
Single Assignment C { Functional Programming UsingImperative StyleSven-Bodo Scholz �Functional Languages Implementation Workshop. Paper 21AbstractThis paper proposes a new functional programming language called Sac (Single As-signment C) which tries to combine the best of two worlds: the e�ciency and portability ofC (or Fortran) and the concurrency deducable from the functional paradigm. The majorobjectives in the design of Sac comprise support for high performance concurrent scien-ti�c applications (number crunching), a module concept which allows for the integrationof non-funtional components, and a syntax as close as possible to C.1 IntroductionFunctional programming languages did not yet �nd a broad acceptance by application program-mers outside the functional community. The reasons for this situation are manifold and di�erdepending on the �eld of application. Of primary interest in this paper are scienti�c applica-tions involving complex manipulations of arrays. For this class of applications the followingcriteria are the most important ones for the choice of a suitable language:� availability of primitive and compound operations on arrays,� e�ciency of compiled code,� readability of code,� and the integration of I/O (e.g. for a graphical representation of results).Some popular functional languages as for example Miranda [Tur85] or ML [QHM+87] do notsupport arrays at all. They can only be represented as nested lists or tuples. Modi�cationsof such array representations require rather elaborate list/tuple decompositions into individualcomponents and the subsequent composition of new lists or tuples from these components,which usually involves several de�ned functions.Functional languages which support arrays can be divided into two groups. The �rst groupincludes languages as for example NIAL [JJ93] and KiR [Klu94] which provide array opera-tions similar to those of APL [Ive62], e.g. subarray selection, folding, rotation, transposition�Christian{Albrechts{Universit�at zu Kiel, Institut f�ur Informatik und Praktische Mathematik, Preu�erstra�e1 { 9, D { 24105 Kiel Germany, EMail: sbs@informatik.uni-kiel.d400.de1

21 { 2 Implementation of Functional Languages '94, UEA, Norwichetc. Many programs can be written very concisely using these primitives. In NIAL programscan be speci�ed in dimension-independent form which allows for more general function decla-rations und thus better reusability. Furthermore, functional compositions of these primitivesare good candidates for code optimizations which eliminate the creation of intermediate arrays.This technique is applied in KiR (called condensation [Sch86]) and is similar to Haskell's de-forestation [Wad90b]. It has a well-de�ned mathematical basis in the mathematics of arrays[Mul88, MT94], where it is called -reduction.A common feature of these primitives is that they a�ect all elements of an array in the same way.No speci�cations of starts, stops and strides for array indices are therefore required. However,this may turn out to be counterproductive when it comes to specifying array manipulationswhich involve subarrays of speci�c shapes, or if di�erent operations have to be applied todisjunct subarrays. In either case, the entire array has to be partitioned accordingly beforeactually doing the computation, and re-combined afterwards. This may not only aggravateprogram design and introduce to some extent redundant operations, but in many cases it alsoforecloses the application of condensation techniques.Languages of the second group allow for a more direct manipulation of arrays. Typical examplesare Haskell [HJW+92] with it's array comprehensions and Sisal [Can93] with it's For-loops,both of which provide iterations over pre-speci�ed index intervals. On the one hand, loops fa-cilitate compilation to very e�cient code , on the other hand, however, it excludes condensationtechniques and also the design of dimension-independent expressions.Compiling to e�cient code critically depends on the size of the semantic gap between a high-level language and the machine language. Functional frills as for example higher-order func-tions, partial applications, lazy evaluation, and polymorphic typing are luxuries which arehardly used in numerical applications. The use of higher-order functions and partial appli-cations requires mechanisms for creating and resolving closures. A lazy evaluation regime isburdened with the problem of space leaks which may cause exorbitant memory demands evenfor toy programs. Implementing a polymorphic type system generally requires dynamic typechecking, even though their overhead can be reduced to a large extend by type