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Preface

No programming technique solves all problems.
No programming language produces only correct results.
No programmer should start each project from scratch.

Object-oriented programming is the current cure-all — although it has been
around for much more then ten years. At the core, there is little more to it then
finally applying the good programming principles which we have been taught for
more then twenty years. C++ (Eiffel, Oberon-2, Smalltalk ... take your pick) is the
New Language because it is object-oriented — although you need not use it that
way if you do not want to (or know how to), and it turns out that you can do just as
well with plain ANSI-C. Only object-orientation permits code reuse between pro-
jects — although the idea of subroutines is as old as computers and good program-
mers always carried their toolkits and libraries with them.

This book is not going to praise object-oriented programming or condemn the
Old Way. We are simply going to use ANSI-C to discover how object-oriented pro-
gramming is done, what its techniques are, why they help us solve bigger prob-
lems, and how we harness generality and program to catch mistakes earlier. Along
the way we encounter all the jargon — classes, inheritance, instances, linkage,
methods, objects, polymorphisms, and more — but we take it out of the realm of
magic and see how it translates into the things we have known and done all along.

| had fun discovering that ANSI-C is a full-scale object-oriented language. To
share this fun you need to be reasonably fluent in ANSI-C to begin with — feeling
comfortable with structures, pointers, prototypes, and function pointers is a must.
Working through the book you will encounter all the newspeak — according to
Orwell and Webster a language "'designed to diminish the range of thought”” — and
| will try to demonstrate how it merely combines all the good programming princi-
ples that you always wanted to employ into a coherent approach. As a result, you
may well become a more proficient ANSI-C programmer.

The first six chapters develop the foundations of object-oriented programming
with ANSI-C. We start with a careful information hiding technique for abstract data
types, add generic functions based on dynamic linkage and inherit code by judicious
lengthening of structures. Finally, we put it all together in a class hierarchy that
makes code much easier to maintain.

Programming takes discipline. Good programming takes a lot of discipline, a
large number of principles, and standard, defensive ways of doing things right. Pro-
grammers use tools. Good programmers make tools to dispose of routine tasks
once and for all. Object-oriented programming with ANSI-C requires a fair amount
of immutable code — names may change but not the structures. Therefore, in
chapter seven we build a small preprocessor to create the boilerplate required. It
looks like yet another new object-oriented dialect language (yanood! perhaps?) but
it should not be viewed as such — it gets the dull parts out of the way and lets us
concentrate on the creative aspects of problem solving with better techniques. ooc
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(sorry) is pliable: we have made it, we understand it and can change it, and it
writes the ANSI-C code just like we would.

The following chapters refine our technology. In chapter eight we add dynamic
type checking to catch our mistakes earlier on. In chapter nine we arrange for
automatic initialization to prevent another class of bugs. Chapter ten introduces
delegates and shows how classes and callback functions cooperate to simplify, for
example, the constant chore of producing standard main programs. More chapters
are concerned with plugging memory leaks by using class methods, storing and
loading structured data with a coherent strategy, and disciplined error recovery
through a system of nested exception handlers.

Finally, in the last chapter we leave the confines of ANSI-C and implement the
obligatory mouse-operated calculator, first for curses and then for the X Window
System. This example neatly demonstrates how elegantly we can design and
implement using objects and classes, even if we have to cope with the idiosyn-
crasies of foreign libraries and class hierarchies.

Each chapter has a summary where | try to give the more cursory reader a run-
down on the happenings in the chapter and their importance for future work. Most
chapters suggest some exercises; however, they are not spelled out formally,
because | firmly believe that one should experiment on one’s own. Because we are
building the techniques from scratch, | have refrained from making and using a
massive class library, even though some examples could have benefited from it. If
you want to understand object-oriented programming, it is more important to first
master the techniques and consider your options in code design; dependence on
somebody else’s library for your developments should come a bit later.

An important part of this book is the enclosed source floppy — it has a DOS file
system containing a single shell script to create all the sources arranged by chapter.
There is a ReadMe file — consult it before you say make. It is also quite instructive
to use a program like diff and trace the evolution of the root classes and ooc reports
through the later chapters.

The techniques described here grew out of my disenchantment with C++ when
| needed object-oriented techniques to implement an interactive programming
language and realized that | could not forge a portable implementation in C++. |
turned to what | knew, ANSI-C, and | was perfectly able to do what | had to. | have
shown this to a number of people in courses and workshops and others have used
the methods to get their jobs done. It would have stopped there as my footnote to
a fad, if Brian Kernighan and my publishers, Hans-Joachim Niclas and John Wait,
had not encouraged me to publish the notes (and in due course to reinvent it all
once more). My thanks go to them and to all those who helped with and suffered
through the evolution of this book. Last not least | thank my family — and no,
object-orientation will not replace sliced bread.

Hollage, October 1993
Axel-Tobias Schreiner
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1
Abstract Data Types
Information Hiding

1.1 Data Types

Data types are an integral part of every programming language. ANSI-C has int,
double and char to name just a few. Programmers are rarely content with what's
available and a programming language normally provides facilities to build new data
types from those that are predefined. A simple approach is to form aggregates
such as arrays, structures, or unions. Pointers, according to C. A. R. Hoare "a step
from which we may never recover,” permit us to represent and manipulate data of
essentially unlimited complexity.

What exactly is a data type? We can take several points of view. A data type
is a set of values — char typically has 256 distinct values, int has many more; both
are evenly spaced and behave more or less like the natural numbers or integers of
mathematics. double once again has many more values, but they certainly do not
behave like mathematics' real numbers.

Alternatively, we can define a data type as a set of values plus operations to
work with them. Typically, the values are what a computer can represent, and the
operations more or less reflect the available hardware instructions. int in ANSI-C
does not do too well in this respect: the set of values may vary between machines,
and operations like arithmetic right shift may behave differently.

More complicated examples do not fare much better. Typically we would
define an element of a linear list as a structure
typedef struct node {
struct node * next;
i nformati on
} node;

and for the operations we specify function headers like
node * head (node * elt, const node * tail);
This approach, however, is quite sloppy. Good programming principles dictate

that we conceal the representation of a data item and declare only the possible
manipulations.

1.2 Abstract Data Types

We call a data type abstract, if we do not reveal its representation to the user. At a
theoretical level this requires us to specify the properties of the data type by
mathematical axioms involving the possible operations. For example, we can
remove an element from a queue only as often as we have added one previously,
and we retrieve the elements in the same order in which they were added.
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Abstract data types offer great flexibility to the programmer. Since the
representation is not part of the definition, we are free to choose whatever is easi-
est or most efficient to implement. If we manage to distribute the necessary infor-
mation correctly, use of the data type and our choice of implementation are totally
independent.

Abstract data types satisfy the good programming principles of information hid-
ing and divide and conquer. Information such as the representation of data items is
given only to the one with a need to know: to the implementer and not to the user.
With an abstract data type we cleanly separate the programming tasks of imple-
mentation and usage: we are well on our way to decompose a large system into
smaller modules.

1.3 An Example — Set

So how do we implement an abstract data type? As an example we consider a set
of elements with the operations add, find, and drop.* They all apply to a set and an
element and return the element added to, found in, or removed from a set. find
can be used to implement a condition contains which tells us whether an element
is already contained in a set.

