Ιτ∋σ νοτ ιν ηερε. ΒΥΤ νοτ
 τηατ Ι∋µ ωριτινγ τηισ στυφφ ιν ΓΡΕΕΚ,
Ι δον∋τ τηινκ τηερε ωιλλ βε α προβλεµ
ωιτη ιτ. Υνλεσσ, οφ χουρσε, ψου∋ρε ΓΡ
ΕΕΚ.

Figure 23-2:

Multiple
#include

thingies in a
program.

296 Part IV: C Level

A second format is used whenever you want to include a header file that you
make yourself or whenever you’re using a header file not found in the com-
piler’s INCLUDE directory:

#include “filename”

The format is essentially the same except that the filename is enclosed in
double quotes rather than in angle brackets. The compiler looks for that
header file in the same directory as your source code file.

� Header files are necessary to help the compiler properly create your pro-
grams. Remember that the C language contains only some 32 keywords
(see Table 3-1, in Chapter 3). Everything else — printf and getchar,
for example — is a function. Those functions are prototyped in the vari-
ous header files you include at the beginning of your programs. Without
the header files, the compiler doesn’t recognize the functions and may
display oodles of error messages.

� The .H part of the filename means header.

� You know when to use a certain header file by looking up a function in
your C language library reference. The header file is listed along with the
format for the function that needs it.

� Always use lowercase when you’re writing out an include directive.
Remember that it doesn’t end in a semicolon and that the angle brackets
are required around the header filename.

� You need to specify a header file only once, even if two different func-
tions require it.

� You probably have seen the effects of including a header file with some
compilers. For example, the compiler may report “435 lines compiled”
when your source code is only 20 or 30 lines long. Those extra lines
come from the #include file (or files).

� A complete path to the header file isn’t necessary. That’s because the
compiler knows where to find them. Header files are located in a special
subdirectory installed on your hard disk with your C compiler. The sub-
directory is named INCLUDE, and it contains all the *.H files that came
with your compiler. They’re all text files, and you can look at them by
using a file viewer or your editor. (Please don’t change them!)

� In Windows, the INCLUDE folder is found beneath the folder where your
compiler was installed.

� In Unix-like operating systems, the INCLUDE folder is found in the /usr
directory: /usr/include.

Chapter 23: The Stuff That Comes First 297

Long, tedious information that you want to miss

there. I omitted a step that was kinda superflu-
ous at the time. Before your compiler compiles,
it takes a quick look at your source code and
runs it through a gizmo called the

Instead, it scopes out your source code for any
line beginning with a pound sign (#). Those lines

telling it to do something or to make something
happen.

The compiler recognizes several preprocessor
directives. The most common directives are
#include and #define. Others are used

º which tell the compiler
whether to compile certain parts of your source
code — sort of like “If such-and-such is true,
ignore the following several lines.” This is stuff
you can freely ignore, unless you get really
geeky with the C language.

You may remember that I tell you how a text
file becomes a program. Remember the section
“The compiler”? Probably not. Anyway, I lied in

preprocessor.

The preprocessor doesn’t compile anything.

are secretive instructions to the preprocessor,

for something called

What’s up with STDIO.H?
The common #include <stdio.h> thing forces the compiler to look on disk
for a file named STDIO.H and copy every line from that file into your source
code. No, you don’t see it done; it happens as your source code is converted
to object code. (See the nearby sidebar, “Long, tedious information that you
want to miss.”)

The STDIO.H is the standard input/output header file, which is where they
pull stdio from. (It’s not pronounced “studio-h,” though many people say
that.) STDIO.H defines all the prototypes for the standard I/O commands:
printf() and puts(), for example. Plus, it contains definitions for common
things in C, options for the compiler, and other junk.

You can view this file and its contents, as you can view any header file.
Simply log on to the INCLUDE folder on your computer’s hard drive and
use the proper command to view the file.

In Windows, use this command:

type stdio.h | more

In the Unix operating systems, do this:

less stdio.h

298 Part IV: C Level

Search through the file for some old friends, such as printf(), to see how
it’s defined and prototyped inside the header file.

Writing your own dot-H file
You have absolutely no need to write your own header file. Not now, not ever.
Of course, if you dive deeply into C, you may one day write some multimodule
monster and need your own custom header, one that you can proudly show
your fellow C Masters and one that they will ponder and say, jealously and
guardedly, “I wish I could do that.”

To get a feel for it, and because this chapter would be unduly short other-
wise, create the following header file, HEAD.H, in your editor. Type the lines
exactly as written, matching lowercase for lowercase and uppercase for
uppercase:

/* This is my wee li’l header file */

#define HAPPY 0x01
#define BELCH printf
#define SPIT {
#define SPOT }

Save the file to disk as HEAD.H. You have to type the dot-H, lest your editor
save it to disk with a C, TXT, or DOC extension.

You don’t compile or “run” a header file. Instead, you use it by #include-ing
it in your source code. This type of program is listed next. Granted, it may
not look at all like a C program. In fact, you may just shake your head in dis-
gust and toss this book down right now. Please, I beg, give me a few moments
before you run off all huffy to Mr. Software and buy a Visual Basic book:

#include <stdio.h>
#include “head.h”

int main()
SPIT

BELCH(“This guy is happy: %c\n”,HAPPY);
return(0);

SPOT

Start over on a new slate in your editor. Type the preceding source code
exactly. The second #include brings in your header file; note how it has
head.h in double quotes. That’s how the compiler finds your header file
instead of looking for it with the other, traditional headers. Also, don’t let
the SPIT, BELCH, SPOT stuff toss you. It’s explained later.

Chapter 23: The Stuff That Comes First 299
Save the file to disk and name it HTEST.C. Compile and run. Don’t be stunned
if you find no errors. Believe it or not, everything should work out just fine.
Here’s a peek at what the output should look like:

This guy is happy: J

Mr. HAPPY is happy. You may be happy too, after understanding what went
on. Here’s the blow-by-blow:

The second #include (Line 2) brings into your source code the HEAD.H file
you may have created earlier in this chapter. All the instructions in that file
are magically included with your source code when HTEST1.C is compiled
(as are the instructions from the standard I/O header file, STDIO.H).

If you recall, inside the HEAD.H header file are a few of those #define direc-
tives, which tell the compiler to substitute certain characters or C language
words with happy euphemisms. (Refer to your HEAD.H file, if you need to.)
For example, the word SPIT was defined as equal to the left curly brace. So,
SPIT is used in the program rather than the first curly brace in Line 5:

SPIT

The word BELCH was defined to be equal to the word printf, so it serves as
a substitute for that function as well in Line 6, and in Line 8 you see the word
SPOT used rather than the final curly brace.

Just about anything in a C program can wend its way into your own, personal
header files. #define statements are the most popular. Also allowed are com-
ments, variable definitions, advanced things called structures, and even source
code (though that’s rare). Remember that because it’s eventually copied into
your source code, anything that normally would go there can also go into a
header file.

� Mostly, any header file you write yourself contains a lot of #defines. A
doozy I wrote for one program, for example, listed all the #defines for
strange key combinations on the keyboard. For example:

#define F1 0x3B00

This line allows me to use the characters F1 rather than have to remem-
ber (or constantly look up) the ugly value the computer understands as
the F1 key.

� Can’t remember the code for the happy face? Just #define it in your
own header file and use it instead, which is what is done here.

� There’s no reason to redefine C language words and functions (unless
you want to goof someone up). However, the first #define in HEAD.H
sets the word HAPPY equal to the value of the PC’s happy-face character,
0x01.

300 Part IV: C Level

A final warning about header files
The typical header file used in C contains lots of information. What it doesn’t
contain, however, is programming code. By that, I mean that although the
printf() function may be defined, prototyped, massaged, and oriented
inside the STDIO.H file, the programming code that carries out printf()’s
task isn’t in the header file.

I mention this because occasionally a reader writes to me and says something
along the lines of “Dan! I need the DOS.H header file in order to compile an
older DOS program. Can you find it for me?” My answer is that even if I could
find it, the header file alone does not help. You also need the library file in
order to do the job.

Library files are like object code: They contain instructions for the micro-
processor, telling it how to go about doing certain tasks. The instructions for
printf() to do its thing are contained in a standard C language library file,
not in the header file.

Figure 23-3 illustrates the process. First, you take your source code, named
HOLLOW.C in the figure. STDIO.H is #included, so it’s combined with the
source code by the compiler. The result is an object file named HOLLOW.O
(or HOLLOW.OBJ).

To turn the object file into a program file, a library is added. The library con-
tains the instructions for the C language functions. These are carefully linked
into your source code so that a final program, HOLLOW (or HOLLOW.EXE) is
produced.

It’s the library that contains the code, not the header file! If you want to com-
pile an older DOS program, you need an older DOS library to link into your
source code. Without it, the header file really means nothing.

� Library files live in the LIB folder, which is usually found right next to
the INCLUDE folder. For example, in Unix, the /usr/lib folder dwells
right next-door to the /usr/include folder.

� More information on using library files is in C AllinOne Desk Reference
For Dummies (Wiley).

Chapter 23: The Stuff That Comes First 301

Source code

(gcc)

Object code

(gcc)

Figure 23-3:

How library
files fit into

the big
Executable file

picture.

Compiler

Linker

HOLLOW.C

HOLLOW.O
1010101010100

1101001111010

1001010010110

HOLLOW
1010101010100

1101001111010

1001010010110

STDIO.H

LIBC.A
1010101010100

1101001111010

1001010010110

302 Part IV: C Level

What the #defines Are Up To
The #define directive is another one of those things the compiler eats
before it works on your source code. Using #define, you can set up some
handy, clever, and memorable word equivalents to big numbers, constant
values, or just about anything that appears in your C source code.

The full scope of the #define “construction” is offered in Chapter 8. Because
I’m on an anti-redundancy campaign, I don’t repeat it here. Let me add, how-
ever, that #define is the most popular item placed into a header file. Edit
your HEAD.H file, in fact, and add these two lines:

#define TRUE 1
#define FALSE (!TRUE)

Save HEAD.H back to disk with these modifications.

What you have done is to create a shortcut word, TRUE, that you can use as a
“true” condition.

The FALSE shortcut word is defined as being “not” true. The exclamation
point in C means not. The value of FALSE is obviously !TRUE. (It works out
to be 0; no big deal.)

To make immediate use of the two new shortcut words, modify the source
code for HTEST.C:

#include <stdio.h>
#include “head.h”

int main()
SPIT

if(TRUE)
BLECH(“Must be true!\n”);

if(FALSE)
BLECH(“Never see this message.\n”);

return(0);
SPOT

Carefully type this source code into your editor. Save it to disk. Compile. Run.

The output looks something like this:

Must be true!

Chapter 23: The Stuff That Comes First 303
� The best time for using the TRUE or FALSE shortcut words is when you

create a while loop. Refer to Chapters 17 and 18.

� In the C language, the value 1 is taken to be TRUE, and 0 is FALSE.

� Some C programmers prefer to define TRUE and FALSE this way:

#define FALSE 0
#define TRUE(!FALSE)

Whatever. This book defines TRUE as 1 and FALSE as “not true,” which
works out to 0. If you see the preceding #defines in a program, every-
thing still works as advertised. Just don’t let it throw you.

� Some compilers may issue a warning message when no comparison is
in the if statement’s parentheses. That’s just the compiler being smart
again; it recognizes the certainty of the if keyword’s “comparison” and
tells you whether it is always TRUE or is always FALSE.

� Some compilers may also point out that the second if statements are
never executed because the if condition is always false. Big deal. Run
the program anyway.

Avoiding the Topic of Macros
Another # thing used in the C language is the macro. Like #include and
#define, macros are instructions to the compiler that tell it how to handle
conditions and whether specific parts of the source code are to be used or
skipped. Weird, but handy.

Though there’s no reason to describe in detail what macros are and because
I’m not crazy enough to waste time with an example, you may see even more
pound-sign goobers playing the macro game in someone else’s C source code.
Pick any from this list:

� #if

� #else

� #endif

� #ifdef

� #ifndef

These are also instructions to the C compiler, designed primarily to indicate
whether a group of statements should be compiled or included with the final
program.

304 Part IV: C Level

For example:

#if GRAPHICS
//do graphical wonders here

#else
//do boring text stuff here

#endif

Suppose that GRAPHICS is something defined earlier in the program or in a
header file — #define GRAPHICS 1, for example. If so, the compiler com-
piles the statements only between the #if GRAPHICS and #else lines.
Otherwise, the statements between #else and #endif are compiled. The
result? Potentially two different programs using one source code.

Crazy! Why bother?

I have used this trick only once: I wrote a program that had two versions —
one that ran on old color PC systems and a second that ran on monochrome
systems. On the color PCs, I had statements that displayed text in color,
which didn’t work on the old monochrome monitors. Therefore, I used the
#if goober so that I needed to write only one source code file to create both
versions of the program.

� There’s really no need to bother with this stuff. I’m mentioning it here
because it fits in the section heading and because some C poohbah
somewhere would chastise me for ignoring it.

� The #if thing is followed by a shortcut word defined elsewhere in the
program with the #define construction. If it’s value isn’t 0, the #if con-
dition is true and the statements between #if and #endif are compiled.
Oh, and there’s an #else in there too, which serves the same purpose as
the C language else word.

� You may see some of the #ifdef or #ifndef things in various header
files. I have no idea what they’re doing in there, but they look darn
impressive.

� Another #-goober is #line. It’s rarely used. Supposedly, what it does is
force the compiler to report a unique line number just in case an error
occurs. (Don’t worry — I don’t get it either.)

Chapter 24

The printf() Chapter
In This Chapter
� Using printf() to display text

� Displaying forbidden characters with escape sequences

� Displaying the values of variables

� Understanding conversion characters

Perhaps one of the most familiar fellows you have met on your C pro-
gramming journey is the printf() function. Though you may have been

using it, and despite my various and sundry hints about some of its power, I
don’t feel that you have really been formally introduced. Now, after all that
time, this chapter is your formal introduction to the full power of printf().

A Quick Review of printf()
You should know three printf() tricks:

� printf() displays the text you put inside the double quotes.

� printf() requires the backslash character — an escape sequence —
to display some special characters.

� printf() can display variables by using the % conversion character.

� The % conversion characters can also be used to format the output of
the information that’s printed.

306 Part IV: C Level

The Old Displaying-Text-with-printf()
Routine

Printf()’s main purpose in life is to display text on the screen. Here is its
most basic format:

printf(“text”);

text is the text you want to see on the screen. It’s enclosed in double quotes.
The double quotes are enclosed in parentheses, and the entire statement
must end with a semicolon.

� Special characters — such as a double quote, tab, backspace, and Enter
(a new line) — can be included in the text that printf() displays. These
characters require the printf() escape sequences, as described in the
next section.

� printf() can display two or more lines of text by using the \n (new-
line) escape sequence.

� To specify a double quote in your text string, use the \” escape
sequence.

The printf() Escape Sequences
Table 24-1 lists many of the printf() escape sequences. Most of these you
know from using them. Others are very specific, and you may never ever use
them in your entire programming life.

Table 24-1 printf() Escape Sequences

Sequence Shortcut for or Equivalent to

\a Beeps the speaker

\b Backspace (moves the cursor back, no erase)

\f Form feed (ejects printer page; may clear the screen on
some computers)

\n Newline, like pressing the Enter key

\r Carriage return (moves the cursor to the beginning of the line)

Chapter 24: The printf() Chapter 307

Sequence Shortcut for or Equivalent to

\t Tab

\v Vertical tab (moves the cursor down a line)

\\ The backslash character

\’ The apostrophe

\” The double-quote character

\? The question mark

\0 The “null” byte (that’s 0, not the letter O)

\Onn A character value in octal (base 8)

\xnnn A character value in hexadecimal (base 16)

The final two items in Table 24-1 are the most flexible. They allow you to
insert any character into any text after you know that character’s octal or
hexadecimal code value.

Suppose that you need to display the Escape character in your text. A quick
look into Appendix B shows that the hexadecimal code for Escape is 1b. As an
escape sequence — an Escape escape sequence — that would be written as

\x1b

Here’s how it would look in printf():

printf(“On some consoles, this clears the screen \x1b[2J”);

You may want to flag this page with a sticky note or dog-ear the corner. The
page has stuff no one remembers, so you wind up referring to Table 24-1 often.

The printf() escape-sequence
testing program deluxe
To see how some of these characters work, create the PRINTFUN.C program,
listed next. You modify the printf() statement at the core of the program to
demonstrate how the various escape sequences affect text:

308 Part IV: C Level

/*
printf() escape sequence demonstration program
*/

#include <stdio.h>

int main()
{

printf(“Here is the \\a sequence: \a”);
getchar();
return(0);

}

Enter this program into your text editor. Save it to disk as PRINTFUN.C.

Compile and run PRINTFUN.C. Its purpose is to see how the \a sequence
“appears” in the text that’s displayed. Here’s a sample of the program’s
output:

Here is the \a sequence: BEEP!

The speaker beeps. How ghastly! Pray that you’re not testing this program in
the early afternoon, or else you may wake up your cellmates.

� When the program runs, getchar() waits for you to press a key at the
keyboard. This pause allows you to examine the output before the pro-
gram quits.

� The text string in printf() contains two escape sequences. The first
is \\, a double backslash that displays the backslash character. In this
example, \\a displays \a — the escape sequence being tested. The
second escape sequence is at the end of the string, \a.

� Notice that the string in printf doesn’t end in \n. The newline charac-
ter would goof up the display for some of the fancier escape sequences
(\r, \t, and \b).

Putting PRINTFUN to the test
The true test of the PRINTFUN program is to reedit it and replace the \\a and
\a with another escape sequence. This way, you can test all the sequences to
get a feel for what each of them does.

Begin by replacing Line 9 in the program with this one:

printf(“Here is the \\b backspace sequence:\b\b\b\b”);

Chapter 24: The printf() Chapter 309
This line tests the \b, backspace, escape sequence. Save the changes to the
program, compile it, and run it.

You see the cursor sitting below the n in sequence when the program runs.
That’s because \b backs up the cursor but does not erase.

