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PREFACE
The internals of the UNIX kernel is fairly well documented, most notably by Good-
heart and Cox [10], Bach [1], McKusick et al. [19], and Vahalia [39]. These texts
have become a common source of reference information for those who want to bet-
ter understand the internals of UNIX. However little has been written about the
specifics of the Solaris kernel.

The paucity of Solaris specific information led us to create our own reference
material. As we published information through white papers, magazine columns,
and tutorials, the number of folks expressing interest motivated us to produce a
complete work that discussed Solaris exclusively.

About This Book

This book is about the internals of Sun’s Solaris Operating Environment. The
rapid growth of Solaris has created a large number of users, software developers,
systems administrators, performance analysts, and other members of the techni-
cal community, all of whom require in-depth knowledge about the environment in
which they work.

Since the focus of this book is the internals of the Solaris kernel, the book pro-
vides a great deal of information on the architecture of the kernel and the major
data structures and algorithms implemented in the operating system. However,
rather than approach the subject matter from a purely academic point of view, we
wrote the book with an eye on the practical application of the information con-
xi



xii Preface
tained herein. Thus, we have emphasized the methods and tools that can be used
on a Solaris system to extract information that otherwise is not easily accessible
with the standard bundled commands and utilities. We want to illustrate how you
can apply this knowledge in a meaningful way, as your job or interest dictates.

To maximize the usefulness of the text, we included specific information on
Solaris versions 2.5.1, 2.6, and Solaris 7. We cover the major Solaris subsystems,
including memory management, process management, threads, files, and file sys-
tems. We do not cover details of low-level I/O, device drivers, STREAMS, and net-
working. For reference material on these topics, see “Writing Device Drivers” [28],
the “STREAMS Programming Guide” [29], and “UNIX Network Programming”
[32].

The material included in this book is not necessarily presented at an introduc-
tory level, although whenever possible we begin discussing a topic with some con-
ceptual background information. We assume that you have some familiarity with
operating systems concepts and have used a Unix-based operating system. Some
knowledge of the C programming language is useful but not required.

Because of the variety of hardware platforms on which Solaris runs, it is not
practical to discuss the low-level details of all the different processors and architec-
tures, so our hardware focus, when detail is required, is admittedly UltraS-
PARC-centric. This approach makes the most sense since it represents the current
technology and addresses the largest installed base. In general, the concepts put
forth when detail is required apply to other processors and platforms supported.
The differences are in the specific implementation details, such as per-processor
hardware registers.

Throughout the book we refer to specific kernel functions by name as we
describe the flow of various code segments. These routines are internal to the oper-
ating system and should not be construed as, or confused with, the public inter-
faces that ship as part of the Solaris product line—the systems calls and library
interfaces. The functions referenced throughout the text, unless explicitly noted,
are private to the kernel and not callable or in any way usable by application pro-
grams.

Intended Audience

We hope that this book will serve as a useful reference for a variety of technical
staff members working with the Solaris Operating Environment.

• Application developers can find information in this book about how Solaris
implements functions behind the application programming interfaces. This
information helps developers understand performance, scalability, and imple-



How This Book Is Organized xiii
mentation specifics of each interface when they develop Solaris applications.
The system overview section and sections on scheduling, interprocess commu-
nication, and file system behavior should be the most useful sections.

• Device driver and kernel module developers of drivers, STREAMS mod-
ules, loadable system calls, etc., can find herein the general architecture and
implementation theory of the Solaris Operating Environment. The Solaris
kernel framework and facilities portions of the book (especially the locking
and synchronization primitives chapters) are particularly relevant.

• Systems administrators, systems analysts, database administrators,
and ERP managers responsible for performance tuning and capacity plan-
ning can learn about the behavioral characteristics of the major Solaris sub-
systems. The file system caching and memory management chapters provide
a great deal of information about how Solaris behaves in real-world environ-
ments. The algorithms behind Solaris tunable parameters (which are detailed
in the appendix) are covered in depth throughout the book.

• Technical support staff responsible for the diagnosis, debugging and sup-
port of Solaris will find a wealth of information about implementation details
of Solaris. Major data structures and data flow diagrams are provided in each
chapter to aid debugging and navigation of Solaris Systems.

• System users who just want to know more about how the Solaris kernel
works will find high-level overviews at the start of each chapter.

In addition to the various technical staff members listed above, we also believe
that members of the academic community will find the book of value in studying
how a volume, production kernel implements major subsystems and solves the
problems inherent in operating systems development.

How This Book Is Organized

We organized Solaris Internals into several logical parts, each part grouping sev-
eral chapters containing related information. Our goal was to provide a building
block approach to the material, where later sections build on information provided
in earlier chapters. However, for readers familiar with particular aspects of operat-
ing systems design and implementation, the individual parts and chapters can
stand on their own in terms of the subject matter they cover.

• Part One: Introduction

• Chapter 1  — An Introduction to Solaris

• Chapter 2  — Kernel Services

• Chapter 3  — Kernel Synchronization Primitives
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• Chapter 4  — Kernel Bootstrap and Initialization

• Part Two: The Solaris Memory System

• Chapter 5  — Solaris Memory Architecture

• Chapter 6  — Kernel Memory

• Chapter 7  — Memory Monitoring

• Part Three: Processes, Threads, and IPC

• Chapter 8  — The Solaris Multithreaded Process Architecture

• Chapter 9  — The Solaris Kernel Dispatcher

• Chapter 10  — Interprocess Communication

• Part Four: The Solaris File I/O System

• Chapter 11  — Solaris Files and File I/O

• Chapter 12  — File System Overview

• Chapter 13  — File System Framework

• Chapter 14  — The Unix File System

• Chapter 15  — Solaris File System Cache

Solaris Source Code

In February 2000, Sun announced the availability of Solaris source. This book pro-
vides the essential companion to the Solaris source and can be used as a guide to
the Solaris kernel framework and architecture.

It should also be noted that the source available from Sun is Solaris 8 source.
Although this book covers Solaris versions up to and including Solaris 7, almost all
of the material is relevant to Solaris 8.

Updates and Related Material

To complement this book, we created a Web site where we will place updated mate-
rial, tools we refer to, and links to related material on the topics covered. The Web
site is available at

http://www.solarisinternals.com



Notational Conventions xv
We will regularly update the Web site with information about this text and future
work on Solaris Internals. We will place information about the differences between
Solaris 7 and 8 at this URL, post any errors that may surface in the current edi-
tion, and share reader feedback and comments and other bits of related informa-
tion.

Notational Conventions

Table P-1 describes the typographic conventions used throughout the book, and
Table P-2 shows the default system prompt for the utilities we describe.

Table P-1 Typographic Conventions

Typeface or
Symbol

Meaning Example

AaBbCc123 Command names, file
names, and data struc-
tures.

The vmstat  command.

The <sys/proc.h>  header file.
The proc  structure.

AaBbCc123() Function names. page_create_va()
AaBbCc123(2) Manual pages. Please see vmstat (1M).
AaBbCc123 Commands you type within

an example.
$ vmstat
r b w swap free re mf 0 0 0 464440
18920   1  13

AaBbCc123 New terms as they are
introduced.

A major page fault occurs when…

Table P-2 Command Prompts

Shell Prompt
C shell prompt machine_name%
C shell superuser prompt machine_name#
Bourne shell and Korn shell prompt $
Bourne shell and Korn shell superuser prompt #
The crash  utility prompt crash  >
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A Note from the Authors

We certainly hope that you get as much out of reading Solaris Internals as we did
from writing it. We welcome comments, suggestions, and questions from readers.
We can be reached at:

richard.mcdougall@Eng.Sun.COM

jim.mauro@Eng.Sun.COM
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 1
AN INTRODUCTION TO
SOLARIS
The UNIX system is very successful. At the time of writing there
are over 3000 UNIX systems in active use throughout the world.

S.R. Bourne, The UNIX System, 1983

Sun systems have shipped with a UNIX-based operating system since the first
Sun-1 workstation was introduced in 1982. Steve Bourne’s quote indicates how rel-
atively small the UNIX market was at that time. Today, millions of UNIX systems
are deployed, running a variety of applications ranging from single-user systems,
to real-time control systems, to mission- and business-critical environments—and
Solaris represents a large percentage of these systems.

The Solaris installed base has rapidly increased its since its inception. It is
available on SPARC processor architectures from Sun and OEMs and on standard
Intel-based systems. Solaris scales from single-processor systems to the 64-proces-
sor Sun Enterprise 10000 system.
3



4 An Introduction to Solaris
1.1 A Brief History

Sun’s UNIX operating environment began life as a port of BSD UNIX to the Sun-1
workstation. The early versions of Sun’s UNIX were known as SunOS, which is the
name used for the core operating system component of Solaris.

SunOS 1.0 was based on a port of BSD 4.1 from Berkeley labs in 1982. At that
time, SunOS was implemented on Sun’s Motorola 68000-based uniprocessor work-
stations. SunOS was small and compact, and the workstations had only a few
MIPS of processor speed and around one megabyte of memory.

In the early to mid-1980s, networked UNIX systems were growing in popular-
ity; networking was becoming ubiquitous and was a major part of Sun’s computing
strategy. Sun invested significant resources in developing technology that enabled
distributed, network-based computing. These technologies included interfaces for
building distributed applications (remote procedure calls, or RPC), and operating
system facilities for the sharing of data over networks (Network Information Sys-
tem, or NIS, and a distributed computing file system; NFS. The incorporation of
remote file sharing into SunOS required extensive operating system changes. In
1984, SunOS 2 offered the virtual file system framework to implement multiple
file system types, which allowed support for the NFS file system. The network file
system source was made openly licensable and has subsequently been ported to
almost every modern operating system platform in existence today.

The volume of applications running on the Sun platform increased steadily, with
each new application placing greater demand on the system, providing the cata-
lyst for the next phase of innovation. Applications needed better facilities for the
sharing of data and executable objects. The combination of the need for shared pro-
gram libraries, memory mapped files, and shared memory led to a major re-archi-
tecting of the SunOS virtual memory system. The new virtual memory system,
introduced as SunOS version 4, abstracted various devices and objects as virtual
memory, facilitating the mapping of files, sharing of memory, and mapping of hard-
ware devices into a process.

During the 1980s, the demand for processing capacity outpaced the industry’s
incremental improvements in processor speed. To satisfy the demand, systems
were developed with multiple processors sharing the same system memory and
Input/Output (I/O) infrastructure, an advance that required further operating sys-
tem changes. An asymmetric multiprocessor implementation first appeared in
SunOS 4.1—the kernel could run on only one processor at a time, while user pro-
cessors could be scheduled on any of the available processors. Workloads with mul-
tiple processes could often obtain greater throughput on systems with more than
one processor. The asymmetric multiprocessor implementation was a great step
forward; however, scalability declined rapidly as additional processors were added.
The need for a better multiprocessor implementation was obvious.



A Brief History 5
At this time, Sun was participating in a joint development with AT&T, and the
SunOS virtual file system framework and virtual memory system became the core
of UNIX System V Release 4 (SVR4). SVR4 UNIX incorporated the features from
SunOS, SVR3, BSD UNIX, and Xenix, as shown below. International Computers
Limited (ICL) ported the new SVR4 UNIX to the SPARC processor architecture
and delivered the reference source for SVR4 on SPARC.

With the predicted growth in multiprocessor systems, Sun invested heavily in the
development of a new operating system kernel with a primary focus on multipro-
cessor scalability. The new kernel allowed multiple threads of execution and pro-
vided facilities for threading at the process (application) level. Together with
fine-grained locking, the new kernel provided the foundation for the scalability
found in Solaris today. The new kernel and the SVR4 operating environment
became the basis for Solaris 2.0.

This change in the base operating system was accompanied by a new naming
convention; the Solaris name was introduced to describe the operating environ-
ment, of which SunOS, the base operating system, is a subset. Thus, the older
SunOS retained the SunOS 4.X versioning and adopted Solaris 1.X as the operat-
ing environment version. The SVR4-based environment adopted a SunOS 5.X ver-
sioning (SunOS 5.0 being the first release) with the Solaris 2.X operating
environment. The naming convention has resulted in most people referring to the
pre-SVR4 releases as SunOS, and the SVR4-based releases as Solaris. Table 1-1
traces the development of Solaris from its roots to Solaris 7.

The new Solaris 2.0 operating environment was built in a modular fashion,
which made possible its implementation on multiple platforms with different
instruction set architectures. In 1993, Solaris was made available for Intel
PC-based architectures, greatly expanding the platforms on which Solaris is avail-
able. In October 1999, Sun announced support for Solaris on the Intel Itanium pro-
cessor.

The next major milestone was the introduction of a 64-bit implementation, in
Solaris 7. Full 64-bit support allows the kernel and processes to access large
address spaces and to use extended 64-bit data types. Solaris 7 also provides full
compatibility for existing 32-bit applications, supporting concurrent execution of
32-bit and 64-bit applications.

SVR4

SunOS

BSD Xenix

SVR3
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Table 1-1 Solaris Release History

Date Release Notes
1982 Sun UNIX 0.7 • First version of Sun’s UNIX, based on 4.BSD

from UniSoft.

• Bundled with the Sun-1, Sun’s first workstation
based on the Motorola 68000 processor; SunWin-
dows GUI.

1983 SunOS 1.0 • Sun-2 workstation, 68010 based.
1985 SunOS 2.0 • Virtual file system (VFS) and vnode framework

allows multiple concurrent file system types.

• NFS implemented with the VFS/vnode frame-
work.

1988 SunOS 4.0 • New virtual memory system integrates the file
system cache with the memory system.

• Dynamic linking added.

• The first SPARC-based Sun workstation, the
Sun-4. Support for the Intel-based Sun 386i.

1990 SunOS 4.1 • Supports the SPARCstation1+, IPC, SLC.

• OpenWindows graphics environment
1992 SunOS 4.1.3 • Asymmetric multiprocessing (ASMP) for sun4m

systems (SPARCstation-10 and -600 series MP
(multiprocessor) servers).

1992 Solaris 2.0 • Solaris 2.x is born, based on a port of System V
Release 4.0.

• VFS/vnode , VM system, intimate shared mem-
ory brought forward from SunOS.

• Uniprocessor only.

• First release of Solaris 2, version 2.0, is a desk-
top-only developers release.

1992 Solaris 2.1 • Four-way symmetric multiprocessing (SMP).
1993 Solaris 2.2 • Large (> 2 Gbyte) file system support.

• SPARCserver 1000 and SPARCcenter 2000
(sun4d architecture).

1993 Solaris 2.1-x86 • Solaris ported to the Intel i386 architecture.
1993 Solaris 2.3 • 8-way SMP.

• Device power management and system sus-
pend/resume functionality added.

• New directory name lookup cache.
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The information in Table 1-1 shows the significant features incorporated in each
major release of Solaris. Details of all of the features can be found in the Solaris
release What’s New document, which is part of the documentation supplied with
Solaris.

1994 Solaris 2.4 • 20-way SMP.

• New kernel memory allocator (slab allocator)
replaces SVR4 buddy allocator.

• Caching file system (cachefs).

• CDE windowing system.
1995 Solaris 2.5 • Large-page support for kernel and System V

shared memory.

• Fast local interprocess communication (Doors)
added.

• NFS Version 3.

• Supports sun4u (UltraSPARC) architecture.
UltraSPARC-I-based products introduced—the
Ultra-1 workstation.

1996 Solaris 2.5.1 • First release supporting multiprocessor Ultra-
SPARC-based systems.

• 64-way SMP.

• Ultra-Enterprise 3000–6000 servers introduced.
1996 Solaris 2.6 • Added support for large (> 2 Gbyte files).

• Dynamic processor sets.

• Kernel-based TCP sockets.

• Locking statistics.

• UFS direct I/O.

• Dynamic reconfiguration.
1998 Solaris 7 • 64-bit kernel and process address space.

• Logging UFS integrated.

• Priority Paging memory algorithm.

Table 1-1 Solaris Release History  (Continued)

Date Release Notes
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1.2 Key Differentiators

Solaris development has continued aggressively throughout the 1990s. Several key
features distinguish Solaris from earlier UNIX implementations.

• Symmetric multiprocessing — Solaris is implemented on systems rang-
ing from single-processor systems to 64-processor symmetric multiprocessor
servers. Solaris provides linear scalability up to the currently supported max-
imum of 64 processors.

• 64-bit kernel and process address space — A 64-bit kernel for 64-bit
platforms provides an LP64 execution environment. (LP64 refers to the data
model: long and pointer data types are 64 bits wide.) A 32-bit application
environment is also provided so that 32-bit binaries execute on a 64-bit
Solaris kernel alongside 64-bit applications.

• Multiple platform support — Solaris supports a wide range of SPARC and
Intel x86 microprocessor-based architectures. A layered architecture means
that over 90 percent of the Solaris source is platform independent.

• Modular binary kernel — The Solaris kernel uses dynamic linking and
dynamic modules to divide the kernel into modular binaries. A core kernel
binary contains central facilities; device drivers, file systems, schedulers, and
some system calls are implemented as dynamically loadable modules. Conse-
quently, the Solaris kernel is delivered as a binary rather than source and
object, and kernel compiles are not required upon a change of parameters or
addition of new functionality.

• Multithreaded process execution — A process can have more than one
thread of execution, and these threads can run concurrently on one or more
processors. Thus, a single process can use multiple processors for concurrent
thread execution, thereby using multiprocessor platforms more efficiently.

• Multithreaded kernel — The Solaris kernel uses threads as the entity for
scheduling and execution: the kernel schedules interrupts and kernel ser-
vices as regular kernel threads. This key feature provides interrupt scalabil-
ity and low-latency interrupt response.

Previous UNIX implementations manipulated processor priority levels to
ensure exclusive access to critical interrupt data structures. As a result, the
inability of interrupt code to block led to poor scalability. Solaris provides
greater parallelism by scheduling interrupts as threads, which can then use
regular kernel locks to ensure exclusive access to data structures.

• Fully preemptable kernel — The Solaris kernel is fully preemptable and
does not require manipulation of hardware interrupt levels to protect critical
data—locks synchronize access to kernel data. This means threads that need
to run can interrupt another, lower-priority thread; hence, low latency sched-
uling and low latency interrupt dispatch become possible. For example, a pro-
cess waking up after sleeping for a disk I/O can be scheduled immediately,
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rather than waiting until the scheduler runs. Additionally, by not raising pri-
ority levels and blocking interrupts, the system need not periodically sus-
pend activity during interrupt handling, so system resources are used more
efficiently.

• Support for multiple schedulers — Solaris provides a configurable sched-
uler environment. Multiple schedulers can operate concurrently, each with its
own scheduling algorithms and priority levels. Schedulers are supplied as
kernel modules and are dynamically loaded into the operating system. Solaris
offers a table-driven, usage-decayed, timesharing user scheduler (TS); a win-
dow system optimized timeshare scheduler (IA); and a real-time fixed prior-
ity scheduler (RT). An optional fair-share scheduler class can be loaded with
the Solaris Resource Manager package.

• Support for multiple file systems — Solaris provides a virtual file system
(VFS) framework that allows multiple file systems to be configured into the
system. The framework implements several disk-based file systems (UNIX
File System, MS-DOS file system, CD-ROM file system, etc.) and the net-
work file system (NFS V2 and V3). The virtual file system framework also
implements pseudo file systems, including the process file system, procfs, a
file system that abstracts processes as files. The virtual file system frame-
work is integrated with the virtual memory system to provide dynamic file
system caching that uses available free memory as a file system cache.

• Processor partitioning and binding — Special facilities allow
fine-grained processor control, including binding processes to processors. Pro-
cessors can be configured into scheduling groups to partition system
resources.

• Demand-paged virtual memory system — This feature allows systems to
load applications on demand, rather than loading whole executables or
library images into memory. Demand-paging speeds up application startup
and potentially reduces memory footprint.

• Modular virtual memory system — The virtual memory system sepa-
rates virtual memory functions into distinct layers; the address space layer,
segment drivers, and hardware-specific components are consolidated into a
hardware address translation (HAT) layer. Segment drivers can abstract
memory as files, and files can be memory-mapped into an address space. Seg-
ment drivers enable different abstractions, including physical memory and
devices, to appear in an address space.

• Modular device I/O system — Dynamically loadable device and bus driv-
ers allow a hierarchy of buses and devices to be installed and configured. A
device driver interface (DDI) shields device drivers from platform-specific
infrastructure, thus maximizing portability of device drivers.

• Integrated networking — With the data link provider interface (DLPI),
multiple concurrent network interfaces can be configured, and a variety of
different protocols—including Ethernet, X.25, SDLC, ISDN, FDDI, token bus,
bi-sync, and other datalink-level protocols—can be configured upon them.
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• Integrated Internet protocol — Solaris implements TCP/IP by use of the
DLPI interfaces.

• Real-time architecture — The Solaris kernel was designed and imple-
mented to provide real-time capabilities. The combination of the preemptive
kernel, kernel interrupts as threads, fixed priority scheduling, high-resolu-
tion timers, and fine-grained processor control makes Solaris an ideal envi-
ronment for real-time applications.

The differentiators listed above represent many innovative features integrated in
the Solaris kernel. In the remaining chapters, we closely examine the core mod-
ules and major subsystems of the kernel.

1.3 Kernel Overview

The Solaris kernel is the core of Solaris. It manages the system hardware
resources and provides an execution environment for user programs. The Solaris
kernel supports an environment in which multiple programs can execute simulta-
neously. The primary functions of the kernel can be divided into two major catego-
ries: managing the hardware by allocating its resources among the programs
running on it; and supplying a set of system services for those programs to use.

The Solaris kernel, like that of other operating systems implementations, pro-
vides a virtual machine environment that shields programs from the underlying
hardware and allows multiple programs to execute concurrently on the hardware
platform. Each program has its own virtual machine environment, with an execu-
tion context and state.

The basic unit that provides a program’s environment is known as a process; it
contains a virtual memory environment that is insulated from other processes on
the system. Each Solaris process can have one or more threads of execution that
share the virtual memory environment of the process, and each thread in effect
executes concurrently within the process’s environment. The Solaris kernel sched-
uler manages the execution of these threads (as opposed to management by sched-
uling processes) by transparently time-slicing them onto one or more processors.
The threads of execution start and stop executing as they are moved on and off the
processors, but the user program is unaware of this. Each time a thread is moved
off a processor, its complete execution environment (program counter, stack point-
ers, registers, etc.) is saved, so when it is later rescheduled onto a processor, its
environment can be restored and execution can resume. Processes and scheduling
are covered in detail in Part 3 of this book.

The kernel provides mechanisms to access operating system services, such as
file I/O, networking, process and thread creation and termination, process control
and signaling, process memory management, and interprocess communication. A
process accesses these kernel services through the use of system calls. System calls
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are programming interfaces through which the operating system is entered so that
the kernel can perform work on behalf of the calling thread.

1.3.1  Solaris Kernel Architecture

The Solaris kernel is grouped into several key components and is implemented in a
modular fashion. The key components of the Solaris kernel are described in the fol-
lowing list and illustrated in Figure 1.1.

• System Call Interface — The system call interface allows user processes to
access kernel facilities. The system call layer consists of a common system
call handler, which vectors system calls into the appropriate kernel modules.

• Process execution and scheduling — Process management provides facil-
ities for process creation, execution, management, and termination. The
scheduler implements the functions that divide the machine’s processor
resources among threads on the system. The scheduler allows different sched-
uling classes to be loaded for different behavior and scheduling requirements.

• Memory Management — The virtual memory system manages mapping of
physical memory to user processes and the kernel. The Solaris memory man-
agement layer is divided into two layers: the common memory management
functions and the hardware-specific components. The hardware-specific com-
ponents are located in the hardware address translation (HAT) layer.

• File Systems — Solaris implements a virtual file system framework, by
which multiple types of file system can be configured into the Solaris kernel
at the same time. Regular disk-based file systems, network file systems, and
pseudo file systems are implemented in the file system layer.

• I/O Bus and Device Management — The Solaris I/O framework imple-
ments bus nexus node drivers (bus-specific architectural dependencies, e.g., a
PCI bus) and device drivers (a specific device on a bus, e.g., an Ethernet card)
as a hierarchy of modules, reflecting the physical layout of the bus/device
interconnect.

• Kernel Facilities (Clocks, timers, etc.) — Central kernel facilities, includ-
ing regular clock interrupts, system timers, synchronization primitives, and
loadable module support.

• Networking — TCP/IP protocol support and related facilities. The Solaris
networking subsystem is implemented as streams-based device drivers and
streams modules.
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 Figure 1.1 Solaris Kernel Components

1.3.2  Modular Implementation

The Solaris kernel is implemented as a core set of operating system functions, with
additional kernel subsystems and services linked in as dynamically loadable mod-
ules. This implementation is facilitated by a module loading and kernel runtime
linker infrastructure, which allows kernel modules to be added to the operating
system either during boot or on demand while the system is running.

The Solaris 7 module framework supports seven types of loadable kernel mod-
ules: scheduler classes, file systems, loadable system calls, loaders for executable
file formats, streams modules, bus or device drivers, and miscellaneous modules.
Figure 1.2 shows the facilities contained in the core kernel and the various types of
kernel modules that implement the remainder of the Solaris kernel.
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1.4 Processes, Threads, and Scheduling

The Solaris kernel is multithreaded; that is, it is implemented with multiple
threads of execution to allow concurrency across multiple processors. This archi-
tecture is a major departure from the traditional UNIX scheduling model. In
Solaris, threads in the kernel, or kernel threads, are the fundamental unit that is
scheduled and dispatched onto processors. Threads allow multiple streams of exe-
cution within a single virtual memory environment; consequently, switching execu-
tion between threads is inexpensive because no virtual memory context switch is
required.

Threads are used for kernel-related tasks, for process execution, and for inter-
rupt handling. Within the kernel, multiple threads of execution share the kernel’s
environment. Processes also contain one or more threads, which share the virtual
memory environment of the process.

A process is an abstraction that contains the environment for a user program. It
consists of a virtual memory environment, resources for the program such as an
open file list, and at least one thread of execution. The virtual memory environ-
ment, open file list, and other components of the process environment are shared
by the threads within each process.

Within each process is a lightweight process, a virtual execution environment for
each kernel thread within a process. The lightweight process allows each kernel
thread within a process to make system calls independently of other kernel
threads within the same process. Without a lightweight process, only one system
call could be made at a time. Each time a system call is made by a thread, its reg-
isters are placed on a stack within the lightweight process. Upon return from a
system call, the system call return codes are placed in the lightweight process. Fig-
ure 1.3 shows the relationship between kernel threads, processes, and lightweight
processes.
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1.4.1  Two-Level Thread Model

Although it is relatively inexpensive to switch between multiple threads within a
process, it is still relatively expensive to create and destroy threads. In addition,
each kernel thread within a process requires a lightweight process containing a
stack; that consumes kernel resources. For these reasons, an additional level of
thread management is implemented within each process to manage user threads,
as shown in Figure 1.4.
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Solaris exposes user threads as the primary thread abstraction for multithreaded
programs. User threads are implemented in a thread library and can be created
and destroyed without kernel involvement. User threads are scheduled on and off
the lightweight processes. As a result, only a subset of the user threads is active at
any one time—those threads that are scheduled onto the lightweight processes.
The number of lightweight processes within the process affects the degree of paral-
lelism available to the user threads and is adjusted on-the-fly by the user thread
library

1.4.2  Global Process Priorities and Scheduling

The Solaris kernel implements a global thread priority model for kernel threads.
The kernel scheduler, or dispatcher, uses the model to select which kernel thread of
potentially many runnable kernel threads executes next. The kernel supports the
notion of preemption, allowing a better-priority thread to cause the preemption of a
running thread, such that the better- (higher) priority thread can execute. The ker-
nel itself is preemptable, an innovation providing for time-critical scheduling of
high-priority threads. There are 170 global priorities; numerically larger priority
values correspond to better thread priorities. The priority name space is parti-
tioned by different scheduling classes, as illustrated in Figure 1.5.

The Solaris dispatcher implements multiple scheduling classes, which allow differ-
ent scheduling policies to be applied to threads. The three primary scheduling
classes—TS (IA is an enhanced TS), SYS, and RT—shown in Figure 1.5 are
described below.
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• TS — The timeshare scheduling class is the default class for processes and
all the kernel threads within the process. It changes process priorities
dynamically according to recent processor usage in an attempt to evenly allo-
cate processor resources among the kernel threads in the system. Process pri-
orities and time quantums are calculated according to a timeshare scheduling
table at each clock tick, or during wakeup after sleeping for an I/O. The TS
class uses priority ranges 0 to 59.

• IA — The interactive class is an enhanced TS class used by the desktop win-
dowing system to boost priority of threads within the window under focus. IA
shares the priority numeric range with the TS class.

• SYS — The system class is used by the kernel for kernel threads. Threads in
the system class are bound threads, that is, there is no time quantum—they
run until they block. The system class uses priorities 60 to 99.

• RT — The realtime class implements fixed priority, fixed time quantum
scheduling. The realtime class uses priorities 100 to 159. Note that threads in
the RT class have a higher priority over kernel threads in the SYS class.

The interrupt priority levels shown in Figure 1.5 are not available for use by
anything other than interrupt threads. The intent of their positioning in the prior-
ity scheme is to guarantee that interrupts threads have priority over all other
threads in the system.

1.5 Interprocess Communication

Processes can communicate with each other by using one of several types of inter-
process communication (IPC). IPC allows information transfer or synchronization
to occur between processes. Solaris supports four different groups of interprocess
communication: basic IPC, System V IPC, POSIX IPC, and advanced Solaris IPC.

1.5.1  Traditional UNIX IPC

Solaris implements traditional IPC facilities such as local sockets and pipes. A
local socket is a network-like connection using the socket(2) system call to
directly connect two processes.

A pipe directly channels data flow from one process to another through an object
that operates like a file. Data is inserted at one end of the pipe and travels to the
receiving processes in a first-in, first-out order. Data is read and written on a pipe
with the standard file I/O system calls. Pipes are created with the pipe(2) sys-
tem call or by a special pipe device created in the file system with mknod(1) and
the standard file open(2)  system call.



18 An Introduction to Solaris
1.5.2  System V IPC

Three types of IPC originally developed for System V UNIX have become standard
across all UNIX implementations: shared memory, message passing, and sema-
phores. These facilities provide the common IPC mechanism used by the majority
of applications today.

• System V Shared Memory — Processes can create a segment of shared
memory. Changes within the area of shared memory are immediately avail-
able to other processes that attach to the same shared memory segment.

• System V Message Queues — A message queue is a list of messages with a
head and a tail. Messages are placed on the tail of the queue and are received
on the head. Each messages contains a 32-bit type value, followed by a data
payload.

• System V Semaphores — Semaphores are integer-valued objects that sup-
port two atomic operations: increment or decrement the value of the integer.
Processes can sleep on semaphores that are greater than zero, then can be
awakened when the value reaches zero.

1.5.3  POSIX IPC

The POSIX IPC facilities are similar in functionality to System V IPC but are
abstracted on top of memory mapped files. The POSIX library routines are called
by a program to create a new semaphore, shared memory segment, or message
queue using the Solaris file I/O system calls (open (2), read (2), mmap(2), etc.).
Internally in the POSIX library, the IPC objects exist as files. The object type
exported to the program through the POSIX interfaces is handled within the
library routines.

1.5.4  Advanced Solaris IPC

A new, fast, lightweight mechanism for calling procedures between processes is
available in Solaris: doors. Doors are a low-latency method of invoking a proce-
dure in local process. A door server contains a thread that sleeps, waiting for an
invocation from the door client. A client makes a call to the server through the
door, along with a small (16 Kbyte) payload. When the call is made from a door cli-
ent to a door server, scheduling control is passed directly to the thread in the door
server. Once a door server has finished handling the request, it passes control and
response back to the calling thread. The scheduling control allows
ultra-low-latency turnaround because the client does not need to wait for the
server thread to be scheduled to complete the request.
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1.6 Signals

UNIX systems have provided a process signalling mechanism from the earliest
implementations. The signal facility provides a means to interrupt a process or
thread within a process as a result of a specific event. The events that trigger sig-
nals can be directly related to the current instruction stream. Such signals,
referred to as synchronous signals, originate as hardware trap conditions arising
from illegal address references (segmentation violation), illegal math operations
(floating point exceptions), and the like.

The system also implements asynchronous signals, which result from an exter-
nal event not necessarily related to the current instruction stream. Examples of
asynchronous signals include job control signals and the sending of a signal from
one process or thread to another, for example, sending a kill signal to terminate a
process.

For each possible signal, a process can establish one of three possible signal dis-
positions, which define what action, if any, will be taken when the signal is
received. Most signals can be ignored, a signal can be caught and a process-spe-
cific signal handler invoked, or a process can permit the default action to be taken.
Every signal has a predefined default action, for example, terminate the process.
Solaris provides a set of programming interfaces that allow signals to be masked
or a specific signal handler to be installed.

The traditional signal model was built on the concept of a process having a sin-
gle execution stream at any time. The Solaris kernel’s multithreaded process
architecture allows for multiple threads of execution within a process, meaning
that a signal can be directed to specific thread. The disposition and handlers for
signals are process-wide; every thread in a multithreaded process has the same
signal disposition and handlers. However, the Solaris model allows for signals to be
masked at the thread level, so different threads within the process can have differ-
ent signals masked. (Masking is a means of blocking a signal from being deliv-
ered.)

1.7 Memory Management

The Solaris virtual memory (VM) system can be considered to be the core of the
operating system—it manages the system’s memory on behalf of the kernel and
processes. The main task of the VM system is to manage efficient allocation of the
system’s physical memory to the processes and kernel subsystems running within
the operating system. The VM system uses slower storage media (usually disk) to
store data that does not fit within the physical memory of the system, thus accom-
modating programs larger than the size of physical memory. The VM system is to
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keeps the most frequently used portions within physical memory and the
lesser-used portions on the slower secondary storage.

For processes, the VM system presents a simple linear range of memory, known
as an address space. Each address space is broken into several segments that rep-
resent mappings of the executable, heap space (general-purpose, process-allocated
memory), shared libraries, and a program stack. Each segment is divided into
equal-sized pieces of virtual memory, known as pages, and a hardware memory
management unit (MMU) manages the mapping of page-sized pieces of virtual
memory to physical memory. Figure 1.6 shows the relationship between an address
space, segments, the memory management unit, and physical memory.

The virtual memory system is implemented in a modular fashion. The compo-
nents that deal with physical memory management are mostly hardware platform
specific. The platform-dependent portions are implemented in the hardware
address translation (HAT) layer.

1.7.1  Global Memory Allocation

The VM system implements demand paging. Pages of memory are allocated on
demand, as they are referenced, and hence portions of an executable or shared
library are allocated on demand. Loading pages of memory on demand dramati-
cally lowers the memory footprint and startup time of a process. When an area of
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virtual memory is accessed, the hardware MMU raises an event to tell the kernel
that an access has occurred to an area of memory that does not have physical
memory mapped to it. This event is a page fault. The heap of a process is also allo-
cated in a similar way: initially, only virtual memory space is allocated to the pro-
cess. When memory is first referenced, a page fault occurs and memory is allocated
one page at a time.

The virtual memory system uses a global paging model that implements a sin-
gle global policy to manage the allocation of memory between processes. A scan-
ning algorithm calculates the least used portion of the physical memory. A kernel
thread (the page scanner) scans memory in physical page order when the amount
of free memory falls below a preconfigured threshold. Pages that have not been
used recently are stolen and placed onto a free list for use by other processes.

1.7.2  Kernel Memory Management

The Solaris kernel requires memory for kernel instructions, data structures, and
caches. Most of the kernel’s memory is not pageable, that is, it is allocated from
physical memory which cannot be stolen by the page scanner. This characteristic
avoids deadlocks that could occur within the kernel if a kernel memory manage-
ment function caused a page fault while holding a lock for another critical
resource. The kernel cannot rely on the global paging used by processes, so it
implements its own memory allocation systems.

A core kernel memory allocator—the slab allocator—allocates memory for ker-
nel data structures. As the name suggests, the allocator subdivides large contigu-
ous areas of memory (slabs) into smaller chunks for data structures. Allocation
pools are organized so that like-sized objects are allocated from the same continu-
ous segments, thereby dramatically reducing fragmentation that could result from
continuous allocation and deallocation.

1.8 Files and File Systems

Solaris provides facilities for storage and management of data, as illustrated in
Figure 1.7. A file provides a container for data, a directory contains a number of
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files, and a file system implements files and directories upon a device, typically a
storage medium of some type.

A file system can be mounted on a branch of an existing file system to extend the
hierarchy. The hierarchy hides the mount so that it is transparent to users or
applications that traverse the tree.

Solaris implements several different types of files:

• Regular files store data within the file system.
• Special files represent a device driver. Reads and writes to special files are

handled by a device driver and translated into I/O of some type.
• Pipes are a special type of file that do not hold data but can be opened by two

different processes so that data can be passed between them.
• Hard links link to the data of other files within the same file system. With

hard links, the same data can have two different file names in the file system.
• Symbolic links point to other path names on any file system.
• Sockets in the file system enable local communication between two pro-

cesses.

1.8.1  File Descriptors and File System Calls

Processes interface with files through file related system calls. The file-related sys-
tem calls identify files by two means: their path name in the file system and a file
descriptor. A file descriptor is an integer number identifying an open file within a
process. Each process has a table of open files, starting at file descriptor 0 and pro-
gressing upward as more files are opened. A file descriptor can be obtained with
the open() system call, which opens a file named by a path name and returns a
file descriptor identifying the open file.

fd = open("/etc/passwd",flag, mode);

etc sbin bin dev usr

  /

opt

passwd  ls lib adm

 Figure 1.7 Files Organized in a Hierarchy of Directories

File systems can be
mounted upon other
directories to extend
the hierarchy.
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Once a file has been opened, a file descriptor can be used for operations on the file.
The read (2) and write (2) operations provide basic file I/O, along with several
other advanced mechanisms for performing more complex operations. A file
descriptor is eventually closed by the close (2) system call or by the process’s exit.
By default, file descriptors 0, 1, and 2 are opened automatically by the C runtime
library and represent the standard input, standard output, and standard error
streams for a process.

1.8.2  The Virtual File System Framework

Solaris provides a framework under which multiple file system types are imple-
mented: the virtual file system framework. Earlier implementations of UNIX used
a single file system type for all of the mounted file systems; typically, the UFS file
system from BSD UNIX. The virtual file system framework, developed to enable
the network file system (NFS) to coexist with the UFS file system in SunOS 2.0,
became a standard part of System V in SVR4 and Solaris.

Each file system provides file abstractions in the standard hierarchical manner,
providing standard file access interfaces even if the underlying file system imple-
mentation varies. The file system framework allows almost any objects to be
abstracted as files and file systems. Some file systems store file data on stor-
age-based media, whereas other implementations abstract objects other than stor-
age as files. For example, the procfs file system abstracts the process tree, where
each file in the file system represents a process in the process tree. We can catego-
rize Solaris file systems into the following groups:

• Storage Based — Regular file systems that provide facilities for persistent
storage and management of data. The Solaris UFS and PC/DOS file systems
are examples.

• Network File Systems — File systems that provide files which appear to be
in a local directory structure but are stored on a remote network server; for
example, Sun’s network file system (NFS).

• Pseudo File Systems — File systems that present various abstractions as
files in a file system. The /proc pseudo file system represents the address
space of a process as a series of files.

The framework provides a single set of well-defined interfaces that are file system
independent; the implementation details of each file system are hidden behind
these interfaces. Two key objects represent these interfaces: the virtual file, or
vnode, and the virtual file system, or vfs objects. The vnode interfaces implement
file-related functions, and the vfs interfaces implement file system management
functions. The vnode and vfs interfaces call appropriate file system functions
depending on the type of file system being operated on. Figure 1.8 shows the file
system layers. File-related functions are initiated through a system call or from
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another kernel subsystem and are directed to the appropriate file system via the
vnode/vfs  layer.

Table 1-2 summarizes the major file system types that are implemented in Solaris.

Table 1-2 File Systems Available in Solaris File System Framework

File
System

Type Device Description

ufs Regular Disk UNIX Fast File system, default in
Solaris

pcfs Regular Disk MS-DOS file system
hsfs Regular Disk High Sierra file system (CD-ROM)
tmpfs Regular Memory Uses memory and swap
nfs Pseudo Network Network file system
cachefs Pseudo File system Uses a local disk as cache for another

NFS file system
autofs Pseudo File system Uses a dynamic layout to mount

other file systems
specfs Pseudo Device Drivers File system for the /dev  devices

System Call Interface

VFS: File-System-Independent Layer (VFS & VNODE INTERFACES)

UFS PCFS HSFS VxFS NFS PROCFS

re
a

d
()

w
ri
te

()

o
p

e
n

()

cl
o

se
()

m
kd

ir
()

rm
d

ir
()

re
n

a
m

e
()

lin
k(

)

u
n

lin
k(

)

se
e

k(
)

fs
yn

c(
)

io
ct

l(
)

cr
e

a
t(

)

m
o

u
n

t(
)

u
m

o
u

n
t(

)

st
a

tf
s(

)

sy
n

c(
)

VNODE OPERATIONS VFS OPERATIONS

QFS

 Figure 1.8 VFS/Vnode Architecture
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1.9 I/O Architecture

Traditional UNIX implements kernel-resident device drivers to interface with
hardware devices. The device driver manages data transfer and register I/O and
handles device hardware interrupts. A device driver typically has to know inti-
mate details about the hardware device and the layout of buses to which the device
is connected. Solaris extends traditional device driver management functions by
using separate drivers for devices and buses: a device driver controls a device’s
hardware, and a bus nexus driver controls and translates data between two differ-
ent types of buses.

Solaris organizes I/O devices in a hierarchy of bus nexus and instances of
devices, according to the physical connection hierarchy of the devices. The hierar-
chy shown in Figure 1.9 represents a typical Solaris device tree.

procfs Pseudo Kernel /proc  file system representing pro-
cesses

sockfs Pseudo Network File system of socket connections
fdfs Pseudo File Descriptors Allows a process to see its open files

in /dev/fd
fifofs Pseudo Files FIFO file system

Table 1-2 File Systems Available in Solaris File System Framework  (Continued)

File
System

Type Device Description

root
nexus node

pci
nexus node

eisa
nexus node

pcmcia
nexus node

scsi ctlr
nexus node

sd 0
device node

sd 0
device node

ethernet ctlr
device node

 Figure 1.9 The Solaris Device Tree

PCI Bus
serial modem

device node

System Bus

SCSI Bus

SCSI Device Driver (sd)

SCSI Host Adapter
Nexus Driver
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Each bus connects to another bus though a bus nexus. In our example, nexus
drivers are represented by the PCI, EISA, PCMCIA, and SCSI nodes. The SCSI
host adapter is a bus nexus bridging the PCI and SCSI bus it controls, underneath
which the SCSI disk (sd ) device driver implements device nodes for each disk on
the SCSI chain.

The Solaris device driver interface (DDI) hides the implementation specifics of
the platform and bus hierarchy from the device drivers. The DDI provides inter-
faces for registering interrupts, mapping registers, and accessing DMA memory. In
that way, the kernel can interface with the device.

Device drivers are implemented as loadable modules, that is, as separate bina-
ries containing driver code. Device drivers are loaded automatically the first time
their device is accessed.



 2
KERNEL SERVICES
The Solaris kernel manages operating system resources and provides facilities
to user processes. In this chapter we explore how the kernel implements these ser-
vices. We begin by discussing the boundary between user programs and kernel
mode, then discuss the mechanisms used to switch between user and kernel mode,
including system calls, traps, and interrupts.

2.1 Access to Kernel Services

The Solaris kernel insulates processes from kernel data structures and hardware
by using two distinct processor execution modes: nonprivileged mode and privi-
leged mode. Privileged mode is often referred to as kernel mode; nonprivileged
mode is referred to as user mode.

In nonprivileged mode, a process can access only its own memory, whereas in
privileged mode, access is available to all of the kernel’s data structures and the
underlying hardware. The kernel executes processes in nonprivileged mode to pre-
vent user processes from accessing data structures or hardware registers that may
affect other processes or the operating environment. Because only Solaris kernel
instructions can execute in privileged mode, the kernel can mediate access to ker-
nel data structures and hardware devices.
27
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If a user process needs to access kernel system services, a thread within the pro-
cess transitions from user mode to kernel mode through a set of interfaces known
as system calls. A system call allows a thread in a user process to switch into ker-
nel mode to perform an OS-defined system service. Figure 2.1 shows an example of
a user process issuing a read() system call. The read() system call executes spe-
cial machine code instructions to change the processor into privileged mode, in
order to begin executing the read() system call’s kernel instructions. While in
privileged mode, the kernel read() code performs the I/O on behalf of the calling
thread, then returns to nonprivileged user mode, after which the user thread con-
tinues normal execution.

 Figure 2.1 Switching into Kernel Mode via System Calls

2.2 Entering Kernel Mode

In addition to entering through system calls, the system can enter kernel mode for
other reasons, such as in response to a device interrupt, or to take care of a situa-
tion that could not be handled in user mode. A transfer of control to the kernel is
achieved in one of three ways:

• Through a system call
• As the result of an interrupt
• As the result of a processor trap

We defined a system call as the mechanism by which a user process requests a ker-
nel service, for example, to read from a file. System calls are typically initiated
from user mode by either a trap instruction or a software interrupt, depending on
the microprocessor and platform. On SPARC based platforms, system calls are ini-
tiated by issuing a specific trap instruction in a C library stub.

User Mode

Kernel Mode

User

Process

System Call Interface

File System

read()

I/O

Hardware



Entering Kernel Mode 29
An interrupt is a vectored transfer of control into the kernel, typically initiated
by a hardware device, for example, a disk controller signalling the completion of an
I/O. Interrupts can also be initiated from software. Hardware interrupts typically
occur asynchronously to the currently executing thread, and they occur in inter-
rupt context.

A trap is also a vectored transfer of control into the kernel, initiated by the pro-
cessor. The primary distinction between traps and interrupts is this: Traps typi-
cally occur as a result of the current executing thread, for example, a
divide-by-zero error or a memory page fault; interrupts are asynchronous events,
that is, the source of the interrupt is something unrelated to the currently execut-
ing thread. On SPARC processors, the distinction is somewhat blurred, since a
trap is also the mechanism used to initiate interrupt handlers.

2.2.1  Context

A context describes the environment for a thread of execution. We often refer to
two distinct types of context: an execution context (thread stacks, open file lists,
resource accounting, etc.) and a virtual memory context (the virtual-to-physical
address mappings).

2.2.1.1  Execution Context

Threads in the kernel can execute in process, interrupt, or kernel context.

• Process Context — In the process context, the kernel thread acts on behalf
of the user process and has access to the process’s user area (uarea), and pro-
cess structures for resource accounting. The uarea (struct u ) is a special
area within the process that contains process information of interest to the
kernel: typically, the process’s open file list, process identification informa-
tion, etc. For example, when a process executes a system call, a thread within
the process transitions into kernel mode and then has access to the uarea of
the process’s data structures, so that it can pass arguments, update system
time usage, etc.

• Interrupt Context — Interrupt threads execute in an interrupt context.
They do not have access to the data structures of the process or thread they
interrupted. Interrupts have their own stack and can access only kernel data
structures.

• Kernel Context — Kernel management threads run in the kernel context.
In kernel context, system management threads share the kernel’s environ-
ment with each other. Kernel management threads typically cannot access
process-related data. Examples of kernel management threads are the page
scanner and the NFS server.

2.2.1.2  Virtual Memory Context

A virtual memory context is the set of virtual-to-physical address translations that
construct a memory environment. Each process has its own virtual memory con-
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text. When execution is switched from one process to another during a scheduling
switch, the virtual memory context is switched to provide the new process’s vir-
tual memory environment.

On Intel and older SPARC architectures, each process context has a portion of
the kernel’s virtual memory mapped within it, so that a virtual memory context
switch to the kernel’s virtual memory context is not required when transitioning
from user to kernel mode during a system call. On UltraSPARC, features of the
processor and memory management unit allow fast switching between virtual
memory contexts; in that way, the process and kernel can have separate virtual
memory contexts. See “Virtual Address Spaces” on page 130 and “Kernel Virtual
Memory Layout” on page 205 for a detailed discussion of process and kernel
address spaces.

2.2.2  Threads in Kernel and Interrupt Context

In addition to providing kernel services through system calls, the kernel must also
perform system-related functions, such as responding to device I/O interrupts, per-
forming some routine memory management, or initiating scheduler functions to
switch execution from one kernel thread to another.

• Interrupt Handlers — Interrupts are directed to specific processors, and on
reception, a processor stops executing the current thread, context-switches
the thread out, and begins executing an interrupt handling routine. Kernel
threads handle all but high-priority interrupts. Consequently, the kernel can
minimize the amount of time spent holding critical resources, thus providing
better scalability of interrupt code and lower overall interrupt response time.
We discuss on kernel interrupts in more detail in “Interrupts” on page 38.

• Kernel Management Threads — The Solaris kernel, just like a process,
has several of its own threads of execution to carry out system management
tasks (the memory page scanner and NFS server are examples). Solaris ker-
nel management threads do not execute in a process’s execution context.
Rather, they execute in the kernel’s execution context, sharing the kernel exe-
cution environment with each other. Solaris kernel management threads are
scheduled in the system (SYS) scheduling class at a higher priority than most
other threads on the system.

Figure 2.2 shows the entry paths into the kernel for processes, interrupts, and
threads.
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 Figure 2.2 Process, Interrupt, and Kernel Threads

2.2.3  UltraSPARC I & II Traps

The SPARC processor architecture uses traps as a unified mechanism to handle
system calls, processor exceptions, and interrupts. A SPARC trap is a procedure
call initiated by the microprocessor as a result of a synchronous processor excep-
tion, an asynchronous processor exception, a software-initiated trap instruction, or
a device interrupt.

Upon receipt of a trap, the UltraSPARC I & II processor enters privileged mode
and transfers control to the instructions, starting at a predetermined location in a
trap table. The trap handler for the type of trap received is executed, and once the
interrupt handler has finished, control is returned to the interrupted thread. A
trap causes the hardware to do the following:

• Save certain processor state (program counters, condition code registers, trap
type etc.)

• Enter privileged execution mode
• Begin executing code in the corresponding trap table slot

When an UltraSPARC trap handler processing is complete, it issues a SPARC DONE
or RETRY instruction to return to the interrupted thread.
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The UltraSPARC I & II trap table is an in-memory table that contains the first
eight instructions for each type of trap. The trap table is located in memory at the
address stored in the trap table base address register (TBA), which is initialized
during boot. Solaris places the trap table at the base of the kernel (known as ker-
nelbase ) in a locked-down (non-pageable) 4-Mbyte page so that no mem-
ory-related traps (page faults or TLB misses) will occur during execution of
instructions in the trap table. (For a detailed kernel memory map, see Appendix B,
“Kernel Virtual Address Maps”.")

2.2.3.1  UltraSPARC I & II Trap Types

The trap table contains one entry for each type of trap and provides a specific han-
dler for each trap type. The UltraSPARC I & II traps can be categorized into the
following broad types:

• Processor resets — Power-on reset, machine resets, software-initiated
resets

• Memory management exceptions — MMU page faults, page protection
violations, memory errors, misaligned accesses, etc.

• Instruction exceptions — Attempts to execute privileged instructions from
nonprivileged mode, illegal instructions, etc.

• Floating-point exceptions — Floating-point exceptions, floating-point
mode instruction attempted when floating point unit disabled, etc.

• SPARC register management — Traps for SPARC register window spill-
ing, filling, or cleaning.

• Software-initiated traps — Traps initiated by the SPARC trap instruction
(Tcc); primarily used for system call entry in Solaris.

Table 2-1 shows the UltraSPARC I & II trap types, as implemented in Solaris.

Table 2-1 Solaris UltraSPARC I & II Traps

Trap Definition Trap Type Priority
Power-on reset 001 0
Watchdog reset 002 1
Externally initiated reset 003 1
Software-initiated reset 004 1
RED state exception 005 1
Reserved 006...007 n/a
Instruction access exception 008 5
Instruction access MMU miss 009 2
Instruction access error 00A 3
Reserved 00B…00F n/a
Illegal instruction 010 7
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2.2.3.2  UltraSPARC I & II Trap Priority Levels

Each UltraSPARC I & II trap has an associated priority level. The processor’s trap
hardware uses the level to decide which trap takes precedence when more than
one trap occurs on a processor at a given time. When two or more traps are pend-
ing, the highest-priority trap is taken first (0 is the highest priority).

Interrupt traps are subject to trap priority precedence. In addition, interrupt
traps are compared against the processor interrupt level (PIL). The UltraSPARC I
& II processor will only take an interrupt trap that has an interrupt request level

Attempt to execute privileged instruction 011 6
Unimplemented load instruction 012 6
Unimplmeneted store instruction 013 6
Reserved 014…01F n/a
Floating-point unit disabled 020 8
Floating-point exception ieee754 021 11
Floating-point exception – other 022 11
Tag overflow 023 14
SPARC register window clean 024…027 10
Division by zero 028 15
Internal processor error 029 4
Data access exception 030 12
Data access MMU miss 031 12
Data access error 032 12
Data access protection 033 12
Memory address not aligned 034 10
Load double memory address not aligned 035 10
Store double memory address not aligned 036 10
Privileged action 037 11
Load quad memory address not aligned 038 10
Store quad memory address not aligned 039 10
Reserved 03A…03F n/a
Asynchronous data error 040 2
Interrupt level n, where n=1...15 041…04F 32-n
Reserved 050…05F n/a
Vectored interrupts 060…07F Int. Specific
SPARC register window overflows 080…0BF 9
SPARC register window underflows 0C0…0FF 9
Trap instructions Tcc 100…17F 16
Reserved 180…1FF n/a

Table 2-1 Solaris UltraSPARC I & II Traps  (Continued)

Trap Definition Trap Type Priority
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greater than that stored in the processor’s PIL register. We discuss this behavior in
more detail in “Interrupts” on page 38.

2.2.3.3  UltraSPARC I & II Trap Levels

The UltraSPARC I & II processor introduced nested traps, that is, a trap can be
received while another trap is being handled. Prior SPARC implementations could
not handle nested traps (a “watchdog reset” occurs on pre-UltraSPARC processors
if a trap occurs while the processor is executing a trap handler). Also introduced
was the notion of trap levels to describe the level of trap nesting. The nested traps
have five levels, starting at trap level 0 (normal execution, no trap) through trap
level 4 (trap level 4 is actually an error handling state and should not be reached
during normal processing).

When an UltraSPARC I & II trap occurs, the CPU increments the trap level
(TL). The most recent processor state is saved on the trap stack, and the trap han-
dler is entered. On exit from the handler, the trap level is decremented.

UltraSPARC I & II also implements an alternate set of global registers for each
trap level. Those registers remove most of the overhead associated with saving
state, making it very efficient to move between trap levels.

2.2.3.4  UltraSPARC I & II Trap Table Layout

The UltraSPARC I & II trap table is halved: the lower half contains trap handlers
for traps taken at trap level 0, and the upper half contains handlers for traps
taken when the trap level is 1 or greater. We implement separate trap handlers for
traps taken at trap level greater than zero (i.e., we are already handling a trap)
because not all facilities are available when a trap is taken within a trap.

For example, if a trap handler at trap level 0 takes a memory-related trap (such
as a translation miss), the trap handler can assume a higher-level trap handler
will take care of the trap; but a higher-level trap handler cannot always make the
same assumption. Each half of the trap table contains 512 trap handler slots, one
for each trap type shown in Table 2-1.

Each half of the trap table is further divided into two sections, each of which
contains 256 hardware traps in the lower section, followed by 256 software traps in
the upper section (for the SPARC Tcc software trap instructions). Upon receipt of
a trap, the UltraSPARC I & II processor jumps to the instructions located in the
trap table at the trap table base address (set in the TBA register) plus the offset of
the trap level and trap type. There are 8 instructions (32 bytes) at each slot in the
table; hence, the trap handler address is calculated as follows:

TL = 0: trap handler address = TBA + (trap type x 32)

TL > 0: trap handler address = TBA + 512 + (trap type x 32)

As a side note, space is reserved in the trap table so that trap handlers for SPARC
register clean, spill, and fill (register window operations) can actually be longer
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than 8 instructions. This allows branchless inline handlers to be implemented such
that the entire handler fits within the trap table slot.

Figure 2.3 shows the UltraSPARC I & II trap table layout.

 Figure 2.3 UltraSPARC I & II Trap Table Layout

2.2.3.5  Software Traps
Software traps are initiated by the SPARC trap instruction, Tcc . The opcode for
the trap instruction includes a 6-bit software trap number, which indexes into the
software portion of the trap table. Software traps are used primarily for system
calls in the Solaris kernel.

There are three software traps for system calls: one for native system calls, one
for 32-bit system calls (when 32-bit applications are run on a 64-bit kernel), and
one for SunOS 4.x binary compatibility system calls. System calls vector through a
common trap by setting the system call number in a global register and then issu-
ing a trap instruction. We discuss regular systems calls in more detail in “System
Calls” on page 44.

There are also several ultra-fast system calls implemented as their own trap.
These system calls pass their simple arguments back and forth via registers.
Because the system calls don’t pass arguments on the stack, much less of the pro-
cess state needs to be saved during transition into kernel mode, resulting in a
much faster system call implementation. The fast system calls (e.g.,
get_hrestime ) are time-related calls.

Table 2-2 lists UltraSPARC software traps, including ultra-fast system calls.

Hardware Traps

Spill/Fill Traps

Software Traps

Reserved

Hardware Traps

Spill/Fill Traps

Software Traps

Reserved

Trap Level = 0

Trap Level > 0

Trap Table Contents Trap Types

000...07F

080...0FF

100...17F

180...1FF

000...07F

080...0FF

100...17F

180...1FF
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2.2.3.6  A Utility for Trap Analysis

An unbundled tool, trapstat , dynamically monitors trap activity. The tool moni-
tors counts of each type of trap for each processor in the system during an interval
specified as the argument. It is currently implemented on UltraSPARC and Intel
x86 processor architectures, on Solaris 7 and later releases.

You can download trapstat from the website for this book:
http://www.solarisinternals.com . Simply untar the archive and install the
driver with the add_drv  command.

Note: trapstat is not supported by Sun. Do not use it on production machines
because it dynamically loads code into the kernel.

Table 2-2 UltraSPARC Software Traps

Trap Definition Trap Type
Value

Priority

Trap instruction (SunOS 4.x syscalls) 100 16
Trap instruction (user breakpoints) 101 16
Trap instruction (divide by zero) 102 16
Trap instruction (flush windows) 103 16
Trap instruction (clean windows) 104 16
Trap instruction (do unaligned references) 106 16
Trap instruction (32-bit system call) 108 16
Trap instruction (set trap0) 109 16
Trap instructions (user traps) 110 – 123 16
Trap instructions (get_hrtime ) 124 16
Trap instructions (get_hrvtime ) 125 16
Trap instructions (self_xcall ) 126 16
Trap instructions (get_hrestime ) 127 16
Trap instructions (trace) 130-137 16
Trap instructions (64-bit system call) 140 16

# tar xvf trapstat28.tar
-r-xr-xr-x   0/2     5268 Jan 31 03:57 2000 /usr/bin/trapstat
-rwxrwxr-x   0/1    33452 Feb 10 23:17 2000 /usr/bin/sparcv7/trapstat
-rwxrwxr-x   0/1    40432 Feb 10 23:16 2000 /usr/bin/sparcv9/trapstat
-rw-rw-r--   0/1    21224 Sep  8 17:28 1999 /usr/kernel/drv/trapstat
-rw-r--r--   0/1      188 Aug 31 10:06 1999 /usr/kernel/drv/trapstat.conf
-rw-rw-r--   0/1    37328 Sep  8 17:28 1999 /usr/kernel/drv/sparcv9/trapstat
# add_drv trapstat
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Once trapstat is installed, use it to analyze the traps taken on each processor
installed in the system.

The example above shows the traps taken on a two-processor Ultra-
SPARC-II-based system. The first column shows the trap type, followed by an
ASCII description of the trap type. The remaining columns are the trap counts for
each processor.

We can see that most trap activities in the SPARC are register clean, spill, and
fill traps—they perform SPARC register window management. The level-1 through
level 14 and int-vec rows are the interrupt traps. The iltb-miss, dtlb-miss, and
dtlb-prot rows are the UltraSPARC memory management traps, which occur each
time a TLB miss or protection fault occurs. (More on UltraSPARC memory man-
agement in “The UltraSPARC-I and -II HAT” on page 193). At the bottom of the
output we can see the system call trap for 32-bit systems calls and two special
ultra-fast system calls (getts  and gethrtime ), which each use their own trap.

The SPARC V9 Architecture Manual [30] provides a full reference for the imple-
mentation of UltraSPARC traps. We highly recommend this text for specific imple-
mentation details on the SPARC V9 processor architecture.

# trapstat 3
vct  name            |   cpu0   cpu1
---------------------+--------------
 24  cleanwin        |   3636   4285
 41  level-1         |     99      1
 45  level-5         |      1      0
 46  level-6         |     60      0
 47  level-7         |     23      0
 4a  level-10        |    100      0
 4d  level-13        |     31     67
 4e  level-14        |    100      0
 60  int-vec         |    161     90
 64  itlb-miss       |   5329  11128
 68  dtlb-miss       |  39130  82077
 6c  dtlb-prot       |      3      2
 84  spill-1-normal  |   1210    992
 8c  spill-3-normal  |    136    286
 98  spill-6-normal  |   5752  20286
 a4  spill-1-other   |    476   1116
 ac  spill-3-other   |   4782   9010
 c4  fill-1-normal   |   1218    752
 cc  fill-3-normal   |   3725   7972
 d8  fill-6-normal   |   5576  20273
103  flush-wins      |     31      0
108  syscall-32      |   2809   3813
124  getts           |   1009   2523
127  gethrtime       |   1004    477
---------------------+--------------
ttl                  |  76401 165150
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2.3 Interrupts

An interrupt is the mechanism that a device uses to signal the kernel that it needs
attention and some immediate processing is required on behalf of that device.
Solaris services interrupts by context-switching out the current thread running on
a processor and executing an interrupt handler for the interrupting device. For
example, when a packet is received on a network interface, the network controller
initiates an interrupt to begin processing the packet.

2.3.1  Interrupt Priorities

Solaris assigns priorities to interrupts to allow overlapping interrupts to be han-
dled with the correct precedence; for example, a network interrupt can be config-
ured to have a higher priority than a disk interrupt.

The kernel implements 15 interrupt priority levels: level 1 through level 15,
where level 15 is the highest priority level. On each processor, the kernel can mask
interrupts below a given priority level by setting the processor’s interrupt level.
Setting the interrupt level blocks all interrupts at the specified level and lower.
That way, when the processor is executing a level 9 interrupt handler, it does not
receive interrupts at level 9 or below; it handles only higher-priority interrupts.

Interrupts that occur with a priority level at or lower than the processor’s inter-
rupt level are temporarily ignored. An interrupt will not be acknowledged by a pro-
cessor until the processor’s interrupt level is less than the level of the pending
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interrupt handler
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is one clock interrupt
thread systemwide.

 Figure 2.4 Solaris Interrupt Priority Levels
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interrupt. More important interrupts have a higher priority level to give them a
better chance to be serviced than lower priority interrupts.

Figure 2.4 illustrates interrupt priority levels.

2.3.1.1  Interrupts as Threads

Interrupt priority levels can be used to synchronize access to critical sections used
by interrupt handlers. By raising the interrupt level, a handler can ensure exclu-
sive access to data structures for the specific processor that has elevated its prior-
ity level. This is in fact what early, uniprocessor implementations of UNIX systems
did for synchronization purposes.

But masking out interrupts to ensure exclusive access is expensive; it blocks
other interrupt handlers from running for a potentially long time, which could lead
to data loss if interrupts are lost because of overrun. (An overrun condition is one
in which the volume of interrupts awaiting service exceeds the system’s ability to
queue the interrupts.) In addition, interrupt handlers using priority levels alone
cannot block, since a deadlock could occur if they are waiting on a resource held by
a lower-priority interrupt.

For these reasons, the Solaris kernel implements most interrupts as asynchro-
nously created and dispatched high-priority threads. This implementation allows
the kernel to overcome the scaling limitations imposed by interrupt blocking for
synchronizing data access and thus provides low-latency interrupt response times.

Interrupts at priority 10 and below are handled by Solaris threads. These inter-
rupt handlers can then block if necessary, using regular synchronization primi-
tives such as mutex locks. Interrupts, however, must be efficient, and it is too
expensive to create a new thread each time an interrupt is received. For this rea-
son, each processor maintains a pool of partially initialized interrupt threads, one
for each of the lower 9 priority levels plus a systemwide thread for the clock inter-
rupt. When an interrupt is taken, the interrupt uses the interrupt thread’s stack,
and only if it blocks on a synchronization object is the thread completely initial-
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ized. This approach, exemplified in Figure 2.5, allows simple, fast allocation of
threads at the time of interrupt dispatch.

 Figure 2.5 Handling Interrupts with Threads

Figure 2.5 depicts a typical scenario when an interrupt with priority 9 or less
occurs (level 10 clock interrupts are handled slightly differently). When an inter-
rupt occurs, the interrupt level is raised to the level of the interrupt to block subse-
quent interrupts at this level (and lower levels). The currently executing thread is
interrupted and pinned to the processor. A thread for the priority level of the inter-
rupt is taken from the pool of interrupt threads for the processor and is con-
text-switched in to handle the interrupt.

The term pinned refers to a mechanism employed by the kernel that avoids con-
text switching out the interrupted thread. The executing thread is pinned under
the interrupt thread. The interrupt thread “borrows” the LWP from the executing
thread. While the interrupt handler is running, the interrupted thread is pinned to
avoid the overhead of having to completely save its context; it cannot run on any
processor until the interrupt handler completes or blocks on a synchronization
object. Once the handler is complete, the original thread is unpinned and resched-
uled.

If the interrupt handler thread blocks on a synchronization object (e.g., a mutex
or condition variable) while handling the interrupt, it is converted into a complete
kernel thread capable of being scheduled. Control is passed back to the inter-
rupted thread, and the interrupt thread remains blocked on the synchronization
object. When the synchronization object is unblocked, the thread becomes runna-
ble and may preempt lower-priority threads to be rescheduled.

The processor interrupt level remains at the level of the interrupt, blocking
lower-priority interrupts, even while the interrupt handler thread is blocked. This
prevents lower-priority interrupt threads from interrupting the processing of
higher-level interrupts. While interrupt threads are blocked, they are pinned to
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the processor they initiated on, guaranteeing that each processor will always have
an interrupt thread available for incoming interrupts.

Level 10 clock interrupts are handled in a similar way, but since there is only
one source of clock interrupt, there is a single, systemwide clock thread. Clock
interrupts are discussed further in “The System Clock” on page 54.

2.3.1.2  Interrupt Thread Priorities

Interrupts that are scheduled as threads share global dispatcher priorities with
other threads. See Chapter 9, “The Solaris Kernel Dispatcher”” for a full descrip-
tion of the Solaris dispatcher. Interrupt threads use the top ten global dispatcher
priorities, 160 to 169. Figure 2.6 shows the relationship of the interrupt dis-
patcher priorities with the real-time, system (kernel) threads and the timeshare
and interactive class threads.

 Figure 2.6 Interrupt Thread Global Priorities

2.3.1.3  High-Priority Interrupts

Interrupts above priority 10 block out all lower-priority interrupts until they com-
plete. For this reason, high-priority interrupts need to have an extremely short
code path to prevent them from affecting the latency of other interrupt handlers
and the performance and scalability of the system. High-priority interrupt threads
also cannot block; they can use only the spin variety of synchronization objects.
This is due to the priority level the dispatcher uses for synchronization. The dis-
patcher runs at level 10, thus code running at higher interrupt levels can not enter
the dispatcher. High-priority threads typically service the minimal requirements of
the hardware device (the source of the interrupt), then post down a lower-priority
software interrupt to complete the required processing.
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2.3.1.4  UltraSPARC Interrupts

On UltraSPARC systems (sun4u), the intr_vector[] array is a single, system-
wide interrupt table for all hardware and software interrupts, as shown in Figure
2.7.

 Figure 2.7 Interrupt Table on sun4u Architectures

Interrupts are added to the array through an add_ivintr() function. (Other
platforms have a similar function for registering interrupts.) Each interrupt regis-
tered with the kernel has a unique interrupt number that locates the handler
information in the interrupt table when the interrupt is delivered. The interrupt
number is passed as an argument to add_ivintr() , along with a function pointer
(the interrupt handler, iv_handler ), an argument list for the handler (iv_arg ),
and the priority level of the interrupt (iv_pil ).

Solaris 2.5.1 and Solaris 2.6 allow for unsafe device drivers—drivers that have
not been made multiprocessor safe through the use of locking primitives. For
unsafe drivers, a mutex lock locks the interrupt entry to prevent multiple threads
from entering the driver’s interrupt handler.

Solaris 7 requires that all drivers be minimally MP safe, dropping the require-
ment for a lock on the interrupt table entry. The iv_pending field is used as part
of the queueing process; generated interrupts are placed on a per-processor list of
interrupts waiting to be processed. The pending field is set until a processor pre-
pares to field the interrupt, at which point the pending  field is cleared.

A kernel add_softintr() function adds software-generated interrupts to the
table. The process is the same for both functions: use the interrupt number passed
as an argument as an index to the intr_vector[] array, and add the entry. The
size of the array is large enough that running out of array slots is unlikely.

2.3.2  Interrupt Monitoring

You can use the mpstat (1M) and vmstat (1M) commands to monitor interrupt
activity on a Solaris system. mpstat (1M) provides interrupts-per-second for each
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CPU in the intr column, and interrupts handled on an interrupt thread (low-level
interrupts) in the ithr column.

2.3.3  Interprocessor Interrupts and Cross-Calls

The kernel can send an interrupt or trap to another processor when it requires
another processor to do some immediate work on its behalf. Interprocessor inter-
rupts are delivered through the poke_cpu() function; they are used for the fol-
lowing purposes:

• Preempting the dispatcher — A thread may need to signal a thread run-
ning on another processor to enter kernel mode when a preemption is
required (initiated by a clock or timer event) or when a synchronization object
is released. Chapter 9, “The Dispatcher” further discusses preemption.

• Delivering a signal — The delivery of a signal may require interrupting a
thread on another processor.

• Starting/stopping /proc threads — The /proc infrastructure uses inter-
processor interrupts to start and stop threads on different processors.

Using a similar mechanism, the kernel can also instruct a processor to execute a
specific low-level function by issuing a processor-to-processor cross-call. Cross-calls
are typically part of the processor-dependent implementation. UltraSPARC ker-
nels use cross-calls for two purposes:

• Implementing interprocessor interrupts — As discussed above.
• Maintaining virtual memory translation consistency — Implementing

cache consistency on SMP platforms requires the translation entries to be
removed from the MMU of each CPU that a thread has run on when a vir-
tual address is unmapped. On UltraSPARC, user processes issuing an unmap
operation make a cross-call to each CPU on which the thread has run, to
remove the TLB entries from each processor’s MMU. Address space unmap
operations within the kernel address space make a cross-call to all proces-
sors for each unmap operation.

Both cross-calls and interprocessor interrupts are reported by mpstat(1M) in the
xcal column as cross-calls per second.

# mpstat 3
CPU minf mjf xcal intr ithr  csw icsw migr smtx  srw syscl  usr sys  wt idl
  0    5   0    7  39   12   250   17    9   18    0   725    4   2   0  94
  1    4   0   10  278   83   275   40    9   40    0   941    4   2   0  93

# mpstat 3
CPU minf mjf xcal   intr ithr  csw icsw migr smtx  srw syscl  usr sys  wt idl
  0    0   0  6    607  246 1100  174   82   84    0  2907   28   5   0  66
  1    0   0  2   218    0 1037  212   83   80    0  3438   33   4   0  62
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High numbers of reported cross-calls can result from either of the activities men-
tioned in the preceding section—most commonly, from kernel address space unmap
activity caused by file system activity.

2.4 System Calls

Recall from “Access to Kernel Services” on page 27, system calls are interfaces call-
able by user programs in order to have the kernel perform a specific function (e.g.,
opening a file) on behalf of the calling thread. System calls are part of the applica-
tion programming interfaces (APIs) that ship with the operating system; they are
documented in Section 2 of the manual pages. The invocation of a system call
causes the processor to change from user mode to kernel mode. This change is
accomplished on SPARC systems by means of the trap mechanism previously dis-
cussed.

2.4.1  Regular System Calls

System calls are referenced in the system through the kernel sysent table, which
contains an entry for every system call supported on the system. The sysent table
is an array populated with sysent structures, each structure representing one
system call, as illustrated in Figure 2.8.

 Figure 2.8 The Kernel System Call Entry (sysent ) Table

The array is indexed by the system call number, which is established in the
/etc/name_to_sysnum file. Using an editable system file provides for adding sys-
tem calls to Solaris without requiring kernel source and a complete kernel build.
Many system calls are implemented as dynamically loadable modules that are
loaded into the system when the system call is invoked for the first time. Loadable
system calls are stored in the /kernel/sys  and /usr/kernel/sys  directories.

The system call entry in the table provides the number of arguments the sys-
tem call takes (sy_narg ), a flag field (sy_flag ), and a reader/writer lock

sysent
sy_narg
sy_flags
(sy_call())
sy_lock
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(sy_lock ) for loadable system calls. The system call itself is referenced through a
function pointer: sy_call  or sy_callc .

sy_call represents an entry for system calls and uses the older uap pointer con-
vention, maintained here for binary compatibility with older version of Solaris.
sy_callc is the function pointer for the more recent argument-passing implemen-
tation. The newer C style argument passing has shown significant overall perfor-
mance improvements in system call execution—on the order of 30 percent in some
cases.

Historical Aside: The fact that there are two entries for the system call func-
tions is the result of a rewriting of the system call argument-passing imple-
mentation, an effort that first appeared in Solaris 2.4. Earlier Solaris versions
passed system call arguments in the traditional Unix way: bundling the argu-
ments into a structure and passing the structure pointer (uap is the historical
name in Unix implementations and texts; it refers to a user argument pointer).
Most of the system calls in Solaris have been rewritten to use the C language
argument-passing convention implemented for function calls. Using that con-
vention provided better overall system call performance because the code can
take advantage of the argument-passing features inherent in the register win-
dow implementation of SPARC processors (using the in registers for argument
passing—refer to [31] for a description of SPARC register windows).

main()
int fd;
int bytes;
fd=open(“file”, O_RDWR);

if (fd == -1) {
perror(“open”);
exit(-1);

} else {
bytes=read(fd,buf,.

}
}
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 Figure 2.9 System Call Execution
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The execution of a system call results in the software issuing a trap instruction,
which is how the kernel is entered to process the system call. The trap handler for
the system call is entered, any necessary preprocessing is done, and the system
call is executed on behalf of the calling thread. The flow is illustrated in Figure 2.9.

When the trap handler is entered, the trap code saves a pointer to the CPU
structure of the CPU on which the system call will execute, saves the return
address, and increments a system call counter maintained on a per-CPU basis. The
number of system calls per second is reported by mpstat (1M) (syscl column) for
per-CPU data; systemwide, the number is reported by vmstat (1M) (sy column).

Two flags in the kernel thread structure indicate that pre-system call or
post-system call processing is required. The t_pre_sys flag (preprocessing) is set
for things like truss (1) command support (system call execution is being traced)
or microstate accounting being enabled. Post-system-call work (t_post_sys ) may
be the result of /proc process tracing, profiling enabled for the process, a pending
signal, or an exigent preemption. In the interim between pre- and postprocessing,
the system call itself is executed.

2.4.2  Fast Trap System Calls

The overhead of the system call framework is nontrivial, that is, there is some
inherent latency with all system calls because of the system call setup process we
just discussed. In some cases, we want to be able to have fast, low-latency access to
information, such as high-resolution time, that can only be obtained in kernel
mode. The Solaris kernel provides a fast system call framework so that user pro-
cesses can jump into protected kernel mode to do minimal processing and then
return, without the overhead of the full system call framework. This framework
can only be used when the processing required in the kernel does not significantly
interfere with registers and stacks. Hence, the fast system call does not need to
save all the state that a regular system call does before it executes the required
functions.

Only a few fast system calls are implemented in Solaris versions up to Solaris 7:
gethrtime() , gethrvtime() , and gettimeofday() . These functions return
time of day and processor cpu time. They simply trap into the kernel to read a sin-
gle hardware register or memory location and then return to user mode.

Table 2-3 compares the average latency for the getpid() /time() system calls
and two fast system calls. For reference, the latency of a standard function call is
also shown. Times were measured on a 300 MHz Ultra2. Note that the latency of
the fast system calls is about five times lower than that of an equivalent regular
system call.
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2.5 The Kernel Callout Table

The Solaris kernel provides a callout facility for general-purpose, time-based event
scheduling. A system callout table is initialized at boot time, and kernel routines
can place functions on the callout table through the timeout (9F) interface. A call-
out table entry includes a function pointer, optional argument, and clock-tick
value. With each clock interrupt, the tick value is tested and the function is exe-
cuted when the time interval expires. The kernel interface, timeout (9F), is part of
the device driver interface (DDI) specification and is commonly used by device
drivers. Other kernel facilities, such as the page fsflush daemon, which sleeps at
regular intervals, make use of callouts as well.

2.5.1  Solaris 2.6 and 7 Callout Tables
The kernel callout table in Solaris 2.6 and Solaris 7 is laid out as shown in Fig-

ure 2.10.

At boot time, the callout_table array is initialized with pointers to
callout_table structures; the structures are also created at boot time. There are
16 callout tables—8 for each of the two callout types, normal and real-time. Nor-
mal callouts are those callout entries created with a timeout (9F) call. The kernel
also supports real-time callouts, created with the internal realtime_timeout()
function. Real-time callouts are handled more expediently than are normal call-
outs through a soft interrupt mechanism, whereas normal callouts are subject to
scheduling latency. Once the callout mechanism has executed the function placed
on the callout queue, the callout entry is removed.

Each callout entry has a unique callout ID, c_xid , the extended callout ID. The
callout ID contains the table ID, indicating which callout table the callout belongs
to, a bit indicating whether this is a short-term or long-term callout, and a run-
ning counter.

The callout ID name space is partitioned into two pieces for short-term and
long-term callouts. (A long-term callout is defined as a callout with a tick counter
greater than 16,384, a value derived through testing and monitoring of real pro-

Table 2-3 System Call Latency

System Call Latency (ns)
getpid() 2138
time() 2134
gethrtime() 320
gethrvtime() 413
Standard C function call 93
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duction systems.) This partitioning prevents collisions on the callout ID, which can
result from the high volume of timeout (9f) calls typically generated by a running
system. It’s possible to run out of unique callout IDs, so IDs can be recycled. For
short-term callouts, ID recycling is not a problem; a particular callout will likely
have been removed from the callout table before its ID gets reused. A long-term
callout could collide with a new callout entry reusing its ID.

High-volume, short-term callout traffic is handled on a callout table with
short-term callouts, and the relatively few long-term callouts are maintained on
their own callout table. The callout table maintains a ct_short_id and
ct_long_id , to determine if a callout table is supporting long-term or short-term
callout entries.

The short and long IDs are set to an initial value at boot time in each callout table
structure, with short IDs ranging from 0x10000000 to 0x1000000f and long IDs
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 Figure 2.10 Solaris 2.6 and Solaris 7 Callout Tables
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ranging from 0x30000000 to 0x3000000f. The other callout table structure fields
set at boot time are the ct_type field (eight each of normal or real-time) and the
ct_runtime and ct_curtime , both set to the current lbolt value when the ini-
tialization occurs.

The callout entries, each represented by a callout structure, are linked to a call-
out table through the ct_idhash[] and ct_lbhash[] arrays, where each array
element is either null or a pointer to a callout structure. The callout entries are
stored on each array; one hashes on the callout ID, the other hashes on the lbolt
value. At initialization, the kernel also creates two callout threads with each call-
out table. The callout threads are signalled through a condition variable when the
callout_schedule() function executes (called from the clock handler) if there
are functions with expired timers that need to execute.

As we alluded to, the insertion and removal of callout table entries by the time-
out (9F) function is a regular and frequent occurrence on a running Solaris sys-
tem. The algorithm for placing an entry on the callout queue goes as follows (the
timeout (9F) flow).

• timeout(function_pointer , argument_pointer , time value (delta))
enters timeout_common() , with all the arguments passed to timeout (9F),
along with an index into the callout_table array. The index derivation is
based on the CPU cpu_seqid (sequential ID) field and on the callout type,
where normal callouts are placed on tables indexed between array locations 8
through 15 (real-time callouts, 0 through 7).
Basically, the algorithm causes callout entries to cycle through indexes 8
through 15 as CPU IDs increment; the same CPU will reference the same
index location every time.

• timeout_common() grabs a callout structure from the ct_freelist if one
is available, or the kernel memory allocator allocates a new one.

• The c_func and c_arg fields are set in the callout structure, and the
c_runtime field is set to the sum of the current lbolt value and the passed
timer value.

• timeout_common() establishes the ID in the callout table structure, setting
either the ct_short_id or ct_long_id (if the timer is larger than 16,384,
it’s a long ID).
We saw earlier that the ID fields are initialized at boot time. As callout
entries are added, the algorithm essentially counts up until it wraps around
and starts over again. This process leads to the reuse problem we just dis-
cussed, which is why we have short-term and long-term IDs.

• The c_xid in the callout structure is set to the same ID value as the callout
table ID.
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• The algorithm inserts a callout entry (callout structure) into the callout table
by adding the entry to both the ct_idhash[] and ct_lbhash[] arrays in
the callout table. It derives the array index by hashing on the ID for
ct_idhash[] placement and hashing on the c_runtime value set in the
callout structure for the entry for ct_lbhash[] . If the array index already
has a pointer, the algorithm links the callout structure by means of the next
and prev  pointers.

The callout entry is now established on the callout table, and timeout (9F) returns
the ID to the calling function. The sequence of events for realtime_timeout() is
the same.

The work done when callout_schedule() is called from the clock interrupt
handler essentially happens through multiple loops. The outer loop hits all the
callout tables, and the inner loop hits the callout entries in the table.

• A local function variable set to the current lbolt value is used for entry to
the inner loop, and the callout entries’ c_runtime values determine whether
the callouts are due for execution.

• If the callout is not due or is already running, the code moves on to the next
entry. Otherwise, it’s time for the function in the callout entry to run.

• For normal callout types, a condition variable signal function is set to wake
up one of the callout threads to execute the function. For real-time callouts,
the kernel softcall() function is invoked to generate a soft interrupt,
which will interrupt a processor, resulting in the function executing without
going through the dispatcher.

• Once the callout table is processed in the inner loop, the outer loop moves the
code on to the next callout table. A mutex lock (ct_lock ) is acquired in the
inner loop to prevent another processor from processing the same callout
table at the same time. The mutex is released when the inner loop through
the callout table is completed.

• The callout threads created at initialization (two per callout table) then loop,
waiting for the ct_threadpool condition variable. They’re signalled through
the condition variable when a normal callout entry is due to execute (as
above), at which point they call the callout_execute() function.
callout_execute() is also invoked through the softcall() interrupt
function to run a function placed on a callout table by
realtime_timeout() .
To reiterate, a normal callout can be exposed to some additional latency for
the callout threads to be scheduled once they are signalled by the condition
variable. The softcall() method will force a processor into the
callout_execute()  function sooner through the interrupt facility.
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• callout_execute() will loop again through the callout table, testing the
conditions for function execution. It’s possible that another processor took
care of things in the interim between function calls and lock releases, so the
kernel tests the time values and running flag for the entries in the table
before actually executing the function.

• Assuming that it is time to run, callout_execute() sets the
CALLOUT_EXECUTINGflag in the callout entry’s c_xid field, and the function
is invoked.

• The callout entry is then removed from the callout table, the callout struc-
ture is placed on the freelist (ct_freelist ), and a condition variable is
broadcasted if any threads are sleeping on the c_done condition variable.
This condition variable is part of the callout entry and provides a method of
generating a notification that a function placed on the callout table has exe-
cuted.

The kernel also provides an untimeout (9F) interface, which will remove a call-
out. untimeout (9F) is passed the ID (which was returned from timeout (9F)
when the function was placed on the callout table). The entry is located by means
of the ct_idhash[] array and removed, with the callout structure being added to
the freelist. Callout entries added by realtime_timeout (9F) can also be removed
with untimeout (9F). There is no separate function for the removal of real-time
callouts.

2.5.2  Solaris 2.5.1 Callout Tables

Callout tables in Solaris 2.5.1 are functionally identical to those we described for
Solaris 2.6 and Solaris 7; the implementation is different. Solaris 2.5.1 maintains
two callout tables—one for normal callouts and one for real-time callouts—which
are initialized at boot time. The overall structure of callout tables in Solaris 2.5.1
is illustrated in Figure 2.11.

As you can see, many of the structure fields are identical in name (and func-
tion) to those described previously. The link to each callout table is made with a
callout_state pointer (normal callout table) and an rt_callout_state
pointer (real-time callout table, not shown in the figure, but identical). The tables
implement an array of 256 buckets; each bucket links to a callout structure and
maintains the ID for the entry.

The initialization process happens at boot time, with two distinct setup phases:
one for the normal callout table and one for the real-time callout table. The
cs_bucket[] array of the callout_state structure (the callout table, really) is
implemented as a circular, singly linked list. At initialization, the b_first pointer
is set to point back to itself, and as callouts are added to the bucket, the last call-
out’s c_next will reference the first entry on the bucket. The ID fields represent a
long and a short ID name space, as in the Solaris 2.6 and 7 implementation. These
fields are set to initial values in each bucket head during the init phase.
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The c_xid (extended ID) field in each callout entry has multiple roles: it identi-
fies the callout entry, the callout table (normal or real-time), the bucket ID, and a
flag indicating a long-term callout if that is the case.

The process of placing a function on the callout list by timeout (9F) or
realtime_timeout() is effectively the same as that described for Solaris 2.6 and
Solaris 7. The primary difference is in identifying which bucket, among the 256
possibilities, the callout entry goes in. The bucket selection is relatively random,
where the low-order bits of the sum of the current lbolt value and the tick count
passed with the timeout (9F) call determine the bucket array index. The sum of
lbolt and the tick count is set in the callout entry’s c_runtime field, used later
to determine when it’s time to execute the callout. The callout ID maintained in
the bucket (short or long ID) is set, based on the same criteria used in Solaris 2.6
and Solaris 7—a callout tick count greater than 16,384 (16K) is a long-term call-
out, which of course results in b_long_id getting set. Otherwise, b_short_id is
used.

The remaining functions are algorithmically the same in Solaris 2.5.1 as they
are in Solaris 2.6 and Solaris 7. One salient difference is that the clock interrupt
handler in Solaris 2.5.1 makes two explicit calls to callout_schedule() : the
first for real-time callouts, the second for normal callouts. That aside, normal call-
outs are processed through callout threads, signalled by a condition variable sent

cs_lock
cs_freelist
cs_curtime
cs_runtime
cs_threadpool
cs_ncallout
cs_busyticks
cs_bucket[]

c_next
c_xid
c_runtime
c_func
c_arg
c_executor
c_done

c_next
c_xid
c_runtime
c_func
c_arg
c_executor
c_done

c_next
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c_arg
c_executor
c_done

b_first
b_short_id
b_long_id

b_first
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c_executor
c_done
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256 callout
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 Figure 2.11 Solaris 2.5.1 Callout Tables
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from the callout schedule loop; real-time callouts are handled through the inter-
rupt facility by the softint()  interface.

You can examine the callout table on a running system (all releases) with the
callout function in the crash (1M) utility.

Note that the example output from the callout function in crash (1M) is not a com-
plete listing. Note, too, that the output is from a 64-bit Solaris 7 system, which is
why the ARGUMENT, TIME, and ID columns are 8-byte (64-bit) data types. On a
32-bit kernel, they are 32-bit data types.

Some of the kernel functions that you will consistently find on the callout table
of a running Solaris system include the following.

• polltime — A real-time callout. Set from the poll (2) system call and based
on the poll interval. polltime()  wakes up a thread waiting on a poll event.

• realitexpire — A real-time callout. Used in the real-time interval timer
support when a timer is set. Callout ticks are derived from timer value.
realitexpire()  generates the SIGALRM to the process.

• setrun — A real-time callout. Placed on the callout queue by sleep/wakeup
code (condition variables) to force a thread wakeup when the sleep event has
a timeout value; for example, an aiowait (2) call can specify a maximum tick
count to wait for the I/O to complete. aiowait (2) with a timeout specificity
uses a timed condition variable, which in turn places a setrun() event on
the callout queue to force a thread wakeup if the time expires before the I/O
has completed.

• schedpaging — A normal callout. Part of the pageout subsystem in the VM
system, used to manage the pageout rate.

• mi_timer_fire — A normal callout. Part of the STREAMS-based TCP/IP
protocol support. mi_timer_fire() generates regular message block pro-
cessing through a STREAMS queue.

# /etc/crash
dumpfile = /dev/mem, namelist = /dev/ksyms, outfile = stdout
> callout
FUNCTION                ARGUMENT          TIME              ID
polltime                00000300008df260  00000000006a4971  7ffffffffff761f0
realitexpire            000003000090ed80  00000000006adf39  7ffffffffff79890
setrun                  000002a10034fd60  000000000069bd97  3fffffffff925a31
schedpaging             0000000000000000  000000000069bd0f  3fffffffffb7c618
mi_timer_fire           0000030000a36820  000000000069bd20  3fffffffffb7c628
sigalarm2proc           0000030000974ac0  000000000069be19  3fffffffffb7c648
ts_update               0000000000000000  000000000069bd4c  3fffffffffb7c658
seg_pupdate             0000000000000000  000000000069c139  3fffffffffb7cb88
kmem_update             0000000000000000  000000000069c139  3fffffffffcb3069
.
.
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• sigalarm2proc — A normal callout. The alarm (2) system call places
sigalarm2proc on the callout queue to generate a SIGALRMwhen the timer
expires.

• ts_update — A normal callout. Checks a list of timeshare and interactive
class threads and updates their priority as needed.

• seg_pupdate — A normal callout. Used by the address space segment
reclaim thread to find pagelocked pages that have not been used in a while
and reclaim them.

• kmem_update — A normal callout. Performs low-level kernel memory alloca-
tor management.

This is by no means a complete list of all the kernel functions placed on the callout
queue, and of course you will typically see several of the same functions on the
callout queue at the same time, with different IDs and timeout values.

2.6 The System Clock

The Solaris kernel relies on hardware timer interrupts for general housekeeping
chores that need to be done at regular intervals. For example, the system clock
triggers the dispatcher to recalculate process priorities at regular intervals and
also initiates callout queue processing.