Viewed this way, set is an abstract data type. To declare what we can do with
a set, we start a header file Set.h:

#i fndef SET_H
#define SET _H

extern const void * Set;

void * add (void * set, const void * elenent);

void * find (const void * set, const void * elenent);
void * drop (void * set, const void * elenent);

int contains (const void * set, const void * el enent);

#endi f

The preprocessor statements protect the declarations: no matter how many times
we include Set.h, the C compiler only sees the declarations once. This technique of
protecting header files is so standard, that the GNU C preprocessor recognizes it and
does not even access such a file when its protecting symbol is defined.

Set.h is complete, but is it useful? We can hardly reveal or assume less: Set
will have to somehow represent the fact, that we are working with sets; add()
takes an element, adds it to a set, and returns whatever was added or already
present in the set; find() looks for an element in a set and returns whatever is
present in the set or a null pointer; drop() locates an element, removes it from a
set, and returns whatever was removed; contains() converts the result of find()
into a truth value.

* Unfortunately, remove is an ANSI-C library function to remove a file. If we used this name for a set
function, we could no longer include stdio.h.
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The generic pointer void * is used throughout. On the one hand it makes it
impossible to discover what a set looks like, but on the other hand it permits us to
pass virtually anything to add() and the other functions. Not everything will behave
like a set or an element — we are sacrificing type security in the interest of informa-
tion hiding. However, we will see in chapter 8 that this approach can be made
completely secure.

1.4 Memory Management

We may have overlooked something: how does one obtain a set? Set is a pointer,
not a type defined by typedef, therefore, we cannot define local or global variables
of type Set. Instead, we are only going to use pointers to refer to sets and ele-
ments, and we declare source and sink of all data items in new.h:

void * new (const void * type, ...);

void delete (void * item;
Just like Set.h this file is protected by a preprocessor symbol NEW_H. The text only
shows the interesting parts of each new file, the source diskette contains the com-
plete code of all examples.

new() accepts a descriptor like Set and possibly more arguments for initializa-
tion and returns a pointer to a new data item with a representation conforming to
the descriptor. delete() accepts a pointer originally produced by new() and recycles
the associated resources.

new() and delete() presumably are a frontend to the ANSI-C functions calloc()
and free(). If they are, the descriptor has to indicate at least how much memory is
required.

1.5 Object

If we want to collect anything interesting in a set, we need another abstract data
type Object described by the header file Object.h:

extern const void * Object; [* new(Object); */
int differ (const void * a, const void * b);

differ() can compare objects: it returns true if they are not equal and false if they
are. This description leaves room for the functionality of stremp(): for some pairs
of objects we might choose to return a negative or positive value to specify an or-
dering.

Real life objects need more functionality to do something useful. For the
moment, we restrict ourselves to the bare necessities for membership in a set. If
we built a bigger class library, we would see that a set — and in fact everything
else — is an object, too. At this point, a lot of functionality results more or less for
free.
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1.6 An Application

With the header files, i.e., the definitions of the abstract data types, in place we can
write an application main.c:

#i ncl ude <stdio. h>

#i ncl ude "new. h"
#i ncl ude "Object.h"
#i ncl ude "Set.h"

int main ()

{ void * s = newSet);
void * a = add(s, new Object));
void * b = add(s, new Object));
void * ¢ = new Obj ect);

if (contains(s, a) & contains(s, b))
puts("ok");

if (contains(s, c))
put s("contai ns?");

if (differ(a, add(s, a)))
puts("differ?");

if (contains(s, drop(s, a)))
puts("drop?");

del ete(drop(s, b));

del ete(drop(s, c));

return O;

}

We create a set and add two new objects to it. If all is well, we find the objects in
the set and we should not find another new object. The program should simply
print ok.

The call to differ() illustrates a semantic point: a mathematical set can only
contain one copy of the object a; an attempt to add it again must return the original
object and differ() ought to be false. Similarly, once we remove the object, it
should no longer be in the set.

Removing an element not in a set will result in a null pointer being passed to
delete(). For now, we stick with the semantics of free() and require this to be
acceptable.

1.7 An Implementation — Set

main.c will compile successfully, but before we can link and execute the program,
we must implement the abstract data types and the memory manager. If an object
stores no information and if every object belongs to at most one set, we can
represent each object and each set as small, unique, positive integer values used as
indices into an array heapl]. If an object is a member of a set, its array element con-
tains the integer value representing the set. Objects, therefore, point to the set
containing them.
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This first solution is so simple that we combine all modules into a single file
Set.c. Sets and objects have the same representation, so new() pays no attention
to the type description. It only returns an element in heapl] with value zero:

#if | defined MANY || MANY < 1

#defi ne MANY 10
#endi f

static int heap [ MANY];

void * new (const void * type, ...)
{ int * p; /[* & heap[1l..] */
for (p = heap + 1; p < heap + MANY; ++ p)
it (! " p)
br eak;
assert(p < heap + MANY);
* p = MANY;
return p;
}

We use zero to mark available elements of heapl]; therefore, we cannot return a
reference to heap[0] — if it were a set, its elements would contain the index value
zero.

Before an object is added to a set, we let it contain the impossible index value
MANY so that new() cannot find it again and we still cannot mistake it as a member
of any set.

new() can run out of memory. This is the first of many errors, that "‘cannot
happen”’. We will simply use the ANSI-C macro assert() to mark these points. A
more realistic implementation should at least print a reasonable error message or
use a general function for error handling which the user may overwrite. For our pur-
pose of developing a coding technique, however, we prefer to keep the code
uncluttered. In chapter 13 we will look at a general technique for handling excep-
tions.

delete() has to be careful about null pointers. An element of heapl] is recycled
by setting it to zero:
void delete (void * _item
{ int * item= _item
if (item
{ assert(item > heap && item < heap + MANY);
* jtem = 0;
}

}

We need a uniform way to deal with generic pointers; therefore, we prefix their
names with an underscore and only use them to initialize local variables with the
desired types and with the appropriate names.

A set is represented in its objects: each element points to the set. If an ele-
ment contains MANY, it can be added to the set, otherwise, it should already be in
the set because we do not permit an object to belong to more than one set.
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void * add (void * _set, const void * _element)

{ int * set = _set;
const int * element = _elenent;
assert(set > heap && set < heap + MANY);
assert(* set == MANY);
assert (el ement > heap && el enent < heap + MANY);
if (* element == MANY)
* (int *) elenent = set —heap;
el se
assert(* element == set —heap);

return (void *) element;

}

assert() takes out a bit of insurance: we would only like to deal with pointers into
heapl[] and the set should not belong to some other set, i.e., its array element value
ought to be MANY.