There are four instances of \b, which back up the cursor four places from the
end of the line. (If the cursor isn’t right there, you have a rogue space in the
program or you specified more or fewer instances of \b.)

The \n character you’re familiar with, but what does \r do? How is a carriage
return different from a new line? Edit Line 9 in PRINTFUN.C to look like this
and find out:

printf(“Here is the \\r sequence:\r”);

Save the change to disk, compile, and run.

In the output, you see the cursor flashing under the H at the beginning of the
line. The carriage return resembles the carriage return on a typewriter: It
moves you to the beginning of the line. It was only by whacking the line-feed
bar on a typewriter that the page was advanced.

The \t character produces a tab, like pressing the Tab key. The cursor moves
a predefined number of characters to the left. This is good for producing a
table in which text has to be lined up. Edit Line 9 in the program to read:

printf(“Able\tBaker\tCharlie\n”);

Then, insert the following lines immediately after the preceding printf()
statement:

printf(“1\t2\t3\n”);
printf(“Alpha\tBeta\tGamma\n”);

No spaces are in this printf text string. The words Able, Baker, and Charlie
are separated by \t (tab) escape sequences. The line ends with \n, the new-
line. The same holds true for the two new lines: instances of \t separate the
numbers and words.

Double-check your source code! Ensure that you have \t twice in each
printf() statement and that \n ends each quoted string of text. Beware
of rogue backslashes, which you have a tendency to type as you enter each
line. When everything looks okay, save the PRINTFUN.C source code file to
disk. Compile it. Run it. Here’s some sample output:

310 Part IV: C Level

Able Baker Charlie
1 2 3
Alpha Beta Gamma

Though the \ts in the printf statements look sloppy, the output is definitely
organized. Tabular, dude!

� The “tab stops” are preset to every eighth column in C’s output. Using
a \t inserts a given number of space characters in the output, lining up
the next bit of text at the next tab stop. I mention this because some
people assume that the tab always moves over eight (or however many)
characters. That is not the case.

� The \f and \v characters display special symbols at the Windows com-
mand prompt. Rather than a form feed, \f displays the ankh character.
Rather than a vertical tab, \v displays the male symbol.

� As long as you know a character’s hexadecimal code value, you can
always get it displayed by using the \x escape sequence. Just plug in
the hexadecimal code and there you go!

The Complex printf() Format
The printf() function can also be used to display the contents of variables,
which you have been seeing throughout this book with integer variables and
the %d placeholder, character variables and %c, and so on. To make it happen,
printf() uses this format:

printf(“format_string”[,var[,...]]);

Text still appears in double quotes, but after it’s used to display the values in
variables, it becomes a format string. (It’s still the same text in double quotes.)
The format string is followed by one or more variables, var.

Those var variables are plugged in to appropriate spots in the format_string
according to special percent-sign placeholders. Those percent-sign place-
holders are called conversion characters. For example:

printf(“Yeah, I think %s is a jerk, too.\n”,jerk);

The format string is text that printf() displays on the screen: Yeah, I
think ____ is a jerk, too. The %s is a conversion character — a blank —
that must be filled by a string of text. (I call them placeholders, but the lords
of C claim that they’re conversion characters.)

Chapter 24: The printf() Chapter 311
After the format string is a comma and then jerk. The jerk is a string vari-
able whose contents replace the %s in printf()’s output.

� You can specify any number of conversion characters in printf()’s
format string. Each conversion character, however, must have a cor-
responding variable; three %s characters would require three string
variables.

� Yeah, this works like fill-in-the-blanks; the % conversion characters are
the blanks.

� You can specify both strings of text and numbers by using the proper
conversion characters, as described in the next section.

� Refer to Figure 4-2, in Chapter 4, for an illustration of how the conver-
sion characters work with variables in a printf() statement.

The printf() Conversion Characters
Table 24-2 lists all the printf() conversion characters in the known
universe — even those you haven’t seen before and some you may never
see again.

Table 24-2 The printf() Conversion Characters

Conversion Character Displays Argument (Variable’s Contents) As

%c Single character

%d Signed decimal integer (int)

%e Signed floating-point value in E notation

%f Signed floating-point value (float)

%g Signed value in %e or %f format, whichever is shorter

%i Signed decimal integer (int)

%o Unsigned octal (base 8) integer (int)

%s String of text

%u Unsigned decimal integer (int)

%x Unsigned hexadecimal (base 16) integer (int)

312 Part IV: C Level

Additional formatting stuff

a list of additional printf() formatting infor-
mation, bonus characters that can be used in
conjunction with the conversion characters to
additionally format printf()
information is too complex and detailed to list

printf in your online reference manual and
note these formatting sections:

� Flags

� Width specifiers

� Precision specifiers

� Input-size modifiers

it comes in handy as you begin working with
numbers or require a little fancier output than
what you have done with printf() in this

Your C compiler’s documentation should contain

’s output. That

here for every compiler. Instead, look up

You don’t need this information now for under-
standing the C programming language. However,

chapter.

In addition to the conversion characters in Table 24-2, three other characters
exist: %p, %n and %%. The %p and %n are advanced conversion characters,
beyond the scope of this book. The %% merely prints a % on the screen.

� As with the escape sequences, the conversion characters are something
you use often but never remember. I advise tacking a sticky note to this
page for future reference.

� The %x, %e, and %g conversion characters also have uppercase equiva-
lents: %X, %E and %G. By using capital letters rather than lowercase, you
ensure that any letters in the output are all listed as uppercase. For exam-
ple, %x would display a hexadecimal value as 1ba2, but %X would display
1BA2. Otherwise, the conversion character’s behavior is the same.

� %p is used to print a value as a pointer. Pointers are covered in this
book’s companion, C AllinOne Desk Reference For Dummies (Wiley).

Chapter 25

Math Madness!
In This Chapter
� Using more complex math functions

� Understanding the pow() and sqrt() functions

� Linking in the math library for Unix

� Doing the post-/pre-increment/-decrement thing

Most people think that computer programming is all math. Boy, are they
wrong. It involves math, to be sure, but the hard part — figuring out

the answer — is done by the computer. So, what’s the beef? Why run scream-
ing and hiding from this innocent, kind little chapter that merely discusses
the various C language details, spells, and dance steps for juggling numbers?

More on Math
The basic four computer math symbols should be familiar to you by now:

� Addition symbol: +

� Subtraction symbol: –

� Multiplication symbol: *

� Division symbol: /

These doojabbies are common throughout computerdom. If you use a spread-
sheet, they’re the symbols you use to do math. All these symbols are clus-
tered about your keyboard’s numeric keypad. The most cryptic one is the
asterisk (*), for multiplication.

Other than the symbols, the only thing worth keeping in mind about math
in C is that the calculation always goes on the right side of the equal sign.
Therefore:

meals=breakfast+lunch+dinner;

314 Part IV: C Level

This equation, assuming that everything is a numeric variable, is correct. The
following statement, however, is a boo-boo:

breakfast+lunch+dinner=meals;

The math goes on the right side of the equal sign. Always.

� Goofing up a math equation is where you get those horrid Lvalue
errors.

� You can always remember the cryptic mathematical symbols in the
C language by looking at your keyboard’s numeric keypad; each of the
symbols is right there.

� Math problems in C work from left to right, the way you read. Some
operations, however, have priority over others. If you forget, remember
My Dear Aunt Sally, from Chapter 11.

� Another mathematical symbol is the %, which means modulus. This
dreadful topic is covered in Chapter 26, where it’s appropriate uses
are apparent.

� It can be said that a C language operator exists for every odd symbol,
shape, jot, and tittle on your keyboard. This statement is almost true.
Pray that you never have to memorize them all.

Taking your math problems
to a higher power
Two mathematical operations that seem to be lacking in C’s granola of symbols
are the power-of symbol and the square root symbol. Of course, I’m assuming
that you give a hoot about either of them, but you never know when they may
crop up.

The power-of thing deals with problems that contain the words squared and
cubed in addition to power of. For example:

“Four squared” means 4 × 4, or 42. The latter reads “Four to the second
power.”

“Four cubed” means 4 × 4 × 4, or 43. This one reads “Four to the third power.”

Beyond cubed, or to the third power, you just say the power number; So,
4 × 4 × 4 × 4 × 4 is 45, or “four to the fifth power.” (Don’t even bother trying
to figure out the answer; the computer does it for you!)

Chapter 25: Math Madness! 315
Alas, there just isn’t any handy way to express 45 in C. There’s no cool
symbol. For example, you cannot write

answer=4♠5;

This line just doesn’t work, even considering that ♠ isn’t a symbol anywhere
on the keyboard (even in Las Vegas). It would be nice, but it just isn’t so.

You need to draw on the C language’s vast library of supplemental math func-
tions. A few dozen functions compute such things as power-of, square root,
terrifying trigonometric functions, and so on (see Table 25-1, later in this
chapter). To take a number to a higher power, you use the pow() function.

The pow() function is used to calculate one value taken to a certain power,
such as 4 taken to the second power (42). Here’s the format:

value = pow(n,p)

In this line, value, n, and p all must be double-precision variables (defined
using the double declaration). The pow() function calculates n to the p
power. The answer is stored in the value variable.

To prevent your compiler from going mad, you must include the MATH.H
header file at the beginning of your source code. Stick the following line up
there somewhere:

#include <math.h>

This line is required for the pow function as well as for other math functions
you may dare to use.

Putting pow() into use
Using the pow() function is easy — it’s just like using any other function. Just
declare your variables as doubles, include the MATH.H thing, and you’re all
set. Why not put it forth in one of those endearing math-sentence problems?
To wit:

Suppose that you have tasked Milton — your brilliant, Mensa-club-leader son —
with decorating the house for Christmas. Because he’s too smart to drive,
he directs you to go to the store and pick up 28 (“two to the eighth power”)
twinkly lights. You quickly dash off to your computer and use the C language
to decipher what he means:

316 Part IV: C Level

#include <stdio.h>
#include <math.h>

int main()
{

double lights;

lights=pow(2,8); /* figure 2 to the 8th power */
printf(“Milton, we need %0.f lights.\n”,lights);
return(0);

}

Type this silly program on a new screen in your editor. Save the contraption
to disk as LIGHTS1.C.

Compile and run.

If you get a linker error in your Unix-like operating system, please refer to the
following sidebar, “Gotta link in that math library!”

Here’s the output:

Milton, we need 256 lights.

There. Now you both know how many lights are needed. The computer suc-
cessfully concluded that 28 is equal to 256.

� Two to the eighth power is written out longways; thus:

2 x 2 x 2 x 2 x 2 x 2 x 2 x 2

� The pow function expects to deal with double variables. In fact, many of
the MATH.H functions deal with anything except integers.

� Constant values, such as 2 and 8 inside LIGHTS1.C, don’t have to be
doubles (or even typecast as doubles). Thankfully, the compiler is
pretty smart about that stuff.

� The printf() placeholder used for printing a floating-point number
is %f. It works for both floats and doubles. The 0. part of %0.f tells
printf() to format the floating-point output using only the part of the
number on the left of the decimal.

� Some languages and spreadsheets use the caret symbol (^) for power, as
in 2^8 for 28. This technique doesn’t work in C. (The ^ in C is a bitwise
exclusive OR logical operation, whatever that means.)

Chapter 25: Math Madness! 317

Gotta link in that math library!
If you’re using Unix, Linux, or Mac OS X, you

to do high-level math functions, such as pow()
and sqrt(). The reason is that the standard C

in it. The advantage is that programs produced
with the standard library are small. The disad-
vantage is that you need to remember to link in
the math library when you write programs that
use math.

The standard math library in C is named libm,
but you can link it into your program by modify-
ing the gcc command:

gcc -lm source.c -o output

Follow gcc with the -lm switch. This switch
tells GCC to also link in the libm math library

source.c, and the output file is output
properly compile lights1.c:

gcc -lm lights1.c -o lights1

Again, this option is necessary only for pro-

confirm, use the man command to look up the
function:

man sqrt

It says, right there on top, under the LIBRARY
heading, that the standard math library must be
linked in to make the function work.

need to know that GCC isn’t normally configured

library doesn’t come with those math functions

along with the standard library. The input file is
. To

grams that use high-level math functions. To

Rooting out the root
Another math problem you may have to work out is the square root. For
the life of me, I can’t cite a practical example because, honestly, I find all
math stupid. In any event, no keyboard symbol in C is used to calculate the
square root of a number. As with the power-of deal, you use a special func-
tion: sqrt().

The sqrt() function is used to divine the square root of a number — to find
out which number, when multiplied by itself, equals the number you want the
square root of. Something like that. In any event, it’s not the “squirt” function.
Here’s the format:

value = sqrt(n)

The double variable value is equal to the square root of the double variable n.
Yes, everything must be double here. You also need the following include at
the beginning of your source code:

#include <math.h>

318 Part IV: C Level

The only limitation on the sqrt() function is that n, the number you’re find-
ing the root of, cannot be negative. Even though my Vulcan friends tell me
that there is such a thing, I would be leery of attempting it in the C language.

Because you and Milton have this light thing going, you’re going to surprise
him by telling him the square root of the number of lights you bought for
Christmas. To make that process easier, you devise the LIGHTS2.C program.

Type this program into your editor. Be careful when you’re typing because
that long printf() line was split in order to fit into this book’s format; the
single backslash is used to show that the line continues on the following line:

#include <stdio.h>
#include <math.h>
#define TOOTH 253

int main()
{

double lights;

lights=sqrt(256); /* square root of 256 */
printf(“Milton, I got your %0.f%c lights.\n”,\

lights,TOOTH);
return(0);

}

Save this puppy to disk as LIGHTS2.C:

Compile and run. (Unix users, refer to the preceding sidebar, “Gotta link in
that math library!” for more details.)

Milton, I got your 162 lights.

The sqrt() function boasts that the square root of 256 is 16. Or, to put it
another way, 162 (or 16 × 16) is equal to 256. Milton would be pleased.

� The square root of 256 is 16, and 16 squared (162) is 256. Is math great
or what?

� Character code 253 is equal to the tiny 2 — the squared number.

� Character code 251 is equal to the traditional square root symbol. Even
if you can manage to get that symbol into your text editor, you still need
the sqrt() function to wrangle up a square root.

� In some cases, codes 253 and 251 may not display the same symbol as
described in the two preceding notes. Oh, well.

� The %c in the printf() formatting string is used to bring in the special
character, 253, defined as TOOTH earlier in the source code.

Chapter 25: Math Madness! 319
� No, sqrt() isn’t what the Roman legions paraded on their standards.

(That was SPQR, which stands for Senatus Populus Que Romanus, the
Senate, and People of Rome.)

� A reader once wrote me e-mail asking whether the C language had some
equivalent of the mathematical i dingus, used to represent the imaginary
number √-1, or the square root of “negative one.” Because I don’t know
everything, I had to say that I don’t know. Some mathematical C language
library somewhere may deal with i. But, as far as any other workaround
is concerned, I have no idea — though I believe it can be worked into the
C++ programming language. (But I don’t do C++, so I can’t confirm it.)

Strange Math? You Got It!
Most C language libraries are just bursting with math functions. Lots of them.
I have listed some of the more common ones in Table 25-1, along with their
formats. Pretty much all of them want a double or float value, which makes
sense when you figure that if math had no decimals, more of us would enjoy it.

Table 25-1 Weirdo Math Functions You Never Use

Function What It Computes Format Include Library

abs Absolute value a=abs(b) STDLIB.H standard

acos Arc cosine x=acos(y) MATH.H libm

asin Arc sine x=asin(y) MATH.H libm

atan Arc tangent x=atan(y) MATH.H libm

cos Cosine x=cos(y) MATH.H libm

exp Exponential x=exp(y) MATH.H libm

log Natural logarithm x=log(y) MATH.H libm

log10 Base 10 logarithm x=log10(y) MATH.H libm

sin Sine x=sin(y) MATH.H libm

tan Tangent x=tan(y) MATH.H libm

� In Table 25-1, variables a, b, and c denote integer values. Variables x, y,
and z are doubles.

� The libm library is needed only for compiling programs under a Unix-
like operating system. Refer to the earlier sidebar “Gotta link in that math
library!”

320 Part IV: C Level

� The absolute value of a number is its value without the minus sign.

� Even more complex functions than this one exist. Wise men truly run
from them.

� The best source for discovering what these commands do and how they
work is to look in the C language library reference that came with your
compiler. If you’re lucky, it’s in a book; otherwise, it’s in your compiler’s
online help feature.

� Most of the time, you can replace the variables in a math function’s paren-
theses with constant values. For example:

x=sqrt(1024);

Something Really Odd to End Your Day
It’s your old pal ++ again, and his sister, -- — the increment and decrement
operators from days gone by. They’re favorites, to be sure, but they’re kind
of puzzling in a way. For example, consider the following snippet of code that
you may find lurking in someone else’s program:

b=a++;

The variable b equals the contents of variable a plus 1. Or does it?

Remember that a++ can be a statement by itself. As such, doesn’t it work out
first? If so, does b equal a+1, or does b equal a and then a is incremented
after it all? And will Cody realize that Miranda is cheating on him so that he’ll
be free to marry Jessica? Hmmm. . . .

It’s a puzzle that has an answer — an important answer that you have to know
if you don’t want your programs getting all goofy on you.

The perils of using a++
Here’s the rule about using ++ to increment a variable so that you know what
happens before running the sample program:

The variable is incremented last when ++ appears after it.

So:

b=a++;

Chapter 25: Math Madness! 321
The compiler instantly slides the value of variable a into variable b when it
sees this statement. Then, the value of a is incremented. To drive this point
home, test out the INCODD.C program.

Type this program into your editor. Save it to disk as INCODD.C:

#include <stdio.h>

int main()
{

int a,b;

a=10;
b=0;
printf(“A=%d and B=%d before incrementing.\n”,a,b);
b=a++;
printf(“A=%d and B=%d after incrementing.\n”,a,b);
return(0);

}

Compile and run! Here’s what the output looks like:

A=10 and B=0 before incrementing.
A=11 and B=10 after incrementing.