The kernel (software) sets up the programmable interrupt generator (hard-
ware) to generate a clock interrupt at regular intervals, by default 100 times per
second. The clock interrupts at interrupt level 10 (SPARC); nothing else on the sys-
tem generates interrupts at this level. With each clock interrupt, a handler is
entered. It performs the following functions:

• Sets available kernel anon space (anon_free ) value, for tracking and report-
ing.

• Sets free memory (freemem ) value, for tracking and reporting.

• Adjusts the time of day clock for possible jitter.

• Calculates CPU usage (user, system, idle, and wait I/O) and system dispatch
(run queue) queue size.

• Does clock-tick processing for the thread running on the CPU (except the
CPU running the clock interrupt thread) and threads that are exiting. Note
that kernel threads that do not have an associated LWP—kernel service
threads that are an integral part of the operating system—are not subject to
tick processing.
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• Updates the lbolt counter. lbolt counts the number of clock ticks since
boot.

• Processes the kernel callout table (described in the next section).

• If on a one-second interval, calculates kernel swap parameters (free,
reserved, and allocated swap) and adjusts systemwide run queue size and
swap queue size.

Once the clock interrupt handling is completed, the clock interrupt thread is con-
text-switched off the processor, and the thread that was executing when the inter-
rupt occurred resumes.

2.6.1  Process Execution Time Statistics

The CPU usage work and thread tick processing is done on a per-CPU basis; the
code loops through the list of online processors and does the work for each CPU.
Usage information is maintained in the cpu[] array in each CPU’s sysinfo
structure. The four-member cpu[] array stores an integer value, one for each of
USER, SYSTEM, IDLE , and WAIT—the four possible states that the CPU will be in.
A CPU in the QUIESCEDstate is charged with idle time. A CPU running an inter-
rupt thread is charged with system time. A CPU running its idle thread is charged
with idle time unless the cpu_syswait.iowait value is set; in that case, the
CPU is charged wait I/O time.

cpu_syswait.iowait is set in the biowait() routine, which is called from
the file system support code when a buffered I/O is issued (see Part III, The Solaris
File I/O System for specifics on buffered I/O). biowait() is also called from the
disk drivers in the kernel; thus, wait I/O time reflects I/O through the file system
as well as raw disk I/O; wait I/O reflects disk I/O only, and network I/O is not
reflected. The algorithm for calculating wait I/O was flawed in releases prior to
Solaris 7, and CPUs that were idle may be charged incorrectly with wait I/O time.
Finally, if a thread that is not the idle thread or an interrupt thread is running on
a CPU, the state of the thread is checked to determine if the CPU should be
charged with user time (the thread is executing in user mode) or system time.

The last bullet item in the previous section indicates that some of the clock
interrupt processing is not done in every clock interrupt (100 times a second), but
rather at one-second intervals. For the services indicated, one-second granularity
is sufficient.

Tick processing is done for each kernel thread (if that thread is not an interrupt
handler or an operating system kernel thread) running on a CPU. Each kernel
thread maintains a t_pctcpu (percent of CPU time) and t_lbolt value, where
t_pctcpu is used for per-thread usage information (e.g., accounting) and t_lbolt
provides a point of reference for tick processing. The kernel determines whether it
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is necessary to do tick processing for the thread by comparing t_lbolt against
lbolt .

The clock_tick() code is passed the kernel thread ID and invokes the schedul-
ing-class-specific clock-tick function, that is, ts_tick() for timeshare and interac-
tive class threads and rt_tick() for real-time class threads. These functions are
discussed in Chapter 4, “The Kernel Dispatcher.” Briefly, the functions determine if
the thread has used up its time quantum, and they take the thread off the proces-
sor if it has. Back in the clock_tick() function, the following actions are per-
formed.

• The user or system time values in the process and the LWP are incremented,
based on the mode the thread is in (system or user). Note that if a thread is
executing in short bursts between clock samples, not all CPU time will be
accounted for.

• The per-thread interval timers are tested (profiling and virtual timer, enabled
with the setitimer (2) system call), and the appropriate signal—SIGPROFor
SIGVTALRM—is sent if either timer has expired.

• The per-process CPU resource limit is checked (maximum CPU seconds the
process can consume), and if that threshold has been reached, a SIGXCPUis
sent.

• The process memory usage is updated in the uarea u_mem , which reflects the
total address space size of the process.

The update completes the clock-tick processing for the thread.

2.6.2  High-Resolution Clock Interrupts

By default, a system clock interval of 10 milliseconds (100 interrupts per second) is
used. You can set a kernel parameter, hires_tick , in the /etc/system file to
increase the clock interrupt frequency to 1000 interrupts per second (set
hires_tick = 1 in /etc/system ). Increasing the clock frequency results in the
system entering the dispatcher (among other things) more frequently. Exercise
great care if you are considering setting high-resolution ticks—they can reduce
system performance dramatically. As with any system tunable, this setting should
never, ever be made on a production system without extensive testing first.

if (lbolt - t_lbolt) = 0
        no need to do tick processing
else
        set t_pctcpu
        t_lbolt = lbolt
        call clock_tick(current thread)



The System Clock 57
2.6.3  High-Resolution Timer

The kernel also maintains a high-resolution timer for nanosecond-level timing
functions. On UltraSPARC-based systems, the hardware TICK register is used; it is
incremented with every processor clock tick, that is, every 2.5 nanoseconds on a
400 MHz processor. An internal gethrestime() (get high-resolution time) func-
tion is used in a few areas of the kernel where fine-grained time is needed, such as
the support for real-time interval timers (the setitimer (2) system call with the
ITIMER_REAL flag). A gethrtime (3C) interface provides programs with nanosec-
ond-level granularity for timing. The gethrtime (3C) function has an optimized
code path to read the TICK register and return a normalized (converted to nanosec-
onds) value to the calling program.

2.6.4  Time-of-Day Clock

All computer systems—from desktop PCs to high-end multiprocessor systems—
have a clock circuit of some sort. SPARC-based systems include clock circuitry in
the EEPROM area of the hardware (e.g., the Mostek 48T59 clock chip is used on
UltraSPARC-based systems). This Time-of-Day (TOD) clock chip is addressable by
the kernel as part of the firmware address space and has a hardware register spec-
ification; a kernel interface to the TOD hardware is implemented as a TOD device
driver.

The chip itself implements several registers, readable and writable by the ker-
nel through the device driver, that provide multiple counters for the numeric com-
ponents that make up the date and time (e.g., minute-of-the-hour, hour-of-the-day,
day-of-the-week, month-of-the-year, etc.).
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Figure 2.12 illustrates the hardware and software hierarchy for the TOD.

 Figure 2.12 Time-of-Day Clock on SPARC Systems

Each component of a day and time value is stored as a separate counter value in
the clock chip, and each counter increments the next logical value when it reaches
its top value, for example, seconds count values 0–59, then increment minutes and
restart at 0. Executing the date (1) command to set the date calls the stime (2)
system call, which in turn calls the tod_set() device driver interface that sets
the values in the TOD clock hardware.

To comply with industry-standard interfaces (system calls and library rou-
tines), the kernel provides functions for converting the date values read from the
clock hardware to the Unix convention of the number of seconds since the epoch,
and vice versa.
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KERNEL
SYNCHRONIZATION

PRIMITIVES
In this chapter, we continue our discussion of core kernel facilities, with an
examination of the synchronization objects implemented in the Solaris kernel.

3.1 Synchronization

Solaris runs on a variety of different hardware platforms, including multiproces-
sor systems based on both the SPARC and Intel processors. Several multiproces-
sor architectures in existence today offer various trade-offs in performance and
engineering complexity in both hardware and software. The current multiproces-
sor architecture that Solaris supports is the symmetric multiprocessor (SMP) and
shared memory architecture, which implements a single kernel shared by all the
processors and a single, uniform memory address space. To support such an archi-
tecture, the kernel must synchronize access to critical data to maintain data integ-
rity, coherency, and state. The kernel synchronizes access by defining a lock for a
particular kernel data structure or variable and requiring that code reading or
writing the data must first acquire the appropriate lock. The holder of the lock is
required to release the lock once the data operation has been completed.

The synchronization primitives and associated interfaces are used by virtually
all kernel subsystems: device drivers, the dispatcher, process and thread support
code, file systems, etc. Insight into what the synchronization objects are and how
they are implemented is key to understanding one of the core strengths of the
Solaris kernel—scalable performance on multiprocessor systems. An equally
important component to the scalability equation is the avoidance of locks alto-
59
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gether whenever possible. The use of synchronization locks in the kernel is con-
stantly being scrutinized as part of the development process in kernel engineering,
with an eye to minimizing the number of locks required without compromising
data integrity.

Several alternative methods of building parallel multiprocessor systems have
emerged in the industry over the years. So, in the interest of conveying the issues
surrounding the implementation, we need to put things in context. First, we take a
brief look at the different parallel systems architectures that are commercially
available today, and then we turn to the specifics of support for multiprocessor
architectures by the Solaris kernel.

3.2 Parallel Systems Architectures

Multiprocessor (MP) systems from Sun (SPARC-processor-based), as well as sev-
eral Intel-based MP platforms, are implemented as symmetric multiprocessor
(SMP) systems. Symmetric multiprocessor describes a system in which a
peer-to-peer relationship exists among all the processors (CPUs) on the system. A
master processor, defined as the only CPU on the system that can execute operat-
ing system code and field interrupts, does not exist. All processors are equal. The
SMP acronym can also be extended to mean Shared Memory Multiprocessor, which
defines an architecture in which all the processors in the system share a uniform
view of the system’s physical address space and the operating system’s virtual
address space. That is, all processors share a single image of the operating system
kernel. Sun’s multiprocessor systems meet the criteria for both definitions.

Alternative MP architectures alter the kernel’s view of addressable memory in
different ways. Massively parallel processor (MPP) systems are built on nodes that
contain a relatively small number of processors, some local memory, and I/O. Each
node contains its own copy of the operating system; thus, each node addresses its
own physical and virtual address space. The address space of one node is not visi-
ble to the other nodes on the system. The nodes are connected by a high-speed,
low-latency interconnect, and node-to-node communication is done through an
optimized message passing interface. MPP architectures require a new program-
ming model to achieve parallelism across nodes.

The shared memory model does not work since the system’s total address space
is not visible across nodes, so memory pages cannot be shared by threads running
on different nodes. Thus, an API that provides an interface into the message pass-
ing path in the kernel must be used by code that needs to scale across the various
nodes in the system.

Other issues arise from the nonuniform nature of the architecture with respect
to I/O processing, since the I/O controllers on each node are not easily made visi-
ble to all the nodes on the system. Some MPP platforms attempt to provide the
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illusion of a uniform I/O space across all the nodes by using kernel software, but
the nonuniformity of the access times to nonlocal I/O devices still exists.

NUMA and ccNUMA (nonuniform memory access and cache coherent NUMA)
architectures attempt to address the programming model issue inherent in MPP
systems. From a hardware architecture point of view, NUMA systems resemble
MPPs—small nodes with few processors, a node-to-node interconnect, local mem-
ory, and I/O on each node. Note it is not required that NUMA/ccNUMA or MPP
systems implement small nodes (nodes with four or fewer processors). Many imple-
mentations are built that way, but there is no architectural restriction on the node
size.

On NUMA/ccNUMA systems, the operating system software provides a single
system image, where each node has a view of the entire system’s memory address
space. In this way, the shared memory model is preserved. However, the nonuni-
form nature of speed of memory access (latency) is a factor in the performance and
potential scalability of the platform. When a thread executing on a processor node
on a NUMA or ccNUMA system incurs a page fault (references an unmapped mem-
ory address), the latency involved in resolving the page fault varies according to
whether the physical memory page is on the same node of the executing thread or
on a node somewhere across the interconnect. The latency variance can be sub-
stantial. As the level of memory page sharing increases across threads executing
on different nodes, a potentially higher volume of page faults needs to be resolved
from a nonlocal memory segment. This problem adversely affects performance and
scalability.

The three different parallel architectures can be summarized as follows.

• SMP — Symmetric multiprocessor with a shared memory model; single ker-
nel image.

• MPP — Message-based model; multiple kernel images.

• NUMA/ccNUMA — Shared memory model; single kernel image.

Figure 3.1  illustrates the different architectures.

The challenge in building an operating system that provides scalable perfor-
mance when multiple processors are sharing a single image of the kernel and
when every processor can run kernel code, handle interrupts, etc., is to synchro-
nize access to critical data and state information. Scalable performance, or scal-
ability, generally refers to accomplishing an increasing amount of work as more
hardware resources are added to the system. If more processors are added to a
multiprocessor system, an incremental increase in work is expected, assuming suf-
ficient resources in other areas of the system (memory, I/O, network).

To achieve scalable performance, the system must be able to support multiple
processors executing operating system code concurrently. Whether that execution
is in device drivers, interrupt handlers, the threads dispatcher, file system code,
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virtual memory code, etc., is, to a degree, load dependent. Concurrency is key to
scalability.

The preceding discussion on parallel architectures only scratched the surface of
a very complex topic. Entire texts discuss parallel architectures exclusively, you
should refer to them for additional information. See, for example, [11], [21] and
[23].

 Figure 3.1 Parallel Systems Architectures

The difficulty is maintaining data integrity of data structures, kernel variables,
data links (pointers), and state information in the kernel. We cannot, for example,
allow threads running on multiple processors to manipulate pointers to the same
data structure on the same linked list all at the same time. We should prevent one
processor from reading a bit of critical state information (e.g., is a processor
online?) while a thread executing on another processor is changing the same state
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data (e.g., in the process of bringing online a processor that is still in a state tran-
sition).

To solve the problem of data integrity on such systems, the kernel implements
locking mechanisms. It requires that all operating system code be aware of the
number and type of locks that exist in the kernel and comply with the locking hier-
archy and rules for acquiring locks before writing or reading kernel data. It is
worth noting that the architectural issues of building a scalable kernel are not
very different from those of developing a multithreaded application to run on a
shared memory system. Multithreaded applications must also synchronize access
to shared data, using the same basic locking primitives and techniques that are
used in the kernel. Other synchronization problems, such as dealing with inter-
rupts and trap events, exist in kernel code and make the problem significantly
more complex for operating systems development, but the fundamental problems
are the same.

3.3 Hardware Considerations for Locks and Synchronization

Hardware-specific considerations must enter into the implementation of lock prim-
itives on a system. The first consideration has to do with the processor’s instruc-
tion set and the availability of machine instructions suitable for locking code. The
second deals with the visibility of a lock’s state when it is examined by executing
kernel threads.

To understand how these considerations apply to lock primitives, keep in mind
that a lock is a piece of data at a specific location in the system’s memory. In its
simplest form, a lock is a single byte location in RAM. A lock that is set, or held
(has been acquired), is represented by all the bits in the lock byte being 1’s (lock
value 0xFF). A lock that is available (not being held) is the same byte with all 0’s
(lock value 0x00). This explanation may seem quite rudimentary, but is crucial to
understanding the text that follows.

Most modern processors shipping today provide some form of byte-level
test-and-set instruction that is guaranteed to be atomic in nature. The instruction
sequence is often described as read-modify-write, that is, the referenced memory
location (the memory address of the lock) is read, modified, and written back in
one atomic operation. In RISC processors (such as Sun SPARC), reads are load
operations and writes are store operations. An atomic operation is required for con-
sistency. An instruction that has atomic properties means that no other store oper-
ation is allowed between the load and store of the executing instruction. Mutex
and RW lock operations must be atomic, such that when the instruction execution
to get the lock is complete, we either have the lock or have the information we need
to determine that the lock is already being held. Consider what could happen with-
out an instruction that has atomic properties. A thread executing on one processor
could issue a load (read) of the lock, and while it is doing a test operation to deter-
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mine if the lock is held or not, another thread executing on another processor
issues a lock call to get the same lock at the same time. If the lock is not held, both
threads would assume the lock is available and would issue a store to hold the
lock. Obviously, more than one thread cannot own the same lock at the same time,
but that would be the result of such a sequence of events. Atomic instructions pre-
vent such things from happening.

SPARC processors implement memory access instructions that provide atomic
test-and-set semantics for mutual exclusion primitives, as well as instructions that
can force a particular ordering of memory operations (more on the latter feature in
a moment). UltraSPARC processors (the SPARC V9 instruction set) provide three
memory access instructions that guarantee atomic behaviour: ldstub (load and
store unsigned byte), cas (compare and swap), and swap (swap byte locations).
These instructions differ slightly in their behavior and the size of the datum they
operate on.

Figure 3.2 illustrates the ldstub and cas instructions. The swap instruction
(not shown) simply swaps a 32-bit value between a hardware register and a mem-
ory location, similar to what cas does if the compare phase of the instruction
sequence is equal.

The implementation of locking code with the assembly language test-and-set
style of instructions requires a subsequent test instruction on the lock value, which
is retrieved with either a cas  or ldstub  instruction.

For example, the ldstub instruction retrieves the byte value (the lock) from
memory and stores it in the specified hardware register. Locking code must test
the value of the register to determine if the lock was held or available when the
ldstub executed. If the register value is all 1’s, the lock was held, so the code must
branch off and deal with that condition. If the register value is all 0’s, the lock was
not held and the code can progress as being the current lock holder. Note that in
both cases, the lock value in memory is set to all 1’s, by virtue of the behavior of
the ldstub instruction (store 0xFF at designated address). If the lock was already
held, the value simply didn’t change. If the lock was 0 (available), it will now
reflect that the lock is held (all 1’s). The code that releases a lock sets the lock
value to all 0’s, indicating the lock is no longer being held.
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 Figure 3.2 Atomic Instructions for Locks on SPARC

The Solaris lock code uses assembly language instructions when the lock code is
entered. The basic design is such that the entry point to acquire a lock enters an
assembly language routine, which uses either ldstub or cas to grab the lock. The
assembly code is designed to deal with the simple case, meaning that the desired
lock is available. If the lock is being held, a C language code path is entered to deal
with this situation. We describe what happens in detail in the next few sections
that discuss specific lock types.

The second hardware consideration referred to earlier has to do with the visibil-
ity of the lock state to the running processors when the lock value is changed. It is
critically important on multiprocessor systems that all processors have a consis-
tent view of data in memory, especially in the implementation of sychronization
primitives—mutex locks and reader/writer (RW) locks. In other words, if a thread
acquires a lock, any processor that executes a load instruction (read) of that mem-
ory location must retrieve the data following the last store (write) that was issued.
The most recent state of the lock must be globally visible to all processors on the
system.

Modern processors implement hardware buffering to provide optimal perfor-
mance. In addition to the hardware caches, processors also use load and store buff-
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ers to hold data being read from (load) or written to (store) memory, in order to
keep the instruction pipeline running and not have the processor stall waiting for
data or a data write-to-memory cycle. The data hierarchy is illustrated in Figure
3.3.

 Figure 3.3 Hardware Data Hierarchy

The illustration in Figure 3.3 does not depict a specific processor; it is a generic
representation of the various levels of data flow in a typical modern high-end
microprocessor. It is intended to show the flow of data to and from physical mem-
ory from a processor’s main execution units (integer units, floating point units,
etc.).

The sizes of the load/store buffers vary across processor implementations, but
they are typically several words in size. The load and store buffers on each proces-
sor are visible only to the processor they reside on, so a load issued by a processor
that issued the store fetches the data from the store buffer if it is still there. How-
ever, it is theoretically possible for other processors that issue a load for that data
to read their hardware cache or main memory before the store buffer in the
store-issuing processor was flushed. Note that the store buffer we are referring to
here is not the same thing as a level 1 or level 2 hardware instruction and data
cache. Caches are beyond the store buffer; the store buffer is closer to the execu-
tion units of the processor. Physical memory and hardware caches are kept consis-
tent on SMP platforms by a hardware bus protocol. Also, many caches are
implemented as write-through caches (as is the case with the level 1 cache in Sun
UltraSPARC), so data written to cache causes memory to be updated.

The implementation of a store buffer is part of the memory model implemented
by the hardware. The memory model defines the constraints that can be imposed
on the order of memory operations (loads and stores) by the system. Many proces-
sors implement a sequential consistency model, where loads and stores to memory
are executed in the same order in which they were issued by the processor. This

physical memory

level 2
cache

load/store
buffers

level 1
cache

execution
units

level 2
cache

load/store
buffers

level 1
cache

execution
units

level 2
cache

load/store
buffers

level 1
cache

execution
units Processors

lo
ad

s

st
or

es



Hardware Considerations for Locks and Synchronization 67
model has advantages in terms of memory consistency, but there are performance
trade-offs with such a model because the hardware cannot optimize cache and
memory operations for speed. The SPARC architecture specification ([41]) pro-
vides for building SPARC-based processors that support multiple memory models,
the choice being left up to the implementors as to which memory models they wish
to support. All current SPARC processors implement a Total Store Ordering (TSO)
model, which requires compliance with the following rules for loads and stores.

• Loads (reads from memory) are blocking and are ordered with respect to
other loads.

• Stores (writes to memory) are ordered with respect to other stores. Stores
cannot bypass earlier loads.

• Atomic load-stores (ldstub and cas instructions) are ordered with respect to
loads.

The TSO model is not quite as strict as the sequential consistency model but not as
relaxed as two additional memory models defined by the SPARC architecture.
SPARC-based processors also support Relaxed Memory Order (RMO) and Partial
Store Order (PSO), but these are not currently supported by the kernel and not
implemented by any Sun systems shipping today.

A final consideration in data visibility applies also to the memory model and
concerns instruction ordering. The execution unit in modern processors can reor-
der the incoming instruction stream for processing through the execution units.
The goals again are performance and creation of a sequence of instructions that
will keep the processor pipeline full.

The hardware considerations described in this section are summarized in Table
3-1, along with the solution or implementation detail that applies to the particular
issue.

The issues of consistent memory views in the face of processor’s load and store
buffers, relaxed memory models, and atomic test-and-set capability for locks are

Table 3-1 Hardware Considerations and Solutions for Locks

Consideration Solution
Need for an atomic test-and-set
instruction for locking primitives.

Use of native machine instructions.
ldstub  and cas  on SPARC, cmpx-
chgl  (compare/exchange long) on
x86.

Data global visibility issue because
of the use of hardware load and
store buffers and instruction reor-
dering, as defined by the memory
model.

Use of memory barrier instructions.
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addressed at the processor instruction-set level. The mutex lock and RW lock prim-
itives implemented in the Solaris kernel use the ldstub and cas instructions for
lock testing and acquisition on UltraSPARC-based systems and use the cmpxchgl
(compare/exchange long) instruction on Intel x86. The lock primitive routines are
part of the architecture-dependent segment of the kernel code.

SPARC processors provide various forms of memory barrier (membar) instruc-
tions, which, depending on options that are set in the instruction, impose specific
constraints on the ordering of memory access operations (loads and stores) rela-
tive to the sequence with which they were issued. To ensure a consistent memory
view when a mutex or RW lock operation has been issued, the Solaris kernel issues
the appropriate membar instruction after the lock bits have changed.

As we move from the strongest consistency model (sequential consistency) to the
weakest model (RMO), we can build a system with potentially better performance.
We can optimize memory operations by playing with the ordering of memory
access instructions that enable designers to minimize access latency and to maxi-
mize interconnect bandwidth. The trade-off is consistency, since the more relaxed
models provide fewer and fewer constraints on the system to issue memory access
operations in the same order in which the instruction stream issued them. So, pro-
cessor architectures provide memory barrier controls that kernel developers can
use to address the consistency issues where necessary, with some level of control
on which consistency level is required to meet the system requirements. The types
of membar instructions available, the options they support, and how they fit into
the different memory models described would make for a highly technical and
lengthy chapter on its own. Readers interested in this topic should read [4] and
[23].

3.4 Introduction to Synchronization Objects

The Solaris kernel implements several types of synchronization objects. Locks pro-
vide mutual exclusion semantics for synchronized access to shared data. Locks
come in several forms and are the primary focus of this chapter. The most com-
monly used lock in the Solaris kernel is the mutual exclusion, or mutex lock, which
provides exclusive read and write access to data. Also implemented are
reader/writer (RW) locks, for situations where multiple readers are allowable but
only one writer is allowed at a time. Kernel semaphores are also employed in some
areas of the kernel, where access to a finite number of resources must be man-
aged. A special type of mutex lock, called a dispatcher lock, is used by the kernel
dispatcher where synchronization requires access protection through a locking
mechanism, as well as protection from interrupts.

Condition variables, which are not a type of lock, are used for thread synchroni-
zation and are an integral part of the kernel sleep/wakeup facility. Condition vari-
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ables are introduced here and covered in detail in Chapter 5, “The Kernel
Dispatcher.”

The actual number of locks that exist in a running system at any time is
dynamic and scales with the size of the system. Several hundred locks are defined
in the kernel source code, but a lock count based on static source code is not accu-
rate because locks are created dynamically during normal system activity—when
kernel threads and processes are created, file systems are mounted, files are cre-
ated and opened, network connections are made, etc. Many of the locks are embed-
ded in the kernel data structures that provide the abstractions (processes, files)
provided by the kernel, and thus the number of kernel locks will scale up linearly
as resources are created dynamically.

This design speaks to one of the core strengths of the Solaris kernel: scalability
and scaling synchronization primitives dynamically with the size of the kernel.
Dynamic lock creation has several advantages over static allocations. First, the
kernel is not wasting time and space managing a large pool of unused locks when
running on a smaller system, such as a desktop or workgroup server. On a large
system, a sufficient number of locks are available to sustain concurrency for scal-
able performance. It is possible to have literally thousands of locks in existence on
a large, busy system.

3.4.1  Synchronization Process

When an executing kernel thread attempts to acquire a lock, it will encounter one
of two possible lock states: free (available) or not free (owned, held). A requesting
thread gets ownership of an available lock when the lock-specific get lock function
is invoked. If the lock is not available, the thread most likely needs to block and
wait for it to come available, although, as we will see shortly, the code does not
always block (sleep), waiting for a lock. For those situations in which a thread will
sleep while waiting for a lock, the kernel implements a sleep queue facility, known
as turnstiles, for managing threads blocking on locks.

When a kernel thread has completed the operation on the shared data pro-
tected by the lock, it must release the lock. When a thread releases a lock, the code
must deal with one of two possible conditions: threads are waiting for the lock
(such threads are termed waiters), or there are no waiters. With no waiters, the
lock can simply be released. With waiters, the code has several options. It can
release the lock and wake up the blocking threads. In that case, the first thread to
execute acquires the lock. Alternatively, the code could select a thread from the
turnstile (sleep queue), based on priority or sleep time, and wake up only that
thread. Finally, the code could select which thread should get the lock next, and
the lock owner could hand the lock off to the selected thread. As we will see in the
following sections, no one solution is suitable for all situations, and the Solaris ker-
nel uses all three methods, depending on the lock type. Figure 3.4 provides the big
picture.
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 Figure 3.4 Solaris Locks — The Big Picture

Figure 3.4 provides a generic representation of the execution flow. Later we will
see the results of a considerable amount of engineering effort that has gone into
the lock code: improved efficiency and speed with short code paths, optimizations
for the hot path (frequently hit code path) with well-tuned assembly code, and the
best algorithms for lock release as determined by extensive analysis.

3.4.2  Synchronization Object Operations Vector

Each of the synchronization objects discussed in this section—mutex locks,
reader/writer locks, and semaphores—defines an operations vector that is linked to
kernel threads that are blocking on the object. Specifically, the object’s operations
vector is a data structure that exports a subset of object functions required for
kthreads sleeping on the lock. The generic structure is defined in
/usr/include/sys/sobject.h .

/*
 * The following data structure is used to map
 * synchronization object type numbers to the
 * synchronization object’s sleep queue number
 * or the synch. object’s owner function.
 */
typedef struct _sobj_ops {
        syncobj_t       sobj_type;
        kthread_t       *(*sobj_owner)();
        void            (*sobj_unsleep)(kthread_t *);
        void            (*sobj_change_pri)(kthread_t *, pri_t, pri_t *);
} sobj_ops_t;
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The structure shown above provides for the object type declaration. For each
synchronization object type, a type-specific structure is defined: mutex_sobj_ops
for mutex locks, rw_sobj_ops for reader/writer locks, and sema_sobj_ops for
semaphores.

The structure also provides three functions that may be called on behalf of a
kthread sleeping on a synchronization object:

• An owner function, which returns the ID of the kernel thread that owns the
object

• An unsleep function, which transitions a kernel thread from a sleep state
• A change_pri function, which changes the priority of a kernel thread, used for

priority inheritance. (See “Turnstiles and Priority Inheritance” on page 89.).

We will see how references to the lock’s operations structure is implemented as we
move through specifics on lock implementations in the following sections.

It is useful to note at this point that our examination of Solaris kernel locks
offers a good example of some of the design trade-offs involved in kernel software
engineering. Building the various software components that make up the Solaris
kernel is a series of design decisions, when performance needs are measured
against complexity. In areas of the kernel where optimal performance is a top pri-
ority, simplicity might be sacrificed in favor of performance. The locking facilities
in the Solaris kernel are an area where such trade-offs are made—much of the lock
code is written in assembly language, for speed, rather than in the C language; the
latter is easier to code with and maintain but is potentially slower. In some cases,
when the code path is not performance critical, a simpler design will be favored
over cryptic assembly code or complexity in the algorithms. The behavior of a par-
ticular design is examined through exhaustive testing, to ensure that the best pos-
sible design decisions were made.

3.5 Mutex Locks

Mutual exclusion, or mutex locks, are the most common type of synchronization
primitive used in the kernel. Mutex locks serialize access to critical data, when a
kernel thread must acquire the mutex specific to the data region being protected
before it can read or write the data. The thread is the lock owner while it is hold-
ing the lock, and the thread must release the lock when it has finished working in
the protected region so other threads can acquire the lock for access to the pro-
tected data.
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3.5.1  Overview

If a thread attempts to acquire a mutex lock that is being held, it can basically do
one of two things: it can spin or it can block. Spinning means the thread enters a
tight loop, attempting to acquire the lock in each pass through the loop. The term
spin lock is often used to describe this type of mutex. Blocking means the thread is
placed on a sleep queue while the lock is being held and the kernel sends a wakeup
to the thread when the lock is released. There are pros and cons to both
approaches.

The spin approach has the benefit of not incurring the overhead of context
switching, required when a thread is put to sleep, and also has the advantage of a
relatively fast acquisition when the lock is released, since there is no con-
text-switch operation. It has the downside of consuming CPU cycles while the
thread is in the spin loop—the CPU is executing a kernel thread (the thread in the
spin loop) but not really doing any useful work.

The blocking approach has the advantage of freeing the processor to execute
other threads while the lock is being held; it has the disadvantage of requiring con-
text switching to get the waiting thread off the processor and a new runnable
thread onto the processor. There’s also a little more lock acquisition latency, since a
wakeup and context switch are required before the blocking thread can become the
owner of the lock it was waiting for.

In addition to the issue of what to do if a requested lock is being held, the ques-
tion of lock granularity needs to be resolved. Let’s take a simple example. The ker-
nel maintains a process table, which is a linked list of process structures, one for
each of the processes running on the system. A simple table-level mutex could be
implemented, such that if a thread needs to manipulate a process structure, it
must first acquire the process table mutex. This level of locking is very coarse. It
has the advantages of simplicity and minimal lock overhead. It has the obvious
disadvantage of potentially poor scalability, since only one thread at a time can
manipulate objects on the process table. Such a lock is likely to have a great deal of
contention (become a hot lock).

The alternative is to implement a finer level of granularity: a lock-per-process
table entry versus one table-level lock. With a lock on each process table entry,
multiple threads can be manipulating different process structures at the same
time, providing concurrency. The disadvantages are that such an implementation
is more complex, increases the chances of deadlock situations, and necessitates
more overhead because there are more locks to manage.

In general, the Solaris kernel implements relatively fine-grained locking when-
ever possible, largely due to the dynamic nature of scaling locks with kernel struc-
tures as needed.

The kernel implements two types of mutex locks: spin locks and adaptive locks.
Spin locks, as we discussed, spin in a tight loop if a desired lock is being held when
a thread attempts to acquire the lock. Adaptive locks are the most common type of
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lock used and are designed to dynamically either spin or block when a lock is being
held, depending on the state of the holder. We already discussed the trade-offs of
spinning versus blocking. Implementing a locking scheme that only does one or the
other can severely impact scalability and performance. It is much better to use an
adaptive locking scheme, which is precisely what we do.

The mechanics of adaptive locks are straightforward. When a thread attempts
to acquire a lock and the lock is being held, the kernel examines the state of the
thread that is holding the lock. If the lock holder (owner) is running on a proces-
sor, the thread attempting to get the lock will spin. If the thread holding the lock is
not running, the thread attempting to get the lock will block. This policy works
quite well because the code is such that mutex hold times are very short (by
design, the goal is to minimize the amount of code to be executed while a lock is
held). So, if a thread is holding a lock and running, the lock will likely be released
very soon, probably in less time than it takes to context-switch off and on again, so
it’s worth spinning.

On the other hand, if a lock holder is not running, then we know that mini-
mally one context switch is involved before the holder will release the lock (getting
the holder back on a processor to run), and it makes sense to simply block and free
up the processor to do something else. The kernel will place the blocking thread on
a turnstile (sleep queue) designed specifically for synchronization primitives and
will wake the thread when the lock is released by the holder. (See “Turnstiles and
Priority Inheritance” on page 89.)

The other distinction between adaptive locks and spin locks has to do with inter-
rupts, the dispatcher, and context switching. The kernel dispatcher is the code that
selects threads for scheduling and does context switches. It runs at an elevated
Priority Interrupt Level (PIL) to block interrupts (the dispatcher runs at priority
level 10 on SPARC systems). High-level interrupts (interrupt levels 11–15 on
SPARC systems) can interrupt the dispatcher. High-level interrupt handlers are
not allowed to do anything that could require a context switch or to enter the dis-
patcher (we discuss this further in “Dispatcher Locks” on page 97). Adaptive locks
can block, and blocking means context switching, so only spin locks can be used in
high-level interrupt handlers. Also, spin locks can raise the interrupt level of the



74 Kernel Synchronization Primitives
processor when the lock is acquired. Interrupts are covered in more detail in “Ker-
nel Traps and Exceptions” later in this chapter.

The preceding block of pseudocode illustrates the general mechanics of mutex
locks. A lock is declared in the code; in this case, it is embedded in the data struc-
ture it is designed to protect. Once declared, the lock is initialized with the kernel
mutex_init() function. Any subsequent reference to the kdata structure
requires that the klock mutex be acquired with mutex_enter() . Once the work
is done, the lock is released with mutex_exit() . The lock type, spin or adaptive,
is determined in the mutex_init() code by the kernel. Assuming an adaptive
mutex in this example, any kernel threads that make a mutex_enter() call on
klock will either block or spin, depending on the state of the kernel thread that
owns klock  when the mutex_enter()  is called.

3.5.2  Solaris 7 Mutex Lock Implementation

The implementation description in this section is based on Solaris 7. Algorithmi-
cally, Solaris 2.5.1 and Solaris 2.6 are very similar but have some implementation
differences, which we cover in the sections that follow.

The kernel defines different data structures for the two types of mutex locks,
adaptive and spin, as shown in Figure 3.5.

struct kernel_data {
        kmutex_t klock;
        char *forw_ptr;
        char *back_ptr;
        long data1;
        int data2;
} kdata;

void function()
        .
        mutex_init(&kdata.klock);
        .
        mutex_enter(&kdata.klock);
        klock.data1 = 1;
        mutex_exit(&kdata.klock);

m_owner Bit 0 is the
“waiters” bit.

m_filler
m_spinlock
m_dummylock
m_oldspl
m_minspl

Adaptive

Spin

 Figure 3.5 Solaris 7 Adaptive and Spin Mutex
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In Figure 3.5, the m_owner field in the adaptive lock, which holds the address of
the kernel thread that owns the lock (the kthread pointer), plays a double role, in
that it also serves as the actual lock; successful lock acquisition for a thread means
it has its kthread pointer set in the m_owner field of the target lock. If threads
attempt to get the lock while it is held (waiters) the low-order bit (bit 0) of
m_owner is set to reflect that case. We ensure that kthread pointer values do not
require bit 0 to make this work.

The spin mutex, as we pointed out earlier, is used at high interrupt levels,
where context switching is not allowed. Spin locks block interrupts while in the
spin loop, so the kernel needs to maintain the priority level the processor was run-
ning at prior to entering the spin loop, which raises the processor’s priority level.
(Elevating the priority level is how interrupts are blocked.) The m_minspl field
stores the priority level of the interrupt handler when the lock is initialized, and
m_oldspl gets set to the priority level the processor was running at when the lock
code is called. The m_spinlock  field are the actual mutex lock bits.

Each kernel module and subsystem implementing one or more mutex locks calls
into a common set of mutex functions. All locks must first be initialized by the
mutex_init() function, where the lock type is determined on the basis of an
argument passed in the mutex_init() call. The most common type passed into
mutex_init() is MUTEX_DEFAULT, which results in the init code determining
what type of lock, adaptive or spin, should be used. It is possible for a caller of
mutex_init() to be specific about a lock type (e.g., MUTEX_SPIN), but that is
rarely done.

If the init code is called from a device driver or any kernel module that regis-
ters and generates interrupts, then an interrupt block cookie is added to the argu-
ment list. An interrupt block cookie is an abstraction used by device drivers when
they set their interrupt vector and parameters. The mutex_init() code checks
the argument list for an interrupt block cookie. If mutex_init() is being called
from a device driver to initialize a mutex to be used in a high-level interrupt han-
dler, the lock type is set to spin. Otherwise, an adaptive lock is initialized. The test
is the interrupt level in the passed interrupt block; levels above 10 (On SPARC
systems) are considered high-level interrupts and thus require spin locks. The
init code clears most of the fields in the mutex lock structure as appropriate for
the lock type. The m_dummylock field in spin locks is set to all 1’s (0xFF). We’ll see
why in a minute.

The primary mutex functions called, aside from mutex_init() (which is only
called once for each lock at initialization time), are mutex_enter() to get a lock
and mutex_exit() to release it. mutex_enter() assumes an available, adaptive
lock. If the lock is held or is a spin lock, mutex_vector_enter() is entered to
reconcile what should happen. This is a performance optimization.
mutex_enter() is implemented in assembly code, and because the entry point is
designed for the simple case (adaptive lock, not held), the amount of code that gets
executed to acquire a lock when those conditions are true is minimal. Also, there
are significantly more adaptive mutex locks than spin locks in the kernel, making
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the quick test case effective most of the time. The test for a lock held or spin lock is
very fast. Here is where the m_dummylock field comes into play. mutex_enter()
executes a compare-and-swap instruction on the first byte of the mutex, testing for
a zero value. On a spin lock, the m_dummylock field is tested because of its posi-
tioning in the data structure and the endianness of SPARC processors. Since
m_dummylock is always set (it is set to all 1’s in mutex_init() ), the test will fail
for spin locks. The test will also fail for a held adaptive lock since such a lock will
have a nonzero value in the byte field being tested. That is, the m_owner field will
have a kthread pointer value for a held, adaptive lock.

If the lock is an adaptive mutex and is not being held, the caller of
mutex_enter() gets ownership of the lock. If the two conditions are not true, that
is, either the lock is held or the lock is a spin lock, the code enters the
mutex_vector_enter() function to sort things out. The
mutex_vector_enter() code first tests the lock type. For spin locks, the
m_oldspl field is set, based on the current Priority Interrupt Level (PIL) of the
processor, and the lock is tested. If it’s not being held, the lock is set (m_spinlock )
and the code returns to the caller. A held lock forces the caller into a spin loop,
where a loop counter is incremented (for statistical purposes; the lockstat (1M)
data), and the code checks whether the lock is still held in each pass through the
loop. Once the lock is released, the code breaks out of the loop, grabs the lock, and
returns to the caller.

Adaptive locks require a little more work. When the code enters the adaptive
code path (in mutex_vector_enter() ), it increments the
cpu_sysinfo.mutex_adenters (adaptive lock enters) field, as is reflected in the
smtx column in mpstat (1M). mutex_vector_enter() then tests again to deter-
mine if the lock is owned (held), since the lock may have been released in the time
interval between the call to mutex_enter() and the current point in the
mutex_vector_enter() code. If the adaptive lock is not being held,
mutex_vector_enter() attempts to acquire the lock. If successful, the code
returns.

If the lock is held, mutex_vector_enter() determines whether or not the lock
owner is running by looping through the CPU structures and testing the lock
m_owner against the cpu_thread field of the CPU structure. (cpu_thread con-
tains the kernel thread address of the thread currently executing on the CPU.) A
match indicates the holder is running, which means the adaptive lock will spin. No
match means the owner is not running, in which case the caller must block. In the
blocking case, the kernel turnstile code is entered to locate or acquire a turnstile,
in preparation for placement of the kernel thread on a sleep queue associated with
the turnstile.

The turnstile placement happens in two phases. After
mutex_vector_enter() determines that the lock holder is not running, it makes
a turnstile call to look up the turnstile sets the waiters bit in the lock, and
retests to see if the owner is running. If yes, the code releases the turnstile and
enters the adaptive lock spin loop, which attempts to acquire the lock. Otherwise,
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the code places the kernel thread on a turnstile (sleep queue) and changes the
thread’s state to sleep. That effectively concludes the sequence of events in
mutex_vector_enter() .

Dropping out of mutex_vector_enter() , either the caller ended up with the
lock it was attempting to acquire, or the calling thread is on a turnstile sleep
queue associated with the lock. In either case, the lockstat (1M) data is updated,
reflecting the lock type, spin time, or sleep time as the last bit of work done in
mutex_vector_enter() .

lockstat (1M) is a kernel lock statistics command that was introduced in
Solaris 2.6. It provides detailed information on kernel mutex and reader/writer
locks.

The algorithm described in the previous paragraphs is summarized in
pseudocode below.

When a thread has finished working in a lock-protected data area, it calls the
mutex_exit() code to release the lock. The entry point is implemented in assem-
bly language and handles the simple case of freeing an adaptive lock with no wait-
ers. With no threads waiting for the lock, it’s a simple matter of clearing the lock
fields (m_owner) and returning. The C language function mutex_vector_exit()
is entered from mutex_exit()  for anything but the simple case.

In the case of a spin lock, the lock field is cleared and the processor is returned
to the PIL level it was running at prior to entering the lock code. For adaptive
locks, a waiter must be selected from the turnstile (if there is more than one
waiter), have its state changed from sleeping to runnable, and be placed on a dis-
patch queue so it can execute and get the lock. If the thread releasing the lock was

mutex_vector_enter()
        if (lock is a spin lock)
                lock_set_spl() /* enter spin-lock specific code path */
        increment cpu_sysinfo.ademters.
spin_loop:
        if (lock is not owned)
                mutex_trylock() /* try to acquire the lock */
                if (lock acquired)
                        goto bottom
                else
                        continue /* lock being held */
        if (lock owner is running on a processor)
                goto spin_loop
        else
                lookup turnstile for the lock
                set waiters bit
                if (lock owner is running on a processor)
                        drop turnstile
                        goto spin_loop
                else
                        block /* the sleep queue associated with the turnstile */

bottom:
        update lockstat statistics
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the beneficiary of priority inheritance, meaning that it had its priority improved
when a calling thread with a better priority was not able to get the lock, then the
thread releasing the lock will have its priority reset to what it was prior to the
inheritance. Priority inheritance is discussed in “Turnstiles and Priority Inherit-
ance” on page 89.

When an adaptive lock is released, the code clears the waiters bit in m_owner
and calls the turnstile function to wake up all the waiters. Readers familiar with
sleep/wakeup mechanisms of operating systems have likely heard of a particular
behavior known as the “thundering herd problem,” a situation where many threads
that have been blocking for the same resource are all woken up at the same time
and make a mad dash for the resource (a mutex in this case)—like a herd of large,
four-legged beasts running toward the same object. System behavior tends to go
from a relatively small run queue to a large run queue (all the threads have been
woken up and made runnable) and high CPU utilization until a thread gets the
resource, at which point a bunch of threads are sleeping again, the run queue nor-
malizes, and CPU utilization flattens out. This is a generic behaviour that can
occur on any operating system.

The wakeup mechanism used when mutex_vector_exit() is called in Solaris
7 may seem like an open invitation to thundering herds, but in practice it turns
out not to be a problem. The main reason is that the blocking case for threads
waiting for a mutex is rare; most of the time the threads will spin. If a blocking sit-
uation does arise, it typically does not reach a point where very many threads are
blocked on the mutex—one of the characteristics of the thundering herd problem is
resource contention resulting in a lot of sleeping threads. The kernel code seg-
ments that implement mutex locks are, by design, short and fast, so locks are not
held for long. Code that requires longer lock-hold times uses a reader/writer write
lock, which provides mutual exclusion semantics with a selective wakeup algo-
rithm. There are, of course, other reasons for choosing reader/writer locks over
mutex locks, the most obvious being to allow multiple readers to see the protected
data.

In the following sections, we differentiate the implementation of mutexes in
Solaris 2.5.1 and 2.6. As we said, Solaris 2.5.1 and 2.6 are similar to the previ-
ously described Solaris 7 behavior, especially in the area of lock acquisition
(mutex_enter() ). The more salient differences exist in the lock release algo-
rithm, and associated wakeup behavior.

3.5.2.1  Solaris 2.6 Mutex Implementation Differences

First, an examination of the lock structures, as illustrated in Figure 3.6.
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 Figure 3.6 Solaris 2.6 Mutex

Solaris 2.6 defines all possible mutex lock types within the same structure. The
spin lock is the same as for Solaris 7, with the addition of a type field. The adap-
tive mutex has more fields, which are fairly self-descriptive. m_owner_lock is the
same as m_owner is Solaris 7; it is the lock itself, and the value represents the
kthread ID of the holder when the lock is held. m_waiters stores the turnstile ID
of a waiting kernel thread, and m_wlock is a dispatcher lock (see “Dispatcher
Locks” on page 97) that synchronizes access to the m_waiters field in the mutex.
m_type  describes the lock type (adaptive or spin).

The structure differences aside, the basic algorithm and implementation of
assembly and C code are essentially the same in Solaris 2.6 for lock acquisition
(mutex_enter() ). The differences exist in the sleep mechanism—the turnstile
implementation has been improved in Solaris 7. These differences are in the inter-
faces and subroutines called to facilitate turnstile allocation and priority inherit-
ance. (See “Turnstiles and Priority Inheritance” on page 89.)

On the lock release side, Solaris 2.6 implements separate routines for releasing
spin locks and adaptive locks: mutex_vector_exit() and
mutex_adaptive_release() , respectively. When an adaptive lock with waiting
threads is released, the 2.6 code wakes only the thread with the highest priority. If
multiple threads of the same (highest) priority are waiting for the same lock, the
thread waiting longest is selected.

3.5.2.2  Solaris 2.5.1 Mutex Implementation Differences

The data structure of Solaris 2.5.1 looks very much like that of Solaris 2.6. It has
another possible instantiation of an adaptive lock, m_adaptive2 , which combines
the lock owner and lock bits in the same field of the adaptive mutex data struc-
ture, as illustrated in Figure 3.7.
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 Figure 3.7 Solaris 2.5.1 Adaptive Mutex

The implementation of the mutex code in Solaris 2.5.1 is quite different from the
other releases, although algorithmically the behaviour is essentially the same.
Solaris 2.5.1 defines a mutex operations vector array. Each element in the array is
a mutex_ops structure, one structure for each type of mutex defined in Solaris
2.5.1. The array is indexed according to the lock type and the function call. The
design is such that specific functions handle lock operations for each of the differ-
ent types of mutex locks. Common entry points into the mutex code pass control to
the lock-specific functions by switching through the operations array, as deter-
mined by the lock type and function offset. This is illustrated in Figure 3.8.

 Figure 3.8 Solaris 2.5.1 Mutex Operations Vectoring

Solaris 2.5.1 implements a wakeup method similar to that of Solaris 2.6 when an
adaptive mutex is released with waiting threads; the highest priority waiter is

m_generic

m_adaptive

m_adaptive2

m_lock
filler
m_type

m_lock
m_owner
m_waiters
m_wlock
m_type

m_owner_lock
m_waiters
m_wlock
m_type

m_filler
m_spinlock
m_dummylock
m_oldspl
m_minspl
m_type

m_spin

mutex_impl_t

mutex_ops
mutex_adaptive_init
mutex_adaptive_exit
mutex_adaptive_tryenter

mutex_spin_init
mutex_spin_enter
mutex_spin_exit

mutex_init(..., SPIN,...)

Calculate array
offset based on
lock type and function
in generic mutex_init()
entry point.

Lock-type-
specific
function
does the
actual work.



Mutex Locks 81
selected for wakeup and should get ownership of the lock. It is, of course, possible
for another thread to come along and acquire the lock before the wakeup is com-
pleted, so the newly awakened thread is not guaranteed to get the lock.

Finally, note that the lockstat utility was first implemented in Solaris 2.6 and
thus is not part of the 2.5.1 release.

3.5.2.3  Why the Mutex Changes in Solaris 7

We wanted to avoid getting mired in subtle differences that would not add real
value to the text, but at the same time we want to point out relevant differences in
implementations. The subsections describing the implementation differences
across releases serve two purposes. The first and most obvious is completeness, to
meet our goal of covering multiple Solaris releases. Second, and even more compel-
ling, we show the evolution and refinements that have gone into the lock code from
release to release. What we see is something that is functionally similar but signif-
icantly scaled down in size. The actual lock manipulation and turnstiles code fol-
low the same trend shown in the data structures—scaled down, leaner, and more
efficient.

The rationale for changing the wakeup behaviour in Solaris 7 stems from
exhaustive testing and examination of all possible options; then, the designers
selected what works best most of the time.

To summarize, when a mutex lock is being released with waiters, there are
essentially three options.

• Choose a waiting thread from the turnstile and give it lock ownership before
waking it. This approach is known as direct handoff of ownership.
This approach has a downside when there is even moderate lock contention,
in that it defeats the logic of adaptive locks. If direct handoff is used, there is
a window between the time the thread was given ownership and the time the
new owner is running on a processor (it must go through a state change and
get context-switched on). If, during that window, other threads come along
trying to get the lock, they will enter the blocking code path, since the “is the
lock owner running” test will fail. A lock with some contention will result in
most threads taking the blocking path instead of the spin path.

• Free the lock and wake one waiter, as Solaris 2.5.1 and Solaris 2.6 do.
This option has a much more subtle complication because of the potential for
a lock to have no owner, but multiple waiters. Consider a lock having multi-
ple waiters. If the lock is released and the code issues a wakeup on one
waiter, the lock will have no owner (it was just released). On a busy system, it
could take several seconds for the selected thread to be context-switched and
take ownership of the lock. If another thread comes along and grabs the lock,
the mutex_enter() code must examine the blocking chain (all the threads
sitting on a turnstile waiting for the lock) to determine if it should inherit a
higher priority from a sleeping thread. This complicates the mutex_enter()
code, putting an unnecessary burden on a hot code path.
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• Wake all the waiters, which is what we do in Solaris 7.
This option has the benefit of not having to preserve the waiters bit—since
we’re waking all the waiters, the action can simply be cleared in one opera-
tion. The approach simplifies the code and is more efficient. Extensive test-
ing has shown that the blocking case is relatively rare, so this algorithm
works quite well.

Statistical information on mutex locks is readily available, but not in Solaris 2.5.1.
Releases 2.6 and 7 include a lockstat (1M) utility, which collects and displays
information on mutex and reader/writer lock activity. lockstat (1M) is imple-
mented with a pseudodevice, /dev/lockstat , and associated pseudo device
driver. The interfaces are not public, meaning there are no open, read, write, etc.,
calls into the lockstat driver. The lockstat (1M) manual page provides informa-
tion on how to use lockstat (1M) and how to interpret the displayed data. Sev-
eral options enable you to select particular events to watch, data collection
methods (statistics, stack tracing, etc.), and the method by which to display data,
so go through the manual page carefully.

3.6 Reader/Writer Locks

Reader/writer (RW) locks provide mutual exclusion semantics on write locks. Only
one thread at a time is allowed to own the write lock, but there is concurrent
access for readers. These locks are designed for scenarios where it is acceptable to
have multiple threads reading the data at the same time, but only one writer.
While a writer is holding the lock, no readers are allowed. Also, because of the
wakeup mechanism, a writer lock is a better solution for kernel code segments that
require relatively long hold times, as we will see shortly.

The basic mechanics of RW locks are similar to mutexes, in that RW locks have
an initialization function (rw_init( )), an entry function to acquire the lock
(rw_enter() ), and an exit function to release the lock (rw_exit() ). The entry
and exit points are optimized in assembly code to deal with the simple cases, and
they call into C language functions if anything beyond the simplest case must be
dealt with. As with mutex locks, the simple case is that the requested lock is avail-
able on an entry (acquire) call and no threads are waiting for the lock on the exit
(release) call.

The implementation of RW locks is almost identical in Solaris 7 and Solaris 2.6.
The Solaris 2.5.1 code is somewhat different. As we did with mutex locks, we’ll dis-
cuss the Solaris 7 implementation first and point out differences in the other
releases later.
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3.6.1  Solaris 7 Reader/Writer Locks

In Solaris 7, RW locks are implemented as a single-word data structure in the ker-
nel, either 32 bits or 64 bits wide, depending on the data model of the running ker-
nel, as depicted in Figure 3.9.

 Figure 3.9 Solaris 7 Reader/Writer Lock

The Solaris 7 RW lock defines bit 0, the wait bit, set to signify that threads are
waiting for the lock. The wrwant bit (write wanted, bit 1) indicates that at least
one thread is waiting for a write lock. Bit 2, wrlock , is the actual write lock, and it
determines the meaning of the high-order bits. If the write lock is held (bit 2 set),
then the upper bits contain a pointer to the kernel thread holding the write lock. If
bit 2 is clear, then the upper bits contain a count of the number of threads holding
the lock as a read lock.

The simple cases for lock acquisition through rw_enter() are the circum-
stances listed below:

• The write lock is wanted and is available.

• The read lock is wanted, the write lock is not held, and no threads are wait-
ing for the write lock (wrwant  is clear).

The acquisition of the write lock results in bit 2 getting set and the kernel thread
pointer getting loaded in the upper bits. For a reader, the hold count (upper bits) is
incremented. Conditions where the write lock is being held, causing a lock request
to fail, or where a thread is waiting for a write lock, causing a read lock request to
fail, result in a call to the rw_enter_sleep()  function.

Important to note is that the rw_enter() code sets a flag in the kernel thread
used by the dispatcher code when establishing a kernel thread’s priority prior to
preemption or changing state to sleep. We cover this in more detail in Chapter 6,
“The Solaris Kernel Dispatcher.” Briefly, the kernel thread structure contains a
t_kpri_req (kernel priority request) field that is checked in the dispatcher code
when a thread is about to be preempted (forced off the processor on which it is exe-
cuting because a higher priority thread becomes runnable) or when the thread is
about to have its state changed to sleep. If the t_kpri_req flag is set, the dis-
patcher assigns a kernel priority to the thread, such that when the thread resumes
execution, it will run before threads in scheduling classes of lower priority (time-
share and interactive class threads). More succinctly, the priority of a thread hold-
ing a write lock is set to a better priority to minimize the hold time of the lock.

waitwrwantwrlockOWNER (writer) or COUNT OF READER THREADS (reader)

01263 - 3 (LP64), or 31 - 3 (ILP32)

The number of upper bits is determined by the data model of the
booted kernel (64-bit or 32-bit) in Solaris 7.
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Getting back to the rw_enter() flow: If the code falls through the simple case,
we need to set up the kernel thread requesting the RW lock to block.

• rw_enter_sleep() establishes whether the calling thread is requesting a
read or write lock and does another test to see if the lock is available. If it is,
the caller gets the lock, the lockstat (1M) statistics are updated, and the
code returns. If the lock is not available, then the turnstile code is called to
look up a turnstile in preparation for putting the calling thread to sleep.

• With a turnstile now available, another test is made on the lock availability.
(On today’s fast processors, and especially multiprocessor systems, it’s quite
possible that the thread holding the lock finished what it was doing and the
lock became available.) Assuming the lock is still held, the thread is set to a
sleep state and placed on a turnstile.

• The RW lock structure will have the wait bit set for a reader waiting (forced
to block because a writer has the lock) or the wrwant bit set to signify that a
thread wanting the write lock is blocking.

• The cpu_sysinfo structure for the processor maintains two counters for
failures to get a read lock or write lock on the first pass: rw_rdfails and
rw_wrfails . The appropriate counter is incremented just prior to the turn-
stile call; this action places the thread on a turnstile sleep queue.
mpstat (1M) sums the counters and displays the fails-per-second in the srw
column of its output.

The acquisition of a RW lock and subsequent behavior if the lock is held are
straightforward and similar in many ways to what happens in the mutex case.
Things get interesting when a thread calls rw_exit() to release a lock it is hold-
ing—there are several potential solutions to the problem of determining which
thread gets the lock next. We saw with mutex locks that a change was made from
Solaris 2.6 (and previous releases) to Solaris 7 in the wakeup mechanism. A
wakeup is issued on all threads that are sleeping, waiting for the mutex in Solaris
7, and we know from empirical data that this solution works well for reasons pre-
viously discussed. With RW locks, we’re dealing with potentially longer hold times,
which could result in more sleepers, a desire to give writers priority over readers
(why let a reader in when a thread is apparently waiting to change the data?), and
the potential for the priority inversion problem described in “Turnstiles and Prior-
ity Inheritance” on page 89.

For rw_exit() , which is called by the lock holder when it is ready to release
the lock, the simple case is that there are no waiters. In this case, the wrlock bit
is cleared if the holder was a writer, or the hold count field is decremented to
reflect one less reader. The more complex case of the system having waiters when
the lock is released is dealt with in the following manner.
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• The kernel does a direct transfer of ownership of the lock to one or more of
the threads waiting for the lock when the lock is released, either to the next
writer or to a group of readers if more than one reader is blocking and no
writers are blocking.
This situation is very different from the case of the mutex implementation,
where the wakeup is issued and a thread must obtain lock ownership in the
usual fashion. Here, a thread or threads wake up owning the lock they were
blocking on.
The algorithm used to figure out who gets the lock next addresses several
requirements that provide for generally balanced system performance. The
kernel needs to minimize the possibility of starvation (a thread never getting
the resource it needs to continue executing) while allowing writers to take
precedence whenever possible.

• rw_exit_wakeup() retests for the simple case and drops the lock if there
are no waiters (clear wrlock  or decrement the hold count).

• When waiters are present, the code grabs the turnstile (sleep queue) associ-
ated with the lock and saves the pointer to the kernel thread of the next write
waiter that was on the turnstile’s sleep queue (if one exists).
The turnstile sleep queues are organized as a FIFO (First In, First Out)
queue, so the queue management (turnstile code) makes sure that the thread
that was waiting the longest (the first in) is the thread that is selected as the
next writer (first out). Thus, part of the fairness policy we want to enforce is
covered.

The remaining bits of the algorithm go as follows.

• If a writer is releasing the write lock and there are waiting readers and writ-
ers, readers of the same or higher priority than the highest-priority blocked
writer are granted the read lock.

• The readers are handed ownership, and then woken up by the
turnstile_wakeup()  kernel function in Solaris 7.
These readers also inherit the priority of the writer that released the lock if
the reader thread is of a lower priority (inheritance is done on a per-reader
thread basis when more than one thread is being woken up). Lock ownership
handoff is a relatively simple operation. For read locks, there is no notion of a
lock owner, so it’s a matter of setting the hold count in the lock to reflect the
number of readers coming off the turnstile, then issuing the wakeup of each
reader.

• An exiting reader always grants the lock to a waiting writer, even if there are
higher-priority readers blocked.
It is possible for a reader freeing the lock to have waiting readers, although it
may not be intuitive, given the multiple reader design of the lock. If a reader
is holding the lock and a writer comes along, the wrwant bit is set to signify
that a writer is waiting for the lock. With wrwant set, subsequent readers
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cannot get the lock—we want the holding readers to finish so the writer can
get the lock. Therefore, it is possible for a reader to execute
rw_exit_wakeup()  with waiting writers and readers.

The “let’s favor writers but be fair to readers” policy described above was first
implemented in Solaris 2.6.

3.6.2  Solaris 2.6 RW Lock Differences

Figure 3.10 shows what the RW lock in Solaris 2.6 looks like.

 Figure 3.10 Solaris 2.6 Reader/Writer Lock

Note that the lock fields are functionally identical to those in Solaris 7, just imple-
mented differently. rw_wwwh provides a waiter bit, a write-wanted bit, and a
count of readers holding the lock. rw_waiters points to the turnstile holding the
waiters if any exist. The rw_wlock field serves as the actual write lock (bit 2) and
a dispatcher lock to synchronize access to the waiters and write-wanted bits. (Dis-
patcher locks are described in “Dispatcher Locks” on page 97.)

3.6.3  Solaris 2.5.1 RW Lock Differences

The RW lock structure in Solaris 2.5.1 is depicted in Figure 3.11.

 Figure 3.11 Solaris 2.5.1 RW Lock Structure

Solaris 2.5.1 defines several RW lock types, stored in the type field when the lock is
initialized. In practice, the RW_DEFAULTtype is used almost all the time, except
that some device drivers specify a RW_DRIVERlock type. Other types include locks
designed to gather statistics. Such locks are only used internally in engineering
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and are not implemented on production releases. Their enablement requires that a
specific compile-time flag be set.

The rw_wlock field is essentially the same as that of the Solaris 2.6 implemen-
tation, serving as a dispatcher lock to synchronize access to waiters and
writewanted bits and the actual write lock. The owner field contains the address
of the kernel thread that owns the write lock. writewanted , when set, signifies
that a thread is waiting for a write lock, and holdcnt either represents the num-
ber of kernel threads holding the read lock or is set to -1 to signify that the write
lock is currently held. Solaris 2.5.1 implements a separate union in the RW lock
structure for writewanted  and holdcnt .

The RW lock code in Solaris 2.5.1 implements an operations vector array,
rwlock_ops , similar to the mutex ops vector array shown in Figure 3.8. The array
is populated with rwlock_ops structures that point to lock-type specific func-
tions. As with the mutex array, the rwlock_ops array is indexed, based on the
lock type and the offset to the requested function (e.g., init, enter, exit). Entry
points into the RW lock functions rw_init() , rw_enter( ), and rw_exit() trans-
fer control to the lock-specific function by indexing through the array.

The next most salient differences in the Solaris 2.5.1 RW lock implementation
are that the code in Solaris 2.5.1 is written entirely in C (no assembly language
entry points), and mutex locks are used to protect the internal data in the RW lock
code.

An array of mutex locks, rw_mutex[] , is initialized at system boot time with a
fixed number (32) of mutex locks. During execution, a hash function indexes into
the array, hashing on the address of the RW lock being requested (or released).
When the various RW lock functions are entered, a mutex is retrieved from the
rw_mutex[] array, based on the address of the RW lock passed in the calling func-
tion. The mutex_enter() call is made to acquire the mutex to do a RW lock oper-
ation before the code executes, and the mutex is released when the function is
ready to exit.

Kernel threads call rw_enter() to acquire a RW lock, passing the address of the
lock and a flag that tells whether a reader or writer is required.

 Here’s the sequence for a read lock request.

• If a read lock is requested, the mutex lock is acquired to protect the RW lock
code and a test for either the write lock being held (holdcnt is -1 ) or a
writer waiting (writewanted is set) is made. If neither condition is true, the
caller can obtain a read lock.

• The holdcnt is incremented, and the calling thread has its t_kpri_req flag
set to tell the dispatcher that a kernel (SYS) priority is requested.
Setting this flag boosts the priority of the thread holding the lock if it’s a
timeshare or interactive class thread, with the intent to expedite the thread’s
execution while it’s holding a lock and to minimize the hold time.
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• The mutex is released and the code returns to the caller.

• If a writer is holding the lock or a write lock request is pending, the thread is
set to block. The mutex is released, and the cpu_sysinfo.rw_rdfails
counter is incremented.
You can examine this counter with mpstat (1M). The srw column displays the
sum of the failed reader and failed writer lock attempts.

• The code tests the lock’s waiters field, which contains the ID of a turnstile if
there are already waiters. No waiters means we must allocate a turnstile
from the free pool; one or more waiters means we just need to locate the turn-
stile holding the other waiters and put the lock on that sleep queue.

• Before putting the thread on the turnstile and changing the thread state to
sleep, the code tests the lock again (it may have been released by now). If it’s
available, the path previously described for an available lock is taken. Other-
wise, the turnstile block code is called to place the thread on the sleep queue.

• The priority inversion condition is tested for with the pi_willto() code, and
the swtch()  function is called for entry to the dispatcher.

The code flow for a writer lock request is similar.

• If the lock is not available, the writewanted  bit is set.
• An existing turnstile is fetched if there are already waiters; otherwise, a new

one is allocated, and the thread is placed on a sleep queue after the lock is
rechecked to make sure it’s still unavailable. If it is available or was avail-
able when the code was first entered, the holdcnt field is set to -1 (the write
lock), the owner field is set to the kernel thread ID of the caller, and the
mutex is released (we grabbed that early on when the write code path was
entered).

• An RW lock is released by a call to rw_exit() , which acquires the mutex
when the function is entered. If a writer is releasing the lock, the owner field
and holdcnt  fields in the lock are cleared and we check for any waiters.

• If there are threads sleeping on the lock, the turnstile is retrieved and the priority
of the caller is reset if it was the beneficiary of priority inheritance.

• If a writer is waiting (writewanted is set), the writer thread is woken up. If there
is more than one writer, the highest-priority writer gets the wakeup. Otherwise,
with no writers waiting, all the readers are woken up.
This always-favor-the-writer policy was changed in Solaris 2.6 and Solaris 7. For
writers, only one thread gets the wakeup, whereas for readers, all waiting readers
are woken up. This makes sense because with no writers, all the readers can get
the lock (that’s how RW locks work, by design). Only one writer at a time can have
the lock, so it only makes sense to wake one writer.
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• If a reader is releasing the lock, the holdcnt field is decremented (one less
reader) and writers are again favored for wakeup over readers if both exist.
The code first checks to ensure that no other readers are holding the lock
(holdcnt is 0), as it’s certainly possible for other readers to still have a read
lock when one thread is releasing it.

Solaris 2.5.1 and earlier releases use a different wakeup policy, which was
designed as an “always favor writers” policy. The code path when a thread was
releasing a RW lock would basically look for waiting writers first and always grant
the lock to a waiting writer, regardless of whether a reader or writer was releasing
the lock and regardless of the priority of the readers versus the writers if both
were waiting on the lock.

The final point to make here is that not only did the policy change in Solaris 2.6
and 7 with respect to the wakeup selection, but so did the method with which
threads coming off the turnstile acquire the lock. In Solaris 2.5.1, the threads, once
woken up, are scheduled, executed, and resumed in the rw_enter() to get the
lock. Solaris 2.6 and Solaris 7 implement a direct handoff mechanism, where
threads are given ownership of the lock before sleep queue removal and state
change.

3.7 Turnstiles and Priority Inheritance

A turnstile is a data abstraction that encapsulates sleep queues and priority inher-
itance information associated with mutex locks and reader/writer locks. The mutex
and RW lock code use a turnstile when a kernel thread needs to block on a
requested lock. The sleep queues implemented for other resource waits do not pro-
vide an elegant method of dealing with the priority inversion problem through pri-
ority inheritance. Turnstiles were created to address that problem.

Priority inversion describes a scenario in which a higher-priority thread is
unable to run because a lower priority thread is holding a resource it needs, such
as a lock. The Solaris kernel addresses the priority inversion problem in its turn-
stile implementation, providing a priority inheritance mechanism, where the
higher-priority thread can will its priority to the lower-priority thread holding the
resource it requires. The beneficiary of the inheritance, the thread holding the
resource, will now have a higher scheduling priority and thus get scheduled to run
sooner so it can finish its work and release the resource, at which point the origi-
nal priority is returned to the thread.

In this section, we assume you have some level of knowledge of kernel thread pri-
orities, which are covered in Chapter 6, “The Kernel Dispatcher.” Because turn-
stiles and priority inheritance are an integral part of the implementation of mutex
and RW locks, we thought it best to discuss them here rather than later. For this
discussion, it is important to be aware of these points:
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• The Solaris kernel assigns a global priority to kernel threads, based on the
scheduling class they belong to.

• Kernel threads in the timeshare and interactive scheduling classes will have
their priorities adjusted over time, based on three things: the amount of time
the threads spend running on a processor, sleep time (blocking), and the case
when they are preempted. Threads in the real-time class are fixed priority;
the priorities are never changed regardless of runtime or sleep time unless
explicitly changed through programming interfaces or commands.

The Solaris kernel implements sleep queues for the placement of kernel threads
blocking on (waiting for) a resource or event. For most resource waits, such as
those for a disk or network I/O, sleep queues, in conjunction with condition vari-
ables, manage the systemwide queue of sleeping threads. These sleep queues are
covered in Chapter 6, “The Kernel Dispatcher.” This set of sleep queues is sepa-
rate and distinct from turnstile sleep queues.

The implementation of turnstiles was changed substantially in Solaris 7,
although the underlying premise and concepts are the same. We will begin with a
look at the turnstile implementation in Solaris 7.

3.7.1  Solaris 7 Turnstiles

Figure 3.12 illustrates the Solaris 7 turnstiles. The rewrite of turnstiles in Solaris
7 resulted in a significant amount of code being removed, and some new, more effi-
cient functions developed.

Turnstiles are maintained in a systemwide hash table, turnstile_table[] ,
which is an array of turnstile_chain structures, each entry in the array (each
turnstile_chain structure) is the beginning of a linked list of turnstiles. The
array is indexed via a hash function on the address of the synchronization object
(the mutex or reader/writer lock), so locks that hash to the same array location will
have a turnstile on the same linked list. The turnstile_table[] array is stati-
cally initialized at boot time.
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 Figure 3.12 Solaris 7 Turnstiles

Each entry in the chain has its own lock, tc_lock , so chains can be traversed con-
currently. The turnstile itself has a different lock; each chain has an active list
(ts_next ) and a free list (ts_free ). There are also a count of threads waiting on
the sync object (waiters ), a pointer to the synchronization object (ts_sobj ), a
thread pointer linking to a kernel thread that had a priority boost through prior-
ity inheritance, and the sleep queues. Each turnstile has two sleep queues, one for
readers and one for writers (threads blocking on a read/write lock are maintained
on separate sleep queues). The priority inheritance data is integrated into the
turnstile, as opposed to being maintained in a separate data structure (which is
what Solaris 2.6 and 2.5.1 do).

In Solaris 7, every kernel thread is born with an attached turnstile. That is,
when a kernel thread is created (by the kernel thread_create() routine), a
turnstile is allocated for the kthread and linked to kthread’s t_ts pointer. A
kthread can block on only one lock at a time, so one turnstile is sufficient.

We know from the previous sections on mutex and RW locks that a turnstile is
required if a thread needs to block on a synchronization object. Solaris 7 calls
turnstile_lookup() to look up the turnstile for the synchronization object in
the turnstile_table[] . Since we index the array by hashing on the address of
the lock, if a turnstile already exists (there are already waiters), then we get the
correct turnstile. If no kthreads are currently waiting for the lock,
turnstile_lookup() simply returns a null value. If the blocking code must be
called (recall from the previous sections that subsequent tests are made on lock
availability before it is determined that the kthread must block), then
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turnstile_block() is entered to place the kernel thread on a sleep queue asso-
ciated with the turnstile for the lock.

Kernel threads lend their attached turnstile to the lock when a kthread becomes
the first to block (the lock acquisition attempt fails, and there are no waiters). The
thread’s turnstile is added to the appropriate turnstile chain, based on the result of
a hashing function on the address of the lock. The lock now has a turnstile, so sub-
sequent threads that block on the same lock will donate their turnstiles to the free
list on the chain (the ts_free  link off the active turnstile).

In turnstile_block() , the pointers are set up as determined by the return
from turnstile_lookup() . If the turnstile pointer is null, we link up to the
turnstile pointed to by the kernel thread’s t_ts pointer. If the pointer returned
from the lookup is not null, there’s already at least one kthread waiting on the
lock, so the code sets up the pointer links appropriately and places the kthread’s
turnstile on the free list.

The thread is then put into a sleep state through the scheduling-class-specific
sleep routine (e.g., ts_sleep() ). The ts_waiters field in the turnstile is incre-
mented, the threads t_wchan is set to the address of the lock, and t_sobj_ops in
the thread is set to the address of the lock’s operations vectors: the owner ,
unsleep , and change_priority functions. The kernel sleepq_insert() func-
tion actually places the thread on the sleep queue associated with the turnstile.

The code does the priority inversion check (now called out of the
turnstile_block() code), builds the priority inversion links, and applies the
necessary priority changes. The priority inheritance rules apply; that is, if the pri-
ority of the lock holder is less (worse) than the priority of the requesting thread,
the requesting thread’s priority is “willed” to the holder. The holder’s t_epri field
is set to the new priority, and the inheritor pointer in the turnstile is linked to the
kernel thread. All the threads on the blocking chain are potential inheritors, based
on their priority relative to the calling thread.

At this point, the dispatcher is entered through a call to swtch() , and another
kernel thread is removed from a dispatch queue and context-switched onto a pro-
cessor.

The wakeup mechanics are initiated as previously described, where a call to the
lock exit routine results in a turnstile_wakeup() call if threads are blocking on
the lock. turnstile_wakeup() does essentially the reverse of
turnstile_block() ; threads that inherited a better priority have that priority
waived, and the thread is removed from the sleep queue and given a turnstile from
the chain’s free list. Recall that a thread donated its turnstile to the free list if it
was not the first thread placed on the blocking chain for the lock; coming off the
turnstile, threads get a turnstile back. Once the thread is unlinked from the sleep
queue, the scheduling class wakeup code is entered, and the thread is put back on
a processor’s dispatch queue.
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3.7.2  Solaris 2.5.1 and 2.6 Turnstiles

Figure 3.13 illustrates the turnstile structures and links in Solaris 2.5.1 and 2.6.

 Figure 3.13 Solaris 2.5.1 and Solaris 2.6 Turnstiles
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link to the pool of turnstiles, and an array of pointers to turnstiles
(tsm_chunk[] —these are the active turnstiles).

The tsm_mutex lock is used to protect tstile_mod only when more turnstiles
need to be allocated. Other turnstile support functions do not need to acquire
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The turnstile itself contains a forward link to other turnstiles on the list or to a
structure with priority inheritance information (pirec ). These data items are part
of the same union in the structure definition. Thus, a free turnstile will have the
forward link, and a used turnstile will contain the pirec structure. Each turnstile
has a unique ID, ts_id , that encodes row and column information used to locate
the turnstile in the tsm_chunk[] array. (tsm_chunk[] is actually implemented
as a two-dimensional array, as we’ll see in a minute.)

Additionally, in each turnstile is an array with two sleep queues
(ts_sleepq[] ). For RW locks, readers and writers are kept on separate sleep
queues. For mutex locks, one sleep queue is used. Other links that bind it all
together include kernel thread links to the turnstile, set when a kthread is block-
ing on a synchronization object, and a pointer from the kthread to the pirec
structure if the priority of the kernel thread was changed by priority inversion.
The benef field of pirec points back to the kernel thread that is the recipient
(beneficiary) of a better priority because of inheritance. ts_flags specifies
whether the turnstile is either free or active, and ts_wlock is a dispatcher-style
lock used by the mutex code to synchronize access to the turnstile.

The kernel creates a small pool of turnstiles at boot time and allocates a turn-
stile from the pool when a thread needs to block on a mutex or RW lock. The
tstile_init() function is called from the startup code during boot to initialize a
set of turnstiles with which to get started. The allocation is done in chunks of 128
turnstiles, each chunk (column) attached off a different index in the tsm_chunk[]
array (the row). The row/column combination serves as the turnstile ID, deter-
mines the placement of the turnstile in the array of active turnstiles, and is estab-
lished as each chunk is initialized. Figure 3.14 provides the big picture.

Turnstiles are allocated from the free pool (tsp_list ) and placed in the
tsm_chunk array when activated. The turnstile is returned to the available pool
when no more threads are sleeping on the synchronization object. The kernel
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 Figure 3.14 Solaris 2.5.1 and 2.6 Turnstiles
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attempts to maintain a pool of turnstiles that keeps pace with the number of ker-
nel threads on the system by looking at the turnstile pool every time the internal
thread_create() function is called to create a new kernel thread. If the number
of kernel threads is greater than the number of turnstiles in the pool when a ker-
nel thread is created, then the code dynamically allocates another chunk of turn-
stiles. This is somewhat different from the Solaris 7 implementation, where a
turnstile is created and linked to every kernel thread when the kernel thread is
created. Conceptually, it addresses the same problem of having a sufficient num-
ber of turnstiles available at all times.

The turnstile functions called by the mutex and RW lock code to put a thread to
sleep work as follows. The mutex and RW locks each contain a reference to a turn-
stile for the synchronization object, which we’ll refer to generically as waiters in
this discussion.

• If the waiters field in the lock is 0 (no waiters), then a turnstile is allocated
from the pool by tstile_alloc() , which simply allocates a turnstile off the
tsp_list  pointer (the free pool link) after setting the pool lock, tsp_lock .

• The active counter is incremented, the pool lock is released, and the pirec
structure associated with the new turnstile is cleared.

• The waiters field in the lock is set to the turnstile ID of the turnstile just
allocated, and the turnstile’s ts_sobj_priv_data (turnstile synchroniza-
tion object private data) field is set to point to the address of the lock struc-
ture.

• If threads (at least one other) are already waiting for the mutex, then a turn-
stile already exists, so the address of the turnstile that has already been allo-
cated for the mutex is retrieved with the tstile_pointer() function, which
uses the turnstile ID in the waiters field of the lock to locate the turnstile in
the tsm_chunk  array.

With a turnstile for the lock now ready, we can proceed with changing the thread
state to sleep and setting up the sleep queue associated with the turnstile.

• The kernel t_block()  function is called and invokes the CL_SLEEP macro.
• Scheduling-class-specific functions are invoked by macros that resolve to the

proper function, based on the scheduling class of the kernel thread. In the
case of a timeshare or interactive class thread, the ts_sleep() function is
called to set the thread’s priority to a SYSpriority (a priority boost for when it
wakes up—it will run before other timeshare and interactive class threads)
and to set the thread state to TS_SLEEP.

• The kernel thread’s t_wchan field (wait channel) is set to the address of the
lock the thread is waiting for, and the thread’s t_sobj_ops pointer is set to
the lock’s synchronization object operations vector. (See “Synchronization
Object Operations Vector” on page 70.)

• Finally, the threads t_ts field is set to the address of the turnstile, and the
thread is inserted on the turnstile’s sleep queue.
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The generic kernel sleep queue functions are invoked indirectly through mac-
ros defined in the turnstile header file; for example, insertion of the thread on
a sleep queue is done through the TSTILE_INSERT macro, which calls the
kernel sleepq_insert()  function.

• When sleepq_insert() completes, the kernel thread resides in the sleep
queue associated with the turnstile. A kernel thread can be blocked only on
one, and no more than one, sychronization object at any time, so t_ts will
either be a NULL pointer or a pointer to one turnstile.

All that remains to be done is the priority inheritance check to determine if the
thread holding the lock is at a lower (worse) priority than the thread requesting
the lock (the one that was just placed on a turnstile sleep queue).

• The kernel pi_willto() function is called to check the priority of the lock
owner against the thread waiting.

• If the owner priority is greater than the waiter priority, we do not have a priority
inversion condition and the code just bails out.

• If the waiter priority is greater (a better priority) than the owner, we do have a pri-
ority inversion condition; then, the priority of the lock owner is set to the priority
of the waiter.

• The t_epri field of the kernel thread is used for inherited priorities. A
non-null value in t_epri results in the inherited priority of the thread being
used the next time the lock owner’s priority is adjusted (when we enter the
dispatcher through an explicit call to the swtch()  function).

At this point, the turnstile has been set, with the waiting thread on the turnstile’s
sleep queue, and a potential priority inversion problem has been checked for a pri-
ority inheritance if needed.

• The kernel now enters the dispatcher through the swtch() function to
resume scheduling threads.

• When a thread has finished working in the protected data region, it calls the
appropriate lock exit routine (mutex_exit() or rw_exit() ) to free the lock,
which in turn triggers the wakeup mechanism if threads are waiting for the
lock.

• The release function checks the waiters field maintained in the synchroni-
zation object.
As with mutex and RW locks, the decision on which thread to wake up or
whether to wake all the waiting threads varies depending on the synchroni-
zation object and the version of the Solaris kernel. We examined what hap-
pens in each circumstance in the sections on mutex and RW locks.

The turnstile support functions used in Solaris 2.5.1 are t_release() for waking
a single thread and t_release_all() for waking all the threads. Solaris 2.6 uses
macros instead (e.g., TSTILE_WAKEONE), which have the same net effect. That is,
the macros result in entering the generic sleep queue code, which has a corre-
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sponding function for removing either one thread or all threads from a sleep queue
(e.g., sleepq_wakeone() to wake one thread). Prior to issuing the wakeup, the
lock code checks for priority inheritance. If the thread releasing the lock was a ben-
eficiary of priority inheritance, then the pi_waive() function is called to change
the thread’s priority back to what it was before the inheritance.

The wakeup code unlinks the kernel thread (or threads) from the sleep queue
and calls the scheduling-class-specific wakeup code (e.g., ts_wakeup() for time-
share and interactive threads). If the thread has been given a SYS class priority
(kernel mode priority), the thread is immediately placed on a dispatch queue in the
class wakeup function. If not, the thread’s global priority is recalculated before the
thread is placed on a dispatch queue.

3.8 Dispatcher Locks

The kernel defines lock types that are specific to the kernel dispatcher (threads
scheduler), referred to as dispatcher locks. Two lock types are implemented for the
dispatcher: simple spin locks and locks that raise the interrupt priority level of the
processor. These locks are acquired and released by interfaces specific to the lock
types (not the previously discussed mutex interfaces). They are also used in a few
other areas of the kernel where the requirements for locking warrant the seman-
tics and behavior defined by these locks. We first discuss why the second type of
lock, a lock that blocks interrupts, is necessary and then discuss the implementa-
tion.

When an interrupt is generated and sent to a processor, the processor must stop
what it’s doing and execute an interrupt handler. For low-level interrupts (below
level 10 on SPARC systems), interrupts are handled on an interrupt thread. What-
ever thread was executing when the interrupt is received is pinned, such that the
interrupt thread can borrow the running thread’s LWP; the interrupt thread exe-
cutes using its own stack. When the handler is done, the interrupted kernel thread
is unpinned and can resume execution. Once executing the interrupt handler, it is
possible that the interrupt code could block. If this happens, the dispatcher
swtch() function is entered, to determine whether the thread is running as a
pinned (interrupt) thread. If it is, the pinned thread is unpinned and selected to
resume execution. The kernel implements a resume function,
resume_from_intr() , specifically to deal with the special case of restarting a
pinned thread when an interrupt thread blocks.

High-level interrupts (interrupts above level 10 on SPARC), on the other hand,
are not handled on an interrupt thread. When an interrupt above level 10 is
received by a processor, the processor is vectored directly into a handler and exe-
cutes in the context of the thread that was running when the interrupt arrived.
The key point here is that low-level interrupts may require a thread context
switch; high-level interrupts do not.
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A processor will execute at any one of the architecturally defined interrupt lev-
els, and different processors on a multiprocessor system can be executing at differ-
ent interrupt levels. The interrupt level at which a processor is executing is
established by the level set in an internal hardware register. On UltraSPARC pro-
cessors, the PIL field of the PSTATEregister reflects the interrupt level at which
the processor is running. The kernel code writes a new PIL value to the hardware
PSTATE register to change the interrupt level of the processor. A processor will
only receive interrupts that are at a level higher than the level at which it is cur-
rently executing. For example, a processor running at PIL 4 will take an interrupt
at PIL 5 or higher, but not interrupts at levels 1, 2, or 3. Thus, processors are able
to mask or block interrupts by setting the PIL to the appropriate level, depending
on what level of interrupts the processor needs to block.

The kernel dispatcher (threads scheduler) does the selection and context switch-
ing of threads and manipulates the dispatch queues. Hence, a protection mecha-
nism is required to prevent the dispatcher from being interrupted while doing
queue insertion or removal. Since low-level interrupts may require a context
switch, allowing a processor executing in the dispatcher code to take an interrupt
and switch to an interrupt handler could result in corruption of the thread state
and queue pointers. For this reason, a type of dispatcher lock is implemented. The
lock code is called from various places by the dispatcher that not only acquires a
spin lock (typically, a lock protecting the dispatch queue) but that also raises the
PIL to 10, effectively blocking low-level interrupts. Only high-level interrupts,
which are not permitted to require or cause a context switch, are fielded.

The implementation does not define two different lock structures for spin locks
and locks that block interrupts. In both cases, the lock definition is a 1-byte data
item. The code either acquires a basic spin lock or acquires a lock and raises the
PIL, based on which interface it calls. A simple lock_set() interface is called to
acquire a dispatcher spin lock. The code is implemented in assembly language and
follows the fundamental algorithm for spin locks.

If the lock is held when an attempt to get the lock is made, a spin loop is used,
checking the lock and attempting to acquire it in each pass through the loop. For
interrupt protection, the lock_set_spl() interface is called. lock_set_spl()
raises the PIL of the calling processor to 10 and essentially uses the same spin
algorithm as the basic spin lock. The PIL of the processor remains elevated until
the lock is released. The lock_set_spl() code saves the current PIL of the call-
ing process so that when the lock is released, the calling process can be restored to
the level at which it was executing.

Areas of the kernel that use dispatcher locks, aside from the dispatcher itself,
are the other kernel synchronization primitives: that is, mutex locks, reader/writer
locks, turnstiles, and semaphores. The synchronization primitive kernel modules
use dispatcher locks when manipulating threads on turnstiles or sleep queues or
when protecting access to a particular data item in a lock structure.

As the Solaris releases evolve, improvements are continually made, and the use
of dispatcher locks has been reduced with each successive release. For example,
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Solaris 2.5.1 and 2.6 implement a dispatcher lock in the reader/writer (RW) lock
structure to protect access to some fields in the structure. Solaris 7, with a rework-
ing of the RW lock code, no longer requires a dispatcher lock in this area.

3.9 Kernel Semaphores

Semaphores provide a method of synchronizing access to a sharable resource by
multiple processes or threads. A semaphore can be used as a binary lock for exclu-
sive access or as a counter, allowing for concurrent access by multiple threads to a
finite number of shared resources.

In the counter implementation, the semaphore value is initialized to the num-
ber of shared resources (these semaphores are sometimes referred to as counting
semaphores). Each time a process needs a resource, the semaphore value is decre-
mented to indicate there is one less of the resource. When the process is finished
with the resource, the semaphore value is incremented. A 0 semaphore value tells
the calling process that no resources are currently available, and the calling pro-
cess blocks until another process finishes using the resource and frees it. These
functions are historically referred to as semaphore P and V operations—the P
operation attempts to acquire the semaphore, and the V operation releases it.

The Solaris kernel uses semaphores where appropriate, when the constraints
for atomicity on lock acquisition are not as stringent as they are in the areas
where mutex and RW locks are used. Also, the counting functionality that sema-
phores provide makes them a good fit for things like the allocation and dealloca-
tion of a fixed amount of a resource.

The kernel semaphore structure maintains a sleep queue for the semaphore and
a count field that reflects the value of the semaphore, shown in Figure 3.15. The
figure illustrates the look of a kernel semaphore for all Solaris releases covered in
this book.

 Figure 3.15 Kernel Semaphore
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a destroy function (sema_destroy() ), the traditional P and V operations
(sema_p() and sema_v() ), and a test function (is the semaphore held?
sema_held() ). There are a few other support functions, as well as some varia-
tions on the sema_p()  function, which we discuss later.
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The init function simply sets the count value in the semaphore, based on the
value passed as an argument to the sema_init() routine. The s_slpq pointer is
set to NULL, and the semaphore is initialized. The sema_destroy() function is
used when the semaphore is an integral part of a resource that is dynamically cre-
ated and destroyed as the resource gets used and subsequently released. For exam-
ple, the bio (block I/O) subsystem in the kernel, which manages buf structures for
page I/O support through the file system, uses semaphores on a per-buf structure
basis. Each buffer has two semaphores, which are initialized when a buffer is allo-
cated by sema_init() . Once the I/O is completed and the buffer is released,
sema_destroy() is called as part of the buffer release code. (sema_destroy()
just nulls the s_slpq  pointer.)

Kernel threads that must access a resource controlled by a semphore call the
sema_p() function, which requires that the semaphore count value be greater
than 0 in order to return success. If the count is 0, then the semaphore is not avail-
able and the calling thread must block. If the count is greater than 0, then the
count is decremented in the semaphore and the code returns to the caller. Other-
wise, a sleep queue is located from the systemwide array of sleep queues, the
thread state is changed to sleep, and the thread is placed on the sleep queue. Note
that turnstiles are not used for semaphores—turnstiles are an implementation of
sleep queues specifically for mutex and RW locks. Kernel threads blocked on any-
thing other than mutexes and RW locks are placed on sleep queues.

Sleep queues are discussed in more detail in Chapter 6, “The Solaris Dis-
patcher.” Briefly though, sleep queues are organized as a linked list of kernel
threads, and each linked list is rooted in an array referenced through a
sleepq_head kernel pointer. Some changes were made in Solaris 7 to facilitate
faster sleep queue operations: insertion, removal, and queue traversal. In Solaris
releases prior to Solaris 7, an entry in the sleepq_head array begins a linked list
of kernel threads waiting on the same object. The list is singly linked by the ker-
nel threads t_link pointer. In Solaris 7, several additional pointers were added to
the kernel thread to support a doubly linked sublist of threads at the same prior-
ity. Figure 3.16 illustrates how sleep queues are organized.
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 Figure 3.16 Sleep Queues in Solaris 2.5.1, 2.6, and 7

In all pre- and post-Solaris 7 implementations, a hashing function indexes the
sleepq_head array, hashing on the address of the object. In the pre-Solaris 7
implementation, kernel threads are inserted on the list in descending order based
on their priority. In Solaris 7, the singly linked list that establishes the beginning
of the doubly linked sublists of kthreads at the same priority is also in ascending
order based on priority. The sublist is implemented with a t_priforw (forward
pointer) and t_priback (previous pointer) in the kernel thread. Also, a t_sleepq
pointer added in Solaris 7 points back to the array entry in sleepq_head , identi-
fying which sleep queue the thread is on and providing a quick method to deter-
mine if a thread is on a sleep queue at all; if the threads t_sleepq pointer is
NULL, then the thread is not on a sleep queue).

