FIWILEY

- 'W"\—\ h
Ul b

DISTRIBUTED SHARED MEMORY
PROGRAMMING

A

B4 TAREK FL-GHAZAWI

WILLIAM CARLSON, THOMAS STERLING,
AND KATHERINE YELICK

UPC

DISTRIBUTED SHARED MEMORY
PROGRAMMING

Tarek El-Ghazawi
The George Washington University

William Carlson
IDA Center for Computing Sciences

Thomas Sterling

California Institute of Technology

Katherine Yelick

University of California at Berkeley

leYl!fLEERYgClENCE

A JOHN WILEY & SONS, INC., PUBLICATION

UPC

WILEY SERIES ON PARALLEL AND DISTRIBUTED COMPUTING
Series Editor: Albert Y. Zomaya

Parallel and Distributed Simulation Systems / Richard Fujimoto
Mobile Processing in Distributed and Open Environments / Peter Sapaty
Introduction to Parallel Algorithms / C. Xavier and S. S. lyengar

Solutions to Parallel and Distributed Computing Problems: Lessons from
Biological Sciences / Albert Y. Zomaya, Fikret Ercal, and Stephan Olariu (Editors)

Parallel and Distributed Computing: A Survey of Models, Paradigms, and
Approaches / Claudia Leopold

Fundamentals of Distributed Object Systems: A CORBA Perspective /
Zahir Tari and Omran Bukhres

Pipelined Processor Farms: Structured Design for Embedded Parallel
Systems / Martin Fleury and Andrew Downton

Handbook of Wireless Networks and Mobile Computing /
Ivan Stojmenovi¢ (Editor)

Internet-Based Workflow Management: Toward a Semantic Web /
Dan C. Marinescu

Parallel Computing on Heterogeneous Networks / Alexey L. Lastovetsky

Performance Evaluation and Characterization of Parallel and Distributed
Computing Tools / Salim Hariri and Manish Parashar

Distributed Computing: Fundamentals, Simulations and Advanced Topics,
Second Edition / Hagit Attiya and Jennifer Welch

Smart Environments: Technology, Protocols, and Applications / Diane Cook
and Sajal Das

Fundamentals of Computer Organization and Architecutre /
Mostafa Abd-El-Barr and Hesham EI-Rewini

Advanced Computer Architecture and Parallel Processing / Hesham El-Rewini
and Mostafa Abd-El-Barr

UPC: Distributed Shared Memory Programming / Tarek El-Ghazawi,
William Carlson, Thomas Sterling, and Katherine Yelick

UPC

DISTRIBUTED SHARED MEMORY
PROGRAMMING

Tarek El-Ghazawi
The George Washington University

William Carlson
IDA Center for Computing Sciences

Thomas Sterling

California Institute of Technology

Katherine Yelick

University of California at Berkeley

leYl!fLEERYgClENCE

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400,

fax 978-646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher
nor author shall be liable for any loss of profit or any other commercial damages, including but not
limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

UPC : distributed shared memory programming / Tarek El-Ghazawi ... [et al.]
p. cm.
Includes bibliographical references and index.
ISBN-13 978-0-471-22048-0 (cloth)
ISBN-10 0-471-22048-5 (cloth)
1. UPC (Computer program language) 2. Parallel programming (Computer science) 3.
Electronic data processing - - Distributed processing. I. El-Ghazawi, Tarek.

QA76.73. U63U63 2005
005.13'3 - - dc22 2004023262

Printed in the United States of America

10987654321

I CONTENTS

Preface

1. Introductory Tutorial

1.1 Getting Started

1.2 Private and Shared Data

1.3 Shared Arrays and Affinity of Shared Data
1.4 Synchronization and Memory Consistency
1.5 Work Sharing

1.6 UPC Pointers

1.7 Summary

Exercises

. Programming View and UPC Data Types

2.1 Programming Models

2.2 UPC Programming Model

2.3 Shared and Private Variables

2.4 Shared and Private Arrays

2.5 Blocked Shared Arrays

2.6 Compiling Environments and Shared Arrays
2.7 Summary

Exercises

. Pointers and Arrays

3.1 UPC Pointers
3.2 Pointer Arithmetic
3.3 Pointer Casting and Usage Practices

3.4 Pointer Information and Manipulation Functions

3.5 More Pointer Examples
3.6 Summary
Exercises

. Work Sharing and Domain Decomposition

4.1 Basic Work Distribution
4.2 Parallel Iterations
4.3 Multidimensional Data

vii

e

17

17
20
21
23
25
30
30
31

33

33
35
38
40
43
47
47

49

50
51
54

vi CONTENTS

4.4 Distributing Trees 62
4.5 Summary 71
Exercises 71
5. Dynamic Shared Memory Allocation 73
5.1 Allocating a Global Shared Memory Space Collectively 73
5.2 Allocating Multiple Global Spaces 78
5.3 Allocating Local Shared Spaces 82
5.4 Freeing Allocated Spaces 89
5.5 Summary 90
Exercises 90
6. Synchronization and Memory Consistency 91
6.1 Barriers 92
6.2 Split-Phase Barriers 94
6.3 Locks 99
6.4 Memory Consistency 108
6.5 Summary 113
Exercises 114
7. Performance Tuning and Optimization 115
7.1 Parallel System Architectures 116
7.2 Performance Issues in Parallel Programming 120
7.3 Role of Compilers and Run-Time Systems 122
7.4 UPC Hand Optimization 123
7.5 Case Studies 128
7.6 Summary 135
Exercises 135
8. UPC Libraries 137
8.1 UPC Collective Library 137
8.2 UPC-IO Library 141
8.3 Summary 146
References 147
Appendix A: UPC Language Specifications, v1.1.1 149
Appendix B: UPC Collective Operations Specifications, v1.0 183
Appendix C: UPC-IO Specifications, v1.0 203
Appendix D: How to Compile and Run UPC Programs 243
Appendix E: Quick UPC Reference 245

Index 251

IR PREFACE

About UPC

Many have contributed to the ideas and concepts behind the UPC language. The
initial UPC language concepts and specifications were published as a technical
report authored by William Carlson, Jesse Draper, David Culler, Katherine Yelick,
Eugene Brooks, and Karen Warren in May 1999. The first UPC consortium meeting
was held in Bowie, Maryland, in May 2000, during which the UPC language
concepts and specifications were discussed and augmented extensively. The UPC
consortium is composed of a group of academic institutions, vendors, and govern-
ment laboratories and has been holding regular meetings since May 1999 to
continue to develop the UPC language. The first formal specifications of UPC,
known as v1.0, was authored by Tarek El-Ghazawi, William Carlson, and Jesse
Draper and released in February 2001. The current version, v1.1.1, was released in
October 2003 with minor changes and edits from v1.0. At present, v1.2 of the
specifications is in the works and is expected to be released soon. v1.2 will be a
publication of the UPC consortium because of the extensive contributions of many
of the consortium members. v1.2 will incorporate UPC v1.1.1 with additions and
will include the full UPC collective operations specifications, v1.0, and the I/O
specifications v1.0. The first version of the UPC collective operations specification
was authored by Steven Seidel, David Greenberg, and Elizabeth Wiebel and
released in December 2003. The first version of the I/O specification was authored
by Tarek El-Ghazawi, Francois Cantonnet, Proshanta Saha, Rajeev Thakur, Rob
Ross, and Dan Bonachea. It was released in July 2004. More information about
UPC and the UPC consortium can be found at http://upc.gwu.edu/.

About This Book

Although the UPC specifications are the ultimate reference of the UPC language,
the specifications are not necessarily easy to read for many programmers and do not
include enough usage examples and explanations, which are essential for most
readers. This book is the first to provide an in-depth interpretation of the UPC
language specifications, enhanced with extensive usage examples and illustrations
as well as insights into how to write efficient UPC applications.

The book is organized into eight chapters and five appendixes:

e Chapter 1 provides a quick tutorial that walks readers quickly through the
major features of the UPC language, allowing them to write their first simple
UPC programs.

vii

viii PREFACE

e Chapter 2 positions UPC within the general domain of parallel programming
paradigms. It then presents the UPC programming model and describes how
data are declared and used in UPC.

e Chapter 3 covers the rich concept of pointers in UPC, identifying the types,
declarations, and usage of the various UPC pointers and how they work with
arrays.

o Chapter 4 explains how data and work can be distributed in UPC such that
data locality is exploited through efficient data declarations and work-sharing
constructs.

e Chapter 5 provides extensive treatment to dynamic memory allocation in the
shared space, showing all options and their usages via many thorough
examples.

e Chapter 6 covers thread and data synchronization, explaining the effective
mechanisms provided by UPC for mutual exclusion, barriers, and memory
consistency control.

e Chapter 7 provides sophisticated programmers with the tools necessary to
write efficient applications. Many hand-tuning schemes are discussed along
with examples and full case studies.

e Chapter 8 introduces the two UPC standard libraries: the collective operations
library and the parallel I/O library.

e Appendix A includes the full UPC vl1.1.1 specification.

e Appendix B includes the full UPC v1.0 collective library specifications.

e Appendix C has the full v1.0 UPC-IO specifications.

e Appendix D includes information on how to compile and run UPC programs.

e Appendix E is a quick UPC reference card that will be handy for UPC
programmers.

Resources

The ultimate UPC resource is the consortium Web site, which is currently hosted at
http://upc.gwu.edu/. For this book, however, the reader should also consult
the publisher’s ftp site, ftp://ftp.wiley.com/public/sci tech med/
upc/, for errata and an electronic copy of the full code and Makefiles for all the
examples given in the book. Additional materials for instructors wishing to use this
book in the classroom are available from the first author.

Acknowledgments

Many of our colleagues have been very supportive during the development of this
book. In particular, the authors are indebted to Francgois Cantonnet, whose help has
contributed significantly to the book’s quality. The continuous cooperation and
support of our editor, Val Moliere, and Dr. Hoda El-Sayed is also greatly appreciated.

I CHAPTER 1

Introductory Tutorial

The objective of this chapter is to give programmers a general understanding of
UPC and to enable them to write and run simple UPC programs quickly. The
chapter is therefore a working overview of UPC. Subsequent chapters are devoted
to gaining more proficiency with UPC and resolving the more subtle semantic
issues that arise in the programming of parallel computing systems using UPC. In
this chapter we introduce the basic execution model in UPC, followed by some of
the key UPC features, including:

e Threads
e Shared and private data
e Pointers

Distribution of work across threads
e Synchronization of activities between threads

More in-depth treatment of these subjects is provided in the respective book
chapters. In addition, in subsequent chapters we address advanced features and
usage that may be needed for writing more complex programs. Nonetheless, this
introduction provides a valuable starting point for first-time parallel programmers
and a good overview for more experienced programmers of parallel machines.
However, advanced UPC programmers may wish to skip this chapter and proceed
to the following chapters, as all material in this introduction is included and
elaborated upon in the remainder of the book. It should be noted that UPC is an
extension of ISO C [ISO99], and familiarity with C is assumed.

1.1 GETTING STARTED

UPC, or Unified Parallel C [CAR99, ELGO1, ELGO03] is an explicit parallel language
that provides the facilities for direct user specification of program parallelism and
control of data distribution and access. The number of threads, or degree of
parallelism, is fixed at either compiler or program startup time and does not change

UPC: Distributed Shared Memory Programming, by Tarek El-Ghazawi, William Carlson,
Thomas Sterling, and Katherine Yelick
Copyright © 2005 John Wiley & Sons, Inc.

2 INTRODUCTORY TUTORIAL

midexecution. Each of these threads is created at run time and executes the same
UPC program, although threads may take different paths through the program text
and may call different procedures during their execution. UPC provides many
parallel constructs that facilitate the distribution and coordination of work among
these threads such that the overall task may be executed much faster in parallel than
it would be performed sequentially.

Because UPC is an extension of ISO C, any C program is also a UPC program,
although it may behave differently when run in a parallel environment. Consider,
for example, a C program to print “hello world.”

Example 1.1: helloworld1.upc
#include <stdio.h>

main ()
{

printf ("hello world\n");
}

The program file should be created with a file name that ends in ““.upc,” such
as “helloworldl.upc” in Example 1.1. The commands to compile and run the
program may be platform-specific, but a typical installation may have a compiler
that is named upcc and that is invoked by the following example command:

upcc —o hello -THREADS 4 helloworld1.upc

Compilation will then produce an executable file called hello, which will always
run with four threads. Many machines require that parallel jobs be submitted to a
special job queue or at least run with a special command, for example:

upcrun hello

This command will then produce the output lines

hello world
hello world
hello world
hello world

Each of the output lines above was produced by one of the four identical threads,
each running the same main function. In parallel computing, this mode of
operation is known as the single program, multiple data (SPMD) model, where
all threads execute the same program but may be processing different data. Under
the SPMD execution model all threads run concurrently from the start to the end of
program execution, although there is no guarantee that they execute statements at
the same rate, and in this example we cannot tell which thread produced which line
of output.

