

UPC
DISTRIBUTED SHARED MEMORY
PROGRAMMING

Tarek El-Ghazawi
The George Washington University

William Carlson
IDA Center for Computing Sciences

Thomas Sterling
California Institute of Technology

Katherine Yelick
University of California at Berkeley

A JOHN WILEY & SONS, INC., PUBLICATION

UPC

WILEY SERIES ON PARALLEL AND DISTRIBUTED COMPUTING
Series Editor: Albert Y. Zomaya

Parallel and Distributed Simulation Systems / Richard Fujimoto

Mobile Processing in Distributed and Open Environments / Peter Sapaty

Introduction to Parallel Algorithms / C. Xavier and S. S. Iyengar

Solutions to Parallel and Distributed Computing Problems: Lessons from

Biological Sciences / Albert Y. Zomaya, Fikret Ercal, and Stephan Olariu (Editors)

Parallel and Distributed Computing: A Survey of Models, Paradigms, and

Approaches / Claudia Leopold

Fundamentals of Distributed Object Systems: A CORBA Perspective /

Zahir Tari and Omran Bukhres

Pipelined Processor Farms: Structured Design for Embedded Parallel

Systems / Martin Fleury and Andrew Downton

Handbook of Wireless Networks and Mobile Computing /

Ivan Stojmenović (Editor)

Internet-Based Workflow Management: Toward a Semantic Web /

Dan C. Marinescu

Parallel Computing on Heterogeneous Networks / Alexey L. Lastovetsky

Performance Evaluation and Characterization of Parallel and Distributed

Computing Tools / Salim Hariri and Manish Parashar

Distributed Computing: Fundamentals, Simulations and Advanced Topics,

Second Edition / Hagit Attiya and Jennifer Welch

Smart Environments: Technology, Protocols, and Applications / Diane Cook

and Sajal Das

Fundamentals of Computer Organization and Architecutre /

Mostafa Abd-El-Barr and Hesham El-Rewini

Advanced Computer Architecture and Parallel Processing / Hesham El-Rewini

and Mostafa Abd-El-Barr

UPC: Distributed Shared Memory Programming / Tarek El-Ghazawi,

William Carlson, Thomas Sterling, and Katherine Yelick

UPC
DISTRIBUTED SHARED MEMORY
PROGRAMMING

Tarek El-Ghazawi
The George Washington University

William Carlson
IDA Center for Computing Sciences

Thomas Sterling
California Institute of Technology

Katherine Yelick
University of California at Berkeley

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright # 2005 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form

or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as

permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior

written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to

the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400,

fax 978-646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission

should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,

Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts

in preparing this book, they make no representations or warranties with respect to the accuracy or

completeness of the contents of this book and specifically disclaim any implied warranties of

merchantability or fitness for a particular purpose. No warranty may be created or extended by sales

representatives or written sales materials. The advice and strategies contained herein may not be suitable

for your situation. You should consult with a professional where appropriate. Neither the publisher

nor author shall be liable for any loss of profit or any other commercial damages, including but not

limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department

within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,

however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

UPC : distributed shared memory programming / Tarek El-Ghazawi . . . [et al.]

p. cm.

Includes bibliographical references and index.

ISBN-13 978-0-471-22048-0 (cloth)

ISBN-10 0-471-22048-5 (cloth)

1. UPC (Computer program language) 2. Parallel programming (Computer science) 3.

Electronic data processing - - Distributed processing. I. El-Ghazawi, Tarek.

QA76.73. U63U63 2005

005.1303 - - dc22 2004023262

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

CONTENTS

Preface vii

1. Introductory Tutorial 1

1.1 Getting Started 1

1.2 Private and Shared Data 3

1.3 Shared Arrays and Affinity of Shared Data 6

1.4 Synchronization and Memory Consistency 8

1.5 Work Sharing 10

1.6 UPC Pointers 11

1.7 Summary 14

Exercises 14

2. Programming View and UPC Data Types 17

2.1 Programming Models 17

2.2 UPC Programming Model 20

2.3 Shared and Private Variables 21

2.4 Shared and Private Arrays 23

2.5 Blocked Shared Arrays 25

2.6 Compiling Environments and Shared Arrays 30

2.7 Summary 30

Exercises 31

3. Pointers and Arrays 33

3.1 UPC Pointers 33

3.2 Pointer Arithmetic 35

3.3 Pointer Casting and Usage Practices 38

3.4 Pointer Information and Manipulation Functions 40

3.5 More Pointer Examples 43

3.6 Summary 47

Exercises 47

4. Work Sharing and Domain Decomposition 49

4.1 Basic Work Distribution 50

4.2 Parallel Iterations 51

4.3 Multidimensional Data 54

v

4.4 Distributing Trees 62

4.5 Summary 71

Exercises 71

5. Dynamic Shared Memory Allocation 73

5.1 Allocating a Global Shared Memory Space Collectively 73

5.2 Allocating Multiple Global Spaces 78

5.3 Allocating Local Shared Spaces 82

5.4 Freeing Allocated Spaces 89

5.5 Summary 90

Exercises 90

6. Synchronization and Memory Consistency 91

6.1 Barriers 92

6.2 Split-Phase Barriers 94

6.3 Locks 99

6.4 Memory Consistency 108

6.5 Summary 113

Exercises 114

7. Performance Tuning and Optimization 115

7.1 Parallel System Architectures 116

7.2 Performance Issues in Parallel Programming 120

7.3 Role of Compilers and Run-Time Systems 122

7.4 UPC Hand Optimization 123

7.5 Case Studies 128

7.6 Summary 135

Exercises 135

8. UPC Libraries 137

8.1 UPC Collective Library 137

8.2 UPC-IO Library 141

8.3 Summary 146

References 147

Appendix A: UPC Language Specifications, v1.1.1 149

Appendix B: UPC Collective Operations Specifications, v1.0 183

Appendix C: UPC-IO Specifications, v1.0 203

Appendix D: How to Compile and Run UPC Programs 243

Appendix E: Quick UPC Reference 245

Index 251

vi CONTENTS

PREFACE

About UPC

Many have contributed to the ideas and concepts behind the UPC language. The

initial UPC language concepts and specifications were published as a technical

report authored by William Carlson, Jesse Draper, David Culler, Katherine Yelick,

Eugene Brooks, and Karen Warren in May 1999. The first UPC consortium meeting

was held in Bowie, Maryland, in May 2000, during which the UPC language

concepts and specifications were discussed and augmented extensively. The UPC

consortium is composed of a group of academic institutions, vendors, and govern-

ment laboratories and has been holding regular meetings since May 1999 to

continue to develop the UPC language. The first formal specifications of UPC,

known as v1.0, was authored by Tarek El-Ghazawi, William Carlson, and Jesse

Draper and released in February 2001. The current version, v1.1.1, was released in

October 2003 with minor changes and edits from v1.0. At present, v1.2 of the

specifications is in the works and is expected to be released soon. v1.2 will be a

publication of the UPC consortium because of the extensive contributions of many

of the consortium members. v1.2 will incorporate UPC v1.1.1 with additions and

will include the full UPC collective operations specifications, v1.0, and the I/O

specifications v1.0. The first version of the UPC collective operations specification

was authored by Steven Seidel, David Greenberg, and Elizabeth Wiebel and

released in December 2003. The first version of the I/O specification was authored

by Tarek El-Ghazawi, Francois Cantonnet, Proshanta Saha, Rajeev Thakur, Rob

Ross, and Dan Bonachea. It was released in July 2004. More information about

UPC and the UPC consortium can be found at http://upc.gwu.edu/.

About This Book

Although the UPC specifications are the ultimate reference of the UPC language,

the specifications are not necessarily easy to read for many programmers and do not

include enough usage examples and explanations, which are essential for most

readers. This book is the first to provide an in-depth interpretation of the UPC

language specifications, enhanced with extensive usage examples and illustrations

as well as insights into how to write efficient UPC applications.

The book is organized into eight chapters and five appendixes:

� Chapter 1 provides a quick tutorial that walks readers quickly through the

major features of the UPC language, allowing them to write their first simple

UPC programs.

vii

� Chapter 2 positions UPC within the general domain of parallel programming

paradigms. It then presents the UPC programming model and describes how

data are declared and used in UPC.

� Chapter 3 covers the rich concept of pointers in UPC, identifying the types,

declarations, and usage of the various UPC pointers and how they work with

arrays.

� Chapter 4 explains how data and work can be distributed in UPC such that

data locality is exploited through efficient data declarations and work-sharing

constructs.

� Chapter 5 provides extensive treatment to dynamic memory allocation in the

shared space, showing all options and their usages via many thorough

examples.

� Chapter 6 covers thread and data synchronization, explaining the effective

mechanisms provided by UPC for mutual exclusion, barriers, and memory

consistency control.

� Chapter 7 provides sophisticated programmers with the tools necessary to

write efficient applications. Many hand-tuning schemes are discussed along

with examples and full case studies.

� Chapter 8 introduces the two UPC standard libraries: the collective operations

library and the parallel I/O library.

� Appendix A includes the full UPC v1.1.1 specification.

� Appendix B includes the full UPC v1.0 collective library specifications.

� Appendix C has the full v1.0 UPC-IO specifications.

� Appendix D includes information on how to compile and run UPC programs.

� Appendix E is a quick UPC reference card that will be handy for UPC

programmers.

Resources

The ultimate UPC resource is the consortium Web site, which is currently hosted at

http://upc.gwu.edu/. For this book, however, the reader should also consult

the publisher’s ftp site, ftp://ftp.wiley.com/public/sci_tech_med/

upc/, for errata and an electronic copy of the full code and Makefiles for all the

examples given in the book. Additional materials for instructors wishing to use this

book in the classroom are available from the first author.

Acknowledgments

Many of our colleagues have been very supportive during the development of this

book. In particular, the authors are indebted to François Cantonnet, whose help has

contributed significantly to the book’s quality. The continuous cooperation and

support of our editor, Val Moliere, and Dr. Hoda El-Sayed is also greatly appreciated.

viii PREFACE

CHAPTER 1

Introductory Tutorial

The objective of this chapter is to give programmers a general understanding of

UPC and to enable them to write and run simple UPC programs quickly. The

chapter is therefore a working overview of UPC. Subsequent chapters are devoted

to gaining more proficiency with UPC and resolving the more subtle semantic

issues that arise in the programming of parallel computing systems using UPC. In

this chapter we introduce the basic execution model in UPC, followed by some of

the key UPC features, including:

� Threads

� Shared and private data

� Pointers

� Distribution of work across threads

� Synchronization of activities between threads

More in-depth treatment of these subjects is provided in the respective book

chapters. In addition, in subsequent chapters we address advanced features and

usage that may be needed for writing more complex programs. Nonetheless, this

introduction provides a valuable starting point for first-time parallel programmers

and a good overview for more experienced programmers of parallel machines.

However, advanced UPC programmers may wish to skip this chapter and proceed

to the following chapters, as all material in this introduction is included and

elaborated upon in the remainder of the book. It should be noted that UPC is an

extension of ISO C [ISO99], and familiarity with C is assumed.

1.1 GETTING STARTED

UPC, or Unified Parallel C [CAR99, ELG01, ELG03] is an explicit parallel language

that provides the facilities for direct user specification of program parallelism and

control of data distribution and access. The number of threads, or degree of

parallelism, is fixed at either compiler or program startup time and does not change

UPC: Distributed Shared Memory Programming, by Tarek El-Ghazawi, William Carlson,
Thomas Sterling, and Katherine Yelick
Copyright # 2005 John Wiley & Sons, Inc.

1

midexecution. Each of these threads is created at run time and executes the same

UPC program, although threads may take different paths through the program text

and may call different procedures during their execution. UPC provides many

parallel constructs that facilitate the distribution and coordination of work among

these threads such that the overall task may be executed much faster in parallel than

it would be performed sequentially.

Because UPC is an extension of ISO C, any C program is also a UPC program,

although it may behave differently when run in a parallel environment. Consider,

for example, a C program to print ‘‘hello world.’’

Example 1.1: helloworld1.upc

#include <stdio.h>

main()

{

printf("hello world\n");

}

The program file should be created with a file name that ends in ‘‘.upc,’’ such

as ‘‘helloworld1.upc’’ in Example 1.1. The commands to compile and run the

program may be platform-specific, but a typical installation may have a compiler

that is named upcc and that is invoked by the following example command:

upcc –o hello –THREADS 4 helloworld1.upc

Compilation will then produce an executable file called hello, which will always

run with four threads. Many machines require that parallel jobs be submitted to a

special job queue or at least run with a special command, for example:

upcrun hello

This command will then produce the output lines

hello world

hello world

hello world

hello world

Each of the output lines above was produced by one of the four identical threads,

each running the same main function. In parallel computing, this mode of

operation is known as the single program, multiple data (SPMD) model, where

all threads execute the same program but may be processing different data. Under

the SPMD execution model all threads run concurrently from the start to the end of

program execution, although there is no guarantee that they execute statements at

the same rate, and in this example we cannot tell which thread produced which line

of output.

2 INTRODUCTORY TUTORIAL

We can change the number of threads by recompiling with a different

‘‘–THREADS’’ flag or by compiling without the flag and specifying the number

of threads in the upcrun command. We can also determine the total number of

threads at run time using the UPC identifier THREADS and identify the thread

responsible for each line of output by using another identifier, MYTHREAD. In UPC,

threads are given unique MYTHREAD identifiers from 0 to THREADS-1. Using these

special constants, we produce a modified version of the ‘‘hello world’’ program in

which the output indicates the total number of threads as well as which thread

generated each line of output. In real parallel applications, MYTHREAD and

THREADS are used to divide work among threads and to determine the thread

that will execute each portion of the work. Incorporating these additional con-

structs, a new version of the ‘‘hello world’’ program is created.

Example 1.2: helloworld2.upc

#include <upc.h>

#include <stdio.h>

main()

{

printf("Thread %d of %d: hello UPC world\n",
MYTHREAD, THREADS);

}

In addition to supplying the thread identifiers to the printf statement, the

inclusion of upc.h is provided, containing all pertinent UPC definitions. If the new

file is compiled in the same manner as before and hello is executed, the following

output may result:

Thread 1 of 4: hello UPC world

Thread 3 of 4: hello UPC world

Thread 2 of 4: hello UPC world

Thread 0 of 4: hello UPC world

The output lines do not necessarily appear in thread number order but may appear

in any order (even ‘‘normal’’ ascending order!).

1.2 PRIVATE AND SHARED DATA

UPC has two different types of variables, those that are private to a given thread and

those that are shared. This distinction also carries over to more general data types,

such as arrays or structures. Shared variables are useful for communicating

information between threads, since more than one thread may read or write to

them. Private variables can only be accessed by a single thread but typically have

some performance advantages over shared variables.

PRIVATE AND SHARED DATA 3

To demonstrate the use of shared and private variables, consider the problem of

printing a conversion table that provides a set of celsius temperatures and their

corresponding Fahrenheit values as shown in Table 1.1. For now we ignore the

problem of printing the table heading and of ordering the table elements, and

instead, write a program that simply prints a set of valid Celsius–Fahrenheit pairs.

Let us first consider a program in which each thread computes one table entry. The

following program would produce the 12-entry table above, or some reordering of

it, when run with 12 threads.

Example 1.3: temperature1.upc

#include <stdio.h>

#include <upc.h>

main ()

{

static shared int step=10;
int fahrenheit, celsius;

celsius= step*MYTHREAD;
fahrenheit= celsius*(9.0/5.0) + 32;

printf ("%d \t %d \n", fahrenheit, celsius);
}

By default, variables in UPC are private, so the declaration

int fahrenheit, celsius;

TABLE 1.1 Celsius–Fahrenheit

Temperature Conversion Table

Fahrenheit Celsius

32 0

50 10

68 20

86 30

104 40

122 50

140 60

158 70

176 80

194 90

212 100

230 110

4 INTRODUCTORY TUTORIAL

creates instances of both variables for each thread. Each instance of the variables is

independent, so the respective instance variables of different threads may have

different values. They may be assigned and accessed within their respective thread

without affecting the variable instances of other threads. Thus, each thread can be

engaged in a separate computation without value conflicts while all threads are

executing in parallel.

In contrast, the declaration

static shared int step=10;

creates a shared variable of type int using the UPC shared type qualifier. This

means that there will be only one instance of step, and that variable instance will

be visible and accessible by all threads. In the example, this is a convenient way to

share what is essentially a constant, although UPC permits threads to write to

shared variables as well.

Note that in the declaration, the type qualifier is static, as shared variables

cannot have automatic storage duration. This ensures that shared variables are

accessible throughout the program execution so that they cannot disappear when

one thread exits a scope in which a shared variable was declared. Alternatively, the

shared variable could have been declared as a global variable before main().

The line

celsius = step * MYTHREAD;

accesses the step value to ensure that all threads will use celsius values that are

multiples of 10, and use of MYTHREAD ensures that they will start at zero and be

unique. The statements

fahrenheit = celsius * (9.0/5.0) + 32;

printf("%d \t %d \n", fahrenheit, celsius);

will be executed by each thread using local celsius and fahrenheit values.

There is no guarantee for the order in which the threads will execute the print

statement, so the table may be printed out of order. Indeed, one thread may execute

all three of its statements before another thread has executed any. To control the

relative ordering of execution among threads, the programmer must manage syn-

chronization explicitly through the inclusion of synchronization constructs within

the program code specification, which is covered in Section 1.4.

Example 1.3 is somewhat simplistic as a parallel program, since very little work

is performed by each thread, and some of that work involves output to the screen,

which will be serialized in any case. There is some overhead associated with the

management of threads and their activities, so having just one computation per

thread as in Example 1.2 is not efficient. Having larger computations at each thread

will help amortize parallel overhead and increase efficiency. This small example

and many others throughout the book are discussed because of their educational

value and are not necessarily designed for high performance. The following

example, however, allocates slightly more work to each thread.

PRIVATE AND SHARED DATA 5

Example 1.4: temperature2.upc

#include <stdio.h>
#include <upc.h>
#define TBL_SZ 12

main ()

{

static shared int step=10;

int fahrenheit, celsius, i;

for (i=0; i< TBL_SZ; i++)
if (MYTHREAD == i%THREADS)
{

celsius = step*i;

fahrenheit = celsius*(9.0/5.0) + 32;

printf ("%d \t %d \n", fahrenheit, celsius);

}
}

In Example 1.4, the number of entries in the table is given by the con-

stant TBL_SZ, which is set to 12. The loop will sequence through all TBL_SZ

iterations, assigning an iteration to each thread in round-robin fashion. Thus, thread

0 will execute iterations 0, THREADS, 2*THREADS, and so on, while thread 1 will

execute iterations 1, THREADSþ1, 2*THREADSþ1, and so on. If the table size

were 1, only thread 0 would execute an iteration; the rest of the threads would not

do any useful work, as they all fail the test in the for loop.

The loop as written is not efficient, since each thread evaluates the loop header

13 times, and this redundant loop overhead may have nearly the same temporal cost

as that of the sequential program. One way to avoid this is by changing the for

loop as follows:

for(i=MYTHREAD; i < TBL_SZ; i+=THREADS)

In this case, each thread evaluates the loop header at most TBL_SZ/THREADS þ1

times. Note that the celsius calculation now uses the loop index i rather than

MYTHREAD, so it correctly evaluates several table entries.

1.3 SHARED ARRAYS AND AFFINITY OF SHARED DATA

A problem with the program of Example 1.4 is that the table may be produced out

of order. One possible solution is to store the conversion table in an array and then

have one thread print it in order. The following code shows how this might be done,

although there is a remaining bug that we will fix in Section 1.4.

6 INTRODUCTORY TUTORIAL

Example 1.5: temperature3.upc

#include <stdio.h>

#include <upc.h>

#define TBL_SZ 12

main ()

{

static shared int fahrenheit[TBL_SZ];
static shared int step=10;

int celsius, i;

for(i=MYTHREAD; i < TBL_SZ; i+=THREADS)
{

celsius= step*i;

fahrenheit[i]= celsius*(9.0/5.0) + 32;
}

if(MYTHREAD==0)
for (i=0 ; i < TBL_SZ; i++)
{

celsius= step*i;
printf ("%d \t %d \n", fahrenheit[i], celsius);

}
}

The line

static shared int fahrenheit [TBL_SZ];

declares an array fahrenheit of size TBL_SZ of integers, which will be shared

by all threads. Thus, any of the threads can directly access any of the elements of

fahrenheit. However, UPC establishes a logical partitioning of the shared space

so that each variable in shared space is defined to have affinity to exactly one thread.

On some platforms it is significantly faster for a thread to access shared variables to

which it has affinity than to access shared variables that have affinity to another

thread. A shared array such as fahrenheit will be spread across the thread

partitions in round-robin fashion such that fahrenheit [0] has affinity to thread

0, fahrenheit [1] has affinitiy to thread 1, and so on. After each thread gets

an element, we wrap around, giving fahrenheit [THREADS] to thread 0,

fahrenheit [THREADS+1] to thread 1, and so on. This round-robin distribution

of shared array elements is the default in UPC, but programmers may also distribute

shared arrays by blocks of elements. In later chapters we show how to declare

blocked distributions, which has a performance advantage for some applications.

In this temperature-conversion example, however, the default distribution of the

elements matches the work distribution, as each thread will compute exactly the

table elements that have affinity to it.

SHARED ARRAYS AND AFFINITY OF SHARED DATA 7

In general, to maximize performance, each thread should be primarily respon-

sible for processing the data that has affinity to that thread. This exercises two

important features of UPC: control over data layout, and control over work distri-

bution, both of which are critical to performance. On a machine with physically

distributed memory, the UPC run-time system will map each thread and the data

that has affinity to it to the same processing node, thereby avoiding costly inter-

processor communication when the data and computation are aligned.

Shared scalar variables, such as step in Example 1.5, also have a defined

affinity, which is always to thread 0. So the use of step in the initialization of

celsius is likely to be less expensive on thread 0 than on all the others. Although the

thread 0 default is not always what the programmers want, the clearly defined cost

model allows them to optimize a UPC program in a platform-independent manner.

For example, a thread may copy a shared variable into its own private variable to

avoid multiple costly accesses. The body of the for loop will compute the

Fahrenheit temperatures and store them in the fahrenheit array for printing

later. This will be done by the last loop in the program, which is executed only by

thread 0.

The erroneous assumption here is that since this printing loop follows the

one that computes temperatures into fahrenheit, the results of the table will

be printed in order. In fact, this does print the table in order; however, many of the

entries of the table may hold the wrong answer. This is because printing will start as

soon as thread 0 gets to the final print loop, while some of the other threads may be

left behind and still executing the loop that computes the temperatures. This

synchronization problem is addressed in Section 1.4.

1.4 SYNCHRONIZATION AND MEMORY CONSISTENCY

To guarantee that all threads finished computing the temperature table in the

fahrenheit array before thread 0 starts printing the array, barrier synchroniza-

tion is used. UPC offers several different types of barrier synchronization, described

in Chapter 6, but the simplest is the upc_barrier statement. This is

demonstrated in the following program, which now prints the values correctly, in

order.

Example 1.6: temperature4.upc

#include <upc.h>

#define TBL_SZ 12

main ()

{

static shared int fahrenheit [TBL_SZ];

static shared int step=10;

int celsius, i;

8 INTRODUCTORY TUTORIAL

for(i=MYTHREAD; i < TBL_SZ; i+=THREADS)

{

celsius = step*i;

fahrenheit [i] = celsius*(9.0/5.0) + 32;

}

upc_barrier;

if(MYTHREAD==0)

for (i=0 ; i < TBL_SZ ; i++)

{

celsius= step*i;

printf ("%d \t %d \n", fahrenheit [i], celsius);

}

}

A upc_barrier statement ensures that all threads must reach that point before

any of them can proceed further. Thus, if a thread arrives at the upc_barrier

while any one of the other threads is still lagging behind, that thread will get

blocked. Once all threads have arrived at the barrier, they all proceed past it. Thus,

in our example we will be guaranteed that all threads have finished their computa-

tions and that the table is now holding the correct values before thread 0 begins

executing the printing loop.

Barrier synchronization is not the only useful form of synchronization. Since

shared data may be changed by any thread, there could be times when a thread

wants to make sure that it has exclusive access to a shared data object, for example,

to insert an element into a shared linked list or to update multiple values

consistently in a shared array. In these situations a programmer may associate a

lock with the data structure and acquire the lock before making a set of modifica-

tions to the structure. Only one thread may hold a given lock at any time, and if a

second thread attempts to acquire the lock, it will block until the first thread releases

it. In this way, programmers may guarantee mutual exclusion of shared data usage,

preventing erroneous behavior that can result from having one thread modify a data

structure while other threads are trying to access it. UPC provides powerful lock

constructs for managing such shared data, which are described in Chapter 6.

In general, the classes of errors that arise in parallel programs from insufficient

synchronization, called race conditions, occur when two threads access the same

shared data at the same time and at least one of them modifies the data. Most

programmers will be satisfied to write programs that are carefully synchronized

using UPC locks and barriers to avoid race conditions. However, synchronization

comes with a cost, and some programmers may wish to implement their own

synchronization primitives from basic memory operations or write programs that

read and write shared variables without synchronizing. These programmers are

relying on the memory consistency model in the language, which ensures some

basic properties of the memory operations. For example, if one thread writes a

SYNCHRONIZATION AND MEMORY CONSISTENCY 9

shared variable while another reads it, the reading thread must see either the old or

the new value, not a mixture of the two numbers, and if it keeps reading that

variable, it will eventually see the new value. In general, the memory consistency

model tells programmers whether operations performed by one thread have to be

observed in order by other threads.

Memory performance is a critical part of overall application performance, and

the memory consistency model can have a significant impact on that performance.

For example, the memory consistency model affects the ability of the compiler to

rearrange code and of the hardware to use caching and to pipeline and prefetch

memory operations. UPC therefore takes the view that the programmer needs

control over the memory consistency model and provides a novel set of mechan-

isms for this control, which are described in detail in Chapter 6.

1.5 WORK SHARING

Distributing work, typically independent iterations of a loop that can be run in

parallel, is often referred to as work sharing. Although the use of THREADS and

MYTHREAD in previous examples allowed us to distribute independent work across

the threads, each computing a number of entries in the fahrenheit table, UPC

provides a much more convenient iteration construct to do work sharing. This

construct is called upc_forall. Example 1.7 can take advantage of this construct

as shown below.

Example 1.7: temperature5.upc

#include <upc.h>

#define TBL_SZ 12

main ()

{

static shared int fahrenheit [TBL_SZ];

static shared int step=10;

int celsius, i;

upc_forall(i=0; i <TBL_SZ; i++; i)
{

celsius= step*i;

fahrenheit[i]= celsius*(9.0/5.0) + 32;

}

upc_barrier;

if(MYTHREAD==0)

for (i=0; i < TBL_SZ; i++)

{

10 INTRODUCTORY TUTORIAL

celsius= step*i;

printf ("%d \t %d \n", fahrenheit [i], celsius);

}

}

In the line

upc_forall(i=0; i <TBL_SZ; i++; i)

the upc_forall construct has some syntactic similarities to the C language for

loop, as the first three fields in upc_forall are almost identical to the

corresponding fields of the C for loop. The first field, i=0, initializes the coun-

ter variable, i. The second field, i<TBL_SZ, provides the test that determines if the

variable value is within the range specified. The third field, i++, specified the

increment value separating successive values of the counter variable, thus determin-

ing how it is updated. So these fields simply identify the first iteration, test whether

the last iteration is reached, and increment the iteration counter. The upc_forall

construct differs from its sequential counterpart by a fourth field, which is called

affinity. In this case, the affinity i indicates that iteration i will be performed

by thread (i modulo THREADS). Thus, iteration distribution across the threads will

take place in round-robin fashion, in just the same way that the array elements

themselves were distributed by default. As the iteration number and the array index

are the same, each thread will be processing only the array elements that have

affinity to it. The performance implication is that threads will probably find the data

they will be processing locally accessible and will therefore avoid costly remote

access and the substantial overhead that this may require.

Note that after the upc_forall statement, we still used a barrier syn-

chronization. This is because the UPC specification does not require an impli-

cit barrier at the end of the iteration statement. The upc_forall has

interesting and powerful additional options and can be used in many dif-

ferent ways, providing significant flexibility of control, as discussed later in

the book.

1.6 UPC POINTERS

Pointers have been one of the most interesting and useful concepts of the C

programming language. It is perhaps difficult to imagine a C application program,

even a parallel one, without pointers. For now, let us consider replacing the array

notation in Example 1.7 with its equivalent pointer representation. As a first step, let

us do that in the printing loop only.

Example 1.8: temperature6.upc

#include <upc.h>

#define TBL_SZ 12

UPC POINTERS 11

main ()

{

static shared int fahrenheit [TBL_SZ];

shared int *fahrenheit_ptr=fahrenheit;
static shared int step=10;

int celsius, i;

upc_forall(i=0; i <TBL_SZ; i++; i)

{

celsius= step*i;

fahrenheit [i]= celsius*(9.0/5.0) + 32;

}

upc_barrier;

if(MYTHREAD==0)

for (i=0 ; i < TBL_SZ ; i++)
{

celsius= step*i;

printf ("%d \t %d \n", *fahrenheit_ptr++, celsius);
}

}

The line

shared int *fahrenheit_ptr=fahrenheit;

declares fahrenheit_ptr to be a pointer to type shared int and ini-

tializes that pointer to point at the first element of the shared array

fahrenheit. The pointer fahrenheit_ptr is actually a private pointer

to a shared type. This means that each thread will have an independent copy

of the pointer fahrenheit_ptr, which is able independently to advance

and access the elements of fahrenheit. Initially, all these copies of

fahrenheit_ptr, one per thread, will be pointing at the first element of

fahrenheit.

The line

printf ("%d \t %d \n", *fahrenheit_ptr++, celsius);

de-references the pointer printing the corresponding contents and then advances

the for loop pointer variable to designate the next element in the array. This, will

be executed only by thread 0, according to the construct

if(MYTHREAD==0)

In the following example, we extend our use of pointers to replace all array

notations with pointer notations and make needed adjustments to the code.

12 INTRODUCTORY TUTORIAL

Example 1.9: temperature7.upc

#include <upc.h>

#define TBL_SZ 12

main ()

{

static shared int fahrenheit [TBL_SZ];

shared int *fahrenheit_ ptr;
static shared int step=10;

int celsius, i;

fahrenheit_ptr = fahrenheit + MYTHREAD;

upc_forall(i=0; i <TBL_SZ; i++; i)

{

celsius = step*i;

fahrenheit_ptr = celsius(9.0/5.0) + 32;
fahrenheit_ptr += THREADS;

}

upc_barrier;

if(MYTHREAD==0)

{

fahrenheit_ptr=fahrenheit;
for (i=0; i < TBL_SZ ; i++, fahrenheit_ptr++)
{

celsius= step*i;

printf ("%d \t %d \n", *fahrenheit_ptr, celsius);

}

}

}

The line

shared int *fahrenheit_ptr;

declares fahrenheit_ptr to be a pointer to a shared variable. However,

fahrenheit_ptr itself is private and each thread has an independent instance

of it. In the lines

fahrenheit_ptr = fahrenheit + MYTHREAD;

and

fahrenheit_ptr += THREADS;

UPC POINTERS 13

each of the fahrenheit_ptr instances is initialized to point at the first

array element that has the same affinity as the pointer instance itself. In addi-

tion, the update advances each pointer by THREADS elements in each iteration, to

move to the next element that has affinity to the thread of that pointer instance.

UPC has other types of pointers. For example, private pointers to private data

follow from being an ISO C compliant and a superset. The language also allows

the use of shared pointers to shared data. Casting from one type of pointer to

another is possible. All these issues are handled in more detail in Chapter 3.

1.7 SUMMARY

In this chapter we introduced the basic concepts of UPC in a tutorial style to enable

programmers to write their first UPC code quickly. We have in particular demon-

strated that UPC is a superset of C, and all C programs will run under UPC.

However, this will naturally create several copies of the same program running in

the SPMD mode.

Under UPC, multiple threads will be operating independently and each thread

may have access to both private and shared data objects, variables, and arrays. A

private variable has one independent instance per thread. The total number of

threads is THREADS, and each thread identifies itself using MYTHREAD. THREADS
and MYTHREAD can be thought of as special constants. Shared scalars have affinity

with thread 0. Shared array elements, however, are distributed by default in round-

robin fashion across the threads.

UPC has many synchronization constructs for barrier, split-phase barrier,

locks, and fence. UPC also provides programmers with the ability to specify

the memory consistency model as relaxed or strict. Work can be distributed

based on THREADS and MYTHREAD. Work can be distributed conveniently,

however, using upc_forall. All iterations must be independent in order to use

upc_forall. UPC provides rich pointer concepts. Threads can point to shared

data using either shared or private pointers. In addition, C pointer declarations

result in private pointers to private data. It is possible under UPC to cast one type

of pointer to another.

EXERCISES

1.1 Create a sequential C version of the temperature table generation program, to

compute Fahrenheit temperatures from 0 to 1000 degrees Celsius by steps of

0.01 degree. Comment the printf line and use appropriate system calls to

measure the wall clock time for program execution by measuring the times at

the beginning and end of the program. Compile and run using cc for an

adequately large table that gives some measurable execution time, and note the

execution time. Compile using upcc with one thread and run. Compare and

comment on the measured time for the sequential program when compiled by

cc versus upcc.

14 INTRODUCTORY TUTORIAL

1.2 Create a UPC parallel program for generating the temperatures table by using

the improved for loop into the last parallel example given in Section 1.4.

Comment the printf and add the time measurement statements as in

Exercise 1.1. Compile using upcc and run with one thread. Compare the

results of running the UPC program with one thread to those of Exercise 1.1.

1.3 Rewrite the program of Exercise 1.2 using a two-dimensional shared array of

two rows, where the first row holds the Celsius temperatures and the second

row holds the corresponding Fahrenheit temperatures.

1.4 Write an UPC program to sum the elements of two shared vectors. Make sure

that each thread operates only on the array elements that have affinity to that

thread.

1.5 Write a program that computes the mean of all elements in a shared array of a

general size, larger or smaller than the number of threads. You can use another

shared array of size equal to the number of threads to hold the partial sums

from each thread. At the end, thread 0 will need to sum up all partial sums,

compute the mean, and print the result.

1.6 Repeat Exercise 1.4 using the upc_forall construct.

1.7 Repeat Exercise 1.5 using the upc_forall construct.

EXERCISES 15

CHAPTER 2

Programming View and
UPC Data Types

Parallel programming languages that are available today represent a diversity

of programming models. Depending on the physical structure and incorporated

mechanisms of the underlying parallel computer, one or more languages may be

preferable to others in both ease of programming and/or delivered performance.

Similarly, the organization of the data structures and the flow control of the tasks of

a given application algorithm may strongly influence the parallel programming

language to be employed. UPC is one such parallel programming language that

facilitates general-purpose parallel computing through a set of constructs particu-

larly well suited to the major classes of parallel computers and a wide range of

parallel applications. In this chapter we present the foundation principles of parallel

programming as reflected by some of the most widely used languages and introduce

UPC from the perspective of these same basic concepts to position UPC in

the domain of parallel programming. Details of the UPC programming model are

presented with a discussion of the memory sharing and thread execution view. The

remainder of this chapter covers basic declarations, types, associated storage, and

constraints in the light of the UPC memory sharing and execution model.

2.1 PROGRAMMING MODELS

A programming model is simply the abstract view of how data and instructions are

stored and how processing takes place as perceived by the programmer [HWA98].

In uniprocessor systems, it is fair to say that there is one basic programming model,

which is the von Neumann stored program model. Under this model, there is only

one memory, and all data and instructions are stored in it. The processor fetches and

decodes the program instructions and accesses and processes data accordingly. In a

parallel system, the architecture is more complex, due to the multiplicity of pro-

cessors and possibly, memory subsystems. Parallel programming models therefore

UPC: Distributed Shared Memory Programming, by Tarek El-Ghazawi, William Carlson,
Thomas Sterling, and Katherine Yelick
Copyright # 2005 John Wiley & Sons, Inc.

17

also enable the programmer to express how the application should be decomposed

(i.e., how data and work will be distributed for parallel execution).

Parallel programming models expose common architecture features to enable

efficient mapping of the programs onto the architectures. However, they should be

independent of precise details of specific parallel architecutures, to allow mapping

of any parallel programming model onto a variety of parallel architectures.

Programming models should, however, remain simple for ease of use.

Popular parallel programming models include message passing, shared memory,

data parallel, and the distributed shared memory model. UPC uses the distributed

shared memory programming model. In this section we distinguish among these

models and give examples of their implementations. Our intent is to position UPC

in the world of parallel programming, highlighting powerful features.

In the message-passing model (Figure 2.1a), parallel processing is derived from

the use of a set of concurrent sequential processes cooperating on the same task. As

each process has its own private space, two-sided communication in the form of

sends and receives is used. This results in substantial overhead in interprocessor

communications, especially in the case of small messages. With separate spaces, ease

of use becomes another concern. As large problems are decomposed for parallel

 (c) Data Parallel (d) Distributed Shared Memory

…

…

…

…

(a) Message Passing (b) Shared Memory

Thread/Process

Address Space

Legend:

Memory Access

Message

Figure 2.1 Address Space and Execution in Parallel Programming Models

18 PROGRAMMING VIEW AND UPC DATA TYPES

processing, the overall view of the problem is lost and replaced by multiple private

ones, placing a bigger burden on the program to maintain such global nature of the

application, which may require adding more code. The most popular example of

message passing is MPI, the message-passing interface [MPI94, SNI98].

Another popular programming model is the shared memory model (Figure 2.1b).

The view provided by this model is one in which multiple independent threads

operate in a shared space. The most popular implementations of this model are

OpenMP [OPE97] and Pthreads [BUT97]. This model is characterized by its ease

of use, as programmers need not treat remote memory accesses differently from

local accesses. An expression, for example, can imply a remote memory read if any

of its variables is located on a remote computing element or memory bank of the

physically distributed system. Similarly, an assignment statement can cause a

remote memory write. Since all concurrent threads see a single shared memory

space, the application view remains integrated and similar to that of the sequential

case. A negative consequence of this is that due to threads being unaware of

whether the data they are processing is local or remote, unnecessary remote

memory accesses might be generated, resulting in performance degradation.

Therefore, under the pure shared memory programming model, it is difficult to

exploit the inherent data locality in applications to achieve the highest efficiency.

Another programming model, the data parallel model shown in Figure 2.1c,

derives its concurrency from processing many data items simultaneously in the

same manner. This model employs only one executing process, for which every

operation executed processes multiple data items identically. The major problem

with this model is that it does not permit independent branching within the

executing process to allow processing different data in different ways. Thus,

applications that are richer in functional parallelism than in data parallelism may

not be expressed effectively under this model. Examples of languages that followed

such a scheme are C* [ROS87] and HPF [HPF97].

The last model that we discuss here is the distributed shared memory (DSM)

programming model (Figure 2.1d), also called the partitioned global address space

(PGAS) model, which has been adopted by UPC. This model can achieve the

desired balance between ease of use and exploiting data locality while avoiding

the problem of independent branching in the data parallel model. Under this model,

independent threads are operating in a shared space, just as in the shared memory

model. However, this shared space is logically partitioned among the threads. This

enables mapping to the same physical node of each thread and the data space that is

associated with it locally. Programmers can thus declare the data to be processed by

a given thread in the space partition that has affinity to that thread. Exploiting

locality of access in this manner eliminates or minimizes unnecessary remote

accesses from the beginning. Further, the multiple threads of the DSM program-

ming model can all be executing the same program in single program, multiple data

stream (SPMD) fashion that relaxes the rigid flow control of the data parallel

programming model and thus avoides the independent branching problem. Thus,

the DSM model provides a good balance between program abstraction for ease of

use and portability, on the one hand, and direct control of resource management

PROGRAMMING MODELS 19

for good performance, on the other hand, to achieve efficient execution with

contemporary computer architectures.

2.2 UPC PROGRAMMING MODEL

Having defined the space of programming models, UPC can be positioned in

this conceptual domain by defining the UPC execution and data sharing environ-

ment, which comprises the principal semantic elements of the UPC programming

model. Figure 2.2 illustrates the memory and execution model as viewed by UPC

codes and programmers. Under UPC, a number of threads work independently,

with no implicit synchronization, except that all threads start and finish together.

This implies barrier synchronization at the beginning and end of a program. The

total number of threads is given by the integer THREADS, and each thread

can identify itself using MYTHREAD. Thus, MYTHREAD and THREADS can be

thought of as a private constant at each thread and a global constant visible to all

threads, respectively. The total number of threads, THREADS, can be specified

at either compile time or run time, using the compile or the run command line,

respectively.

UPC works in SPMD style, where each thread executes the same main()

function. This does not limit the flexibility of the execution model, because

conditional flow control within the thread can direct different thread instances to

perform different parts of the total thread code based on the MYTHREAD identifier

and intermediate result data values.

UPC represents a variant instance of the DSM paradigm with additional private

address spaces for local computations. Under UPC, memory is composed of a

logically partitioned shared memory space and additional private memory spaces,

as shown in Figure 2.2. All distributed threads can reference any address location

(shared variables) in the shared data space, but only its own private data space. The

shared space, however, is logically divided into portions, each with a special

association (affinity) to a given thread. In this way, UPC enables the programmer,

with proper declarations, to keep the shared data that will be dominantly processed

by a given thread (and occasionally, accessed by others) associated with that thread.

Private 1Private 0

Thread 1Thread 0

PrivateTHREADS -1

Shared Address
Space

Private Address
Spaces

ThreadTHREADS -1

Figure 2.2 UPC Memory and Execution Model

20 PROGRAMMING VIEW AND UPC DATA TYPES

Thus, a thread and the data that has affinity to it can be mapped by the system into

the same physical node. This provides programmers with the necessary language

constructs to exploit inherent data locality in their applications. Although an

implementation may map each UPC thread to a different CPU, the UPC specifica-

tion does not prohibit mapping more than one thread to the same CPU, permitting

the exploitation of multithreading hardware support (such as in Tera MTA

[ALV90]) when available.

UPC allows dynamic memory allocation in the shared space. Dynamic alloca-

tions in the private space are inherited from ISO C, as UPC is only an extension of

ISO C. In addition, UPC has pointers that can access the shared address space.

Pointers into the private spaces are also supported by UPC, as it is an ISO C

extension. In conjunction with the programming model, UPC provides explicit

extensions to the syntax and semantics of ISO C to facilitate expressing parallel

applications. Therefore, UPC can be classified as an explicit parallel extension to

ISO C that follows the distributed shared memory programming model.

2.3 SHARED AND PRIVATE VARIABLES

As discussed earlier, UPC is an extension of ISO C. Its execution follows an SPMD

model in which each thread executes main(). A given thread in UPC appears as a

sequential ISO C program. In UPC, an object can be declared as shared or private.

A private object would have a separate instance for each thread, equivalent in

structure and local identifiers but different in value among the distinct threads. One

particular thread, thread 0, is distinguished among all others. It is allocated all

scalar shared objects such that their affinity is assigned to thread 0. The following

two examples show scalar private and shared declarations.

By default, any ISO C style declaration under UPC results in private objects. For

example, the declaration

int x; // x is private, one x in the private space of each thread

creates one private variable x for each thread. Each thread can only reference and

manipulate its own instance of x. This is consistent with the fact that UPC is simply

an extension of ISO C in which parallel execution follows the SPMD model, with

each thread executing main(). This demonstrates how UPC flows logically from

ISO C augmented with a number of basic parallel programming constructs. These

explicit extensions to the syntax and semantics of C provide the user with the means

to specify and control parallel execution from within the parallel application

program.

Declaring an object to be shared, however, requires explicit use of the shared
qualifier. For example:

shared int y; // y is shared, only one y at thread 0 in the shared
space

SHARED AND PRIVATE VARIABLES 21

creates one instance of the variable y, which can be referenced and manipulated

by all threads. The variable y is therefore created in the shared space and has

affinity to thread 0, as it is a scalar variable. Scalar shared objects in UPC will

always have affinity to thread 0. This is logically consistent with the fact that the

first element of a shared array always has affinity to thread 0, as explained in the

next section.

Shared variables cannot have automatic storage duration: as, for example, in

void foo(void)

{

shared int x; // not allowed

static shared int y; // allowed

shared int *p; // allowed

int *shared q; // not allowed

...

}

In the previous foo() function, the first declaration,

shared int x;

is not allowed since it has an automatic storage duration, as it appears inside the

function. However, static shared variables are allowed, with the example of y.

Although pointers are treated thoroughly in Chapter 3, the third and last

declarations involve pointer declarations that bring up useful points to the discus-

sion. In the third declaration,

shared int *p;

is a private pointer to shared, which gives each thread an independent pointer,

stored in its private space but pointing into the shared space. Thus, shared in this

context qualifies the pointed to variable, and it creates only private pointers to it.

This declaration is therefore allowed since the pointers themselves are not shared.

In the last declaration,

int *shared q;

is a shared pointer to private. Thus, shared in this context qualifies the pointer that

is to be created in the shared space and therefore is not allowed. It should be noted,

however, that although the previous declaration helps explain an important concept,

use of shared pointers to private variables is strongly discouraged. In general,

shared should not appear in a declerator that has automatic storage duration,

except when it results in creating storage in the private space.

One remedy is to move the first and last declarations outside the function foo()

body, as follows:

22 PROGRAMMING VIEW AND UPC DATA TYPES

shared int x;

int *shared q;

void foo(void)

{

shared int *p;

...

}

Similarly, no data can be declared as shared inside a private structure except for

private pointers to shared. Shared structures, on the other hand, can only contain

data that are shared. For example:

struct rectangle {

shared int width;

shared int length;

} myrect;

is illegal, as both width and length are shared-qualified, whereas the structure

is not. However,

shared struct rectangle {

int width;

int length;

} myrect;

is allowed since the structure is shared-qualified, as is

struct foo {

shared int *p; // allowed

int *shared q; // not allowed

};

Type conversion among shared and private is possible. It can be accomplished

through cast and assignments. In general, private objects cannot be cast to shared

objects, and assignment of private to shared objects has undefined results. These

type conversions can be quite useful in the case of private and shared pointers and

will be addressed further in that context. Shared-qualified objects may also have a

reference qualifier to define their behavior from a memory consistency point of

view. This is treated in Chapter 6.

2.4 SHARED AND PRIVATE ARRAYS

Shared arrays are created in the shared space. By default, elements of a shared array

will be distributed across the threads in round-robin fashion. In other words, the first

element is created in the shared space that has affinity to thread 0, the second

SHARED AND PRIVATE ARRAYS 23

element in the shared space that has affinity to thread 1, and so on. For simpli-

city, however, we say that the first element goes to thread 0, the second to

thread 1, and so on. The following example declarations demonstrate how a

shared vector declaration behaves compared to shared scalar and private scalar

declarations.

The declarations

shared int x; /* x is a shared scalar and

will have affinity to thread 0 */

shared int y [THREADS]; /*shared array*/

int z; /*private scalar*/

in the case of four threads will result in the default layout shown in Figure 2.3,

where x and y were created in the shared space, and instances of z were created in

the private spaces of each thread. Thus, if the declaration

shared int y [THREADS];

was replaced with

int y [THREADS];

each thread would have had its own full four-element private version of the

array y.

In the case of higher-dimensional arrays, the elements of a shared array are still

distributed in round-robin fashion. Consider, for example, the declaration

shared int A [4][THREADS];

This declaration results in the layout shown in Figure 2.4. Such default distri-

bution can be very useful, as the vector addition program in the next example

shows.

x

y[0]

z

y[1]

z

y[2]

z

y[3]

z

Thread 0 Thread 1 Thread 2 Thread 3

Figure 2.3

24 PROGRAMMING VIEW AND UPC DATA TYPES

Example 2.1: vectadd1.upc

#include <upc_relaxed.h>//upc_relaxed explained in Chapter 6

#define N 10 * THREADS

shared int v1[N], v2[N], v1plusv2[N];

int main ()

{

int i;

upc_forall (i = 0; i < N; i ++; i)

v1plusv2 [i] = v1 [i] + v2 [i];

return 0;

}

In this example, two vectors v1 and v2 are added to produce the vector

v1plusv2. By default, v1, v2, and v1plusv2 are distributed across the threads

in round-robin fashion. The last field in the upc_forall statement is the affinity

field and says that iteration i should be executed on thread i%THREADS. Thus,

iterations are also distributed in round-robin fashion across the threads, which will

ensure that each thread manipulates only the shared data that are available locally.

2.5 BLOCKED SHARED ARRAYS

In many cases, the default shared array distribution is not appropriate for optimal

execution, and an alternative explicit data layout may improve data locality

exploitation and execution efficiency. Consider the following matrix–vector multi-

plication example.

v[0][0]

v[1][0]

v[2][0]

Thread 0

v[3][0]

v[0][1]

v[1][1]

v[2][1]

Thread 1

v[3][1]

v[0][THREADS-1]

v[1][THREADS-1]

v[2][THREADS-1]

ThreadTHREADS-1

v[3][THREADS-1]

…

Figure 2.4

BLOCKED SHARED ARRAYS 25

Example 2.2: matvect1.upc

#include <upc_relaxed.h>

shared int a [THREADS][THREADS];

shared int b [THREADS], c [THREADS];

int main (void)

{

int i, j;

upc_forall(i = 0; i < THREADS; i++; i)

{

c [i] = 0;

for (j= 0; j <THREADS; j++)

c [i] += a [i][j]*b [j];

}

return 0;

}

The default layout in the shared space in the case of running with three threads is

shown in Figure 2.5. A first glance at the layout will show that for computing each

c[] element, there will be more remote memory accesses than local accesses. For

example, in case of c [0], only a [0][0] and b [0] are local input operands; the

remaining four are not. Luckily, this default distribution can be altered to better fit

the need of an application and improve locality exploitation in the underlying

computations.