inference. Alanguage tuned to the needs of numerical applications should do without these frills in or-der to achieve utmost run-time performance. This approach is consequently implemented inSisal [Feo92, Can93] with the result that it easily outperforms equivalent Fortran programs ina multiprocessor environment [OCA86, Can92].Sisal seems to be most appropriate for numerical applications, though it su�ers from two majorde�ciencies: On the one hand it does not integrate I/O operations. On the other hand, theprimitive operations on arrays are mainly restricted to boundary checks and element selection,and the loop facility requires the speci�cation of explicit starts, stops, and strides which in away renders all programs dimension-dependent.Moreover, the Sisal compiler is tuned for the compilation to shared-memory systems. Existingrun-time systems for distributed memory systems perform poorly since they are based on avirtual shared memory concept [HB93].There are many attempts to integrate I/O into functional languages, such as linear types[Wad90a], and monads [Wad92a, Wad92b] in Haskell, or uniqueness typing in Clean [AP93,SBvEP93]. These approaches have in common that the programmer explicitly has to createdata dependencies among consecutive I/O operations which lead to very awkward notations.To kill all these problems with one stone, we propose to use as a suitable language a functionalversion of C which we call Sac (for Single Assignment C). The advantages are twofold: we

S.B.Scholz: Single Assignment C 21 { 3can fall back on existing compiler technology to generate fairly e�cient code for a large varietyof platforms, and program notation as well as programming style remain very close to C whichmay enhance the acceptance of the language.In the next section we de�ne the subset of C taken as the basis for Sac. In section 3 weintroduce a dimension-independent concept of array operations which uses a combination ofloop constructs similar to ZF-expressions and a set of dimension-independent primitives. Insection 4 we introduce a module concept suitable for integration into Sac. It is enhanced by aclass concept as it is used in object-oriented programming. The classes uniformly extend Sac byglobal states, objects, and functions which, in a controlled form, may introduce side-e�ects.2 A functional subset of CC is an imperative language which provides multiple assignments, statements, pointers, a castfacility etc. all of which may cause side-e�ects. Nevertheless, our aim is to use a subset of Cas large as possible as the kernel of Sac. This subset includes statement blocks, conditionals,loops, type and function declarations, and macros. The syntax of the Sac kernel is outlined in�g.1. A Sac program basically consists of type and function de�nitions and a designated mainProgram) [TypeDef]* [FunDef]* main ExprBlockFunDef) Type [; Type]* FunId ([ArgDef]*) ExprBlockExprBlock) f [Assign]* RetAssign gAssign) Id [; Id]* = Expr ;j SelAssign ;j ForAssign ;RetAssign) return (Expr [; Expr]*) ;SelAssign) if (Expr) AssignBlock [else AssignBlock]ForAssign) do AssignBlock while (Expr)j while (Expr) AssignBlockj for (Assign ; Expr ; Assign) AssignBlockFigure 1: Core language constructs of Sac.function. All function de�nitions consist of a header, and an expression block. As in many data
ow languages, an expression block may produce several return values [AD79, Nik88, Can93].Multiple assignments within a block are permitted, i.e. an identi�er may be used more thanonce on the left-hand side of an assignment. This does not contradict the functional paradigmsince multiple assignments are equivalent to nested (non recursive) let expressions. Thus, thescope of an identi�er simply extends over the sequence of statements between two consecutiveassignments to it. With this interpretation in mind, it is perfectly legitimate to call Sac asingle assignment language. The Church Rosser property can nevertheless be guaranteed at

21 { 4 Implementation of Functional Languages '94, UEA, Norwichthe level of entire blocks if they are taken as basic units of strictly sequential computations. ASac compiler assures sequential execution by simply taking the Sac program as a C program.Another con