PRIVATE AND SHARED DATA 3

We can change the number of threads by recompiling with a different
“~THREADS” flag or by compiling without the flag and specifying the number
of threads in the upcrun command. We can also determine the total number of
threads at run time using the UPC identifier THREADS and identify the thread
responsible for each line of output by using another identifier, MYTHREAD. In UPC,
threads are given unique MYTHREAD identifiers from O to THREADS-1. Using these
special constants, we produce a modified version of the “hello world” program in
which the output indicates the total number of threads as well as which thread
generated each line of output. In real parallel applications, MYTHREAD and
THREADS are used to divide work among threads and to determine the thread
that will execute each portion of the work. Incorporating these additional con-
structs, a new version of the ‘“‘hello world” program is created.

Example 1.2: helloworld2.upc

#include <upc.h>
#include <stdio.h>

main ()
{
printf ("Thread %d of %d: hello UPC world\n",
MYTHREAD, THREADS) ;

In addition to supplying the thread identifiers to the printf statement, the
inclusion of upc.h is provided, containing all pertinent UPC definitions. If the new
file is compiled in the same manner as before and hel1lo is executed, the following
output may result:

Thread 1 of 4: hello UPC world
Thread 3 of 4: hello UPC world
Thread 2 of 4: hello UPC world
Thread O of 4: hello UPC world

The output lines do not necessarily appear in thread number order but may appear
in any order (even ‘“‘normal” ascending order!).

1.2 PRIVATE AND SHARED DATA

UPC has two different types of variables, those that are private to a given thread and
those that are shared. This distinction also carries over to more general data types,
such as arrays or structures. Shared variables are useful for communicating
information between threads, since more than one thread may read or write to
them. Private variables can only be accessed by a single thread but typically have
some performance advantages over shared variables.

4 INTRODUCTORY TUTORIAL

TABLE 1.1 Celsius-Fahrenheit
Temperature Conversion Table

Fahrenheit Celsius
32 0
50 10
68 20
86 30

104 40
122 50
140 60
158 70
176 80
194 90
212 100
230 110

To demonstrate the use of shared and private variables, consider the problem of
printing a conversion table that provides a set of celsius temperatures and their
corresponding Fahrenheit values as shown in Table 1.1. For now we ignore the
problem of printing the table heading and of ordering the table elements, and
instead, write a program that simply prints a set of valid Celsius—Fahrenheit pairs.
Let us first consider a program in which each thread computes one table entry. The
following program would produce the 12-entry table above, or some reordering of
it, when run with 12 threads.

Example 1.3: temperaturel.upc

#include <stdio.h>
#include <upc.h>

main ()

{
static shared int step=10;
int fahrenheit, celsius;

celsius= step*MYTHREAD;
fahrenheit= celsius*(9.0/5.0) + 32;

printf ("%d \t %d \n", fahrenheit, celsius);

By default, variables in UPC are private, so the declaration

int fahrenheit, celsius;

PRIVATE AND SHARED DATA 5

creates instances of both variables for each thread. Each instance of the variables is
independent, so the respective instance variables of different threads may have
different values. They may be assigned and accessed within their respective thread
without affecting the variable instances of other threads. Thus, each thread can be
engaged in a separate computation without value conflicts while all threads are
executing in parallel.

In contrast, the declaration

static shared int step=10;

creates a shared variable of type int using the UPC shared type qualifier. This
means that there will be only one instance of step, and that variable instance will
be visible and accessible by all threads. In the example, this is a convenient way to
share what is essentially a constant, although UPC permits threads to write to
shared variables as well.

Note that in the declaration, the type qualifier is static, as shared variables
cannot have automatic storage duration. This ensures that shared variables are
accessible throughout the program execution so that they cannot disappear when
one thread exits a scope in which a shared variable was declared. Alternatively, the
shared variable could have been declared as a global variable before main ().

The line

celsius = step * MYTHREAD;

accesses the step value to ensure that all threads will use celsius values that are
multiples of 10, and use of MYTHREAD ensures that they will start at zero and be
unique. The statements

fahrenheit = celsius * (9.0/5.0) + 32;
printf ("%d \t %d \n", fahrenheit, celsius);

will be executed by each thread using local celsius and fahrenheit values.
There is no guarantee for the order in which the threads will execute the print
statement, so the table may be printed out of order. Indeed, one thread may execute
all three of its statements before another thread has executed any. To control the
relative ordering of execution among threads, the programmer must manage syn-
chronization explicitly through the inclusion of synchronization constructs within
the program code specification, which is covered in Section 1.4.

Example 1.3 is somewhat simplistic as a parallel program, since very little work
is performed by each thread, and some of that work involves output to the screen,
which will be serialized in any case. There is some overhead associated with the
management of threads and their activities, so having just one computation per
thread as in Example 1.2 is not efficient. Having larger computations at each thread
will help amortize parallel overhead and increase efficiency. This small example
and many others throughout the book are discussed because of their educational
value and are not necessarily designed for high performance. The following
example, however, allocates slightly more work to each thread.

6 INTRODUCTORY TUTORIAL
Example 1.4: temperature2.upc

#include <stdio.h>
#include <upc.h>
#define TBL Sz 12

main ()

{
static shared int step=10;
int fahrenheit, celsius, 1i;

for (i=0; i< TBL SZ; i++)
if (MYTHREAD == i$THREADS)
{
celsius = step*i;
fahrenheit = celsius* (9.0/5.0) + 32;
printf ("%d \t %d \n", fahrenheit, celsius);
}
}

In Example 1.4, the number of entries in the table is given by the con-
stant TBL_SZ, which is set to 12. The loop will sequence through all TBL SZ
iterations, assigning an iteration to each thread in round-robin fashion. Thus, thread
0 will execute iterations 0, THREADS, 2*THREADS, and so on, while thread 1 will
execute iterations 1, THREADS+1, 2*THREADS+1, and so on. If the table size
were 1, only thread 0 would execute an iteration; the rest of the threads would not
do any useful work, as they all fail the test in the for loop.

The loop as written is not efficient, since each thread evaluates the loop header
13 times, and this redundant loop overhead may have nearly the same temporal cost
as that of the sequential program. One way to avoid this is by changing the for
loop as follows:

for (1=MYTHREAD; i < TBL_ SZ; i+=THREADS)

In this case, each thread evaluates the loop header at most TBL SZ/THREADS +1
times. Note that the celsius calculation now uses the loop index i rather than
MYTHREAD, so it correctly evaluates several table entries.

1.3 SHARED ARRAYS AND AFFINITY OF SHARED DATA

A problem with the program of Example 1.4 is that the table may be produced out
of order. One possible solution is to store the conversion table in an array and then
have one thread print it in order. The following code shows how this might be done,
although there is a remaining bug that we will fix in Section 1.4.

SHARED ARRAYS AND AFFINITY OF SHARED DATA 7
Example 1.5: temperature3.upc

#include <stdio.h>
#include <upc.h>
#define TBL Sz 12

main ()

{
static shared int fahrenheit[TBL_SZ];
static shared int step=10;
int celsius, i;

for (1=MYTHREAD; i < TBL_SZ; i+=THREADS)
{
celsius= step*i;
fahrenheit[i]= celsius*(9.0/5.0) + 32;
}
if (MYTHREAD==0)
for (i=0 ; i < TBL_SZ; i++)
{
celsius= step*i;
printf ("%d \t %d \n", fahrenheit[i], celsius);
}

The line
static shared int fahrenheit [TBL_ S7] ;

declares an array fahrenheit of size TBL_SZ of integers, which will be shared
by all threads. Thus, any of the threads can directly access any of the elements of
fahrenheit. However, UPC establishes a logical partitioning of the shared space
so that each variable in shared space is defined to have affinity to exactly one thread.
On some platforms it is significantly faster for a thread to access shared variables to
which it has affinity than to access shared variables that have affinity to another
thread. A shared array such as fahrenheit will be spread across the thread
partitions in round-robin fashion such that fahrenheit [0] has affinity to thread
0, fahrenheit [1] has affinitiy to thread 1, and so on. After each thread gets
an element, we wrap around, giving fahrenheit [THREADS] to thread O,
fahrenheit [THREADS+1] to thread 1, and so on. This round-robin distribution
of shared array elements is the default in UPC, but programmers may also distribute
shared arrays by blocks of elements. In later chapters we show how to declare
blocked distributions, which has a performance advantage for some applications.
In this temperature-conversion example, however, the default distribution of the
elements matches the work distribution, as each thread will compute exactly the
table elements that have affinity to it.

8 INTRODUCTORY TUTORIAL

In general, to maximize performance, each thread should be primarily respon-
sible for processing the data that has affinity to that thread. This exercises two
important features of UPC: control over data layout, and control over work distri-
bution, both of which are critical to performance. On a machine with physically
distributed memory, the UPC run-time system will map each thread and the data
that has affinity to it to the same processing node, thereby avoiding costly inter-
processor communication when the data and computation are aligned.

Shared scalar variables, such as step in Example 1.5, also have a defined
affinity, which is always to thread 0. So the use of step in the initialization of
celsius is likely to be less expensive on thread O than on all the others. Although the
thread O default is not always what the programmers want, the clearly defined cost
model allows them to optimize a UPC program in a platform-independent manner.
For example, a thread may copy a shared variable into its own private variable to
avoid multiple costly accesses. The body of the for loop will compute the
Fahrenheit temperatures and store them in the fahrenheit array for printing
later. This will be done by the last loop in the program, which is executed only by
thread 0.

The erroneous assumption here is that since this printing loop follows the
one that computes temperatures into fahrenheit, the results of the table will
be printed in order. In fact, this does print the table in order; however, many of the
entries of the table may hold the wrong answer. This is because printing will start as
soon as thread 0 gets to the final print loop, while some of the other threads may be
left behind and still executing the loop that computes the temperatures. This
synchronization problem is addressed in Section 1.4.

1.4 SYNCHRONIZATION AND MEMORY CONSISTENCY

To guarantee that all threads finished computing the temperature table in the
fahrenheit array before thread O starts printing the array, barrier synchroniza-
tion is used. UPC offers several different types of barrier synchronization, described
in Chapter 6, but the simplest is the upc barrier statement. This is
demonstrated in the following program, which now prints the values correctly, in
order.

Example 1.6: temperature4.upc

#include <upc.h>
#define TBL Sz 12

main ()

{
static shared int fahrenheit [TBL S7];
static shared int step=10;
int celsius, i;

SYNCHRONIZATION AND MEMORY CONSISTENCY 9

for (1=MYTHREAD; 1< TBL SZ; 1i+=THREADS)
{
celsius = step*i;
fahrenheit [i] = celsius* (9.0/5.0) + 32;

upc_barrier;

if (MYTHREAD==0)
for (i=0; i < TBL_SZ ; i++)
{
celsius= step*i;
printf ("$d \t %d \n", fahrenheit[i], celsius);
}

A upc_barrier statement ensures that all threads must reach that point before
any of them can proceed further. Thus, if a thread arrives at the upc _barrier
while any one of the other threads is still lagging behind, that thread will get
blocked. Once all threads have arrived at the barrier, they all proceed past it. Thus,
in our example we will be guaranteed that all threads have finished their computa-
tions and that the table is now holding the correct values before thread 0 begins
executing the printing loop.

Barrier synchronization is not the only useful form of synchronization. Since
shared data may be changed by any thread, there could be times when a thread
wants to make sure that it has exclusive access to a shared data object, for example,
to insert an element into a shared linked list or to update multiple values
consistently in a shared array. In these situations a programmer may associate a
lock with the data structure and acquire the lock before making a set of modifica-
tions to the structure. Only one thread may hold a given lock at any time, and if a
second thread attempts to acquire the lock, it will block until the first thread releases
it. In this way, programmers may guarantee mutual exclusion of shared data usage,
preventing erroneous behavior that can result from having one thread modify a data
structure while other threads are trying to access it. UPC provides powerful lock
constructs for managing such shared data, which are described in Chapter 6.

In general, the classes of errors that arise in parallel programs from insufficient
synchronization, called race conditions, occur when two threads access the same
shared data at the same time and at least one of them modifies the data. Most
programmers will be satisfied to write programs that are carefully synchronized
using UPC locks and barriers to avoid race conditions. However, synchronization
comes with a cost, and some programmers may wish to implement their own
synchronization primitives from basic memory operations or write programs that
read and write shared variables without synchronizing. These programmers are
relying on the memory consistency model in the language, which ensures some
basic properties of the memory operations. For example, if one thread writes a

10 INTRODUCTORY TUTORIAL

shared variable while another reads it, the reading thread must see either the old or
the new value, not a mixture of the two numbers, and if it keeps reading that
variable, it will eventually see the new value. In general, the memory consistency
model tells programmers whether operations performed by one thread have to be
observed in order by other threads.

Memory performance is a critical part of overall application performance, and
the memory consistency model can have a significant impact on that performance.
For example, the memory consistency model affects the ability of the compiler to
rearrange code and of the hardware to use caching and to pipeline and prefetch
memory operations. UPC therefore takes the view that the programmer needs
control over the memory consistency model and provides a novel set of mechan-
isms for this control, which are described in detail in Chapter 6.

1.5 WORK SHARING

Distributing work, typically independent iterations of a loop that can be run in
parallel, is often referred to as work sharing. Although the use of THREADS and
MYTHREAD in previous examples allowed us to distribute independent work across
the threads, each computing a number of entries in the fahrenheit table, UPC
provides a much more convenient iteration construct to do work sharing. This
construct is called upc_forall. Example 1.7 can take advantage of this construct
as shown below.