The default shared array distribution can be altered by specifying a given block

size, also called a blocking factor, in the declaration using a layout qualifier as follows:

shared [block-size]array [number-of-elements]

* =

a b c

T
hr

ea
d

0

Thread 0

Thread 1

Thread 2

T
hr

ea
d

1

T
hr

ea
d

2

Figure 2.5

26 PROGRAMMING VIEW AND UPC DATA TYPES

For example:

shared [4] int a [16];

In the previous case, array a [] will have 16 elements distributed across the

threads in four-element by four-element blocks in a round-robin fashion. Thus, the

block size and total number of threads, THREADS, determine the affinity of each

data element to threads as follows: Element i of a blocked array has an affinity to

thread:

i

blocksize

� �
mod THREADS

Thus, the declaration

shared [3] int x [12];

has a layout qualifier of 3, which means that array entries will be blocked and

distributed across the threads in blocks of three in round-robin fashion. The

resulting layout for THREADS ¼ 3 is shown in Figure 2.6. Thus, if the previous

declaration were changed to

shared [12] int x [12];

all array elements would have affinity to thread 0. This can also be established using

the indefinite block size. Omitting the block size or making it zero in the layout

qualifier brackets would result in making all array elements have affinity to thread

0. Using such indefinite block size, the effect of the previous declaration can be

established through the declaration

shared [] int x [12];

or

shared [0] int x [12];

x[0]

x[1]

x[2]

x[9]

x[10]

x[11]

x[3]

x[4]

x[5]

x[6]

x[7]

x[8]

Thread 0 Thread 1 Thread 2

Figure 2.6

BLOCKED SHARED ARRAYS 27

In many cases it is desirable to distribute an array of data in contiguous blocks

such that, when possible each thread gets one of those chunks. One convenient way

to do this is by using the * layout qualifier. For example,

shared [*] int y [8];

would produce the layout shown in Figure 2.7 for the case of three threads.

Layout qualifiers work in the same way with two- and higher-dimensional

arrays as in the case of one-dimensional arrays. Consider, for example, the

declaration

shared [3] int A [4][4];

In this case, array elements are also blocked by a factor of 3. Therefore, blocks of

three elements each are distributed across the threads in round-robin fashion until

all the array elements are allocated. The resulting layout in the case of four threads

is shown in Figure 2.8.

By employing the foregoing techniques, the matrix–vector multiplication

example can now be revisited.

y[0]

y[1]

y[2]

y[3]

y[4]

y[5]

y[6]

y[7]

Thread 0 Thread 1 Thread 2

Figure 2.7

A[0][0]

A[0][1]

A[0][2]

Thread 0

A[3][0]

A[3][1]

A[3][2]

A[0][3]

A[1][0]

A[1][1]

Thread 1

A[3][3]

A[1][2]

A[1][3]

A[2][0]

Thread 2

A[2][1]

A[2][2]

A[2][3]

Thread 3

Figure 2.8

28 PROGRAMMING VIEW AND UPC DATA TYPES

Example 2.3: matvect2.upc

#include <upc_relaxed.h>

shared [THREADS] int a[THREADS][THREADS];

shared int b [THREADS], c [THREADS];

int main (void)

{

int i, j;

upc_forall(i = 0; i < THREADS; i++; i)

{

c [i] = 0;

for (j= 0; j (THREADS; j++)

c [i] += a [i][j]*b [j];

}

return 0;

}

The only difference between this version and the version that was shown in

Example 2.2 is in the declaration of a[], where a[] is now blocked by a factor

equal to the number of THREADS. The resulting layout for the case of three

threads is shown in Figure 2.9. In this case, computing c[0] requires only two

remote accesses for reading b[1] and b[2] instead of the four remote accesses

needed in the case of default distribution.

Thread 0

Thread 1
* =

a b c

Thread 0

Thread 1

Thread 2 Thread 2

Figure 2.9

BLOCKED SHARED ARRAYS 29

2.6 COMPILING ENVIRONMENTS AND SHARED ARRAYS

The number of UPC executing threads can be specified at either compile time or run

time. If the number of threads is known at compile time, the UPC program is

translated in the ‘‘static THREADS’’ environment. If the number of threads is not

known at compile time, the UPC program is translated in the ‘‘dynamic

THREADS’’ environment.

Specifying the number of threads at compile time gives compilers the opportu-

nity to offer their best optimizations. On the other hand, it may not be very

convenient when a program is to be run with different numbers of threads.

Specifying the number of threads at run time allows the users to compile once

and run multiple times with different numbers of threads. However, this can present

technical challenges to compilers, particularly where the number of array elements

allocated to each thread depends on the number of executing threads. To contain

such challenges, a number of constraints are established. One clear constraint is that

an array declaration is considered illegal if the UPC program is translated in the

‘‘dynamic THREADS’’ environment (i.e., THREADS is specified at run time, and

the number of elements to allocate at each thread depends on the number of

threads). For example, the declarations

shared int x [10*THREADS];

shared [] int x [10];

are legal in both the ‘‘static THREADS’’ and ‘‘dynamic THREADS’’ translation

environments. In the first case, 10 elements will be allocated to each thread, and in

the second declaration 10 elements will be allocated to thread 0.

On the other hand, the declarations

shared int x [10];

shared [] int x [THREADS];

shared int x [10+THREADS];

are illegal in the case of the ‘‘dynamic THREADS’’ translation environment. In the

first declaration, it is unclear how many x [] elements will be given to each thread

without knowing the total number of threads. In the second declaration, although

the entire array goes to thread 0, the size of that array is unknown without knowing

the total number of threads. In the third declaration, it is clear that each thread gets

at least one element, but without knowing the total number of threads, the total

share of each thread of the array elements will be unknown.

2.7 SUMMARY

UPC is an extension of ISO C that follows the distributed shared memory

programming model. All threads can access the entire shared space. However,

30 PROGRAMMING VIEW AND UPC DATA TYPES

the shared space is logically partitioned, and each partition has affinity to one of the

threads. This enables programmers to co-locate data and processing, thus exploiting

data locality for improved performance. Each thread has, in addition, a private

memory space, which should be accessed by that thread only. UPC operates in a

SPMD model of execution, where all threads execute the main() function. No

synchronization is implied except that threads must start and finish the same

program at the same time. Programmers determine at declaration time where data

will be located with respect to threads and private and shared space. Private variable

declarations result in one instance of the variable within the private space of each

thread. Shared scalar variables have affinity to thread 0. Shared array elements are

distributed by default in round-robin fashion across the threads. Such default can

be changed using a block size specified by the programmer, in which case the array

elements are distributed by blocks of elements across the threads in round-robin

fashion. Thus, the data layout can be defined in a way that reduces the overall

number of remote shared memory references. Shared variables and arrays cannot

have automatic storage duration.

EXERCISES

2.1 List two unique features in each of the four parallel programming models:

message passing, data parallel, shared memory, and distributed shared memory.

2.2 Two popular computer architectures are the multicomputer architecture, in

which each node has a local memory with a private address space, and the

NUMA (nonuniform memory access architecture), in which there is one global

address space but each node holds a part of that shared system memory.

Discuss the performance pros and cons of implementing each of the four

programming models on each of these two architectures.

2.3 In addition to the shared address space of the distributed shared memory

programming model, the UPC memory model includes thread-private mem-

ories. Give two reasons why including such private memories would be a good

idea.

2.4 Why does it make sense not to have dynamic shared variables? It was also

stated that shared pointers to private variables were not recommended. Why?

2.5 Write a program to perform A¼ B * C, where A, B, and C are n� n matrices

and n is a multiple of THREADS.

2.6 Repeat Exercise 2.5, but block the A matrix by rows. Derive an expression for

the number of remote accesses needed for computing each C element and

compare the results with those of Exercise 2.5.

EXERCISES 31

CHAPTER 3

Pointers and Arrays

The concept of pointers is a core element of the ISO C programming language and has

proven to be a powerful programming tool. UPC defines a number of pointer classes

that follow directly from C pointers and the UPCmemory model. As in C, pointers are

variables that contain the address of another variable. However, under the UPC

memory model such pointers can reside in either the private space or the shared space.

UPC pointers can also reference the private space or the shared space. These different

variants of the UPC pointer semantics serve distinct programming scenarios. Pointers

often lead to compact programs and result in efficient implementations. Pointers and

array indexes are closely related in C, and they remain that way in UPC. Under UPC,

pointers can be declared to have blocking factors similar to those in the case of arrays.

Thus, given any array layout in the shared space, a pointer can be declared to traverse

the elements of such an array in the same sequence that C pointers traverse array

elements. In many cases, casting is also allowed from one pointer type to another.

3.1 UPC POINTERS

The syntax of pointer declarations in UPC is similar to those of C. However, with a

memory model that has shared and private spaces, there are four major UPC pointer

classes: private pointers pointing to the private space, private pointers pointing to

the shared space, shared pointers pointing to the shared space, and shared pointers

pointing to the private space (see Figure 3.1).

Consider the following pointer declarations:

int *p1; // private to private

shared int *p2; // private to shared

int *shared p3; // shared to private

shared int *shared p4; // shared to shared

The first statement declares a private pointer p1, which points to the private space

and resides in the private space; we notice that p1 is clearly a typical C pointer. p2

UPC: Distributed Shared Memory Programming, by Tarek El-Ghazawi, William Carlson,
Thomas Sterling, and Katherine Yelick
Copyright # 2005 John Wiley & Sons, Inc.

33

is declared as a private pointer that points to the shared space; therefore, each thread

has one independent and private instance of p2. p4 is a shared pointer pointing to

the shared space; thus, it has one instance with affinity to thread 0. p3 is a shared

pointer to the private space and therefore should be avoided, as it would defeat the

purpose of having shared space visible to all threads and private data space visible

only to its associated thread.

One general observation that can help us to understand these pointer class de-

clarations quickly is to look at the relative position of the � character in the declar-

ation syntax. For example, �p is a private pointer, whereas �shared p is a shared

pointer. Note that the right part of the declaration is for the pointer type, whereas

the left part is for the type of the pointed to variable. So for

shared int *p2; // private to shared

the right part, *p2, says that p2 is a private pointer, and the left part, shared int,

indicates that the variable pointed to is of type shared int. Similarly, in the

declaration

shared int *shared p4; // shared to shared

�shared p4 indicates that p4 is a shared pointer, and the left part shared int

indicates that the variable pointed to is a shared int.

Figure 3.2 demonstrates where the pointers of the previous four declarations

are located and to where they are pointing. This figure shows that one instance of

Private Shared

Private

Shared

PP PS

SP SS

Where
does the
pointer
reside?

Legend :

PP – private to private
PS – private to shared
SP – shared to private
SS – shared to shared

Figure 3.1 UPC Pointer Classes

Thread 0 Thread 1 ThreadTHREADS-1

P4

P3

P2 P2P2 P1 P1 P1

Shared Space

Private Spaces

. . .

Figure 3.2 UPC Pointer Scenarios

34 POINTERS AND ARRAYS

the private pointers, p1 and p2, exists for each thread. Both of these two pointers

are created in the private space of every thread instance. Only one instance of p3

and p4 is created in the shared space. Each of the p1 pointers points to its

associated private space and can also point to the shared space that has affinity to

that pointer. Each of the p2 pointers can point anywhere in the shared data space.

The pointer p4 can also point anywhere in the shared space. As a shared pointer, p3

has only one instance created in the shared space of thread 0. However, p3 has no

useful semantic behavior and therefore should be avoided.

3.2 POINTER ARITHMETIC

Pointers in UPC advance (are incremented) in a way similar to that of C pointers.

When an expression is added to or subtracted from a pointer-to-shared, the pointer

moves by a number of elements as given by the expression, where the elements

are of the same type as the object pointed to. We first demonstrate this in cases

where arrays are distributed by default, one element per thread. Then we show how

pointers traverse the elements of blocked arrays. Consider, for example, the

sequence of statements in Example 3.1.

Example 3.1: pointer1.upc

#define N 16

shared int x [N];

shared int *dp, *dp1;

dp = &x [5];

dp1 = dp + 9;

In this code, the first three statements define x [] as a shared array of 16

elements with the default distribution layout, one per thread in round-robin fashion.

The third statement,

shared int *dp, *dp1;

declares both dp and dp1 as private pointers to the shared array x [], while the last

two statements initialize dp to point to the element x [5] in array x [] and dp1 to

point at the ninth element after x [5] (i.e., element x [14]), shown in Figure 3.3 for

the case of four threads. One thing to note here is that since dp and dp1 are private

pointers to the shared array, there will be one instance of dp and one instance of dp1

at each of the threads. To show this more clearly, consider the code in Example 3.2.

Example 3.2: pointer2.upc

#define N 16

shared int x [N];

POINTER ARITHMETIC 35

shared int *shared dp;

shared int *dp1;

dp = & x [5];

dp1 = x+MYTHREAD;

In this code, dp is now a shared pointer to the shared array, so only one ins-

tance of dp would be created, whereas dp1 is a private pointer to the shared data

space, so each thread would have an independent instance of dp1. The code sets

each instance of dp1 at each thread to point at the element with the offset of

MYTHREAD from the beginning of the x [] array. Thus, although all threads

have access to the pointer dp, each thread accesses only its own private dp1. If

the code were to execute on four threads, the scenario shown in Figure 3.4 would

result. The same scenario could also have resulted by replacing

dp1 = x+MYTHREAD;

with

dp1 = &x [MYTHREAD];

In the latter case, each dp1 instance is set to point at the address of its first element

of the array in each thread.

dp + 3

dp + 7

Thread 0 Thread 2 Thread 3

X[0]

X[4]

X[8]

X[1]

X[5]

X[9]

X[2]

X[6]

X[10]

X[3]

X[7]

X[11] dp + 5

dp + 9

dp +1

dp + 4

dp + 8

dp

dp+6

dp+2

X[12] X[13] X[14] X[15]

dp1

Thread 1

Figure 3.3

dp1

Thread 0 Thread 1 Thread 2 Thread 3

dp1

dp

dp1 dp1

Figure 3.4

36 POINTERS AND ARRAYS

To keep track of shared data, a UPC shared pointer (pointer to a shared object) is

composed of three fields: thread, phase, and virtual address (Figure 3.5). The thread

information clearly indicates the thread affinity of the data pointed to. On the other

hand, Block Address indicates the block address, and Phase indicates the location

of the data item within that block. Such typical pointer implementation makes tra-

versing blocked arrays quite easy. This also implies that to traverse the elements of

a given blocked array, a pointer with the same blocking factor is needed. Consider

the following example.

Example 3.3: pointer3.upc

#define N 16

shared [3] int x[N], *dp, *dp1;
shared int *dp2;
...

dp = &x [5];

dp1 = dp + 9;
dp2 = dp + 3;

Assuming four threads, the code in Example 3.3 would result in the layout and

pointer locations shown in Figure 3.6. In Example 3.3, dp and dp1 were declared

with blocking factors of 3, which is also the blocking factor for the array x []. These

pointers point to the shared data space and view the shared space as blocks of three

elements of that type. Pointer p was not advanced, as it was only set to &x [5].

This element, &x [5], is in the third position of a block of 3. When dp1 was

incremented by 9 beyond the location of p, it immediately started with the

next thread and followed the order of the array elements. This kind of blocked

Thread Block Address Phase

Figure 3.5 Shared Pointer Format

dp + 9

dp

dp + 2

dp + 3

dp + 5

dp + 6

Thread 0 Thread 2Thread 1 Thread 3

dp + 1 dp + 4

dp + 7

dp + 8

Figure 3.6

POINTER ARITHMETIC 37

pointer is typically used to easily access the elements of blocked arrays, using the

same blocking factor as the array. Pointer p2 shows what happens when a pointer of

mismatched blocking factor is used. Since no layout qualifier was specified for p2 in

its declaration, p2 follows the default distribution regardless of how the array is laid

out. Thus, p2 moves to a new element in the next thread each time it is incremented.

3.3 POINTER CASTING AND USAGE PRACTICES

UPC allows the casting of one pointer type to another. However, shared pointer

representations typically hold the thread and phase information (see Figure 3.5).

Therefore, casting a shared pointer to a private pointer may result in the loss of

the thread information. Although this is not generally advisable, it could be useful

when it is desired to use a private pointer to point in its own local shared data space.

On the other hand, casting a private pointer to a shared pointer is an error and would

produce unknown results.

The following code demonstrates the syntax for casting a shared pointer to

private data space:

shared int x [THREADS];

int *p;

p = (int *) &x [MYTHREAD]; /* p points to x [MYTHREAD] */

The construct &x [MYTHREAD] will return in each thread a different shared address

pointing to its local element of x []. (int *) is a cast to private, which transforms

the shared pointer to a private one. Thus, the previous statement sets each of the

private pointers, p, to point at the x [] element, which has affinity with its thread

(i.e., MYTHREAD). There are three points here to reinforce: (1) local shared data

is stored contiguously and can also be pointed at by private pointers; (2) a cast to

private may result in losing the thread information in the shared pointer (thus,

whereas casting from shared to private is allowed, the opposite is not true); and (3)

as shared pointer arithmetic can be more involving than private pointer arithmetic,

using private pointers instead of shared pointers when applicable may be more

efficient in some implementations.

The following example shows how private and shared pointers may advance in

shared data.

Example 3.4: pointer4.upc

#define N 4
shared int x[N][N];
shared int *dp1;

int *dp2;

dp1 = x+MYTHREAD;
dp2 = (int *)dp1+MYTHREAD;

38 POINTERS AND ARRAYS

In this code, dp1 is a set of private pointers to shared and dp2 is a set of private

pointers. In the first statement,

dp1 = x+MYTHREAD;

each of the dp1 pointer instances will advance following the array default

distribution, by MYTHREAD positions, from the first location in the array. Each

of the dp1 pointers will end up pointing at the first element of any array column.

Each of the dp2 pointers will be pointing MYTHREAD positions from the local

dp1 pointer. The private pointers, however, will not follow the order of the array

elements but will advance only in their local shared space. In the case of running

this code with four threads, the dp1 pointer set will be pointing at the elements of

the first row, while the dp2 pointers will be pointing at the diagonal elements as

shown in Figure 3.7.

A layout qualifier is a part of a shared pointer type. It is therefore possible to

traverse the elements of a shared array with one blocking factor using a pointer with

a different blocking factor. Consider the following code.

Example 3.5: pointer5.upc

shared int x [N];

shared [3] int *dp=&x[5], *dp1;
dp1 = dp + 9;

This code assigns to dp1 a value that is nine positions beyond dp. The dp1

pointer will follow its own blocking and not the one of the array. When executed on

four threads, the pointer locations shown in Figure 3.8 result.

As a layout specifier is considered a part of a shared pointer type, casting a

shared pointer with one blocking factor to a pointer that has a different blocking

factor is also possible. Given the declarations

shared [3] int *p;

shared [5] int *q;

the assignment

p = q;

Thread 1 Thread 2 Thread 3

dp1 dp1 dp1dp1,dp2

Thread 0

dp2

dp2

dp2

Figure 3.7

POINTER CASTING AND USAGE PRACTICES 39

is acceptable. However, some implementations may require explicit casting in the

form

p = (shared [3] int *)q;

Pointer p will, however, obey pointer arithmetic for blocks of three, not five. It

should also be noted that pointer casting always sets the phase of the shared pointer

to zero.

3.4 POINTER INFORMATION AND MANIPULATION FUNCTIONS

Pointer-to-shared implementations may vary from one compiler to another. However,

such pointers all represent the three fields that make up such pointers-to-shared

(see Figure 3.5): the thread number, the virtual address, and the phase information.

Therefore, a number of special functions are included to access and manipulate

pointer-to-shared information in an implementation-independent manner. These

functions are often used by compiler developers, but they are available for applica-

tion developers as well, if needed. UPC provides three such functions to deliver

pointer information. The first,

size_t upc_threadof (shared void *ptr);

returns the number of the thread that has affinity to the shared object pointed to

by ptr. The pointer ptr is a private pointer-to-shared pointing to an object of any

shared type. The phase of the pointer-to-shared can be also determined by a similar

call:

size_t upc_phaseof (shared void *ptr);

and finally,

size_t upc_addrfieldof (shared void *ptr);

dp dp + 3

dp + 4

dp + 6

dp + 7

Thread 0 Thread 2Thread 1 Thread 3

dp + 5dp + 2

dp + 9

dp + 1

dp + 8

Figure 3.8

40 POINTERS AND ARRAYS

can be used in the same way to return the local address of the object pointed to by

the pointer-to-shared. It should be noted, however, that the value returned by this

function is implementation dependent.

In the following example these functions are used by thread 0 to print three

elements of a pointer. The address field will be printed in 10 hexadecimal digits,

while the thread number and the phase numbers will be printed in two decimal

digits each.

Example 3.6: addresses.upc

//PrintPointerElements

#include <stdio.h>
#include <upc.h>
#include <upc_relaxed.h>

#define BLOCKING_FACTOR 3

#define SIZE BLOCKING_FACTOR*THREADS

shared [BLOCKING_FACTOR] int buffer [SIZE];

int main(void)

{

int i;

shared [BLOCKING_FACTOR] int *buffer_ptr;

if(MYTHREAD == 0)

{

buffer_ptr = buffer + 5;

for(i=0; i<SIZE; i++, buffer_ptr++)

{

printf("&buffer [%d]: ", i);

printf("THREAD: %02d \t ",

upc_threadof(buffer_ptr));

printf("ADDRESS: %010Xh \t ",

upc_addrfield(buffer_ptr));

printf("PHASE: %02d\n",

upc_phaseof(buffer_ptr));

}

}

return 0;

}

The statement

buffer_ptr = buffer + 5;

POINTER INFORMATION AND MANIPULATION FUNCTIONS 41

in Example 3.6 sets buffer_ptr to point to the last element in the second block

buffer [5]. Therefore, the printed thread number should be 1 and the phase

should be 2. The address value is implementation-dependent, however.

In addition to the functions that return the three different elements of a pointer-

to-shared, the function

shared void *upc_resetphase (shared void *ptr);

returns a pointer-to-shared which is identical to ptr except that it has a phase of

zero. Thus, this function can be used to reset the phase of a pointer to make it point

to the first element of the current block. For example, if the statement

buffer_ptr = upc_resetphase(buffer_ptr);

is used before the printing in the previous PrintPointerFields example, the

printed phase would have been zero instead of 2.

In the rest of this section we consider a UPC pointer-to-shared implementation

example (Figure 3.4) along with a possible implementation of some of the pointer

information and manipulation functions. This example implementation is included

for illustrative purposes only. Different [CAR99] or better implementations may be

sought by compiler developers. First, assume the representation shown in Figure 3.9

for the UPC shared pointer. Then, possible definitions for the upc_threadof(),

upc_phaseof(), and upc_addrfieldof() follow:

typedef uint64_t upc_shared_ptr;

size_t upc_threadof(upc_shared_ptr sh_ptr)

{

size_t t;

t = (sh_ptr >> 38) & 0x7FF;

return t;

}

size_t upc_phaseof(upc_shared_ptr sh_ptr)

{

size_t t;

t = (sh_ptr >> 49) & 0x7FFF;

return t;

}

size_t upc_addrfield(upc_shared_ptr sh_ptr)

{

Virtual AddressThreadPhase

03738484963

Figure 3.9 Possible UPC Pointer-to-Shared Implementation

42 POINTERS AND ARRAYS

size_t t;

t = sh_ptr & 0x3FFFFFFFFFULL;

return t;

}

In the case of upc_threadof(), the pointer representation is shifted to

the right 38 positions to bring the thread information to the least significant part

of the pointer, and the remaining bits to the left of the phase information are masked

out using a bitwise logical-and operation with a mask of 15 consecutive bits, 7FF

in hexadecimal. Similar shifting and masking is also used to produce the phase

information, in upc_phaseof(), and masking only is used to generate the

address in upc_addrfieldof(), where address information of the element in this

case already occupies the lower 38 bits of the pointer representation.

A simpler but possibly less efficient implementation could use a structure with

three fields to store the three elements of the pointer. The equivalent implementa-

tion of each of the three previous functions would simply amount to extracting the

corresponding field from the structure.

3.5 MORE POINTER EXAMPLES

Consider a program for squaring a matrix A. If the matrix is shared and follows the

default blocking, one can simply access the rows of the matrix using an array of

pointers-to-shared. On the other hand, using the fact that local shared data is stored

contiguously and can be accessed by private pointers, private pointers can be used

to access the columns of the matrix. The code for this matrix-squaring example

follows.

Example 3.7: matsqr1.upc

// Matrix Squaring

shared double A [THREADS][THREADS], A_Sqr [THREADS][THREADS];

int main(void)

{

shared double *rows_ptrs [THREADS]; // Points to the rows

double *cols_ptr; // Points to the local shared columns

int i, j, k;

double d;

//Initialize the pointers

for(i=0; i < THREADS; i++)

{

rows_ptrs [i] = &A [i][0];

MORE POINTER EXAMPLES 43

}

// Privatize (local shared to private)

cols_ptr = (double *)&A [0][MYTHREAD];

// Matrix squaring computation

for(i=0; i<THREADS; i++) // for each row

upc_forall(j=0; j<THREADS; j++; j) // each thread

{ // computes one element

d = 0;

for(k=0; k<THREADS; k++)

d += *(rows_ptrs [i]+k) * *(cols_ptr+k);

A_Sqr [i][j] = d; // write to A_sqr [row i][col j]

}

return 0;

}

In this example,

rows_ptrs [i] = &A [i][0];

initializes the pointer row_ptrs [i] to point at the beginning of row i in array

A [][]. Since row_ptrs is declared as an array of private pointers-to-shared, each

thread will have its own private array of pointers that can be manipulated

independently by each thread. When incremented, rows_ptrs [i] will advance

through the elements of the ith row of array A [][]. Meanwhile, cols_ptrs is a

private pointer-to-shared. Thus, in each thread

cols_ptr = (double *)&A [0][MYTHREAD];

casts the address of the ith column to private and assigns it to cols_ptrs, so that

it points at the beginning of column i. The cast is used since cols_ptrs is a

private pointer, whereas &A [0][i] is a shared reference. When incremented,

cols_ptr of thread i will now advance through the elements of the ith column

of array A [][]. Since each of the threads now accesses one of the columns,

the algorithm proceeds as follows. Elements of the result matrix, A_sqr [][], are

computed one row at a time. Thus, for each row of the matrix, each thread computes

one result that goes into the column position corresponding to that thread number.

Therefore, the outer loop

for(i=0; i<THREADS; i++)

sequences through the rows. Then, for each row,

upc_forall(j=0; j<THREADS; j++; j)

44 POINTERS AND ARRAYS

causes each of the threads to compute one of the elements in that row of A_sqr

[][], specifically the element whose column index is equal to the thread number.

The actual computations of an A_sqr [][]element are performed within the body

of the innermost loop.

for(k=0; k<THREADS; k++)

Instead of using an array of private pointers-to-shared for addressing the rows,

one could have used a private pointer-to-shared that traverse the array elements as if

it were a one-dimensional array.

Example 3.8: matsqr2.upc

// Matrix Squaring (single pointer)

shared double A [THREADS][THREADS], A_Sqr [THREADS][THREADS];

int main(void)

{

shared double *rows_ptrs;
double *cols_ptr;

int i, j, k;

double d;

// Initialize the pointers

rows_ptrs = &A [0][0];
cols_ptr = (double *)&A [0][MYTHREAD];

// for each row

for(i=0; i<THREADS; i++, rows_ptrs+=THREADS)
upc_forall(j=0; j<THREADS; j++; j) // for each local

// shared column

{

d = 0;

for(k=0; k<THREADS; k++)

d += *(rows_ptrs+k) * *(cols_ptr+k);
A_Sqr [i][j] = d; // write to A_sqr [row i][col j]

}

return 0;

}

As in C, pointer and array index notations may be interchanged, and pointers to

matrixes can be passed to a function that may perform the matrix squaring. Making

these changes to Example 3.7, the following program results.

MORE POINTER EXAMPLES 45

Example 3.9: matsqr3.upc

// Matrix Squaring

shared double A [THREADS][THREADS], A_Sqr [THREADS][THREADS];

void mat_squaring(shared double (*dst)[THREADS],
shared double (*src)[THREADS])

{

shared double *rows_ptrs [THREADS];

double *cols_ptr;

int i, j, k;

double d;

// Initialize the pointers

for(i=0; i<THREADS; i++)

rows_ptrs[i] = &src[i][0];

// Privatize (local shared to private)

cols_ptr = (double *)&src[0][MYTHREAD];

// Matrix squaring computation

for(i=0; i<THREADS; i++) // for each row

upc_forall(j=0; j<THREADS; j++; j) // each thread

{

d = 0;

for(k=0; k<THREADS; k++)

d += *(rows_ptrs[i]+k) * *(cols_ptr+k);

dst[i][j] = d;
}

}

int main(void)
{

mat_squaring(A_Sqr, A);

return 0;
}

This example touches again on an important fact: that shared objects cannot

have a dynamic scope. Therefore, the shared arrays, A [][]and A_sqr [][], are

declared externally. Furthermore, only private pointers-to-shared can be declared

and used inside the function itself.

46 POINTERS AND ARRAYS

3.6 SUMMARY

UPC embodies many powerful pointer concepts. UPC pointers include private

pointers, private pointers-to-shared, and shared pointers-to-shared. Shared pointers-

to-private are also possible to declare, but using them is not advised, as their

behavior is not specified. Pointers-to-shared can have blocking factors, just like

shared arrays. Such a layout specifier is part of the type. Pointer-to-shared

representations embody three important elements: thread number, phase number,

and address. Pointer information and manipulation functions can be used to extract

this information from a pointer. One type of pointer can be cast into another. For

example, pointers-to-shared can be cast to private pointers. In this case, the thread

number information is lost. Local shared data is stored contiguously and therefore

can easily be addressed by a private pointer. All these different types of pointers

available in UPC can be extremely useful to developers.

EXERCISES

3.1 Write a function to multiply two shared matrixes, A� B, with the default

blocking using pointers to access the elements of the matrixes. Use one single

private pointer-to-shared to point at the rows of each matrix and another to

point at the columns of each matrix.

3.2 Modify the first matrix-squaring example of Section 3.5 (Example 3.7) such

that the elements of one column of A_sqr [][] are computed first, then the

next column, and so on. Use only private pointers-to-shared.

3.3 Write a function to copy the elements of a THREADS� THREADS matrix

with a blocking factor of 5 to another with a blocking factor of 3 using blocked

pointers-to-shared arithmetic.

EXERCISES 47

CHAPTER 4

Work Sharing and Domain
Decomposition

In this chapter we consider the distribution of workload across a number of UPC

SPMD threads by decomposing the data across the threads that are executing.

Distributing work across a number of threads (or processes) in a parallel application

requires that each thread have the ability to identity itself through an id value and to

recognize the other threads, possibly remote, available to cooperate on performing

the application task. This self-identification and recognition of the other cooperat-

ing threads allows a division of labor by identifying the partition of the data that

will be manipulated by each thread. In UPC, variable declarations establish the

affinity of data and threads, providing locality information and control to pro-

grammers for decomposing their workload more intelligently. UPC programmers

can take advantage of this knowledge by assigning each thread to apply its work, as

appropriate, on the data that has affinity to that thread. In this way, the majority of

the accesses can become thread local. On machines with physically distributed

memory, it is expected that compilers will attempt to co-locate each thread and the

data that has affinity to it onto the same physical node, thereby reducing remote

accesses and improving execution time. Moreover, as in other parallel program-

ming paradigms, UPC offers the ability for each thread to identify itself and the rest

of threads available to help through the special constants MYTHREAD and

THREADS, respectively, where MYTHREAD is in the range 0 through THREADS-1.
In addition to the aforementioned basic methods for work sharing, UPC features

the iteration statement upc_forall, which distributes independent iterations

across threads for parallel execution in different ways. In this chapter we cover

these work-sharing concepts and their relationship to affinity of data, to show pro-

grammers how to exploit access locality. We also explore how this can be done in

the context of blocked shared data structures through application examples that

require interesting data distributions such as multidimensional arrays and trees.

UPC: Distributed Shared Memory Programming, by Tarek El-Ghazawi, William Carlson,
Thomas Sterling, and Katherine Yelick
Copyright # 2005 John Wiley & Sons, Inc.

49

4.1 BASIC WORK DISTRIBUTION

Consider a version of the matrix–vector multiplication example of Examples 2.2

and 2.3, in which a matrix of THREADS *10� THREADS is multiplied by a vector

of length THREADS. Knowing the number of threads, THREADS, the matrix and

vector dimensionalities, and given that each thread can identify itself through the

special constant MYTHREAD, work can be distributed such that each thread operates

on a unique set of rows from the matrix a [][].

Example 4.1: matvect3.upc

#include <upc_relaxed.h>
shared [THREADS] int a [THREADS*10][THREADS];

shared int b [THREADS], c [THREADS*10];

int main (void)

{

int i, j;

for(i = MYTHREAD; i < THREADS*10; i += THREADS)

{

c [i] = 0;

for (j = 0; j < THREADS; j++)

c [i] += a [i][j]*b [j];

}

return 0;

}

In this example, matrix a [][], which has the dimensionality THREADS*10�
THREADS, is multiplied by vector b [], which is of length THREADS, producing
vector c [], which is of length THREADS*10. The declarations

shared [THREADS] int a [THREADS*10][THREADS];

shared int b [THREADS], c [THREADS*10];

establish a [][], b [], and c [] as shared arrays. Further, the a [][] array is

distributed in blocks of one row across the threads (i.e., each thread gets one row in

round-robin fashion). At the end, each thread ends up with 10 rows in its local

shared space when all THREADS*10 rows are distributed.

As the loop

for(i=MYTHREAD; i < THREADS*10; i+=THREADS)

is executed by all threads concurrently in SPMD style, each thread operates at first

on the row of matrix a [][] that matches the thread number. Then each thread

50 WORK SHARING AND DOMAIN DECOMPOSITION

jumps by THREADS row to work with its next row, and so on, until all 10 rows are

processed.

In performing the operations above, it should be noted that each thread operates

on the a-elements that are local to it only. Thus, the inherent locality in the under-

lying problem is fully exploited. This is generally much easier to do in UPC than

in many other paradigms. Note also that one can distribute the matrix in blocks of

10 rows each. This is done by changing the matrix a [][] declaration to

shared [THREADS*10] int a [THREADS*10][THREADS];

The outer loop may then be slightly changed in order to continue to exploit locality

and maintain the execution efficiency and good performance, but the remainder of

the program remains unchanged.

4.2 PARALLEL ITERATIONS

In Section 4.1 we demonstrated how work can be distributed and how each thread

can determine what its assigned share of work is based on MYTHREAD, THREADS,
and the layout of shared data. Using these constructs and methods, it was demon-

strated that a programmer can easily distribute work such that each thread can

work as much as possible on data that has affinity to it, thereby maximizing data

locality exploitation.

Another powerful UPC construct for specifying program parallelism is

upc_forall, which simplifies this process and provides many options for

defining workload distribution across threads. The upc_forall construct is a

work-sharing iteration statement, which syntactically resembles the C for loop

statement. It assumes, however, that all iterations are independent of one another

and therefore can be thought of as units of work that can be distributed across the

threads, where they get executed in parallel. The syntax for upc_forall is as

follows:

upc_forall(expression1; expression2; expression3; affinity)

The first three arguments of the upc_forall statement, expression1, expression2,

and expression3, are all expressions. The typical use of these is similar to that of

the C for statement: that is, initialization, test, and update. Any of these expressions

can be omitted, but the semicolons cannot be removed.

The fourth component of the upc_forall construct, affinity, is the controlling

element that determines which thread executes a given iteration. Thus, affinity must

have a unique value in each thread. Each iteration is executed by exactly one thread,

but one thread can execute more than one iteration. To this end, the affinity compo-

nent can be either an expression or a pointer-to-shared. When affinity is an integer

expression, all iterations for which the value ‘‘affinity modulo THREADS’’ matches

the thread number of a given thread, MYTHREAD, will be executed by that thread.

PARALLEL ITERATIONS 51

In other words, the loop body of the upc_forall statement is executed for each

iteration in which the value of MYTHREAD equals the value ‘‘affinity modulo

THREADS.’’ When affinity is of pointer-to-shared type, a thread executes a given

iteration if the object pointed to has affinity to that thread (i.e., if the object pointed

to was local to that thread). In other words, the loop body of the upc_forall

statement is executed for each iteration in which the value of MYTHREAD equals

the value of upc_threadof (affinity).

Consider a variant of the matrix-to-vector multiplication in which the blocked

matrix has a dimensionality of THREADS*4� THREADS*4, and each block is of

size THREADS*4.

Example 4.2: matvect4.upc

#include <upc_relaxed.h>
shared [THREADS*4] int a[THREADS*4][THREADS*4];
shared int b[THREADS*4], c[THREADS*4];

int main (void)

{

int i, j;

upc_forall(i = 0; i < THREADS*4; i++; i)
{

c [i] = 0;

for (j= 0 ; j < THREADS*4 ; j++)
c [i] += a [i][j]*b [j];

}

return 0;

}

In this case, the affinity expression is simply i. This affinity expression distri-

butes the iterations in round-robin fashion across the threads. All iterations for

which i modulo THREADS equals some integer k will be executed by thread

number k, where k ranges from 0 to THREADS-1. As the upc_forall construct

is the outer iteration statement in this example, each iteration corresponds to the

processing of one row of matrix a [][]. The data layout selected distributes the

matrix by rows, one row per thread in round-robin fashion, ensuring that all acces-

ses to the a [][] matrix are local.

The foregoing scenario can be accomplished by using the affinity field as a

pointer-to-shared. The only change needed is as follows.

Example 4.3: matvect5.upc

upc_forall(i = 0 ; i < THREADS*4 ; i++; &a [i][0])

52 WORK SHARING AND DOMAIN DECOMPOSITION

The affinity field is basically a pointer to the first element of the ith row in

matrix a [][]. Alternatively, a [i] can also be used. However, some early

compilers may not support this syntax, so &a [i][0] is used.

In Example 4.3, data is distributed by blocks of one row each, in round-robin

fashion. Each thread has four noncontiguous rows assigned to it. In some

applications it could be better to distribute an array in groups of contiguous

rows. To continue to harness the benefit of locality, equivalent chunks of iterations

need to be assigned to the same thread. Consider modifying Example 4.3 to

distribute data by chunks of four rows and assign every four consecutive iterations

to one thread.

Example 4.4: matvect6.upc

#include <upc_relaxed.h>

shared [THREADS*16] int a[THREADS*4] [THREADS*4];

shared int b [THREADS*4], c [THREADS*4];

void main (void)

{

int i, j;

upc_forall(i = 0; i < THREADS*4; i++; (i/4))
{

c [i]= 0;

for (j= 0; j < THREADS*4;j++)

c [i]+ = a [i][j]*b [j];

}

}

The affinity is an expression in this case, which is the integer division of the

current iteration number by 4, to produce one thread number for every four conse-

cutive iterations. In addition to being an integer expression or a pointer-to-shared,

the affinity field in a upc_forall statement can be either continue or left

empty. In these cases, all iterations are executed by all threads. Like the ISO C for

statement, the UPC upc_forall construct may be nested within the program

structure either directly or through function calls. In this case the outermost

upc_forall, which does not have continue, or empty affinity, is considered

the controlling upc_forall. All of its inner upc_forall loops will act as if

they have a continue or an empty affinity field, and all of their iterations

will therefore be executed by all threads. The utility of these cases is quite limited.

Therefore, interested readers should refer to the language specifications for more

details.

PARALLEL ITERATIONS 53

4.3 MULTIDIMENSIONAL DATA

As an extension of ISO C, UPC stores two-dimensional data in a row-major

order and maintains the ability of pointers to address multidimensional data as

linear arrays. To ensure that a pointer-to-shared traverses both the elements of an

array and the elements of a block in a consistent manner, data blocks are limited to

be only one-dimensional. However, there are some methods, which are not very

straightforward, for distributing multidimensional data blocks (discussed later). In

this section we show how multidimensional data can be accessed effectively using

basic UPC data distributions methods. This can be done conveniently and may even

achieve better performance than distributions with traditional multidimensional

blocks.

In these examples, such as Example 4.4, we distributed a matrix by groups of

rows. In addition to the benefit of having a consistent way to traverse the blocks and

the overall matrix using the same pointer-to-shared variable, this type of distribu-

tion can potentially limit the number of remote transactions because one-dimen-

sional blocks create fewer ghost zones when neighboring data is needed. In general,

the number of ghost zones is typically twice the number of dimensions of the block

used, and the number of ghost zones typically determines the number of data

transfers. The volume of remote data elements may be the same in both cases. How-

ever, most parallel architectures perform fewer transfers with more data per transfer

more efficiently than do larger number of transfers with fewer data per transfer.

Therefore, one-dimensional blocking lends itself to higher performance than do

multidimensional distributions.

There are many ways to distribute a three-dimensional array across the threads.

Figure 4.1 shows three basic approaches. Figure 4.1a shows the default case in

which blocks of one element each are distributed across the threads in round-robin

fashion, which can be accomplished by the following declaration:

shared double grid [N][N][N];

Figure 4.1b shows the case of distributing blocks of one row each, which can be

established as follows:

shared double [N] grid [N][N][N];

and for the distribution of Figure 4.1c which distributes data by blocks of two-

dimensional faces, the declaration is

shared double [N*N] grid [N][N][N];

Again, the preceding cases are only examples; many other declarations can be

used to distribute data in other ways that are derived from the linear distribution

offered by UPC, such as distributing by chunks of rows or multiple faces across the

threads. The declarations are only one part of how to handle multidimensional

54 WORK SHARING AND DOMAIN DECOMPOSITION

arrays and multidimensional cells. Another aspect is how to access and address the

data. It is important here to note that the cell and the block do not need to be the

same. The cell is simply the smallest possible entity to which application physics or

computational laws are applied. The block is a data distribution unit. Although our

next example will demonstrate the distributions in the previous declarations, it

should be noted that having more cells per block can contribute to improved

performance.

To examine multidimensional data handling in UPC, we consider the three-

dimensional heat conduction problem [NTM04] in which the three-dimensional

partial differential equation in a stationary medium is

q2T
qx2

þ q2T
qy2

þ q2T
qz2

¼ 1

a
qT
qt

ð1Þ

where T is temperature, t is time, and a is the thermal diffusivity. For simplicity, we

assume that the source remains hot and that its thermal properties are constant. In

addition, we also assume that the entire medium is a solid with thermal diffusivity,

(a) Default Distribution (b) Using Row Blocks

(c) Using Two-Dimensional Face Blocks

x

z
y

N

N

N

Figure 4.1 Multidimensional Data and Cells

MULTIDIMENSIONAL DATA 55

a, of 1.0. Inside a three-dimensional cell, based on (1), the temperature is calculated

as follows:

Ttþ1
i;j;k ¼ 1

6
Tt
i�1;j;k þ Tt

iþ1;j;k þ Tt
i;j�1;k þ Tt

i;jþ1;k þ Tt
i;j;k�1 þ Tt

i;j;kþ1

� �
ð2Þ

which is the basic, stencil operation, illustrated in Figure 4.2.

The following is the code for main() and initialize().

Example 4.5: heat_conduction1.upc

1. #include <stdio.h>
2. #include <math.h>
3. #include <upc_relaxed.h>
4. #include "globals.h"

5. // Declare two global grids, either source or

destination at

6. // each epoch, with the data distribution as described in

7. // globals.h

8. shared [BLOCKSIZE] double grids [2][N][N][N];

9. shared double dTmax_local [THREADS];

10. void initialize(void)

11. {

12. int y, x;

y

z

x

t
z,y+1,xT

t
z,y,x−1T

t
z−1,y,xT

t
z,y−1,xT

t
z+1,y,xT

t+1
z,y,xT

t
z,y,x+1T

Figure 4.2 Basic Stencil Operations for the Heat Transfer Problem

56 WORK SHARING AND DOMAIN DECOMPOSITION

13. /* sets one edge of the cube to 1.0 (heat) */

14. for(y=1; y<N-1; y++)

15. {

16. upc_forall(x=1; x<N-1; x++; &grids [0][0][y][x])

17. {

18. grids [0][0][y][x]= grids [1][0][y][x]= 1.0;

19. }

20. }

21. }

22. int main(void)

23. {

24. double dTmax, dT, epsilon;

25. int finished, z, y, x, i;

26. double T;

27. int nr_iter;

28. int sg, dg; // stands for source grid and destination

// grid indexes

29. initialize();

30. /* sets the constants */

31. epsilon = 0.0001;

32. finished = 0;

33. nr_iter = 0;

34. sg = 0; // using grids [0][][][] as source array

35. dg = 1; // using grids [1][][][] as destination array

36. /* synchronization */

37. upc_barrier;

38. do

39. {

40. dTmax = 0.0;

41. for(z=1; z<N-1; z++)

42. {

43. for(y=1; y<N-1; y++)

44. {

45. upc_forall(x=1; x<N-1; x++; &grids [sg][z][y][x])

46. {

47. T = (grids [sg][z+1][y][x]+ grids [sg][z-1][y][x]+

48. grids [sg][z][y-1][x]+ grids [sg][z][y+1][x]+

49. grids[sg][z][y][x-1+grids[sg][z][y][x+1])/6.0;

50. dT = T - grids [sg][z][y][x];

51. grids [dg][z][y][x]= T;

MULTIDIMENSIONAL DATA 57

52. if(dTmax < fabs(dT))

53. dTmax = fabs(dT);

54. }

55. }

56. }

57. dTmax_local [MYTHREAD] = dTmax;

58. upc_barrier;

59. dTmax = dTmax_local [0];

60. for(i=1; i<THREADS;i++)

61. if(dTmax < dTmax_local [i])

62. dTmax = dTmax_local [i];

63. upc_barrier;

64. if(dTmax < epsilon)

65. finished = 1;

66. else

67. {

68. // swapping the source and destination "pointers"

69. dg = sg;

70. sg = !sg;

71. }

72. nr_iter++;

73. } while(!finished);

74. upc_barrier;

75. if(MYTHREAD == 0)

76. {

77. printf("%d iterations\n", nr_iter);

78. }

79. return 0;

80. }

To set up the problem size and data layout used, a globals.h include file is

created (line 4) which could at minimum have

#define N 32

Together with the size of the array, this include file specifies one of the three data

distributions depicted in Figure 4.1. This is accomplished by setting the constant

BLOCKSIZE through a preprocessor macro definition using one of the following:

#define BLOCKSIZE 1

58 WORK SHARING AND DOMAIN DECOMPOSITION

or

#define BLOCKSIZE N

or

#define BLOCKSIZE N*N

which would distribute data in equal blocks across all the threads. In this case two

cubic grids are needed, one grid for holding the data from the preceding iteration

while the new data for the current iteration is written into the other grid. To simplify

the process, rather than declaring two shared three-dimensional arrays separately,

line 8 declares a four-dimensional shared array, grids, of 2� N� N� N dimen-

sionality which can hold both arrays. The array is distributed by blocks as defined in

the header file, globals.h. Thus, the first three-dimensional array can be indexed

as grids [0][z][y][x], while the second is indexed as grids [1][z][y][x]. The

declaration is external since shared arrays cannot have dynamic scope. The

variables sg and dg, declared in line 28 and initialized to 0 and 1 in lines 34

and 35, respectively, are used in the first index position to determine which of the

two cubes is the source grid and which is the destination grid during a given

iteration. They are also used to swap this role, of source and destination grids, at the

end of each iteration according to lines 69 and 70.

Boundary conditions are introduced at one face of each N� N� N grid through

the function initialize(), lines 10 through 21. We assume in this case that N

is divisible by THREADS. Thus, each of the threads initializes one row in surface in

parallel. From the multiple assignments of line 18, this initialization is carried out

for both grids simultaneously.

The simulation proceeds iteratively until the maximum change in temperature

falls below a given threshold, epsilon, line 24. Line 24 also declares the private

variables dT to hold the current change of temperature and dTmax to search for a

local maximum change of temperature. The declaration in line 9 is for a shared

array, dTmax_local[], that has one element per thread to hold the local maxi-

mum temperature change into a shared array to simplify finding the global maxi-

mum change in temperature, lines 59 through 62. However, barrier synchronization

is applied in line 58 to ensure that all threads have deposited their local maximum

temperature change into that array before a global maximum is computed. The

barrier present in line 63 ensures that all threads have gone through the shared

dTmax_local [] and determined the maximum value, allowing the threads to

reuse the dTmax_local [] buffer for the next iteration.

The bulk of work takes place between lines 38 and 73, and it is started at all

threads simultaneously due to the barrier synchronization in line 37. For each z and

y coordinate combination, the temperature and change in temperature are computed

in parallel for all possible x coordinates using a upc_forall operation. From the

affinity expression, each iteration is executed by the thread that has the target data

point locally. If the grids array is distributed by the largest possible block size,

most of the data accesses associated with this computation could be local. This

MULTIDIMENSIONAL DATA 59

example demonstrates that although the array data was not distributed by three-

dimensional blocks, accesses were straightforward. The reason is that the shared

memory view of UPC makes dealing with the arrays similar to that of the sequential

code. Meanwhile, the data distributions selected at declaration time, along with an

adequate selection of the affinity field in the upc_forall statement, maximize

locality exploitation. When all threads are done as determined by the barrier

synchronization in line 74, thread 0 prints the number of iterations.

Example 4.5 demonstrated the ease and efficiency of dealing with higher-

dimensional arrays in UPC. Here, we address how to partition the data into

three-dimensional blocks of equal sizes across the threads, which is commonly

used in message-passing codes. We then show how to modify Example 4.5 to adopt

this new strategy. The discussion is limited to cases where the number of threads is

a power of 2, and the number of elements in the array is divisible by the number of

threads for simplicity. Examples of the target distribution are shown in Figure 4.3.

(e) THREADS = 16
NO_COLS = 4
NO_ROWS = 2
NO_ PLANES = 2

(f) THREADS = 32
NO_COLS = 4
NO_ROWS = 4
NO_PLANES = 2

N

N

DIMY

DIMX

(a) THREADS = 1

NO_COLS = 1
NO_ROWS = 1
NO_PLANES = 1

N

DIMZ

(c) THREADS = 4
NO_COLS = 2
NO_ROWS = 2
NO_PLANES = 1

(d) THREADS = 8
NO_COLS = 2
NO_ROWS = 2
NO_PLANES = 2

(b) THREADS = 2
NO_COLS = 2
NO_ROWS = 1
NO_PLANES = 1

Figure 4.3 Partitioning Using Recursive Bisection of Three-Dimensional Arrays into Equal

Three-Dimensional Cells Across the Threads

60 WORK SHARING AND DOMAIN DECOMPOSITION

Given a particular number of threads, Figure 4.3 shows how an array can be distri-

buted such that each thread ends up with an equal-sized three-dimensional cell. The

partitioning of Figure 4.3 can be determined recursively and it is commonly refer-

red to as recursive bisection, where the number of cells doubles as the number of

threads doubles. The partitioning for each number of threads is described uniquely

by a number of columns, a number of rows, and a number of planes, as shown in

Figure 4.3.