ict with the functional paradigm seems to arise from the use of conditionals inSac (SelAssign in �g.1). If there is an assignment which only occurs in one branch of an if-then-else clause, it is not statically decidable for a successive read operation on that variable,by which assignment it is bound. For example, on the left-hand side of �g.2 it is not decidablewhether the identi�er A in the return statement is bound by the �rst or the second assignment.To �x this problem, one could simply copy the statements that, within the outer block, followf A = 3;if(B) fA = 42;greturn(A);g =) f A = 3;if(B) fA = 42;return(A);gelse freturn(A);ggFigure 2: Scoping problem with conditionals.the if-then-else clause into both of its branches, as is shown on the right-hand side of �g.2.However, this step can be spared since strictly sequential execution is enforced within a block,which guarantees the determinacy of results. Thus, the C program on the left is a perfectlylegitimate Sac program as well. For the same reason, we can adopt all loop constructs of Cinto Sac.Other violations of the functional paradigm in C arise from the use of global variables andpointers within (mutually recursive) functions. Since we wish to exploit concurrency at thefunction level for non-sequential program execution the use of global variables in functions aswell as the use of pointers must be outlawed in Sac, i.e. there can be no void functions. Ex-cluding pointers has far more severe consequences, especially with respect to run-time e�ciencyand expressive power of Sac. As in all functional languages, data structures have to be treatedconceptually as non-sharable objects subject to the orderly consumption and (re-)productionby operators, even if only one or several entries have to be modi�ed. In order to overcomethese problems, the subset of C which so far has been adopted as a kernel of Sac must beextended by a suitable paradigm for more powerful operations on arrays. To this end, we adoptsome concepts from the mathematics of arrays proposed in [Mul88] in combination with arraycomprehensions similar to those used in Haskell. Our objective is to:� make extensive use of dimension-independent operations on entire arrays whenever this ispossible without redundancies, and of dimension-independent loop constructs wheneveroperations must be performed on selected subsets of array elements;� avoid, whenever possible, the generation of data structures by recursive induction overtheir elements;� condensate consecutive operations on data structures by compilation techniques based on -reduction principles described in [MT94] which are to avoid the creation of temporarystructures, whenever possible;

S.B.Scholz: Single Assignment C 21 { 5� make destructive updates, whenever possible, even if this means re-organization of codesimilar to what is proposed in [SCA93].Since we want to concentrate on scienti�c applications, the �rst version of Sac will only supportarrays as data structures. The next section will give a detailed description of the constructs forarray manipulation integrated in Sac.3 Arrays in SacAn array can be described as a sequence of elements and a structure imposed on it. Thestructure, usually called shape, de�nes for each dimension of the array the number of elements.A shape is represented as a vector of natural numbers whose product equals the total number ofelements of the array. In Sac, the distinction between the sequence of elements and the shapeof an array is made explicit. In �g.3 four di�erent variants of array de�nitions are shown. Inf int[2, 3] A = [1, 2, 3, 4, 5, 6];int[2, 3] B;int[] C = [1, 2, 3, 4, 5, 6];int[] D;B = [1, 2, 3, 4, 5, 6];C = reshape(C, [2, 3]);D = reshape([1, 2, 3, 4, 5, 6], [2, 3]);...g Figure 3: Di�erent ways of static array de�nitions in Sac.fact, all these arrays are the same: the integer numbers 1..6 are placed in an array of shape [2,3]. The shape is speci�ed either as part of a variable declaration (as done for A and B in �g.3)or by means of the primitive operation reshape which associates a shape with a sequence. Asa consequence, all arrays can be described uniformly by
at vectors without any nestings ofbrackets.The mathematics of arrays introduced in [Mul88] de�nes a set of dimension-independent prim-itive operations on arrays which are well suited as a basis for the primitives available in Sac.Let A; B denote arrays, and let v = [v0; ::::; vk�1] denote a vector of integers. Thendim (A) returns the dimensionality of A;shape (A) returns the shape vector of A;Op (arg1; arg2) with Op 2 f+;�; �; =g is an extension of the respective binary operations onscalars. If one argument is a scalar and the other is an array, Op applies the scalar to eachelement of the array. If both arguments are arrays, provided that both have the sameshape, Op is applied elementwise. As usual, these arithmetic operations can be used inin�x notation as well;