Example 1.7: temperature5.upc

#include <upc.h>
#define TBL SZ 12

main ()

{
static shared int fahrenheit [TBL S7];
static shared int step=10;
int celsius, i;

upc_forall (i=0; i <TBL_SZ; i++; i)
{

celsius= step*i;

fahrenheit[i] = celsius* (9.0/5.0) + 32;
}

upc_barrier;

if (MYTHREAD==0)
for (1i=0; 1 < TBL_SZ; i++)
{

UPC POINTERS 1

celsius= step*i;
printf ("%d \t %d \n", fahrenheit [i] , celsius);

In the line
upc forall(i=0; i <TBL SZ; i++; 1)

the upc_forall construct has some syntactic similarities to the C language for
loop, as the first three fields in upc forall are almost identical to the
corresponding fields of the C for loop. The first field, i=0, initializes the coun-
ter variable, i. The second field, i<TBL_SZ, provides the test that determines if the
variable value is within the range specified. The third field, i++, specified the
increment value separating successive values of the counter variable, thus determin-
ing how it is updated. So these fields simply identify the first iteration, test whether
the last iteration is reached, and increment the iteration counter. The upc_forall
construct differs from its sequential counterpart by a fourth field, which is called
affinity. In this case, the affinity i indicates that iteration i will be performed
by thread (1 modulo THREADS). Thus, iteration distribution across the threads will
take place in round-robin fashion, in just the same way that the array elements
themselves were distributed by default. As the iteration number and the array index
are the same, each thread will be processing only the array elements that have
affinity to it. The performance implication is that threads will probably find the data
they will be processing locally accessible and will therefore avoid costly remote
access and the substantial overhead that this may require.

Note that after the upc forall statement, we still used a barrier syn-
chronization. This is because the UPC specification does not require an impli-
cit barrier at the end of the iteration statement. The upc forall has
interesting and powerful additional options and can be used in many dif-
ferent ways, providing significant flexibility of control, as discussed later in
the book.

1.6 UPC POINTERS

Pointers have been one of the most interesting and useful concepts of the C
programming language. It is perhaps difficult to imagine a C application program,
even a parallel one, without pointers. For now, let us consider replacing the array
notation in Example 1.7 with its equivalent pointer representation. As a first step, let
us do that in the printing loop only.

Example 1.8: temperature6.upc

#include <upc.h>
#define TBL SZ 12

12 INTRODUCTORY TUTORIAL

main ()

{
static shared int fahrenheit [TBL SZ] ;
shared int *fahrenheit ptr=fahrenheit;
static shared int step=10;
int celsius, i;

upc_forall (i=0; i <TBL SZ; i++; 1i)

celsius= step*i;
fahrenheit [i] = celsius* (9.0/5.0) + 32;
}

upc_barrier;

if (MYTHREAD==0)
for (i=0 ; i < TBL_SZ ; i++)
{
celsius= step*i;
printf ("%d \t %d \n", *fahrenheit_ptr++, celsius);
}

The line

shared int * fahrenheit ptr=fahrenheit;

declares fahrenheit ptr to be a pointer to type shared int and ini-
tializes that pointer to point at the first element of the shared array
fahrenheit. The pointer fahrenheit ptr is actually a private pointer
to a shared type. This means that each thread will have an independent copy
of the pointer fahrenheit ptr, which is able independently to advance
and access the elements of fahrenheit. Initially, all these copies of
fahrenheit ptr, one per thread, will be pointing at the first element of
fahrenheit.
The line

printf ("$d \t %d\n", *fahrenheit ptr++, celsius);

de-references the pointer printing the corresponding contents and then advances
the for loop pointer variable to designate the next element in the array. This, will
be executed only by thread 0, according to the construct

if (MYTHREAD==0)

In the following example, we extend our use of pointers to replace all array
notations with pointer notations and make needed adjustments to the code.

UPC POINTERS 13
Example 1.9: temperature7.upc

#include <upc.h>
#define TBL SZ 12

main ()
{
static shared int fahrenheit [TBL SZ7] ;
shared int *fahrenheit ptr;
static shared int step=10;
int celsius, i;

fahrenheit ptr = fahrenheit + MYTHREAD;

upc_forall(i=0; i <TBL_SZ; i++; 1)

{
celsius = step*i;
fahrenheit ptr = celsius(9.0/5.0) + 32;
fahrenheit_ ptr += THREADS;

}

upc barrier;

if (MYTHREAD==0)
{
fahrenheit ptr=fahrenheit;
for (i=0; i < TBL_SZ ; i++, fahrenheit ptr++)
{
celsius= step*i;
printf ("%d \t %d \n", *fahrenheit ptr, celsius);
}

The line

shared int * fahrenheit ptr;

declares fahrenheit ptr to be a pointer to a shared variable. However,
fahrenheit ptr itself is private and each thread has an independent instance
of it. In the lines

fahrenheit ptr = fahrenheit + MYTHREAD;

and

fahrenheit ptr += THREADS;

14 INTRODUCTORY TUTORIAL

each of the fahrenheit ptr instances is initialized to point at the first
array element that has the same affinity as the pointer instance itself. In addi-
tion, the update advances each pointer by THREADS elements in each iteration, to
move to the next element that has affinity to the thread of that pointer instance.
UPC has other types of pointers. For example, private pointers to private data
follow from being an ISO C compliant and a superset. The language also allows
the use of shared pointers to shared data. Casting from one type of pointer to
another is possible. All these issues are handled in more detail in Chapter 3.

1.7 SUMMARY

In this chapter we introduced the basic concepts of UPC in a tutorial style to enable
programmers to write their first UPC code quickly. We have in particular demon-
strated that UPC is a superset of C, and all C programs will run under UPC.
However, this will naturally create several copies of the same program running in
the SPMD mode.

Under UPC, multiple threads will be operating independently and each thread
may have access to both private and shared data objects, variables, and arrays. A
private variable has one independent instance per thread. The total number of
threads is THREADS, and each thread identifies itself using MYTHREAD. THREADS
and MYTHREAD can be thought of as special constants. Shared scalars have affinity
with thread 0. Shared array elements, however, are distributed by default in round-
robin fashion across the threads.

UPC has many synchronization constructs for barrier, split-phase barrier,
locks, and fence. UPC also provides programmers with the ability to specify
the memory consistency model as relaxed or strict. Work can be distributed
based on THREADS and MYTHREAD. Work can be distributed conveniently,
however, using upc_forall. All iterations must be independent in order to use
upc_forall. UPC provides rich pointer concepts. Threads can point to shared
data using either shared or private pointers. In addition, C pointer declarations
result in private pointers to private data. It is possible under UPC to cast one type
of pointer to another.

EXERCISES

1.1 Create a sequential C version of the temperature table generation program, to
compute Fahrenheit temperatures from 0 to 1000 degrees Celsius by steps of
0.01 degree. Comment the printf line and use appropriate system calls to
measure the wall clock time for program execution by measuring the times at
the beginning and end of the program. Compile and run using cc for an
adequately large table that gives some measurable execution time, and note the
execution time. Compile using upcc with one thread and run. Compare and
comment on the measured time for the sequential program when compiled by
CC Versus upcc.

1.2

1.3

14

1.5

1.6
1.7

EXERCISES 15

Create a UPC parallel program for generating the temperatures table by using
the improved for loop into the last parallel example given in Section 1.4.
Comment the printf and add the time measurement statements as in
Exercise 1.1. Compile using upcc and run with one thread. Compare the
results of running the UPC program with one thread to those of Exercise 1.1.

Rewrite the program of Exercise 1.2 using a two-dimensional shared array of
two rows, where the first row holds the Celsius temperatures and the second
row holds the corresponding Fahrenheit temperatures.

Write an UPC program to sum the elements of two shared vectors. Make sure
that each thread operates only on the array elements that have affinity to that
thread.

Write a program that computes the mean of all elements in a shared array of a
general size, larger or smaller than the number of threads. You can use another
shared array of size equal to the number of threads to hold the partial sums
from each thread. At the end, thread 0 will need to sum up all partial sums,
compute the mean, and print the result.

Repeat Exercise 1.4 using the upc_forall construct.

Repeat Exercise 1.5 using the upc_forall construct.

I CHAPTER 2

Programming View and
UPC Data Types

Parallel programming languages that are available today represent a diversity
of programming models. Depending on the physical structure and incorporated
mechanisms of the underlying parallel computer, one or more languages may be
preferable to others in both ease of programming and/or delivered performance.
Similarly, the organization of the data structures and the flow control of the tasks of
a given application algorithm may strongly influence the parallel programming
language to be employed. UPC is one such parallel programming language that
facilitates general-purpose parallel computing through a set of constructs particu-
larly well suited to the major classes of parallel computers and a wide range of
parallel applications. In this chapter we present the foundation principles of parallel
programming as reflected by some of the most widely used languages and introduce
UPC from the perspective of these same basic concepts to position UPC in
the domain of parallel programming. Details of the UPC programming model are
presented with a discussion of the memory sharing and thread execution view. The
remainder of this chapter covers basic declarations, types, associated storage, and
constraints in the light of the UPC memory sharing and execution model.

2.1 PROGRAMMING MODELS

A programming model is simply the abstract view of how data and instructions are
stored and how processing takes place as perceived by the programmer [HWA9S].
In uniprocessor systems, it is fair to say that there is one basic programming model,
which is the von Neumann stored program model. Under this model, there is only
one memory, and all data and instructions are stored in it. The processor fetches and
decodes the program instructions and accesses and processes data accordingly. In a
parallel system, the architecture is more complex, due to the multiplicity of pro-
cessors and possibly, memory subsystems. Parallel programming models therefore

UPC: Distributed Shared Memory Programming, by Tarek El-Ghazawi, William Carlson,
Thomas Sterling, and Katherine Yelick
Copyright © 2005 John Wiley & Sons, Inc.

17

18 PROGRAMMING VIEW AND UPC DATA TYPES

also enable the programmer to express how the application should be decomposed
(i.e., how data and work will be distributed for parallel execution).

Parallel programming models expose common architecture features to enable
efficient mapping of the programs onto the architectures. However, they should be
independent of precise details of specific parallel architecutures, to allow mapping
of any parallel programming model onto a variety of parallel architectures.
Programming models should, however, remain simple for ease of use.

Popular parallel programming models include message passing, shared memory,
data parallel, and the distributed shared memory model. UPC uses the distributed
shared memory programming model. In this section we distinguish among these
models and give examples of their implementations. Our intent is to position UPC
in the world of parallel programming, highlighting powerful features.

In the message-passing model (Figure 2.1a), parallel processing is derived from
the use of a set of concurrent sequential processes cooperating on the same task. As
each process has its own private space, two-sided communication in the form of
sends and receives is used. This results in substantial overhead in interprocessor
communications, especially in the case of small messages. With separate spaces, ease
of use becomes another concern. As large problems are decomposed for parallel

Legend:
Q Thread/Process —» Memory Access
LT Address Space --P» Message
g N
e @ @ @
(a) Message Passing (b) Shared Memory
i i i
| I 1
|]]
| | 1
|]]
| 1 1
|] |
|] 1
|]]
|]]
L : :
(c) Data Parallel (d) Distributed Shared Memory

Figure 2.1 Address Space and Execution in Parallel Programming Models

PROGRAMMING MODELS 19

processing, the overall view of the problem is lost and replaced by multiple private
ones, placing a bigger burden on the program to maintain such global nature of the
application, which may require adding more code. The most popular example of
message passing is MPI, the message-passing interface [MPI94, SNI98].

Another popular programming model is the shared memory model (Figure 2.1b).
The view provided by this model is one in which multiple independent threads
operate in a shared space. The most popular implementations of this model are
OpenMP [OPE97] and Pthreads [BUT97]. This model is characterized by its ease
of use, as programmers need not treat remote memory accesses differently from
local accesses. An expression, for example, can imply a remote memory read if any
of its variables is located on a remote computing element or memory bank of the
physically distributed system. Similarly, an assignment statement can cause a
remote memory write. Since all concurrent threads see a single shared memory
space, the application view remains integrated and similar to that of the sequential
case. A negative consequence of this is that due to threads being unaware of
whether the data they are processing is local or remote, unnecessary remote
memory accesses might be generated, resulting in performance degradation.
Therefore, under the pure shared memory programming model, it is difficult to
exploit the inherent data locality in applications to achieve the highest efficiency.

Another programming model, the data parallel model shown in Figure 2.1c,
derives its concurrency from processing many data items simultaneously in the
same manner. This model employs only one executing process, for which every
operation executed processes multiple data items identically. The major problem
with this model is that it does not permit independent branching within the
executing process to allow processing different data in different ways. Thus,
applications that are richer in functional parallelism than in data parallelism may
not be expressed effectively under this model. Examples of languages that followed
such a scheme are C* [ROS87] and HPF [HPF97].