This type of data decomposition is often used in message-passing paradigms.

For example, it is used in the MPI-FORTRAN version of the CG workload of the

NAS Parallel Benchmark NPB-2.4 [NPB03]. There, for each power-of-2 number of

threads, the grid is split in half, column-wise, row-wise, and then plane-wise,

respectively, or simply across the x, y, then z coordinates. Such grid decomposition

is creating the biggest squared three-dimensional cells. Due to the static nature of

the arrays, these parameters should all be computed ahead of time and inserted into

a header file. In C, this domain decomposition (i.e., data partitioning parameters)

can be computed as follows.

Example 4.6: initialize.c

NO_COLS = NO_ROWS = NO_PLANES = 1;

j = 0;

for(i=2; i<=THREADS; i<<=1)

{

if((j%3)==0)

NO_COLS *= 2;

else if((j%3)==1)

NO_ROWS *= 2;

else

NO_PLANES *= 2;

j++;

}

After precomputing the partitioning parameters (number of rows, columns, and

planes), the dimensionality of the cells in terms of array elements is determined as

follows:

DIMX = N / NO_COLS;

DIMY = N / NO_ROWS;

DIMZ = N / NO_PLANES;

The values for DIMX, DIMY, and DIMZ should then be placed in globals.h. In

fact, it is even possible to create a small program that determines the partitioning

parameters and also creates the inclusion file, populating it with the dimensionality

of the cells, which is the case in NPB-2.4 [NPB03].

MULTIDIMENSIONAL DATA 61

Now consider modifying the previous heat transfer program to use this new data

partitioning strategy. First, we replace the grids [][][][] declaration.

Example 4.7: heat_conduction2.upc

#define CELL_SIZE DIMZ*DIMY*DIMX

struct gridcell_s {

double cell[CELL_SIZE];

};

typedef struct gridcell_s gridcell_t;

shared gridcell_t cell_grids [2][THREADS];

#define grids(gridno, z, y, x) \

cell_grids [gridno][((z)/DIMZ)*NO_ROWS*NO_COLS +

((y)/DIMY)*NO_COLS +((x)/DIMX)].cell [((z)%DIMZ)*DIMY*DIMX +

((y)%DIMY)*DIMX + ((x)%DIMX)]

In this code, gridcell_s is a structure that holds all the elements of one cell in

a one-dimensional array, while cell_grids [2][THREADS] is a two-dimen-

sional array of two rows and THREADS columns, one row for the source grid and

the other for the destination grid. Indexing these two virtual three-dimensional

arrays properly is accomplished by the macro grids(no,z,y,x). Therefore,

the rest of the program should then use the macro grids(no,z,y,x) instead of

grids [no][z][y][x].

4.4 DISTRIBUTING TREES

Trees are commonly used in a searching problem. In this section we consider distri-

buting a tree search through an example, which considers an instance of the N-queens

problem. The tree in this case will have a simple representation that is appropriate

to the problem. The focus is on how to distribute the search space across the

threads. Working with trees represented as linked lists is treated in Chapter 7.

Sequential N-Queens

The N-queens problem is a classic problem in computer science, due to its inter-

esting computational behavior, depth-first searching and backtracking, and the fact

that its processing time grows at a nonpolynomial (NP) rate. Thus, as the problem

size grows, the execution time grows at a much more dramatic pace. There are

numerous variations of the problem description. In this version of the problem, we

seek to find all solutions to the problem of placing N queens on an N � N chess-

board such that no queen can kill the other. This implies that no two queens can be

placed on the same row, column, or along the same diagonal.

62 WORK SHARING AND DOMAIN DECOMPOSITION

Figure 4.4 shows the computational flow in the N-queens problem using a simple

example of a 4� 4 chessboard. In this figure the solid arrows represent moves

along a search path and the dotted lines represent backtracking after a solution was

found or it was determined that the previous path was not going to lead to a solu-

tion. The solid black circles indicate queens positioned on the board. Also, a shaded

box means a position that can no longer be used by a queen or it will be killed; a

white box indicates an open position that can still be used. The algorithm starts

by placing the first queen in the first column of the first row, then shading all boxes

along the same row, column, or diagonal. Then we attempt to place the second

queen in the second row in the first open position. It is clear after placing the second

queen that no more queens can be placed on the board; therefore, this path was

abandoned and we had to back-track to where a queen was placed in the second

column of the first row. The algorithm continues, and at the end it is apparent that

only two valid solutions, in which all four queens can be safely placed, exist.

One possible program implementation is to use one data structure to represent,

in a binary format, the constraints associated with all prior queen placements.

Another data structure can then be used to represent the new constraints that are

to be created with the placement that we are about to make. Let us call these data

SOLUTIONSOLUTION

Queen
Legal Position
Illegal Position
Forward Path
Backtracking

Figure 4.4 Sequential N-Queens Algorithm

DISTRIBUTING TREES 63

structures vrlnbl_cells, unsafe_cells, and next_row_unsafe, respec-

tively, and note that they will all use similar data structures. Figure 4.5 shows the

data structure that can be used for mask_t, which is simply an integer, for the case

of the 4� 4 chessboard.

The information is coded in binary, where in each binary cell a ‘‘1’’ means an

invalid position that can cause death to the new queen and ‘‘0’’ means a safe posi-

tion. In each 4-bit field (e.g., the conflicts with columns), the leftmost cell is used to

indicate the fourth column and the rightmost indicates column 0. Figure 4.6 shows

how these representations work. There are three types of information to be kept

track of: the current state of unsafe cells due to queens that have already been placed

(unsafe_cells), the vulnerable cells from which danger could be paused for a

contemplated queen placement (vrlnbl_cells), and the danger map associated

with the placement of queens in the next row (next_row_unsafe). Figure 4.6

gives a few snapshots into the algorithm operation as it unfolds, using this binary

representation of potential conflicts.

01234567891011

Conflicts with
Right Diagonals

Conflicts with
Current Columns

Conflicts with
Left Diagonals

Figure 4.5 Representing Potential Conflicts

A
RRRR-CCCC-LLLL
3210-3210-3210

unsafe = 0000 0000 0000
vlnrbl = 0001 0001 0001
next_row = 0010 0001 0000

B A

RRRR-CCCC-LLLL
3210-3210-3210

unsafe= 0010 0001 0000
vlnrbl= 0001 0001 0001

RRRR-CCCC-LLLL
3210-3210-3210

unsafe= 0010 0001 0000
vlnrbl= 0010 0010 0010

RRRR-CCCC-LLLL
3210-3210-3210

unsafe = 0010 0001 0000
vlnrbl = 0100 0100 0100
next_row= 1100 0101 0010

RRRR-CCCC-LLLL
3210-3210-3210

unsafe = 0010 0001 0000
vlnrbl = 1000 1000 1000
next_row= 0100 1001 0100

B

0 1 2 3
column

Queen

Legal Position

Illegal Position

Forward Path

Backtracking

A
RRRR-CCCC-LLLL
3210-3210-3210

unsafe = 0000 0000 0000
vlnrbl = 0001 0001 0001
next_row = 0010 0001 0000

B A

 = =

B

0 1 2 3
column

Figure 4.6 Snapshots into the N-Queens Algorithm

64 WORK SHARING AND DOMAIN DECOMPOSITION

Example 4.8: nqueens1.c

1. typedef uint64_t mask_t; // should be big enough for 3*N bits

2. int N, no_solutions=0;

3. mask_tbasemask,leftdiagmask,centermask,rightdiagmask;

4. void Nqueens(int cur_row, mask_t unsafe_cells)

5. {

6. int col;

7. mask_t vrlnbl_cells, next_row_unsafe;

8. if(cur_row == N)

9. {

10. no_solutions++; //Increment the number of valid

// solutions

11. return;

12. }

13. for(col=0; col<N; col++)

14. {

15. vrlnbl_cells = basemask<<col; // Place queen on row

16. if(unsafe_cells& vrlnbl_cells)

17. continue; // CONFLICT!

18. // No conflicts here, create the unsafe_cells mask for

// the next row

19. // next_row_unsafe = unsafe_cells | vrlnbl_cells;

20. // next_row_unsafe =((next_row_unsafe&leftdiagmask)>>1

// left

| (next_row_unsafe¢ermask) // center

| ((next_row_unsafe&rightdiagmask)<<1); // right

diagonals

21. Nqueens(cur_row+1, next_row_unsafe);

22. }

23. }

24. int main(int argc, char **argv)

25. {

26. if(argc != 2)

27. {printf("Usage: %s [N]\n", argv [0]); return;}

28. sscanf(argv [1], "%d", &N);

29. if(N*3 > 64)

30. {printf("64bit word not big enough!\n"); return;}

DISTRIBUTING TREES 65

31. basemask=1|(1<<N)|(1<<(2*N));leftdiagmask=(1<<N)-1;

centermask=leftdiagmask<<N;

rightdiagmask= centermask <<N;

32. Nqueens(0, 0);

33. printf("Total number of solutions for N=%d: %d\n", N,

no_solutions);

34. return 0;

35. }

Example 4.8 shows a possible implementation for the sequential N-queens

problem for the more general case. Lines 1 through 3 define a number of global

variables, such as basemask, which represents the constraints that are to be

created by the next queen to place. This variable should be at 3N bits in size for an

N � N problem, where the columns, the left diagonal, and the right diagonal

require N bits each. In addition, it defines no_solutions, a variable that holds

the number of valid solutions at the end of the execution. Lines 4 through 23 define

the Nqueens() function itself, and lines 24 and 25 list the main() driver. The

main() obtains the size of the problem, N, from the user and sets basemask,

based on the desired size of the problem, to 1 in the least significant bit of each of

the fields: left diagonals, columns, and right columns, respectively, from right to

left. The Nqueens() function is then called once by the main(). The Nqu-

eens() function is recursive and will continue to call itself until it examines all

solutions, returning at the end the number of valid solutions that were found, at

which point main() prints out that number.

The function Nqueens(), lines 4 through 23, receives two input parameters,

cur_row and unsafe_cells. Initially, it is called from main() with these two

parameters set to 0, line 32. Thus, placement starts from the first row, with all cells

on the chessboard open. Lines 8 through 12 determine whether the entire process

is now completed, and if so, it terminates the program. This is done by checking if

we have already reached row N, and if we have, it means that N queens have been

placed on rows 0 through N � 1 Then the function increments the number of solu-

tions and returns.

The bulk of the work takes place in lines 13 through 22. As each function

invocation also specifies a current row, a for loop starting in line 13 simply exa-

mines all potential column placements. For each of these columns, a mask to reflect

the potential exposed cells to result from this placement is created by shifting the

basemask by the column number to the left, line 15. If these new restrictions are

in conflict with the restrictions specified by the current state, as represented in mask,

a conflict has occurred and been detected, line 17. In this case we simply skip to

the next column by jumping to the next loop iteration. If there is no conflict, we

compute the unsafe cells for the next row. This is accomplished by integrating

the historical unsafe cells and the vulnerable cells of the current queen, then shifting

66 WORK SHARING AND DOMAIN DECOMPOSITION

each field appropriately to reflect the threats in the next row, lines 19 and 20. The

function then calls itself recursively by advancing the row in question and with a

new state for unsafe cells, line 21.

Parallel N-Queens

As the problem size increases, the number of iterations required to search for all

possible ways that the N queens can coexist on the same board grows dramatically.

Luckily, N-queens lends itself to parallelism. This is because N-queens is a tree-

search problem in which the subtrees are independent of one another and therefore

can be distributed across a number of processors easily.

Thus, N-queens can benefit from the speed of parallel processing. For example,

one possibility is distributing the problem across N threads, where each thread

solves the sequential problem for the case where a queen has been placed in one

particular column of the first row (Figure 4.7). For larger problems and larger

machines, each thread searches along one of the subtrees that correspond to a given

row-column position combination in the first L rows. All threads proceed in parallel

to perform a sequential search along their own subtrees. Figure 4.8 gives an

example of work distribution where each job is based on the position combination

of the first two rows. The remote accesses associated with this algorithm are mini-

mal and the parallel algorithm is therefore embarrassingly parallel, which means

perfectly parallel with very low communication overhead.

… …

… …
Thread 0 Thread 1 Thread 2 Thread 3

Figure 4.7 N-Queens Problem Using UPC

DISTRIBUTING TREES 67

Example 4.9: nqueens2.upc

1. #include <upc_relaxed.h>
2. int N, level, no_solutions=0, method=0;
3. shared int sh_solutions[THREADS];
4. mask_tbasemask,leftdiagmask,centermask,rightdiagmask;

5. #define ROUND_ROBIN 0

...

6. void do_job(int job, int no_jobs)
7. {
8. int i, j, row, col;
9. mask_t vrlnbl_cells, unsafe_cells;

10. for(j=no_jobs/N, unsafe_cells=0, row=0; j>=1; j/=N,
row++)

11. {
12. col = job%(N*j)/j;
13. vrlnbl_cells = basemask<<col;

14. if(unsafe_cells& vrlnbl_cells)
15. break; // CONFLICT! - ignore job
16. unsafe_cells |= vrlnbl_cells;
17. unsafe_cells = ((unsafe_cells&leftdiagmask)>>1)

Job Distribution
Subtree

Jobs

Figure 4.8 N-Queens Job Distribution Tree

68 WORK SHARING AND DOMAIN DECOMPOSITION

| (unsafe_cells¢ermask)
| ((unsafe_cells&rightdiagmask)<<1);

18. if(j == 1)
19. Nqueens(row+1, unsafe_cells);
20. }
21. }

22. void distribute_work()
23. {
24. int i, job, no_jobs;

25. for(i=0, no_jobs=N; i<level; i++)
26. no_jobs *= N;

27. if(method == ROUND_ROBIN)
28. {
29. upc_forall(job=0; job<no_jobs; job++; job)
30. do_job(job, no_jobs);
31. }
32. else
33. {
34. upc_forall(job=0; job<no_jobs; job++;

(job*THREADS)/no_jobs)
35. do_job(job, no_jobs);
36. }
37. }

38. int main(int argc, char **argv)

39. {

40. int i;

41. if((argc != 3) && (argc != 4))
42. {if(MYTHREAD == 0) printf("Usage: %s [N] [lvl] [CHUNK

flag]\n", argv[0]); return -1;}

43. sscanf(argv[1], "%d", &N);

44. sscanf(argv[2], "%d", &level);
45. if(argc == 3) method = 1; // 3 args, CHUNK method

enabled
46. if(level >= N)
47. {
48. if(MYTHREAD == 0)
49. printf("lvl should be < N\n");
50. return -1;

DISTRIBUTING TREES 69

51. }
52. if(N*3 > 64)
53. {

54. if(MYTHREAD == 0)
55. printf("64bit word not big enough!\n");

56. return -1;

57. }

58. basemask=1|(1<<N)|(1<<(2*N));leftdiagmask=(1<<N)�1;

centermask=leftdiagmask<<N;

rightdiagmask¼centermask<<N;

59. distribute_work();

60. printf("TH%02d: Total number of solutions for N=%d:
%d\n", N, no_solutions);

61. sh_solutions[MYTHREAD] = no_solutions;
62. upc_barrier;
63. if(MYTHREAD == 0)
64. {
65. for(i=1; i<THREADS; i++)
66. no_solutions += sh_solutions[i];
67. printf("Total number of solutions: %d\n",

no_solutions);

68. }
69. return 0;

70. }

In Example 4.9 the line numbers are given sequentially for ease of viewing, but

be aware that ‘‘. . .’’ signifies segments of code that are not included, for the sake of

brevity. Lines 2 through 4 have some of the key declarations. At line 3 an array of

size THREADS is created. This is declared as shared int sh_solutions

[THREADS] with a default distribution of [1]. This array is used to store the number

of solutions that each thread discovers, where each thread stores the local number of

solutions at the corresponding array cell. In addition, level is a row number in the

chessboard that is used to determine the level at which the search tree will be

segmented into independent subtrees that are to be evaluated by the various threads.

The variable method is used to allow the user to specify whether the subtrees

should be distributed across the threads by chunks of subtrees or in round-robin

fashion.

Lines 46 through 51 ensure that the number of levels at which the tree is

to be divided is valid. The jobs are distributed among the threads by the

function distribute_work(), which sets the job distribution strategy as

chunks or as simple round robin. The solutions are then calculated using the

function do_job(), shown in lines 6 through 21. A barrier is placed in line 62 to

70 WORK SHARING AND DOMAIN DECOMPOSITION

ensure that all the threads have completed finding all possible solutions. In lines 63

through 68, thread 0 aggregates the number of solutions and prints the result.

4.5 SUMMARY

Work sharing is simply to make each thread able to understand its responsibilities

during a parallel program. Domain decomposition typically refers to partitioning

the data across the threads in a manner consistent with the duties of each thread.

Coming up with effective work-sharing and domain-decomposition strategies re-

quires self-awareness, i.e., each thread should be able to identify itself, (e.g., using

MYTHREAD) and awareness of what other threads are there to help, e.g., using

THREADS. More convenient constructs to use are also available in UPC, such as

upc_forall(). UPC is a locality-aware programming paradigm. Data decompo-

sition is done primarily as a part of the declarations, and workload sharing can

easily be planned in way that exploits data locality.

EXERCISES

4.1 Starting from the heat conduction code, develop an edge detection image

processing application using the Sobel operators.

4.2 Transform the N-queens problem into a maze problem. Start by developing a

sequential version, then parallelize it.

EXERCISES 71

CHAPTER 5

Dynamic Shared Memory Allocation

Dynamic memory allocation has been used extensively in applications for several

important reasons. For example, dynamic memory allocation provides flexibility

when the data sizes change during the lifetime of a program, and allows memory

reuse for better utilization of the memory resources when data sizes are very large.

In the private space of a UPC program, dynamic memory allocation can be done

using the standard dynamic memory allocation functions available in ISO C.

Dynamic memory allocation in the shared space is also possible. However, this

is accomplished by special UPC memory allocation and deallocation functions. In

this chapter we discuss dynamic shared memory allocation in UPC.

Dynamic shared memory allocation functions can be collective or noncollective.

A function is collective if it is required to be called by all threads to produce the

required impact. A function is noncollective if it should be called by a single thread.

UPC has three basic dynamic shared memory allocation functions and one deallo-

cation function. The allocation functions can create a global shared space collec-

tively or noncollectively, or a local shared space by a thread. All dynamically

allocated shared space can be released using the same deallocation function.

5.1 ALLOCATING A GLOBAL SHARED MEMORY SPACE
COLLECTIVELY

To allocate one global shared space collectively, upc_all_alloc() is used.

The upc_all_alloc()function is a collective function that is called by

all threads using the same argument values and returns a single pointer, to the

shared space allocated, to all threads. The function upc_all_alloc() has the

following syntax:

shared void *upc_all_alloc(size_t nblocks, size_t nbytes);

where nblocks is the number of blocks and nbytes is the block size in bytes.

UPC: Distributed Shared Memory Programming, by Tarek El-Ghazawi, William Carlson,
Thomas Sterling, and Katherine Yelick
Copyright # 2005 John Wiley & Sons, Inc.

73

The shared space allocated is distributed by blocks across the threads in round-

robin fashion. The upc_all_alloc() function takes two arguments: one

specifying the number of blocks to be allocated, nblocks, the other specifying

the size of each block in bytes, nbytes. The arguments are of type size_t,

which is simply an ISO standard type definition intended to represent the maximum

allocatable storage space in the target machine. The total space allocated in this

case is of size nblocks*nbytes bytes.

Thus, the upc_all_alloc() function allocates shared space similar to what

can be obtained from the following static declaration:

shared [nbytes] char [nblocks * nbytes]

The upc_all_alloc() function returns the same pointer value on all threads.

However, if nblocks*nbytes is zero, no memory is allocated and a null pointer-

to-shared is returned. The lifetime of a dynamically allocated object extends from

the time of completing the call to upc_all_alloc() until any thread has deallo-

cated the object.

Figure 5.1 shows how upc_all_alloc() allocates dynamic space based on

the following:

shared [N] int *ptr;

ptr = (shared [N] int *)

upc_all_alloc(THREADS, N*sizeof(int));

The following is a more comprehensive example that demonstrates the collective

allocation and use of dynamic shared space.

Example 5.1: heat_conduction3.upc

1. #include <stdio.h>
2. #include <math.h>

ptr ptr ptr

Shared

Private

Thread 0 Thread 1 ThreadTHREADS-1

N …N N

Figure 5.1 Shared Space Allocation Using upc_all_alloc

74 DYNAMIC SHARED MEMORY ALLOCATION

3. #include <upc_relaxed.h>
4. #include "globals.h"

5. #define CHECK_MEM(var) { \

6. if(var == NULL) \

7. { \

8. printf("TH%02d: ERROR: %s == NULL\n", \

9. MYTHREAD, #var); \

10. upc_global_exit(1); \

11. } }

12. shared [BLOCKSIZE] double *sh_grids; //pointer to the

grids

13. shared double dTmax_local [THREADS];

14. int initialize(shared [BLOCKSIZE] double

(*grids)[N][N][N])

15. {

16. int y, x;

17. /* sets one edge of the cube to 1.0 (heat) */

18. for(y=1; y<N�1; y++)

19. upc_forall(x=1; x<N�1; x++; &grids [0][0][y][x])

20. grids [0][0][y][x]= grids [1][0][y][x] = 1.0;

21. }

22. void heat_conduction(shared [BLOCKSIZE] double

(*grids)[N][N][N])

23. {

24. double dTmax, dT, epsilon;

25. int finished, x, y, z, i;

26. double T;

27. int nr_iter;

28. int sg, dg; // stands for source grid and destination

grid indexes

29. /* sets the constants */

30. epsilon = 0.0001;

31. finished = 0;

32. nr_iter = 0;

33. sg = 0; // using grids(0,,,) as source array

34. dg = 1�sg; // using grids(1,,,) as destination array

35. do

36. {

37. dTmax = 0.0;

38. for(z=1; z<N�1; z++)

ALLOCATING A GLOBAL SHARED MEMORY SPACE COLLECTIVELY 75

39. {

40. for(y=1; y<N�1; y++)

41. {

42. upc_forall(x=1; x<N�1; x++; &grids [sg][z][y][x])

43. {

44. T=(grids[sg][z+1][y][x]+grids[sg][z�1][y][x]+

45. grids[sg][z][y�1][x]+grids[sg][z][y+1][x]+

46. grids[sg][z][y][x�1]+grids[sg][z][y][x+1])

/ 6.0;

47. dT = T � grids [sg][z][y][x];

48. grids [dg][z][y][x] = T;

49. if(dTmax < fabs(dT))

50. dTmax = fabs(dT);

51. }

52. }

53. }

54. dTmax_local[MYTHREAD] = dTmax;

55. upc_barrier;

56. dTmax = dTmax_local[0];

57. for(i=1; i < THREADS; i++)

58. if(dTmax < dTmax_local[i])

59. dTmax = dTmax_local[i];

60. upc_barrier;

61. if(dTmax < epsilon)

62. finished = 1;

63. else

64. {

65. // swapping the source and destination "pointers"

66. dg = sg;

67. sg = 1�sg;

68. }

69. nr_iter++;

70. } while(finished == 0);

71. return nr_iter;

72. }

73. int main(void)

74. {

75. int nr_iter;

76. /* allocate the memory required for grids [2][N][N][N] */

77. sh_grids = (shared [BLOCKSIZE] double *)

upc_all_alloc(2*N*N*N/BLOCKSIZE, BLOCKSIZE*sizeof(double));

76 DYNAMIC SHARED MEMORY ALLOCATION

78. CHECK_MEM(sh_grids);

79. /* initialize the grids */

80. initialize((shared [BLOCKSIZE] double (*)[N][N][N])

sh_grids);

81. /* synchronization */

82. upc_barrier;

83. /* performs the heat conduction computations */

84. nr_iter = heat_conduction(

(shared [BLOCKSIZE] double (*)[N][N][N]) sh_grids);

85. /* synchronization */

86. upc_barrier;

87. if(MYTHREAD == 0)

88. printf("%d iterations\n", nr_iter);

89. return 0;

90. }

Example 5.1 gives a variation of the heat transfer problem presented in Example

4.5, which uses upc_all_alloc() to allocate space dynamically for the two

three-dimensional grids, grids [2][N][N][N]. The example is also designed in a

much more modular way than Example 4.5, with more functions to stress some of

the points that have to do with dynamic storage allocation, pointers, and passing of

array parameters.

In line 4, BLOCKSIZE as well as N are defined in globals.h. Lines 5 through

11 define a macro, CHECK_MEM(), which is used by the main program to check

that memory allocation completed successfully, and if not, exits the program.

Although our macro will be executed by all threads, it is sufficient to have only one

thread perform this check since the allocation is done by a collective call that

returns the same thing to all.

Line 12 declares a private pointer to a shared double with a block size of

BLOCKSIZE. These pointers will be used to receive the address of the dynamically

allocated space, which is to be used to hold the two three-dimensional grids. Thus,

it will be viewed as a four-dimensional array of dimensionality 2� N � N � N,

where the first index is used to identify which of the two three-dimensional grids we

are using.

Lines 14 through 21 list an initialization function that sets one face on each of

the cubes to 1.0, or hot, so that they become the heat sources. This function will be

called from main() with sh_grids pointer. Note that the function, however,

uses array index notations for accessing its data. Alternating between pointer and

array index notations is allowed in C, and the same is also valid for UPC.

Lines 22 through 72 the heat_conduction() function, which performs the

major heat transfer iterations. It is, once again, similar to the code of Example 4.5

ALLOCATING A GLOBAL SHARED MEMORY SPACE COLLECTIVELY 77

and included here for completeness and to demonstrate the alternation between

array and pointer notations. The rest of the code is for the main() function. Lines

76 through 78 allocate a shared space enough to hold the two three-dimensional

grids as a single four-dimensional array. The size of the space needed is sufficient to

hold 2*N*N*N double elements. To distribute this as blocks of BLOCKSIZE

double elements across the threads, the number of blocks is given as 2*N*N*N/

BLOCKSIZE, and the number of bytes per element are given by BLOCKSIZE*

sizeof(double). Allocated space is basically one large space of bytes, and

therefore a simple pointer to shared is returned. Given the way the pointer

sh_grids was declared, assigning the returned pointer from upc_all_

alloc() to it requires a pointer cast to (shared [BLOCKSIZE] double *).

The rest of main() then calls CHECK_MEM() to check whether the previous

allocation was successful, and then it calls initialize() to initialize one face

on each cube to ‘‘hot.’’ The main() then uses a barrier synchronization to ensure

that all initializations are completed before calling heat_transfer() to

perform the actual heat transfer simulation. A barrier synchronization is used after

this call to make certain that all threads finished working before we print the

number of iterations.

5.2 ALLOCATING MULTIPLE GLOBAL SPACES

One alternative allocation scheme is to use upc_global_alloc(), which works

similar to upc_all_alloc(), except that it is not a collective operation. The

syntax for upc_global_alloc() is

shared void *upc_global_alloc(size_t nblocks,

size_t nbytes);

where nblocks is the number of blocks and nbytes is the block size in bytes.

In this case the space allocated is specified by the number of blocks and a block

size in bytes. The function returns a pointer-to-shared, which points to the space

allocated. If nblocks*nbytes is zero, a null pointer-to-shared is returned.

The upc_global_alloc() function is not a collective function. If called

by multiple threads, all threads that make the call get different allocations. Each

calling thread will then allocate a shared space that is distributed in a similar

manner to the space resulting from the static declaration

shared [nbytes] char [nblocks * nbytes]

Figures 5.2 and 5.3 show the result from upc_global_alloc() when called

by all threads. Figure 5.2 represents how the space will be accessible if the pointer

returned to shared is assigned to a private pointer to shared. This can be accomp-

lished by

78 DYNAMIC SHARED MEMORY ALLOCATION

shared [N] int *ptr;

ptr = (shared [N] int *) upc_global_alloc(THREADS,

N*sizeof(int));

With N defined in the beginning of the program, this allocates a shared space of

blocks of N integers, distributed in a round-robin way, one block per thread. There

will be THREADS ptr private pointers to shared pointing at the beginning of

the space allocated. These pointers will follow the pointer arithmetic of blocked

pointers with a block size of N.

Figure 5.3 shows the case when an array of shared pointers to shared is used for

accessing the space. This can be done by the code

shared [N] int *shared myptr [THREADS];

myptr [MYTHREAD] = (shared [N] int *)

upc_global_alloc(THREADS, N*sizeof(int));

ptr ptr ptr

Shared

Private

Thread 0 Thread 1 ThreadTHREADS-1

N
…

N N

N

…
N N

N
…

N N

…

…

…

Figure 5.2 Illustration of upc_global_alloc

myptr[0]

Shared

Private

Thread 0 Thread 1 ThreadTHREADS-1

N
…

N N

N

…

N N

N
…

N N

…

…

…

myptr[1] myptr[THREADS-1]…

…

Figure 5.3 Illustration of upc_global_alloc with a Shared-to-Shared Pointer

ALLOCATING MULTIPLE GLOBAL SPACES 79

With N defined in the beginning of the program, a shared space of blocks of N

integers is allocated and distributed in a round-robin way, one block per thread.

There will be an array of THREADS shared pointer to shared, with each

myptr[MYTHREAD] pointing at the beginning of the space allocated by that

thread. These pointers will follow the pointer arithmetic of blocked pointers with a

block size of N.

Example 5.2 is a more comprehensive example using upc_global_alloc().

It is a simple variant of Example 5.1 in which upc_all_alloc() is replaced by

upc_global_alloc().

Example 5.2: heat_conduction4.upc

1. . . .
2. #include <upc_relaxed.h>

3. #include "globals.h"

4. // dynamically allocated sh_grids[] to be matched to
// [2][N][N][N]

5. shared [BLOCKSIZE] double *shared sh_grids;
6. shared double dTmax_local[THREADS];

7. int main(void)

8. {

9. int nr_iter;

10. if(MYTHREAD == 0)
11. {
12. // allocate the memory required for grids[2][N][N][N]
13. sh_grids = (shared [BLOCKSIZE] double *shared)

upc_global_alloc(2*N*N*N/BLOCKSIZE,BLOCKSIZE*sizeof(double));

14. CHECK_MEM(sh_grids);

15. }

16. /* synchronization */

17. upc_barrier;

18. /* do all the remaining, as usual */

19. . . .

20. return 0;

21. }

Since upc_global_alloc() is noncollective and can result in multiple

shared spaces if called by multiple threads, only thread 0 is making the allocation

call, lines 11 through 15. Thread 0 is also checking whether the space was allocated

80 DYNAMIC SHARED MEMORY ALLOCATION

successfully by calling the CHECK_MEM macro. The rest of the code is similar to

that of Example 5.1.

In modeling and simulation of linear systems, system dynamics can be repre-

sented by a matrix, while inputs to the system are vectors that need to be multiplied

by the system matrix to produce an output vector. Example 5.3 considers the

problem of multiplying a matrix by a sequence of vectors.

Example 5.3: matvect7.upc

1. #include <upc_relaxed.h>
2. #include <stdio.h>

3. shared int *a;
4. shared int *shared b[THREADS], *shared c[THREADS];

5. int main (void)

6. {

7. shared [THREADS] int (*mat_a)[THREADS];
8. int i, j, vect_no;

9. a=(sharedint*)upc_all_alloc(THREADS,THREADS*sizeof(int));
10. CHECK_MEM(a);
11. mat_a = (shared [THREADS] int (*)[THREADS]) a;
12. b[MYTHREAD]=(sharedint*shared)upc_global_alloc(THREADS,

sizeof(int));
13. CHECK_MEM(b[MYTHREAD]);
14. c[MYTHREAD]=(sharedint*shared)upc_global_alloc(THREADS,

sizeof(int));
15. CHECK_MEM(c[MYTHREAD]);

16. /* synchronization */
17. upc_barrier;

18. /* initialize mat_a [][], b [][] and c [][] */

. . .
19. /* synchronization */

20. upc_barrier;

21. /* compute the matrix by vector multiplications */

22. for(vect_no=0; vect_no<THREADS; vect_no++)

23. {

24. upc_forall(i = 0; i < THREADS; i++; i)

25. {

26. c[vect_no][i] = 0;

27. for (j= 0; j < THREADS; j++)

ALLOCATING MULTIPLE GLOBAL SPACES 81

28. c [vect_no][i] += mat_a [i][j]*b [vect_no][j];

29. }

30. }

31.

32. /* synchronization */

33. upc_barrier;

34.

35. /* print results */

. . .
36. return 0;

37. }

In Example 5.3, a is a private pointer to shared, which points to the matrix, while

b[] and c[] are arrays of shared pointers to shared. Each element of b[] can be

used to point to one input vector, and each element of c[] can be used to point to

one result vector. Lines 9 through 13 allocate the needed memory for each one of

these arrays and check to ensure that the allocation operation was performed

successfully using a macro similar to the macro discussed in Example 5.1. It is

noted here that upc_all_alloc() is used to allocate the space for the matrix.

This is because only one matrix is needed. Meanwhile, since multiple vectors

(in this case, THREADS of them are assumed for simplicity) are to be allocated

in case of input and output, we use upc_global_alloc() to simplify the

syntax.

Lines 21 through 30 perform the actual computations, going through vector by

vector, and for each vector number the computations are distributed by rows of a[]

across the threads. This segment of code is preceded by barrier synchronization to

ensure that space allocation and initializations of data structures are completed

before the computation takes place. A barrier synchronization follows this block of

nested loops to ensure that computations are completed before printing.

5.3 ALLOCATING LOCAL SHARED SPACES

In many cases it could be desirable to allocate shared but local storage. This can be

done in UPC using the upc_alloc() function. This function takes only one

argument, the number of bytes, and allocates that much shared storage with affinity

to the calling thread. Thus, upc_alloc() is not a collective function, and

it operates in a manner similar to malloc() in ISO C, except that the

pointer returned points into the shared space. The syntax for upc_alloc() is

as follows:

shared void *upc_alloc(size_t nbytes);

where nbytes is the total number of bytes to allocate. If nbytes is zero, the

result is a null pointer-to-shared.

82 DYNAMIC SHARED MEMORY ALLOCATION

Figure 5.4 shows how upc_alloc() allocates and accesses space based on the

statements

shared [] int *ptr;

ptr = (shared [] int *)upc_alloc(N*sizeof(int));

where ptr is a private pointer-to-shared with indefinite block size. The statements

ultimately result in allocating N integers on each thread when called by all threads.

Each thread will get a different pointer, and its instance of ptr will be pointing at

the beginning of the local space allocated to it. In this case, if ptr is only to

traverse the locally allocated memory, ptr does not have to be a pointer-to-shared

and can be a pointer into the private space.

Figure 5.5 shows how upc_alloc allocates space based on the statements

shared [] int *shared myptr [THREADS];

myptr [MYTHREAD] = (shared [] int *shared)

upc_alloc(N*sizeof(int));

ptr ptr ptr

Shared

Private

Thread 0 Thread 1 ThreadTHREADS-1

…
N

…

NN

Figure 5.4 Illustration of upc_alloc

Shared

Private

Thread 0 Thread 1 ThreadTHREADS-1

…
N

…

NN

myptr[0] myptr[1] myptr[THREADS-1] …

Figure 5.5 Illustration of upc_alloc with a Shared-to-Shared Pointer

ALLOCATING LOCAL SHARED SPACES 83

where myptr[] is an array of THREADS shared pointers-to-shared, with

indefinite block size. The statements ultimately result in allocating N integers on

each thread when called by all threads. Each thread will get a different pointer, and

its element of myptr will be pointing at the beginning of the local space that is

allocated to it.

Example 5.4 is a modified version of the heat conduction code used throughout

Chapters 4 and 5. Recalling the basic distributions of three-dimensional data in

Figure 4.1, in this case we are considering a distribution in which each thread

gets the largest possible chunk of faces. Those data chunks will be allocated

dynamically, where each thread allocates its own chunk in its local shared space.

The block size will then be N*N*N/THREADS.

Example 5.4: heat_conduction5.upc

1. #include <stdio.h>
2. #include <math.h>
3. #include <upc_relaxed.h>

4. typedef struct chunk_s chunk_t;
5. struct chunk_s {
6. shared [] double *chunk;
7. };

8. // considering the blocksize as the biggest chunk of faces
9. int N;

10. shared chunk_t sh_grids[2][THREADS];
11. shared double dTmax_local[THREADS];

12. #define grids(no,z,y,x)
sh_grids[no][((z)*N*N+(y)*N+(x))/(N*N*N/THREADS)].
chunk[((z)*N*N+(y)* N+(x))%(N*N*N/THREADS)]

13. void initialize(shared chunk_t (*sh_grids)[THREADS])
14. {

15. // grids[][][][] has to be changed to grids(,,,,)
16. }

17. int heat_conduction(shared chunk_t (*sh_grids)[THREADS])
18. {

19. // grids[][][][] has to be changed to grids(,,,,)
20. }

21. int main(int argc, char **argv)

22. {

23. int nr_iter, no;

84 DYNAMIC SHARED MEMORY ALLOCATION

24. /* Usage */

25. if(argc != 2)

26. {

27. if(MYTHREAD == 0)

28. printf("Usage: %s [N]\n", argv [0]);

29. return �1;

30. }

31. /* get N */
32. sscanf(argv[1], "%d", &N);
33. if((N*N*N)%THREADS != 0)
34. {
35. if(MYTHREAD == 0)
36. printf("N*N*N should be divisible by THREADS\n");
37. return �2;
38. }

39. /* allocate */

40. for(no=0; no<2; no++)
41. {
42. sh_grids[no][MYTHREAD].chunk = (shared [] double *)

upc_alloc(N*N*N/THREADS*sizeof(double));
43. CHECK_MEM(sh_grids[no][MYTHREAD].chunk);
44. }
45. /* initialize the grids */

46. initialize(sh_grids);

47. /* synchronization */

48. upc_barrier;

49. /* performs the heat conduction computation */

50. nr_iter = heat_conduction(sh_grids);

51. /* synchronization */

52. upc_barrier;

53. if(MYTHREAD == 0)

54. printf("%d iterations\n", nr_iter);

55. return 0;

56. }

Instead of giving a line-by-line explanation of Example 5.4, we will discuss

only the lines that are interesting or not readily intuited. Lines 4 through 7 define

a private-to-shared pointer type with indefinite blocking. In other words, when

incremented, it traverses the local shared space. The intent is to have data struc-

tures of that type holding the local chunks. Lines 9 and 10 do exactly that; they

ALLOCATING LOCAL SHARED SPACES 85

create a shared array of 2*THREADS pointers of type chunk_t. Each row of

these pointers is used to access one of the two three-dimensional grids, needed

as the source and destination of a given iteration. In line 12 the macro grids(),

used to simplify the indexing of the three-dimensional grids, is slightly different

from its pervious instances and reflects the distribution of each of the two three-

dimensional grids by the largest chunk of faces, where each chunk is N*N*N/

THREADS. Lines 24 through 38 modify the previous implementations of this

example to allow the size of the problem, N, to be specified by the user interactively.

This can now be afforded for two reasons. The first is clearly the use of dynamic

shared memory allocation. The second is the fact that upc_all_alloc() and

upc_global_alloc() require specifying both the block size and the number of

blocks to allocate. To create a particular distribution, the block size must be a

function of the problem size, N, which we would like to allow the user to specify

at run time. However, UPC requires that the block size be a constant. In the case

of upc_alloc(), the block size of the space allocated is always the indefinite

block size. In our example, chunk always has an indefinite block size, and

sh_grids has the default block size of 1.

Figure 5.6 shows the scalar ITPACK notation for compressed sparse matrixes.

The nonzero elements are stored in the array values, the column indexes of the

nonzero elements in the matrix are stored in the colind [] array, and rowptr

expresses where and how many nonzero elements there are in each row.

Example 5.5 shows a UPC program to compress a sparse matrix. The example

addresses the allocation and use of unequal blocks across the threads.

Sparse Matrix [NAS97]:

=

50070

03009

10280

07036

00504

A

Its representation using row-compressed format:

colind[nz] = [0, 2, 0, 1, 3, 1, 2, 4, 0, 3, 1, 4]

values[nz] = [4, 5, 6, 3, 7, 8, 2, 1, 9, 3, 7, 5]

rowptr[N+1] = [0, 2, 5, 8, 10, 12]

with nz = number of nonzero elements = 12

N = dimension of A = 5

Figure 5.6 Matrix Compression Using Scalar ITPACK Format

86 DYNAMIC SHARED MEMORY ALLOCATION

Example 5.5: matcompress.upc

1. #include <stdio.h>
2. #include <upc_relaxed.h>

3. #define N 128

4. /* matrix to be compressed */

5. shared [N*N/THREADS] double data_A [N][N];

6. /* same matrix in its sparse representation */

7. typedef struct sparse_mat_s sparse_mat_t;

8. struct sparse_mat_s {

9. int no_nz;

10. shared [] int *colind;

11. shared [] int *rowptr;

12. shared [] double *values;

13. };

14. shared sparse_mat_t sparse_data_A [THREADS];

15. void initialize_A(void)

16. {

17. int i, j;

18. upc_forall(i=0; i<N; i++; i*THREADS/N)

19. for(j=0; j<i/2; j++)

20. data_A [i][j] = (i�j)/(N*1.0);

21. }

22. void compress_A(void)

23. {

24. int ind, i, j;

25. shared [] int *rowptr_ptr;

26. /* step 1: count the number of NZ */

27. upc_forall(i=0,sparse_data_A[MYTHREAD].no_nz=0;i<N;

i++; i*THREADS/N)

28. for(j=0; j<N; j++)

29. if(data_A[i][j] > 1E�6)

30. sparse_data_A[MYTHREAD].no_nz ++;

31. /* step 2: allocate colind, rowind and values arrays */

32. sparse_data_A [MYTHREAD].colind = (shared [] int *)

upc_alloc(sparse_data_A[MYTHREAD].no_nz*sizeof(int));

33. CHECK_MEM(sparse_data_A[MYTHREAD].colind);

ALLOCATING LOCAL SHARED SPACES 87

34. sparse_data_A [MYTHREAD].rowptr = (shared [] int *)

upc_alloc(N+1 * sizeof(int));

35. CHECK_MEM(sparse_data_A [MYTHREAD].rowptr);

36. sparse_data_A [MYTHREAD].values = (shared [] double *)

upc_alloc(sparse_data_A[MYTHREAD].no_nz*sizeof(double));

37. CHECK_MEM(sparse_data_A [MYTHREAD].values);

38. /* step 3: create the sparse representation */

39. rowptr_ptr = sparse_data_A [MYTHREAD].rowptr;

40. upc_forall(i=0,ind=0;i<N;i++,rowptr_ptr++;i*THREADS/N)

41. {

42. *rowptr_ptr = i;

43. for(j=0; j<N; j++)

44. if(data_A [i][j] > 1E�6)

45. {

46. sparse_data_A [MYTHREAD].colind [ind]= j;

47. sparse_data_A[MYTHREAD].values[ind]=data_A [i][j];

48. ind++;

49. }

50. }

51. *rowptr_ptr = ind;

52. }

53. int main(void)

54. {

55. initialize_A();

56. upc_barrier;

57. compress_A();

58. return 0;

59. }

Lines 4 through 13 create the data structures necessary for the input data as well

as the compressed data. The original matrix data is held in data_A[][], an

N � N shared matrix distributed by the largest possible chunk of rows across

the threads. A structure holding the compressed matrix array values and indexes is

declared, with each index and its associated value declared as private pointers to

shared, with indefinite block size. A fourth field of the structure is used to hold

the number of zero elements available locally. Thus, each thread will have one ins-

tance of these three pointers that can easily be used to access this information

locally. The space for the nonzero values and the indexes can be allocated dynami-

cally to be just big enough to accommodate the local needs, as the number of zero

elements per chunk can vary.

88 DYNAMIC SHARED MEMORY ALLOCATION

Lines 15 through 21 initialize the array data. The initialization sets the nonzero

elements in a lower triangle such that the base is only one-half of the matrix

dimensionality. The function compress_A() extends from lines 22 through 52

and performs the bulk of the work. Lines 26 through 30 use a upc_forall() to

find out how many nonzero elements each thread has in its chunk. The affinity field

is selected such that each thread computes that for its own chunk in order to exploit

locality.

Lines 31 through 37 allocate the memory space to hold the values and the

indexes for the new representation. The space allocated for each thread is only

enough to hold these data for the local chunk, based on the local nonzero element

count that was found earlier from lines 26 through 30. Lines 38 through to the end

of the function perform the operations needed to compute the elements that go into

the nonzero values and the index arrays. The main program follows and calls the

previously mentioned functions to initialize and then wait on a barrier to ensure that

all initializations took place before the compression took place.

5.4 FREEING ALLOCATED SPACES

The benefit from dynamic memory allocation would not be complete without being

able to deallocate the space when it is no longer needed. This is one of the main

distinctions between dynamic and static memory allocation. In many cases, when

reusing the space is not an issue, one may simply do nothing, and at the program

exit, all allocated space is freed. However, for large applications where reusing

space is important, upc_free() can be used. This call has the following syntax:

void upc_free(shared void *ptr);

The upc_free() function frees the dynamically allocated shared storage

pointed to by ptr. If ptr is a null pointer, no action occurs. Otherwise, if the

argument does not match a pointer returned earlier by the upc_alloc(),

upc_global_alloc(), upc_all_alloc(), or upc_local_alloc()

functions, or if the space has been deallocated by a previous call, by any thread,

to upc_free(), the behavior is undefined.

In many of the previous programming examples, we could have used

upc_free(). For example, in Example 5.1 we can use

upc_free(sh_grids);

between lines 87 and 88. Similarly, for Example 5.5 we could have used

upc_free(sparse_data_A [MYTHREAD].colind);

upc_free(sparse_data_A [MYTHREAD].rowptr);

upc_free(sparse_data_A [MYTHREAD].values);

between lines 57 and 58.

FREEING ALLOCATED SPACES 89

There are many intriguing examples that require changing the size of the

memory used, such as iterative data compression (e.g., using the Wavelet transform,

where data gets smaller after each iteration). Memory allocation and freeing can

work nicely in these cases.

5.5 SUMMARY

In this chapter we discussed the three different ways to allocate shared storage

space under UPC. The function upc_all_alloc() is a collective function that

is called by all threads and allocates one shared space and returns one pointer to the

space allocated to the threads. The function upc_global_alloc() is a non-

collective version of the upc_all_alloc(). Each calling thread gets a separate

shared space and is returned a different shared pointer to that space. Finally,

upc_alloc() is a noncollective function. When called, each calling thread gets a

pointer to a shared space with affinity to the calling thread, and a different pointer is

returned to each calling thread. To free the space allocated previously, one can use

upc_free().

EXERCISES

5.1 Improve the matrix-squaring example to accept any N dimension, as specified

at the command line [using upc_all_alloc()].

5.2 Enhance the vector addition example to allow the user to enter N and the values

for vectors v1 and v2 interactively [using upc_global_alloc()].

5.3 Develop an N � N matrix multiplication with N given at the command line,

using N*N/THREADS as the block size [using upc_alloc()].

5.4 Implement the three-dimensional cell variant of the heat conduction problem,

accepting N at the command line [using upc_alloc()].

90 DYNAMIC SHARED MEMORY ALLOCATION

CHAPTER 6

Synchronization and Memory
Consistency

Although parallel processing enables fast execution, it also creates the need for

synchronization. Synchronization operations ensure that although threads execute

independently, their efforts are coordinated such that the same result that would be

produced by a sequential execution is achieved. It is, however, equally important

not to overspecify such coordination, in order to give threads enough flexibility to

overlap their activities and optimize the overall execution time. Synchronization is

in general one of the more difficult issues in parallel computing. However, it should

be noted that for most scientific codes, the needed synchronization concepts and

constructs are typically the simpler ones, and Sections 6.1 and 6.2 might be provid-

ing all or most of what is needed for scientific applications. Software system appli-

cations (e.g., a parallel database management system) typically require the more

advanced concepts. UPC supports a range of synchronization primitives from the

simple to the sophisticated to support all application needs. Therefore, in addition

to scientific applications, we consider a number of standard computer science

problems that can illustrate some of the UPC concepts in this chapter, such as the

dining philosophers and the bakery shop.

One can differentiate between control synchronization and data (memory consis-

tency) synchronization. Along the lines of control synchronization, two questions

that can be asked are:

1. What if the next part of the code, due to some dependence, should not be

executed until all threads finish the work at hand?

2. What if a part of the code should be executed on a mutually exclusive basis

(i.e., it must be processed atomically by no more than one thread at any given

point of time)?

To address these questions, UPC provides barrier synchronization and locks,

which will be explained later. On the other hand, from a data synchronization per-

spective, two of the questions that can be asked are:

UPC: Distributed Shared Memory Programming, by Tarek El-Ghazawi, William Carlson,
Thomas Sterling, and Katherine Yelick
Copyright # 2005 John Wiley & Sons, Inc.

91

1. If a shared variable is written by a thread, when should the modified version

become visible by other threads?

2. For a sequence of writes into the shared space, is it critical to make the writes

in the order specified, or should we allow the system to reorder them for

efficiency?

To support these, UPC provides fences and other memory consistency controls that

are explained later in the chapter.

6.1 BARRIERS

One of the first synchronization mechanisms that comes to mind in parallel

computing is barrier synchronization. UPC offers different types of barrier

synchronization. The syntax for upc_barrier is

upc_barrier expressionopt

where expression is an integer expression. The integer expression is optional

and can be used as a mark to tag a particular barrier, for debugging purposes. This

can be useful in case more than one barrier can be active concurrently by perhaps

two different groups of threads. However, the integer expression is not required

even in such cases.

Figure 6.1 explains the operation of a barrier. All threads must arrive at the

upc_barrier before any of them can proceed any further in the code. The barrier

C
od

e

Thread 0 Thread 1

…

upc_barrier

ThreadTHREADS-1

Figure 6.1 Barrier

92 SYNCHRONIZATION AND MEMORY CONSISTENCY

concept has been used in many of our previous examples. Example 6.1 is taken from

Example 4.5 with most statements removed and focus on the synchronization side.