Inside the sema_p() function, if we have a semaphore count value of 0, the
semaphore is not available and the calling kernel thread needs to be placed on a
sleep queue. A sleep queue is located through a hash function into the
sleep_head array, which hashes on the address of the object the thread is block-
ing, in this case, the address of the semaphore. The code also grabs the sleep queue
lock, sq_lock (see Figure 3.16) to block any further inserts or removals from the
sleep queue until the insertion of the current kernel thread has been completed
(that’s what locks are for!).
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The scheduling-class-specific sleep function is called to set the thread wakeup
priority and to change the thread state from ONPROC(running on a processor) to
SLEEP. The kernel thread’s t_wchan (wait channel) pointer is set to the address of
the semaphore it’s blocking on, and the thread’s t_sobj_ops pointer is set to ref-
erence the sema_sobj_ops structure. The thread is now in a sleep state on a
sleep queue.

A semaphore is released by the sema_v() function, which has the exact oppo-
site effect of sema_p() and behaves very much like the lock release functions
we’ve examined up to this point. The semaphore value is incremented, and if any
threads are sleeping on the semaphore, the one that has been sitting on the sleep
queue longest will be woken up. Semaphore wakeups always involve waking one
waiter at a time.

Semaphores are used in relatively few areas of the operating system: the buffer
I/O (bio ) module, the dynamically loadable kernel module code, and a couple of
device drivers.



 4
KERNEL BOOTSTRAP
AND INITIALIZATION
In the previous chapters, we provided a description of the Solaris kernel and an
overview of the key features and facilities of the operating system. We emphasized
the modular and dynamic nature of the kernel because the Solaris kernel does not
originate on disk as a single, monolithic binary object. Rather, the kernel is con-
structed in memory, during system bootstrap, as major operating system compo-
nents are loaded.

Kernel objects load both at boot time and while the system is running. In this
chapter, we take a look at the directory hierarchy that stores binary kernel objects.
We then discuss the kernel bootstrap and initialization process, the dynamic mod-
ule loading facility, and the kernel runtime linker.

4.1 Kernel Directory Hierarchy

The binary object modules that make up the Solaris kernel exist in a well-defined
directory name space in the root and usr file systems. The system directory
names are described in Table 4-1.
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The core modules that make up the minimum required for a usable system are
split across multiple directories. All kernel modules will be in one of three possible
categories that determine their placement in the directory hierarchy: platform and
hardware independent, platform dependent, or hardware class dependent. The
/kernel directory tree contains operating system modules that are platform inde-
pendent, including the genunix executable object that is loaded initially at boot
time.

The two remaining directory trees are categorized as hardware-class dependent
and platform dependent. The hardware-class is derived from the processor type, in
conjunction with the processor-to-memory bus architecture. UltraSPARC-based
systems have a sun4u hardware class; all such systems use the Ultra Port Archi-
tecture (UPA) as the primary processor interconnect. Hardware classes sun4m and
sun4d are systems based on the SuperSPARC (SPARC Version 8), which uses the
Mbus (sun4m) interconnect on smaller systems and the XDBus on the larger
server systems. You can determine the hardware-class of a system by using the
uname(1) command with the -m option.

The platform category is the specific machine type: the type of system, preceded
by a SUNW for Sun-based platforms. Examples include SUNW,Ultra-2 and
SUNW,Ultra Enterprise-10000. Kernel modules that deal specifically with “box”
dependencies, such as environmental controls and interconnect-specific support,

Table 4-1 System Directories

Directory
Name

Description

root  (/ ) Beginning of the system directory name space
/kernel Subdirectory tree with platform-independent loadable

kernel modules
/platform Subdirectory tree with platform-dependent loadable

kernel modules
The following directories are not subdirectories under root (/). Rather,
they are directory names that hold specific types of kernel objects and
exist as subdirectories under several top-level directories, such as /ker-
nel , /platform/ <arch >)  and /usr/kernel . Refer to Figure 4.1.
sparcv9 Solaris 7 and later. The directory name space uses the

sparcv9  subdirectory name to store all 64-bit kernel
objects

drv Device drivers
exec Executable object file routines
fs File system modules
misc Miscellaneous modules
sched Scheduling classes
strmod STREAMS module support
sys System calls
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reside in the directory tree beginning with /platform/< platform-name >. Fig-
ure 4.1 shows the directory hierarchy.

 Figure 4.1 Core Kernel Directory Hierarchy

For illustration, we use a specific platform (SUNW,UltraEnterprise) and hardware
class (sun4u, which is all UltraSPARC processors) in the example directory tree in
Figure 4.1. The modules in these directories make up all the components that are
loaded at boot time and are required for a fully functional system.

Other loadable kernel modules are located under the /usr directory tree, which
also contains a kernel (/usr/kernel ) and platform (/usr/platform ) set of sub-
directories. The modules under these directories are kernel modules that are
loaded as needed: either on demand, as a result of a user or application process
requesting a service that requires the loading of one of the modules, or manually
with the modload (1M) command. For example, the kernel exec support for execut-
ing code written in the Java programming language is in /usr/kernel/exec and
has the file name javaexec . This module is loaded by the kernel the first time a
Java program is started on the system. Note that you can instruct the system to
load optional modules at boot time by using the forceload directive in the
/etc/system  kernel configuration file.

The full path names of the core executable files that form the nucleus of the ker-
nel are listed below.

/kernel /platform

genunix

drv exec fs misc sched strmod sys

<hardware-class>
<platform name>

sun4u SUNW,Ultra Enterprise

kernel
cprboot
cprbooter
kadb
ufsboot

unix
genunixcpu drv misc strmod

kernel

misc

platmod

root

sparcv9

sparcv9

unix
genunix

sparcv9
sparcv9

platmod

hardware-independent
kernel objects

hardware-dependent
kernel objects
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• /platform/<arch>/kernel/unix — The platform-dependent component of
the core kernel.

• /platform/sun4u/kernel/genunix — A genunix binary optimized for
UltraSPARC, but independent of the system (box) type. Only Ultra-
SPARC-based systems load this particular binary.

• /kernel/genunix — Platform-independent (generic) core kernel code. Only
non-UltraSPARC-based systems load this file.

Note that only one genunix binary gets loaded at boot time: either the Ultra-
SPARC version on sun4u hardware or the /kernel/genunix image on all other
SPARC systems. These objects contain all the low-level kernel services and other
facilities that need to be memory resident to properly initialize the system and
support the dynamic load environment.

Included within the unix and genunix images are the memory management
routines, callback and callout facilities, clock and timer support, kernel memory
allocator, module load facility, the kernel runtime linker, synchronization primi-
tives, kernel thread and lightweight process code, and device driver interfaces.

The remaining bits load as modules from the directories described in Table 4-1
on page 104. For a listing of the modules currently loaded in a running system, use
the modinfo (1M) command.

The sample output above is a partial listing from a running Solaris 7 system. mod-
info (1M) provides the name of the kernel object and a brief description. Each ker-
nel module has a unique identifier, shown in the Id column. The kernel virtual
address (Loadaddr ) and size of the module are also displayed, along with mod-
ule-specific data in the Info column.

# modinfo
 Id Loadaddr   Size Info Rev Module Name
  4 f5b28000   3b30   1   1  specfs (filesystem for specfs)
  6 f5b2bb30   2bc8   1   1  TS (time sharing sched class)
  7 f5b2e6f8    4a4   -   1  TS_DPTBL (Time sharing dispatch table)
  8 f5c0e000  23548   2   1  ufs (filesystem for ufs)
 11 f5b63d08    b30   1   1  rootnex (sun4m root nexus)
 13 f5b649c0    530  62   1  dma (Direct Memory Access driver)
 14 f5b64ef0    aeb  59   1  sbus (SBus nexus driver)
 16 f5b67388   14e8  12   1  sad (Streams Administrative driver’s)
 44 f5bc2d58   1eed   0   1  elfexec (exec module for elf)
 57 f5eb3000   bb40   8   1  sockfs (filesystem for sockfs)
 63 f5bd7da0   3586 201   1  doorfs (doors)
 64 f5bdb328    c3c  12   1  fdfs (filesystem for fd)
 65 f5f18000    f05  38   1  openeepr (OPENPROM/NVRAM Driver)
 72 f5bdbf68    6c6  90   1  kstat (kernel statistics driver)
 73 f6003000   d3ef  11   1  tmpfs (filesystem for tmpfs)
 91 f625f000   1ce0  52   1  shmsys (System V shared memory)
 92 f5bdefa0    268   -   1  ipc (common ipc code)
 93 f625bac0   1512   -   1  bootdev (bootdev misc module)
106 f6a19000   587a  40   1  le (Lance Ethernet Driver v1.120)
107 f5ff1aa8    4d1  78   1  ledma (le dma driver)
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It is from the binary kernel modules that reside within these directories that
the in-memory Solaris kernel is constructed.

4.2 Kernel Bootstrap and Initialization

The boot process loads the binary kernel objects that make up the Solaris kernel
from a bootable system disk into physical memory, initializes the kernel struc-
tures, sets system tuneable parameters, starts system processes (daemons), and
brings the system to a known, usable state. The basic steps involved in booting can
be summarized as follows.

1. The boot (1M) command reads and loads the bootblock into memory.
2. The bootblock locates and loads the secondary boot program, ufsboot , into

memory and passes control to it.
3. ufsboot  locates and loads the core kernel images and the required kernel

runtime linker into memory and passes control to the loaded kernel.
4. The core kernel locates and loads mandatory kernel modules from the root

disk directory tree and executes the main startup code.
5. The kernel startup code executes, creating and initializing kernel structures,

resources, and software components.
6. The system executes shell scripts from system directories, bringing the

system up to the init state specified in the /etc/inittab  file.

The preliminary steps shown above are based on a local disk boot. A network boot
uses a different secondary boot program: inetboot instead of ufsboot . Our con-
tinuing discussion is based on a local disk boot.

4.2.1  Loading the Bootblock

The initial stage of the boot process requires support from system firmware, typi-
cally loaded in a PROM, such that a bootable device can be addressed and that
some minimal I/O functionality exists for the reading of a primary bootblock.

Sun SPARC-based systems implement system firmware, known as the Open-
Boot PROM (OBP), in the Forth programming language. The OBP firmware pro-
vides Power-On Self-Test (POST) functionality for hardware integrity testing,
provides a Non-Volatile RAM (NVRAM) space for setting system parameters (e.g.,
the default boot device), builds a device tree that reflects the hardware configura-
tion of the system, and provides bootstrap support. Intel-based systems use
BIOS-based firmware that provides similar functionality. Our coverage here
focuses on SPARC-based systems, although much of the initialization process is
hardware independent once the secondary boot phase has completed and the ker-
nel is loaded.



108 Kernel Bootstrap and Initialization
On a system that has completed its POST tests, the boot process is initiated
either with an explicit boot (1M) command at the OBP prompt or, if the
auto-boot? NVRAM variable is set to true , initiating an automatic boot when
the system is powered up. The boot (1M) command supports several options,
including specifying a boot device and bootfile on the command line (something
other than the default), flagging a boot into the kernel debugger (kadb ), running
the boot in a more verbose mode for more output, etc. Refer to the manual page on
boot (1M) for specifics.

On SPARC systems using the default Unix file system (UFS) for the root file
system (a.k.a. the system disk), the bootblock is located on physical disk sectors 1–
15, as shown in Figure 4.2. The blocks are labeled as sectors 0 through 16 to dis-
tinguish them from file system blocks. Physical sectors on a disk are 512 bytes in
size, whereas file system blocks are typically a grouping of some number of physi-
cal disk sectors (16 in UFS, for a default file system block size of 8 Kbytes).

 Figure 4.2 Bootblock on a UFS-Based System Disk

Sector 0, the Virtual Table Of Contents (VTOC), contains the disk partition infor-
mation: the starting and ending block numbers for each of eight possible on-disk
partitions. Sector 16 is where a UFS puts the primary superblock (file system
metadata).

The Solaris environment provides an installboot (1M) command, which adds
or restores a bootblock to a system partition. The bootblock code is maintained in
the /usr/platform/< arch >/lib/fs/ufs/bootblk file. The install-
boot (1M) utility just uses dd(1) to copy this file to the specified disk partition. The
size of the bootblock is constrained (it cannot be larger than 7,680 bytes—15 sec-
tors at 512 bytes each), so it is the bare minimum amount of code required to read
a directory in a UFS, locate a file, and load it into memory.

4.2.2  Loading ufsboot

The secondary bootfile name, ufsboot , is hardcoded into the bootblock code for a
UFS boot; the full path name for ufsboot is /platform/< arch >/ufsboot . (In
early Solaris versions, up to and including Solaris 2.4, ufsboot was located in the
root directory, /ufsboot .)

Note that the references to <arch > indicate that for this field in the path name,
you should substitute the output from uname -m, which displays the hardware
class of the system (e.g., sun4u, sun4m, x86, etc.).

ufs bootblock

VTOC

sector-0 sector-1 sector-15 sector-16

begin UFS
superblock

. . . . . . .
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4.2.3  Locating Core Kernel Images and Linker

ufsboot , once loaded, locates the kernel image, unix , and the required runtime
linker, krtld . The full path name of the first kernel binary loaded by ufsboot is
/platform/< arch >/kernel/unix  (e.g., /platform/sun4u/kernel
/unix on UltraSPARC-based systems). The unix file is an Executable and Link-
ing Format (ELF) binary file, the industry-standard file format for executable
binary files on Unix systems. In an ELF file, specific bits of header information
need to be examined to determine things like the execution dependencies. ufs-
boot knows about ELF files—how to interpret the header information and how to
extract the dependencies. Based on information in the unix ELF headers, ufs-
boot  loads the required kernel runtime linker, /kernel/misc/krtld .

4.2.4  Loading Kernel Modules

Control is passed to krtld , which notes dependencies on additional binary object
files. Below is the partial output of the dump(1) command on the /plat-
form/sun4u/kernel/unix file, illustrating the dependency listing of the unix
binary.

The dump(1M) flags shown dump the.dynamic section of an ELF object file. Not
listed is the PT_INTERP entry, which in this case is misc/krtld .

First is the genunix binary, located in /kernel/genunix for all non-UltraS-
PARC-based platforms, or /platform/sun4u/kernel/genunix for all UltraS-
PARC (sun4u) platforms. The remaining dependencies are
/platform/< arch >/kernel/misc/platmod and /platform/< arch >/ker-
nel/cpu/$CPU , which are platform- and processor-specific binaries that are part
of the core kernel. The $CPUsymbol is set to the specific processor type by the OBP
firmware and expands properly when krtld resolves the symbol. krtld uses a
module search path variable, which is similar to the traditional Unix shell PATH
variable; the module search path specifies the directory names to be searched for
dynamically loadable kernel modules. The module search path variable is set by
the OBP firmware and differs slightly across different hardware platforms (the
search path can be specified by being booted with boot -a ). As krtld encounters

# pwd
/platform/sun4u/kernel
# /usr/ccs/bin/dump -Lv unix

unix:

  **** DYNAMIC SECTION INFORMATION ****
.dynamic:
[INDEX] Tag         Value
[1]     NEEDED      genunix
[2]     NEEDED      misc/platmod
[3]     NEEDED      cpu/$CPU
[4]     HASH        0x114
...
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binary object dependencies, it searches directories specified in the module search
path.

Figure 4.3 illustrates the boot flow up to this point, using the sun4u (Ultra-
SPARC) directory hierarchy for the example.

 Figure 4.3 Boot Process

4.2.5  Creating Kernel Structures, Resources, and
Components

With all the core binary objects (unix , krtld , genunix , platmod , and the $CPU
module) loaded into memory and linked, krtld passes control to unix , which is
loaded near the top of physical memory space, to take over execution. The Solaris
kernel is now running, the Memory Management Unit (MMU) is enabled (the code
is generating virtual addresses and working in virtual address space), and the first
16 megabytes of memory are mapped. unix does some low-level setup of processor
registers, begins hand-crafting kernel thread 0, and calls an architecture-specific
startup function, mlsetup() . mlsetup() completes the initialization of kernel
thread 0 and LWP 0, builds the first process (p0), and begins mapping system
devices according to device information in the OBP space.

The EEPROM on SPARC systems, which holds the OBP code, is one of the early
devices mapped. That is, the eeprom occupies a part of the system’s physical
address space, much like a physical device. A kernel software layer is initialized,
very similar to a device driver, allowing other areas of the kernel to call into the
PROM. Calls into the PROM are required during the boot process for a variety of
reasons, such as the retrieval of hardware and version information.

With the mlsetup() work done, the kernel main() function is entered, which
is where the code begins a sequence of function calls into the higher-level areas of
the kernel to continue the initialization process. The main() function is part of the
kernel hardware-independent code. It immediately calls into hardware-specific
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routines for specific initialization steps, then returns to the common code to com-
plete the boot process.

The platform-specific startup() function does some preliminary memory ini-
tialization: determining available physical memory after the core kernel is loaded,
setting up of the kernel address space symbols, and allocating memory page struc-
ture. The kernel memory allocation (KVM) subsystem and the kernel kstat (ker-
nel statisitics) framework. are initialized Once these steps are completed, the
operating system banner is displayed on the console;

Additional platform-specific checking is done on processor types, firmware ver-
sions, etc., and the kernel mod_read_system_file() function is called to read
the /etc/system file and populate internal data structures with the parameters
and values set in /etc/system .

The kernel creates a linked list of sysparam data structures, such that each entry
on the /etc/system file has a corresponding data structure in the list. The sys-
param structure is defined in /usr/include/sys/sysconf.h , and is shown
below.

The fields in the sysparam structure are generally self-explanatory. Space is
defined for parameter-specific information, the parameter type (e.g., a module load
entry or an entry to set a value), and the necessary pointer to maintain the linked
list. The mod_read_sys_file() code walks through each line on /etc/system ,
doing the necessary parsing to determine the entry types and setting the appropri-
ate values in the sysparam structure that corresponds to the line entry in
/etc/system . When mod_read_sys_file() is finished, a linked list of popu-
lated sysparam  structures is established in kernel memory.

Before mod_read_sys_file() returns, the code sets the maxusers value. The
maxusers parameter is calculated on the basis of the amount of physical memory

SunOS Release 5.7 Version Generic 64-bit [UNIX(R) System V Release 4.0]
Copyright (c) 1983-1998, Sun Microsystems, Inc.

/*
 * For each entry in /etc/system a sysparam record is created.
 */
struct sysparam {
        struct sysparam *sys_next; /* pointer to next */
        int     sys_type;          /* type of record */
        int     sys_op;            /* operation */
        char    *sys_modnam;       /* module name (null if param in kernel) */
        char    *sys_ptr;          /* string pointer to device, etc. */
        u_longlong_t    sys_info;  /* additional information */
        char    *sys_config;       /* configuration data */
        int     sys_len;           /* len of config data */
        u_long  *addrp;            /* pointer to valloced config addresses */
};

Header File <sys/sysconf.h>
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installed on the system, where maxusers equals the number of megabytes of
RAM, to a maximum value of 1024 (which equates to 1 gigabyte of RAM—on sys-
tems with greater than 1 gigabyte of physical memory, maxusers will be 1024). If
maxusers is set in /etc/system , that value is used, up to a maximum value of
2048; any /etc/system maxusers value larger than 2048 results in maxusers
getting set to 2048. Once maxusers is established, the startup code sets other ker-
nel limits, based on maxusers  in the kernel param_calc()  function.

• maxpid — Maximum process ID value. If pidmax is set in /etc/system , the
pidmax value will be tested against a minimum reserved_procs value (5
in Solaris 2.5.1, 2.6, and 7) and a maximum value (30,000 in all three
releases). If pidmax is less than reserved_procs or greater than 30,000, it
is set to 30,000. Otherwise, the user-defined value is set.

• max_nprocs — Maximum number of processes, systemwide, set as (10 +
16 * maxusers) .

• maxuprc — Maximum processes per non-root user, set as (max_nprocs -
reservered_procs) . reserved_procs  has a default value of 5.

• ufs_ninode and ncsize — High limits for the UFS inode cache and direc-
tory name cache. (See “The Directory Name Lookup Cache (DNLC)” on
page 568.) Both of these caches are set to the same value, (4 *
(max_nprocs + maxusers) + 320) .

• ndquot — The number of UFS disk quota structures, systemwide, set as
((maxusers * 40) / 4) + max_nprocs) .

As you can see, maxusers is not really the maximum number of users the system
will support. It’s simply a parameter that can be set to drive the number of sev-
eral configurable kernel resources that indirectly affect the load or volume of users
the system can handle. Many things factor in to the user load capabilities of the
system, not the least of which are what constitutes a user, what a user does, and
how a user connects to the system.

Other kernel parameters that are related to the STREAMS subsystem and mis-
cellaneous areas of the system are also set at this time. These parameters use
hard-coded default values that are not driven by the maxusers parameter unless a
value has been set in /etc/system .

• nstrpush — Number of STREAMS modules that can be contained (pushed)
on a single STREAM; set to 9.

• strmsgsz  — Maximum size of a STREAMS message; set to 64 Kbytes.

• strctlsz  — Maximum size of a STREAMS control message.

• ngroups_max  — Maximum number of groups a user can belong to; set to 16.

• rstchown — A boolean that forces POSIX chown (1) behavior, where a pro-
cess must have an effective UID of 0 (root) to change file ownership; set to 1
(true) by default.
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• hz , hires_hz , hires_tick — Clock frequency controls. hz is set to 100,
hires_hz to 1000, and hires_tick to 0. hz and hires_hz should not be
altered. You can set hires_tick to 1 in /etc/system . Doing so results in
an hz value of 1000, causing the system clock to generate a clock interrupt
1000 times a second (every millisecond) versus the default of 100 times a sec-
ond (every 10 milliseconds).

• autoup — Age in seconds of a dirty page before fsflush will write it to disk;
set to 30.

• rlimits — Per-process resource limits. Default values are set. Per-process
file descriptor limits can be set through /etc/system , with rlim_fd_max
for the maximum value and rlim_fd_cur for the current value (current can
never exceed the maximum).

For a complete listing of kernel tunable parameters, see [5]. See also Appendix A,
“Kernel Tunables, Switches, and Limits”.”

Moving along with the system initialization process: The system device name
space is established in the /devices directory, based on the device tree created by
the OBP firmware. The system call table is initialized, and the kernel loads the
device driver classes file, /etc/driver_classes . System parameters are set in
the var data structure; most of these parameters are values that we have previ-
ously discussed (e.g., max_nprocs ), and others are not used in the Solaris kernel
(var is a somewhat outdated SVR4 holdover). You can examine the relevant data
stored in the var structure with the sysdef (1M) command or with the var func-
tion in crash (1M).

Kernel module loading occurs at various points in the boot process. During the
platform-specific startup, several core modules, such as the swap, specfs , procfs
and tod (time-of-day clock driver), are loaded. Other module loading occurs when
a specific kernel subsystem is initialized. For example, the scheduling classes are
loaded during the dispinit() function, which initializes the kernel dispatcher
subsystem. These module loads (and dispinit() ) occur before the platform-spe-
cific startup returns to the kernel main() function. Other loadable modules that
are platform specific are loaded a little later in the process. Examples here include
modules specific to the UltraEnterprise E3500 (E6500 servers that support envi-
ronmental monitoring and specific control functions).

Additional virtual memory support is initialized (the HAT layer and segment
drivers), the specfs and swapfs file system support modules are loaded and ini-
tialized, the root, swap and dump devices are configured, any kernel modules set
for forceload in the /etc/system file are loaded, and the kernel trap table is
set (traps were handled through the trap table set in the OBP up to this point).
The system displays the memory values for actual, installed physical memory and



114 Kernel Bootstrap and Initialization
available memory, that is, what’s left after the kernel consumes whatever pages it
requires.

Some additional housekeeping, such as creating the interrupt threads and idle
thread, is done for the boot processor, clock interrupts are enabled, and the device
configuration process is completed. The code walks through the device tree, read-
ing data from the dev_info structures created for each device and displaying the
device information on the console. Several kernel initialization functions for spe-
cific subsystems, such as the callout table, buffer I/O subsystem, credentials and
file cache, pseudoterminal and STREAMS support, etc., are invoked through an init
table array. Several kernel daemon threads are created, the init , pageout , and
fsflush processes are created, and any additional processors (MP system) are ini-
tialized.

The process creation of init , pageout , and fsflush is done by means of an
internal newproc() kernel function, which gets the process table slot and process
ID and does some initialization of the proc structure members. An LWP and ker-
nel thread are also created from the newproc() function. The pageout and
fsflush processes are actually part of the kernel and execute as kernel threads
within the kernel’s address space. The process table entries for these processes are
simply placeholders, providing a user-visible view of process execution time (the
TIME column from the ps (1) command).

The init process, also created with a call to newproc() from the kernel
main() function, is the first real user process Solaris creates. Additional work is
done by the code path entered when the initial process creation phase (new-
proc() ) is completed. First and foremost, a user address space is allocated for the
init process; it does not attach to or execute in the kernel’s address space. Sec-
ond, an on-disk binary file—/sbin/init —is exec’d once the process initialization
is completed. The pageout and fsflush processes do not have a distinct user
address space; instead, they attach to the kernel’s address space. Neither is an
explicit exec() function called to overlay the newly created process with a new
binary image. pageout  and fsflush  exist as kernel functions.

Thus, init is the first genuine user process created by the system and the last
process the kernel must effectively craft piece-by-piece. All further process cre-
ation to get to a running system is done by forking init , and exec ’ing the appro-
priate binary image from disk

4.2.6  Completing the Boot Process

The remaining phases of the boot process take place under control of the init pro-
cess, which references the /etc/inittab file to determine the default init level
(typically, 3) and controls the serial execution of several shell scripts in the /sbin

mem = 262144K (0x10000000)
avail mem = 257785856
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and /etc directories. The init control and script execution sequence managed
through the inittab file is not unique to Solaris and has been used in many Sys-
tem V-based Unix variants for several years. As such, it is generally well under-
stood and documented in many places.

4.2.7  During the Boot Process: Creating System Kernel
Threads

During the boot process, the system creates several kernel threads that are not
visible outside the operating system; they cannot be seen by examination of the
/proc directory hierarchy or through the ps (1) command. They show up on the
systemwide linked list of kernel threads and behave as daemon threads, called by
different areas of the operating system when appropriate. These threads are only
part of the multithreaded design of the Solaris kernel, and they perform very spe-
cific functions. They all execute in the SYSscheduling class and are unique in that
they are the only kernel threads in the system that do not have a corresponding
LWP. The kernel thread structure provides the necessary support for context infor-
mation and a stack. Following is a list of the kernel threads created at boot time.

• thread_reaper — Cleans up exited (zombie) kernel threads placed on death
row.

• mod_uninstall_daemon — For checkpoint/resume (CPR) support; unloads
kernel modules when the system checkpoints.

• hotplug_daemon — Device hotplug support. Adds the dev_info node for an
added device to the system device tree.

• kmem_async_thread — Garbage collector thread for the kernel slab alloca-
tor.

• seg_pasync_thread — Reclaims pagelocked pages that have not been refer-
enced for a while.

• ksyms_update_thread — Updates the dynamic kernel symbol table,
/dev/ksyms , as kernel modules are loaded.

• callout_thread  — Processes the kernel callout queue by means of the clock
interrupt handler.

• cpu_pause  — Per-processor; for CPU state changes.

• modload_thread  — Supports dynamic loading of kernel modules.

• background — STREAMS based; services STREAMS queues. One of these
threads is created for every CPU on a system at boot time.

• freebs — STREAMS based; manages list of free STREAMS blocks. One of
these threads is created for every CPU on a system at boot time.
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• qwriter_outer_thread — STREAMS based; processes outer STREAMS
syncq messages. One of these threads is created for every CPU on a system
at boot time.

All kernel threads, even those threads listed above that are part of the operating
system, need a process context to execute, in order to have the required software
context state (for example, an address space). Kernel threads created by the oper-
ating system are linked to process 0 (PID 0) for contextual information. Process
context is discussed in detail in Chapter 5.

4.3 Kernel Module Loading and Linking

Much of the kernel architecture is layered architecture, and many of the kernel’s
major subsystems call into a common set of lower-level services. In some respects,
the kernel architecture is similar to that of a client/server application, except that
the interfaces in this case are, for the most part, private to the kernel. That is,
many of the callable routines are not public interfaces available for use for general
application software development. The other obvious distinction is that the users
of the services, or clients, in this context, are other kernel subsystems, as opposed
to application code. Exceptions to the private interface generalization are those
interfaces defined for device drivers and kernel STREAMS modules, which are doc-
umented as the Solaris Device Driver Interface (DDI) specifications, found in sec-
tion 9 of the manual pages.

The kernel module loading facility serves as a good example of one such service.
Several phases are involved in dynamic module loading.

1. Load the module (a binary object file) into memory.
2. Establish kernel address space mappings for module segments.
3. Link the module’s segments into the kernel.
4. Perform the module-type-specific install function.

The loadable module types are defined in /usr/include/sys/modctl.h ; they
are device drivers, systems calls, file systems, miscellaneous modules, streams
modules, scheduling classes, and exec modules (exec support for executable
objects). For each of these module types, some specific kernel installation steps are
required to complete the loading process. We will take a look at these shortly.

The steps involved in loading a module into the kernel are similar conceptually
to what happens when a dynamically linked program is started under Solaris.
That is, shared objects to which a binary is linked are dynamically loaded into
memory and linked into the process’s address space during execution. The kernel
exists in memory as a large, dynamically linked executable, with essentially the
same address space segments that exist in any process running on the system:
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memory mappings for text (instructions), data (initialized and uninitialized), and a
stack. Thus, loading a kernel module involves reading the target module into
memory and creating the address space mappings in the kernel’s address space for
the module’s text and data. This process is illustrated in Figure 4.4.

 Figure 4.4 Loading a Kernel Module

The illustration in Figure 4.4 is not a precise depiction of the kernel address space
or binary object segments but provides a conceptual view. Subsequent chapters
describe executable objects and address space mappings in detail.

The system loads the modules required for a functional system at boot time. A
path variable that defines the module search path (which directories to search for
loadable modules) guides the boot code in locating the appropriate kernel objects.
The kernel modload() function is the entry point in the code that begins the mod-
ule load process. The primary data structures used in support of module loading
are the modctl (module control) structure and module structure. You can find the
structure definitions for modctl and module in /usr/include/sys/modctl.h
and /usr/include/sys/kobj.h , respectively.
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The kernel maintains a linked list of modctl structures for all modules in the
kernel, as shown in Figure 4.5.

 Figure 4.5 Module Control Structures

The kernel modules pointer marks the beginning of the doubly linked list of mod-
ule control structures. Not every structure member is shown in the figure. In addi-
tion to the structure links (next and previous pointers), the module identification
(mod_id ) is maintained, along with links to a mod_modinfo structure and
mod_linkage structure. mod_mplinks to a module structure, defined in the ker-
nel object linker code (/usr/include/sys/kobj.h ), and used by the kernel run-
time linker and the module load facility. Other interesting bits include character
string pointers to the directory name, mod_filename , that holds the module and
the module file name, mod_modname.

A given kernel module may depend on the existence of other kernel modules in
order to function or may have other kernel modules depend on it. For example, the
System V Interprocess Communication (IPC) modules for shared memory, sema-
phores, and message queues all depend on the kernel ipc module to function.
Such dependencies are defined in the module code and maintained in the modctl
structure by pointers in mod_requisites (other modules this module depends on)
and mod_dependents  (modules that depend on this one).

The kernel module loading facility is threaded. That is, when the kernel mod-
load() function is called (during bootstrap or by the modload (1M) command), it
creates a kernel thread to perform the module load function. The benefit here is
that concurrent module loads are possible on multiprocessor systems and so pro-
vide faster system boot and initialization. Once the kernel thread is created, the
following series of events is executed to complete the loading and linking of the
module.

1. Create and allocate a modctl structure. First, search the linked list of
modctl structures, looking for a match to the module name (mod_modname).
If a match is found, return address of existing structure; otherwise, create a
new one. Add a new modctl  structure to the linked list.

2. Enter the kernel runtime linker, krtld , to create address space segments
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and bindings, and load the object into memory.
a) Allocate module  structure() .

b) Allocate space for the module’s symbols in the kernel’s kobj_map resource
map.

c) Loop through the segments of the module being loaded, and allocate and map
space for text and data.

d) Load kernel object into memory, linking the object’s segments into the appropri-
ate kernel address space segments.

3. Set the mod_loaded bit in the module’s modctl structure, and increment the
mod_loadcnt .

4. Create a link to module’s mod_linkage  structure.
5. Execute the module’s mod_install  function indirectly by looking up the

module _init()  routine and calling it.

As the preceding steps indicate, the major kernel subsystems involved in module
loading are the module facility and the kernel’s runtime linker, krtld , which is
loaded very early in the bootstrap procedure. The module subsystem does not free
a modctl structure when a module in unloaded. The structure remains on the
linked list, and the mod_loaded bit is cleared. This is why step 1 searched the list
first; in case the module was loaded and subsequently unloaded, the modctl struc-
ture would already exist. This is also why a mod_loaded status bit is main-
tained—the existence of a modctl structure does not necessarily mean that the
module is loaded.

The facts that the Solaris kernel is dynamic in nature and that kernel objects
can be loaded and unloaded during the life of a running system require that the
kernel’s symbol table (step 2) exist as a dynamic entity. All executable object files
have a symbol table that holds information required to resolve an object’s sym-
bolic references. A symbolic reference is the correlation of the virtual address of a
function or variable, and its name. The Solaris kernel’s symbol table is main-
tained through a pseudodevice, /dev/ksyms , and corresponding device driver,
/usr/kernel/drv/ksyms . In Solaris 7, the kernel symbol table is updated by a
kernel thread created specifically for that purpose. The kernel runtime linker
issues a wakeup to the ksyms_update_thread() when a module is loaded (or
unloaded), and the kernel symbol table is updated to reflect the current state of
loaded kernel objects.

In Solaris 2.5.1 and 2.6, a different update mechanism is used. A kernel vari-
able is updated when a module is loaded or unloaded. Inside the ksyms driver
ksyms_open() code, the variable is tested to determine whether a new symbol
table image needs to be created. The implication here is that if an open has been
issued in the ksyms driver, meaning that a user (or program) is examining the ker-
nel symbol table, and a kernel module is loaded or unloaded, then the currently
opened version will not reflect the change. A close and subsequent open must be
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issued for an updated view. You can use the nm(1) command to examine an object’s
symbol table; use /dev/ksyms  to examine the kernel’s table.

The preceding example searches the symbol table of the running kernel for mod-
load , a kernel function we discussed earlier. The command returned several
matches that contain the modload string, including the desired modload function
symbol. (For more information on symbol tables and specific information on the
columns listed, see the nm(1), a.out (4), and elf (3E) manual pages. Also, refer to
any number of texts that describe the Executable and Linking Format (ELF) file,
which is discussed in more detail in Chapter 4.)

In step 5, we indicate that the module install code is invoked indirectly through
the module’s _init() function. Several functions must be included in any load-
able kernel module to facilitate dynamic loading. Device drivers and STREAMS
modules must be coded for dynamic loading. As such, a loadable driver interface is
defined. In general, the required routines and data structures that are docu-
mented apply to all loadable kernel modules—not just to drivers and STREAMS
modules (although there are components that are specific to drivers)—and do not
apply to objects such as loadable system calls, file systems, or scheduling classes.

Within a loadable kernel object, an initialization, information, and finish rou-
tine must be coded, as per the definitions in the _init (9E), _info (9E), and
_fini (9E) manual pages. A module’s _init() routine is called to complete the
process of making the module usable after it has been loaded. The module’s
_info() and _fini() routines also invoke corresponding kernel module manage-
ment interfaces, as shown in Table 4-2.

Module installation is abstracted to define a generic set of structures and inter-
faces within the kernel. Module operations function pointers for installing, remov-
ing, and information gathering (the generic interfaces shown in Table 4-2) are
maintained in a mod_ops structure, which is extended to provide a definition for
each type of loadable module. For example, there is a mod_installsys() func-

# nm -x /dev/ksyms | grep modload
[1953]  |0xf011086c|0x000000ac|FUNC |LOCL |0    |ABS    |modctl_modload
[10072] |0xf011113c|0x000000a0|FUNC |GLOB |0    |ABS    |modload
[1973]  |0xf0111398|0x000000b8|FUNC |LOCL |0    |ABS    |modload_now
[1972]  |0xf01111dc|0x000000c8|FUNC |LOCL |0    |ABS    |modload_thread
[9926]  |0xf0111450|0x000000a4|FUNC |GLOB |0    |ABS    |modloadonly

Table 4-2 Module Management Interfaces

Kernel
Module
Routine

Module
Facility

Interface

Description

_init() mod_install() Loads a kernel module.
_info() mod_info() Retrieves module information.
_fini() mod_remove() Unloads a kernel module.
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tion specific to loading system calls, a mod_installdrv() function specific to
loading device drivers, and so forth.

For each of these module types, a module linkage structure is defined; it con-
tains a pointer to the operations structure, a pointer to a character string describ-
ing the module, and a pointer to a module-type-specific structure. For example, the
linkage structure for loadable system calls, modlsys , contains a pointer to the sys-
tem entry table, which is the entry point for all system calls. Each loadable kernel
module is required to declare and initialize the appropriate type-specific linkage
structure, as well as a generic modlinkage structure that provides the generic
abstraction for all modules.

Within the module facility is a module type-specific routine for installing mod-
ules, entered through the MODL_INSTALL macro called from the generic
mod_install() code. More precisely, a loadable module’s _init() routine calls
mod_install() , which vectors to the appropriate module-specific routine through
the MODL_INSTALL macro. This procedure is shown in Figure 4.6.

 Figure 4.6 Module Operations Function Vectoring

Figure 4.6 shows the data structures defined in a loadable kernel module: the
generic modlinkage , through which is referenced a type-specific linkage struc-
ture (modl xxx ), which in turn links to a type-specific operations structure that
contains pointers to the type-specific functions for installing, removing, and gath-
ering information about a kernel module. The MODL_INSTALLmacro is passed the
address of the module’s generic linkage structure and from there vectors in to the
appropriate function. The module-specific installation steps are summarized in
Table 4-3.
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The summary column in Table 4-3 shows a definite pattern to the module installa-
tion functions. In many subsystems, the kernel implements a switch table mecha-
nism to vector to the correct kernel functions for a specific file system, scheduling
class, exec function, etc. The details of each implementation are covered in subse-
quent areas of the book, as applicable to a particular chapter or heading.

As we’ve seen, the dynamic loading of a kernel module is facilitated through two
major kernel subsystems: the module management code and the kernel runtime
linker. These kernel components make use of other kernel services, such as the
kernel memory allocator, kernel locking primitives, and the kernel ksyms driver,
taking advantage of the modular design of the system and providing a good exam-
ple of the layered model discussed earlier.

Table 4-3 Module Install Routines

Module
Type

Install Function Summary

Device driver mod_installdrv Wrapper for ddi_installdrv() .
Install the driver entry in the ker-
nel devops  table.

System call mod_installsys Install the system call’s sysent
table entry in the kernel sysent
table.

File system mod_installfs Installs the file system Virtual File
System (VFS) switch table entry.

STREAMS
modules

mod_installstrmod Install the STREAMS entry in the
kernel fmodsw  switch table.

Scheduling
class

mod_installsched Install the scheduling class in the
kernel sclass  array.

Exec module mod_installexec Install the exec entry in the kernel
execsw  switch table.
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 5
SOLARIS MEMORY
ARCHITECTURE
The virtual memory system can be considered the core of a Solaris system, and
the implementation of Solaris virtual memory affects just about every other sub-
system in the operating system. In this chapter, we’ll take a look at some of the
memory management basics and then step into a more detailed analysis of how
Solaris implements virtual memory management. Subsequent chapters in Part
Two discuss kernel memory management and that can be used to monitor and
manage virtual memory.

5.1 Why Have a Virtual Memory System?

A virtual memory system offers the following benefits:

• It presents a simple memory programming model to applications so that
application developers need not know how the underlying memory hardware
is arranged.

• It allows processes to see linear ranges of bytes in their address space,
regardless of the physical layout or fragmentation of the real memory.

• It gives us a programming model with a larger memory size than available
physical storage (e.g., RAM) and enables us to use slower but larger second-
ary storage (e.g., disk) as a backing store to hold the pieces of memory that
don’t fit in physical memory.
125



126 Solaris Memory Architecture
A virtual view of memory storage, known as an address space, is presented to the
application while the VM system transparently manages the virtual storage
between RAM and secondary storage. Because RAM is significantly faster than
disk, (100 ns versus 10 ms, or approximately 100,000 times faster), the job of the
VM system is to keep the most frequently referenced portions of memory in the
faster primary storage. In the event of a RAM shortage, the VM system is required
to free RAM by transferring infrequently used memory out to the backing store. By
so doing, the VM system optimizes performance and removes the need for users to
manage the allocation of their own memory.

Multiple users’ processes can share memory within the VM system. In a mul-
tiuser environment, multiple processes can be running the same process execut-
able binaries; in older Unix implementations, each process had its own copy of the
binary—a vast waste of memory resources. The Solaris virtual memory system
optimizes memory use by sharing program binaries and application data among
processes, so memory is not wasted when multiple instances of a process are exe-
cuted. The Solaris kernel extended this concept further when it introduced dynam-
ically linked libraries in SunOS, allowing C libraries to be shared among
processes.

To properly support multiple users, the VM system implements memory protec-
tion. For example, a user’s process must not be able access the memory of another
process, otherwise security could be compromised or a program fault in one pro-
gram could cause another program (or the entire operating system) to fail. Hard-
ware facilities in the memory management unit perform the memory protection
function by preventing a process from accessing memory outside its legal address
space (except for memory that is explicitly shared between processes).

Physical memory (RAM) is divided into fixed-sized pieces called pages. The size
of a page can vary across different platforms; the common size for a page of mem-
ory on an UltraSPARC Solaris system is 8 Kbytes. Each page of physical memory
is associated with a file and offset; the file and offset identify the backing store for
the page. The backing store is the location to which the physical page contents will
be migrated (known as a page-out) should the page need to be taken for another
use; it’s also the location the file will be read back in from if it’s migrated in
(known as a page-in). Pages used for regular process heap and stack, known as
anonymous memory, have the swap file as their backing store. A page can also be a
cache of a page-sized piece of a regular file. In that case, the backing store is sim-
ply the file it’s caching—this is how Solaris uses the memory system to cache files.

If the virtual memory system needs to take a dirty page (a page that has had its
contents modified), its contents are migrated to the backing store. Anonymous
memory is paged out to the swap device when the page is freed. If a file page needs
to be freed and the page size piece of the file hasn’t been modified, then the page
can simply be freed; if the piece has been modified, then it is first written back out
to the file (the backing store in this case), then freed.

Rather than managing every byte of memory, we use page-sized pieces of mem-
ory to minimize the amount of work the virtual memory system has to do to main-
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tain virtual to physical memory mappings. Figure 5.1 shows how the management
and translation of the virtual view of memory (the address space) to physical mem-
ory is performed by hardware, known as the virtual memory management unit
(MMU).

 Figure 5.1 Solaris Virtual-to-Physical Memory Management

The Solaris kernel breaks up the linear virtual address space into segments, one
for each type of memory area in the address space. For example, a simple process
has a memory segment for the process binary and one for the scratch memory
(known as heap space). Each segment manages the mapping for the virtual
address range mapped by that segment and converts that mapping into MMU
pages. The hardware MMU maps those pages into physical memory by using a
platform-specific set of translation tables. Each entry in the table has the physical
address of the page of memory in RAM, so that memory accesses can be converted
on-the-fly in hardware. We cover more on how the MMU works later in the chap-
ter when we discuss the platform-specific implementations of memory manage-
ment.

Recall that we can have more virtual address space than physical address space
because the operating system can overflow memory onto a slower medium, like a
disk. The slower medium in Unix is known as swap space. Two basic types of mem-
ory management manage the allocation and migration of physical pages of mem-
ory to and from swap space: swapping and demand paging.
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The swapping algorithm for memory management uses a user process as the
granularity for managing memory. If there is a shortage of memory, then all of the
pages of memory of the least active process are swapped out to the swap device,
freeing memory for other processes. This method is easy to implement, but perfor-
mance suffers badly during a memory shortage because a process cannot resume
execution until all of its pages have been brought back from secondary storage.
The demand-paged model uses a page as the granularity for memory manage-
ment. Rather than swapping out a whole process, the memory system just swaps
out small, least used chunks, allowing processes to continue while an inactive part
of the process is swapped out.

The Solaris kernel uses a combined demand-paged and swapping model.
Demand paging is used under normal circumstances, and swapping is used only as
a last resort when the system is desperate for memory. We cover swapping and
paging in more detail in “The Page Scanner” on page 178.

The Solaris VM system implements many more functions than just manage-
ment of application memory. In fact, the Solaris virtual memory system is respon-
sible for managing most objects related to I/O and memory, including the kernel,
user applications, shared libraries, and file systems. This strategy differs signifi-
cantly from other operating systems like earlier versions of System V Unix, where
file system I/O used a separate buffer cache

One of the major advantages of using the VM system to manage file system
buffering is that all free memory in the system is used for file buffering, providing
significant performance improvements for applications that use the file system and
removing the need for tuning the size of the buffer cache. The VM system can allo-
cate all free memory for file system buffers, meaning that on a typical system with
file system I/O, the amount of free memory available is almost zero. This number
can often be misleading and has resulted in numerous, bogus, memory-leak bugs
being logged over the years. Don’t worry, “almost zero” is normal. (Note that free
memory is no longer always low with Solaris 8.)

In summary, a VM system performs these major functions:

• It manages virtual-to-physical mapping of memory
• It manages the swapping of memory between primary and secondary storage

to optimize performance
• It handles requirements of shared images between multiple users and pro-

cesses

5.2 Modular Implementation

Early SunOS versions (SunOS 3 and earlier) were based on the old BSD-style
memory system, which was not modularlized, and thus it was difficult to move the
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memory system to different platforms. The virtual memory system was completely
redesigned at that time, with the new memory system targeted at SunOS 4.0. The
new SunOS 4.0 virtual memory system was built with the following goals in mind:

• Use of a new object-oriented memory management framework
• Support for shared and private memory (copy-on-write)
• Page-based virtual memory management

The VM system that resulted from these design goals provides an open framework
that now supports many different memory objects. The most important objects of
the memory system are segments, vnodes , and pages. For example, all of the fol-
lowing have been implemented as abstractions of the new memory objects:

• Physical memory, in chunks called pages
• A new virtual file object, known as the vnode

• File systems as hierarchies of vnodes

• Process address spaces as segments of mapped vnodes

• Kernel address space as segments of mapped vnodes

• Mapped hardware devices, such as frame buffers, as segments of hard-
ware-mapped pages

The Solaris virtual memory system we use today is implemented according to the
framework of the SunOS 4.0 rewrite. It has been significantly enhanced to provide
scalable performance on multiprocessor platforms and has been ported to many
platforms. Figure 5.2 shows the layers of the Solaris virtual memory implementa-
tion.

Physical memory management is done by the hardware MMU and a hard-
ware-specific address translation layer known as the Hardware Address Transla-
tion (HAT) layer. Each memory management type has its own specific HAT
implementation. Thus, we can separate the common machine-independent mem-
ory management layers from the hardware-specific components to minimize the
amount of platform-specific code that must be written for each new platform.

The next layer is the address space management layer. Address spaces are map-
pings of segments, which are created with segment device drivers. Each segment
driver manages the mapping of a linear virtual address space into memory pages
for different device types (for example, a device such as a graphics frame buffer
can be mapped into an address space). The segment layers manage virtual mem-
ory as an abstraction of a file. The segment drivers call into the HAT layer to cre-
ate the translations between the address space they are managing and the
underlying physical pages.
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5.3 Virtual Address Spaces

The virtual address space of a process is the range of memory addresses that are
presented to the process as its environment; some addresses are mapped to physi-
cal memory, some are not. A process’s virtual address space skeleton is created by
the kernel at the time the fork() system call creates the process. (See “Process
Creation” on page 293.) The virtual address layout within a process is set up by
the dynamic linker and sometimes varies across different hardware platforms. As
we saw in Figure 5.1 on page 127, virtual address spaces are assembled from a
series of memory segments. Each process has at least four segments:
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• Executable text — The executable instructions in the binary reside in the
text segment. The text segment is mapped from the on-disk binary and is
mapped read-only, with execute permissions.

• Executable data — The initialized variables in the executable reside in the
data segment. The data segment is mapped from the on-disk binary and is
mapped read/write/private. The private mapping ensures that changes made
to memory within this mapping are not reflected out to the file or to other
processes mapping the same executable.

• Heap space — Scratch, or memory allocated by malloc() , is allocated from
anonymous memory and is mapped read/write.

• Process stack — The stack is allocated from anonymous memory and is
mapped read/write.

Figure 5.3 illustrates a process’s virtual address space.

 Figure 5.3 Process Virtual Address Space

Figure 5.3 shows how the /sbin/sh process has its executable mapped in near the
bottom address, with the heap adjoining it, the stack at the top, and a hole
between the heap and the stack. The heap grows upward as more memory is allo-
cated through malloc() , and the stack grows downward as more frames are
placed on the stack. Not all of the virtual address space within a process is
mapped, and the process can legally access memory only within the areas mapped
by segments; a process’s attempt to access memory outside of the mapped seg-
ments causes a page fault. A more sophisticated process may have more segments;
those that make use of shared libraries or mapped files will have additional seg-
ments between the heap and stack.
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5.3.1  Sharing of Executables and Libraries

The Solaris kernel supports sharing of memory, files, libraries, and executables.
For example, the Solaris kernel shares libraries by dynamically mapping the
library file into the address space during program startup. The libraries are
mapped into the address space between the stack and the heap, at different posi-
tions on different platforms.

When a library file is mapped into a process’s address space, it can be mapped
shared so that all processes share the same physical memory pages. Executable
text and data are shared in the same manner, by simply mapping the same execut-
able file into every address space.

We’ll see more about how mapping of files and sharing of memory occur when
we explore the vnode segment driver, which is responsible for mapping files into
address spaces.

5.3.2  SPARC Address Spaces

The process address space on SPARC system varies across different SPARC plat-
forms according to the MMU on that platform. SPARC has three different address
space layouts:

• The SPARC V7 combined 32-bit kernel and process address space, found on
sun4c, sun4d, and sun4m machines

• The SPARC V9 32-bit separated kernel and process address space model,
found on sun4u machines

• The SPARC V9 64-bit separated kernel and process address space model,
found on sun4u machines.

The SPARC V7 systems use a shared address space between the kernel and pro-
cess and use the processor’s privilege levels to prevent user processes from access-
ing the kernel’s address space. The kernel occupies the top virtual memory
addresses, and the process occupies the lower memory addresses. This means that
part of the virtual address space available to the process is consumed by the ker-
nel, limiting the size of usable process virtual memory to between 3.5 and 3.75
Gbytes, depending on the size of the kernel’s virtual address space. This also
means that the kernel has a limited size, ranging between 128 and 512 Mbytes.



Virtual Address Spaces 133
The SPARC V7 combined 32-bit kernel and process address space is shown in Fig-
ure 5.4.

 Figure 5.4 SPARC 32-Bit Shared Kernel/Process Address Space

The SPARC V9 (UltraSPARC, sun4u) microprocessor allows the kernel to operate
in an address space separate from user processes, so the process can use almost all
of the 32-bit address space (a tiny bit is reserved at the top for the Open Boot
PROM) and also allows the kernel to have a similar large address space. This
design removes the 512-Mbyte limit for kernel address space, which was a major
problem for large machines such as the older SPARCcenter 2000 machines. The
process address space looks similar to the shared kernel/process address space,
except that the kernel area is missing and the stack and libraries are moved to the
top of memory.

The UltraSPARC process also supports the SPARC V9 64-bit mode, which
allows a process to have a virtual address space that spans 64 bits. The Ultra-
SPARC-I and -II implementations, however, support only 44 bits of the address
space, which means that there is a virtual address space hole in the middle of the
address space. This area of memory creates a special type of UltraSPARC trap
when accessed. Some future generations of SPARC V9 processors will not have the
same hole in the address space.

The UltraSPARC V9 32-bit and 64-bit address spaces are shown in Figure 5.5.
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 Figure 5.5 SPARC sun4u 32- and 64-Bit Process Address Space

On all SPARC platforms, the bottom of the virtual address space is not mapped.
Null pointer references will cause a segmentation fault rather than return spuri-
ous contents of whatever was at the bottom of the address space.

5.3.3  Intel Address Space Layout

The Intel x86 address space, like the 32-bit SPARCV7 shared process/kernel
address space, shares the same address space for user and kernel. The main differ-
ence with the Intel address space is that the stack is mapped underneath the exe-
cutable binary and grows down toward the bottom. The Intel address space is
shown in Figure 5.6.
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ment, which resides above the executable data segment. The heap starts out small
and then grows as virtual memory is allocated. The heap grows in units of pages
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memory allocator manages the heap area; thus, arbitrarily sized memory objects
can be allocated and freed. The general-purpose memory allocator is implemented
with malloc()  and related library calls.

A process grows its heap space by making the sbrk() system call. The sbrk()
system call grows the heap segment by the amount requested each time it is
called. A user program does not need to call sbrk() directly because the mal-
loc() library calls sbrk() when it needs more space to allocate from. The
sbrk()  system call is shown below.

The heap segment is virtual memory, so requesting memory with malloc and
sbrk does not allocate physical memory, it merely allocates the virtual address
space. Only when the first reference is made to a page within the allocated virtual
memory is physical memory allocated—one page at a time. The memory system
transparently achieves this “zero fill on demand” allocation because a page fault
occurs the first time a page is referenced in the heap, and then the segment driver
recognizes the first memory access and simply creates a page at that location
on-the-fly.

void *sbrk(intptr_t incr);
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Memory pages are allocated to the process heap by zero-fill-on-demand and then
remain in the heap segment until the process exits or until they are stolen by the
page scanner. Calls to the memory allocator free() function do not return physi-
cal memory to the free memory pool; free() simply marks the area within the
heap space as free for later use. For this reason, it is typical to see the amount of
physical memory allocated to a process grow, but unless there is a memory short-
age, it will not shrink, even if free()  has been called.

The heap can grow until it collides with the memory area occupied by the
shared libraries. The maximum size of the heap depends on the platform virtual
memory layout and differs on each platform. In addition, on 64-bit platforms, pro-
cesses may execute in either 32- or 64-bit mode. As shown in Figure 5.5 on
page 134, the size of the heap can be much larger in processes executing in 64-bit
mode. Table 5-1 shows the maximum heap sizes and the operating system require-
ments that affect the maximum size.

5.3.5  The Stack

The process stack is mapped into the address space with an initial allocation and
then grows downward. The stack, like the heap, grows on demand, but no library
grows the stack; instead, a different mechanism triggers this growth.

Initially, a single page is allocated for the stack, and as the process executes and
calls functions, it pushes the program counter, arguments, and local variables onto
the stack. When the stack grows larger than one page, the process causes a page
fault, and the kernel notices that this is a stack segment page fault and grows the
stack segment.

Table 5-1 Maximum Heap Sizes

Solaris Version Maximum Heap
Size

Notes

Solaris 2.5 2 Gbytes
Solaris 2.5.1 2 Gbytes
Solaris 2.5.1 with patch
103640-08 or greater

3.75 Gbytes Need to be root to
increase limit above 2
GB with ulimit (1M).

Solaris 2.5.1 with patch
103640-23 or greater

3.75 Gbytes Do not need to be root to
increase limit.

Solaris 2.6 3.75 Gbytes Need to increase beyond
2 GB with ulimit (1M).

Solaris 2.7 32 bit mode 3.75 Gbytes
3.90 Gbytes

(Non-sun4u platform)
(sun4u platforms)

Solaris 2.7 64 bit mode 16 Tbytes on
UltraSPARC-I and -II

Virtually unlimited.
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5.3.6  Address Space Management

The Solaris kernel is implemented with a central address management subsystem
that other parts of the kernel call into. The address space module is a wrapper
around the segment drivers, so that subsystems need not know what segment
driver is used for a memory range. The address space object shown in Figure 5.7 is
linked from the process’s address space and contains pointers to the segments that
constitute the address space.

The address space subsystem manages the following functions:

• Duplication of address spaces, for fork()

• Destruction of address spaces, for exit()

• Creation of new segments within an address space
• Removal of segments from an address space
• Setting and management of page protection for an address space
• Page fault routing for an address space
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• Page locking and advice for an address space
• Management of watchpoints for an address space

Recall that the process and kernel subsystems call into the address space sub-
system to manage their address spaces. The address space subsystem consists of a
series of functions, grouped to perform the functions listed above. Although the
subsystem has a lot of entry points, the implementation is fairly simple because
most of the functions simply look up which segment the operation needs to oper-
ate on and then route the request to the appropriate segment driver.

A call to the as_alloc() function creates an address space, but as_alloc() is
invoked only once—when the system boots and the init process is created. After
the init process is created, all address spaces are created by duplication of the init
process’s address space with fork() . The fork() system call in turn calls the
as_dup() function to duplicate the address space of current process as it creates a
new process, and the entire address space configuration, including the stack and
heap, is replicated at this point.

The behavior of vfork() at this point is somewhat different. Rather than calling
as_dup() to replicate the address space, vfork() creates a new process by bor-
rowing the parent’s existing address space. The vfork function is useful if the fork
is going to call exec() since it saves all the effort of duplicating the address space
that would otherwise have been discarded once exec() is called. The parent pro-
cess is suspended while the child is using its address space, until exec() is called.
Once the process is created, the address space object is allocated and set up. The
Solaris 7 data structure for the address space object is shown below.

struct as {
        kmutex_t a_contents;    /* protect certain fields in the structure */
        uchar_t  a_flags;       /* as attributes */
        uchar_t a_vbits;        /* used for collecting statistics */
        kcondvar_t a_cv;        /* used by as_rangelock */
        struct  hat *a_hat;     /* hat structure */
        struct  hrmstat *a_hrm; /* ref and mod bits */
        caddr_t a_userlimit;    /* highest allowable address in this as */
        union {
                struct seg *seglast;    /* last segment hit on the addr space */
                ssl_spath *spath;       /* last search path in seg skiplist */
        } a_cache;
        krwlock_t a_lock;       /* protects fields below + a_cache */
        int     a_nwpage;       /* number of watched pages */
        struct watched_page *a_wpage;   /* list of watched pages (procfs) */
        seg_next a_segs;        /* segments in this address space. */
        size_t  a_size;         /* size of address space */
        struct  seg *a_tail;    /* last element in the segment list. */
        uint_t  a_nsegs;        /* number of elements in segment list */
        uchar_t a_lrep;         /* representation of a_segs: see #defines */
        uchar_t a_hilevel;      /* highest level in the a_segs skiplist */
        uchar_t a_unused;
        uchar_t a_updatedir;    /* mappings changed, rebuild as_objectdir */
        vnode_t **a_objectdir;  /* object directory (procfs) */
        size_t  a_sizedir;      /* size of object directory */
};

Header File <vm/as.h>
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Address space fault handling is performed in the address space subsystem; some of
the faults are handled by the common address space code, and others are redi-
rected to the segment handlers. When a page fault occurs, the Solaris trap han-
dlers call the as_fault() function, which looks to see what segment the page
fault occurred in by calling the as_setat() function. If the fault does not lie in
any of the address space’s segments, then as_fault() sends a SIGSEGVsignal to
the process. If the fault does lie within one of the segments, then the segment’s
fault method is called and the segment handles the page fault.

Table 5-2 lists the segment functions in alphabetical order.

Table 5-2 Solaris 7 Address Space Functions

Method Description
as_addseg() Creates a new segment and links it into the address

space.
as_alloc() Creates a new address space object (only called from the

kernel for the init process).
as_clearwatch() Clears all watch points for the address space.
as_ctl() Sends memory advice to an address range for the address

space.
as_dup() Duplicates the entire address space.
as_exec() Special code for exec  to move the stack segment from its

interim place in the old address to the right place in the
new address space.

as_fault() Handles a page fault in the address space.
as_findseg() Finds a segment containing the supplied virtual address.
as_free() Destroys the address space object; called by exit() .
as_gap() Finds a hole of at least the specified size within [base,

base + len). If the flag supplied specifies AH_HI, the hole
will have the highest possible address in the range. Oth-
erwise, it will have the lowest possible address. If the flag
supplied specifies AH_CONTAIN, the hole will contain the
address addr. If an adequate hole is found, base and len
are set to reflect the part of the hole that is within range,
and 0 is returned. Otherwise, −1 is returned.

as_getmemid() Calls the segment driver containing the supplied address
to find a unique ID for this segment.

as_getprot() Gets the current protection settings for the supplied
address.

as_map() Maps a file into the address space.
as_memory() Returns the next range within [base, base + len) that is

backed with “real memory.”
as_pagelock() Locks a page within an address space by calling the seg-

ment page lock function.
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5.3.7  Virtual Memory Protection Modes

We break each process into segments so that we can treat each part of the address
space differently. For example, the kernel maps the machine code portion of the
executable binary into the process as read-only to prevent the process from modify-
ing its machine code instructions. The virtual memory subsystem does this by tak-
ing advantage of the hardware MMU’s virtual memory protection capabilities.
Solaris relies on the MMU having the following protection modes:

• Read — The mapping is allowed to be read from.
• Write — The mapping is allowed to be written to.

• Executable — The mapping is allowed to have machine codes executed within
its address range.

The implementation of protection modes is done in the segment and HAT layers.

5.3.8  Page Faults in Address Spaces

The Solaris virtual memory system uses the hardware MMU’s memory manage-
ment capabilities. MMU-generated exceptions tell the operating system when a
memory access cannot continue without the kernel’s intervention, by interrupting

as_pagereclaim() Retrieves a page from the free list for the address sup-
plied.

as_pageunlock() Unlocks a page within the address space.
as_rangebroadcast () Wakes up all threads waiting on the address space condi-

tion variable.
as_rangelock() Locks the pages for the supplied address range.
as_rangeunlock() Unlocks the pages for the supplied address range.
as_rangewait() Waits for virtual addresses to become available in the

specified address space. AS_CLAIMGAP must be held by
the caller and is reacquired before returning to the caller.

as_setat() Finds a segment containing the supplied address.
as_setprot() Sets the virtual mapping for the interval from [addr :

addr + size) in address space as  to have the specified pro-
tection.

as_setwatch() Sets a watchpoint for the address. On a system without
watchpoint support, does nothing.

as_swapout() Swaps the pages associated with the address space to sec-
ondary storage, returning the number of bytes actually
swapped.

as_unmap() Unmaps a segment from the address space.

Table 5-2 Solaris 7 Address Space Functions (Continued)

Method Description
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the executing process with a trap (see “Entering Kernel Mode” on page 28) and
then invoking the appropriate piece of memory management code. Three major
types of memory-related hardware exceptions can occur: major page faults, minor
page faults, and protection faults.

A major page fault occurs when an attempt to access a virtual memory location
that is mapped by a segment does not have a physical page of memory mapped to
it and the page does not exist in physical memory. The page fault allows the vir-
tual memory system to hide the management of physical memory allocation from
the process. The virtual memory system traps accesses to memory that the pro-
cess believes is accessible and arranges to have either a new page created for that
address (in the case of the first access) or copies in the page from the swap device.
Once the memory system places a real page behind the memory address, the pro-
cess can continue normal execution. If a reference is made to a memory address
that is not mapped by any segment, then a segmentation violation signal (SIG-
SEGV) is sent to the process. The signal is sent as a result of a hardware exception
caught by the processor and translated to a signal by the address space layer.

A minor page fault occurs when an attempt is made to access a virtual memory
location that resides within a segment and the page is in physical memory, but no
current MMU translation is established from the physical page to the address
space that caused the fault. For example, a process maps in the libc.so library
and makes a reference to a page within it. A page fault occurs, but the physical
page of memory is already present and the process simply needs to establish a
mapping to the existing physical page. Minor faults are also referred to as
attaches.

A page protection fault occurs when a program attempts to access a memory
address in a manner that violates the preconfigured access protection for a mem-
ory segment. Protection modes can enable any of read, write, or execute access. For
example, the text portion of a binary is mapped read-only, and if we attempt to
write to any memory address within that segment, we will cause a memory protec-
tion fault. The memory protection fault is also initiated by the hardware MMU as
a trap that is then handled by the segment page fault handling routine.
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Figure 5.8 shows the relationship between a virtual address space, its segments,
and the hardware MMU.

 Figure 5.8 Virtual Address Space Page Fault Example

In the figure, we see what happens when a process accesses a memory location
within its heap space that does not have physical memory mapped to it. This has
most likely occurred because the page of physical memory has previously been sto-
len by the page scanner as a result of a memory shortage.

1. A reference is made to a memory address that does not map to a physical
page of memory. In this example, the page has been paged out and now
resides on the swap device.

2. When the process accesses the address with no physical memory behind it,
the MMU detects the invalid reference and causes a trap to occur on the pro-
cessor executing the code of the running thread. The fault handler recognizes
this as a memory page fault and establishes which segment the fault occurred
in by comparing the address of the fault to the addresses mapped by each
segment.

3. The address space as_fault()  routine compares the address of the fault
with the addresses mapped by each segment and then calls the page_fault
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routine of the segment driver for this segment (in this case, the vnode  seg-
ment driver).

4. The segment driver allocates and maps page of memory by calling into the
HAT layer and then copies the contents of the page from the swap device.

5. The segment driver then reads the page in from the backing store by calling
the getpage()  function of the backing store’s vnode .

6. The backing store for this segment is the swap device, so the swap device
getpage()  function is called to read in the page from the swap device.

Once this process is completed, the process can continue execution.

5.4 Memory Segments

Another example of the object-oriented approach to memory management is the
memory “segment” object. Memory segments manage the mapping of a linear
range of virtual memory into an address space. The mapping is between the
address space and some type of device. The objective of the memory segment is to
allow both memory and devices to be mapped into an address space. Traditionally,
this required hard-coding memory and device information into the address space
handlers for each device. The object architecture allows different behaviors for dif-
ferent segments.

For example, one segment might be a mapping of a file into an address space
(with mmap), and another segment might be the mapping of a hardware device into
the process’s address space (a graphics framebuffer). In this case, the segment
driver provides a similar view of linear address space, even though the file map-
ping operation with mmapuses pages of memory to cache the file data, whereas the
framebuffer device maps the hardware device into the address space.

The flexibility of the segment object allows us to use virtually any abstraction to
represent a linear address space that is visible to a process, regardless of the real
facilities behind the scenes.

struct seg {
        caddr_t s_base;                 /* base virtual address */
        size_t  s_size;                 /* size in bytes */
        struct  as *s_as;               /* containing address space */
        seg_next s_next;                /* next seg in this address space */
        struct  seg *s_prev;            /* prev seg in this address space */
        struct  seg_ops *s_ops;         /* ops vector: see below */
        void *s_data;                   /* private data for instance */
};

Header File <vm/seg.h>
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To implement an address space, a segment driver implementation is required to
provide at least the following: functions to create a mapping for a linear address
range, page fault handling routines to deal with machine exceptions within that
linear address range, and a function to destroy the mapping. These functions are
packaged together into a segment driver, which is an instantiation of the segment
object interface. Figure 5.9 illustrates the relationship between an address space
and a segment and shows a segment mapping the heap space of a process.

A segment driver implements a subset of the methods described in Table 5-4 on
page 146, as well as a constructor function to create the first instance of the object.
Functions in the segment operations structure, s_ops , point to functions within
the vnode segment driver and are prefixed with segvn . A segment object is cre-
ated when another subsystem wants to create a mapping by calling as_map() to
create a mapping at a specific address. The segment’s create routine is passed as
an argument to as_map() , a segment object is created, and a segment object
pointer is returned. Once the segment is created, other parts of the virtual mem-
ory system can call into the segment for different address space operations with-
out knowing what the underlying segment driver is using the segment method
operations for.

For example, when a file is mapped into an address space with mmap() , the
address space map routine as_map() is called with segvn_create() (the vnode
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segment driver constructor) as an argument, which in turn calls into the seg_vn
segment driver to create the mapping. The segment object is created and inserted
into the segment list for the address space (struct as ), and from that point on, the
address space can perform operations on the mapping without knowing what the
underlying segment is.

The address space routines can operate on the segment without knowing what
type of segment is underlying by calling the segment operation macros. For exam-
ple, if the address space layer wants to call the fault handler for a segment, it calls
SEGOP_FAULT(), which invokes the segment-specific page fault method, as shown
below.

The Solaris kernel is implemented with a range of segment drivers for various
functions. The different types of drivers are shown in Table 5-3. Most of the pro-
cess address space mapping—including executable text, data, heap, stack and
memory mapped files—is performed with the vnode segment driver, seg_vn .
Other types of mappings that don’t have vnodes associated with them require dif-
ferent segment drivers. The other segment drivers are typically associated with
kernel memory mappings or hardware devices, such as graphics adapters.

#define SEGOP_FAULT(h, s, a, l, t, rw) \
                (*(s)->s_ops->fault)((h), (s), (a), (l), (t), (rw))

Header File <vm/seg.h>

Table 5-3 Solaris 7 Segment Drivers

Segment Function
seg_vn The vnode  mappings into process address spaces are managed

with the seg_vn  device driver. Executable text and data, shared
libraries, mapped files, heap and stack (heap and stack are anony-
mous memory) are all mapped with seg_vn .

seg_kmem The segment from which the bulk of nonpageable kernel memory
is allocated. (See Chapter 6, “Kernel Memory”.").

seg_kp The segment from which pageable kernel memory is allocated.
Only a very small amount of the kernel is pageable; kernel thread
stacks and TNF buffers are the main consumers of pageable ker-
nel memory.

seg_spt Shared page table segment driver. Fast System V shared memory
is mapped into process address space from this segment driver.
Memory allocated from this driver is also known as Intimate
Shared Memory (ISM).

seg_map The kernel uses the seg_map driver to map files (vnodes ) into the
kernel’s address space, to implement file system caching.

seg_dev Mapped hardware devices.



146 Solaris Memory Architecture
Table 5-4 describes segment driver methods implemented in Solaris 7.

seg_mapdev Mapping support for mapped hardware devices, through the
ddi_mapdev (9F) interface.

seg_lock Mapping support for hardware graphics devices that are mapped
between user and kernel address space.

seg_drv Mapping support for mapped hardware graphics devices.
seg_nf Nonfaulting kernel memory driver.
seg_mdi Hardware mapping support for the cgfourteen graphics frame-

buffer.
seg_sx Hardware mapping support for the SPARCstation 20 SX graphics

framebuffer.

Table 5-4 Solaris 7 Segment Driver Methods

Method Description
advise() Provides a hint to optimize memory accesses to this seg-

ment. For example, sequential advice given to mapped files
causes read-ahead to occur.

checkprot() Checks that the requested access type (read, write, exec) is
allowed within the protection level of the pages within the
segment.

dump() Dumps the segment to the dump device; used for crash
dumps.

dup() Duplicates the current memory segment, including all of
the page mapping entries to the new segment pointer pro-
vided.

fault() Handles a page fault for a segment. The arguments
describe the segment, the virtual address of the page fault,
and the type of fault.

faulta() Starts a page fault on a segment and address asynchro-
nously. Used for read-ahead or prefaulting of data as a per-
formance optimization for I/O.

free() Destroys a segment.
getmemid() Gets a unique identifier for the memory segment.
getoffset() Queries the segment driver for the offset into the underly-

ing device for the mapping. (Not meaningful on all seg-
ment drivers.)

getprot() Asks the segment driver for the protection levels for the
memory range.

gettype() Queries the driver for the sharing modes of the mapping.

Table 5-3 Solaris 7 Segment Drivers  (Continued)

Segment Function



Memory Segments 147
5.4.1  The vnode Segment: seg_vn

The most widely used segment driver is the vnode segment driver, seg_vn . The
seg_vn driver maps files (or vnodes ) into a process address space, using physical
memory as a cache. The seg_vn segment driver also creates anonymous memory
within the process address space for the heap and stack and provides support for
System V shared memory. (See “System V Shared Memory” on page 433.)

The seg_vn segment driver manages the following mappings into process
address space:

• Executable text
• Executable data
• Heap and stack (anonymous memory)
• Shared libraries
• Mapped files

5.4.1.1  Memory Mapped Files

We can map a file into a process’s address space with the mmapsystem call. (See as
discussed in “Memory Mapped File I/O” on page 509.) When we map a file into our
address space, we call into the address space routines to create a new segment, a
vnode segment. A vnode segment handles memory address translation and page
faults for the memory range requested in the mmapsystem call, and the new seg-
ment is added to the list of segments in the process’s address space. When the seg-
ment is created, the seg_vn driver initializes the segment structure with the

getvp() Gets the vnode  pointer for the vnode , if there is one,
behind this mapping.

incore() Queries to find out how many pages are in physical mem-
ory for a segment.

kluster() Asks the segment driver if it is OK to cluster I/O opera-
tions for pages within this segment.

lockop() Locks or unlocks the pages for a range of memory mapped
by a segment.

pagelock() Locks a single page within the segment.
setprot() Sets the protection level of the pages with the address

range supplied.
swapout() Attempts to swap out as many pages to secondary storage

as possible.
sync() Syncs up any dirty pages within the segment to the back-

ing store.
unmap() Unmaps the address space range within a segment.

Table 5-4 Solaris 7 Segment Driver Methods  (Continued)

Method Description
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address and length of the mapping, then creates a seg_vn -specific data structure
within the segment structure’s s_data field. The seg_vn- specific data structure
holds all of the information the seg_vn driver needs to handle the address map-
pings for the segment.

The seg_vn -specific data structure (struct segvn_data ) contains pointers to
the vnode that is mapped and to any anonymous memory that has been allocated
for this segment. The file system does most of the work of mapped files once the
mapping is created. As a result, the seg_vn driver is fairly simple—most of the
seg_vn  work is done during creation and deletion of the mapping.

The more complex part of the seg_vn driver implementation is its handling of
anonymous memory pages within the segment, which we discuss in the sections
that follow. When we create a file mapping, we put the vnode and offset of the file
being mapped into the segvn_data structure members, vp and offset . The
seg_vn data structure is shown below; Figure 5.10 illustrates the seg_vn seg-
ment driver vnode  relationship.

Creating a mapping for a file is done with the mmap() system call, which calls the
map method for the file system that contains the file. For example, calling mmap()
for a file on a UFS file system will call ufs_map() , which in turn calls into the
seg_vn driver to create a mapped file segment in the address space with the
segvn_create()  function.

At this point we create an actual virtual memory mapping by talking to the
hardware through the hardware address translation functions by using the
hat_map() function. The hat_map() function is the central function for creating
address space mappings. It calls into the hardware-specific memory implementa-
tion for the platform to program the hardware MMU, so that memory address ref-
erences within the supplied address range will trigger the page fault handler in
the segment driver until a valid physical memory page has been placed at the

struct  segvn_data {
        krwlock_t lock;         /* protect segvn_data and vpage array */
        uchar_t pageprot;       /* true if per page protections present */
        uchar_t prot;           /* current segment prot if pageprot == 0 */
        uchar_t maxprot;        /* maximum segment protections */
        uchar_t type;           /* type of sharing done */
        u_offset_t offset;      /* starting offset of vnode for mapping */
        struct  vnode *vp;      /* vnode that segment mapping is to */
        ulong_t anon_index;     /* starting index into anon_map anon array */
        struct  anon_map *amp;  /* pointer to anon share structure, if needed */
        struct  vpage *vpage;   /* per-page information, if needed */
        struct  cred *cred;     /* mapping credentials */
        size_t  swresv;         /* swap space reserved for this segment */
        uchar_t advice;         /* madvise flags for segment */
        uchar_t pageadvice;     /* true if per page advice set */
        ushort_t flags;         /* flags - from sys/mman.h */
        ssize_t softlockcnt;    /* # of pages SOFTLOCKED in seg */
};

Header File <vm/seg_vn.h>
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accessed location. Once the hardware MMU mapping is established, the seg_vn
driver can begin handling page faults within that segment.

Having established a valid hardware mapping for our file, we can look at how
our mapped file is effectively read into the address space. The hardware MMU can
generate traps for memory accesses to the memory within that segment. These
traps will be routed to our seg_vn driver through the as_fault() routine. (See
“Page Faults in Address Spaces” on page 140.) The first time we access a memory
location within our segment, the segvn_fault() page fault handling routine is
called. This fault handler recognizes our segment as a mapped file (by looking in
the segvn_data structure) and simply calls into the vnode’s file system (in this
case, with ufs_getpage() ) to read in a page-sized chunk from the file system.
The subsequent access to memory that is now backed by physical memory simply
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 Figure 5.10 The seg_vn  Segment Driver Vnode Relationship
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results in a normal memory access. It’s not until a page is stolen from behind the
segment (the page scanner can do this) that a page fault will occur again.

Writing to a mapped file is done by updating the contents of memory within the
mapped segment. The file is not updated instantly, since there is no software- or
hardware-initiated event to trigger any such write. Updates occur when the file
system flush daemon finds that the page of memory has been modified and then
pushes the page to the file system with the file systems putpage routine, in this
case, ufs_putpage() .

5.4.1.2  Shared Mapped Files

The address space segment architecture makes it easy for two or more processes to
map the same file into their address space. When we map files into two or more
processes, we create seg_vn segments in each process that point to the same
vnode . Each process has its own virtual memory mapping to the file, but they all
share the same physical memory pages for the files. The first segment to cause a
page fault reads a page into physical memory, and then the second and subse-
quent segments simply create a reference to the existing physical memory page—
as attaching.

Figure 5.11shows how two processes can map the same file. Each process cre-
ates its own segment object, but both segments point to the same file and are
mapped to the same physical pages. Notice that the second process need not have
all of the pages attached to the segment, even if both segments map the same
parts of the file. In this case, the second process would attach to these pages when
they are referenced. A minor fault is used to describe this event. You can see minor
faults by using vmstat . (See “Statistics from the vmstat Command” on page 242.)

Several options govern how a file is shared when it is mapped between two or more
processes. These options control how changes are propagated across the shared
file. For example, if one process wants to modify one of the pages mapped into the
process, should the other process see exactly the same change or should the change
remain private to the process that made the change? The options allow us to
choose which behavior we desire. The options are those that can be passed to the
protection and flags argument of mmap() when the file is mapped. The behavior for
the different flags is listed in Table 5-5.
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Table 5-5 mmap Shared Mapped File Flags

Flag Protection
Mode

Result

MAP_SHARED PROT_READ|
PROT_WRITE

Modifications are reflected among all processes
sharing the mapping.

MAP_PRIVATE PROT_READ|
PROT_WRITE

Modifications are seen only by the process map-
ping the file. The copy-on-write process creates a
page of anonymous memory and gives a private
copy to the process.

Physical
Memory
Pages
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 Figure 5.11 Shared Mapped Files
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5.4.2  Copy-on-Write

The copy-on-write process occurs when a process writes to a page that is mapped
with MAP_PRIVATE. This process prevents other mappings to the page from seeing
changes that are made. seg_vn implements a copy-on-write by setting the hard-
ware MMU permissions of a segment to read-only and setting the segment permis-
sions to read-write. When a process attempts to write to a mapping that is
configured this way, the MMU generates an exception and causes a page fault on
the page in question. The page fault handler in seg_vn looks at the protection
mode for the segment; if it is mapped private and read-write, then the handler ini-
tiates a copy-on-write.

The copy-on-write unmaps the shared vnode page where the fault occurred, cre-
ates a page of anonymous memory at that address, and then copies the contents of
the old page to the new anonymous page. All of this happens in the context of the
page fault, so the process never knows what’s happening underneath it.

The copy-on-write operation behaves slightly differently under different mem-
ory conditions. When memory is low, rather than creating a new physical memory
page, the copy-on-write steals the page from the offset of the file underneath and
renames it to be the new anonymous page. This only occurs when free memory is
lower than the system parameter minfree .

5.4.3  Page Protection and Advice

The seg_vn segment supports memory protection modes on either the whole seg-
ment or individual pages within a segment. Whole segment protection is imple-
mented by the segvn_data structure member, prot; its enablement depends on
the boolean switch, pageprot , in the segvn_data structure. If pageprot is equal
to zero, then the entire segment’s protection mode is set by prot ; otherwise,
page-level protection is enabled.

Page-level protection is implemented by an array of page descriptors pointed to
by the vpage structure, shown below. If page-level protection is enabled, then
vpage points to an array of vpage structures. Every possible page in the address
space has one array entry, which means that the number of vpage members is the
segment virtual address space size divided by the fundamental page size for the
segment (8 Kbytes on UltraSPARC).

The vpage entry for each page uses the standard memory protection bits from
Table 5-5. The per-page vpage structures are also used to implement memory

struct vpage {
        uchar_t nvp_prot;       /* see <sys/mman.h> prot flags */
        uchar_t nvp_advice;     /* pplock & <sys/mman.h> madvise flags */
};

Header File <vm/vpage.h>
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advice for memory mapped files in the seg_vn segment. (See “Providing Advice to
the Memory System” on page 513.)

5.5 Anonymous Memory

At many points we have mentioned anonymous memory. Anonymous memory
refers to pages that are not directly associated with a vnode . Such pages are used
for a process’s heap space, its stack, and copy-on-write pages. In the Solaris ker-
nel, two subsystems are dedicated to managing anonymous memory: the anon
layer and the swapfs  file system.

The anonymous memory allocated to the heap of a process is a result of a
zero-fill-on-demand operation (ZFOD). The ZFOD operation is how we allocate new
pages. A ZFOD occurs when we touch a memory address for the first time, and a
new page of memory is dynamically allocated at that address. ZFOD is the alloca-
tion method used for the heap space and segments created as a map of /dev/zero
with segment protection of MAP_PRIVATE. A page fault on a segment of this type
will be recognized as ZFOD, and a new zeroed anonymous memory page is created
at the fault location. The seg_vn segment fault handler, segvn_fault , handles
the fault and creates ZFOD pages.

The seg_vn segment driver allocates anonymous memory to the segment by
calling into the anonymous memory layer interfaces and attaching anonymous
maps to the amp (anonymous map pointer) member in the segvn_data structure.
Figure 5.12 shows a seg_vn segment with the anonymous map structures allo-
cated to it.

Every allocated page-sized piece of virtual memory in the segment is assigned an
anonymous map slot. For example, when a segment is first created, there are no
anonymous map slots allocated, but the first time a zero fill-on-demand page fault
occurs, a slot is allocated for a page, corresponding to the address within the seg-
ment where the fault occurred. At that time, a physical page is attached to the
slot. Later, the page may be stolen and no page is associated any more, but an
empty slot remains.
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5.5.1  The Anonymous Memory Layer

Anonymous pages are created through the anon layer interfaces. The first time a
segment receives a page fault, it allocates an anon map structure (which describes
where to find the anon header) and puts a pointer to the anon header into the amp
field of the anonymous map. It then allocates the slot array, big enough to hold the
number of potential pages in the segment. The slot array is either a single or dou-
ble indirection list, depending on how many slots are required.

32-bit systems require double indirection for segments larger than 16 Mbytes;
64-bit systems, because of larger pointer sizes, require double indirection for seg-
ments larger than 8 Mbytes. When we use single indirection, the anon header
array_chunk directly references the anon slot array. When we use double indirec-
tion, the array is broken into chunks: 2048 slot chunks for 32-bit systems and 1024
slot chunks for 64-bit systems. An additional array of pointers is referenced by the
array_chunk field pointing to each chunk. Figure 5.12 shows the single and dou-
ble indirection arrays. This allocation process is handled by the anon layer inter-
face, anonmap_create . The anon  slot is shown below.

Each anon slot points to an anon structure, which describes the virtual page of
memory corresponding to the page-sized area in the address space. SVR4 imple-
mentations simply had a page structure for each slot that had a physical page
associated with it, or NULL if there was no physical page in memory. However, the
Solaris implementation does things differently. Recall that all physical pages have
a vnode and offset. The Solaris kernel identifies that physical page which points to
the swap vnode and offset assigned to the page. Note that this is not the swap
device actual vnode and offset; rather, it’s a vnode and offset pointing to the
swapfs file system (which we’ll discuss shortly). The anon structure also contains
space for other information of interest to swapfs .

The anon  layer functions are listed alphabetically in Table 5-6.

struct anon {
        struct vnode *an_vp;    /* vnode of anon page */
        struct vnode *an_pvp;   /* vnode of physical backing store */
        anoff_t an_off;         /* offset of anon page */
        anoff_t an_poff;        /* offset in vnode */
        struct anon *an_hash;   /* hash table of anon slots */
        int an_refcnt;          /* # of people sharing slot */
};

Header File <vm/anon.h>

Table 5-6 Anon Layer Functions

Flag Protection Mode
anon_alloc() Allocates an anon  slot and returns it with the lock

held.
anon_copy_ptr() Copies anon  array into a given new anon  array.
anon_create() Creates the list of pointers.
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5.5.2  The swapfs Layer

Each physical page of memory is identified by its vnode and offset. The vnode and
offset identify a backing store that tells where to find the page when it’s not in
physical memory. For a regular file, the physical page caching the file has a vnode
and offset that are simply the file’s vnode and offset. Swap space is used as a back-

anon_decref() Decrements the reference count of an anon  page.
If the reference count goes to zero, frees it and its asso-
ciated page (if any).

anon_dup() Duplicates references to size bytes worth of anon
pages. Used when duplicating a segment that contains
private anon  pages.

anon_free() Frees a group of size anon  pages, size in bytes, and
clears the pointers to the anon  entries.

anon_get_next_ptr() Returns the anon pointer for the first valid entry in the
anon  list, starting from the given index.

anon_getpage() Returns the kept page(s) and protections to the seg-
ment driver.

anon_get_ptr() Returns the pointer from the list for a specified anon
index.

anon_pages() Returns a count of the number of existing anon  pages
in the anon  array in the range.

anon_private() Turns a reference to an object or shared anon page into
a private page with a copy of the data from the original
page.

anon_release() Frees the array of pointers.
anon_resvmem() Reserves anon  space.
anon_set_ptr() Sets list entry with a given pointer for a specified off-

set.
anon_unresv() Gives back an anon  reservation.
anon_zero() Allocates a private zero-filled anon  page.
anonmap_alloc() Allocates and initializes an anon_map structure for

segment associating the given swap reservation with
the new anon_map.

anonmap_free() Frees an anon  map structure.
anon_map_getpages() Allocates array of private zero-filled anon  pages for

empty slots and kept pages for nonempty slots within
given range.

non_anon() Returns true  if the array has some empty slots.
set_anoninfo() Called from clock handler to sync ani_free  value.

Table 5-6 Anon Layer Functions (Continued) (Continued)

Flag Protection Mode
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ing store for anonymous pages of memory, so that when we are short of memory,
we can copy a page out to disk and free up a page of memory.

Because swap space is used as the backing store for anonymous memory, we
need to ensure we have enough swap space for the pages we may need to swap out.
We do that by reserving space up-front when we create writable mappings backed
by anonymous memory for heap space, stack, and writable mapped files with
MAP_PRIVATE set.

The Solaris kernel allows us to allocate anonymous memory without reserving
physical swap space when sufficient memory is available to hold the virtual con-
tents of a process. This means that under some circumstances a system can run
with little or no swap.

Traditional Unix implementations need a page-sized unit of swap space for
every page-sized unit of writable virtual memory. For example, a malloc request
of 8 Mbytes on a traditional Unix system would require us to reserve 8 Mbytes of
swap disk space, even if that space was never used. This requirement led to the old
rule of swap space = 2 × memory size—the rough assumption was that processes
would, on average, have a virtual size about twice that of the physical pages they
consumed. The swapfs layer allows Solaris to be much more conservative; you
only need swap space for the amount of virtual memory that is larger than the
pageable physical memory available in the machine.

The Solaris swap implementation uses swapfs to implement space-efficient
swap allocation. The swapfs file system is a pseudo file system between the anon
layer and the physical swap devices. The swapfs file system acts as if there is real
swap space behind the page, even if no physical swap space was allocated.

5.5.2.1  Swap Allocation

Let’s step back for a minute and look at how swap is allocated, and as we move
through the process, we can look at how swapfs is implemented. We’ll refer to
swap space as seen by the segment drivers as virtual swap space, and real (disk or
file) swap space as physical swap space.

Swap space allocation goes through distinct stages: reserve, allocate, and
swap-out. When we first create a segment, we reserve virtual swap space; when we
first touch and allocate a page, we “allocate” virtual swap space for that page; then,
if we have a memory shortage, we can “swap out” a page to swap space. Table 5-7
summarizes the swap states.

Table 5-7 Swap Space Allocation States

State Description
Reserved Virtual swap space is reserved for an entire segment. Res-

ervation occurs when a segment is created with pri-
vate/read/write access. The reservation represents the
virtual size of the area being created.
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Swap space is reserved each time a heap segment is created. The amount of swap
space reserved is the entire size of the segment being created. Swap space is also
reserved if there is a possibility of anonymous memory being created. For exam-
ple, mapped file segments that are mapped MAP_PRIVATE (e.g., the executable
data segment) reserve swap space because at any time they could create anony-
mous memory during a copy-on-write operation.

We reserve virtual swap space up-front so that swap space allocation assign-
ment is done at the time of request, rather than at the time of need. That way, an
out-of-swap-space error can be reported synchronously during a system call. If we
allocated swap space on demand during program execution rather than when we
called malloc() , we could run out of swap space during execution and have no
simple way to detect the out-of-swap-space condition. For example, in the Solaris
kernel, we fail a malloc() request for memory as it is requested rather than
when it is needed later, to prevent processes from failing during seemingly normal
execution. (This strategy differs from that of operating systems such as IBM’s AIX,
where lazy allocation is done. If the resource is exhausted during program execu-
tion, then the process is sent a SIGDANGER signal.)

The swapfs file system includes all available pageable memory as virtual swap
space in addition to the physical swap space. This allows us to “reserve” virtual
swap space and “allocate” swap space when we first touch a page. When we reserve
swap, rather than reserving disk space, we reserve virtual swap space from the
swapfs  file system. Disk swap pages are only allocated once a page is paged out.

With swapfs , the amount of virtual swap space available is the amount of avail-
able unlocked, pageable physical memory plus the amount of physical (disk) swap
space available. If we were to run without swap space, then we would be able to
reserve as much virtual memory as there is unlocked pageable physical memory
available on the system. This would be fine, except that often our virtual memory
requirements are bigger than our physical memory requirements, and this case
would prevent us from using all of the available physical memory on the system.

For example, a process may reserve 100 Mbytes of memory and then allocate
only 10 Mbytes of physical memory. The process’s physical memory requirement
would be 10 Mbytes, but it had to reserve 100 Mbytes of virtual swap, thus using
100 Mbytes of virtual swap allocated from our available real memory. If we ran

Allocated Virtual swap space is allocated when the first physical
page is assigned to it. At that point, a swapfs vnode  and
offset are assigned against the anon slot.