The other functions are just as simple. find() only looks if its element contains
the proper index for the set:
void * find (const void * _set, const void * _element)
{ const int * set = _set;
const int * element = _elenent;

assert(set > heap && set < heap + MANY);
assert(* set == MANY);

assert (el ement > heap && el enent < heap + MANY);
assert(* elenent);

return * elenent == set —heap ? (void *) elenent : O;
}
contains() converts the result of find() into a truth value:
int contains (const void * _set, const void * _el enent)

{
}

drop() can rely on find() to check if the element to be dropped actually belongs to
the set. If so, we return it to object status by marking it with MANY:

void * drop (void * _set, const void * _el enent)
{ int * element = find(_set, _elenent);

return find(_set, _elenent) != 0;

if (elenment)
* el enment = MANY;
return el enment;

}

If we were pickier, we could insist that the element to be dropped not belong to
another set. In this case, however, we would replicate most of the code of find()
in drop().

Our implementation is quite unconventional. [t turns out that we do not need
differ() to implement a set. We still need to provide it, because our application
uses this function.
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int differ (const void * a, const void * b)

{
}

Objects differ exactly when the array indices representing them differ, i.e., a simple
pointer comparison is sufficient.

return a !'= b;

We are done — for this solution we have not used the descriptors Set and
Object but we have to define them to keep our C compiler happy:

const void * Set;
const void * Object;

We did use these pointers in main() to create new sets and objects.

1.8 Another Implementation — Bag

Without changing the visible interface in Set.h we can change the implementation.
This time we use dynamic memory and represent sets and objects as structures:

struct Set { unsigned count; };
struct Object { unsigned count; struct Set * in; };

count keeps track of the number of elements in a set. For an element, count
records how many times this element has been added to the set. If we decrement
count each time the element is passed to drop() and only remove the element
once count is zero, we have a Bag, i.e., a set where elements have a reference
count.

Since we will use dynamic memory to represent sets and objects, we need to
initialize the descriptors Set and Object so that new() can find out how much
memory to reserve:

static const size_t _Set = sizeof(struct Set);
static const size_t _Object = sizeof(struct Object);

const void * Set = & _Set;
const void * Object = & _Object;
new() is now much simpler:

void * new (const void * type, ...)

{ const size_t size = * (const size_t *) type;
void * p = calloc(l, size);
assert(p);
return p;

}
delete() can pass its argument directly to free() — in ANSI-C a null pointer may be
passed to freel).

add() has to more or less believe its pointer arguments. It increments the
element’s reference counter and the number of elements in the set:
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void * add (void * _set, const void * _element)
{ struct Set * set = _set;
struct Object * elenent = (void *) _elenent;

assert(set);
assert (el enent);
if (! element — in)
elenment — in = set;
el se
assert(element — in == set);
++ el ement — count, ++ set — count;

return el ement;

}
find() still checks, if the element points to the appropriate set:

void * find (const void * _set, const void * _element)
{ const struct Object * elenment = _el ement;

assert(_set);
assert (el enent);

return elenent — in == _set ? (void *) elenent : O;
}

contains() is based on find() and remains unchanged.

If drop() finds its element in the set, it decrements the element’s reference
count and the number of elements in the set. If the reference count reaches zero,
the element is removed from the set:

void * drop (void * _set, const void * _el enent)

{ struct Set * set = _set;
struct Object * elenent = find(set, _elenent);

if (elenment)
{ if (—element — count == 0)
element — in = 0;
——set — count;

}

return el enent;

}

We can now provide a new function count() which returns the number of ele-
ments in a set:

unsi gned count (const void * _set)
{ const struct Set * set = _set;

assert(set);
return set — count;

}

Of course, it would be simpler to let the application read the component .count
directly, but we insist on not revealing the representation of sets. The overhead of
a function call is insignificant compared to the danger of an application being able to
overwrite a critical value.
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Bags behave differently from sets: an element can be added several times; it
will only disappear from the set, once it is dropped as many times as it was added.
Our application in section 1.6 added the object a twice to the set. After it is
dropped from the set once, contains() will still find it in the bag. The test program
now has the output

ok
drop?

1.9 Summary

For an abstract data type we completely hide all implementation details, such as the
representation of data items, from the application code.

The application code can only access a header file where a descriptor pointer
represents the data type and where operations on the data type are declared as
functions accepting and returning generic pointers.

The descriptor pointer is passed to a general function new() to obtain a pointer
to a data item, and this pointer is passed to a general function delete() to recycle
the associated resources.

Normally, each abstract data type is implemented in a single source file.
Ideally, it has no access to the representation of other data types. The descriptor
pointer normally points at least to a constant size_t value indicating the space
requirements of a data item.

1.10 Exercises

If an object can belong to several sets simultaneously, we need a different
representation for sets. If we continue to represent objects as small unique integer
values, and if we put a ceiling on the number of objects available, we can represent
a set as a bitmap stored in a long character string, where a bit selected by the
object value is set or cleared depending on the presence of the object in the set.

A more general and more conventional solution represents a set as a linear list
of nodes storing the addresses of objects in the set. This imposes no restriction on
objects and permits a set to be implemented without knowing the representation of
an object.

For debugging it is very helpful to be able to look at individual objects. A rea-
sonably general solution are two functions

int store (const void * object, FILE * fp);
int storev (const void * object, va_list ap);

store() writes a description of the object to the file pointer. storev() uses va_arg()
to retrieve the file pointer from the argument list pointed to by ap. Both functions
return the number of characters written. storev() is practical if we implement the
following function for sets:

int apply (const void * set,
int (* action) (void * object, va_list ap), ...):
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apply() calls action() for each element in set and passes the rest of the argument
list. action() must not change set but it may return zero to terminate applyl() early.
apply() returns true if all elements were processed.
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2
Dynamic Linkage
Generic Functions

2.1 Constructors and Destructors

Let us implement a simple string data type which we will later include into a set.
For a new string we allocate a dynamic buffer to hold the text. When the string is
deleted, we will have to reclaim the buffer.

new() is responsible for creating an object and delete() must reclaim the
resources it owns. new() knows what kind of object it is creating, because it has
the description of the object as a first parameter. Based on the parameter, we
could use a chain of if statements to handle each creation individually. The draw-
back is that new() would explicitly contain code for each data type which we sup-
port.

delete(), however, has a bigger problem. It, too, must behave differently based
on the type of the object being deleted: for a string the text buffer must be freed,;
for an object as used in chapter 1 only the object itself has to be reclaimed; and a
set may have acquired various chunks of memory to store references to its ele-
ments.

We could give delete() another parameter: either our type descriptor or the
function to do the cleaning up, but this approach is clumsy and error-prone. There
is @ much more general and elegant way: each object must know how to destroy
its own resources. Part of each and every object will be a pointer with which we
can locate a clean-up function. We call such a function a destructor for the object.

Now new() has a problem. It is responsible for creating objects and returning
pointers that can be passed to delete(), i.e., new() must install the destructor infor-
mation in each object. The obvious approach is to make a pointer to the destructor
part of the type descriptor which is passed to new(). So far we need something like
the following declarations:

struct type {
size t size; /* size of an object */
void (* dtor) (void *); /* destructor */

b
struct String {
char * text; /* dynamic string */
const void * destroy; /* | ocate destructor */
I

struct Set ({
i nformati on
const void * destroy; /* | ocate destructor */

I
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It looks like we have another problem: somebody needs to copy the destructor
pointer dtor from the type description to destroy in the new object and the copy
may have to be placed into a different position in each class of objects.