The first line makes sense: The a and b variables were given those values right
up front. The second line proves the ++ conundrum. First, b is assigned the
value of a, which is 10; then a is incremented to 11.

� Whenever you see a variable followed by ++ in a C statement, know that
the variable’s value is incremented last, after any other math or assign-
ments (equal-sign things) elsewhere on that line.

� A good way to remember this rule is that the ++ comes after the variable.
It’s as though C sees the variable first, raids its contents, and then — oh,
by the way — it increments its value.

� This rule screws you up if you ever combine the ++ with something else
inside an if comparison:

if(a=b++)

This technique is common — sticking the b++ inside the comparison
rather than on a line before or afterward. You have to keep in mind,
however, that b is incremented after the if command compares them.
If the comparison is true, b is still incremented. Remember that when
you notice that your program is acting funny.

322 Part IV: C Level

Oh, and the same thing applies to a - -
The decrementing operator, --, also affects a variable’s value after any other
math or equal-sign stuff is done in the program. To witness this effect, here’s
the DECODD.C program:

#include <stdio.h>

int main()
{

int a,b;

a=10;
b=0;
printf(“A=%d and B=%d before decrementing.\n”,a,b);
b=a--;
printf(“A=%d and B=%d after decrementing.\n”,a,b);
return(0);

}

Save the file to disk as DECODD.C. Compile and run. Here’s the output, prov-
ing that decrementing happens after any math or assignments:

A=10 and B=0 before decrementing.
A=9 and B=10 after decrementing.

The value of b is equal to 10, which means that the a variable was decre-
mented last.

All this makes sense, and you should understand it by now — or at least be

a++;
b=a;

aware of what’s happening. If you can’t remember the rule, just keep your
incrementing or decrementing on a line by itself, as shown in this example:

Reflections on the strange ++a
phenomenon
Load the program INCODD.C back into your editor. Change Line 10 to read

b=++a;

This line looks stranger than it is. You can type it like this to avoid thinking
that =++ is some weird C command:

b = ++a;

Chapter 25: Math Madness! 323
The ++ is still the incrementing operator. It still increases the value of the a
variable. Because it comes before the variable, however, the incrementing
happens first. It reads “Increase me first, and then do whatever else comes
next.”

Save the source code for INCODD.C to disk. Compile and run it. Here’s what
you see:

A=10 and B=0 before incrementing.
A=11 and B=11 after incrementing.

It worked! The ++a operation came first.

Again, this is just something strange you should know about. Rarely have I
seen the ++ operator appear before a variable, but it can be done. It may help
iron out some screwy things if you notice trouble when you’re putting ++ after
a variable name.

� You can use ++ before or after a variable when it appears on a line by
itself. There’s no difference between this:

a++;

and this:

++a;

� a++ is known as postincrementing. ++a is known as preincrementing.

� Yes, this process also works with decrementing. You can change Line 10
in DECODD.C to this:

b=--a;

Save, compile, and run the program. Variable a is decremented first, and
then its new value is given to variable b.

� Most people use the word anxious when they really mean eager.

� Don’t even bother with this:

++a++;

Your logical mind may ponder that this statement first increments the a
variable and then increments it again. Wrong! The compiler thinks that
you forgot something when you try to compile this type of statement; you
get one of the dreadful Lvalue required errors. That message means
that the compiler was expecting another variable or number in there
somewhere. Sorry, but the “fortress effect” of the incrementing or decre-
menting operators just doesn’t work.

324 Part IV: C Level

Chapter 26

The Old Random-Number Function
In This Chapter
� Introducing the rand() function

� Seeding the rand() function

� Performing mod (%) calculations

� Producing random numbers in a given range

The original plans for this book had it run about 1,600 pages. That’s because
I never wanted to break the slow, easy pace with which the C language was

taught. The problem is that you cannot fit 1,600 pages into a roughly 400-page
book without cutting something out. What to cut out?

You may think that it’s odd that I chose to cut what I did, yet kept this chapter
on the random-number function. I did that because, believe it or not, random
numbers are a big deal when it comes to programming a computer. They come
in handy, for example, with computer games. No computer game would ever
be possible without a random number here or there. Without them, the game
would be predictable: “Oh, I’m passing by the planet Bothar again, and here is
where the Omnivorous Space Slug tries to taunt me into a gavotte.”

On Being Random
What’s random? The next card drawn from a well-shuffled deck. The roll
of a dice. The spin of a roulette wheel. Whether Cindy will overlook your
huge beer gut as you attempt your first date after the divorce. These are
all random, maybe-this-or-that events. If you want to include this random
aspect in your programs, you need a special function that produces random
numbers. After that’s done, no one can predict when the Enterprise will be
attacked or when the tornado will whip through your village or whether
Door Number 2 leads to the treasure this time or to certain peril.

326 Part IV: C Level

� The phone company is rumored to have a random-number program that
it routinely uses to foul up your bill.

� Random-number routines are the root of the most evil program ever
devised for a budding programmer: The Guess the Number program. I
spare you that torture in this book. (Well, maybe not.)

� In the C language, random numbers are produced by using the rand()
function. I formally introduce it next.

� Random numbers must be seeded in order for them to be more unpre-
dictable. I cover this subject also, later in this chapter.

� Random numbers generated by a computer aren’t truly random. See the
nearby sidebar, “You too can waste a few seconds reading this informa-
tion about random numbers,” for more information.

Using the rand() function
Random numbers are generated in C by using the rand() function. It spits
back a random number depending on the whims of your PC’s microprocessor
carefully combined with the birthdate of the guy who wrote your C compiler
plus his girlfriend’s weight in drams. Or something like that.

Here’s the format for the rand() function:

int rand();

information about random numbers

numbers can be predicted. They’re still more or
less jumbled, like street numbers in Seattle. But,
overall, the random numbers a computer gen-

pseudorandom.

A pseudo- (“SOO-doh”) random number is
random enough for most purposes. But because

the number is based on a computer algorithm,

Even if you base the random number on the time
of day — or seed the random number by using

ematical purists. So you live with it.

You too can waste a few seconds reading this

Are they random numbers? Only if they can’t be
predicted. Unfortunately, with computers, the

erates aren’t truly random. Instead, they’re

or set routine, its outcome isn’t truly random.

another, potentially random value — the results
still aren’t random enough to appease the math-

Chapter 26: The Old Random-Number Function 327
The rand() function returns an integer value, somewhere in the range of 0
through 32,767. If you want to save the random number into the r variable,
you use the following statement:

r=rand();

Cinchy stuff.

To make the compiler understand the rand() function, you must add this
line at the beginning of your source code:

#include <stdlib.h>

This line tells the compiler all about the rand() function and makes every-
one happy.

The following program shows the rand() function in action. RANDOM1.C
produces 100 random numbers, which it displays neatly on the screen. The
random numbers are produced by the rand function inside this program’s
rnd() function. The reason that this was done, as you may be fearing, is
that you modify the rnd() function to new levels of spiffiness as this chap-
ter progresses.

#include <stdio.h>
#include <stdlib.h>

int rnd(void);

int main()
{

int x;

puts(“Behold! 100 Random Numbers!”);
for(x=0;x<100;x++)

printf(“%d\t”,rnd());
return(0);

}

int rnd(void)
{

int r;

r=rand();
return(r);

}

Type the source code for RANDOM1.C into your editor. Double-check every-
thing. Save the file to disk as RANDOM1.C.

328 Part IV: C Level

Compile the program. Fix any errors, which are probably limited to missing
semicolons or forgotten parentheses.

Run it!

The output displays ten columns by ten rows of random numbers on the typi-
cal console display — no point in repeating that here! But, on your screen,
note how the numbers are different — nay, random. I mean, would you have
thought of that many that quickly?

� The random numbers are probably in the range of 0 to 32,000-
something — as promised. The numbers you see on your screen are
probably different from those from the code just shown.

� Some versions of the GCC compiler produce larger random number
values than 0 to 32,000-something. That maximum value is set by the
value of RAND_MAX, as defined in the SDTLIB.H header. On my FreeBSD
machine, for example, the value of RAND_MAX is 0x7FFFFFF (hexadeci-
mal), which translates to 2,147,483,647.

� To see the value of RAND_MAX on your computer, add this line to the pro-
gram before the return(0); in the main() function:

printf(“\nRAND_MAX is equal to %u\n”,RAND_MAX);

%u is the placeholder for an unsigned long integer.

Planting a random-number seed
Ho! Before you get all happy about the new CASINO program you’re about
to write and sell for millions to Las Vegas, try rerunning the RANDOM1.C
program again. Just choose Run from your compiler’s integrated environ-
ment or type the RANDOM1 command again at the DOS prompt:

(Output suppressed!)

Yup, on your screen, you see 100 more random numbers. Wait a second. Aren’t
those the same numbers? Identically the same numbers? Did the compiler
goof? Did you foul up?

Fortunately, that was no error. The computer generated the set of random
numbers because that’s all it knows. Sure, they’re random, all right, but
they’re the same numbers because, between then and now, the compiler’s
rand() function remained unchanged.

Don’t feel cheated! This situation is a common one. The rand() function is
only quasirandom. To make it more random (more pseudorandom), you have
to plant a wee, tiny seed. This seed is a value the compiler uses to help make

Chapter 26: The Old Random-Number Function 329
the random numbers more random. To plant the seed, you use the srand()
function.

The srand function is used to help kick off the computer’s random-number
machine in a more random manner. Here’s the format:

void srand((unsigned)seed)

The seed value is an unsigned integer value or variable, ranging from 0 up to
65,000-something. It’s that value the compiler uses to help seed the random-
number-generation equipment located in the bowels of your PC.

You must include the following line at the beginning of your source code to
make the srand() function behave:

#include <stdlib.h>

Because the rand() function already requires this line, you have no need to
specify it twice (unless you’re just seeding the random-number generator out
of some perverse horticultural lust).

� The (unsigned) deal is used to ensure that the number srand() uses is
of the unsigned type (not negative). It’s known as type casting.

� Using the value 1 (one) to seed the random-number generator causes
the compiler to start over, by using the same, uninspirational numbers
you witness when srand() isn’t used. Avoid doing that, if possible.

Randoming up the RANDOM program
Now comes the time for some really random numbers. The following source
code is for RANDOM2.C, a mild modification to the original program. This
time, a new function is added, seedrnd(), which lets you reset the random-
number generator and produce more random numbers:

#include <stdio.h>
#include <stdlib.h>

int rnd(void);
void seedrnd(void);

int main()
{

int x;

seedrnd();
puts(“Behold! 100 Random Numbers!”);

330 Part IV: C Level

for(x=0;x<100;x++)
printf(“%d\t”,rnd());

return(0);
}

int rnd(void)
{

int r;

r=rand();
return(r);

}

/* seed the random number */

void seedrnd(void)
{

int seed;
char s[6];

printf(“Enter a random number seed (2 - 65000):”);
seed=(unsigned)atoi(gets(s));
srand(seed);

}

Type this program into your editor. You can start by editing the RANDOM1.C
source code. Add the prototype for seedrnd() up front, and then insert the
call to seedrnd() in the main() function. Finally, tack the seedrnd() func-
tion itself to the end of the source code. Double-check the whole thing before
you save it to make sure that you don’t leave anything out.

Use your editor’s Save As command to save the file to disk as RANDOM2.C.

Compile and run. You see this line:

Enter a random number seed (2-65000):

Type a number, from 0 up to 65,000-something. Press Enter and you see a new
and more random bunch of numbers displayed.

The true test that it worked is to run the program again. This time, type a dif-
ferent number as the seed. The next batch of random numbers is completely
different from the first.

� You have to seed the randomizer only once, as this program does up in
the main() function. Some purists insist on calling the seedrnd() func-
tion (or its equivalent) lots of times. Hey, random is random as random
can be with a computer. No sense in wasting time.

Chapter 26: The Old Random-Number Function 331
� This program combines three C statements into one. The statement

appears in Line 34:

seed=(unsigned)atoi(gets(s));

This line is a compilation of the following two statements:

gets(s);
seed=(unsigned)atoi(s);

First, gets() reads in a string variable. Second, that value is converted
into an integer variable by the atoi function, which is passed over to
the seed variable in the proper unsigned format.

� There’s no need for the seedrnd() function to return any values. As I
explain in Chapter 22, some functions neither require nor return values.
This function is one of them. Yet, calling the function is important because
it seeds the randomizer used elsewhere in the program.

Streamlining the randomizer
Nothing annoys me like a klutzy program. I’m talking not about how it’s writ-
ten, but, rather, about how it looks — its presentation. When a program must
ask you to seed the randomizer, something is wrong. A computer should be
smart enough to do that itself. And it can, as long as it finds a source of ever-
changing numbers that it can use to seed the randomizer.

One source is the computer’s clock. Most PCs keep time down to the hun-
dredths of seconds: Every 1⁄100th of a second, a new number is available to
seed the randomizing gears. Heck, even the current second would be good
enough to seed the randomizer. It just needs to be a number that’s different
from one second to the next, that’s all.

The following source code is for the RANDOM3.C program. This program is
nearly identical to RANDOM2.C except that the seedrnd() function now uses
the current time to seed the random-number generator:

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int rnd(void);
void seedrnd(void);

int main()
{

int x;

seedrnd();
puts(“Behold! 100 Random Numbers!”);

332 Part IV: C Level

for(x=0;x<100;x++)
printf(“%d\t”,rnd());

return(0);
}

int rnd(void)
{

int r;

r=rand();
return(r);

}

/* seed the random number */

void seedrnd(void)
{

srand((unsigned)time(NULL));
}

Create the source code for RANDOM3.C in your editor. You can start with
RANDOM2.C. Add the new third line, #include <time.h>, which lets you
use the computer’s clock to seed the random-number generator. Then, modify
the seedrnd() function as shown in this block of code. Save the file to disk
as RANDOM3.C by using your editor’s Save As command.

Compile and run the program. Notice that the output is similar and randomly
different. What you don’t notice is the program begging you to seed the ran-
domizer. That’s all handled automatically now.

� The time() function in Line 31 returns the time of day from the com-
puter’s internal clock. The function is called by using the constant value
NULL, which is essentially the value 0. (This constant is defined in the
stdio.h header file — the #include <stdio.h> line sets it all up; see
Chapter 23 for more information.)

� The value returned by the time() function is some number, which isn’t
important. What’s important is that it’s an unsigned integer value,
which is what the (unsigned) type cast does.

� No matter what, know that the following statement in any of your C pro-
grams properly and somewhat randomly seeds the random-number-
generating apparatus:

srand((unsigned)time(NULL));

Chapter 26: The Old Random-Number Function 333
� The time() function (and therefore the preceding randomizing seeding

statement) requires the following statement at the beginning of your
source code:

#include <time.h>

� And, this one:

#include <stdlib.h>

The Diabolical Dr. Modulus
You may have noticed that the random numbers produced by the RANDOM
series of programs have been wildly random and often unsuitable. For
example:

Your turn, BOB.
You rolled a 23415 on the dice. This lands you on Boardwalk,

but you’ve passed Go 585 times, which nets you a
gross of $117,000!

That gets old after a while.

You need to have a way to round down the numbers — a hacksaw to chop off
excess values and just give you numbers in a certain range, for example.

Lo, you have a way. It’s the mathematical concept modulus.

Ahooga! Ahooga! Mathematical concept alert! Ahooga!

Modulus — bah! This term is better known to you as “the remainder,” as in
“When you divide 6 into 10, you get a remainder of 4.” Well, 6 gazinta 10 is
modulo 4. It’s written in C as

4 = 10 % 6;

I don’t expect you to remember what a modulus is or does, nor do I expect
you to know when to use modulus, or the ablative, modulo. The format is the
same for any of C’s mathematical operators. What’s important to know is that
you can use the modulus doohickey to pare down larger numbers into smaller,
more convenient chunks.

modulus = big % little;

Read it this way: If you take the huge number big and divide it by the smaller
number little, you get a remainder, which is the modulo value.

334 Part IV: C Level

Suppose that big is a big number in this statement:

m = blah % 5;

The values of variable m are in the range of 0 through 4, depending on the
remainder of big divided by 5.

The values of variable m for the following statement are either 0 or 1, depend-
ing on whether oddoreven is even or odd, respectively:

m = oddereven % 2;

For example, a die has six sides. Suppose that the computer coughs up the
random value 23,415. To pare it to a multiple of 6, you use this line:

dice1=23415 % 6;

The computer calculates how many times 6 gazinta 23,415. It then places the
remainder in the dice1 variable. (The result is the number 3, which is a more
realistic roll of a die than 23,415.)

� If the second value is larger than the first, as in 5 % 10, the result is
always equal to the second value. Therefore, you want the larger value
to come first in a modulus operation.

� The modulus operator is %, the percent sign. Pronounce it “mod.”

� No math! The modulus is used to help you pare your random numbers.
That’s all! You can dwell on the mathematical aspects of the % in other C
language books.

� Gazinta means “goes into.” I point it out here because my managing
editor loathes it when I use nondictionary words.

� If you want to pare a large random number as a roll of the dice, you need
this equation:

dice1=(random_value % 6)+1;

The random_value the computer produces must be pared via % 6 (mod 6).
It produces a number in the range of 0 to 5 (0 to 5 as a remainder — you
can’t have a remainder of 6 when you divide by 6.) After the % calculation,
you add 1 to the number and get a value in the range of 1 to 6, which are
the true numbers on any given side of a die.

� In the My Dear Aunt Sally theme of things, a modulus operation comes
just after division and before addition. See the nearby Technical Stuff
sidebar, “Introducing My Dear Mother’s Aunt Sally (Ugh!).”

� “Ah, yes, Dr. Modulus. I’m familiar with your work in astrogenetics. Is it
true that you got kicked out of the academy for engineering a third
gender in mice?” “You read too much, lad.”