Example 6.1: heat_conduction1.upc

81. . . .
82. shared double dTmax_local [THREADS];

83. . . .
84. int main(void)

85. {

86. . . .
87. initialize();

88. upc_barrier; /* synchronization */
89. do {

90. // process all the local data

91. dTmax_local [MYTHREAD]= dTmax;

92. upc_barrier;

93. // perform a reduction operation

94. dTmax = dTmax_local [0];

95. for(i=1; i<THREADS; i++)

96. if(dTmax < dTmax_local [i])

97. dTmax = dTmax_local [i];

98. upc_barrier;

99. if(dTmax < epsilon)

100. finished = 1;

101. else

102. // swapping the source and destination "pointers"

103. nr_iter++;

104. } while(!finished);

105. // the processing is done here

106. upc_barrier;

107. // print results and exit

108. }

In Example 6.1, a barrier in line 88 (of Example 4.5) ensures that synchroniza-

tion is complete before heat transfer processing. This is essential here since

operations at the boundary of the local data of one thread will require data from

the neighboring thread(s). This creates a producer–consumer scenario in which the

consuming thread should ensure that the correct data has been made available by

the producing thread before attempting to use it. If, however, these were an

embarrassingly parallel computation in which each thread initializes its own data,

BARRIERS 93

then operates on it with no need for remote accesses, the barrier would not have

been necessary.

Line 92 has another barrier, which is used prior to a reduction operation. Prior to

the barrier, each thread deposits its maximum change in temperature to its local

element of the shared array dTmax_local. When all threads have done so, which

is now guaranteed by upc_barrier, the reduction is to search for the global

maximum change in temperature in dTmax_local. All threads do that concur-

rently, ending with the same maximum in their local instance of dTmax. The

barrier in line 106 ensures that all threads have completed their search for the global

maximum of dTmax before going to the next iteration. The last barrier is just after

the processing is completed and before the printing of the results.

6.2 SPLIT-PHASE BARRIERS

In general, synchronization is an overhead that causes threads to wait, wasting

machine cycles that could have been directed to useful processing. To reduce the

performance impact of synchronization, the concept of split-phase (or nonblocking)

barriers has been introduced into UPC. The idea is that if a thread completes the

work needed for the next part of processing, then rather than waiting, it can perform

local processing that does not affect the other threads until they are all ready to

proceed to the next phase of the computation. This can reduce the idle time and

improve efficiency.

Figure 6.2 illustrates the split-phase barrier operations. Once a thread finishes the

computations that required the synchronization, it executes a upc_notify to

C
od

e

Thread 0 Thread 1

…
upc_notify

upc_waitO
pe

ra
tio

ns

O
pe

ra
tio

ns

ThreadTHREADS-1

Figure 6.2 Split-Phase Barrier

94 SYNCHRONIZATION AND MEMORY CONSISTENCY

inform the other threads of its standing. It can then turn its attention to local

computations, and when they are also completed, the thread will execute a upc_wait

to stay in place until all others have executed the upc_notify. When all other

threads have executed their upc_notify, the thread that has executed the

upc_wait becomes free to move to the next phase of computations without wait-

ing for the others. The syntax for the upc_notify and upc_wait is as follows:

upc_notify expressionopt;

upc_wait expressionopt;

where expression is an integer expression.

upc_wait and upc_notify are collective operations that are executed by all

threads. The expression, again, can be used for tagging the barriers for debugging

purposes; otherwise, the expression is not required. To simplify the discussion, one

can define synchronization phase as the execution of all statements between the

completion of one upc_wait and the start of the next. The upc_wait statement

will generate a run-time error if the value of its expression does not equal the value

of the expression by any of the upc_notify statement for the current synchroniza-

tion phase. No error will be generated if either statement does not have an expression.

Example 6.2: heat_conduction6.upc

1. #define BLOCKSIZE N*N*N/THREADS

2. // statically allocate grids [] to be matched to [3] [N][N][N]

3. shared [BLOCKSIZE] double grids[3][N][N][N];

4. shared int finished[THREADS], nr_iter [THREADS];

5. void process_face(int z, int sg, int dg, double *dTmax)

6. {

7. double T, dT;

8. int y, x;

9. for(y=1; y<N�1; y++)

10. {

11. for(x=1; x<N�1; x++)

12. {

13. T=(grids [sg][z+1][y][x]+grids [sg][z�1][y][x]+

grids [sg][z][y�1][x]+ grids [sg][z][y+1][x]+

grids [sg][z][y][x�1]+ grids [sg][z][y][x+1]) / 6.0;

14. dT = T � grids [sg][z][y][x];

15. grids [dg][z][y][x]= T;

16. if(*dTmax < fabs(dT))

17. *dTmax = fabs(dT);

18. }

SPLIT-PHASE BARRIERS 95

19. }

20. }

21. void initialize(void)

22. {

23. finished[MYTHREAD]= nr_iter[MYTHREAD]= 0;

24. . . .

25. }

26. int heat_conduction(void)

27. {

28. // Initialize the vars as usual

. . .

29. dTmax_local[MYTHREAD]= epsilon;

30. do

31. {

32. dTmax = 0.0;

33. if((N/THREADS) == 1)

34. {

35. // only one face per thread

36. if((MYTHREAD != 0) && (MYTHREAD != (THREADS�1)) &&

(finished[MYTHREAD] == 0))

37. process_face(MYTHREAD, sg, dg, &dTmax);

38. upc_notify nr_iter[MYTHREAD];

39. }

40. else

41. {

42. // compute front and back faces then NOTIFY

43. if((MYTHREAD != 0) && (finished[MYTHREAD] == 0))

44. process_face((N/THREADS)*MYTHREAD, sg, dg, &dTmax);

45. if((MYTHREAD != (THREADS�1)) && (finished[MYTHREAD] == 0))

46. process_face(((N/THREADS)*(MYTHREAD+1))�1, sg, dg,

&dTmax);

47. upc_notify nr_iter[MYTHREAD];

48. // compute interior faces

49. for(z=((N/THREADS)*MYTHREAD)+1;

(z<((N/THREADS)*(MYTHREAD+1)�1)) &&

(finished[MYTHREAD] == 0); z++)

50. process_face(z, sg, dg, &dTmax);

51. }

96 SYNCHRONIZATION AND MEMORY CONSISTENCY

52. upc_wait nr_iter[MYTHREAD];

53. if(finished[MYTHREAD] == 0)

54. {// normal execution �� nobody has yet reported that is the

// end

55. for(i=0; (i<THREADS) &&

(dTmax_local[i]<=dTmax_local[MYTHREAD]); i++);

56. if((i == THREADS) && (dTmax_local[MYTHREAD]<epsilon))

57. {

58. // someone reports that this is the end !!!

59. upc_notify nr_iter[MYTHREAD]+1; // to match the notify

// done by nonfinished threads

60. no = 1; // let all threads stop at the same iteration

61. finished[MYTHREAD] = 1;

62. while(no != THREADS)

63. for(i=0; i<THREADS; i++)

64. if((finished[i] == 0) &&

65. (nr_iter[i] > nr_iter[MYTHREAD]))

66. {

67. finished[i] = 1;

68. no ++;

69. }

70. upc_wait nr_iter[MYTHREAD]+1; // to wait for them to

// exit the function

71. }

72. else

73. {

74. //swappingthesourceanddestination"pointers"

75. sg = dg;

76. dg = dg+1;

77. dg %= 3;

78. // for ’nonfinishing’ threads ...

79. nr_iter[MYTHREAD]++;

80. dTmax_local[MYTHREAD] = dTmax;

81. }

82. }

83. else

84. nr_iter[MYTHREAD]��; // last iteration was useless. ... we did

// not complete it

85. } while(finished[MYTHREAD] == 0);

86. return nr_iter[MYTHREAD];

87. }

SPLIT-PHASE BARRIERS 97

Example 6.2 is a modified version of the heat transfer problem which tries to

take advantage of the split-phase barrier. The general idea is to start processing the

boundaries first. Boundary processing is followed by a upc_notify. After the

rest of the processing is completed, a upc_wait is executed. The upc_wait

forces the executing thread to wait until the rest of the threads have reached

upc_notify. At that point the thread can start the new iteration without having to

wait for the others to reach the end of the current iteration. Thus, at any point a

maximum of two iterations can partially overlap in execution. Recalling our initial

implementation of this problem, a source grid and a destination grid were used to

support the executing iteration. Now, with two iterations being overlapped in

execution, three grids will be used to support the source and destination needs of the

two executing iterations. Thus, line 2 declares grids to accommodate three

N� N� N grids, with each grid distributed by the largest chunk of contiguous

faces. Lines 5 through 20 are for processing a face. Note that faces are distinguished

with the z index, where z=0 means the front, z=N�1 is the back face, and the rest

are interior faces. Processing is done on a face-by-face basis by calling the function

process_face().

Line 30 is the beginning of the processing iterations. In line 33 we check for the

special case in which each thread gets a chunk of exactly one face. In this case only

the faces associated with threads 1 through THREADS-2 are processed one by one,

by calling the function process_face() by each of the threads. When a thread

is done processing the corresponding face, it executes a upc_notify and

proceeds.

Lines 43 and 44 discover the front faces for each thread and process them; lines

45 and 46 discover the back faces and process them. Line 47 then executes a

upc_notify. Thus, in each of these boundary cases, each thread performs the

respective processing of the boundary conditions, then executes a upc_notify.

Lines 49 through 52 process the interior faces and are followed by a upc_wait.

Following line 53, any thread that has the finished flag set falls to line 85, where it

will be exiting the loop and forcing the entire program to exit after adjusting

the number of iterations. If not finished, each thread checks whether its value of

dTmax_local is the greatest, line 55. If so and if this value is less than the

threshold, as in line 56, preparations to end the program execution follow. However,

in line 59, upc_notify is used to make sure that all threads made this check. The

iteration number is used to tag upc_notify in this case.

Lines 60 through 70 are reached if one thread determines that it is time to end,

and are therefore used to cause all other threads to exit in the current iteration. If

not, processing continues as usual, lines 73 through 81.

Several constraints should be observed when using barriers and split-phase

barriers. First, barrier nesting and overlapping is not permitted. Each thread should

execute an alternating sequence of upc_notify and upc_wait statements,

starting with upc_notify and ending with upc_wait. A upc_wait statement

completes, and the thread enters the next synchronization phase, only after all

threads have completed the upc_notify statement in the current synchronization

phase. A null strict reference is implied before a upc_notify statement and after

98 SYNCHRONIZATION AND MEMORY CONSISTENCY

a upc_wait statement. This is explained more in the context of memory

consistency. For now it means that all outstanding writes to the shared space are

completed before the upc_notify and after the upc_wait statements.

It should also be noted that the upc_barrier statement is essentially

equivalent to the compound statement

{upc_notify barrier_value; upc_wait barrier_value;}

Thus,

{upc_notify; upc_barrier; upc_wait;}

will result in a run-time error, as it is equivalent to

{upc_notify; upc_notify; upc_wait; upc_wait;}

and as pointed before, nesting is not permitted, and each upc_notify must be

followed by a upc_wait.

6.3 LOCKS

Locks are mechanisms used to control access to the critical sections of code.

Critical sections are those parts of the code that should not be in execution by more

than one thread at any given point of time. A lock is basically a data structure that

can be seen by all threads and has two states, locked and unlocked. When a thread

is ready to enter that critical section of the code, it has first to obtain the lock and

then enter the critical section. This amounts to entering and locking the critical section

of the code such that no other thread can enter. When the thread completes execution

of the critical section, it simply unlocks the lock, giving other threads the ability to

enter the critical section. UPC locks must be allocated before use. AUPC lock variable

is declared as type upc_lock_t. A lock is an opaque object, as its nature is

implementation-dependent and therefore can be manipulated only through pointers.

As in the case of dynamic shared memory allocation, allocating locks can be done

collectively or noncollectively. To create a lock collectively, we use the function

upc_lock_t *upc_all_lock_alloc(void);

where the upc_all_lock_alloc function allocates a lock dynamically

and returns a pointer to it. The lock is created in an unlocked state. Since

upc_all_lock_alloc is a collective function, the return value on every

thread points to the same lock object.

Alternatively, lock allocation is also possible using the noncollective call:

upc_lock_t *upc_global_lock_alloc(void);

LOCKS 99

where the upc_global_lock_alloc function allocates a lock dynamically

and returns a pointer to it. The lock is created in an unlocked state. The

upc_global_lock_alloc function, however, is not a collective function. If

called by multiple threads, all threads that made the call get different locks.

Just as in the dynamic shared memory allocation, if we allocate, we should be

able to deallocate. In UPC this is done by the upc_lock_free function, which

has the form

void upc_lock_free(upc_lock_t *ptr);

The upc_lock_free function frees all resources associated with the dynami-

cally allocated upc_lock_t pointed to by ptr. If ptr is a null pointer, no action

occurs. Otherwise, if the argument does not match a pointer returned earlier by

the upc_global_lock_alloc or upc_all_lock_alloc function, or if the

lock has been deallocated by a previous call to upc_lock_free, the behavior

is undefined.

In addition to allocating and deallocating locks, an executing thread should be

able to lock and unlock it. These two primitives of manipulating locks follow:

void upc_lock(upc_lock_t *ptr);

The upc_lock function locks a shared variable of type upc_lock_t, pointed to

by the pointer given as argument. If the lock is not used by another thread, the

thread making the call gets the lock and the function returns. Otherwise, the func-

tion keeps trying to get access to the lock, waiting for the lock to be unlocked. All

outstanding accesses to shared objects are completed after the call is made to

upc_lock(). If the calling thread is already holding the lock referenced by ptr,

the result is undefined.

To unlock the lock when finishing a critical section, we use the unlock function:

void upc_unlock(upc_lock_t *ptr);

The upc_unlock function frees the lock and does not return any value. A strict

reference is implied before upc_lock, which means that all outstanding shared

accesses are completed before the upc_unlock().

One problem with upc_lock is that it blocks the executing thread until the lock

is available, which can result in many wasted cycles. It would be much more

efficient if such process blocking is avoided and a call can just check on the

availability of the lock and acquire it if it is available. If not, it should just return

and indicate that it did not yet acquire the lock, so that other work can be performed

while the lock is unavailable. The function upc_lock_attempt does simply that

and is described as.

int upc_lock_attempt(upc_lock_t *ptr);

100 SYNCHRONIZATION AND MEMORY CONSISTENCY

The upc_lock_attempt function tries to lock a shared variable of type

upc_lock_t, pointed to by the pointer given as argument. If the lock is not held

by another thread, the thread making the call gets the lock and the function

returns 1. Otherwise, the function returns 0. A null strict reference, described in

Section 6.4, is implied after a call to upc_lock_attempt(), which returns a 1.

Histogramming is commonly used in image-processing applications. As shown

in Figure 6.3, given an image, which is simply a two-dimensional array of pixels (or

picture elements each reflecting a gray-scale number), it is desirable to know the

number of pixels in the image for each gray level. Example 6.3 shows a UPC

program that solves the histogramming problem for a 1024� 1024 image with gray

levels in the range 0 to 255.

Example 6.3: hist1.upc

1. #include <upc_relaxed.h>

2. #define N 1024

3. shared [N*N/THREADS] unsigned char img [N][N];

4. shared int hist [256];

5. upc_lock_t *lock;

6. void initialize(void)

7. {

8. lock = upc_all_lock_alloc();

9. CHECK_MEM(lock);

Image

Thread 0

Thread 1

Thread 2

Thread 3

Figure 6.3 Histogram Data Decomposition

LOCKS 101

10. // initialize the image img[][]

11. }

12. int main(void)

13. {

14. int i, j;

15. initialize();

16. upc_barrier;

17. /* produce the histogram of the image */

18. upc_forall(i=0; i<N; i++; i*THREADS/N)

19. {

20. for(j=0; j<N; j++)

21. {

22. upc_lock(lock);

23. hist [img [i][j]] ++;

24. upc_unlock(lock);

25. }

26. }

27. upc_barrier;

28. /* print out the histogram */

29. if(MYTHREAD == 0)

30. print_hist();

31. return 0;

32. }

In a parallel histogramming program, the image data can be distributed by

chunks of rows across the threads. In line 3 we do exactly that for a 1024� 1024

image which is distributed by blocks of size equal to the largest possible chunk of

rows. An array of 256 elements can be then be used to hold the histogram, line 4.

However, the array of locks can have any size from 1 to 256, controlling accesses to

parts of the histogram with the desired granularity. Each thread examines its own

pixels and increments the corresponding histogram index every time the corre-

sponding pixel value is found. The problem is, however, that two of the threads may

find the same pixel value locally and attempt to increment the same cell at the same

time, which creates a race condition. Thus, the result from one of those operations

may be lost. Therefore, a lock is needed to treat the histogram-updating block of

statements as a critical region. A lock is therefore declared in line 5. Line 6 through

11 are for a function called initialize, which allocates a single lock using

upc_all_lock_alloc and checks whether it has indeed been allocated. The

102 SYNCHRONIZATION AND MEMORY CONSISTENCY

main program starts by calling initialize, then a barrier to make sure that the

lock has been created before the threads start to use it, lines 15 and 16. The

upc_forall, lines 18 through 26, is where the processing takes place, and each

parallel iteration corresponds to processing one image line and updating the histo-

gram accordingly. The upc_forall distributes the work across all threads by

chunks of iterations such that each thread gets the chunk of iterations that corres-

ponds to processing its chunk of rows of image data. The body of the inner loop is

considered a critical section since it is where one pixel of the image is examined

and the corresponding histogram entry is incremented. Therefore, the lock is locked

at the beginning of the inner loop body and unlocked at the end of it (Figure 6.4).

The histogramming problem implementation of Example 6.3 suffers from a

simple but serious problem. There is only one lock and it has to be used by all

threads, even if two threads are trying to update different entries in the histogram, in

which case these two operations should have been performed in parallel. To resolve

this problem and enable exploitation of the maximum possible parallelism, we could

use as many locks as the number of entries in the histogram (Figure 6.5). Thus, each

histogram entry is controlled individually. This is shown in Example 6.4. Example 6.4

does not give the full code but only highlights the differences between the single-

and multiple-lock implementations.

Example 6.4: hist2.upc

...

1. upc_lock_t *shared lock [256];

2. void initialize(void)

3. {

4. int i;

7

Histogram of Gray Levels

upc_lock(lock);

hist[img[i][j]]++;

upc_unlock(lock);

Single Lock

Figure 6.4 Histogram Algorithm Using Single Lock

LOCKS 103

5. upc_forall(i=0; i<256; i++; i)
6. {
7. lock[i] = upc_global_lock_alloc();
8. CHECK_MEM(lock[i]);
9. }

10. // initialize the image img[][]

11. }

12. int main(void)

13. {

...

14. upc_forall(i=0; i<N; i++; i*THREADS/N)

15. {

16. for(j=0; j<N; j++)

17. {

18. upc_lock(lock[img[i][j]]);
19. hist[img [i][j]]++;

20. upc_unlock(lock[img[i][j]]);
21. }

22. }

...

23. }

Line 1 declares a shared array of locks to hold the histogram locks. Note that this

array cannot be private since all entries should be accessible from all threads. The

initialize function, lines 2 through 11, uses the noncollective allocation call

upc_global_lock_alloc inside a upc_forall, which allocates a 256-

7

Histogram of Gray Levels

upc_lock(lock[img[i][j]]);

hist[img[i][j]]++;

upc_unlock(lock[img[i][j]]);

7

Array of Locks

Figure 6.5 Histogram Algorithm Using an Array of Locks

104 SYNCHRONIZATION AND MEMORY CONSISTENCY

element array of locks, lock[]. In main(), each time a thread tries to increment a

histogram entry, it uses the corresponding lock.

In Example 6.4 there was no room for deadlocks, a problem that can occur when

multiple resources are needed to perform one service and each of the service

requesters gets and holds on to part of the resources needed, such that none of the

requesters would ever get all needed resources at once. Imagine two friends eating

in a Chinese restaurant, and there is only one pair of chopsticks. If each grabs and

holds on to one chopstick, they will both starve. As this is a situation that can happen

often in system software that manages computer resources, computer scientists

abstracted this with the standard computer science problem known as the dining

philosophers (Figure 6.6). [DIJ71]. In this case a number of philosophers sit at a

dining table eating short meals and thinking in between with one fork between

every two people. However, each philosopher needs two forks to be able to eat.

Each philosopher thinks for a random period of time until he or she gets hungry,

then attempts to grab two forks, one from the left and one from the right, to start

eating the meal. If the person succeeds, he or she starts eating. If the person does

not get any fork, he or she continues to try. If the person gets only one fork, he or

she puts it back. This problem can be modeled with one lock per fork. If

upc_lock is used, then if a philosopher gets one fork only, he or she must

Figure 6.6 Dining Philosophers Problem

LOCKS 105

unlock it. This is a possible scheme and the reader is asked to develop this program

as an exercise at the end of the chapter. It requires careful programming to ensure

that deadlock does not occur. However, upc_lock_attempt may simplify

things quite a bit in this case.

Example 6.5: philosophers.upc

1. #include <upc_relaxed.h>

2. typedef enum{THINKING,STARVING,EATING}philosopher_status_t;

3. upc_lock_t *shared a_fork [THREADS];

4. void initialize(void)

5. {

6. a_fork[MYTHREAD]= upc_global_lock_alloc();

7. CHECK_MEM(a_fork[MYTHREAD]);

8. }

9. void life_cycle(void)

10. {

11. philosopher_status_t state;

12. int num_meals=0, delay_thinking=1, delay_eating=2;

13. int left, right, got_left, got_right;

14. left = MYTHREAD;

15. right = (MYTHREAD+1)%THREADS;

16. state = THINKING;

17. while(num_meals < 20) // life of each philo. is 20 meals

18. {

19. if(state == THINKING)

20. {

21. printf("Philosopher%2d:��� Iamthinking\n",MYTHREAD);

22. sleep(delay_thinking);

23. printf("Philosopher %2d: ��� I finished thinking, now I

am starving\n", MYTHREAD);

24. state = STARVING;

25. }

26. // tries to lock both forks

27. got_left = upc_lock_attempt(a_fork [left]);

28. got_right = upc_lock_attempt(a_fork [right]);

29. if(got_left && got_right)

30. { // got both...

106 SYNCHRONIZATION AND MEMORY CONSISTENCY

31. printf("Philosopher %2d: I have both forks ��� I start

eating\n", MYTHREAD);

32. state = EATING;

33. sleep(delay_eating);

34. num_meals++;

35. printf("Philosopher%2d:Ihavebothforks���Ifinished

eatingmy%dmeal",MYTHREAD,num_meals);if(num_meals> 1)

printf("s");printf("\n");

36. // release both forks

37. upc_unlock(a_fork [left]);

38. upc_unlock(a_fork[right]);

39. state = THINKING;

40. }

41. else

42. { // either one or none of the fork were available

43. if(got_left)

44. upc_unlock(a_fork[left]);

45. if(got_right)

46. upc_unlock(a_fork[right]);

47. }

48. }

49. printf("Philosopher %2d: *** Iate too much, Iamleaving!

***\n", MYTHREAD);

50. }

51. int main(void)

52. {

53. // should be run with >=2 THREADS

54. initialize();

55. upc_barrier;

56. life_cycle();

57. upc_barrier;

58. if(MYTHREAD == 0)

59. printf("***��> all philosophers left the table<�� ***\n");

60. return 0;

61. }

Example 6.5 shows an implementation of a variant of the dining philo-

sophers problem in which each philosopher is restricted to 20 meals, using the

LOCKS 107

upc_lock_attempt. In this example, line 2 defines an enumerated type to indi-

cate the philosopher status as thinking, starving, or eating. Line 3 declares an array

of pointers to locks, one to represent each fork. Note that each philosopher is an

independent actor, and therefore each philosopher will be represented by a thread.

Lines 4 through 8 are used for initialization by creating the locks, one per thread

using the noncollective upc_global_lock_alloc with all threads making the

call, and checking whether the allocation took place correctly. Lines 9 through 50

comprise the life_cycle function, which sequences through a philosopher’s

activities. Line 11 defines state as a private holder of the local philosopher state.

In line 12, the number of meals eaten by a philosopher are initialized to zero, and

the delay for thinking and eating are set to 1 and 2 seconds, respectively. Lines 14

and 15 are used to identify the two forks sought. Line 15 uses modulo arithmetic to

emulate the round dining table. Line 16 initializes all philosophers to the thinking

state. According to line 17, each philosopher can eat only 20 meals, after which the

program should exit. Such a limit is introduced to terminate the program in a

reasonable time. Lines 19 through 25 show how the philosopher will work. If he or

she is thinking, the philosopher will sleep for the thinking delay. When the philo-

sopher awakes, his or her state changes to starving, line 24.

In line 27, each philosopher attempts to get the left fork, and if so, the program

sets the corresponding flag. The philosopher then tries to get the right fork, and if

he or she succeeds, starts eating, which amounts to setting the state to eating and

sleeping for the eating delay. The philosopher then increments the number of meals

that he or she consumed and prints messages to this effect. The philosopher also

releases both forks at that time and switches his or her state to thinking.

Lines 41 through 47 deal with the situation when the philosopher has been able to

obtain one fork or no fork. In this case the philosopher releases the fork that he or

she got, if any, and stays in the starving state.

If the 20 meals are consumed by a philosopher, he or she leaves the table and the

function returns to the main. Thus, the main function, lines 51 through 61, initia-

lizes and waits for all threads to create their locks, gets the life cycle of the philo-

sophers under way, and uses a barrier again to make sure that all philosophers are

done before printing out the relevant statistics and exiting.

6.4 MEMORY CONSISTENCY

Memory consistency refers to the order of memory accesses within one thread and

when changes to a shared object by one thread become visible to other threads. In

many cases, systems might find opportunities to optimize the performance by ex-

changing the order of instructions, which causes the reordering of memory refer-

ences within one thread. In addition, although the programmer may wish to see all

changes to shared objects become visible to all threads immediately, this might be

associated with performance penalties.

Under UPC, references to shared objects are either strict or relaxed. For relaxed

references, there is no change to the C Standard execution model as applied to an

108 SYNCHRONIZATION AND MEMORY CONSISTENCY

individual thread. This implies that systems are free to reorder and/or ignore opera-

tions (including shared operations) if it appears that such changes will not affect

the final results of the code. For strict references, such reordering is not allowed. In

addition, strict references cause all prior shared references to become visible to

other threads.

UPC provides several mechanisms to control the underlying memory consis-

tency model at various granularities:

1. The shared object level

2. The block statement level

3. The program level

At the shared object level, UPC allows the use of relaxed or strict as

qualifiers for shared declarations. For example, one can declare

strict shared int x;

where strict is a reference-type qualifier. For controlling accesses in a block of

statements, one can use pragmas: for example,

{

#pragma upc strict

...

}

When a pragma appears outside a compound statement, it applies until the next

pragma or the end of the program or until another such pragma is encountered. If a

pragma appears inside a compound statement, it only affects the code that follows

until the end of the compound statement.

Finally, the memory consistency model can be controlled at the program level by

including one of two possible files:

#include <upc_relaxed.h>

or

#include <upc_strict.h>

When more than one of the mechanisms described previously are used, the

reference-type qualifier has the highest precedence, followed by pragmas, followed

by the upc_strict.h or upc_relaxed.h file. Note that in the absence of

such reference qualifiers, pragmas, and upc_strict.h or upc_relaxed.h

file, the behavior follows the default instituted by the implementation. Another

way to make modifications to shared objects known to all threads is by using the

MEMORY CONSISTENCY 109

fence construct, upc_fence. This forces all previous shared references to

complete. Thus, the upc_fence statement is equivalent to a null strict reference.

This ensures that all shared references issued before the fence are completed before

any following it are issued. It also ensures that no shared references appearing after

the fence are executed before it.

One example to demonstrate some of the concepts that have been just described

can be derived from the computer science problem known as the bakery algorithm

[LAM74]. In this problem customers arrive at a bakery store. As a customer arrives

he or she gets a number. Multiple customers can arrive at the same time, and there-

fore these numbers may not be unique. In that case, the order of service is resolved

in some other way, such as age. The problem, however, is that the bakery does not

provide a way (e.g., a display) for the customers to learn of their turn. Instead, the

customers have to communicate and determine who has the priority to be the next

to receive service. Memory consistency issues in this example arise in three cases.

First, when a customer arrives, the person should let the others know that he or she is

going to be picking a number. When the person gets a number, the number chosen

changes what the next available number will be. Finally, when the person gets a ticket,

he or she should let the others know. In each of these cases, all threads must become

aware of the modified data that reflects these facts as soon as the change occurs.

Example 6.6: bakery1.upc

1. #include <stdio.h>
2. #include <upc_relaxed.h>

3. typedef enum {FALSE, TRUE} bool_t;

4. strict shared bool_t choosing [THREADS];

5. strict shared int number [THREADS];

6. strict shared int counter;

7. int main(void)

8. {

9. int i;

10. if(MYTHREAD == 0)

11. counter = 0;

12. choosing[MYTHREAD]= TRUE;

13. upc_barrier;

14. number [MYTHREAD]=(++counter); // pick up a ticket number

15. choosing [MYTHREAD]=FALSE; // announce that I got my ticket

16. for(i=0; i<THREADS; i++) //check all other customoer

17. {

110 SYNCHRONIZATION AND MEMORY CONSISTENCY

18. while(choosing [i]== TRUE); // wait for customer i

// to get his/her ticket number

// is Customer i still in shop AND will he be served before me?

19. if((number [i] > 0) &&

20. ((number[MYTHREAD]> number[i])||

21. ((number [MYTHREAD]== number[i]) && (MYTHREAD>i))))

22. while(number [i]> 0); // so I need to wait for him/her

// to leave the shop before

// considering been served
23. }

// I got my turn, I have the lowest ticket or I am the youngest

// (smallest thread number) among my peers

24. printf("Thread %02d exits with number=%d\n", MYTHREAD,

number [MYTHREAD]);

25. number [MYTHREAD]= 0; // I throw my tix ... that’s done for me

26. return 0;

27. }

In line 2, the general memory consistency model is set to relaxed at the whole

program level. Line 4 is creating a shared array of boolean type to reflect whether a

particular customer (i.e., thread) is nowchoosing a number. It is reference qualified tobe

strict, to ensure that when a thread is choosing, all others will know that immediately.

Similarly, the number that is chosen by a customer is also declared (line 5) in a

somewhat similarmanner, so thatwhena thread picks upa number, the restwill knowof

it immediately. The counter has a similar declaration, although it is a scalar since it

only indicates the current available number to be picked by the next customer, line 6.

Lines 10 and 11 initialize the process by setting the counter to 0. Then line 12

gets all threads to start choosing by setting their choosing flag to TRUE. A barrier

in line 13 guarantees that all customers start competing for the numbers simulta-

neously. Thus, each of them simultaneously tries to preincrement and get the value

of counter to be its own number, which would be a minimum of 1, line 14. This

means that some race conditions might occur. This is not a problem since, at worst,

that can give more than one thread the same number, and as we said, that will be

resolved in a different way. Then each of the threads sets its choosing flag to

FALSE, lines 15. Lines 16 through 23 provide a loop that goes through the threads

one by one. For each thread, if the number has been chosen, the thread starts

figuring out whether it now has the priority to receive the service. In line 16, a loop

examines the threads one by one, skipping over those who are not currently

choosing, line 18. Lines 19 examines if the current number is over a zero, which

means that the customer is still in the bakery. Line 20 checks to see if the number of

the executing thread is greater than the numbers of the other threads, which means

that the current thread does not have the priority to receive service yet. Line 21

checks whether the executing thread has a number similar to that of any of the other

threads. This constitutes a conflict. The conflict is eliminated by selecting the thread

that has the lower thread number, or the youngest customer.

MEMORY CONSISTENCY 111

Example 6.7: bakery2.upc

1. ...

2. shared bool_t choosing [THREADS];

3. shared int number [THREADS];

4. shared int counter;

5. int main(void)

6. {

7. int i;

8. ...

9. upc_barrier;

10. {
11. #pragma upc strict

12. number [MYTHREAD]=(++counter);

13. choosing [MYTHREAD]=FALSE;

14. }

15. for(i=0; i<THREADS; i++)

16. {

17. while(choosing [i]== TRUE);

18. if((number [i]> 0) &&

19. ((number [MYTHREAD]> number[i])||

20. ((number[MYTHREAD]== number [i]) && (MYTHREAD>i))))

21. while(number [i]> 0);

22. }

23. printf("Thread %02d exits with number=%d\n", MYTHREAD,

number [MYTHREAD]);

24. {
25. #pragma upc strict
26. number [MYTHREAD]= 0;

27. }

28. return 0;

29. }

Example 6.7 uses pragma to create the same effect. The pragma in line 11 is

inside a compound statement and will apply to the rest of the statements in that

block, lines 12 and 13. Similarly, the pragma in line 25 applies only to the

statement in line 26. These were all intended to ensure that updates to the shared

objects number, counter, and choosing become immediately visible to all

112 SYNCHRONIZATION AND MEMORY CONSISTENCY

threads. Example 6.8 provides a variant implementation of the bakery algorithm

that accomplishes the same results using upc_fence.

Example 6.8: bakery3.upc

1. ...

2. shared bool_t choosing [THREADS];

3. shared int number [THREADS];

4. shared int counter;

5. int main(void)

6. {

7. ...

8. upc_barrier;

9. number [MYTHREAD]=(++counter);

10. choosing [MYTHREAD]= FALSE;

11. upc_fence;
12. for(i=0; i<THREADS; i++)

13. {

14. while(choosing [i]== TRUE);

15. if((number [i]> 0)&&

16. ((number [MYTHREAD]> number[i])||

17. ((number [MYTHREAD]== number[i])&& (MYTHREAD>i))))

18. while(number[i] > 0);

19. }

20. printf("Thread %02d exits with number=%d\n", MYTHREAD,

number [MYTHREAD]);

21. number [MYTHREAD]= 0;

22. upc_fence;

23. return 0;

24. }

6.5 SUMMARY

UPC is a parallel processing language that requires coordination among the exe-

cuting threads. Therefore, UPC provides for synchronization and memory consis-

tency control. Examples of these mechanisms are barriers, locks, and fences. UPC

barriers can ensure that all threads reach a given point before any of them can

proceed further. Locks are needed to coordinate accesses to critical sections of the

code. Finally, memory consistency control gives the ability to control the access

SUMMARY 113

ordering to memory by the various threads such that performance can be maxi-

mized with no risk of data inconsistency. Memory consistency mechanisms in UPC

also give the programmer the ability to decide when changes to a shared object

become visible to other threads.

EXERCISES

6.1 Implement a program calculating the nth power of a square N � N matrix

(using upc_barrier).

6.2 Develop a version of the philosophers problem using regular locks

[upc_lock() and upc_unlock(), no upc_lock_attempt()] and

shared variables as semaphores if needed.

6.3 Implement a variant of the heat conduction problem that uses upc_locks for

the all-reduce operation at each iteration.

6.4 Implement a queue data structure in UPC (using upc_lock_t).

6.5 Develop the sleeping barber algorithm using the queue from Exercise 6.4.

The sleeping barber algorithm works as follows: At the beginning of the

day, the barber sleeps and will wake up as soon as a customer enters his shop.

There are n seats in the shop. A total of N customers are entering his shop

randomly all day long to have their hair cut. If a seat (among the n) is free, the

customer sits and waits (if the barber is busy) or the barber will be serving this

customer immediately. If all seats are full, the customer will be back after a

random amount of time. The barber finishes his day after all N customers are

served.

114 SYNCHRONIZATION AND MEMORY CONSISTENCY

CHAPTER 7

Performance Tuning and Optimization

The UPC language has been designed specifically to allow programmers to get the

best performance from a wide range of parallel computer architectures. Many

features of the UPC language and toolset will aid in this task. But to obtain the best

performance, it is essential to have in mind some basic knowledge about the char-

acteristics, system architecture, and performance of parallel computers. The chapter

begins with a brief primer on parallel machines and general performance issues

in parallel programming. For a deeper insight into many of these issues, there are

many texts on the subjects referred to in this chapter. After this general introductory

overview of parallel system architecture, three critical factors in achieving perform-

ance with UPC are discussed:

1. The UPC compiler, which analyzes the UPC application program and applies

a variety of techniques to it to produce good executable code

2. The UPC run-time system, which both enables running programs and observes

their dynamic behavior in order to undertake actions to improve performance at

run time

3. Hand optimizations that are performed by programmers to enhance applica-

tion performance

With this arsenal of language constructs and software tools, the programmer has

the means to craft parallel programs and make them perform well. The UPC pro-

gramming model exhibits significant control flexibility to permit some important

optimizations. Some specific techniques for achieving these are discussed in this

chapter. In particular, methods for taking advantage of data locality, improved syn-

chronization, and latency hiding are presented. All of these useful practices are

illustrated through detailed case studies.

UPC: Distributed Shared Memory Programming, by Tarek El-Ghazawi, William Carlson,
Thomas Sterling, and Katherine Yelick
Copyright # 2005 John Wiley & Sons, Inc.

115

7.1 PARALLEL SYSTEM ARCHITECTURES

UPC provides a semantic bridge between the user application problem and the target

physical parallel system architecture, through the software medium of compilers and

a run-time system. Although the semantic correctness should be a constant among

separate machines of different scale and class, their performance properties may

differ, sometimes dramatically. Several classes of parallel systems are in common

use today. At least to some degree, each may vary in scale, perhaps by several

orders of magnitude (measured in the number of computing elements). Although

this has not always been the case, the prevalent parallel systems all employ a

plethora of processors, memory banks, and internal communications networks

[system area network (SAN)]. But the different classes of systems differ in the archi-

tecture of the microprocessors, the structure or organization of these combined

elements, and their logical interrelationships. In this section we describe briefly the

dominant classes of parallel system architectures, to provide a foundation with

which to consider driving performance properties and optimization methods to

address them.

Five classes of parallel system architecture are described. Although not an

exhaustive set of the entire domain of parallel computing architecture, they repre-

sent the vast majority of commercial systems and all of the systems to which UPC

compilers have been targeted:

1. Symmetric multiprocessors (SMPs)

2. Distributed shared memory multiprocessors (DSMs)

3. Distributed memory multiprocessors

4. Commodity clusters

5. Parallel vector processors (PVPs)

It should be noted that these terms are not defined rigorously, and workers in the

field may employ them with slight variation of intent. The following is one reason-

able and representative description, but by no means the only credible one.

For the sake of simplicity, the following parallel system descriptions will empha-

size two architecture properties: degree of coupling, and memory model. Degree of

coupling is generally characterized in the range loosely to tightly coupled com-

munication among the separate computing and memory elements comprising the

parallel system. But this is a simplification of a combination of the total rate at

which data can be moved across the system at one time (its bisection bandwidth),

the rate at which any one processing node can inject or receive data from the SAN

(its local bandwidth), the time it takes to move the data between any two

such nodes (latency), and the possible variation of the latency among different

node pairings (UMA versus NUMA), as well as the overhead or work required in

the critical execution time to sending and receiving data messages from remote

nodes.

116 PERFORMANCE TUNING AND OPTIMIZATION

The memory model of a system determines the visibility of the distributed main

memory from the perspective of the processor node hardware. The three possible

conditions that discriminate among system classes are:

1. Full shared memory with cache coherence

2. Shared memory without cache coherence

3. Separate local memory partitions

The combination of these memory models and the degree of communication

coupling is sufficient to describe and differentiate the four dominant parallel system

architecture classes.

Symmetric multiprocessors (SMPs), also known as uniform memory access archi-

tectures (UMAs), represent a parallel computer architecture in which processors

share the same memory physically such that the access time from any processor to

the memory system is the same. In such a system, the set of processors have direct

and equal access to the set of memory banks. The SAN connects the memories and

the processors such that the processors have the same physical and logical access

characteristics of true shared memory. Furthermore, coherency across processor

caches is maintained consistent so that changes to the state of a variable by one

processor are reflected by the copies of that variable in the caches of any of the

other system processors. This permits a true shared memory execution model and

provides very low overhead for all memory accesses across the system. None-

theless, there are two important aspects of SMP systems that impose performance

bottlenecks. The first is restricted scale. To support UMA across the memory

system and full cache coherence, hardware mechanisms are employed that do not

scale indefinitely. Therefore, the majority of SMPs comprise a small number of

processors, two to four being typical and few systems exceeding 16 processors. The

second is restricted bandwidth to main memory. Because of the need for cache

coherence, all memory traffic has to be monitored, and the amount of memory band-

width available to the processors is limited. When all processors attempt to engage

the main memory simultaneously, there occurs significant contention in many

cases, degrading overall system performance and efficiency.

Distributed shared memory machines (DSMs), also known as nonuniform

memory access architecture (NUMA), comprise a system in which the memory

is physically distributed across the processors but is globally addressable and

accessible by all processors. This provides a single machine image. However, a

processor can access its local memory modules faster than remote ones, although

all of them are shared by all processors. The basic building block in a DSM

machine is a node, which can be as simple as one processor with some memory

attached to it, or an entire SMP system. The blocks are interconnected together with

some interconnection network.

Unlike SMPs, distributed shared memory machines incorporate cache coherence

mechanisms that scale. DSM systems with thousands of processors have been

deployed commercially. The logical execution model of the DSM is the same as

PARALLEL SYSTEM ARCHITECTURES 117

that of the SMP, including cache coherence across processors. But the performance

model is different. There is a partition of memory that is relatively local to a given

processor node while the remaining memory is relatively remote. Access to local

memory is much faster (shorter latency and higher bandwidth) than accesses to

remote memory. The difference can be as much as one to two orders of magnitude

for very large systems. A local node may incorporate more than one processor and

more than one memory bank in an SMP configuration where all processors within

a single SMP node have equal access to local memory. The DSM class of system

shares with the SMP system the low overhead of memory access and cache coher-

ence, but suffers from nonuniform memory access times even as it benefits from

potentially larger system scale.

Now things get a bit complicated. There is a variation of the DSM system that

does not have cache coherence, but there is no agreed term for this class of system.

Therefore, we will refer to it here as DSMwoCC, but this is not common usage. This

is an important class of systems. It has better efficiency (lower overhead) of memory

access than that exhibited by ordinary DSMs because it does not incur the addi-

tional hardware overhead times required for the cache coherence. It is also less

expensive to build and can scale to larger systems. But DSMwoCC systems also

suffer from NUMA behavior and do not guarantee a pure shared memory model

such that the software has to take into consideration this potential conflict of

copies. DSMwoCC is the closest hardware system to the abstract programming and

execution model of UPC and is an ideal target platform for UPC compilers.

However, UPC can be mapped as efficiently as other paradigms to other types of

architectures.

Distributed memory (DM) systems, also known as multicomputers, are tightly

coupled ensembles of independent processing nodes. Each node comprises one or

more processors in an SMP configuration. The nodes are interconnected with a

high-bandwidth low-latency custom SAN. This network is used to send messages

between the nodes. Logically, a node processor can only directly address memory

local to that node. No direct remote memory accesses are possible. This is referred

to as a partitioned or fragmented memory model. For nodes in a DM system to co-

operate on a single computation, explicit message passing between processes on

separate nodes must be accomplished. Often, large blocks of contiguous data may

be sent in a single message between processes running on separate nodes, amortiz-

ing the overhead and latency of communications while exploiting the relatively

high bandwidth of the SAN. However, not all applications can benefit from that, as

some may be latency sensitive. Although the overheads incur software action at

each end and are thus aggravated compared to DSM systems, there are many prob-

lems whose data access patterns are such that this additional burden is acceptable.

DM systems are less expensive than DSM systems and they can scale to much

greater sizes. Systems on the order of 10,000 processors have been deployed, and

DM systems of tens of thousands of processors are likely to emerge in the near

future. Although the hardware logical model does not directly match the UPC exe-

cution model, the UPC compiler and run-time system enable application codes

written in UPC to perform correctly on DM systems. However, the performance

118 PERFORMANCE TUNING AND OPTIMIZATION

model due to the distributed memory semantics of the machine is different from

that of the DSM, and performance tuning and optimization requires that such

operational distinctions be taken into consideration.

Commodity clusters are collections of stand-alone computer systems manufac-

tured for mainstream data processing markets and integrated using COTS local area

or system area networks. Clusters of personal computers often running Linux are

known as Beowulf cluster systems [STE01], named after the early NASA project

that introduced them. Due to the benefits of economy of scale of production, com-

modity clusters deliver exceptional performance to cost for many (but not all appli-

cations), exceeding that of DSMs, DMs, and vector machines (see below) by as

much as an order of magnitude or more. Today, more than half of the world’s top

500 computing systems (measured by the Linpack benchmark) are commodity

clusters.

Commodity clusters present the same logical model as that of distributed

memory systems. Nodes of one or more processors in an SMP configuration com-

municate by a message-passing protocol between processes running on the separate

nodes. The processors of each node can directly access (using load and store opera-

tions) only the memory local to that node. But, if anything, the performance model

of a cluster is worse than that of a DM class machine. The overheads for remote

communication are larger and the bandwidth and latencies of the COTS network

are worse than the custom communication network of the DM systems. Latencies

can be one to two orders of magnitude longer and bandwidth an order of magnitude

lower than DM machines. Acquiring a remote value can require 1000 to 10,000 pro-

cessor cycles. Performance tuning and optimization is driven by the need to exploit

locality and minimize communication, especially fine-grained communication,

even at the expense of performing more work or redundant work on each node.

Despite these increased challenges, commodity clusters are likely to be a common

target platform of UPC applications for some time to come.

Parallel vector processors (PVPs) are typically designed around a proprietary

processor that is specially crafted to target vector computations. Vector processors

can have vector registers that can hold a complete array; their functional units are

designed as pipelines that can exploit the overlapped parallelism in processing the

elements of a long array. The instruction sets of vector processors are such that an

entire loop to fetch, store, or process an array can be replaced by a single vector ins-

truction. Vector processors can sustain very high bandwidths through their net-

works to memory for certain types of access patterns, including unity stride and

uniform stride accesses. Advanced systems can do sparse accesses efficiently as

well with special gather scatter hardware. PVPs can be used in all of the system

configurations described above, replacing the commodity microprocessors with

custom vector processors. When used effectively, they can provide among the

highest delivered performance of any parallel system for certain classes of appli-

cations. But the performance tuning and optimization using UPC presents a

different set of code structuring trade-offs than other system types described.

UPC does not require any particular computer architecture to run. In fact, there

are currently UPC compiler implementations for DSMs, multicomputers, clusters,

PARALLEL SYSTEM ARCHITECTURES 119

and vector machines. However, it should be noted that UPC requires a shared

memory view. Thus, implementations on DSMs and SMPs are relatively easier

and, depending on the implementation, may be more efficient. The shared space

view under UPC requires that multicomputer implementations have a layer that

can present the underlying architecture to UPC as if it were a shared memory

architecture. Among the software libraries that did this successfully are PGAS

[HU00] and Elan [QUA03]. The fact that the shared space under UPC is partitioned

makes it map more efficiently on multicomputers than strictly shared space pro-

gramming paradigms.

7.2 PERFORMANCE ISSUES IN PARALLEL PROGRAMMING

Parallel Overhead

While increasing the number of processors of a single machine increases its overall

peak computational power, it also adds a number of overheads and latencies that

can degrade the potential benefit of parallel processing. Parallel programmers have

to consider these overheads, latencies, and other system factors that reduce perform-

ance to enhance scalability and execution efficiency. Scaling here means getting

more measured performance as the number of processors increases. The main types

of potential overheads and latencies that inhibit performance are:

� Interprocessor communications

� Processor synchronizations

� Load imbalance

� Redundancy

Interprocessor communications are required so that the many processors of a

parallel machine can work together effectively on the same computational problem.

At the beginning of a computation, initial input data may need to be distributed

across the processor nodes. During the computation, processors may need to

exchange intermediate results. By the end of the computation, the final result

data will need to be integrated to be directed ultimately to external outputs. In the

uniprocessor case, none of these operations are required. In the parallel case, they

are necessary but they take the processor away from its main purpose, which

is computing. Overhead from both controlling the communications and latency of

moving the data between processor contributes to the potential performance degrad-

ation. Therefore, interprocessor communications must be kept to a minimum.

Synchronization deals with the need to order and coordinate the work of proces-

sors (threads) to ensure that results obtained from parallel computations are similar

to that we can obtain from a uniprocessor machine. We covered the topic of syn-

chronization in Chapter 6. One thing that should be noted is that synchronization

comes at a nontrivial cost to performance, and since it is not part of the actual com-

puting, it is another overhead. Programmers interested in maximum performance

120 PERFORMANCE TUNING AND OPTIMIZATION

should certainly reduce the amount of process and data synchronization and use the

minimum to guarantee the correctness of the results.

Load imbalance is another source of inefficiency. It is very difficult in many

cases to divide the data and work equally among all processors. Sometimes the size

of the data is not divisible by the number of the processors, and sometimes some

data require more processing than others, as in the case of zero and nonzero ele-

ments of a sparse matrix. Also, sometimes the workload changes dynamically at

run time. In these cases some of the processors will complete their work much later

than the rest, which delays the processing time of the overall machine. Program-

mers should strive to balance the work across the processors, but this may not

always be possible.

Redundancy refers to the fact that in many cases exactly the same computations

take place on all processors. For example, consider the problem of initializing a

particular variable that is needed at all processors. One option is to initialize it at

only one processor, then broadcast it. The other is to initialize it at all processors. In

the former case we suffer communications overhead. In the latter we perform an

operation that we used to do once in a sequential machine many times, which is a

redundancy overhead that was necessary for the parallel execution to take place.

Machine Imbalances

One problem that aggravates communication overhead is the unbalanced rate of

improvements in processor and interprocessor communication technologies. Pro-

cessor performance has been doubling every 18 to 24 months, but speed of commu-

nication is not growing at the same fast pace. The same problem also occurs from

the memory perspective, where processing speed is growing at a much higher rate

than improvements in memory latency and bandwidth.

The performance of an interconnection network can be analyzed in many ways.