Initialization is part of the job of newl() and different types require different work
— new() may even require different arguments for different types:
new( Set); /* make a set */
new(String, "text"); /* make a string */
For initialization we use another type-specific function which we will call a construc-
tor. Since constructor and destructor are type-specific and do not change, we pass
both to new() as part of the type description.

Note that constructor and destructor are not responsible for acquiring and
releasing the memory for an object itself — this is the job of newl() and delete().
The constructor is called by new() and is only responsible for initializing the memory
area allocated by new(). For a string, this does involve acquiring another piece of
memory to store the text, but the space for struct String itself is allocated by
new(). This space is later freed by delete(). First, however, delete() calls the des-
tructor which essentially reverses the initialization done by the constructor before
delete() recycles the memory area allocated by new().

2.2 Methods, Messages, Classes and Objects

delete() must be able to locate the destructor without knowing what type of object
it has been given. Therefore, revising the declarations shown in section 2.1, we
must insist that the pointer used to locate the destructor must be at the beginning
of all objects passed to delete(), no matter what type they have.

What should this pointer point to? If all we have is the address of an object,
this pointer gives us access to type-specific information for the object, such as its
destructor function. It seems likely that we will soon invent other type-specific
functions such as a function to display objects, or our comparison function differ(),
or a function clone() to create a complete copy of an object. Therefore we will use
a pointer to a table of function pointers.

Looking closely, we realize that this table must be part of the type description
passed to new(), and the obvious solution is to let an object point to the entire type
description:

struct Cass {

size t size;

void * (* ctor) (void * self, va_list * app);

void * (* dtor) (void * self);

void * (* clone) (const void * self);

int (* differ) (const void * self, const void * b);
b
struct String {

const void * class; /* nmust be first */

char * text;

I
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struct Set ({
const void * class; /* nmust be first */

b

Each of our objects starts with a pointer to its own type description, and through
this type description we can locate type-specific information for the object: .size is
the length that new() allocates for the object; .ctor points to the constructor called
by new() which receives the allocated area and the rest of the argument list passed
to newl() originally; .dtor points to the destructor called by delete() which receives
the object to be destroyed; .clone points to a copy function which receives the
object to be copied; and .differ points to a function which compares its object to
something else.

Looking down this list, we notice that every function works for the object
through which it will be selected. Only the constructor may have to cope with a
partially initialized memory area. We call these functions methods for the objects.
Calling a method is termed a message and we have marked the receiving object of
the message with the parameter name self. Since we are using plain C functions,
self need not be the first parameter.

Many objects will share the same type descriptor, i.e., they need the same
amount of memory and the same methods can be applied to them. We call all
objects with the same type descriptor a class; a single object is called an instance
of the class. So far a class, an abstract data type, and a set of possible values
together with operations, i.e., a data type, are pretty much the same.

An object is an instance of a class, i.e., it has a state represented by the
memory allocated by new() and the state is manipulated with the methods of its
class. Conventionally speaking, an object is a value of a particular data type.

2.3 Selectors, Dynamic Linkage, and Polymorphisms

Who does the messaging? The constructor is called by new() for a new memory
area which is mostly uninitialized:
void * new (const void * _class, ...)

{ const struct Class * class = _cl ass;
void * p = calloc(1, class — size);

assert(p);
* (const struct Class **) p = class;

if (class — ctor)

{ va_list ap;
va_start(ap, _class);
p =class — ctor(p, & ap);
va_end(ap);

}

return p;

}

The existence of the struct Class pointer at the beginning of an object is extremely
important. This is why we initialize this pointer already in new():
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object cl ass

p «_|___ o e_Jd____- sjze

ctor

dtor

clone

differ

struct d ass

The type description class at the right is initialized at compile time. The object is
created at run time and the dashed pointers are then inserted. In the assignment

* (const struct Class **) p = class;

p points to the beginning of the new memory area for the object. We force a
conversion of p which treats the beginning of the object as a pointer to a struct
Class and set the argument class as the value of this pointer.

Next, if a constructor is part of the type description, we call it and return its
result as the result of new(), i.e., as the new object. Section 2.6 illustrates that a
clever constructor can, therefore, decide on its own memory management.

Note that only explicitly visible functions like new() can have a variable parame-
ter list. The list is accessed with a va_list variable ap which is initialized using the
macro va_start() from stdarg.h. new() can only pass the entire list to the construc-
tor; therefore, .ctor is declared with a va_list parameter and not with its own vari-
able parameter list. Since we might later want to share the original parameters
among several functions, we pass the address of ap to the constructor — when it
returns, ap will point to the first argument not consumed by the constructor.

delete() assumes that each object, i.e., each non-null pointer, points to a type
description. This is used to call the destructor if any exists. Here, self plays the
role of p in the previous picture. We force the conversion using a local variable ¢p
and very carefully thread our way from self to its description:
void delete (void * self)
{ const struct Cass ** cp = self;
if (self & * cp & & (* cp) — dtor)
self = (* cp) — dtor(self);
free(self);

}

The destructor, too, gets a chance to substitute its own pointer to be passed to
free() by delete(). If the constructor decides to cheat, the destructor thus has a
chance to correct things, see section 2.6. If an object does not want to be deleted,
its destructor would return a null pointer.

All other methods stored in the type description are called in a similar fashion.
In each case we have a single receiving object self and we need to route the
method call through its descriptor:
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int differ (const void * self, const void * b)
{ const struct Cass * const * cp = self;

assert(self && * cp && (* cp) — differ);
return (* cp) — differ(self, b);

}

The critical part is, of course, the assumption that we can find a type description
pointer * self directly underneath the arbitrary pointer self. For the moment at least,
we guard against null pointers. We could place a "'magic number’’ at the beginning
of each type description, or even compare * self to the addresses or an address
range of all known type descriptions, but we will see in chapter 8 that we can do
much more serious checking.

In any case, differ() illustrates why this technique of calling functions is called
dynamic linkage or late binding: while we can call differ() for arbitrary objects as
long as they start with an appropriate type description pointer, the function that
actually does the work is determined as late as possible — only during execution of
the actual call, not before.

We will call differ() a selector function. It is an example of a polymorphic func-
tion, i.e., a function that can accept arguments of different types and act differently
on them based on their types. Once we implement more classes which all contain
.differ in their type descriptors, differ() is a generic function which can be applied to
any object in these classes.

We can view selectors as methods which themselves are not dynamically
linked but still behave like polymorphic functions because they let dynamically
linked functions do their real work.

Polymorphic functions are actually built into many programming languages, e.g.,
the procedure write() in Pascal handles different argument types differently, and
the operator + in C has different effects if it is called for integers, pointers, or float-
ing point values. This phenomenon is called overloading: argument types and the
operator name together determine what the operator does; the same operator
name can be used with different argument types to produce different effects.

There is no clear distinction here: because of dynamic linkage, differ() behaves
like an overloaded function, and the C compiler can make + act like a polymorphic
function — at least for the built-in data types. However, the C compiler can create
different return types for different uses of the operator + but the function differ()
must always have the same return type independent of the types of its arguments.