The last model that we discuss here is the distributed shared memory (DSM)
programming model (Figure 2.1d), also called the partitioned global address space
(PGAS) model, which has been adopted by UPC. This model can achieve the
desired balance between ease of use and exploiting data locality while avoiding
the problem of independent branching in the data parallel model. Under this model,
independent threads are operating in a shared space, just as in the shared memory
model. However, this shared space is logically partitioned among the threads. This
enables mapping to the same physical node of each thread and the data space that is
associated with it locally. Programmers can thus declare the data to be processed by
a given thread in the space partition that has affinity to that thread. Exploiting
locality of access in this manner eliminates or minimizes unnecessary remote
accesses from the beginning. Further, the multiple threads of the DSM program-
ming model can all be executing the same program in single program, multiple data
stream (SPMD) fashion that relaxes the rigid flow control of the data parallel
programming model and thus avoides the independent branching problem. Thus,
the DSM model provides a good balance between program abstraction for ease of
use and portability, on the one hand, and direct control of resource management

20 PROGRAMMING VIEW AND UPC DATA TYPES

for good performance, on the other hand, to achieve efficient execution with
contemporary computer architectures.

2.2 UPC PROGRAMMING MODEL

Having defined the space of programming models, UPC can be positioned in
this conceptual domain by defining the UPC execution and data sharing environ-
ment, which comprises the principal semantic elements of the UPC programming
model. Figure 2.2 illustrates the memory and execution model as viewed by UPC
codes and programmers. Under UPC, a number of threads work independently,
with no implicit synchronization, except that all threads start and finish together.
This implies barrier synchronization at the beginning and end of a program. The
total number of threads is given by the integer THREADS, and each thread
can identify itself using MYTHREAD. Thus, MYTHREAD and THREADS can be
thought of as a private constant at each thread and a global constant visible to all
threads, respectively. The total number of threads, THREADS, can be specified
at either compile time or run time, using the compile or the run command line,
respectively.

UPC works in SPMD style, where each thread executes the same main ()
function. This does not limit the flexibility of the execution model, because
conditional flow control within the thread can direct different thread instances to
perform different parts of the total thread code based on the MYTHREAD identifier
and intermediate result data values.

UPC represents a variant instance of the DSM paradigm with additional private
address spaces for local computations. Under UPC, memory is composed of a
logically partitioned shared memory space and additional private memory spaces,
as shown in Figure 2.2. All distributed threads can reference any address location
(shared variables) in the shared data space, but only its own private data space. The
shared space, however, is logically divided into portions, each with a special
association (affinity) to a given thread. In this way, UPC enables the programmer,
with proper declarations, to keep the shared data that will be dominantly processed
by a given thread (and occasionally, accessed by others) associated with that thread.

Thread 0 Thread 1 Thread yppaps.1
Shared Address
Space
Pri A .
S;gca:et: ddress Private, | Private 000 Private s |

Figure 2.2 UPC Memory and Execution Model

SHARED AND PRIVATE VARIABLES 21

Thus, a thread and the data that has affinity to it can be mapped by the system into
the same physical node. This provides programmers with the necessary language
constructs to exploit inherent data locality in their applications. Although an
implementation may map each UPC thread to a different CPU, the UPC specifica-
tion does not prohibit mapping more than one thread to the same CPU, permitting
the exploitation of multithreading hardware support (such as in Tera MTA
[ALV90]) when available.

UPC allows dynamic memory allocation in the shared space. Dynamic alloca-
tions in the private space are inherited from ISO C, as UPC is only an extension of
ISO C. In addition, UPC has pointers that can access the shared address space.
Pointers into the private spaces are also supported by UPC, as it is an ISO C
extension. In conjunction with the programming model, UPC provides explicit
extensions to the syntax and semantics of ISO C to facilitate expressing parallel
applications. Therefore, UPC can be classified as an explicit parallel extension to
ISO C that follows the distributed shared memory programming model.

2.3 SHARED AND PRIVATE VARIABLES

As discussed earlier, UPC is an extension of ISO C. Its execution follows an SPMD
model in which each thread executes main (). A given thread in UPC appears as a
sequential ISO C program. In UPC, an object can be declared as shared or private.
A private object would have a separate instance for each thread, equivalent in
structure and local identifiers but different in value among the distinct threads. One
particular thread, thread 0, is distinguished among all others. It is allocated all
scalar shared objects such that their affinity is assigned to thread 0. The following
two examples show scalar private and shared declarations.

By default, any ISO C style declaration under UPC results in private objects. For
example, the declaration

int x; // x is private, one x in the private space of each thread

creates one private variable x for each thread. Each thread can only reference and
manipulate its own instance of x. This is consistent with the fact that UPC is simply
an extension of ISO C in which parallel execution follows the SPMD model, with
each thread executing main (). This demonstrates how UPC flows logically from
ISO C augmented with a number of basic parallel programming constructs. These
explicit extensions to the syntax and semantics of C provide the user with the means
to specify and control parallel execution from within the parallel application
program.

Declaring an object to be shared, however, requires explicit use of the shared
qualifier. For example:

shared int y; // v is shared, only one y at thread 0 in the shared
space

22 PROGRAMMING VIEW AND UPC DATA TYPES

creates one instance of the variable y, which can be referenced and manipulated
by all threads. The variable y is therefore created in the shared space and has
affinity to thread 0, as it is a scalar variable. Scalar shared objects in UPC will
always have affinity to thread 0. This is logically consistent with the fact that the
first element of a shared array always has affinity to thread 0O, as explained in the
next section.

Shared variables cannot have automatic storage duration: as, for example, in

void foo (void)

{

shared int x; // not allowed
static shared int y; // allowed
shared int *p; // allowed
int *shared g; // not allowed

In the previous foo () function, the first declaration,
shared int x;

is not allowed since it has an automatic storage duration, as it appears inside the
function. However, static shared variables are allowed, with the example of y.

Although pointers are treated thoroughly in Chapter 3, the third and last
declarations involve pointer declarations that bring up useful points to the discus-
sion. In the third declaration,

shared int *p;

is a private pointer to shared, which gives each thread an independent pointer,

stored in its private space but pointing into the shared space. Thus, shared in this

context qualifies the pointed to variable, and it creates only private pointers to it.

This declaration is therefore allowed since the pointers themselves are not shared.
In the last declaration,

int *shared g;

is a shared pointer to private. Thus, shared in this context qualifies the pointer that
is to be created in the shared space and therefore is not allowed. It should be noted,
however, that although the previous declaration helps explain an important concept,
use of shared pointers to private variables is strongly discouraged. In general,
shared should not appear in a declerator that has automatic storage duration,
except when it results in creating storage in the private space.

One remedy is to move the first and last declarations outside the function foo ()
body, as follows:

SHARED AND PRIVATE ARRAYS 23

shared int x;
int *shared qg;

void foo (void)

{

shared int *p;

}

Similarly, no data can be declared as shared inside a private structure except for
private pointers to shared. Shared structures, on the other hand, can only contain
data that are shared. For example:

struct rectangle {
shared int width;
shared int length;
} myrect;

is illegal, as both width and length are shared-qualified, whereas the structure
is not. However,

shared struct rectangle {
int width;
int length;
} myrect;

is allowed since the structure is shared-qualified, as is

struct foo {

shared int *p; // allowed

int *shared qg; // not allowed
i

Type conversion among shared and private is possible. It can be accomplished
through cast and assignments. In general, private objects cannot be cast to shared
objects, and assignment of private to shared objects has undefined results. These
type conversions can be quite useful in the case of private and shared pointers and
will be addressed further in that context. Shared-qualified objects may also have a
reference qualifier to define their behavior from a memory consistency point of
view. This is treated in Chapter 6.

2.4 SHARED AND PRIVATE ARRAYS

Shared arrays are created in the shared space. By default, elements of a shared array
will be distributed across the threads in round-robin fashion. In other words, the first
element is created in the shared space that has affinity to thread O, the second

24 PROGRAMMING VIEW AND UPC DATA TYPES

Thread O Thread 1 Thread 2 Thread 3
X
yl0] yl1] yl2] yI3]
z z z z
Figure 2.3

element in the shared space that has affinity to thread 1, and so on. For simpli-
city, however, we say that the first element goes to thread 0, the second to
thread 1, and so on. The following example declarations demonstrate how a
shared vector declaration behaves compared to shared scalar and private scalar
declarations.

The declarations

shared int x; /* x is a shared scalar and

will have affinity to thread 0 */
shared int y [THREADS]; /*shared array* /
int z; /*private scalar*/

in the case of four threads will result in the default layout shown in Figure 2.3,
where x and y were created in the shared space, and instances of z were created in
the private spaces of each thread. Thus, if the declaration

shared int y [THREADS];

was replaced with

int y [THREADS];

each thread would have had its own full four-element private version of the
array y.

In the case of higher-dimensional arrays, the elements of a shared array are still
distributed in round-robin fashion. Consider, for example, the declaration
shared int A [4] [THREADS];

This declaration results in the layout shown in Figure 2.4. Such default distri-

bution can be very useful, as the vector addition program in the next example
shows.

BLOCKED SHARED ARRAYS 25

Thread 0 Thread 1 ThreadyrEADps. |

v[0][0] v[0][1] v[0][THREADS-1]

v[1][0] v[1][1] v[1][THREADS-1]

v[2][0] v[2][1] v[2][THREADS-1]

v[3][0] v[31[1] v[3][THREADS-1]
Figure 2.4

Example 2.1: vectaddl.upc

#include <upc_relaxed.h>//upc relaxedexplained in Chapter 6
#define N 10 * THREADS

shared int v1[N] , v2[N] , vliplusv2[N] ;

int main ()
{

int i;

upc_forall (i =0; 1 <N; i++; i)
viplusv2 [i] =v1[i] +v2[i];

return 0;

In this example, two vectors vl and v2 are added to produce the vector
vlplusv2. By default, v1, v2, and vlplusv2 are distributed across the threads
in round-robin fashion. The last field in the upc_forall statement is the affinity
field and says that iteration i should be executed on thread i $THREADS. Thus,
iterations are also distributed in round-robin fashion across the threads, which will
ensure that each thread manipulates only the shared data that are available locally.

2.5 BLOCKED SHARED ARRAYS

In many cases, the default shared array distribution is not appropriate for optimal
execution, and an alternative explicit data layout may improve data locality
exploitation and execution efficiency. Consider the following matrix—vector multi-
plication example.

26 PROGRAMMING VIEW AND UPC DATA TYPES
Example 2.2: matvectl.upc

#include <upc_relaxed.h>

shared int a [THREADS] [THREADS];
shared int b [THREADS] , c [THREADS];

int main (void)

{
int i, 37
upc_forall(i =0; i < THREADS; i++; 1)
{

cli] =0;
for (j= 0; j <THREADS; j++)
cli] +=alilldl*b gl
}
return 0;

The default layout in the shared space in the case of running with three threads is
shown in Figure 2.5. A first glance at the layout will show that for computing each
c[] element, there will be more remote memory accesses than local accesses. For
example, in case of c [0] , only a [0] [0] and b [0] are local input operands; the
remaining four are not. Luckily, this default distribution can be altered to better fit
the need of an application and improve locality exploitation in the underlying
computations.

The default shared array distribution can be altered by specifying a given block
size, also called a blocking factor, in the declaration using a layout qualifier as follows:

shared[block-size] array [number-of-elements]

Thread 0

Thread 2

Thread 0

Thread 2

Figure 2.5

BLOCKED SHARED ARRAYS 27
For example:
shared[4] int a[l6];

In the previous case, array a [] will have 16 elements distributed across the
threads in four-element by four-element blocks in a round-robin fashion. Thus, the
block size and total number of threads, THREADS, determine the affinity of each
data element to threads as follows: Element i of a blocked array has an affinity to
thread:

i

Thus, the declaration
shared[3] int x[12];

has a layout qualifier of 3, which means that array entries will be blocked and
distributed across the threads in blocks of three in round-robin fashion. The
resulting layout for THREADS = 3 is shown in Figure 2.6. Thus, if the previous
declaration were changed to

shared[12] int x[12];

all array elements would have affinity to thread 0. This can also be established using
the indefinite block size. Omitting the block size or making it zero in the layout
qualifier brackets would result in making all array elements have affinity to thread
0. Using such indefinite block size, the effect of the previous declaration can be
established through the declaration

shared[] int x[12];
or

shared[0] int x[12];

Thread 0 Thread 1 Thread 2
x[0] x[3] x[6]
x[1] x[4] x[7]
x[2] x[5] x[8]
x[9]

x[10]
x[11]

Figure 2.6

28 PROGRAMMING VIEW AND UPC DATA TYPES

Thread 0 Thread 1 Thread 2
y[0] y[3] yl6]
yl1] yl4] yl71
yl[2] y[5]

Figure 2.7

In many cases it is desirable to distribute an array of data in contiguous blocks
such that, when possible each thread gets one of those chunks. One convenient way
to do this is by using the * layout qualifier. For example,

shared[*] int y[8];

would produce the layout shown in Figure 2.7 for the case of three threads.

Layout qualifiers work in the same way with two- and higher-dimensional
arrays as in the case of one-dimensional arrays. Consider, for example, the
declaration

shared[3] int A[4][4];

In this case, array elements are also blocked by a factor of 3. Therefore, blocks of
three elements each are distributed across the threads in round-robin fashion until
all the array elements are allocated. The resulting layout in the case of four threads
is shown in Figure 2.8.

By employing the foregoing techniques, the matrix—vector multiplication
example can now be revisited.