Swapped out
(used swap)

When a memory shortage occurs, a page may be swapped
out by the page scanner. Swap-out happens when the page
scanner calls swapfs_putpage  for the page in question.
The page is migrated to physical (disk or file) swap.

Table 5-7 Swap Space Allocation States  (Continued)

State Description
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such a process on a 128-Mbyte system, we would likely start only one of these pro-
cesses before we exhausted our swap space. If we added more virtual swap space
by adding a disk swap device, then we could reserve against the additional space,
and we would likely get 10 or so of the equivalent processes in the same physical
memory.

Another good example of a larger virtual than physical memory requirement is
the process data segment. It’s mapped MAP_PRIVATE, which means that we need
to reserve virtual swap for the whole segment, but we only allocate physical mem-
ory for the few pages that we write to within the segment. The amount of virtual
swap required is far greater than the physical memory allocated to it, so if we
needed to swap pages out to the swap device, we would need only a small amount
of physical swap space.

If we had the ideal process that had all of its virtual memory backed by physi-
cal memory, then we could run with no physical swap space. Usually, we need
something like 0.5 to 1.5 times memory size for physical swap space. It varies, of
course, depending on the virtual-to-physical memory ratio of the application.

5.5.2.2  swapfs Implementation

The swapfs file system uses a system global variable, availrmem , to keep track of
the available pageable physical memory in the system and adds it to the total
amount of swap space available. When we reserve virtual swap, we simply decre-
ment the amount of virtual memory available from the pool. As long as enough
available memory and physical swap space are available, then the swap alloca-
tions succeed. It’s not until later that physical swap space is assigned.

When we create a private segment, we reserve swap and allocate anon struc-
tures. At this stage, that’s all that happens until a real memory page is created as
a result of a ZFOD or copy-on-write (COW). When a physical page is faulted in, it is
identified by vnode /offset, which for anonymous memory is the virtual swap device
for the page.

Anonymous pages in Solaris are assigned swapfs vnode and offsets when the
segment driver calls anon_alloc() to get a new anonymous page. The
anon_alloc() function calls into swapfs through swapfs_getvp() and then
calls swapfs_getpage() to create a new page with swapfs vnode /offset. The
anon structure members, an_vp and an_offset , which identify the backing store
for this page, are initialized to reference the vnode and offset within the swapfs
virtual swap device.

Figure 5.13 shows how the anon slot points into swapfs . At this stage, we still
don’t need any physical swap space—the amount of virtual swap space available
was decremented when the segment reserved virtual swap space—but because we
haven’t had to swap the pages out to physical swap, no physical swap space has
been allocated.
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 Figure 5.13 Anon Slot Initialized to Virtual Swap Before Page-out

It’s not until the first page-out request occurs—because the page scanner needs
wanting to push a page to swap—that real swap is assigned. At this time, the page
scanner looks up the vnode for the page and then calls its putpage() method.
The page’s vnode is a swapfs vnode , and hence swapfs_putpage() is called to
swap this page out to the swap device. The swapfs_putpage() routine allocates a
page-sized block of physical swap and then sets the physical vnode p_vp and
p_offset fields in the anon slot to point to the physical swap device. The page is
pushed to the swap device. At this point we allocate physical swap space. Figure
5.14 shows the anon  slot after the page has been swapped out.
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 Figure 5.14 Physical Swap After a Page-out Occurs

When we exhaust physical swap space, we simply ignore the putpage() request
for a page, resulting in memory performance problems that are very hard to ana-
lyze. A failure does not occur when physical swap space fills; during reservation,
we ensured that we had sufficient available virtual swap space, comprising both
physical memory and physical swap space. In this case, the swapfs_putpage()
simply leaves the page in memory and does not push a page to physical swap. This
means that once physical swap is 100 percent allocated, we begin effectively lock-
ing down the remaining pages in physical memory. For this reason, it’s often a bad
idea to run with 100 percent physical swap allocation (swap −1 shows 0 blocks
free) because we might start locking down the wrong pages in memory and our
working set might not correctly match the pages we really want in memory.

5.5.3  Anonymous Memory Accounting

The amount of anonymous memory in the system is recorded by the anon account-
ing structures. The anon layer keeps track of how anonymous pages are allocated
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in the kanon_info structure, shown below, which is defined in the include file
vm/anon.h .

The k_anoninfo structure keeps count of the number of slots reserved on physi-
cal swap space and against memory. This information is used to populate the data
used for the swapctl system call. The swapctl() system provides the data for
the swap command. The swap system call uses a slightly different data structure,
the anoninfo  structure, shown below.

The anoninfo structure exports the swap allocation information in a plat-
form-independent manner. The swap command output, shown below, summarizes
information from the anoninfo  structure.

The output of swap -s can be a little misleading because it confuses the terms
used for swap definition. The output is really telling us that 122,192 Kbytes of vir-
tual swap space have been used, 108,504 Kbytes of swap space are allocated to
pages that have been touched, and 114,880 Kbytes are free. This information
reflects the stages of swap allocation, shown in Figure 5.15. Remember, we reserve
swap as we create virtual memory, and then part of that swap is allocated when
real pages are assigned to the address space. The balance of swap space remains
unused.

struct k_anoninfo {
        pgcnt_t ani_max;         /* total reservable slots on phys disk swap */
        pgcnt_t ani_free;        /* # of unallocated phys and mem slots */
        pgcnt_t ani_phys_resv;   /* # of reserved phys (disk) slots */
        pgcnt_t ani_mem_resv;    /* # of reserved mem slots */
        pgcnt_t ani_locked_swap; /* # of swap slots locked in reserved */
                                 /* mem swap */
};

Header File <sys/anon.h>

struct anoninfo {
        pgcnt_t ani_max;
        pgcnt_t ani_free;
        pgcnt_t ani_resv;
};

Header File <sys/anon.h>

# swap -s
total: 108504k bytes allocated + 13688k reserved = 122192k used, 114880k available
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 Figure 5.15 Swap Allocation States

You can use the prtswap script in MemTool 3.8.1 (see “MemTool: Unbundled
Memory Tools” on page 245) to list the states of swap and to find out where the
swap is allocated from, as shown below. For just the Swap Allocations summary,
use the prtswap  command.

# prtswap -l
Swap Reservations:
--------------------------------------------------------------------------
Total Virtual Swap Configured:                            767MB =
RAM Swap Configured:                                          255MB
Physical Swap Configured:                              +      512MB

Total Virtual Swap Reserved Against:                      513MB =
RAM Swap Reserved Against:                                      1MB
Physical Swap Reserved Against:                        +      512MB

Total Virtual Swap Unresv. & Avail. for Reservation:      253MB =
Physical Swap Unresv. & Avail. for Reservations:                0MB
RAM Swap Unresv. & Avail. for Reservations:            +      253MB

Swap Allocations: (Reserved and Phys pages allocated)
--------------------------------------------------------------------------
Total Virtual Swap Configured:                            767MB
Total Virtual Swap Allocated Against:                     467MB

Physical Swap Utilization: (pages swapped out)
--------------------------------------------------------------------------
Physical Swap Free (should not be zero!):                 232MB =
Physical Swap Configured:                                     512MB
Physical Swap Used (pages swapped out):                -      279MB

Allocated
Virtual Swap

Unallocated
Virtual Swap

Free Virtual

Reserved
Swap

Swap that is not yet
reserved.

Swap that has been
reserved but is not yet
allocated (virtual memory

Swap that has been
reserved and allocated

Swap that has been
reserved.

that does not yet have real
physical pages)

Swap

Used
Physical Swap Pages that have been

paged out and physical swap
space used.
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The prtswap script uses the anonymous accounting structure members to estab-
lish how swap space is allocated and uses the availrmem counter, the
swapfsminfree reserve, and the swap -l command to find out how much swap
is used. Table 5-8 shows the anonymous accounting information stored in the ker-
nel.

5.6 Virtual Memory Watchpoints

The Solaris kernel implements virtual memory watchpoints within address spaces.
A watchpoint is similar to a breakpoint, except that a watchpoint stops execution
when an address location is read or modified whereas a breakpoint stops execu-
tion when an instruction is executed at a specified location. Watchpoints also pro-
vide the ability to implement breakpoints through the watchpoint interface.

You set and clear watchpoints through the /proc file system interface, by open-
ing the control file for a process and then sending a PCWATCHcommand. The

# prtswap

Virtual Swap:
---------------------------------------------------------------
Total Virtual Swap Configured:                            767MB
Total Virtual Swap Reserved:                              513MB
Total Virtual Swap Free: (programs will fail if 0)        253MB

Physical Swap Utilization: (pages swapped out)
---------------------------------------------------------------
Physical Swap Configured:                                 512MB
Physical Swap Free (programs will be locked in if 0):     232MB

Table 5-8 Swap Accounting Information

Field Description
k_anoninfo.ani_max The total number of reservable slots on

physical (disk-backed) swap.
k_anoninfo.ani_phys_resv The number of physical (disk-backed)

reserved slots.
k_anoninfo.ani_mem_resv The number of memory reserved slots.
k_anoninfo.ani_free Total number of unallocated physical slots

+ the number of reserved but unallocated
memory slots.

availrmem The amount of unreserved memory.
swapfsminfree The swapfs reserve that won’t be used for

memory reservations.
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PCWATCHcommand is accompanied by a prwatch structure, which contains the
address, the length of the area to be affected, and the type of watchpoint.

The pr_vaddr field specifies the virtual address of an area of memory to be
watched in the controlled process, pr_size specifies the size of the area, in bytes,
and pr_wflags specifies the type of memory access to be monitored as a bit-mask
of the flags shown in Table 5-9.

If pr_wflags is nonzero, then a watched area is established for the virtual
address range specified by pr_vaddr and pr_size . If pr_wflags is zero, then
any previously established watched area starting at the specified virtual address is
cleared; pr_size  is ignored.

A watchpoint is triggered when an LWP in the traced process makes a memory
reference that covers at least one byte of a watched area and the memory refer-
ence is as specified in pr_wflags . When an LWP triggers a watchpoint, it incurs a
watchpoint trap. If FLTWATCHis being traced, the LWP stops; otherwise, it is sent
a SIGTRAP signal. If SIGTRAP is being traced and is not blocked, then the LWP
stops.

The watchpoint trap occurs before the instruction completes unless
WA_TRAPAFTERwas specified, in which case it occurs after the instruction com-
pletes. If the trap occurs before completion, the memory is not modified. If it occurs
after completion, the memory is modified (if the access is a write access). A mini-
mal example of how a watchpoint is established is shown below. The program cre-

typedef struct prwatch {
          uintptr_t pr_vaddr; /* virtual address of watched area */
          size_t    pr_size;  /* size of watched area in bytes */
          int  pr_wflags;     /* watch type flags */
} prwatch_t;

Header File <sys/watchpoint.h>

Table 5-9 Watchpoint Flags

Flag Description
WA_READ Read access
WA_WRITE Write access
WA_EXEC Execution access
WA_TRAPAFTER Trap after the instruction completes
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ates a watchpoint for read and write access to the bytes occupied by the integer,
test .

When we attempt to write to the integer test , we trigger a watchpoint and, by
default, the process core dumps.

The /proc process information file, prinfo , contains information pertinent to the
watchpoint trap and can be read into a struct pr_info . In particular, the si_addr
field contains the virtual address of the memory reference that triggered the
watchpoint, and the si_code field contains one of TRAP_RWATCH, TRAP_WWATCH,
or TRAP_XWATCH, indicating read, write, or execute access, respectively. The
si_trapafter field is zero unless WA_TRAPAFTERis in effect for this watched
area; nonzero indicates that the current instruction is not the instruction that
incurred the watchpoint trap. The si_pc field contains the virtual address of the
instruction that incurred the trap. Figure 5.16 illustrates watchpoint data struc-
tures.

#include <sys/types.h>
#include <sys/fcntl.h>
#include <procfs.h>

typedef struct {
        long cmd;
        prwatch_t prwatch;
} ctl_t;

main(int argc, char **argv)
{
        int ctlfd;
        ctl_t ctl;
        int test;

        if ((ctlfd = open("/proc/self/ctl", O_WRONLY)) < 0) {
                perror("open /proc");
                exit (1);
        }

        ctl.cmd = PCWATCH;
        ctl.prwatch.pr_vaddr = (uintptr_t)&test;
        ctl.prwatch.pr_size = sizeof(int);
        ctl.prwatch.pr_wflags = WA_READ|WA_WRITE;

        if (write(ctlfd, &ctl, sizeof (ctl)) != sizeof (ctl)) {
                perror("Set PCWATCH");
                exit (1);
        }

        test = 0;
}

$ ./watchpoint
Trace/Breakpoint Trap(coredump)
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 Figure 5.16 Watchpoint Data Structures

5.7 Global Page Management

Pages are the fundamental unit of physical memory in the Solaris memory man-
agement subsystem. In this section, we discuss how pages are structured, how
they are located, and how free lists manage pools of pages within the system.

5.7.1  Pages—The Basic Unit of Solaris Memory

Physical memory is divided into pages. Every active (not free) page in the Solaris
kernel is a mapping between a file (vnode ) and memory; the page can be identi-
fied with a vnode pointer and the page size offset within that vnode . A page’s
identity is its vnode /offset pair. The vnode /offset pair is the backing store for the
page and represents the file and offset that the page is mapping.

The hardware address translation (HAT) and address space layers manage the
mapping between a physical page and its virtual address space (more about that in
“The Hardware Address Translation Layer” on page 190). The key property of the
vnode /offset pair is reusability; that is, we can reuse each physical page for
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another task by simply synchronizing its contents in RAM with its backing store
(the vnode  and offset) before the page is reused.

For example, we can reuse a page of heap memory from a process by simply
copying the contents to its vnode and offset, which in this case will copy the con-
tents to the swap device. The same mechanism is used for caching files, and we
simply use the vnode /offset pair to reference the file that the page is caching. If we
were to reuse a page of memory that was caching a regular file, then we simply
synchronize the page with its backing store (if the page has been modified) or just
reuse the page if it is not modified and does not need resyncing with its backing
store.

 Figure 5.17 The Page Structure

5.7.2  The Page Hash List

The VM system hashes pages with identity (a valid vnode /offset pair) onto a glo-
bal hash list so that they can be located by vnode and offset. Three page functions
search the global page hash list: page_find() , page_lookup() , and
page_lookup_nowait() . These functions take a vnode and offset as arguments
and return a pointer to a page structure if found.

The global hash list is an array of pointers to linked lists of pages. The func-
tions use a hash to index into the page_hash array to locate the list of pages that
contains the page with the matching vnode /offset pair. Figure 5.18 shows how the
page_find() function indexes into the page_hash array to locate a page match-
ing a given vnode /offset.
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page_find() locates a page as follows:

1. It calculates the slot in the page_hash array containing a list of potential
pages by using the PAGE_HASH_FUNC macro, shown below.

2. It uses the PAGE_HASH_SEARCH macro, shown below, to search the list ref-
erenced by the slot for a page matching vnode /offset. The macro traverses
the linked list of pages until it finds such a page.

5.7.3  MMU-Specific Page Structures

The defined page structure is the same across different platforms and hence con-
tains no machine-specific structures. We do, however, need to keep machine-spe-
cific data about every page, for example, the HAT information that describes how
the page is mapped by the MMU. The kernel wraps the machine-independent page
structure with a machine-specific page structure, struct machpage . The contents

#define PAGE_HASHSZ     page_hashsz
#define PAGE_HASHAVELEN         4
#define PAGE_HASHVPSHIFT        6
#define PAGE_HASH_FUNC(vp, off) \
        ((((uintptr_t)(off) >> PAGESHIFT) + \
                ((uintptr_t)(vp) >> PAGE_HASHVPSHIFT)) & \
                (PAGE_HASHSZ - 1))

Header File <vm/page.h>

ine PAGE_HASH_SEARCH(index, pp, vp, off) { \
        for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \
                if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
                        break; \
        } \

Header File <vm/page.h>

struct page * page_hash[]

page_find(vnode,offset) {

index = PAGE_HASH_FUNC(vnode,offset)

struct page

page = PAGE_HASH_SEARCH \
(index, vnode, offset)

}

 Figure 5.18 Locating Pages by Their Vnode/Offset Identity
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of the machine-specific page structure are hidden from the generic kernel—only
the HAT machine-specific layer can see or manipulate its contents. Figure 5.19
shows how each page structure is embedded in a machine-dependent struct
machpage .

The machine-specific page contains a pointer to the HAT-specific mapping informa-
tion, and information about the page’s HAT state is stored in the machine-specific
machpage . The store information includes bits that indicate whether the page has
been referenced or modified, for use in the page scanner (covered later in the chap-
ter). Both the machine-independent and machine-dependent page structures share
the same start address in memory, so a pointer to a page structure can be cast to a
pointer to a machine-specific page structure (see Figure 5.19). Macros for convert-
ing between machine-independent pages and machine-dependent page structures
make the cast.

5.7.4  Physical Page Lists

The Solaris kernel uses a segmented global physical page list, consisting of seg-
ments of contiguous physical memory. (Many hardware platforms now present
memory in noncontiguous groups.) Contiguous physical memory segments are
added during system boot. They are also added and deleted dynamically when

p_paget
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p_vcolor
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p_share
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p_cowcnt
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HAT information about this page’s
translation to physical memory
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 Figure 5.19 Machine-Specific Page Structures: sun4u Example
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physical memory is added and removed while the system is running. Figure 5.20
shows the arrangement of the physical page lists into contiguous segments.

5.7.4.1 Free List and Cache List

The free list and the cache list hold pages that are not mapped into any address
space and that have been freed by page_free() . The sum of these lists is
reported in the free column in vmstat . Even though vmstat reports these pages
as free, they can still contain a valid page from a vnode /offset and hence are still
part of the global page cache. Pages that are caching files in the page cache can
appear on the free list. Memory on the cache list is not really free, it is a valid
cache of a page from a file. The cache list exemplifies how the file systems use
memory as a file system cache.

The free list contains pages that no longer have a vnode and offset associated
with them—which can only occur if the page has been destroyed and removed from
a vnode ’s hash list. The free list is generally very small, since most pages that are
no longer used by a process or the kernel still keep their vnode /offset information
intact. Pages are put on the free list when a process exits, at which point all of the
anonymous memory pages (heap, stack, and copy-on-write pages) are freed.

The cache list is a hashed list of pages that still have mappings to valid vnode
and offset. Recall that pages can be obtained from the cache list by the

struct memseg

Physical Page List
pages
epages
pages_base
pages_end

next

struct memseg

Physical Page List
pages
epages
pages_base
pages_end

next

memsegs

 Figure 5.20 Contiguous Physical Memory Segments
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page_lookup() routine. This function accepts a vnode and offset as the argu-
ment and returns a page structure. If the page is found on the cache list, then the
page is removed from the cache list and returned to the caller. When we find and
remove pages from the cache list, we are reclaiming a page. Page reclaims are
reported by vmstat  in the “re” column.

5.7.5  The Page-Level Interfaces

The Solaris virtual memory system implementation has grouped page manage-
ment and manipulation into a central group of functions. These functions are used
by the segment drivers and file systems to create, delete, and modify pages. The
major page-level interfaces are shown in Table 5-10.

Table 5-10 Solaris 7 Page Level Interfaces

Method Description
page_create() Creates pages. Page coloring is based on a hash of

the vnode  offset. page_create()  is provided for
backward compatibility only. Don’t use it if you don’t
have to. Instead, use the page_create_va()  func-
tion so that pages are correctly colored.

page_create_va() Creates pages, taking into account the virtual
address they will be mapped to. The address is used
to calculate page coloring.

page_exists() Tests that a page for vnode /offset exists.
page_find() Searches the hash list for a page with the specified

vnode  and offset that is known to exist and is
already locked.

page_first() Finds the first page on the global page hash list.
page_free() Frees a page. Pages with vnode /offset go onto the

cache list; other pages go onto the free list.
page_isfree() Checks whether a page is on the free list
page_ismod() Checks whether a page is modified. This function

checks only the software bit in the page structure. To
sync the MMU bits with the page structure, you may
need to call hat_pagesync()  before calling
page_ismod() .

page_isref() Checks whether a page has been referenced; checks
only the software bit in the page structure. To sync
the MMU bits with the page structure, you may need
to call hat_pagesync()  before calling
page_isref() .

page_isshared() Checks whether a page is shared across more than
one address space.
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The page_create_va() function allocates pages. It takes the number of pages to
allocate as an argument and returns a page list linked with the pages that have
been taken from the free list. page_create_va() also takes a virtual address as
an argument so that it can implement page coloring (discussed in Section 5.7.8,
“Page Coloring,” on page 174). The new page_create_va() function subsumes
the older page_create() function and should be used by all newly developed sub-
systems because page_create()  may not correctly color the allocated pages.

5.7.6  The Page Throttle

Solaris implements a page creation throttle so a small core of memory is available
for consumption by critical parts of the kernel. The page throttle, implemented in
the page_create() and page_create_va() functions, causes page creates to
block when the PG_WAITflag is specified, that is, when available is less than the
system global, throttlefree . By default, the system global parameter, throt-
tlefree , is set to the same value as the system global parameter minfree . By
default, memory allocated through the kernel memory allocator specifies PG_WAIT
and is subject to the page-created throttle. (See Section 6.2, “Kernel Memory Allo-
cation,” on page  212 for more information on kernel memory allocation.)

5.7.7  Page Sizes

The Solaris kernel uses a fundamental page size that varies according to the
underlying hardware. On UltraSPARC and beyond, the fundamental page size is 8
Kbytes. The hardware on which Solaris runs has several different types of mem-
ory management units, which support a variety of page sizes, as listed in Table
5-11.

page_lookup() Finds a page representing the specified vnode /offset.
If the page is found on a free list, then it will be
removed from the free list.

page_lookup_nowait() Finds a page representing the specified vnode /offset
that is not locked or on the free list.

page_needfree() Informs the VM system we need some pages freed
up. Calls to page_needfree () must be symmetric,
that is they must be followed by another
page_needfree () with the same amount of memory
multiplied by -1,after the task is complete.

page_next() Finds the next page on the global page hash list.

Table 5-10 Solaris 7 Page Level Interfaces (Continued)

Method Description
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The optimal MMU page size is a trade-off between performance and memory size
efficiency. A larger page size has less memory management overhead and hence
better performance, but a smaller page size wastes less memory (memory is
wasted when a page is not completely filled). (See “Large Pages” on page 200 for
further information on large pages.)

5.7.8  Page Coloring

Some interesting effects result from the organization of pages within the proces-
sor caches, and as a result, the page placement policy within these caches can dra-
matically affect processor performance. When pages overlay other pages in the
cache, they can displace cache data that we might not want overlaid, resulting in
less cache utilization and “hot spots.”

The optimal placement of pages in the cache often depends on the memory
access patterns of the application; that is, is the application accessing memory in a
random order, or is it doing some sort of strided ordered access? Several different
algorithms can be selected in the Solaris kernel to implement page placement; the
default attempts to provide the best overall performance.

To understand how page placement can affect performance, let’s look at the
cache configuration and see when page overlaying and displacement can occur. The
UltraSPARC-I and -II implementations use virtually addressed L1 caches and
physically addressed L2 caches. The L2 cache is arranged in lines of 64 bytes, and
transfers are done to and from physical memory in 64-byte units. Figure 5.27 on
page 194 shows the architecture of the UltraSPARC-I and -II CPU modules with
their caches. The L1 cache is 16 Kbytes, and the L2 (external) cache can vary
between 512 Kbytes and 8 Mbytes. We can query the operating system with adb to
see the size of the caches reported to the operating system. The L1 cache sizes are

Table 5-11 Page Sizes on Different Sun Platforms

System Type System
Type

MMU Page
Size

Capability

Solaris 2.x
Page Size

Early SPARC systems sun4c 4K 4K
microSPARC-I, -II sun4m 4K 4K
SuperSPARC-I, -II sun4m 4K, 4M 4K, 4M
UltraSPARC-I, -II sun4u 4K, 64K, 512K, 4M 8K, 4M
Intel x86 architecture i86pc 4K, 4M 4K, 4M
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recorded in the vac_size parameter, and the L2 cache size is recorded in the
ecache_size  parameter.

We’ll start by using the L2 cache as an example of how page placement can affect
performance. The physical addressing of the L2 cache means that the cache is
organized in page-sized multiples of the physical address space, which means that
the cache effectively has only a limited number of page-aligned slots. The number
of effective page slots in the cache is the cache size divided by the page size. To
simplify our examples, let’s assume we have a 32-Kbyte L2 cache (much smaller
than reality), which means that if we have a page size of 8 Kbytes, there are four
page-sized slots on the L2 cache. The cache does not necessarily read and write
8-Kbyte units from memory; it does that in 64-byte chunks, so in reality our
32-Kbyte cache has 1024 addressable slots. Figure 5.21 shows how our cache
would look if we laid it out linearly.

 Figure 5.21 Physical Page Mapping into a 64-Kbyte Physical Cache

The L2 cache is direct-mapped from physical memory. If we were to access physi-
cal addresses on a 32-Kbyte boundary, for example, offsets 0 and 32678, then both
memory locations would map to the same cache line. If we were now to access
these two addresses, we cause the cache lines for the offset 0 address to be read,
then flushed (cleared), the cache line for the offset 32768 address to be read in, and
then flushed, then the first reloaded, etc. This ping-pong effect in the cache is
known as cache flushing (or cache ping-ponging), and it effectively reduces our per-
formance to that of real-memory speed, rather than cache speed. By accessing

# adb -k
physmem 7a97
vac_size/D
vac_size:
vac_size:       16384
ecache_size/D
ecache_size:
ecache_size:    1048576
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memory on our 32-Kbyte cache-size boundary, we have effectively used only 64
bytes of the cache (a cache line size), rather than the full cache size. Memory is
often up to 10–20 times slower than cache and so can have a dramatic effect on
performance.

Our simple example was based on the assumption that we were accessing physi-
cal memory in a regular pattern, but we don’t program to physical memory; rather,
we program to virtual memory. Therefore, the operating system must provide a
sensible mapping between virtual memory and physical memory; otherwise, effects
such as our example can occur.

By default, physical pages are assigned to an address space from the order in
which they appear in the free list. In general, the first time a machine boots, the
free list may have physical memory in a linear order, and we may end up with the
behavior described in our “ping pong” example. Once a machine has been running,
the physical page free list will become randomly ordered, and subsequent reruns of
an identical application could get very different physical page placement and, as a
result, very different performance. On early Solaris implementations, this is
exactly what customers saw—differing performance for identical runs, as much as
30 percent difference.

To provide better and consistent performance, the Solaris kernel uses a page col-
oring algorithm when pages are allocated to a virtual address space. Rather than
being randomly allocated, the pages are allocated with a specific predetermined
relationship between the virtual address to which they are being mapped and their
underlying physical address. The virtual-to-physical relationship is predeter-
mined as follows: the free list of physical pages is organized into specifically col-
ored bins, one color bin for each slot in the physical cache; the number of color bins
is determined by the ecache size divided by the page size. (In our example, there
would be exactly four colored bins.)

When a page is put on the free list, the page_free () algorithms assign it to a
color bin. When a page is consumed from the free list, the virtual-to-physical algo-
rithm takes the page from a physical color bin, chosen as a function of the virtual
address which to which the page will be mapped. The algorithm requires that
when allocating pages from the free list, the page create function must know the
virtual address to which a page will be mapped.

New pages are allocated by calling the page_create_va() function. The
page_create_va () function accepts the virtual address of the location that the
page is going to be mapped as an argument; then, the virtual-to-physical color bin
algorithm can decide which color bin to take physical pages from. The
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page_create_va () function is described with the page management functions in
Table 5-10 on page 204.

No one algorithm suits all applications because different applications have differ-
ent memory access patterns. Over time, the page coloring algorithms used in the
Solaris kernel have been refined as a result of extensive simulation, benchmarks,
and customer feedback. The kernel supports a default algorithm and two optional
algorithms. The default algorithm was chosen according to the following criteria:

• Fairly consistent, repeatable results
• Good overall performance for the majority of applications
• Acceptable performance across a wide range of applications

The default algorithm uses a hashing algorithm to distribute pages as evenly as
possible throughout the cache. The default and three other available page coloring
algorithms are shown in Table 5-12.

Note: The page_create_va() function deprecates the older page_create()
function. We chose to add a new function rather than adding an additional
argument the existing page_create() function so that existing third party load-
able kernel modules which call page_create() remain functional. However,
because page_create() does not know about virtual addresses, it has to pick
a color at random - which can cause significant performance degredation. The
page_create_va()  function should always be used for new code.

Table 5-12 Solaris Page Coloring Algorithms

Algorithm Description Solaris Availability

No. Name 2.5.1 2.6 7
0 Hashed VA The physical page color bin

is chosen on a hashed algo-
rithm to ensure even distri-
bution of virtual addresses
across the cache.

Default Default Default

1 P. Addr =
V. Addr

The physical page color is
chosen so that physical
addresses map directly to
the virtual addresses (as in
our example).

Yes Yes Yes

2 Bin Hop-
ping

Physical pages are allo-
cated with a round-robin
method.

Yes Yes Yes
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The Ultra Enterprise 10000 has a different default algorithm, which tries to
evenly distribute colors for each process’s address space so that no one color is
more used than another. This algorithm is correct most of the time, but in some
cases, the hashed or direct (0 or 1) algorithms can be better.

You can change the default algorithm by setting the system parameter
consistent_coloring , either on-the-fly with adb or permanently in /etc/sys-
tem .

So, which algorithm is best? Well, your mileage will vary, depending on your appli-
cation. Page coloring usually only makes a difference on memory-intensive scien-
tific applications, and the defaults are usually fine for commercial or database
systems. If you have a time-critical scientific application, then we recommend that
you experiment with the different algorithms and see which is best. Remember
that some algorithms will produce different results for each run, so aggregate as
many runs as possible.

5.8 The Page Scanner

The page scanner is the memory management daemon that manages systemwide
physical memory. The page scanner and the virtual memory page fault mecha-
nism are the core of the demand-paged memory allocation system used to manage
Solaris memory. When there is a memory shortage, the page scanner runs, to steal
memory from address spaces by taking pages that haven’t been used recently,
syncing them up with their backing store (swap space if they are anonymous
pages), and freeing them. If paged-out virtual memory is required again by an

6 Kessler’s
Best Bin

Kessler best bin algorithm.
Keeps history per process of
used colors and chooses
least used color; if multi-
ple, use largest bin.

E10000
Only
(Default)

E10000
Only
(Default)

Not
Available

# adb -kw
physmem 7a97
consistent_coloring/D
consistent_coloring:
consistent_coloring:            0
consistent_coloring/W 1
consistent_coloring:            0x0             =       0x1

Table 5-12 Solaris Page Coloring Algorithms

Algorithm Description Solaris Availability

No. Name 2.5.1 2.6 7
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address space, then a memory page fault occurs when the virtual address is refer-
enced and the pages are recreated and copied back from their backing store.

The balancing of page stealing and page faults determines which parts of vir-
tual memory will be backed by real physical memory and which will be moved out
to swap. The page scanner does not understand the memory usage patterns or
working sets of processes; it only knows reference information on a physical
page-by-page basis. This policy is often referred to as global page replacement; the
alternative process-based page management, is known as local page replacement.

The subtleties of which pages are stolen govern the memory allocation policies
and can affect different workloads in different ways. During the life of the Solaris
kernel, only two significant changes in memory replacement policies have
occurred:

• Enhancements to minimize page stealing from extensively shared libraries
and executables

• Priority paging to prevent application, shared library, and executable paging
on systems with ample memory

We discuss these changes in more detail when we describe page scanner imple-
mentation.

5.8.1  Page Scanner Operation

The page scanner tracks page usage by reading a per-page hardware bit from the
hardware MMU for each page. Two bits are kept for each page; they indicate
whether the page has been modified or referenced since the bits were last cleared.
The page scanner uses the bits as the fundamental data to decide which pages of
memory have been used recently and which have not.

The page scanner is a kernel thread, which is awakened when the amount of
memory on the free-page list falls below a system threshhold, typically 1/64th of
total physical memory. The page scanner scans through pages in physical page
order, looking for pages that haven’t been used recently to page out to the swap
device and free. The algorithm that determines whether pages have been used
resembles a clock face and is known as the two-handed clock algorithm. This algo-
rithm views the entire physical page list as a circular list, where the last physical
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page wraps around to the first. Two hands sweep through the physical page list, as
shown in Figure 5.22.

 Figure 5.22 Two-Handed Clock Algorithm

The two hands, the front hand and back hand, rotate clockwise in page order
around the list. The front hand rotates ahead of the back hand, clearing the refer-
enced and modified bits for each page. The trailing back hand then inspects the
referenced and modified bits some time later. Pages that have not been referenced
or modified are swapped out and freed. The rate at which the hands rotate around
the page list is controlled by the amount of free memory on the system, and the
gap between the front hand and back hand is fixed by a boot-time parameter,
handspreadpages .

5.8.2  Page-out Algorithm and Parameters

The page-out algorithm is controlled by several parameters, some of which are cal-
culated at system startup by the amount of memory in the system, and some of
which are calculated dynamically based on memory allocation and paging activity.

The parameters that control the clock hands do two things: they control the rate
at which the scanner scans through pages, and they control the time (or distance)
between the front hand and the back hand. The distance between the back hand
and the front hand is handspreadpages and is expressed in units of pages. The
maximum distance between the front hand and back hand defaults to half of mem-
ory and is capped at 8,192 pages, or 64 Mbytes. Systems with 128 Mbytes or more
of memory always default this distance to 8,192 pages, or 64 Mbytes.

5.8.2.1  Scan Rate Parameters (Assuming No Priority Paging)

The scanner starts scanning when free memory is lower than lotsfree number of
pages free plus a small buffer factor, deficit . The scanner starts scanning at a
rate of slowscan pages per second at this point and gets faster as the amount of
free memory approaches zero. The system parameter lotsfree is calculated at
startup as 1/64th of memory, and the parameter deficit is either zero or a small
number of pages—set by the page allocator at times of large memory allocation to

Clearing bit

Write to swap
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let the scanner free a few more pages above lotsfree in anticipation of more
memory requests.

Figure 5.23 shows the rate at which the scanner scans increases linearly as free
memory ranges between lotsfree and zero. The scanner starts scanning at the
minimum rate set by slowscan when memory falls below lotsfree and then
increases to fastscan  if memory falls low enough.

The number of pages scanned increases from the slowest rate (set by slowscan
when lotsfree pages are free) to a maximum determined by the system parame-
ter fastscan . Free memory never actually reaches zero, but for simplicity the
algorithm calculates the maximum interpolated rate against the free memory
ranging between lotsfree and zero. In our example system with 1 Gbyte of phys-
ical memory (shown in Figure 5.24 on page 185), we can see that the scanner
starts scanning when free memory falls to 16 Mbytes plus the short-term memory
deficit.
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 Figure 5.23 Page Scanner Rate, Interpolated by Number of Free Pages
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For this example, we’ll assume that the deficit is zero. When free memory falls
to 16 Mbytes, the scanner will wake up and start examining 100 pages per second,
according to the system parameter slowscan . The slowscan parameter is 100 by
default on Solaris systems, and fastscan is set to total , capped
at 8192 pages per second. If free memory falls to 12 Mbytes (1536 pages), the scan-
ner scans at a higher rate, according to the page scanner interpolation shown in
the following equation:

If we convert free memory and lotsfree to numbers of pages (free memory of 12
Mbytes is 1536 pages, and lotsfree is set to 16 Mbytes, or 2048 pages), then we
scan at 2123 pages per second.

By default, the scanner is run four times per second when there is a memory short-
age. If the amount of free memory falls below the system parameter desfree , the
scanner is run at every clock cycle or, by default, 100 times a second. This scheme
helps the scanner try to keep at least desfree  pages on the free list.

5.8.2.2  Not Recently Used Time

The time between the front hand and back hand varies according to the number of
pages between the front hand and back hand and the rate at which the scanner is
scanning. The time between the front hand clearing the reference bit and the back
hand checking the reference bit is a significant factor that affects the behavior of
the scanner because it controls the amount of time that a page can be left alone
before it is potentially stolen by the page scanner. A short time between the refer-
ence bit being cleared and checked means that all but the most active pages
remain intact; a long time means that only the largely unused pages are stolen.
The ideal behavior is the latter because we want only the least recently used pages
stolen, which means we want a long time between the front and back hands.

The time between clearing and checking of the reference bit can vary from just a
few seconds to several hours, depending on the scan rate. The scan rate on today’s
busy systems can often grow to several thousand, which means that a very small
time exists between the front hand and back hand. For example, a system with a
scan rate of 2,000 pages per second and the default hand spread of 8,192 pages has
a clear/check time of only 4 seconds. High scan rates are quite normal on systems
because of the memory pressure induced by the file system. (We discuss this topic
further in “Is All That Paging Bad for My System?” on page 608.)

physicalmemory2⁄

scanrate
lotsfree freememory–

lotsfree
----------------------------------------------------------- fastscan× 

 = slowscan
freemem
lotsfree
-----------------------× 

 +

scanrate
2048 1536–

2048
------------------------------ 8192× 

 = 100
1536
2048
------------× 

  2123=+
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5.8.3  Shared Library Optimizations

A subtle optimization added to the page scanner prevents it from stealing pages
from extensively shared libraries. The page scanner looks at the share reference
count for each page; if the page is shared more than a certain amount, then it is
skipped during the page scan operation. An internal parameter, po_share , sets
the threshold for the amount of shares a page can have before it is skipped. If the
page has more than po_share mappings (i.e., it’s shared by more than po_share
processes), then it is skipped. By default, po_share starts at 8; each time around,
it is decremented unless the scan around the clock does not find any page to free,
in which case po_share is incremented. The po_share parameter can float
between 8 and 134217728.

5.8.4  The Priority Paging Algorithm

Solaris 7 shipped with a new optional paging algorithm—a page-stealing algo-
rithm that results in much better system response and throughput for systems
making use of the file systems. The algorithm is also available on older Solaris
releases (from 2.5.1 onwards) with the addition of a kernel patch. You enable the
new algorithm by setting the priority_paging  variable to 1 in /etc/system .

The new algorithm was introduced to overcome adverse behavior that results from
the memory pressure caused by the file system. Back in SunOS 4.0, when the vir-
tual memory system was rewritten, the file system cache and virtual memory sys-
tem were integrated to allow the entire memory system to be used as a file system
cache; that is, the file system uses pages of memory from the free memory pool,
just as do processes when they request memory.

The demand paging algorithm allows the file system cache to grow and shrink
dynamically as required, by stealing pages which have not been recently used by
other subsystems. However, back when this work was done, the memory pressure
from the file system was relatively low, as were the memory requests from the pro-
cesses on the system. Both were in the order of tens to hundreds of pages per sec-
ond, so memory allocation could be based on who was using the pages the most.
When processes accessed their memory pages frequently, the scanner was biased
to steal from the file system, and the file system cache would shrink accordingly.

Today, systems are capable of sustaining much higher I/O rates, which means
that the file system can put enormous memory pressure on the memory system—
so much so that the amount of memory pressure from the file system can com-
pletely destroy application performance by causing the page scanner to steal many
process pages.

*
* Enable the Priority Paging Algorithm
*
set priority_paging = 1
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We like to think of the early SunOS 4.0 case as being like a finely balanced set
of scales, where the process and file system requests sit on each side of the scale
and are reasonably balanced. But on today’s system, the scales are completely
weighted on the file system side because of the enormous paging rates required to
do I/O through the file system. For example, even a small system can do 20 mega-
bytes of I/O per second, which causes the file system to use 2,560 pages per sec-
ond. To keep up with this request, the scanner must scan at least at this rate,
usually higher because the scanner will not steal every page it finds. This typi-
cally means a scan rate of 3,000 or higher, just to do some regular I/O.

As we saw earlier, when we scan at this rate, we have as little as a few seconds
between the time we clear and the time we check for activity. As a result, we steal
process memory that hasn’t been used in the last few seconds. The noticeable effect
is that everything appears to grind to a halt when we start using the file system
for significant I/O and free memory falls below lotsfree . It is important to note
that this effect can result even with ample memory in the system—adding more
memory doesn’t make the situation any better.

To overcome this effect, the page scanner has a new algorithm that puts a
higher priority on a process’s pages, namely, its heap, stack, shared libraries, and
executables. The algorithm permits the scanner to pick file system cache pages
only when ample memory is available and hence only steal application pages when
there is a true memory shortage.

The new algorithm introduces a new paging parameter, cachefree . When the
amount of free memory lies between cachefree and lotsfree , the page scanner
steals only file system cache pages. The scanner also now wakes up when memory
falls below cachefree rather than below lotsfree , and the scan rate algorithm
is changed accordingly.

scanrate
cachefree freememory–

cachefree
---------------------------------------------------------------- fastscan× 

 = slowscan
freemem

cachefree
--------------------------× 

 +
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The scan rate is now interpolated between cachefree and zero, rather than
between lotsfree  and zero, as shown in Figure 5.24.

 Figure 5.24 Scan Rate Interpolation with the Priority Paging Algorithm

The algorithm pages only against the file system cache when memory is between
cachefree and lotsfree by skipping pages that are associated with the swap
device (heap, stack, copy-on-write pages) and by skipping file pages that are
mapped into an address space with execute permission (binaries, shared libraries).

The new algorithm has no side effects and should always be enabled on Solaris
versions up to Solaris 7. (Note: The algorithm has been replaced in Solaris 8 by a
new cache architecture, and priority paging should not be enabled on Solaris 8.) It
was not enabled by default in Solaris 7 only because it was introduced very late in
the Solaris release cycle.

5.8.4.1  Page Scanner CPU Utilization Clamp

A CPU utilization clamp on the scan rate prevents the page-out daemon from
using too much processor time. Two internal limits govern the desired and maxi-
mum CPU time that the scanner should use. Two parameters, min_percent_cpu
and max_percent_cpu , govern the amount of CPU that the scanner can use. Like
the scan rate, the actual amount of CPU that can be used at any given time is
interpolated by the amount of free memory. It ranges from min_percent_cpu
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when free memory is at lotsfree (cachefree with priority paging enabled) to
max_percent_cpu if free memory were to fall to zero. The defaults for
min_percent_cpu and max_percent_cpu are 4% and 80% of a single CPU,
respectively (the scanner is single threaded).

5.8.4.2  Parameters That Limit Pages Paged Out

Another parameter, maxpgio , limits the rate at which I/O is queued to the swap
devices. It is set low to prevent saturation of the swap devices. The parameter
defaults to 40 I/Os per second on sun4c, sun4m, and sun4u architectures and to 60
I/Os per second on the sun4d architecture. The default setting is often inadequate
for modern systems and should be set to 100 times the number of swap spindles.

Because the page-out daemon also pages out dirty file system pages that it finds
during scanning, this parameter can also indirectly limit file system throughput.
File system I/O requests are normally queued and written by user processes and
hence are not subject to maxpgio . However, when a lot of file system write activity
is going on and many dirty file system pages are in memory, the page-out scanner
trips over these and queues these I/Os; as a result, the maxpgio limit can some-
times affect file system write throughput. Please refer to the memory parameter
appendix for further recommendations.

5.8.4.3  Summary of Page Scanner Parameters

Table 5-13 describes the parameters that control the page-out process in the cur-
rent Solaris and patch releases.

Table 5-13 Page Scanner Parameters

Parameter Description Min 2.7 Default
cachefree If free memory falls below cache-

free , then the page-out scanner
starts 4 times/second, at a rate of
slowscan  pages/second. Only file
system pages are stolen and freed.

The cachefree  parameter is set
indirectly by the priority_paging
parameter. When
priority_paging  is set to 1,
cachefree  is automatically set at
twice the value of lotsfree  during
boot.

lots-
free

lotsfree
or
2 x lotsfree
(with pp.)

lotsfree The scanner starts stealing anony-
mous memory pages when free
memory falls below lotsfree .

512K 1/64th of mem-
ory
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5.8.5  Page Scanner Implementation

The page scanner is implemented as two kernel threads, both of which use process
number 2, “pageout.” One thread scans pages, and the other thread pushes the
dirty pages queued for I/O to the swap device. In addition, the kernel callout mech-
anism wakes the page scanner thread when memory is insufficient. (The kernel
callout scheduling mechanism is discussed in detail in Section 2.5, “The Kernel
Callout Table,” on page  47.)

The scanner schedpaging() function is called four times per second by a call-
out placed in the callout table. The schedpaging() function checks whether free
memory is below the threshold (lotsfree or cachefree ) and, if required, pre-
pares to trigger the scanner thread. The page scanner is not only awakened by the
callout thread, it is also triggered by the clock() thread if memory falls below
minfree  or by the page allocator if memory falls below throttlefree .

desfree If free memory falls below des-
free , then the page-out scanner is
started 100 times/second.

min-
free

lotsfree/2

minfree If free memory falls below min-
free , then the page scanner is sig-
naled to start every time a new page
is created.

desfree/2

throttlefree The number at which point the
page_create  routines make the
caller wait until free pages are
available.

— minfree

fastscan The rate of pages scanned per sec-
ond when free memory = minfree .
Measured in pages.

slow-
scan

Minimum of 64
MB/s or
1/2 memory
size

slowscan The rate of pages scanned per sec-
ond when free memory = lotsfree .

— 100

maxpgio A throttle for the maximum num-
ber of pages per second that the
swap device can handle.

~60 60 or 90
pages/s

hand-
spreadpages

The number of pages between the
front hand clearing the reference bit
and the back hand checking the ref-
erence bit.

1 fastscan

Table 5-13 Page Scanner Parameters  (Continued)

Parameter Description Min 2.7 Default
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Figure 5.25 illustrates how the page scanner works.

 Figure 5.25 Page Scanner Architecture

When called, the schedpaging routine calculates two setup parameters for the
page scanner thread: the number of pages to scan and the number of CPU ticks
that the scanner thread can consume while doing so. The number of pages and cpu
ticks are calculated according to the equations shown in “Scan Rate Parameters
(Assuming No Priority Paging)” on page 180 and “Page Scanner CPU Utilization
Clamp” on page 185. Once the scanning parameters have been calculated,
schedpaging  triggers the page scanner through a condition variable wakeup .

The page scanner thread cycles through the physical page list, progressing by
the number of pages requested each time it is woken up. The front hand and the
back hand each have a page pointer. The front hand is incremented first so that it
can clear the referenced and modified bits for the page currently pointed to by the
front hand. The back hand is then incremented, and the status of the page pointed
to by the back hand is checked by the check_page() function. At this point, if the
page has been modified, it is placed in the dirty page queue for processing by the
page-out thread. If the page was not referenced (it’s clean!), then it is simply freed.

Dirty pages are placed onto a queue so that a separate thread, the page-out
thread, can write them out to their backing store. We use another thread so that a
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deadlock can’t occur while the system is waiting to swap a page out. The page-out
thread uses a preinitialized list of async buffer headers as the queue for I/O
requests. The list is initialized with 256 entries, which means the queue can con-
tain at most 256 entries. The number of entries preconfigured on the list is con-
trolled by the async_request_size system parameter. Requests to queue more
I/Os onto the queue will be blocked if the entire queue is full (256 entries) or if the
rate of pages queued has exceeded the system maximum set by the maxpgio
parameter.

The page-out thread simply removes I/O entries from the queue and initiates
I/O on it by calling the vnode putpage() function for the page in question. In the
Solaris kernel, this function calls the swapfs_putpage() function to initiate the
swap page-out via the swapfs layer. The swapfs layer delays and gathers
together pages (16 pages on sun4u), then writes these out together. The klust-
size parameter controls the number of pages that swapfs will cluster; the
defaults are shown in Table 5-14. (See “The swapfs Layer” on page 156.)

5.8.6  The Memory Scheduler

In addition to the page-out process, the CPU scheduler/dispatcher can swap out
entire processes to conserve memory. This operation is separate from page-out.
Swapping out a process involves removing all of a process’s thread structures and
private pages from memory, and setting flags in the process table to indicate that
this process has been swapped out. This is an inexpensive way to conserve mem-
ory, but it dramatically affects a process’s performance and hence is used only
when paging fails to consistently free enough memory.

The memory scheduler is launched at boot time and does nothing unless mem-
ory is consistently less than desfree memory (30 second average). At this point,
the memory scheduler starts looking for processes that it can completely swap out.
The memory scheduler will soft-swap out processes if the shortage is minimal or
hard-swap out processes in the case of a larger memory shortage.

5.8.6.1  Soft Swapping

Soft swapping takes place when the 30-second average for free memory is below
desfree . Then, the memory scheduler looks for processes that have been inactive

Table 5-14 swapfs  Cluster Sizes

Platform Number of Clustered Pages
(set by klustsize)

sun4u 16 (128k)
sun4m 31 (124k)
sun4d 31 (124k)
sun4c 31 (124k)
i86 14 (56k)
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for at least maxslp seconds. When the memory scheduler find a process that has
been sleeping for maxslp seconds, it swaps out the thread structures for each
thread, then pages out all of the private pages of memory for that process.

5.8.6.2  Hard Swapping

Hard swapping takes place when all of the following are true:

• At least two processes are on the run queue, waiting for CPU.
• The average free memory over 30 seconds is consistently less than desfree .
• Excessive paging (determined to be true if page-out + page-in > maxpgio ) is

going on.

When hard swapping is invoked, a much more aggressive approach is used to find
memory. First, the kernel is requested to unload all modules and cache memory
that are not currently active, then processes are sequentially swapped out until
the desired amount of free memory is returned. Parameters that affect the Mem-
ory Scheduler are shown in Table 5-15.

5.9 The Hardware Address Translation Layer

The hardware address translation (HAT) layer controls the hardware that man-
ages mapping of virtual to physical memory. The HAT layer provides interfaces
that implement the creation and destruction of mappings between virtual and
physical memory and provides a set of interfaces to probe and control the MMU.
The HAT layer also implements all of the low-level trap handlers to manage page
faults and memory exceptions. Figure 5.26 shows the logical demarcation between
elements of the HAT layer.

 Figure 5.26 Role of the HAT Layer in Virtual-to-Physical Translation

Table 5-15 Memory Scheduler Parameters

Parameter Affect on Memory Scheduler
desfree If the average amount of free memory falls below des-

free  for 30 seconds, then the memory scheduler is
invoked.

maxslp When soft-swapping, the memory scheduler starts swap-
ping processes that have slept for at least maxslp  sec-
onds. The default for maxslp  is 20 seconds and is tunable.

maxpgio When the run queue is greater than 2, free memory is
below desfree , and the paging rate is greater than maxp-
gio , then hard swapping occurs, unloading kernel mod-
ules and process memory.
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The HAT implementation is different for each type of hardware MMU, and hence
there are several different HAT implementations. The HAT layer hides the plat-
form-specific implementation and is used by the segment drivers to implement the
segment driver’s view of virtual-to-physical translation. The HAT uses the struct
hat data structure to hold the top-level translation information for an address
space. The hat structure is platform specific and is referenced by the address
space structure (see Figure 5.7 on page 137). HAT-specific data structures existing
in every page represent the translation information at a page level.

The HAT layer is called when the segment drivers want to manipulate the hard-
ware MMU. For example, when a segment driver wants to create or destroy an
address space mapping, it calls the HAT functions specifying the address range
and the action to be taken. We can call the HAT functions without knowing any-
thing about the underlying MMU implementation; the arguments to the HAT
functions are machine independent and usually consist of virtual addresses,
lengths, page pointers, and protection modes.

Table 5-16 summarizes HAT functions.

Table 5-16 Machine-Independent HAT Functions

Function Description
hat_alloc() Allocates a HAT structure in the address space.
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5.9.1  Virtual Memory Contexts and Address Spaces

A virtual memory context is a set of virtual-to-physical translations that maps an
address space. We change virtual memory contexts when the scheduler wants to
switch execution from one process to another or when a trap or interrupt from user
mode to kernel occurs. The Solaris kernel always uses virtual memory context zero
to indicate the kernel context. The machine-specific HAT layer implements func-
tions required to create, delete, and switch virtual memory contexts. Different
hardware MMUs support different numbers of concurrent virtual memory con-
texts.

When the number of concurrent address spaces (processes) exceeds the number
of concurrent contexts supported by the hardware, the kernel has to steal contexts
from peer processes at the time of context switch. Stealing contexts from other
address spaces has an indirect effect on performance. However, this issue was only
a concern on older systems such as the SPARCstation 1 and 2.

hat_chgattr() Changes the protections for the supplied virtual
address range.

hat_clrattr() Clears the protections for the supplied virtual address
range.

hat_free_end() Informs the HAT layer that a process has exited.
hat_free_start() Informs the HAT layer that a process is exiting.
hat_get_mapped_size() Returns the number of bytes that have valid mappings.
hat_getattr() Gets the protections for the supplied virtual address

range.
hat_memload() Creates a mapping for the supplied page at the sup-

plied virtual address. Used to create mappings.
hat_setattr() Sets the protections for the supplied virtual address

range.
hat_stats_disable() Finishes collecting stats on an address space.
hat_stats_enable() Starts collecting page reference and modification stats

on an address space.
hat_swapin() Allocates resources for a process that is about to be

swapped in.
hat_swapout() Allocates resources for a process that is about to be

swapped out.
hat_sync() Synchronizes the struct_page  software referenced

and modified bits with the hardware MMU.
hat_unload() Unloads a mapping for the given page at the given

address.

Table 5-16 Machine-Independent HAT Functions  (Continued)

Function Description
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5.9.1.1  Hardware Translation Acceleration

The hardware MMUs convert from virtual-to-physical addresses by looking up
entries in a page translation table. All of the platforms on which Solaris runs have
a hardware cache of recent translations, known as the translation lookaside buffer
(TLB). The number of entries in the TLB is typically 64 on SPARC systems. Some
platforms (such as Intel and older SPARC implementations) use hardware to popu-
late the TLB, and others (like the UltraSPARC architecture) use software algo-
rithms.

The characteristics of the MMU hardware for the different Solaris platforms is
shown in Table 5-17.

5.9.2  The UltraSPARC-I and -II HAT

The UltraSPARC-I and -II MMUs do the following:

• Implement mapping between a 44-bit virtual address and a 41-bit physical
address

• Support page sizes of 8 Kbytes, 64 Kbytes, 512 bytes, and 4 Mbytes
• Share their implementation with the entire range of UltraSPARC-based

desktop and server machines, from the Ultra 1 to the Enterprise Server
10000

The MMU is an integral part of the UltraSPARC chip, which hosts two MMUs: one
for instructions and one for data. Figure 5.27 illustrates the topology of the CPU
and MMU.

Table 5-17 Solaris MMU HAT Implementations

Platform No. of
Contexts

Size of
TLB

TLB
Fill

Virtual
Bits

Physical
Bits

SPARC 1,2 8 64 Hardware 32 32
MicroSPARC 65536 64 Hardware 32 32
SuperSPARC 65536 64 Hardware 32 36
UltraSPARC-I and -II 8192 64 x 2 Software 44 41
Intel Pentium Hardware 32 36
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 Figure 5.27 UltraSPARC-I and -II MMUs

The UltraSPARC-I and -II MMU supports 44-bit virtual addresses (64 bits with a
virtual address hole) and 41-bit physical addresses. During memory access, the
MMU translates virtual address to physical addresses by translating a virtual
page number into a physical page number and using a common page offset
between the virtual and physical pages. The page number of a page is the
high-order bits of the address, excluding the page offset. For 8-Kbyte pages, the
page number is bits 13 through 63 of the virtual address and bits 13 through 40 of
the physical address. For 4-Mbyte pages, the page number is bits 22 through 63 of
the virtual address and bits 22 through 40 of the physical address.

Figure 5.28 illustrates the relationship between virtual and physical addresses.
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 Figure 5.28 Virtual-to-Physical Translation

We traditionally use page tables to map virtual-to-physical addresses, so that for
any given virtual address, the MMU hardware looks up and translates the appro-
priate physical address. microSPARC and SuperSPARC processors use page tables
for address translation to convert virtual page numbers to physical page numbers.
The microSPARC and SuperSPARC page table comprises mapping entries, one per
page, known as page table entries, that map each virtual page to a physical page.

In UltraSPARC-I and -II, we use a translation table to describe the vir-
tual-to-physical translation. A translation table is the functional equivalent of a
page table, with some significant differences. For example, unlike the older page
table implementation (like that on SuperSPARC), the UltraSPARC-I and -II MMU
uses a software-based translation mechanism to fill the hardware TLB translation
cache.

The UltraSPARC-I and -II software page table entries are known as translation
table entries (TTEs), one TTE for each page. The TTE is a translation map entry
that contains a virtual address tag and the high bits of the physical address for
each page (the physical page number) so that the hardware MMU can convert the
virtual page address into a physical address by finding entries matching the vir-
tual page number.

The TTE virtual page tag contains the virtual page number of the virtual
address it maps and the address space context number to identify the context to
which each TTE belongs. The context information in the TTE allows the MMU to

13 1263 0

Virt. Address8-Kbyte Virtual Page Number

13 1240 0

Phys. Address8-Kbyte Physical Page Number

MMU

Page Offset

Page Offset

22 2163 0

Virt. Address4-Mbyte Virtual Page Number

22 2140 0

Phys. Address4-Mbyte Phys. Pg. No.

MMU

Page Offset

Page Offset

4-Mbyte Page

8-Kbyte Page



196 Solaris Memory Architecture
find a TTE specific to an address space context, which allows multiple contexts to
be simultaneously active in the TLB. This behavior offers a major performance
benefit because traditionally we need to flush all the TTEs for an address space
when we context-switch. Having multiple TTE contexts in the TLB dramatically
decreases the time taken for a context switch because translations do not need to
be reloaded into the TLB each time we context-switch.

The TTEs found in the page structure are a software representation of the vir-
tual-to-physical mapping and must be loaded into the TLB to enable the MMU to
perform a hardware translation. Once a TTE is loaded, the hardware MMU can
translate addresses for that TTE without further interaction. The hardware MMU
relies on the hardware copies of the TTEs in the TLB to do the real translation.
The TLB contains the 64 most recent TTEs and is used directly by the hardware to
assemble the physical addresses of each page as virtual addresses are accessed.

The MMU finds the TTE entry that matches the virtual page number and cur-
rent context. When it finds the match, it retrieves the physical page information.
The physical page information contains the physical page number (which is the
high 13 or 22 bits of the physical address), the size of the page, a bit to indicate
whether the page can be written to, and a bit to indicate whether the page can
only be accessed in privileged mode.

Figure 5.29 illustrates how TTEs are used.

 Figure 5.29 UltraSPARC-I and -II Translation Table Entry (TTE)

Software populates the TLB entries from the hment structures in the
machine-specific page structure. Since the process of converting a software TTE
into a TLB entry is fairly expensive, an intermediate software cache of TTEs is
arranged as a direct-mapped cache of the TLB. The software cache of TTEs is the
translation software buffer (TSB) and is simply an array of TTEs in regular physi-
cal memory. Figure 5.30 shows the relationship between software TTEs, the TSB,
and the TLB.
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 Figure 5.30 Relationship of TLBs, TSBs, and TTEs

The TLB on UltraSPARC-I and -II has 64 entries, and the TSB has between 2,048
and 262,144 entries, depending on the amount of memory in the system. Unlike
the previous generation SPARC MMU, the UltraSPARC-I and -II MMU does not
use a hardware page tablewalk to access the TSB entries, but it still provides a
form of hardware assistance to speed up TSB access: hardware precomputes TSB
table offsets to help the software handler find TTEs in the TSB. When the CPU
needs to access a virtual address, the system takes the following steps:

1. The MMU first looks in the TLB for a valid TTE for the requested virtual
address.

2. If a valid TTE is not found, then the MMU automatically generates a pointer
for the location of the TSB TTE entry and generates a TLB miss trap.

3. The trap handler reads the hardware-constructed pointer, retrieves the entry
from the TSB, and places it in the appropriate TLB slot with an atomic write
into the TLB.

4. If the TTE is not found in the TSB, then the TLB miss handler jumps to a
more complex, but slower, TSB miss handler, which retrieves the TTE from
the page structure by using a software hashed index structure.

UltraSPARC-I and -II also provide a separate set of global registers to process
MMU traps. This approach dramatically reduces the time taken for the TLB miss
handler to locate TSB entries since the CPU does not need to save process state
during the trap—it simply locates the entry, atomically stores the entry, and
returns to execution of the running process.
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To optimize performance, the TSB is sized according to the amount of memory
in the system. In addition, if memory is sufficient, a separate TSB is allocated for
the kernel context. The maximum size of a TSB on UltraSPARC-I and -II is 512
Kbytes, so to provide a large TSB, multiple 512-Kbyte TSBs are allocated. When
multiple TSBs are allocated, they are divided by a mask of the context number,
where multiple contexts share the same TSB. An array of TSB base addresses,
indexed by the context number, implements the concept. When a context switch is
performed, the new TSB base address is looked up in the tsbbase address array
and loaded into the MMU TSB base address register.

The memory sizes and the corresponding TSB sizes are shown in Table 5-18.

5.9.3  Address Space Identifiers

SPARC systems use an address space identifier (ASI) to describe the MMU mode
and hardware used to access pages in the current environment. UltraSPARC uses
an 8-bit ASI that is derived from the instruction being executed and the current
trap level. Most of the 50+ different ASIs can be grouped into three different
modes of physical memory access, shown in Table 5-19. The MMU translation con-
text used to index TLB entries is derived from the ASI.

Table 5-18 Solaris 7 UltraSPARC-I and -II TSB Sizes

Memory Size Kernel
TSB

Entries

Kernel
TSB
Size

User
TSB

Entries

User
TSB
Size

< 32 Mbytes — — 2048 128 Kbytes
32 Mbytes–64 Mbytes 4096 256 Kbytes 8192–

16383
512 Kbytes–
1 Mbyte

32 Mbytes–2 Gbytes 4096–
262,144

512 Kbytes–
16 Mbytes

16384–
524,287

1 Mbyte–
32 Mbytes

2 Gbytes–8 Gbytes 262,144 16 Mbytes 524,288–
2,097,511

32 Mbytes–
128 Mbytes

8 Gbytes -> 262,144 16 Mbytes 2,097,512 128 Mbytes

Table 5-19 UltraSPARC-I and -II Address Space Identifiers

ASI Description Derived
Context

Primary The default address transla-
tion; used for regular SPARC
instructions.

The address space transla-
tion is done through TLB
entries that match the con-
text number in the MMU
primary context register.
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The three UltraSPARC ASIs allow an instruction stream to access up to three dif-
ferent address space contexts without actually having to perform a context switch.
This feature is used in the Solaris kernel to help place the kernel into a com-
pletely separate address space, by allowing very fast access to user space from ker-
nel mode. The kernel can access user space by using SPARC instructions that
allow an ASI to be specified with the address of a load/store, and the user space is
always available from the kernel in the secondary ASI.

Other SPARC ASIs access hardware registers in the MMU itself, and special
ASIs access I/O space. For further details on UltraSPARC ASIs, see the Ultra-
SPARC-I and -II Users Manual [30].

5.9.3.1  UltraSPARC-I and II Watchpoint Implementation

The UltraSPARC-I and -II MMU implementation provides support for watch-
points. Virtual address and physical address watchpoint registers, when enabled,
describe the address of watchpoints for the address space. Watchpoint traps are
generated when watchpoints are enabled and the data MMU detects a load or
store to the virtual or physical address specified by the virtual address data watch-
point register or the physical data watchpoint register, respectively. (See “Virtual
Memory Watchpoints” on page 164 for further information.)

5.9.3.2  UltraSPARC-I and -II Protection Modes

Protection modes are implemented by the instruction and data TTEs. Table 5-20
shows the resultant protection modes.

Secondary A secondary address space
context; used for accessing
another address space con-
text without requiring a con-
text switch.

The address space transla-
tion is done through TLB
entries that match the con-
text number in the MMU
secondary context register.

Nucleus The address translation; used
for TLB miss handlers, sys-
tem calls, and interrupts.

The nucleus context is
always zero (the kernel’s
context).

Table 5-20 UltraSPARC MMU Protection Modes

Condition
Resultant

Protection ModeTTE in
D-MMU

TTE in
I-MMU

Writable
Attribute Bit

Yes No 0 Read-only

Table 5-19 UltraSPARC-I and -II Address Space Identifiers  (Continued)

ASI Description Derived
Context
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5.9.3.3  UltraSPARC-I and -II MMU-Generated Traps

The UltraSPARC MMU generates traps to implement the software handlers for
events that the hardware MMU cannot handle. Such events occur when the MMU
encounters an MMU-related instruction exception or when the MMU cannot find a
TTE in the TSB for a virtual address. Table 5-21 describes UltraSPARC-I and -II
traps.

5.9.4  Large Pages

Large pages, typically 4 Mbytes in size, optimize the effectiveness of the hardware
TLB. They were introduced in Solaris 2.5 to map core kernel text and data and
have continued to develop into other areas of the operating system. Let’s take a
look at why large pages help optimize TLB performance.

No Yes Don’t Care Execute-only
Yes No 1 Read/Write
Yes Yes 0 Read-only/Execute
Yes Yes 1 Read/Write/Execute

Table 5-21 UltraSPARC-I and -II MMU Traps

Trap Description
Instruction_access_miss A TTE for the virtual address of an

instruction was not found in the
instruction TLB.

Instruction_access_exception An instruction privilege violation or
invalid instruction address occurred.

Data_access_MMU_miss A TTE for the virtual address of a
load was not found in the data TLB.

Data_access_exception A data access privilege violation or
invalid data address occurred.

Data_access_protection A data write was attempted to a
read-only page.

Privileged_action An attempt was made to access a priv-
ileged address space.

Watchpoint Watchpoints were enabled and the
CPU attempted to load or store at the
address equivalent to that stored in
the watchpoint register.

Mem_address_not_aligned An attempt was made to load or store
from an address that is not correctly
word aligned.

Table 5-20 UltraSPARC MMU Protection Modes  (Continued)
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5.9.4.1  TLB Performance and Large Pages

The memory performance of a modern system is largely influenced by the effective-
ness of the TLB because of the time spent servicing TLB misses. The objective of
the TLB is to cache as many recent page translations in hardware as possible, so
that it can satisfy a process’s or thread’s memory accesses by performing all of the
virtual-to-physical translations on-the-fly. If we don’t find a translation in the TLB,
then we need to look up the translation from a larger table, either in software
(UltraSPARC) or with lengthy hardware steps (Intel or SuperSPARC).

Most TLBs are limited in size because of the amount of transistor space avail-
able on the CPU die. For example, the UltraSPARC-I and -II TLBs are only 64
entries. This means that the TLB can at most address 64 pages of translations at
any time; on UltraSPARC, 64 x 8 Kbytes, or 512 Kbytes.

The amount of memory the TLB can address concurrently is known as the TLB
reach, so we can say the UltraSPARC-I and -II have a TLB reach of 512 Kbytes. If
an application makes heavy use of less than 512 Kbytes of memory, then the TLB
will be able to cache the entire set of translations. But if the application were to
make heavy use of more than 512 Kbytes of memory, then the TLB will begin to
miss, and translations will have to be loaded from the larger translation table.

Table 5-22 shows the TLB miss rate and the amount of time spent servicing
TLB misses from a study done by Madu Talluri [36] on older SPARC architec-
tures. We can see from the table that only a small range of compute-bound applica-
tions fit well in the SuperSPARC TLB (gcc , ML, and pthor ), whereas the others
spend a significant amount of their time in the TLB miss handlers.

TLB effectiveness has become a larger issue in the past few years because the
average amount of memory used by applications has grown significantly—by as

Table 5-22 Sample TLB Miss Data from a SuperSPARC Study

Workload Total
Time
(secs)

User
Time
(secs)

# User
TLB

Misses

% User
Time in

TLB Miss
Handling

Cache
Misses
(‘000s)

Peak
Memory
Usage
(MB)

coral 177 172 85974 50 71053 19.9
nasa7 387 385 152357 40 64213 3.5
compress 99 77 21347 28 21567 1.4
fftpde 55 53 11280 21 14472 14.7
wave5 110 107 14510 14 4583 14.3
mp3d 37 36 4050 11 5457 4.8
spice 620 617 41923 7 81949 3.6
pthor 48 35 2580 7 6957 15.4
ML 945 917 38423 4 314137 32.0
gcc 118 105 2440 2 9980 5.6
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much as double per year according to recent statistical data. The easiest way to
increase the effectiveness of the TLB is to increase the TLB reach so that the
working set of the application fits within the TLBs reach. You can increase TLB
reach in two ways:

• Increase the number of entries in the TLB. This approach adds complexity to
the TLB hardware and increases the number of transistors required, taking
up valuable CPU die space.

• Increase the page size that each entry reflects. This approach increases the
TLB reach without the need to increase the size of the TLB.

A trade-off to increasing the page size is this: If we increase the page size, we may
boost the performance of some applications at the expense of slower performance
elsewhere, and because of larger-size memory fragmentation, we would almost cer-
tainly increase the memory usage of many applications. Luckily, a solution is at
hand: Some of the newer processor architectures allow us to use two or more dif-
ferent page sizes at the same time. For example, the UltraSPARC microprocessor
provides hardware support to concurrently select 8-Kbyte, 64-Kbyte, 512-Kbyte. or
4-Mbyte pages. If we were to use 4-Mbyte pages to map all memory, then the TLB
would have a theoretical reach of 64 x 4 Mbytes, or 256 Mbytes. We do, however,
need operating system support to take advantage of large pages.

5.9.4.2  Solaris Support for Large Pages

Prior to the introduction of the first UltraSPARC processor, the Solaris kernel did
not support multiple page sizes, so significant kernel development effort was
required before the kernel could take advantage of the underlying hardware’s sup-
port for multiple page sizes. This development was phased over several Solaris
releases, starting with Solaris 2.5 (the Solaris release with which UltraSPARC was
first released).

The page size for Solaris on UltraSPARC is 8 Kbytes, chosen to give a good mix
of performance across the range of smaller machines (32 Mbytes) to larger
machines (several gigabytes). The 8-Kbyte page size is appropriate for many appli-
cations, but those with a larger working set spend a lot of their time in TLB miss
handling, and as a result, the 8-Kbyte page size hurts a class of applications,
mainly large-memory scientific applications and large-memory databases. The
8-Kbyte page size also hurts kernel performance, since the kernel’s working set is
in the order of 2 to 3 megabytes.

At Solaris 2.5, the first 4 Mbytes of kernel text and data are mapped with two
4-Mbyte pages at system boot time. This page size significantly reduces the num-
ber of TLB entries required to satisfy kernel memory translations, speeding up the
kernel code path and freeing up valuable TLB slots for hungry applications. In
addition, the Ultra Creator graphics adapter makes use of a large translation to
accelerate graphics performance.

However, user applications had no way to take advantage of the large-page sup-
port until Solaris 2.6. With that release, Sun enabled the use of 4-Mbyte pages for
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shared memory segments. This capability primarily benefits databases, since data-
bases typically use extremely large shared memory segments for database data
structures and shared file buffers. Shared memory segments ranging from several
hundred megabytes to several gigabytes are typical on most database installa-
tions, and the 8-Kbyte page size means that very few 8-Kbyte shared memory page
translations fit into the TLB. The 4-Mbyte pages allow large contiguous memory to
be mapped by just a few pages.

Starting with Solaris 2.6, System V shared memory created with the intimate
shared memory flag, SHM_SHARE_MMU, is created with as many large 4-Mbyte
pages as possible, greatly increasing the performance of database applications.
Table 5-23 shows a sample of the performance gains from adding large-page
shared memory support.

Table 5-23 Large-Page Database Performance Improvements

Database Performance Improvement
Oracle TPC-C 12%
Informix TPC-C 1%
Informix TPC-D 6%
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 6
KERNEL MEMORY
In the last chapter, we looked mostly at process address space and process mem-
ory, but the kernel also needs memory to run the operating system. Kernel mem-
ory is required for the kernel text, kernel data, and kernel data structures. In this
chapter, we look at what kernel memory is used for, what the kernel virtual
address space looks like, and how kernel memory is allocated and managed.

6.1 Kernel Virtual Memory Layout

The kernel, just like a process, uses virtual memory and uses the memory manage-
ment unit to translate its virtual memory addresses into physical pages. The ker-
nel has its own address space and corresponding virtual memory layout. The
kernel’s address space is constructed of address space segments, using the stan-
dard Solaris memory architecture framework.

Most of the kernel’s memory is nonpageable, or “wired down.” The reason is that
the kernel requires its memory to complete operating system tasks that could
affect other memory-related data structures and, if the kernel had to take a page
fault while performing a memory management task (or any other task that
affected pages of memory), a deadlock could occur. Solaris does, however, allow
some deadlock-safe parts of the Solaris kernel to be allocated from pageable mem-
ory, which is used mostly for the lightweight process thread stacks.

Kernel memory consists of a variety of mappings from physical memory (physi-
cal memory pages) to the kernel’s virtual address space, and memory is allocated
205
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by a layered series of kernel memory allocators. Two segment drivers handle the
creation and management of the majority of kernel mappings. Nonpageable ker-
nel memory is mapped with the segkmem kernel segment driver and pageable ker-
nel memory with the segkp segment driver. On platforms that support it, the
critical and frequently used portions of the kernel are mapped from large
(4-Mbyte) pages to maximize the efficiency of the hardware TLB.

6.1.1  Kernel Address Space

The kernel virtual memory layout differs from platform to platform, mostly based
on the platform’s MMU architecture. On all platforms except the sun4u, the ker-
nel uses the top 256 Mbytes or 512 Mbytes of a common virtual address space,
shared by the process and kernel (see “Virtual Address Spaces” on page 130). Shar-
ing the kernel address space with the process address space limits the amount of
usable kernel virtual address space to 256 Mbytes and 512 Mbytes, respectively,
which is a substantial limitation on some of the older platforms (e.g., the SPARC-
center 2000). On sun4u platforms, the kernel has its own virtual address space
context and consequently can be much larger. The sun4u kernel address space is 4
Gbytes on 32-bit kernels and spans the full 64 bit address range on 64-bit kernels.

The kernel virtual address space contains the following major mappings:

• The kernel text and data (mappings of the kernel binary)
• The kernel map space (data structures, caches, etc.)
• A 32-bit kernel map, for module text and data (64-bit kernels only)
• The trap table
• Critical virtual memory data structures (TSB, etc.)
• A place for mapping the file system cache (segmap)

The layout of the kernel’s virtual memory address space is mostly platform spe-
cific, and as a result, the placement of each mapping is different on each platform.
For reference, we show the sun4u 64-bit kernel address space map in Figure 6.1.
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 Figure 6.1 Solaris 7 64-Bit Kernel Virtual Address Space
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6.1.2  The Kernel Text and Data Segments

The kernel text and data segments are created when the kernel core is loaded and
executed. The text segments contain the instructions, and the data segment con-
tains the initialized variables from the kernel/unix image file, which is loaded at
boot time by the kernel bootstrap loader.

The kernel text and data are mapped into the kernel address space by the Open
Boot PROM, prior to general startup of the kernel, to allow the base kernel code to
be loaded and executed. Shortly after the kernel loads, the kernel then creates the
kernel address space and the segkmem kernel memory driver creates segments for
kernel text and kernel data.

On systems that support large pages, the kernel creates a large translation
mapping for the first four megabytes of the kernel text and data segments and
then locks that mapping into the MMU’s TLB. Mapping the kernel into large pages
greatly reduces the number of TLB entries required for the kernel’s working set
and has a dramatic impact on general system performance. Performance was
increased by as much as 10 percent, for two reasons:

1.The time spent in TLB miss handlers for kernel code was reduced to almost
zero.

2. The number of TLB entries used by the kernel was dramatically reduced,
leaving more TLB entries for user code and reducing the amount of time
spent in TLB miss handlers for user code.

On SPARC platforms, we also put the trap table at the start of the kernel text
(which resides on one large page).

6.1.3  Virtual Memory Data Structures

The kernel keeps most of the virtual memory data structures required for the plat-
form’s HAT implementation in a portion of the kernel data segment and a sepa-
rate memory segment. The data structures and allocation location are typically
those summarized in Table 6-1.

Table 6-1 Virtual Memory Data Structures

Platform Data Structures Location
sun4u The Translation Storage Buffer

(TSB).
The HAT mapping blocks (HME),
one for every page-sized virtual
address mapping. (See “The UltraS-
PARC-I and -II HAT” on page 193.)

Allocated initially from the
kernel data-segment large
page, and overflows into
another large-page, mapped
segment, just above the ker-
nel data segment.

sun4m Page Tables, Page Structures Allocated in the kernel
data-segment large page.
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6.1.4  The SPARC V8 and V9 Kernel Nucleus

Required on sun4u kernel implementations is a core area of memory that can be accesse
out missing in the TLB. This memory area is necessary because the sun4u SPARC implem
tion uses a software TLB replacement mechanism to fill the TLB, and hence we require
the TLB miss handler data structures to be available during a TLB miss. As we discuss in
UltraSPARC-I and -II HAT” on page 193, the TLB is filled from a software buffer, known
the translation storage buffer (TSB), of the TLB entries, and all of the data structures need
handle a TLB miss and to fill the TLB from the TSB must be available with wired-down T
mappings. To accommodate this requirement, SPARC V8 and SPARC V9 implement a sp
core of memory, known as the nucleus. On sun4u systems, the nucleus is the kernel text,
data, and the additional “large TSB” area, all of which are allocated from large pages.

6.1.5  Loadable Kernel Module Text and Data

The kernel loadable modules require memory for their executable text and data.
On sun4u, up to 256 Kbytes of module text and data are allocated from the same
segment as the kernel text and data, and after the module text and data are
loaded from the general kernel allocation area, the kernel map segment. The loca-
tion of kernel module text and data is shown in Table 6-2.

sun4d Page Tables, Page Structures Allocated in the kernel
data-segment large page.

x86 Page Tables, Page Structures Allocated from a separate
VM data structure’s segment.

Table 6-2 Kernel Loadable Module Allocation

Platform Module Kernel and Text Allocation
sun4u
64 bit

Up to 256 Kbytes of kernel module are loaded from the same
large pages as the kernel text and data. The remainder are
loaded from the 32-bit kernel map segment, a segment that is
specifically for module text and data.

sun4u
32 bit

Up to 256 Kbytes of kernel module are loaded from the same
large pages as the kernel text and data. The remainder are
loaded from the general kernel memory allocation segment, the
kernel map segment.

sun4m Loadable module text and data are loaded from the general
kernel memory allocation segment, the kernelmap  segment.

sun4d Loadable module text and data are loaded from the general
kernel memory allocation segment, the kernelmap  segment.

Table 6-1 Virtual Memory Data Structures  (Continued)

Platform Data Structures Location
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We can see which modules fitted into the kernel text and data by looking at the
module load addresses with the modinfo  command.

Using the modinfo command, we can see on a sun4u system that the initial mod-
ules are loaded from the kernel-text large page. (Address 0x1030bc90 lies within
the kernel-ext large page, which starts at 0x10000000.)

On 64-bit sun4u platforms, we have an additional segment for the spillover ker-
nel text and data. The reason for having the segment is that the address at which
the module text is loaded must be within a 32-bit offset from the kernel text.
That’s because the 64-bit kernel is compiled with the ABS32 flag so that the ker-
nel can fit all instruction addresses within a 32-bit register. The ABS32 instruc-
tion mode provides a significant performance increase and allows the 64-bit kernel
to provide similar performance to the 32-bit kernel. Because of that, a separate
kernel map segment (segkmem32) within a 32-bit offset of the kernel text is used
for spillover module text and data.

Solaris does allow some portions of the kernel to be allocated from pageable mem-
ory. That way, data structures directly related to process context can be swapped
out with the process during a process swap-out operation. Pageable memory is
restricted to those structures that are not required by the kernel when the process
is swapped out:

• Lightweight process stacks
• The TNF Trace buffers

x86 Up to 256 Kbytes of kernel module are loaded from the same
large pages as the kernel text and data. The remainder are
loaded from an additional segment, shared by HAT data struc-
tures and module text/data.

# modinfo
 Id Loadaddr   Size Info Rev Module Name
  5 1010c000   4b63   1   1  specfs (filesystem for specfs)
  7 10111654   3724   1   1  TS (time sharing sched class)
  8 1011416c    5c0   -   1  TS_DPTBL (Time sharing dispatch table)
  9 101141c0  29680   2   1  ufs (filesystem for ufs)

.

.

.

.
 97 10309b38   28e0  52   1  shmsys (System V shared memory)
 97 10309b38   28e0  52   1  shmsys (32-bit System V shared memory)
 98 1030bc90    43c   -   1  ipc (common ipc code)
 99 78096000   3723  18   1  ffb (ffb.c 6.42 Aug 11 1998 11:20:45)
100 7809c000   f5ee   -   1  xfb (xfb driver 1.2 Aug 11 1998 11:2)
102 780c2000   1eca   -   1  bootdev (bootdev misc module)

Table 6-2 Kernel Loadable Module Allocation  (Continued)

Platform Module Kernel and Text Allocation
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• Special pages, such as the page of memory that is shared between user and
kernel for scheduler preemption control

Pageable memory is allocated and swapped by the seg_kp segment and is only
swapped out to its backing store when the memory scheduler (swapper) is acti-
vated. (See “The Memory Scheduler” on page 189.)

6.1.6  The Kernel Address Space and Segments

The kernel address space is represented by the address space pointed to by the
system object, kas . The segment drivers manage the manipulation of the seg-
ments within the kernel address space (see Figure 6.2).

The full list of segment drivers the kernel uses to create and manage kernel map-
pings is shown in Table 6-3. The majority of the kernel segments are manually cal-
culated and placed for each platform, with the base address and offset hard-coded
into a platform-specific header file. See Appendix B, “Kernel Virtual Address

a_segs

struct as

a_size
a_nsegs
a_flags
a_hat
a_tail

s_base

struct seg

s_size
s_as
s_prev
s_next
s_ops

s_base

struct seg

s_size
s_as
s_prev
s_next
s_ops

s_base

struct seg

s_size
s_as
s_prev
s_next
s_ops

a_watchp

kas

Open Boot PROM
Page Tables

64-Bit Kernel Map

File System Cache

Pageable Kernel Mem.

Open Boot PROM

Kernel Debugger

32-Bit Kernel Map
segkmem32

Panic Message Buffer

Large TSB

sun4u HAT Structures
Small TSB & Map Blks

Kernel Data Segment

Kernel Text Segment
Trap Table

 Figure 6.2 Kernel Address Space



212 Kernel Memory
Maps” for a complete reference of platform-specific kernel allocation and address
maps.

6.2 Kernel Memory Allocation

Kernel memory is allocated at different levels, depending on the desired allocation
characteristics. At the lowest level is the page allocator, which allocates unmapped
pages from the free lists so the pages can then be mapped into the kernel’s address
space for use by the kernel.

Allocating memory in pages works well for memory allocations that require
page-sized chunks, but there are many places where we need memory allocations
smaller than one page; for example, an in-kernel inode requires only a few hun-
dred bytes per inode, and allocating one whole page (8 Kbytes) would be wasteful.
For this reason, Solaris has an object-level kernel memory allocator in addition to
the page-level allocator to allocate arbitrarily sized requests, stacked on top of the
page-level allocator. The kernel also needs to manage where pages are mapped, a
function that is provided by the resource map allocator. The high-level interaction
between the allocators is shown in Figure 6.3.

Table 6-3 Solaris 7 Kernel Memory Segment Drivers

Segment Function
seg_kmem Allocates and maps nonpageable kernel memory pages.
seg_kp Allocates, maps, and handles page faults for pageable

kernel memory.
seg_nf Nonfaulting kernel memory driver.
seg_map Maps the file system cache into the kernel address

space.
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 Figure 6.3 Different Levels of Memory Allocation

6.2.1  The Kernel Map

We access memory in the kernel by acquiring a section of the kernel’s virtual
address space and then mapping physical pages to that address. We can acquire
the physical pages one at a time from the page allocator by calling
page_create_va() , but to use these pages, we first need to map them. A section
of the kernel’s address space, known as the kernel map, is set aside for gen-
eral-purpose mappingsp. (See Figure 6.1 for the location of the sun4u kernelmap;
see also Appendix B, “Kernel Virtual Address Maps” for kernel maps on other
platforms.)

The kernel map is a separate kernel memory segment containing a large area of
virtual address space that is available to kernel consumers who require virtual
address space for their mappings. Each time a consumer uses a piece of the kernel
map, we must record some information about which parts of the kernel map are
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free and which parts are allocated, so that we know where to satisfy new requests.
To record the information, we use a general-purpose allocator to keep track of the
start and length of the mappings that are allocated from the kernel map area. The
allocator we use is the resource map allocator, which is used almost exclusively for
managing the kernel map virtual address space.

The kernel map area is large, up to 8 Gbytes on 64-bit sun4u systems, and can
quickly become fragmented if it accommodates many consumers with differ-
ent-sized requests. It is up to the resource map allocator to try to keep the kernel
map area as unfragmented as possible.

6.2.2  The Resource Map Allocator

Solaris uses the resource map allocator to manage the kernel map. To keep track
of the areas of free memory within the map, the resource map allocator uses a sim-
ple algorithm to keep a list of start/length pairs that point to each area of free
memory within the map. The map entries are sorted in ascending order to make it
quicker to find entries, allowing faster allocation. The map entries are shown in
the following map structure, which can be found in the <sys/map.h>  header file.

The area managed by the resource map allocator is initially described by just one
map entry representing the whole area as one contiguous free chunk. As more allo-
cations are made from the area, more map entries are used to describe the area,
and as a result, the map becomes ever more fragmented over time.

The resource map allocator uses a first-fit algorithm to find space in the map to
satisfy new requests, which means that it attempts to find the first available slot
in the map that fits the request. The first-fit algorithm provides a fast find alloca-
tion at the expense of map fragmentation after time. For this reason, it is impor-
tant to ensure that kernel subsystems do not perform an excessive amount of map
allocation and freeing. The kernel slab allocator (discussed next) should be used for
these types of requests.

Map resource requests are made with the rmalloc() call, and resources are
returned to the map by rmfree() . Resource maps are created with the rmalloc-
map() function and destroyed with the rmfreemap() function. The functions that
implement the resource map allocator are shown in Table 6-4.

6.2.3  The Kernel Memory Segment Driver

The segkmem segment driver performs two major functions: it manages the cre-
ation of general-purpose memory segments in the kernel address space, and it also

struct map {
        size_t  m_size;         /* size of this segment of the map */
        ulong_t m_addr;         /* resource-space addr of start of segment */
};

Header File <vm/rm.h>
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provides functions that implement a page-level memory allocator by using one of
those segments—the kernel map segment.

Table 6-4 Solaris 7 Resource Map Allocator Functions from <sys/map.h>

Function Description
rmallocmap() Dynamically allocates a map. Does not sleep.

Driver-defined basic locks, read/write locks, and
sleep locks can be held across calls to this func-
tion.
DDI-/DKI-conforming drivers may only use map
structures that have been allocated and initial-
ized with rmallocmap() .

rmallocmap_wait() Dynamically allocates a map. It does sleep.
DDI-/DKI-conforming drivers can only use map
structures that have been allocated and initial-
ized with rmallocmap()  and
rmallocmap_wait() .

rmfreemap() Frees a dynamically allocated map. Does not
sleep.
Driver-defined basic locks, read/write locks, and
sleep locks can be held across calls to this func-
tion.
Before freeing the map, the caller must ensure
that nothing is using space managed by the map
and that nothing is waiting for space in the map.

rmalloc() Allocates size units from the given map. Returns
the base of the allocated space. In a map, the
addresses are increasing and the list is termi-
nated by a 0 size.
Algorithm is first-fit.

rmalloc_wait() Like rmalloc , but waits if necessary until space
is available.

rmalloc_locked() Like rmalloc , but called with lock on map held.
rmfree() Frees the previously allocated space at addr  of

size  units into the specified map.
Sorts addr  into map and combines on one or both
ends if possible.

rmget() Allocates size  units from the given map, start-
ing at address addr . Returns addr if successful, 0
if not. This may cause the creation or destruction
of a resource map segment.
This routine returns failure status if there is not
enough room for a required additional map seg-
ment.
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The segkmem segment driver implements the segment driver methods described
in Section 5.4, “Memory Segments,” on page 143, to create general-purpose, non-
pageable memory segments in the kernel address space. The segment driver does
little more than implement the segkmem_create method to simply link segments
into the kernel’s address space. It also implements protection manipulation meth-
ods, which load the correct protection modes via the HAT layer for segkmem seg-
ments. The set of methods implemented by the segkmem driver is shown in Table
6-5.

The second function of the segkmem driver is to implement a page-level memory
allocator by combined use of the resource map allocator and page allocator. The
page-level memory allocator within the segkmem driver is implemented with the
function kmem_getpages() . The kmem_getpages() function is the kernel’s cen-
tral allocator for wired-down, page-sized memory requests. Its main client is the
second-level memory allocator, the slab allocator, which uses large memory areas
allocated from the page-level allocator to allocate arbitrarily sized memory objects.
We’ll cover more on the slab allocator further in this chapter.

The kmem_getpages() function allocates page-sized chunks of virtual address
space from the kernelmap segment. The kernelmap segment is only one of many
segments created by the segkmem driver, but it is the only one from which the seg-
kmem driver allocates memory.

The resource map allocator allocates portions of virtual address space within
the kernelmap segment but on its own does not allocate any physical memory
resources. It is used together with the page allocator, page_create_va() , and the
hat_memload() functions to allocate physical mapped memory. The resource map
allocator allocates some virtual address space, the page allocator allocates pages,
and the hat_memload() function maps those pages into the virtual address space
provided by the resource map. A client of the segkmem memory allocator can
acquire pages with kmem_getpages and then return them to the map with
kmem_freepages , as shown in Table 6-6.

Pages allocated through kmem_getpages are not pageable and are one of the few
exceptions in the Solaris environment where a mapped page has no logically asso-
ciated vnode . To accommodate that case, a special vnode , kvp , is used. All pages
created through the segkmem segment have kvp as the vnode in their identity—
this allows the kernel to identify wired-down kernel pages.

Table 6-5 Solaris 7 segkmem Segment Driver Methods

Function Description
segkmem_create() Creates a new kernel memory segment.
segkmem_setprot() Sets the protection mode for the supplied segment.
segkmem_checkprot() Checks the protection mode for the supplied segment.
segkmem_getprot() Gets the protection mode for the current segment.
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6.2.4  The Kernel Memory Slab Allocator

In this section, we introduce the general-purpose memory allocator, known as the
slab allocator. We begin with a quick walk-through of the slab allocator features,
then look at how the allocator implements object caching, and follow up with a
more detailed discussion on the internal implementation.