Chapter 26: The Old Random-Number Function 335

Did you read about My Dear Aunt Sally in

makes you remember something) for multipli-
cation, division, addition, and subtraction, which
is the order in which things get done in a long C

operation, which takes precedence over addi-
tion and subtraction. It goes like this:

* Multiplication

/ Division

% Modulus

+ Addition

– Subtraction

Therefore, the following statement to get a roll
of the dice:

dice1=(23415 % 6)+1;

does the same thing without the parentheses:

dice1=23415 % 6+1;

The modulus operation (23415 % 6) comes
first regardless, and then 1 is added to the
result. Of course, putting the parentheses in

Introducing My Dear Mother’s Aunt Sally (Ugh!)

Chapter 11? It’s a mnemonic device (a thing that

math statement. Well, add to that the modulus

My Dear Mother’s Aunt Sally:

there for readability’s sake is always forgivable.

Rolling the Dice with the Final
RANDOM Program

If you have been working through this chapter, you should have a whole pile
of random numbers spewing forth from your computer, like New Yorkers flee-
ing their buildings during an August power outage. One more keen improve-
ment to the rnd() function remains. It’s time to add an automatic range-finder.
The following program, RANDOM4.C (the last in the suite), has a rnd() func-
tion that coughs up random values only in the range of 0 to whatever number
you specify. This program should bring some order to your random numbers:

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int rnd(int range);
void seedrnd(void);

int main()
{

int x;

seedrnd();
for(x=0;x<100;x++)

printf(“%i\t”,rnd(10));

336 Part IV: C Level

return(0);
}

int rnd(int range)
{

int r;

r=rand()%range;
return(r);

}

void seedrnd(void)
{

srand((unsigned)time(NULL));
}

Create the source code for RANDOM4.C. Start with your RANDOM3.C pro-
gram, and make modifications per the source code just shown. Save the file
to disk by using the name RANDOM4.C.

Compile and run the program. Here’s a sample of the output you may see:

4 1 3 0 6 6 1 0 8 9
2 9 5 9 8 7 6 8 0 9
5 6 2 0 5 8 5 5 9 0
9 9 2 6 1 2 0 2 0 7
8 4 4 7 1 6 0 0 5 1
3 7 1 2 1 2 5 0 8 5
9 2 0 7 9 8 4 5 6 0
8 8 7 6 0 8 3 9 3 4
0 4 0 5 5 6 3 0 4 3
7 6 1 2 2 7 6 7 4 8

Everything is in the range of 0 through 9, which is what the rnd(10) call does
in Line 14.

� The rnd() and seedrnd() functions become handy as you write your
own C programs — specifically, games. Feel free to copy and paste these
functions to other programs you may write. Remember that both require
the #include <stdlib> directive, with seedrnd() also requiring
#include <time.h>.

� To generate a roll of the dice, you stick the rnd() function in your pro-
gram and use this statement:

dice=rnd(6)+1; /* Roll dem bones! */

� Using the ever-collapsing C language function ability, you can rewrite the
rnd() function to only one statement:

return(rand()%range);

� You’re now only moments from writing your own Monopoly game. . . .

Part V

The Part of Tens

In this part . . .
for(item=1;item<11;item++)
{

printf(“This part of the book contains\n”);
printf(“various lists; ten items to a\n”);
printf(“chapter. It’s the traditional\n”);
printf(“last part of a For Dummies

book.\n”);
printf(“In the chapters that follow,

you’ll\n”);
printf(“find numerous lists, each with

ten\n”);
printf(“items that offer tips, tricks,

and\n”);
printf(“bonus information to help

conclude\n”);
printf(“your first voyage into the\n”);
printf(“C programming language.\n”);

}

Chapter 27

Ten More Things You Need to
Know about the C Language

In This Chapter
� Using arrays

� Understanding strings

� Dealing with structures

� Growing frustrated over pointers

� Messing with linked lists

� Manipulating bits

� Interacting with the command line

� Doing disk access

� Interacting with the operating system

� Building big programs

Your C language journey is far from over. C has so much more ground to
be covered that it just couldn’t all possibly fit into this one book, at least

not at the same easygoing pace.

To give you a hint of things to come, here are ten more important aspects of
the C language — and programming in general — that you may want to con-
sider pursuing. (Note that these topics are all covered in this book’s compan-
ion volume, C AllinOne Desk Reference For Dummies, also published by Wiley.)

Arrays
An array is a multivariable. It allows you to store many different integers,
floating-point values, characters, strings, or any variable type in a single unit.
Suppose that the combination to the Big Safe at Fort Knox is

32, 17, 96

340 Part V: The Part of Tens

Those three numbers are integers, of course. But the three of them stored
together form an array.

� Arrays are declared just like other variables, though the variable name
ends with a set of square brackets:

int combination[3];

In this example, the combination array is declared. It can hold three
items, which is what the 3 in square brackets specifies.

� Arrays can also be declared and assigned at the same time, as in

float temps[] = { 97.0, 98.2, 98.6, 99.1 };

This array is named temps and contains four floating-point values.

� Each item inside the array can be referred to individually. The items are
known as elements.

� The first element in an array is numbered zero. This is important to
remember. So element zero in the temps[] array is 97.0.

� Values are assigned to arrays just as they are to regular variables. For
example:

combination[0] = 32;
combination[1] = 17;
combination[2] = 96;

These three statements assign the values 32, 17, and 96 to the three ele-
ments in the combination[] array. (Note that the first element is zero.)

� The only bummer about arrays in the C language is that their size is
fixed. After you set, or dimension, an array to hold a specific number
of elements, that number is fixed and cannot be changed, which will
cause you endless frustration in the future. For now, consider yourself
forewarned.

Strings
A string is nothing more than an array of characters. For example:

char myname[] = “Dan”;

This declaration creates a string variable named myname. The contents of that
variable are Dan, or the letters D, a, and n. You can also write it in a more tra-
ditional array style:

char myname[] = { ‘D’, ‘a’, ‘n’ };

Chapter 27: Ten More Things You Need to Know about the C Language 341
Strings always end with the NULL character, ASCII code 0, which is also defined
in STDIO.H as the word NULL or character code \0 (backslash zero). Here’s the
long way to create the string myname:

myname[0] = ‘D’;
myname[1] = ‘a’;
myname[2] = ‘n’;
myname[3] = ‘\0’;

That final NULL character tells the compiler where the string ends. Remember
that strings can contain characters, such as Enter and Tab. The C language
uses character code 0, or NULL, to mark the end of text.

� A string is nothing more than a character array.

� All strings end with the NULL character.

� This book shows you how to use scanf() and gets() to read in strings.
And, you can use the %s placeholder in the printf() function to display
string values.

� Many, many functions in the C language manipulate strings.

� One C language string function is strcmp(), which is used to compare
strings. Remember that you cannot use == in an if statement to com-
pare strings, but you can use the strcmp() or similar functions.

Structures
The C language lets you combine variables into a single package called a
structure. It’s similar to a record in a database in that the structure variable
can be used to describe a number of different things all at once. It’s roughly
the equivalent of a 3-by-5 card.

Structures are declared by using the struct keyword. It’s followed by the
name of the structure and its contents:

struct sample
{

int a;
char b;

}

This structure is named sample. It contains two variables: an integer
named a and a character named b. Note that this command merely creates
the structure — it doesn’t declare any variables. To do that, you need
another line.

342 Part V: The Part of Tens

The following line declares a structure variable named s1. The structure it
uses is of the type defined as sample:

struct sample s1;

Suppose that you’re writing a game and need some way to track the charac-
ters inside the game. Consider the following structure:

struct character
{

char[10] name;
long score;
int strength;
int x_pos;
int y_pos;

}

This structure is named character. It contains variables that describe
variable attributes of a character in the game: the character’s name, score,
strength, and location on the game grid.

To define four characters used in the game, the following declarations are
needed:

struct character g1;
struct character g2;
struct character g3;
struct character g4;

Or:

struct character g1, g2, g3, g4;

Items within the structure are referred to by using dot notation. Here’s how
the name for character g1 are displayed:

printf(“Character 1 is %s\n”,g1.name);

Suppose that character g2 is decimated by a sword thrust:

g2.strength -= 10;

This statement subtracts 10 from the value of g2.strength, the strength
integer in character g2’s structure.

� Yes, structures are one way to do database work in the C language.

� Obviously, there is quite a bit to this structure thing — much more than
can be included in one section.

Chapter 27: Ten More Things You Need to Know about the C Language 343

Pointers
Over in Chapter 1, I explain how the C programming language is a mid-level
language, containing both high-level and low-level programming attributes.
Well, welcome to the lowest of the low. Pointers are used in C to directly
manipulate the computer’s memory — specifically, variables stored inside
memory.

At first, this idea seems utterly useless. I mean, why do you need a pointer
when you can change a variable’s value by using a function or an equal sign?
Yet, pointers give the C language a certain muscle power unlike any other
programming language.

The problem with pointers is that it takes about four or five times to under-
stand them, and then about six or seven programs showing how they can be
used before you really get into the good “Oh, I get it now!” moments.

� Pointers are declared by using the asterisk, which is confusing because
the asterisk also means multiplication.

� The following line declares an integer pointer, s:

int *s;

� The ampersand is also used in Pointer Land, but its implementation is so
bizarre that I dare not mention anything further.

� The number-one foul-up when it comes to pointers: not assigning them
before they’re used. All pointers must be declared, assigned, and then
used. I mean, duh!

Linked Lists
Want to terrify any university sophomore? Mention linked lists and they will
blanche with horror. Linked lists are the bane of the C language, almost as
horrid as pointers. But they’re really nothing devious — just a strange con-
cept because in order to know about linked lists, you must know about point-
ers. That can be tough.

In the C language, linked lists combine the concept of an array with struc-
tures and pointers. In a way, a linked list is really like an array of structures.
But, unlike with an array of structures, you can add and remove structures
from the linked list easily.

And that’s all I really want to say about that!

344 Part V: The Part of Tens

Binary Operators
Along with the pointer, another low-level aspect of C is the binary operator.
Binary operators work to manipulate the bits inside any C language variable
except for a float or double. Table 27-1 lists the lot of them.

Table 27-1 Bitwise Operators

Operator Function

& AND

^ Exclusive OR (EOR or XOR)

| Inclusive OR

~ One’s complement

<< Shift bits left

>> Shift bits right

The only place I have seen these types of operators used are when programs
interact with the operating system or PC hardware. For example, if some port
on the PC has its low bit set, you can use one or more of these operators to
determine whether that’s true.

A special feature of the >> and << operators is that they perform superfast
binary division and multiplication. For example:

x = y >> 1;

This function divides the value of y by 2, which is what happens when you
shift the bits in the value of y one step to the left. It’s much faster than using
this statement:

x = y/2;

To divide y by 4, you can use this function:

x = y >> 2;

Now, you have to think in binary to make this work, but it’s possible. Like-
wise, you can double a value by using the << operator. But save that one for
another day.

Chapter 27: Ten More Things You Need to Know about the C Language 345

Interacting with the Command Line
In Chapter 22, you may have read briefly about how the main() function
returns a value to the operating system when the program quits. That’s one
way that a program can communicate with the operating system. The other
way is to read in options directly from the command line. For example:

grep pirntf *.c

This shell command searches for misspellings in your C language source
code. The command has two command-line arguments: pirntf and *.c.
These two strings of text are passed to the main() function as arguments as
well, which the program can then evaluate and act on, just as arguments
passed to any function.

The problem with introducing such a thing in this book is that you need
to understand more about arrays and pointers to be able to deal with the
information passed to the main() function. That too will have to wait for
another day.

Disk Access
One of the reasons you have a computer is to store information and work on it
later. The C language is equipped with a wide variety of functions to read and
write information from and to the disk drives. You can save data to disk using
C just as you can with any program that has a File➪Save command — though
in C, it is you who writes the File➪Save command.

Interacting with the Operating System
The C language also lets you perform operating system functions. You can
change directories, make new directories, delete files, rename files, and do
a host of other handy tasks.

You can also have your programs run other programs — sometimes two at
once! Or, your program can run operating system commands and examine
the results.

Finally, you can have your program interact with the environment and exam-
ine the state of your computer. You can even run services or prowl out on the
network. Just about anything the computer can do, you can add into your
program and do it yourself.

346 Part V: The Part of Tens

Building Big Programs
There’s nothing wrong with having a 50,000-line source code file. True, it
takes longer to compile, and searching for mistakes takes time. But I wouldn’t
recommend it.

The best approach to writing large programs is to break things up into smaller
modules. For example, one module may contain disk routines; another, initial-
ization; and another, routines to display things on the screen. This strategy not
only makes debugging things easier, but —here’s a secret — if you make the
modules well enough, you can also reuse them on other programming projects.
That definitely saves time over the long haul.

In C, each source code file is compiled to produce an object code file. The
object files are then linked with various libraries to produce the final exe-
cutable file. It works quite well. In fact, you can share variables across differ-
ent source code modules, call functions in other modules, and do lots of
other cool stuff.

This book lacks the room to show an example, so I put it in the companion
volume, C AllinOne Desk Reference For Dummies (Wiley). There, you can find
an example of such a program, one that I hope will inspire you to go on to
bigger and better programming projects in the C language.

Chapter 28

Ten Tips for the Budding
Programmer

In This Chapter
� Using the command history

� Keeping your editor open in another window

� Enjoying a color-coded editor

� Knowing your editor’s line number commands

� Keeping a command-prompt window open

� Understanding a few commands

� Naming your variables

� Solving incrementing and decrementing riddles

� Breaking out of a loop

Here are some of my top-notch suggestions for programmers just start-
ing out. Man, I wish I had had this list back in the steam-powered com-

puter days, when I first started learning how to program.

Use the Command-Line History
Going back and forth between your editor and compiler at the command
prompt gets tedious. Fortunately, most of the command-line shells out there
(in both Unix and Windows) have a command-repeat button. Use it!

For example, if you press the up-arrow key, you can recall the preceding com-
mand line. Pressing the up-arrow key again recalls the command before that.
If you find that you’re reediting a lot, use the up-arrow key to recall the com-
mand to start your editor, and ditto for the commands to recompile.

348 Part V: The Part of Tens

Keep Your Editor Open
in Another Window

The preceding tip can be null and void if you use your operating system’s
graphical environment. Keep a command prompt open in one window, and
keep your text editor open in another window (see Figure 28-1). As long as
you can remember to save your source code, it’s perfectly fine to open a
separate window for your editor and use it to edit your source code file.
Then, in the other window, run a command prompt so that you can compile
the source code as well as run the result.

Figure 28-1:

Switching
between

editor and
command-

prompt
windows.

Switch between windows by clicking the mouse in one or the other. Or, use
the Alt+Tab key to switch windows, which seems to work in most graphical
environments.

The key is to remember to save the document in one window before compil-
ing in another window.

Use a Context-Colored Text Editor
This is why I recommend the Vim editor: As long as you put that .c on the
end of the source code filename, Vim recognizes your C language code and

Chapter 28: Ten Tips for the Budding Programmer 349
uses different colors to present it to you on the screen. This feature is so
useful that if you ever go back to a monochrome editor, you notice that it
slows you down!

� To activate the colors in Vim, type a colon, :, and then syntax enable,
and press Enter.

� When you’re running Vim in a Windows window, choose Syntax➪

Automatic so that C language keywords are highlighted.

� In Unix, to keep syntax enable activated, edit or create a file named
.vimrc in your home directory. Into that file, add or include the follow-
ing command:

:syntax enable

Then save the .vimrc file back to disk.

� Another bonus to highlighted text is that you can easily spot missing
quotes; text between quotes is color-coded, so if a quote is missing, the
source code looks like blech.

� Turn on auto-indenting if your editor has such a feature. Vim turns on
auto-indenting when you use the syntax-enable command, or choose
Syntax➪Automatic from the menu.

Know the Line-Number Commands
in Your Editor

The C language compiler reports errors in your source code and lists the lines
on which the errors occur. If your text editor displays line numbers, you can
easily locate the specific line containing the error and then fix the error.

� In Windows Notepad, you can display the line and column number on
the status bar. To do so, first ensure that Word Wrap is off (choose
Format➪Word Wrap if necessary), and then choose View➪Status Bar.
(Note that the Status Bar command may not be available in earlier ver-
sions of Notepad.)

� Vim displays the cursor’s position on the bottom of the window, toward
the right side. (The line number is followed by a comma and the column
number, shown as 1,1 in Figure A-1 in Appendix A.)

� In Vim, the command to go to a specific line is G. For example, if the
compiler reports an error in Line 64, type 64G and VIM instantly jumps
to Line 64. Think “Line number, Goto” to remember this trick.

350 Part V: The Part of Tens

Keep a Command Prompt Window Open
If You’re Using the IDE

In Windows, most compilers come with an Integrated Development
Environment (IDE). It’s a window that contains the editor, plus other
gizmos for making Windows programs. It can be quite complex, but also
very handy; like Vim, for example, the Dev-C++ IDE color-codes your C
commands.

One thing most IDEs don’t do is show you the output of the console pro-
grams created in this book. Because of that, if you use an IDE, be sure to
keep a console window handy, open, and logged to the prog\c\learn folder
in Windows. That way, you can type the names of the programs you create
and see their output in that window. Otherwise, the output isn’t visible from
the IDE.

Know a Few Handy Command-Prompt
Commands

I strongly advise that you become familiar with using a command prompt.
While there are hundreds of command prompt commands to type, with a
bazillion options and more ways to make typos than typing with welder’s
gloves on, pay heed to the few commands listed in Table 28-1.

Table 28-1 Command-Prompt Commands

Windows/DOS Unix What It Does

dir ls Lists all files in the current directory or folder. In
Unix, the -l switch after ls is used to display more
details about the files in the directory.

dir *.c ls *.c Lists only the C language source-code files in a
folder or directory.

cls clear Clears the screen.

ren mv Renames a file; ren or mv is followed by the file’s
original name and then the new name, such as ren
goodbye.c bye.c or mv goodbye.c bye.c,
which renames the file goodbye.c to bye.c.

Chapter 28: Ten Tips for the Budding Programmer 351

Windows/DOS Unix What It Does

cd pwd Displays the name of the current directory or folder.
Use this command to ensure that you’re in the prog/
c/learn directory.

type cat Displays a text file’s contents on the screen; follow
type or cat with the name of the file you want
displayed:

type source.c

cat source.c

del rm Deletes a file; follow del or rm with the name of the
file to delete, as in del bye.c or rm bye.c.

exit exit Closes the command-prompt window and closes the
terminal.