Methods can be polymorphic without having dynamic linkage. As an example,
consider a function sizeOf() which returns the size of any object:
size_ t sizeOF (const void * self)
{ const struct Class * const * cp = self;

assert(self && * cp);
return (* cp) — size;
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All objects carry their descriptor and we can retrieve the size from there. Notice the
difference:

void * s = new(String, "text");

assert(sizeof s != sizeO(s));
sizeof is a C operator which is evaluated at compile time and returns the number of
bytes its argument requires. sizeOf() is our polymorphic function which at run time
returns the number of bytes of the object, to which the argument points.

2.4 An Application
While we have not yet implemented strings, we are still ready to write a simple test
program. String.h defines the abstract data type:

extern const void * String;
All our methods are common to all objects; therefore, we add their declarations to
the memory management header file new.h introduced in section 1.4:

void * clone (const void * self);

int differ (const void * self, const void * b);

size_t sizeO (const void * self);

The first two prototypes declare selectors. They are derived from the correspond-
ing components of struct Class by simply removing one indirection from the
declarator. Here is the application:

#include "String.h"
#i ncl ude "new. h"

int main ()

{ void * a new(String, "a"), * aa = clone(a);
void * b new(String, "b");
printf("sizeOi(a) == %\n", sizeO(a));
if (differ(a, b))

put s("ok");
if (differ(a, aa))
puts("differ?");

if (a == aa)
puts("cl one?");

delete(a), delete(aa), delete(b);
return O;

}

We create two strings and make a copy of one. We show the size of a String
object — not the size of the text controlled by the object — and we check that two
different texts result in different strings. Finally, we check that a copy is equal but
not identical to its original and we delete the strings again. If all is well, the pro-
gram will print something like

sizeOf (a) ==

ok
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2.5 An Implementation — String

We implement strings by writing the methods which need to be entered into the
type description String. Dynamic linkage helps to clearly identify which functions
need to be written to implement a new data type.

The constructor retrieves the text passed to new() and stores a dynamic copy
in the struct String which was allocated by new():

struct String {
const void * class; /* nmust be first */
char * text;

H
static void * String_ctor (void * _self, va_list * app)
{ struct String * self = _self;
const char * text = va_arg(* app, const char *);
self — text = malloc(strlen(text) + 1);
assert(self — text);
strcpy(self — text, text);
return self;
}

In the constructor we only need to initialize .text because newl() has already set up
.class.

The destructor frees the dynamic memory controlled by the string. Since
delete() can only call the destructor if self is not null, we do not need to check
things:

static void * String_dtor (void * _self)
{ struct String * self = _self;

free(self — text), self — text = 0;
return self;

}

String_clone() makes a copy of a string. Later both, the original and the copy,
will be passed to delete() so we must make a new dynamic copy of the string’s
text. This can easily be done by calling new():

static void * String_clone (const void * _self)
{ const struct String * self = _self;

return new(String, self — text);

}

String_differ() is certainly false if we look at identical string objects and it is
true if we compare a string with an entirely different object. If we really compare
two distinct strings, we try stremp():

static int String_differ (const void * _self, const void * _b)

{ const struct String * self = _self;
const struct String * b = _b;

if (self == D)
return O;
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if (! b|]|] b — class !'= String)
return 1;
return strcnp(self — text, b — text);

}

Type descriptors are unique — here we use that fact to find out if our second argu-
ment really is a string.

All these methods are static because they should only be called through new(),
delete(), or the selectors. The methods are made available to the selectors by way
of the type descriptor:

#i ncl ude "new. r"

static const struct Cass _String = {
si zeof (struct String),
String_ctor, String_dtor,
String_clone, String_differ

H
const void * String = & _String;

String.c includes the public declarations in String.h and new.h. In order to properly
initialize the type descriptor, it also includes the private header new.r which con-
tains the definition of the representation for struct Class shown in section 2.2.

2.6 Another Implementation — Atom

To illustrate what we can do with the constructor and destructor interface we
implement atoms. An atom is a unigue string object; if two atoms contain the same
strings, they are identical. Atoms are very cheap to compare: differ() is true if the
two argument pointers differ. Atoms are more expensive to construct and destroy:
we maintain a circular list of all atoms and we count the number of times an atom is
cloned:
struct String {

const void * class; /* must be first */

char * text;

struct String * next;

unsi gned count;

H
static struct String * ring; [* of all strings */

static void * String_clone (const void * _self)
{ struct String * self = (void *) _self;

++ self — count;
return self;

}

Our circular list of all atoms is marked in ring, extends through the .next com-
ponent, and is maintained by the string constructor and destructor. Before the con-
structor saves a text it first looks through the list to see if the same text is already
stored. The following code is inserted at the beginning of String_ctor():
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if (ring)
{ struct String * p = ring;
do
if (strcnp(p — text, text) == 0)

{ ++ p — count;
free(self);

return p;
}

while ((p = p — next) !'=ring);
}
el se

ring = self;
self — next = ring — next, ring — next = self;
self — count = 1;

If we find a suitable atom, we increment its reference count, free the new string
object self and return the atom p instead. Otherwise we insert the new string
object into the circular list and set its reference count to 1.

The destructor prevents deletion of an atom unless its reference count is decre-
mented to zero. The following code is inserted at the beginning of String_dtor():

if (—self — count > 0)
return O;

assert(ring);
if (ring == self)

ring = self — next;
if (ring == self)

ring = 0;

el se

{ struct String * p = ring;
while (p — next != self)
{ p = p — next;

assert(p !'=ring);

}
p — next = self — next;

}
If the decremented reference count is positive, we return a null pointer so that
delete() leaves our object alone. Otherwise we clear the circular list marker if our
string is the last one or we remove our string from the list.
With this implementation our application from section 2.4 notices that a cloned

string is identical to the original and it prints

sizeOf (a) == 16

ok

cl one?
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2.7 Summary

Given a pointer to an object, dynamic linkage lets us find type-specific functions:
every object starts with a descriptor which contains pointers to functions applicable
to the object. In particular, a descriptor contains a pointer to a constructor which
initializes the memory area allocated for the object, and a pointer to a destructor
which reclaims resources owned by an object before it is deleted.

We call all objects sharing the same descriptor a class. An object is an instance
of a class, type-specific functions for an object are called methods, and messages
are calls to such functions. We use selector functions to locate and call dynamically
linked methods for an object.

Through selectors and dynamic linkage the same function name will take dif-
ferent actions for different classes. Such a function is called polymorphic.

Polymorphic functions are quite useful. They provide a level of conceptual
abstraction: differ() will compare any two objects — we need not remember which
particular brand of differ() is applicable in a concrete situation. A cheap and very
convenient debugging tool is a polymorphic function store() to display any object on
a file descriptor.

2.8 Exercises

To see polymorphic functions in action we need to implement Object and Set with
dynamic linkage. This is difficult for Set because we can no longer record in the set
elements to which set they belong.

There should be more methods for strings: we need to know the string length,
we want to assign a new text value, we should be able to print a string. Things get
interesting if we also deal with substrings.

Atoms are much more efficient, if we track them with a hash table. Can the
value of an atom be changed?