21 { 6 Implementation of Functional Languages '94, UEA, Norwichpsi (v;A) returns an subarray of A selected by the index vector v, provided that k � dim(A)and v � shape(A) componentwise over all indices j 2 [0; :::; k � 1]. Instead of psi(v;A)the notation A[v] can be used as well;take (v;A) returns a subarray of A of shape v whose components are taken from the frontendsof the respective axes, provided that k = dim(A) and v � shape(A) componentwise;drop (v;A) is complementary to take in that we have drop(v;A) = take(v�shape(A); A);reshape (v;A) gives the array A a new shape v provided that Qk�1l=0 vl = Qdim(A)l=0 shape(A)[l]. If Ais speci�ed as a scalar value, than this operation creates a new array of shape v with allelements set to this value;cat (m;A;B) concatenates the arrays A and B along the axis m, provided that 1 � m �dim(A) and the shapes along the other axes are the same;rotate (m;n;A) rotates the elements of A by n positions along the axis m, provided that m �dim(A). The array is rotated towards increasing indices if n � 0, and towards decreasingindices otherwise.If any of these functions is applied to a set of arguments that are not compatible in shape ortype, either the type checking system or the run-time system produces an error.In order to provide a
exible mechanism for the manipulation of subarrays, Sac includes loopprimitives called with loops which are similar to ZF-expressions (see �g.4). They consist ofArrayExpr) with (Generator [; Filter]*) ConExprGenerator) Expr <= Id <= ExprFilter) ExprConExpr) genarray (V ect) ExprBlockj modarray (Array) ExprBlockFigure 4: Loop expressions for array manipulation in Sac.three parts: a generator part, a �lter part, and an operation part. The generator part consistsof three components: two expressions which are supposed to evaluate to vectors that specifyboundaries for index vectors, and a generator variable Id which stands for all the index vectorsin between. The optional �lter part may be used to select a subset of the indices speci�ed inthe generator part.For array manipulations there are two kinds of operation parts: genarray followed by a shapevector creates a new array of the pre-speci�ed shape, and modarray modi�es an array. Theexpression block de�nes the value of the element of the resulting array whose position (index)is speci�ed by the generator variable.To illustrate the application of the di�erent array manipulation constructs, let us consider, as atypical example for scienti�c applications, the numerical solution of PDEs (partial di�erentialequations) by Gauss-Seidel relaxation [Hac93].

S.B.Scholz: Single Assignment C 21 { 7In a very simple form it may be de�ned as follows: let Ak k 2 f1; :::; lg be an array A ofshape [m; :::;m| {z }n] which results from some k iteration steps. Then the elements of Ak must becomputed from those of Ak�1 by the following algorithm:Ak[i1; :::; in] = (Ak�1[i1; :::; in] if 9j 2 [1; n] : (ij = 0) _ (ij = m� 1)!1 �Ak�1[i1; :::; in]� !2 � S otherwisewith S = Pnj=1(Ak�1[i1; :::; ij�1; ij � 1; ij+1; :::; in] +Ak�1[i1; :::; ij�1; ij + 1; ij+1; :::; in]).Note that only the inner elements of A are modi�ed, whereas the boundary elements are keptunchanged.Now, let us try to express this algorithm in Sac, using solely the primitive operations introducedabove. The modi�cation of the inner elements can easily be speci�ed as:relax(A)...B = omega1 / omega2 * A;for(d=0; d<dim(A); d++) {B -= rotate(d, 1, A);B -= rotate(d, -1, A);}B = omega2 * B;...Rotating the argument array A generally brings new values into, and thus corrupts, the bound-ary positions, which have to be set to the old values again for the next relaxation step. Allboundary values must therefore be removed from the new array, and the values of the originalarray must be replaced. This can be formulated in Sac as:.../* separating the "new" inner elements */small_B = drop(reshape(dim(B), 1), take(shape(B) - 1, B))for(d=0; d<dim(A); d++) {/* cutting off the left border from A in dimension d */drop_vect_1 = cat(0, reshape([d+1], 0), reshape(dim(A)-d-1, 1));take_vect = cat(0, cat(0, take(d, shape(A)), [1]),drop(d+1, shape(small_B)));left_border = take(take_vect, drop(drop_vect_1, A));/* cutting off the right border from A in dimension d */drop_vect_2 = cat(0, cat(0, reshape([d-1], 0), shape(A)[d]),reshape(dim(A)-d),1);right_border = take(take_vect, drop(drop_vect_2, A));/* concatenating small_B with the borders from A */small_B = cat(d, cat(d, left_border, small_B), right_border);}return(small_B);}