6.2.4.1  Slab Allocator Overview

Solaris provides a general-purpose memory allocator that provides arbitrarily
sized memory allocations. We refer to this allocator as the slab allocator because it
consumes large slabs of memory and then allocates smaller requests with portions
of each slab. We use the slab allocator for memory requests that are:

• Smaller than a page size
• Not an even multiple of a page size
• Frequently going to be allocated and freed, so would otherwise fragment the

kernel map

The slab allocator was introduced in Solaris 2.4, replacing the buddy allocator that
was part of the original SVR4 Unix. The reasons for introducing the slab allocator
were as follows:

• The SVR4 allocator was slow to satisfy allocation requests.
• Significant fragmentation problems arose with use of the SVR4 allocator.
• The allocator footprint was large, wasting a lot of memory.

• With no clean interfaces for memory allocation, code was duplicated in many
places.

The slab allocator solves those problems and dramatically reduces overall system
complexity. In fact, when the slab allocator was integrated into Solaris, it resulted
in a net reduction of 3,000 lines of code because we could centralize a great deal of
the memory allocation code and could remove a lot of the duplicated memory allo-
cator functions from the clients of the memory allocator.

Table 6-6 Solaris 7 Kernel Page Level Memory Allocator

Function Description
kmem_getpages() Allocates npages  pages worth of system virtual

address space, and allocates wired-down page
frames to back them.

If flag  is KM_NOSLEEP, blocks until address
space and page frames are available.

kmem_freepages() Frees npages  (MMU) pages allocated with
kmem_getpages() .
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The slab allocator is significantly faster than the SVR4 allocator it replaced.
Table 6-7 shows some of the performance measurements that were made when the
slab allocator was first introduced.

The slab allocator provides substantial additional functionality, including the fol-
lowing:

• General-purpose, variable-sized memory object allocation

• A central interface for memory allocation, which simplifies clients of the allo-
cator and reduces duplicated allocation code

• Very fast allocation/deallocation of objects

• Low fragmentation / small allocator footprint
• Full debugging and auditing capability
• Coloring to optimize use of CPU caches
• Per-processor caching of memory objects to reduce contention
• A configurable back-end memory allocator to allocate objects other than regu-

lar wired-down memory

The slab allocator uses the term object to describe a single memory allocation unit,
cache to refer to a pool of like objects, and slab to refer to a group of objects that
reside within the cache. Each object type has one cache, which is constructed from
one or more slabs. Figure 6.4 shows the relationship between objects, slabs, and
the cache. The example shows 3-Kbyte memory objects within a cache, backed by
8-Kbyte pages.

Table 6-7 Performance Comparison of the Slab Allocator

Operation SVR4 Slab
Average time to allocate and free 9.4 µs 3.8 µs
Total fragmentation (wasted memory) 46% 14%
Kenbus benchmark performance
(number of scripts executed per second)

199 233
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 Figure 6.4 Objects, Caches, Slabs, and Pages of Memory

The slab allocator solves many of the fragmentation issues by grouping differ-
ent-sized memory objects into separate caches, where each object cache has its own
object size and characteristics. Grouping the memory objects into caches of similar
size allows the allocator to minimize the amount of free space within each cache by
neatly packing objects into slabs, where each slab in the cache represents a contig-
uous group of pages. Since we have one cache per object type, we would expect to
see many caches active at once in the Solaris kernel. For example, we should
expect to see one cache with 440 byte objects for UFS inodes, another cache of 56
byte objects for file structures, another cache of 872 bytes for LWP structures, and
several other caches.

The allocator has a logical front end and back end. Objects are allocated from
the front end, and slabs are allocated from pages supplied by the back-end page
allocator. This approach allows the slab allocator to be used for more than regular
wired-down memory; in fact, the allocator can allocate almost any type of memory
object. The allocator is, however, primarily used to allocate memory objects from
physical pages by using kmem_getpages  as the back-end allocator.

Caches are created with kmem_cache_create() , once for each type of memory
object. Caches are generally created during subsystem initialization, for example,
in the init routine of a loadable driver. Similarly, caches are destroyed with the
kmem_cache_destroy() function. Caches are named by a string provided as an
argument, to allow friendlier statistics and tags for debugging. Once a cache is cre-
ated, objects can be created within the cache with kmem_cache_alloc() , which
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creates one object of the size associated with the cache from which the object is cre-
ated. Objects are returned to the cache with kmem_cache_free() .

6.2.4.2  Object Caching

The slab allocator makes use of the fact that most of the time objects are heavily
allocated and deallocated, and many of the slab allocator’s benefits arise from
resolving the issues surrounding allocation and deallocation. The allocator tries to
defer most of the real work associated with allocation and deallocation until it is
really necessary, by keeping the objects alive until memory needs to be returned to
the back end. It does this by telling the allocator what the object is being used for,
so that the allocator remains in control of the object’s true state.

So, what do we really mean by keeping the object alive? If we look at what a
subsystem uses memory objects for, we find that a memory object typically con-
sists of two common components: the header or description of what resides within
the object and associated locks; and the actual payload that resides within the
object. A subsystem typically allocates memory for the object, constructs the object
in some way (writes a header inside the object or adds it to a list), and then cre-
ates any locks required to synchronize access to the object. The subsystem then
uses the object. When finished with the object, the subsystem must deconstruct the
object, release locks, and then return the memory to the allocator. In short, a sub-
system typically allocates, constructs, uses, deallocates, and then frees the object.

If the object is being created and destroyed often, then a great deal of work is
expended constructing and deconstructing the object. The slab allocator does away
with this extra work by caching the object in its constructed form. When the client
asks for a new object, the allocator simply creates or finds an available con-
structed object. When the client returns an object, the allocator does nothing other
than mark the object as free, leaving all of the constructed data (header informa-
tion and locks) intact. The object can be reused by the client subsystem without
the allocator needing to construct or deconstruct—the construction and decon-
struction is only done when the cache needs to grow or shrink. Deconstruction is
deferred until the allocator needs to free memory back to the back-end allocator.

To allow the slab allocator to take ownership of constructing and deconstruct-
ing objects, the client subsystem must provide a constructor and destructor
method. This service allows the allocator to construct new objects as required and
then to deconstruct objects later, asynchronously to the client’s memory requests.
The kmem_cache_create() interface supports this feature by providing a con-
structor and destructor function as part of the create request.

The slab allocator also allows slab caches to be created with no constructor or
destructor, to allow simple allocation and deallocation of simple raw memory
objects.

The slab allocator moves a lot of the complexity out of the clients and central-
izes memory allocation and deallocation policies. At some points, the allocator may
need to shrink a cache as a result of being notified of a memory shortage by the
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VM system. At this time, the allocator can free all unused objects by calling the
destructor for each object that is marked free and then returning unused slabs to
the back-end allocator. A further callback interface is provided in each cache so
that the allocator can let the client subsystem know about the memory pressure.
This callback is optionally supplied when the cache is created and is simply a func-
tion that the client implements to return, by means of kmem_cache_free() , as
many objects to the cache as possible.

A good example is a file system, which uses objects to store the inodes. The slab
allocator manages inode objects; the cache management, construction, and decon-
struction of inodes are handed over to the slab allocator. The file system simply
asks the slab allocator for a “new inode” each time it requires one. For example, a
file system could call the slab allocator to create a slab cache, as shown below.

The example shows that we create a cache named inode_cache , with objects of
the size of an inode, no alignment enforcement, a constructor and a destructor
function, and a reclaim function. The back-end memory allocator is specified as
NULL, which by default allocates physical pages from the segkmem page allocator.

We can see from the statistics exported by the slab allocator that the UFS file
system uses a similar mechanism to allocate its inodes. We use the netstat -k
function to dump the statistics. (We discuss allocator statistics in more detail in
“Slab Allocator Statistics” on page 229.)

inode_cache = kmem_cache_create("inode_cache",
sizeof (struct inode), 0, inode_cache_constructor,
inode_cache_destructor, inode_cache_reclaim,
NULL, NULL, 0);

struct inode *inode = kmem_cache_alloc(inode_cache, 0);

# netstat -k ufs_inode_cache
ufs_inode_cache:
buf_size 440 align 8 chunk_size 440 slab_size 8192 alloc 20248589
alloc_fail 0 free 20770500 depot_alloc 657344 depot_free 678433
depot_contention 85 global_alloc 602986 global_free 578089
buf_constructed 0 buf_avail 7971 buf_inuse 24897 buf_total 32868
buf_max 41076 slab_create 2802 slab_destroy 976 memory_class 0
hash_size 0 hash_lookup_depth 0 hash_rescale 0 full_magazines 0
empty_magazines 0 magazine_size 31 alloc_from_cpu0 9583811
free_to_cpu0 10344474 buf_avail_cpu0 0 alloc_from_cpu1 9404448
free_to_cpu1 9169504 buf_avail_cpu1 0
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The allocator interfaces are shown in Table 6-8.

Caches are created with the kmem_cache_create() function, which can option-
ally supply callbacks for construction, deletion, and cache reclaim notifications.
The callback functions are described in Table 6-9.

Table 6-8 Solaris 7 Slab Allocator Interfaces from <sys/kmem.h >

Function Description
kmem_cache_create() Creates a new slab cache with the supplied

name, aligning objects on the boundary supplied
with alignment.
The constructor, destructor, and reclaim func-
tions are optional and can be supplied as NULL.
An argument can be provided to the constructor
with arg .
The back-end memory allocator can also be spec-
ified or supplied as NULL. If a NULL back-end
allocator is supplied, then the default allocator,
kmem_getpages() , is used.
Flags can supplied as be KMC_NOTOUCH,
KMC_NODEBUG, KMC_NOMAGAZINE, and
KMC_NOHASH.

kmem_cache_destroy() Destroys the cache referenced by cp .
kmem_cache_alloc() Allocates one object from the cache referenced

by cp . Flags can be supplied as either KM_SLEEP
or KM_NOSLEEP.

kmem_cache_free() Returns the buffer buf  to the cache referenced
by cp .

kmem_cache_stat() Returns a named statistic about a particular
cache that matches the string name. Finds a
name by looking at the kstat slab cache names
with netstat -k .

Table 6-9 Slab Allocator Callback Interfaces from <sys/kmem.h >

Function Description
constructor() Initializes the object buf . The arguments arg and

flag  are those provided during
kmem_cache_create() .

destructor() Destroys the object buf . The argument arg  is
that provided during kmem_cache_create() .

reclaim() Where possible, returns objects to the cache. The
argument is that provided during
kmem_cache_create() .
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6.2.4.3  General-Purpose Allocations

In addition to object-based memory allocation, the slab allocator provides back-
ward-compatible, general-purpose memory allocation routines. These routines allo-
cate arbitrary-length memory by providing a method to malloc() . The slab
allocator maintains a list of various-sized slabs to accommodate kmem_alloc()
requests and simply converts the kmem_alloc() request into a request for an
object from the nearest-sized cache. The sizes of the caches used for
kmem_alloc() are named kmem_alloc_ n, where n is the size of the objects
within the cache (see Section 6.2.4.9, “Slab Allocator Statistics,” on page 229). The
functions are shown in Table 6-10.

6.2.4.4  Slab Allocator Implementation

The slab allocator implements the allocation and management of objects to the
front-end clients, using memory provided by the back-end allocator. In our intro-
duction to the slab allocator, we discussed in some detail the virtual allocation
units: the object and the slab. The slab allocator implements several internal lay-
ers to provide efficient allocation of objects from slabs. The extra internal layers
reduce the amount of contention between allocation requests from multiple
threads, which ultimately allows the allocator to provide good scalability on large
SMP systems.

Figure 6.5 shows the internal layers of the slab allocator. The additional layers
provide a cache of allocated objects for each CPU, so a thread can allocate an object
from a local per-CPU object cache without having to hold a lock on the global slab
cache. For example, if two threads both want to allocate an inode object from the
inode cache, then the first thread’s allocation request would hold a lock on the
inode cache and would block the second thread until the first thread has its object
allocated. The per-cpu cache layers overcome this blocking with an object cache per
CPU to try to avoid the contention between two concurrent requests. Each CPU
has its own short-term cache of objects, which reduces the amount of time that
each request needs to go down into the global slab cache.

Table 6-10 General-Purpose Memory Allocation

Function Description
kmem_alloc() Allocates size  bytes of memory. Flags can be

either KM_SLEEP or KM_NOSLEEP.
kmem_zalloc() Allocates size  bytes of zeroed memory. Flags can

be either KM_SLEEP or KM_NOSLEEP.
kmem_free() Returns to the allocator the buffer pointed to by

buf  and size .
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 Figure 6.5 Slab Allocator Internal Implementation
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The layers shown in Figure 6.5 are separated into the slab layer, the depot layer,
and the CPU layer. The upper two layers (which together are known as the maga-
zine layer) are caches of allocated groups of objects and use a military analogy of
allocating rifle rounds from magazines. Each per-CPU cache has magazines of allo-
cated objects and can allocate objects (rounds) from its own magazines without
having to bother the lower layers. The CPU layer needs to allocate objects from the
lower (depot) layer only when its magazines are empty. The depot layer refills mag-
azines from the slab layer by assembling objects, which may reside in many differ-
ent slabs, into full magazines.

6.2.4.5 The CPU Layer

The CPU layer caches groups of objects to minimize the number of times that an
allocation will need to go down to the lower layers. This means that we can satisfy
the majority of allocation requests without having to hold any global locks, thus
dramatically improving the scalability of the allocator.

Continuing the military analogy: three magazines of objects are kept in the
CPU layer to satisfy allocation and deallocation requests—a full, a half-allocated,
and an empty magazine are on hand. Objects are allocated from the half-empty
magazine, and until the magazine is empty, all allocations are simply satisfied
from the magazine. When the magazine empties, an empty magazine is returned
to the magazine layer, and objects are allocated from the full magazine that was
already available at the CPU layer. The CPU layer keeps the empty and full maga-
zine on hand to prevent the magazine layer from having to construct and decon-
struct magazines when on a full or empty magazine boundary. If a client rapidly
allocates and deallocates objects when the magazine is on a boundary, then the
CPU layer can simply use its full and empty magazines to service the requests,
rather than having the magazine layer deconstruct and reconstruct new maga-
zines at each request. The magazine model allows the allocator to guarantee that
it can satisfy at least a magazine size of rounds without having to go to the depot
layer.

6.2.4.6  The Depot Layer

The depot layer assembles groups of objects into magazines. Unlike a slab, a maga-
zine’s objects are not necessarily allocated from contiguous memory; rather, a mag-
azine contains a series of pointers to objects within slabs.

The number of rounds per magazine for each cache changes dynamically,
depending on the amount of contention that occurs at the depot layer. The more
rounds per magazine, the lower the depot contention, but more memory is con-
sumed. Each range of object sizes has an upper and lower magazine size. Table
6-11 shows the magazine size range for each object size.
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A slab allocator maintenance thread is scheduled every 15 seconds (controlled by
the tunable kmem_update_interval ) to recalculate the magazine sizes. If signifi-
cant contention has occurred at the depot level, then the magazine size is bumped
up. Refer to Table 6-12 on page 227 for the parameters that control magazine
resizing.

6.2.4.7  The Global (Slab) Layer

The global slab layer allocates slabs of objects from contiguous pages of physical
memory and hands them up to the magazine layer for allocation. The global slab
layer is used only when the upper layers need to allocate or deallocate entire slabs
of objects to refill their magazines.

The slab is the primary unit of allocation in the slab layer. When the allocator
needs to grow a cache, it acquires an entire slab of objects. When the allocator
wants to shrink a cache, it returns unused memory to the back end by deallocat-
ing a complete slab. A slab consists of one or more pages of virtually contiguous
memory carved up into equal-sized chunks, with a reference count indicating how
many of those chunks have been allocated.

The contents of each slab are managed by a kmem_slab data structure that
maintains the slab’s linkage in the cache, its reference count, and its list of free
buffers. In turn, each buffer in the slab is managed by a kmem_bufctl structure
that holds the freelist linkage, the buffer address, and a back-pointer to the con-
trolling slab.

For objects smaller than 1/8th of a page, the slab allocator builds a slab by allo-
cating a page, placing the slab data at the end, and dividing the rest into
equal-sized buffers. Each buffer serves as its own kmem_bufctl while on the
freelist. Only the linkage is actually needed, since everything else is computable.
These are essential optimizations for small buffers; otherwise, we would end up
allocating almost as much memory for kmem_bufctl as for the buffers them-
selves. The free-list linkage resides at the end of the buffer, rather than the begin-
ning, to facilitate debugging. This location is driven by the empirical observation

Table 6-11 Magazine Sizes

Object Size
Range

Minimum
Magazine Size

Maximum
Magazine Size

0–63 15 143
64–127 7 95
128–255 3 47
256–511 1 31
512–1023 1 15
1024–2047 1 7
2048–16383 1 3
16384– 1 1
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that the beginning of a data structure is typically more active than the end. If a
buffer is modified after being freed, the problem is easier to diagnose if the heap
structure (free-list linkage) is still intact. The allocator reserves an additional
word for constructed objects so that the linkage does not overwrite any con-
structed state.

For objects greater than 1/8th of a page, a different scheme is used. Allocating
objects from within a page-sized slab is efficient for small objects but not for large
ones. The reason for the inefficiency of large-object allocation is that we could fit
only one 4-Kbyte buffer on an 8-Kbyte page—the embedded slab control data takes
up a few bytes, and two 4-Kbyte buffers would need just over 8 Kbytes. For large
objects, we allocate a separate slab management structure from a separate pool of
memory (another slab allocator cache, the kmem_slab_cache ). We also allocate a
buffer control structure for each page in the cache from another cache, the
kmem_bufctl_cache . The slab /bufctl /buffer structures are shown in the slab
layer in Figure 6.5 on page 224.

The slab layer solves another common memory allocation problem by imple-
menting slab coloring. If memory objects all start at a common offset (e.g., at
512-byte boundaries), then accessing data at the start of each object could result in
the same cache line being used for all of the objects. The issues are similar to those
discussed in “The Page Scanner” on page 178. To overcome the cache line problem,
the allocator applies an offset to the start of each slab, so that buffers within the
slab start at a different offset. This approach is also shown in Figure 6.5 on
page 224 by the color offset segment that resides at the start of each memory allo-
cation unit before the actual buffer. Slab coloring results in much better cache uti-
lization and more evenly balanced memory loading.

6.2.4.8  Slab Cache Parameters

The slab allocator parameters are shown in Table 6-12 for reference only. We rec-
ommend that none of these values be changed.

Table 6-12 Kernel Memory Allocator Parameters

Parameter Description 2.7
Def.

kmem_reap_interval The number of ticks after which the
slab allocator update thread will run.

15000
(15s)

kmem_depot_contention If the number of times depot conten-
tion occurred since the last time the
update thread ran is greater than this
value, then the magazine size is
increased.

3
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kmem_reapahead If the amount of free memory falls
below cachefree +
kmem_reapahead , then the slab alloca-
tor will give back as many slabs as pos-
sible to the back-end page allocator.

0

Table 6-12 Kernel Memory Allocator Parameters  (Continued)

Parameter Description 2.7
Def.
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6.2.4.9  Slab Allocator Statistics

Two forms of slab allocator statistics are available: global statistics and per-cache
statistics. The global statistics are available through the crash utility and display
a summary of the entire cache list managed by the allocator.

# crash
dumpfile = /dev/mem, namelist = /dev/ksyms, outfile = stdout
> kmastat
                            buf   buf   buf   memory    #allocations
cache name                 size avail total   in use    succeed fail
----------                ----- ----- ----- --------    ------- ----
kmem_magazine_1              16   483   508     8192       6664    0
kmem_magazine_3              32  1123  1270    40960      55225    0
kmem_magazine_7              64   584   762    49152      62794    0
kmem_magazine_15            128   709   945   122880     194764    0
kmem_magazine_31            256    58    62    16384      24915    0
kmem_magazine_47            384     0     0        0          0    0
kmem_magazine_63            512     0     0        0          0    0
kmem_magazine_95            768     0     0        0          0    0
kmem_magazine_143          1152     0     0        0          0    0
kmem_slab_cache              56   308  2159   139264      22146    0
kmem_bufctl_cache            32  2129  6096   196608      54870    0
kmem_bufctl_audit_cache     184    24 16464  3211264      16440    0
kmem_pagectl_cache           32   102   254     8192     406134    0
kmem_alloc_8                  8  9888 31527   253952  115432346    0
kmem_alloc_16                16  7642 18288   294912  374733170    0
kmem_alloc_24                24  4432 11187   270336   30957233    0

.

.
kmem_alloc_12288          12288     2     4    49152        660    0
kmem_alloc_16384          16384     0    42   688128       1845    0

.

.
streams_mblk                 64  3988  5969   385024   31405446    0
streams_dblk_32             128   795  1134   147456   72553829    0
streams_dblk_64             160   716  1650   270336  196660790    0

.

.
streams_dblk_8096          8192    17    17   139264  356266482    0
streams_dblk_12192        12288     8     8    98304   14848223    0
streams_dblk_esb             96     0     0        0     406326    0
stream_head_cache           328    68   648   221184     492256    0
queue_cache                 456   109  1513   729088    1237000    0
syncq_cache                 120    48    67     8192        373    0
qband_cache                  64   125   635    40960       1303    0
linkinfo_cache               48   156   169     8192         90    0
strevent_cache               48   153   169     8192    5442622    0
as_cache                    120    45   201    24576     158778    0
seg_skiplist_cache           32   540  1524    49152    1151455    0
anon_cache                   48  1055 71825  3481600    7926946    0
anonmap_cache                48   551  4563   221184    5805027    0
segvn_cache                  88   686  6992   622592    9969087    0
flk_edges                    48     0     0        0          1    0
physio_buf_cache            224     0     0        0   98535107    0
snode_cache                 240    39   594   147456    1457746    0
ufs_inode_cache             440  8304 32868 14958592   20249920    0

.

.
----------                ----- ----- ----- --------    ------- ----
permanent                     -     -     -    98304        501    0
oversize                      -     -     -  9904128     406024    0
----------                ----- ----- ----- --------    ------- ----
Total                         -     -     - 58753024 2753193059    0
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The kmastat command shows summary information for each statistic and a sys-
temwide summary at the end. The columns are shown in Table 6-13.

A more detailed version of the per-cache statistics is exported by the kstat mecha-
nism. You can use the netstat -k command to display the cache statistics, which
are described in Table 6-14.

Table 6-13 kmastat Columns

Parameter Description
Cache name The name of the cache, as supplied during

kmem_cache_create() .
buf_size The size of each object within the cache in

bytes.
buf_avail The number of free objects in the cache.
buf_total The total number of objects in the cache.
Memory in use The amount of physical memory consumed by

the cache in bytes.
Allocations succeeded The number of allocations that succeeded.
Allocations failed The number of allocations that failed. These

are likely to be allocations that specified
KM_NOSLEEP during memory pressure.

# netstat -k ufs_inode_cache
ufs_inode_cache:
buf_size 440 align 8 chunk_size 440 slab_size 8192 alloc 20248589
alloc_fail 0 free 20770500 depot_alloc 657344 depot_free 678433
depot_contention 85 global_alloc 602986 global_free 578089
buf_constructed 0 buf_avail 7971 buf_inuse 24897 buf_total 32868
buf_max 41076 slab_create 2802 slab_destroy 976 memory_class 0
hash_size 0 hash_lookup_depth 0 hash_rescale 0 full_magazines 0
empty_magazines 0 magazine_size 31 alloc_from_cpu0 9583811
free_to_cpu0 10344474 buf_avail_cpu0 0 alloc_from_cpu1 9404448
free_to_cpu1 9169504 buf_avail_cpu1 0

Table 6-14 Slab Allocator Per-Cache Statistics

Parameter Description
buf_size The size of each object within the cache in

bytes.
align The alignment boundary for objects within the

cache.
chunk_size The allocation unit for the cache in bytes.
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6.2.4.10  Slab Allocator Tracing

The slab allocator includes a general-purpose allocation tracing facility that tracks
the allocation history of objects. The facility is switched off by default and can be
enabled by setting of the system variable kmem_flags . The tracing facility cap-

slab_size The size of each slab within the cache in bytes.
alloc The number of object allocations that suc-

ceeded.
alloc_fail The number of object allocations that failed.

(Should be zero!).
free The number of objects that were freed.
depot_alloc The number of times a magazine was allo-

cated in the depot layer.
depot_free The number of times a magazine was freed to

the depot layer.
depot_contention The number of times a depot layer allocation

was blocked because another thread was in
the depot layer.

global_alloc The number of times an allocation was made
at the global layer.

global_free The number of times an allocation was freed
at the global layer.

buf_constructed Zero or the same as buf_avail .
buf_avail The number of free objects in the cache.
buf_inuse The number of objects used by the client.
buf_total The total number of objects in the cache.
buf_max The maximum number of objects the cache

has reached.
slab_create The number of slabs created.
slab_destroy The number of slabs destroyed.
memory_class The ID of the back-end memory allocator.
hash_size Buffer hash lookup statistics.
hash_lookup_depth Buffer hash lookup statistics.
hash_rescale Buffer hash lookup statistics.
full_magazines The number of full magazines.
empty_magazines The number of empty magazines.
magazine_size The size of the magazine.
alloc_from_cp uN Object allocations from CPU N.
free_to_cpu N Objects freed to CPU N.
buf_avail_cpu N Objects available to CPU N.

Table 6-14 Slab Allocator Per-Cache Statistics (Continued)

Parameter Description
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tures the stack and history of allocations into a slab cache, named as the name of
the cache being traced, with .DEBUGappended to it. Audit tracing can be enabled
by the following:

• Setting kmem_flags to indicate the type of tracing desired, usually 0x1F to
indicate all tracing

• Booting the system with kadb -d  and setting kmem_flags  before startup

The following simple example shows how to trace a cache that is created on a
large system, after the flags have been set. To enable tracing on all caches, the sys-
tem must be booted with kadb and the kmem_flags variable set. The steps for
such booting are shown below.

Note that the total number of allocations traced will be limited by the size of the
audit cache parameters, shown in Table 6-12 on page 227. Table 6-15 shows the
parameters that control kernel memory debugging.

ok boot kadb -d
Resetting ...

Sun Ultra 1 UPA/SBus (UltraSPARC 167MHz), No Keyboard
OpenBoot 3.1, 128 MB memory installed, Serial #8788108.
Ethernet address 8:0:20:86:18:8c, Host ID: 8086188c.

Rebooting with command: boot kadb -d
Boot device: /sbus/SUNW,fas@e,8800000/sd@0,0  File and args: kadb -d
kadb: <return>
kadb[0]: kmem_flags/D
kmem_flags:
kmem_flags:     0
kadb[0]: kmem_flags/W 0x1f
kmem_flags:     0x0             =       0x1f
kadb[0]: :c

SunOS Release 5.7 Version Generic 64-bit
Copyright 1983-2000 Sun Microsystems, Inc.  All rights reserved.
\

Table 6-15 Kernel Memory Debugging Parameters

Parameter Description 2.7
Def.

kmem_flags Set this to select the mode of kernel
memory debugging. Set to 0x1F to
enable all debugging, or set the logical
AND of the following:
0x1 Transaction auditing
0x2 deadbeef checking
0x4 red-zone checking
0x8 freed buffer content logging

0
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kmem_log_size Maximum amount of memory to use for
slab allocator audit tracing.

2% of
mem.

kmem_content_maxsave The maximum number of bytes to log
in each entry.

256

Table 6-15 Kernel Memory Debugging Parameters  (Continued)

Parameter Description 2.7
Def.
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 7
MEMORY
MONITORING
In the preceding chapters we covered design and implementation of the Solaris
virtual memory system. This chapter is more practical in nature and covers the
tools available to monitor the VM system.

7.1 A Quick Introduction to Memory Monitoring

In Chapter 5, “Solaris Memory Architecture” we saw that Solaris memory is used
for several major functions, including the kernel, processes, and the file system
cache. The first step to understanding Solaris memory utilization is to summarize,
at the global level, the following categories:

• Total physical memory available
• Memory allocated internally within the Solaris kernel
• Memory used for the file system page cache
• Memory used by processes
• Memory free

Several different Solaris utilities are required for derivation of the global sum-
mary, and we will see how we can use these tools to build our summary. We later
discuss MemTool, a downloadable toolset you can load into the Solaris kernel to
provide even more detailed information.
235
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7.1.1  Total Physical Memory

From the output of the Solaris prtconf command, we can ascertain the amount of
total physical memory.

7.1.2  Kernel Memory

We find the amount of kernel memory by using the Solaris sar command and sum-
ming the three pool columns. The output is in bytes; in this example, the kernel is
using 55, 361, 536 bytes of memory.

7.1.3  Free Memory

Free memory is almost always zero because the buffer cache grows to consume free
memory. Use the vmstat command to measure free memory. The first line of out-
put from vmstat is an average since boot, so the real free memory figure is avail-
able on the second line. The output is in kilobytes. Note that in this has changed in
Solaris 8 - free memory now contains the majority of the file system cache.

7.1.4  File System Caching Memory

The file system cache uses available free memory to cache files on the file system.
On most systems, the amount of free memory is almost zero because the file sys-
tem cache is occupying all of the memory not being used by processes. We typically
see free memory (reported in vmstat ) start high when a system is booted, then
slowly drop to almost zero after time. Free memory typically stays at or almost at
zero until either a file system is unmounted or the system is rebooted. This behav-

# prtconf

System Configuration:  Sun Microsystems  sun4u
Memory size: 384 Megabytes
System Peripherals (Software Nodes):

# sar -k 1 1

SunOS devhome 5.7 SunOS_Development sun4u    02/07/00

18:12:28 sml_mem   alloc  fail  lg_mem   alloc  fail  ovsz_alloc  fail
18:12:31 8732672  7658792     0 37380096  30195320     0 9248768      0

# vmstat 3
 procs     memory            page            disk          faults      cpu
 r b w   swap  free  re  mf pi po fr de sr f0 s6 sd sd   in   sy   cs us sy id
 1 0 0  29008 38456   1   4 17  0  6  0  0  0  0  0  0  209 1755  399  5  1 94
 0 0 0 514952 12720   0   8  0  0  0  0  0  0  0  0  0  232  482  330  1  0 98
 0 0 0 514952 12720   0   0  0  0  0  0  0  0  0  0  0  214  432  307  0  0 100
 1 0 0 514952 12720   0   0  0  0  0  0  0  0  0  0  0  192  409  271  0  0 100
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ior is completely normal. In Solaris 8, the file system cache is included in free
memory, so the free memory value is interpreted differently.

To look at the amount of file buffer cache, use the MemTool package. We can use
the MemTool mempscommand to dump the contents of the buffer cache, and we
can get a summary of the buffer cache memory with the MemTool prtmem com-
mand.

7.1.5 Memory Shortage Detection

A critical component of performance analysis is ascertaining where the bottle-
necks are. Detecting memory bottlenecks is not quite as straightforward as mea-
suring processor and disk bottlenecks and requires a few more steps to arrive at a
conclusion. To determine if there is a memory shortage, we need to determine the
following:

• Whether the applications are paging excessively because of a memory short-
age

• Whether the system could benefit by making more memory available for file
buffering

The paging activity reported by the Solaris vmstat command includes both file
system activity and application paging and is not a fail-safe method of identifying
memory shortages. We can, however, use vmstat to rule out any question of a
memory shortage in some circumstances. We recommend the following steps:

• Use vmstat to see if the system is paging. If it is not, then there is no chance
of a memory shortage. Excessive paging activity is evident by activity in the
scan-rate (sr) and page-out (po) columns, where values are constantly non-
zero. However, if the system is paging heavily, this is not necessarily a sign of
a memory shortage.

• Look at the activity reported for the swap device. If application paging is
occurring, then the swap device will have I/Os queued to it. Any significant
I/O to the swap device is a sure sign of memory shortage.

• Use the MemTool to measure the distribution of memory in the system. If an
application memory shortage exists, then the file system buffer cache size will
be very small (i.e., less than 10 percent of the total memory available).

# prtmem

Total memory:             241 Megabytes
Kernel Memory:             39 Megabytes
Application:              106 Megabytes
Executable & libs:         36 Megabytes
File Cache:                59 Megabytes
Free, file cache:           3 Megabytes
Free, free:                 0 Megabytes
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7.1.6  Swap Space

Solaris swap space has two important states that we must observe: swap reserva-
tion and physical swap allocation. (See “The swapfs Layer” on page 156 for details
about the Solaris swap implementation.) Two important measures of Solaris swap
space are these:

• The amount of virtual swap space that is configured and available for swap
reservations

• The amount of physical swap space that is configured and available for physi-
cal page-outs

We need to ensure that neither of these two types of swap space is exhausted.
When we exhaust virtual space, malloc() and related calls fail, which means our
programs start to fail. When we exhaust physical swap space, programs do not fail,
but since there is no longer any space left to page them out to, the Solaris kernel
begins locking down pages of memory that would normally be paged out.

7.1.6.1  Virtual Swap Space

The amount of virtual swap space configured is the sum of the amount of physical
swap space (disk swap space) plus the amount of memory that Solaris can use for
swap. We can use the swap -s command to see if enough virtual swap space is
configured. When the “available” column falls to zero, programs will start to fail.
We can add virtual swap by simply adding more physical swap space.

7.1.6.2  Physical Swap Space

The amount of physical swap space configured is simply the amount of physical
disk or file-based swap configured through /etc/vfstab or by the swap com-
mand. The amount of physical swap space affects the amount of virtual swap space
available for reservations, as just discussed, but it also affects the amount of physi-
cal space available that pages can be paged out to. Even if there is sufficient total
virtual space for reservations, we may still have insufficient space for physical
page-outs. The physical swap configuration and the amount of physical swap avail-
able for pages to be paged out to can be seen with the -l option of the swap com-
mand. The amount of physical swap space available for paging out to is shown in
the free column (note that the free column is not the amount of physical swap
available for reservations, it’s the amount of space available for physical

# swap -s
total: 251232k bytes allocated + 25544k reserved = 276776k used, 514992k available
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page-outs). If free physical swap is zero, then pages will no longer be paged out to
swap and memory will effectively start being locked down.

Ensure that both swap -s  “available” and swap -l  “free” are nonzero.

7.2 Memory Monitoring Tools

To understand the memory behavior and requirements of a particular system, we
need to be able to measure the activity and operation of the virtual memory sys-
tem. In this section, we look at the current tools bundled with the Solaris kernel,
and we discuss some other unbundled tools that allow us to look a little deeper
into the virtual memory system.

We have two basic objectives in looking at Solaris memory: to find out where all
of the memory is allocated and to look at memory (or paging) activity. Table 7-1
lists the tools we discuss and the capabilities of each.

# swap -l
swapfile             dev  swaplo blocks   free
/dev/dsk/c1t2d3s1   118,105     16 1048784 47024

Table 7-1 Solaris Memory Monitoring Commands

Tool Location of Tool Capabilities for
Memory

Utilization
Reporting

Paging Activity
Reporting

vmstat /usr/bin Basic Systemwide only
ps /usr/bin Process size —
swap /usr/bin Swap allocation —
wsm Engineering/free Working set size —
ipcs /usr/bin SysV shared memory —
MemTool Engineering/down-

load
Process/file system
cache

—

memstat Engineering/down-
load

Same as vmstat Breakout of paging
for file systems,
applications, and
libraries

pmap /usr/proc/bin Process address map —
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7.3 The vmstat Command

The Solaris vmstat utility summarizes various functions within the virtual mem-
ory system, including systemwide free memory, paging counters, disk activity, sys-
tem calls, and CPU utilization. The output of vmstat is shown below with
explanations of the various fields. Let’s take a look at how we can use vmstat to
get a quick summary of what is happening on our system. Note that the first line
of output from vmstat shows a summary since boot, followed by the output over
the last 3 seconds for each additional line.

pmap -x /usr/proc/bin Process physical
memory utilization,
including the amount
of memory shared
among processes

—

crash /usr/bin/crash Kernel memory utili-
ties

—

dbx SPARCworks Memory leaks —

Table 7-1 Solaris Memory Monitoring Commands  (Continued)

Tool Location of Tool Capabilities for
Memory

Utilization
Reporting

Paging Activity
Reporting
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7.3.1  Free Memory

Our vmstat example shows that we have 2,096 Kbytes of memory free, which
seems low for a system with 128 Mbytes. Recall from the introduction that free
memory is low because the VM system has used all of it for file system caching,
which means that free memory has fallen to approximately the value of lots-
free . (See “The Page Scanner” on page 178 for the meaning of lotsfree .)
Although free memory is almost zero, plenty of memory may still be available for
applications. We will look at how to observe how much of our memory is being used
for file system caching when we later discuss MemTool in detail.

7.3.2  Swap Space

The vmstat command reports the amount of virtual swap space that is free and
available for reservation. This is the sum of the total amount of physical swap

# vmstat 3
  procs     memory            page            disk          faults      cpu
 r b w   swap  free  re  mf  pi  po  fr de sr f0 s2 s3 s4   in   sy   cs us sy id
 0 0 0  42200  5312   0  12 126  40 135  0  0  0  2  2  2  242 4373  285 12  9 80
 0 0 0 400952  3168   0   1   5   0   0  0  0  0  0  0  0  318 6584  319 11  3 86
 0 1 0 401064  2616   4  74 466 168 210  0  0  0  0  0  0  545 6124  623 12 10 78
 0 0 0 401096  2000   5  21 125   5  32  0  0  0  0  0  0  448 6521  375 18  8 74
 0 0 0 400944  2096   0   6   0  45  82  0  0  0  0  0  0  252 6814  346 11  3 86

r = run queue length
b = processes blocked waiting for I/O
w = idle processes that have been swapped at some time

swap = free and unreserved swap available, in Kbytes
free = free memory measured in pages

re = pages reclaimed from the free list
mf = minor faults – the page was in memory but was not mapped
pi = pages paged in from file system or swap device
po = pages paged out to file system or swap device
fr = pages that have been destroyed or freed
de = pages freed after writes

s0-s3 = disk I/Os per second for disk 0-3

in = interrupts/second
sy = system calls/second
cs = process context swtiches/second

us = user cpu time
sy = kernel cpu time
id = idle+wait cpu time
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space available plus the amount of memory swap space. It is equivalent to the
“available” column in swap -s .

7.3.3  Paging Counters

The vmstat paging counters show us the systemwide virtual memory paging
activity. The counters include paging activity to/from program memory (anony-
mous memory) and to/from file systems. The fields are shown in Table 7-2.

7.3.4  Process Memory Usage, ps, and the pmap Command

The memory usage of a process can be categorized into two classes: its virtual
memory usage and its physical memory usage. The virtual memory size is the
amount of virtual address space that has been allocated to the process, and the
physical memory is the amount of real memory pages that has been allocated to a
process. We refer to the physical memory usage of a process as its resident set size,

Table 7-2 Statistics from the vmstat  Command

Counter Description
re Page reclaims — The number of pages reclaimed since the last

sample. Some of the file system cache is in the free list, and
when a file page is reused and removed from the free list, a
reclaim occurs. File pages in the free list can be either regular
files or executable/library pages.

mf Minor faults — The number of pages attached to an address
space since the last sample. If the page is already in memory,
then a minor fault simply reestablishes the mapping to it.

pi Page-ins — The number of pages paged in since the last sam-
ple. A page-in occurs whenever a page is brought back in from
the swap device or brought from a file system into the file sys-
tem cache.

po Page-outs — The number of pages paged out and freed. A
page-out is counted whenever a page is written and freed.
Often, this is as a result of the pageout scanner, fsflush, or file
close.

fr Page frees — The number of pages that have been freed by
either the page scanner or by the file system (free behind).

de The precalculated, anticipated, short-term memory shortfall.
Used by the page scanner to free ahead enough pages to sat-
isfy requests.

sr The number of pages scanned by the page scanner per second.
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often abbreviated RSS. We can use the ps command to display a process’s virtual
and physical memory usage.

From the ps example, we can see that the /bin/sh shell uses 1,032 Kbytes of vir-
tual memory, 768 Kbytes of which have been allocated from physical memory. We
can also see that two shells are running. ps reports that both shells are using 768
Kbytes of memory each, but in fact, because each shell uses dynamic shared librar-
ies, the total amount of physical memory used by both shells is much less than
768K x 2.

To ascertain how much memory is really being used by both shells, we need to
look more closely at the address space within each process. Figure 7.1 shows how
the two shells share both the /bin/sh binary and their shared libraries. The fig-
ure shows each segment of memory within the shell’s address space. We’ve sepa-
rated the memory use into three categories:

• Private — Memory that is mapped into each process and that is not shared
by any other processes.

• Shared — Memory that is shared with all other processes on the system,
including read-only portions of the binary and libraries, otherwise known as
the “text” segments.

• Partially shared — A segment that is partly shared with other processes.
The data segments of the binary and libraries are shared this way because
they are shared but writable and within each process are private copies of
pages that have been modified. For example, the /bin/sh data segment is
mapped shared between all instances of /bin/sh but is mapped read/write
because it contains initialized variables that may be updated during the exe-
cution of the process. Variable updates must be kept private to the process, so
a private page is created by a “copy on write” operation. (See “Copy-on-Write”
on page 152 for further information.)

# ps -e -opid,vsz,rss,args
  PID  VSZ  RSS COMMAND
11896 1040  736 ps -a -opid,vsz,rss,args
11892 1032  768 sh
 3603 1032  768 sh
 2695 1896 1432 telnet donan
 2693 1920 1456 telnet donan
 2433 1920 1440 telnet firefly
 3143 1920 1456 telnet devnull
 2429 1920 1440 telnet firefly.eng
 2134 1920 1440 telnet devnull
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 Figure 7.1 Process Private and Shared Mappings (/bin/sh  Example)
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The pmap command provides a mechanism for a detailed look at a process’s mem-
ory utilization. The pmap command can show how much memory is resident, how
much of that is shared, and how much private memory a process has.

The example output from pmap shows the memory map of the /bin/sh command.
At the top of the output are the executable text and data segments. All of the exe-
cutable binary is shared with other processes because it is mapped read-only into
each process. A small portion of the data segment is shared; some is private
because of copy-on-write (COW) operations.

The next segment in the address space is the heap space, or user application
data. This segment is 100 percent private to a process.

Following the heap space are the shared libraries. Each shared library has a
text and data segment, which are like the executable text and data. Library text is
100 percent shared, and library data is partially shared. At the bottom of the pro-
cess dump is the stack, which, like the heap, is 100 percent private. A summary of
the total virtual size, resident portion, and private memory is printed at the bot-
tom.

7.4 MemTool: Unbundled Memory Tools

MemTool was developed to provide a more in-depth look at where memory has
been allocated on a Solaris system. Using these tools, we can find out where every
page of memory is, and in what proportions. MemTool is available as a download-
able, unsupported package from Sun Engineering. Note that these tools are not

# /usr/proc/bin/pmap -x 1069

pmap -x $$
4285:   sh
Address   Kbytes Resident Shared Private Permissions       Mapped File
00010000      88      88      88       - read/exec         sh
00034000      16      16       -      16 read/write/exec   sh
00038000       8       8       -       8 read/write/exec    [ heap ]
FF270000      16      16      16       - read/exec         libc_psr.so.1
FF280000     656     608     600       8 read/exec         libc.so.1
FF332000      32      32       -      32 read/write/exec   libc.so.1
FF350000      24      24      24       - read/exec         libgen.so.1
FF364000      16      16       -      16 read/write/exec   libgen.so.1
FF370000       8       8       -       8 read/exec         libc_ut.so
FF380000       8       8       -       8 read/write/exec   libc_ut.so
FF390000       8       8       8       - read/exec         libdl.so.1
FF3A0000       8       8       -       8 read/write/exec    [ anon ]
FF3B0000     120     120     120       - read/exec         ld.so.1
FF3DC000       8       8       -       8 read/write/exec   ld.so.1
FFBEC000      16      16       -      16 read/write/exec    [ stack ]
--------  ------  ------  ------  ------
total Kb    1032     984     856     128
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supported by the normal Sun support channels. The latest version of MemTool can
be found at http://www.solarisinternals.com .

7.4.1 MemTool Utilities

The MemTool package provides command-line, GUI, and character tools, as listed
in Table 7-3.

7.4.2  Command-Line Tools

MemTool provides three command-line tools: prtmem , memps, and prtswap .

7.4.2.1  System Memory Summary: prtmem

The prtmem command shows a systemwide summary of memory utilization, cate-
gorized into seven major groups. The output from the prtmem command is shown
below; the rows are described in Table 7-4.

Table 7-3 MemTool Utilities

Tool Interface Description
memps CLI Dumps process summary and file system cache

memory (-m).
prtmem CLI Displays a systemwide summary of memory alloca-

tion.
prtswap CLI Displays a systemwide detailed description of swap

allocation. Both virtual and physical swap alloca-
tion are shown.

memtool GUI Is a comprehensive GUI for UFS and process mem-
ory.

mem CUI Is a Curses interface for UFS and process memory.

# prtmem

Total memory:             241 Megabytes
Kernel Memory:             39 Megabytes
Application:              106 Megabytes
Executable & libs:         36 Megabytes
File Cache:                 3 Megabytes
Free, file cache:          58 Megabytes
Free, free:                 0 Megabytes

Table 7-4 prtmem  Rows

Row Description
Total memory The total amount of usable memory in the system minus

that used for low-level memory management.
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7.4.2.2 File System Cache Memory: memps -m

Memtool provides a list showing where the pool of filesystem cache memory has
been allocated, sorted by vnode . The list summarizes the size of each vnode in the
file system cache and, if possible, gives the real file name. If the real file name can-
not be determined, then the device and inode number are printed for that vnode .

We can display the list of vnodes in file system cache with the memps -mcom-
mand. Table 7-5 describes the columns.

Kernel Memory Memory used for the kernel executable, data structures,
and kernel allocations, internal to the operating system.

Application Anonymous memory used by processes, typically heap,
stack, and copy-on-write pages.

Executable & libs Executable and shared library pages that are mapped
into process address space.

File Cache File cache that is not on the free list.
Free, file cache File system cache that has been placed on the free list.

This file cache memory still contains valid cache but will
be consumed from the free list when memory is needed.

Free, free Memory that is free and not associated with any files.

# memps -m

SunOS devhome 5.7 SunOS_Development sun4u    02/08/100

00:23:12
   Size E/F Filename
 10232k E   /export/ws/local/netscape/netscape
  5648k E   /export/ws/dist/share/framemaker,v5.5.3/bin/sunxm.s5.sparc/maker5X.e
  2944k F   /home/rmc/.netscape/history.dat
  2888k E   /ws/on998-tools/SUNWspro/SC5.x/contrib/XEmacs20.3-b91/bin/sparc-sun-
  2000k E   /export/ws/dist/share/acroread,v3.01/Reader/sparcsolaris/lib/libXm.s
  1648k E   /usr/dt/lib/libXm.so.4
  1400k E   /usr/dt/lib/libXm.so.3
  1392k E   /usr/openwin/server/lib/libserverdps.so.5
   928k E   /export/ws/dist/share/acroread,v3.01/Reader/sparcsolaris/lib/libread
   824k E   /export/ws/dist/share/acroread,v3.01/Reader/sparcsolaris/bin/acrorea
      .
      .
      .

Table 7-4 prtmem  Rows  (Continued)

Row Description
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7.4.2.3  The prtswap Utility

The prtswap utility shows the three main states of swap and the way in which
that state affects the virtual and physical swap configured.

7.4.3  The MemTool GUI

The MemTool GUI provides an easy method for invoking most of the functionality
of the MemTool command line interfaces. Invoke the GUI as the root user to see all
of the process and file information.

Table 7-5 memps Columns

Column Description
Size The amount of physical memory in the file system cache

for this file.
E/F If the VM system sees this file as an executable or

library, then E for executable is shown; otherwise, F for
file is shown.

Filename The file name if known; otherwise, the file system
mount point and inode number are shown.

# prtswap -l

Swap Reservations:
--------------------------------------------------------------------------
Total Virtual Swap Configured:                            336MB =
RAM Swap Configured:                                          159MB
Physical Swap Configured:                              +      177MB

Total Virtual Swap Reserved Against:                      289MB =
RAM Swap Reserved Against:                                    111MB
Physical Swap Reserved Against:                        +      177MB

Total Virtual Swap Unresv. & Avail. for Reservation:       47MB =
Physical Swap Unresv. & Avail. for Reservations:                0MB
RAM Swap Unresv. & Avail. for Reservations:            +       47MB

Swap Allocations: (Reserved and Phys pages allocated)
--------------------------------------------------------------------------
Total Virtual Swap Configured:                            336MB
Total Virtual Swap Allocated Against:                     254MB

Physical Swap Utilization: (pages swapped out)
--------------------------------------------------------------------------
Physical Swap Free (should not be zero!):                  42MB =
Physical Swap Configured:                                     177MB
Physical Swap Used (pages swapped out):                -      135MB

# /opt/RMCmem/bin/memtool &
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The MemTool GUI offers three basic modes: buffer cache memory, process mem-
ory, and a process/buffer cache mapping matrix.

7.4.3.1  File System Cache Memory

The initial screen shows the contents of the file system cache. The file system
cache display shows each entry in the UFS file system cache. Figure 7.2 shows the
fields; Table 7-6 describes them.

 Figure 7.2 MemTool GUI: File System Cache Memory

The GUI displays only the largest 250 files. A status panel at the top of the dis-
play shows the total amount of files and the number that have been displayed.
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7.4.3.2  Process Memory

The second mode of the MemTool GUI is the process memory display. Click on the
Process Memory checkbox at the left of the GUI to select this mode. The process
memory display shows the process table with a memory summary for each pro-
cess. Each line of the process table is the same as the per-process summary from
the pmap command. Figure 7.3 shows the fields; Table 7-7 describes them.

Table 7-6 MemTool Buffer Cache Fields

Field Description
Resident The amount of physical memory that this file has associ-

ated with it.
Used The amount of physical memory that this file has

mapped into a process segment or SEGMAP. Generally,
the difference between this and the resident figure is
what is on the free list associated with this file.

Shared The amount of memory that this file has in memory that
is shared with more than one process.

Pageins The amount of minor and major page-ins for this file.
Pageouts The amount of page-outs for this file.
Filename The file name if known; otherwise, the file system

mount point and inode number are shown.
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Table 7-7 MemTool Process Table Field

Field Description
PID Process ID of process.
Virtual The virtual size of the process, including swapped-out

and unallocated memory.
Resident The amount of physical memory that this process has,

including shared binaries, libraries, etc.

 Figure 7.3 MemTool GUI: Process Memory
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To select the individual process map for a process, click on one of the process
entries.

7.4.3.3  Process Matrix

The process matrix, Figure 7.4, shows the relationship between processes and
mapped files. Across the top of the display is the list of processes that we viewed in
the process memory display, and down the side is a list of the files that are mapped
into these processes. Each column of the matrix shows the amount of memory
mapped into that process for each file, with an extra row for the private memory
associated with that process.

The matrix can be used to show the total memory usage of a group of processes.
By default, the summary box at the top right-hand corner shows the memory used
by all of the processes displayed. We can select a group of processes with the left
mouse button and then summarize by pressing the Selection button at the
top-middle of the display. Selecting the All/Filt button returns the full display.

Shared The amount of memory that this process is sharing with
another process, that is, shared libraries, shared mem-
ory, etc.

Private The amount of resident memory this process has that is
not shared with other processes. This figure is essen-
tially Resident - Shared.

Process The full process name and arguments.

Table 7-7 MemTool Process Table Field  (Continued)

Field Description
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 Figure 7.4 MemTool GUI: Process/File Matrix

7.5 Other Memory Tools

Two other memory tools—Workspace Monitor (wsm) and memstat (an extended
vmstat )—provide additional information.

7.5.1  The Workspace Monitor Utility: WSM

Another good utility for monitor memory usage is the workspace monitor. It shows
a live status of a processes memory map and lists the amount of memory that has
been read or written to in the sampled interval. This information is particularly
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useful for determining how much memory a process is using at any given instant.
The wsm command is invoked against a single process.

The counters in the wsm utility are in units of pages.

7.5.2  An Extended vmstat Command: memstat

Additional paging statistics are provided in the Solaris 7 kernel. Later, in Solaris
8, a new vmstat option (-p ) was added to examine these statistics. The statistics
can be observed on Solaris 7 with a simple command-line utility: memstat .

memstat shows the paging activity, page-ins, page-outs, and page-frees sepa-
rated into three classes: file system paging, anonymous memory paging, and exe-
cutable/shared library paging.

# wsm -p 732 -t 10

 Read   Write   Mapped  PROT  Segment   maker5X.exe(pid 683)  Mon Jul 21 15:44:10 1997
  235       0     782   (R-X) maker
   10      11      36   (RWX) maker
  207     384    2690   (RWX) Bss & Heap
   14       0      74   (R-X) /usr/lib/libc.so.1
    2       1       3   (RWX) /usr/lib/libc.so.1
    0       1       1   (RWX) /dev/zero <or other device>
    0       0       1   (R-X) /usr/lib/straddr.so
    0       0       1   (RWX) /usr/lib/straddr.so
    1       0       2   (R-X) /usr/platform/SUNW,Ultra-2/lib/libc_psr.so.1
    1       0       1   (RWX) /dev/zero <or other device>
    0       0      56   (R-X) /usr/lib/libnsl.so.1
    0       0       4   (RWX) /usr/lib/libnsl.so.1
    0       0       3   (RWX) /dev/zero <or other device>
    0       0       2   (R-X) /usr/lib/libmp.so.2
    0       0       1   (RWX) /usr/lib/libmp.so.2
    0       0       9   (R-X) /usr/openwin/lib/libXext.so.0
    0       0       1   (RWX) /usr/openwin/lib/libXext.so.0
   26       0      54   (R-X) /usr/openwin/lib/libX11.so.4
    2       1       3   (RWX) /usr/openwin/lib/libX11.so.4
    0       0       4   (R-X) /usr/lib/libsocket.so.1
    0       0       1   (RWX) /usr/lib/libsocket.so.1
    0       0       1   (RWX) /dev/zero <or other device>
    0       0       1   (R-X) /usr/lib/libdl.so.1
    0       0      14   (R-X) /usr/lib/ld.so.1
    2       0       2   (RWX) /usr/lib/ld.so.1
    0       3       6   (RWX) Stack
  500     401    3753         Totals
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The columns for the memstat  command are described in Table 7-8.

Table 7-8 Statistics from the memstat  Command

Counter Description
free The amount of free memory as reported by vmstat , which

reports the combined size of the cache list and free list. Free
memory on Solaris 7 may contain some of the file system cache.

# memstat 3

memory  ---------- paging ----------- - executable -  - anonymous -  -- filesys -- --- cpu
---

free re mf pi po fr de sr epi epo epf api apo apf fpi fpo fpf us sy wt id
16128 8 0 341 1629 1677 0 18 0 0 0 0 0 0 341 1629 1677 4 35 34 27
15184 12 0 354 1720 2434 0 437 0 0 2 0 85 88 354 1634 2344 1 19 35 45
15152 6 0 160 1522 2541 0 490 0 0 16 0 85 114 160 1437 2410 2 20 40 38
14968 19 0 162 1688 3285 0 698 0 0 18 0 168 181 162 1520 3085 1 29 34 36
15184 23 192 242 2232 3573 0 595 0 0 16 0 128 149 242 2104 3408 2 27 33 38
15704 8 0 194 480 581 0 53 0 0 0 0 0 0 194 480 581 1 16 46 38
16192 16 15 202 189 189 0 0 0 0 0 0 0 0 202 189 189 1 11 41 47
16976 4 54 200 40 40 0 0 0 0 0 0 0 0 200 40 40 1 16 37 46
17376 1 83 194 2 2 0 0 0 0 0 0 0 0 194 2 2 2 14 39 44

free = free memory measured in pages

re = pages reclaimed from the free list
mf = minor faults – the page was in memory but was not mapped
pi = pages paged in from file system or swap device
po = pages paged out to file system or swap device
fr = pages that have been destroyed or freed
de = pages freed after writes

us = user cpu time
sy = kernel cpu time
wt = wait cpu time

Global Paging Counters

id = idle cpu time

epi = executable and library pages that are paged in
epo = executable and library pages that are paged out (should be zero)
epf = executable and library pages that are freed

Executable Paging Counters

api = anonymous pages that are paged in from swap
apo = anonymous pages that are paged out to swap
apf = anonymous pages that are freed

Anonymous Paging Counters

File Paging Counters

api = file pages that are paged in
apo = file pages that are paged out
apf = file pages that are freed

CPU Summary
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re Page reclaims — The number of pages reclaimed since the last
sample. Some of the file system cache is in the free list, and
when a file page is reused and removed from the free list, a
reclaim occurs. File pages in the free list can be either regular
files or executable/library pages.

mf Minor faults — The number of pages attached to an address
space since the last sample. If the page is already in memory,
then a minor fault simply reestablishes the mapping to it

pi Page-ins — The number of pages paged in since the last sam-
ple. A page-in occurs whenever a page is brought back in from
the swap device or brought from a file system into the file sys-
tem cache.

po Page-outs — The number of pages paged out and freed. A
page-out will be counted whenever a page is written and freed,
often as a result of the pageout scanner, fsflush, or file close.

fr Page-frees — The number of pages that have been freed by
either the page scanner or by the file system (free-behind).

de The precalculated anticipated short-term memory shortfall.
Used by the page scanner to free ahead enough pages to satisfy
requests.

sr The number of pages scanned by the page scanner per second.
epi Executable and library page-ins — The number of pages from

executable or shared library files paged in since the last sam-
ple. An executable/library page-in occurs whenever a page for
the executable binary or shared library is brought back in from
the file system.

epo Executable and library page-outs. Should be zero.
epf Executable and library page-frees — The number of executable

and library pages that have been freed by the page scanner.
api Anonymous memory page-ins — The number of anonymous

(application heap and stack) pages paged in from the swap
device since the last sample.

apo Anonymous memory page-outs — The number of anonymous
(application heap and stack) pages paged out to the swap device
since the last sample.

apf Anonymous memory page-frees — The number of anonymous
(application heap and stack) pages that have been freed, after
they have been paged out.

Table 7-8 Statistics from the memstat  Command  (Continued)

Counter Description
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fpi Regular file page-ins — The number of pages from regular files
paged in since the last sample. A file page-in occurs whenever a
page for a regular file is read in from the file system (part of the
normal file system read process).

fpo Regular file page-outs — The number of regular file pages that
were paged out and freed, usually as a result of being paged out
by the page scanner or by write free-behind (when free memory
is less than lotsfree  + pages_before_pager ).

fpf Regular file page-frees — The number of regular file pages that
were freed, usually as a result of being paged out by the page
scanner or by write free-behind (when free memory is less than
lotsfree  + pages_before_pager ).

Table 7-8 Statistics from the memstat  Command  (Continued)

Counter Description
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Part Three
THREADS, PROCESSES,
AND IPC
• The Solaris Multi-threaded Process Architecture
• The Solaris Kernel Dispatcher
• Interprocess Communication
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 8
THE SOLARIS
MULTITHREADED

PROCESS
ARCHITECTURE
The process was one of the two fundamental abstractions on which the origi-
nal Unix system was built (the other was the file). Processes were the basic unit of
scheduling and execution on Unix systems. Traditional implementations provided
facilities for the creation, prioritization, scheduling, managing, and termination of
processes. Some primitive commands and utilities existed for process monitoring
(e.g., the ps (1) command), and cryptic debugging facilities allowed for setting
breakpoints and stepping through process execution.

In this chapter, we discuss the Solaris process model, the process execution envi-
ronment, and the multithreaded process architecture, including processes, light-
weight processes, and kernel threads. We also cover other topics directly related to
the kernel’s process model: procfs, signals, process groups, and session manage-
ment.

8.1 Introduction to Solaris Processes

The Solaris kernel provides support for an entity known as a process, and the ker-
nel maintains a systemwide process table, whereby each process is uniquely identi-
fied by a positive integer called the process identification number (PID). The ps (1)
command provides a point-in-time snapshot, taken as specified by the ps (1) com-
mand options, of the kernel’s process table, providing process names, PIDs, and
other relevant data about the processes.
261
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The Solaris process model is in some ways similar to the traditional Unix pro-
cess model. At a high level, processes include the basic abstractions required for
execution, such as a hardware state and operating-system-maintained software
context. The Solaris kernel considerably extends the traditional implementation of
operating system process support by providing support for multiple threads of exe-
cution within a single process, and each thread shares much of the process state
and can be scheduled and run on a processor independently of other threads in the
same process.

The current model is a two-level threads model that provides thread abstrac-
tions at the kernel and user level. The goal of this two-level model is to allow for
the creation of hundreds or thousands of user threads within a single process with
a minimum of overhead in the kernel. On multiprocessor hardware, this approach
provides the potential for fine-grained application concurrency that previously
required multiple processes, which incur considerably more operating system over-
head.

The process priority scheme and scheduling have been completely redesigned
from prior implementations. The original Unix model provided a timesharing
scheduling policy that essentially applied a round-robin approach to scheduling
processes on processors so that there was a fairly even distribution of CPU time for
all processes. The Solaris environment, however, implements scheduling classes,
which define the policies and algorithms that the kernel applies to scheduling and
execution. For each scheduling class, there exists a table of values and parameters
the dispatcher code uses for selecting a thread to run on a processor; these tables,
known as the dispatch tables, are discussed further in Chapter 9, “The Solaris Ker-
nel Dispatcher”

In addition to the architectural changes, the level of sophistication of utilities
and tools related to process management, monitoring, and debugging have evolved
considerably, due largely to the implementation and evolution of the process file
system, procfs. Procfs is a pseudo file system that emerged with AT&T UNIX Sys-
tem V Release 4 (SVR4). Procfs exports the kernel’s process model and underlying
abstractions to users, providing a file-like interface for the extraction of process
data, and facilities for process control and debugging. Procfs is covered in “Procfs
— The Process File System” on page 306.

8.1.1  Architecture of a Process

Each process has a context and various items of state information that define the
execution environment of the process. All processes require memory in order to
store instructions (text), data, temporary processing space (heap), and stack. Thus,
every process has an address space, which is a kernel abstraction for managing the
memory pages allocated to the process. A process’s context can be further divided
into a hardware and software context. The hardware context comprises the plat-
form-specific components that define the process execution environment, such as
the hardware registers (general registers, stack pointer, stack frame pointer, etc.).
The software context includes the process’s credentials (owner, group), opened files,
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identifiers, the address space, signal dispositions, signal handlers, and so forth.
The basic process execution environment, minus the thread abstractions, is shown
in Figure 8.1.

 Figure 8.1 Process Execution Environment

Figure 8.1 shows the major components that establish the execution environment
for a process. We introduce these abstractions here and discuss them in detail later
in the chapter.

The address space defines the mapped memory pages for a process’s various
address space segments. The identifiers maintained for each process include the
process’s PID, the PID of its parent process, and the ID of the process group the
process belongs to. Process groups provide a linkage for processes under control of
the same terminal and facilitate things like job control signal delivery and man-
agement, which are part of the session management abstraction.

Most processes have at least three opened files—commonly referred to as stan-
dard input (stdin), standard output (stdout), and standard error (stderr)—that
define the source and destination of input and output character streams for the
process. These file descriptors may link to device information for a controlling ter-
minal or window or may represent a file in a file system. Signals provide a means
by which a process can be notified of an event or condition that may alter the exe-
cution environment. All processes maintain signal masks, can alter the disposi-
tion of one or more signals, and can define signal handlers for particular signals.
Finally, there exists a means by which processes are assigned an execution prior-
ity and scheduling class, which determine how much processor time the process
will get relative to other processes executing on the system.
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The process we show in Figure 8.1 is single threaded. In the Solaris kernel, such
a process has exactly one lightweight process (LWP) and kernel thread (kthread) in
its address space. These are the kernel-level thread abstractions that are part of
the two-level threads model. We didn’t show these structures in the figure because
we wanted to illustrate the core abstractions that define the execution environ-
ment, and the LWP and kthread are effectively transparent in a nonthreaded pro-
cess. Now, we’ll add the additional components that are an integral part of the
kernel’s multithreaded process architecture.

The actual implementation of lightweight processes and kernel threads are in
the form of kernel data structures that are linked to the process structure, form-
ing the foundation for the threads design. This model isolates the kernel from user
threads, which are separate and distinct from kernel threads and LWPs. User
threads are not visible to the kernel. More specifically, user threads are not visible
to the kernel as an executable entity that can be scheduled.

User threads are threads created explicitly as a result of a program calling the
thr_create (3T) or pthread_create (3T) library routines (Solaris ships with 2
thread’s libraries; libthread.so for Solaris threads, and libpthread.so for POSIX
threads). User threads have their own priority scheme that is separate and dis-
tinct from the priority mechanism implemented by the kernel scheduler. User
threads essentially schedule themselves by calling into the thread library dis-
patcher and switch routines periodically at pre-defined preemption points. A user
thread is scheduled from the thread library’s point of view by getting linked on to
an available LWP. Recognizing this behavior is essential to understanding the
potential level of concurrency in a multithreaded program: The availability of an
LWP is required for a user thread to execute, and LWPs are not created automati-
cally when user threads are created. Instead the thread create call must explicitly
ask the kernel to create an LWP.

In some texts, the LWP is referred to as a “virtual CPU,” by way of describing
the relationship of the LWP and the user thread. From a user thread’s point of
view, getting an LWP is as good as getting a CPU (which is not exactly the case,
but it is one step closer).

The LWP and kernel thread are visible to the kernel; every LWP has a corre-
sponding kernel thread. The reverse, however, is not always so; not every kernel
thread has a corresponding LWP. The kernel itself is multithreaded and will cre-
ate kernel threads that perform various operating-system-specific tasks—memory
management, STREAMS queue processing, scheduling, etc.—that execute as ker-
nel threads not bound to a user process. However, all user and application pro-
cesses (any process seen by means of the ps (1) command), that is not a system
(kernel) created process, have the one-to-one relationship between kthreads and
LWPs, without exception. Hence, some authors use “LWP” and “kthread” inter-
changeably. More frequently, the term LWP is used to describe the LWP/kthread
component of the process model, for brevity and simplicity. However, in this book,
we differentiate the terms.
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Programmers can drive the ratio of LWPs to user threads in a couple of differ-
ent ways. First, they can have the operating system create an LWP when the
thread is created, by setting the appropriate flag, THR_NEW_LWP, in the
thr_create (3T) call. Programmers can also bind the user thread to an LWP by
using the THR_BOUND flag, as follows.

The POSIX pthread_create (3T) equivalent is to set the contentionscope
attribute to PTHREAD_SCOPE_SYSTEM. A bound user thread retains its binding to
the LWP for its entire existence, in such a way that the LWP is not available to the
user threads scheduler for linking to a different user thread. Binding user threads
to LWPs offers a more predictable execution model for multithreaded programs
because the user thread is linked to the kernel-level resource (an LWP) it requires
for execution. The downside to the binding approach is longer thread create times,
since the kernel creates an LWP/kthread along with the user thread in the thread
create call. Moreover, the kernel has a larger pool of LWPs and kthreads to man-
age. For threaded processes with a great many threads, creating all bound threads
may have a negative performance impact.

The Solaris threads interface also provides a thr_setconcurrency (3T) rou-
tine, which advises the kernel as to the number of concurrent threads the pro-
grammer wishes to be executed. The POSIX library provides an equivalent
pthread_setconcurrency (3T) interface. In the absence of the explicit creation
of LWPs or concurrency advice from the programmer, the threads library attempts
to maintain a reasonable number of LWPs such that user threads have the
resources they need to execute. The system attempts to maintain a balance
between keeping too many idle LWPs around and not having enough LWPs. The
former requires additional kernel overhead to manage; the latter results in runna-
ble user threads waiting for a resource so they can execute. Solaris 2.5.1 (and prior
releases) used a signal mechanism to manage the LWP pool and create more LWPs
for a process with runnable user threads (more on this in “Signals” on page 324).
Beginning in Solaris 2.6, a facility known as scheduler activations provides a
bidirectional communication channel between the user threads library and the
kernel; this facility greatly improves the management of the LWP-to-user thread
problem.

Processes that are not explicitly multithreaded, meaning the code does not call
one of the thread create interfaces, have a single LWP/kthread as part of their
address space, created by the kernel when the process is created. Users and devel-
opers need not necessarily be aware of the multithreaded architecture of the
Solaris environment and the additional kernel abstractions. The system provides
the traditional process model view in which the standard interfaces are used for
process creation: the fork /exec model. In fact, all processes on a Solaris system
today are created through the fork and exec interfaces. The kernel silently cre-
ates the LWP and kthread in new processes to support the low-level infrastruc-
ture for process scheduling and management.

In the multithreaded process model, most of the process state and context is
shared by all threads within a process. That is, the address space (mapped mem-
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ory pages), credentials, open files, signal handlers, etc., are shared. However, each
thread has its own hardware context or machine state. The general registers, stack
pointer, program counter, and frame pointer are specific to the thread of execution.
Specifically, the LWP maintains a control structure that stores the hardware con-
text (the registers) when a thread is context-switched off a processor, and provides
the register state loaded into the hardware registers when a thread is con-
text-switched onto a processor for execution. Figure 8.2 illustrates the multi-
threaded model.

 Figure 8.2 The Multithreaded Process Model

The key point to be derived from examining Figure 8.2 is that the two-level
threads design in the Solaris kernel offers thread abstractions at two levels. User
threads are created with specific programming interfaces and are scheduled by a
per-process scheduling thread in the threads library. The kernel dispatcher (sched-
uler) schedules kernel threads. The linking of a user thread to a kernel thread
(LWP—in this context, they can be thought of as a single entity) is required before
the user thread becomes an executable entity that the kernel can schedule. When
the kernel thread/LWP the user thread is linked to is scheduled, the user thread
executes.
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8.1.2  Process Image

We discuss the process image briefly before we dive into the discussion of data
structures and other kernel process-related topics, to provide a foundation that the
subsequent topics build on and to help keep the big picture in focus. The process
image, in this context, is the definition of what a process looks like when it is
loaded in memory and ready for execution on a Solaris system. We also talk about
the format of the binary object file, the file’s on-disk image.

All processes begin life as programs, and programs are simply text files written
in a computer programming language (that statement may seem something of an
oversimplification these days, but it’s generally accurate). The program is com-
piled and linked by the appropriate language-specific compiler. A successful compi-
lation process results in the creation of an executable binary file on disk. This file
becomes a process in the Solaris environment through invocation of the exec (2)
system call.

Once an executable object file is exec ’d, the runtime linker, ld.so.1 (1), is
invoked to manage linking to other shared objects required for execution, typically
a shared object library such as libc.so.1 . This sequence of events is known as
dynamic linking, where references in the program to shared object library func-
tions (e.g., printf (3), read (2), etc.) are resolved at runtime by ld.so.1 . It is pos-
sible to build statically linked executables through a compilation flag (-B static
on the compile command line); this flag forces the inclusion of all referenced
library functions in the executable object at build time. This technique requires
that an archive version of the library be available (e.g., libc.a for static linking
and libc.so.1 for dynamic linking). The building of applications using static
linking is discouraged; in fact, it is not possible to build 64-bit executables in
Solaris 7 that statically link to system libraries because no archive versions (.a
files) of the 64-bit objects ship with the release.

The format of the object file complies with the ELF file format, or Executable
and Linking Format. There are two class definitions for the ELF file format, one
for 32-bit and one for 64-bit executables (ELFCLASS32and ELFCLASS64); Solaris 7
provides support for both types of executables. Prior Solaris versions support
32-bit executables only.

ELF provides format definitions for both the on-disk and execution (in-memory)
image, shown in Figure 8.3. The ELF format is an industry standard, part of the
System V Application Binary Interface (ABI) that defines an operating system
interface for compiled, executable programs. Since the ABI defines the binary
interface for several implementations of Unix System V across a variety of differ-
ent hardware platforms, the ELF definition must be divided into two components:
a platform-independent piece and a specification that is specific to a processor (e.g.,
Sun SPARC V8, Sun SPARC V9, Intel x86, etc.). Areas of the ABI that are proces-
sor specific include the definition of the function-calling sequence (system calls,
stack management, etc.) and the operating system interface (signals, process ini-
tialization). Our focus for the remainder of this section is on the object file format,
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or ELF, as it applies to an executable file. The ABI also provides for ELF defini-
tions for relocatable and shared object files.

 Figure 8.3 ELF Object Views

The main body of ELF files comprises various sections. Sections are the smallest
indivisible unit that can be relocated within an ELF file. They fall into two main
categories: program data (text, data, etc.) and link-editor information (e.g., symbol
table information). A segment on the executable side is a grouping of related infor-
mation. File image sections do not necessarily map one-to-one to executable view
segments. As we will see shortly, a process’s address space can be broken up into
several text and data segments. ELF sections are defined by the ELF file’s Section
Header Table, or SHT. ELF files also implement structures defined by a Program
Header Table, or PHT, which is used when the file is exec’d to create the memory
image of program.

For further information on ELF file formats and specifics on the various data
structures that define the ELF header, see the SHT and PHT tables in the Linkers
and Libraries Guide that ships as part of the Solaris documentation set. See also
the /usr/include/sys/elf.h file for the structure definitions. Also, Solaris
ships with a library, libelf (3E), for developing code that can manipulate ELF
files. Refer to the Linker and Libraries Guide for information on using the
libelf (3E) interfaces.

Figure 8.4 provides a conceptual view of a process.

Various data items relating to processes, some of which are shown in Figure 8.4,
can be extracted with the commands in the /usr/proc/bin directory (reference
proc (1)).
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To summarize the previous paragraphs: It is through the ELF file definition and
format that the kernel and associated tools (compiler and linker) create a disk file
that is an executable object which can be properly loaded into memory and turned
into a process for scheduling and execution.

All of the process context, both hardware and software, is maintained in the
data structures described in the sections that follow.

8.2 Process Structures

In this section, we take a look at the major data structures that make up the mul-
tithreaded process model in the Solaris kernel.

8.2.1  The Process Structure

The process structure, or proc structure, provides the framework for the creation
and management of processes and threads in the Solaris environment. Figure 8.5
illustrates the big picture, showing the process structure with most of the struc-
ture members, along with all the other components that provide the entire process
execution environment.
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 Figure 8.5 The Process Structure and Associated Data Structures
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Like any kernel data structure, the members of the proc structure cover the full
range of data types, including a great many pointers to support structures that, in
total, make up the entire process picture in the Solaris environment. In the follow-
ing pages, we describe the major structure members and associated links. See also
the header file /usr/include/sys/proc.h .

• p_exec — Pointer to a vnode . A process is often referred to as the execut-
able form of a program. As such, all processes originate as binary files in a file
system. When the file is exec’d, the kernel loads the binary ELF file into
memory. The p_exec pointer points to a vnode that ultimately links to the
on-disk image of the file. The vnode structure is defined in
/usr/include/sys/vnode.h .

• p_as — Address space structure pointer. All of the memory pages mapped to
a process make up that process’s address space. The as structure, a kernel
abstraction for managing the memory pages allocated to a process, defines
the process’s virtual address space (see Figure 8.6). You can dump the
address space mappings of a process by using /usr/proc/bin/pmap .

 Figure 8.6 Process Virtual Address Space

Below is sample output of the /usr/proc/bin/pmap command (with the -x
flag), which dumps all the segments that make up a process’s virtual address
space. The pmap(1) display provides the virtual address of the mapping
(Address), the size of the mapping in Kbytes, how much of the mapping is res-
ident in physical memory, how much is mapped shared, how much is mapped
private, the permissions to the mapping, and the mapped file name. Note that
the stack is mapped read/write/exec, as required for compliance with the
SPARC V8 Application Binary Interface.
There is a security exposure to mapping stack pages with exec permissions
because a system is subject to buffer overflow attacks, where rogue code posi-
tions itself on a process’s stack, sets the program counter, and begins execut-
ing instructions. You can set an /etc/system variable, called
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no_exec_user_stack , to prevent the mapping of stack pages with execute
permissions on Solaris 2.6 and Solaris 7. The entry in the /etc/system file
will look like:

set no_exec_user_stack = 1

Note that Solaris 2.5.1 does not include this tunable parameter. Here is an
address space dump of a process on Solaris 2.6.

Here’s a pmap(1) dump of a 64-bit executable on a Solaris 7 system, complete
with 64-bit addresses. For 64 bits, the SPARC V9 Application Binary Inter-
face defines stack pages as read/write only, to block buffer overflow attacks.

• p_lockp — Process lock structure pointer. The p_lock is a kernel mutex
(mutual exclusion) lock that synchronizes access to specific fields in the pro-
cess structure (see Chapter 2, “Kernel Synchronization Primitives”). This
level of granularity of kernel lock increases parallelism because there is not a

$ /usr/proc/bin/pmap -x 25639
25639: tp
Address   Kbytes Resident Shared Private Permissions       Mapped File
00010000       8       8       8       - read/exec         dev:193,2 ino:1089162
00020000       8       8       8       - read/write/exec   dev:193,2 ino:1089162
00022000    1032    1032       -    1032 read/write/exec    [ heap ]
EF580000    1024    1024       -    1024 read/write/exec/shared  [shmid=0x12d]
EF6E0000       8       8       -       8 read/write/exec    [anon]
EF6F0000      16      16      16       - read/exec         libc_psr.so.1
EF700000     592     552     544       8 read/exec         libc.so.1
EF7A2000      24      24       8      16 read/write/exec   libc.so.1
EF7A8000       8       8       -       8 read/write/exec    [anon]
EF7A8000       8       8       -       8 read/write/exec    [anon]
EF7F8000       8       8       8       - read/write/exec   ld.so.1
EF7D0000     104     104     104       - read/exec         ld.so.1
EF7F8000       8       8       8       - read/write/exec   ld.so.1
EFBFE000    4104    4104       -    4104 read/write/exec    [stack]
--------  ------  ------  ------  ------
total Kb    6944    6904     704    6200

$ /usr/proc/bin/pmap -x 9964
9964:   mem 1048576
Address   Kbytes Resident Shared Private Permissions       Mapped File
0000000100000000       8       8       8       - read/exec         mem
0000000100100000       8       8       -       8 read/write/exec   mem
0000000100102000    1040    1032       -    1032 read/write/exec    [ heap ]
FFFFFFFF7F400000     696     576     416     160 read/exec         libc.so.1
FFFFFFFF7F5AC000      64      64       -      64 read/write/exec   libc.so.1
FFFFFFFF7F5BC000       8       8       -       8 read/write/exec    [ anon ]
FFFFFFFF7F680000     112     112     112       - read/exec         ld.so.1
FFFFFFFF7F79A000      16      16       -      16 read/write/exec   ld.so.1
FFFFFFFF7F7C0000      16       8       8       - read/exec         libc_psr.so.1
FFFFFFFF7F7E0000       8       8       -       8 read/write/exec    [ anon ]
FFFFFFFF7F7F0000       8       8       8       - read/exec         libdl.so.1
FFFFFFFF7FFFC000      16      16       -      16 read/write         [ stack ]
----------------  ------  ------  ------  ------
        total Kb    2000    1864     552    1312
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single lock on the entire process table. Instead, there is per-table entry lock-
ing, such that multiple kernel threads can concurrently access different proc
structures.

• p_nwpage — Count of watched pages. This count is used when a process
issues a vfork (2) and is also used in conjunction with p_wpage , which points
to a watched_page structure. Watched pages are part of a debug facility that
provides for the triggering of a debugger event if a watched page is refer-
enced or written to.

• p_cred — Pointer to the credentials structure, which maintains the user cre-
dentials information such as user identification (UID) and group identifica-
tion (GID), etc. Every user on a Solaris system has a unique UID as well as a
primary GID, although a user can belong to multiple groups.
A user’s UID and GID are established through fields in the /etc/passwd file
when the user’s account is set up. You can use the id (1M) command to see
what your UID and GID are. Use the su (1) command to change user identi-
ties. Use the newgrp (1) command to change your real and effective GID. The
UID and GID of the user that started the process have their credentials
maintained here in the credentials structure, and effective UID and GID are
maintained here as well.
Solaris supports the notion of effective UID and GID, which allow for the
implementation of the setuid and setgid mode bits defined in a file’s inode
(remember, the process started life as an executable file on a file system). A
process could have an effective UID that is different from the UID of the user
that started the process.
A common example is a program that requires root (UID 0) privileges to do
something, for example, the passwd (1) command, which writes to protected
files (/etc/passwd and /etc/shadow ). Such a program is owned by root
(aka superuser), and with the setuid bit set on the file, the effective UID of
the process is 0. During process execution, the kernel checks for effective UID
and GID during permission checks, which will be the same as the UID and
GID of the user if neither the setuid nor setgid mode bit has been set. The
specific contents of the credentials structure are shown in Table 8-1.

Table 8-1 Credentials Structure Members

Member Description
cr_ref Reference count on the credentials struc-

ture
cr_uid Effective UID
cr_gid Effective GID
cr_ruid Real UID (from the user’s /etc/passwd file

entry)
cr_rgid Real GID (from the users /etc/passwd file)
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• p_crlock  — Kernel mutex to synchronize access to the credentials structure.

• p_swpcnt — Counter of LWPs linked to the process that have been swapped
out. Under severe memory shortfalls, the memory scheduler (PID 0, the
sched  process) will swap out entire LWPs to free up some memory pages.

• p_stat — The process status, or state. The notion of process states is some-
what misleading in the Solaris environment, since the kernel thread, not the
process, is the entity that gets a scheduling class, is prioritized, and is put on
a dispatch queue for scheduling. Kernel threads change state in the Solaris
environment much more frequently than do processes. For a nonthreaded
process, the process state is essentially whatever the state of the kthread is.
For multithreaded processes, several kthreads that belong to the same pro-
cess can be in different states (e.g., running, sleeping, runnable, zombie, etc.).
In a few areas in the kernel, the process state (p_stat ) is used explicitly. In
the fork() code, during process creation, the SIDL state is set, and later in
fork , p_stat is set to SRUN—the process has been created and is runnable.
In the exit() code, pstat is set to ZOMBwhen a process is terminated.
Those three exceptions aside, all other state changes during the lifetime of a
process occur in the kthread and are reflected in the state field in the
kthread structure. In fact, the state (S) column from the ps (1) command is
derived from the kthread state field, not the process p_stat data. If a pro-
cess has more than one LWP and the -L flag has not been specified on the
ps (1) command line, then the state field is derived from LWP 1 (the -L flag
to ps (1) will print information about each LWP in each selected process). A
process can be in one of the following possible states:

• SLEEP — Process is sleeping (waiting for an event)

• RUN — Process is runnable, waiting to be scheduled

• ZOMB— Process is a zombie, that is, it has exited but a wait has not yet
executed on its behalf

• STOP — Process is stopped, typically because of debugger activity

cr_suid Saved UID (in case UID changes across
exec)

cr_sgid Saved GID, as above
cr_ngroups Number of supplementary groups
cr_groups[] Array of supplementary groups; the size of

the array is maintained in cr_ngroups ,
and the maximum number of groups a user
can belong is limited to 16

Table 8-1 Credentials Structure Members

Member Description
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• SIDL  — Process is being created and is assigned this interim state

• ONPROC — Process is running on a processor

Process states and state transitions are shown in Figure 8.7.

 Figure 8.7 Process State Diagram

• p_wcode — Defined as current wait code. A synchronization field that con-
tains data to support SIGCLD (child signal) information. A process is sent a
SIGCLD signal when the status of one of its child processes has changed. The
p_wcode holds a status bit that identifies the reason for the status change
(e.g., child has exited, stopped, coredumped, was killed, or has continued).

• p_pidflag — Another field used to support synchronization via signals. Sta-
tus bits to indicate a SIGCLD signal is pending or a SIGCLD was sent to notify
the parent that the child process has continued (see “Signals” on page 324).

• p_wdata — Also used for process synchronization with signals and used in
conjunction with p_wcode ; contains status bits that provide a reason for an
event. For example, if a process is killed by a SIGKILL signal, the p_wcode
will indicate the child was killed and the p_wdata will indicate a SIGKILL
signal was the reason (see “Signals” on page 324).

• p_ppid  — The process’s parent process ID.

Many of the process structure fields defined above are covered in more detail as we
move through other process-related information in the remainder of this chapter.

The process model in the Solaris kernel maintains a lineage for all the pro-
cesses running on the system. That is, every process has a parent process and may
have child processes. The process creation model, in which a new process begins
life as the result of an existing process issuing some variant of the fork (2) system
call, means that, by definition, there will minimally be a parent process to the
newly created process. Not only will a process have a parent, but it may also have
siblings—processes that have been created by the same parent. Every process in
the Solaris environment can reside on as many as a dozen or so linked lists main-
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tained by the kernel; the proc structure stores the various pointers required. All of
the process structure members described below are pointers to a process structure.

• p_parent  — Pointer to the parent process.

• p_child — Pointer to the first child process. Subsequent children are linked
by means of the sibling pointers in the child processes.

• p_sibling  — Pointer to the first sibling (next child created by parent).

• p_psibling — Pointer to previous sibling. Back pointer in support of a dou-
bly linked list of related processes.

• p_sibling_ns  — Pointer to a sibling process that has changed state.

• p_child_ns  — Pointer to a child process that has changed state.

• p_next — Next process in the active process list. The kernel maintains a
doubly linked list of active processes in the system, pointed to by the kernel
practive pointer.

• p_prev  — Previous process in the active process list (see above).

• p_nextofkin — Link maintained back to parent process. Used in process
exit code to gather accounting information (accumulated user time and sys-
tem time). Also used to set orphan pointers when a process exits. The orphan
links of an exiting process are linked to the nextofkin process, which is the
parent.

• p_orphan — Orphan pointer. An orphan process lost its parent; that is, an
orphan process continues executing after its parent has exited. In the fork
code, the p_orphan pointer in the parent is set to point to the newly created
child. Processes without children have a NULL p_orphan pointer. If child pro-
cesses spawn other child processes, p_orphan will link to the “grandchil-
dren” should the parent terminate.

• p_nextorph — Next orphan pointer. In fork , the newly created child pro-
cess’s p_nextorph pointer is set to the p_orphan pointer in the parent.
Essentially, p_nextorph  links siblings.

• p_pglink — Process group link. Forward link to a hash chain of processes in
the same process group. Processes are linked in a group when they are con-
trolled by the same controlling terminal. See “Sessions and Process Groups”
on page 342.

• p_ppglink — Previous process group link. Back link to hash chain of pro-
cesses in the same process group.

Figure 8.8 illustrates how the process lineage pointers are set up with a test pro-
gram, bd, written for that purpose. The processes shown depict process bd, which
fork/execs three child processes, c1, c2, and c3. The c2 process fork/execs its own
child (process cc2), as does the c3 process (child name cc3). The cc3 child process
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also fork/execs a child, ccc3. So, we end up with a reasonably realistic process hier-
archy that we can use for illustration.

 Figure 8.8 Process Lineage Pointers

In Figure 8.8, pointers without connecting lines are NULL. The linked pointers can
be summarized as follows. The parent and child pointers are (we hope) straightfor-
ward. The bd process parent pointer links to the shell that spawned it (not
shown), the child pointer links to c3, the last child created (chronologically),
nextofkin links to the parent, and orphan links to the last child created, c3. The
three children, c1, c2, and c3, of the bd process link to each other through the sib-
ling and psibling pointers, forming a linked list of all the children spawned by
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the same parent (bd). The nextofkin pointer in all three child processes links to
the parent, bd.

The cc2, cc3, and ccc3 processes have no siblings: thus, the sibling pointers
are NULL. They link back to the parent through the parent and nextofkin point-
ers. And of course, the parent/child links between the cc3 and ccc3 processes round
out the picture.

The way the picture changes if a process dies is due in part to how the code is
constructed. In this example, the bd process was blocking in a waitpid (2) call,
waiting on the PID of the c3 process. We killed process c3, which resulted in bd
and c3 both terminating, leaving c1, c2, cc2, cc3, and ccc3. The parent and
nextofkin pointers in c1, c2, and cc3 linked to the init process, which inherits
orphan processes. The sibling pointers in c1 and c2 changed, where sibling in
c1 linked to c2, and psibling  in c2 linked back to c1.

Additional pointers maintained in the proc structure include the following:

• p_sessp — Pointer to a session structure, which contains information for
managing the process’s control terminal. See “Sessions and Process Groups”
on page 342.

• p_pidp — Pointer to a pid structure, for process ID (PID) information. The
process’s actual PID is stored in one of the fields in the pid  structure.

• p_pgpidp — Another pid structure pointer, for process group information
(process group ID).

The Solaris kernel maintains a data structure for managing PIDs and process
group IDs (Figure 8.9).

 Figure 8.9 PID Structure

The first 4 bytes of the PID structure store 2 status bits, pid_prinactive and
pid_pgorphaned , followed by 6 pad bits (unused bits) and 24 bits to store the slot
number of the /proc table entry for the process, pid_prslot . Since we use 24
bits to store the unique /proc table entry for processes, we have a limit of 16 mil-
lion possible /proc table entries. This limit will never actually be reached in

pid_prinactive:1
pid_pgorphaned:1
pid_padding:6

pid_prslot:24
pidt_t pid_id;
struct proc *pid_pglink;
struct pid * pid_link;
u_int pid_ref;
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Solaris versions up to and including Solaris 7 because the kernel defines a MAXPID
value of 30,000. The limit of 30,000 processes is imposed by the use of a 2-byte
data type in the utmp  structure.

The kernel maintains a /var/adm/utmp and /var/adm/wtmp file for the stor-
age of user information used by the who(1), write (1), and login (1) commands
(the accounting software and commands use utmp and wtmp as well). The PID
data is maintained in a signed short data type, which has a maximum value of
32,000. This “limit” should in no way be construed as a problem; 30,000 is a great
many processes and our largest installations today do not have anywhere near
that many processes running. See “The Kernel Process Table” on page 290 for a
description of how the actual systemwide process limits are established.

The PID structure links to other PID structures in the kernel through
pid_link , which maintains a hashed list of active PIDs in the kernel, and
pid_pglink , which links back to the process structure. Finally, the prinactive
bit flags the structure as being free or used, and pgorphaned indicates whether
the process is orphaned (the parent has exited or died—orphaned processes are
adopted by the init  process).

Several condition variables are maintained in the proc structure. Condition
variables are a kernel synchronization mechanism used to notify a process or
thread if a specific event, such as the completion of an I/O, has occurred. Condi-
tion variables are used in the Solaris environment to implement sleep and
wakeup. One such condition variable is p_holdlwps, a special condition variable for
holding process LWPs. In a fork() , the LWPs must be suspended at some point so
their kernel stacks can be cloned for the new process.

In the process structure, the kernel maintains time totals that reflect the amount
of user time and system time the process accumulated, as well as summations for
all the child processes system time and user time. The child information is
summed when a child process exits. The p_utime and p_stime fields maintain
the process’s user and system time, respectively; the p_cutime and p_cstime
fields maintain the child process’s user and system time.