Refer to a good book or reference about the command prompt for more details
on these and other handy commands you can use while you program.

Carefully Name Your Variables
Though I use a lot of single-letter variable names in this book, be a better,
wiser person when it comes to naming variables in your own programs. For
example, x is an okay variable name, but counter is much better.

This may seem like a silly thing for a tiny program, but when your programs
get larger, you may find that that a quick x or a variable you declared is being
used by some other part of the program. Bad news!

Know Your Post- and Pre-Incrementing
and Decrementing Riddles

The ++ and -- operators can certainly come in handy for incrementing or
decrementing a variable’s value. But keep all your C language statements on a
single line, and remember that ++ or -- before the variable name does its job
before the variable’s value is used. If you put the ++ or -- after the variable
name, the operation takes place afterward.

Refer to Chapter 25 to find out about this concept.

352 Part V: The Part of Tens

Breaking Out of a Loop
All your loops need an exit point. Whether that point is defined in the loop’s
controlling statement or set inside the loop by using a break command, be
sure that it’s there!

I recall many a time sitting at the computer and waiting for the program to
“wake up,” only to realize that it was stuck in a loop I had programmed with
no escape clause. This is especially easy to do when you work on larger pro-
grams with “tall” loops; after the source code for the loop extends past the
height of your text editor, it’s easy to lose track of things.

Chapter 29

Ten Ways to Solve Your Own
Programming Problems

In This Chapter
� Work on one thing at a time

� Break up your code

� Simplify your job

� Talk through problems

� Set breakpoints

� Monitor variables

� Document

� Use debugging tools

� Use an optimizer

� Read more books!

Welcome to the world of debugging. In my travels, I’ve met only one pro-
grammer who could sit and code a whole project from scratch and

have it compile and run the first time. As it turns out, he was able to do it only
once — and it was a project he was well familiar with. Although he’s one of
the world’s best programmers, the dream of writing, compiling, and running,
all in that order, remains a dream for most programmers.

Yes, your programs error. You have typos that the compiler shouts out at
you. But your programs also have bugs. That is, they compile and link just
fine, but when they run, they do unexpected things. Well, all programs obey
their orders. It just happens that the programmer may forget something now
and then. It’s those times when you need to turn to this chapter and review
my ten ways of solving your own programming problems. Do this before you
phone, e-mail, or post your problem to the public. The public will thank you!

354 Part V: The Part of Tens

Work on One Thing at a Time
Address your bugs one at a time. Even if you’re aware that the program has
several things wrong with it, fix them methodically.

For example: You notice that the title is too far to the right, random characters
are at the bottom of the screen, and the scrolling technique doesn’t move the
top row. Avoid the temptation to address all three issues in the same editing
job. Instead, fix one problem. Compile and run to see how that works. Then
fix the next problem.

The problem you run into when you try to fix too much at once is that you
may introduce new errors. Catching those is easier if you remember that you
were working on, for example, only Lines 173 and 174 of your source code.

Break Up Your Code
As your source code gets larger, consider breaking off portions into separate
modules. I know that this topic isn’t covered in this book — and it probably
isn’t a problem you will encounter soon — but separate modules can really
make tracking bugs easy.

Even if you don’t use modules, consider using comments to help visually
break up your code into separate sections. Even consider announcing the
purpose of each section, such as

/***
Verification function

This function takes the filename passed to it
and confirms that it’s a valid filename and
that a file with that name doesn’t already
exist.

Returns TRUE/FALSE as defined in the header.
***/

I also put a break between functions, just to keep them visually separated:

/**/

Chapter 29: Ten Ways to Solve Your Own Programming Problems 355

Simplify
Avoid the temptation to gang up several commands on one line until you’re
certain that that part of your code works well. Do this for many reasons, but
most importantly because it makes your code more readable. The more read-
able your code is, the easier it is for folks (including you) to find an error.

For example, rather than write this line:

while(toupper(getch())!=ZED)

write this one:

while(ch != ZED)
{

ch = getch();
ch = toupper(ch);
/* and so on */

Yeah, it may take a few more lines, but if you get an error in one of those
lines, you know exactly where to look. Before then, you could have had
several potential trouble spots.

Also, the second example is more readable to other programmers.

Finally, when you’re certain that your code works, you can compact things on
one line — if you want to. Remember that the object is to get the program to
work, not to try to impress other programmers with your source code.

Talk through the Program
One of the best ways to find bugs almost instantly is to show your code to
another programmer. But that other programmer isn’t familiar with what
you’re doing. What you do is start “talking through” the logic of your code.
You explain what does what and why you made the choices you did.

Suddenly, as you’re explaining what you did, you discover that one spot in
your code that doesn’t match your intentions. You say, “A-ha!” The other
programmer nods in agreement, and you’re on with your work.

This technique of talking through your program works whether or not
another programmer is present.

356 Part V: The Part of Tens

Set Breakpoints
You know that the bug is in the windshield() function, but you don’t know
where. Does the bug lurk at the beginning of your code? In the initialization
routines? Just before the big math functions? Near the end? Where? Where?
Where?

One way to find out is to put breakpoints into your program. At a certain
spot, stick in a return() or exit() function, which immediately stops the
program. That way, you can narrow down the pesky code. If the program
stops per the breakpoint, the fault lies beyond that point in the program. If
the program doesn’t stop with the breakpoint, the fault lies before it.

Monitor Your Variables
Sometimes, a program runs amok because the values that you suspected
were in your variables just aren’t there. To confirm that the variables aren’t
carrying something outrageous, occasionally toss in a printf() statement to
display their values to the screen. Never mind if this technique screws up the
display; the purpose is debugging.

For example, I had a program with a nasty endless loop in it. I couldn’t figure
out for the life of me why it repeated and repeated. Talking through the source
code did nothing. But after I stuck in a printf() statement that displayed
the looping variable’s value, I noticed that it merrily skipped over the end-of-
loop value and kept incrementing itself to infinity and beyond. I added a simple
if statement to fix the problem, and the program ran just fine afterward.

Document Your Work
At university, they’re on you like gum on a theater floor about comments.
Comment this! Comment that! I remember seeing classmates turn in projects
that were three pages of greenbar paper in length, and half of that consisted
of the dumb comments at the “top” of the program. Such nonsense impresses
no one.

True, document your work. But documentation merely consists of notes to a
future version of yourself. It’s a reminder to say “This is what I was thinking”
or “Here is where my train of thought is going.”

You don’t have to document every little stupid part of the program. This
comment is useless:

Chapter 29: Ten Ways to Solve Your Own Programming Problems 357

i++; /* add one to the value of i */

Here’s a better comment:

/* Remember that zero is the first item, so increment
variable i here to account for that and not confuse
the user. */

i++;

Comments can also tell a future version of yourself where to start working on
the program if you come back to it later:

/* This is the payoff routine. In the future, it would
be cool to add a sound effect here, say, coins in a
hopper a la a slot machine. */

Comments can also be notes on what to fix, to remind you of what went
wrong before and to give you tips on how to approach the problem:

/* I can’t get the dumb address to resolve here. The
routine is supposed to work, but it keeps returning
a null value. Appendix C of the Davis book contains
the original routine. */

Use Debugging Tools
If your compiler features a debugger, use it! Debuggers let you surgically view
your program as it runs, monitoring variables and examining how the com-
puter literally steps through the code.

The problem with debuggers is that you usually need to compile a special
version of the program, after it contains the debugging code. This makes the
program huge and sluggish. If you use a debugger, remember to not use the
debugger code when you compile your final program.

Use a C Optimizer
Many fun tools out there examine your code and make suggestions for opti-
mization. One common tool is lint. Other tools exist as well; any C program-
ming Web site lists the variety — and many of them are open source (thank
you, open source community).

358 Part V: The Part of Tens

� Just as a spell checker doesn’t make you a better writer, optimizers don’t
make you a better programmer. But they can help hone your code so that
it runs better.

� Other programming tools are available as well. In fact, the whole Unix
operating system is designed around programming. If you have time,
consider looking into these tools: touch, make, and grep.

Read More Books!
One question I often get from programming acolytes via e-mail is “What book
should I read next?” Well, obviously, the companion to this book, C AllinOne
Desk Reference For Dummies, (Wiley) is an excellent choice. But the real
answer is “Where do you want to go with your programming?”

If you want to program games, get books on game programming. You can find
books for programming networks, programming the operating system, pro-
gramming graphics, and on and on. Some, you may have to find in university
bookstores, but they exist.

� As far as other programming languages are concerned, after reading
through this book, you will know about 95 percent of the C++ program-
ming language. That would be a natural extension to this book. But also
consider finding out how to use Perl, Java, Python, or any combination
of those languages.

� The PHP Web page creation language is also a good choice if you happen
to be into the Web.

� Above all, program. Practice. Devise new projects and work on ideas.
Programming, to many folks, is like solving an enjoyable puzzle. Immerse
yourself in it. Have fun!

Appendix A

The Stuff You Need to Know
before You Read All the
Other Stuff in This Book

In This Appendix
� Configuring your computer as a programming workstation

� Selecting a compiler

� Choosing an editor

� Creating programs

You need a few things before C programming is possible on your computer.
The purpose of this appendix is to outline what you need and how to use

it in order to work with the sample programs in this book. It’s not that hard,
but it may be something you’re not used to, so pay attention!

Setting Things Up
You need two things to program in C on your computer:

� A compiler

� A place to put your programs

For Linux, Unix, and the Mac OS X operating system, your C language compiler
is already included; it comes with the operating system. For Windows and
older Mac systems, you must obtain a compiler. That’s not as difficult as it
sounds.

360 C For Dummies, 2nd Edition

The C language compiler
Thanks to the C language’s popularity, many compilers are available for you
to use with this book. I do, however, recommend the following:

Windows: If you’re using Windows, I recommend that you get a GCC-compatible
C compiler. A list of compilers is provided on this book’s Web page, at www.
c-for-dummies.com.

For this book, I used the MinGW compiler, which comes with the Dev-C++
IDE (Integrated Development Environment). It’s free and available from
www.bloodshed.net.

Whichever compiler you use, note its location on your PC’s hard drive. You
have to use this location to create a batch file or modify your system’s path
so that you can access the compiler from any folder in your disk system.
More on that later.

� Other compilers are out there, including the best-selling Microsoft Visual
C++ (MSVC). If you have MSVC, fine; you should be okay with running
the programs in this book. Note, however, that I’m not familiar with the
current version of MSVC and don’t refer to it in this book, nor can I
answer questions about it via e-mail. If you don’t have MSVC, you have
no reason to buy it.

� Plenty of free, shareware, and open-source C compilers are available on
the Internet.

� If you have other books on the C language, check in the back of the book
for a free compiler.

� Any GCC- or GNU-compatible C compiler works best with this book.

Linux, FreeBSD, or Mac OS X: If you’re using any of these variations of Unix,
you should already have the GCC compiler installed and ready to use. To
confirm, open a terminal window and type the following line at the command
prompt:

gcc -v

The version number of GCC and other information is displayed on the screen.
If you get a Command not found error, GCC isn’t installed; you have to update
your operating system to include GCC as well as all the C programming librar-
ies and other materials. (You can generally do that through your operating
system’s setup or configuration program; it doesn’t typically require that the
entire operating system be reinstalled.)

Appendix A: The Stuff You Need to Know before You Read All the Other Stuff 361
Unix: If you have a “real” version of Unix, the command is cc and not gcc. In
fact, you may notice that cc even works on other Unix-like operating systems,
where the cc command is often linked to the GCC compiler, for compatibil-
ity’s sake.

Mac (before OS X): Older versions of the Mac lack a built-in C language com-
piler. I recommend the Code Warrior compiler, though you should also check
the Apple Web site to see whether any other (free) compilers are available:
http://developer.apple.com/.

The place to put your stuff
When you learn to program, you create scads of files. These files include the
original-text source code files, the final program files, and perhaps even object
code files, depending on the compiler. Obviously, you want to keep those files
organized and separate from your regular junk.

For this book, I recommend creating a prog folder or directory. Create this
folder off your main folder — the $HOME folder in Unix or the My Documents
folder in Windows. The prog folder is designed to hold all your programming
projects.

Beneath prog, you should put the c folder, for all your C language program-
ming projects.

Finally, create a learn folder, in which you put all the projects for this book.
The rest of this appendix provides specific examples.

Windows. To create a folder for your C language projects, follow these steps:

1. Open the My Documents icon on the desktop.

2. Choose File➪New➪Folder to create a new folder and then name the
folder prog.

3. Open the prog folder.

4. Choose File➪New➪Folder to create a new folder, and then name it c.

5. Open the c folder.

6. Create a folder inside the c folder, and name that folder learn.

7. Close the c folder window.

362 C For Dummies, 2nd Edition

The learn folder is where you place all the files created in this book.

Linux, FreeBSD, Mac OS X, or Unix: To create a folder for your C program-
ming projects, obey these steps:

1. If you’re using a graphical shell, open a terminal window. You need to
get at the command prompt.

The terminal window should open into your account’s home directory. If
you aren’t in your home directory, type the cd command to return there.

Ensure that you’re not logged in as the root account; creating programs
as the root user is a security risk.

2. Create the prog/c/learn directory branch:

mkdir -p prog/c/learn

The -p switch directs mkdir to create all the subdirectories that are speci-
fied; it’s the same as issuing three separate mkdir commands at once.
With one command, you have created the prog directory, the c subdirec-
tory, and, finally, the learn subdirectory. Ta-da.

You use the learn folder for storing all the source code and program files
created in this book.

Mac (before OS X). Alas, the old Mac operating system lacked a “home folder”
for all your stuff. If you have such a folder, use it as a base to create the sub-
folders in the following steps. Otherwise, you can create these folders right on
the desktop for handy access:

1. Press Ú+N to create a new folder.

2. Name that folder prog, for “programming.”

3. Open the prog folder.

4. Press Ú+N to create a subfolder inside the prog folder.

5. Name that folder c.

6. Open the c folder.

7. Press Ú+N to create a subfolder inside the c folder.

8. Name that subfolder learn.

9. Close all the open windows you just created.

When using your compiler, remember to save all your files in the learn folder.

Appendix A: The Stuff You Need to Know before You Read All the Other Stuff 363

Making Programs
To build programs, you need two tools: an editor and a compiler. You use the
editor to create or edit the source code — which is merely a text file. Then,
you use the compiler to magically transform that text into the language the
computer understands, stuffing it all into a program file.

This book illustrates programming techniques by using small programs tar-
geted to showcase specific examples of the C language. Because of that, you
can use the command prompt for compiling programs more easily than the
IDE that may have come with your compiler. I recommend that you become
familiar with the command prompt.

The following steps don’t apply to programming on the Macintosh before OS X.
If you’re using an older Mac, refer to your compiler’s documentation to find out
how to edit and compile programs. Remember to use the learn folder you cre-
ated to save all your stuff.

Finding your learn directory or folder
The first step to programming is to navigate your way to the learn directory
(or folder) by using the command prompt. Follow these steps:

1. Start a terminal or command-prompt window.

In Windows, run the CMD.EXE program, also known as the MS-DOS
prompt.

This program is on the Accessories or, often, main Programs menu, off
the Start button. Or, you can type CMD in the Run dialog box to start the
command-prompt window.

In Linux, OS X, FreeBSD, and other Unix-like operating systems, open a
terminal window if you’re using a graphical shell. Otherwise, any termi-
nal works.

2. Change to your home directory.

In Windows XP, type this command:

cd “my documents”

In other versions of Windows, type this command:

cd “\My Documents”

364 C For Dummies, 2nd Edition

The command prompt should now reflect that you’re using the My
Documents folder, similar to:

C:\Documents and Settings\Dan\My Documents>

or:

C:\My Documents>

(The last part of the prompt reads “My Documents.”)

In Linux, FreeBSD, or Mac OS X, type the cd command to change to your
home directory. That single command does the job.

3. Change to the learn directory.

Everyone, type:

cd prog/c/learn

except for older versions of Windows, where it’s

cd prog\c\learn

(Note the backslashes, not forward slashes.)

4. Confirm that you’re in the proper directory.

You do this in Windows by typing the cd command; in Unix, type pwd.
The current directory is displayed, which should look like one of these:

C:\Documents and Settings\name\My Documents\prog\c\learn
C:\My Documents\prog\c\learn
/home/user/prog/c/learn
/Users/user/prog/c/learn

Note that the common part is the last part, prog/c/learn. If you see that
(or prog\c\learn), you’re ready to start work.

The learn directory is where you’re working while you use this book. That’s
where you edit, create, compile, and manage files.

Running an editor
To concoct your C language source code, you need to use a text editor. In
Windows, you can use the EDIT command to summon the MS-DOS Editor. It’s
rather simple to understand and use, it works with the mouse, and it’s free
and available.

For the various Unix operating systems, you have multiple editor choices. The
simplest text editor is Easy Editor, activated with the ee command. Otherwise,
you can use any of the Unix editors — and quite a few of them are available.

Appendix A: The Stuff You Need to Know before You Read All the Other Stuff 365
My favorite editor for working with C is vim, a variant on the infamous vi editor
in Unix (see Figure A-1). Unlike vi, vim uses colors to code text. When you edit
your source code in vim, you see keywords, values, and other parts of the C
language highlighted in color.

Figure A-1:

The vim
editor.

� Versions of vim are available for Linux, FreeBSD, Mac OS X, Windows, and
even older Macs. You can pick it up at www.vim.org.

� Windows XP may not like the EDIT command. As an alternative, you can
use Notepad to edit your source code. For example, to edit the GOODBYE.C
text file, you type this command at the prompt:

NOTEPAD GOODBYE.C

Notepad opens in another window, where you can edit the text file. Simply
close the window when you’re done.

Compiling and linking
After the source-code text file is created, your next step is to compile and
link. This step transforms the meek and mild text file into a robust and use-
able program on your computer.

Read the proper subsection for compiling and linking specifics for your oper-
ating system. For Macs before OS X, see the reference material that came
with your compiler.