Thread 0 Thread 1 Thread 2 Thread 3
A[0][0] A[0][3] All][2] Al2][1]
A[0][1] A[1][0] A[l][3] A[2][2]
A[0][2] All][1] A[2][0] A[2][3]
A[3][0] A[3][3]

A[3][1]

A[3][2]

Figure 2.8

BLOCKED SHARED ARRAYS
Example 2.3: matvect2.upc

#include <upc relaxed.h>

shared [THREADS] int a[THREADS] [THREADS];
shared int b [THREADS], c [THREADS];

int main (void)
{

int i, §;

upc_forall (i = 0; 1 < THREADS; i++; 1i)
{

c[i] =0;
for (j=0; j (THREADS; j++)
cli] +=alil[j]1*b (3]

return 0;

29

The only difference between this version and the version that was shown in
Example 2.2 is in the declaration of a[], where a[] is now blocked by a factor
equal to the number of THREADS. The resulting layout for the case of three
threads is shown in Figure 2.9. In this case, computing c[0] requires only two
remote accesses for reading b[1] and b[2] instead of the four remote accesses

needed in the case of default distribution.

Thread 0 Thread 0

Figure 2.9

30 PROGRAMMING VIEW AND UPC DATA TYPES
2.6 COMPILING ENVIRONMENTS AND SHARED ARRAYS

The number of UPC executing threads can be specified at either compile time or run
time. If the number of threads is known at compile time, the UPC program is
translated in the “static THREADS” environment. If the number of threads is not
known at compile time, the UPC program is translated in the ‘“dynamic
THREADS” environment.

Specifying the number of threads at compile time gives compilers the opportu-
nity to offer their best optimizations. On the other hand, it may not be very
convenient when a program is to be run with different numbers of threads.
Specifying the number of threads at run time allows the users to compile once
and run multiple times with different numbers of threads. However, this can present
technical challenges to compilers, particularly where the number of array elements
allocated to each thread depends on the number of executing threads. To contain
such challenges, a number of constraints are established. One clear constraint is that
an array declaration is considered illegal if the UPC program is translated in the
“dynamic THREADS” environment (i.e., THREADS is specified at run time, and
the number of elements to allocate at each thread depends on the number of
threads). For example, the declarations

shared int x [10* THREADS];
shared[] int x[10];

are legal in both the “static THREADS” and ‘“‘dynamic THREADS” translation
environments. In the first case, 10 elements will be allocated to each thread, and in
the second declaration 10 elements will be allocated to thread 0.

On the other hand, the declarations

shared int x[10];
shared[] int x [THREADS];
shared int x [LO+THREADS];

are illegal in the case of the “dynamic THREADS” translation environment. In the
first declaration, it is unclear how many x [] elements will be given to each thread
without knowing the total number of threads. In the second declaration, although
the entire array goes to thread 0, the size of that array is unknown without knowing
the total number of threads. In the third declaration, it is clear that each thread gets
at least one element, but without knowing the total number of threads, the total
share of each thread of the array elements will be unknown.

2.7 SUMMARY

UPC is an extension of ISO C that follows the distributed shared memory
programming model. All threads can access the entire shared space. However,

EXERCISES 31

the shared space is logically partitioned, and each partition has affinity to one of the
threads. This enables programmers to co-locate data and processing, thus exploiting
data locality for improved performance. Each thread has, in addition, a private
memory space, which should be accessed by that thread only. UPC operates in a
SPMD model of execution, where all threads execute the main () function. No
synchronization is implied except that threads must start and finish the same
program at the same time. Programmers determine at declaration time where data
will be located with respect to threads and private and shared space. Private variable
declarations result in one instance of the variable within the private space of each
thread. Shared scalar variables have affinity to thread 0. Shared array elements are
distributed by default in round-robin fashion across the threads. Such default can
be changed using a block size specified by the programmer, in which case the array
elements are distributed by blocks of elements across the threads in round-robin
fashion. Thus, the data layout can be defined in a way that reduces the overall
number of remote shared memory references. Shared variables and arrays cannot
have automatic storage duration.

EXERCISES

2.1 List two unique features in each of the four parallel programming models:
message passing, data parallel, shared memory, and distributed shared memory.

2.2 Two popular computer architectures are the multicomputer architecture, in
which each node has a local memory with a private address space, and the
NUMA (nonuniform memory access architecture), in which there is one global
address space but each node holds a part of that shared system memory.
Discuss the performance pros and cons of implementing each of the four
programming models on each of these two architectures.

2.3 In addition to the shared address space of the distributed shared memory
programming model, the UPC memory model includes thread-private mem-
ories. Give two reasons why including such private memories would be a good
idea.

2.4 Why does it make sense not to have dynamic shared variables? It was also
stated that shared pointers to private variables were not recommended. Why?

2.5 Write a program to perform A = B * C, where A, B, and C are n X n matrices
and n is a multiple of THREADS.

2.6 Repeat Exercise 2.5, but block the A matrix by rows. Derive an expression for
the number of remote accesses needed for computing each C element and
compare the results with those of Exercise 2.5.

IS CHAPTER 3

Pointers and Arrays

The concept of pointers is a core element of the ISO C programming language and has
proven to be a powerful programming tool. UPC defines a number of pointer classes
that follow directly from C pointers and the UPC memory model. As in C, pointers are
variables that contain the address of another variable. However, under the UPC
memory model such pointers can reside in either the private space or the shared space.
UPC pointers can also reference the private space or the shared space. These different
variants of the UPC pointer semantics serve distinct programming scenarios. Pointers
often lead to compact programs and result in efficient implementations. Pointers and
array indexes are closely related in C, and they remain that way in UPC. Under UPC,
pointers can be declared to have blocking factors similar to those in the case of arrays.
Thus, given any array layout in the shared space, a pointer can be declared to traverse
the elements of such an array in the same sequence that C pointers traverse array
elements. In many cases, casting is also allowed from one pointer type to another.

3.1 UPC POINTERS

The syntax of pointer declarations in UPC is similar to those of C. However, with a
memory model that has shared and private spaces, there are four major UPC pointer
classes: private pointers pointing to the private space, private pointers pointing to
the shared space, shared pointers pointing to the shared space, and shared pointers
pointing to the private space (see Figure 3.1).

Consider the following pointer declarations:

int *pl; // private to private
shared int *p2; // private to shared
int * shared p3; // shared to private

shared int * shared p4; // shared to shared

The first statement declares a private pointer p1, which points to the private space
and resides in the private space; we notice that p1 is clearly a typical C pointer. p2

UPC: Distributed Shared Memory Programming, by Tarek El-Ghazawi, William Carlson,
Thomas Sterling, and Katherine Yelick
Copyright © 2005 John Wiley & Sons, Inc.

33

34 POINTERS AND ARRAYS

Private Shared Legend :
Where . PP — private to private
does the Private PP PS PS — private to shared
pointer SP — shared to private
reside? SS — shared to shared
Shared SP SS

Figure 3.1 UPC Pointer Classes

is declared as a private pointer that points to the shared space; therefore, each thread
has one independent and private instance of p2. p4 is a shared pointer pointing to
the shared space; thus, it has one instance with affinity to thread 0. p3 is a shared
pointer to the private space and therefore should be avoided, as it would defeat the
purpose of having shared space visible to all threads and private data space visible
only to its associated thread.

One general observation that can help us to understand these pointer class de-
clarations quickly is to look at the relative position of the * character in the declar-
ation syntax. For example, “p is a private pointer, whereas *shared p is a shared
pointer. Note that the right part of the declaration is for the pointer type, whereas
the left part is for the type of the pointed to variable. So for

shared int *p2; // private to shared

the right part, * p2, says that p2 is a private pointer, and the left part, shared int,
indicates that the variable pointed to is of type shared int. Similarly, in the
declaration

shared int *shared p4; // shared to shared

*shared p4 indicates that p4 is a shared pointer, and the left part shared int
indicates that the variable pointed to is a shared int.

Figure 3.2 demonstrates where the pointers of the previous four declarations
are located and to where they are pointing. This figure shows that one instance of

Thread 0 Thread 1 Threadtyreaps.1

Shared Space

s
.\ Private Spaces

Figure 3.2 UPC Pointer Scenarios

POINTER ARITHMETIC 35

the private pointers, pl and p2, exists for each thread. Both of these two pointers
are created in the private space of every thread instance. Only one instance of p3
and p4 is created in the shared space. Each of the pl pointers points to its
associated private space and can also point to the shared space that has affinity to
that pointer. Each of the p2 pointers can point anywhere in the shared data space.
The pointer p4 can also point anywhere in the shared space. As a shared pointer, p3
has only one instance created in the shared space of thread 0. However, p3 has no
useful semantic behavior and therefore should be avoided.

3.2 POINTER ARITHMETIC

Pointers in UPC advance (are incremented) in a way similar to that of C pointers.
When an expression is added to or subtracted from a pointer-to-shared, the pointer
moves by a number of elements as given by the expression, where the elements
are of the same type as the object pointed to. We first demonstrate this in cases
where arrays are distributed by default, one element per thread. Then we show how
pointers traverse the elements of blocked arrays. Consider, for example, the
sequence of statements in Example 3.1.

Example 3.1: pointerl.upc

#define N 16
shared int x [N];
shared int *dp, *dpl;

dp = &x [5];
dpl =dp + 9;

In this code, the first three statements define x [] as a shared array of 16
elements with the default distribution layout, one per thread in round-robin fashion.
The third statement,

shared int *dp, *dpl;

declares both dp and dp1l as private pointers to the shared array x [] , while the last
two statements initialize dp to point to the element x [5] in array x [] and dpl to
point at the ninth element after x [5] (i.e., element x [14]), shown in Figure 3.3 for
the case of four threads. One thing to note here is that since dp and dp1 are private
pointers to the shared array, there will be one instance of dp and one instance of dpl
at each of the threads. To show this more clearly, consider the code in Example 3.2.

Example 3.2: pointer2.upc

#define N 16
shared int x [N];

36 POINTERS AND ARRAYS

Thread 0 Thread 1

x [0] x[1]

x [4] dp x[5] dp +1
dp+3 x [8] dp+4 x[9] dp+5
dp+7 x[12] dp+8 x [13] dp+9

dpl
Figure 3.3

shared int *shared dp;
shared int *dpl;

dp = & x [5];

dpl = x+MYTHREAD ;

In this code, dp is now a shared pointer to the shared array, so only one ins-
tance of dp would be created, whereas dp1l is a private pointer to the shared data
space, so each thread would have an independent instance of dpl. The code sets
each instance of dpl at each thread to point at the element with the offset of
MYTHREAD from the beginning of the x [] array. Thus, although all threads
have access to the pointer dp, each thread accesses only its own private dpl. If
the code were to execute on four threads, the scenario shown in Figure 3.4 would

Thread 2

x[2]

x [6]

x [10]

x [14]

dp+2
dp+6

result. The same scenario could also have resulted by replacing

dpl = x+tMYTHREAD;

with

dpl = &x [MYTHREAD];

In the latter case, each dp1 instance is set to point at the address of its first element
of the array in each thread.

Thread 0 Thread 1
dpl x [0] dpl x[1]
x [4] dp x[5]
X [8] x[9]
x [12] x[13]

Thread 2

dpl

x[2]

x[6]

x [10]

x [14]

Figure 3.4

Thread 3

x [3]

x [7]

x [11]

x [15]

Thread 3

dpl

x [3]

x[7]

x [11]

x [15]

POINTER ARITHMETIC 37

Thread Block Address Phase

Figure 3.5 Shared Pointer Format

To keep track of shared data, a UPC shared pointer (pointer to a shared object) is
composed of three fields: thread, phase, and virtual address (Figure 3.5). The thread
information clearly indicates the thread affinity of the data pointed to. On the other
hand, Block Address indicates the block address, and Phase indicates the location
of the data item within that block. Such typical pointer implementation makes tra-
versing blocked arrays quite easy. This also implies that to traverse the elements of
a given blocked array, a pointer with the same blocking factor is needed. Consider
the following example.

Example 3.3: pointer3.upc
#define N 16

shared [3] int x[N], *dp, *dpl;
shared int *dp2;

dp = &x [5];
dpl =dp + 9;
dp2 =dp + 3;

Assuming four threads, the code in Example 3.3 would result in the layout and
pointer locations shown in Figure 3.6. In Example 3.3, dp and dpl were declared
with blocking factors of 3, which is also the blocking factor for the array x []. These
pointers point to the shared data space and view the shared space as blocks of three
elements of that type. Pointer p was not advanced, as it was only set to &x [5].
This element, &x [5], is in the third position of a block of 3. When dpl was
incremented by 9 beyond the location of p, it immediately started with the
next thread and followed the order of the array elements. This kind of blocked

Thread 0 Thread 1 Thread 2 Thread 3
x [0] x[3] dp+1 x[6] dp+4 x [9]
x[1] x[4] dp+2 x[7] dp+5 x[10]
x[2] dp x[5] dp+3 x[8] dp+6 x[11]

dp+7| x[12] |e—gpa| x[15] |
dp+8| x[13]
dp+9 x[14] |<«dpl

Figure 3.6

38 POINTERS AND ARRAYS

pointer is typically used to easily access the elements of blocked arrays, using the
same blocking factor as the array. Pointer p2 shows what happens when a pointer of
mismatched blocking factor is used. Since no layout qualifier was specified for p2 in
its declaration, p2 follows the default distribution regardless of how the array is laid
out. Thus, p2 moves to a new element in the next thread each time it is incremented.