The process maintains several bits of information on LWPs and kernel threads,
including a total of all LWPs linked to the process (p_lwpcnt ) and all LWPs cre-
ated, p_lwptotal . The latter may be different from p_lwpcnt because the kernel
may have allocated LWPs to the process from the systemwide pool. Such LWPs will
not have been explicitly created by the process. Counters are maintained for the
number of blocked LWPs (p_lwpblocked ), runnable LWPs (p_lwprcnt ), and
zombie LWPs (p_zombcnt ). A pointer rooted in the proc structure references a
linked list of kernel threads (p_tlist) and a linked list of zombie threads
(p_zomblist ). (A zombie process is a process that has exited but whose parent
process did not issue a wait call to retrieve the exit status.)

The remaining members of the process structure can be grouped into several cate-
gories. Per-process signal handling support involves linking to signal queue struc-
tures, supporting the signal mask and signal posting structures. The Solaris signal
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model has undergone significant work to support the multithreaded architecture
and is discussed beginning on page 330. Support for the /proc file system requires
the inclusion of various pointers and data types in the proc structure. Also, the
Solaris kernel includes a facility called Doors, which provides a fast cross-process
call interface for procedure calling.

Process-level resource usage and microstate accounting information are main-
tained within the process structure, as well as on a per-LWP basis. We discuss the
details in “The Kernel Process Table” on page 290.

Process profiling is supported by the inclusion of a prof structure (p_prof ) and
is enabled when the program is compiled (i.e., before it becomes a “process”). Dur-
ing the execution of the process, process profiling gathers statistical data that tells
the programmer which routines the process was spending time executing in and
how much time was spent in each function relative to the total execution time of
the process.

You can use the /etc/crash (1M) utility to examine the contents of a proc
structure on a running system. First, use the p function with no arguments to
dump the process table. Determine the process table slot of the process you’re
interested in, then use p -f slot_number to dump the contents. To save space,
we’re showing a partial listing of the process table and structure.

# ps
   PID TTY      TIME CMD
 24676 pts/6    0:00 sh
 25170 pts/6    0:00 ps
# /etc/crash
dumpfile = /dev/mem, namelist = /dev/ksyms, outfile = stdout
> p
PROC TABLE SIZE = 1962
SLOT ST  PID  PPID  PGID   SID   UID PRI   NAME        FLAGS
   0 t     0     0     0     0     0  96 sched          load sys lock
   1 s     1     0     0     0     0  58 init           load
   2 s     2     0     0     0     0  98 pageout        load sys lock nowait
   3 s     3     0     0     0     0  60 fsflush        load sys lock nowait
  66 s 24676   719 24676   719     0  58 sh             load
  67 s 21238 21218 21218   716 20821  59 netscape       load jctl
  75 s 21218   716 21218   716 20821  59 cam            load
  76 s 24529   729 24529   729     0  59 sh             load
> p -f 66
PROC TABLE SIZE = 1962
SLOT ST  PID  PPID  PGID   SID   UID PRI   NAME        FLAGS
  66 s 24676   719 24676   719     0  58 sh             load

        Session: sid: 719, ctty: vnode(60abe884) maj(  24) min(    6)
        Process Credentials: uid: 0, gid: 1, real uid: 0, real gid: 1
        as: 60022910
        wait code: 0, wait data: 0
        sig: efffeb18   link 0
        parent: 60a31470        child: 60b72f80
        sibling: 0 threadp: 60832840
        utime: 3        stime: 5        cutime: 24      cstime: 15
        trace: 0        sigmask: efffeb10       class: 2
        lwptotal: 1     lwpcnt: 1       lwprcnt: 1
        lwpblocked: -1
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In the above example, we used ps (1), determined the PID of our shell process,
invoked the crash utility, and used the p function to get the process table slot (66,
in this case). Then, to dump the proc structure for process PID 24676, we again
used the p utility, with the -f  flag and the process table slot number.

8.2.2  The User Area

The role of the user area (traditionally referred to as the uarea), has changed
somewhat in the Solaris environment when compared with traditional implemen-
tations of Unix. The uarea was linked to the proc structure through a pointer and
thus was a separate data structure. The uarea was swappable if the process was
not executing and memory space was tight. Today, the uarea is embedded in the
process structure—it is not maintained as a separate structure. The process ker-
nel stack, which was traditionally maintained in the uarea , is now implemented
in the LWP (see “The Lightweight Process (LWP)” on page 285). The interesting
bits in the uarea are listed below in the relative order in which they appear in the
/usr/include/sys/user.h ).

• u_execid — The magic number (file type) of the on-disk executable that was
loaded with an exec (2) system call.

• u_execsz  — The size of the executable file.

• u_tsize  — Size of the text segment of the process address space.

• u_dsize  — Size of the data segment of the process address space.

• u_start — Time when the process started, set when the process is first cre-
ated, just after the start time is set in p_mstart .

• u_ticks — Total execution time in clock ticks of the process. When account-
ing is turned on, written to the accounting file on exit. A clock tick varies
across processor types. On UltraSPARC-based systems, there are 100 ticks
per second.

• u_exdata — Embedded exdata structure. Executable file information, such
as text, data, heap, shared library size, magic number, etc.

• u_psargs[]  — Array of arguments passed to exec .

• u_comm[]  — User command string when process was invoked.

• u_argc , u_argv , u_envp — The number of command-line arguments
(u_argc ), a pointer to the array of command-line arguments (u_argv ), and a
pointer to the array of environmental variables (u_envp ). These are the vari-
ables passed to the main() program function; they must be declared in every
program written to execute on the Solaris system, as set up by the compiler
when code is generated to run.

• u_cdir  — Pointer to the vnode  for the current directory.

• u_rdir  — Pointer to the root vnode . Not used unless chroot (2) is called.

• u_ttyvp  — Pointer to vnode  for controlling tty.
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• u_cmask — File creation mask. Defines default file modes when files are cre-
ated.

• u_mem— Memory usage. Updated in the clock handler for the active thread
on each processor.

• u_nshmseg  — Number of attached shared memory segments.

• u_rlimit[] — Array of rlimit structures that defines the resource limits
for the process. The system imposes a total of seven resource limits. Each
resource limit has a current value and maximum value (also referred to as a
soft limit and a hard limit), maintained as rlim_cur and rlim_max in the
rlimit structure. In Solaris releases up to and including Solaris 2.5.1,
rlim_cur and rlim_max are 32-bit data types. Beginning in Solaris 2.6,
there’s a 64-bit version of the rlimit structure, and rlim_cur and
rlim_max  are 64-bit data types.

The system defines a maximum value for each type, which is effectively the
maximum attainable value for the data types. The actual value isn’t really
significant in most cases because the value is sufficiently large that an “infi-
nite” resource limit is implied, which is essentially no limit. When we use the
term “infinite” in describing resource limits below, we mean the maximum
value for a 64-bit data type. (In case you’re interested, the max value for a
signed 64-bit data type is 9,223,372,036,854,775,807, or 9 exabytes. An
unsigned 64-bit data type has a maximum value of
18,446,744,073,709,551,615, or 18 exabytes. Now you know why we consider
limits set at these values “virtually unlimited”!)
In Solaris releases up to and including Solaris 2.6, a process’s resource limits
were changed with limit (1) or ulimit (2), which affected only the running
process (a shell, typically) and whatever children were spawned. In Solaris 7,
a plimit (1) command was added, which allows you to change resource lim-
its in other processes by specifying a PID on the command line. The following
list describes each of the resource limits.

• CPU – Maximum CPU time in seconds. Default soft and hard limit is
the same; 4 billion for pre-2.6 releases, infinite for release 2.6 and
beyond. The clock interrupt handler tests for this limit, and sends a
SIGXCPU signal if the limit is reached.

• FSIZE – Maximum file size, in 512 byte blocks. Same default values as
CPU. The file system write code (the wrip() function in UFS) tests for
this limit and sends a SIGXFSZ signal to the process if the limit is
reached.

• DATA – Maximum size of the process data segment. Default soft limit
is 2 Gbytes, hard limit is 4 billion for pre-2.6 releases. In Solaris 2.7,
infinite for soft and hard limit. Hitting this limit can cause a ENOMEM
error if a memory allocation routine (e.g., malloc() ) is called.

• STACK – Maximum size of the process stack segment. Default soft limit
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is 8 Mbytes, hard limit is 2 Gbytes in Solaris 2.6. In Solaris 2.7, the
hard limit is infinite on UltraSPARC-based systems, 2 Gbytes on all
others.

• CORE – Maximum core file size. Soft and hard limit is infinite. A value
of 0 here prevents the creation of a core file.

• NOFILE – Maximum number of open files. Default soft limit is 64, hard
limit is 1024.

• VMEM – Maximum address space. Infinite soft and hard limit. In real-
ity, 4 Gbytes is the maximum virtual address space attainable on all
Solaris releases up to and including Solaris 2.6. Solaris 7 provides a
64-bit address space when booted as a 64-bit kernel, running a 64-bit
binary. The Sun UltraSPARC-I and UltraSPARC-II 64-bit processors
implement a 44-bit virtual address, allowing for a maximum virtual
address space of 16 terabytes.

The uarea is where process open file information is maintained, in the form of an
array of uf_entry structures. Each structure contains three elements: a pointer
(uf_ofile ) to the file’s file structure, a 2-byte member for file flag bits
(uf_pofile ), and a reference count (uf_refcnt ). A pointer, u_flist , is set to
point to the first element in the array (the first uf_entry structure), and the
array is indexed with the file descriptor number, or fd . An open file in a process is
uniquely identified with an fd , which is a positive integer value returned by a suc-
cessful call to open (2). Allocations of uf_entry structures are done in groups of
24 (the NFPCHUNK variable in /usr/include/sys/user.h ).

Solaris 7 (SunOS 5.7) adds a structure pointer to the uf_entry structure:
uf_fpollinfo , which is a pointer to an fpollinfo structure. Solaris 7 also adds
new functionality in the form of a poll cache to enhance support of the poll (2) sys-
tem call. The kernel uses the poll cache to track process file descriptors that are
being polled. The fpollinfo  structure supports the poll cache implementation.

The following members of the uarea support management of the process’s open
file table:

• u_flock — A kernel mutex lock to synchronize access to the process open file
list.

• u_nofiles — Number of open file slots (i.e., number of open files in the pro-
cess).

• u_flist — Pointer to the first uf_entry structure. Structure storage is
implemented as an array, indexed by the fd  (file descriptor) number.
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Figure 8.10 illustrates uf_entry  support structures.

 Figure 8.10 Process Open File Support Structures

To obtain a list of a process’s open files, use the /usr/proc/bin/pfiles com-
mand.

The command lists the process name and PID (in this example, we dumped the
open files for the windowing system session-manager process). Note that various
bits of information are provided on each open file, including the file type, file flags,
mode bits, and size.

Like the process structure, the uarea contains supporting data for signals,
including an array that defines the disposition for each possible signal. The signal
disposition tells the operating system what to do in the event of signal: ignore it,

$ /usr/proc/bin/pfiles 490
490:    /bin/ksh /usr/dt/bin/Xsession
  Current rlimit: 64 file descriptors
   0: S_IFDIR mode:0777 dev:32,24 ino:2 uid:0 gid:0 size:1024
      O_RDONLY|O_LARGEFILE
   1: S_IFREG mode:0644 dev:32,8 ino:1026 uid:19821 gid:10 size:996
      O_WRONLY|O_APPEND|O_LARGEFILE
   2: S_IF      O_WRONLY|O_APPEND|O_LARGEFILE
      O_WRONLY|O_APPEND|O_LARGEFILE
   3: S_IFCHR mode:0666 dev:32,24 ino:143524 uid:0 gid:3 rdev:13,12
      O_RDWR
   5: S_IFREG mode:0644 dev:32,24 ino:22740 uid:0 gid:0 size:4
      O_WRONLY|O_LARGEFILE
      advisory write lock set by process 308
   7: S_IFSOCK mode:0666 dev:166,0 ino:27432 uid:0 gid:0 size:0
      O_RDWR
  62: S_IFREG mode:0555 dev:32,24 ino:294581 uid:2 gid:2 size:18792
      O_RDONLY|O_LARGEFILE FD_CLOEXEC
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catch it and invoke a user-defined signal handler, or take the default action. See
“Signals” on page 324.

The /etc/crash utility provides a function, shown below, for dumping a pro-
cess’s uarea .

In the preceding example, we omitted the up-front dumping of the process table
(the p function) to select a process’s uarea to dump. The u function takes a pro-
cess table slot number as an argument, slot 19 in this case (the Xsession process,
the same one we used in the previous pfiles example). Note the rather large val-
ues in the resource limits. This example was done on a Solaris 2.6 system, which
included 64-bit data types for the rlimits.

8.2.3  The Lightweight Process (LWP)

The LWP structure is defined in /usr/include/sys/klwp.h . The kernel main-
tains resource utilization counters and microstate accounting information for
every LWP. The sum total of all LWPs resource usage is stored in the process when
the LWP exits. See “The Kernel Process Table” on page 290.

# /etc/crash
dumpfile = /dev/mem, namelist = /dev/ksyms, outfile = stdout
> u 67
PER PROCESS USER AREA FOR PROCESS 67
PROCESS MISC:
        command: crash, psargs: /etc/crash
        start: Fri May  5 21:37:41 2000
        mem: 4cf9, type: exec
        vnode of current directory: f64769c0
OPEN FILES, POFILE FLAGS, AND THREAD REFCNT:
        [0]: F 0xf6407cd0, 0, 0 [1]: F 0xf6407cd0, 0, 0
        [2]: F 0xf6407cd0, 0, 0 [3]: F 0xf65695a8, 0, 0
        [4]: F 0xf65696c0, 0, 0 [5]: F 0xf6569300, 0, 1
        [6]: F 0xf6569b98, 0, 0
 cmask: 0022
RESOURCE LIMITS:
        cpu time: 18446744073709551613/18446744073709551613
        file size: 18446744073709551613/18446744073709551613
        swap size: 2147479552/18446744073709551613
        stack size: 8388608/2147479552
        coredump size: 18446744073709551613/18446744073709551613
        file descriptors: 64/1024
        address space: 18446744073709551613/18446744073709551613
SIGNAL DISPOSITION:
           1:  default   2: ef638914   3:  default   4:  default
           5:  default   6:  default   7:  default   8:  default
           9:  default  10:  default  11:  default  12:  default
          13:  default  14:  default  15:  default  16:  default
          17:  default  18:  default  19:  default  20:  default
          21:  default  22:  default  23:  default  24:  default
          25:  default  26:  default  27:   ignore  28:  default
          29:  default  30:  default  31:  default  32:  default
          33:  default  34:  default  35:  default  36:  default
          37:  default  38:  default  39:  default  40:  default
          41:  default  42:  default  43:  default  44:  default
          45:  default
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Other interesting information maintained in the LWP include the following:

• lwp_pcb — The hardware context data for the LWP, called a process control
block (pcb). It contains various bits of machine state information that are
saved when the LWP is switched out and restored when it is switched back
in. This is the machine state represented in Figure 8.2.

• lwp_ap  — Pointer to the arglist passed in a system call.
• lwp_errno  — Error number for current system call.
• lwp_error  — Return value for current system call.
• lwp_eosys — End-of-syscall action. Used for post-system-call handling and

for special conditions, such as profiling and process tracing.
• lwp_watchtrap  — Supports debugger single-step operations.
• lwp_regs  — Pointer to registers saved on the stack.
• lwp_fpu  — Pointer to floating point unit (fpu) registers.

Most of the above LWP structure members exist to support system calls and to
maintain hardware context information. Remember, system calls are function calls
into the kernel—a process’s way of asking the operating system to do something on
its behalf (e.g., open/read/write a file, get my PID, etc). Since LWPs can be sched-
uled on processors (along with their corresponding kernel thread) independently of
other LWPs in the same process, they need to be able to execute system calls on
behalf of the thread they’re bound to. An LWP blocked on a system call does not
cause the entire process to block (as long as it’s a multithreaded process). See
Chapter 2 for details on system call processing.

The following LWP fields handle signals and debugging through the /proc
interfaces.

• lwp_cursig  — Current signal.
• lwp_asleep  — LWP sleeping in system call.
• lwp_sigaltstack  — Alternate signal stack specified.
• lwp_curinfo — Pointer to a sigqueue , signal information for current sig-

nal.
• lwp_siginfo  — Signal information for stop-on-fault.
• lwp_sigoldmask  — Snapshot of signal mask for sig-suspend .
• lwp_scall_start  — Start time of system call.
• lwp_utime  — Time LWP spent running in user mode.
• lwp_stime  — Time LWP spent running in system (kernel) mode.
• lwp_thread — Pointer to the associated kernel thread. Every LWP has a

corresponding kernel thread.
• lwp_procp  — Pointer to the proc structure.
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8.2.4  The Kernel Thread (kthread)

The kernel thread is the entity that actually gets put on a dispatch queue and
scheduled. This fact is probably the most salient departure from traditional Unix
implementations, where processes maintain a priority and processes are put on
run queues and scheduled. It’s the kthread, not the process, that is assigned a
scheduling class and priority. You can examine this on a running system by using
the -L and -c flags to the ps (1) command. The columns in the ps (1) output below
provide the process ID (PID), the LWP number within the process (LWP), the
scheduling class the LWP is in (CLS), and the priority (PRI).

It is interesting to note that the output indicates that the LWP has a priority and
scheduling class, when technically it’s the kthread associated with the LWP that
actually maintains this information.

The kernel thread structure is defined in /usr/include/sys/thread.h . The
significant fields in the kthread include the following:

• t_link — Pointer to a kthread structure. Linked list support, links the
kthread with other kthreads on the same queue: dispatch queue, sleep queue,
and free queue.

• t_stack  — Kernel stack pointer (address).
• t_bound_cpu — Pointer to a CPU structure. Data to manage binding to a

processor, and data to support a processor set.
• t_affinitycnt — Maintains CPU affinity (loose coupling to a specific pro-

cessor, a best effort to keep a thread on the same CPU).

$ ps -eL
   PID   LWP TTY     LTIME CMD
     0     1 ?        0:01 sched
     1     1 ?        0:00 init
     2     1 ?        0:00 pageout
     3     1 ?        1:40 fsflush
   235     1 ?        0:00 sendmail
   260     1 ?        0:00 vold
   260     2 ?        0:00 vold
   260     3 ?        0:00 vold
   260     4 ?        0:00 vold
   260     5 ?        0:00 vold
   319     1 ?        0:00 sac
   121     1 ?        0:00 in.route
   133     1 ?        0:00 keyserv
   133     2 ?        0:00 keyserv
   133     3 ?        0:00 keyserv
   133     6 ?        0:00 keyserv
   100     1 ?        0:00 aspppd
   131     1 ?        0:00 rpcbind
   158     1 ?        0:00 inetd
   184     1 ?        0:00 syslogd
   184     2 ?        0:00 syslogd
   184     3 ?        0:00 syslogd
   184     4 ?        0:00 syslogd
   184     5 ?        0:00 syslogd
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• t_bind_cpu  — User-specified CPU binding (i.e., pbind (2)).
• t_flag — Thread flag bits. Thread flags provide the kernel with a method of

setting and tracking necessary bits of information about the thread, such as
whether the thread is an interrupt thread, whether it is blocking, whether its
corresponding LWP is in a zombie state, etc.

• t_proc_flag — Additional thread flag bits. The distinction between these
bits and the ones in t_flag above are locking requirements. Only the
T_WAKEABLEflag in t_flag requires a synchronization lock for setting or
checking since it must coincide with the thread state. The bits in
t_proc_flag are set and checked under protection of the p_lock , the ker-
nel mutex that synchronizes access to the proc structure.

• t_schedflag — Flags the dispatcher uses for scheduling. They indicate con-
ditions such as the thread is in memory, the thread should not be swapped,
the thread is on a swap queue. The dispatcher also uses these flags to change
the thread’s state to runnable.

• t_preempt  — Flag used to specify that thread should not be preempted.
• t_state  — Thread state. Any one of the following:

• TS_FREE – Free thread structure.

• TS_SLEEP – Sleeping on an event.

• TS_RUN – Runnable, waiting for a processor.

• TS_ONPROC – Thread is running on a processor.

• TS_ZOMB – Thread has exited, but not yet been reaped.

• TS_STOPPED – Thread is stopped. Initial thread state, possible
through a debugger as well.

The description of the process table showed that a process state field is main-
tained in the process structure along with the kernel thread. The kernel
thread, not the process, changes during execution. There is, for the most part,
a correlation between states defined for the process and kernel thread states,
as shown in Table 8-2.

Table 8-2 Kernel Thread and Process States

Process Kernel Thread Description
SIDL State during fork (2) (creation).
SRUN TS_RUN Runnable.
SONPROC TS_ONPROC Running on a processor.
SSLEEP TS_SLEEP Sleeping (blocked).
SSTOP TS_STOPPED Stopped.
SZOMB TS_ZOMB Kthread/process has terminated.

TS_FREE Thread is waiting to be reaped.
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The disparities in the state of a process and kernel thread have to do with
process creation (process SIDL state) and the state of a kernel thread follow-
ing termination (TS_FREE). We discuss this subject in the sections on process
creation and termination.

• t_pri  — The thread’s scheduling priority.
• t_epri — The thread’s inherited priority. Used for the implementation of

priority inheritance, which addresses the priority inversion problem.
• t_wchan0 , t_wchan  — Wait channel. What the thread is blocking on.
• t_cid  — Scheduling class ID (e.g., TS, RT).
• t_cldata  — Pointer to a scheduling-class-specific data structure.
• t_clfuncs  — Pointer to scheduling-class operations vector.
• t_cpu  — Pointer to a CPU structure for the CPU that the thread last ran on.
• t_sigqueue — Pointer to a siginfo structure. Root pointer of siginfo

queue.
• t_sig  — Signals pending to this thread.
• t_hold  — Signal hold bit mask.
• t_forw  — Kthread pointer, forward link for linked list, processwide.
• t_back  — Kthread pointer, backward pointer for above.
• t_lwp  — Pointer to the LWP structure.
• t_procp  — Pointer to the proc structure.
• t_next  — Forward pointer for systemwide linked list of kernel threads.
• t_prev  — Back pointer for above.
• t_cred  — Pointer to current credentials structure.
• t_sysnum  — System call number.

The following kernel thread members are used by the dispatcher code for thread
scheduling.

• t_lockp  — Pointer to dispatcher lock.
• t_oldspl  — The previous priority level.
• t_pre_sys  — Flag for system call preprocessing.
• t_disp_queue  — Pointer to the thread’s dispatch queue.
• t_disp_time  — Last time this thread was running.
• t_kpri_req  — Kernel priority required for this thread.

The next group of kthread members deals with post-system-call or post-trap han-
dling. The kthread members are embedded in the kthread structure as a union. A
bit set in any of these members prevents a direct return to user mode of the thread
until the condition has been satisfied.
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• _t_astflag — Flag to indicate post-trap processing required, such as signal
handling or a preemption.

• _t_sig_check  — Signal pending.
• _t_post_syscall  — Some post-system-call processing is required.
• _t_trapret  — Invokes the scheduling class-specific trap return code.

Figure 8.11 provides the big picture. Obviously, not every pointer implemented is
shown. We wanted to provide a visual representation of how the major data struc-
tures link together and in general to illustrate what a subsection of a typical pro-
cess/lwp/kthread list looks like from a coarse-grained view.

 Figure 8.11 The Process, LWP, and Kernel Thread Structure Linkage

8.3 The Kernel Process Table

Every process occupies a slot in the kernel process table, which maintains a pro-
cess structure (commonly abbreviated as proc structure) for the process. The pro-
cess structure is relatively large, about 900 bytes in size, and contains all the
information the kernel needs to manage the process and schedule the LWPs and
kthreads for execution. As processes are created, kernel memory space for the pro-
cess table is allocated dynamically by the kmem cache allocation and management
routines.
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8.3.1  Process Limits

At system boot time, the kernel initializes a process_cache , which begins the
allocation of kernel memory for storing the process table. Initially, space is allo-
cated for one proc structure. The table itself is implemented as a doubly linked list,
such that each proc structure contains a pointer to the next process and previous
processes on the list. The maximum size of the process table is based on the
amount of physical memory (RAM) in the system and is established at boot time.
During startup, the kernel sets a tunable parameter, maxusers , to the number of
megabytes of memory installed on the system, up to a maximum of 2,048. Thus,
systems with more than 2 Gbytes of physical memory will have a maxusers value
of 2048. Systems with less than 2 Gbytes set maxusers to the amount of physical
memory in megabytes; for example, a system with 512 Mbytes of RAM will have a
maxusers value of 512. The maxusers value subsequently determines the amount
of several major kernel resources, such as the maximum process table size and the
maximum number of processes per user.

The formula is quite simple:

The max_nprocs value is the maximum number of processes systemwide, and
maxuprc determines the maximum number of processes a non-root user can have
occupying a process table slot at any time. The system actually uses a data struc-
ture, the var structure, which holds generic system configuration information, to
store these values in. There are three related values:

• v_proc , which is set equal to max_nprocs .
• v_maxupttl , which is the maximum number of process slots that can be

used by all non-root users on the system. It is set to max_nprocs minus some
number of reserved process slots (currently reserved_procs  is 5).

• v_maxup , the maximum number of process slots a non-root user can occupy.
It is set to the maxuprc value. Note that v_maxup (an individual non-root
user) and v_maxupttl (total of all non-root users on the system) end up
being set to the same value, which is max_nprocs  minus 5.

max_nprocs = (10 + 16 * maxusers)
maxuprc = (max_nprocs - 5)
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You can use adb (1) to examine the values of maxusers , max_nprocs , and max-
uprc  on a running system.

You can also use crash (1M) or the system var  structure to dump those values.

Note that the /etc/crash var utility does not dump the v_maxupttl value; it
just dumps v_proc and v_maxup . The hexadecimal value to the left of the param-
eter value is the kernel virtual address of the variable. For example, f0274dc4 is
the address of the maxusers  kernel variable (in this example).

Finally, sar (1M) with the -v flag gives you the maximum process table size and
the current number of processes on the system.

# adb -k /dev/ksyms /dev/mem
physmem bdde
maxusers/D
maxusers:
maxusers:       189
max_nprocs/D
max_nprocs:
max_nprocs:     3034
maxuprc/D
maxuprc:
maxuprc:        3029

# /etc/crash
> od -d maxusers
f0274dc4: 0000000253
> od -d max_nprocs
f027126c: 0000004058
> od -d maxuprc
f0270f28: 0000004053
> var
v_buf: 100
v_call: 0
v_proc: 4058
v_nglobpris: 110
v_maxsyspri: 99
v_clist: 0
v_maxup: 4053
v_hbuf: 256
v_hmask: 255
v_pbuf: 0
v_sptmap: 0
v_maxpmem: 0
v_autoup: 30
v_bufhwm: 5196

$ sar -v 1 1

SunOS sunsys 5.6 Generic sun4m    05/05/00

22:27:47  proc-sz    ov  inod-sz    ov  file-sz    ov   lock-sz
22:27:48   63/3034    0 2480/13212    0  392/392     0    0/0
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Under the proc-sz column, the 72/1962 values represent the current number of
processes (72) and the maximum number of processes (1962).

The kernel does impose a maximum value in case max_nprocs is set in
/etc/system to something beyond what is reasonable, even for a large system. In
Solaris releases 2.4, 2.5, 2.5.1, 2.6, and 7, the maximum is 30,000, which is deter-
mined by the MAXPID macro in the param.h header file (available in
/usr/include/sys ).

In the kernel fork code, the current number of processes is checked against the
v_proc parameter. If the limit is reached, the system produces an “out of pro-
cesses” message on the console and increments the proc table overflow counter
maintained in the cpu_sysinfo structure. This value is reflected in the ov col-
umn to the right of proc-sz in the sar (1M) output. For non-root users, a check is
made against the v_maxup parameter, and an “out of per-user processes for uid
(UID)” message is logged. In both cases, the calling program would get a -1 return
value from fork (2), signifying an error.

8.3.2  LWP Limits

Now that we’ve examined the limits the kernel imposes on the number of pro-
cesses systemwide, let’s look at the limits on the maximum number of
LWP/kthread pairs that can exist in the system at any one time.

Each LWP has a kernel stack, allocated out of the segkp kernel address space
segment. The size of the kernel segkp segment and the space allocated for LWP
kernel stacks vary according to the kernel release and the hardware platform. On
UltraSPARC (sun4u)-based systems running a 32-bit kernel, the segkp size is lim-
ited to 512 Mbytes and the kernel stacks are 16 Kbytes. Thus, the maximum num-
ber of LWPs systemwide is 32,768 (32K) (512-Mbyte segkp segment size and
16-Kbyte stack size). On 64-bit Solaris 7, the larger (24-Kbyte) LWP kernel stack
allocation reduces the total number of LWPs on an UltraSPARC-based system to
21,845.

On non-UltraSPARC-based systems, the stack allocation is slightly smaller—12
Kbytes. The kernel segkp segment is also smaller; the total size is based on the
hardware architecture and amount of physical memory on the system.

8.4 Process Creation

All processes in Solaris are created with the traditional fork/exec Unix process
creation model that was part of the original Unix design and is still implemented
in virtually every version of Unix in existence today. The only exceptions in the
Solaris environment are the creation of four system daemons at startup, PIDs 0
through 3: the memory scheduler (sched, PID 0), init (PID 1), the pageout dae-



294 The Solaris Multithreaded Process Architecture
mon (PID 2), and fsflush (PID 3). These processes are created by an internal
kernel newproc() function. The mechanics of process creation are illustrated in
Figure 8.12.

 Figure 8.12  Process Creation

The fork (2) and exec (2) system calls are used extensively in the various software
components that come bundled with Solaris as well as in hundreds of applications
that run on Solaris. (However, more and more Solaris daemons and applications
are being threaded with each release, which means that the programs use threads
as an alternative to multiple processes.)

The fork (2) system call creates a new process. The newly created process is
assigned a unique process identification (PID) and is a child of the process that
called fork ; the calling process is the parent. The exec (2) system call overlays the
process with an executable specified as a path name in the first argument to the
exec (2) call. The model, in pseudocode format, looks like this:

The pseudocode above calls fork (2) and checks the return value from fork (2)
(pid). Remember, once fork (2) executes successfully, there are two processes: fork
returns a value of 0 to the child process and returns the PID of the child to the
parent process. In the example, we called exec (2) to execute new_binary once in

main(int argc, char *argv[], char *envp[])
{
        pid_t child_pid;
        child_pid = fork();
        if (child_pid == -1)
                perror(RforkS); /* fork system call failed */
        else if (child_pid == 0)
                execv(R/path/new_binaryS,argv); /* in the child, so exec */
        else
                wait()  /* pid > 0, weUre in the parent */
}

main()
{

pid_t pid;
pid=fork()
if (pid == 0)

exec(program)
else if (pid > 0)

wait()
.
.

}

parent process child process

disk blocks
with executable

exec loads object
into child proc
address space.new

program
text,
data,
etc.
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the child. Back in the parent, we simply wait for the child to complete (we’ll get
back later to this notion of “waiting”).

A couple of different flavors of fork (2) that are available take different code
paths in the process creation flow. The traditional fork (2) call duplicates the
entire parent process, including all the threads and LWPs that exist within the
process when the fork (2) is executed.

With Solaris 2.X and threads support came a variant of fork (2): fork1 (2). In
the fork1 (2) call, only the thread that issues the fork1 (2) call and its associated
support structures are replicated. This call is extremely useful for multithreaded
programs that also do process creation because it reduces the overhead of replicat-
ing potentially tens or hundreds of threads in the child process. If an exec (2) call
is planned following the fork (2), as is typically the case, the exec (2) code will free
all but one LWP/kthread, which makes the use of fork (2) somewhat superfluous
in a multithreaded process. Note that linking fork to a particular threads library
modifies fork ’s behavior. Linking with the Solaris threads library (-lthread com-
pilation flag) results in the described replicate-all fork (2) behavior. Linking with
the POSIX threads library (-lpthread ) results in a call to fork (2) replicating
only the calling thread. In other words, linking with -lpthread (POSIX threads
library) and calling fork (2) results in fork1 (2) behavior.

Finally, there’s vfork (2), which is described as a “virtual memory efficient” ver-
sion of fork . A call to vfork (2) results in the child process “borrowing” the
address space of the parent, rather than the kernel duplicating the parent’s
address space for the child, as it does in fork (2) and fork1 (2). The child’s address
space following a vfork (2) is the same address space as that of the parent. More
precisely, the physical memory pages of the new process’s (the child) address space
are the same memory pages as for the parent. The implication here is that the
child must not change any state while executing in the parent’s address space
until the child either exits or executes an exec (2) system call—once an exec (2)
call is executed, the child gets its own address space. In fork (2) and fork1 (2), the
address space of the parent is copied for the child by means of the kernel address
space duplicate routine (the kernel as_dup() ).

For some applications, the use of vfork (2) instead of fork (2) can improve appli-
cation efficiency noticeably. Applications that fork/exec a lot of processes (e.g., mail
servers, Web servers) do not incur the overhead of having the kernel create and set
up a new address space and all the underlying segments with each fork (2) call.
Rather, address spaces are built as needed following the exec (2) call.

The kernel code flow for process creation is represented in the following
pseudocode.



296 The Solaris Multithreaded Process Architecture
fork() or fork1() or vfork()
cfork()
getproc()
        Get proc structure (via kmem_cache_alloc(process_cache)).
        Set process state (p_stat) to SIDL.
        Set process start time (p_mstart).
        Call pid_assign() to get PID.
        pid_assign().
                Get a pid structure.
                Get a /proc directory slot.
                Get an available PID.
                init the PID structure.
                        Set reference count.
                        Set PID.
                        Set proc slot number.
                        Return pid to getproc().
Check for process table overflow (procs > v.v_nprocs).
Check for per-user process limit reached.
Put new process on process table linked list.
Set new process p_ignore and p_signal from parent.
Set the following fields in new (child) process from parent.
        Session stucture pointer p_sessp.
        Executable vnode pointer p_exec.
        Address space fields p_brkbase, p_brksize, p_stksize.
        Set child parent PID.
        Set parent-child-sibling pointers.
        Copy profile state from parent to child, p_prof.
Increment reference counts in open file list
(child inherits these).
Copy parent’s uarea to child (includes copying open file list).
if (child inherits /proc tracing flag (SPRFORK set in p_flag)
        Set p_sigmask in child from parent.
        Set p_fltmask in child from parent.
else
        Clear p_sigmask and p_fltmask in child (set to emtpy).
if (inherit microstate accounting flag in parent)
        Enable microstate accounting in child
Return from getproc() to cfork().
if (vfork())
        Set child address space to parent (child p_as = parent p_as).
        Set child SVFORK in p_flag.
else (not a vfork())
        Duplicate copy of parent’s address space for child (as_dup())
        Duplicate parent’s shared memory for child.
Duplicate parent LWPs and kthreads.
                if (fork1())
                        Just duplicate the current thread.
                        forklwp()
                                lwp_create()
                else (walk the process thread list - p_tlist; for each thread)
                        forklwp()
                                lwp_create() - create an LWP
                                        Replicate scheduling class from parent
                                thread_create() - create a kernel thread
Add the child to the parent’s process group (pgjoin())
Set the child process state (p_stat) to SRUN
if (vfork())
        Increment cpu_sysinfo vfork count (cpu_sysinfo.sysvfork)
        Call continuelwps() for child execution before parent
else
        Increment cpu_sysinfo fork count (cpu_sysinfo.sysfork)
        Place child in front of parent on dispatch queue
        (so it runs first).
Set return values: PID to parent, 0 to child
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As the preceding pseudocode flow indicates, when the fork (2) system call is
entered, a process table slot is allocated in kernel memory: the process_cache,
which was first implemented in Solaris 2.6. (In prior Solaris versions, the kernel
simply grabbed a chunk of kernel memory for a process structure.) The process
start-time field (p_mstart ) is set, and the process state is set to SIDL , which is a
state flag to indicate the process is in an intermediate “creation” state. The kernel
then assigns a PID to the process and allocates an available slot in the /proc
directory for the procfs entry. The kernel copies the process session data to the
child, in the form of the session structure; this procedure maintains the session
leader process and controlling terminal information. The kernel also establishes he
process structure pointer linkage between the parent and child, and the uarea of
the parent process is copied into the newly created child process structure.

The Solaris kernel implements an interesting throttle here in the event of a pro-
cess forking out of control and thus consuming an inordinate amount of system
resources. A failure by the kernel pid_assign() code, which is where the new
process PID is acquired, or a lack of an available process table slot indicates a
large amount of process creation activity. In this circumstance, the kernel imple-
ments a delay mechanism by which the process that issued the fork call is forced
to sleep for an extra clock tick (a tick is every 10 milliseconds). By implementing
this mechanism, the kernel ensures that no more than one fork can fail per CPU
per clock tick.

The throttle also scales up, in such a manner that an increased rate of fork fail-
ures results in an increased delay before the code returns the failure and the issu-
ing process can try again. In that situation, you’ll see the console message “out of
processes,” and the ov (overflow) column in the sar -v output will have a non-
zero value. You can also look at the kernel fork_fail_pending variable with
adb . If this value is nonzero, the system has entered the fork throttle code seg-
ment. Below is an example of examining the fork_fail_pending kernel vari-
able with adb (1).

When a vfork (2) is issued and the child is using the parent’s address space, the
kernel takes some extra steps to prevent the parent from executing until the child
has either exited or issued an exec (2) call to overlay the new process space with a
new program. The kernel uses the t_post_syscall flag in the thread structure,
causing the post_syscall() kernel routine to be invoked when the calling
thread returns from the vfork (2) call. The post_syscall() code checks the
t_sysnum in the thread structure, which holds the system call type issued (set by
the kernel in the pre-system-call handling). In this case, t_sysnum reflects
SYS_vfork and causes the thread to issue a vfwait() call; that action keeps the
parent waiting until the child has issued an exit (2) or exec (2) call. At that point,

# adb -k /dev/ksyms /dev/mem
physmem bdde
fork_fail_pending/D
fork_fail_pending:
fork_fail_pending:              0
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the virtual memory the child was holding can be released (relvm() ) and the par-
ent can safely resume execution.

The final important point to make about process creation and fork concerns
inheritance. Specifically, the bits of the parent process that are inherited by the
child are the credentials structure (real and effective UID and GID), open files, the
parent’s environment (the environment list includes typical environmental vari-
ables such as HOME, PATH, LOGNAME, etc.), mode bits for set UID or set GID, the
scheduling class, the nice value, attached shared memory segments, current
working and root directories, and the file mode creation mask (umask).

With a newly created process/LWP/kthread infrastructure in place, most appli-
cations will invoke exec (2). The exec (2) system call overlays the calling program
with a new executable image. (Not following a fork (2) with an exec (2) results in
two processes executing the same code; the parent and child will execute whatever
code exists after the fork (2) call.)

There are several flavors of the exec (2) call; the basic differences are in what
they take as arguments. The exec (2) calls vary in whether they take a path name
or file name as the first argument (which specifies the new executable program to
start), whether they require a comma-separated list of arguments or an argv[]
array, and whether the existing environment is used or an envp[]  array is passed.

Because Solaris supports the execution of several different file types, the kernel
exec code is split into object file format-dependent and object file format-indepen-
dent code segments. Most common is the previously discussed ELF format. Among
other supported files is a.out , which is included to provide a degree of binary com-
patibility that enables executables created on SunOS 4.X system to run on SunOS
5.X. Other inclusions are a format-specific exec routine for programs that run
under an interpreter, such as shell scripts and awk programs, and an exec rou-
tine for COFF (Common Object File Format) under x86 architectures. Lastly, sup-
port code for programs in the Java programming language is included in Solaris
releases since 2.5, with a Java-specific exec  code segment.

Calls into the object-specific exec code are done through a switch table mecha-
nism. During system startup, an execsw[] array is initialized with the magic
number of the supported object file types. (Magic numbers uniquely identify differ-
ent object file types on Unix systems. See /etc/magic and the magic (4) manual
page.) Each array member is an execsw structure, and each structure contains the
following four structure members:

• exec_magic — A pointer to the magic number that uniquely identifies the
type of object file.

• exec_func — A function pointer; points to the exec function for the object
file type.

• exec_core — A function pointer; points to the object-file-specific core dump
routine.
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• exec_lock — A pointer to a kernel read/write lock, to synchronize access to
the exec  switch array.

The object file exec code is implemented as dynamically loadable kernel modules,
found in the /kernel/exec directory (aoutexec , elfexec , intpexec ) and
/usr/kernel/exec (javaexec ). The elf and intp modules will load through
the normal boot process, since these two modules are used minimally by the ker-
nel startup processes and startup shell scripts. The a.out and java modules will
load automatically when needed as a result of exec ’ing a SunOS 4.X binary or a
Java program. When each module loads into RAM (kernel address space in mem-
ory), the mod_install() support code loads the execsw structure information
into the execsw[]  array.

Figure 8.13 illustrates the flow of exec , with ELF file-type functions illustrat-
ing object-file-specific calls.

 Figure 8.13 exec  Flow

All variants of the exec (2) system call resolve in the kernel to a common routine,
exec_common() , where some initial processing is done. The path name for the
executable file is retrieved, exitlwps() is called to force all but the calling LWP
to exit, any POSIX4 interval timers in the process are cleared (p_itimer field in
the proc structure), and the sysexec counter in the cpu_sysinfo structure is
incremented (counts exec system calls, readable with sar (1M)). If scheduler acti-
vations have been set up for the process, the door interface used for such purposes
is closed (i.e., scheduler activations are not inherited), and any other doors that
exist within the process are closed. The SPREXECflag is set in p_flags (proc
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structure field), indicating an exec is in the works for the process. The SPREXEC
flag blocks any subsequent process operations until exec() has completed, at
which point the flag is cleared.

The kernel generic exec code, gexec() is now called; here is where we switch
out to the object-file-specific exec routine through the execsw[] array. The correct
array entry for the type of file being exec ’d is determined by a call to the kernel
vn_rdwr() (vnode read/write) routine and a read of the first four bytes of the file,
which is where the file’s magic number is stored. Once the magic number has been
retrieved, the code looks for a match in each entry in the execsw[] array by com-
paring the magic number of the exec ’d file to the exec_magic field in each struc-
ture in the array. Prior to entering the exec switch table, the code checks
permissions against the credentials of the process and the permissions of the
object file being exec ’d. If the object file is not executable or the caller does not
have execute permissions, exec fails with an EACCESSerror. If the object file has
the setuid or setgid bits set, the effective UID or GID is set in the new process
credentials at this time.

Figure 8.14 illustrates the basic flow of an exec  call through the switch table.

 Figure 8.14 exec  Flow to Object-Specific Routine

Note that Solaris 7 implements two ELF entries, one for each data model sup-
ported: 32-bit ILP32 ELF files and 64-bit LP64 ELF files. Let’s examine the flow of
the elfexec() function, since that is the most common type of executable run on
Solaris systems.

Upon entry to the elfexec() code, the kernel reads the ELF header and pro-
gram header (PHT) sections of the object file (see “The Multithreaded Process
Model” on page 266 for an overview of the ELF header and PHT). These two main
header sections of the object file provide the system with the information it needs
to proceed with mapping the binary to the address space of the newly forked pro-
cess. The kernel next gets the argument and environment arrays from the exec (2)
call and places both on the user stack of the process, using the exec_args() func-
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tion. The arguments are also copied into the process uarea ’s u_psargs[] array at
this time.

 Figure 8.15 Initial Process Stack Frame

A quick Solaris 7 implementation note. Before actually setting up the user stack
with the argv[] and envp[] arrays, Solaris 7, if booted as a 64-bit kernel, must
first determine if a 32-bit or 64-bit binary is being exec ’d (a 32-bit Solaris 7 sys-
tem can only run 32-bit binaries). This information is maintained in the ELF
header, where the system checks the e_ident[] array for either an ELFCLASS32
or ELFCLASS64file identity. With the data model established, the kernel sets the
initial size of the exec file sections to 4 Kbytes for the stack, 4 Kbytes for stack
growth (stack increment), and 1 Mbyte for the argument list (ELF32) or 2-Mbyte
argument list size for an ELF64.

Once the kernel has established the process user stack and argument list, it
calls the mapelfexec() function to map the various program segments into the
process address space. mapelfexec() walks through the Program Header Table
(PHT), and for each PT_LOADtype (a loadable segment), mapelfexec() maps the
segment into the process’s address space. mapelfexec() bases the mapping on
the p_filesz and p_memsz sections of the header that define the segment, using
the lower-level, kernel address space support code. Once the program loadable seg-
ments have been mapped into the address space, the dynamic linker (for dynami-
cally linked executables), referenced through the PHT, is also mapped into the
process’s address space. The elfexec code checks the process resource limit
RLIMIT_VMEM (max virtual memory size) against the size required to map the
object file and runtime linker. An ENOMEMerror is returned in the event of an
address space requirement that exceeds the limit.

All that remains for exec(2) to complete is some additional housekeeping and
structure initialization, which is done when the code returns to gexec() . This last
part deals with clearing the signal stack and setting the signal disposition to
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default for any signals that have had a handler installed by the parent process.
The kernel thread ID is set to 1, and the p_lwptotal is set to 1 in the new pro-
cess. Finally, all open files with the close-on-exec flag set are closed, and the exec is
complete. A call made into procfs clears the SPREXECflag and unlocks access to
the process by means of /proc .

As we’ll see in the next chapter, threads inherit their scheduling class and prior-
ity from the parent. Some scheduling-class-specific fork code executes at the tail
end of the fork process that takes care of placement of the newly created kthread
on a dispatch queue. This practice gets the child executing before the parent in
anticipation that the child will immediately execute an exec(2) call to load in the
new object file. In the case of a vfork (2), where the child is mapped to the address
space of the parent, the parent is forced to wait until the child executes and gets
its own address space.

8.5 Process Termination

The termination of a process results from one of three possible events. First, the
process explicitly calling exit (2) or _exit (2) causes all the threads in a multi-
threaded process to exit. (The threads libraries include thr_exit (3T) and
pthread_exit (3T) interfaces for programmatically terminating an individual
user thread without causing the entire process to exit.) Second, the process simply
completes execution and falls through to the end of the main() function—which is
essentially an implicit exit. Third, a signal is delivered, and the disposition for the
signal is to terminate the process. This disposition is the default for some signals
(see “Signals” on page 324). There is actually one other possibility: a process can
explicitly call the abort (3C) function and cause a SIGABRTsignal to be sent to the
process. The default disposition for SIGABRT is to terminate the process and cre-
ate a core file.

Regardless of which event causes the process to terminate, the kernel exit func-
tion is ultimately executed, freeing whatever resources have been allocated to the
process, such as the address space mappings, open files, etc., and setting the pro-
cess state to SZOMB, or the zombie state. A zombie process is one that has exited
and that requires the parent process to issue a wait (2) system call to gather the
exit status. The only kernel resource that a process in the zombie state is holding
is the process table slot. Successful execution of a wait (2) call frees the process
table slot. Orphaned processes are inherited by the init process solely for this pur-
pose.

An exception to the above scenario is possible if a parent process uses the
sigaction (2) system call to establish a signal handler for the SIGCLD signal and
sets the SA_NOCLDWAITflag (no child wait) in the sa_flags field of the sigac-
tion structure. A process is sent a SIGCLD signal by the kernel when one of its
child processes terminates. If a process installs a SIGCLD handler as described, the
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kernel sets the SNOWAITbit in the calling (parent) process’s p_flag field, signify-
ing that the parent process is not interested in obtaining status information on
child processes that have exited. The actual mechanics happens in two places:
when the signal handler is installed and when the kernel gets ready to post a SIG-
CLD signal.

First, when the sigaction() call is executed and the handler is installed, if
SA_NOCLDWAITis true, SNOWAITis set in p_flags and the code loops through the
child process list, looking for child processes in the zombie state. For each such
child process found, the kernel freeproc() function is called to release the pro-
cess table entry. (The kernel exit code, described below, will have already exe-
cuted, since the process must have terminated—otherwise, it would not be in the
zombie state.) In the second occurrence, the kernel calls its internal sigcld()
function to post a SIGCLD signal to a process that has had a child terminate. The
sigcld() code calls freeproc() instead of posting the signal if SNOWAITis set in
the parent’s p_flags  field.

Having jumped ahead there for a second, let’s turn our attention back to the
kernel exit()  function, starting with a summary of the actions performed.

The sequence of events outlined above is pretty straightforward. It’s a matter of
walking through the process structure, cleaning up resources that the process may
be holding, and reassigning child and orphan processes. Child processes are
handed over to init , and orphan processes are linked to the next-of-kin process,
which is typically the parent. Still, we can point out a few interesting things about
process termination and the LWP/kthread model as implemented in Solaris.

exit()
        Exit all but 1 LWP (exitlwps())
        Clean up any doors created by the process
        Clean up any pending async I/Os
        Clean up any realtime timers
        Flush signal information (set ignore for all signals, clear posted signals)
        Set process LWP count to zero (p_lwpcnt = 0)
        NULL terminate the process kernel thread linked list
        Set process termination time (p_mterm)
        Close all open file descriptors
        if (process is a session leader)
                Release control terminal
        Clean up any semaphore resources being held
        Release the processUs address space
        Reassign orphan processes to next-of-kin
        Reassign child processes to init
        Set process state to zombie
        Set process p_wdata and p_wcode for parent to interrogate
        Call kernel sigcld() function to send SIGCLD to parent
                if (SNOWAIT flag is set in parent)
                        freeproc() /* free the proc table slot - no zombie */
                else
                        post the signal to the parent
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8.5.1  The LWP/kthread Model

The exitlwps() code is called immediately upon entry to the kernel exit()
function, which, as the name implies, is responsible for terminating all but one
LWP in the process. If the number of LWPs in the process is 1 (the p_lwpcnt field
in the proc structure) and there are no zombie LWPs (p_zombcnt is 0), then
exitlwps() will simply turn off the SIGWAITING signal and return. SIGWAIT-
ING is used to create more LWPs in the process if runnable user threads are wait-
ing for a resource. We certainly do not want to catch SIGWAITING signals and
create LWPs when we’re terminating.

If the process has more than one LWP, the LWPs must be stopped (quiesced) so
they are not actively changing state or attempting to grab resources (file opens,
stack/address space growth, etc.). Essentially what happens is this:

1. The kernel loops through the list of LWP/kthreads in the process, setting the
t_astflag in the kernel thread. If the LWP/kthread is running on a proces-
sor, the processor is forced to enter the kernel through the cross-call inter-
rupt mechanism.

2. Inside the trap handler, which is entered as a result of the cross-call, the ker-
nel tests the t_astflag  (which is set) and tests for what condition it is that
requires post-trap processing. The t_astflag  specifically instructs the ker-
nel that some additional processing is required following a trap.

3. The trap handler tests the process HOLDFORK flag and if it is set in p_flags
(which it will be in this case), calls a holdlwp()  function that, under differ-
ent circumstances, would suspend the LWP/kthread.

4. During an exit, with EXITLWPS set in p_flags , the lwp_exit()  function
is called to terminate the LWP. If the LWP/kthread is in a sleep or stopped
state, then it is set to run so it can ultimately be quiecsed as described.

The kernel lwp_exit() function does per-LWP/kthread cleanup, such as timers,
doors, signals, and scheduler activations. Finally, the LWP/kthread is placed on the
process’s linked list of zombie LWPs, p_zomblist . Once all but one of the
LWP/kthreads in the process have been terminated and placed on the process zom-
bie list, the exit() code moves on to execute the functions summarized on the
previous page.



Process Termination 305
The pseudocode below summarizes the exitlwps()  function.

Once the exit() code has completed, the process is in a zombie state, occupying
only a process table entry and PID structure. When a wait() call is issued on the
zombie, the kernel freeproc() function is called to free the process and PID
structures.

8.5.2  Deathrow

exitlwps() does one last bit of work before it returns to exit() . It places a zom-
bie’s kernel threads on deathrow.

The kernel maintains a list, called deathrow, of LWPs and kernel threads that
have exited, in order to reap a terminated LWP/kthread when a new one needs to
be created (fork() ). If an LWP/kthread is available on the list of zombies, the ker-
nel does not need to allocate the data structures and stack for a new kthread; it
simply uses the structures and stack from the zombie kthread and links the
kthread to the process that issued the fork (2) (or thread_create() ).

In the process creation flow, when the forklwp() code calls lwp_create() ,
lwp_create() first looks on deathrow for a zombie thread. If one exists, the LWP,
kthread, and stack are linked to the process, and the kernel is spared the need to
allocate new kthread, LWP, and stack space during the fork() process. The ker-
nel simply grabs the structures from the deathrow list, links the pointers appropri-
ately, and moves on. thread_create() (kernel thread create, not the user thread
API), called from lwp_create() , is passed the LWP data and stack and thus
avoids doing any kernel memory allocations.

A kernel thread, thread_reaper() , runs periodically and cleans up zombie
threads that are sitting on deathrow. The list of zombie threads on deathrow is not
allowed to grow without bounds (no more than 32 zombies), and the zombies are
not left on deathrow forever.

exitlwps()
        if (process LWP count == 1)
                nuke SIGWAITING
                return
        else
                for (each LWP/kthread on the process linked list)
                        if (LWP/kthread is sleeping or stopped)
                                make it runnable
                        if (LWP/kthread is running on a processor)
                                t_astflag = 1;
                                poke_cpu() /* cross-call, to trap into the kernel */
                                        holdlwp()
                                                lwp_exit()
                                                place kthread/LWP on zombie list
                done (loop)
        place zombie threads on deathrow
        return to kernel exit()
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8.6 Procfs — The Process File System

The process file system, procfs, is a pseudo file system. Pseudo file systems pro-
vide file-like abstractions and file I/O interfaces to something that is not a file in
the traditional sense. Procfs abstracts the Solaris kernel’s process architecture
such that all processes running on the system appear in the root directory name
space under the /proc directory; every process in the system exists as a file under
/proc , with the process’s PID serving as the file name. The PID file name under
/proc is actually a directory, containing other files and subdirectories that, com-
bined, make up the complete /proc directory space. The many kernel data struc-
tures that provide process data and control points appear as files within the
/proc/<PID> directory hierarchy, and multithreaded processes have a subdirec-
tory for each LWP in the process. Per-LWP data and control structures exist as
files under the /proc/<PID>/lwp/<LWP_ID> . The objects that appear under
/proc are not on-disk files; they are objects that exist in kernel memory. When a
user executes an ls (1) command in /proc or any /proc subdirectory, the system
is reading kernel memory.

This file-like abstraction for processes provides a simple and elegant means of
extracting information about processes, their execution environment, and kernel
resource utilization. Simple things, such as opening a /proc file object to read bits
of information about a process, are relatively easy to do with procfs. Process con-
trol is powerful and relatively straightforward; processes can be stopped and
started, and event-driven stops can be established for things like signals, traps,
and system calls. In general, process management and debugging is greatly simpli-
fied. It is worth noting that the original design goal of procfs was to provide a set of
interfaces for writing debuggers; it has evolved considerably since the original
implementation.

The Solaris system ships with several commands that implement /proc for
extracting information and issuing control directives. These commands reside in
the /usr/proc/bin directory and are described in the proc (1) manual page. We
use some of these commands throughout the book to provide examples of different
kernel abstractions, such as opened files or a process’s address space. The process
status command, ps (1), is also built on top of the procfs interfaces.

The control and informational data made available through the /proc file sys-
tem is maintained in a hierarchy of files and subdirectories. The files and subdirec-
tories implemented in /proc are listed below. See the proc (4) manual page for
additional information on these files and their use.

• /proc  — The top-level directory for procfs.

• / proc/<pid> — The top-level directory for a specific process, where the pro-
cess’s PID is the directory name.
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• /proc/<pid>/as — The process’s address space, as defined by the p_as link
to an address space structure (struct as ) in the process’s proc structure. In
other words, the process’s address space as represented by the
/proc/<pid>/as file is not a /proc -specific representation of the address
space. Rather, /proc provides a path to address space mappings through the
proc structure’s p_as  pointer.

• /proc/<pid>/ctl — A process control file. Can be opened for write-only,
and can be used to send control messages to a process to initiate a specific
event or to enable a particular behaviour. Examples include stopping or start-
ing a process, setting stops on specific events, or turning on microstate
accounting.
This file exemplifies the power and elegance of procfs; you can accomplish
process control and event tracing by opening the control file for the target
process and writing a control message (or multiple control messages) to inject
desired behavior. See the proc (4) man page for a detailed list of control mes-
sages and functions.

• /proc/<pid>/status — General state and status information about the
process. The specific contents are defined in the pstatus structure, defined
in /usr/include/sys/procfs.h . pstatus  is also described in proc (4).
Note that pstatus embeds an lwpstatus structure (the pr_lwp field of
pstatus ). This structure is described as a representative LWP. A non-
threaded process has only one LWP, so selecting a representative LWP is sim-
ple. For threaded processes with multiple LWPs, an internal kernel routine
loops through all the LWPs in the process and selects one on the basis of its
state. First choice is an executing LWP. If an executing LWP is not available,
selection criteria look for runnable, sleeping, or stopped.

• /proc/<pid>/lstatus — An array of lwpstatus structures, one for each
LWP in the process.

• /proc/<pid>/psinfo — Process information as provided by the ps (1) com-
mand. Similar to the status data as described above, in that a representative
LWP is included with an embedded lwpsinfo  structure.

• /proc/<pid>/lpsinfo  — Per-LWP ps (1) information.

• /proc/<pid>/map — Address space map information. The data displayed by
the pmap(1) command.

• /proc/<pid>/rmap  — Reserved address space segments of the process.

• /proc/<pid>/xmap — Extended address space map information. The data
displayed when the pmap(1) command is run with the -x  flag.

• /proc/<pid>/cred — Process credentials, as described in the prcred
structure (/usr/include/sys/procfs.h ).
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• /proc/<pid>/sigact — Array of sigaction structures, each representing
the signal disposition for all signals associated with the process.

• /proc/<pid>/auxv — An array of auxv (auxiliary vector, defined in
/usr/include/sys/auxv.h ) structures, with the initial values as passed to
the dynamic linker when the process was exec’d.

• /proc/<pid>/ldt  — Local descriptor table. Intel x86 architecture only.

• /proc/<pid>/usage — Process resource usage data. See “Process Resource
Usage” on page 318.

• /proc/<pid>/lusage — Array of LWP resource usage data. See “Process
Resource Usage” on page 318.

• /proc/<pid>/pagedata — Another representation of the process’s address
space. Provides page-level reference and modification tracking.

• /proc/<pid>/watch — An array of prwatch structures (defined in
/usr/include/sys/procfs.h ), as created when the kernel sets a PCWATCH
operation by writing to the control file. Allows for monitoring (watching) one
or more address space ranges, such that a trap is generated when a memory
reference is made to a watched page.

• /proc/<pid>/cwd — Symbolic link to the process’s current working direc-
tory.

• /proc/<pid>/root  — Symbolic link to the process’s root directory.

• /proc/<pid>/fd — Directory that contains references to the process’s open
files.

• /proc/<pid>/fd/nn — The process’s open file descriptors. Directory files
are represented as symbolic links.

• /proc/<pid>/object — Subdirectory containing binary shared object files
the process is linked to.

• /proc/<pid>/object/nn — Binary object files. The process’s executable
binary (a.out ), along with shared object files the process is linked to.

In addition to the file objects and subdirectories maintained at the process level,
each /proc/<pid>/ directory has an lwp subdirectory, which contains several file
objects that contain per-LWP data. Subdirectories are described below.

• /proc/<pid>/lwp — Subdirectory containing files that represent all the
LWPs in the process.

• /proc/<pid>/lwp/<lwpid> — Subdirectory containing the procfs files spe-
cific to an LWP.

• /proc/<pid>/lwp/<lwpid>/lwpctl — Control file for issuing control oper-
ations on a per-LWP basis.
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• /proc/<pid>/lwp/<lwpid>/lwpstatus — LWP state and status informa-
tion, as defined in the lwpstatus structure in
/usr/include/sys/procfs.h .

• /proc/<pid>/lwp/<lwpid>/lwpsinfo — LWP ps (1) command informa-
tion, as defined in lwpsinfo , also in /usr/include/sys/procfs.h .

• /proc/<pid>/lwp/<lwpid>/lwpusage — LWP resource usage data. See
“Process Resource Usage” on page 318.

• /proc/<pid>/lwp/<lwpid>/xregs — Extra general state registers — This
file is processor-architecture specific and may not be present on some plat-
forms. On SPARC-based systems, the data contained in this file is defined in
the prxregset  structure, in /usr/include/sys/procfs_isa.h .

• /proc/<pid>/lwp/<lwpid>/gwindow s — General register windows. This
file exists on SPARC-based systems only and represents the general register
set of the LWP (part of the hardware context), as defined in the gwindows
structure in /usr/include/sys/regset.h .

• /proc/<pid>/lwp/<lwpid>/asrs — Ancillary register set. SPARC V9
architecture (UltraSPARC) only. An additional set of hardware registers
defined by the SPARC V9 architecture. This file, representing the ancillary
registers, is present only on sun4u based systems running a 64-bit kernel
(Solaris 7 or later), and only for 64-bit processes. (Remember, a 64-bit kernel
can run 32-bit processes. A 32-bit process will not have this file in its lwp sub-
directory space.)

That completes the listing of files and subdirectories in the procfs directory space.
Once again, please refer to the proc (4) manual page for more detailed informa-
tion on the various files in /proc and for a complete description of the control mes-
sages available.

8.6.1  Procfs Implementation

Procfs is implemented as a dynamically loadable kernel module, /ker-
nel/fs/procfs , and is loaded automatically by the system at boot time. /proc is
mounted during system startup by virtue of the default /proc entry in the
/etc/vfstab file. The mount phase causes the invocation of the procfs prinit()
(initialize) and prmount() file-system-specific functions, which initialize the vfs
structure for procfs and create and initialize a vnode for the top-level directory
file, /proc .

The kernel memory space for the /proc files is, for the most part, allocated
dynamically, with an initial static allocation for the number of directory slots
required to support the maximum number of processes the system is configured to
support (see “The Kernel Process Table” on page 290).
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A kernel procdir (procfs directory) pointer is initialized as a pointer to an
array of procent (procfs directory entry) structures. The size of this array is
derived from the v.v_proc variable established at boot time, representing the
maximum number of processes the system can support. The entry in procdir
maintains a pointer to the process structure and maintains a link to the next entry
in the array. The procdir array is indexed through the pr_slot field in the pro-
cess’s pid structure. The procdir slot is allocated to the process from the array
and initialized at process creation time (fork() ), as shown in Figure 8.16.

 Figure 8.16 procfs Kernel Process Directory Entries

The specific format of the procfs directory entries is described in the procfs kernel
code. It is modeled after a typical on-disk file system: each directory entry in the
kernel is described with a directory name, offset into the directory, a length field,
and an inode number. The inode number for a /proc file object is derived inter-
nally from the file object type and process PID. Note that /proc directory entries
are not cached in the directory name lookup cache (dnlc); by definition they are
already in physical memory.

Because procfs is a file system, it is built on the Virtual File System (VFS) and
vnode framework. In Solaris, an instance of a file system is described by a vfs
object, and the underlying files are each described by a vnode . The vfs/vnode
architecture is described in “Solaris File System Framework” on page 541. Procfs
builds the vfs and vnode structures, which are used to reference the file-sys-
tem-specific functions for operations on the file systems (e.g., mount, unmount),
and file system specific functions on the /proc directories and file objects (e.g.,
open, read, write).

Beyond the vfs and vnode structures, the procfs implementation defines two
primary data structures used to describe file objects in the /proc file system. The
first, prnode , is the file-system-specific data linked to the vnode . Just as the ker-
nel UFS implementation defines an inode as a file-system-specific structure that
describes a UFS file, procfs defines a prnode to describe a procfs file. Every file in
the /proc directory has a vnode and prnode . A second structure, prcommon,
exists at the directory level for /proc directory files. That is, the /proc/<pid>
and /proc/<pid>/lwp/<lwpid> directories each have a link to a prcommon
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structure. The underlying nondirectory file objects within /proc/<pid> and
/proc/<pid>/lwp/<lwpid> do not have an associated prcommon structure. The
reason is that prcommon ’s function is the synchronization of access to the file
objects associated with a process or an LWP within a process. The prcommon struc-
ture provides procfs clients with a common file abstraction of the underlying data
files within a specific directory (see Figure 8.17).

 Figure 8.17 procfs Directory Hierarchy

Refer to /usr/include/sys/proc/prdata.h for definitions for the prnode and
prcommon structures.
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/proc vnode (that is, the vnode that represents the /proc/<pid> file), and each
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 Figure 8.18 procfs Data Structures

Figure 8.18 provides a partial view of what the procfs data structures and related
links look like when a procfs file is opened for reading or writing. Note that all of
the vnodes associated with a process are linked through the pr_next pointer in
the prnode . When a reference is made to a procfs directory and underlying file
object, the kernel dynamically creates the necessary structures to service a client
request for file I/O. More succinctly, the procfs structures and links are created and
torn down dynamically. They are not created when the process is created (aside
from the procdir procfs directory entry and directory slot allocation). They
appear to be always present because the files are available whenever an open (2)
request is made or a lookup is done on a procfs directory or data file object. (It is
something like the light in your refrigerator—it’s always on when you look, but not
when the door is closed.)

The data made available through procfs is, of course, always present in the ker-
nel proc structures and other data structures that, combined, form the complete
process model in the Solaris kernel. This model, shown in Figure 8.5 on page 270,
represents the true source of the data extracted and exported by procfs. By hiding
the low-level details of the kernel process model and abstracting the interesting
information and control channels in a relatively generic way, procfs provides a ser-
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vice to client programs interested in extracting bits of data about a process or
somehow controlling the execution flow. The abstractions are created when
requested and are maintained as long as necessary to support file access and
manipulation requests for a particular file.

File I/O operations through procfs follow the conventional methods of first open-
ing a file to obtain a file descriptor, then performing subsequent read/write opera-
tions and closing the file when completed. The creation and initialization of the
prnode and prcommon structures occur when the procfs-specific vnode opera-
tions are entered through the vnode switch table mechanism as a result of a cli-
ent (application program) request. The actual procfs vnode operations have
specific functions for the lookup and read operations on the directory and data files
within the /proc  directory.

The implementation in procfs of lookup and read requests through an array of
function pointers that resolve to the procfs file-type-specific routine is accom-
plished through the use of a lookup table and corresponding lookup functions. The
file type is maintained at two levels. At the vnode level, procfs files are defined as
VPROCfile types (v_type field in the vnode ). The prnode includes a type field
(pr_type ) that defines the specific procfs file type being described by the pnode.
The procfs file types correspond directly to the description of /proc files and direc-
tories that are listed at the beginning of this section (“Procfs — The Process File
System” on page 306). Examples include the various directory types (a process PID
directory, an LWPID directory, etc.) and data files (status, psinfo, address space,
etc.).

The basic execution flow of a procfs file open is shown in Figure 8.19.

 Figure 8.19 procfs File Open

The function flow in Figure 8.19 starts at the application program level, where an
open (2) system call is issued on a procfs file. The vnode kernel layer is entered
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(vn_open() ), and a series of lookups is performed to construct the full path name
of the desired /proc file. Macros in the vnode layer invoke file-system-specific
operations. In this example, VOP_LOOKUP() will resolve to the procfs
pr_lookup() function. pr_lookup() will do an access permissions check and
vector to the appropriate procfs function based on the directory file type, for exam-
ple, pr_lookup_piddir() to perform a lookup on a /proc/<PID> directory. Each
of the pr_lookup_xxx() directory lookup functions does some directory-type-spe-
cific work and calls prgetnode()  to fetch the prnode .

prgetnode() creates the prnode (which includes the embedded vnode ) for the
/proc file and initializes several of the prnode and vnode fields. For /proc PID
and LWPID directories (/proc/<PID> , /proc/<PID>/lwp/<LWPID> ), the
prcommon structure is created, linked to the prnode, and partially initialized. Note
that for /proc directory files, the vnode type will be changed from VPROC(set ini-
tially) to VDIR, to correctly reflect the file type as a directory (it is a procfs direc-
tory, but a directory file nonetheless).

Once the path name is fully constructed, the VOP_OPEN() macro invokes the
file-system-specific open() function. The procfs propen() code does some addi-
tional prnode and vnode field initialization and file access testing for specific file
types. Once propen() completes, control is returned to vn_open() and ulti-
mately a file descriptor representing a procfs file is returned to the caller.

The reading of a procfs data file object is similar in flow to the open scenario,
where the execution of a read system call on a procfs file will ultimately cause the
code to enter the procfs prread() function. The procfs implementation defines a
data-file-object-specific read function for each of the file objects (data structures)
available: pr_read_psinfo() , pr_read_pstatus() , pr_read_lwpsinfo() ,
etc. The specific function is entered from prread() through an array of function
pointers indexed by the file type—the same method employed for the previously
described lookup operations.

The Solaris 7 implementation of procfs, where both 32-bit and 64-bit binary exe-
cutables can run on a 64-bit kernel, provides 32-bit versions of the data files avail-
able in the /proc hierarchy. For each data structure that describes the contents of
a /proc file object, a 32-bit equivalent is available in a 64-bit Solaris 7 kernel (e.g.,
lwpstatus and lwpstatus32 , psinfo and psinfo32 ). In addition to the 32-bit
structure definitions, each of the pr_read_ xxx () functions has a 32-bit equiva-
lent in the procfs kernel module, more precisely, a function that deals specifically
with the 32-bit data model of the calling program. Procfs users are not exposed to
the multiple data model implementation in the 64-bit kernel. When prread() is
entered, it checks the data model of the calling program and invokes the correct
function as required by the data model of the caller. An exception to this is a read
of the address space (/proc/<PID>/as ) file; the caller must be the same data
model. A 32-bit binary cannot read the as file of a 64-bit process. A 32-bit process
can read the as  file of another 32-bit process running on a 64-bit kernel.

The pr_read_ xxxx () functions essentially read the data from its original
source in the kernel and write it to the corresponding procfs data structure fields,
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thereby making the requested data available to the caller. For example,
pr_read_psinfo() will read data from the targeted process’s proc structure,
credentials structure, and address space (as ) structure and will write it to the cor-
responding fields in the psinfo structure. Access to the kernel data required to
satisfy the client requests is synchronized with the proc structure’s mutex lock,
plock . This approach protects the per-process or LWP kernel data from being
accessed by more than one client thread at a time.

Writes to procfs files are much less frequent. Aside from writing to the directo-
ries to create data files on command, writes are predominantly to the process or
LWP control file (ctl ) to issue control messages. Control messages (documented in
proc (1)) include stop/start messages, signal tracing and control, fault manage-
ment, execution control (e.g., system call entry and exit stops), and address space
monitoring.

The interface layering of the kernel procfs module functions covered in the previ-
ous pages is shown in Figure 8.20.

 Figure 8.20 procfs Interface Layers

The diagram in Figure 8.20 shows more than one path into the procfs kernel
routines. Typical developer-written code makes use of the shorter system call path,
passing through the vnode layer as previously described. The proc (1) command is
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built largely on the libproc.so interfaces. The need for a set of library-level
interfaces specific to procfs is twofold: an easy-to-use set of routines for code devel-
opment reduces the complexity of using a powerful kernel facility; the complexity
in controlling the execution of a process, especially a multithreaded process,
requires a layer of code that really belongs at the application programming inter-
face (as opposed to kernel) level.

The developer controls a process by writing an operation code and (optional)
operand to the first 8 bytes of the control file (or 16 bytes if it’s an LP64 kernel).
The control file write path is also through the vnode layer and ultimately enters
the procfs prwritectl() function. The implementation allows multiple control
messages (operations and operands) to be sent to the control file in a single write.
The prwritectl() code breaks multiple messages into distinct operation/oper-
and pairs and passes them to the kernel pr_control() function, where the
appropriate flags are set at the process or LWP level as a notification that a con-
trol mechanism has been injected (e.g., a stop on an event).

Table 8-3 lists the possible control messages (operations) that are currently
implemented. We include them here to provide context for the subsequent descrip-
tions of control functions, as well as to illustrate the power of procfs. See also the
proc (1) manual page and /usr/include/sys/procfs.h .

Table 8-3 procfs Control Messages

Control
Message

Operand
(arg)

Description

PCSTOP n/a Requests process or LWP to stop; waits for stop.
PCDSTOP n/a Requests process or LWP to stop.
PCWSTOP n/a Waits for the process or LWP to stop. No timeout

implemented.
PCTWSTOP timeout value Waits for stop, with millisecond timeout arg.
PCRUN long Sets process or LWP runnable. Long arg can specify

clearing of signals or faults, setting single step mode,
etc.

PCCSIG n/a Clears current signal from LWP.
PCCFAULT n/a Clears current fault from LWP.
PCSSIG siginfo_t Sets current signal from siginfo_t .
PCKILL long Posts a signal to process or LWP.
PCUNKILL long Deletes a pending signal from the process or LWP.
PCSHOLD sigset_t Sets LWP signal mask from arg.
PCSTRACE sigset_t Sets traced signal set from arg.
PCSFAULT fltset_t Sets traced fault set from arg.
PCSENTRY sysset_t Sets tracing of system calls (on entry) from arg.
PCSEXIT sysset_t Sets tracing of system calls (on exit) from arg.
PCSET long Sets mode(s) in process/LWP
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As you can see from the variety of control messages provided, the implementation
of process/LWP control is tightly integrated with the kernel process/LWP sub-
system. Various fields in the process, user (uarea ), LWP, and kernel thread struc-
tures facilitate process management and control with procfs. Establishing process
control involves setting flags and bit mask fields to track events that cause a pro-
cess or thread to enter or exit the kernel. These events are signals, system calls,
and fault conditions. The entry and exit points for these events are well defined
and thus provide a natural inflection point for control mechanisms.

The system call, signals, and faults are set through the use of a set data type,
where sigset_t , sysset_t , and fltset_t operands have values set by the call-
ing (controlling) program to specify the signal, system call, or fault condition of
interest. A stop on a system call entry occurs when the kernel is first entered (the
system call trap), before the argument list for the system call is read from the pro-
cess. System call exit stops have the process stop after the return value from the
system call has been saved. Fault stops also occur when the kernel is first entered;
fault conditions generate traps, which force the code into a kernel trap handler.
Signal stops are tested for at all the points where a signal is detected, on a return
from a system call or trap, and on a wakeup (see “Signals” on page 324).

Address space watch directives allow a controlling process to specify a virtual
address, range (in bytes), and access type (e.g., read or write access) for a segment
of a process’s virtual address space. When a watched event occurs, a watchpoint
trap is generated, which typically causes the process or LWP to stop, either
through a trace of a FLTWATCH fault or by an unblocked SIGTRAP signal.

In some cases, the extraction of process information and process control requires
the controlling process to have the target process perform specific instructions on

PCUNSET long Unsets mode(s) in process/LWP
PCSREG prgregset_t Sets LWP’s general registers from arg.
PCSFPREG prfpregset_

t
Sets LWP’s floating-point registers from arg.

PCSXREG prxregset_t Sets LWP’s extra registers from arg.
PCNICE long Sets nice  value from arg.
PCSVADDR long Sets PC (program counter) to virtual address in arg.
PCWATCH prwatch_t Sets or clears watched memory area from arg.
PCAGENT prgregset_t Creates agent LWP with register values from arg.
PCREAD priovec_t Reads from the process address space through arg.
PCWRITE priovec_t Writes to process address space through arg.
PCSCRED prcred_t Sets process credentials from arg.
PCSASRS asrset_t Sets ancillary state registers from arg.

Table 8-3 procfs Control Messages  (Continued)

Control
Message

Operand
(arg)

Description
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its behalf. For example, the pfiles (1) command, which lists the open files of a
process and provides information about each opened file, requires the target pro-
cess to issue a stat (2) system call on each of its open file descriptors. Since the
typical process running on a Solaris system spends a fair amount of its time block-
ing on a system call (not related to procfs), getting control of the target process to
perform a specific task requires grabbing the process while it is blocked and pre-
serving the system call state, so it can be restored and resume properly when the
controlling process has had its request satisfied.

Procfs implements an agent LWP for this purpose. Rather than complicating
state preservation and restoration by using an existing LWP in the target process,
procfs provides a facility for creating an agent LWP (note the PCAGENTcontrol
message). When an agent LWP is created, it remains the only runnable LWP in the
process for the duration of its existence. The agent LWP controls the execution of
the target process as required to satisfy the controlling process’s request (e.g., exe-
cutes system calls within the target process). When completed, the agent LWP is
destroyed and the process/LWP state is restored. The proc structure maintains a
pointer, p_agenttp , that is linked to the agent LWP when one is created. A test on
this pointer in various areas of the kernel determines whether an agent LWP
exists for the process.

The finer details of the process control directives, how to use them, and the sub-
tleties of the behavior they create are well documented in the proc (4) manual
page.

Among its many benefits, procfs enables us to track and extract information
about process resource utilization and state changes—the subject of the next sec-
tion.

8.6.2  Process Resource Usage

The kernel supports the gathering of relatively fine-grained resource-utilization
information in the process framework. Resource usage data is a collection of
counters, embedded in a structure called lrusage . Both the process and LWP con-
tain an lrusage structure. Data is collected (the counters incremented) during
LWP execution. When an LWP terminates, the lrusage data is copied from the
LWP to the process-level lrusage structure. Thus, the data reflected at the pro-
cess level represents the sum total for all the LWPs in the process. Table 8-4
describes the lrusage  counters.

Table 8-4 lrusage Fields

Field Description
minflt Minor page faults (a page fault resolved without a disk I/O).
majflt Major page faults (disk I/O required). Incremented in the ker-

nel block I/O pageio_setup()  routine, which sets up a buf
struct for a page.
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The resource utilization counters do not require enabling microstate accounting for
the process or LWP. They are accessible through the usage structure maintained
by procfs, where /proc/<PID>/usage represents the process level usage and
/proc/<PID>/lwp/<LWP_ID>/lwpusage represents the per-LWP usage data.
See the source code in Appendix C,  “A Sample Procfs utility”.

Within the process, the operating system maintains a high-resolution time-
stamp that marks process start and terminate times. A p_mstart field, the pro-
cess start time, is set in the kernel fork() code when the process is created, and
the process termination time, p_mterm , is set in the kernel exit() code. Start and
termination times are also maintained in the LWP when microstate accounting is
enabled. The associated process’s p_mlreal field contains a sum of the LWP’s
elapsed time, as derived from the start and terminate times.

The system uses an internal gethrtime() routine,
get_high_resolution_time (there is an equivalent gethrtime (3C) API).
When get_high_resolution_time is called, it returns a 64-bit value expressed
in nanoseconds. The value is not related to current time and thus is only useful
when used in conjunction with a subsequent call to gethrtime() . In that case,

nswap Number of times the LWP was swapped out. Incremented in
the LWP swapout()  code.

inblock Number of input blocks. Incremented in the kernel block I/O
subsystem (bio.c ) for block device reads.

outblock Number of output blocks. As above, incremented in bio.c  for
block device writes.

msgsnd STREAMS messages sent. Incremented in the STREAMS
common code for putmsg() .

msgrcv STREAMS messages received. Incremented in the STREAMS
common code for getmsg() .

nsignals Number of signals received. Incremented in the kernel
psig()  code, where the LWP is set up to run the signal han-
dler.

nvcsw Number of voluntary context switches. Incremented when an
LWP blocks (is put to sleep), waiting for an I/O or synchroniza-
tion primitive.

nivcsw Number of involuntary context switches. Incremented when
an LWP is context-switched because it uses up its alloted time
quantum or is preempted by a higher-priority kthread.

sysc Number of system calls. Incremented in the system call trap
handler.

ioch Characters read and written. Incremented in the read/write
system call code.

Table 8-4 lrusage Fields  (Continued)

Field Description
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the difference in the return values from the first call and the second call yields a
high-resolution measurement of elapsed time in nanoseconds. This is precisely
how it is used when microstate accounting is enabled. For example, the difference
between the value of p_mstart , which is set during process creation, and
p_mterm , which is set when the process terminates, yields the elapsed time of the
process. p_mlreal is the sum total elapsed time, taken in a similar fashion, for
the process’s LWPs. The fine-grained, nanosecond-level values are derived from a
hardware register in the processor that maintains a count of CPU clock cycles (on
UltraSPARC processors, it’s the TICK register). Processor-specific conversion rou-
tines convert the register value to nanoseconds, based on processor clock speeds.

8.6.3  Microstate Accounting

The kernel also supports the notion of microstate accounting, that is, the timing of
low-level processing states when microstate accounting is explicitly enabled.
Appendix C, “A Sample Procfs utility”, contains the source code for a simple pro-
gram that turns microstate accounting on for a process and dumps the microstate
accounting state times and resource usage counters (described above).

Microstate accounting is the fine-grained retrieval of time values taken during
one of several possible state changes that can occur during the lifetime of a typical
LWP. The timestamps are maintained in arrays at the LWP and process level. As
was the case with resource utilization, the LWP microstates are recorded during
execution, and the array in the process is updated when the LWP terminates. The
microstate accounting (and resource usage structures) for the process and LWP are
shown below.

Process level usage and microstate accounting (from /usr/include/sys/proc.h):

        /*
         * Microstate accounting, resource usage, and real-time profiling
         */
        hrtime_t p_mstart;              /* hi-res process start time */
        hrtime_t p_mterm;               /* hi-res process termination time */
        hrtime_t p_mlreal;              /* elapsed time sum over defunct lwps */
        hrtime_t p_acct[NMSTATES];      /* microstate sum over defunct lwps */
        struct lrusage p_ru;            /* lrusage sum over defunct lwps */

LWP level usage and microstate accounting data (from /usr/include/sys/klwp.h):

       struct mstate {
                int ms_prev;                    /* previous running mstate */
                hrtime_t ms_start;              /* lwp creation time */
                hrtime_t ms_term;               /* lwp termination time */
                hrtime_t ms_state_start;        /* start time of this mstate */
                hrtime_t ms_acct[NMSTATES];     /* per mstate accounting */
        } lwp_mstate;

        /*
         * Per-lwp resource usage.
         */
        struct lrusage lwp_ru;
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By default, microstate accounting is disabled to keep overhead down to a mini-
mum. Turning microstate accounting on must be done programmatically by means
of /proc . The process control file, /proc/<pid>/ctl , must be opened and a con-
trol message sent in the form of a write (2) to the control file, which requires an
operator (PCSET) and an operand (PR_MSACCT). Here is a partial code example of
how to enable microstate accounting in a process.

Once microstate accounting is enabled, it is reflected in a flag at the process level
(SMSACCTin the proc structure’s p_flag field) and at the LWP/kthread level
(TP_MSACCTin the t_proc_flag field). The kernel lwp_create() code tests the
process level SMSACCTflag to determine if microstate accounting has been enabled.
If it has, then lwp_create() sets the TP_MSACCTflag in the kernel thread. Also
lwp_create() initializes the microstate accounting structure, lwp_mstate ,
regardless of the state of the SMSACCTflag. This allows the kernel to set the start
time (ms_start in the LWP’s lwp_mstate structure) and initialize the
ms_acct[]  array.

The kernel implementation of microstate accounting requires only four kernel
functions:

• The initialization function init_mstate()

• An update function, new_mstate() , called during state changes
• A function, term_mstate() , to update the process-level data when an LWP

terminates
• A function, restore_mstate() , called from the dispatcher code when an

LWP/kthread has been selected for execution

At various points, the kernel code tests the TP_MSACCTflag to determine if
microstate accounting is enabled; if it is, the code updates the current microstate
by a call into the new_mstate() function, which is passed as an argument a flag
indicating the new microstate.

The microstates defined by the kernel can be found in
/usr/include/sys/msacct.h . They reflect the basic execution states of an
LWP/kthread: running, sleeping, or stopped. What they provide is finer-grained
information about a particular state, such as why an LWP/kthread was sleeping,
what mode it was running in, etc. Table 8-5 describes the microstates, as main-
tained in the procfs process prusage  structure.

int control[2];
int cfd; /* control_file_descriptor */
control[0] = PCSET;
control[1] = PR_MSACCT;
cfd=open(“/proc/<pid>/ctl”,O_WRONLY);
write(cfd, control, sizeof(control));
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The microstate measurements are taken as follows. init_mstate() initializes
the microstate date of a new LWP/kthread when the LWP/kthread is created. The
init_mstate()  function performs the following actions (see the previous page).

• Set the previous microstate, ms_prev , to LMS_SYSTEM.

• Set ms_start  to return value of the gethrtime()  call.

• Set ms_state_start  to return the value of gethrtime()  call.

• Set t_mstate  in the kernel thread to LMS_STOPPED.

• Set t_waitrq  in the kernel thread to zero.
• Zero the msacct[]  array.

The LWP/kthread microstate data is thus initialized prior to executing for the
first time. The above initialization steps show two additional microstate-related
fields not yet discussed. In the kernel thread structure, the current microstate is
maintained in t_mstate , and t_waitrq calculates CPU wait time. We will see
where this comes into play in a moment.

During execution if TP_MSACCTis set, calls are made to the new_mstate() rou-
tine when a state transition occurs. The caller passes new_mstate() a state flag
(LMS_USER, LMS_SYSTEM, etc.) that stipulates the new state. The system calcu-
lates the time spent in the previous state by finding the difference between the
current return value of gethrtime() and the ms_state_start field, which was

Table 8-5 Microstates

prusage
Field

Flag Description

pr_utime LMS_USER User mode execution time.
pr_stime LMS_SYSTEM System (kernel) mode execution time.
pr_ttime LMS_TRAP Other system trap time (other meaning aside

from system call traps, which are accounted for
in pr_stime ).

pr_tftime LMS_TFAULT Time sleeping while waiting for a page fault on
a text page to be resolved.

pr_dftime LMS_DFAULT Time sleeping while waiting for a page fault on
a data page to be resolved.

pr_kftime LMS_KFAULT Time sleeping while waiting for a kernel page
fault to be resolved.

pr_ltime LMS_USER_LOCK Time sleeping while waiting for a user lock
(e.g., user-defined mutex lock).

pr_slptime LMS_SLEEP Any sleep time not accounted for in the above
fields.

pr_wtime LMS_WAIT_CPU Time spent waiting for an available CPU.
pr_stoptime LMS_STOPPED Time spent stopped (e.g., job control or debug).
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set during initialization and is reset on every pass through new_mstate() , mark-
ing the start time for a new state transition. The ms_acct[] array location that
corresponds to the previous microstate is updated to reflect elapsed time in that
state. Since the time values are summed, the current value in the ms_acct[] loca-
tion is added to the new elapsed time just calculated. Thus, the ms_acct[] array
contains the elapsed time in the various microstates, updated dynamically when
state changes occur. Lastly, the kernel thread’s t_mstate is set to reflect the new
microstate.

The calls into new_mstate() for the tracked microstates come from several
areas in the kernel. Table 8-6 lists the kernel functions that call new_mstate()
for specific state changes.

The last function to discuss apropos of microstate accounting is
restore_mstate() , which is called from a few places in the dispatcher code to
restore the microstate of an LWP just selected for execution. restore_mstate()
calculates the microstate time value spent in the previous state (typically a sleep)
by using the same basic algorithm described for the new_mstate() function, and
the previous state is restored from the ms_prev  field (lwp_mstate  structure).

When LWP/kthreads terminate, the microstate accounting data in the
ms_acct[] array, along with the resource usage counters, is added to the values
in the corresponding locations in the proc structure. Again, the process level
resource counters and microstate accounting data reflect all LWP/kthreads in the
process.

Table 8-6 Microstate Change Calls into new_mstate()

New state Called from
LMS_USER System call handler, on return from a system call.
LMS_SYSTEM System call handler, when a system call is entered.
LMS_TRAP Trap handler, when a trap occurs (including floating

point traps).
LMS_TFAULT Trap handler (text page fault).
LMS_DFAULT Trap handler (data page fault).
LMS_KFAULT Trap handler (kernel page fault).
LMS_USER_LOCK LWP support code, when a mutex lock is acquired.
LMS_SLEEP Turnstile code, when an LWP/kthread is about to block.
LMS_WAIT_CPU Dispatcher code. Not updated in new_mstate() , but

updated in restore_mstate()  (see text below).
LMS_STOPPED Signal code, when a job control stop signal is sent.
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8.7 Signals

Signals are a means by which a process or thread can be notified of a particular
event. Signals are often compared with hardware interrupts, when a hardware
subsystem, such as a disk I/O interface (e.g., a SCSI host adapter), generates an
interrupt to a processor as a result of an I/O being completed. The interrupt causes
the processor to enter an interrupt handler, so subsequent processing, based on the
source and cause of the interrupt, can be done in the operating system. The hard-
ware interrupt analogy maps pretty well to what signals are all about. Similarly,
when a signal is sent to a process or thread, a signal handler may be entered
(depending on the current disposition of the signal), analogous to the system enter-
ing an interrupt handler as the result of receiving an interrupt.

Quite a bit of history attaches to signals and design changes in the signal code
across various implementations of Unix. These changes in the implementation and
interfaces to signals were due in part to some deficiencies in the early implementa-
tion of signals, as well as the parallel development work done on different ver-
sions of Unix, primarily BSD Unix and AT&T System V. This history is
summarized in [25] and [10] and is not repeated here.

What does warrant mention here is that early implementations of signals were
deemed unreliable. The unreliability stemmed from the fact that, in the old days,
the kernel would reset the signal handler to its default if a process caught a signal
and invoked its own handler but the kernel’s reset occurred before the process’s
handler was invoked. Attempts to address this issue in user code by having the
signal handler first reinstall itself did not always solve the problem, because suc-
cessive occurrences of the same signal resulted in race conditions, where the
default action was invoked before the user-defined handler was reinstalled. For
signals that had a default action of terminating the process, this behavior created
some severe problems. This problem (and some others) were addressed in the
mid-1980s in 4.3BSD Unix and SVR3. The implementation of reliable signals—
where an installed signal handler remains persistent and is not reset by the ker-
nel—has been in place for many years now. The POSIX standards provide a fairly
well defined set of interfaces for using signals in code, and today the Solaris imple-
mentation of signals is fully POSIX compliant. Note that reliable signals require
the use of the newer sigaction (2) interface, as opposed to the traditional sig-
nal (3C) call. The signal (3C) library does not keep the handler persistent, result-
ing in the unreliable signal behavior.

The occurrence of a signal may be synchronous or asynchronous to the process or
thread, depending on the source of the signal and the underlying reason or cause.
Synchronous signals occur as a direct result of the executing instruction stream,
where an unrecoverable error such as an illegal instruction or illegal address refer-
ence requires an immediate termination of the process. Such signals are directed
to the thread whose execution stream caused the error. Because an error of this
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type causes a trap into a kernel trap handler, synchronous signals are sometimes
referred to as traps.

Asynchronous signals are, as the term implies, external (and in some cases
unrelated) to the current execution context. An obvious example is a process or
thread sending a signal to another process by means of a kill (2), _lwp_kill (2),
or sigsend (2) system call or by invocation of the thr_kill (3T),
pthread_kill (3T), or sigqueue (3R) library. Asynchronous signals are also
referred to as interrupts.