Making GCC work in Windows
Heck, for all the advances made with Windows, you may as well be using DOS
when it comes to compiling programs at the command prompt. Anyway. . . .

366 C For Dummies, 2nd Edition

Windows compilers aren’t designed to be friendly for command-line compil-
ing. Because of that, it’s up to you to make the compiler work at every com-
mand prompt and in every folder in your computer system. One way to make
that happen is to create a batch file that runs the GCC (or whatever) command
that runs the compiler. It isn’t the easiest thing to do, but, fortunately, it needs
to be done only once.

These steps assume that you have installed the Dev-C++ environment on your
PC. Furthermore, they assume that you have installed Dev-C++ into the C:\
Dev=C++ folder.

(If you installed Dev-C++ in another folder, you need to make a note of that
folder’s path. For example, if you installed it in the Program Files folder, the
path is C:\Program Files\Dev-C++. You must remember the path!)

Take a deep breath.

1. Start a command prompt or MS-DOS window.

You know what? Making a shortcut to the MS-DOS window and putting it
on the desktop may be a good idea — especially for the duration of time
that you use this book. See your favorite book on Windows for detailed
instructions.

2. Change to the Windows folder:

cd \windows

(I’m assuming that Windows is the name of your Windows folder. If not —
it’s WINNT or something — substitute the folder’s name for windows in
the cd \windows command.)

Inside the Windows folder, you create a batch file program — a shortcut
to the GCC command used by Dev-C++. You can then use the GCC com-
mand at any command prompt in Windows.

3. Carefully type copy con gcc.bat and press the Enter key.

4. Carefully type this line:

@c:\Dev-C++\bin\gcc %1 %2 %3 %4 %5 %6

The line starts with an at sign, @. That’s followed by the full pathname
to Dev-C++’s GCC compiler, either c:\Dev-C++\bin\gcc. (If you have
installed GCC into another folder, put its path there instead; remember
to enclose the path in double quotes if it contains spaces!)

After gcc comes a space, and then %1, a space, %2, space, and so on.
This is important!

Appendix A: The Stuff You Need to Know before You Read All the Other Stuff 367
If you make a mistake, use the Backspace key to back up and correct.

If all this seems strange to you, get someone else who better under-
stands Windows (or DOS) to help you.

5. Review the line.

Double-check everything. Only when it looks like the example in this
book do you do the next step.

6. Press the Enter key.

7. Press the F6 key.

A ^Z appears on the screen.

8. Press the Enter key.

You see 1 file(s) copied and the GCC.BAT file has been created.

Now you need to test the GCC.BAT file, to ensure that it’s working. Follow the
steps listed earlier in this appendix so that you’re in the learn folder. (It may
be easier to close the current Command Prompt window and open a new one).
When you’re in the learn folder, type this command at the prompt:

gcc -v

If you see a whole lotta blech appear on the screen, congratulations! You got
it to work!

If it doesn’t work, review the preceding steps. You probably didn’t copy the
text properly in Step 4, or you could have created the file in the wrong folder.
Repeat the steps, and press Y after Step 3 to overwrite the current GCC.BAT
file with a new one.

Windows: Compiling, linking, and running
After setting up the GCC.BAT file, you’re ready to start creating programs.
Eventually, you repeat the following steps often enough that you no longer
need to refer to this appendix for help.

1. Ensure that you’re in the proper folder.

Refer to the section “Finding your learn directory or folder,” earlier in
this appendix.

2. Use your text editor to create your source code file.

Refer to Chapter 1 for the listing of the GOODBYE.C program. Type that
text into your editor per the instructions in Chapter 1.

3. Compile and link the source code.

368 C For Dummies, 2nd Edition

You do this step with the GCC command — both steps at once. Here’s
the command to type:

gcc goodbye.c -o goodbye

You type these four things:

• gcc, the command to compile and link the source code

• goodbye.c, the name of the source code file

• -o, the output switch

• goodbye, the name of the final program

If you leave off the -o switch and its option, GCC creates the program
file named A.EXE in Windows. I don’t recommend it. Instead, remember
the -o option and specify a name for the output program. The name can
be the same as the source code file. (C language source code files end
in .C and program files end in .EXE.)

4. Run the program.

Type the program file’s name at the prompt. For this example, type good-
bye and press Enter. This step executes that program’s code and displays
something on the screen or does something interesting, depending on
what the program is supposed to do.

Those are the basic steps you take (all in the learn folder) to create the pro-
gram examples in this book. As I have said, eventually it become second nature
to you.

� If you get an error message, such as the compiler cannot find its files or
some installation problem has occurred, please refer to the compiler’s
documentation or Web site for help. I cannot help you with problems
related to the compiler or its installation.

� For each program you create, there are two files: the source code file (a
text file) and the program file. That’s generally how things go in this book.

� Some C language compilers are 2-stage, requiring compiling first and
then linking as a separate step. The extra stage involves the creation of a
third file on disk — the OBJ, or object file. GCC combines compiling and
linking and deletes the object file after linking successfully.

� I recommend keeping the programs around for future reference; don’t
delete them until you have been programming a while and really no
longer need them.

Linux, FreeBSD, and Mac OS X: Compiling, linking and running
The main thrust of programming the individual examples in this book
involves the following three steps. You eventually repeat these steps often
enough that you don’t have to return to see what’s next:

Appendix A: The Stuff You Need to Know before You Read All the Other Stuff 369
1. Ensure that you’re in the learn folder.

Heed the steps in the section “Finding your learn directory or folder,”
earlier in this appendix.

2. Use your text editor to create your source code file.

Use vi, ee, or whatever your favorite text editor is to create and save
the source code file. For an example, you can refer to the listing of the
GOODBYE.C source in Chapter 1; type that text into your editor.

3. Compile and link the source code.

Compiling and linking are both handled by the GCC command. As an exam-
ple, here’s what you need to type to compile and link the GOODBYE.C
source code created in Step 1:

gcc goodbye.c -o goodbye

The code has four items:

• gcc, the command to compile and link the source code

• goodbye.c, the name of the source code file

• -o, the output switch

• goodbye, the name of the final program

If you leave off the -o switch and its option, GCC creates the program
file named a.out. I don’t recommend this. Instead, remember the -o
option and specify a name for the output program. The name can be the
same as the source code file, but without the .c extension.

4. Run the program.

Alas, your operating system doesn’t run your program if you type its
name at the prompt. That’s because Unix runs only programs found on
the path, and I don’t recommend putting your learn directory on the
path. (If you create your own programs that you want to run, copy them
to a bin directory beneath your home directory, and put that directory
on the path.)

To get the operating system to notice your program, you have to be spe-
cific about where the program lives (in the current folder, for example).
You do that by prefixing ./ to the program’s name. To run the goodbye
program, type the following at the prompt:

./goodbye

And the program runs.

Those steps are the basic ones you take (all in the learn folder) to create the
program examples in this book. As I have said, it eventually becomes second
nature to you.

370 C For Dummies, 2nd Edition

� Filename extensions are optional in Unix, but I do recommend that you
use .c to suffix all your C language source code files. That helps you keep
them straight. As a bonus, the vim editor, GCC, and other programs rec-
ognize the .c and treat the file accordingly.

� For each program you create, there are two files on disk: the source code
file (a text file) and the program file. That’s generally how things go in
this book.

� The GCC compiler automatically sets the permission bits on the result-
ing program file, allowing it to be run. Usually, it’s -rwxr-xr-x, or the
equivalent of a chmod 755 command.

� I recommend keeping the programs around for future reference; don’t
delete them until you have been programming a while and really no longer
need them.

Appendix B

ASCII Table

Code Character Hex Binary Notes

0 ^@ 00 0000 0000 Null character, \0

1 ^A 01 0000 0001

2 ^B 02 0000 0010

3 ^C 03 0000 0011

4 ^D 04 0000 0100 Exit key (Unix)

5 ^E 05 0000 0101

6 ^F 06 0000 0110

7 ^G 07 0000 0111 Bell, \a

8 ^H 08 0000 1000 Backspace, \b

9 ^I 09 0000 1001 Tab, \t

10 ^J 0A 0000 1010 Vertical tab, \v

11 ^K 0B 0000 1011

12 ^L 0C 0000 1100 Form feed, \f

13 ^M 0D 0000 1101 Enter key, \n (or \r)

14 ^N 0E 0000 1110

15 ^O 0F 0000 1111

16 ^P 10 0001 0000

17 ^Q 11 0001 0001

18 ^R 12 0001 0010

19 ^S 13 0001 0011

(continued)

372 C For Dummies, 2nd Edition

Code Character Hex Binary Notes

20 ^T 14 0001 0100

21 ^U 15 0001 0101

22 ^V 16 0001 0110

23 ^W 17 0001 0111

24 ^X 18 0001 1000

25 ^Y 19 0001 1001

26 ^Z 1A 0001 1010 End of file (DOS)

27 ^[1B 0001 1011 Escape

28 ^\ 1C 0001 1100

29 ^] 1D 0001 1101

30 ^^ 1E 0001 1110

31 ^_ 1F 0001 1111

32 20 0010 0000 Space

33 ! 21 0010 0001

34 “ 22 0010 0010

35 # 23 0010 0011

36 $ 24 0010 0100

37 % 25 0010 0101

38 & 26 0010 0110

39 ‘ 27 0010 0111

40 (28 0010 1000

41) 29 0010 1001

42 * 2A 0010 1010

43 + 2B 0010 1011

44 , 2C 0010 1100

45 - 2D 0010 1101

46 . 2E 0010 1110

Appendix B: ASCII Table 373

Code Character Hex Binary Notes

47 / 2F 0010 1111

48 0 30 0011 0000 (Numbers)

49 1 31 0011 0001

50 2 32 0011 0010

51 3 33 0011 0011

52 4 34 0011 0100

53 5 35 0011 0101

54 6 36 0011 0110

55 7 37 0011 0111

56 8 38 0011 1000

57 9 39 0011 1001

58 : 3A 0011 1010

59 ; 3B 0011 1011

60 < 3C 0011 1100

61 = 3D 0011 1101

62 > 3E 0011 1110

63 ? 3F 0011 1111

64 @ 40 0100 0000

65 A 41 0100 0001 (Uppercase alphabet)

66 B 42 0100 0010

67 C 43 0100 0011

68 D 44 0100 0100

69 E 45 0100 0101

70 F 46 0100 0110

71 G 47 0100 0111

72 H 48 0100 1000

73 I 49 0100 1001

(continued)

374 C For Dummies, 2nd Edition

Code Character Hex Binary Notes

74 J 4A 0100 1010

75 K 4B 0100 1011

76 L 4C 0100 1100

77 M 4D 0100 1101

78 N 4E 0100 1110

79 O 4F 0100 1111

80 P 50 0101 0000

81 Q 51 0101 0001

82 R 52 0101 0010

83 S 53 0101 0011

84 T 54 0101 0100

85 U 55 0101 0101

86 V 56 0101 0110

87 W 57 0101 0111

88 X 58 0101 1000

89 Y 59 0101 1001

90 Z 5A 0101 1010

91 [5B 0101 1011

92 \ 5C 0101 1100

93] 5D 0101 1101

94 ^ 5E 0101 1110

95 _ 5F 0101 1111

96 ` 60 0110 0000

97 a 61 0110 0001 (Lowercase alphabet)

98 b 62 0110 0010

99 c 63 0110 0011

100 d 64 0110 0100

Appendix B: ASCII Table 375

Code Character Hex Binary Notes

101 e 65 0110 0101

102 f 66 0110 0110

103 g 67 0110 0111

104 h 68 0110 1000

105 i 69 0110 1001

106 j 6A 0110 1010

107 k 6B 0110 1011

108 l 6C 0110 1100

109 m 6D 0110 1101

110 n 6E 0110 1110

111 o 6F 0110 1111

112 p 70 0111 0000

113 q 71 0111 0001

114 r 72 0111 0010

115 s 73 0111 0011

116 t 74 0111 0100

117 u 75 0111 0101

118 v 76 0111 0110

119 w 77 0111 0111

120 x 78 0111 1000

121 y 79 0111 1001

122 z 7A 0111 1010

123 { 7B 0111 1011

124 | 7C 0111 1100

125 } 7D 0111 1101

126 ~ 7E 0111 1110

127 7F 0111 1111 Delete (or “rubout”)

376 C For Dummies, 2nd Edition

Index

• Numbers & Symbols •
0nn,printf()escape sequence, 307
100.C, 192–193
& (ampersand), do-while loops, 227
& (AND) bitwise operator, 344
&& logical operator, 180
<> (angle brackets), 13
* (asterisk)

comments and, 56
as multiplication sign, 88, 134, 313

\ (backslash)
\’ (apostrophe), printf() escape

sequence, 307
\” (double-quote), printf() escape

sequence, 307
\0 (null), printf() escape sequence,

307
\? (question mark), printf() escape

sequence, 307
escape sequences, 45
printf() escape sequence, 307
RULES.C, 37–38
text strings, 31

[] (brackets), single-character
variables, 123

^ (caret) symbol, 316
^ (EOR/XOR) bitwise operator, 344
% conversion character, printf()

function, 305
{} (curly braces)

comparisons and, 153
else keyword, 159
functions and, 31
introduction, 13

= (equal sign)
location, 314
numeric variables and, 80

== (equal to) comparison operator, if
statement, 151, 160

- (hyphen)
one’s complement, bitwise operator, 344
subtraction symbol, 87, 134, 313

-- (decrementation) operator,
207–208, 322

> (greater than) comparison operator, if
statement, 152, 160

>= (greater than or equal to) comparison
operator, if statement, 152, 160

| (inclusive OR) bitwise operator, 344
|| logical operator, 178, 180
< (less than) comparison operator, if

statement, 151, 160
<= (less than or equal to) comparison

operator, if statement, 152, 160
% (modulus)

introduction, 333
math operator, 314

!= (not equal) comparison operator, if
statement, 152, 160

+ (plus symbol)
mathematical operator, 134
symbol, 87, 313

++ (incrementation) operator
introduction, 202–203
LARDO.C, 203–204
location, 322–323
variables, 320–321

#define directive, 104–105, 302–303
#else, 303
#endif, 303
#if, 303
#ifdef, 303
#ifndef, 303
#include

construction, 294–297
description, 30

<< (shift bits left) bitwise operator, 344
>> (shift bits right) bitwise operator, 344
/ (slash)

with asterisk (/*), 56
division symbol, 87, 134, 313
double (//), 60, 63

// (double slash)
C++ comments, 60
nested comments and, 63

• A •
\a, printf() escape sequence, 306
abs() function, 319
absolute value of numbers, 320
acos() function, 319
addition symbol (+), 87

378 C For Dummies, 2nd Edition

alphabet trivia, 172
ampersand (&)
do-while loops, 227
pointers, 343

AND (&) bitwise operator, 344
AND logical operator

code example, 183
introduction, 180

angle brackets (< >), 13
arguments, 277, 282
arrays, 339–340, 341
ASCII characters

character variables, 129
extended codes, 129
table, 371–375
typing in, 122

ASCII.C, 193–194
asin() function, 319
ASSESSED.C, 140–141
assigning pointers, 343
assignment operators, 212
asterisk (*), comments and, 56
atan() function, 319
atoi() function
HEIGHT.C, 136
introduction, 81–82
returning values, 283

• B •
\b, printf() escape sequence, 306
B programming language, 10
backslash (\)

escape sequences, 45
printf(), 305
RULES.C, 37–38
text strings, 31

backward counting loops, 205
BASIC programming language, 10
BCPL (Basic Combined Programming

Language), 10
BIGJERK1.C, 255–256
BIGJERK2.C, 256–260
BIGJERK3.C, 261–262
BIGJERK4.C, 277–278
binary numbers, integers and, 112
binary operators, 344
bitwise operators, 182, 344
blank lines in code, 14
BLOWUP1.C
if command, 173–174
logic, 176

BOMBER.C
dual variables, 267
global variable, 271–272
variables, 265–267

bonus() function, 288–289
BONUS.C, 288–289
books for further reading, 358
BORC.C, 236
bounds checking, do-while loops, 229–230
brackets ([]), single-character

variables, 123
break command, 244, 352
break keyword, 198–199
for (;;) loops, 237
case statements, 243
do-while loops, 228
nested loops, 235–237

break statements, while loops, 221
breaking loops, 197–198
breakpoints, 356
bugs, 27
bulletproofing, 229
bytes, 128

• C •
%c conversion character, printf()

function, 311
calling functions, 254, 279–280
caret (^) symbol, 316
case keyword, 244, 247
case sensitivity
else keyword, 159
function naming, 264
include directives, 296
keywords, 33
printf(), 42
source code, 13

case statement, 243, 244, 247
cat command, 351
cd command, 351
char keyword

introduction, 50
numeric data types, 108
single-character variables, 122–123
string variable declaration, 57
unsigned char keyword, 109
variable declaration, 40, 123–124

character data types, 108
character variables
char keyword, 121
characters in, 124