However, two important metrics are bisection bandwidth and latency. Bandwidth

measures the throughput of the machine; bisection bandwidth refers to the amount

of data that can be transferred between both halves of a machine after we split it

from the point of the weakest bandwidth. Latency is the amount of time taken to

send the minimum transferable size of data from a source node to a destination

node. Network traffic is generally pipelined. This means that the first data packet

sees the full latency, but the following ones will be arriving in sequence imme-

diately after the first packet is received. Programmers should develop an under-

standing of how to minimize communications overhead and/or its impact.

There are three ways to minimize the impact of communication overhead: loca-

lity exploitation, amortization, and overlapping. Locality exploitation refers to

attempting to complete all work associated with a part of the data, before moving

to the next. Locality exploitation can reduce the amount of data that needs to be

accessed remotely. Locality exploitation also optimizes the operation of the memory

hierarchy by increasing the likelihood of finding what we need in the cache.

Since the first packet sees the full latency delay, the programmer should try

to make the messages as large as possible. This amortizes the initial overhead over

PERFORMANCE ISSUES IN PARALLEL PROGRAMMING 121

the largest possible number of packets. However, such optimization is required

only on architectures where communication networks may be suffering from high

latency and no hardware cache support over shared memory spaces. There are two

ways to do this: one is by integrating all of the data that needs to be communicated,

even if they are unrelated, to produce a smaller number of messages. The other

strategy is to increase the computational granularity. This can be accomplished by

distributing data by the largest possible chunks and attempting to complete the

work on that chunk locally prior to any exchange of data. In many applications,

aggregating and maximizing the size of communication messages may not be pos-

sible. In these cases, UPC continues to have a great advantage in that it can perform

short transfers efficiently, due to its shared memory view.

In addition, when possible, programmers can overlap communications with

computation. Instead of in-demand synchronous communications, programmers can

start reading/receiving data asynchronously well ahead of time, then ensuring com-

pletion of the asynchronous operation only before the relevant data is needed for

processing.

7.3 ROLE OF COMPILERS AND RUN-TIME SYSTEMS

Getting a program to run on a computer involves a number of tools and processes

that need to be understood, to some degree, to effectively optimize the performance

of programs. Of course, it all starts with algorithm development and coding in UPC

source code. A compiler is then used to translate the UPC source code to machine

code for a specific computer. Next, a run-time system is responsible for loading

the machine code into the system and starting execution. Since UPC is a parallel

language, the run time is also parallel and provides a number of services to the exe-

cuting program, such as I/O and parallel synchronization. Finally, some tools help

analyze both the correctness of programs and their performance. These components

interact in interesting ways that should be understood before effective optimization

can be performed.

Compilers

UPC compilers are becoming widely available. Each one is produced by a company

or other organization to support the preparation of UPC programs on one or more

computer systems. A ‘‘correct’’ UPC compiler must take all ‘‘valid’’ UPC programs

and ensure that the program, when executed, performs according to the rules of

UPC. Appendix A provides the most recent specification of what is ‘‘valid’’ in

terms of both the expression of UPC programs and their execution. Although most

readers of this book will not need to study the specification, it is the final arbiter of

what a UPC program is.

The compiler always has a second goal beyond the simple correct execution of a

program: namely, the efficient execution of the program. This is possible because

the UPC specification allows compilers to change UPC code into, potentially, many

122 PERFORMANCE TUNING AND OPTIMIZATION

different sequences of machine instructions as long as it appears as though the pro-

gram produces a ‘‘valid’’ execution. How does a compiler decide which sequence is

both valid and will yield the most efficient use of the computer? Although the

answer to this has been the subject of about 40 years of compiler research, some

things are clear. First, the compiler must understand which sequences are efficient

on the machine. Second, the compiler must be able to ‘‘see’’ all the activity that

affects performance. For example, compilers generally have a hard time telling

what a program is doing in its subroutines, especially if they are in a library. Of

course, compilers will have diverse ‘‘skills’’ at this task, depending on the abilities

of those who developed the compiler, how much effort they put into its develop-

ment, and the quality of the computer that will execute the program.

Runtime

The run-time system works with the machine code produced by the compiler and

is responsible for the correct and efficient execution of UPC programs. It is usually

created and supported by the group that produced the compiler. The first thing

the run-time system does is to load the program into the computer memory and

cause its execution to begin. This means that for each thread, the run time will cause

the programs main() routine to be called, then requests the program to perform

specific basic functions. For example, run-time support is often needed to imple-

ment the upc_notify and upc_wait statements. The run-time system is usually

responsible for such duties as interacting with the operating system when per-

forming I/O functions and supporting debugging and performance analysis.

To achieve efficiency, the run-time system will often be able to observe

certain characteristics of the program execution in real time and respond by taking

anticipatory actions. For example, in the UPC programming model, there are many

cases in which relaxed shared memory references may be prefetched, cached,

deferred, or grouped. On some architectures such optimizations will have a dra-

matic effect on the performance of applications. Another characteristic of the

run time to consider are the relative efficiency of shared memory accesses, locks,

and barriers, so that one tailor the synchronization mechanisms chosen to achieve

the best performance possible. Many UPC implementations have similar perform-

ance ratios for these mechanisms, so techniques learned on one implementation

are usually relevant to others.

7.4 UPC HAND OPTIMIZATION

Hand optimization is a process by which a programmer attempts to ‘‘help’’ the

compiler and/or run-time system to achieve more efficient execution of the program.

In case of a new language, such as UPC, programmers might have to employ more

hand optimizations until compilers mature enough to incorporate all possible opti-

mizations and offer them to the user automatically, or through simple compile-time

mechanisms such as flags. Hand optimizations can be divided into two types:

UPC HAND OPTIMIZATION 123

general optimizations that apply to all systems, and machine-specific optimizations

that apply only to a single (or limited class) of systems. Because system structures,

mechanisms, and timing characteristics differ, sometimes substantially, among

machine types, optimizations of parallel codes applied for one system may have

deleterious effects on the performance of another system for which the specific opti-

mizations were not targeted. Care is essential in this respect. Apparently innocuous

modifications to the program may invoke subtle changes in system operation that

yield dramatic consequences in performance, either positive or negative. Finally, it

should be noted that hand optimizations often tend to obscure the readability of

code, so it may well be harder to reuse or debug.

There are two main areas to consider for general hand optimization: helping the

system (both compiler and runtime) to determine what is ‘‘local’’ to a thread, and

helping the system to determine dependences between both private and shared

accesses. As will be seen in the following sections, the determination of what is

local is best performed by using the UPC affinity concept. There are many tech-

niques for helping the system understand the true dependencies in a program,

but they are all required because the rules of the language (UPC in this case) are

stricter than the rules of the algorithm. For example, the compiler must perform the

code

for (i=0; i<n;i++)

x [y[i]]+= 17;

correctly even in the presence of the pathological case where all the elements of

index array y[] contains the same value. To execute the code correctly, it must

complete the previous store of x[] before beginning the fetch of the next. This can

obviously lead to poor performance. However, if the user wrote the code as

for(i=0; i<n;i+=2)

{

t1 = x [y [i]];

t2 = x [y [i+1]];

x [y [i]]= t1+ 17;

x [y [i+1]] = t2 + 17;

}

the compiler is free to fetch two values of x[] at the same time, because the user

has implied that even/odd values of y[] are different. This would result in better

performance on most systems. Of course, this implication could be false and the

user might discover a nasty bug. This illustrates that in performance-critical sec-

tions of a program, it might pay to write code in a more complex fashion so that the

compiler can understand the actual requirements of the algorithm.

The UPC programming model and language provide a plethora of mechanisms

for enabling optimization of parallel programs. In this section we present a number

of these mechanisms along with an explanation of why they are effective. We begin

124 PERFORMANCE TUNING AND OPTIMIZATION

with an in-depth discussion of data locality exploitation, and optimization, followed

by the effective use of locks and barriers, with special emphasis on the split-phase

barriers that UPC provides. Finally, we discuss the importance of using bulk data

transfers, concentrating on the difference between UPC bulk transfers and the

message-passing model’s use of bulk data transfers.

Memory Locality and Consistency

As discussed above, one of the critical optimizations in programming modern

parallel machines is to reduce the number of accesses to memory which are not

‘‘close’’ to the thread issuing the access. UPC’s memory model is ideal for control-

ling such accesses: They may be reduced or eliminated by forming algorithms that

access mainly local data or by strategically copying shared data to the privates

space where accesses are much more efficient. Figure 2.2 depicts the fundamental

UPC memory model introduced in Chapter 2. It shows that each thread has access

to two data areas: private and shared. The great thing about the private area is that

it will be guaranteed to provide efficient access on any UPC system. Shared data

provides the means of saving space by sharing data structures among the threads

and enabling complex algorithm interactions.

Another feature of the UPC programming model that is critical to performance

enhancement and tuning is the concept of affinity. This concept allows each thread

to consider a well-defined portion of shared data that is local to the thread and

therefore provides the same performance benefits as its private data. This gives the

UPC programmer the ability to share data globally but operate on it locally, both

contributing to efficient execution. The main mechanisms for taking advantage of

affinity are the ‘‘casting’’ of pointers to shared data into pointers to private data and

use of the upc_forall() construct. More on these points follows in the next

sections.

The memory consistency model of UPC can be an important aid in achieving

good performance on many parallel systems. This model, in which references are

marked as either strict or relaxed, allows compilers and run-time systems to

deliver a combination of good performance when that is needed and tight consistency

semantics when required logically. The key here is that these concepts relate to the

order in which other threads see a given thread’s shared memory accesses. In

general, compilers and run-time systems will operate at higher efficiency when they

are allowed more flexibility in the ordering of accesses. To understand this range,

let’s look at the extreme positions of all strict and relaxed shared references

in a program, from both a performance and a consistency point of view.

In the strict case, every thread is guaranteed to observe the results of shared

accesses in the order in which they are issued. Generally, this is important only

when one thread makes a decision based on a value in the shared space: for

example, code such as

strict shared int x;

strict shared int y;

UPC HAND OPTIMIZATION 125

thread 1: thread 2:

x=0; while (y == 0)

y=0; /* do nothing */;

x=1; printf("%d", x);

y=2;

A logical analysis of this program indicates that the only value that could

possibly be printed for x would be 1, since y was set to 2 after x was set to 1 in

thread 1. The only way to guarantee that this is the case is to declare x and y

strict. To do this, the implementation of thread 1 must ensure that the value of x

be updated before y is set. This induces a performance implication if it takes

time, which on many systems it does. Thus, the all-strict case will make analysis

of the type of code written above easier and have a very well defined behavior,

but that comes at a cost to the efficient execution of the program.

Now consider the all-relaxed case. The only guarantees are that at synchroniza-

tion events (e.g., upc_notify, upc_wait, and upc_fence) the side effects

of all previous shared accesses have been completed. Consider the following code:

relaxed shared int x;

relaxed shared int y;

thread 1: thread 2:

x=0; while (y == 0)

y=0; /* do nothing */;

x=1; printf("%d", x);

upc_fence;

y=2;

The code will again ensure that the result value printed out is 1. But the first accesses

may be performed in any order. In fact, the first store of 0 in x does not even have to

happen, as it has no effect on the program’s execution. Obviously, this code will

perform better. In general, it is a good idea to use relaxed references for per-

formance gain except when the execution of some other thread depends on the

order of accesses seen, as was just shown.

Locks and Barriers

Beyond the parallel program coordination role played by shared memory as des-

cribed in the earlier section on shared memory consistency, UPC provides two

native coordination mechanisms: locks and barriers (introduced in Chapter 5). A

lock is an object in shared space that allows a thread to perform operations called

upc_lock() and upc_unlock() to guarantee mutual exclusion with respect to

the lock. A barrier is a collective operation which ensures that all threads have

completed all operations prior to the barrier operation before any threads continue

126 PERFORMANCE TUNING AND OPTIMIZATION

beyond the barrier operation. The major difficulty with barriers and locks is that

they can lead to very inefficient operation if not applied carefully.

Bulk Transfers and Collectives

The UPC library provides a variety of mechanisms that allow the efficient transfer

of data between various combinations of shared and private space and support a

rich set of collective operations. The principal benefit of these libraries, all of which

can be written as UPC programs, is that they offer semantics that are both useful

to programmers and may be implemented quite efficiently on a variety of UPC

platforms.

The bulk data movement operations [upc_memget(), upc_memput(), and

upc_memcpy()] allow efficient movement of data. In most cases, implementa-

tions operate near the hardware bandwidth of the underlying communication net-

work. The upc_memget() function is used to transfer data from shared space to

private space, upc_memput() transfers data from private space to shared space,

and upc_memcpy() transfers data from one shared space to another. In the next

section we show examples of using both upc_memget() and upc_memput().

Optimizing for Locality and Load Balance

We now turn to some more concrete examples of using UPC to achieve efficient

execution. These are examples of a set of specific optimizations that are generally

applicable to many of today’s parallel machines. First to be addressed are

techniques to enhance performance by exploiting locality. Then the use of split-

phase barriers is addressed in some detail. The section concludes with a discussion

of the use of locks.

The most elementary optimization for locality is to make a local copy of a

remote shared data item that will be reused often. Consider the following

transformation:

shared int x;

original: optimized:

int local_x;

local_x = x;

for (i=1;i<big;i++) for (i=1;i<big;i++)

f(x); f(local_x);

If the compiler could look inside the function f() (and all of the functions it calls)

and see that x is never changed, it could do the optimization itself. Unfortunately,

compilers often cannot perform this sort of analysis: for example, if the function

in question is in a library. The benefit of the optimized version is that it reduces

the global number of fetches of shared references. The nonoptimized fetched

big times, while the optimized version fetches x only once, avoiding big-1 shared

references.

UPC HAND OPTIMIZATION 127

The upc_memget() library function is perfect for making local copies of

larger data structures efficiently, so it might be good to use that if x were an array,

for example. By writing the code like this, the programmer is asserting that f()

does not change x. If it did, we would have very bizarre behavior. Another potential

problem with copies is that they take some time, and if only a small portion is

accessed, it might not yield actual performance improvements. Of course, it will

also require more memory for the copies on every thread.

If we are unable to make copies of data (either because it might be updated or

there is no room for the copy), another approach is to use the affinity concept in

UPC. Recall from earlier chapters that each elementary object in the shared space

has affinity to a single thread, which allows us to do local computations on shared

data. Consider the following transformation:

shared struct xs *xp;

original:

struct xs *mine;

for (i=0; i<big; i++)

if (i%THREADS == MYTHREAD)

f(&xp [i]);

optimized:

struct xs *mine;
for (i=0; i<big; i++)

if (upc_affinityof(&xp[i]) == MYTHREAD)

{

mine = (struct xs *)&xp[i];
f(mine);

}

Here we have instituted an ‘‘owner-computes’’ method in which the thread with

affinity to the data structure will actually compute the function f(), and in the

optimized case, f() is actually called with a pointer to the shared data that appears

to be pointing to private. This will cause f() to be an entirely local access function

that will be compiled very efficiently. This loop can easily be rewritten using the

upc_forall() construct. In general, using owner-computes and casting pointers

to shared data to private is a foolproof way of getting better performance. Care is

required, though: Casting a pointer to shared, which does not have affinity to the

current thread, will usually produce an undefined (and usually bad) behavior in your

program!

7.5 CASE STUDIES

The following case studies are examples of real UPC codes that demonstrate

a number of very useful techniques of hand optimization for extracting

128 PERFORMANCE TUNING AND OPTIMIZATION

enhanced computing efficiency and performance based on earlier discussions in this

chapter.

Space Privatization

Example 7.1 demonstrates how to apply space privatization to our heat conduction

example. Local shared accesses are replaced by privatized memory accesses when

it is possible. Such optimization requires the computational block to be split into

three parts: computation of the most upper face, computation of the middle chunk

of faces, and computation of the lower face. The middle chunk of faces, lines 41

through 43, does not require any remote shared accesses; therefore, it can be fully

privatized. For the computations over the boundary blocks, however, this is not the

case. The upper and lower faces, lines 28 through 34 and 36 through 40, respec-

tively, need to perform both local and remote shared accesses. Thus, accesses can

be only partially optimized. Lines 17 through 27 correspond to the case when each

thread is allocated only one face to process. In this case, local and remote shared

accesses are also needed. Thus, it is possible to privatize only some of the shared

memory accesses.

Example 7.1: heat_conduction7.upc

. . .
1. // statically allocate grids [] to be matched to [2][N][N][N]

2. shared [BLOCKSIZE] double grids [2][N][N][N];

3. shared double dTmax_local [THREADS];

4. double (*mygrid [2])[N][N], *mydTmax_ptr;

5. void initialize(void)

6. {

. . .
7. /* set up private pointers */

8. mygrid [0]=(double (*) [N][N])

&grids [0][N*MYTHREAD/THREADS][0][0];

9. mygrid [1]=(double (*) [N][N])

&grids [1][N*MYTHREAD/THREADS][0][0];

10. mydTmax_ptr =(double *) &dTmax_local[MYTHREAD];

11. /* sets one edge of the cube to 1.0 (heat) */

12. if(MYTHREAD == 0)

13. for(y=1; y<N�1; y++)

14. for(x=1; x<N�1; x++)

15. mygrid [0][0][y][x]= mygrid [1][0][y][x]= 1.0;

16. }

17. void process_only_face(int sg, int dg, double *dTmax)

CASE STUDIES 129

18. { // grid(,z�1,,) and grid(,z+1,,) are remote shared

19. double T, dT;

20. int y, x, global_z;

21. global_z = N*MYTHREAD/THREADS;

. . .
22. T = (grids [sg][global_z+1][y][x] + grids [sg][global_z�

1][y][x] +

23. mygrid [sg][0][y+1][x]+ mygrid [sg][0][y�1][x]+

24. mygrid[sg][0][y][x+1]+mygrid[sg][0][y][x�1])/6.0;

25. dT = T � mygrid [sg][0][y][x];

26. mygrid [dg][0][y][x]= T;

. . .
27. }

28. void process_front_face(int sg, int dg, double *dTmax)

29. { // grid(,z�1,,) is remote shared, all others are mygrid []

. . .
30. global_z = N*MYTHREAD/THREADS;

. . .

31. T = mygrid [sg][1][y][x]+ grids [sg][global_z�1][y][x]+

32. mygrid [sg][0][y+1][x]+ mygrid [sg][0][y�1][x]+

33. mygrid [sg][0][y][x+1]+ mygrid [sg][0][y][x�1])/6.0;

. . .
34. }

35.

36. void process_back_face(int sg, int dg, double *dTmax)

37. {// grid(,z+1,,) is remote shared, all others are mygrid []

. . .
38. z = N/THREADS�1;

39. global_z = N*MYTHREAD/THREADS + z;

. . .
40. }

41. void process_interior_face(int z, int sg, int dg,

double *dTmax)

42. {// all accesses are done through mygrid [][][][]

. . .
43. }

130 PERFORMANCE TUNING AND OPTIMIZATION

44. int heat_conduction(void)

45. {

. . .
46. do

47. {

48. dTmax = 0.0;

49. if((N/THREADS) == 1)

50. {

51. if((MYTHREAD != 0) && (MYTHREAD != (THREADS�1)))

52. process_only_face(sg, dg, &dTmax);

53. }

54. else

55. {

56. if(MYTHREAD != 0)

57. process_front_face(sg, dg, &dTmax);

58. for(z=1; z<(N/THREADS)�1; z++)

59. process_interior_face(z, sg, dg, &dTmax);

60. if(MYTHREAD != (THREADS�1))

61. process_back_face(sg, dg, &dTmax);

62. }

63. *mydTmax_ptr = dTmax;

64. upc_barrier;

. . .
65. } while(finished == 0);

66. return nr_iter;

67. }

Aggregation of Remote Accesses

As explained earlier, aggregating remote accesses into one large access has the

potential of achieving high network bandwidth. The aggregation of remote shared

accesses is illustrated in Example 7.2 with our heat conduction problem. Only

changes from the previous version of the example are shown. The main modifica-

tions have been made to the functions that operate on the boundaries. Lines 25

through 33 have been modified to use the ghost zones information, cached locally at

each iteration by the function update_ghostzones(), line 44. Thus, all com-

putations are done over data with affinity to the processing thread, thereby avoiding

remote accesses. To amortize the communication overhead and improve the band-

width, the ghost zones are refreshed, lines 5 through 17, using string (or bulk) func-

tions, upc_memput() in this case.

CASE STUDIES 131

Example 7.2: heat_conduction8.upc

. . .
1. #define FRONT 0
2. #define BACK 1
3. shared [2*N*N] double ghostzones[THREADS][2][N][N];
4. double (*front_ghostzone)[N], (*back_ghostzone)[N];

5. void update_ghostzones(int sg)
6. {
7. if(MYTHREAD != 0)
8. {// send mygrid[sg][0] to back[MYTHREAD�1]
9. upc_memput(ghostzones[MYTHREAD�1][BACK],

10. &mygrid[sg][0][0][0],sizeof(double)*N*N);

11. }

12. if(MYTHREAD != THREADS�1)
13. { // send mygrid[sg][N/THREADS�1] to front[MYTHREAD+1]

14. upc_memput(ghostzones[MYTHREAD+1][FRONT],
15. &mygrid[sg][N/THREADS�1][0][0],sizeof(double)*N*N);

16. }
17. }

18. void initialize(void)

19. {

. . .
20. front_ghostzone = (double (*)[N])
21. &ghostzones[MYTHREAD][FRONT][0][0];
22. back_ghostzone = (double (*)[N])
23. &ghostzones[MYTHREAD][BACK][0][0];

. . .
24. }

25. void process_only_face(int sg, int dg, double *dTmax)

26. {// uses back_ghostzone[][] and front_ghostzone[][]
instead of doing accesses to grids[][][][]

. . .
27. }

28. void process_front_face(int sg, int dg, double *dTmax)

29. {// uses front_ghostzone[][]

. . .

132 PERFORMANCE TUNING AND OPTIMIZATION

30. }

31. void process_back_face(int sg, int dg, double *dTmax)

32. { // uses back_ghostzone[][]

. . .
33. }

34. int heat_conduction(void)

35. {

. . .
36. if((N/THREADS)==1)

37. {// for this particular case, ensure that initial
conditions are into ghostzones

38. update_ghostzones(sg);
39. upc_barrier;
40. }

41. do

42. {

. . .
43. upc_barrier;

. . .
44. update_ghostzones(dg); // dg is the up�to�date

grid[][][]
45. upc_barrier;

. . .
46. } while(finished == 0);

47. return nr_iter;

48. }

Parallel Binary Tree

In this study we present the use of locks to access and update a parallel tree data

structure. In the parallel binary tree we use the following data structure for the node

and access definitions:

struct tree_node {

shared struct tree_node *up, *left, *right;

shared void *data;

upc_lock_t *lock;

};

CASE STUDIES 133

shared struct tree_node insert_left

(shared struct tree_node *node, shared void *data);

shared struct tree_node insert_right

(shared struct tree_node *node, shared void *data);

upc_lock_t *find_node_lock

(shared struct tree_node *node);

shared struct tree_node trav_right

(shared struct tree_node *node);

shared struct tree_node trav_left

(shared struct tree_node *node);

shared struct tree_node trav_up

(shared struct tree_node *node);

The primitives of this data structure are to splice a new node into either the left or

right child of a given node and traverse up, left or right. The find_node_lock()

routine finds the next-higher node lock, as the density of locks in the tree is a

tunable parameter. Start with inserting a new item in a tree node:

upc_lock_t *find_node_lock (shared struct tree_node *node)

{

if (node�>lock)

return lock;

return find_node_lock (node�>up);

}

shared struct tree_node insert_left

(shared struct tree_node *node, shared void *data)

{

shared struct tree_node *new;

upc_lock_t *lock;

new = upc_local_alloc (1, sizeof struct tree_node);

new�>data = data;

if (this_node_needs_a_lock)

new�>lock = upc_lock_alloc();

else

new�>lock = NULL;

lock = find_node_lock (node);

upc_lock (lock);

134 PERFORMANCE TUNING AND OPTIMIZATION

new�>up = node;

new�>left = node�>left;

new�>right = 0;

new�>left�>up = new;

node�>left = new;

upc_unlock(lock);

return new;

}

shared struct tree_node trav_left

(shared struct tree_node *node)

{

upc_lock_t *lock;

shared struct tree_node *tmp;

lock = find_node_lock (node);

upc_lock (lock);

tmp = node�>left;

upc_unlcok (lock);

return tmp;

}

7.6 SUMMARY

This chapter focuses on optimizing UPC applications. Performance optimization

relies on understanding the general computer architecture and programming model

issues and trying to write code that masks out the weaknesses and exploits the

strengths of modern parallel computers. Many performance optimizations can be

performed automatically by compilers and run-time systems. However, some must

be done explicitly by the programmer. In a new language such as UPC, it will take

time to have compilers that relieve the programmer from the burden of doing hand

performance tuning. However, we expect, based on our experiences, that compilers

and run-time systems will continue to improve to the point that direct intervention

by the programmer will become minimal. Until this happens, programmers should

employ hand tunings that can perform self-processing of local data, privatization of

space, aggregation and prefetching of accesses, reduced synchronization when

possible, and load balancing.

EXERCISES

7.1 Integrate the privatization, then the aggregation optimizations, into the split-

phase heat conduction program described in Section 6.2.

EXERCISES 135

7.2 Measure the wall time taken by heat conduction processing (this is excluding

the time for initialization, displaying results, and producing the file output).

The wall time is measured using gettimeofday(). Time multiple versions

of the heat conduction problem as shown in Chapters 5, 6, and 7. Quantify the

impact of the optimizations over the execution time and the scalability.

7.3 Implement a parallel insert into a distributed binary search tree.

136 PERFORMANCE TUNING AND OPTIMIZATION

CHAPTER 8

UPC Libraries

Libraries provide standard toolsets and interfaces to perform common tasks con-

veniently by programmers while providing developers the opportunity to optimize

and improve the implementations of such tasks for efficient executions. The UPC

language has two standard libraries that will soon be integrated into the general

language specification. These are the collective library and the I/O library. The

collective library defines a set of collective communications and simple operations

that can reduce the development time of common and mundane tasks. The I/O

library defines parallel operations on files.

Libraries do not only make programming more convenient but also enable high

performance. Stating collective and I/O operations as standard application program

interfaces (APIs) allows the compiler developers to optimize at a very low level such

types of operations for the target architectures. They also provide the programmer

with the tools for hiding the latency associated with extensive communications and

I/O operations. Full specifications of the collective and I/O libraries are included in

Appendixes B and C, respectively. This chapter draws from the material in those

specifications to provide a quick summary of the two libraries. Interested readers

should refer to these appendixes for more information.

8.1 UPC COLLECTIVE LIBRARY

For many applications, UPC provides programmers with the ability to express

locality, which can provide for high-performance execution throughout the program

run. In other applications, data may be highly shared and perhaps used in different

phases of the program by different threads. Thus, a static distribution may not

provide what is needed for locality exploitation, and data redistribution may be

necessary. In addition, experience has shown that there are a number of common

operations that are used by a large percentage of applications and that require great

coordination among the threads. These operations have often been referred to as

collective communications operations or collective operations [WEI02].

UPC: Distributed Shared Memory Programming, by Tarek El-Ghazawi, William Carlson,
Thomas Sterling, and Katherine Yelick
Copyright # 2005 John Wiley & Sons, Inc.

137

The UPC specifications are augmented with a collective library that has been

approved by the consortium [SEI03]. To define the semantics of these operations,

including consistency implications and behavior, each collective operation can be

decomposed into three phases: action, notification, and wait. Each thread partici-

pating in a collective operation must pass through each of the phases. These phases

can be defined as follows. Action is the first phase of a collective operation, in

which all threads will be computing the results defined for the operation. According

to the nature of the task to be done, synchronizations can take place. On the other

hand, certain threads might not be doing anything. Notification occurs when a

thread finishes its share of the work. At that point it notifies all others threads of its

completion.Wait is the final phase of a collective operation. It occurs when a thread

notifies all others about the completion of its share of the work. In this case, the

thread can either wait (or not) for all others to notify. Such a barrier synchronization

ensures that all threads have completed their part of the collective operation.

However, for improved performance, the programmers can override this barrier if

the correctness of the result does not require it.

Thus, UPC offers three types of synchronization semantics for both the input

and output shared buffers prior to and after each collective function call. By specify-

ing UPC_IN_{NO, MY, ALL}SYNC and/or UPC_OUT_{NO, MY, ALL}SYNC,

the developer, can avoid unnecessary synchronization overheads.

Categories of Collective Operations

The current UPC v1.1 specifications already incorporate numerous collective opera-

tions in the field of shared memory allocation and synchronization, most of which

have been discussed in Chapters 5 and 6. The UPC collective library specification

augments the UPC language with additional collective functions that target data

relocalization and computational operations.

In this chapter, only new operations introduced by the collective library are

discussed. These operations are focused on two areas: the relocalization of

data, and common computational functions that integrate data from all threads.

Relocalization refers to shared data redistributions such that affinity of data is

reassigned. This can be useful when locality properties of data are good for one

phase of the execution but not for others. There, the UPC collective library is

including advanced relocalization functions, as permute, gather, or scatter to pro-

vide such capabilities easily to developers. Figures 8.1 through 8.5 illustrate all

the relocalization functions available in the UPC collective library.

� The upc_all_broadcast function (Figure 8.1) copies a block of memory

with affinity to a single thread to a block of shared memory on each thread.

� The upc_all_scatter function (Figure 8.2) copies the ith block of an

area of shared memory with affinity to a single thread to a block of shared

memory with affinity to the ith thread.

138 UPC LIBRARIES

Figure 8.1 Broadcast

Figure 8.2 Scatter

Figure 8.3 Gather to All Threads

UPC COLLECTIVE LIBRARY 139

� The upc_all_gather function (Figure 8.3) copies a block of shared

memory that has affinity to the ith thread to the ith block of a shared

memory area that has affinity to a single thread.

� The upc_all_exchange function (Figure 8.4) copies the ith block of

memory from a shared memory area that has affinity to thread j to the jth

block of a shared memory area that has affinity to thread i.

� The upc_all_permute function (Figure 8.5) copies a block of memory

from a shared memory area that has affinity to the ith thread to a block of a

shared memory that has affinity to thread perm [i].

The UPC collective library also provides computational operations, as reduce,

prefix reduce, and sort. Figure 8.6 illustrates a reduction operation.

exchange

ThreadTHREADS-1

…

Thread 1

Thread 0

ThreadTHREADS-1

…

Thread 1

Thread 0 A00

shared [THREADS] double A[THREADS][THREADS];
shared [THREADS] double B[THREADS][THREADS];

upc_all_exchange(B[0], A[0], 1*sizeof(double),
 UPC_ALL_INSYNC|UPC_ALL_OUTSYNC);

double

A01 A0TA0...

A10 A11 A1TA1...

… ……

AT0 ATTAT...

…

AT1

with T = THREADS-1

A00 A10 … AT0

A01 A11 … AT1

A0... A1... … AT...

A0T A1T … ATT

A B

Figure 8.4 Exchange

permute

ThreadTHREADS-1

…

Thread 1

Thread 0

ThreadTHREADS-1

…

Thread 1

Thread 0

shared [2] double A[THREADS][2];
shared [2] double B[THREADS][2];
shared int v[THREADS];

v[MYTHREAD] = (MYTHREAD+1)%THREADS;
upc_all_permute (B[0], A[0], v, 2*sizeof(double),
 UPC_ALL_INSYNC|UPC_ALL_OUTSYNC);

double

with T = THREADS-1

A B

A0

A2

…

A2T-1

A1

A3

…

A2T

perm vect v[]

A0

…

A2T-1

A1

…

A2T

A2T-3A2T-2

Figure 8.5 Permute

140 UPC LIBRARIES

8.2 UPC-IO LIBRARY

The UPC-IO API [ELG04] is designed in a manner consistent with the spirit of

the UPC language to provide application developers with a consistent and logical

programming environment. This library leverages the wealth of work that has

already been performed by the parallel I/O community, particularly the parallel I/O

API in MPI-2, commonly known as MPI-IO [MPI97].

I/O is known to be a major bottleneck compared with the dramatically increas-

ing processing capabilities. This problem becomes more significant for massively

parallel computers where I/O requirements are orders of magnitude higher than

conventional computers. Parallel I/O subsystems can provide the ability to increase

I/O bandwidth through reading and writing data in parallel. The application soft-

ware, however, must have access to an I/O API of an optimized I/O library imple-

mentation in order to exploit parallel I/O opportunities in the underlying system.

In the absence of an effective parallel I/O API, parallel programs have two

options. The first is to allow each executing thread to handle its own file I/O inde-

pendently. This results in many inefficient and redundant operations. The other

option is to delegate the I/O of all threads to only one dedicated thread. This I/O

thread can then read and distribute data to other threads that need the data. It can

also collect write requests from the other threads and perform them on their behalf.

This approach is not efficient and can create a performance bottleneck.

Parallel I/O in Parallel Programming

From the user’s perspective, parallel I/O [INT95, MAY00] can be viewed as the

ability to access concurrently (read or write) a single file from multiple threads in an

efficient manner. To accomplish this, an API specifically designed for parallel I/O

concepts that enable performance optimizations and define the consistency seman-

tics in the presence of concurrent writes is needed. Typical performance opti-

mizations include support for collective I/O (i.e., the semantics to specify how a

reduce

ThreadTHREADS-1

…

Thread 1

Thread 0

ThreadTHREADS-1

…

Thread 1

Thread 0

shared [4] double A[THREADS][4];
shared double B[4];

upc_all_reduceD(B, A[0], UPC_SUM,
 4, THREADS*4, NULL,
 UPC_ALL_INSYNC | UPC_ALL_OUTSYNC);

double

A B

B0A00 A01 A03A02

A10 A11 A13A12

… ……

AT0 AT3AT2

…

AT1

B1

Bj

BT

with T = THREADS-1

A[i][j] with 0 ≤ j ≤ 3,B
T

i=0
j ∑=

= 0 otherwise

Figure 8.6 Reduction Collective Operation

UPC-IO LIBRARY 141

group of threads access a file simultaneously) and support for noncontiguous

accesses. UPC-IO is designed to embody these features.

UPC Perspective of Parallel I/O

Any parallel I/O interface has to consider several design issues. Some of the design

issues and rationale for constructing the I/O API, discussed next, were influenced

primarily by the UPC design philosophy and concepts.

Library-Based Versus Operating System-Based I/O

Implementations of parallel I/O in a programming paradigm can be operating

system–based or library-based. OS-based interfaces are powerful because of their

direct access to low-level operating system services. The problem, however, is that

of portability, as operating systems vary from one vendor to another. One example

of such an interface is the Intel Paragon File System (PFS) [INT95]. Library-based

interfaces, on the other hand, are generally available for multiple platforms. One

good example of a library-based I/O interface is MPI-IO [MPI97]. As UPC is

designed to run across multiple platforms from different vendors, the clear choice

is to design our interface as a library API, which can be implemented and opti-

mized by the respective vendors.

Collective I/O Functions

When multiple threads are involved, file I/O primitives can be called by a single

thread or by a group of threads. When multiple threads are calling, the calls could

be independent or collective. Furthermore, in a collective call, an I/O library may

allow all or only a group of threads to participate. Independent functions allow

threads to read or write data at any time and location, without dependencies among

the threads. On the other hand, collective file accesses mean that a group of threads,

or all threads, read or write data concurrently and in coordination with one another,

allowing substantial opportunities for optimizations.

UPC-IO supports only collective I/O functions. That is, all threads must call

the UPC-IO functions. In case a thread needs to access a file independently, it can

use the regular C/POSIX I/O functions. A file must not, however, be open concur-

rently by using C/POSIX I/O and UPC-IO. Data consistency is not guaranteed in

such a case. Collective I/O operations in UPC-IO are defined over all threads only.

This is because the UPC language specification does not support collective opera-

tions over a group of threads.

File Accessing and File Pointers

Collective UPC-IO accesses can be done in and out of shared and private buffers;

thus, private and shared reads and writes are generally supported. In each of these

cases, file pointers could be either common or individual. File pointer modes are

142 UPC LIBRARIES

specified by passing a flag to the collective upc_all_fopen function and can

be changed using upc_all_fcntl. When a common file pointer is used, all

threads positioned in the file will be aligned with that common file pointer and

based on their thread id. When a file is opened with an individual file pointer flag,

each thread gets its own file pointer and advances through the file at its own pace.

Examples 8.1 through 8.3 and provide examples of UPC-IO functions and

their use.

Example 8.1

1. double buffer [10]; // and assuming a total of 4 THREADS

2. upc_file_t *fd;

3. fd ¼ upc_all_fopen("file", UPC_RDONLY j UPC_INDIVIDUAL_FP,
0, NULL);

4. upc_all_fseek(fd, 5*MYTHREAD*sizeof(double), UPC_SEEK_SET);

5. upc_all_fread_private(fd, buffer, sizeof(double), 10, 0);

6. upc_all_fclose(fd);

Figure 8.8 represents Example 8.1, which considers a collective read operation.

Each thread reads a block of data into a private buffer from a particular thread-

specific offset. Figure 8.9 illustrates how the file is viewed in Example 8.1. The data

read is stored in a shared buffer having a block size of five elements. The user

selects the type of file pointer at file-open time. By default, individual file pointers

are used. The user can select the common file pointer by passing the flag

UPC_SHARED_FP to upc_all_fopen.

Figure 8.7 UPC-IO File Access Methods

UPC-IO LIBRARY 143

Example 8.2

1. shared [5] float buffer [20]; // and assuming a total of 4

static THREADS

2. upc_file_t *fd;

3. fd ¼ upc_all_fopen("file", UPC_RDONLY j UPC_COMMON_FP,
0, NULL);

4. upc_all_fread_shared(fd, buffer, 5, sizeof(float), 20,

UPC_ALL_SYNC);

The list I/O functions allow the user to specify noncontiguous accesses in both

memory and file in the form of lists of explicit offsets and lengths in the file and

explicit address and lengths in memory. None of the file pointers are used or

updated in this case. An example of a program that uses list I/O is Example 8.3. The

resulting data transfer is illustrated in Figure 8.10.

Example 8.3

1. upc_local_memvec_t memvec [2];

2. upc_filevec_t filevec [2];

3. upc_file_t *fd;

Thread 3
File offset = 15*sizeof(double)

Thread 0
File offset = 0

Thread 1
File offset = 5*sizeof(double)

Thread 2
File offset = 10*sizeof(double)

0 19 …

FileDouble

Figure 8.8 Collective Read into Private Can Provide Canonical File View

Thread 0 Thread 1 Thread 2 Thread 3

Current file offset = 0

0 19
…File

Float

Figure 8.9 Read into a Blocked Shared Buffer Can Provide a Partitioned File View

144 UPC LIBRARIES

4. char buffer [12];

5. fd = upc_all_open("file",

UPC_RDONLY j UPC_INDIVIDUAL_FP, 0, NULL);

6. memvec [0].baseaddr = &buffer [0];

7. memvec [0].len = 4;

8. memvec [1].baseaddr = &buffer [7];

9. memvec [1].len = 3;

10. filevec [0].offset = MYTHREAD*5;

11. filevec [0].len = 2;

12. filevec [1].offset = 10+MYTHREAD*5;

13. filevec [1].len = 5;

14. upc_all_fread_list_local(fd, 2, &memvec, 2, &filevec,

UPC_OUT_ALLSYNC);

Synchronous and Asynchronous I/O

I/O operations can be synchronous (blocking) or asynchronous (nonblocking).

Whereas synchronous calls are quite simple and easy to use from a programm-

ing point of view, asynchronous operations allow the overlapping of computation

and I/O to achieve improved performance. Synchronous calls block and wait until

the corresponding I/O operation is completed. On the other hand, an asynchronous

call starts an I/O operation and returns immediately. Thus, the executing process

can turn its attention to other processing needs while the I/O is progressing.

UPC-IO supports both synchronous and asynchronous I/O functions. The asyn-

chronous I/O functions have the same syntax as their synchronous counterparts,

with the addition of ‘‘async’’ in their names. The asynchronous I/O functions have

the restriction that only one (collective) asynchronous operation can be active at a

time on a given file descriptor. That is, an asynchronous I/O function must be

completed by calling upc_all_ftest_async or upc_all_fwait_async

before another asynchronous I/O function can be called on the same file descriptor.

(Offset in buffer)

THREAD 0 THREAD 1

…File:

10 5 6 10 11 12 13 14 15 16 17 18 19 (Offset in file)

0 1 2 3 7 8 9 0 1 2 3 7 8 9

Figure 8.10 List I/O Read of Noncontiguous Parts of a File to Private Noncontiguous

Buffers

UPC-IO LIBRARY 145

Consistency and Atomicity Semantics

The consistency semantics define when the data written to a file by a thread is

visible to other threads. The atomicity semantics define the outcome of operations

in which multiple threads write concurrently to a file and some of the writes overlap

each other. For performance reasons, UPC-IO, by default, supports weak consis-

tency and atomicity semantics. The user can select strong semantics by passing the

flags UPC_STRONG_CA to upc_all_fopen.

The consistency semantics also define the outcome in the case of overlapping

reads into a shared buffer in memory when using private file pointers or list I/O

functions. By default, the data in the overlapping space is undefined. If the user

selects the UPC_STRONG_CA mode, the result would be as if the individual read

functions from each thread occurred atomically in some (unspecified) order. In that

case, the atomicity is guaranteed at the UPC-IO function level. The entire operation

specified by a single function is performed atomically, regardless of whether it

represents a single, contiguous read/write or multiple noncontiguous reads or writes

as in a list I/O function.

8.3 SUMMARY

The UPC programming language embodies two standard libraries, one for

collective operations and the other for parallel I/O. The collective operations

library focuses on data relocalization, which is to redistribute the data or reassign

its affinity. These operations are quite helpful when the initial data distribution

cannot effectively serve all phases of the application, and each phase can benefit

from a different distribution. The collective operations library also includes

mathematical functions that can help integrate results from the computing

threads. The I/O library supports collective reads and writes into and from a file

effectively. It provides for contiguous as well as list I/O. Both synchronous and

asynchronous versions of the calls are provided in order to hide IO latencies when

possible.

146 UPC LIBRARIES

REFERENCES

[ALV90] Alverson, Robert; Callahan, David; Cummings, Daniel; Koblenz, Brian;

Porterfield, Allan; Smith, Burton; The Tera computer system, Proceedings of the 4th

International Conference on Supercomputing, Amsterdam, The Netherlands, June 11–15,

1990, pp. 1–6.

[BUT97] Butenhof, David R.; Programming with POSIX Threads, Addison-Wesley, Reading,

MA, 1997.

[CAR99] Carlson, William; Draper, Jesse; Culler, David; Yelick, Kathy; Brooks, Eugene;

Warren, Karen; Introduction to UPC and Language Specification, CCS-TR-99-157, IDA/

CCS, Bowie, MD, May 1999.

[CUL93] Culler, David E.; Dusseau, Andrea; Goldstein, Seth Copen; Krishnamurthy, Arvind;

Lumetta, Steven; von Eicken, Thorsten; Yelick, Katherine; Parallel programming in Split-

C, Proceedings of Supercomputing ’93, November 1993, pp. 262–273.

[DIJ71] Dijkstra, EdsgerW.,Hierarchical Ordering of Sequential Processes, Acta Informatica

1, 115–138, Springer-Verlag, 1971.

[ELG01] El-Ghazawi, Tarek; Carlson, William; Draper, Jesse; UPC Language Specifications

v1.0, http://upc.gwu.edu, February 2001.

[ELG03] El-Ghazawi, Tarek; Carlson, William; Draper, Jesse; UPC Language Specifications

v1.1, http://upc.gwu.edu, October 2003.

[ELG04] El-Ghazawi, Tarek; Cantonnet, Francois; Saha, Proshanta; Thakur, Rajeev; Ross,

Rob; Bonachea, Dan; UPC-IO: A Parallel I/O API for UPC v1.0, July 2004, http://

upc.gmu.edu.

[HPF97] High Performance Fortran Forum; High Performance Fortran Language

Specification, version 2.0, January 1997, http://dacnet.rice.edu/Depts/CRPC/HPFF/index.

cfm.

[HU00] Hu, Y. Charlie; Lu, Honghui; Cox, Alan L.; Zwaenepoel, Willy; OpenMP for networks

of SMPs, Journal of Parallel and Distributed Computing, Vol. 60, No. 12, pp. 1512–1530,

December 2000.

[HWA98] Hwang, Kai; Xu, Zhiwei; Scalable Parallel Computing: Technology, Architecture,

Programming, WCB/McGraw-Hill, New York, 1998.

[INT95] Intel Scalable Systems Division, Paragon System User’s Guide, Order Number

312489-004, May 1995, Hillsboro, OR.

[ISO99] ISO/IEC 9899:1999, Programming Languages—C, ISO/IEC, December 1999,

Geneva, Switzerland.

UPC: Distributed Shared Memory Programming, by Tarek El-Ghazawi, William Carlson,
Thomas Sterling, and Katherine Yelick
Copyright # 2005 John Wiley & Sons, Inc.

147

[LAM74] Lamport, Lessie; A new solution of Dijkstra’s concurrent programming problem,

Communications of the ACM, Vol. 17, No. 8, pp. 453–455, 1974.

[MAY00] May, John; Parallel I/O for High Performance Computing, Morgan Kaufmann, San

Francisco, October 2000.

[MPI94] Message Passing Interface Forum; MPI: a message-passing interface standard,

International Journal of Supercomputer Applications, Vol. 8, No. 3/4, pp. 157–416,

1994, special issue on MPI.

[MPI97] Message Passing Interface Forum; MPI-2: Extensions to the Message-Passing

Interface, July 18, 1997, http://www.mpi-forum.org.

[NAS97] Nastea, Sorin G.; Frieder, Ophir; El-Ghazawi, Tarek; Load-balanced sparse matrix–

vector multiplication on parallel computers, Journal of Parallel and Distributed Comput-

ing, Vol. 46, No. 2, pp. 180–193, 1997.

[NPB03] NASA Advanced Supercomputing; NAS Parallel Benchmark Suite, http://www.nas.-

nasa.gov/Software/NPB, 2003.

[NTM04] Combined research and curriculum development; nontraditional manufacturing

(NTM), Modeling of Laser Machining Process, Chapter 3.5, Columbia University, http://

www.columbia.edu/cu/mechanical/mrl/ntm/pgIndex.html, June 27, 2004.

[OPE97] OpenMP Standards Boards;OpenMP: A Proposed Industry Standard API for Shared

Memory Programming, http://www.openmp.com, October 1997.

[QUA03] Quadrics Ltd.; Elan Programming Manual, Edition 5.1, Quadrics, November

2003, Bristol, UK.

[ROS87] Rose, John R.; Steele, Guy L.; C*: an extended C language for data parallel

programming, Lana P. and Steven I. Kartashev, editors, Proceedings of the 2nd Inter-

national Conference on Supercomputing, Vol. H, International Supercomputing Institute,

Santa Clara, CA, May 1987, pp. 2–16.

[SEI03] Seidel, Steven; Greenberg, David; Wiebel, Elizabeth; UPC Collective Operations

Specifications v1.0, http://www.gwu.edu/upc/docs/UPC_Coll_Spec_V1.0.pdf December

2003.

[SNI98] Snir, Marc; Gropp, William; MPI: The Complete Reference, MIT Press, Cambridge,

MA, 1998.

[STE01] Sterling, Thomas; Beowulf Cluster Computing with Linux, MIT Press, Cambridge,

MA, 2001.

[WEI02] Wiebel, Elisabeth; Greenberg, David; Collective Operations in UPC, draft, August

2002.

148 REFERENCES

APPENDIX A

UPC Language Specifications, v1.1.1

Tarek A. El-Ghazawi, William W. Carlson, and Jesse M. Draper

Introduction

1 Scope

2 Normative References

3 Terms, Definitions, and Symbols

3.1 Access

3.1.1 Local Access

3.1.2 Private Access

3.1.3 Remote Access

3.2 Affinity

3.3 Shared Object

3.4 Pointer-to-Shared

3.5 Thread

3.6 Collective

3.7 Single-Valued

3.8 Phase

4 Conformance

5 Environment

5.1 Conceptual Models

5.1.1 Translation Environment

5.1.2 Execution Environment

6 Language

6.1 Notation

6.2 Predefined Identifiers

6.2.1 THREADS

UPC: Distributed Shared Memory Programming, by Tarek El-Ghazawi, William Carlson,
Thomas Sterling, and Katherine Yelick
Published 2005 John Wiley & Sons, Inc.

149

6.2.2 MYTHREAD

6.2.3 UPC_MAX_BLOCK_SIZE

6.3 Expressions

6.3.1 upc_localsizeof Operator

6.3.2 upc_blocksizeof Operator

6.3.3 upc_elemsizeof Operator

6.3.4 Pointer-to-Shared Arithmetic

6.3.5 Cast and Assignment Expressions

6.3.6 Address Operators

6.4 Declarations

6.4.1 Type Qualifiers

6.4.2 Shared and Reference Type Qualifiers

6.4.3 Declarators

6.5 Statements and Blocks

6.5.1 Barrier Statements

6.5.2 Iteration Statements

6.6 Preprocessing Directives

6.6.1 UPC Pragmas

6.6.2 Predefined Macro Names

7 Library

7.1 Standard Headers

7.2 UPC Utilities <upc.h>

7.2.1 Termination of All Threads

7.2.2 Shared Memory Allocation Functions

7.2.3 Pointer-to-Shared Manipulation Functions

7.2.4 Lock Functions

7.2.5 Shared String-Handling Functions

Acknowledgments

References

INTRODUCTION

1. UPC is a parallel extension to the C Standard. UPC follows the distributed

shared memory programming paradigm. The first version of UPC, known as

version 0.9, was published in May 1999 as a technical report [1] at the

Institute for Defense Analyses Center for Computing Sciences.

150 UPC LANGUAGE SPECIFICATIONS, V1.1.1

2. Version 1.0 of UPC was discussed initially at the UPC workshop held in

Bowie, Maryland, May 18–19, 2000. The workshop had about 50 participants

from industry, government, and academia. This version was adopted with

modifications in the UPC miniworkshop meeting held during Supercompu-

ting 2000 in November 2000 in Dallas, and finalized in February 2001.

3. Version 1.1 of UPC was discussed initially at the UPC workshop held in

Washington, DC, March 3–5, 2002, and finalized in March 2003.