Every signal has a unique signal name: an abbreviation that begins with SIG,
such as SIGINT (interrupt signal), SIGILL (illegal instruction signal), etc., and a
corresponding signal number. For all possible signals, the system defines a default
disposition, or action to take, when a signal occurs. There are four possible default
dispositions.

• Exit — Terminate the process.
• Core — Create a core image of the process and terminate.
• Stop — Suspend process execution (typically, job control or debug).
• Ignore — Discard the signal and take no action, even if the signal is blocked.

A signal’s disposition within a process’s context defines what action the system will
take on behalf of the process when a signal is delivered. All threads and LWPs
within a process share the signal disposition—it is processwide and cannot be
unique among threads within the same process. (This is generally true; however,
[14] provides an example of setting up a per-thread signal handler based on the
process handler. We do not explore that subject in this text). In the process uarea ,
a u_signal[MAXSIG] array is maintained, with an array entry for every possible
signal that defines the signal’s disposition for the process. The array will contain
either a 0, indicating a default disposition, a 1, which means ignore the signal, or a
function pointer if a user-defined handler has been installed.

Table 8-7 describes all signals and their default action.

Table 8-7 Signals

Name Number Default
action

Description

SIGHUP 1 Exit Hang up (ref termio (7I))
SIGINT 2 Exit Interrupt (ref termio (7I))
SIGQUIT 3 Core Quit (ref termio (7I))
SIGILL 4 Core Illegal instruction
SIGTRAP 5 Core Trace or breakpoint trap
SIGABRT 6 Core Abort
SIGEMT 7 Core Emulation trap
SIGFPE 8 Core Floating-point arithmetic exception



326 The Solaris Multithreaded Process Architecture
SIGKILL 9 Exit Kill (cannot be caught or ignored)
SIGBUS 10 Core Bus error; actually, a misaligned address

error
SIGSEGV 11 Core Segmentation fault; typically, an

out-of-bounds address reference
SIGSYS 12 Core Bad system call
SIGPIPE 13 Exit Broken pipe
SIGALRM 14 Exit Alarm clock – setitimer (2), ITIMER_REAL,

alarm (2)
SIGTERM 15 Exit Terminated
SIGUSR1 16 Exit User-defined signal 1
SIGUSR2 17 Exit User-defined signal 2
SIGCHLD 18 Ignore Child process status changed
SIGPWR 19 Ignore Power fail or restart
SIGWINCH 20 Ignore Window size change
SIGURG 21 Ignore Urgent socket condition
SIGPOLL 22 Exit Pollable event (ref streamio (7I))
SIGIO 22 Exit aioread /aiowrite  completion
SIGSTOP 23 Stop Stop (cannot be caught/ignored)
SIGTSTP 24 Stop Stop (job control, e.g., ^z))
SIGCONT 25 Ignore Continued
SIGTTIN 26 Stop Stopped – tty input (ref termio (7I))
SIGTTOU 27 Stop Stopped – tty output (ref termio (7I))
SIGVTALRM 28 Exit Alarm clock – setitimer (2),

ITIMER_VIRTUAL
SIGPROF 29 Exit Profiling alarm – setitimer (2),

ITIMER_PROF, and ITIMER_REALPROF
SIGXCPU 30 Core CPU time limit exceeded (ref getrlimit (2)
SIGXFSZ 31 Core File size limit exceeded (ref getrlimit (2))
SIGWAITING 32 Ignore Concurrency signal used by threads library
SIGLWP 33 Ignore Inter-LWP signal used by threads library
SIGFREEZE 34 Ignore Checkpoint suspend
SIGTHAW 35 Ignore Checkpoint resume
SIGCANCEL 36 Ignore Cancellation signal used by threads library
SIGLOST 37 Ignore Resource lost
SIGRTMIN 38 Exit Highest-priority real-time signal
SIGRTMAX 45 Exit Lowest-priority real-time signal

Table 8-7 Signals  (Continued)

Name Number Default
action

Description
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SIGLOST first appeared in Solaris release 2.6. Releases 2.5. and 2.5.1 do not define
this signal and have SIGRTMIN and SIGRTMAXat signal numbers 37 and 44,
respectively. The kernel defines MAXSIG (available for user code in
/usr/include/sys/signal.h ) as a symbolic constant used in various places in
kernel signal support code. MAXSIGis 44 in Solaris 2.5 and 2.5.1, and 45 in Solaris
2.6 and Solaris 7. Also, SIGPOLL and SIGIO are both defined as signal number 22.
SIGIO is generated as a result of a process issuing an asynchronous read or write
through aioread (3) or aiowrite (3) (or the POSIX equivalent aio_read (3R) or
aio_write (3R)), to notify the process that the I/O is complete or that an error
occurred. SIGPOLL is a more generic indicator that a pollable event has occurred.

The disposition of a signal can be changed from its default, and a process can
arrange to catch a signal and invoke a signal handling routine of its own or can
ignore a signal that may not have a default disposition of ignore. The only excep-
tions to this are SIGKILL and SIGSTOP—the default disposition of these two sig-
nals cannot be changed. The interfaces for defining and changing signal
disposition are the signal (3C) and sigset (3C) libraries and the sigaction (2)
system call.

Signals can also be blocked, which means the process or thread has temporarily
prevented delivery of a signal. The generation of a signal that has been blocked
results in the signal remaining pending to the process until it is explicitly
unblocked or until the disposition is changed to ignore. Signal masks for blocking
signals exist within the kthread and at the user thread level; the t_hold struc-
ture member (the same name is used in both the kernel and user thread) is a
sigset_t data type, using set bits to represent signal that are blocked. The sig-
procmask (2) system call sets or gets a signal mask for the calling kthread. A non-
threaded process has one LWP/kthread pair; thus, t_hold in the kthread becomes
the processwide signal mask. An equivalent interface—thr_setsigmask (3T) and
pthread_sigmask (3T)—sets and retrieves the signal mask at the user-threads
level (t_hold  in the user thread structure).
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The psig (1) command lists the signal actions for a process. The example below
dumps the signal actions for our ksh  process; we omitted lines to save space.

Recall that a signal can originate from several different places, for a variety of rea-
sons. SIGHUP, SIGINT , and SIGQUIT, are typically generated by a keyboard entry
from the controlling terminal (SIGINT and SIGQUIT) or if the control terminal is
disconnected, which generates a SIGHUP. Note that use of the nohup (1) command
makes processes “immune” from hangups by setting the disposition of SIGHUP to
ignore. Other terminal I/O-related signals include SIGSTOP, SIGTTIN , SIGTTOU,
and SIGTSTP. For those signals that originate from a keyboard command, the
actual key sequence that results in the generation of these signals is defined
within the parameters of the terminal session, typically, by stty (1). For example,
^c [Control-C] is usually the interrupt key sequence and results in a SIGINT being
sent to a process, which has a default disposition of forcing the process to exit.

Signals generated as a direct result of an error encountered during instruction
execution start with a hardware trap on the system. Different processor architec-
tures define various traps that result in an immediate vectored transfer of control
to a kernel trap-handling function. The Solaris kernel builds a trap table and
inserts trap handling routines in the appropriate locations, based on the architec-
ture specification of the processors that the Solaris environment supports: SPARC
V7 (early sun4 architectures), SPARC V8 (SuperSPARC— sun4m and sun4d archi-
tectures), SPARC V9 (UltraSPARC—sun4u architectures), and Intel x86. (In Intel
parlance the routines are called Interrupt Descriptor Tables, or IDTs. On SPARC,
they’re called trap tables). The kernel-installed trap handler ultimately generates
a signal to the thread that caused the trap. The signals that result from hardware
traps are SIGILL , SIGFPE, SIGSEGV, SIGTRAP, SIGBUS, and SIGEMT. Table 8-8
lists traps and signals for UltraSPARC.

$ /usr/proc/bin/psig 448
448:    -ksh
HUP     caught  RESTART
INT     caught  RESTART
QUIT    caught  RESTART
ILL     caught  RESTART
TRAP    caught  RESTART
ABRT    caught  RESTART
EMT     caught  RESTART
FPE     caught  RESTART
KILL    default
BUS     caught  RESTART
SEGV    default
SYS     caught  RESTART
PIPE    caught  RESTART
ALRM    caught  RESTART
TERM    ignored
USR1    caught  RESTART
USR2    caught  RESTART
CLD     default NOCLDSTOP
PWR     default
        .
        .
        .
RTMAX   default
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Signals can originate from sources other than terminal I/O and error trap condi-
tions; process-induced (e.g., SIGXFSZ) and external events (kill() ) can also gen-
erate signals. For example:

• Applications can create user-defined signals as a somewhat crude form of
interprocess communication by defining handlers for SIGUSR1 or SIGUSR2
and sending those signals between processes. The kernel sends SIGXCPUif a
process exceeds its processor time resource limit or sends SIGXFSZ if a file
write exceeds the file size resource limit. A SIGABRT is sent as a result of an
invocation of the abort (3C) library. If a process is writing to a pipe and the
reader has terminated, SIGPIPE  is generated.

• kill (2), sigsend (2), or thr_kill (3T) does an explicit, programmatic send.
The kill (1) command sends a signal to a process from the command line;
sigsend (2) and sigsendset (2) programmatically send signals to processes
or groups of processes. The kernel notifies parent processes of a status change
in a child process by SIGCHLD. The alarm (2) system call sends a SIGALRM
when the timer expires.

A complete list can be found in any number of texts on Unix programming (see
[32]).

In terms of actual implementation, a signal is represented as a bit (binary digit)
in a data structure (several data structures actually, as we’ll see shortly). More
precisely, the posting of a signal by the kernel results in a bit getting set in a struc-

Table 8-8 UltraSPARC Traps and Resulting Signals

Trap Name Signal
instruction_access_exception SIGSEGV, SIGBUS
instruction_access_MMU_miss SIGSEGV
instruction_access_error SIGBUS
illegal_instruction SIGILL
privileged_opcode SIGILL
fp_disabled SIGILL
fp_exception_ieee_754 SIGFPE
fp_exception_other SIGFPE
tag_overflow SIGEMT
division_by_zero SIGFPE
data_access_exception SIGSEGV, SIGBUS
data_access_MMU_miss SIGSEGV
data_access_error SIGBUS
data_access_protection SIGSEGV
mem_address_not_aligned SIGBUS
privileged_action SIGILL
async_data_error SIGBUS
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ture member at either the process or thread level. Because each signal has a
unique signal number, we use a structure member of sufficient width, such that we
can represent every signal by simply setting the bit that corresponds to the signal
number of the signal we wish to post. For example, set the 17th bit to post signal
17, SIGUSR1 (which is actually bit number 16, because they start with 0, and the
signal numbers start with 1).

Since more than 32 signals are now possible in the Solaris environment, a long
or int data type is not wide enough to represent each possible signal as a unique
bit, so we need a data structure. (In 64-bit Solaris 7, a long is a 64-bit data type,
but the signal code was developed prior to the implementation of 64-bit data
types.) Several of the process data structures use the k_sigset_t data structure,
defined in /usr/include/signal.h , to store the posted signal bits. k_sigset_t
is an array of two unsigned long data types (array members 0 and 1), providing a
bit width of 64 bits, as shown in Figure 8.21. sigset_t , defined in signal.h , is
essentially the same thing as a k_sigset_t , except that it is twice the size (four
arrays in sigset_t  as opposed to two in k_sigset_t ).

 Figure 8.21 Signal Representation in k_sigset_t Data Type

8.7.1  Signal Implementation

Our discussion of the signal implementation in Solaris reflects code that first
appeared in Solaris 2.5. The discussion is applicable to all releases from Solaris 2.5
up to and including Solaris 7.

The multithreaded architecture of the Solaris environment made for some inter-
esting challenges in developing a means of supporting signals that comply with the
Unix signal semantics as defined by industry standards such as POSIX. Signals
traditionally go through two well-defined stages: generation and delivery. Signal
generation is the point of origin of the signal—the sending phase. A signal is said
to be delivered when whatever disposition has been established for the signal is
invoked, even if it is to be ignored. If a signal is being blocked, thus postponing
delivery, it is considered pending.

User threads in the Solaris environment, created by explicit calls to either
thr_create (3T) or pthread_create (3T), each have their own signal mask.
Threads can choose to block signals independently of other threads executing in
the same process; thus, different threads may be available to take delivery of dif-
ferent signals at various times during process execution. The threads libraries

typedef struct {
unsigned long __sigbits[2];

} k_sigset_t;

__sigbits[0]__sigbits[1]

0313263

signals posted by setting bit
number that corresponds to signal
number
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(POSIX and Solaris threads) provide the thr_sigsetmask (3T) and
pthread_sigmask (3T) interfaces for establishing per-user thread signal masks.
The disposition and handlers for all signals are shared by all the threads in a pro-
cess, such that a SIGINT (for example), with the default disposition in place, will
cause the entire process to exit. Signals generated as a result of a trap (SIGFPE,
SIGILL , etc.) are sent to the thread that caused the trap. Asynchronous signals,
which are all signals not defined as traps, are delivered to the first thread that is
found not blocking the signal.

The difficulty in implementing semantically correct signals in the Solaris envi-
ronment arises from the fact that user-level threads are not visible to the kernel;
thus, the low-level kernel signal code has no way of knowing which threads have
which signals blocked and, therefore, no way of knowing which thread a signal
should be sent to. Some sort of intermediary phase needed to be implemented:
something that had visibility both to the user thread signal masks and to the ker-
nel. The solution came in the form of a special LWP that the threads library cre-
ates for programs that are linked to libthread ; this LWP is called the aslwp (it’s
actually an LWP/kthread pair, remember, they always travel in pairs). The imple-
mentation of the aslwp extends the traditional signal generation and delivery
phases, by adding two additional steps: notification and redirection.

Generation -> Notification -> Redirection -> Delivery

Sending a signal (generation) to a process causes the aslwp to be notified, at
which point the aslwp looks for a thread that can take delivery of the signal. Once
such a thread is located, the signal is redirected to that thread and can then be
delivered. The exception to this rule is the sending of synchronous or trap signals
(listed in Table 8-8). A trap signal, such as a SIGSEGV, is not channeled through
the aslwp, but rather is delivered to the LWP/kthread that caused the trap, and
from there up to the user thread.

Before we delve into the mechanics of signal delivery, we should look at the data
types used to support signals in the process, LWP/kthread, and user thread struc-
tures.

Figure 8.22 illustrates all the structures, data types, and linked lists required to
support signals in Solaris. There are, of course, differences between a multi-
threaded process and a nonthreaded process. The figure shows a multithreaded
process (with only one user thread, for simplicity). Nonthreaded processes are a lit-
tle easier to deal with because they do not require the use of the aslwp for signal
redirection. The major data structures shown in Figure 8.22 are described in Table
8-9 and Table 8-10.

Table 8-9 sigqueue Structure

Field Name Data Type Description
sq_next pointer Pointer to sigqueue  structure for linked list
sq_info siginfo  struct Embedded siginfo  structure (see below)
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The sigqueue structure provides a framework for a linked list of siginfo struc-
tures, maintained at the process level, and for multithreaded processes at the
LWP/kthread level. siginfo stores various bits of information for many different
types of signals. Within the structure are several unions (and in some cases,
nested unions), so the available datum depends on how the structure is instanti-
ated during runtime. In the interest of readability, not all union declarations are
shown.

sq_func pointer Function pointer—references destructor func-
tion

sq_backptr pointer Points to data structure related to above

Table 8-9 sigqueue Structure  (Continued)

Field Name Data Type Description

proc

user
thread

LWP

kthread

p_sig
p_ignore
p_siginfo

p_sigqhdr
p_signhdr

}

lwp_sigaltstack
lwp_curinfo
lwp_siginfo
lwp_sigoldmask

t_sigqueue
t_sig
t_hold
_t_sig_check

p_aslwptp

k_sigset_t data types  (see previous figure)

uarea u_signodefer
u_sigonstack
u_sigresethand
u_sigrestart
u_sigmask[]
u_signal } signal disposition

aslwp kthread for
signal interception

linked list of queued signals

free pool of sigqueue
structs for pending signals

free pool of sigqueue
structs for signotify

siginfo struct

t_nosig
t_sig
t_hold
t_psig
t_ssig
t_bsig
t_olmask
t_si

}signal
bit masks

user
address
space

kernel
address
space

linked list of
siginfo structs

for multithreaded
processes}more signal

bit masks

p_notifsigs
p_sigqueue

 Figure 8.22 Signal-Related Structures
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The siginfo data is available to processes (well, programs really) that need to
know more about the reason a signal was generated. The sigaction (2) system
call programmatically provides this information. An optional SA_SIGINFO flag (in
the sa_flags field of the sigaction structure) results in two additional argu-
ments being passed to the signal handler (assuming of course that the signal dis-
position has been set up to be caught). The first argument is always the signal
number. A non-NULL second argument is a pointer to a siginfo structure
(described in Table 8-10), and a third argument is a pointer to a ucontext_t data
structure, which contains hardware context information (stack pointer, signal
mask, and general register contents) about the receiving process when the signal
was delivered. The siginfo data can be useful for debugging when a trap signal
is generated; for example, in the case of a SIGILL or SIGFPE, more specific infor-
mation about the underlying reason for the trap can be gleaned from the data the
kernel plugs into siginfo when getting ready to send a signal. (See the sigac-
tion (2), siginfo (5), and ucontext (5) manual pages.)

Table 8-10 siginfo Structure

Structure or
Union

Field
Name

Data Type Description

struct siginfo si_signo integer Signal number
si_code integer A code related to the signal
si_errno integer System call errno

union _proc Proc union datum instantiated in
kill (2), SIGCLD, and sigqueue()

pid pid_t PID
status int SIGCLD –child exit status
stime clock_t child system time
utime clock_t child user time
uid uid_t UID, kill
value int

union  _fault Fault union for SEGV, BUS, ILL ,
TRAP, FPE

addr caddr_t fault address
trapno int trap number
pc caddr_t program counter

union _file File union for POLL, XFSZ
fd int file descriptor
band int band

union _prof
faddr caddr_t last fault address
tstamp timestruct timestamp
syscall short system call number
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At the process level, there are three k_sigset_t structures (see Figure 8.22 on
page 332):

• The p_sig  field has a bit set for each signal pending for the process

• p_ignore  represents signals with the disposition set to ignore
• p_siginfo indicates there is information in a siginfo structure about the

signal.

The siginfo data structure is embedded in the sigqueue structure, a linked list
of which is rooted in the process p_sigqueue pointer for any signals queued to the
process. siqueue structures are allocated from a pool pointed to by p_sigqhdr .
The pool of sigqueue structures is allocated the first time a sigqueue (2) system
call is executed by the process. Thirty-two (the default) sigqueue structures are
linked to form the available pool. An additional pool is rooted at the p_signhdr
for signotify calls. (The signotify (2) system call is not currently exposed as an
API in Solaris—it’s used internally from within the POSIX message queue facil-
ity.) Signals that have reached the notification phase—they’ve been generated but
not yet delivered—are represented in the p_notifsigs field, along with a condi-
tion variable, p_notifcv , for synchronization between the aslwp and the process.

In the embedded uarea , several bit maps are maintained for flagging various
signal-related events or forcing a particular behavior, settable by the sigac-
tion (2) system call. An array of pointers exists to signal dispositions:
u_signal[MAXSIG] , which contains one array entry per signal. The entries in the
array may indicate the signal is to be ignored (SIG_IGN ) or the default action is
set (SIG_DEF). If the signal is to be caught, with a handler installed by sig-
nal (3C) or sigaction (2), the array location for the signal points to the function to
be invoked when the signal is delivered. The uarea signal fields are described in
the following list. The described behavior occurs when a signal corresponding to a
bit that is set in the field is posted.

• u_sigonstack — Flags an alternate signal stack for handling the signal.
Assumes sigaltstack (2) has been called to set up an alternate stack. If one
has not been set up, the signal is handled on the default stack. Set by sigac-
tion (2), with the SA_ONSTACKflag in sa_flags field of sigaction struc-
ture.

• u_sigresethand — Resets the disposition to default (SIG_DEF) when the
handler is entered for the signal. The signal will not be blocked when the
handler is entered. As above, set by SA_RESETHAND in sa_flags .

nsysarg char number of sys call args
fault char last fault code

Table 8-10 siginfo Structure  (Continued)

Structure or
Union

Field
Name

Data Type Description
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• u_sigrestart — If inside a system call when the signal is received, restarts
the system call. This behavior does not work for all system calls, only those
that are potentially “slow” (e.g., I/O-oriented system calls—read (2),
write (2), etc). Interrupted system calls typically result in an error, with the
errno being set to EINTR. Set by SA_RESTART in sa_flags .

• u_signodefer — Does not block subsequent occurrences of the signal when
it is caught. Normally, a signal is blocked when it has been delivered and a
handler is executed. Set by SA_NODEFER in sa_flags .

• u_sigmask[] — Signals that have been caught and are being held while a
handler is executing.

• u_signal[]  — Signal dispositions.

The LWP stores the current signal in lwp_cursig and stores a pointer to a sig-
queue struct with the siginfo data for the current signal in lwp_curinfo ,
which is used in the signal delivery phase.

Other fields include a stack pointer if an alternate signal stack,
lwp_sigaltstack , is set up by a call to sigaltstack (2). It is sometimes desir-
able for programs that do their own stack management to handle signals on an
alternate stack, as opposed to the default use of the thread’s runtime stack
(SA_ONSTACKthrough sigaction (2) when the handler is set). The kernel thread
maintains two k_sigset_t members: t_sig and t_hold . t_sig has the same
meaning as p_sig at the process level, that is, a mask of pending signals; t_hold
is a bit mask of signals to block.

In addition, t_sigqueue points to a sigqueue for siginfo data. A signal’s
siginfo structure will be placed either on the process p_sigqueue or the
kthread’s t_sigqueue . The kthread t_sigqueue is used in the case where a
non-NULL kthread pointer has been passed in the kernel signal code, indicating a
directed signal, for example, a multithreaded process with more than one LWP.

Finally, for multithreaded processes, the user thread (not to be confused with
the kernel thread) maintains signal masks for pending signals (t_psig ), sent sig-
nals (t_ssig ), bounced signals (t_bsig —more on bounced signals later), and sig-
nals to be blocked (t_hold ). There is also a siginfo structure for deferred
signals, referenced as t_si .

Clearly, there appears to be more than a little redundancy in the signal support
structure members spread throughout the various entities that exist within the
context of a process. This redundancy is due to the requirements for support of the
multithreaded model and the fact that different signals get posted to different
places, depending on the signal itself and the source. Earlier in the discussion, we
provided several examples of why some signals are sent and where they originate.
Asynchronous signals could originate from a user or from various places in the
kernel. Signals that are sent from userland (e.g., kill (1), kill (2), sigqueue (2))
are sent to the process. Some signals that originate in the kernel are directed to a
particular LWP/kthread; for example, the kernel clock interrupt handler may send
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a SIGPROFor SIGVTALRMdirectly to a LWP/kthread. The pthread_kill (3T) and
thr_kill (3T) threads library interfaces provide for sending asynchronous signals
to a specific user thread. The STREAMS subsystem sends SIGPOLL and SIGURGto
the process when appropriate (e.g., polled event occurs or urgent out-of-band mes-
sage is received).

Regardless of the source of the signal, the ultimate delivery mechanism through
the operating system is the kernel sigtoproc() function, which takes up to four
arguments: a process pointer, a kernel thread pointer, the signal number, and an
optional flag, fromuser , which indicates whether the source of the signal was the
kernel or user. Signals that should be directed to a kthread/LWP call sigto-
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proc() with a valid kthread pointer. A NULL kthread pointer indicates the signal
should be posted to the process. Let’s take a look at the code flow of sigtoproc() .

Before moving on, we want to reiterate a few key points: a refresher on what the
forest looks like before we examine the trees.

First, a high-level view of what sigtoproc() does. The sigtoproc() kernel
function posts a signal to a process or kthread, which simply means “set the bit in
the process’s p_sig field that corresponds to the signal.” If sigtoproc() is passed
a non-NULL kernel thread pointer and the signal is directed, the signal is posted to
the LWP/kthread, meaning the correct bit gets set in the kthread t_sig field. Non-

sigtoproc(proc pointer, kthread pointer, int signal, fromuser flag)
        if (signal == SIGKILL) /* kill signal */
                Set SKILLED in p_flags
                Set kthread pointer to NULL
        else if (signal == SIGCONT) /* continue - job control */
                Delete queued siginfo structs for pending STOP signals
                (SIGSTOP, SIGTSTP, SIGTTOU, SIGTTIN)
                if (process has an aslwp thread) /* multithreaded processes */
                        Clear SIGSTOP, SIGTSTP, SIGTTOU, SIGTTIN in aslwp t_sig
                        Clear SIGSTOP, SIGTSTP, SIGTTOU, SIGTIN in p_notifsigs
                if (process has more than one kthread)
                        Loop through kthread linked list
                                Delete siginfo structs for STOP, TSTP, TTOU, TTIN
                        End loop
                else /* process has one kthread */
                        Clear STOP, TSTP, TTOU, TTIN in p_sig
        Clear p_stopsig
        if (process is multithreaded)
                Loop through kthread linked list
                        if (thread is stopped due to job control)
                                Set kthread t_schedflag to TS_XSTART
                                Call setrun /* get the thread running */
                End loop
        if (signal is STOP or TSTOP or TTOU or TTIN)
                Set kthread pointer to the process aslwp thread
                Delete any siginfo structures for queued SIGCONT
                if (process is multithreaded)
                        Clear pending SIGCONT in aslwp
                        Clear pending SIGCONT in p_notifsigs
                        Loop through linked list of kernel threads
                                Delete queued SIGCONT siginfo structures
                                Clear pending SIGCONT in t_sig
                        End loop
                else /* process is not multithreaded */
                        Clear pending SIGCONT in p_sig
        if (signal is discardable)
                return
        if (process has an aslwp kernel thread)
                Set signal bit in aslwp t_sig
                Call eat_signal()
        else if (process is multithreaded)
                Set the signal bit in process p_sig
                Loop through linked list of kernel threads
                        if (eat signal)
                                break out of loop
                if (signal is SIGKILL)
                        Try to run a kthread so signal can be delivered
                End Loop
End sigtoproc
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directed asynchronous signals are channeled through the aslwp for redirection to
the first user thread it can find that’s not masking the signal. Clearly, that’s an
oversimplification, as the previous pseudocode flow of the function indicates, but
it’s a good place to start.

The second key point to keep in mind is the different phases involved in process-
ing signals. We mentioned earlier how the Solaris implementation extends the tra-
ditional Unix model of signal generation and delivery by imposing a notification
and redirection phase, to support the multithreaded model while maintaining a
semantically correct signal implementation. Once a signal has reached its final
destination—meaning that the siginfo structure has been placed on the queue
and the correct bit has been set in the process, LWP/kthread, or user thread—the
existence of a signal must be made known to the process/thread so action can be
taken. When you consider that a signal is represented by the setting of a bit in a
data structure, it seems intuitive that the kernel must periodically check for set
bits (i.e., pending signals). This is, in fact, precisely how delivery is done. The ker-
nel checks for posted signals at several points during the typical execution flow of
a process:

• Return from a system call

• Return from a trap

• Wake up from a sleep

In essence, the determination of the existence of a signal is a polling process,
where the signal fields in the process p_sig and kthread t_sig fields are exam-
ined frequently for the presence of a set bit. Once it is determined that a signal is
posted, the kernel can take appropriate action, based on the signal’s current dispo-
sition in the context of the process that received it.

Figure 8.23 illustrates the process.
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 Figure 8.23 High-Level Signal Flow

This signal flow explains why zombie processes cannot be killed (any horror
movie fan knows you can’t kill a zombie). A process must be executing in order to
take delivery of a signal. A zombie process is, by definition, a process that has ter-
minated. It exists only as a process table entry, with all of its execution state hav-
ing been freed by the kernel.

A lot of the up-front work in sigtoproc() deals with job control and the termi-
nal I/O signals. In compliance with the POSIX specifications, this behavior is docu-
mented in the signal (5) manual page, which we summarize here: Any pending
SIGCONTsignals are discarded upon receipt of a SIGSTOP, SIGTSTP, SIGTTIN , or
SIGTTOU signal, regardless of the disposition. The inverse is also true; if any of
those four signals are pending when a SIGCONTis received, they are discarded,
again regardless of the disposition. In both cases, the posted signal will be deliv-
ered following the flow described in “Synchronous Signals,” below.

8.7.1.1  Synchronous Signals

Synchronous signals, or trap signals, originate from within the kernel trap han-
dler. When an executing instruction stream causes one of the events described in
Table 4.2, it is detected by the hardware and execution is redirected to a kernel
trap handler. The trap handler code populates a siginfo structure with the
appropriate information about the trap and invokes the trap_cleanup() func-
tion, where the function determines whether to stop the kthread/LWP because of a
debugger “stop on fault” flag. The entry point into the kernel signal subsystem is
through the trapsig() function, which is executed next. If the signal is masked
or the disposition has been set to ignore, then trapsig() unmasks the signal and
sets the disposition to default. The siginfo structure is placed on the kthread’s
t_sigqueue  list, and sigtoproc()  is called to post the signal.

With reference to the sigtoproc() pseudocode flow on page 337, the posting
of a trap signal occurs at the segment shown below.

The signal will be added to the t_sig field in the kthread, and the eat_signal()
function is invoked. The job of eat_signal() is to make sure the kthread is going
to take delivery of the signal quickly—a sleeping thread is made runnable, taken
off the sleep queue, and put on a dispatch queue, and the t_astflag in the
kthread structure is set. The t_astflag will force the thread to check for a signal
when execution resumes. With the signal now posted, sigtoproc() is done, and
the code returns to trap_cleanup() . The cleanup code invokes the
ISSIG_PENDING macro, which will determine from the bit set in the t_sig field

/* sigtoproc was passed a non-NULL kthread pointer,
 * indicating a directed signal
 */
Set signal bit in aslwp kernel threadUs t_sig (sigaddset())
Call eat_signal()
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that a signal has been posted. Once the macro establishes the presence of the sig-
nal, it invokes the kernel psig()  function to handle actual delivery.

The system defines several macros for speeding up the examination of the proc
p_sig and kthread t_sig fields for the presence of a posted signal. The defini-
tions below are from /usr/include/sys/proc.h .

As you can see, ISSIG and ISSIG_FAST resolve to ISSIG_PENDING, which per-
forms a logical OR on the p_sig and t_sig fields, logically ANDing that result
with the return value of issig(why) .

The issig() function is the last bit of work the kernel does before actual sig-
nal delivery. The “why” argument passed to issig will be one of JUSTLOOKINGor
FORREAL. The, JUSTLOOKINGflag causes issig() to return if a signal is pending
but does not stop the process if a debugger requests a stop. In the case of a trap
signal, issig() is passed FORREAL, which causes the process to be stopped if a
stop has been requested or a traced signal is pending. Assuming no special debug-
ger flags or signal tracing, the kernel invokes the psig() signal delivery function
to carry out the delivery phase, based on the current disposition of the signal.

8.7.1.2  Asynchronous Signals

Asynchronously generated (interrupt) signals can originate from a user command
or program or from somewhere inside the kernel. Such signals are channeled
through the aslwp in multithreaded programs. For nonthreaded code, the signal is
delivered to the kernel thread within the process.

The aslwp essentially loops forever in an internal call to a function similar to
the sigwait (2) system call. When a signal is generated by kill (1), kill (2),
thr_kill (3T), sigqueue (2), etc., or from within the kernel, the sigtoproc()

#define ISSIG(t, why)ISSIG_FAST(t, ttolwp(t), ttoproc(t), why)

/*
 * Fast version of ISSIG.
 *1. uses register pointers to lwp and proc instead of reloading them.
 *2. uses bitwise OR of tests, since the usual case is that none of them
 *   are true; this saves orcc’s and branches.
 *   are true; this saves orcc’s and branches.
 *3. loads the signal flags instead of using sigisempty() macro which does
 *   a branch to convert to boolean.
 */
#define ISSIG_FAST(t, lwp, p, why)\
(ISSIG_PENDING(t, lwp, p) && issig(why))

#define ISSIG_PENDING(t, lwp, p)\
((lwp)->lwp_cursig |\
    (p)->p_sig.__sigbits[0] |\
    (p)->p_sig.__sigbits[1] |\
    (t)->t_sig.__sigbits[0] |\
    (t)->t_sig.__sigbits[1] |\
    (p)->p_stopsig |\
    ((t)->t_proc_flag & (TP_PRSTOP|TP_HOLDLWP|TP_CHKPT|TP_PAUSE)) | \
    ((p)->p_flag & (EXITLWPS|SKILLED|HOLDFORK1|HOLDWATCH)))

Header File <sys/proc.h>
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function is invoked to post the signal. After sigtoproc() completes the up-front
work for dealing with the tty and job control signals, it determines whether an
aslwp exists within the process and sets the correct signal bit in the aslwp’s t_sig
signal mask.

This action wakes up the aslwp, which is looping on an internal sigwait func-
tion. When the aslwp first enters its wait function, it unmasks all signals (clears
all the bits in the kernel-thread signal mask t_hold ). It checks for any pending
signals in the notification mask, maintained at the process level in p_notifsigs .
Recall that notification follows signal generation and precedes redirection and
delivery. Once the aslwp detects the posted signal, it adds it to the notification
mask, signifying that it has been notified but that the signal has not yet been
delivered. The internal sigwait code moves a new signal from the t_sig field in
the aslwp’s kernel thread to the p_notifsigs  bit mask.

With the signal set in the notification mask, it’s time for the aslwp to look for a
thread that isn’t masking the signal so it can be delivered. An internal
thr_sigredirect function conducts this procedure by adding the signal to the
user thread’s t_bsig field (a “bounced” signal; it was bounced from the aslwp to
the user thread).

That done, the signal must be moved to the kthread/LWP to be detected by the
ISSIG macro. Remember, the kernel examines the kthread t_sig and the process
p_sig fields for a posted signal. The kernel cannot “see” user threads, so an addi-
tional function call is invoked to move the signal to the kthread’s t_sig field. The
function itself is a kernel-level redirect routine; it redirects the signal based on the
lwpid, which is maintained in the user thread structure. If the user thread isn’t
currently running on an LWP/kthread, then the signal remains pending in the
user thread’s t_bsig mask. The user-level threads library scheduler detects the
pending signal when the user thread is scheduled on an LWP/kthread and invokes
the redirect function to post the signal at the LWP/kthread level.

Summarizing the sequence of events, we have a thread (aslwp) looping in a
function waiting for signals. Signal generation causes the wait function to move
the signal to a notification set, which completes the notification phase. The signal
is then redirected, first at the user-thread level to the thread’s t_bsig field, and
then down to the LWP/kthread through a couple of redirect functions. Once posted
at the kthread level, the signal is detected by means of the ISSIG macro calls,
which are invoked on returns from system calls, traps, and on wakeups from a
sleep. If a signal is present, the macro calls the kernel psig() function, which is
where signal delivery takes place.

psig() sets up the correct state (stack, registers) for the handling of the signal
in two cases: if a handler has been set up by sigaction (2) or signal (3) or if the
default disposition of the signal requires something other than ignoring the signal
(like stopping the process, terminating the process, or terminating and generating
a core file). Remember, signal disposition is processwide—whatever signal handler
code runs potentially affects all the threads in a multithreaded process.
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8.7.2 SIGWAITING: A Special Signal

The execution of a user-level thread requires the availability of an LWP/kthread
for the user thread to get scheduled onto. That part is done by a dedicated schedul-
ing thread in the threads library. (User threads have their own priority scheme
and a threads library dispatcher that selects the next user thread to execute.
There are quite a few similarities architecturally between the threads library dis-
patcher and the kernel dispatcher.) Threads do not need to be bound to an LWP
when created, and it is not uncommon in multithreaded programs to have many
unbound threads scheduled onto a smaller pool of LWPs. Deciding on the optimal
ratio of LWPs to user threads is not always straightforward, and suboptimal per-
formance can result from having either too many or too few LWPs. Excess LWPs
are more work for the kernel to manage; not enough LWPs can result in runnable
user threads hanging around waiting for an LWP to become available, slowing
overall execution.

The thr_setconcurrency (3T) interface enables a programmer to provide
hints to the operating system as to how many LWPs it should make available for
the process. LWPs can also be created in the thr_create (3T) call (THR_NEW_LWP
flag), and a user thread can be bound to an LWP with the THR_BOUND flag set.

8.8 Sessions and Process Groups

The kernel creates several groupings of processes representing different abstrac-
tions by which it manages various aspects of process control. In addition to the
family hierarchy of process parent/child, the kernel implements process groups and
links processes associated with the same terminal session. Both sessions and pro-
cess groups are collections of one or more processes that have a common relation-
ship or ancestry. The two abstractions, sessions and process groups, are intimately
related to each other and tied closely to the signal and terminal (tty) subsystems.

Historically, process groups and sessions arose from the desire to increase the
power and flexibility available to Unix users: developers, systems administrators,
and end users. The groups and sessions enable users to run multiple, concurrent
jobs from a single login session, to place jobs in the background, bring them into
the foreground, suspend and continue jobs, and toggle which job is actively con-
nected to the control terminal (the foreground job).

The kernel maintains process groups and session links to establish an event
notification chain in support of job control shells. The signal facility starts and
stops processes (or jobs in this context), puts processes in the background, and
brings them into the foreground. Using the process group linkage makes signal
delivery to multiple, related processes much easier to implement. Adding the ses-
sions abstraction puts a boundary between the process group jobs and the interac-
tive login session.
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Every process belongs to a process group, identified by the p_pgidp pointer in
the process structure, and is established in the kernel fork code when the process
is created. Thus, processes in the same parent/child/sibling chain, by default
belong to the same process group. The process group ID (PGID) is the process PID
of the process group leader. That is, every process group has a process group
leader, where the PID and PGID are the same. Sibling processes are assigned the
PGID of the parent process; thus, the PGID of siblings will be the PID of the pro-
cess group leader.

When a stand-alone process is started from a shell, it is placed in its own pro-
cess group with the setpgid (2) system call, invoked from the shell code after the
process is created with fork (2). Processes grouped on a command line (e.g., a pipe-
line) will all be part of the same process group. The first process created becomes
the process group leader of the new process group, and subsequent processes in the
pipeline are added to the group. Here’s a quick example.

ksh> cat report_file | sort -1 +2 | lp &

The shell in the above example is the Korn shell. Three processes will be cre-
ated, one each for cat (1), sort (1), and lp (1), and all placed in the same process
group. That group will be put in the background, where the above job crunches
away while an interactive user session continues. In this context, a job refers to
processes in the same process group working toward a common goal and con-
nected by pipes. The proper job control keystrokes (Control-Z in /bin/ksh ) could
stop all the processes in the group, sending a SIGTSTP signal to all the processes
in the process group. The setpgid (2) system call places the processes in the same
process group. Although process groups are most commonly created from the user’s
shell, an application program can use the setpgid (2) or setpgrp (2) system calls
to create new process groups.

Process groups can be in the foreground or the background. The foreground pro-
cess group is the process group that has access to the controlling terminal, mean-
ing that input characters are sent to the foreground process group and output
characters (writes to stdout and stderr) are sent to the controlling terminal. Back-
ground process groups cannot read from or write to the controlling terminal. An
attempt to read from or write to the controlling terminal by a process in a back-
ground process group results in a SIGTTIN (read) or SIGTTOU (write) signal from
the kernel to the processes in the background process group. The default disposi-
tion for these signals is to stop the processes.

Processes belonging to the same process group are linked on a doubly linked list
by pointers in the process structure: p_pglink (points to the next process in the
process group), and p_ppglink (points to the previous process). Figure 8.24 illus-
trates the process group links and the ID name space links (pointers to the PID
structures).
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 Figure 8.24 Process Group Links

Figure 8.24 illustrates a process as the only member of a process group (upper dia-
gram), and three processes in the same process group (lower diagram). The pro-
cesses in the lower diagram that are not the process group leader obtain their
PGID by linking to the PID structure of the process group leader.

Process groups are a subset of sessions; a session has one or more process
groups associated with it. A session abstracts a process and the process’s control
terminal and extends the abstraction to include process groups. All the process
groups within a session have a common controlling terminal. Thus, all processes
belong to a process group and are associated with a session. Sessions are
abstracted by the session data structure, which the process links to through its
p_sessp pointer. As with process groups, sessions are inherited through the
fork()  code.

The control terminal is typically the login terminal the user connects to when
logging in to a Solaris system. The phrase control terminal is more an abstraction
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these days (as opposed to an actual, physical terminal) because most login ses-
sions are network based and the terminal is a window on the screen of a worksta-
tion, implemented by one of many terminal emulation utilities (xterm, dtterm,
shelltool, cmdtool, etc.). Network logins (rlogin (1), telnet (1), etc.) are sup-
ported through the use of pseudoterminals, which are software abstractions that
provide terminal I/O semantics over a network link or through a window manager
running under the X Window System. (X windows is the network-transparent win-
dowing system that virtually all Unix vendors on the planet use for their Graphi-
cal User Interface (GUI)-based workstation environments).

A control terminal is associated with a session, and a session can have only one
control terminal associated with it. A control terminal can be associated with only
one session. We sometimes refer to a session leader, which is the foreground pro-
cess or process group that has established a connection to the control terminal.
The session leader is usually the login shell of the user. It is the session leader that
directs certain input sequences (job control keystrokes and commands) from the
control terminal to generate signals to process groups in the session associated
with the controlling terminal. Every session has a session ID, which is the PGID of
the session leader.

The session abstraction is implemented as a data structure, the session struc-
ture, and some support code in the kernel for creating sessions and managing the
control terminal. The session structure includes the following:

• The device number of the control terminal device special file
• A pointer to the vnode for the control terminal device, which links to the

snode, since it’s a device
• UID and GID of the process that initiated the session

• A pointer to a credentials structure, which describes the credentials of the
process that initiated the session

• A reference count

• A link to a PID structure

The session ID is derived in the same way as the PGID for a process. That is, the
session structure will link to the PID structure of the process that is attached to
the control terminal, the login shell in most cases. Note that daemon processes,
which do not have a control terminal, will have a NULL vnode pointer in the ses-
sion structure. All processes will thus link to a session structure, but processes
without control terminals will not have the vnode link, that is, they have no con-
nection to a control device driver.

Figure 8.25 provides the big picture, illustrating a login session with a process
group and showing the links to the related data structures.
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 Figure 8.25 Process and Session Structure Links

Figure 8.25 provides two illustrations. The top diagram shows some detail of the
data structures and links for a simple case of a login session with two process
groups. One process group has only one process, the login shell. The other process
group has three processes. They all link to the session structure, which connects to
the device and device driver through the s_vp vnode pointer. The session leader is
the login shell, and the session ID is the PID of the login shell.

The lower illustration is a broader view, encapsulating a login session (a ses-
sion) with a shell process in its own process group, plus three additional process
groups. One process group is in the foreground, thus attached to the control termi-
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nal, receiving characters typed and able to write to the terminal screen. Job con-
trol shells use a ^Z (Control-Z) key sequence to place a foreground process/process
group in the background. A SIGTSTP signal is sent to all the processes in the
group, and the processes are stopped. If a process sets up a signal handler and
catches SIGTSTP, the handler is invoked and governs the process behavior.

The session leader (e.g., the shell) handles the communication link to the con-
trol terminal by using library calls that translate to ioctl() routines into the
STREAMS subsystem. (The character device drivers in Solaris for serial terminals
and pseudoterminals are STREAMS based.) The standard C library includes
tcsetpgrp (3) and tcgetpgrp (3) interfaces for setting and getting the process
group ID for a control terminal.

When processes or process groups are moved from the background into the fore-
ground, the session leader issues a tcsetpgrp (3) call to direct the control termi-
nal to the new foreground process. The tcsetpgrp (3) call results in an ioctl()
call into the tty/pty driver code with the TIOCSPGRPflag, which in turn enters the
STREAMS subsystem, calling the strsetpgrp() function (STREAM set process
group). The data structures associated with the control terminal include a
STREAM header structure, stdata , which contains a pointer to a PID structure for
the foreground process group. When a new process or process group is placed into
the foreground, the sd_pgidp pointer is set to reference the PID structure of the
process group leader in the new foreground process group. In this way, the control
terminal is dynamically attached to different process groups running under the
same session.

The signal mechanism in the kernel that delivers signals to groups of processes
is the same code used for other signal delivery. A pgsignal() (process group sig-
nal) interface is implemented in the kernel. The function follows the pointers that
link processes in a process group and calls the generic sigtoproc() function in
each pass through the loop, causing the signal to be posted to each process in the
process group.



348 The Solaris Multithreaded Process Architecture



 9
THE SOLARIS KERNEL
DISPATCHER
In the previous chapter, we discussed (among other things) the creation and ter-
mination of processes and the LWPs and kernel threads within the process. Now
we’ll talk about what happens in between creation and termination: the schedul-
ing and execution phase, managed by the Solaris kernel dispatcher (a.k.a. sched-
uler).

The framework on which the Solaris 2.X scheduler is built is rooted in the Unix
SVR4 scheduler, which represents a complete rework of the traditional Unix sched-
uler. The rework incorporated the notion of a scheduling class, which defines the
scheduling policies and systemwide priority range for kernel threads in a particu-
lar scheduling class. The implementation of dispatcher tables for storing the
parameters used by the scheduler code was introduced. For each scheduling class,
there exists a table of values and parameters the dispatcher code uses for estab-
lishing the priority of a kernel thread, which ultimately drives the thread’s place-
ment on a dispatch queue—the Solaris queues of runnable threads waiting for an
available processor.

In this chapter, we examine the implementation of the kernel scheduler, or dis-
patcher, in Solaris. We discuss the scheduling classes, the dispatch tables, and the
kernel functions that provide the dispatcher infrastructure, including the kernel
thread priority scheme and priority algorithms. We take a look at sleep queues and
the kernel sleep/wakeup facilities. Finally, we discuss innovative features in the
kernel, such as scheduler activations.
349
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9.1 Overview

The Solaris kernel scheduler provides a rich set of features and innovations that
contribute significantly to the speed and scalability of the operating system. The
Solaris kernel is preemptive; that is, the execution of an operating system kernel
thread, or user thread, can be preempted if a higher priority thread becomes run-
nable. This feature minimizes dispatch latency and is a key component to the
implementation of the real-time scheduling class. The preemption mechanism is
applied across the entire range of system priorities. In general, if a thread of a
higher (better) priority than all threads currently executing becomes runnable, a
preemption will occur, forcing the executing thread to relinquish the processor so
the higher priority thread can run.

The process of moving a kernel thread on and off a processor (CPU) is referred
to as context switching, and the Solaris kernel tracks both involuntary context
switches and voluntary context switches. An involuntary context switch occurs
when a thread is preempted (because a better priority thread has transitioned to
the runnable state) or when an executing kernel thread uses up its allotted time
quantum. Voluntary context switches result from a thread executing a blocking
system call, such as a file read, where the thread will be context-switched off the
processor and placed on a sleep queue. When the event a thread is sleeping (block-
ing) for occurs, a wakeup mechanism notifies the thread and places it back on a
run queue, where it will be scheduled onto a processor, based on its global priority
as compared to other runnable threads.

Additionally, a scalable queueing mechanism is employed for runnable threads.
Rather than implementing a single, monolithic queue to hold all runnable threads
systemwide, the Solaris kernel creates a set of dispatch queues for every processor
on a system. Access to the per-processor queues is synchronized by means of locks
that exist at the queue level (as opposed to a single dispatch queue lock), provid-
ing concurrency on queue manipulation functions.

The Solaris kernel dispatcher implements additional features that enhance the
overall usability and flexibility of the operating system:

• Scheduling classes. Kernel threads have a scheduling class and priority.
Different scheduling classes provide different scheduling policies and priority
boundaries.

• Intuitive priority scheme. Higher priorities are better priorities (the tradi-
tional Unix implementation was so designed that lower priorities were better
priorities). The kernel defines a range of global priorities, 0–169. Within that
global priority range, a given scheduling class is assigned a subset of the total
number of global priorities, as shown in Figure 9.1.
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 Figure 9.1 Global Priority Scheme and Scheduling Classes

The priority assignments for each scheduling class are shown in Table 9-1.

• Real-time support. Solaris now provides support for real-time applications,
which require a predictable, bounded dispatch latency (the elapsed time
between the time when a thread needs to run and the time when it actually
begins executing on a processor).

• Table-driven scheduler parameters. You can now “tune” the dispatcher
for specific application requirements by altering the values in the dispatch
table for a particular scheduling class. Note that the altering of the dispatch
table values can dramatically affect the behavior of an application, some-

Table 9-1 Scheduling Class Priority Ranges
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Range

Global
Priority
Range

Scheduling Class

0 – 59 000 – 059 Timeshare (TS) and Interactive (IA )
0 – 39 060 – 099 System (SYS)
0 – 9 100 – 109 Interrupt threads (not really a sched-
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loaded
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times for the worse if the user or administrator does not understand well
what the values mean. The SYS class is not implemented by a dispatch
table—it exists to allow user threads to execute at a higher priority under
certain conditions and to enable execution of non-user-related kernel threads.
There is no tuning to be done because SYS class execution does not do time
slicing; there is no time quantum.

• Object-like implementation with loadable module support. Additional
scheduling classes can be created and added to the system without the need
for a complete kernel build (e.g., a batch scheduling class was created by Sun
Customer Engineering for specific use).

• Scheduler activations. Innovative design features address several areas of
kernel scheduling, including improved communication between the user-level
threads library and the kernel. Much more on this in “Scheduler Activations”
on page 415.

• Priority inversion addressed. The issue of a higher-priority thread being
blocked from execution because a lower-priority thread is holding a resource
(e.g., a lock) needed to run is described as priority inversion. The Solaris dis-
patcher addresses this problem through priority inheritance.

• Scalable design. The major areas of the dispatcher and related data struc-
tures implement fine-grained locking, providing excellent scalability on mul-
tiprocessor platforms. For example, the kernel implements per-processor
dispatcher queues (run queues—queues of runnable kernel threads) with
per-queue locking.

9.1.1  Scheduling Classes

Beginning with Solaris 2.0, the system shipped with three scheduling classes by
default: system (SYS), timesharing (TS), and realtime (RT). Somewhere around the
Solaris 2.4 time frame, the Interactive (IA ) scheduling class was added to provide
snappier interactive desktop performance. The TS class provides the traditional
resource sharing behavior, such that all kernel threads on the system get their
share of execution time, based on priority, time spent running, and time spent
waiting to run. Priorities are recalculated regularly, so threads that have had more
processor time have their priorities worsened and threads that have waited long-
est have their priorities improved. The IA class implements the same basic sched-
uling policies as TS (the same dispatch table is used, and most of the same code).
IA -class threads are kernel threads that are created under a windowing system
(e.g., CDE or OpenWindows) and get a priority boost advantage over TS class
threads.

The SYS class exists mostly for operating system kernel threads, such as the
threads created at boot time to provide various operating systems services
(STREAMS processing, the thread reaper, etc.). SYS class threads are not time
sliced and the priorities are fixed. A kernel thread in the SYS class runs until it
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voluntarily surrenders the processor or is preempted when a higher-priority
thread becomes runnable. TS/IA threads can also be placed in the SYS class for a
short time if the thread is holding a critical resource; a RW lock, or a page lock on
a memory page.

The RT class provides realtime scheduling behavior through a fixed priority
scheduling policy that has kernel preemption capabilities. RT class threads have a
higher global priority than that of TS and SYS threads. Real-time applications
require a minimum, consistent, and deterministic dispatch latency, so when an
event occurs that a real-time thread needs to process, the thread gets priority over
most other threads (all but interrupt threads) on the system for execution on a pro-
cessor.

Other kernel enhancements were needed to provide real-time application sup-
port. The kernel had to be made preemptable, such that a real-time thread that
needed a processor could cause the kernel to be preempted from what it was doing
in order to allow the real-time thread to run. Most of the kernel is preemptable; a
few critical code paths are non-preemptable, for example, when critical state infor-
mation is saved or manipulated, as during a context switch.

The second thing that needed to be addressed was memory locking. A real-time
thread cannot usually afford to be exposed to the latency involved in resolving a
page fault, which causes thread execution to be suspended. This problem was
addressed by addition of a memory locking facility, so that the developer of a
real-time application can use the memcntl (2) system call or mlock (3C) library
function to lock a range of pages in physical memory, thus keeping the memory
pages resident in RAM.

These features, combined with processor sets, exclusive thread-to-processor set
binding (see Chapter 1, “System Overview”), and the ability to take a processor out
of the interrupt pool, combine to make Solaris an outstanding choice for a great
many real-time applications. A properly configured system, that is, a system with
sufficient number of processors and memory, can provide a dispatch latency on the
order of 1 millisecond or less. For absolute minimum dispatch latency for a
real-time process or thread, we recommend that you take the following steps.

• Size the system appropriately so the Solaris processor requirements for run-
ning kernel threads for memory management, STREAMS processing, net-
work and disk I/O, etc., can be met without impeding system performance.
Remember, such processing is done by the kernel on behalf of the applica-
tions it is running, which determine the load.

• Configure a processor set (Solaris 2.6 or later). The processor set can have one
processor if that meets the real-time application requirements.

• Disable interrupts to the processor set dedicated to running the RT pro-
cess(es).

• Place your process or processes in the RT scheduling class, and bind them to
the processor set.
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• If you have more than one RT thread or process, consider whether it needs to
be prioritized in terms of one thread or process getting processor time over
another, and use priocntl (1) to adjust RT priorities accordingly.

The preceding recommendations give your RT application exclusive access to a
processor, or processors, depending on requirements and how many are configured
into the processor set. You can add and remove processors from a processor set
dynamically while the system and application are running.

Figure 9.2 shows the various scheduling classes supported by Solaris, in their
relative positions with respect to global (systemwide) priorities. The range of inter-
rupt priorities depends on whether or not the realtime class has been loaded.

 Figure 9.2 Solaris Scheduling Classes and Priorities

The TS, IA , and RT scheduling classes are implemented as dynamically loadable
kernel modules. The kernel binaries for the TS class are located in the /ker-
nel/sched directory; the IA and RT classes reside in the /usr/kernel/sched
directory. Note that most of the support functions for IA class threads are handled
by the TS class code. There are only a few IA -class-specific routines. The SYSclass
is an integral part of the kernel and thus is not built as a dynamically loadable
module. The core dispatcher code is also an integral part of the kernel and is
loaded with the initial unix  and genunix  objects at boot time.

From an architectural perspective, the scheduling class implementation follows
an object-oriented design similar to the vfs/vnode architecture described in
Chapter 10. Just as the vfs/vnod e implementation defined file-system-dependent
and file-system-independent routines and used macro calls that resolved to the
file-system-specific code (e.g., VFS_OPEN() -> ufs_open() for a UFS file), the
kernel dispatcher comprises scheduling-class-specific and scheduling-class-inde-
pendent functions; it also uses system-defined macros to resolve to a class-specific
routine.
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In Solaris, a system class array is initialized at boot time, where each entry in
the array is an sclass structure, one for each of the loaded scheduling classes.
The sclass structure, shown in Figure 9.3 on page 362, contains the following
structure members:

• cl_name  — Pointer to the class name (e.g., TS for timeshare).
• cl_init — Pointer to the class-specific initialization function (e.g.,

ts_init()  for initialization of the timesharing class).
• cl_funcs — Pointer to a class functions structure; a kernel structure con-

taining pointers to the class-specific functions (e.g., fork, stop, sleep, pre-
empt, etc.).

• cl_lock  — A kernel lock for synchronized access to the class structure.
• cl_count — A counter maintaining a count of the number of threads

attempting to load the class.
• cl_size — The size in bytes of the class data maintained on a per-thread

basis. The size of the structure referenced through the kernel threads
t_cldata  pointer.

The class init routine is called at boot time for all the preloaded scheduling classes.
By default, the timeshare and system classes are loaded. The interactive class is
dynamically loaded when an X server and Window Manager are started. Only the
realtime class is not loaded in a default environment. When a thread is set to the
realtime class, with the priocntl (1) command or priocntl (2) system call, the
realtime class module is dynamically loaded by the operating system. You can
examine which scheduling classes are currently loaded on the running system with
the dispadmin (1M) command, as shown below.

Or, for a bit more information, there’s a class  function in the crash (1M) utility.

# dispadmin -l
CONFIGURED CLASSES
==================

SYS     (System Class)
TS      (Time Sharing)
IA      (Interactive)

# /etc/crash
dumpfile = /dev/mem, namelist = /dev/ksyms, outfile = stdout
> class
SLOT    CLASS   INIT FUNCTION   CLASS FUNCTION

0       SYS     100fdd10        1042c5a0
1       TS      10137c2c        1045ef90
2       IA      10137d0c        1045f080
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Now, let’s put a process in the realtime scheduling class; process PID 833 is a test
program which just sleeps for a minute, then exits.

Then, we’ll take another look at which scheduling classes are loaded on the sys-
tem:

The class function in crash (1M) provides the class name, the kernel virtual
address of the init function for that class, and the address of the class operations
table, also known as the class functions structure or class operations vector table.
(Operations vector table is a generic term that describes an array of pointers to
functions, which is precisely what the class functions [cl_funcs]  structure is.)

The class functions structure bundles together function pointers for all of the
class-specific (scheduling-class-dependent) kernel routines. They essentially fall
into one of two categories: class management and thread control. The kernel
switches in to the appropriate routine for a specific scheduling class, using essen-
tially the same method used in the vfs/vnode subsection. A set of macros is
defined; the macros resolve to the class-specific function by indexing through
either the current kernel thread pointer or the system class array. Both the sys-
tem class array and kthread structure maintain a pointer to the class functions
structure. For example, the class-specific enterclass and exitclass functions
are indexed through the system class array. (The functions must be called to
enable a thread to enter or exit the scheduling class because the kernel thread link
to the class operations table would not yet be in place.) The macro for the enter-
class  function is shown below.

# priocntl -s -c RT -i pid 833

# dispadmin -l
CONFIGURED CLASSES
==================

SYS     (System Class)
TS      (Time Sharing)
IA      (Interactive)
RT      (Real Time)
# /etc/crash
dumpfile = /dev/mem, namelist = /dev/ksyms, outfile = stdout
> class
SLOT    CLASS   INIT FUNCTION   CLASS FUNCTION

0       SYS     100fdd10        1042c5a0
1       TS      10137c2c        1045ef90
2       IA      10137d0c        1045f080
3       RT      102045b8        7802f6e8

#define CL_ENTERCLASS(t, cid, clparmsp, credp, bufp) \
        (sclass[cid].cl_funcs->thread.cl_enterclass) (t, cid, \
            (void *)clparmsp, credp, bufp)

Header File <sys/class.h>
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The argument list for the enterclass routine follows the macro name
CL_ENTERCLASS. On the second line, the system class array, sclass[] , is
indexed, using the class ID (cid : each loaded scheduling class has a unique class
ID). From there, the pointer to the class functions table, cl_funcs , gets us to the
class-specific cl_enterclass code. An example of a macro that uses the kernel
thread clfuncs  pointer is the preempt routine.

Here, tp is a pointer to the current kernel thread, and the cl_preempt code is
entered through the thread’s t_clfuncs  pointer to the class functions table.

Below is a complete list of the kernel scheduling-class-specific routines and a
description of what they do. More details on many of the functions described below
follow in the subsequent discussions on thread priorities and the dispatcher algo-
rithms. Each routine name is listed to indicate which scheduling class provides
code for a given function. The first five functions fall into the class management
category and, in general, support the priocntl (2) system call, which is invoked
from the priocntl (1) and dispadmin (1M) commands. priocntl (2) can, of
course, be called from an application program as well.

• ts_admin , rt_admin — Retrieve or alter values in the dispatch table for the
class.

• ts_getclinfo , ia_getclinfo , rt_getclinfo — Get information about
the scheduling class. Currently, only the max user priority (xx _maxupri )
value is returned.

• ts_parmsin , ia_parmsin , rt_parmsin — Validate user-supplied priority
values to ensure they fall within range. Also check permissions of caller to
ensure the requested operation is allowed. For the TS and IA classes, a limit
check is done against the max user priority (maxupri ). For the RT class, the
notion of a user priority does not exist, so a range check is made against the
max RT priority. The functions support the PC_SETPARMScommand in prio-
cntl (2).

• ts_parmsout , rt_parmsout — Support PC_GETPARMScommand in prio-
cntl (2). Retrieve the class-specific scheduling parameters of a kthread.

• ts_getclpri , rt_getclpri , sys_getclpri — Get class priority ranges.
For each scheduling class, return the minimum (lowest) and maximum (high-
est) global priority.

The following functions are for thread support and management.

• ts_enterclass , rt_enterclass , sys_enterclass — Allocate the
resources needed for a thread to enter a scheduling class. For the TS class, a
tsproc structure is allocated. If the requested class ID is IA (remember, IA
class threads use a tsproc structure and most of the TS support code), make

#define CL_PREEMPT(tp) (*(tp)->t_clfuncs->cl_preempt)(tp)

Header File <sys/class.h>
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sure the caller is either root or a member of the windowing system process
group. Initialize the tsproc structure members with either user-supplied
values (after validating values and permissions) or default values, and add it
to the linked list of tsproc structures. Follow the same procedures as for RT
class. The SYSclass routine is just a stub that returns 0; since there is no sys-
tem-class-specific data structure, there’s nothing to allocate or initialize.

• ts_exitclass , rt_exitclass — Remove the class-specific data structure
(tsproc  or rtproc ) from the linked list and free it.

• ts_fork , rt_fork , sys_fork — Process fork support code. Allocate a
class-specific data structure (tsproc or rtproc ), initialize it with values
from the parent thread, and add it to the linked list. The SYS fork is a no-op.
It is called from the lwpcreate() and lwpfork() kernel functions as part
of the fork (2) system call kernel code when a new process is created.

• ts_forkret , rt_forkret , sys_forkret — Called from the kernel
cfork() (common fork) code in support of a fork (2) system call. It is the last
thing done before the fork (2) returns to the calling parent and the newly cre-
ated child process. The xx _forkret functions resolve the run order of the
parent and child, since it is desired that the child run first so the new object
can be exec ’d and can set up its own address space mappings to prevent the
kernel from needlessly having to duplicate copy-on-write pages. In the TS
class, the child is placed at the back of the dispatch queue and the parent
gives up the processor. This is handled in another class routine, ts_setrun .

• ts_parmsget , ia_parmsget , rt_parmsget — Get the current priority and
max user priority for a thread. The functions are called from the prio-
cntl (2) system call. ts_upri and ts_uprilim from the class-specific struc-
ture (tsproc , iaproc ) are returned. IA class threads also return the
ia_nice field. For RT threads, the rt_pri and rt_pquantum from the
rtproc  structure are returned.

• ts_parmsset , ia_parmsset , rt_parmsset — Set the priority of a thread
on the basis of passed input arguments. A user parameter data structure is
defined for each scheduling class: iaparms , tsparms , and rtparms . For the
IA and TS class, a user priority limit and user priority value can be set. The
support code checks the user priority or priority limit when a priocntl() is
executed to ensure the values fall within the boundary values for the class
and also checks credentials to ensure the caller has permission to alter the
thread’s priority. Valid user-supplied priorities for TS/IA class threads are set
in the ts_upri field in the tsproc structure and factor in to priority adjust-
ments on the thread.
RT class threads do not support the notion of user-supplied priorities in the
same manner as do TS/IA class threads. Where user-supplied priorities for
TS/IA threads nudge the actual thread priority in one direction or another, a
user-supplied priority for RT class threads directly maps to the RT thread’s
global priority. Details are provided in “Thread Priorities” on page 375.
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• ts_swapin — Calculate the effective priority of a thread to determine the
eligibility of its associated LWP for swapping in. (Kernel threads are not
swappable; LWPs are.) ts_swapin is called by the memory scheduler
(sched() ). The sched() function might be called from the clock interrupt
handler if memory is tight.
Basically, the scheduler (which should really be called the swapper) loops
through all the active processes and, for each active process, executes an
inner loop, which walks the linked list of kernel threads, calling swapin for
each thread. The effective priority for each kernel thread is based on the
amount of time the thread has been swapped out, the user mode priority of
the thread, and the address space size. Smaller address spaces are more
desirable to swap in, since, if we’re running the memory scheduler at all,
memory must be tight. The address space is based on the process p_swrss
(resident set size before last swap), which is, of course, processwide.
ts_swapin returns the effective priority of the thread back to the caller,
sched() , which then sets a process-level priority that is based on the best
kthread effective priority in the list. Note that RT and SYS class threads do
not get swapped out, so there’s no need for a swap-in function.

• ts_swapout — Calculate the effective priority of a thread for swapping out
of its associated LWP. Called by the memory scheduler (sched() ), the
swapout function is passed a pointer to a kthread and a flag to indicate
whether the memory scheduler is in hardswap or softswap mode (called
from a similar loop in sched() , as described above). Softswap means avefree
< desfree, (average free memory is less than desired free), so only threads
sleeping longer than maxslp (20) seconds are marked for swapout. Hard-
swap mode means avefree has been less than minfree and desfree for an
extended period of time (30 seconds), an average of two runnable threads are
on the dispatch queues, and the paging (pagein + pageout) rate is high. (See
Chapter 12 for discussions about avefree, minfree, desfree, etc.)
The code is relatively simple; if in softswap mode, set effective priority to 0.
If in hardswap mode, calculate an effective priority in a similar fashion as for
swap-in, such that threads with a small address space that have been in
memory for a relatively long amount of time are swapped out first. A time
field in the kthread structure, t_stime , is set by the swapper when a thread
is marked for swap-out, as well as swap-in. The timestamp maintained in
this field is compared to the current time in both ts_swapin and
ts_swapout to determine how long a thread has been either swapped in or
swapped out.

• rt_swapri , sys_swappri — Stub functions, designed to establish an effec-
tive swap priority for RT and SYSclass threads. They are not called from any-
where in the kernel.

• ts_trapret — Trap return code, called on return to user mode from a sys-
tem call or trap and designed to readjust the thread’s priority.
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• ts_preempt , rt_preempt — Called when a kernel thread needs to be pre-
empted and must be placed on a dispatch queue. A TS class thread inter-
rupted in kernel mode is given a SYS class priority so it returns to execution
quickly. Preemption is discussed in more detail shortly.

• ts_setrun , rt_setrun — Set a kernel thread runnable, typically called
when a thread is removed from a sleep queue. Place the thread on a dispatch
queue. For TS threads, readjust the global dispatch priority if the thread has
been waiting (sleeping) an inordinate amount time.

• ts_sleep — Prepare a thread for sleep. Set the thread’s priority on the basis
of wait time or if a kernel priority is requested (the kernel thread’s
t_kpri_req flag). A kernel priority (SYSclass priority) is set if the thread is
holding an exclusive lock on a memory page or an RW write lock.

• ts_tick , rt_tick — Tick processing for the thread, called from the clock
interrupt handler (see “System Clocks and Timers” in Chapter 1). CPU execu-
tion time for TS and IA class threads is tracked in the scheduling-class-spe-
cific data structure linked to the kernel thread, tsproc (see Figure 9.3 on
page 362). ts_timeleft in the tsproc structure is decremented in the
ts_tick function for an executing thread that is not running at a SYS class
priority. TS and IA class threads will sometimes have their priority elevated
for a short time by getting a SYS class priority. A thread’s execution time for
threads running in the SYSclass is not tracked because SYSclass threads, by
definition, run until they voluntarily surrender the processor.
The ts_timeleft value is tested to determine if the thread has used up its
CPU time quantum. If it has, the thread’s priority is recalculated and the
thread is placed on the appropriate dispatch queue. If it has not, a check is
made to determine if a higher-priority thread is waiting for a processor; if
that condition is true , then the thread surrenders the processor. If both con-
ditions are false , then the code simply returns, leaving the thread to con-
tinue executing on the processor. The kernel also tests for a scheduler
activation, known as preemption control, in the tick handler; that topic is dis-
cussed shortly.
The rt_tick handler for RT class threads is similar. If an RT class thread
does not have an infinite time quantum and has used its allotted CPU time or
if a thread with a higher priority is sitting on a dispatcher queue, the RT class
thread is forced to surrender the CPU. Preemption control is not imple-
mented for RT threads.

• ts_wakeup , rt_wakeup — Called when a thread is coming off a sleep queue
and must be placed on a dispatch queue. TS/IA class threads at a SYS prior-
ity are placed on the appropriate queue; otherwise, the priority is recalcu-
lated before queue placement. RT class threads are simply placed on a queue.

• ts_donice , rt_donice , sys_donice — Called when a nice (1) command is
issued on the thread to alter the priority. Adjust the priority according to the
nice value for TS/IA class threads. nice (1) is not supported for RT and SYS
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class threads; the kernel functions for SYS and RT return an invalid opera-
tion error. The nice (1) command exists in Solaris for compatibility. Thread
priority adjustments should be done with priocntl (1).

• ts_globpri , rt_globpri — Return the global dispatch priority that a
thread would be assigned, for a given user mode priority. The calculation of
the actual dispatch priority of a thread is based on several factors, including
the notion of a user priority. See “Thread Priorities” on page 375 for details.

• ia_set_process_group — Establish the process group associated with the
window session for IA  class threads.

• ts_yield , rt_yield — Called from the yield (2) system call when a thread
is yielding (surrendering) the processor. The kernel thread is placed at the
back of a dispatch queue.

The scheduling-class-related structures are depicted in Figure 9.3. The system
class array is shown, with pointers to the class operations vector array, the class
name, and class-specific init routine. Also shown is a coarse-grained view of the
systemwide linked list of kernel threads, each of which is linked to its own
class-specific data structure. That structure maintains bits of information used by
the dispatcher to manage the execution time and scheduling of the kthread; the
structure also maintains a pointer to the class operations array.
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 Figure 9.3 Scheduling Class Data Structures
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disp_admin (1M) command, for example, dispadmin -c TS -g will dump the
current timeshare (TS) and interactive (IA ) class dispatch table on your Solaris
system. (TS and IA  use the same dispatch table.)

Table 9-2 shows the default values for a selected group of timeshare/interactive
priorities. In the interest of space and readability, we don’t list all 60 (0–59) priori-
ties since we only need a representative sample for this discussion.

# dispadmin -g -c TS
# Time Sharing Dispatcher Configuration
RES=1000

# ts_quantum  ts_tqexp  ts_slpret  ts_maxwait ts_lwait  PRIORITY LEVEL
       200         0        50           0        50        #     0
       200         0        50           0        50        #     1

        ...........................................................

        40        48        58           0        59        #    58
        20        49        59       32000        59        #    59

Table 9-2 Timeshare and Interactive Dispatch Table

RES ts_globpri ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait PRI

1000 0 200 0 50 0 50 0
5 200 0 50 0 50 5
10 160 0 51 0 51 10
11 160 1 51 0 51 11
15 160 5 51 0 51 15
20 120 10 52 0 52 20
25 120 15 52 0 52 25
30 80 20 53 0 53 30
35 80 25 54 0 54 35
40 40 30 55 0 55 40
45 40 35 56 0 56 45
50 40 40 58 0 59 50
55 40 45 58 0 59 55
59 20 49 59 32000 59 59
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Each entry in the TS/IA dispatch table (each row) is defined by the tsdpent (time-
share dispatch entry) data structure (from /usr/include/sys/ts.h ), as shown
below.

The RESand PRI columns are not defined in tsdpent . Those fields, along with the
defined members in the structure table, are described below.

• RES— (resolution value) Interprets the ts_quantum column in the dispatch
table. The reciprocal of RESdetermines the level of granularity in which the
ts_quantum field will be displayed. As the value of RES increases, the
ts_quantum column values also increase by the same order of magnitude.
See ts_quantum  below for more information.

• PRI — The class-dependent priority, not the systemwide global priority. The
PRI column is derived as the row number in the dispatch table. The dispatch
table is like any other generic table—it has rows and columns. Every row cor-
responds to a unique priority level within the scheduling class, and each col-
umn in the row contains values that determine the priority adjustments
made on the thread running at that particular priority. This is not the same
as ts_globpri .

• ts_globpri — The only table parameter (tsdpent structure member) that
is not displayed in the output of the dispadmin (1M) command and also the
only value that is not tunable. ts_globpri is the class-independent global
priority that corresponds to the timeshare priority (column farthest to the
right).
A given scheduling class within Solaris has a range of priorities beginning
with 0, which represents the lowest priority for that class. The TS and IA
classes have 60 priorities, range 0–59. The kernel implements a global prior-
ity scheme, such that every priority level available in every scheduling class
can be uniquely identified with an integer value. Refer to Figure 9.2 on
page 354 for a list of global priorities when all the bundled scheduling classes
are loaded.
Since TS/IA is the lowest class, the kernel global priorities 0–59 correspond to
the TS/IA class priorities 0–59. The kernel computes global priorities at boot

 * time-sharing dispatcher parameter table entry
 */
typedef struct tsdpent {
        pri_t   ts_globpri;     /* global (class independent) priority */
        int     ts_quantum;     /* time quantum given to procs at this level */
        pri_t   ts_tqexp;       /* ts_umdpri assigned when proc at this level */
                                /*   exceeds its time quantum */
        pri_t   ts_slpret;      /* ts_umdpri assigned when proc at this level */
                                /*  returns to user mode after sleeping */
        short   ts_maxwait;     /* bumped to ts_lwait if more than ts_maxwait */
                                /*  secs elapse before receiving full quantum */
        short   ts_lwait;       /* ts_umdpri assigned if ts_dispwait exceeds  */
                                /*  ts_maxwait */
} tsdpent_t;

Header File <sys/ts.h>
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time and will recompute if necessary if a new class is loaded into a running
system. For example, referring again to Figure 9.2, if the RT class is not
loaded, global priorities for interrupt threads will be 100–109, just above sys-
tem (SYS). If the RT class gets loaded, the global priorities for RT become 100–
159, and interrupts are bumped up to 160–169. ts_globpri sets the t_pri
field for a timeshare kernel thread when priorities are set and readjusted.

• ts_quantum — The time quantum; the amount of time that a thread at this
priority is allowed to run before it must relinquish the processor. Be aware
that the ts_dptbl (4) manual page, as well as other references, indicate that
the value in the ts_quantum field is in ticks. A tick is a unit of time that can
vary from platform to platform. On all UltraSPARC based systems, there are
100 ticks per second, so a tick occurs every 10 milliseconds. The value in
ts_quantum is in ticks only if RES is 100. If RES is any other value, includ-
ing the default value of 1000, then ts_quantum represents some fraction of a
second, the fractional value determined by the reciprocal value of RES. With a
default value of RES = 1000, the reciprocal of 1000 is.001, or milliseconds.
Thus, by default, the ts_quantum field represents the time quantum for a
given priority in milliseconds.
From Table 9-2 on page 363, we see that priority 0 kthreads get 200 millisec-
onds (20 ticks), priority 10 kthreads get 160 milliseconds, etc. As a kthread’s
priority gets better (higher global priority integer value), its time quantum is
less. Lower (worse) priorities get larger time quantums, since they are sched-
uled to run less frequently. Changing the RESvalue by using the -r flag with
dispadmin (1M)
dispadmin -c TS -g -r 100

causes the values in the ts_quantum column to change. For example, at pri-
ority 0, instead of a quantum of 200 with a RESof 1000, we have a quantum
of 20 with a RESof 100. The fractional unit is different. Instead of 200 milli-
seconds with a RESvalue of 1000, we get 20 tenths-of-a-second, which is the
same amount of time, just represented differently [20 ×.010 = 200 ×.001]. In
general, it makes sense to simply leave the RESvalue at the default of 1000,
which makes it easy to interpret the ts_quantum  field as milliseconds.

• ts_tqexp — Time quantum expired. The new priority a thread is set to
when it has exceeded its time quantum. From the default values in the TS
dispatch table, threads at priorities 0–10 will have their priority set to 0 if
they burn through their allotted time quantum of 200 milliseconds (160 milli-
seconds for priority 10 threads). As another example, threads at priority 50
have a 40 millisecond time quantum and will have their priority set to 40 if
they use up their time.

• ts_slpret — The sleep return priority value. A thread that has been sleep-
ing has its priority set to this value when it is woken up. These are set such
that the thread will be placed at a higher priority (in some cases, substan-
tially higher) so the thread gets some processor time after having slept
(waited for an event, which typically is a disk or network I/O).
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• ts_maxwait — Used in conjunction with ts_lwait . They attempt to com-
pensate threads that have been preempted and have waited a (relatively)
long time before using up their time quantum. When a thread begins execu-
tion, a field, called ts_dispwait , in the class-specific structure linked to the
thread (Figure 9.3 on page 362) counts the number of seconds that have
elapsed since the thread began executing. This value is not reset if the thread
is preempted (must involuntarily relinquish the processor). Once a second, a
kernel routine executes to increment the ts_dispwait field for all TS and IA
class threads. If the value of the ts_dispwait for the thread is greater than
that of ts_maxwait , the thread priority is set to the value of ts_lwait , a
higher priority for the thread since in this circumstance it must have been
preempted and never had a chance to use its time quantum.

• ts_lwait — The new priority for a thread that has waited longer than
ts_maxwait to use its time quantum. Interesting to note is that the default
values in the TS and IA dispatch tables inject a 0 value in ts_maxwait for
every priority except the highest priority (59). So, just one increment in the
ts_dispwait field will cause the thread priority to be readjusted to
ts_lwait , except for priority 59 threads. The net effect is that all but the
highest-priority (59) timeshare threads have their priority bumped to the 50–
59 range (ts_lwait ) every second.
This process has the desirable effect of not penalizing a thread that is
CPU-bound for an extended period of time. Threads that are CPU hogs will,
over time, end up in the low 0–9 priority range as they keep using up their
time quantum because of priority readjustments by ts_tqexp . Once a sec-
ond, they’ll get bumped back up to the 50–59 range and will only migrate
back down if they sustain their cpu-bound behavior.
Priority 59 threads are handled differently. These threads are already at the
maximum (highest/best) priority for a timeshare thread, so there’s no way to
bump their priority with ts_maxwait and make it better. The ts_update()
routine, which is the kernel code segment that increments the ts_dispwait
value and readjusts thread priorities by means of ts_lwait , reorders the
linked list of threads on the dispatch queues after adjusting the priority. The
reordering after the priority adjustment puts threads at the front of their new
dispatch queue for that priority. The threads on the priority 59 linked list
would end up reordered but still at the same priority.
Experimentation has shown that this approach has two results: some per-
centage of priority 59 threads never get processor time, and the threads that
ts_update() puts on the front of the dispatch queue following adjustment
get scheduled more frequently. When the ts_maxwait value is set to 32000
for priority 59, the queue is never reordered by ts_update() and every
thread has a fair shot at getting scheduled.

You can apply user-supplied values to the dispatch tables by using the dispad-
min (1M) command or by compiling a new /kernel/sched/TS_DPTBL loadable
module and replacing the default module. The ts_dptbl (4) manual page provides
the source and the instructions for doing this. Either way, any changes to the dis-
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patch tables should be done with extreme caution and should be tested exten-
sively before going into production—we’ve seen dispatch table “tweaks” drastically
affect the performance of a system, not always for the better.

The interactive class (IA ) uses the timeshare dispatch table. This is not neces-
sarily intuitive; you can specify the TS or IA table to the dispadmin (1M) com-
mand, and the command output header will indicate either “Interactive Dispatcher
Configuration” or “Time Sharing Dispatcher Configuration,” depending on what
was specified on the command line. Both classes use the same dispatch table; thus,
any changes made for one class affects the other. The IA class was added to make
the Solaris window-based desktop environment provide snappier performance. To
enhance performance, all processes that started under the windowing system
(either OpenWindows or CDE) are put in the IA class, and the priority of pro-
cesses attached to the window that has the current input focus (the active win-
dow—the one being used by the user) is boosted. The procedure uses most of the
TS class infrastructure with just a few IA -specific routines, which we discuss in the
next section.

For the SYS class (kernel mode priorities), an array is built within the TS class
framework to define the kernel mode priorities available to TS/IA class threads
when they warrant a priority boost into the SYS class. The
config_ts_kmdpris[] array is an array of 40 priorities, values 60–99, and is
defined in the tsdptbl (timeshare dispatch table) loadable module that can be
modified, compiled, and loaded into the system. (See ts_dptbl (4) for instructions
and the module template.) The array is referenced through a ts_kmdpris pointer
that points to the first element in the array.

The realtime (RT) dispatch table is quite simple, since RT threads run at fixed pri-
orities. The kernel does not change the priority of an RT thread unless explicitly
instructed to do so as a result of a priocntl (1) command or priocntl (2) system

/* Array of global priorities used by ts procs sleeping or
 * running in kernel mode after sleep. Must have at least
 * 40 values.
 */

pri_t config_ts_kmdpris[] = {
       60,61,62,63,64,65,66,67,68,69,
       70,71,72,73,74,75,76,77,78,79,
       80,81,82,83,84,85,86,87,88,89,
       90,91,92,93,94,95,96,97,98,99
};
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call. Each entry in the RT dispatch table is defined by the rtdpent data structure
in /usr/include/sys/rt.h .

The RT dispatch table contains two columns: the rt_quantum field, which is the
time quantum for processor execution time, and rt_globpri , which is the system-
wide global priority, calculated dynamically when the RT scheduling class is
loaded. The rt_quantum field has the same meaning as the ts_quantum field in
the TS table, that is, the amount of time a thread at this priority is allowed to run
before being scheduled off the processor. Also, just as with the TS table, when the
dispatch table is dumped by means of the dispadmin (1M) command, the value is
dependent on the RESvalue. With a default RESvalue of 1000, rt_quantum is in
milliseconds. Also as with the TS table, the PRIORITY column produced by dis-
padmin (1M) equates to the row number of the dispatch table entry, which is the
same as the class-specific priority level and is not the same as rt_globpri , the
global priority.

9.2 The Kernel Dispatcher

The dispatcher is the kernel code segment that manages queues of runnable ker-
nel threads, called dispatch queues, places the highest-priority runnable thread on
a processor for execution, and manages the recalculation of thread priorities that
are based on execution time, sleep time, and time spent on the queue waiting for a
processor. The context switching of threads on and off processors is driven by the
dispatcher code.

 * Real-time dispatcher parameter table entry
 */
typedef struct  rtdpent {
        pri_t   rt_globpri;     /* global (class independent) priority */
        int     rt_quantum;     /* default quantum associated with this level */
} rtdpent_t;

Header File <sys/rt.h>

# dispadmin -g -c RT
# Real Time Dispatcher Configuration
RES=1000

# TIME QUANTUM                    PRIORITY
# (rt_quantum)                      LEVEL
      1000                    #        0
      1000                    #        1

        ...............................

       100                    #       58
       100                    #       59
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Early versions of Solaris 2 implemented a simple, global dispatch queue that
was shared by all processors on a multiprocessor system. Scalability and dispatch
latency, especially for real-time threads, was less than optimal because of the
coarse-grained locking. A single scheduling lock for the dispatch queue needed to
be acquired for a processor to insert or remove a kthread from the queue, which
became a point of contention on busy multiprocessor systems. A new design was
done for Solaris 2.3, and since that release, Solaris implements multiple dispatch
queues, one for each processor, and a global queue for threads that run at a prior-
ity high enough to cause kernel preemption. Such threads are real-time and inter-
rupt threads (although interrupt threads are not placed on a dispatch queue—they
live on a linked list off every CPU structure). Solaris 2.5 saw an algorithmic
change to the thread selection process (which thread gets execution time next). We
go through the select and ratify process of thread selection in our discussion of the
dispatcher algorithm.

Another change came with the introduction of processor sets in Solaris 2.6. Pro-
cessor sets can be configured through psrset (1M), where some number of proces-
sors are configured into the set, and processes and kernel threads can be bound to
a processor set. The bound processes and threads are scheduled only on processors
in the set; other threads and processes running on the system that are not bound
to the processor set will not be scheduled on processors in the set. Multiple proces-
sor sets can be configured, with multiple bindings. (Processor sets are also dis-
cussed in Chapter 1, “System Overview.”) The addition of processor sets added a
new data structure, cpupart , and a modification to the kernel preempt dispatch
queues. Prior to Solaris 2.6, only one kernel preempt queue maintained runnable
RT class threads. Beginning in Solaris 2.6, there is a kernel preempt queue for
each processor set or one queue systemwide if processor sets have not been config-
ured.

The dispatcher uses data stored in different areas of the kernel to maintain
scheduling information such as priorities, thread execution time, dispatch queue
utilization and state, thread wait and sleep time, per-processor queue data and
state, etc. The dispatch tables described in the previous section are just one area of
the kernel where scheduling-specific information is stored. In addition to the
tables, a scheduling-class-specific data structure is linked to every kthread on the
system. These structures, illustrated in Figure 9.3 on page 362, are used by the
dispatcher for maintaining bits of information on each thread’s execution time,
state, and priority.

The class-specific data structures are linked not only to the kthread but also to
each other. That is, the class-specific structures are linked on a linked list main-
tained by the dispatcher code. Many of the fields in the class-specific structures
have the same name and meaning across all three scheduling classes (TS, IA , and
RT; there is no structure for the SYS class). Hence, we describe each structure in
Table 9-3 by using a single row where a structure member has a common name
and meaning for more than one scheduling class. The structures take the name of
xxproc, where xx is ts, rt, or ia.
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As we mentioned earlier, the kernel maintains doubly linked lists of the class-spe-
cific structures—separate lists for each class. Current implementations of Solaris,
up to and including Solaris 7, do not actually use the iaproc for interactive class
threads (it’s declared in the sys/ia.h header file but not defined anywhere in the
kernel code). Threads in the IA class link to a tsproc structure, and most of the
class supporting code for interactive threads is handled by the TS routines. IA
threads are distinguished from TS threads by a flag in the ts_flags field, the
TSIA  flag.

Maintaining the linked lists for the class structures greatly simplifies the dis-
patcher supporting code that updates different fields in the structures (such as
time quantum) during the clock-driven dispatcher code. Since most Solaris sys-
tems have considerably more TS threads than any other scheduling class, the
tsproc  lists are managed differently from the RT list.

The kernel builds an array of 16 tsproc structures (array name
ts_plisthead ) that anchor up to 16 doubly linked lists of the tsproc structures
systemwide. The code implements a hash function, based on the thread pointer, to
determine which list to place a thread on, and each list is protected by its own ker-
nel mutex (ts_list_lock is an array of 16 kernel mutexes). Implementing multi-
ple linked lists in this way makes for faster traversal of all the tsproc structures

Table 9-3 Scheduling-Class-Specific Data Structure Members

tsproc iaproc rtproc Meaning
ts_timeleft ia_timeleft rt_timeleft Time remaining in thread’s time

quantum
ts_dispwait ia_dispwait N/A Wall clock elapsed time since

quantum began. Not reset if
thread is preempted

ts_cpupri ia_cpupri N/A Priority
ts_uprilim ia_uprilim N/A User priority limit
ts_upri ia_upri N/A User priority
ts_umdpri ia_umdpri N/A User priority within class
ts_nice ia_nice N/A Nice value
N/A N/A rt_pquantum Time quantum for the thread
N/A N/A rt_pri Priority within RT class
ts_flags ia_flags rt_flags State flags
ts_boost N/A N/A Priority boost value
N/A ia_pstatp rt_pstatp Pointer to pstat

N/A ia_pprip rt_pprip Pointer to thread priority
N/A ia_pflagp rt_pflagp Pointer to p_flag

N/A ia_mode N/A IA on/off flag
ts_tp ia_tp rt_tp Pointer back to kthread
ts_next ia_next rt_next Forward link
ts_prev ia_prev rt_prev Backward link
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in a running system, and the use of a lock per list allows multiple kernel routines
to traverse different lists at the same time (see Figure 9.4).

 Figure 9.4 tsproc  Structure Lists

9.2.1  Dispatch Queues

Every processor on the system has its own dispatch queue (actually, a queue of
queues), and per-processor scheduling information is maintained in the data struc-
tures that describe the processors in the kernel (the CPU structures). Data struc-
tures make up the actual dispatch queues, which provide the linkage to the lists of
runnable kthreads on the system and state information for each queue. Threads in
the TS, IA , and SYS classes are placed on the per-processor dispatch queues.

A separate queue is maintained for threads that are runnable at a priority high
enough to cause a kernel preemption. The Solaris kernel is, for the most part, pre-
emptable, such that a processor executing in kernel (system) mode can be pre-
empted so a higher-priority thread can run. Currently, the global dispatch
priorities for RT class threads and interrupt threads are above SYSand can gener-
ate a kernel preemption. Since interrupt threads do not actually go on a dispatch
queue, only unbound RT class threads are placed on the kernel preempt
(kp_preempt ) queue. There is one such queue systemwide on systems that do not
have processor sets configured. A kernel preempt queue is created when a proces-
sor set is configured, so there is a per-processor set kp_preempt queue, plus one
for the default processor set. Since the kernel will not allow every available proces-
sor on a system to be placed in a processor set, the number of kernel preempt
queues on a system will always be the number of processor sets configured, plus 1.
Without processor sets configured, there is one kp_preempt queue systemwide.
We discuss preemption later in more detail.

The creation of the dispatch queues occurs at boot time during the Solaris sys-
tem initialization. A kernel dispatcher initialization routine, dispinit() , is
called from the architecture-specific startup code, which builds the kernel preemp-
tion queue and the per-cpu dispatch queues. The kernel data structures that make
up the complete dispatch queue picture are the cpu , disp_queue_info , _disp ,
and dispq structures, as shown in Figure 9.5 on page 374. It is during the dis-
patcher initialization that the default processor partition is created, which is
where the kernel preempt queue (cp_kp_queue ) is maintained. In Solaris 2.5.1,

mutex
mutex
mutex

tsproc
tsproc
tsproc

ts_plistheadts_list_lock
tsproc tsproc

tsproc tsproc tsproc
tsproc tsproc tsproc



372 The Solaris Kernel Dispatcher
which does not have processor sets, the global kernel preempt queue was main-
tained in a separate disp_t  structure, disp_kp_queue .

A quick note on terminology before we proceed. A processor partition is essen-
tially the same thing as a processor set. A user’s view of a processor set is what the
kernel references as a processor partition. A different abstraction exists for a pos-
sible future implementation, where some processor partitions are visible to the
kernel but not visible to the user, so what users see as available processor sets may
be different from the kernel’s view of usable processor partitions. A default proces-
sor partition, which includes all available processors on the system, is created at
boot time. As processor sets are created, processors configured into a user proces-
sor set are removed from the default partition and added to the configured set.
(Processor sets are discussed in “Kernel Processor Control and Processor Sets” on
page 419.)