Index 379
as integer, 111
quotes, 123
value assignment, 124
as values, 128–129

characters
comparing, 166
conversion, 46

clear command, 350
cls command, 350
code. See source code
code blocks, 151
code size, 346
COLOR.C, 51–52
command line, 345, 347
command prompt

commands, 350–351
IDE and, 350

commands
cat, 351
cd, 351
clear, 351
cls, 351
command prompt, 350–351
del, 351
dir, 351
exit, 351
if, 147–148
line numbers, text editor, 349
ls, 351
nv, 351
pwd, 351
ren, 351
return, 31
rm, 351
switch, 243
type, 351

comments
/* (slash with asterisk), 56
C++, 60
compiler and, 55
disabling statements, 61
introduction, 55
MADLIB1.C, 56–57
nested, 62–63
reasons for, 58
single-line, 59
styles, 58–60
tips, 356–357
variables, 95

comparisons
{} (curly braces) and, 153
characters, 166

else keyword and, 159
GREATER.C, 167–168
if keyword, 150–151
operators, 151–152
strings, if keyword and, 174

compiler
comments and, 55
errors, 27
FreeBSD, 360
GCC compiler, 15, 360, 365–367
GOODBYE.C, 15–16
header files and, 296
introduction, 14–15
Linux, 360
Mac, 361
Mac OS X, 360
MiniGW compiler, 360
MSVC (Microsoft Visual C++), 360
setup, 359
Unix, 361
Windows, 360

compiling
FreeBSD, 368–370
linking and, 17
Linux, 368–370
Mac OS X, 368–370
recompiling, 21–22
variable declaration and, 95
WHORU.C, 40–41

conditions
do-while loops, 227
infinite loops, 196

const keyword, 106
constants

defining, 101–102
definition, 91
numeric, 101
numeric, shortcut, 102–104
semicolons, 269
string constants, 53, 101
symbolic, 103
variables and, 101

contents of variables, 76
context-colored text editors, 348–349
continue keyword

loops, 237–238
nested loops, 235–236

conversion characters
formatting strings, 46
printf() function, 311–312

converting, string numbers to integer
value, 81–82

380 C For Dummies, 2nd Edition

cos() function, 319
COUNTDOWN.C
do-while loops, 226–227
error, 228–229

critical errors, 25
curly braces ({ })
case keyword statements, 244
comparisons and, 153
else keyword, 159
functions and, 31
introduction, 13

• D •
%d conversion character, printf()

function, 311
data types, numeric, 108
DBLQUOTE.C, 43
dead_horse variable, 223
debugging

order, 354
tools, 357

declaring arrays, 340
declaring functions, 263
declaring pointers, 343
declaring variables

float, 113
global, 270–271
integer variables, 110–111
introduction, 40
location in program, 95
multiple, 100–101
reasons for, 94–95
values as, 276

DECODD.C, 322
decrementation. See also incrementation
-- operator, 207–208, 322
assignment operators, 212
for loops, 206–207
introduction, 204–205
operator shortcuts, 212
skipping values, 210

default statements, switch structure, 244
defining functions, 263
del command, 351
delay() function, prototyping, 269
delay loops, 233
development cycle, 11
dir command, 350
disabling statements, comments and, 61
disk access, 345
displaying text, printf() and, 306
division symbol (/), 87

do keyword, 227
dot notation, structures, 342
do_this statement, for loop, 189
double keyword, numeric data types, 109
double quotes. See also quotes
DBLQUOTE.C, 42–43
formatting strings, 46
strings, 42–43

double slash (//), 60
double variables

double precision numbers, 118
pow() function, 316

double-precision data types, 109, 118
do-while loops
& (ampersand), 227
bounds checking, 229–230
break keyword, 228
conditions, 227
execution, 227
input bounds, 229–230
introduction, 186
number checking, 229–231
semicolons, 227
statements, 227

dropBomb() function, 265–266
dual variables, BOMBER.C, 267

• E •
%e conversion character, printf()

function, 311
E notation, 116–117
editing, source code, 19–21, 24–25
elements in arrays, 340
else keyword
{} (curly braces), 159
case sensitivity, 159
if statements and, 158
semicolon, 159

else statement, 157–158
else-if statement, 160–163
empty parentheses, 31
endless loops, 186
EOF (end of file), 170
EOR (&) bitwise operator, 344
equal sign (=)

location, 314
numeric variables and, 80

equal to (==) comparison operator, if
statement, 151

error messages
components of, 23
GCC compiler, 24

Index 381
line numbers, 24
linker and, 26
semicolons, 24

ERROR.C, 22–27
errors

bugs, 27
compiler errors, 27
critical errors, 25
fatal errors, 25
linker and, 26
linker errors, 27
null pointer assignment, 27
parse errors, 23
source code, 22–27
syntax errors, 23

escape clause, loops, 197
escape sequences, printf(), 44–45,

306–308
execute

definition, 160
do-while loops, 227

exit command, 351
exp() function, 319
exponents, math operations, 314–315
extended ASCII codes, 129

• F •
%f conversion character, printf()

function, 311
\f, printf() escape sequence, 306
fatal errors, 25
fflush() function, 170–171
file size, 346
filenames, extensions, 13
files

folders, 361–362
header files, # include and, 294–297
source code, 12
text, size, 262

flexibility of C, 222–223
float keyword

format, 113
numeric data types, 109

float variable, declaring, 113
floating-point values
double keyword, 118
formatting, 119–120
JUPITER.C, 114–115
negative, 112
numeric data types and, 108
positive, 112
ranges, 114
variables, 99

folders, 361–364
for keyword

description, 188
parentheses, 189, 190

for loops
decrementing, 206–207
do_this statement, 189
introduction, 186
nested, 233
printf() statement, 188
variables, 191
while loop comparison, 219–220
while_true keyword, 189

for (;;) loops
break keyword, 237
while loops and, 220–222

format strings, printf() function, 310
formats
char variable, 122
E notation, 117
floating-point values, 119–120
functions, 262–263, 289–291
if statement, 154–155
printf() and, 46, 310–311
scanf(), 49
strings, 46
text, 47–49

fpurge() function, 171
FreeBSD

compiler, 360
folders, 362

functions
{} (curly braces) and, 31
abs(), 319
acos(), 319
arguments, 46, 282
asin(), 319
atan(), 319
atio(), 81–82, 136
bonus(), 288–289
calling, 254
calling, variable names and, 279–280
case sensitivity, 264
conversion characters, 46
cos(), 319
creating, 254
declaring, 263
defining, 263
defining, returning values and, 282
delay(), 269
dropBomb(), 265–266
exp(), 319
fflush(), 170–171
formats, 262–263, 289–291

382 C For Dummies, 2nd Edition

functions (continued)

formatting strings, 46
fpurge(), 171
getchar(), 126
gets(), 65–67
getval(), 284
header files and, 296
input requirements, 275
introduction, 30
jerk(), 256–258
library, 255
log(), 319
log10(), 319
main(), 30
math, 319–320
mathematical operators, 134
naming, 263–264
necessity, 253
output, 275–276
parameters, 279
parentheses, 254, 262
pow(), 315
printf(), 305–312
procedures and, 253
prototyping, 258–262
putchar(), 127–128
puts(), 67–71
rand(), 326–328
redundancy and, 256
return keyword, 285–287
scanf(), 40
seedrnd(), 329–331
sending values to, 276–277
sin(), 319
sleep(), 234
sqrt(), 317–319
srand(), 329
strings and, 42
tan(), 319
time(), 332
types, 275–276
values, declaring as variables, 276
values, passing, 279
values, passing multiple, 280–282
values, returning, 255, 282–289
variable naming and, 96

further reading, 358

• G •
%g conversion character, printf()

function, 311
gcc command, math library links, 317

GCC compiler
error messages, 24
introduction, 15
Windows, 365–367

GENIE1.C, 148–150
GENIE2.C, 162–163
GENIE3.C, 163–164
getchar() function

reading text from keyboard, 126
returning values, 283
returns, 168
single character reading, 171
standard input and, 168

gets() function
INSULT1.C, 66
introduction, 65–66

getval() function, 284
global variables

declaring, 270–271
description, 269

GOODBYE.C
compiling, 15–16
creating, 13–14
recompiling, 21–22
running program, 16
typing tips, 14

goto keyword, loops, 186
greater than (>) comparison operator,

if statement, 152
greater than or equal to (>=) comparison

operator, if statement, 152
GREATER.C

comparisons, 167–168
standard input reading, 170

GRID.C, 234–235

• H •
.H file extension, 296
header files

compiler and, 296
functions and, 296
#include construction and, 294–297
library files and, 300
programming code, 300
STDIO.H, 297–298
writing, 298–299

HEAD.H, 298–299
HEIGHT.C, 135–136
HEY.C, 216–217
high-level languages, 10
history, command line, 347
history of C, 9–11

Index 383

• I •
%i conversion character, printf()

function, 311
ICKYGU.C, 98–99
IDE (Integrated Development

Environment), command prompt
window, 350

if command. See if keyword
if keyword
BLOWUP1.C, 173–174
comparisons and, 148, 150–151
introduction, 147–148
logical operators, 180–182
math and, 148
operators, 151–152
parentheses, 150
selection statements, 148
string comparison, 174
TAXES.C, 155–157
test, 150
values and, 165

if statement
block, 150–151
format, 154–155

if-else structure
definition, 158
either-or decisions, 158–159

if-then statement, 154
imaginary number, 319
INCODD.C, 321
incrementation. See also decrementation

++ operator, 202–203
a++, 320–321
ASSESSED.C, 140–141
assignment operators, 212
five count, 211
for loops and, 188
introduction, 137
LARDO.C, 138–140
loops and, 201–202, 209
operator location, 322–323
operator shortcuts, 212
post-incrementing, 322–323, 351
pre-incrementing, 322–323, 351
skipping values, 210
values, 138–139

indents, source code, 14
infinite loops

conditions, 196
FOREVER.C, 195
while loops, 217

input
functions, 275
getchar() and, 168
GREATER.C, 170
STDIO.H, 297–298

input bounds, do-while loop number
checking, 229–230

INSULT1.C
gets() function and, 66
puts() function, 68–69

INSULT2.C, 69–70
int data types, 108
int integer, 110–111
int keyword
main() function and, 79
numeric data types, 108
placement in program, 78
range, 78
unsigned int keyword, 109

int main, 31
integers

binary numbers and, 112
floating-point number format, 119–120
versus floating-point numbers, 110
int, 110–111
introduction, 78–79
long int, 110–111
METHUS1.C, 79–80
negative numbers, 111
reasons to use, 110
types, 110–111
value conversion from string numbers,

81–82
value range, 78
variables, declaring, 110–111

IQ.C
getval() function, 284–285
type-casting and, 286

• J •
jerk() function, 256–258, 278–279
JUPITER.C, 114–115
justified text, 47–49
JUSTIFY.C, 47–49

• K •
keyboard

numeric values, 81
reading text from, 125–126
reading text to, 127–128

384 C For Dummies, 2nd Edition

keyboard overflow, 67
keywords
break, 198–199
break, nested loops and, 235–237
case, 244
case sensitivity, 33
char, 50, 108
const, 106
continue, 235–236, 237–238
do, 227
double, 109
float, 109, 113
goto, 186
if, 148
int, 78, 108
introduction, 32
long, 109
return, 285–287
short, 108
short int, 108
struct, 341–342
switch, 243–244
unsigned char, 109
unsigned int, 109
unsigned long, 109
unsigned short, 109
variable naming and, 96
while, 218

kitty variable, 76–77

• L •
languages, high-level, 10
LARDO.C

++ operator, 203–204
incrementation, 138–140

leaping loops, 210
learn directory/folder, 363–364
less than (<) comparison operator, if

statement, 151
less than or equal to (<=) comparison

operator, if statement, 152
libm library, 319
library files

header files and, 300
libm, 319
math library links, 317

library of functions, 255
LIGHTS1.C, 316–317
LIGHTS2.C, 318–319
line numbers

commands, text editor, 349
error messages, 24

linked lists, 343

linker
errors and, 26, 27
introduction, 15

linking
compiling and, 17
FreeBSD, 368–370
Linux, 368–370
Mac OS X, 368–370
math library, 317

Linux
compiler, 360
folders, 362

lists, linked, 343
literal strings, 53
LOBBY1.C, 240–243
LOBBY2.C, 248–250
local variables, 270
log() function, 319
log10() function, 319
logic
if command and, 180–182
introduction, 175–176

logical operators
&&, 180
||, 178, 180
AND, 180
if command, 180–182
OR, 178

long int integer, 110–111
long keyword

numeric data types, 109
unsigned long keyword, 109

loops. See also for loops
100.C, 192–193
;; in for loops, 220–222
backward counting, 205
break keyword, 198–199, 235–236, 352
conditions, 196
continue keyword, 235–236, 237–238
delay loops, 233
description, 185
do-while, 186
endless loops, 186
escape clause, 197
for loops, 186, 188–189
goto keyword, 186
incrementation, 201–202, 209
infinite loops, 195–196
leaping loops, 210
looping statements, 185
nested, 231–235
OUCH.C, 187–188
stopping, 193–195, 197–198
switch-case, 239–247

Index 385
variable initialization, 217
while, 186, 215–216

lowercase text, 13, 33
low-level programming languages, reasons

to use, 10
ls command, 350
Lvalue errors, math, 314

• M •
Mac

compiler, 361
folders, 362

Mac OS X
compiler, 360
folders, 362

machine language, 10
macros, 303–304
MADLIB1.C

comment styles, 58–59
comments and, 56–57

magic pellets problem, order of
precedence, 144–145

main() function
int keyword, 79
introduction, 30
returning values and, 287–288

math
exponents, 314–315
functions, 319–320
if command and, 148
imaginary number, 319
incrementation, 137–139
Lvalue errors, 314
order of precedence, 314
pow() function, 315
square root operations, 314, 317–319

math library, links, 317
mathematical operators, 86–88

+ (addition), 87, 134
/ (division), 87, 134
* (multiplication), 87, 134
order of precedence, 141–146
shortcuts, 212
- (subtraction), 87, 134
values, 134
variables, 134

MATH.H header, pow() function, 315
MDAS mnemonic, 142–143
METHUS1.C, 79–80
METHUS2.C, 83–85
METHUS3.C, 85–86
METHUS4.C, 88–90

METHUS5.C, 90–92
MiniGW compiler, 360
mnemonic for order of precedence,

142–143, 335
modulus (%)

introduction, 333
math operator, 314

MSVC (Microsoft Visual C++) compiler, 360
multiplication symbol (*), 87
My Dear Mother’s Aunt Sally mnemonic,

142–143

• N •
\n (newline character)
printf() escape sequence, 306
RULES.C, 36–37

naming
functions, 263–264
variables, 95
variables, calling functions and, 279–280
variables, guidelines, 95–96
variables, tips for, 351

negative numbers
E notation, 117
floating-point, 112
integers, 111
numeric data types, 111–113

nested comments, problems with, 62–63
nested loops
break keyword, 235–237
continue keyword, 235–236, 237–238
definition, 231
for loops, 233
GRID.C, 234–235
while loops, 233

newline character, 31, 71
0nn, printf() escape sequence, 307
not equal to (!=) comparison operator,

if statement, 152
NULL character, strings, 341
null pointer assignment error, 27
numbers

absolute value, 320
ASCII characters, 122
checking in do-while loops, 229–231
converting string to integer values, 81–82
floating-point versus integers, 110
precision, 118
random, 325–326
scientific notation, 115
strings and, 82
variable naming and, 96

386 C For Dummies, 2nd Edition

numeric constants
description, 101
shortcuts, 102–104

numeric data types
character types, 108
double-precision types, 109
integer types, 108, 109
introduction, 107–108
negative numbers, 111–113
positive numbers, 111–113
ranges, 108–109
short integer types, 108
signed, 111–113
single-precision types, 109
unsigned, 111–113
unsigned character types, 109
unsigned integer types, 109
variables, 108–109

numeric variables
description, 93
integers, 78–79
introduction, 77–78
value assignment, 80–81, 97

nv command, 350

• O •
%o conversion character, printf()

function, 311
object code files, OBJ extension, 15
OLLYOLLY.C, 204
operating system interaction, 345
operators
-- (decrement), 207–208, 322
++ (incrementation), 202–203
binary, 344
bitwise, 344
comparison operators, 151–152
comparison operators with if

statement, 160
description, 34
if comparisons, 151–152
logical, 178
mathematical, + (addition), 134
mathematical, / (division), 134
mathematical, * (multiplication), 134
mathematical, - (subtraction), 134
shortcut for math, 212

optimizers, 357–358
OR (&) bitwise operator, 344
OR logical operator

examples, 181
if command and, 178

order of precedence
DENTIST.C, 141
introduction, 141
magic pellets problem, 144–145
mnemonic, 142–143, 337
parentheses, 144, 145–146
PELLETS.C, 144–145

OS (operating system), 27
OUCH.C, 187–188
output

functions, 275–276
STDIO.H, 297–298

• P •
PacMan example of variables, 76
parameters, functions, 279
parentheses

empty, 31
for keyword, 189, 190
functions, 254, 262
if command, 150
order of precedence and, 144, 145–146
source code, 13
statements, 34
strings, 31, 42
switch-case loops, 247

parse errors, 23
passing values, to functions, 279–282
PELLETS.C, 144–145
pipe character, 178–179
pointers, 343
positive numbers

floating-point, 112
numeric data types, 111–113

post-incrementing, 322–323, 351
pow() function

double variables, 316
introduction, 315
MATH.H header, 315

pre-incrementing, 322–323, 351
precedence. See order of precedence
precision, numbers, 118
preprocessor directives, 30
printf()

backslash, 305
conversion characters, 311
description, 31
escape sequences, 44–45, 306–308
flags, 312
for loops, 188
format, 42, 46, 310–311

Index 387
format strings, 310
input-size specifiers, 312
newline character and, 71
precision specifiers, 312
puts() and, 71
review, 305
special characters, 306
text display, 306
variable contents, 71
variable display, 305
variables, 46
width specifiers, 312

PRINTFUN.C, 307–309
printing

text, 42–44
variables, 70

procedures, functions and, 253
program size, 346
programmer, 11
programming

breaking up code, 354
breakpoints, 356
talking through program, 355

programming code. See source code
programming languages

B, 10
BASIC, 10
low-level, 10
machine language, 10

programs
running, 17
saving to files, 361–362
troubleshooting, 353–358

prototyping functions
BIGJERK3.C, 261–262
delay() function, 269
introduction, 258–259
semicolons, 260
value returning and, 283

pseudorandom numbers, 328
putchar() function, reading text to

keyboard, 127–128
puts() function
INSULT1.C, 68–69
INSULT2.C, 69–70
introduction, 67
printf() function and, 71
STOP.C, 68
string variables, 71
text, 67, 71
variable printing, 70

pwd command, 351

• Q •
quotes. See also double quotes
char variable, 123
formatting strings, 46
strings, 42–43