1 SCOPE

1. This document focuses on the UPC specifications that extend the C Stan-

dard to an explicit parallel C based on the distributed shared memory model.

All C specifications from ISO/IEC 9899 [2] are considered a part of these

UPC specifications, so are not addressed in this document.

2. Small parts of the C Standard [2] may be repeated for self-containment and

clarity of a subsequent UPC extension definition.

2 NORMATIVE REFERENCES

1. The following document and its identified normative references in addition

to these documents constitute provisions of these UPC specifications. This

will not apply to subsequent revisions of this document.

Table 1 Mapping UPC Sections to C Standard

Specifications Sections

UPC Specifications C Standard Specifications

Section Section

1 1

2 2

3 3

4 4

5 5

6 6

6.1 6.1

6.2 6.4.2.2

6.3 6.5

6.3.6 6.5.3.1

6.4 6.7

6.4.1 6.7.3

6.4.3 6.7.5

6.5 6.8

6.6 6.10

7 7

7.1 7.1.2

NORMATIVE REFERENCES 151

2. ISO/IEC 9899: 1999(E), Programming Languages—C [2].

3. The section numbering of this document is consistent with the previous

document [2]. The correspondence between the section of this document and

the previous document is given in Table 1.

4. In the beginning of each UPC specifications section, the corresponding C

Standard [2] section is noted.

3 TERMS, DEFINITIONS, AND SYMBOLS

1. For the purpose of these specifications, the following definitions apply.

2. Other terms are defined where they appear in italic type or on the left-hand

side of a syntactical rule.

3.1 Access

Access is the <execution-time action> to read or modify the value of an object by

a thread.

3.1.1 Local Access This is the <execution-time action> to read or modify,

by a given thread, the value of an object in either the private space of that thread or

in the shared address locations that have affinity to that thread.

3.1.2 Private Access This is the <execution-time action> to read or

modify, by a given thread, the value of an object in the private address space of

that thread.

3.1.3 Remote Access This is the <execution-time action> to read or modify,

by a given thread, the value of an object whose address is in the shared address

space portion that has affinity to the other threads.

3.2 Affinity

Affinity is a logical association of a portion of the shared address space with a

given thread.

3.3 Shared Object

A shared object resides in the shared address space.

3.4 Pointer-to-Shared

Pointer-to-shared denotes a pointer to a shared object.

152 UPC LANGUAGE SPECIFICATIONS, V1.1.1

3.5 Thread

A thread is a program task in execution with access not only to a private memory

space, but also to a shared memory space that can be accessed by other threads.

3.6 Collective

A collective is a requirement placed on some language operations that constrains

evaluation of such operations to be matched1 across all threads. The behavior of

collective operations is undefined unless all threads execute the same sequence of

collective operations.

3.7 Single-Valued

A single-valued operand to a collective operation that has the same value on every

thread. The behavior of the operation is otherwise undefined.

3.8 Phase

In a phase, an unsigned integer value is associated with a pointer-to-shared which

indicates the element offset within an affinity block; used in pointer-to-shared

arithmetic to determine affinity boundaries.

4 CONFORMANCE

1. In this document, ‘‘shall’’ is to be interpreted as a requirement on a UPC

implementation; conversely, ‘‘shall not’’ is to be interpreted as a prohibition.

2. If a ‘‘shall’’ or ‘‘shall not’’ requirement of a constraint is violated, the behavior

will be undefined. Undefined behavior is indicated by ‘‘undefined behavior’’

or by the omission of any explicit definition of behavior from the UPC

specification.

5 ENVIRONMENT

5.1 Conceptual Models

5.1.1 Translation Environment

5.1.1.1 Threads Environment A UPC program is translated under either a

‘‘static THREADS’’ environment or a ‘‘dynamic THREADS’’ environment. Under

1A collective operation need not provide any actual synchronization between threads unless otherwise

noted. The collective requirement simply states a relative ordering property of calls to collective

operations that must be maintained in the parallel execution trace for all executions of any legal program.

Some implementations may include unspecified synchronization between threads within collective

operations, but programs must not rely on such unspecified synchronization for correctness.

ENVIRONMENT 153

the static THREADS environment, the number of threads to be used in execution is

indicated to the translator in an implementation-defined manner. If the actual

execution environment differs from this number of threads, the behavior of the

program is undefined.

5.1.2 Execution Environment

1. This section provides the UPC parallel extensions of Section 5.1.2 of [2].

2. Each thread has local data storage on which it operates and which is logically

divided into a private portion and a shared portion. All accesses to objects in

the private portion of data storage are exactly as described in [2].

3. Each thread may access shared data that has affinity to any thread; the

semantics of these accesses are described herein.

4. There is an implicit upc_barrier at program startup and termination.

Except as specified explicitly by upc_barrier operations or by certain

library functions (all of which are documented explicitly), there are no other

barrier synchronization guarantees among the threads.

Forward reference: upc_barrier (6.5.1).

5.1.2.1 Program Startup In the execution environment of a UPC program,

derived from the hosted environment as defined in the C Standard [2], each thread

calls the UPC program’s main() function.2

5.1.2.2 Program Termination

1. A program is terminated by the termination of all the threads3 or a call to the

function upc_global_exit().

2. Thread termination follows the C Standard definition of program termination

in Section 5.1.2.2.3 of [2]. A thread is terminated by reaching the } that

terminates the main function, by a call to the exit function, or by a return

from the initial main. Note that thread termination does not imply the comp-

letion of all I/O and that shared data allocated by a thread either statically or

dynamically shall not be freed before UPC program termination.

Forward reference: upc_global_exit (7.2.1).

5.1.2.3 Program Execution

1. References to shared objects shall be either strict or relaxed. For relaxed

references there is no change to the C Standard execution model as applied to

2 For example, in the program main(){printf("hello");}, each thread prints hello.
3 A barrier is inserted automatically at thread termination.

154 UPC LANGUAGE SPECIFICATIONS, V1.1.1

an individual thread. This implies that translators are free to reorder and/or

ignore operations (including shared operations) as long as the restrictions

found in Section 5.1.2.3 of [2] are observed.

2. A further restriction applies to strict references. For each strict reference, the

restrictions found in Section 5.1.2.3 of [2] must be observed with respect to

all threads if that reference is eliminated (or reordered with respect to all

other shared references in its thread).

3. Equally, the behavior of strict shared references can be defined as follows.

Label each access to a shared object S(i,j) or R(i,j), where S represents

a strict shared access (read or modify), R represents a relaxed shared access

(read or modify), i is the thread number making the access, and j is an

integer that increases monotonically as evaluation of the program (in the

abstract machine) proceeds from startup through termination. The ‘‘abstract

order’’ is a partial ordering of all accesses by all threads such that an access

x(a,b) occurs before y(c,d) in the ordering if a==c and b < d. The

‘‘actual order (k)’’ for thread k is another partial order in which x(a,b)

occurs before y(c,d) if thread k observes the x access before it observes

the y access. A thread observes all accesses present in the abstract order

which affect either the data written to files by it or its input and output

dynamics as described in Section 5.1.2.3 of [2]. The least requirements on a

conforming implementation are that:

� x(a,b) must ‘‘occur before’’ y(c,d) in actual order (e) if a==c and a==e

and b < d

� x(a,b) must ‘‘occur before’’ y(c,d) in actual order (e) if a==c and b < d

and ((x==S) or (y==S)), for all e

unless such a restriction has no effect on either the data written into files

at program termination OR the input and output dynamics requirements

described in Section 5.1.2.3 of [2].

6 LANGUAGE

6.1 Notation

1. In the syntax notation used in this clause, syntactic categories (nonterminals)

are indicated by italic type, and literal words and character set members

(terminals) by bold type. A colon (:) following a nonterminal introduces its

definition. Alternative definitions are listed on separate lines, except when

prefaced by the words ‘‘one of.’’ An optional symbol is indicated by the

subscript ‘‘opt,’’ so that

fexpressionoptg

LANGUAGE 155

indicates an optional expression enclosed in braces.

2. When syntactic categories are referred to in the main text, they are not italic-

ized and words are separated by spaces instead of hyphens.

6.2 Predefined Identifiers

This section provides the UPC parallel extensions of Section 6.4.2.2 of [2].

6.2.1 THREADS THREADS is a value of type int; it specifies the number of

independent computational units and has the same value on every thread. Under the

static THREADS translation environment, THREADS is an integer constant suitable

for use in #if preprocessing directives.

6.2.2 MYTHREAD MYTHREAD is a value of type int; it specifies the unique

thread index. The range of possible values is 0..THREADS-1.4

6.2.3 UPC_MAX_BLOCK_SIZE UPC_MAX_BLOCK_SIZE is a predefined

integer constant value. It indicates the maximum value5 allowed in a layout

qualifier for shared data. It shall be suitable for use in #if preprocessing directives.

6.3 Expressions

This section provides the UPC parallel extensions of Section 6.5 of [2].

6.3.1 upc_localsizeof Operator

upc_localsizeof unary–expression

upc_localsizeof (type–name)

Constraints The upc_localsizeof operator shall apply only to shared-

qualified expressions or shared-qualified types. All constraints on the sizeof

operator [2, Section 6.5.3.4] also apply to this operator.

Semantics

1. The upc_localsizeof operator returns the size, in bytes, of the local

portion of its operand, which may be a shared object or a shared-qualified

type. It returns the same value on all threads; the value is the maximum of the

size allocated to objects with affinity to any single thread. The result of

upc_localsizeof is a compile-time constant.

4 For example, the program main() { printf("%d",MYTHREAD); } prints the numbers 0 through

THREADS-1, in some order.
5 For example, shared [UPC_MAX_BLOCK_SIZE + 1] char x[UPC_MAX_BLOCK_SIZE + 1] and

shared [*] char x[(UPC_MAX_BLOCK_SIZE + 1)*THREADS] are compile errors.

156 UPC LANGUAGE SPECIFICATIONS, V1.1.1

2. The type of the result is size_t.

3. If the operand is an expression, that expression is not evaluated.

6.3.2 upc_blocksizeof Operator

upc_blocksizeof unary–expression

upc_blocksizeof (type–name)

Constraints The upc_blocksizeof operator shall apply only to shared-

qualified expressions or shared-qualified types. All constraints on the sizeof

operator [2, Section 6.5.3.4] also apply to this operator.

Semantics

1. The upc_blocksizeof operator returns the block size of the operand,

which may be a shared object or a shared-qualified type. The block size is the

value specified in the layout qualifier of the type declaration. If there is no

layout qualifier, the block size is 1. The result of upc_blocksizeof is a

compile-time constant.

2. If the operator of upc_blocksizeof has indefinite block size, the value of

upc_blocksizeof is 0.

3. The type of the result is size_t.

4. If the operand is an expression, that expression is not evaluated.

Forward reference: indefinite block size (6.4.2).

6.3.3 upc_elemsizeof Operator

upc_elemsizeof unary–expression

upc_elemsizeof (type–name)

Constraints The upc_elemsizeof operator shall apply only to shared-

qualified expressions or shared-qualified types. All constraints on the sizeof

operator [2, Section 6.5.3.4] also apply to this operator.

Semantics

1. The upc_elemsizeof operator returns the size, in bytes, of the

highest-level (leftmost) type that is not an array. For nonarray objects,

upc_elemsizeof returns the same value as sizeof. The result of

upc_elemsizeof is a compile-time constant.

2. The type of the result is size_t.

3. If the operand is an expression, that expression is not evaluated.

LANGUAGE 157

6.3.4 Pointer-to-Shared Arithmetic

1. When an expression that has integer type is added to or subtracted from a

pointer-to-shared, the result has the type of the pointer-to-shared operand. If

the pointer-to-shared operand points to an element of a shared array object

and the shared array is large enough, the result points to an element of the

shared array. If the shared array is declared with indefinite block size, the

result of the pointer-to-shared arithmetic is identical to that described for

normal C pointers in Section 6.5.6 of [2], except that the thread of the new

pointer shall be the same as that of the original pointer and the phase compo-

nent is defined always to be zero. If the shared array has a definite block size,

the following example describes pointer arithmetic:

shared [B] int *p, *p1; /* B a positive integer */ int i;

p1 = p + i;

2. After this assignment, the following equations must hold in any UPC imple-

mentation. In each case the div operator indicates integer division round-

ing toward negative infinity, and the mod operator returns the nonnegative

remainder6:

upc_phaseof(p1) == (upc_phaseof(p) + i) mod B

upc_threadof(p1) == (upc_threadof(p)

+ (upc_phaseof(p) + i) div B) mod THREADS

3. In addition, the correspondence between shared and private addresses and

arithmetic is defined using the following constructs:

T *P1, *P2;

shared T *S1, *S2;

P1 = (T*) S1; /* legal if S1 has affinity to MYTHREAD */

P2 = (T*) S2; /* legal if S2 has affinity to MYTHREAD */

4. For all S1 and S2 that point to two distinct elements of the same shared array

object which have affinity to the same thread:

� S1 and P1 shall point to the same object.

� S2 and P2 shall point to the same object.

� The expression ((upc_addrfield (S2) - upc_addrfield (S1)) shall

evaluate to the same value as ((P2 - P1) * sizeof(T)).

6 The C ‘‘%’’ and ‘‘/’’ operators do not have the necessary properties.

158 UPC LANGUAGE SPECIFICATIONS, V1.1.1

� If S1< S2, then upc_addrfield(S1) shall be < upc_addrfield(S2)

otherwise upc_addrfield(S1) shall be > upc_addrfield(S2).

5. Two compatible pointers-to-shared that point to the same object (i.e.,

having the same address and thread components) shall compare as equal

according to ¼¼ and !¼, regardless of whether the phase components

match.

Forward References: upc_threadof (7.2.3.1), upc_phaseof (7.2.3.2),

upc_addrfield (7.2.3.4).

6.3.5 Cast and Assignment Expressions

Constraints

1. A shared type qualifier shall not appear in a type cast of an object that is not

shared-qualified, with the exception of the null pointer-to-shared.7

2. The cast of a pointer-to-shared to a pointer-to-private by a thread not having

affinity with the referenced object has an undefined result.

Semantics

1. The casting or assignment from one pointer-to-shared to another in which

either the type size or block size differs results in a pointer with a zero phase

unless one of the types is ‘‘shared void *,’’ the generic pointer-to-shared.

2. If a generic pointer-to-shared is cast to a nongeneric pointer-to-shared type

with indefinite block size or with block size of 1, the result is a pointer with a

phase of zero. Otherwise, if the phase of the former pointer value is not within

the range of possible phases of the latter pointer type, the result is undefined.

3. If a pointer-to-shared is cast8 to a pointer-to-private9 and the affinity of the

shared data is not to the current thread, the result is undefined.

4. After the assignment

shared [B] T *s;

s = 0;

s is a null pointer-to-shared,10 and the operators upc_threadof(s) and

upc_phaseof(s) evaluate to zero for all block sizes B.

7 That is, pointers-to-private cannot be cast to pointers-to-shared.
8 As such pointers are not type compatible, explicit casts are required.
9References through such cast pointers behave exactly as if they were accesses to private objects.
10 Sections 6.3.2.3 and 6.5.16.1 of [2] imply that an implicit cast is allowed for zero and that all null

pointers-to-shared compare equal.

LANGUAGE 159

6.3.6 Address Operators

Semantics When the unary & is applied to a shared structure element of type T,

the result has type shared [] T *.

6.4 Declarations

UPC extends the declaration ability of C to allow shared types, shared data layout

across threads, and ordering constraint specifications.

Constraints

1. The declaration specifiers in a given declaration shall not include, either

directly or through one or more typedefs, both strict and relaxed.

2. The declaration specifiers in a given declaration shall not specify

more than one block size, either directly or indirectly through one or

more typedefs.

Syntax

1. The following is the declaration definition according to Section 6.7 of [2],

repeated here for self-containment and clarity of the subsequent UPC

extension specifications.

2. declaration:

declaration-specifiers init-declarator-listopt;

3. declaration-specifiers:

storage-class-specifier declaration-specifiersopt
type-specifier declaration-specifiersopt

type-qualifier declaration-specifiersopt

function-specifier declaration-specifiersopt

4. init-declarator-list:

init-declarator

init-declarator-list, init-declarator

5. init-declarator:

declarator

declarator = initializer

Forward reference: strict and relaxed type qualifiers (6.4.2).

6.4.1 Type Qualifiers This section provides the UPC parallel extensions of

Section 6.7.3 of [2].

160 UPC LANGUAGE SPECIFICATIONS, V1.1.1

Syntax

type-qualifier:

const
restrict
volatile
shared-type-qualifier

reference-type-qualifier

6.4.2 Shared and Reference Type Qualifiers

Syntax

1. shared-type-qualifier:

shared layout-qualifieropt

2. reference-type-qualifier:

relaxed

strict

3. layout-qualifier:

[constant-expressionopt]

[*]

Constraints

1. A reference type qualifier shall appear in a qualifier list only when the list

also contains a shared type qualifier.

2. A shared type qualifier can appear anywhere that a type qualifier can appear

except that it shall not appear in the specifier qualifier list of a structure

declaration unless it qualifies a pointer type.

3. A layout qualifier of [*] shall not appear in the declaration specifiers of a

pointer.

4. A layout qualifier shall not appear in the type qualifiers for a pointer to void type.

Semantics

1. An object that has shared-qualified type is a shared object.

2. References to shared objects, either directly or via pointer-to-shared indirec-

tion, shall be either strict or relaxed. Strict and relaxed references behave as

described in Section 5.1.2.3 of this document.

3. A reference shall be determined to be strict or relaxed as follows. If the

referenced type is strict-qualified or relaxed-qualified, the reference shall be

strict or relaxed, respectively. Otherwise, the reference shall be determined to

LANGUAGE 161

be strict or relaxed by the UPC pragma rules, as described in Section 6.6.1 of

this document.

4. The layout qualifier dictates the blocking factor for the type being shared

qualified. This factor is the nonnegative number of consecutive elements

(when evaluating pointer-to-shared arithmetic and array declarations) that

have affinity to the same thread. If the optional constant expression is 0 or is

not specified, all objects have affinity to the same thread. If there is no layout

qualifier, the blocking factor has the default value (1). The blocking factor is

also referred to as the block size.

5. A layout qualifier indicating that all array elements have affinity to the same

thread is said to specify indefinite block size.

6. The block size is a part of the type compatibility.11

7. A shared void* pointer is assignment compatible with any pointer-to-shared type.

8. If the layout qualifier is of the form ‘‘[*],’’ the shared object is distributed as

if it had a block size of

(sizeof (a) / upc_elemsizeof(a) + THREADS - 1) / THREADS,

where ‘‘a’’ is the array being distributed.

9. Example 1: declaration of a shared scalar:

strict shared int y;

strict shared is the type qualifier.

10. Example 2: automatic storage duration:

void foo(void) {

shared int x; /* a shared automatic variable is not allowed */

shared int* y; /* a pointer to shared is allowed */

int * shared z; /*a shared automatic variable is not allowed */

. . . }

11. Example 3: inside a structure:

struct foo {

shared int x; /* this is not allowed */

shared int* y; /* a pointer to a shared object is allowed */

};

11 This is a powerful statement which allows, for example, that in an implementation sizeof (shared

int *) may differ from sizeof (shared [10] int *), and if T and S are pointer-to-shared types

with different block sizes, then T* and S* cannot be aliases.

162 UPC LANGUAGE SPECIFICATIONS, V1.1.1

Forward references: shared array (6.4.3.2), pointer declarator (6.4.3.1).

6.4.3 Declarators

Syntax

1. The following is the declarator definition according to Section 6.7.5 of [2],

repeated here for self-containment and clarity of the subsequent UPC

extension specifications.

2. declarator:

pointeropt direct-declarator

3. direct-declarator:

identifier

(declarator)

direct-declarator [type-qualifier-listopt assignment-expressionopt]

direct-declarator [static type-qualifier-listopt assignment-expression]

direct-declarator [type-qualifier-list static assignment-expression]

direct-declarator [type-qualifier-listopt *]

direct-declarator (parameter-type-list)

direct-declarator (identifier-listopt)

4. pointer:

*type-qualifier-listopt

*type-qualifier-listopt pointer

5. type-qualifier-list:

type-qualifier

type-qualifier-list type-qualifier

Constraints

1. No type qualifier list shall specify more than one block size, either directly or

indirectly, through one or more typedefs.12

2. No type qualifier list shall include both strict and relaxed, either

directly or indirectly, through one or more typedefs.

3. shared shall not appear in a declarator that has automatic storage duration

unless it qualifies a pointer type.

12 Although layout qualifiers are seen most often in array or pointer declarators, they are legal in all

declarators. For example, shared [3] int y is a legal declarator.

LANGUAGE 163

Semantics

1. All static nonarray shared-qualified objects have affinity with thread zero.

2. Only pointer type members of a structure or union may be shared-qualified.13

6.4.3.1 Pointer Declarators This section provides the UPC parallel extensions

of Section 6.7.5.1 of [2].

Semantics

1. A shared reference that is cast to nonshared will lose all qualities pertaining

to being shared.

2. Shared objects with affinity to a given thread can be accessed by either

pointers-to-shared or pointers-to-private of that thread.

3. Example:

int i, *p;

shared int *q;

q = (shared int *)p; /* is not allowed */

if (upc_threadof(q) == MYTHREAD)

p = (int *) q; /* is allowed */

6.4.3.2 Array Declarators This section provides the UPC parallel extensions

of Section 6.7.5.2 of [2].

Constraints When a UPC program is translated in the ‘‘dynamic THREADS’’

environment and the type of the array is shared-qualified but not indefinite layout-

qualified, the THREADS lvalue shall occur exactly once in one dimension of the

array declarator (including through typedefs). Further, in such cases, the THREADS

lvalue shall only occur either alone or when multiplied by a constant expression.

Semantics

1. Elements of shared arrays are distributed in round-robin fashion, by chunks

of block-size elements, such that the ith element has affinity with thread

(floor (i/block_size) mod THREADS).

2. In an array declaration, the type qualifier applies to the elements.

3. For any shared array, a, upc_phaseof (&a) is zero.

13 For example, struct S1 { shared char * p1; }; is legal, whereas struct S2 { char *

shared p2;}; is not.

164 UPC LANGUAGE SPECIFICATIONS, V1.1.1

4. Example 1: declarations legal in either static or dynamic translation

environments:

shared int x [10*THREADS];

shared [] int x [10];

5. Example 2: declarations legal only in a static translation environment:

shared int x [10+THREADS];

shared [] int x [THREADS];

shared int x [10];

6. Example 3: declaration of a shared array:

shared [3] int x [10];

shared [3] is the type qualifier of an array, x, of 10 integers. [3] is the

layout qualifier.

7. Example 4:

typedef int S [10];

shared [3] S T [3*THREADS];

shared [3] applies to the underlying type of T, which is int, regardless of

the typedef. The array is blocked as if it were declared:

shared [3] int T [3*THREADS] [10];

8. Example 5:

shared [] double D [100];

All elements of the array D have affinity to thread 0. No THREADS dimension

is allowed in the declaration of D.

shared [] long *p;

x = p [i];

All elements referenced by subscripting or otherwise dereferencing p have

affinity to the same thread. That thread may be any thread; it does not have to

be thread 0.

LANGUAGE 165

6.5 Statements and Blocks

This section provides the UPC parallel extensions of Section 6.8 of [2].

Syntax

statement:

labeled-statement

compound-statement

expression-statement

selection-statement

iteration-statement

jump-statement

synchronization-statement

6.5.1 Barrier Statements

Syntax

synchronization-statement:

upc_notify expressionopt;

upc_wait expressionopt;

upc_barrier expressionopt;

upc_fence;

Constraints

1. expression shall be an integer expression.

2. Each thread shall execute an alternating sequence of upc_notify and

upc_wait statements, starting with a upc_notify and ending with a

upc_wait statement. A synchronization phase consists of the execution

of all statements between the completion of one upc_wait and the start of

the next.

Semantics

1. A upc_wait statement completes, and the thread enters the next synchro-

nization phase, only after all threads have completed the upc_notify

statement in the current synchronization phase.14 upc_wait and

upc_notify are collective operations.

14 Therefore, all threads are entering the same synchronization phase as they complete the upc_wait

statement.

166 UPC LANGUAGE SPECIFICATIONS, V1.1.1

2. The upc_fence statement is equivalent to a null strict reference. This

ensures that all shared references issued before the fence are complete before

any after it are issued.15

3. A null strict reference is implied before a upc_notify statement and after

a upc_wait statement.16

4. The upc_wait statement will generate a run-time error if the value of its

expression does not equal the value of the expression by the upc_notify

statement for the current synchronization phase. No error will be generated

if either statement does not have an expression.

5. The upc_wait statement will generate a run-time error if the value of its

expression differs from any expression on the upc_wait and upc_notify

statements issued by any thread in the current synchronization phase. No

error will be generated from a ‘‘difference’’ involving a statement for which

no expression is given.

6. The upc_barrier statement is equivalent to the compound statement17:

{upc_notify barrier_value; upc_wait barrier_value;}

7. The barrier operations at thread startup and termination have a value of

expression that is not in the range of user-expressible values.

8. Example: The following will result in a run-time error:

{upc_notify; upc_barrier; upc_wait;}

as it is equivalent to

{upc_notify; upc_notify; upc_wait; upc_wait;}

6.5.2 Iteration Statements This section provides the UPC parallel exten-

sions of Section 6.8.5 of [2].

Syntax

1. iteration-statement:

while (expression) statement

do statement while (expression);

15 One implementation of upc_fence may be achieved by a null strict reference: { static shared

strict int x; x = x;}.
16 This implies that shared references executed after the upc_notify and before the upc_wait may

occur in either the synchronization phase containing the upc_notify or the next on different threads.
17 This equivalence is explicit with respect to matching expressions in semantic 6 and collective status in

semantic 1.

LANGUAGE 167

for (expressionopt; expressionopt; expressionopt) statement

for (declaration-expressionopt; expressionopt) statement

upc_forall(expressionopt;expressionopt;expressionopt;affinityopt)

statement

2. affinity:

expressionopt

continue

Constraint The expression for affinity shall have pointer-to-shared type or

integer type.

Semantics

1. upc_forall is a collective operation in which, for each execution of

the loop body, the controlling expression and affinity expression are

single-valued.18

2. The affinity field specifies the executions of the loop body that are to be

performed by a thread.

3. When affinity is of pointer-to-shared type, the loop body of the upc_forall

statement is executed for each iteration in which the value of MYTHREAD

equals the value of upc_threadof (affinity). Each iteration of the loop

body is executed by precisely one thread.

4. When affinity is an integer expression, the loop body of the upc_forall

statement is executed for each iteration in which the value of MYTHREAD

equals the value affinity mod THREADS.

5. When affinity is continue or not specified, each loop body of the

upc_forall statement is performed by every thread and semantic 1 does

not apply.

6. If the loop body of a upc_forall statement contains one or more

upc_forall statements, either directly or through one or more function

calls, the construct is called a ‘‘nested upc_forall’’ statement. In a ‘‘nested

upc_forall,’’ the outermost upc_forall statement that has an affinity

expression which is not continue is called the ‘‘controlling upc_forall’’

statement. All upc_forall statement that are not ‘‘controlling’’ in a ‘‘nested

upc_forall’’ behave as if their affinity expressions were continue.

7. If the execution of any loop body of a upc_forall statement produces a

side effect that affects the execution of another loop body of the same

18Note that single-valued implies that all threads agree on the total number of iterations, their sequence,

and which threads execute each iteration.

168 UPC LANGUAGE SPECIFICATIONS, V1.1.1

upc_forall statement which is executed by a different thread,19 the

behavior is undefined.

8. If any thread terminates or executes a upc_barrier, upc_notify, or

upc_wait statement within the dynamic scope of a upc_forall state-

ment, the result is undefined. If any thread terminates a upc_forall

statement using a break, goto, or return statement, the result is undefined.

If any thread enters the body of a upc_forall statement using a goto

statement, the result is undefined.20

9. Example: nested upc_forall:

main () {

int i,j,k;

shared float *a, *b, *c;

upc_forall(i=0; i<N; i++; continue)

upc_forall (j=0; j<N; j++; &a [j])

upc_forall (k=0; k<N; k++; &b [k])

a [j] = b [k] * c [i];

}

This example executes all iterations of the i and k loops on every thread, and

executes iterations of the j loop on those threads where upc_threadof

(&a [j]) equals the value of MYTHREAD.

6.6 Preprocessing Directives

This section provides the UPC parallel extensions of Section 6.10 of [2].

6.6.1 UPC Pragmas

Semantics

1. If the preprocessing token upc follows the pragma immediately, no macro

replacement is performed and the directive shall have one of the following

forms:

#pragma upc strict

#pragma upc relaxed

19 This semantic implies that side effects on the same thread have defined behavior, just as in the for

statement.
20 The continue statement behaves as defined in Section 6.8.6.2 of [2]; equivalent to a goto the end of

the loop body.

LANGUAGE 169

2. These pragmas affect the strict or relaxed categorization of references to

shared objects where the referenced type is neither strict-qualified nor

relaxed-qualified. Such references shall be strict if a strict pragma is in

effect, or relaxed if a relaxed pragma is in effect.

3. Shared references that are not categorized by either referenced type or by these

pragmas behave in an implementation-defined manner in which either all such

references are strict or all are relaxed. Users wishing portable programs are

strongly encouraged to categorize all shared references either by using type quali-

fiers, these directives, or by including upc_strict.h or upc_relaxed.h.

4. The pragmas shall occur either outside external declarations or preceding all

explicit declarations and statements inside a compound statement. When they

are outside external declarations, they apply until another such pragma or the

end of the translation unit. When inside a compound statement, they apply until

the end of the compound statement; at the end of the compound statement

the state of the pragmas is restored to that preceding the compound statement.

If these pragmas are used in any other context, their behavior is undefined.

6.6.2 Predefined Macro Names

1. The following macro name shall be defined by the implementation:

� _UPC_: the integer constant 1, indicating a conforming implementation

� _UPC_VERSION_: the integer constant 200310L

2. The following macro names are conditionally defined by the implementation:

� _UPC_DYNAMIC_THREADS_: the integer constant 1 in the dynamic

THREADS translation environment; otherwise, undefined

� _UPC_STATIC_THREADS_: the integer constant 1 in the static

THREADS translation environment; otherwise, undefined

7 LIBRARY

7.1 Standard Headers

The section provides the UPC parallel extensions of Section 7.1.2 of [2].

1. The standard headers are

<upc_strict.h>

<upc_relaxed.h>

<upc.h>

2. upc_strict.h shall contain at least

#pragma upc strict

#include <upc.h>

170 UPC LANGUAGE SPECIFICATIONS, V1.1.1

3. upc_relaxed.h shall contain at least

#pragma upc relaxed

#include <upc.h>

7.2 UPC Utilities <upc.h>

This section provides the UPC parallel extensions of Section 7.20 of [2]. All

of the characteristics of library functions described in Section 7.1.4 of [2] apply

to these as well.

7.2.1 Termination of All Threads

Synopsis

upc_global_exit(int status)

Description upc_global_exit() flushes all I/O, releases all storage, and

terminates the execution for all active threads.

7.2.2 Shared Memory Allocation Functions The UPC memory allocation

functions return, if successful, a pointer-to-shared which is suitably aligned so that

it may be assigned to a pointer-to-shared of any type. The pointer has zero phase

and points to the start of the space allocated. If the space cannot be allocated, a null

pointer-to-shared is returned.

7.2.2.1 upc_global_alloc Function

Synopsis

#include <upc.h>

shared void *upc_global_alloc(size_t nblocks, size_t nbytes);

nblocks : number of blocks

nbytes : block size

Description

1. The upc_global_alloc allocates shared space compatible with the

declaration

shared [nbytes] char [nblocks * nbytes].

LIBRARY 171

2. The upc_global_alloc function is not a collective function. If called by

multiple threads, all threads that make the call get different allocations. If

nblocks*nbytes is zero, the result is a null pointer-to-shared.

7.2.2.2 upc_all_alloc Function

Synopsis

#include <upc.h>

shared void *upc_all_alloc(size_t nblocks, size_t nbytes);

nblocks : number of blocks

nbytes : block size

Description

1. upc_all_alloc is a collective function with single-valued arguments.

2. The upc_all_alloc function allocates shared space compatible with the

following declaration:

shared [nbytes] char [nblocks * nbytes].

3. The upc_all_alloc function returns the same pointer value on all threads.

If nblocks*nbytes is zero, the result is a null pointer-to-shared.

4. The dynamic lifetime of an allocated object extends from the time that any

thread completes the call to upc_all_alloc until any thread has deal-

located the object.

7.2.2.3 upc_alloc Function

Synopsis

#include <upc.h>

shared void *upc_alloc(size_t nbytes);

nbytes : total number of bytes to allocate

Description

1. The upc_alloc function allocates shared space of at least nbytes bytes

with affinity to the calling thread.

172 UPC LANGUAGE SPECIFICATIONS, V1.1.1

2. upc_alloc is similar to malloc() except that it returns a pointer-to-

shared value. It is not a collective function. If nbytes is zero, the result is

a null pointer-to-shared.

7.2.2.4 upc_local_alloc Function Deprecated

Synopsis

#include <upc.h>

shared void *upc_local_alloc(size_t nblocks, size_t nbytes);

nblocks : number of blocks

nbytes : block size

Description

1. The upc_local_alloc function is deprecated and should not be

used. UPC programs should use the upc_alloc function instead. Support

may be removed in future versions of this specification.

2. The upc_local_alloc function allocates shared space of at least

nblocks *nbytes bytes with affinity to the calling thread. If

nblocks*nbytes is zero, the result is a null pointer-to-shared.

3. upc_local_alloc is similar to malloc() except that it returns a pointer-

to-shared value. It is not a collective function.

7.2.2.5 upc_free Function

Synopsis

#include <upc.h>

void upc_free(shared void *ptr);

Description The upc_free function frees the dynamically allocated shared

storage pointed to by ptr. If ptr is a null pointer, no action occurs. Otherwise, if

the argument does not match a pointer earlier returned by the upc_alloc,

upc_global_alloc, upc_all_alloc, or upc_local_alloc, function, or

if the space has been deallocated by a previous call, by any thread,21 to upc_free,

the behavior is undefined.

21 That is, only one thread may call upc_free for each allocation.

LIBRARY 173

7.2.3 Pointer-to-Shared Manipulation Functions

7.2.3.1 upc_threadof Function

Synopsis

#include <upc.h>

size_t upc_threadof (shared void *ptr);

Description The upc_threadof function returns the number of the thread that

has affinity to the shared object pointed to by ptr.

7.2.3.2 upc_phaseof Function

Synopsis

#include <upc.h>

size_t upc_phaseof (shared void *ptr);

Description The upc_phaseof function returns the phase component of the

pointer-to-shared argument.

7.2.3.3 upc_resetphase Function

Synopsis

#include <upc.h>
shared void *upc_resetphase(shared void *ptr);

Description The upc_resetphase function returns a pointer-to-shared which

is identical to its input except that it has zero phase.

7.2.3.4 upc_addrfield Function

Synopsis

#include <upc.h>

size_t upc_addrfield (shared void *ptr);

Description The upc_addrfield function returns an implementation-defined

value reflecting the ‘‘local address’’ of the object pointed to by the pointer-to-shared

argument.

174 UPC LANGUAGE SPECIFICATIONS, V1.1.1

7.2.3.5 upc_affinitysize Function

Synopsis

#include <upc.h>
size_t upc_affinitysize (size_t totalsize, size_t nbytes,

size_t threadid);

totalsize: the total size of the allocation in bytes

nbytes: the number of bytes in a block

threadid: the thread whose affinitysize is to be evaluated

Description

1. upc_affinitysize is a convenience function that calculates the exact

size of the local portion of the data in a shared object with affinity to a given

thread.

2. In the case of a dynamically allocated shared object, the totalsize

argument shall be nbytes*nblocks and the nbytes argument shall

be nbytes, where nblocks and nbytes are exactly as passed

to upc_global_alloc or upc_all_alloc when the object was

allocated.

3. In the case of a statically allocated shared object with declaration

shared [b] t d [s];

the totalsize argument shall be s * sizeof (t) and the nbytes

argument shall be b * sizeof (t). If block size is unspecified, nbytes

shall be 1. If the block size is indefinite, nbytes shall be 0.

4. threadid shall be a value in 0..(THREADS-1).

7.2.4 Lock Functions

7.2.4.1 Type

1. The type declared is

upc_lock_t

2. The type upc_lock_t is an opaque UPC type. upc_lock_t is a

shared data type with incomplete type (as defined in Section 6.2.5) of

[2]. Objects of type upc_lock_t may therefore only be manipulated

through pointers.

LIBRARY 175

7.2.4.2 upc_global_lock_alloc Function

Synopsis

#include <upc.h>

upc_lock_t *upc_global_lock_alloc (void);

Description

1. The upc_global_lock_alloc function dynamically allocates a lock and

returns a pointer to it. The lock is created in an unlocked state.

2. The upc_global_lock_alloc function is not a collective function. If

called by multiple threads, all threads that make the call get different

allocations.

7.2.4.3 upc_all_lock_alloc Function

Synopsis

#include <upc.h>

upc_lock_t *upc_all_lock_alloc (void);

Description

1. The upc_all_lock_alloc function dynamically allocates a lock and

returns a pointer to it. The lock is created in an unlocked state.

2. The upc_all_lock_alloc is a collective function. The return value on

every thread points to the same lock object.

7.2.4.4 upc_lock_free Function

Synopsis

#include <upc.h>

void upc_lock_free(upc_lock_t *ptr);

Description

1. The upc_lock_free function frees all resources associated with the

dynamically allocated upc_lock_t pointed to by ptr. If ptr is a null

176 UPC LANGUAGE SPECIFICATIONS, V1.1.1

pointer, no action occurs. Otherwise, if the argument does not match a pointer

earlier returned by the upc_global_lock_alloc or upc_all_lock_

alloc function, or if the lock has been deallocated by a previous call to

upc_lock_free, the behavior is undefined.

2. upc_lock_free succeeds regardless of whether the referenced lock is

currently unlocked or currently locked (by any thread).

3. Any subsequent calls to locking functions from any threads using ptr have

undefined effects.

7.2.4.5 upc_lock Function

Synopsis

#include <upc.h>

void upc_lock(upc_lock_t *ptr);

Description

1. The upc_lock function locks a shared variable, of type upc_lock_t,

pointed to by the pointer given as argument.

2. If the lock is not used by another thread, the thread making the call gets the

lock and the function returns. Otherwise, the function keeps trying to get

access to the lock.

3. A null strict reference is implied after a call to upc_lock().

4. If the calling thread is already holding the lock referenced by ptr [i.e., it has

locked it previously using upc_lock() or upc_lock_attempt(), but

not unlocked it], the result is undefined.

7.2.4.6 upc_lock_attempt Function

Synopsis

#include <upc.h>

int upc_lock_attempt(upc_lock_t *ptr);

Description

1. The upc_lock_attempt function tries to lock a shared variable, of type

upc_lock_t, pointed to by the pointer given as argument.

2. If the lock is not used by another thread, the thread making the call gets the

lock and the function returns 1. Otherwise, the function returns 0.

LIBRARY 177

3. A null strict reference is implied after a call to upc_lock_attempt() that

returns 1.

4. If the calling thread is already holding the lock referenced by ptr [i.e., it has

locked it previously using upc_lock() or upc_lock_attempt(), but

not unlocked it], the result is undefined.

7.2.4.7 upc_unlock Function

Synopsis

#include <upc.h>

void upc_unlock(upc_lock_t *ptr);

Description

1. The upc_unlock function frees the lock and does not return any value.

2. A null strict reference is implied before a call to upc_unlock().

7.2.5 Shared String-Handling Functions

7.2.5.1 upc_memcpy Function

Synopsis

#include <upc.h>

void upc_memcpy(shared void *dst, shared const void *src,

size_t n);

Description

1. The upc_memcpy function copies n characters from a shared object having

affinity with one thread to a shared object having affinity with the same or

another thread. If copying takes place between objects that overlap, the

behavior is undefined.

2. The upc_memcpy function treats the dst and src pointers as if they

had type

shared [] char [n]

The effect is equivalent to copying the entire contents from one shared array

object with this type (the src array) to another shared array object with this

type (the dst array).

178 UPC LANGUAGE SPECIFICATIONS, V1.1.1

7.2.5.2 upc_memget Function

Synopsis

#include <upc.h>

void upc_memget(void *dst, shared const void *src, size_t n);

Description

1. The upc_memget function copies n characters from a shared object with

affinity to any single thread to a private object on the calling thread.

If copying takes place between objects that overlap, the behavior is

undefined.

2. The upc_memget function treats the src pointer as if it had type

shared [] char [n]

The effect is equivalent to copying the entire contents from one shared array

object with this type (the src array) to a private array object (the dst array)

declared with the type

char [n]

7.2.5.3 upc_memput Function

Synopsis

#include <upc.h>

void upc_memput(shared void *dst, const void *src, size_t n);

Description

1. The upc_memput function copies n characters from a private object on the

calling thread to a shared object with affinity to any single thread.

If copying takes place between objects that overlap, the behavior is

undefined.

2. The upc_memput function is equivalent to copying the entire contents from

a private array object (the src array) declared with the type

char [n]

LIBRARY 179

to a shared array object (the dst array) with the type

shared [] char [n]

7.2.5.4 upc_memset Function

Synopsis

#include <upc.h>

void upc_memset(shared void *dst, int c, size_t n);

Description

1. The upc_memset function copies the value of c, converted to an

unsigned char, to a shared object with affinity to any single thread.

The number of bytes set is n.

2. The upc_memset function treats the dst pointer as if had type

shared [] char [n]

The effect is equivalent to setting the entire contents of a shared array object

with this type (the dst array) to the value c.

ACKNOWLEDGMENTS

Many scientists have contributed to the ideas and concepts behind these speci-

fications. They are too many to mention here, but we would like to cite the

contributions of David E. Culler, Kathy Yelick, Eugene Brooks, and Karen

Warren, who have contributed to the initial UPC language concepts and

specifications. We also would like to acknowledge the role of the participants

in the first UPC workshop, held in May 2000 in Bowie, Maryland, in which

the specifications of this version were discussed. In particular, we would like

to acknowledge the support and participation of Compaq, Cray, HP, Sun,

and CSC. We would like also to acknowledge the abundant input of Kevin

Harris and Sébastien Chauvin and the efforts of Lauren Smith. The work by

Brian Wibecan and Greg Fischer was invaluable in bringing these specifications

to version 1.0.

Version 1.1 is the result of the contributions of many in the UPC com-

munity: most important, participants in the second UPC workshop held in

March 2002 in Washington, DC. In addition to the continued support of all

180 UPC LANGUAGE SPECIFICATIONS, V1.1.1

those mentioned above, the efforts of Dan Bonachea were invaluable in this

effort.

REFERENCES

1. W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks, and K. Warren,

Introduction to UPC and Language Specification, CCS-TR-99-157, IDA/CCS, Bowie,

MD, May 1999.

2. Programming Languages—C, ISO/IEC 9899:1999(E), ISO/IEC, May 2000.

REFERENCES 181

APPENDIX B

UPC Collective Operations
Specifications, v1.0

Steven Seidel, David Greenberg, and Elizabeth Wiebel

Introduction

1 Scope

2 Definitions

3 Common Requirements

4 Collectives Library

4.1 Standard Header

4.2 Relocalization Operations

4.2.1 upc_all_broadcast Function

4.2.2 upc_all_scatter Function

4.2.3 upc_all_gather Function

4.2.4 upc_all_gather_all Function

4.2.5 upc_all_exchange Function

4.2.6 upc_all_permute Function

4.3 Computational Operations

4.3.1 Computational Operations

4.3.2 upc_all_reduce Function

4.3.3 upc_all_prefix_reduce Function

4.3.4 upc_all_sort Function

Acknowledgments

References

UPC: Distributed Shared Memory Programming, by Tarek El-Ghazawi, William Carlson,
Thomas Sterling, and Katherine Yelick
Published 2005 John Wiley & Sons, Inc.

183

INTRODUCTION

The earliest version of this specification was authored by Elizabeth Wiebel and

David Greenberg and appeared in March 2002 as CCS-TR-02-159 [1]. UPC

collectives have been discussed at workshops at SC2001, SC2002, SC2003, and

at workshops held at George Washington University in March 2002 and May 2003.

1 SCOPE

1. This document describes UPC functions that supplement UPC. All UPC

specifications from v1.1.1 [2] are considered part of this specification, and

therefore will not be addressed in this document.

2. Small parts of UPC v1.1.1 may be repeated for self-containment and clarity

of the functions defined here.

2 DEFINITIONS

1. Collective: a requirement placed on some language operations that con-

strains invocations of such operations to be matched1 across all threads. The

behavior of collective operations is undefined unless all threads execute the

same sequence of collective operations.

2. Single-valued: an operand to a collective operation, which has the same

value on every thread. The behavior of the operation is otherwise undefined.

3. All but one of the functions defined in this specification include a figure that

roughly illustrates how blocks of data are copied from one thread to another. Four

threads labeled T0, T1, T2, and T3 are shown in each figure along with a suitable

number of blocks of data labeled Di. These figures are not intended to represent

the full generality of the associated functions. The figures do not correspond to

the example code segments unless otherwise noted. The figures and the example

code segments should not be viewed as formal parts of this specification.

3 COMMON REQUIREMENTS

1. The following requirements apply to all of the functions defined in this

document whose names begin upc_all_. . . .

2. All of the functions are collective.

3. All collective function arguments are single-valued.

1A collective operation need not provide any actual synchronization between threads unless otherwise

noted. The collective requirement simply states a relative ordering property of calls to collective

operations that must be maintained in the parallel execution trace for all executions of any legal program.

Some implementations may include unspecified synchronization between threads within collective

operations, but programs must not rely on such unspecified synchronization for correctness.

184 UPC COLLECTIVE OPERATIONS SPECIFICATIONS, V1.0

4. Collective functions may not be called between upc_notify and the

corresponding upc_wait.

5. The last argument of each collective function is the variable sync_mode of

type upc_flag_t. Values of sync_mode are formed by or-ing together a

constant of the form UPC_IN_XSYNC and a constant of the form UPC_OUT_

YSYNC, where X and Y may be NO, MY, or ALL. If sync_mode has the value

(UPC_IN_XSYNC j UPC_OUT_YSYNC), then if X is

� NO the collective function may begin to read or write data when the first

thread has entered the collective function call

� MY the collective function may begin to read or write only data which has

affinity to threads that have entered the collective function call

� ALL the collective function may begin to read or write data only after all

threads have entered the collective function call2

and if Y is

� NO the collective function may read and write data until the last thread

has returned from the collective function call

� MY the collective function call may return in a thread only after all reads

and writes of data with affinity to the thread are complete3

� ALL the collective function call may return only after all reads and writes

of data are complete4

UPC_IN_XSYNC alone is equivalent to (UPC_IN_XSYNC j UPC_OUT_

ALLSYNC), UPC_OUT_XSYNC alone is equivalent to (UPC_IN_ALLSYNC j
UPC_OUT_XSYNC), and 0 is equivalent to (UPC_IN_ALLSYNC j UPC_

OUT_ALLSYNC), where X is NO, MY, or ALL.

Forward reference: upc_flag_t (4.1.2).

4 COLLECTIVES LIBRARY

4.1 Standard Header

1. The standard header is

<upc_collective.h>

2UPC_IN_ALLSYNC requires the collective function to guarantee that after all threads have entered the

collective function call, all threads will read the same values of the input data.
3UPC_OUT_MYSYNC requires the collective function to guarantee that after a thread returns from the collec-

tive function call, the thread will not read any earlier values of the output data with affinity to that thread.
4UPC_OUT_ALLSYNC requires the collective function to guarantee that after a thread returns from the collective

function call, the threadwill not read any earlier values of the output data.UPC_OUT_ALLSYNC is not required

to provide an ‘‘implied’’ barrier. For example, if the entire collective operation has been completed by a certain

thread before some other threads have reached their corresponding function calls, that thread may exit its call.

COLLECTIVES LIBRARY 185

2. upc_collective.h contains definitions of the types upc_flag_t and

upc_op_t. upc_flag_t and upc_op_t are of integral type.

Forward reference: upc_op_t (4.3.1).

4.2 Relocalization Operations

4.2.1 upc_all_broadcast Function

Synopsis

#include <upc.h>
#include <upc_collective.h>
void upc_all_broadcast(shared void *dst, shared const void *src,

size_t nbytes, upc_flag_t sync_mode);

nbytes: the number of bytes in a block

Description

1. The upc_all_broadcast function (Figure 1) copies a block of memory

with affinity to a single thread to a block of shared memory on each thread.

The number of bytes in each block is nbytes. If copying takes place

between objects that overlap, the behavior is undefined.

2. nbytes must be strictly greater than zero.

3. The upc_all_broadcast function treats the src pointer as if it pointed

to a shared memory area with the type

shared [] char [nbytes]

The effect is equivalent to copying the entire array pointed to by src to

each block of nbytes bytes of a shared array dst with the type

shared [nbytes] char [nbytes*THREADS]

D0

D0

D0

D0

T

T

T

T

0

1

2

3

T

T

T

T

0

1

2

3

D0

Figure 1 upc_all_broadcast

186 UPC COLLECTIVE OPERATIONS SPECIFICATIONS, V1.0

4. The target of the dst pointer must have affinity to thread 0.

5. The dst pointer is treated as if it has phase 0.

Examples

1. This example corresponds to Figure 1:

shared int A [THREADS];

shared int B [THREADS];

//Initialize A.

upc_barrier;

upc_all_broadcast (B, &A [1], sizeof(int),

UPC_IN_NOSYNC j UPC_OUT_NOSYNC);
upc_barrier;

2. Example of upc_all_broadcast:

#define NELEMS 10

shared [] int A [NELEMS];

shared [NELEMS] int B [NELEMS*THREADS];

//Initialize A.

upc_all_broadcast(B, A, sizeof(int)*NELEMS,

UPC_IN_ALLSYNC j UPC_OUT_ALLSYNC);

3. In this example, (A [3],A [4]) is broadcast to (B [0],B [1]), (B [10],B [11]), (B

[20],B [21]), . . .,(B [NELEMS*(THREADS-1)],B [NELEMS*(THREADS-1)+1]):

#define NELEMS 10

shared [NELEMS] int A [NELEMS*THREADS];

shared [NELEMS] int B [NELEMS*THREADS];

//Initialize A.

upc_barrier;

upc_all_broadcast(B, &A [3], sizeof(int)*2,

UPC_IN_NOSYNC j UPC_OUT_NOSYNC);
upc_barrier;

4.2.2 upc_all_scatter Function

Synopsis

#include <upc.h>
#include <upc_collective.h>

COLLECTIVES LIBRARY 187

void upc_all_scatter(shared void *dst, shared const void *src,

size_t nbytes, upc_flag_t sync_mode);

nbytes: the number of bytes in a block

Description

1. The upc_all_scatter function (Figure 2) copies the ith block of an

area of shared memory with affinity to a single thread to a block of shared

memory with affinity to the ith thread. The number of bytes in each block

is nbytes. If copying takes place between objects that overlap, the behavior

is undefined.