3.3 POINTER CASTING AND USAGE PRACTICES

UPC allows the casting of one pointer type to another. However, shared pointer
representations typically hold the thread and phase information (see Figure 3.5).
Therefore, casting a shared pointer to a private pointer may result in the loss of
the thread information. Although this is not generally advisable, it could be useful
when it is desired to use a private pointer to point in its own local shared data space.
On the other hand, casting a private pointer to a shared pointer is an error and would
produce unknown results.

The following code demonstrates the syntax for casting a shared pointer to
private data space:

shared int x [THREADS];
int *p;
p = (int *) &x [MYTHREAD]; /* p points to x [MYTHREAD] */

The construct &§x [MYTHREAD] will return in each thread a different shared address
pointing to its local element of x[]. (int *) is a cast to private, which transforms
the shared pointer to a private one. Thus, the previous statement sets each of the
private pointers, p, to point at the x [] element, which has affinity with its thread
(i.e., MYTHREAD). There are three points here to reinforce: (1) local shared data
is stored contiguously and can also be pointed at by private pointers; (2) a cast to
private may result in losing the thread information in the shared pointer (thus,
whereas casting from shared to private is allowed, the opposite is not true); and (3)
as shared pointer arithmetic can be more involving than private pointer arithmetic,
using private pointers instead of shared pointers when applicable may be more
efficient in some implementations.

The following example shows how private and shared pointers may advance in
shared data.

Example 3.4: pointer4.upc

#define N 4

shared int x[N] [N];
shared int *dpl;
int *dp2;

dpl = x+MYTHREAD ;
dp2 = (int *)dpl+MYTHREAD;

POINTER CASTING AND USAGE PRACTICES 39

Thread 0 Thread 1 Thread 2 Thread 3
dpldp2 | x[0J[0] | dpl| x[O](1] dpl x[0][2] | gp1| x[O1[3]
x [1][0] dp2 x [1][1] x [1][2] x [1][3]
X [2][0] X210 | dp2| xp2)2) X [2103]
x [3][0] x[3]01] x[B12] | W2 [X313
Figure 3.7

In this code, dp1 is a set of private pointers to shared and dp?2 is a set of private
pointers. In the first statement,

dpl = x+MYTHREAD;

each of the dpl pointer instances will advance following the array default
distribution, by MYTHREAD positions, from the first location in the array. Each
of the dp1l pointers will end up pointing at the first element of any array column.
Each of the dp2 pointers will be pointing MYTHREAD positions from the local
dpl pointer. The private pointers, however, will not follow the order of the array
elements but will advance only in their local shared space. In the case of running
this code with four threads, the dp1 pointer set will be pointing at the elements of
the first row, while the dp2 pointers will be pointing at the diagonal elements as
shown in Figure 3.7.

A layout qualifier is a part of a shared pointer type. It is therefore possible to
traverse the elements of a shared array with one blocking factor using a pointer with
a different blocking factor. Consider the following code.

Example 3.5: pointerS.upc

shared int x [N];
shared [3] int *dp=&x[5], *dpl;
dpl =dp + 9;

This code assigns to dpl a value that is nine positions beyond dp. The dpl
pointer will follow its own blocking and not the one of the array. When executed on
four threads, the pointer locations shown in Figure 3.8 result.

As a layout specifier is considered a part of a shared pointer type, casting a
shared pointer with one blocking factor to a pointer that has a different blocking
factor is also possible. Given the declarations

shared[3] int *p;
shared[5] int *qg;

the assignment

p=4d;

40 POINTERS AND ARRAYS

Thread 0 Thread 1 Thread 2 Thread 3
x [0] x[1] x[2] X [3]
x[4] dp x[5] dp +3 x [6] dp +6 x[7]
x [8] dp +1 x [9] dp +4 x[10] dp +7 x[11]
x [12] dp +2 x [13] dp +5 x [14] dp +8 x [15]

dp +9 x [16]
dpi
Figure 3.8

is acceptable. However, some implementations may require explicit casting in the
form

p = (shared[3] int *)qg;

Pointer p will, however, obey pointer arithmetic for blocks of three, not five. It
should also be noted that pointer casting always sets the phase of the shared pointer
to zero.

3.4 POINTER INFORMATION AND MANIPULATION FUNCTIONS

Pointer-to-shared implementations may vary from one compiler to another. However,
such pointers all represent the three fields that make up such pointers-to-shared
(see Figure 3.5): the thread number, the virtual address, and the phase information.
Therefore, a number of special functions are included to access and manipulate
pointer-to-shared information in an implementation-independent manner. These
functions are often used by compiler developers, but they are available for applica-
tion developers as well, if needed. UPC provides three such functions to deliver
pointer information. The first,

size t upc threadof (shared void *ptr);

returns the number of the thread that has affinity to the shared object pointed to
by ptr. The pointer ptr is a private pointer-to-shared pointing to an object of any
shared type. The phase of the pointer-to-shared can be also determined by a similar
call:

size t upc phaseof (shared void *ptr);

and finally,

size t upc addrfieldof (shared void *ptr);

POINTER INFORMATION AND MANIPULATION FUNCTIONS 11

can be used in the same way to return the local address of the object pointed to by
the pointer-to-shared. It should be noted, however, that the value returned by this
function is implementation dependent.

In the following example these functions are used by thread 0 to print three
elements of a pointer. The address field will be printed in 10 hexadecimal digits,
while the thread number and the phase numbers will be printed in two decimal
digits each.

Example 3.6: addresses.upc

//PrintPointerElements
#include <stdio.h>
#include <upc.h>
#include <upc_relaxed.h>

#define BLOCKING FACTOR 3
#define SIZE BLOCKING FACTOR* THREADS

shared [BLOCKING FACTOR] int buffer [SIZE];

int main (void)
{
int i;
shared [BLOCKING FACTOR] int *buffer ptr;
if (MYTHREAD == 0)
{
buffer ptr = buffer + 5;
for (i=0; i<SIZE; i++, buffer ptr++)
{
printf ("sbuffer([&d] : ", 1);
printf ("THREAD: %02d\t ",
upc_threadof (buffer ptr));
printf ("ADDRESS: %$010xXh \t ",
upc_addrfield (buffer ptr));
printf ("PHASE: $02d\n",
upc_phaseof (buffer ptr));

}
return 0;
The statement

buffer ptr = buffer + 5;

42 POINTERS AND ARRAYS

in Example 3.6 sets buffer ptr to point to the last element in the second block
buffer [5] . Therefore, the printed thread number should be 1 and the phase
should be 2. The address value is implementation-dependent, however.

In addition to the functions that return the three different elements of a pointer-
to-shared, the function

shared void *upc_resetphase (shared void *ptr);

returns a pointer-to-shared which is identical to ptr except that it has a phase of
zero. Thus, this function can be used to reset the phase of a pointer to make it point
to the first element of the current block. For example, if the statement

buffer ptr = upc resetphase (buffer ptr);

is used before the printing in the previous PrintPointerFields example, the
printed phase would have been zero instead of 2.

In the rest of this section we consider a UPC pointer-to-shared implementation
example (Figure 3.4) along with a possible implementation of some of the pointer
information and manipulation functions. This example implementation is included
for illustrative purposes only. Different [CAR99] or better implementations may be
sought by compiler developers. First, assume the representation shown in Figure 3.9
for the UPC shared pointer. Then, possible definitions for the upc_threadof (),
upc_phaseof (), and upc_addrfieldof () follow:

typedef uint64 t upc shared ptr;
size t upc threadof (upc_shared ptr sh ptr)
{

size t t;

t = (sh_ptr>> 38) & O0x7FF;

return t;
}
size t upc phaseof (upc_shared ptr sh ptr)
{

size t t;

t = (sh ptr >> 49) & Ox7FFF;

return t;
}
size t upc addrfield (upc_shared ptr sh ptr)
{

Phase Thread Virtual Address

63 49 48 38 37 0

Figure 3.9 Possible UPC Pointer-to-Shared Implementation

MORE POINTER EXAMPLES 43

size t t;
t =sh ptr & Ox3FFFFFFFFFULL;
return t;

In the case of upc threadof (), the pointer representation is shifted to
the right 38 positions to bring the thread information to the least significant part
of the pointer, and the remaining bits to the left of the phase information are masked
out using a bitwise logical-and operation with a mask of 15 consecutive bits, 7FF
in hexadecimal. Similar shifting and masking is also used to produce the phase
information, in upc_phaseof (), and masking only is used to generate the
address in upc_addrfieldof (), where address information of the element in this
case already occupies the lower 38 bits of the pointer representation.

A simpler but possibly less efficient implementation could use a structure with
three fields to store the three elements of the pointer. The equivalent implementa-
tion of each of the three previous functions would simply amount to extracting the
corresponding field from the structure.

3.5 MORE POINTER EXAMPLES

Consider a program for squaring a matrix A. If the matrix is shared and follows the
default blocking, one can simply access the rows of the matrix using an array of
pointers-to-shared. On the other hand, using the fact that local shared data is stored
contiguously and can be accessed by private pointers, private pointers can be used
to access the columns of the matrix. The code for this matrix-squaring example
follows.

Example 3.7: matsqrl.upc

// Matrix Squaring
shared double A [THREADS] [THREADS] , A_Sqr [THREADS] [THREADS] ;

int main (void)
{
shared double *rows ptrs [THREADS]; // Points to the rows

double *cols ptr; // Points to the local shared columns
int i, 3, k;
double d;

//Initialize the pointers
for (i=0; i < THREADS; i++)
{

rows ptrs[i] = &A[i][0];

44 POINTERS AND ARRAYS

}

// Privatize (local shared to private)
cols ptr = (double *) &A[0] [MYTHREAD];

// Matrix squaring computation
for (i=0; i<THREADS; i++) // for each row
upc_forall (j=0; J<THREADS; j++; j) // each thread
{ // computes one element
d=20;
for (k=0; k<THREADS; k++)
d +=* (rows_ptrs[i] +k) * * (cols_ptr+k);
A Sqr[i][]] =d; // write to A sqgr [row i][col j]
}

return 0;

In this example,
rows ptrs[i] = &A[1][0];

initializes the pointer row _ptrs [i] to point at the beginning of row i in array
A[][]. Since row_ptrs is declared as an array of private pointers-to-shared, each
thread will have its own private array of pointers that can be manipulated
independently by each thread. When incremented, rows ptrs [i] will advance
through the elements of the ith row of array A[][]. Meanwhile, cols ptrsisa
private pointer-to-shared. Thus, in each thread

cols ptr = (double *) &A [0] [MYTHREAD];

casts the address of the ith column to private and assigns it to cols ptrs, so that
it points at the beginning of column i. The cast is used since cols ptrs is a
private pointer, whereas &A [0] [i] is a shared reference. When incremented,
cols ptr of thread i will now advance through the elements of the ith column
of array A [][]. Since each of the threads now accesses one of the columns,
the algorithm proceeds as follows. Elements of the result matrix, A sqr [][], are
computed one row at a time. Thus, for each row of the matrix, each thread computes
one result that goes into the column position corresponding to that thread number.
Therefore, the outer loop

for (i=0; i<THREADS; i++)
sequences through the rows. Then, for each row,

upc_forall (j=0; jJ<THREADS; j++; J)

MORE POINTER EXAMPLES 45

causes each of the threads to compute one of the elements in that row of A sqr
[111, specifically the element whose column index is equal to the thread number.
The actual computations of an A_sqr [][] element are performed within the body
of the innermost loop.

for (k=0; k<THREADS; k++)

Instead of using an array of private pointers-to-shared for addressing the rows,
one could have used a private pointer-to-shared that traverse the array elements as if
it were a one-dimensional array.

Example 3.8: matsqr2.upc

// Matrix Squaring (single pointer)
shared double A [THREADS] [THREADS] , A Sqr [THREADS] [THREADS];

int main(void)
{
shared double *rows_ptrs;

double *cols ptr;
int i, 3, ks
double d;

// Initialize the pointers
rows_ptrs = &A [0] [0];
cols ptr = (double *) &A [0] [MYTHREAD];

// for each row
for (i=0; i<THREADS; i++, rows_ptrs+=THREADS)
upc_forall (j=0; j<THREADS; j++; j) // for each local
// shared column

{
d=20;
for (k=0; k<THREADS; k++)
d += * (rows_ptrs+k) * * (cols_ptr+k) ;
A Sqgr[i][j] =d; // write to A _sqgr[row i] [col J]
}

return 0;

As in C, pointer and array index notations may be interchanged, and pointers to
matrixes can be passed to a function that may perform the matrix squaring. Making
these changes to Example 3.7, the following program results.