• R •
\r, printf() escape sequence, 306
rand() function

introduction, 326–328
seeds, 328–329

RAND_MAX, value, displaying, 330
random numbers

introduction, 325–326
pseudorandom numbers, 326
seeding, 326, 328–329

random-sampler variable program, 98–99
RANDOM1.C, 327–328
RANDOM2.C, 329–330
RANDOM3.C, 331–333
RANDOM4.C, 335–336
ranges

floating-point numbers, 114
int integer, 111
long int integer, 111
numeric data types, 108–109

reading text
from keyboard, 125–126
to keyboard, 127–128

recompiling source code, 21–22
ren command, 350
reserved words, 33. See also keywords
resources, 358
return command, 31
return keyword, 285–287
return statements, BONUS.C, 288–289
returning values
atoi() function, 283
functions, 255, 282–289
getchar() function, 283
main() function and, 287–288

Ritchie, Dennis, 11
rm command, 351
RULES.C, 36–37

• S •
%s conversion character, printf()

function, 311
saving, source code, 16

388 C For Dummies, 2nd Edition

scanf() function
COLOR.C and, 51–52
format, 49
introduction, 40
null pointer assignment errors and, 51
reading text from keyboard, 125–128
string variables, 49

scientific notation
E notation, 116–117
introduction, 115

seeding random numbers, 326, 328–329
seedrnd() function, 329–331
selection statements
if keyword and, 148
switch-case loops, 241

semicolons
case statement, 247
compilers and, 31
constants, 269
do-while loops, 227
else keyword, 159
errors and, 24
gets(), 66
if test, 150
prototypes, 260
variable declaration, 276
while keyword, 219

shell command, 345
short int keyword, numeric data

types, 108
short keyword

numeric data types, 108
unsigned short keyword, 109

shortcuts for math operations, 212
signed numeric data types, 111–113
sin() function, 319
single quotes, char variable, 123
single-character variables, 122–123
single-line comments, 59
single-precision data types, 109
slash (/)

with asterisk (/*), 56
double (//), 60

sleep() function, 234
source code

blank lines, 14
case sensitivity, 13
coding programs, 12
compiler and, 14–15
editing, 19–21, 24–25
errors, 22–27
filename extensions, 13
files, 12
header files, 300

indents, 14
linker, 15
parentheses, 13
recompiling, 21–22
saving, 16
text editors, 12
tweaking, 20
twiddling, 20
typing tips, 14

special characters, printf() function,
306

SPEED.C, 101–104
split lines, 37–38
sqrt() function, 317–319
square root math operations

introduction, 314
sqrt() function, 317–319

srand() function, 329
standard input, getchar() and, 168
statements
case, 243
case keyword, 244
description, 34
disabling with comments, 61
do-while loops, 227
else, 157–158
else-if, 160–163
if block, 150–151
if-then, 154
selection statements, 148
while keyword, 218

STDIO.H, 31, 297–298
STDLIB.H, 83
STOP.C, 68
string constants
#define directive and, 105
description, 53, 101

string variables
description, 94
scanf() and, 49, 57

strings
comparing with if keyword, 174
description, 32, 340–341
formatting strings, 46
functions and, 42
gets() function, 66–67
literal strings, 53
NULL character, 341
number conversion to integer value,

81–82
numbers and, 82
parentheses, 31, 42
printing, 42–44

struct keyword, 341–342

Index 389
structures, 341–342
styles of comments, 58–60
subtraction symbol (-), 87
switch command, 243, 247
switch keyword, 243–244
switch-case loops
break command, 244–245
case keyword, 244
case statements, 244
default statements, 244
introduction, 239
LOBBY1.C, 241–243
parentheses, 247
selection statements, 241
while loops and, 248–250

symbolic constants, 103
symbols, mathematical, 86–88
syntax, 24
syntax errors, 23

• T •
\t, printf() escape sequence, 307
talking through program, 355
tan() function, 319
TAXES.C, 155–157
text

display, printf(), 306
formatting, 47–49
justified, 47–49
lowercase, 13
printing, 42–44
puts() function, 67, 71
reading from keyboard, 125–126
reading to keyboard, 127–128
strings, 32

text editors
context-colored, 348–349
line-number commands, 349
running, 364–365
source code, 12
windows, 348

text files
size, 262
source code, 12

text strings, 31
time() function, 332
tweaking source code, 20
twiddling source code, 20
type command, 351
TYPER1.C, 197–198
TYPER2.C, 220–222
typing, source code, 14

• U •
%u conversion character, printf()

function, 311
underline, variable naming and, 96
Unix, compiler, 361
unsigned char keyword, numeric data

types, 109
unsigned character data types, 109
unsigned int keyword, numeric data

types, 109
unsigned integer data types, 109
unsigned long keyword, numeric data

types, 109
unsigned numeric data types, 111–113
unsigned short keyword, numeric data

types, 109

• V •
\v, printf() escape sequence, 307
values

absolute, 320
arrays, 340
constants, 91
declaring as variables, 276
floating-point, 99
functions, returning, 282–289
functions, sending to, 276–277
if keyword, 165
incrementation, 138
keyboard entry, 81
mathematical operators, 134
numbers and, 82
numeric variables and, 80–81, 97
parameters, 279
passing multiple to functions, 280–282
passing to functions, 279
predefining in variables, 124
return keyword, 285–287
returning from functions, 255
returning, main() function and, 287–288
variables, 96–98
variables, char, 124

variables
++ operator, 321
arrays, 339–340
BOMBER.C, 265–269
char keyword and, 40, 123–124
character, comparing, 166
comments, 95
constants and, 101
contents, 76

390 C For Dummies, 2nd Edition

variables (continued)

dead_horse, 223
declarations, 40
declarations, multiple, 100–101
declarations, reasons for, 94–95
declaring values as, 276
description, 75–76
double, pow() function, 316
dual, BOMBER.C, 267
float variable, 113
floating-point values, 99
for loop, 191
global, 269
global, declaring, 270–271
initializing, loops and, 217
integer, declaring, 110–111
kitty (string variable), 76–77
local, 270
mathematical operators, 134
METHUS1.C, 79–80
names, calling functions and, 279–280
naming, 95
naming guidelines, 95–96
naming tips, 351
numeric, 77–86, 93
numeric data types, 109
PacMan example, 76
printf() function, 46, 71, 305
printing, 70
programming tips, 356
puts() function and, 70
random-sample program, 98–99
scanf() and, 49
single-character, 122–123
storage location, 76
string, 94
string, scanf() and, 49
value assignment, 80–81
value assignment, char, 124
value incrementation, 138
value, predefining, 124
values, 96–98

vertical bar (pipe character), 178
vim text editor

context-colored, 348–349
line-number commands, 349

viruses, keyboard overflow and, 67

• W •
WHICH.C, 129
while keyword, statements, 218
while loops
break statement, 221
controls, 216
do-while loops, 225–231
for loop comparison, 219–220
for (;;) loops and, 220–222
infinite loops, 217
introduction, 186
nested, 233
overview, 215–216
repeat rate, 216
switch-case structure and, 248–250

while true condition, 218–219
while_true statement
for loops, 189
while loop, 218

WHORU.C
compiling, 40–41
I/O and, 39

Windows
compiling, 367–368
folders, 361–362
GCC compiler, 365–367
linking, 367–368

windows, editor view, 348
Windows Notepad, filename extensions, 13
worms, keyboard overflow and, 67
writing, header files, 298–299

• X •
%x conversion character, printf()

function, 311
xnnn, printf() escape sequence, 307
XOR (&) bitwise operator, 344

• Z •
zeroes, floating-point number format,

119–120

	C For Dummies, 2nd Edition
	Cover

	Table of Contents
	Introduction
	"What Will Understanding C Do for Me?"
	About This Here Dummies Approach
	How to Work the Examples in This Book
	Foolish Assumptions
	Icons Used in This Book
	What's New with This Edition?
	Final Thots

	Part I: Introduction to C Programming
	Chapter 1: Up from the Primordial C
	An Extremely Short and Cheap History of the C Language
	The C Development Cycle
	From Text File to Program
	The source code (text file)
	Creating the GOODBYE C source code file
	The compiler and the linker
	Compiling GOODBYE C
	Running the final result

	Save It! Compile and Link It! Run It!

	Chapter 2: C of Sorrow, C of Woe
	The Required Woes of Editing and Recompiling
	Reediting your source code file
	Recompiling (or the C equivalent of the "do-over")

	Dealing with the Heartbreak of Errors
	Yikes! An error! But, before you shoot yourself
	The autopsy
	Repairing the malodorous program
	Now try this error!

	Chapter 3: C Straight
	The Big Picture
	C Language Pieces' Parts
	The C Language Itself - the Keywords
	Other C Language Components
	Pop Quiz!
	The Helpful RULES Program
	The importance of being \n
	Breaking up lines\ is easy to do

	Chapter 4: C What I/O
	Introduce Yourself to Mr Computer
	Compiling WHORU C
	The reward

	More on printf()
	Printing funky text
	Escape from printf()!
	The f means "formatted"
	A bit of justification

	scanf Is Pronounced "Scan-Eff"
	Putting scanf together
	The miracle of scanf()
	Experimentation time!

	Chapter 5: To C or Not to C
	Adding Comments
	A big, hairy program with comments
	Why are comments necessary?

	Comment Styles of the Nerdy and Not-Quite-Yet-Nerdy
	Bizarr-o comments
	C++ comments

	Using Comments to Disable
	The Perils of "Nested" Comments

	Chapter 6: C More I/O with gets() and puts()
	The More I Want, the More I gets()
	Another completely rude program example
	And now, the bad news about gets()

	The Virtues of puts()
	Another silly command-prompt program
	puts() and gets() in action
	More insults
	puts() can print variables

	Part II: Run and Scream from Variables and Math
	Chapter 7: A + B = C
	The Ever-Changing Variable
	Strings change
	Running the KITTY

	Welcome to the Cold World of Numeric Variables
	Hello, integer
	Using an integer variable in the Methuselah program
	Assigning values to numeric variables
	Entering numeric values from the keyboard
	The atoi() function
	So how old is this Methuselah guy, anyway?
	You and Mr Wrinkles

	A Wee Bit o' Math
	Basic mathematical symbols
	How much longer do you have to live to break the Methuselah record?
	Bonus modification on the final Methuselah program!
	The direct result

	Chapter 8: Charting Unknown Cs with Variables
	Cussing, Discussing, and Declaring Variables
	"Why must I declare a variable?"
	Variable names verboten and not
	Presetting variable values
	The old random-sampler variable program
	Maybe you want to chance two pints?
	Multiple declarations

	Constants and Variables
	Dreaming up and defining constants
	The handy shortcut
	The #define directive
	Real, live constant variables

	Chapter 9: How to C Numbers
	There Are Numbers, and Then There Are Numbers
	Numbers in C
	Why use integers? Why not just make every number floating-point?
	Integer types (short, long, wide, fat, and so on)
	Signed or unsigned, or "Would you like a minus sign with that, Sir?"

	How to Make a Number Float
	"Hey, Carl, let's write a floating-point number program!"
	The E notation stuff

	Bigger than the Float, It's a Double!
	Formatting Your Zeroes and Decimal Places

	Chapter 10: Cook That C Variable Charred, Please
	The Other Kind of Variable Type, the char
	Single-character variables
	Char in action
	Stuffing characters into character variables

	Reading and Writing Single Characters
	The getchar() function
	The putchar() function

	Character Variables As Values

	Part III: Giving Your Programs the Ability to Run Amok
	Chapter 11: C More Math and the Sacred Order of Precedence
	An All-Too-Brief Review of the Basic C Mathematical Operators
	The old "how tall are you" program
	Unethical alterations to the old "how tall are you" program

	The Delicate Art of Incrementation (Or, "Just Add One to It")
	Unhappily incrementing your weight
	Bonus program! (One that may even have a purpose in life)

	The Sacred Order of Precedence
	A problem from the pages of the dentistry final exam
	What's up, Sally?
	The confounding magic-pellets problem
	Using parentheses to mess up the order of precedence

	Chapter 12: C the Mighty if Command
	If Only
	The computer-genie program example
	The if keyword, up close and impersonal
	A question of formatting the if statement
	The final solution to the income-tax problem

	If It Isn't True, What Else?
	Covering all the possibilities with else
	The if format with else
	The strange case of else-if and even more decisions
	Bonus program! The really, really smart genie

	Chapter 13: What If C==C?
	The World of if without Values
	Which is greater: S or T, $ or ¨C?
	The problem with getchar()
	Fixing GREATER C to easily read standard input
	"Can I get getchar() to read only one character?"
	Meanwhile, back to the GREATER problem
	Another, bolder example

	Using the if Keyword to Compare Two Strings

	Chapter 14: Iffy C Logic
	Exposing Flaws in logic
	If, And, Or, But
	A solution (but not the best one)
	A better solution, using logic
	The if command's logical friends
	A logical AND program for you

	Chapter 15: C You Again
	For Going Loopy
	Repetitive redundancy, I don't mind
	For doing things over and over, use the for keyword
	Tearing through OUCH C a step at a time
	Having fun whilst counting to 100

	I'm Bustin' Outta Here!
	At last - the handy ASCII program
	Beware of infinite loops!
	Breaking out of a loop
	The break keyword

	Chapter 16: C the Loop, C the Loop++
	The Art of Incrementation
	Cryptic C operator symbols, Volume I: The inc operator (++)
	Another look at the LARDO C program

	The Mysterious Practice of Decrementation
	O, to count backward
	How counting backward fits into the for loop
	Cryptic C operator symbols, Volume II: The dec operator (--)
	A final improvement to OLLYOLLY C

	More Incrementation Madness
	Leaping loops!
	Counting to 1,000 by fives
	Cryptic C operator symbols, Volume III: The madness continues
	The answers

	Chapter 17: C You in a While Loop
	The Lowdown on while Loops
	Whiling away the hours
	The while keyword (a formal introduction)
	Deciding between a while loop and a for loop
	Replacing those unsightly for(;;) loops with elegant while loops
	C from the inside out

	Not to Beat a Dead Horse or Anything

	Chapter 18: Do C While You Sleep
	The Down-Low on Upside-Down do-while Loops
	The devil made me do-while it!
	do-while details
	A flaw in the COUNTDWN C program
	The always kosher number-checking do-while loop

	Nested Loops and Other Bird-Brained Concepts
	Adding a tense, dramatic delay to the COUNTDWN C program
	The nitty GRID C of nested loops

	Break the Brave and Continue the Fool
	Please continue
	The continue keyword

	Chapter 19: Switch Case, or, From 'C' to Shining 'c'
	The Sneaky switch-case Loops
	The switch-case Solution to the LOBBY Program
	The Old switch-case Trick
	The Special Relationship between while and switch-case

	Part IV: C Level
	Chapter 20: Writing That First Function
	Meet Mr Function
	A silly example you don't have to type
	A potentially redundant program in need of a function
	The noble jerk() function
	How the jerk() function works in BIGJERK2 C

	Prototyping Your Functions
	Prototypical prototyping problems
	A sneaky way to avoid prototyping problems

	The Tao of Functions
	The function format
	How to name your functions

	Chapter 21: Contending with Variables in Functions
	Bombs Away with the BOMBER Program!
	Will the dual variable BOMBER C program bomb?
	Adding some important tension

	How We Can All Share and Love with Global Variables
	Making a global variable
	An example of a global variable in a real, live program

	Chapter 22: Functions That Actually Funct
	Marching a Value Off to a Function
	How to send a value to a function
	An example (and it's about time!)
	Avoiding variable confusion (must reading)

	Sending More than One Value to a Function
	Functions That Return Stuff
	Something for your troubles
	Finally, the computer tells you how smart it thinks you are
	Return to sender with the return keyword
	Now you can understand the main() function
	Give that human a bonus!

	No Need to Bother with This C Language Trivia If You're in a Hurry

	Chapter 23: The Stuff That Comes First
	Please Don't Leave Me Out!
	Say! Aren't you the #include construction?
	What's up with STDIO H?
	Writing your own dot-H file
	A final warning about header files

	What the #defines Are Up To
	Avoiding the Topic of Macros

	Chapter 24: The printf() Chapter
	A Quick Review of printf()
	The Old Displaying-Text-with-printf() Routine
	The printf() Escape Sequences
	The printf() escape-sequence testing program deluxe
	Putting PRINTFUN to the test

	The Complex printf() Format
	The printf() Conversion Characters

	Chapter 25: Math Madness!
	More on Math
	Taking your math problems to a higher power
	Putting pow() into use
	Rooting out the root

	Strange Math? You Got It!
	Something Really Odd to End Your Day
	The perils of using a++
	Oh, and the same thing applies to a --
	Reflections on the strange ++a phenomenon

	Chapter 26: The Old Random-Number Function
	On Being Random
	Using the rand() function
	Planting a random-number seed
	Randoming up the RANDOM program
	Streamlining the randomizer

	The Diabolical Dr Modulus
	Rolling the Dice with the Final RANDOM Program

	Part V: Part of Tens
	Chapter 27: Ten More Things You Need to Know about the C Language
	Arrays
	Strings
	Structures
	Pointers
	Linked Lists
	Binary Operators
	Interacting with the Command Line
	Disk Access
	Interacting with the Operating System
	Building Big Programs

	Chapter 28: Ten Tips for the Budding Programmer
	Use the Command-Line History
	Keep Your Editor Open in Another Window
	Use a Context-Colored Text Editor
	Know the Line-Number Commands in Your Editor
	Keep a Command Prompt Window Open If You're Using the IDE
	Know a Few Handy Command-Prompt Commands
	Carefully Name Your Variables
	Know Your Post- and Pre-Incrementing and Decrementing Riddles
	Breaking Out of a Loop

	Chapter 29: Ten Ways to Solve Your Own Programming Problems
	Work on One Thing at a Time
	Break Up Your Code
	Simplify
	Talk through the Program
	Set Breakpoints
	Monitor Your Variables
	Document Your Work
	Use Debugging Tools
	Use a C Optimizer
	Read More Books!

	Appendix A: The Stuff You Need to Know before You Read All the Other Stuff in This Book
	Setting Things Up
	The C language compiler
	The place to put your stuff

	Making Programs
	Finding your learn directory or folder
	Running an editor
	Compiling and linking

	Appendix B: ASCII Table
	Index
	Team DDU