String_clone() poses an subtle question: in this function String should be the
same value as self —> class. Does it make any difference what we pass to new()?
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3
Programming Savvy
Arithmetic Expressions

Dynamic linkage is a powerful programming technigue in its own right. Rather
than writing a few functions, each with a big switch to handle many special cases,
we can write many small functions, one for each case, and arrange for the proper
function to be called by dynamic linkage. This often simplifies a routine job and it
usually results in code that can be extended easily.

As an example we will write a small program to read and evaluate arithmetic
expressions consisting of floating point numbers, parentheses and the usual opera-
tors for addition, subtraction, and so on. Normally we would use the compiler gen-
erator tools /ex and yacc to build that part of the program which recognizes an arith-
metic expression. This book is not about compiler building, however, so just this
once we will write this code ourselves.

3.1 The Main Loop

The main loop of the program reads a line from standard input, initializes things so
that numbers and operators can be extracted and white space is ignored, calls up a
function to recognize a correct arithmetic expression and somehow store it, and
finally processes whatever was stored. If things go wrong, we simply read the
next input line. Here is the main loop:

#incl ude <setjnp. h>
static enum tokens token; [* current input synmbol */
static jnmp_buf onError;

int main (void)
{ volatile int errors = 0;
char buf [BUFSI Z];

if (setjnmp(onError))
++ errors;

while (gets(buf))
if (scan(buf))
{ void * e = sum();
if (token)
error("trash after sumnt);
process(e);
del ete(e);

}

return errors > 0;
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void error (const char * fmt, ...)
{ va_list ap;
va_start(ap, fnt);
viprintf(stderr, fnt, ap), putc(’\n', stderr);
va_end(ap);
| ongj mp(onError, 1);
}

The error recovery point is defined with setjmpl(). If error() is called somewhere in
the program, longjmp() continues execution with another return from setjmp(). In
this case, the result is the value passed to longjmpl), the error is counted, and the
next input line is read. The exit code of the program reports if any errors were
encountered.

3.2 The Scanner

In the main loop, once an input line has been read into buf[], it is passed to scanl),
which for each call places the next input symbol into the variable token. At the end
of a line token is zero:

#i ncl ude <ctype. h>

#i ncl ude <errno. h>
#i ncl ude <stdlib. h>

#i ncl ude "parse.h" /* defines NUMBER */
stati c doubl e nunber; /* if NUMBER nunerical value */

static enum tokens scan (const char * buf)
[* return token = next input symbol */
{ static const char * bp;

if (buf)

bp = buf; /* new input line */
while (isspace(* bp))

++ bp;

if (isdigit(* bp) || * bp ==".")
{ errno = 0;
token = NUMBER, nunber = strtod(bp, (char **) & bp);
if (errno == ERANGE)
error("bad value: %", strerror(errno));

}

el se
token = * bp ? * bp ++ : O;
return token;

}

We call scan() with the address of an input line or with a null pointer to continue
work on the present line. White space is ignored and for a leading digit or decimal
point we extract a floating point number with the ANSI-C function strtod(). Any
other character is returned as is, and we do not advance past a null byte at the end
of the input buffer.
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The result of sean() is stored in the global variable token — this simplifies the
recognizer. If we have detected a number, we return the unique value NUMBER
and we make the actual value available in the global variable number.

3.3 The Recognizer

At the top level expressions are recognized by the function sum() which internally
calls on scan() and returns a representation that can be manipulated by process()
and reclaimed by delete().

If we do not use yacc we recognize expressions by the method of recursive
descent where grammatical rules are translated into equivalent C functions. For
example: a sum is a product, followed by zero or more groups, each consisting of
an addition operator and another product. A grammatical rule like

sum : product { +| —product }...
is translated into a C function like
void sum (void)

{
product () ;
for (5))
{ switch (token) {
case '+':
case ' —:
scan(0), product(); continue;
}
return;
}
}

There is a C function for each grammatical rule so that rules can call each other.
Alternatives are translated into switch or if statements, iterations in the grammar
produce loops in C. The only problem is that we must avoid infinite recursion.

token always contains the next input symbol. If we recognize it, we must call
scan(0) to advance in the input and store a new symbol in token.

3.4 The Processor

How do we process an expression? If we only want to perform simple arithmetic
on numerical values, we can extend the recognition functions and compute the
result as soon as we recognize the operators and the operands: sum() would
expect a double result from each call to product(), perform addition or subtraction
as soon as possible, and return the result, again as a double function value.

If we want to build a system that can handle more complicated expressions we
need to store expressions for later processing. In this case, we can not only per-
form arithmetic, but we can permit decisions and conditionally evaluate only part of
an expression, and we can use stored expressions as user functions within other
expressions. All we need is a reasonably general way to represent an expression.
The conventional technique is to use a binary tree and store token in each node:
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struct Node {
enum t okens token;
struct Node * left, * right;
b
This is not very flexible, however. We need to introduce a union to create a node
in which we can store a numerical value and we waste space in nodes representing
unary operators. Additionally, process() and delete() will contain switch state-
ments which grow with every new token which we invent.

3.5 Information Hiding

Applying what we have learned thus far, we do not reveal the structure of a node at
all. Instead, we place some declarations in a header file value.h:

const void * Add;

void * new (const void * type, ...);
voi d process (const void * tree);
void delete (void * tree);

Now we can code sum() as follows:
#i ncl ude "val ue. h"

static void * sum (void)
{ void * result = product();
const void * type;

for (1)
{ switch (token) {
case '+':
type = Add;
br eak;
case ' —:
type = Sub;
br eak;
defaul t:
return result;
}
scan(0);
result = newm(type, result, product());

}

product() has the same architecture as sum() and calls on a function factor() to
recognize numbers, signs, and a sum enclosed in parentheses:

static void * sum (void);

static void * factor (void)
{ void * result;

switch (token) {
case '+':

scan(0);

return factor();
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case ' —:
scan(0);
return new(M nus, factor());
defaul t:
error("bad factor: % Ox%", token, token);
case NUMBER:
result = new(Val ue, nunber);
br eak;
case ' (’':
scan(0);
result = sum();
if (token !'=")")
error("expecting )");
}
scan(0);

return result;

}

Especially in factor() we need to be very careful to maintain the scanner invariant:
token must always contain the next input symbol. As soon as token is consumed
we need to call scan(0).

3.6 Dynamic Linkage

The recognizer is complete. value.h completely hides the evaluator for arith-
metic expressions and at the same time specifies what we have to implement.
new() takes a description such as Add and suitable arguments such as pointers to
the operands of the addition and returns a pointer representing the sum:

struct Type {
void * (* new) (va_list ap);
double (* exec) (const void * tree);
void (* delete) (void * tree);
H
void * new (const void * type, ...)
{ va_list ap;
void * result;

assert(type && ((struct Type *) type) — new);

va_start(ap, type);

result = ((struct Type *) type) — newap);
* (const struct Type **) result = type;
va_end(ap);

return result;

}

We use dynamic linkage and pass the call to a node-specific routine which, in the
case of Add, has to create the node and enter the two pointers:
struct Bin {
const void * type;
void * left, * right;
b
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static void * nmkBin (va_list ap)
{ struct Bin * node = malloc(sizeof (struct Bin));
assert(node);
node — left = va_arg(ap, void *);
node — right = va_arg(ap, void *);
return node;

}

Note that only mkBin() knows what node it creates. All we require is that the vari-
ous nodes start with a pointer for the dynamic linkage. This pointer is entered by
new() so that delete() can reach its node-specific function:

void delete (void * tree)

{
assert(tree && * (struct Type **) tree
&& (* (struct Type **) tree) — delete);
(* (struct Type **) tree) — delete(tree);
}
static void freeBin (void * tree)
{
delete(((struct Bin *) tree) — left);
delete(((struct Bin *) tree) — right);
free(tree);
}

Dynamic linkage elegantly avoids complicated nodes. .newl() creates precisely
the right node for each type description: binary operators have two descendants,
unary operators have one, and a value node only contains the value. delete() is a
very simple function because each node handles its own destruction: binary opera-
tors delete two subtrees and free their own node, unary operators delete only one
subtree, and a value node will only free itself. Variables or constants can even
remain behind — they simply would do nothing in response to delete().