2. nbytes must be strictly greater than zero.

3. The upc_all_scatter function treats the src pointer as if it pointed to

a shared memory area with the type

shared [] char [nbytes*THREADS]

and it treats the dst pointer as if it pointed to a shared memory area with

the type

shared [nbytes] char[nbytes*THREADS]

4. The target of the dst pointer must have affinity to thread 0.

5. The dst pointer is treated as if it has phase 0.

6. For each thread i, the effect is equivalent to copying the ith block of

nbytes bytes pointed to by src to the block of nbytes bytes pointed to by

dst that has affinity to thread i.

Examples

1. Example of upc_all_scatter for the dynamic threads compilation

environment (this example corresponds to Figure 2):

T

T

T

T

0

1

2

3

D0 D1 D2 D3

D0

D1

D2

D3

T

T

T

T

0

1

2

3

Figure 2 upc_all_scatter

188 UPC COLLECTIVE OPERATIONS SPECIFICATIONS, V1.0

#define NUMELEMS 10

#define SRC_THREAD 1

shared int *A;

shared [] int *myA, *srcA;

shared [NUMELEMS] int B [NUMELEMS*THREADS];

// allocate and initialize an array distributed across all threads

A = upc_all_alloc(THREADS, THREADS*NUMELEMS*sizeof(int));

myA = (shared [] int *) &A [MYTHREAD];

for (i=0; i<NUMELEMS*THREADS; i++)

myA [i] = i + NUMELEMS*THREADS*MYTHREAD; // (for example)

// scatter the SRC_THREAD’s row of the array

srcA =(shared [] int *) &A [SRC_THREAD];

upc_barrier;

upc_all_scatter(B, srcA, sizeof(int)*NUMELEMS,

UPC_IN_NOSYNC j UPC_OUT_NOSYNC);
upc_barrier;

2. Example of upc_all_scatter for the static threads compilation

environment:

#define NELEMS 10

shared [] int A [NELEMS*THREADS];

shared [NELEMS] int B [NELEMS*THREADS];

// Initialize A.

upc_all_scatter(B, A, sizeof(int)*NELEMS,

UPC_IN_ALLSYNC j UPC_OUT_ALLSYNC);

4.2.3 upc_all_gather Function

Synopsis

#include <upc.h>
#include <upc_collective.h>
void upc_all_gather(shared void *dst, shared const void *src,

size_t nbytes, upc_flag_t sync_mode);

nbytes: the number of bytes in a block

Description

1. The upc_all_gather function (Figure 3) copies a block of shared memory

that has affinity to the ith thread to the ith block of a shared memory area

COLLECTIVES LIBRARY 189

that has affinity to a single thread. The number of bytes in each block is

nbytes. If copying takes place between objects that overlap, the behavior is

undefined.

2. nbytes must be strictly greater than zero.

3. The upc_all_gather function treats the src pointer as if it pointed to a

shared memory area of nbytes bytes on each thread and therefore had type

shared [nbytes] char [nbytes*THREADS]

and it treats the dst pointer as if it pointed to a shared memory area with the

type

shared [] char [nbytes*THREADS]

4. The target of the src pointer must have affinity to thread 0.

5. The src pointer is treated as if it has phase 0.

6. For each thread i, the effect is equivalent to copying the block of nbytes

bytes pointed to by src that has affinity to thread i to the ith block of

nbytes bytes pointed to by dst.

Examples

1. Example of upc_all_gather for the static threads compilation envir-

onment:

#define NELEMS 10

shared [NELEMS] int A [NELEMS*THREADS];

shared [] int B [NELEMS*THREADS];

// Initialize A.

upc_all_gather(B, A, sizeof(int)*NELEMS,

UPC_IN_ALLSYNC j UPC_OUT_ALLSYNC);

D0

D1

D2

D3

T

T

T

T

0

1

2

3

T

T

T

T

0

1

2

3

D0 D1 D2 D3

Figure 3 upc_all_gather

190 UPC COLLECTIVE OPERATIONS SPECIFICATIONS, V1.0

2. Example of upc_all_gather for the dynamic threads compilation

environment:

#define NELEMS 10

shared [NELEMS] int A [NELEMS*THREADS];

shared [] int *B;

B=(shared []int*)upc_all_alloc(1,NELEMS*THREADS*sizeof(int));

// Initialize A.

upc_barrier;

upc_all_gather(B, A, sizeof(int)*NELEMS,

UPC_IN_NOSYNC j UPC_OUT_NOSYNC);
upc_barrier;

4.2.4 upc_all_gather_all Function

Synopsis

#include <upc.h>

#include <upc_collective.h>

void upc_all_gather_all(shared void *dst, shared const void *src,

size_t nbytes, upc_flag_t sync_mode);

nbytes: the number of bytes in a block

Description

1. The upc_all_gather_all function (Figure 4) copies a block of memory

from one shared memory area with affinity to the ith thread to the ith block

of a shared memory area on each thread. The number of bytes in each block is

nbytes. If copying takes place between objects that overlap, the behavior is

undefined.

2. nbytes must be strictly greater than zero.

3. The upc_all_gather_all function treats the src pointer as if it pointed to

a shared memory area of nbytes bytes on each thread and therefore had type

shared [nbytes] char [nbytes*THREADS]

D0 D1 D2 D3

D0

D1

D2

D3

D0 D1 D2 D3

D0 D1 D2 D3

D0 D1 D2 D3

T

T

T

T

0

1

2

3

T

T

T

T

0

1

2

3

Figure 4 upc_all_gather_all

COLLECTIVES LIBRARY 191

and it treats the dst pointer as if it pointed to a shared memory area with

the type

shared [nbytes*THREADS] char [nbytes*THREADS*THREADS]

4. The targets of the src and dst pointers must have affinity to thread 0.

5. The src and dst pointers are treated as if they have phase 0.

6. The effect is equivalent to copying the ith block of nbytes bytes pointed to

by src to the ith block of nbytes bytes pointed to by dst that has affinity

to each thread.

Examples

1. Example of upc_all_gather_all for the static threads compilation

environment:

#define NELEMS 10

shared [NELEMS] int A [NELEMS*THREADS];

shared [NELEMS*THREADS] int B [THREADS] [NELEMS*THREADS];

// Initialize A.

upc_barrier;

upc_all_gather_all(B, A, sizeof(int)*NELEMS,

UPC_IN_NOSYNC j UPC_OUT_NOSYNC);
upc_barrier;

2. Example of upc_all_gather_all for the dynamic threads compilation

environment:

#define NELEMS 10

shared [NELEMS] int A [NELEMS*THREADS];

shared int *Bdata;

shared [] int *myB;

Bdata = upc_all_alloc(THREADS*THREADS, NELEMS*sizeof(int));

myB = (shared [] int *)&Bdata[MYTHREAD];

// Bdata contains THREADS*THREADS*NELEMS elements.

// myB is MYTHREAD’s row of Bdata.

// Initialize A.

upc_all_gather_all(Bdata, A, NELEMS*sizeof(int),

UPC_IN_ALLSYNC j UPC_OUT_ALLSYNC);

192 UPC COLLECTIVE OPERATIONS SPECIFICATIONS, V1.0

4.2.5 upc_all_exchange Function

Synopsis

#include <upc.h>
#include <upc_collective.h>
void upc_all_exchange(shared void *dst, shared const void *src,

size_t nbytes, upc_flag_t sync_mode);

nbytes: the number of bytes in a block

Description

1. The upc_all_exchange function (Figure 5) copies the ith block of

memory from a shared memory area that has affinity to thread j to the jth

block of a shared memory area that has affinity to thread i. The number of

bytes in each block is nbytes. If copying takes place between objects that

overlap, the behavior is undefined.

2. nbytes must be strictly greater than 0.

3. The upc_all_exchange function treats the src pointer and the dst

pointer as if each pointed to a shared memory area of nbytes*THREADS

bytes on each thread and therefore had type

shared [nbytes*THREADS] char[nbytes*THREADS*THREADS]

4. The targets of the src and dst pointers must have affinity to thread 0.

5. The src and dst pointers are treated as if they have phase 0.

6. For each pair of threads i and j, the effect is equivalent to copying the ith

block of nbytes bytes that has affinity to thread j pointed to by src to the

jth block of nbytes bytes that has affinity to thread i pointed to by dst.

Examples

1. Example of upc_all_exchange for the static threads compilation

environment:

D0 D1 D2 D3

D 4 D 5 D 6 D 7

D 8 D9 D10 D 11

D 12 D13 D14 D 15

D0

D1

D2

D3

D 4

D 5

D 6

D 7

D 8

D9

D10

D 11

D 12

D13

D14

D 15

T

T

T

T

0

1

2

3

T

T

T

T

0

1

2

3

Figure 5 upc_all_exchange

COLLECTIVES LIBRARY 193

#define NELEMS 10

shared [NELEMS*THREADS] int A [THREADS] [NELEMS*THREADS];

shared [NELEMS*THREADS] int B [THREADS] [NELEMS*THREADS];

// Initialize A.

upc_barrier;

upc_all_exchange(B, A, NELEMS*sizeof(int),

UPC_IN_NOSYNC j UPC_OUT_NOSYNC);
upc_barrier;

2. Example of upc_all_exchange for the dynamic threads compilation

environment:

#define NELEMS 10

shared int *Adata, *Bdata;

shared [] int *myA, *myB;

int i;

Adata = upc_all_alloc(THREADS*THREADS, NELEMS*sizeof(int));

myA = (shared [] int *)&Adata [MYTHREAD];

Bdata = upc_all_alloc(THREADS*THREADS, NELEMS*sizeof(int));

myB = (shared [] int *)&Bdata [MYTHREAD];

// Adata and Bdata contain THREADS*THREADS*NELEMS elements.

// myA and myB are MYTHREAD’s rows of Adata and Bdata, resp.

// Initialize MYTHREAD’s row of A. For example,

for (i=0; i<NELEMS*THREADS; i++)

myA [i] = MYTHREAD*10 + i;

upc_all_exchange(Bdata, Adata, NELEMS*sizeof(int),

UPC_IN_ALLSYNC j UPC_OUT_ALLSYNC);

4.2.6 upc_all_permute Function

Synopsis

#include <upc.h>
#include <upc_collective.h>
void upc_all_permute(shared void *dst, shared const void *src,

shared const int *perm, size_t nbytes,

upc_flag_t sync_mode);

nbytes: the number of bytes in a block

194 UPC COLLECTIVE OPERATIONS SPECIFICATIONS, V1.0

Description

1. The upc_all_permute function (Figure 6) copies a block of memory from

a shared memory area that has affinity to the ith thread to a block of a shared

memory that has affinity to thread perm [i]. The number of bytes in each

block is nbytes. If copying takes place between objects that overlap, the

behavior is undefined.

2. nbytes must be strictly greater than zero.

3. perm [0..THREADS–1] must contain THREADS distinct values: 0,1,

..., THREADS—1.

4. The upc_all_permute function treats the src pointer and the dst

pointer as if each pointed to a shared memory area of nbytes bytes on

each thread and therefore had type

shared [nbytes] char [nbytes*THREADS]

5. The targets of the src,perm, and dst pointers must have affinity to

thread 0.

6. The src and dst pointers are treated as if they have phase 0.

7. The effect is equivalent to copying the block of nbytes bytes that has

affinity to thread i pointed to by src to the block of nbytes bytes that

has affinity to thread perm [i] pointed to by dst.

Example: upc_all_permute:

#define NELEMS 10

shared [NELEMS] int A [NELEMS*THREADS], B [NELEMS*THREADS];

shared int P [THREADS];

// Initialize A and P.

upc_barrier;

upc_all_permute(B, A, P, sizeof(int)*NELEMS,

Permutation
Vector

D0

T

T

T

T

0

1

2

3

T

T

T

T

0

1

2

3

D0

D1

D2

D3

D3

D2

D1

2

0

1

3

Figure 6 upc_all_permute

COLLECTIVES LIBRARY 195

UPC_IN_NOSYNC j UPC_OUT_NOSYNC);
upc_barrier;

4.3 Computational Operations

4.3.1 Computational Operations

1. A variable of type upc_op_t can have the following values:

� UPC_ADD: addition.

� UPC_MULT: multiplication.

� UPC_AND: bitwise AND for integer and character variables. Results are

undefined for floating-point numbers.

� UPC_OR: bitwise OR for integer and character variables. Results are

undefined for floating-point numbers.

� UPC_XOR: bitwise XOR for integer and character variables. Results are

undefined for floating-point numbers.

� UPC_LOGAND: logical AND for all variable types.

� UPC_LOGOR: logical OR for all variable types.

� UPC_MIN: for all data types, finds the minimum value.

� UPC_MAX: for all data types, finds the maximum value.

� UPC_FUNC: uses the specified commutative function func to operate on

the data in the src array at each step.

� UPC_NONCOMM_FUNC: uses the specified noncommutative function func

to operate on the data in the src array at each step.

2. The operations represented by a variable of type upc_op_t (including user-

provided operators) are assumed to be associative. A reduction or a prefix

reduction whose result is dependent on the order of operator evaluation will

have undefined results.5

Forward references: reduction (4.3.2), prefix reduction (4.3.3).

3. The operations represented by a variable of type upc_op_t (except those

provided using UPC_NONCOMM_FUNC) are assumed to be commutative. A

reduction or a prefix reduction (using operators other than UPC_NONCOMM_

FUNC) whose result is dependent on the order of the operands will have

undefined results.

Forward references: reduction (4.3.2), prefix reduction (4.3.3).

5 Implementations are not obligated to prevent failures that might arise because of a lack of associativity of

built-in functions due to floating-point roundoff or overflow.

196 UPC COLLECTIVE OPERATIONS SPECIFICATIONS, V1.0

4.3.2 upc_all_reduce Function

Synopsis

#include <upc.h>
#include <upc_collective.h>
void upc_all_reduceT(shared void *dst, shared const void *src,

upc_op_t op, size_t nelems, size_t blk_size,

TYPE (*func) (TYPE, TYPE), upc_flag_t sync_mode);

nelems: the number of elements

blk_size: the number of elements in a block

Description

1. The function prototype above represents the 11 variations of the upc_all_

reduceT function where T and TYPE have the following correspondences:

T TYPE T TYPE

C signed char L signed long

UC unsigned char UL unsigned long

S signed short F float

US unsigned short D double

I signed int LD long double

UI unsigned int

For example, if T is C, TYPE must be signed char.

2. If the value of blk_size passed to upc_all_reduceT is greater than zero

upc_all_reduceT treats the src pointer as if it pointed to a shared

memory area of nelems elements of type TYPE and blocking factor

blk_size, and therefore had type

shared [blk_size] TYPE [nelems]

3. If the value of blk_size passed to upc_all_reduceT is zero,

upc_all_reduceT treats the src pointer as if it pointed to a shared

memory area of nelems elements of type TYPE with an indefinite layout

qualifier, and therefore had type6

shared [] TYPE [nelems]

6 Note the upc_blocksize(src)==0 if src has this type, so the argument value 0 has a natural

connection to the block size of src.

COLLECTIVES LIBRARY 197

4. The phase of the src pointer is respected when referencing array elements,

as specified in items 2 and 3.

5. upc_all_reduceT treats the dst pointer as having type

shared TYPE *

and at function exit the value of the TYPE shared object referenced by dst is

src[0] � src [1] �� � �� src [nelems-1]

where ‘‘�’’ is the operator specified by the variable op.

Example: upc_all_reduce of type long UPC_ADD (Figure 7)

#define BLK_SIZE 3

#define NELEMS 10

shared [BLK_SIZE] long A [NELEMS*THREADS];

shared long *B;

long result;

// Initialize A. The result below is defined only on thread 0.

upc_barrier;

upc_all_reduceL(B, A, UPC_ADD, NELEMS*THREADS, BLK_SIZE,

NULL, UPC_IN_NOSYNC j UPC_OUT_NOSYNC);
upc_barrier;

4.3.3 upc_all_prefix_reduce Function

Synopsis

#include <upc.h>
#include <upc_collective.h>
void upc_all_prefix_reduceT(shared void *dst, shared const void *src

upc_op_t op, size_t nelems, size_t blk_size,

TYPE (*func) (TYPE, TYPE),

T

T

T

T

0

1

2

3

D0

D1

D2

D4

D3 Σ Di

4

i=0

T

T

T

T

0

1

2

3

Figure 7 upc_all_reduce with Addition Operator

198 UPC COLLECTIVE OPERATIONS SPECIFICATIONS, V1.0

upc_flag_t sync_mode);

nelems: the number of elements

blk_size: the number of elements in a block

Description

1. The function prototype above represents the 11 variations of the

upc_all_reduceT, function where T and TYPE have the following

correspondences:

T TYPE T TYPE

C signed char L signed long

UC unsigned char UL unsigned long

S signed short F float

US unsigned short D double

I signed int LD long double

UI unsigned int

For example, if T is C, then TYPE must be signed char.

2. If the value of blk_size passed to upc_all_prefix_reduceT is greater

than zero, upc_all_prefix_reduceT treats the src pointer and the dst

pointer as if each pointed to a shared memory area of nelems elements of

type TYPE and blocking factor blk_size, and therefore had type

shared [blk_size] TYPE [nelems]

3. If the value of blk_size passed to upc_all_prefix_reduceT is zero,

upc_all_prefix_reduceT treats the src pointer and the dst pointer as if

each pointed to a shared memory area of nelems elements of type TYPE

with an indefinite layout qualifier, and therefore had type7

shared [] TYPE [nelems]

4. The phases of the src and dst pointers are respected when referencing array

elements, as specified in items 2 and 3.

5. If the memory areas pointed to by src and dst overlap, the behavior of this

function is undefined.

6. At function exit

dst [i] = src [0] � src [1] �� � �� src [i]

7 Note that upc_blocksize(src) == 0 if src has this type, so the argument value 0 has a natural

connection to the block size of src.

COLLECTIVES LIBRARY 199

for 0 � i � nelems-1 and where ‘‘�’’ is the operator specified by the

variable op.

Example: upc_all_prefix_reduce of type long UPC_ADD (Figure 8):

#define BLK_SIZE 3

#define NELEMS 10

shared [BLK_SIZE] long A [NELEMS*THREADS];

shared [BLK_SIZE] long B [NELEMS*THREADS];

// Initialize A.

upc_all_prefix_reduceL(B, A, UPC_ADD, NELEMS*THREADS, BLK_SIZE,

NULL, UPC_IN_ALLSYNC j UPC_OUT_ALLSYNC);

4.3.4 upc_all_sort Function

Synopsis

#include <upc.h>
#include <upc_collective.h>
void upc_all_sort(shared void *A, size_t elem_size, size_t nelems,

size_t blk_size, int (*func) (shared void *, shared void

*),

upc_flag_t sync_mode);

elem_size: the size of each element

nelems: the number of elements

blk_size: the number of elements in a block

Description

1. The function upc_all_sort takes a shared array A of nelems elements of

size elem_size bytes each and sorts them in place in ascending order using

the function func to compare elements.

2. If the value of blk_size passed to upc_all_sort is greater than zero,

upc_all_sort treats the array A as if it had blocking factor blk_size.

T

T

T

T

0

1

2

3

D0 D1 D2

D11
D10D

9

D8D7D6

D5D 4D3

Σ
i=0

Di

1

Σ
i=0

Di

2

Σ
i=0

Di

4

Σ
i=0

Di

3

Σ
i=0

Di

5

Σ
i=0

Di

6

Σ
i=0

Di

7

Σ
i=0

Di

8

Σ
i=0

Di

9

Σ
i=0

Di

10

Σ
i=0

Di

11

D0
T

T

T

T

0

1

2

3

Figure 8 upc_all_prefix_reduce with Addition Operator (the Di’s are scalars of

type TYPE)

200 UPC COLLECTIVE OPERATIONS SPECIFICATIONS, V1.0

3. If the value of blk_size passed to upc_all_sort is zero, upc_all_

sort treats the array A as if it had an indefinite layout qualifier.

4. The phase of the A is respected when referencing array elements, as specified

in items 2 and 3.

5. The function func shall return an integer less than, equal to, or greater than

zero if the first argument is considered to be, respectively, less than, equal to,

or greater than the second.

6. The function upc_all_sort performs a stable sort; that is, elements that

compare as equal are not reordered.

Example: upc_all_sort:

#define NELEMS 10

shared [NELEMS] int A [NELEMS*THREADS];

int it_int(shared void *x, shared void *y)

{

int x_val = *(shared int *)x, y_val = *(shared int *)y;

return x_val > y_val ? -1 : x_val < y_val ? 1 : 0;

}

// Initialize A.

upc_barrier;

upc_all_sort(A, sizeof(int), NELEMS*THREADS, NELEMS,

lt_int, UPC_IN_NOSYNC j UPC_OUT_NOSYNC);
upc_barrier;

ACKNOWLEDGMENTS

Thanks go to many in the UPC community for their interest and helpful comments,

particularly Dan Bonachea, Bill Carlson, Jason Duell, and Brian Wibecan. Tarek

El-Ghazawi’s efforts in organizing workshops provided an important forum for

discussion of these specifications. Thanks also go to Lauren Smith for her efforts to

support the development of this specification.

REFERENCES

1. E. Wiebel and D. Greenberg, Collective Operations in UPC, Technical Report CCS

TR-02-159, IDA Center for Computing Sciences, March 2002.

2. T. El-Ghazawi, W. Carlson, and J. Draper, UPC Language Specifications v1.1.1, technical

report, George Washington University and IDA Center for Computing Sciences, http://

www.gwu.edu/.upc/documentation.html, October 7, 2003.

REFERENCES 201

APPENDIX C

UPC-IO Specifications, v1.0

Tarek El-Ghazawi, François Cantonnet, Proshanta Saha, Rajeev Thakur,
Rob Ross, and Dan Bonachea

3 Terms, Definitions, and Symbols

3.1 Collective

3.2 Single-Valued

3.3 List-Based File Access

3.4 File Pointer–Based Access

3.5 Synchronous I/O Call

3.6 Asynchronous I/O Call

3.7 Consistency Semantics

3.8 Atomicity Semantics

7 Library

7.3 UPC Parallel I/O <upc_io.h>

7.3.0 Background

7.3.0.1 File Accessing and File Pointers

7.3.0.2 Synchronous and Asynchronous I/O

7.3.0.3 Consistency and Atomicity Semantics

7.3.0.4 File Interoperability

7.3.1 Predefined Types

7.3.1.1 upc_off_t Type

7.3.1.2 upc_file_t Type

7.3.1.3 upc_flag_t Type

7.3.1.4 upc_local_memvec_t Type

7.3.1.5 upc_shared_memvec_t Type

7.3.1.6 upc_filevec_t Type

7.3.1.7 upc_hint_t Type

UPC: Distributed Shared Memory Programming, by Tarek El-Ghazawi, William Carlson,
Thomas Sterling, and Katherine Yelick
Published 2005 John Wiley & Sons, Inc.

203

7.3.2 UPC File Operations

7.3.2.1 upc_all_fopen Function

7.3.2.2 upc_all_fclose Function

7.3.2.3 upc_all_fsync Function

7.3.2.4 upc_all_fseek Function

7.3.2.5 upc_all_fset_size Function

7.3.2.6 upc_all_fget_size Function

7.3.2.7 upc_all_fpreallocate Function

7.3.2.8 upc_all_fcntl Function

7.3.3 Reading Data

7.3.3.1 upc_all_fread_local Function

7.3.3.2 upc_all_fread_shared Function

7.3.4 Writing Data

7.3.4.1 upc_all_fwrite_local Function

7.3.4.2 upc_all_fwrite_shared Function

7.3.5 List I/O

7.3.5.1 upc_all_fread_list_local Function

7.3.5.2 upc_all_fread_list_shared Function

7.3.5.3 upc_all_fwrite_list_local Function

7.3.5.4 upc_all_fwrite_list_shared Function

7.3.6 Asynchronous I/O

7.3.6.1 upc_all_fread_local_async Function

7.3.6.2 upc_all_fread_shared_async Function

7.3.6.3 upc_all_fwrite_local_async Function

7.3.6.4 upc_all_fwrite_shared_async Function

7.3.6.5 upc_all_fread_list_local_async Function

7.3.6.6 upc_all_fread_list_shared_async Function

7.3.6.7 upc_all_fwrite_list_local_async Function

7.3.6.8 upc_all_fwrite_list_shared_async Function

7.3.6.9 upc_all_fwait_async Function

7.3.6.10 upc_all_ftest_async Function

Appendix: Future Library Directions

References

3 TERMS, DEFINITIONS, AND SYMBOLS

Some of the following definitions are repeated from the UPC Language Specifica-

tions [1] for self-containment and clarity of the functions defined here.

204 UPC-IO SPECIFICATIONS, V1.0

3.1 Collective

A collective is a constraint placed on some language operations that requires

evaluation of such operations to be matched across all threads. The behavior of

collective operations is undefined unless all threads execute the same sequence of

collective operations.1

3.2 Single-Valued

A single-valued operand to a collective operation has the same value on every

thread. The behavior of the operation is otherwise undefined.

3.3 List-Based File Access

File accesses are done using explicit offsets and sizes of data. Noncontiguous

accesses may be performed using lists of explicit offsets and lengths in the file.

3.4 File Pointer–Based Access

File accesses are done using either individual or common file pointers, where

individual file pointers provide a means for each thread to control its access to the

file independently, and common file pointers provide a means for all the threads to

access the file with a single, collective file pointer.

3.5 Synchronous I/O Call

Synchronous I/O calls block and wait until the corresponding I/O operation is

completed.

3.6 Asynchronous I/O Call

Asynchronous I/O calls start an I/O operation and return immediately, and must

later be completed using a synchronization function. Only one outstanding asyn-

chronous operation is allowed on a UPC-IO file handle at any given time.

3.7 Consistency Semantics

Consistency semantics define when data written to a file by a thread is visible to

other threads. The consistency semantics also define the outcome in the case of

1A collective operation need not provide any actual synchronization between threads unless otherwise

noted. The collective requirement simply states a relative ordering property of calls to collective opera-

tions that must be maintained in the parallel execution trace for all executions of any legal program.

Some implementations may include unspecified synchronization between threads within collective

oprations, but programs must not rely on unspecified synchronization for correctness.

TERMS, DEFINITIONS, AND SYMBOLS 205

overlapping reads into a shared buffer in memory when using individual file

pointers or list I/O functions.

3.8 Atomicity Semantics

Atomicity semantics define the outcome of operations in which multiple threads

write concurrently to a file and some of the writes overlap each other.

7 LIBRARY

7.3 UPC Parallel I/O <upc_io.h>

This section provides the UPC parallel extensions of Section 7.19 of [2]. All the

characteristics of library functions described in Section 7.1.4 of [2] apply to these as

well.

Common Constraints

1. All UPC-IO functions are collective and must be called by all threads

collectively. (See Section 3 of the UPC Specification [1] for a definition of

collective.2)

2. If a program calls exit, upc_global_exit, or returns from main with

a UPC file still open, the file will be closed automatically at program

termination, and the effect will be equivalent to upc_all_fclose being

called on implicitly the file.

3. If a program attempts to read past the end of a file, the read function will

read data up to the end of file and return the number of bytes actually read,

which may be less than the amount requested.

4. Writing past the end of a file increases the file size.

5. If a program seeks to a location past the end of a file and writes starting

from that location, the data in the intermediate (unwritten) portion of the

file is undefined. For example, if a program opens a new file (of size

0 bytes), seeks to offset 1024, and writes some data beginning from that

offset, the data at offsets 0 through 1023 is undefined. Seeking past the

end of file and performing a write immediately causes the current file size

to be extended up to the end of the write. However, just seeking past the end

of file or attempting to read past the end of file, without a write, does not

extend the file size.

2Note that collective does not necessarily imply barrier synchronization. The synchronization behavior

of the UPC-IO data movement library functions is controlled explicitly by using the sync_mode flag

argument (see Section 7.3.1.3 for details).

206 UPC-IO SPECIFICATIONS, V1.0

6. All ‘‘shared void *’’ pointers passed to the I/O functions (as function

arguments or indirectly through the list I/O arguments) are treated as if they

had a phase field of zero (i.e., the input phase is ignored).

7. All UPC-IO read/write functions take an argument sync_mode of type

upc_flag_t. sync_mode values are obtained by performing a bitwise

OR of a constant of the form UPC_IN_XSYNC and a constant of the form

UPC_OUT_YSYNC, where X and Y may be NO, MY, or ALL. The

sync_mode argument is similar to the sync_mode argument used in

collective operation functions [3]. The sync_mode argument and

upc_flag_t type are discussed further in Section 7.3.1.3.

8. The arguments to all UPC-IO functions are single-valued (must have the

same value on all threads) except where explicitly noted otherwise in

the function description. (See Section 3 of the UPC Specification [1] for the

definition of single-valued.)

9. UPC-IO, by default, supports weak consistency and atomicity semantics.

The default (weak) semantics are as follows. The data written to a file by a

thread is guaranteed to be visible to another thread only after all threads

have collectively closed or synchronized the file.

10. Writes to a file from a given thread are always guaranteed to be visible to

subsequent file reads by the same thread, even without an intervening call to

close or synchronize the file collectively.

11. Byte-level data consistency is supported.

12. If concurrent writes from multiple threads overlap in the file, the resulting

data in the overlapping region is undefined with the weak consistency and

atomicity semantics.

13. When reading data being written concurrently by another thread, the data

that gets read is undefined with the weak consistency and atomicity

semantics.

14. File reads into overlapping locations in a shared buffer in memory using

individual file pointers or list I/O functions lead to undefined data in the

target buffer under the weak consistency and atomicity semantics.

15. A given file must not be opened at the same time by the POSIX I/O and

UPC-IO libraries.

16. Except where noted otherwise, all UPC-IO functions return non-single-

valued errors; that is, the occurrence of an error need only be reported to at

least one thread, and the errno value reported to each such thread may

differ. When an error is reported to any thread, the position of all file

pointers for the relevant file handle becomes undefined.

17. The error values that UPC-IO functions may set in errno are implementa-

tion-defined; however, the perror() and strerror() functions are

still guaranteed to work properly with errno values generated by UPC-IO.

18. UPC-IO functions cannot be called between upc_notify and correspond-

ing upc_wait statements.

LIBRARY 207

7.3.0 Background

7.3.0.1 File Accessing and File Pointers Collective UPC-IO accesses

(Figure 1) can be done in and out of shared and private buffers; thus, local and

shared reads and writes are generally supported. In each of these cases, file pointers

could be either common or individual. Note that in UPC-IO, common file pointers

cannot be used in conjunction with pointer-to-local buffers. File pointer modes are

specified by passing a flag to the collective upc_all_fopen function and can

be changed using upc_all_fcntl. When a file is opened with the common file

pointer flag, all threads share a common file pointer. When a file is opened with the

individual file pointer flag, each thread gets its own file pointer.

UPC-IO also provides file-pointer-independent list file accesses by specifying

explicit offsets and sizes of data that is to be accessed. List IO can also be used

with either pointer-to-local buffers or pointer-to-shared buffers.

Examples 1 through 3 give typical instances of UPC-IO usage. Error checking

is omitted for brevity.

Example 1

double buffer [10]; // and assuming a total of 4 THREADS

upc_file_t *fd;

fd = upc_all_fopen("file", UPC_RDONLY | UPC_INDIVIDUAL_FP, 0, NULL);

upc_all_fseek(fd, 5*MYTHREAD*sizeof(double), UPC_SEEK_SET);

upc_all_fread_local(fd, buffer, sizeof(double), 10,

UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);

upc_all_fclose(fd);

With Pointer-to-Local Buffers With Pointer-to-Shared Buffers

With Individual FP With Individual FP With Common FP

File I/O with File Pointers

List I/O Access Using Explicit Offsets

With Pointer-to-Local
Buffers

With Pointer-to-Shared
Buffers

Figure 1 UPC-IO File Access Methods

208 UPC-IO SPECIFICATIONS, V1.0

Example 1 and Figure 2 illustrate a collective read operation using individual

file pointers. Each thread reads a block of data into a private buffer from a parti-

cular thread-specific offset.

Example 2 and Figure 3 illustrate a collective read operation using a common

file pointer. The data read is stored into a shared buffer having a block size of five

elements. The user selects the type of file pointer at file-open time. The user can

select either individual file pointers by passing the flag UPC_INDIVIDUAL_FP

to the function upc_all_fopen, or the common file pointer by passing the flag

UPC_COMMON_FP to upc_all_fopen.

Example 2

shared [5] float buffer [20]; // and assuming a total of 4 static THREADS

upc_file_t *fd;

fd = upc_all_fopen("file", UPC_RDONLY | UPC_COMMON_FP, 0, NULL);

upc_all_fread_shared(fd, buffer, upc_blocksizeof(buffer),

upc_elemsizeof(buffer), 20, UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);

/* or equivalently:

* upc_all_fread_shared(fd, buffer, 5, sizeof(float), 20,

UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);

*/

Thread 3
File offset = 15*sizeof(double)

Thread 0
File offset = 0

Thread 1
File offset = 5*sizeof(double)

Thread 2
File offset = 10*sizeof(double)

0 19 …

File Double

Figure 2 Collective Read into Private Buffers Can Provide a Canonical File View

Thread 0 Thread 1 Thread 2 Thread 3

Current file offset = 0

0 19 …File

Float

Figure 3 Collective Read into a Blocked Shared Buffer Can Provide a Partitioned File View

LIBRARY 209

Example 3 and Figure 4 illustrate a collective list I/O read operation. The list

I/O functions allow the user to specify noncontiguous accesses both in memory

and file in the form of lists of explicit offsets and lengths in the file and explicit

address and lengths in memory. None of the file pointers are used or updated in this

case.

Example 3

upc_local_memvec_t memvec [2];

upc_filevec_t filevec [2];

upc_file_t *fd;

char buffer [12];

fd = upc_all_fopen ("file", UPC_RDONLY | UPC_INDIVIDUAL_FP, 0, NULL);

memvec [0].baseaddr = &buffer [0];

memvec [0].len = 4;

memvec [1].baseaddr = &buffer [7];

memvec [1].len = 3;

filevec [0].offset = MYTHREAD*5;

filevec [0].len = 2;

filevec [1].offset = 10+MYTHREAD*5;

filevec [1].len = 5;

upc_all_fread_list_local(fd, 2, &memvec, 2, &filevec,

UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC);

7.3.0.2 Synchronous and Asynchronous I/O I/O operations can be

synchronous (blocking) or asynchronous (nonblocking). Whereas synchronous

calls are quite simple and easy to use from a programming point of view,

THREAD 0 THREAD 1

…File

10 5 6 10 11 12 13 14 15 16 17 18 19 (offset in file)

0 1 2 3 7 8 9 0 1 2 3 7 8 9

Figure 4 List I/O Read of Noncontiguous Parts of a File to Private Noncontiguous Buffers

210 UPC-IO SPECIFICATIONS, V1.0

asynchronous operations allow the overlapping of computation and I/O to

achieve improved performance. Synchronous calls block and wait until the

corresponding I/O operation is completed. On the other hand, an asynchronous

call starts an I/O operation and returns immediately. Thus, the executing process can

turn its attention to other processing needs while the I/O is progressing.

UPC-IO supports both synchronous and asynchronous I/O functionality. The

asynchronous I/O functions have the same syntax and basic semantics as their syn-

chronous counterparts, with the addition of the ‘‘async’’ suffix in their names. The

asynchronous I/O functions have the restriction that only one (collective) asyn-

chronous operation can be active at a time on a given file handle. That is, an asyn-

chronous I/O function must be completed by calling upc_all_ftest_async or

upc_all_fwait_async before another asynchronous I/O function can be

called on the same file handle. This restriction is similar to the restriction MPI-

IO [4] has on split-collective I/O functions: Only one split-collective operation

can be outstanding on an MPI-IO file handle at any time.

7.3.0.3 Consistency and Atomicity Semantics Let us first define what we

mean by the terms consistency semantics and atomicity semantics. The consistency

semantics define when the data written to a file by a thread is visible to other

threads. The atomicity semantics define the outcome of operations in which multiple

threads write concurrently to a file or shared buffer and some of the writes overlap

each other. For performance reasons, UPC-IO uses weak consistency and atomicity

semantics by default. The user can select stronger semantics either by opening

the file with the flag UPC_STRONG_CA or by calling upc_all_fcntl with the

command UPC_SET_STRONG_CA_SEMANTICS.

The default (weak) semantics are as follows. The data written by a thread is

only guaranteed to be visible to another thread after all threads have called

upc_all_fclose or upc_all_fsync. (Note that the data may be visible to

other threads before the call to upc_all_fclose or upc_all_fsync and that

the data may become visible to different threads at different times.) Writes from

a given thread are always guaranteed to be visible to subsequent reads by the

same thread, even without an intervening call to upc_all_fclose or

upc_all_fsync. Byte-level data consistency is supported. So, for example, if

thread 0 writes one byte at offset 0 in the file and thread 1 writes one byte at offset

1 in the file, the data from both threads will get written to the file. If concurrent

writes from multiple threads overlap in the file, the resulting data in the overlapping

region is undefined. Similarly, if one thread tries to read the data being written

concurrently by another thread, the data that gets read is undefined. Concurrent in

this context means any two read/write operations to the same file handle with no

intervening calls to upc_all_fsync or upc_all_fclose.

For the functions that read into or write from a shared buffer using a common

file pointer, the weak consistency semantics are defined as follows. Each call to

upc_all_{fread,fwrite}_shared[_async] with a common file pointer

behaves as if the read/write operations were performed by a single, distinct, anony-

mous thread which is different from any compute thread (and different for each

LIBRARY 211

operation). In other words, NO file reads are guaranteed to see the results of file

writes using the common file pointer until after a close or sync under the default

weak consistency semantics.

By passing the UPC_STRONG_CA flag to upc_all_fopen or by calling

upc_all_fcntl with the command UPC_SET_STRONG_CA_SEMANTICS, the

user selects strong consistency and atomicity semantics. In this case, the data

written by a thread is visible to other threads as soon as the file write on the calling

thread returns. In the case of writes from multiple threads to overlapping regions

in the file, the result would be as if the individual write function from each thread

occurred atomically in some (unspecified) order. Overlapping writes to a file in

a single (list I/O) write function on a single thread are not permitted (see Sec-

tion 7.3.5). While strong consistency and atomicity semantics are selected on a given

file handle, the sync_mode argument to all fread/fwrite functions on that handle is

ignored and always treated as UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC.

The consistency semantics also define the outcome in the case of overlapping

reads into a shared buffer in memory when using individual file pointers or list I/O

functions. By default, the data in the overlapping space is undefined. If the user

selects strong consistency and atomicity, the result would be as if the individual

read functions from each thread occurred atomically in some (unspecified) order.

Overlapping reads into memory buffers in a single (list I/O) read function on a

single thread are not permitted (see Section 7.3.5).

Note that in strong consistency and atomicity mode, atomicity is guaranteed

at the UPC-IO function level. The entire operation specified by a single function

is performed atomically, regardless of whether it represents a single contiguous

read/write or multiple noncontiguous reads or writes as in a list I/O function.

Example Consider the following example, in which three threads write data to a

file concurrently, each with a single list I/O function. The numbers indicate file

offsets and brackets indicate the boundaries of a listed vector. Each thread writes its

own thread id as the data values:

thread 0: {1 2 3} {5 6 7 8}

thread 1: {0 1 2} {3 4 5}

thread 2: {4 5 6} {8 9 10 11}

With the default weak semantics, the results in the overlapping locations are

undefined. Therefore, the result in the file would be the following, where x repre-

sents undefined data:

File: 1 x x x x x x 0 x 2 2 2

That is, the data from thread 1 is written at location 0, the data from thread 0 is

written at location 7, and the data from thread 2 is written at locations 9, 10, and 11,

because none of these locations had overlapping writes. All other locations had

overlapping writes, and consequently, the result at those locations is undefined.

212 UPC-IO SPECIFICATIONS, V1.0

If the file were opened with the UPC_STRONG_CA flag, strong consistency

and atomicity semantics would be in effect. The result, then, would depend on the

order in which the writes from the three threads actually occurred. Since six

different orderings are possible, there can be six outcomes. Let us assume,

for example, that the ordering was the write from thread 0, followed by the

write from thread 2, and then the write from thread 1. The (list I/O) write

from each thread happens atomically. Therefore, for this ordering, the result

would be

File: 1 1 1 1 1 1 2 0 2 2 2 2

We note that if instead of using a single list I/O function each thread used a

separate function to write each contiguous portion, there would be six write func-

tions, two from each thread, and the atomicity would be at the granularity of the

write operation specified by each of those functions.

7.3.0.4 File Interoperability UPC-IO does not specify how an implementation

may store the data in a file on the storage device. Accordingly, it is implementation-

defined whether or not a file created by UPC-IO can be accessed directly by using

C/POSIX I/O functions. However, the UPC-IO implementation must specify how

the user can retrieve the file from the storage system as a linear sequence of bytes,

and vice versa. Similarly, the implementation must specify how familiar operations,

such as the equivalent of POSIX Is, cp, rm, and mv, can be performed on the file.

7.3.1 Predefined Types

7.3.1.1 upc_off_t Type

Synopsis

#include <upc_io.h>

upc_off_t myOffset;

Description upc_off_t is a signed integral type that is capable of representing

the size of the largest file supported by the implementation.

7.3.1.2 upc_file_t Type

Synopsis

#include <upc_io.h>

upc_file_t *myFile;

LIBRARY 213

Description An opaque shared data type of incomplete type (as defined in

Section 6.2.5 of [2]) that represents an open file handle:

upc_file_t

Constraints

1. upc_file_t objects are always manipulated via a pointer (i.e., upc_

file_t *).

2. upc_file_t is a shared data type. It is legal to pass a (upc_file_t *)

across threads, and two pointers to upc_file_t that reference the same

logical file handle will always compare equal.

Advice to implementors The definition of upc_file_t does not restrict the

implementation to store all its metadata with affinity to one thread. Each thread

can still have local access to its metadata. For example, the following is a simple

approach an implementation could use:

/* for a POSIX-based implementation */

typedef int my_internal_filehandle_t;

#ifdef _UPC_INTERNAL

typedef struct _local_upc_file_t {

my_internal_filehandle_t fd;

... other metadata ...

} local_upc_file_t;

#else

struct _local_upc_file_t;

#endif

typedef shared struct _local_upc_file_t upc_file_t;

upc_file_t *upc_all_fopen(...) {

upc_file_t *handles =

upc_all_alloc(THREADS, sizeof(upc_file_t));

/* get my handle */

upc_file_t *myhandle = &(handles [MYTHREAD]);

/* cast to a pointer-to-local */

local_upc_file_t* mylocalhandle = (local_upc_file_t*)myhandle;

214 UPC-IO SPECIFICATIONS, V1.0

/* setup my metadata using pointer-to-local */

mylocalhandle->fd = open(...);

...

return handles;

}

The basic idea is that the ‘‘handle’’ exposed to the user actually points to a

cyclic, distributed array. As a result, each thread has easy, local access to its

own internal handle metadata with no communication, while maintaining the

property that the handle that UPC-IO exposes to the client is a single-valued

pointer-to-shared. An additional advantage is that a thread can directly access

the metadata for other threads, which may occasionally be desirable in the

implementation.

7.3.1.3 upc_flag_t Type

Synopsis

#include <upc_io.h>

upc_flag_t sync_mode;

Description The sync_mode argument is similar to the corresponding argument

in collective operation functions [3].

1. If the sync_mode has the value (UPC_IN_XSYNC | UPC_OUT_YSYNC),

then if X is

� NO the function may begin to read or write data when the first thread has

entered the I/O function call

� MY the function may begin to read or write only data that has affinity to

threads that have entered the collective function call

� ALL the function may begin to read or write data only after all threads have

entered the collective function call3

and if Y is

� NO the function may read and write data until the last thread has returned

from the collective function call

3UPC_IN_ALLSYNC requires the collective I/O function to guarantee that after all threads have entered

the collective function call, all threads will read the same values of the input data.

LIBRARY 215

� MY the function call may return in a thread only after all reads and writes

of data with affinity to the thread are complete 4

� ALL the function call may return only after all reads and writes of data

are complete5

2. UPC_IN_XSYNC alone is equivalent to (UPC_IN_XSYNC | UPC_OUT_

ALLSYNC), where X is NO, MY, or ALL.

3. UPC_OUT_XSYNC alone is equivalent to (UPC_IN_ALLSYNC | UPC_OUT_

XSYNC), where X is NO, MY, or ALL.

4. 0 is equivalent to (UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC).

5. In the sync_mode definitions above, ‘‘data’’ refers exclusively to data

residing in user-owned memory buffers passed as arguments to the library

function. In other words, the sync_mode flag only governs the behavior of

library accesses to memory locations in user-provided buffers—it does not

restrict the behavior of read / write operations on the storage medium or any

buffer memory internal to the library implementation.

6. When applied to the async variants of the fread / fwrite functions, the

semantics of these flags should be interpreted as follows: Constraints

that reference entry to a function call correspond to entering the fread_

async-/fwrite_ async call that initiates the asynchronous opera-

tion, and constraints that reference returning from a function call cor-

respond to returning from the upc_all_fwait_async() or successful

upc_ all_ftest_async() call that completes the asynchronous

operation. Also, note that all the sync_ mode flags that govern an asynchro-

nous operation are passed to the library during the asynchronous initiation

call.

7. The sync_mode flag is included even on the fread/fwrite_local

functions (which take a pointer-to-local as the buffer argument) in

order to provide well-defined semantics for the case where one or more

of the pointer-to-local arguments references a shared object (with local

affinity). In the case where all of the pointer-to-local arguments in a

given call reference only private objects, the sync_mode flag provides

no useful additional guarantees and is recommended to be passed as

UPC_IN_NOSYNC|UPC_OUT_NOSYNC to maximize performance.

4UPC_OUT_MYSYNC requires the collective I/O function to guarantee that after a thread returns from the

collective function call, the thread will not read any earlier values of the output data with affinity to that

thread.
5UPC_OUT_ALLSYNC requires the collective I/O function to guarantee that after a thread returns from the

collective function call, the thread will not read any earlier values of the output data. UPC_OUT_

ALLSYNC is not required to provide an ‘‘implied’’ barrier. For example, if the entire collective I/O

operation has been completed by a certain thread before some other threads have reached their

corresponding function calls, that thread may exit its call.

216 UPC-IO SPECIFICATIONS, V1.0

7.3.1.4 upc_local_memvec_t Type

Synopsis

#include <upc_io.h>

upc_local_memvec_t myLocalMemoryVector;

Description upc_local_memvec_t is defined as follows:

typedef struct {

void *baseaddr;

size_t len;

} upc_local_memvec_t;

baseaddr and len specify a contiguous memory region in terms of the base

address and length in bytes. len may be zero, in which case that entry is ignored.

7.3.1.5 upc_shared_memvec_t Type

Synopsis

#include <upc_io.h>

upc_shared_memvec_t mySharedMemoryVector;

Description upc_shared_memvec_t is defined as follows:

typedef struct {

shared void *baseaddr;

size_t blocksize;

size_t len;

} upc_shared_memvec_t;

baseaddr and len specify a shared memory region in terms of the base

address and length in bytes. len may be zero, in which case that entry is ignored.

blocksize is the block size of the shared buffer in bytes. A blocksize of 0

indicates an indefinite blocking factor.

7.3.1.6 upc_filevec_t Type

Synopsis

#include <upc_io.h>

upc_filevec_t myFileVector;

LIBRARY 217

Description upc_filevec_t is defined as follows:

typedef struct {

upc_off_t offset;

size_t len;

} upc_filevec_t;

offset and len specify a contiguous region in the file in terms of the starting

offset in the file in bytes and the length in bytes.

7.3.1.7 upc_hint_t Type

Synopsis

#include <upc_io.h>

upc_hint_t myHint;

Description

1. upc_hint_t is defined as follows:

typedef struct {

const char *key;

const char *value;

} upc_hint_t;

2. UPC-IO supports a number of predefined hints. An implementation is free to

support additional hints. An implementation is free to ignore any hint provided

by the user. Implementations should silently ignore any hints they do not support

or recognize. The predefined hints and their meanings are defined below. An

implementation is not required to interpret these hint keys, but if it does interpret

the hint key, it must provide the functionality described. For each hint name

introduced, we describe the type of the hint value and its meaning. All hints are

single-valued character strings (the content is single-valued, not the location).

� access_style (comma-separated list of strings): indicates the manner in

which the file is expected to be accessed. The hint value is a comma-

separated list of any of the following: ‘‘read_once,’’ ‘‘write_once,’’

‘‘read_mostly,’’ ‘‘write_mostly,’’ ‘‘sequential,’’ and ‘‘random.’’

Passing such a hint does not place any constraints on how the file may

actually be accessed by the program, although accessing the file in a way

that is different from the specified hint may result in lower performance.

� collective_buffering (boolean): specifies whether the application

may benefit from collective buffering optimizations. Legal values for this

key are ‘‘true’’ and ‘‘false.’’ Collective buffering parameters can be further

directed via additional hints: cb_buffer_size and cb_nodes.

218 UPC-IO SPECIFICATIONS, V1.0

� cb_buffer_size (decimal integer): specifies the total buffer space that

the implementation can use on each thread for collective buffering.

� cb_nodes (decimal integer): specifies the number of target threads or I/O

nodes to be used for collective buffering.

� file_perm (string): specifies the file permissions to use for file creation.

The set of legal values for this key is implementation-defined.