21 { 8 Implementation of Functional Languages '94, UEA, NorwichThis part of the relaxation algorithm requires rather tricky programming and introduces tosome extent redundant operations so that all the advantages of the �rst part of the algorithmare neutralized.Using a with-loop instead results in a more concise and irredundant program:relaxDI(A)...A = with (reshape(dim(A), 1) <= x <= (shape(A) - 2))modarray(A) {tmp = omega1 / omega2 * A[x];for(d=0; d<dim(A); d++) {tmp -= rotate(d, 1, A)[x];tmp -= rotate(d, -1, A)[x];}return(omega2 * tmp);return(A);}The inner for-loop of this program is nearly identical to the one of the �rst program. Ititerates over all dimensions of the array, but computes only the element A[x] selected by theindex vector x rather than computing the entire array. The with-loop repeats these iterationsover the entire range of the index vectors for the inner elements of the array.The most important feature of this program is that it is dimension-independent. We accomplishthis by infering the index vectors in the generator part directly from the dimension and shapeof the matrix A. In other languages, as for example in Haskell or Sisal, this can not be donesince the dimensionalities of the arrays are �xed.Being restricted to �xed dimensionalities has some unpleasant consequences. Programs mustbe rewritten when using them for arrays of di�erent dimensionalities. Moreover, within oneprogram several copies of the same algorithm (procedure) may have to be maintained in orderto apply them to arrays of di�erent dimensionalities.4 Modules and Classes in SacThe module concept in Sac is quite similar to that of Clean [BvEvLP87] or Haskell. It dis-tinguishes between module declarations and module implementations. Whereas the moduleimplementation includes the source codes for the functions and data structures, the moduledeclaration contains the speci�cations necessary for its external use. The syntax of moduledeclarations in Sac is de�ned in �g.5.A module declaration consists of imports from other modules and of exports which are precededby the keyword own. Export and import descriptions both consist of three (optional) parts(EIDesc in �g.5). First, so-called implicit types can be declared; implicit types are type nameswhose type de�nition is only known within the module; they realize the concept of abstractdatatypes [Tur85, HJW+92, PvE93]. Explicit types are known to the module itself and toprograms which import from this module. Finally, functions can be declared as usual, i.e. withits argument and result types.To motivate the introduction of classes into Sac, let us consider as an example a programfor a ray tracing movie. A ray tracing scene typically consists of di�erent objects. Following

S.B.Scholz: Single Assignment C 21 { 9ModulDec) ModulDec Id : [ImportBlock]* own : EIDescImportBlock) import Id : EIDescEIDesc) allj f [ImpTypes] [ExpTypes] [FunDecls] gImpTypes) implicit types : [Id ;]+ExpTypes) explicit types : [Id = Type ;]+FunDecls) funs : [Types Id (Types) ;]+Figure 5: Modul declarations in Sac.established concepts of object oriented programming, a module has to be de�ned for each objecttype. It must contain functions for creating, moving, changing an object, and for its re
ectionproperties. Fig.6 shows a typical module declaration for a glass sphere.ModulDec Sphere:own:{implicit types: SphereID;explicit types: Pos = int[];Vect = int[];Vectlist = vect[];funs:SphereID CreateSphere(Pos position, int radius);SphereID, Bool MoveSphere(SphereID Sphere, Pos new_position);SphereID, Bool ChangeSphere(SphereID Sphere, int new_radius);Bool, Vectlist RayHitsSphere(SphereID Sphere,Pos eye_position, Vect ray_direction);} Figure 6: Modul declaration for a glass sphere in Sac .To hide the internal representation of the glass sphere, an implicit type SphereID is de�ned.Objects can now be created, modi�ed, and copied solely by functions provided by the module.The module functions of the object can be divided into two groups: those that perform onlyread operations on, and those which modify data structures. RayHitsSphere belongs to the�rst group, whereas MoveSphere and ChangeSphere belong to the second group. In order tointegrate functions that modify objects (data structures) into the functional paradigm, thedata structures have to be copied whenever the objects are shared among independent programterms. In the example such an implicit copying must be outlawed since the module Sphere isused as a class, i.e. we expect to have explicit control over the number of objects generated.The code sequence depicted in �g.7 demonstrates how easily two spheres A and S can be createdwithout using CreateSphere more than once.Implicit copying can only be avoided by forcing the programmer to assure sequential accessto the data structure. To give the programmer the free choice as to whether or not a datastructure is restricted to sequential access, Sac distinguishes between modules (non-restricted)