3.7 A Postfix Writer

So far we have not really decided what process() is going to do. If we want to emit
a postfix version of the expression, we would add a character string to the struct
Type to show the actual operator and process() would arrange for a single output
line indented by a tab:

voi d process (const void * tree)
{

putchar(’\t’);

exec(tree);

putchar(’\n’);
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exec() handles the dynamic linkage:
static void exec (const void * tree)

{
assert(tree && * (struct Type **) tree
&& (* (struct Type **) tree) — exec);
(* (struct Type **) tree) — exec(tree);
}

and every binary operator is emitted with the following function:
static void doBin (const void * tree)

{
exec(((struct Bin *) tree) — left);
exec(((struct Bin *) tree) — right);
printf(" %", (* (struct Type **) tree) — nane),;
}

The type descriptions tie everything together:

static struct Type _Add = { "+", nkBin, doBin, freeBin };
static struct Type _Sub = { "—=, nkBin, doBin, freeBin };
const void * Add = & _Add;
const void * Sub = & _Sub;

It should be easy to guess how a numerical value is implemented. It is represented
as a structure with a double information field:
struct Val ({
const void * type;
doubl e val ue;
b
static void * mkVal (va_list ap)
{ struct Val * node = malloc(sizeof (struct Val));

assert (node);
node — value = va_arg(ap, double);
return node;

}
Processing consists of printing the value:
static void doVal (const void * tree)

{
}

We are done — there is no subtree to delete, so we can use the library function
free() directly to delete the value node:

static struct Type _Value = { "", nkVal, doVval, free };

printf(" %", ((struct Val *) tree) — value);

const void * Value = & Val ue;

A unary operator such as Minus is left as an exercise.
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3.8 Arithmetic

If we want to do arithmetic, we let the execute functions return double values to
be printed in process|):

static double exec (const void * tree)

{
return (* (struct Type **) tree) — exec(tree);
}
voi d process (const void * tree)
{
printf("\t%g\n", exec(tree));
}

For each type of node we need one execution function which computes and returns
the value for the node. Here are two examples:

static double doval (const void * tree)

{
return ((struct Val *) tree) — value;
}
static double doAdd (const void * tree)
{
return exec(((struct Bin *) tree) — left) +
exec(((struct Bin *) tree) — right);
}

static struct Type _Add = { nkBin, doAdd, freeBin };
static struct Type _Value = { nkVal, doVal, free };

const void * Add = & _Add;
const void * Value = & Val ue;

3.9 Infix Output

Perhaps the highlight of processing arithmetic expressions is to print them with a
minimal number of parentheses. This is usually a bit tricky, depending on who is
responsible for emitting the parentheses. In addition to the operator name used for
postfix output we add two numbers to the struct Type:

struct Type {
const char * nane; /* node’'s nane */
char rank, rpar;
void * (* new) (va_list ap);
void (* exec) (const void * tree, int rank, int par);
void (* delete) (void * tree);
b
.rank is the precedence of the operator, starting with 1 for addition. .rpar is set for
operators such as subtraction, which require their right operand to be enclosed in
parentheses if it uses an operator of equal precedence. As an example consider



3.10 Summary 29

$infix
1+ (2 —3)
1+ 2 —3
1 —(2 —3)
1 —(2 —3)

This demonstrates that we have the following initialization:

{"+", 1, 0, nkBin, doBin, freeBin};

{"—, 1, 1, nkBin, doBin, freeBin};
The tricky part is for a binary node to decide if it must surround itself with

parentheses. A binary node such as an addition is given the precedence of its

superior and a flag indicating whether parentheses are needed in the case of equal

precedence. doBin() decides if it will use parentheses:

static void doBin (const void * tree, int rank, int par)
{ const struct Type * type = * (struct Type **) tree;

static struct Type _Add
static struct Type _Sub

par = type — rank < rank
|| (par && type — rank == rank);

if (par) putchar(’(’);

If our node has less precedence than its superior, or if we are asked to put up
parentheses on equal precedence, we print parentheses. In any case, if our
description has .rpar set, we require only of our right operand that it put up extra
parentheses:

exec(((struct Bin *) tree) — left, type — rank, 0);

printf(" % ", type — nane);

exec(((struct Bin *) tree) — right,

type — rank, type — rpar);
if (par) putchar(’)’);
}

The remaining printing routines are significantly simpler to write.

3.10 Summary

Three different processors demonstrate the advantages of information hiding.
Dynamic linkage has helped to divide a problem into many very simple functions.
The resulting program is easily extended — try adding comparisons and an operator
like ? :in C.
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4
Inheritance
Code Reuse and Refinement

4.1 A Superclass — Point

In this chapter we will start a rudimentary drawing program. Here is a quick test for
one of the classes we would like to have:

#i nclude "Point.h"
#i ncl ude "new. h"
int main (int argc, char ** argv)
{ void * p;
while (* ++ argv)
{ switch (** argv) {
case 'p':
p = newm Point, 1, 2);
br eak;
defaul t:
conti nue;

}

draw(p);
move(p, 10, 20);

draw(p) ;
del ete(p);

}

return O;

}

For each command argument starting with the letter p we get a new point which is
drawn, moved somewhere, drawn again, and deleted. ANSI-C does not include
standard functions for graphics output; however, if we insist on producing a picture
we can emit text which Kernighan's pic [Ker82] can understand:
$ points p
“."oat 1,2
at 11, 22

The coordinates do not matter for the test — paraphrasing a commercial and
00speak: “‘the point is the message.”

What can we do with a point? new() will produce a point and the constructor
expects initial coordinates as further arguments to newl(). As usual, delete() will
recycle our point and by convention we will allow for a destructor.

draw() arranges for the point to be displayed. Since we expect to work with
other graphical objects — hence the switch in the test program — we will provide
dynamic linkage for draw().
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move() changes the coordinates of a point by the amounts given as arguments.
If we implement each graphical object relative to its own reference point, we will be
able to move it simply by applying move() to this point. Therefore, we should be
able to do without dynamic linkage for move().