� io_node_list (comma-separated list of strings): specifies the list of I/O

devices that should be used to store the file and is relevant only when the

file is created.

� nb_proc (decimal integer): specifies the number of threads that will

typically be used to run programs that access this file and is relevant only

when the file is created.

� striping_factor (decimal integer): specifies the number of I/O

devices that the file should be striped across and is relevant only when

the file is created.

� start_io_device (decimal integer): specifies the number of the first

I/O device from which to start striping the file and is relevant only when the

file is created.

� striping_unit (decimal integer): specifies the striping unit to be used

for the file. The striping unit is the amount of consecutive data assigned

to one I/O device before progressing to the next device, when striping

across a number of devices. It is expressed in bytes. This hint is relevant

only when the file is created.

7.3.2 UPC File Operations

Common Constraints

1. When a file is opened with an individual file pointer, each thread will get

its own file pointer and advance through the file at its own pace.

2. When a common file pointer is used, all threads positioned in the file will

be aligned with that common file pointer.

3. Common file pointers cannot be used in conjunction with pointers-to-local

(and hence cannot operate on private objects).

4. No function in this section may be called while an asynchronous operation is

pending on the file handle, except where otherwise noted.

7.3.2.1 upc_all_fopen Function

Synopsis

#include <upc.h>
#include <upc_io.h>

LIBRARY 219

upc_file_t *upc_all_fopen(const char *fname,

int flags,

size_t numhints,

upc_hint_t const *hints)

Description

1. upc_all_fopen opens the file identified by the file name fname for

I/O operations.

2. The flags parameter specifies the access mode. The valid flags and their

meanings are listed below. Of these flags, exactly one of UPC_RDONLY,

UPC_ WRONLY, or UPC_RDWR, and one of UPC_COMMON_FP or UPC_

INDIVIDUAL_ FP, must be used. Other flags are optional. Multiple flags

can be combined by using the bitwise OR operator (|), and each flag has a

unique bitwise representation that can be tested unambiguously using the

bitwise AND operator(&).

� UPC_RDONLY: opens the file in read-only mode.

� UPC_WRONLY: opens the file in write-only mode.

� UPC_RDWR: opens the file in read/write mode.

� UPC_INDIVIDUAL_FP: uses an individual file pointer for all file

accesses (other than list I/O).

� UPC_COMMON_FP: uses the common file pointer for all file accesses

(other than list I/O).

� UPC_APPEND: sets the initial position of the file pointer to end of file.

(The file pointer is not moved to the end of file after each read/write.)

� UPC_CREATE: creates the file if it does not already exist.

� UPC_EXCL: used in conjunction with UPC_CREATE. The open will fail

if the file already exists.

� UPC_STRONG_CA: sets strong consistency and atomicity semantics.

� UPC_TRUNC: opens the file and truncate it to zero length.

� UPC_DELETE_ON_CLOSE: deletes the file automatically on close.

3. The UPC_COMMON_FP flag specifies that all accesses (except for the list

I/O operations) will use the common file pointer. The UPC_INDIVIDUAL_

FP flag specifies that all accesses will use individual file pointers

(except for the list I/O operations). Either UPC_COMMON_FP or UPC_

INDIVIDUAL_ FP must be specified or upc_all_fopen will return

an error.

4. The UPC_STRONG_CA flag specifies strong consistency and atomicity

semantics. The data written by a thread is visible to other threads as soon

as the write on the calling thread returns. In the case of writes from multiple

threads to overlapping regions in the file, the result would be as if the

220 UPC-IO SPECIFICATIONS, V1.0

individual write function from each thread occurred atomically in some

(unspecified) order. In the case of overlapping reads into a shared buffer in

memory when using individual file pointers or list I/O functions, the result

would be as if the individual read functions from each thread occurred

atomically in some (unspecified) order.

5. If the flag UPC_STRONG_CA is not specified, weak semantics are provided.

The data written by a thread is guaranteed to be visible to another thread

only after all threads have called upc_all_fclose or upc_all_

fsync. (Note that the data may be visible to other threads before the call

to upc_all_fclose or upc_all_fsync and that the data may

become visible to different threads at different times.) Writes from a given

thread are always guaranteed to be visible to subsequent reads by the

same thread, even without an intervening call to upc_all_ fclose or

upc_all_fsync. Byte-level data consistency is supported. For the

purposes of atomicity and consistency semantics, each call to upc_all_

{fread,fwrite}_ shared [_async] with a common file pointer

behaves as if the read/write operations were performed by a single, distinct,

anonymous thread which is different from any compute thread (and dif-

ferent for each operation).6

6. Hints can be passed to the UPC-IO library as an array of key-value

pairs7 of strings. numhints specifies the number of hints in the hints

array; if numhints is zero, the hints pointer is ignored. The user

can free the hints array and associated character strings as soon as

the open call returns. Each element of the hints array is of type

upc_hint_t.

7. A file on the storage device is in the open state from the beginning of a

successful open call to the end of the matching successful close call on

the file handle. It is erroneous to have the same file open simultaneously

with two upc_all_fopen calls, or with a upc_all_fopen call and a

POSIX/C open or fopen call.

8. The user is responsible for ensuring that the file referenced by the fname

argument refers to a single UPC-IO file. The actual argument passed on

each thread may be different because the file name spaces may be different

on different threads, but they must all refer to the same logical UPC-IO file.

9. On success, the function returns a pointer to a file handle that can be used to

perform other operations on the file.

10. upc_all_fopen provides single-valued errors—if an error occurs, the

function returns NULL on all threads and sets errno appropriately to

the same value on all threads.

6 In other words, NO reads are guaranteed to see the results of writes using the common file pointer until

after a close or sync when UPC_STRONG_CA is not specified.
7 The contents of the key/value pairs passed by all the threads must be single-valued.

LIBRARY 221

7.3.2.2 upc_all_fclose Function

Synopsis

#include <upc.h>
#include <upc_io.h>

int upc_all_fclose(upc_file_t *fd);

Description

1. upc_all_fclose executes an implicit upc_all_fsync on fd and

then closes the file associated with fd.

2. The function returns 0 on success. If fd is not valid or if an outstanding

asynchronous operation on fd has not been completed, the function will

return an error.

3. upc_all_fclose provides single-valued errors—if an error occurs, the

function returns �1 on ALL threads and sets errno appropriately to the

same value on all threads.

4. After a file has been closed with upc_all_fclose, the file can legally

be opened and the data in it can be accessed by using regular C/POSIX

I/O calls.

7.3.2.3 upc_all_fsync Function

Synopsis

#include <upc.h>
#include <upc_io.h>

int upc_all_fsync(upc_file_t *fd)

Description

1. upc_all_fsync ensures that any data that has been written to the file

associated with fd but not yet transferred to the storage device is transferred

to the storage device. It also ensures that subsequent file reads from any thread

will see any previously written values (that have not yet been overwritten).

2. There is an implied barrier immediately before upc_all_fsync

returns.

3. The function returns 0 on success. On error, it returns �1 and sets errno

appropriately.

222 UPC-IO SPECIFICATIONS, V1.0

7.3.2.4 upc_all_fseek Function

Synopsis

#include <upc.h>
#include <upc_io.h>

upc_off_t upc_all_fseek(upc_file_t *fd,

upc_off_t offset,

int origin)

Description

1. upc_all_fseek sets the current position of the file pointer associated

with fd.

2. This offset can be relative to the current position of the file pointer, to the

beginning of the file, or to the end of the file. The offset can be negative,

which allows seeking backward.

3. The origin parameter can be specified as UPC_SEEK_SET, UPC_SEEK_

CUR, or UPC_SEEK_END, respectively, to indicate that the offset must

be computed from the beginning of the file, the current location of the file

pointer, or the end of the file.

4. In the case of a common file pointer, all threads must specify the same offset

and origin. In the case of an individual file pointer, each thread may specify

a different offset and origin.

5. It is legal to seek past the end of file. It is erroneous to seek to a negative

position in the file. See common constraint 5 at the beginning of Section 7.3

for more details.

6. The current position of the file pointer can be determined by calling

upc_all_fseek(fd, 0, UPC_SEEK_CUR).

7. On success, the function returns the current location of the file pointer

in bytes. If there is an error, it returns �1 and sets errno appropriately.

7.3.2.5 upc_all_fset_size Function

Synopsis

#include <upc.h>
#include <upc_io.h>

int upc_all_fset_size(upc_file_t *fd,

upc_off_t size)

LIBRARY 223

Description

1. upc_all_fset_size executes an implicit upc_all_fsync on fd

and resizes the file associated with fd.

2. size is measured in bytes from the beginning of the file.

3. If size is less than the current file size, the file is truncated at the position

defined by size. The implementation is free to deallocate file blocks located

beyond this position.

4. If size is greater than the current file size, the file size increases to size.

Regions of the file written previously are unaffected. The values of data in the

new regions in the file (between the old size and size) are undefined.

5. If this function truncates a file, it is possible that the individual and common

file pointers may point beyond the end of file. This is legal and is equivalent to

seeking past the end of file (the Common Rules in Section 5 describe the

semantics of seeking past the end of file).

6. It is not specified whether and under what conditions this function actually

allocates file space on the storage device. Use upc_all_fpreallocate

to force file space to be reserved on the storage device.

7. Calling this function does not affect the individual or common file pointers.

8. The function returns 0 on success. On error, it returns �1 and sets errno

appropriately.

7.3.2.6 upc_all_fget_size Function

Synopsis

#include <upc.h>
#include <upc_io.h>

upc_off_t upc_all_fget_size(upc_file_t *fd)

Description upc_all_fget_size returns the current size in bytes of the

file associated with fd on success. On error, it returns �1 and sets errno

appropriately.

7.3.2.7 upc_all_fpreallocate Function

Synopsis

#include <upc.h>
#include <upc_io.h>

int upc_all_fpreallocate(upc_file_t *fd,

upc_off_t size)

224 UPC-IO SPECIFICATIONS, V1.0

Description

1. upc_all_fpreallocate ensures that storage space is allocated for the

first size bytes of the file associated with fd.

2. Regions of the file written previously are unaffected. For newly allocated

regions of the file, upc_all_fpreallocate has the same effect as

writing undefined data.

3. If size is greater than the current file size, the file size increases to size. If

size is less than or equal to the current file size, the file size is unchanged.

4. Calling this function does not affect the individual or common file pointers.

5. The function returns 0 on success. On error, it returns �1 and sets errno

appropriately.

7.3.2.8 upc_all_fcntl Function

Synopsis

#include <upc.h>
#include <upc_io.h>

int upc_all_fcntl(upc_file_t *fd,

int cmd,

void *arg)

Description

1. upc_all_fcntl performs one of various miscellaneous operations related

to the file specified by fd, as determined by cmd. The valid commands cmd

and their associated argument arg are explained below.

� UPC_GET_CA_SEMANTICS: gets the current consistency and atomicity

semantics for fd. The argument arg is ignored. The return value is UPC_

STRONG_CA for strong consistency and atomicity semantics and 0 for the

default weak consistency and atomicity semantics.

� UPC_SET_WEAK_CA_SEMANTICS: executes an implicit upc_all_

fsync on fd and sets fd to use the weak consistency and atomicity

semantics (or leaves the mode unchanged if that mode is already selected).

The argument arg is ignored. The return value is 0 on success. On error,

this function returns �1 and sets errno appropriately.

� UPC_SET_STRONG_CA_SEMANTICS: executes an implicit upc_all_

fsync on fd and sets fd to use the strong consistency and atomicity

semantics (or leaves the mode unchanged if that mode is already selected).

The argument arg is ignored. The return value is 0 on success. On error,

this function returns �1 and sets errno appropriately.

LIBRARY 225

� UPC_GET_FP: gets the type of the current file pointer for fd. The argu-

ment arg is ignored. The return value is either UPC_COMMON_FP in case

of a common file pointer, or UPC_INDIVIDUAL_FP for individual file

pointers.

� UPC_SET_COMMON_FP: executes an implicit upc_all_fsync on fd,

sets the current file access pointer mechanism for fd to a common file

pointer (or leaves it unchanged if that mode is already selected), and seeks

to the beginning of the file. The argument arg is ignored. The return

value is 0 on success. On error, this function returns �1 and sets errno

appropriately.

� UPC_SET_INDIVIDUAL_FP: executes an implicit upc_all_fsync on

fd, sets the current file access pointer mechanism for fd to an individual

file pointer (or leaves the mode unchanged if that mode is already selected),

and seeks to the beginning of the file. The argument arg is ignored. The

return value is 0 on success. On error, this function returns �1 and sets

errno appropriately.

� UPC_GET_FL: gets all the flags specified during the upc_all_fopen

call for fd, as modified by any subsequent mode changes using the

upc_all_fcntl(UPC_SET_*) commands. The argument arg is

ignored. The return value has same format as the flags parameter in

upc_all_fopen.

� UPC_GET_FN: gets the file name provided by each thread in the upc_

all_fopen call that created fd. The argument arg is a valid (const

char**) pointing to a (const char*) location in which a pointer to file

name will be written. Writes a (const char*) into *arg pointing to the

file name in implementation-maintained read-only memory, which will

remain valid until the file handle is closed or until the next upc_all_

fcntl call on that file handle.

� UPC_GET_HINTS: retrieves the hints applicable to fd. The argument arg

is a valid (const upc_hint_t**) pointing to a (const upc_hint_

t*) location in which a pointer to the hints array will be written. Writes a

(const upc_hint_t*) into *arg pointing to an array of upc_hint_

t’s in implementation-maintained read-only memory, which will remain

valid until the file handle is closed or until the next upc_all_fnctl

call on that file handle. The number of hints in the array is returned by

the call. The hints in the array may be a subset of those specified at file

open time if the implementation ignored some unrecognized or unsupported

hints.

� UPC_SET_HINT: executes an implicit upc_all_fsync on fd and sets a

new hint to fd. The argument arg points to one single-valued upc_

hint_t hint to be applied. If the given hint key has already been applied to

fd, the current value for that hint is replaced with the value provided. The

return value is 0 on success. On error, this function returns �1 and sets

errno appropriately.

226 UPC-IO SPECIFICATIONS, V1.0

� UPC_ASYNC_OUTSTANDING: returns 1 if there is an asynchronous

operation outstanding on fd, or 0 otherwise.

2. In case of a nonvalid fd, upc_all_fcntl returns �1 and sets errno

appropriately.

3. It is legal to call upc_all_fcntl(UPC_ASYNC_OUTSTANDING) when

an asynchronous operation is outstanding (but it is still illegal to call

upc_all_fcntl with any other argument when an asynchronous operation

is outstanding)

7.3.3 Reading Data

Common Constraint No function in this section may be called while an

asynchronous operation is pending on the file handle.

7.3.3.1 upc_all_fread_local Function

Synopsis

#include <upc.h>
#include <upc_io.h>

ssize_t upc_all_fread_local(upc_file_t *fd,

void *buffer,

size_t size,

size_t nmemb,

upc_flag_t sync_mode)

Description

1. upc_all_fread_local reads data from a file into a local buffer on

each thread.

2. This function can be called only if the current file pointer type is an individual

file pointer and the file handle is open for reading.

3. buffer is a pointer to an array into which data will be read, and each thread

may pass a different value for buffer.

4. Each thread reads (size*nmemb) bytes of data from the file at the position

indicated by its individual file pointer into the buffer. Each thread may pass a

different value for size and nmemb. If size or nmemb is zero, the buffer

argument is ignored and that thread performs no I/O.

5. On success, the function returns the number of bytes read into the local

buffer of the calling thread, and the individual file pointer of the thread

is incremented by that amount. On error, it returns �1 and sets errno

appropriately.

LIBRARY 227

7.3.3.2 upc_all_fread_shared Function

Synopsis

#include <upc.h>
#include <upc_io.h>

ssize_t upc_all_fread_shared(upc_file_t *fd,

shared void *buffer,

size_t blocksize,

size_t size,

size_t nmemb,

upc_flag_t sync_mode)

Description

1. upc_all_fread_shared reads data from a file into a shared buffer in

memory.

2. The function can be called when the current file pointer type is either a common

file pointer or an individual file pointer. The file handle must be open for reading.

3. buffer is a pointer to an array into which data will be read. It must be a

pointer to shared data and may have affinity to any thread. blocksize is

the block size of the shared buffer in elements (of size bytes each). A

blocksize of zero indicates an indefinite blocking factor.

4. In the case of individual file pointers, the following rules apply: Each

thread may pass a different address for the buffer parameter. Each thread

reads (size*nmemb) bytes of data from the file at the position indicated

by its individual file pointer into its buffer. Each thread may pass a different

value for blocksize, size, and nmemb. If size or nmemb is zero, the

buffer argument is ignored and that thread performs no I/O. On success,

the function returns the number of bytes read by the calling thread, and the

individual file pointer of the thread is incremented by that amount.

5. In the case of a common file pointer, the following rules apply: All threads

must pass the same address for the buffer parameter and the same value for

blocksize, size, and nmemb. The effect is that (size*nmemb) bytes

of data are read from the file at the position indicated by the common file

pointer into the buffer. If size or nmemb is zero, the buffer argument

is ignored and the operation has no effect. On success, the function returns the

total number of bytes read by all threads, and the common file pointer is

incremented by that amount.

6. If reading with individual file pointers results in overlapping reads into the

shared buffer, the result is determined by whether or not the file was opened

with the UPC_STRONG_CA flag (see Section 7.3.2.1).

7. The function returns �1 on error and sets errno appropriately.

228 UPC-IO SPECIFICATIONS, V1.0

7.3.4 Writing Data

Common Constraint No function in this section may be called while an

asynchronous operation is pending on the file handle.

7.3.4.1 upc_all_fwrite_local Function

Synopsis

#include <upc.h>

#include <upc_io.h>

ssize_t upc_all_fwrite_local(upc_file_t *fd,

void *buffer,

size_t size,

size_t nmemb,

upc_flag_t sync_mode)

Description

1. upc_all_fwrite_local writes data from a local buffer on each thread

into a file.

2. This function can be called only if the current file pointer type is an individual

file pointer and the file handle is open for writing.

3. buffer is a pointer to an array from which data will be written, and each

thread may pass a different value for buffer.

4. Each thread writes (size*nmemb) bytes of data from the buffer to the file at

the position indicated by its individual file pointer. Each thread may pass a

different value for size and nmemb. If size or nmemb is zero, the buffer

argument is ignored and that thread performs no I/O.

5. If any of the writes result in overlapping accesses in the file, the result is

determined by the current consistency and atomicity semantics mode in effect

for fd (see Section 7.3.2.1).

6. On success, the function returns the number of bytes written by the calling

thread, and the individual file pointer of the thread is incremented by that

amount. On error, it returns �1 and sets errno appropriately.

7.3.4.2 upc_all_fwrite_shared Function

Synopsis

#include <upc.h>
#include <upc_io.h>

LIBRARY 229

ssize_t upc_all_fwrite_shared(upc_file_t *fd,

shared void *buffer,

size_t blocksize,

size_t size,

size_t nmemb,

upc_flag_t sync_mode)

Description

1. upc_all_fwrite_shared writes data from a shared buffer in memory

to a file.

2. The function can be called if the current file pointer type is either a common file

pointer or an individual file pointer. The file handle must be open for writing.

3. buffer is a pointer to an array from which data will be written. It must be

a pointer to shared data and may have affinity to any thread. blocksize

is the block size of the shared buffer in elements (of size bytes each). A

blocksize of zero indicates an indefinite blocking factor.

4. In the case of individual file pointers, the following rules apply: Each thread

may pass a different address for the buffer parameter. Each thread writes

(size*nmemb) bytes of data from its buffer to the file at the position

indicated by its individual file pointer. Each thread may pass a different value

for blocksize, size, and nmemb. If size or nmemb is zero, the

buffer argument is ignored and that thread performs no I/O. On success,

the function returns the number of bytes written by the calling thread, and the

individual file pointer of the thread is incremented by that amount.

5. In the case of a common file pointer, the following rules apply: All threads

must pass the same address for the buffer parameter and the same value for

blocksize, size, and nmemb. The effect is that (size*nmemb) bytes

of data are written from the buffer to the file at the position indicated by the

common file pointer. If size or nmemb is zero, the buffer argument is

ignored and the operation has no effect. On success, the function returns the

total number of bytes written by all threads, and the common file pointer is

incremented by that amount.

6. If writing with individual file pointers results in overlapping accesses in the

file, the result is determined by the current consistency and atomicity

semantics mode in effect for fd (see Section 7.3.2.1).

7. The function returns �1 on error and sets errno appropriately.

7.3.5 List I/O

Common Constraints

1. List I/O functions take a list of addresses/offsets and corresponding lengths

in memory and file to read from or write to.

230 UPC-IO SPECIFICATIONS, V1.0

2. List I/O functions can be called regardless of whether the current file

pointer type is individual or common.

3. File pointers are not updated as a result of a list I/O read/write operation.

4. The memvec argument passed to any list I/O read function by a single

thread must not specify overlapping regions in memory.

5. The base addresses passed to memvec can be in any order.

6. The filevec argument passed to any list I/O write function by a single

thread must not specify overlapping regions in the file.

7. The offsets passed in filevec must be in monotonically nondecreasing

order.

8. No function in this section may be called while an asynchronous operation

is pending on the file handle.

9. No function in this section implies the presence of barriers at entry or exit.

However, the programmer is advised to use a barrier after calling

upc_all_fread_list_shared to ensure that the entire shared buffer

has been filled up, and similarly, use a barrier before calling upc_all_f-

write_list_shared to ensure that the entire shared buffer is up-to-

date before being written to the file.

10. For all the list I/O functions, each thread passes an independent set of

memory and file vectors. Passing the same vectors on two or more threads

specifies redundant work. The file pointer is a single-valued argument, all

other arguments to the list I/O functions are NOT single-valued.

7.3.5.1 upc_all_fread_list_local Function

Synopsis

#include <upc.h>
#include <upc_io.h>

ssize_t upc_all_fread_list_local(upc_file_t *fd,

size_t memvec_entries,

upc_local_memvec_t const *memvec,

size_t filevec_entries,

upc_filevec_t const *filevec,

upc_flag_t sync_mode)

Description

1. upc_all_fread_list_local reads data from a file into local buffers

in memory. The file handle must be open for reading.

2. memvec_entries indicates the number of entries in the array memvec,

and filevec_entries indicates the number of entries in the array

LIBRARY 231

filevec. The values may be zero, in which case the memvec or filevec

argument is ignored and no locations are specified for I/O.

3. The result is as if data were read in order from the list of locations specified

by filevec and placed in memory in the order specified by the list of

locations in memvec. The total amount of data specified by memvec must

equal the total amount of data specified by filevec.

4. On success, the function returns the number of bytes read by the calling

thread. On error, it returns �1 and sets errno appropriately.

7.3.5.2 upc_all_fread_list_shared Function

Synopsis

#include <upc.h>
#include <upc_io.h>

ssize_t upc_all_fread_list_shared(upc_file_t *fd,

size_t memvec_entries,

upc_shared_memvec_t const *memvec,

size_t filevec_entries,

upc_filevec_t const *filevec,

upc_flag_t sync_mode)

Description

1. upc_all_fread_list_shared reads data from a file into various

locations of a shared buffer in memory. The file handle must be open for

reading.

2. memvec_entries indicates the number of entries in the array memvec,

and filevec_entries indicates the number of entries in the array

filevec. The values may be zero, in which case the memvec or filevec

argument is ignored and no locations are specified for I/O.

3. The result is as if data were read in order from the list of locations specified

by filevec and placed in memory in the order specified by the list of

locations in memvec. The total amount of data specified by memvec must

equal the total amount of data specified by filevec.

4. If any of the reads from different threads result in overlapping regions in

memory, the result is determined by the current consistency and atomicity

semantics mode in effect for fd (see Section 7.3.2.1).

5. On success, the function returns the number of bytes read by the calling

thread. On error, it returns �1 and sets errno appropriately.

Note: With the definition above there is no way to do with explicit offsets the equi-

valent of upc_all_fread_shared using a common file pointer; namely, where

232 UPC-IO SPECIFICATIONS, V1.0

all threads specify the same access (same parameters), the data gets read

collectively into the shared buffer and the function returns the total amount of

data read by all threads.

7.3.5.3 upc_all_fwrite_list_local Function

Synopsis

#include <upc.h>
#include <upc_io.h>

ssize_t upc_all_fwrite_list_local(upc_file_t *fd,

size_t memvec_entries,

upc_local_memvec_t const *memvec,

size_t filevec_entries,

upc_filevec_t const *filevec,

upc_flag_t sync_mode)

Description

1. upc_all_fwrite_list_local writes data from local buffers in

memory to a file. The file handle must be open for writing.

2. memvec_entries indicates the number of entries in the array memvec

and filevec_entries indicates the number of entries in the array

filevec. The values may be zero, in which case the memvec or filevec

argument is ignored and no locations are specified for I/O.

3. The result is as if data were written from memory locations in the order

specified by the list of locations in memvec to locations in the file in the

order specified by the list in filevec. The total amount of data specified

by memvec must equal the total amount of data specified by filevec.

4. If any of the writes from different threads result in overlapping accesses in

the file, the result is determined by the current consistency and atomicity

semantics mode in effect for fd (see Section 7.3.2.1).

5. On success, the function returns the number of bytes written by the calling

thread. On error, it returns �1 and sets errno appropriately.

7.3.5.4 upc_all_fwrite_list_shared Function

Synopsis

#include <upc.h>
#include <upc_io.h>

LIBRARY 233

ssize_t upc_all_fwrite_list_shared(upc_file_t *fd,

size_t memvec_entries,

upc_shared_memvec_t const *memvec,

size_t filevec_entries,

upc_filevec_t const *filevec,

upc_flag_t sync_mode)

Description

1. upc_all_fwrite_list_shared writes data from various locations of

a shared buffer in memory to a file. The file handle must be open for writing.

2. memvec_entries indicates the number of entries in the array memvec,

and filevec_entries indicates the number of entries in the array

filevec. The values may be zero, in which case the memvec or filevec

argument is ignored and no locations are specified for I/O.

3. The result is as if data were written from memory locations in the order

specified by the list of locations in memvec to locations in the file in the

order specified by the list in filevec. The total amount of data specified

by memvec must equal the total amount of data specified by filevec.

4. If any of the writes from different threads result in overlapping accesses in

the file, the result is determined by the current consistency and atomicity

semantics mode in effect for fd (see Section 7.3.2.1).

5. On success, the function returns the number of bytes written by the calling

thread. On error, it returns �1 and sets errno appropriately.

Note: With the definition above, there is no way to do with explicit offsets the

equivalent of upc_all_fwrite_shared using a common file pointer; namely,

where all threads specify the same access (same parameters), the data gets written

collectively from a shared buffer and the function returns the total amount of data

written by all threads.

7.3.6 Asynchronous I/O

Common Constraints

1. Only one asynchronous I/O operation can be outstanding on a UPC-IO file

handle at any time. If an application attempts to initiate a second asynchro-

nous I/O operation while one is still outstanding on the same file handle, the

behavior is undefined—however, high-quality implementations will issue a

fatal error.

2. For asynchronous read operations, the contents of the destination memory

are undefined until after a successful upc_all_fwait_async or upc_

all_ftest_async on the file handle. For asynchronous write operations,

234 UPC-IO SPECIFICATIONS, V1.0

the source memory may not safely be modified until after a successful

upc_all_fwait_async or upc_all_ftest_async on the file handle.

3. An implementation is free to block for completion of an operation in

the asynchronous initiation call or in the upc_all_ftest_async call

(or both). High-quality implementations are recommended to minimize

the amount of time spent within the asynchronous initiation or upc_all_

ftest_async call.

4. In the case of list I/O functions, the user may modify or free the lists after

the asynchronous I/O operation has been initiated.

7.3.6.1 upc_all_fread_local_async Function

Synopsis

#include <upc.h>
#include <upc_io.h>

void upc_all_fread_local_async(upc_file_t *fd,

void *buffer,

size_t size,

size_t nmemb,

upc_flag_t sync_mode)

Description

1. upc_all_fread_local_async initiates an asynchronous read from a

file into a local buffer on each thread.

2. The meaning of the parameters and restrictions is the same as for the blocking

function, upc_all_fread_local.

3. The status of the asynchronous I/O operation that has been initiated can

be retrieved by calling upc_all_ftest_async or upc_all_fwait_

async.

7.3.6.2 upc_all_fread_shared_async Function

Synopsis

#include <upc.h>
#include <upc_io.h>

void upc_all_fread_shared_async(upc_file_t *fd,

shared void *buffer,

size_t blocksize,

size_t size,

LIBRARY 235

size_t nmemb,

upc_flag_t sync_mode)

Description

1. upc_all_fread_shared_async initiates an asynchronous read from a

file into a shared buffer.

2. The meaning of the parameters and restrictions is the same as for the blocking

function, upc_all_fread_shared.

3. The status of the asynchronous I/O operation that has been initiated can

be retrieved by calling upc_all_ftest_async or upc_all_fwait_

async.

7.3.6.3 upc_all_fwrite_local_async Function

Synopsis

#include <upc.h>
#include <upc_io.h>

void upc_all_fwrite_local_async(upc_file_t *fd,

void *buffer,

size_t size,

size_t nmemb,

upc_flag_t sync_mode)

Description

1. upc_all_fwrite_local_async initiates an asynchronous write from a

local buffer on each thread to a file.

2. The meaning of the parameters and restrictions is the same as for the blocking

function, upc_all_fwrite_local.

3. The status of the asynchronous I/O operation that has been initiated can

be retrieved by calling upc_all_ftest_async or upc_all_fwait_

async.

7.3.6.4 upc_all_fwrite_shared_async Function

Synopsis

#include <upc.h>
#include <upc_io.h>

236 UPC-IO SPECIFICATIONS, V1.0

void upc_all_fwrite_shared_async(upc_file_t *fd,

shared void *buffer,

size_t blocksize,

size_t size,

size_t nmemb,

upc_flag_t sync_mode)

Description

1. upc_all_fwrite_shared_async initiates an asynchronous write

from a shared buffer to a file.

2. The meaning of the parameters and restrictions is the same as for the blocking

function, upc_all_fwrite_shared.

3. The status of the asynchronous I/O operation that has been initiated can be

retrieved by calling upc_all_ftest_async or upc_all_fwait_async.

7.3.6.5 upc_all_fread_list_local_async Function

Synopsis

#include <upc.h>
#include <upc_io.h>

void upc_all_fread_list_local_async(upc_file_t *fd,

size_t memvec_entries,

upc_local_memvec_t const *memvec,

size_t filevec_entries,

upc_filevec_t const *filevec,

upc_flag_t sync_mode)

Description

1. upc_all_fread_list_local_async initiates an asynchronous read

of data from a file into local buffers in memory.

2. The meaning of the parameters and restrictions is the same as for the blocking

function, upc_all_fread_list_local.

3. The status of the asynchronous I/O operation that has been initiated can be

retrieved by calling upc_all_ftest_async or upc_all_fwait_async.

7.3.6.6 upc_all_fread_list_shared_async Function

Synopsis

#include <upc.h>
#include <upc_io.h>

LIBRARY 237

void upc_all_fread_list_shared_async(upc_file_t *fd,

size_t memvec_entries,

upc_shared_memvec_t const *memvec,

size_t filevec_entries,

upc_filevec_t const *filevec,

upc_flag_t sync_mode)

Description

1. upc_all_fread_list_shared_async initiates an asynchronous

read of data from a file into various locations of a shared buffer in

memory.

2. The meaning of the parameters and restrictions is the same as for the block-

ing function, upc_all_fread_list_shared.

3. The status of the asynchronous I/O operation that has been initiated can

be retrieved by calling upc_all_ftest_async or upc_all_fwait_

async.

7.3.6.7 upc_all_fwrite_list_local_async Function

Synopsis

#include <upc.h>
#include <upc_io.h>

void upc_all_fwrite_list_local_async(upc_file_t *fd,

size_t memvec_entries,

upc_local_memvec_t const *memvec,

size_t filevec_entries,

upc_filevec_t const *filevec,

upc_flag_t sync_mode)

Description

1. upc_all_fwrite_list_local_async initiates an asynchronous

write of data from local buffers in memory to a file.

2. The meaning of the parameters and restrictions is the same as for the block-

ing function, upc_all_fwrite_list_local.

3. The status of the asynchronous I/O operation that has been initiated can

be retrieved by calling upc_all_ftest_async or upc_all_fwait_

async.

238 UPC-IO SPECIFICATIONS, V1.0

7.3.6.8 upc_all_fwrite_list_shared_async Function

Synopsis

#include <upc.h>
#include <upc_io.h>

void upc_all_fwrite_list_shared_async(upc_file_t *fd,

size_t memvec_entries,

upc_shared_memvec_t const *memvec,

size_t filevec_entries,

upc_filevec_t const *filevec,

upc_flag_t sync_mode)

Description

1. upc_all_fwrite_list_shared_async initiates an asynchronous

write of data from various locations of a shared buffer in memory to a file.

2. The meaning of the parameters and restrictions is the same as for the blocking

function, upc_all_fwrite_list_shared.

3. The status of the asynchronous I/O operation that has been initiated can

be retrieved by calling upc_all_ftest_async or upc_all_fwait_

async.

7.3.6.9 upc_all_fwait_async Function

Synopsis

#include <upc.h>
#include <upc_io.h>

ssize_t upc_all_fwait_async(upc_file_t *fd)

Description

1. upc_all_fwait_async completes the previously issued asynchronous

I/O operation on the file handle fd, blocking if necessary.

2. It is erroneous to call this function if there is no outstanding asynchronous

I/O operation associated with fd.

3. On success, the function returns the number of bytes read or written by

the asynchronous I/O operation as specified by the blocking variant of the

function used to initiate the asynchronous operation. On error, it returns �1

and sets errno appropriately, and the outstanding asynchronous operation

(if any) becomes no longer outstanding.

LIBRARY 239

7.3.6.10 upc_all_ftest_async Function

Synopsis

#include <upc.h>
#include <upc_io.h>

ssize_t upc_all_ftest_async(upc_file_t *fd,

int *flag)

Description

1. upc_all_ftest_async tests whether the outstanding asynchronous

I/O operation associated with fd has completed.

2. If the operation has completed, the function sets flag=1 and the asynchro-

nous operation becomes no longer outstanding8; otherwise, it sets flag=0.

The same value of flag is set on all threads.

3. If the operation was completed, the function returns the number of bytes that

were read or written as specified by the blocking variant of the function used

to initiate the asynchronous operation. On error, it returns �1 and sets errno

appropriately and sets the flag=1, and the outstanding asynchronous

operation (if any) becomes no longer outstanding.

4. It is erroneous to call this function if there is no outstanding asynchronous

I/O operation associated with fd.

APPENDIX: FUTURE LIBRARY DIRECTIONS

We describe here features that will be discussed in future releases of the UPC-IO

Specifications (but have explicitly been tabled for the current release).

1. Add support for allowing multiple outstanding asynchronous operations

on the same file handle, to allow more aggressive computational overlap

with file operations. This can be done by introducing a handle data type such

as upc_all_handle_t to represent the explicitly nonblocking collective

I/O operation in flight, and have this value returned by each async init

function and consumed by explicit-handle synchronization functions (e.g.,

upc_all_handle_test() /upc_all_handle_wait()). All of the asyn-

chronous initiation functions currently return void, so we could add this new

handle return type without breaking existing code. To be backward-compatible

with the current interface, the default behavior should remain at the current

behavior [allow only a single outstanding async operation, synchronized

8 This implies that it is illegal to call upc_all_fwait_async or upc_all_ftest_async

immediately after a successful upc_all_ftest_async on that file handle.

240 UPC-IO SPECIFICATIONS, V1.0

using upc_all_ftest_async()/upc_all_fwait_async()] and we

can use a new upc_all_fcntl setting to enable multioperation handle-

based async I/O as described here. We may even want to use the same handle

data type and sync functions for explicitly nonblocking UPC collectives.

An alternative approach to allowing multiple outstanding asynchronous

operations on the same file handle would be an implicit-handle approach,

where we keep the current interface and simply lift the restriction that only

one asynchronous operation can be in flight per handle. This approach offers

the client less flexibility in synchronization (because the only choice is to

sync all outstanding operations rather than a particular subset), but it may be

an acceptable compromise. However, we would have to think about how

errors would be reported by synchronization functions that complete more

than one operation.

Regardless of the design chosen, an important semantic issue that must be

resolved when more than one async call can be in flight is specifying exactly

when and how the file pointer is updated by an async operation, especially in

the presence of errors or reading to the EOF. The semantics of the second and

subsequent async I/O operations are not well defined unless we specify how

the file pointer is affected by the async I/O operations already in flight. One

possibility for sidestepping this issue is to only allow multiple outstanding

async I/O operations of the list I/O variety, which are completely independent

of the problematic file pointer.

2. upc_all_fcntl currently provides the means to change most of the

interesting upc_all_fopen flags in effect for the given file handle. The

only upc_all_fopen flag that persists as an attribute of the file handle and

currently cannot be changed after open is the read-only/write-only/read-write

status of the file handle. Do we want to support changing this via a

upc_all_fcntl? Is it a useful capability? What are the implementation

issues? (At worst it would seem that this could always be implemented with a

close and reopen.) Note that C99 provides this capability via freopen(),

and UPC-IO currently has no equivalent—however, the C99 semantics are too

weak to be portably reliable: ‘‘If filename is a null pointer, the freopen()

function attempts to change the mode of the stream to that specified by mode,

as if the name of the file currently associated with the stream had been used.

It is implementation-defined which changes of mode are permitted (if any),

and under what circumstances.’’ It is also unclear from the spec what the

required behavior of the file pointer is on such an freopen(). If we decide

to provide this capability, we should be less wishy-washy about the seman-

tics to ensure that it is portably usable.

REFERENCES

1. Tarek A. El-Ghazawi, William W. Carlson, and Jesse M. Draper, UPC Language

Specifications v1.1.1, http://upc.gwu.edu, October 2003.

REFERENCES 241

2. Programming Languages—C, ISO/IEC 9899:1999(E), ISO/IEC, May 2000.

3. Elizabeth Wiebel, David Greenberg, and Steven Seidel, UPC Collective Operations

Specification v1.0, http://www.gwu.edu/upc/docs/UPC_Coll_Spec_v1.0.pdf, December

2003.

4. MPI-2: Extensions to the Message-Passing Interface, Message Passing Interface Forum,

July 18, 1997.

242 UPC-IO SPECIFICATIONS, V1.0

APPENDIX D

How to Compile and Run
UPC Programs

In this appendix we give a few examples of how to compile and run UPC

programs on a sample of the compilers available. These examples are intended to

give the reader an idea of how to do so in general. Readers are encouraged

to examine the programming manual of their target machines to become familiar

with how to optimize the compilation and execution of their code through

compiler switches and shell variables. Many of these manuals also provide exten-

sive coverage of the performance tuning and debugging tools available on their

target platform.

COMPILING AND RUNNING ON THE CRAY X1 UPC COMPILER

To compile and run with a fixed number of threads (here, four THREADS):

cc -h upc -X 4 -o helloworld1 helloworld1.upc

aprun –n 4. /helloworld1

To compile and run without specifying the number of threads at compile time:

cc -h upc -o helloworld1 helloworld1.upc

aprun –n 4. /helloworld1

UPC: Distributed Shared Memory Programming, by Tarek El-Ghazawi, William Carlson,
Thomas Sterling, and Katherine Yelick
Copyright # 2005 John Wiley & Sons, Inc.

243

COMPILING AND RUNNING ON THE HP-UPC COMPILER

To compile and run with a fixed number of threads (here, four THREADS):

upc -O2 -fthreads 4 -o helloworld1 helloworld1.upc

prun –n 4. /helloworld1

To compile and run without specifying the number of threads at compile time:

upc -O2 -o helloworld1 helloworld1.upc

prun –n 4. /helloworld1

COMPILING AND RUNNING ON THE SGI-INTREPID GCC-UPC
COMPILER

To compile and run with a fixed number of threads (here, four THREADS):

upc -x upc -fupc-threads-4 –O2 -o helloworld1 helloworld1.upc

./vect_add

To compile and run without specifying the number of threads at compile time:

upc –x upc –O2 -o helloworld1 helloworld1.upc

./vect_add -fupc-threads-4

COMPILING AND RUNNING ON THE BERKELEY UPC COMPILER

To compile and run with a fixed number of threads (here, four THREADS):

upcc -O –T 4 -o helloworld1 helloworld1.upc

upcrun. /helloworld1

To compile and run without specifying the number of threads at compile time:

upcc -O -o helloworld1 helloworld1.upc

upcrun -n 4. /helloworld1

244 HOW TO COMPILE AND RUN UPC PROGRAMS

APPENDIX E

Quick UPC Reference

KEYWORDS

� THREADS: total number of threads

� MYTHREAD: identification number of the current thread (between 0 and

THREADS-1)

� UPC_MAX_BLOCK_SIZE: maximum block size allowed by the compilation

environment

SHARED VARIABLE DECLARATIONS

Shared Objects

Shared variables are declared using the type qualifier ‘‘shared.’’ Shared objects

must be declared statically (i.e., either as global variables or with the keyword

static).

Examples of Shared Object Declaration

shared int i;

shared int b[100*THREADS];

The following will not compile if you do not specify the number of threads:

shared int a[100];

All the elements of a are allocated in thread 0:

shared [] int a[100];

UPC: Distributed Shared Memory Programming, by Tarek El-Ghazawi, William Carlson,
Thomas Sterling, and Katherine Yelick
Published 2005 John Wiley & Sons, Inc.

245

Distribute the elements in round-robin fashion by chunks of two elements: a[0]
and a[1] are allocated in thread 0; a[2] and a[3] in thread 1;. . .:

shared [2] int a[100];

Shared Pointers

Pointer to shared object:

shared int* p;

Shared pointer to shared object:

shared int* shared sp;

Equivalent of memset:

upc_memset(dst, char, size)

Assign a block of characters to shared memory.

LOCKS

//Dynamic lock collectively allocated:

{
upc_lock_t *l;
l = upc_all_lock_alloc();

//...

upc_lock (l);
// protected section

upc_unlock (l);

if(upc_lock_attempt(l))
{

//do something if l currently unlocked

}

//unallocates the lock

upc_lock_free (l);
}

//Dynamic lock globally allocated:

upc_lock_t *l;

246 QUICK UPC REFERENCE

{
if(MYTHREAD ==3)

l = upc_global_lock_alloc();
}

GENERAL UTILITIES

Terminate the UPC program with exit status status:

upc_global_exit(status);

WORK SHARING

The iteration distribution follows the distribution layout of a:

upc_forall (i=0; i<N; i++; &a[i])

Distributes the iterations in round-robin fashion with wrapping from the last thread

to the first thread:

upc_forall (i=0; i<N; i++; i)

Distributes the iterations by consecutive chunks:

upc_forall(i=0; i<N; i++;
i*THREADS/N)

SYNCHRONIZATION

Memory Consistency

These include files set to which consistency model, strict or relaxed, is used for the

entire program.

#include "upc_strict.h"

or

"upc_relaxed.h"

Sets strict memory consistency for the rest of the file:

#pragma upc strict

SYNCHRONIZATION 247

Sets relaxed memory consistency for the rest of the file:

#pragma upc relaxed

All accesses to i are made using the relaxed consistency model:

shared relaxed int i;

All accesses to i are made using the relaxed consistency model:

relaxed shared int i;

All accesses to i are made using the strict consistency model:

strict shared int i;

Synchronizes the shared memory accesses locally; it is equivalent to a null strict

reference.

upc_fence;

Barriers

Synchronizes the program globally:

upc_barrier [value];

value is an integer.

//Before the barrier:

upc_notify [value];

// Nonsynchronized statements relative to this ongoing barrier:

upc_wait [value];

// After the barrier:

LIBRARY ROUTINES

� upc_threadof(p): thread having affinity to the location pointed by p

� upc_phaseof(p): phase associated with the location pointed by p

� upc_resetphase(p): shared address with the phase set to zero pointed by p

� upc_addrfield(p): address field associated with the location pointed by p

248 QUICK UPC REFERENCE

� upc_localsizeof(p): size of the local portion pointed by p

� upc_blocksizeof(p): blocking factor associated with object pointed by p

� upc_elemsizeof(p): size of the leftmost type of object pointed by p

DYNAMIC MEMORY ALLOCATION

Three different memory allocation methods are provided by UPC:

� upc_alloc(n): allocates at least n bytes of shared space with affinity to

the calling thread; needs to be called by one thread only

� upc_global_alloc(n, b): globally allocates n� b bytes of shared

data distributed across the threads with a block size of b bytes; needs to be

called by one thread only

� upc_all_alloc(n, b): collectively allocates n� b bytes of shared data

distributed across the threads with a block size of b bytes; needs to be called

by all the threads

� upc_free(p): frees shared memory pointed to by p from the heap

STRING FUNCTIONS IN UPC

Equivalent of memcpy:

upc_memcpy(dst, src, size)

Copy from shared memory to shared memory.

upc_memput(dst, src, size)

Copy from private memory to shared memory.

upc_memget(dst, src, size)

Copy from shared memory to private memory.

STRING FUNCTIONS IN UPC 249

INDEX

affinity, 7, 19, 20, 21, 23, 35, 49, 51–54, 60, 89,

125

upc_forall with continue as affinity

argument, 53

upc_forall with expression as affinity

argument, 53

upc_forall with integer as affinity

argument, 52

upc_forall with shared address as affinity

argument, 52

ANSI C, see ISO C

backtracking, 62

barrier synchronization, see

upc_barrier

block size, see data layout

blocking factor, see data layout

bulk transfers, see string functions

cache coherence, 117

clusters, 116, 119

collective function, 73

continue, 53

data decomposition, see domain decomposition

data layout, 25, 51

*layout qualifier, 28

three-dimensional cells, 60

blocked array, 25, 27, 33, 35, 37, 50

default data distribution, see round-robin data

distribution

default block size, 86

indefinite block size, 27, 83, 86, 88

multidimensional array, 54, 60, 77, 84

round-robin fashion, 6, 50, 79

deadlock, 105

distributed memory multiprocessors, see DMs

distributed shared memory, see DSM

DMs, 116, 118

domain decomposition, 49

DSM, 18, 19, 116, 117

dynamic memory allocation, 21

embarrassingly parallel, 67

examples

bakery algorithm, 110, 112, 113

dining philosophers, 106

heat conduction, 56, 58, 61, 62, 74, 80, 84, 93,

95, 129, 132

hello world, 2, 3

image histogramming, 101, 103

matrix–vector multiplication, 26, 29, 50, 52, 53,

81

matrix squaring, 43, 45, 46

N-queens, 65, 68

parallel binary tree, 133

pointer arithmetic, 35, 37–39

pointer representation, 41

sparse matrix compression, 87

temperature converter, 4, 6–8, 10, 11, 13

vector addition, 25

wavelet transform, 90

ghost zone, 54, 131

ISO C, 1, 14, 21, 54, 73

iterations, 59

ITPACK format, 86

locality, see affinity

lock, 9

malloc(), 82

memory access order, see memory consistency

memory allocation

deallocation, 73, 89

dynamically allocated, 73

statically allocated, 61

memory consistency, 9, 108, 125

message-passing interface, see MPI

UPC: Distributed Shared Memory Programming, by Tarek El-Ghazawi, William Carlson,
Thomas Sterling, and Katherine Yelick
Copyright # 2005 John Wiley & Sons, Inc.

251

MPI, 19

MYTHREAD, 3, 20, 49, 51

nonblocking lock, see

upc_lock_attempt

nonuniform memory accesses, see

NUMAs

NP problem, 62

NPB benchmarks, 61

NUMAs, 117

OpenMP, 19

optimization, 115, 123

parallel vector processors, see PVPs

performance, 115

compilers, 122

optimization, 123

overhead, 120

run-time systems, 122

pointers, 33

*shared, 34

arithmetic, 35, 37, 39, 45

casting private to shared, 38

casting shared pointer to private, 38

casting shared to private, 43

casting shared to shared, 39

data representation, 37, 40, 42

handling functions, 42

private pointer to private, 14, 22, 33

private pointer to shared, 12, 22, 23, 34, 43, 46,

77, 79, 82, 83

shared pointer to lock, 104

shared pointer to private, 22, 34

shared pointer to shared, 14, 34, 82, 84

pragma, 109, 112

prefetching, 131

private variables, 4, 21

privatization, 124, 127, 129

programming model, 17, 20

PVPs, 116, 119

race conditions, 9, 102

relaxed, see upc_relaxed.h

remote access, 11, 19, 29

remote accesses aggregation, 131

shared arrays, 23

shared variables, 3, 21

SIMD, 117

single program, multiple data model, see SPMD

model

SMP, 116, 117

sparse matrix, 86

split-phase barrier, 84, 98

SPMD model, 2, 14, 19, 20, 50

strict, see upc_strict.h

string functions, 127, 131

struct, see structures

structures, 23

symmetric multiprocessors, see SMPs

synchronization, 8, 91

synchronization phase, 95

system architecture, 116

THREADS, 3, 20, 49, 51

dynamic number, 30

static number, 30

trees, 62, 67

UMA, 117

uniform memory accesses, see UMAs

upc_addrfieldof, 40, 42

upc_all_alloc, 73, 74, 77, 86, 89

upc_all_lock_alloc, 99, 102

upc_alloc, 82, 86, 89

upc_barrier, 8, 11, 59, 78, 92, 96, 99, 126

upc_fence, 110, 113, 126

upc_forall, 11, 25, 44, 49, 51–53, 59, 89, 103,

104, 125

affinity argument, see affinity

upc_free, 89

upc_global_alloc, 78–80, 86, 89

upc_global_lock_alloc, 100,

104, 108

upc_local_alloc, see upc_alloc

upc_lock, 100, 105, 126

upc_lock_attempt, 100, 106, 108

upc_lock_free, 100

upc_lock_t, 99, 126, 134

upc_memcpy, 127

upc_memget, 127

upc_memput, 127, 131

upc_notify, 94, 98, 99, 126

upc_phaseof, 40, 42

upc_relaxed.h, 108, 109, 111, 125

upc_resetphase, 142

upc_strict.h, 108, 109, 111, 125

upc_threadof, 40, 42, 52

upc_unlock, 100, 126

upc_wait, 95, 98, 99, 126

von Neumann, 17

work distribution, 49, 68

252 INDEX