46 POINTERS AND ARRAYS
Example 3.9: matsqr3.upc

// Matrix Squaring
shared double A [THREADS] [THREADS] , A Sqr [THREADS] [THREADS];
void mat squaring (shared double (*dst) [THREADS],

shared double (*src) [THREADS])

{
shared double *rows ptrs [THREADS];

double *cols ptr;
int i, 3, ks
double d;

// Initialize the pointers
for (i=0; i<THREADS; i++)
rows_ptrs[i] = &src[i] [0];

// Privatize (local shared to private)
cols_ptr = (double *) &src[0] [MYTHREAD];

// Matrix squaring computation
for (1i=0; 1<THREADS; i++) // for each row
upc_forall (j=0; j<THREADS; j++; j) // each thread
{
d=0;
for (k=0; k<THREADS; k++)
d +=* (rows_ptrs[i] +k) * * (cols_ptr+k);
dst[i][§]1 =d;
}

int main (void)

{
mat squaring(A_Sqr, A);

return 0;

}

This example touches again on an important fact: that shared objects cannot
have a dynamic scope. Therefore, the shared arrays, A[][] and A sqr [][], are
declared externally. Furthermore, only private pointers-to-shared can be declared
and used inside the function itself.

EXERCISES 47
3.6 SUMMARY

UPC embodies many powerful pointer concepts. UPC pointers include private
pointers, private pointers-to-shared, and shared pointers-to-shared. Shared pointers-
to-private are also possible to declare, but using them is not advised, as their
behavior is not specified. Pointers-to-shared can have blocking factors, just like
shared arrays. Such a layout specifier is part of the type. Pointer-to-shared
representations embody three important elements: thread number, phase number,
and address. Pointer information and manipulation functions can be used to extract
this information from a pointer. One type of pointer can be cast into another. For
example, pointers-to-shared can be cast to private pointers. In this case, the thread
number information is lost. Local shared data is stored contiguously and therefore
can easily be addressed by a private pointer. All these different types of pointers
available in UPC can be extremely useful to developers.

EXERCISES

3.1 Write a function to multiply two shared matrixes, A x B, with the default
blocking using pointers to access the elements of the matrixes. Use one single
private pointer-to-shared to point at the rows of each matrix and another to
point at the columns of each matrix.

3.2 Modify the first matrix-squaring example of Section 3.5 (Example 3.7) such
that the elements of one column of A sqgr [][] are computed first, then the
next column, and so on. Use only private pointers-to-shared.

3.3 Write a function to copy the elements of a THREADS x THREADS matrix
with a blocking factor of 5 to another with a blocking factor of 3 using blocked
pointers-to-shared arithmetic.

IS CHAPTER 4

Work Sharing and Domain
Decomposition

In this chapter we consider the distribution of workload across a number of UPC
SPMD threads by decomposing the data across the threads that are executing.
Distributing work across a number of threads (or processes) in a parallel application
requires that each thread have the ability to identity itself through an id value and to
recognize the other threads, possibly remote, available to cooperate on performing
the application task. This self-identification and recognition of the other cooperat-
ing threads allows a division of labor by identifying the partition of the data that
will be manipulated by each thread. In UPC, variable declarations establish the
affinity of data and threads, providing locality information and control to pro-
grammers for decomposing their workload more intelligently. UPC programmers
can take advantage of this knowledge by assigning each thread to apply its work, as
appropriate, on the data that has affinity to that thread. In this way, the majority of
the accesses can become thread local. On machines with physically distributed
memory, it is expected that compilers will attempt to co-locate each thread and the
data that has affinity to it onto the same physical node, thereby reducing remote
accesses and improving execution time. Moreover, as in other parallel program-
ming paradigms, UPC offers the ability for each thread to identify itself and the rest
of threads available to help through the special constants MYTHREAD and
THREADS, respectively, where MYTHREAD is in the range O through THREADS-1.
In addition to the aforementioned basic methods for work sharing, UPC features
the iteration statement upc forall, which distributes independent iterations
across threads for parallel execution in different ways. In this chapter we cover
these work-sharing concepts and their relationship to affinity of data, to show pro-
grammers how to exploit access locality. We also explore how this can be done in
the context of blocked shared data structures through application examples that
require interesting data distributions such as multidimensional arrays and trees.

UPC: Distributed Shared Memory Programming, by Tarek El-Ghazawi, William Carlson,
Thomas Sterling, and Katherine Yelick
Copyright © 2005 John Wiley & Sons, Inc.

49

50 WORK SHARING AND DOMAIN DECOMPOSITION
4.1 BASIC WORK DISTRIBUTION

Consider a version of the matrix—vector multiplication example of Examples 2.2
and 2.3, in which a matrix of THREADS *10 x THREADS is multiplied by a vector
of length THREADS. Knowing the number of threads, THREADS, the matrix and
vector dimensionalities, and given that each thread can identify itself through the
special constant MYTHREAD, work can be distributed such that each thread operates
on a unique set of rows from the matrix a [][] .

Example 4.1: matvect3.upc

#include <upc_ relaxed.h>

shared [THREADS] int a [THREADS* 10] [THREADS];
shared int b [THREADS] , ¢ [THREADS*10];

int main (void)

{

int i, 3;

for (i = MYTHREAD; i < THREADS*10; i += THREADS)

cli] =0;
for (j =0; j < THREADS; j++)
c[i] +=alil[3]1*b 3]

return 0;

In this example, matrix a [][], which has the dimensionality THREADS*10 x
THREADS, is multiplied by vector b [], which is of length THREADS, producing
vector c [], which is of length THREADS*10. The declarations

shared [THREADS] int a [THREADS*10] [THREADS] ;
shared int b [THREADS] , ¢ [THREADS*10] ;

establisha[][], b[],and c[] as shared arrays. Further, the a [][] array is
distributed in blocks of one row across the threads (i.e., each thread gets one row in
round-robin fashion). At the end, each thread ends up with 10 rows in its local
shared space when all THREADS*10 rows are distributed.

As the loop

for (1=MYTHREAD; i < THREADS*10; i+=THREADS)

is executed by all threads concurrently in SPMD style, each thread operates at first
on the row of matrix a [][] that matches the thread number. Then each thread

PARALLEL ITERATIONS 51

jumps by THREADS row to work with its next row, and so on, until all 10 rows are
processed.

In performing the operations above, it should be noted that each thread operates
on the a-elements that are local to it only. Thus, the inherent locality in the under-
lying problem is fully exploited. This is generally much easier to do in UPC than
in many other paradigms. Note also that one can distribute the matrix in blocks of
10 rows each. This is done by changing the matrix a [][] declaration to

shared [THREADS*10] int a [THREADS* 10] [THREADS] ;

The outer loop may then be slightly changed in order to continue to exploit locality
and maintain the execution efficiency and good performance, but the remainder of
the program remains unchanged.

4.2 PARALLEL ITERATIONS

In Section 4.1 we demonstrated how work can be distributed and how each thread
can determine what its assigned share of work is based on MYTHREAD, THREADS,
and the layout of shared data. Using these constructs and methods, it was demon-
strated that a programmer can easily distribute work such that each thread can
work as much as possible on data that has affinity to it, thereby maximizing data
locality exploitation.

Another powerful UPC construct for specifying program parallelism is
upc_forall, which simplifies this process and provides many options for
defining workload distribution across threads. The upc forall construct is a
work-sharing iteration statement, which syntactically resembles the C for loop
statement. It assumes, however, that all iterations are independent of one another
and therefore can be thought of as units of work that can be distributed across the
threads, where they get executed in parallel. The syntax for upc forall is as
follows:

upc_forall (expressionl; expression2; expression3; affinity)

The first three arguments of the upc_forall statement, expressionl, expression2,
and expression3, are all expressions. The typical use of these is similar to that of
the C for statement: that is, initialization, test, and update. Any of these expressions
can be omitted, but the semicolons cannot be removed.

The fourth component of the upc_forall construct, affinity, is the controlling
element that determines which thread executes a given iteration. Thus, affinity must
have a unique value in each thread. Each iteration is executed by exactly one thread,
but one thread can execute more than one iteration. To this end, the affinity compo-
nent can be either an expression or a pointer-to-shared. When affinity is an integer
expression, all iterations for which the value “affinity modulo THREADS”’ matches
the thread number of a given thread, MYTHREAD, will be executed by that thread.

52 WORK SHARING AND DOMAIN DECOMPOSITION

In other words, the loop body of the upc_forall statement is executed for each
iteration in which the value of MYTHREAD equals the value “affinity modulo
THREADS.” When gffinity is of pointer-to-shared type, a thread executes a given
iteration if the object pointed to has affinity to that thread (i.e., if the object pointed
to was local to that thread). In other words, the loop body of the upc_ forall
statement is executed for each iteration in which the value of MYTHREAD equals
the value of upc_threadof (affinity).

Consider a variant of the matrix-to-vector multiplication in which the blocked
matrix has a dimensionality of THREADS*4 x THREADS*4, and each block is of
size THREADS*4.

Example 4.2: matvectd.upc

#include <upc_relaxed.h>
shared [THREADS*4] int a[THREADS*4] [THREADS*4] ;
shared int b[THREADS*4], c[THREADS*4] ;

int main (void)
{

int i, j;

upc_forall (i =0; i < THREADS*4; i++; i)

return 0;

In this case, the affinity expression is simply i. This affinity expression distri-
butes the iterations in round-robin fashion across the threads. All iterations for
which 1 modulo THREADS equals some integer k will be executed by thread
number k, where k ranges from 0 to THREADS-1. As the upc_forall construct
is the outer iteration statement in this example, each iteration corresponds to the
processing of one row of matrix a [][] . The data layout selected distributes the
matrix by rows, one row per thread in round-robin fashion, ensuring that all acces-
ses to the a[][] matrix are local.

The foregoing scenario can be accomplished by using the affinity field as a
pointer-to-shared. The only change needed is as follows.

Example 4.3: matvect5.upc

upc_forall(i =0 ; i < THREADS*4 ; i++; &a[i][0])

PARALLEL ITERATIONS 53

The affinity field is basically a pointer to the first element of the ith row in
matrix a [][] . Alternatively, a [1] can also be used. However, some early
compilers may not support this syntax, so &a [1][0] is used.

In Example 4.3, data is distributed by blocks of one row each, in round-robin
fashion. Each thread has four noncontiguous rows assigned to it. In some
applications it could be better to distribute an array in groups of contiguous
rows. To continue to harness the benefit of locality, equivalent chunks of iterations
need to be assigned to the same thread. Consider modifying Example 4.3 to
distribute data by chunks of four rows and assign every four consecutive iterations
to one thread.

Example 4.4: matvect6.upc

#include <upc relaxed.h>

shared [THREADS*16] int a[THREADS* 4] [THREADS* 4];
shared int b [THREADS* 4] , ¢ [THREADS* 4];

void main (void)
{

int i, §;

upc forall(i=0; 1 < THREADS*4; i++; (i/4))
{
cl[i]=0;
for (j=0; J < THREADS*4; j++)
clil+=alil[j]l *b[]l;

The affinity is an expression in this case, which is the integer division of the
current iteration number by 4, to produce one thread number for every four conse-
cutive iterations. In addition to being an integer expression or a pointer-to-shared,
the affinity field in a upc_forall statement can be either continue or left
empty. In these cases, all iterations are executed by all threads. Like the ISO C for
statement, the UPC upc_forall construct may be nested within the program
structure either directly or through function calls. In this case the outermost
upc_forall, which does not have continue, or empty affinity, is considered
the controlling upc forall. All of its inner upc_forall loops will act as if
they have a continue or an empty affinity field, and all of their iterations
will therefore be executed by all threads. The utility of these cases is quite limited.
Therefore, interested readers should refer to the language specifications for more
details.

54 WORK SHARING AND DOMAIN DECOMPOSITION
4.3 MULTIDIMENSIONAL DATA

As an extension of ISO C, UPC stores two-dimensional data in a row-major
order and maintains the ability of pointers to address multidimensional data as
linear arrays. To ensure that a pointer-to-shared traverses both the elements of an
array and the elements of a block in a consistent manner, data blocks are limited to
be only one-dimensional. However, there are some methods, which are not very
straightforward, for distributing multidimensional data blocks (discussed later). In
this section we show how multidimensional data can be accessed effectively using
basic UPC data distributions methods. This can be done conveniently and may even
achieve better performance than distributions with traditional multidimensional
blocks.

In these examples, such as Example 4.4, we distributed a matrix by groups of
rows. In addition to the benefit of having a consistent way to traverse the blocks and
the overall matrix using the same pointer-to-shared variable, this type of distribu-
tion can potentially limit the number of remote transactions because one-dimen-
sional blocks create fewer ghost zones when neighboring data is needed. In general,
the number of ghost zones is typically twice the number of dimensions of the block
used, and the number of ghost zones typically determines the number of data
transfers. The volume of remote data elements may be the same in both cases. How-
ever, most parallel architectures perform fewer transfers with more data per transfer
more efficiently than do larger number of transfers with fewer data per transfer.
Therefore, one-dimensional blocking lends itself to higher performance than do
multidimensional distributions.