21 { 10 Implementation of Functional Languages '94, UEA, Norwich...S = CreateSphere([100,100,100], 30);A, F = MoveSphere(S, [105,105,105]);S, F = ChangeSphere(S, 34);... Figure 7: Example code sequence using the module/class Sphere.and classes (restricted). To do so, a uniqueness type system [AP93, SBvEP93] is implementedin Sac, and all implicit types within classes are per de�nition unique. Thus, substituting thekeyword ModulDec by ClassDec in �g.6 leads to a typing error for the code sequence of �g.7.Ruling out implicit copying by forcing sequential access to such an object has some consequencesfor programs which import such a module. Since the type of the object is hidden and no implicitcopies can be made any more, for these programs objects become pure handles (pointers) forglobal objects. Once a global (sphere) object is created, it is not necessary to always get backthe pointer to the sphere as a result of a modi�cation operation. On the contrary, returning apointer to the sphere insinuates that it might have changed, which indeed is not true since thepointer always remains the same. To improve the readability of code, these return values canbe omitted in Sac. By doing so, side-e�ects on the SphereID are introduced by the functionsMoveSphere and ChangeSphere. The respective class declaration is given in �g.8.ClassDec Sphere:own:{implicit types: SphereID;explicit types: Pos = int[];Vect = int[];Vectlist = vect[];funs:SphereID CreateSphere(Pos position, int radius);Bool MoveSphere(SphereID Sphere, Pos new_position);Bool ChangeSphere(SphereID Sphere, int new_radius);Bool, Vectlist RayHitsSphere(SphereID Sphere,Pos eye_position, Vect ray_direction);} Figure 8: "Imperative" class declaration for a sphere in Sac .However, these side-e�ects do not violate the Church Rosser property as long as sequentialaccess to the data structure SphereID is guarantied. In order to be able to assure sequentialaccess by a uniqueness type system, the omitted return values have to be re-introduced by thecompiler as an intermediate step of compilation.The example shows that introducing objects and classes is equivalent to introducing globalobjects and explicit handles (pointers) to them. Being able to handle global objects without

S.B.Scholz: Single Assignment C 21 { 11implicit copying is exactly what is needed to do I/O. Therefore, the classes of Sac provide anelegant way for integrating I/O. Moreover, separating I/O by the introduction of classes buysthe following advantages for free:� easy integration of I/O libraries written in other languages than Sac ,� non-monolithic I/O; i.e. I/O on objects that do not interfere can be done concurrently,� and I/O operations are conceptually separated from the otherwise strictly functional codeby encapsulating them in classes.5 ConclusionIn this paper, we present the basic concepts of a new functional programming language Sac.The key motivation for the development of Sac derives from the observation that most func-tional languages are not very suitable for scienti�c applications. Either the support of functionalfrills severely limits the run-time performance, or a restricted syntax forces the programmerto write dimension-dependent code, or to implement I/O-interfaces in other (non functional)programming languages. With Sac we try to provide a functional language which supportsdimension-independent array operations as well as a sophisticated module/class concept. Thisclass concept integrates the basic mechanisms of object oriented programming (with desiredside-e�ects) cleanly into the functional paradigm and thus allows to use I/O packages and proce-dures coded in other languages than Sac. Furthermore, being closely related to C, Sac enablesC programmers to easily write functional programs whose inherent concurrency can be exploitedby the compiler.References[AD79] W.B. Ackerman and J.B. Dennis: VAL-A Value-Oriented Algorithmic Language:Preliminary Reference Manual. TR 218, MIT, Cambridge, MA, 1979.[AP93] P. Achten and R. Plasmeijer: The Beauty and the Beast. Technical Report 93-03,University of Nijmegen, 1993.[BvEvLP87] T.H. Brus, M.C. van Eekelen, M.O. van Leer, and M.J. Plasmeijer: CLEAN: ALanguage for Functional Graph Rewriting. In G. Kahn (Ed.): FPCA'87, Portland,Oregon, LNCS, Vol. 274. Springer, 1987.[Can92] D.C. Cann: Retire Fortran? A Debate Rekindled. Communications of the ACM,Vol. 35(8), 1992, pp. 81{89.[Can93] D.C. Cann: The Optimizing SISAL Compiler: Version 12.0. Lawrence Liver-more National Laboratory, LLNL, Livermore California, 1993. part of the SISALdistribution.[Feo92] J.T. Feo: SISAL. Technical Report UCRL-JC-110915, Lawrence Livermore Na-tional Laboratory, LLNL, Livermore California, 1992.