4.2 Superclass Implementation — Point

The abstract data type interface in Point.h contains the following:
extern const void * Point; [* new(Point, x, y); */
void nove (void * point, int dx, int dy);

We can recycle the new.? files from chapter 2 except that we remove most
methods and add draw() to new.h:
void * new (const void * class, ...);
void delete (void * item;
void draw (const void * self);
The type description struct Class in new.r should correspond to the method
declarations in new.h:
struct Cass {
size t size;
void * (* ctor) (void * self, va_list * app);
void * (* dtor) (void * self);
void (* draw) (const void * self);
b
The selector draw() is implemented in new.c. It replaces selectors such as differ()
introduced in section 2.3 and is coded in the same style:

void draw (const void * self)
{ const struct Cass * const * cp = self;

assert(self & & * cp && (* cp) — draw);
(* cp) — draw(self);
}

After these preliminaries we can turn to the real work of writing Point.c, the
implementation of points. Once again, object-orientation has helped us to identify
precisely what we need to do: we have to decide on a representation and imple-
ment a constructor, a destructor, the dynamically linked method draw() and the
statically linked method move(), which is just a plain function. If we stick with
two-dimensional, Cartesian coordinates, we choose the obvious representation:

struct Point {
const void * class;
int x, vy; /* coordi nates */
b
The constructor has to initialize the coordinates .x and .y — by now absolutely rou-
tine:
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static void * Point_ctor (void * _self, va_list * app)
{ struct Point * self = _self;

= va_arg(* app, int);

self —= y = va_arg(* app, int);
return self;

}

It turns out that we do not need a destructor because we have no resources to
reclaim before delete() does away with struct Point itself. In Point_draw() we
print the current coordinates in a way which pic can understand:

static void Point_draw (const void * _self)
{ const struct Point * self = self;
printf("\".\" at %l, %\n", self — x, self — vy);
}
This takes care of all the dynamically linked methods and we can define the type
descriptor, where a null pointer represents the non-existing destructor:

static const struct Cass _Point = {
si zeof (struct Point), Point_ctor, 0, Point_draw

b

const void * Point = & Point;
move() is not dynamically linked, so we omit static to export it from Point.c and we
do not prefix its name with the class name Point:

void nove (void * _self, int dx, int dy)
{ struct Point * self = _self;

self — x += dx, self — y += dy;
}

This concludes the implementation of points in Point.? together with the support for
dynamic linkage in new.?.

4.3 Inheritance — Circle

A circle is just a big point: in addition to the center coordinates it needs a radius.
Drawing happens a bit differently, but moving only requires that we change the
coordinates of the center.

This is where we would normally crank up our text editor and perform source
code reuse. We make a copy of the implementation of points and change those
parts where a circle is different from a point. struct Circle gets an additional com-
ponent:

int rad;
This component is initialized in the constructor
self — rad = va_arg(* app, int);

and used in Circle_draw():
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printf("circle at %, % rad %\ n",
self — x, self — vy, self — rad);

We get a bit stuck in move(). The necessary actions are identical for a point and
a circle: we need to add the displacement arguments to the coordinate com-
ponents. However, in one case, move() works on a struct Point, and in the other
case, it works on a struct Circle. If move() were dynamically linked, we could pro-
vide two different functions to do the same thing, but there is a much better way.
Consider the layout of the representations of points and circles:

point circle
class class
X X
y y
rad
struct Point structCl .r.cl e

The picture shows that every circle begins with a point. If we derive struct Circle
by adding to the end of struct Point, we can pass a circle to move() because the
initial part of its representation looks just like the point which move() expects to
receive and which is the only thing that move() can change. Here is a sound way
to make sure the initial part of a circle always looks like a point:

struct Circle { const struct Point _; int rad; };

We let the derived structure start with a copy of the base structure that we are
extending. Information hiding demands that we should never reach into the base
structure directly; therefore, we use an almost invisible underscore as its name and
we declare it to be const to ward off careless assignments.

This is all there is to simple inheritance: a subclass is derived from a superclass
(or base class) merely by lengthening the structure that represents an object of the
superclass.

Since representation of the subclass object (a circle) starts out like the
representation of a superclass object (a point), the circle can always pretend to be a
point — at the initial address of the circle’s representation there really is a point’s
representation.

It is perfectly sound to pass a circle to move(): the subclass inherits the
methods of the superclass because these methods only operate on that part of the
subclass’ representation that is identical to the superclass’ representation for which
the methods were originally written. Passing a circle as a point means converting
from a struct Circle * to a struct Point *. \We will refer to this as an up-cast from a
subclass to a superclass — in ANSI-C it can only be accomplished with an explicit
conversion operator or through intermediate void * values.
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It is usually unsound, however, to pass a point to a function intended for circles
such as Circle_draw(): converting from a struct Point * to a struct Circle * is only
permissible if the point originally was a circle. We will refer to this as a down-cast
from a superclass to a subclass — this requires explicit conversions or void *
values, too, and it can only be done to pointers to objects that were in the subclass
to begin with.

4.4 Linkage and Inheritance

move() is not dynamically linked and does not use a dynamically linked method to
do its work. While we can pass points as well as circles to move(), it is not really a
polymorphic function: move() does not act differently for different kinds of objects,
it always adds arguments to coordinates, regardless of what else might be attached
to the coordinates.

The situation is different for a dynamically linked method like draw(). Let us
look at the previous picture again, this time with the type descriptions shown expli-
citly:

point Poi nt circle Circle
. size . size
X ctor X ctor
y dtor y dtor
draw . rad draw
struct Point struct C ass str uctCl .r.cl e struct dass

When we up-cast from a circle to a point, we do not change the state of the circle,
i.e., even though we look at the circle’s struct Circle representation as if it were a
struct Point, we do not change its contents. Consequently, the circle viewed as a
point still has Circle as a type description because the pointer in its .class com-
ponent has not changed. drawl() is a selector function, i.e., it will take whatever
argument is passed as self, proceed to the type description indicated by .class, and
call the draw method stored there.

A subclass inherits the statically linked methods of its superclass — those
methods operate on the part of the subclass object which is already present in the
superclass object. A subclass can choose to supply its own methods in place of
the dynamically linked methods of its superclass. If inherited, i.e., if not overwrit-
ten, the superclass’ dynamically linked methods will function just like statically
linked methods and modify the superclass part of a subclass object. If overwritten,
the subclass’ own version of a dynamically linked method has access to the full
representation of a subclass object, i.e., for a circle draw() will invoke
Circle_draw() which can consider the radius when drawing the circle.
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4.5 Static and Dynamic Linkage

A subclass inherits the statically linked methods of its superclass and it can choose
to inherit or overwrite the dynamically linked methods. Consider the declarations
for move() and draw():

void nove (void * point, int dx, int dy);
void draw (const void * self);

We cannot discover the linkage from the two declarations, although the implemen-
tation of move() does its work directly, while draw() is only the selector function
which traces the dynamic linkage at runtime. The only difference is that we declare
a statically linked method like move() as part of the abstract data type interface in
Point.h, and we declare a dynamically linked method like draw() with the memory
management interface in new.h, because we have thus far decided to implement
the selector function in new.c.

Static linkage is more efficient because the C compiler can code a subroutine
call with a direct address, but a function like move() cannot be overwritten for a
subclass. Dynamic linkage is more flexible at the expense of an indirect call — we
have dec