There are many ways to distribute a three-dimensional array across the threads.
Figure 4.1 shows three basic approaches. Figure 4.1a shows the default case in
which blocks of one element each are distributed across the threads in round-robin
fashion, which can be accomplished by the following declaration:

shared double grid [N] [N] [N];

Figure 4.1b shows the case of distributing blocks of one row each, which can be
established as follows:

shared double [N] grid [N] [N] [N];

and for the distribution of Figure 4.1c which distributes data by blocks of two-
dimensional faces, the declaration is

shared double [N*N] grid [N][N] [N];

Again, the preceding cases are only examples; many other declarations can be
used to distribute data in other ways that are derived from the linear distribution
offered by UPC, such as distributing by chunks of rows or multiple faces across the
threads. The declarations are only one part of how to handle multidimensional

MULTIDIMENSIONAL DATA 55

—>
N

(a) Default Distribution (b) Using Row Blocks

(c) Using Two-Dimensional Face Blocks

Figure 4.1 Multidimensional Data and Cells

arrays and multidimensional cells. Another aspect is how to access and address the
data. It is important here to note that the cell and the block do not need to be the
same. The cell is simply the smallest possible entity to which application physics or
computational laws are applied. The block is a data distribution unit. Although our
next example will demonstrate the distributions in the previous declarations, it
should be noted that having more cells per block can contribute to improved
performance.

To examine multidimensional data handling in UPC, we consider the three-
dimensional heat conduction problem [NTMO4] in which the three-dimensional
partial differential equation in a stationary medium is

62T+62T+62T_16T W
ox2 0y2 022 w ot
where T'is temperature, ¢ is time, and o is the thermal diffusivity. For simplicity, we

assume that the source remains hot and that its thermal properties are constant. In
addition, we also assume that the entire medium is a solid with thermal diffusivity,

56 WORK SHARING AND DOMAIN DECOMPOSITION

zy+lx

TI

z+l,yx
t+1 ’ t
Tz,,v.x Tzow+l

X

Figure 4.2 Basic Stencil Operations for the Heat Transfer Problem

a, of 1.0. Inside a three-dimensional cell, based on (1), the temperature is calculated
as follows:

1
Tii=g (Titfl,j,k Tt Tt T+ Thjpr + TiIJ’,kH) (2)

which is the basic, stencil operation, illustrated in Figure 4.2.
The following is the code for main () and initialize ().

Example 4.5: heat_conductionl.upc

1. #include <stdio.h>

2. #include <math.h>

3. #include <upc relaxed.h>

4. #include "globals.h"

5. // Declare two global grids, either source or
destination at

6. // each epoch, with the data distribution as described in

7. // globals.h

8. shared[BLOCKSIZE] double grids [2] [N][N][N];

9. shared double dTmax_ local [THREADS] ;

10. wvoid initialize (void)
11. {
12. int y, x;

13.
14.
15.
16.
17.
18.
19.
20.
21.

22.
23.
24.
25.
26.
27.
28.

29.

30.
31.
32.
33.
34.
35.

36.
37.

38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.

MULTIDIMENSIONAL DATA 57

/* sets one edge of the cube to 1.0 (heat) */
for (y=1; y<N-1; y++)
{
upc forall (x=1; x<N-1; x++; &grids [0][0] [y] [x])
{
grids [0] [O0] [y] [x] = grids [1][0] [yl [x] =1.0;

int main (void)
{
double dTmax, dT, epsilon;
int finished, z, v, %, 1;
double T;
int nr_iter;
int sg, dg; // stands for source grid and destination
// grid indexes

initialize();
/* sets the constants */

epsilon=0.0001;
finished = 0;

nr iter =0;
sg=20; // using grids [0][][][] as source array
dg=1; // using grids [1][]1[][] as destination array

/* synchronization */
upc_barrier;

do
{
dTmax = 0.0;
for(z=1; z<N-1; z++)
{
for (y=1; y<N-1; y++)
{
upc_forall (x=1; x<N-1; x++; &grids [sqg][z] [y] [x])
{
T = (grids[sgl[z+1] [yl [®] + grids [sq][z-1] [y][x] +
grids [sqg][z] [y-1][x] + grids [sq][z] [y+1] [x] +
grids(sg][z] [y] [x-1 +grids[sq] [z] [y] [x+1]) /6.0;
dT = T - grids [sg]l[2] [y] [x];
grids [dg][z] [y] [x] = T;

58 WORK SHARING AND DOMAIN DECOMPOSITION

52. if (dTmax < fabs (dT))

53. dTmax = fabs (dT);

54. }

55. }

56. }

57. dTmax local [MYTHREAD] = dTmax;
58. upc_barrier;

59. dTmax = dTmax_local [0] ;

60. for (i=1; i<THREADS; i++)

6l. if (dTmax < dTmax_ local [i])
62. dTmax = dTmax_local [i];

63. upc_barrier;

64. if (dTmax < epsilon)

65. finished = 1;

66. else

67. {

68. // swapping the source and destination "pointers"
69. dg = sg;

70. sg = !sg;

71. }

72. nr iter++;

73. } while (!finished);

74. upc_barrier;

75. if (MYTHREAD == 0)

76. {

77. printf ("%d iterations\n", nr iter);
78. }

79. return 0;

80. 1}

To set up the problem size and data layout used, a globals.h include file is
created (line 4) which could at minimum have

#define N 32

Together with the size of the array, this include file specifies one of the three data
distributions depicted in Figure 4.1. This is accomplished by setting the constant
BLOCKSIZE through a preprocessor macro definition using one of the following:

#define BLOCKSIZE 1

MULTIDIMENSIONAL DATA 59

or
#define BLOCKSIZE N
or

#define BLOCKSIZE N*N

which would distribute data in equal blocks across all the threads. In this case two
cubic grids are needed, one grid for holding the data from the preceding iteration
while the new data for the current iteration is written into the other grid. To simplify
the process, rather than declaring two shared three-dimensional arrays separately,
line 8 declares a four-dimensional shared array, grids, of 2 X N X N x N dimen-
sionality which can hold both arrays. The array is distributed by blocks as defined in
the header file, globals.h. Thus, the first three-dimensional array can be indexed
as grids [0][z] [y] [x] , while the second is indexed as grids [1] [z] [v] [x] . The
declaration is external since shared arrays cannot have dynamic scope. The
variables sg and dg, declared in line 28 and initialized to 0 and 1 in lines 34
and 35, respectively, are used in the first index position to determine which of the
two cubes is the source grid and which is the destination grid during a given
iteration. They are also used to swap this role, of source and destination grids, at the
end of each iteration according to lines 69 and 70.

Boundary conditions are introduced at one face of each N x N x N grid through
the function initialize (), lines 10 through 21. We assume in this case that N
is divisible by THREADS. Thus, each of the threads initializes one row in surface in
parallel. From the multiple assignments of line 18, this initialization is carried out
for both grids simultaneously.

The simulation proceeds iteratively until the maximum change in temperature
falls below a given threshold, epsilon, line 24. Line 24 also declares the private
variables dT to hold the current change of temperature and dTmax to search for a
local maximum change of temperature. The declaration in line 9 is for a shared
array, dTmax_locall], that has one element per thread to hold the local maxi-
mum temperature change into a shared array to simplify finding the global maxi-
mum change in temperature, lines 59 through 62. However, barrier synchronization
is applied in line 58 to ensure that all threads have deposited their local maximum
temperature change into that array before a global maximum is computed. The
barrier present in line 63 ensures that all threads have gone through the shared
dTmax_local [] and determined the maximum value, allowing the threads to
reuse the dTmax_local [] buffer for the next iteration.

The bulk of work takes place between lines 38 and 73, and it is started at all
threads simultaneously due to the barrier synchronization in line 37. For each z and
y coordinate combination, the temperature and change in temperature are computed
in parallel for all possible x coordinates using a upc_forall operation. From the
affinity expression, each iteration is executed by the thread that has the target data
point locally. If the grids array is distributed by the largest possible block size,
most of the data accesses associated with this computation could be local. This

60 WORK SHARING AND DOMAIN DECOMPQSITION

example demonstrates that although the array data was not distributed by three-
dimensional blocks, accesses were straightforward. The reason is that the shared
memory view of UPC makes dealing with the arrays similar to that of the sequential
code. Meanwhile, the data distributions selected at declaration time, along with an
adequate selection of the affinity field in the upc forall statement, maximize
locality exploitation. When all threads are done as determined by the barrier
synchronization in line 74, thread O prints the number of iterations.

Example 4.5 demonstrated the ease and efficiency of dealing with higher-
dimensional arrays in UPC. Here, we address how to partition the data into
three-dimensional blocks of equal sizes across the threads, which is commonly
used in message-passing codes. We then show how to modify Example 4.5 to adopt
this new strategy. The discussion is limited to cases where the number of threads is
a power of 2, and the number of elements in the array is divisible by the number of
threads for simplicity. Examples of the target distribution are shown in Figure 4.3.

(a) THREADS =1 (b) THREADS =2
NO_COLS = 1 N Eg_ggl\;vss:—zl
NO_ROWS = 1 - =
NO_PLANES = 1 | NO_PLANES =1

«——x—>

DIMi/‘».._A
7 S 7

(c) THREADS = 4 DIMY (d) THREADS = 8
NO_COLS =2 NO_COLS =2
NO_ROWS =2 NO_ROWS =2
NO_PLANES = | NO_PLANES =2

DIMX
(¢) THREADS = 16 (f) THREADS = 32
NO_COLS =4 T T T /77 7 7] NO_COLS =4
NO_ROWS =2 NO_ROWS =4
NO_ PLANES =2 NO_PLANES =2

Figure 4.3 Partitioning Using Recursive Bisection of Three-Dimensional Arrays into Equal
Three-Dimensional Cells Across the Threads

MULTIDIMENSIONAL DATA 61

Given a particular number of threads, Figure 4.3 shows how an array can be distri-
buted such that each thread ends up with an equal-sized three-dimensional cell. The
partitioning of Figure 4.3 can be determined recursively and it is commonly refer-
red to as recursive bisection, where the number of cells doubles as the number of
threads doubles. The partitioning for each number of threads is described uniquely
by a number of columns, a number of rows, and a number of planes, as shown in
Figure 4.3.

This type of data decomposition is often used in message-passing paradigms.
For example, it is used in the MPI-FORTRAN version of the CG workload of the
NAS Parallel Benchmark NPB-2.4 [NPBO3]. There, for each power-of-2 number of
threads, the grid is split in half, column-wise, row-wise, and then plane-wise,
respectively, or simply across the x, y, then z coordinates. Such grid decomposition
is creating the biggest squared three-dimensional cells. Due to the static nature of
the arrays, these parameters should all be computed ahead of time and inserted into
a header file. In C, this domain decomposition (i.e., data partitioning parameters)
can be computed as follows.

Example 4.6: initialize.c

NO COLS = NO_ROWS = NO PLANES = 1;
j=20;
for (i=2; 1<=THREADS; i<<=1)
{
if((3%3)==0)
NO_COLS *= 2;
else 1f ((j%3)==1)
NO ROWS *= 2;
else
NO PLANES *= 2;
Jt++;

After precomputing the partitioning parameters (number of rows, columns, and
planes), the dimensionality of the cells in terms of array elements is determined as
follows:

DIMX =N / NO_COLS;
DIMY = N / NO_ROWS;
DIMZ =N / NO_PLANES;

The values for DIMX, DIMY, and DIMZ should then be placed in globals.h. In
fact, it is even possible to create a small program that determines the partitioning
parameters and also creates the inclusion file, populating it with the dimensionality
of the cells, which is the case in NPB-2.4 [NPBO3].

62 WORK SHARING AND DOMAIN DECOMPQSITION

Now consider modifying the previous heat transfer program to use this new data
partitioning strategy. First, we replace the grids [][][][] declaration.

Example 4.7: heat_conduction2.upc
#define CELL SIZE DIMZ* DIMY* DIMX

struct gridcell s {
double cell[CELL_ SIZE];
b
typedef struct gridcell s gridcell t;

shared gridcell t cell grids [2] [THREADS];

#define grids (gridno, z, y, x) \

cell grids[gridno][((z) /DIMZ) *NO_ROWS*NO COLS +

((y) /DIMY)*NO_COLS +((x)/DIMX)] .cell [((z)%$DIMZ)*DIMY* DIMX +
((y) $DIMY)*DIMX + ((x)%DIMX)]

In this code, gridcell s is a structure that holds all the elements of one cell in
a one-dimensional array, while cell grids [2] [THREADS] is a two-dimen-
sional array of two rows and THREADS columns, one row for the source grid and
the other for the destination grid. Indexing these two virtual three-dimensional
arrays properly is accomplished by the macro grids (no, z, y, x) . Therefore,
the rest of the program should then use the macro grids (no, z, y, x) instead of
grids [no] [z] [y] [X] .

4.4 DISTRIBUTING TREES

Trees are commonly used in a searching problem. In this section we consider distri-
buting a tree search through an example, which considers an instance of the N-queens
problem. The tree in this case will have a simple representation that is appropriate
to the problem. The focus is on how to distribute the search space across the
threads. Working with trees represented as linked lists is treated in Chapter 7.

Sequential N-Queens

The N-queens problem is a classic problem in computer science, due to its inter-
esting computational behavior, depth-first searching and backtracking, and the fact
that its processing time grows at a nonpolynomial (NP) rate. Thus, as the problem
size grows, the execution time grows at a much more dramatic pace. There are
numerous variations of the problem description. In this version of the problem, we
seek to find all solutions to the problem of placing N queens on an N X N chess-
board such that no queen can kill the other. This implies that no two queens can be
placed on the same row,