21 { 12 Implementation of Functional Languages '94, UEA, Norwich[Hac93] W. Hackbusch: Iterative L�osung gro�er schwachbesetzter Gleichungssysteme.Teubner Studienb�ucher Mathematik. Teubner, 1993. ISBN 3-519-12372-X.[HB93] M. Haines and W. B�ohm: Task Management, Virtual Shared Memory, and Mul-tithreading in a Distributed Memory Implementation of SISAL. In A. Bode et al.(Eds.): PARLE '93, LNCS, Vol. 694. Springer, 1993, pp. 12{23.[HJW+92] P. Hudak, S. Peyton Jones, P. Wadler, et al.: Report on the Programming Lan-guage Haskell. Yale University, 1992. Version 1.2.[Ive62] K.E. Iverson: A Programming Language. Wiley, New York, 1962.[JJ93] M.A. Jenkins and W.H. Jenkins: The Q'Nial Language and Reference Manuals.Nial Systems Ltd., Ottawa, Canada, 1993.[Klu94] W. Kluge: A User's Guide for the Reduction System �-red. Internal Report9419, University of Kiel, 1994.[MT94] L. Mullin and S. Thibault: A Reduction Semantics for Array Expressions: ThePSI Compiler. Technical Report CSC-94-05, University of Missouri-Rolla, 1994.[Mul88] L.M. Restifo Mullin: A Mathematics of Arrays. PhD thesis, Syracuse University,1988.[Nik88] R.S. Nikhil: ID Version 88.1, Reference Manual. CSG Memo 284, MIT, Labora-tory for Computer Science, Cambridge, MA, 1988.[OCA86] R.R. Oldehoeft, D.C. Cann, and S.J. Allan: SISAL: Initial MIMD PerformanceResults. In W. H�andler et al. (Eds.): CONPAR '86, LNCS, Vol. 237. Springer,1986, pp. 120{127.[PvE93] R. Plasmeijer and M. van Eekelen: Functional Programming and Parallel GraphRewriting. Addison-Wesley, 1993. ISBN 0-201-41663-8.[QHM+87] D. Mac Queen, R. Harper, R. Milner, et al.: Functional Programming in ML.Lfcs education, University of Edinburgh, 1987.[SBvEP93] S. Smetsers, E. Barendsen, M. van Eeklen, and R. Plasmeijer: GuaranteeingSafe Destructive Updates through a Type System with Uniqueness Information forGraphs. Technical report, University of Nijmegen, 1993.[SCA93] A.V.S. Sastry, W. Clinger, and Z. Ariola: Order-of-evaluation Analysis for De-structive Updates in Strict Functional Languages with Flat Aggregates. In FPCA'93, Copenhagen. ACM Press, 1993, pp. 266{275.[Sch86] C. Schmittgen: A Datatype Architecture for Reduction Machines. In 19th HawaiiInternational Conference on System Sciences, Vol. I, 1986, pp. 78{87.[Tur85] D.A. Turner: Miranda: a Non-Strict Functional Language with PolymorphicTypes. In IFIP '85, Nancy, LNCS, Vol. 201. Springer, 1985.[Wad90a] P. Wadler: Linear types can change the world! In M. Broy and C.B. Jones (Eds.):Programming Concepts and Methods. Noth Holland, 1990.

S.B.Scholz: Single Assignment C 21 { 13[Wad90b] P.L. Wadler: Deforestation: transforming programs to eliminate trees. TheoreticalComputer Science, Vol. 73(2), 1990, pp. 231{248.[Wad92a] P. Wadler: Comprehending Monads. Mathematical Structures in Computer Sci-ence, Vol. 2(4), 1992.[Wad92b] P. Wadler: The essence of functional programming. In POPL '92, Albequerque.ACM Press, 1992.