The kernel retains at least one processor for the default partition and does not
allow all available processors to be configured into user-created processor sets.
Kernel threads that are part of the operating system, such as the daemon threads
created at boot time (Chapter 2), pageout, NFS server threads, etc., will not run on
a user processor set. That’s why a default partition is created at boot time and at
least one processor is retained for the default partition. In practice, it is always
prudent to assess processor requirements before allocating processor resources by
means of processor sets. A system with sufficient processing power for bound appli-
cation processes may run poorly if CPU resources for the kernel are inadequate.

Several dispatcher-related variables are embedded in each cpu  structure.

• cpu_disp — An embedded _disp structure; the dispatch queue data for the
processor, which contains the link to the actual per-processor queues.

• cpu_runrun — A preemption flag indicating that the thread currently run-
ning on the CPU will be preempted before switching back to user mode. The
user preemption flag.

• cpu_kprunrun — Another preemption flag, kernel preemption, indicating
that the thread should be preempted immediately or as soon as possible (e.g.,
return from an interrupt). The kernel preemption flag.

• cpu_chosen_level — The priority at which the CPU was chosen for sched-
uling a kthread. Used by the dispatcher when selecting the next thread for
execution.

• cpu_dispthread — A pointer to the kthread selected for execution on the
CPU.

• cpu_thread_lock  — A dispatcher lock on the current thread.
• cpu_last_switch — A time value: the last time the CPU switched execu-

tion to a new thread.

The dispatcher queue structure embedded in the cpu structure is where the
per-CPU dispatch queue is rooted. It links to the per-priority dispatch queues
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maintained for each processor. Within each processor dispatch queue, separate
linked lists of runnable kthreads are maintained for every priority level, except
realtime lists. Unbound realtime threads are maintained on the global kp_queue .
If processor sets are configured, then a kernel preempt queue is configured for each
processor set.

Other data the dispatcher needs for queue management and thread scheduling
maintained in the dispatch queue structure includes the following.

• disp_lock  — A synchronization lock to protect fields in the structure.
• disp_npri  — The number of priority levels in the queue.
• disp_q — The pointer to the dispatch queue (pointer to a dispq_t struc-

ture).
• disp_q_limit — Another pointer to a dispq_t structure, set to point to the

end of the queue.
• disp_qactmap — A bitmap indicating which queues actually have runnable

threads in them. Using the bitmap in conjunction with disp_maxrunpri and
disp_nrunnable , the dispatcher code can traverse the queues with extreme
speed and efficiency, searching for the best runnable thread.

• disp_maxrunpri  — The priority of the highest-priority thread on the queue.
• disp_max_unbound_pri — The priority of the highest-priority unbound

thread on the queue.
• disp_nrunnable  — Total number of runnable threads on the queue.
• disp_cpu  — A pointer back to the cpu  structure that owns this queue.

The dispatch queue entry itself is a small, three-member data structure, defined as
a dispq_t structure. It contains a pointer to the first kthread on the queue
(dq_first ), a pointer to the last kthread on the queue (dq_last ), and a count of
kthreads on the queue (dq_sruncnt ). Each per-priority queue maintains a count
of threads on the queue, and the sum of all per-priority queues is represented in
disp_nrunnable .

Finally, there’s the disp_queue_info structure. An array of these structures is
created at boot time, one for each processor on the system. Each array member
(disp_queue_info structure) contains a pointer to one per-process dispatch
queue (disp_t ) embedded in the cpu structure. There are two additional disp_t
pointers, olddispq and newdispq , and storage space for an old and new queue
bitmap field, oldqactmap and newqactmap , for queue manipulation and mainte-
nance. The number of global priorities in the queue is also maintained in old-
nglobpris . As we move through the algorithmic flow of the dispatcher code, we’ll
see how these structures and members are used. Figure 9.5 provides the big pic-
ture.
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 Figure 9.5 Solaris Dispatch Queues
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9.2.2  Thread Priorities

The operating system uses a global priority scheme to assign priorities to kernel
threads; the priorities are derived from a dispatch table according to the schedul-
ing class the thread belongs to. As we saw, each scheduling class has a range of pri-
orities assigned to it. As scheduling classes load into the system, the kernel must
ensure that every priority level across all loaded scheduling classes has a unique
priority number.

The range of priorities for the TS/IA class is 0–59, which corresponds to global
priorities 0–59 since the TS/IA class is the lowest class on the system. SYS priori-
ties range from 0–39 and are assigned global priorities 60–99 since the SYS class
sits directly above the TS/IA class. If the RT class is not loaded, interrupt priori-
ties, range 0–9, occupy global priorities 100–109. Thus, without the RT class
loaded, there is a total of 110 (0–109) global priorities. When the RT class (range 0–
39) loads, the interrupt thread priorities are bumped up to global priorities 160–
169, and the RT global priority range is 100–159. This protocol is represented in
Figure 9.2 on page 354 and Table 9-1 on page 351.

During dispatcher initialization, the kernel calculates the maximum SYSglobal
priority value and the total number of global priorities as scheduling classes are
loaded. These values are recalculated if scheduling classes are loaded following ini-
tialization, for example, if the RT class is loaded sometime after the system has
been booted. The calculated values are stored in the system var structure’s
v_nglobpris  and v_maxsyspri  field.

Newly created threads inherit their priority and scheduling class from the parent
process (parent thread, actually—remember, nonthreaded processes have one
LWP/kthread pair). Recall from the previous chapter, the forklwp() kernel rou-
tine calls lwp_create() , which in turn calls thread_create() .
thread_create() is passed as arguments a thread state (TS_STOPPED—the ini-
tial state of a kthread) and priority, which is established from the calling thread.
The other applicable kthread structure members are initialized toward the end of
the forklwp() code, including the allocation of the class-specific data structure
(e.g., tsproc ). Entry into the class-specific fork routine through CL_FORK() com-
pletes the setup of the dispatcher data for the new thread, initializing the class
data structure for the thread and putting it on the linked list of class structures.

The kernel thread structure fields relevant to thread priorities are t_pri ,
which is the actual global dispatcher priority for the thread, t_epri , which

# /etc/crash
dumpfile = /dev/mem, namelist = /dev/ksyms, outfile = stdout
> v
.
.
v_nglobpris: 170
v_maxsyspri:  99
.
.
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reflects an inherited priority, and t_kpri_req , which is a flag to indicate to the
dispatcher that a SYSpriority is requested for the thread. Other per-thread prior-
ity-related data is maintained in the class-specific data structure linked to the
kthread: tsproc for TS/IA threads, rtproc for RT threads. For TS/IA threads, the
kernel provides a facility for user-level priority adjustments, similar in concept to
the traditional nice (1) command. Unix systems provided a nice (1) command that
allowed users to adjust the priority of the processes they owned. Non-root users
could only make their own process priorities worse (they could be nice to the other
users of the system), and root could make priorities better with nice (1). Solaris
supports nice (1) today for compatibility, but the proper way to apply user-level
priorities to threads is to use the priocntl (1) command. Issuing priocntl (1)
with the -l  (lowercase l) flag displays the range of user priorities.

The user priority ranges shown in the preceding priocntl (1) command output
clearly do not reflect the range of priorities for the TS/IA class from a kernel per-
spective. The user priority facility allows a user to move a process or thread prior-
ity in a positive (better) or negative (worse) direction. The priority value specified
on the command line can be as high as 60 (maximum potential priority) or as low
as −60 (lowest possible priority). A priority value specified on a priocntl (1) com-
mand line does not become the process’s or thread’s actual global dispatch priority
(as seen with ps (1), e.g., ps -Lc ), but rather is used by the dispatcher code to
adjust a kernel thread’s priority. A user-supplied priority will alter the global dis-
patcher priority of the thread in one direction or another, depending on the value
specified.

For RT class threads or processes, the valid range of priorities is 0–59; the pri-
ocntl (1) output shown above indicates a maximum value of 59. The RT class does
not support the notion of user mode priorities. Priority tweaking of RT threads
involves simply specifying a priority value in the RT class range; then, that value
will be directly reflected in the global dispatch priority of the process. For exam-
ple, the global priority range for RT is 100–159, where global priority 100 corre-
sponds to RT priority 0, global priority 120 corresponds to RT priority 19, and so on.

# priocntl -l
CONFIGURED CLASSES
==================

SYS (System Class)

TS (Time Sharing)
        Configured TS User Priority Range: -60 through 60

IA (Interactive)
        Configured IA User Priority Range: -60 through 60

RT (Real Time)
        Maximum Configured RT Priority: 59
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So, below, we used priocntl (1) to start a program in real time and specified a pri-
ority.

We specified a priority value of 59 on the command line. Note the actual global dis-
patch priority of the process we started is 159. This value results from the kernel
turning the specified priority into a global dispatch priority. In the case of RT pro-
cesses and threads, the kernel uses the user-supplied RT priority value as an index
into the RT dispatch table to retrieve the corresponding global dispatch priority, as
illustrated in Figure 9.6.

 Figure 9.6 Setting RT Priorities

An invocation of the priocntl (1) command to execute a process as a real-time
process defaults to the base RT class priority, which is 0, resulting in a global dis-
patch priority of 100—the value in the 0th entry in the real-time dispatch table
(rt_dptbl ). The example in Figure 9.6 specifies a value of 59, which the kernel
will plug into the rt_pri field of the thread’s rtproc structure and use as an
index in the dispatch table, rt_dbtbl . The corresponding value is used to set the
thread’s actual global dispatch priority, 159, in this example. A kernel
thread_change_pri() function is called to set the dispatcher priority in the
kthread’s t_pri  field.

User-settable priorities for RT threads is the easy case, which is why we talked
about that first. The SYS class is even easier: user-level tweaking of SYS class
thread priorities does not exist, period. Which brings us back to TS/IA class
threads. First, a quick note before we move on. Kernel threads in the same pro-
cess can run at different scheduling classes and priorities. A multithreaded pro-
cess can have LWP/kthread pairs in the TS, IA , SYS, and RT class. The

# priocntl -e -c RT -p 59 ./hog &
1016
# ps -Lc
   PID   LWP  CLS PRI TTY     LTIME CMD
  1016     1   RT 159 pts/2    0:03 hog
  1015     1   TS  48 pts/2    0:00 sh
  1017     1   TS  48 pts/2    0:00 ps
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priocntl (1) command, however, does not provide that level of granularity for con-
trol. priocntl (1) provides for scheduling class and priority control only on a
per-process level, not per LWP/kthread. The priocntl (2) system call has facili-
ties for specifying an LWP ID versus a PID, so code can alter scheduling classes
and priorities at the LWP/kthread level.

Several fields in the tsproc structure support the implementation of user mode
priorities for TS threads: ts_umdpri , the user priority within the TS class range;
ts_upri , the user priority value; ts_uprilim , a boundary (limit) on user prior-
ity values; and ts_cpupri , the kernel component of user priorities. ts_cpupri
exists essentially to give the kernel some control over user-adjusted priorities
(think of it as a throttle). It is used in conjunction with the user priority,
ts_umdpri , to index into the TS dispatch table to set new values for both
ts_cpupri and the thread’s actual priority, t_pri . The ts_uprilim field exists
to enable users to place their own throttle on user mode priorities.

The dispatcher uses these values in the kernel for boundary checking on
user-supplied priorities and for adjusting a thread’s priority as a result of the pri-
ocntl() call. Once user priorities are set, they remain in use for subsequent
thread priority adjustments. ts_cpupri is set to 29 when the LWP/kthread is ini-
tialized; ts_upri and ts_uprilim are initialized to 0. Without an explicit prio-
cntl (1) or priocntl (2) command issued on a process or kthread, the user mode
priorities do not factor in to the normal priority adjustments done during the exe-
cution life of a kernel thread. If an LWP/kthread has a user priority set and issues
a fork() , then the new process LWP/kthread inherits the user-supplied values
from the parent thread.

RT class thread priorities are fixed, as oppsed to TS/IA thread priorities, which
are adjusted in many places during the life of a thread: after initialization on
return from a fork() , when a thread is made runnable by ts_setrun() , upon
sleep and wakeup, upon return from a trap, during clock tick processing, prior to a
context switch, and during a regular thread update that is executed through the
callout queue feature from the clock interrupt handler. The actual priority adjust-
ment is, in some cases, contingent on a conditional test in the code, for example,
has a thread been waiting to get on a dispatch queue for an inordinate amount of
time? We’ll look at some examples to illustrate the mechanics of establishing a
thread’s priority, starting with TS and IA  class threads.

Refer to Figure 9.7, which illustrates the following sequence.

1. After the creation and initialization of the LWP/kthread (fork() ), a fork
return function is called to set the kthread’s priority and place it on a dis-
patch queue. The inherited ts_cpupri value indexes into the TS dispatch
table (1).

2. It creates a new ts_cpupri  value that is based on the ts_tqexp  value in
the indexed table location.

3. The ts_timeleft  value is set on the basis of the allotted time quantum for
the priority level.
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4. ts_dispwait  is set to 0. A user mode priority is calculated, setting the
ts_umdpri  value, which is then used as an index into the TS/IA  dispatch
table o establish the thread’s actual dispatch priority,

5. t_pri  is determined by the ts_globpri  (global priority) value in the
indexed table location (5).

 Figure 9.7 Setting a Thread’s Priority Following fork()

The calculation of the user mode priority (between steps 2 and 3), which is done
whenever a TS/IA thread priority adjustment is required, is simple arithmetic,
summing the ts_cpupri , ts_upri , and ts_boost values. ts_boost is used for
IA class threads as a means of boosting the priority by a value of 10. ts_umdpri is
set to the sum of ts_cpupri , ts_upri , and ts_boost and is tested against some
boundary values; it cannot be greater than the maximum TS/IA class priority, 59,
or less than 0.

The other relevant step taken in the fork return code is the setting of the
ts_timeleft and ts_dispwait fields in the kthread’s tsproc structure.
ts_timeleft tracks execution time when the kthread is running on a processor
and is decremented in the clock tick handler (if the thread is actually running on a
processor, of course). When ts_timeleft counts down to 0, the kthread has used
its time quantum and is context-switched off the processor. ts_dispwait tracks
how much time the thread has spent sitting on a dispatch queue, waiting to get
context-switched onto a processor for execution. For all threads on a dispatch
queue, ts_dispwait is updated once a second by the ts_update() thread, which
is run out of the callout queue from the clock interrupt handler (more on this in a
minute).

When the priority work has been done and t_pri in the kernel thread has a
valid dispatch priority, the thread is ready to be placed on a dispatch queue; such
placement is ultimately done by one of the dispatcher queue management func-
tions, setfrontdq() or setbackdq() . How these functions work and whether a
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kthread ends up at the front or back of a queue are matters we’ll get into in just a
bit.

Once a kthread is off and running, it can go through potentially many state
changes that determine how and where priority adjustments are made. A typical
thread spends time executing, gets interrupted, gets preempted, issues a blocking
system call causing the thread to be placed on a sleep queue, and so forth.
Class-specific functions are called and act appropriately as dictated by the transi-
tion and the dispatcher-related values in the thread’s tsproc structure for prior-
ity adjustment. For example, if a thread burns through its allotted time quantum
(as set from the ts_quantum value in the dispatch table, Figure 9.7, step 3), the
kthread is switched off the processor and given a new dispatch priority.

The scheduling-class-specific clock tick handler is called from the system clock
interrupt handler for each CPU that has a noninterrupt thread running on it.
When the ts_tick() function is entered, the ts_timeleft value is decremented
and tested. If ts_timeleft reaches 0, the time quantum has expired for the
kthread. This is the case for TS/IA threads that are not at a SYS class priority—
threads running at a SYS class priority are not time sliced. Assuming an expired
time quantum, the code tests to see if a scheduler activation has been turned on for
the thread, in the form of preemption control.

Solaris provides an innovative facility, called preemption control, for stretching
a thread’s time quantum for a short time. Preemption control does not require
altering priorities or dispatcher table values. Using a simple API—
schedctl_init (3X), schedctl_start (3X), schedctl_stop (3X)—program-
mers can develop code that initializes and turns on a preemption control for a
kthread. What this does is effectively give the kthread a few extra clock ticks of
execution time on a processor, beyond its time quantum, before it is switched off.
This feature addresses situations where a thread is holding a critical resource,
such as a mutex lock (an application-level mutex lock, not a kernel mutex lock)
and a few extra ticks of execution time will allow the kthread to complete its task
and free the lock. Otherwise, if the thread is taken off the processor before releas-
ing the resource, other threads that need the same resource will begin to block,
waiting for the resource to be freed. This behavior requires that the thread hold-
ing the resource work its way up the dispatch queue for rescheduling.
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The use of preemption control in application code is illustrated in the following
pseudocode, showing preemption control being turned on and then off around the
acquisition and freeing of a mutex lock.

Without the activation turned on to enable preemption control, there’s a greater
possibility that the kthread will be forced to surrender the processor before it is
able to free the lock. Think of preemption control as a means of telling the dis-
patcher “I’m about to grab a critical resource, so grant me a little extra execution
time.”

Getting back to the ts_tick() code, we’ve entered the main processing seg-
ment of ts_tick() because the kthread was not running at a SYS class priority
and its time quantum has expired. If preemption control has been turned on for
the kthread, it is allowed an extra couple of clock ticks to execute, no priority
tweaks are done, and ts_tick() is finished with the thread. There is a limit to
how many additional clock ticks a kthread with preemption control turned on will
be given. If that limit has been exceeded, the kernel sets a flag such that the
thread will get one more time slice and on the next pass through ts_tick() , the
preemption control test will fail and normal tick processing will be done. In this
way, the kernel does not allow the scheduler activation to keep the thread running
indefinitely. If the requirement is that the thread must stay on the processor indef-
initely, the RT class should be used.

Regular TS/IA tick processing involves adjusting the thread priority in the same
way the priority is set in the fork return code (Figure 9.7 on page 379). ts_cpupri
is used as an index into the TS dispatch table and is assigned a new value that is
based on ts_tqexp from the indexed location. The user mode priority is calcu-
lated, ts_dispwait is set to 0, and a new dispatcher priority is derived from the
TS/IA dispatch table. The new priority is based on the global priority value in the
table row corresponding to ts_umdpri , which is used as the dispatch table array
index. What’s different between the ts_tick() handler and the fork return sce-
nario is that the thread’s priority is not set directly in ts_tick() , but rather in a
thread_change_pri() kernel function. A change in a thread’s priority may war-
rant a change in its position on a queue; thread_change_pri() handles such a
case. In the fork return, we are dealing with a new thread that has not yet been on
a queue, so it’s not an issue.

mutex_t mylock;
mutex_init(&mylock);
schedctl_init();
.
.
schedctl_start();
mutex_lock(&mylock);

        do work while holding the mutex

mutex_unlock(&mylock);
schedctl_stop();
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By design for TS/IA class threads, the adjusted priority in the preceding sce-
nario will end up being something worse than the thread had previously. If a
thread consumed its entire time quantum, it gets a worse priority to allow other
threads a better opportunity to obtain processor time. You can test this behavior by
plugging in some actual values, walking through the adjustment sequence as we
described it, and figuring out where the thread’s priority lands after the thread
uses a full time quantum.

Here’s a quick example, assuming a simple case of no user mode priority.

• A kthread starts with a ts_cpupri value of 29, which puts its right in the
middle of the TS/IA priority range (which we’re assuming is why the default
value of 29 was chosen). The ts_tqexp value at table location 29 (the 28th
row, because the count starts at 0) is 18.

• Thus, the new ts_cpupri value is 18, which also becomes the ts_umdpri
value when the user mode priority is calculated—since ts_upri and
ts_boost are zero values (no user priority, and it’s a TS class thread, so no
priority boost).

• The global dispatch priority at index location 18 is 17, so the kthread’s initial
priority (t_pri ) is 17, with a 120 clock tick time quantum (derived by using
ts_cpupri  as an index).

• When 120 ticks are gone and ts_timeleft has clicked down to 0, we’ll
essentially repeat the steps to get the new priority.

• ts_cpupri is now 18, the ts_tqexp value at the corresponding table loca-
tion is 7, so the new ts_cpupri value is 7, which again becomes ts_umdpri
after the user mode priority is calculated.

• The global dispatch priority at the 7th array location is 6, so the kthread’s
priority after the kthread uses its time quantum will go from 17 to 6, a worse
priority. Its time quantum is larger, at 160 clock ticks, so it will wait longer to
run but will get more clock ticks when it does execute. The behavior is consis-
tent with the targeted behavior of timeshare class threads. As threads get
more execution time, their priority is worsened; as threads spend more time
waiting to run, their priority is improved.

The second case we’ll look at centers around kthread sleep and wakeup. Specifics
of the sleep queue implementation and wakeup mechanism are discussed in the
next section, but we can still examine the priority component of those state
changes without detracting from either discussion.

• The ts_sleep() function handles the preparation of a TS/IA class thread for
sleep. The code tests the t_kpri_req flag (kernel priority requested), which
will be set if the thread is holding a kernel RW lock or an exclusive page lock
on a memory page when the sleep function is invoked. If t_kpri_req is set,
the thread priority, t_pri , is set to 100, the lowest SYS class priority, which
puts it above all TS/IA  class priorities.

• The kthreads TSKPRI flag is set to indicate that thread is at a SYS priority.
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If a kernel priority has not been requested for the thread, the ts_sleep()
code tests the ts_dispwait value (how long the thread has been waiting on
a dispatcher queue) against the ts_maxwait value in the dispatch table, as
indexed by ts_umdpri , which will index the same row used to retrieve the
global priority the last time it was set. The test looks something like this.

That condition is true if the thread has been waiting a relatively long time
for processor cycles.

• The priority is recomputed, as previously described, with one significant dif-
ference. The ts_cpupri value is set from the ts_slpret (sleep return prior-
ity) column in the TS/IA dispatch table, not the ts_tqexp column, as was the
case in the previous example. The ts_slpret priorities give the thread a
high priority so they are scheduled sooner than most other TS/IA threads sit-
ting on the dispatch queues.

• The final scenario in the ts_sleep() code is entered if the thread has not
had a kernel priority requested and if the thread has not been waiting longer
than ts_maxwait  (the first two scenarios just described).
If those two conditions are not true and if the thread is already at a SYSpri-
ority, the thread’s priority is set back to a TS/IA class priority, with
ts_umdpri used as an index into the TS/IA dispatch table and t_pri set to
the corresponding global priority.
If none of the three conditions is true—which means the thread is not at a
SYS priority, is not required to be assigned a SYS priority, and has not been
waiting an inordinate amount of time—then the ts_sleep() code essen-
tially does nothing and simply returns to the caller without having altered
any of the thread’s dispatcher properties. The thread will get another shot at
having its priority tweaked in the wakeup code.

• The wakeup function places the kthread on a dispatch queue and adjusts the
thread priority only if the thread wait test described previously is true ; that
is, the thread’s ts_dispwait value was greater than ts_maxwait , again
using ts_umdpri  to retrieve the ts_maxwait  value from the dispatch table.
The wakeup code also resets the ts_dispwait value back to 0 after adjust-
ing the thread’s priority, before calling the dispatcher queue functions for
queue insertion. The actual priority adjustment is done by use of the
ts_slpret dispatch table value to set ts_cpupri , as was the case in the
ts_sleep()  code for a long-waiting thread.
ts_timeleft is set to ts_quantum , and t_pri is assigned a dispatch prior-
ity after the user priority arithmetic is done, with the ts_umdpri value
determining from which row the dispatch table the global priority is
retrieved, as shown in the sequence in Figure 9.8.

if (kthread->tsproc.ts_dispwait > ts_dptbl[ts_umdpri].ts_maxwait)
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 Figure 9.8 Priority Adjustment with ts_slpret

• The kernel runs a ts_update() routine once per second with the callout
facility. ts_update() walks through a linked list of kernel threads and
updates the thread’s ts_dispwait value for TS/IA class threads (RT and SYS
class threads are not updated).
The update code alternates across the multiple linked lists of tsproc struc-
tures (see Figure 9.4 on page 371), starting at ts_listhead , traversing one
list at a time. If the thread’s updated ts_dispwait is greater than
ts_maxwait , the thread’s priority is bumped by the methods already
described but with a different column in the dispatch table to reset
ts_cpupri .
ts_lwait in the dispatch table is fetched from the indexed row to set the
new ts_cpupri value, the user mode priority is calculated, and
ts_dispwait  is reset to 0.
The ts_update() function calls ts_change_pri() , which does a little
extra work on behalf of the update process.

• If the thread is currently running on a processor (thread state is ONPROC), then a
new global priority is set in t_pri: the new ts_umdpri value derived in the
ts_update()  function grabs the global priority from the dispatch table.

• If the thread’s new priority is greater than the highest-priority thread sitting on
the processor’s dispatch queue (the dispatcher structure disp_maxrunpri , which
is always updated when a thread in placed on a dispatch queue, is used for the
test), then the thread has its ts_timeleft parameter reset from ts_quantum (in
the dispatch table) and continues to run.

• If a higher-priority thread is sitting on the dispatch queue, the thread is forced to
surrender the processor.
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• The other possible condition in ts_change_pri is that the thread is not run-
ning on a processor, in which case thread_change_pri() is called to set the
new priority. A thread in the SLEEPstate (sitting on a sleep queue) will have
its priority changed by a synchronization object-specific function.
For example, if the thread is sleeping on a mutex lock, the
mutex_change_pri() code is invoked to change the priority and reposition
the thread on the sleep queue if necessary (more on this in “The Kernel
Sleep/Wakeup Facility” on page 404). Otherwise, the thread must be sitting
on a dispatch queue. The priority is set, and one of the dispatcher queue
insertion functions is called to set the thread’s position on the dispatch queue.

This entire process is illustrated in the pseudocode listed below.

Having examined a couple TS/IA-specific functions that occur at regular inter-
vals—ts_tick() and ts_update() , both driven from the clock interrupt han-
dler—we need to ensure that the distinction is clear between what each function is

ts_update()
        set list from ts_plisthead[] /* lists of tsproc structures */
        ts_update_list()
                while (not at the end of the current list)
                        if (thread is not in TS or IA class)
                                        bail out
                        if (thread has preemption control turned on)
                                        bail out
                        if (thread is not sitting on a dispatch queue)
                                        set thread flags for post trap processing
                                        bail out
                        kthread->tsproc.ts_cpupri = ts_dptbl[ts_cpupri].ts_lwait
                        calculate new user mode priority (ts_umdpri)
                        kthread->tsproc.ts_dispwait = 0
                        if (the threadUs priority will change based on new ts_umdpri)
                                ts_change_priority()
                end while loop
ts_change_priority()
        if (thread is running on a processor) /* state is ONPROC */
                kthread.t_pri = ts_dptbl[ts_umdpri].ts_globpri
                if (threadUs priority > max runnable priority on dispatch queue)
                        kthread->tsproc.ts_timeleft = ts_dptlb[ts_umdpri].ts_quantum
                else
                        set flag for back of dispatch queue
                        surrender cpu
        else /* thread is not running */
                set front dispatch queue flag if IA class thread
                thread_change_pri()
                if (thread was on a run queue)
                        kthread->tsproc.ts_timeleft = ts_dptbl[ts_umdpri].ts_quantum
                else
                        set dispatch back queue flag
thread_change_pri()
        if (thread is not on a sleep queue or run queue)
                set new priority and return
        if (thread is on a sleep queue)
                call synchronization object specific priority change code
        else
                take the thread of the dispatch queue
                set the new priority
                call a dispatcher queue insertion function /* put it back on a queue */
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intended to do. ts_tick() is designed to process threads running on a processor.
ts_update() is designed to process threads that are not running on a processor
but rather are sitting on a dispatch queue or sleep queue. In case you got lost in
some of the detail of the preceding discussions, we thought it a good idea to drive
this salient point home.

As we pointed out earlier, IA class threads are, for the most part, processed by
the TS class functions just described. The class-specific functions defined for the IA
class include code to initialize the IA class and retrieve class-specific information
and support code for setting and fetching class parameters. The ia_init() code is
minimal, as most of the IA class work is done in the TA class code. ia_init() sets
its scheduling class ID, a pointer to its class functions table, and its maximum glo-
bal priority (which is 59, same as with TS). The user mode priority support func-
tions, ia_parmsin() , ia_parmsset() , and ia_parmsget() , track the
equivalent TS support code in flow and function.

Processes are put in the IA class by an IA class-specific routine,
ia_set_process_group() , which is called from a STREAMS ioctl() (strio-
ctl() —ioctls are I/O control calls, supported by all character device drivers) when
a TTY is taken over by a new process group. It is rooted in the STREAMS-based
terminal driver code in the kernel. If you were to boot your Solaris desktop system
and not start a windowing system, you would not have any IA processes running
(just TS and the SYSclass Solaris daemons). When the windowing system starts, it
takes over control of the “terminal,” which in the case of a desktop is a keyboard,
mouse, and the graphics card interface to the monitor.

The takeover generates the set-process-group ioctl call, which ultimately calls
the CL_SET_PROCESS_GROUPmacro. This macro resolves to the
ia_set_process_group() IA -class-specific function since the caller is an inter-
active process (the windowing system software sees to that). All the processes asso-
ciated with the windowing system are put in the IA class. And since processes and
threads inherit their scheduling class from the parent, newly created processes
(terminal windows, applications) are also put in the IA class. IA class threads are
given a priority boost value of 10, which is factored in to the thread’s user mode
priority when that calculation is done, that is, every time a thread’s priority is
adjusted. Recall that the user priority is the sum of ts_cpupri , ts_upri , and
ts_boost.  (ts_boost  has a fixed value of 10 for IA  class threads.)

Processing for an RT class thread is much simpler; since RT priorities are fixed,
they do not get better or worse during the execution life of the thread. The only
way the priority of an RT class thread changes is if it is explicitly changed as the
result of a priocntl() command or system call. When a thread enters the RT
scheduling class (rt_enterclass() ) through priocntl() , the thread RT class
priority, rt_pri in the rtproc structure, is set to the default of 0 unless a prior-
ity has been specified; in that case, rt_pri will reflect the requested priority (pro-
vided it falls within the valid range for the class). rt_pquantum (also in rtproc )
is set to the rt_quantum value from the RT dispatch table corresponding to the
row number, as indexed by the priority. For example, the default RT class priority
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of 0 defines a time quantum of 1000, which translates to 1000 milliseconds, or 100
clock ticks (see the description of RES in “Dispatch Tables” on page 362).

If the thread is currently running on a processor, the thread’s global priority is
set in t_pri , and the code looks at the dispatch queue to determine whether the
current thread has a priority greater than the highest-priority thread sitting on a
dispatch queue. If it does, rt_timeleft is set to rt_pquantum , and the thread is
allowed to continue to run; otherwise, it is forced to surrender the processor. If the
thread is not currently running, the thread_change_pri() code is called (the
same function described in the TS/IA examples), and the thread is placed on the
appropriate dispatch queue. The following pseudocode illustrates this sequence of
events.

Other housekeeping work—initializing the other members of rtproc and setting
the pointers in rtproc and the kthread structure—done in rt_enterclass() is
not shown above.

A thread will also enter the RT class if it is forked from another RT thread,
because child threads inherit their scheduling class from the parent. The child
thread inherits the parent priority and time quantum in the rt_fork() code. The
execution order of parent and child threads in the RT class is different from that of
TS/IA class threads. The child executes first, by design, when a TS/IA class thread
is forked (this is especially true in the case of vfork() , as discussed in the previ-
ous chapter). RT child threads end up on the dispatch while the parent continues
to run, unless, of course, the application code is written explicitly to do otherwise.

The rt_tick() code, called from the clock tick handler for an RT class thread,
determines if the thread’s time quantum has expired. If it has, the thread is forced
to surrender the processor; otherwise, it continues. RT class threads decrement a
time counter, rt_timeleft , in the rtproc structure to track processor time clicks
(as is the case with TS threads). A zero rt_timeleft means the time quantum
has been used. It’s possible to set an infinite time quantum for RT class threads.

rt_enterclass()
        if (not superuser)
                return  /* must be root to use RT class */
        if (no user-supplied priority)
                rtproc->rt_pri = 0;
                rtproc->rt_pqunatum = rt_dbtbl[0].rt_qunatum;
        else
                rtproc->rt_pri = user-supplied priority;
                if (user-supplied time quantum) /* -t flag in priocntl */
                        rtproc->rt_pqunatum = user-supplied time quantum
                else
                        rtproc->rt_pquantum = rt_dptbl[rt_pri].rt_quantum;
        if (thread is running)
                kthread->t_pri = rt_dptbl[rt_pri].rt_globpri;
                if (thread priority > highest-priority thread on a queue)
                        rtproc->rt_timeleft = rtproc->rt_pquantum
                else
                        surrender the processor
        else /* thread is not running */
                thread_change_pri(new_priority)
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An rt_quantum value of −2 in the RT dispatch table is interpreted by the kernel
as an infinite time quantum, in which case an RT class thread will continue to run
unless it voluntarily surrenders the processor as a result of a sleep (e.g., issuing a
blocking system call).

The RT code does not index the RT dispatch table to fetch the rt_quantum data
every time a test is necessary. Once the RT thread is established, the time quan-
tum from the RT table is stored in rt_pquantum in the thread’s rtproc struc-
ture. Subsequent tests are done with rt_pquantum , which will get a new value
should a priocntl() be issued on the thread, giving it a new priority and time
quantum. Once an RT thread is initialized and begins execution, the priority never
changes unless explicitly changed with priocntl() .

9.2.3  Dispatcher Functions

The dispatcher’s primary functions are to decide which runnable thread gets exe-
cuted next, to manage the context switching of threads on and off processors, and
to provide a mechanism for inserting kthreads that become runnable into a dis-
patch queue. Support code for the initialization process (loading scheduling
classes, setting up dispatch queues, etc.) and support of the dispadmin (1M) and
priocntl (1) commands are also defined within the dispatcher subsystem.

The heart of the dispatcher is the disp() function, which selects the next
thread for execution. disp() is called primarily from the context-switching func-
tion, swtch() , which is the main entry point into the dispatcher and which is
called from many areas of the kernel. Queue insertion is handled by the set-
frontdq() and setbackdq() code, which place a kthread on a dispatch queue
according to the thread’s priority. Whether the kthread is placed at the front or the
back of the queue is determined before the queue insertion function is called; we’ll
take a look at how that is decided as we move through the function descriptions.

9.2.3.1  Dispatcher Queue Insertion

In the previous section on thread priorities, we mentioned queue insertion follow-
ing the priority setting from several class-specific routines. When a thread is cre-
ated, the fork return code calls the class-specific setrun() function after setting
the thread’s priority. The queue insertion code is invoked from setrun() as the
final step in the thread creation process. The class wakeup functions call into the
dispatcher to insert a newly awakened kernel thread, moving it from a sleep queue
to a dispatch queue. The preemption code must have the preempted thread placed
on a dispatch queue, and thread_change_pri() also calls setfrontdq() or
setbackdq() . Figure 9.9 illustrates the execution phases of a typical kernel
thread as it is moved to and from dispatch queues and sleep queues.
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 Figure 9.9 Kernel Thread Queue Insertion

The thread yield (xx _yield ) scenario occurs only when a yield call is issued pro-
grammatically in application code through thr_yield (3T). Preemption, as we
mentioned earlier, means a thread is involuntarily context-switched off a proces-
sor in favor of a higher-priority thread. Once the code segments shown in Figure
9.9 have completed the priority work, it’s time for queue selection and insertion.
Basically, four possible scenarios drive queue selection:

• An unbound thread whose priority is less than kpreemptpri

• An unbound thread whose priority is greater than or equal to kpreemptpri

• A bound thread whose priority is less than kpreemptpri

• A bound thread whose priority is greater than or equal to kpreemptpri

kpreemptpri , kernel preemption priority, is a global variable set by the kernel
during initialization. The kernel sets the kpreemptpri value as scheduling
classes are loaded, either during boot or when a class is loaded at some point while
the system is running. By default, kpreemptpri is set to a value of 100, which is
the maximum system priority (99) plus 1. Any thread with priority equal to or
greater than kpreemptpri  will cause a kernel preemption.

The basic, simplified logic of queue selection goes like this.

if (unbound AND priority < kpreemptpri)
        insert on dispatcher queue for t_cpu processor
if (unbound AND priority >= kpreemtppri)
        insert in cp_kp_queue /* systemwide kernel preempt queue */
if (bound AND priority < kpreemptpri)
        insert in dispatch queue of CPU thread is bound to
if (bound AND priority >- kpreemptpri)
        insert in dispatch queue of CPU thread is bound to
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When a thread is switched onto a processor for execution, the thread’s t_cpu
pointer points to the CPU structure of the selected processor. Unbound TS/IA
threads are placed on the dispatch queue of the processor they ran on last, in the
hopes of hitting a warm processor cache and thus maximizing performance. This
loose affinity maintained by the dispatcher has a time limit in the form of the ker-
nel rechoose_interval parameter, which by default is 3 clock ticks. If more
than rechoose_interval ticks have transpired since the thread ran last, the
likelihood of the thread getting a cache hit has diminished, and the next available
processor is selected. rechoose_interval can be set to a higher value in
/etc/system and for some loads can provide some measurable improvement in
performance, especially on loads that have a lot of threads with short execution
times and processors with relatively large caches. However, as with anything else,
you must take great care if you alter the default value. Never do such a thing on a
production system without having first tested extensively.

Unbound RT threads are placed on the systemwide kernel preempt queue,
cp_kp_queue . If processor sets are configured and the thread has been bound to a
processor set, the cp_kp_queue for the processor set is used. If processor sets
have been configured and the thread has not been bound to a set, the
cp_kp_queue for the default partition is selected. Bound threads in any schedul-
ing class, even RT class threads, are placed on the dispatch queue or the processor
they’ve been bound to.

The insertion of a thread on a dispatch queue is accomplished with the set-
frontdq() and setbackdq() routines for the per-processor dispatch queues, and
setkpdq() for the kernel preemption queue (or queues). The algorithm for set-
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frontdq() , whose job it is to place a thread at the front of a dispatch queue, is
represented in the following pseudocode.

The selection of a dispatch queue for a TS/IA thread is essentially the selection of a
processor, since each processor has its own dispatch queue. That is why we refer-
ence selected_cpu in the preceding pseudocode. For a uniprocessor system or a
multiprocessor system with one online processor, processor selection becomes triv-
ial, which is why the code tests for those conditions up-front, immediately follow-
ing the swapped thread test. A thread that is either swapped out or sitting on the
swap queue needs to be reloaded before it can be placed on a dispatch queue.

To nudge the memory scheduler (PID 0), disp_swapped_setrun() will set
one of two possible flags: either wake_sched or wake_sched_sec , depending on
the priority of the thread. These flags are tested in the clock interrupt handler,
where wake_sched is tested every clock interrupt and wake_sched_sec is tested
every 100 clock interrupts, or once every second. Threads at a priority greater than
99 (highest SYS class priority) wake up the scheduler right away—the next clock
interrupt (wake_sched ); lower-priority threads result in wake_sched_sec get-
ting set and thus wait a little longer.

The next test in setfrontdq() is for bound threads and uses t_bound_cpu in
the thread structure. A bound thread will have its t_bound_cpu pointer pointing
to the processor it is bound to. If the thread is not bound and its priority is greater
than kpreemptpri , call setkpri() to place the thread on the kernel preempt
queue and return. Otherwise (not bound, priority less than kpreemptpri ), a cpu
is selected initially from the threads t_cpu pointers (the loose affinity discussed

setfrontdq()
if (thread is swapped out or on swap queue)
        call disp_swapped_setrun()
        return
if (uniprocessor system)
        selected_cpu = t_cpu
if (MP system with 1 online CPU)
        selected_cpu = t_cpu
else if (thread is not bound)
        if (thread priority >= kpreemptpri)
                call setkpdq()
                return
        selected_cpu = t_cpu
        if (thread was running on the same partition that selected CPU belongs to)
                if (thread priority < highest-priority thread sitting on the queue)
                        selected_cpu = cpu_choose()
                else
                        selected_cpu = disp_lowpri_cpu()
/*
* at this point, the processor and associated dispatch queue have been selected
*/
set thread state to TS_RUN /* thread is runnable */
increment runnable thread count on dispatch queue structure - disp_nrunnable
place thread on the processorUs dispatch queue
set the disp_qactmap queue bitmap to reflect added thread
if (priority of thread placed on queue > disp_maxrunpri)
                dispatch_queue->disp_maxrunpri = threadUs priority
                call cpu_resched();
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earlier) and the processor partition test is done. Intuitively, it would seem that a
processor set from the thread’s t_cpu structure would belong to the processor par-
tition referenced by the same thread’s t_cpupart pointer, but it’s possible some
processor set configuration changes were made since they last ran, so the test is
necessary.

If the selected processor is in the same partition on which the thread last ran,
and if the thread’s priority is greater than or equal to the highest-priority thread
sitting on the processor’s dispatch queue, stick with the selected processor. Other-
wise, call cpu_choose() and find another processor queue in the same partition
on which to place the thread. If the partition test fails, meaning the partition that
the selected processor belongs to is different from the partition on which the
thread last ran, then setfrontdq() calls disp_lowpri_cpu() to find a proces-
sor in the thread’s t_cpupart partition. This code deals with situations where
processor set configuration changes were made since the thread was last placed on
a dispatch queue.

The cpu_choose() routine looks for the best processor on which to put the
thread. In cpu_choose() , the kernel compares the amount of time (clock ticks)
that has transpired since the thread last ran against rechoose_interval . The
thread’s t_disp_time field is incremented (by the ts_update thread) in the clock
tick handler if the thread is not on a queue, and the kernel compares this value
against rechoose_interval . If t_disp_time is less than rechoose_interval ,
the thread is kept on the processor it ran on last. Otherwise, disp_lowpri_cpu()
is called to find a processor. disp_lowpri_cpu() searches the linked list of online
processors in the partition for the processor with the lowest-priority thread. Once
found, the thread is inserted in the selected processor’s dispatch queue.

Bound threads, as we mentioned earlier, are placed on the queue of the proces-
sor they are bound to; or, if bound to a processor set, a processor within the set is
selected, applying the loose affinity rule with rechoose_interval . Once the pro-
cessor dispatch queue has been selected, the thread’s priority is used to determine
the correct priority queue. Recall that the per-processor queues are a queue of
queues, and within each processor queue are linked lists of threads on individual
queues, one for each priority. The disp_nrunnable counter in the processor
queue is incremented, as is the dq_sruncnt counter for the priority queue on
which the thread is placed. The thread is inserted at the front of the selected prior-
ity queue (remember, we are going through setfrontdq() ), and the
disp_qactmap (dispatcher queue active map) bitmap is updated. The priority of
the newly inserted thread is tested against the queue’s disp_maxrunpri value. If
it is greater, disp_maxrunpri is set to the thread’s priority to reflect the high-
est-priority thread sitting on the queue, and cpu_resched() is called to deter-
mine if a preemption condition exists.

cpu_resched() checks the priority of the thread currently executing on the
processor against the priority of the thread just inserted onto the processor dis-
patch queue and also tests for a user or kernel preemption. A user preemption
means the thread has a greater priority than the currently running thread, but not
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greater than kpreemptpri . More succinctly, if the thread’s priority is less than
100 but greater than the currently running thread, the code sets up a user pre-
emption. A kernel preemption is the result of the thread having a priority greater
than the currently running thread and greater than kpreemptpri . The
cpu_resched()  work is represented in the following pseudocode.

A couple of additional points to make on cpu_resched() . First, on a multiproces-
sor system, the processor that owns the dispatch queue selected for the thread may
be a different processor than the one currently executing the code being examined:
the setfrontdq() routine. The uppercase CPUreference is a kernel macro that
always resolves to the currently executing processor. Thus, the tests described
above are testing to see if the selected processor is different from the current pro-
cessor. If it is not, a cross-call is generated by poke_cpu() to get the attention of
the selected processor and force it to enter the kernel via a cross-call trap handler
so the preemption will happen. If it is the same processor, the cross-call is not nec-
essary since the current processor is already in the kernel and will detect the pre-
emption flag when it returns to the code that originated the setfrontdq()  call.

The last thing that setfrontdq() does is to set the dispatch queue’s
disp_max_unbound_pri variable, which, as the name implies, maintains the pri-
ority value of the highest-priority unbound thread on the queue. If the newly
inserted thread’s priority is greater than the current disp_max_unbound_pri
and the thread is not bound, the value will be updated. That done, the kernel set-
frontdq() queue insertion process is completed. The thread is now sitting on a
dispatch queue and will be scheduled on the basis of its priority and position in the
queue when the dispatcher disp() and swtch() code executes next. We’re going
to walk through that process in just a moment.

The setbackdq() , which puts a thread at the back of a dispatch queue, is simi-
lar from an algorithmic point of view to setfrontdq() , with just a few differ-
ences. First, in setbackdq() the kernel attempts to maintain a balance in queue
depths across processors. Once a CPU has been selected with cpu_choose() , the
number of runnable threads on the processor queue for the corresponding thread
priority is examined. If it is greater than MAX_RUNQ_DIFF, which has a value of 2,
then the kernel tries the next CPU in the same partition. That behavior aside,
setbackdq() is essentially the same as setfrontdq() , except, of course, the
thread is inserted at the back of the selected queue.

cpu_resched()
        if (CPU is NOT IDLE AND thread priority > current thread priority)
                if (thread priority >= upreemptpri AND cpu_runrun == 0)
                        set cpu_runrun in CPU structure
                        set t_astflag in currently executing thread
                        if (thread priority < kpreemptpri AND selected cpu is not CPU)
                                poke_cpu()
                if (thread_priority >= kpreemptpri AND cpu_kprunrun == 0)
                        set cpu_kprunrun in CPU structure
                        if (selected cpu is not CPU)
                                poke_cpu()
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The decision as to whether setfrontdq() or setbackdq() is called from the
various points in the kernel where queue insertion is called is driven by factors
such as how long a thread has been waiting to run, whether or not the thread is in
the IA class, etc. IA class threads are put on the front of a dispatch queue, for an
additional edge on getting scheduled. A preempted thread with a scheduler activa-
tion is always placed at the front of a queue. RT class threads are always placed at
the back of the kernel preempt queue. Threads that have waited a while (rela-
tively speaking) to run (as determined by the thread’s t_disp_time value) are
placed at the front of a queue.

9.2.3.2  Thread Preemption

We talked a bit about thread preemption in the setfrontdq() code description
and referred to it in the thread priority section. To complete the picture, we’ll tie
up some loose ends on the subject here. First, a quick review of what preemption
is.

The kernel will preempt a thread running on a processor when a higher-prior-
ity thread is inserted onto a dispatch queue. The thread is effectively forced to
reschedule itself and surrender the processor before having used up its time quan-
tum. Two types of preemption conditions are implemented—a user preemption and
a kernel preemption—distinguished by the priority level of the preempted thread,
which drives how quickly the preemption will take place.

A user preemption occurs if a thread is placed on a dispatch queue and the
thread has a higher priority than the thread currently running on the processor
associated with the queue but has a lower priority than the minimum required for
a kernel preemption. A kernel preemption occurs when a thread is placed on a dis-
patch queue with a priority higher than kpreemptpri , which is set to 100, repre-
senting the lowest global dispatch priority for an RT class thread. RT and interrupt
threads have global priorities greater than kpreemptpri .

User preemption provides for higher-priority TS/IA threads getting processor
time expediently. Kernel preemption is necessary for support of real-time threads.
Traditional real-time support in Unix systems was built on a kernel with various
preemption points, allowing a real-time thread to displace the kernel at a few
well-defined preemptable places. The Solaris implementation goes the next step
and implements a preemptable kernel with a few non-preemption points. In criti-
cal code paths, Solaris will temporarily disable kernel preemption for a short
period and reenable it when the critical path has completed. Kernel preemption is
disabled for very short periods in the thread_create() code, during the
pause_cpus() routine, and in a few memory management (MMU) code paths,
such as when a hardware address translation (HAT) is being set up.

Preemptions are flagged through fields in the per-processor cpu structure:
cpu_runrun and cpu_kprunrun . cpu_runrun flags a user preemption; it is set
when a thread inserted into a dispatch queue is a higher priority than the one run-
ning but a lower priority than kpreemptpri . cpu_kprunrun flags a kernel pre-
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emption. We saw in the cpu_resched() code one example of where these flags get
set. The runrun flags can also get set in the following kernel routines.

• cpupart_move_cpu() . When a processor set configuration is changed and a
processor is moved from a processor set, the runrun flags are set to force a
preemption so the threads running on the processor being moved can be
moved to another processor in the set they’ve been bound to. Note that if only
one processor is left in the set and there are bound threads, the processor set
cannot be destroyed until any bound threads are first unbound.

• cpu_surrender() . A thread is surrendering the processor it’s running on,
called from the TS/IA clock tick handler, sleep code, and trap return code. The
RT class routines for enterclass , setting parameters, and clock tick handler
can also call cpu_surrender() . Recall from the section on thread priorities
that cpu_surrender() is called following a thread’s priority change and a
test to determine if preemption conditions exist. Entering cpu_surrender()
means a preemption condition has been detected and is the first step in a
kthread giving up a processor in favor of a higher-priority thread.
Two other areas of the kernel that potentially call cpu_surrender() are the
priority inheritance code and the processor support code that handles the
binding of a thread to a processor. The conditions under which the priority
inheritance code calls cpu_surrender() are the same as previously
described, that is, a priority test determined that a preemption is warranted.
The thread binding code will force a preemption through cpu_surrender()
when a thread is bound to a processor in a processor set and the processor the
thread is currently executing on is not part of the processor set the thread
was just bound to. This is the only case when a preemption is forced that is
not the result of a priority test.
cpu_surrender() will set the cpu_runrun flag and will set cpu_kprunrun
if the preemption priority is greater than kpreemptpri . On a multiproces-
sor system, if the processor executing the cpu_surrender() code is differ-
ent from the processor that needs to preempt its thread, then a cross-call is
sent to the processor that needs to be preempted, forcing it into a trap han-
dler. At that point the runrun flags are tested. The other possible condition is
one in which the processor executing the cpu_surrender() code is the same
processor that must preempt the current thread, in which case it will test the
runrun flags before returning to user mode; thus, the cross-call is not needed.
In other words, the processor is already in the kernel by virtue of the fact
that it is running the cpu_surrender() kernel routine, so a cross-call would
be superfluous.

Once the preemption condition has been detected and the appropriate runrun flag
has been set in the processor’s CPU structure, the kernel must enter a code path
that tests the runrun flags before the actual preemption occurs. This happens in
different areas of the kernel for user versus kernel preemptions. User preemp-
tions are tested for (cpu_runrun ) when the kernel returns from a trap or inter-
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rupt handler. Kernel preemptions are tested for (cpu_kprunrun ) when a
dispatcher lock is released.

The trap code that executes after the main trap or interrupt handler has com-
pleted tests cpu_runrun , and if it is set, calls the kernel preempt() function.
preempt() tests two conditions initially. If the thread is not running on a proces-
sor (thread state is not ONPROC) or if the thread’s dispatch queue pointer is refer-
encing a queue for a processor other than the processor currently executing, then
no preemption is necessary and the code falls through and simply clears a dis-
patcher lock.

Consider the two test conditions. If the thread is not running (the first test),
then obviously it does not need to be preempted. If the thread’s t_disp_queue
pointer is referencing a dispatch queue for a different processor (different from the
processor currently executing the preempt() code), then clearly the thread has
already been placed on another processor’s queue, so that condition also obviates
the need for a preemption.

If the conditions just described are not true, preempt() increments the LWP’s
lrusage structure nicsw counter, which counts the number of involuntary con-
text switches. The processor’s inv_switch counter is also incremented in the
cpu_sysinfo structure, which counts involuntary context switches proces-
sor-wide, and the scheduling-class-specific preempt code is called. The per-proces-
sor counters are available with mpstat (1M), reflected in the icsw column. The
LWP lrusage data is not readily available with a bundled command, but you can
develop code that uses procfs and reads the data by means of
/proc/<PID>/lwp/<LWPID>/lwpusage .

The class-specific code for TS/IA threads prepares the thread for placement on a
dispatch queue and calls either setfrontdq() or setbackdq() for actual queue
insertion. ts_preempt() checks whether the thread is in kernel mode and
whether the kernel-priority-requested flag (t_kpri_req ) in the thread structure
is set. If it is set, the thread’s priority is set to the lowest SYS class priority (typi-
cally 60). The t_trapret and t_astflag kthread flags are set, causing the
ts_trapret() function to run when the thread returns to user mode (from ker-
nel mode). At that point, the thread’s priority is set back to something in the TS/IA
priority range. ts_preempt() tests for a scheduler activation on the thread. If an
activation has been enabled and the thread has not avoided preemption beyond
the threshold of two clock ticks and the thread is not in kernel mode, then the
thread’s priority is set to the highest user mode priority (59) and is placed at the
front of a dispatch queue with setfrontdq() .

If the thread’s TSBACKQflag is set, indicating the thread should be placed in the
back of a dispatch queue with setbackdq() , the thread preemption is due to
time-slice expiration. (Recall that ts_tick() will call cpu_surrender() .) The
thread’s t_dispwait field is zeroed, and a new time quantum is set in
ts_timeleft from the dispatch table (indexed with ts_cpupri , as previously
discussed) prior to setbackdq() being called. Otherwise, if TSBACKQis not set, a
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real preemption occurred (higher-priority thread became runnable) and the thread
is placed at the front of a dispatch queue.

The rt_preempt() code is much less complex. If RTBACKQis true, the preemp-
tion was due to a time quantum expiration (as was the case previously), and set-
backdq() is called to place the thread at the back of a queue after setting the
rt_timeleft value from rt_pquantum . Otherwise, the thread is placed at the
front of a dispatch queue with setfrontdq() .

The class-specific preempt code, once completed, returns to the generic pre-
empt() routine, which then enters the dispatcher by calling swtch() . We look at
the swtch()  code in the next section.

Kernel preemption, as we said earlier, is detected when a dispatcher lock is
released. It is also tested for in kpreempt_enable() , which reenables kernel pre-
emption after kpreempt_disable() blocked preemptions for a short time. The
goal is to have kernel preemptions detected and handled more expediently (with
less latency) than user preemptions. A dispatcher lock is a special type of mutex
lock that not only provides mutual exclusion semantics for access to a specific dis-
patch queue, but does so at a raised priority level, protecting the queue from access
from an interrupt handler for a low-priority interrupt. Dispatcher locks are
acquired and held at priority level 10 on SPARC systems, blocking all low-priority
interrupts. Interrupts above level 10 are high priority, and handlers for high-prior-
ity interrupts are not permitted to execute code that may require entering the dis-
patcher (e.g., causing a sleep and context switch). Every dispatch queue has a
disp_lock , maintained in the dispatch queue structure that describes the queue
(see Figure 9.5 on page 374).

Because the test for a kernel preemption, cpu_kprunrun , is put in the
disp_lock_exit() code, the detection happens synchronously with respect to
other thread scheduling and queue activity. The dispatcher locks are acquired and
freed at various points in the dispatcher code, either directly through the dis-
patcher lock interfaces or indirectly through macro calls. For example, each kernel
thread maintains a pointer to a dispatcher lock, which serves to lock the thread
and the queue during dispatcher functions. The THREAD_LOCK and
THREAD_UNLOCKmacros use the dispatcher lock entry and exit functions. The key
point is that a kernel preemption will be detected before a processor running a
thread flagged for preemption completes a pass through the dispatcher.

When disp_lock_exit() is entered, it tests whether cpu_kprunrun is set; if
so, then disp_lock_exit() calls kpreempt() . A clear cpu_kprunrun flag indi-
cates a kernel preemption is not pending, so there is no need to call kpreempt() .
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Kernel preemptions are handled by the kpreempt() code, represented here in
pseudocode.

The preceding pseudocode basically summarizes at a high level what happens in
kpreempt() . Kernel threads have a t_preempt flag, which, if set, signifies the
thread is not to be preempted. This flag is set in some privileged threads, such as a
processor’s idle and interrupt threads. Kernel preemption is disabled by incre-
menting t_preempt in the current thread and is reenabled by decrementing
t_preempt . kpreempt() tests t_preempt in the current thread; if t_preempt is
set, kpreempt() increments some statistics counters and returns. If t_preempt
is set, the code will not perform a kernel preemption.

The second test is similar in logic to what happens in the preempt() code pre-
viously described. If the thread is not running or is not on the current processor’s
dispatch queue, there’s no need to preempt. The third test checks the priority level
of the processor. If we’re running at a high PIL, we cannot preempt the thread,
since it may be holding a spin lock. Preempting a thread holding a lock could
result in a deadlock situation.

Any of the first three test conditions evaluating true will cause kpreempt() to
return without actually doing a preemption. Assuming the kernel goes ahead with
the preemption, kernel preemptions are disabled (to prevent nested kernel pre-
emptions) and the preempt() function is called. Once preempt() completes, ker-
nel preemption is enabled and kpreempt()  is done.

The kernel statistical data maintained for kernel preemption events is not
accessible with a currently available Solaris command. The data is maintained in

kpreempt()
        if (current_thread->t_preempt)
                do statistics
                return
        if (current_thread NOT running) OR (current_thread NOT on this CPUs queue)
                return
        if (current PIL >= LOCK_LEVEL)
                return
        block kernel preemption (increment current_thread->t_preempt)
        call preempt()
        enable kernel preemption (decrement current_thread->t_preempt)



The Kernel Dispatcher 399
a kpreempt_cnts (kernel preemption counts) data structure and can be interro-
gated with adb (1).

In the example, we inserted a short description of the event each counter corre-
lates to. Most of the descriptions are comprehensible when examined in conjunc-
tion with the preceding text. The last two counters, async preempts and sync
preempts, count each of the possible methods of kernel preemption. The kpre-
empt() function is passed one argument, asyncspl . For async preempts, async-
spl is a priority-level argument, and the kpreempt() code will raise the PIL, as
dictated by the value passed. Sync preempts pass a −1 argument and do not
change the processor’s priority level.

Thread preemption is a relatively simple concept to understand, but as with
many other things, it’s easy to get lost in the details of implementation. Figure
9.10 summarizes thread preemption at a high level.

# adb -k /dev/ksyms /dev/mem
physmem fdde
kpreempt_cnts/D
kpreempt_cnts:
kpreempt_cnts:                  0 <- Idle thread
kpreempt_cnts+4:                3 <- Interrupt thread
kpreempt_cnts+8:                0 <- Clock thread
kpreempt_cnts+0xc:              37<- Blocked *t_preempt is set)
kpreempt_cnts+0x10:             32<- Not on Proc
kpreempt_cnts+0x14:             0<- Inv Switch
kpreempt_cnts+0x18:             15<- Priority to High
kpreempt_cnts+0x1c:             35<- Async Preempts
kpreempt_cnts+0x20:             593759<- Sync Preempts
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 Figure 9.10 Thread Preemption Flow

In the case of both user and kernel preemption, the code ultimately executes the
preempt() function, which as a last step, enters the dispatcher swtch() rou-
tine—the topic of the next section.

9.2.3.3  The Heart of the Dispatcher: swtch()

The kernel swtch() routine initiates the context switching of a thread off a pro-
cessor, figures out which thread should run next, and context-switches the selected
thread onto a processor for execution. It’s called from many places within the oper-
ating system: in the class fork return function (a thread has just been created),
from the idle thread (executed by processors if there are no runnable threads on a
dispatch queue), by interrupt and trap handlers (to reenter the dispatcher), for
thread sleep management, in kernel synchronization support code (mutexes,
reader/writer locks, condition variables, etc.), and, of course, from the preempt()
function. The various entry points to swtch()  are listed in Table 9-4.

Table 9-4 Sources of Calls to swtch()

Kernel
Subsystem

Kernel Function Description

Dispatcher idle Per-processor idle thread
preempt Last phase of a preemption

Kthread release_interrupt Called from an interrupt thread
TS/IA class ts_forkret After kthread is created
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Entering the swtch() routine causes the cpu_sysinfo.pswtch counter to be
incremented, as reported in mpstat (1M) in the csw column, and reflects the num-
ber of context switches per second, on a per-processor basis.

The swtch() function first checks to see if the current thread is an interrupt
thread. When interrupts happen, the thread stack is switched to that of an inter-
rupt thread, from the linked list of interrupt threads in the processor’s cpu struc-
ture. If swtch() was entered with an interrupt thread as the current thread, the
kernel must restore the interrupted thread’s state so it can be resumed. The inter-
rupted thread is unpinned (a thread that has been preempted for an interrupt is
considered pinned), and the kernel resume_from_interrupt() assembly rou-
tine is called to restore the state of the interrupted thread.

If the thread is not an interrupt thread, the code tests the handoff pointer in the
kernel thread (t_handoff ). A non-NULL t_handoff pointer indicates the proces-
sor should be handed off to another thread, in support of scheduler activations.
(Scheduler activations were first introduced in Solaris 2.6 and are discussed in
“Scheduler Activations” on page 415.)

Briefly, one of the goals of scheduler activations is to provide a framework for
communication between the kernel dispatcher and the user-level threads library.
Such communication improves the scheduling of user threads and reduces the
latency of a runnable user thread getting an LWP if all the LWPs in a process are
blocked. Recall from an earlier discussion that a user-level thread, that is, a thread
created through a thr_create (3T) or pthread_create (3T) call, is mapped onto
an LWP by the user thread’s scheduler. If all the LWPs in a process are blocked
and there are runnable user threads, the user thread’s scheduler does not have the
resource it needs, an LWP, to schedule a user thread. Prior to Solaris 2.6, the ker-

Sleep/wakeup cv_ xxxx Various conditional variable func-
tions

CPU force_migrate Thread migration to another pro-
cessor

cpu_pause Processor state change to pause
Mutex mutex_vector_enter Mutex lock acquisition
RWlock rw_enter_sleep RW lock acquisition
Memory
scheduler

sched PID 0

Semaphore sema_p Semaphore “p” operation
Signal stop Thread stop function
Sleep/wakeup slp_cv_wait Thread to sleep state
Interrupt intr_thread_exit Exit of an interrupt handler

Table 9-4 Sources of Calls to swtch()  (Continued)

Kernel
Subsystem

Kernel Function Description



402 The Solaris Kernel Dispatcher
nel implemented a signal mechanism, using SIGWAITING in conjunction with a
signal handler for SIGWAITING, to increase the pool of available LWPs for the pro-
cess.

With scheduler activations, a communication path is established between the
kernel and the user threads library. If an activation has been established for the
process, a pool of LWPs might be readily available, in which case the t_handoff
pointer would be non-NULL. If that is the case, a kernel handoff function is called,
and ultimately the kernel resume() code is entered to context-switch the kernel
thread referenced with t_handoff  onto the processor.

If the current thread is not an interrupt thread and a handoff is not required,
swtch() calls the disp() function, which is the code segment that looks for the
highest-priority thread to run, sets the thread’s state to running (TS_ONPROC), and
arranges for it to be switched onto a processor. At a high level, the disp() func-
tion searches the dispatch queues for the best-priority kernel thread, starting with
the kernel preempt queue and then searching the queue of the current processor—
that is, the processor executing the disp() code. If those searches come up blank,
then the code searches the dispatch queues of other processors on a multiproces-
sor system, looking for a runnable kernel thread. If no threads are found on the
dispatch queues, the processor executes its idle thread, which executes a tight loop,
testing for runnable threads on each pass through the loop and entering swtch()
if the run count is greater than 0.

The search for the highest-priority thread begins with the kernel preempt
queue, as referenced by the current processor through its cpu_part structure,
where the preempt queue is linked to cp_kp_queue . In this case, on a system with
multiple processor partitions (user processor sets—recall there is a kernel pre-
empt queue per processor set), the preempt queue for the processor partition that
the executing processor belongs to is searched first. The cp_kp_queue search is
represented in the following pseudocode.

The preceding queue search loop validates the priority value according to the
queue’s disp_maxrunpri , which reflects the highest-priority thread sitting on the
queue, makes sure the current processor is not offline, and calls the dispatcher
disp_getbest() code to fetch the best-priority thread from the kernel preempt
queue. disp_getbest() finds the highest-priority unbound thread, calls disp-

kpq = pointer to kernel preempt queue
dq = pointer to processor’s dispatch queue
while ( priority = kpq->dispmaxrunpri >= 0 ) AND
                ( priority >= dq->dispmaxrunpri) AND
                ( the current CPU is NOT offline) AND
                ( thread_pointer = disp_getbest(kpq) != NULL )
                        if (disp_ratify(thread_pointer, kpq) != NULL)
                                return(thread_pointer)
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deq() to have the thread removed from the dispatch queue, and returns the
thread pointer back to disp() . If nothing is found, a NULL value is returned.

If an unbound thread is found in disp_getbest() , the thread is dequeued with
dispdeq() , the thread’s t_disp_queue pointer is set to reference the processor’s
cpu structure cpu_disp queue pointer, the processor’s cpu_dispthread pointer
is set to the selected thread pointer, and the thread state is set to ONPROC.

dispdeq() deals with updating the dispatch queue data structures with the
selected thread removed from the queue. It decrements disp_nrunnable , which
is the total count for all the queues, and dq_sruncnt , which maintains the count
of runnable threads at the same priority (refer to Figure 9.5 on page 374). If the
per-priority queue count, dq_sruncnt , is 0, then the queue bitmap is updated to
reflect an empty queue. The disp_qactmap bitmap uses a set bit to reflect the
presence of runnable threads on a per-priority queue; thus, the bit that corre-
sponds to the zeroed queue is cleared. The disp_maxrunpri and
disp_max_unbound_pri fields are also updated to reflect the new highest-prior-
ity thread on the queue if it is different from the thread that has just been
removed from the queue.

Once the thread selection has been made and the thread dequeued, the code
returns to disp() , which calls disp_ratify() to ensure that the selected thread
was, in fact, the best candidate to run next. The fine-grained locking used within
the dispatcher routines allows for simultaneous changes to be made to the queues
and the queue state by potentially many processors. For this reason, a
select-and-ratify algorithm was chosen for implementation. The select phase of the
algorithm now completed, disp_ratify() is entered to complete the ratify phase.
The ratify code simply compares the priority of the selected thread to the
disp_maxrunpri values of the processor and kernel preempt queue. If the
selected thread priority is greater than maxrunpri , the selection is ratified and
the context switch is done. If not, we reenter the code loop to find the best runna-
ble thread. More precisely, if a higher-priority thread appears on the queue when
disp_ratify() executes, the selected thread is placed back on the dispatch
queue with a call to setfrontdq() and disp_ratify() returns NULLto disp() .

disp_getbest()
        dpq = dispatch queue pointer (cp_kp_queue in this example)
        priority = dpq->disp_max_unbound_pri
        if (priority == -1)
                return(NULL)
        queue = dpq->disp_q[pri];
        thread_pointer = queue->dq_first;
        loop through linked list of threads on queue, skip bound threads
        if (no unbound threads)
                return NULL
        else
                thread_pointer = thread found
        dispdeq(thread_pointer)
        set thread t_disp_queue, processorUs cpu_dispthread, thread state to ONPROC
        return (thread_pointer)
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If a thread is not found on the kernel preempt queue, then the per-processor
queue disp_maxrunpri is tested. A value of −1 means that nothing is on the
queue. In that case, the code searches the queues of the other processors on the
system, beginning with the disp_getwork( ) code, which finds a processor with
the highest-priority thread. Then, the code uses the disp_getbest() and
disp_ratify()  functions previously described.

If the current processor’s disp_maxrunpri indicates runnable threads, the first
thread from the highest priority queue is removed, the queue data is updated
(disp_nrunnable , dq_nruncnt , disp_qactmap , disp_max_unbound_pri , and
disp_maxrunpri ), the selection is ratified, and disp() returns the thread
pointer to swtch() .

If no work is found on any of the dispatch queues, the processor’s idle thread is
selected by setting the thread pointer to the cpu_idle_thread , referenced from
the processor’s cpu structure. The pointer to the idle thread is returned to the
swtch()  code.

Back in swtch() , with a thread pointer for the selected thread (or idle thread),
the kernel resume() code is called to handle the switching of the thread on the
processor. resume() is implemented in assembly language because the process of
context switching requires low-level contact with processor hardware, for two rea-
sons: to save the hardware context of the thread being switched off; and to set up
the hardware registers and other context information so the new thread can begin
execution.

9.3 The Kernel Sleep/Wakeup Facility

The typical lifetime of a kernel thread includes not only execution time on a pro-
cessor but also time spent waiting for requested resources to become available. An
obvious example is a read or write from disk, when the kernel thread will issue the
read (2) or write (2) system call, then sleep so another thread can make use of the
processor while the I/O is being processed by the kernel. Once the I/O has been
completed, the kernel will wake up the thread so it can continue its work.

Kernel threads that are runnable and waiting for a processor reside on dispatch
queues. Kernel threads that must block, waiting for an event or resource, are
placed on sleep queues. A kernel thread is placed on a sleep queue when it needs
to sleep, awaiting availability of a resource (e.g., a mutex lock, reader/writer lock,
etc.) or awaiting some service by the kernel (e.g., a system call). A few sleep queues
implemented in the kernel vary somewhat, although they all use the same under-
lying sleep queue structures. Turnstiles are implemented with sleep queues and
are used specifically for sleep/wakeup support in the context of priority inherit-
ance, mutex locks, and reader/writer locks. Kernel threads put to sleep for some-
thing other than a mutex or reader/writer lock are placed on the system’s sleep



The Kernel Sleep/Wakeup Facility 405
queues. Turnstiles and priority inheritance are discussed in Chapter 2, “Kernel
Synchronization Primitives.”

9.3.1  Condition Variables

The underlying synchronization primitive used for sleep/wakeup in Solaris is the
condition variable. Condition variables are always used in conjunction with mutex
locks. A condition variable call is issued on the basis of a specific condition being
either true or false. The mutex ensures that the tested condition cannot be altered
during the test and maintains state while the kernel thread is being set up to
block on the condition. Once the condition variable code is entered and the thread
is safely on a sleep queue, the mutex can be released. This is why all entry points
to the condition variable code are passed the address of the condition variable and
the address of the associated mutex lock.

In implementation, condition variables are data structures that identify an
event or a resource for which a kernel thread may need to block and are used in
many places around the operating system. The structure itself is quite small (see
Figure 9.11) and can be examined in /usr/include/sys/condvar.h and
/usr/include/sys/condvar_impl.h .

 Figure 9.11 Condition Variable

The condition variable itself is simply a 2-byte (16-bit) data type with one defined
field, cv_waiters , that stores the number of threads waiting on the specific
resource the condition variable has been initialized for. The implementation is
such that the various kernel subsystems that use condition variables declare a
condition variable data type with a unique name either as a standalone data item
or embedded in a data structure. Try doing a grep (1) command on kcondvar_t in
the /usr/include/sys directory, and you’ll see dozens of examples of condition
variables. A generic kernel cv_init() function sets the condition variable to all
zeros during the initialization phase of a kernel module. Other kernel-level condi-
tion variable interfaces are defined and called by different areas of the operating
system to set up a thread to block a particular event and to insert the kernel
thread on a sleep queue.

At a high level, the sleep/wakeup facility works as follows. At various points in
the operating system code, conditional tests are performed to determine if a spe-
cific resource is available. If it is not, the code calls any one of several condition
variable interfaces, such as cv_wait() , cv_wait_sig() , cv_timedwait() ,

015
cv_waiters

condvar_impl_t
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cv_wait_stop() , etc., passing a pointer to the condition variable and mutex.
This sequence is represented in the following small pseudocode segment.

These interfaces provide some flexibility in altering behavior as determined by the
condition the kernel thread must wait for. Ultimately, the cv_block() interface is
called; the interface is the kernel routine that actually sets the t_wchan value in
the kernel thread and calls sleepq_insert() to place the thread on a sleep
queue. The t_wchan , or wait channel, contains the address of the conditional vari-
able that the thread is blocking on. This address is listed in the output of a ps
-efl  command, in the WCHAN column.

The notion of a wait channel or wchan is something that’s familiar to folks that
have been around Unix for a while. Traditional implementations of Unix main-
tained a wchan field in the process structure, and it was always related to an event
or resource the process was waiting for (why the process was sleeping). Naturally,
in the Solaris multithreaded model, we moved the wait channel into the kernel
thread, since kernel threads execute independently of other kernel threads in the
same process and can execute system calls and block.

When the event or resource that the thread was sleeping on is made available,
the kernel uses the condition variable facility to alert the sleeping thread (or
threads) and to initiate a wakeup, which involves moving the thread from a sleep
queue to a processor’s dispatch queue.

Figure 9.12 illustrates the sleep/wake process.

kernel_function()
        mutex_init(resource_mutex);
        cv_init(resource_cv);
        mutex_enter(resource_mutex);
        if (resource is not available)
                cv_wait(&resource_cv, &resource_mutex);
        consume resource
        mutex_exit(resource_mutex);
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 Figure 9.12 Sleep/Wake Flow Diagram

9.3.2  Sleep Queues

Sleep queues are organized as a linked list of kernel threads, each linked list
rooted in an array referenced via a sleepq_head kernel pointer. Some changes
were made in Solaris 7 to facilitate faster sleep queue operations (insertion,
removal, and queue traversal). In Solaris releases prior to Solaris 7, an entry in
the sleepq_head array begins a linked list of kernel threads waiting on the same
condition variable. The list is singly linked by the kernel thread’s t_link pointer.
In Solaris 7, several additional pointers were added to the kernel thread to sup-
port a doubly linked sublist of threads at the same priority.

Figure 9.13 illustrates sleep queues.
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 Figure 9.13 Solaris 2.5.1 and Solaris 2.6 Sleep Queues

In all implementations (pre- and post-Solaris 7, that is), a hashing function
indexes the sleepq_head array, hashing on the address of the condition variable.
In the pre-Solaris 7 implementation, kernel threads are inserted on the list in
order of descending priority. In Solaris 7, the singly linked list that establishes the
beginning of the doubly linked sublists of kthreads at the same priority is also in
ascending order of priority. The sublist is implemented by t_priforw (forward
pointer) and t_priback (previous pointer) in the kernel thread. Also, a t_sleepq
pointer was added to point back to the array entry in sleepq_head , identifying
which sleep queue the thread is on and also providing a quick method to deter-
mine if a thread is on a sleep queue at all. (If t_sleepq == NULL , the thread is
not on a sleep queue.)

Figure 9.14 illustrates priority order on sleep queues.
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 Figure 9.14 Solaris 7 Sleep Queues

The number of kernel interfaces to the sleep queue facility is minimal. Only a few
operations that are performed on sleep queues: the insertion of a kernel thread on
a sleep queue (putting a thread to sleep), the removal of a thread from a sleep
queue (waking a thread up), and traversing the sleep queue in search of a kernel
thread. There are interfaces that provide for waking up only one thread or all
threads sleeping on the same condition variable.

Insertion of a kthread simply involves indexing into the sleepq_head array to
find the appropriate sleep queue specified by the condition variable address, then
traversing the list, checking thread priorities along the way to determine the
proper insertion point. Once the appropriate sublist has been found (at least one
kernel thread at the same priority) or it has been determined that no other
threads on the sleep queue have the same priority, a new sublist is started, the
kernel thread is inserted, and the pointers are set up properly.

The removal of a kthread either involves searching for and removing a specific
thread that has been specified by the code calling into sleepq_dequeue() or
sleepq_unsleep() , or waking up all the threads blocking on a particular condi-
tion variable. Waking up all threads or a specified thread is relatively straightfor-
ward: hash into the sleepq_head array specified by the address of the condition
variable, and walk the list, either waking each thread up or searching for a partic-
ular kthread and waking the targeted thread. In case a single, unspecified kthread
needs to be removed, the code implements the list as a FIFO (First In, First Out),
so the kthread that has been sleeping the longest on a condition variable will be
selected for wakeup first.
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9.3.3  The Sleep Process

Now that we’ve introduced condition variables and sleep queues, let’s tie them
together to form the complete sleep/wakeup picture in Solaris. The interfaces to
the sleep queue (sleepq_insert() , etc.) are, for the most part, called only from
the condition variables and turnstiles subsystems. From a hierarchical perspec-
tive, you could view the sleep/wakeup implementation, as depicted in Figure 9.12
on page 407, where a well-defined and limited set of interfaces manipulate kernel
threads on the sleep queues.

The process of putting a thread to sleep begins with a call into the condition
variable code wait functions, one of cv_wait() , cv_wait_sig() ,
cv_wait_sig_swap() , cv_timedwait() , or cv_timedwait_sig() . Each of
these functions is passed the condition variable and a mutex lock. They all ulti-
mately call cv_block() to prepare the thread for sleep queue insertion.
cv_wait() is the simplest condition variable sleep interface; it grabs the dis-
patcher lock for the kthread and invokes the class-specific sleep routine (e.g.,
ts_sleep() ). The timed variants of the cv_wait() routines take an additional
time argument, ensuring that the thread will be woken up when the time value
expires if it has not yet been removed from the sleep queue. cv_timedwait() and
cv_timedwait_sig() use the kernel callout facility for handling the timer expi-
ration. The realtime_timeout() interface is used and places a high-priority
timeout on the kernel callout queue. The setrun() function is placed on the call-
out queue, along with the kernel thread address and time value. When the timer
expires, setrun() , followed by the class-specific setrun function (e.g.,
rt_setrun() ), executes on the sleeping thread, making it runnable and placing it
on a dispatch queue.

The sig variants of the condition variable code, cv_wait_sig() ,
cv_timedwait_sig() , etc., are designed for potentially longer-term waits, where
it is desirable to test for pending signals before the actual wakeup event. They
return 0 to the caller if a signal has been posted to the kthread. The swap variant,
cv_wait_sig_swap() , can be used if it is safe to swap out the sleeping thread
while it’s sleeping. The various condition variable routines are summarized below.
Note that all functions described below release the mutex lock after cv_block()
returns, and they reacquire the mutex before the function itself returns.

• cv_wait() — Calls cv_block() . Then, cv_wait() enters the dispatcher
with swtch()  when cv_block()  returns.

• cv_wait_sig() — Checks for SC_BLOCKscheduler activation (last LWP in
the process is blocking). If false , cv_wait_sig() calls cv_block_sig() .
On return from cv_block_sig() , it tests for a pending signal. If a signal is
pending, cv_wait_sig() calls setrun() ; otherwise, it calls swtch() . If an
SC_BLOCKactivation is true , cv_wait_sig() removes the thread timeout
and returns −1, unless a signal is pending; then, it returns 0.

• cv_wait_sig_swap() — Essentially the same as cv_wait_sig() but flags
the thread as swappable.
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• cv_timedwait() — Tests for timer expiration on entry. If the timer has
expired, cv_timedwait() returns −1. It calls realtime_timeout() to set
callout queue entry, calls cv_block() , and checks the timer on return from
cv_block() . If the timer has expired, cv_timedwait() calls setrun() ;
otherwise, it calls swtch() .

• cv_timedwait_sig() — Tests for time expiration. If the timer has expired,
cv_timedwait_sig() returns −1 unless a signal is pending; then, it returns
0. If neither condition is true , then cv_timedwait_sig() calls
realtime_timeout() to set the callout queue entry and tests for an
SC_BLOCK activation. If false , cv_timedwait_sig() calls
cv_block_sig() . On return from cv_block_sig() , it tests for a pending
signal. If a signal is pending, cv_timedwait_sig() calls setrun() ; other-
wise, it calls swtch() . If an SC_BLOCK activation is true ,
cv_timedwait_sig() removes the thread timeout and returns −1 unless a
signal is pending; then, it returns 0.

All of the above entry points into the condition variable code call cv_block() or
cv_block_sig() , which just sets the T_WAKEABLEflag in the kernel thread and
then calls cv_block() . cv_block() does some additional checking of various
state flags and invokes the scheduling-class-specific sleep function through the
CL_SLEEP() macro, which resolves to ts_sleep() for a TS or IA class thread.
The intention of the ts_sleep() code is to boost the priority of the sleeping
thread to a SYSpriority if such a boost is flagged. As a result, the kthread is placed
in an optimal position on the sleep queue for early wakeup and quick rescheduling
when the wakeup occurs. Otherwise, the priority is reset according to how long the
thread has been waiting to run.

The assignment of a SYS priority to the kernel thread is not guaranteed every
time ts_sleep() is entered. Flags in the kthread structure, along with the
kthread’s class-specific data (ts_data in the case of a TS class thread), specify
whether a kernel mode (SYS) priority is required. A SYSclass priority is flagged if
the thread is holding either a reader/writer lock or a page lock on a memory page.
For most other cases, a SYS class priority is not required and thus will not be
assigned to the thread. RT class threads do not have a class sleep routine; because
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they are fixed-priority threads, there’s no priority adjustment work to do. The
ts_sleep()  function is represented in the following pseudocode.

The thread priority setting in ts_sleep() in the second code segment above is
entered if the thread has been waiting an inordinate amount of time to run, as
determined by ts_dispwait in the ts_data structure, and by the ts_maxwait
value from the dispatch table, as indexed by the current user mode priority,
ts_umdpri . The sequence is represented graphically in Figure 9.15.

 Figure 9.15 Setting a Thread’s Priority in ts_sleep()

The code will return to cv_block() from ts_sleep() , where the kthreads
t_wchan is set to the address of the condition variable and the kthreads
t_sobj_ops is set to the address of the condition variable’s operations structure.

ts_sleep()
        if (SYS priority requested) /* t)_kpri_req flag */
                set TSKPRI flag in kthread
                set t_pri to requested SYS priority /* tpri = ts_kmdpris[arg] */
                set kthread trap return flag /* t_trapret */
                set thread ast flag     /* t_astflag */
        else if (ts_dispwait > ts_maxwait) /* has the thread been waiting long */
                calculate new user mode priority
                set ts_timeleft = ts_dptbl[ts_cpupri].ts_quantum
                set ts_dispwait = 0
                set new global priority in thread (t_pri)
                if (thread priority < max priority on dispatch queue)
                        call cpu_surrender() /* preemption time */
        else if (thread is already at a SYS priority)
                set thread priority to TS class priority
                clear TSKPRI flag in kthread
                if (thread priority < max priority on dispatch queue)
                        call cpu_surrender() /* preemption time */
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If you take a look at /usr/include/sys/sobject.h , you’ll find a definition for a
synchronization object operations structure.

This is a generic structure that is used for all types of synchronization objects sup-
ported by the operating system. Note the enumerated types in the same header
file; they describe mutex locks, reader/writer locks, semaphores, condition vari-
ables, etc. Essentially, this object provides a placeholder for a few routines specific
to the synchronization object that may require invocation while the kernel thread
is sleeping. In the case of condition variables (our example), the sobj_ops struc-
ture is populated with the address of the cv_owner() , cv_unsleep() , and
cv_change_pri() functions, with the sobj_type field set to SOBJ_CV. The
address of this structure is what the kthread’s t_sobj_ops field is set to in the
cv_block()  code.

With the kthread’s wait channel and synchronization object operations pointers
set appropriately, the correct sleep queue is located by use of the hashing function
on the condition variable address to index into the sleepq_head array. Next, the
cv_waiters field in the condition variable is incremented to reflect another ker-
nel thread blocking on the object, and the thread state is set to TS_SLEEP. Finally,
the sleepq_insert() function is called to insert the kernel thread into the cor-
rect position (based on priority) in the sleep queue. The kthread is now on a sleep
queue in a TS_SLEEP state, waiting for a wakeup.

9.3.4  The Wakeup Mechanism

For every cv_wait() (or variant) call on a condition variable, a corresponding
wakeup call uses cv_signal() , cv_broadcast() , or cv_unsleep() . In prac-
tice, cv_unsleep() is not called in current versions of Solaris. cv_signal()
wakes up one thread, and cv_broadcast() wakes up all threads sleeping on the
same condition variable. Here is the sequence of wakeup events.

• The cv_broadcast() function simply locates the address of the sleep queue
by invoking the hash function on the address of the condition variable, which
was passed to cv_broadcast() as an argument, clears the cv_waiters
field in the condition variable (all the threads are getting a wakeup, so the
condition variable should reflect zero threads waiting on the condition vari-
able), and calls sleepq_wakeall_chan() .

typedef struct _sobj_ops {
                syncobj_t sobj_type;
                kthread_t *(*sobj_owner)();
                void (*sobj_unsleep)(kthread_t *);
                void (*sobj_change_pri)(kthread_t *, pri_t, pri_t *);
} sobj_ops_t;

Header File <sys/sobject.h>
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• In Solaris 7, sleepq_wakeall_chan() traverses the linked list of kernel
threads waiting on that particular condition variable and, for each kthread,
calls sleepq_unlink() . sleepq_unlink() removes the kthread from the
sleep queue linked list, adjusts the pointers (the t_priforw , t_priback
pointers) and returns to sleepq_wakeall_chan() .

• On the return to sleepq_wakeall_chan() , the kthread’s t_wchan and
t_sobj_ops fields are cleared, and the scheduling-class-specific wakeup code
is called.

For TS/IA threads, the code is ts_wakeup() ; for RT class threads, it is
rt_wakeup() . In Solaris 2.5.1 and Solaris 2.6, the queue is a singly linked
list, linked with the t_link  pointer in the kthread.
Solaris 2.5.1 and Solaris 2.6 do not have a sleepq_unlink() function, so
sleep_wakeall_chan() removes each thread from the list and sets the
thread’s t_link , t_wchan , and t_sobj_ops  fields to NULL.

• cv_signal() locates the correct index into the sleepq_head array by hash-
ing on the address of the condition variable, decrements the cv_waiters
field in the condition variable by 1, since only one thread is getting a wakeup,
and calls sleepq_wakeone_chan() .

• The ts_wakeup() code puts the kernel thread back on a dispatch queue so it
can be scheduled for execution on a processor.
Threads that have a kernel mode priority (as indicated by the TSKPRI flag in
the class-specific data structure, which is set in ts_sleep() if a SYSpriority
is assigned) are placed on the front of the appropriate dispatch queue. IA
class threads will also result in setfrontdq() being called; otherwise, set-
backdq() is called to place the kernel thread at the back of the dispatch
queue.

• Threads that are not at a SYS priority are tested to see if they’ve waited
longer for a shot at getting scheduled than the time value set in the
ts_maxwait  field in the dispatch table for the thread’s priority level.

If the thread has been waiting an inordinate amount of time to run (if disp-
wait > dispatch_table[priority]dispwait ), then the thread’s priority
is recalculated, using the ts_slpret value from the dispatch table. This is
essentially the same logic used in ts_sleep() and gives a priority boost to
threads that have spent an inordinate amount of time on the sleep queue.

It is in the dispatcher queue insertion code (setfrontdq() , setbackdq() ) that
the thread state is switched from TS_SLEEPto TS_RUN. It’s also in these functions
that we determine if the thread we just placed on a queue is of a higher priority
than the currently running thread and if so, force a preemption. At this point, the
kthread has been woken up, is sitting on a dispatch queue, ready to get con-
text-switched onto a processor when the dispatcher swtch() function runs again
and the newly inserted thread is selected for execution.
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9.4 Scheduler Activations

We made several references to scheduler activations in the preceding text and
highlighted the preemption control feature in the thread priority descriptions.
Scheduler activations were added to Solaris 2.6 to address several deficiencies in
the two-level threads architecture of Solaris and to provide a facility for short-term
preemption control by a process. (This section and any previous references to
scheduler activations do not apply to Solaris 2.5.1; they apply only to Solaris 2.6
and Solaris 7).

The two levels in the design refer to user-level threads and the underlying
kthread/LWP. We use the term LWP from this point forward when discussing the
kernel level, and we use threads to refer to a user thread created from the threads
library. User-level threads are scheduled within the framework of the threads
library—the user threads actually participate in their own scheduling through pre-
emption points and internal threads library routines. User threads are, by design,
not visible to the kernel. The priority of a user thread has no bearing on the sched-
uling or priority of an LWP linked to the thread for execution.

Prior to Solaris 2.6, there was no facility for communication between the user
threads scheduler and the kernel dispatcher (see Figure 9.16), and thus no correla-
tion between the priority of a user thread and the priority of the underlying LWP.
This problem could be circumvented to some extent by the use of bound threads,
where every user thread was bound to an LWP, and priority control facilities (pri-
ocntl (1M)) managed execution priorities at the LWP level.

 Figure 9.16 Two-Level Threads Model
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Other problems existed in the area of synchronization primitives used by threaded
programs. At the user threads level, the use of mutex locks and other synchroniza-
tion mechanisms were prone to priority inversion problems. We described how pri-
ority inheritance addressed this problem in the kernel for kernel synchronization
primitives. There was no means by which an inheritance scheme could be imple-
mented at the user threads level, since the priority information of the LWP was
not readily available to the library code. This lack of LWP state information at the
threads library level also made the implementation of adaptive locks impossible.

Finally, keeping a sufficient pool of LWPs available to a threaded process such
that runnable user threads would have the resource they needed to execute when
they needed it was not easily solved. Solaris 2.5.1 and previous releases use a spe-
cial SIGWAITING signal generated by the kernel when all the LWPs in a process
are blocked and a special signal handler creates more LWPs for the process. In
Solaris 2.5.1 (and previous releases), the sleep/wakeup subsystem calls a
sigwaiting_check() routine, which compares the total number of LWPs in the
process, p_lwpcnt , with the total number of blocked LWPs, p_lwpblocked . If the
values are the same, all the LWPs in the process are blocked. The kernel gener-
ates a SIGWAITING signal, caught by a special signal handler in the threads
library, and the SIGWAITING handler creates a new LWP for the process. This
solution works reasonably well for many applications, but the management of
keeping the correct number of LWPs available for a threaded process in general
required improvement.

9.4.1  User Thread Activation

Scheduler activations provide a very fast communication facility between the ker-
nel and user-level threads library, based on shared memory pages (not System V
IPC Shared Memory, but the same conceptually) and the kernel Doors framework.
State information can be shared between the threads library and the kernel
through the shared memory pages, and the kernel can generate an upcall into the
threads library when an event of interest to the threads scheduler occurs. Note
that the use of scheduler activations for multithreaded programs does not change
the API—the activations are done by the library and the kernel and do not require
code changes.

The preemption control component of scheduler activations (discussed earlier)
has an associated API, schedctl_init (3X), for initializing, turning on, and turn-
ing off preemption control. These interfaces can be used with nonthreaded and
multithreaded applications, but threaded applications require that the calling user
thread be bound to an LWP. Because the preemption control code works at the
kthread/LWP level, the only way a user thread can be assured of predictable
results is through LWP binding. Calling the preemption control interfaces from
unbound threads is not supported.

The primary infrastructure for scheduler-activations support in the kernel is the
creation and management of shared memory pages for the kernel’s threads library,
and the upcall mechanism, which is built on Solaris Doors. You may recall from
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Chapter 1 that Doors provides a process-to-process procedure call facility, where a
server process can establish a door to a function in the process and client pro-
cesses can make door calls into the server door. Essentially, a process can execute a
function call to a function that is part of another process’s address space, pass the
function arguments, and get a return value as if the function was part of the call-
ing process. Doors provide a very fast and efficient method of interprocess commu-
nication, making them ideal for use in scheduler activations as a facility for the
kernel calling up into the user threads library (upcall).

These facilities are put in place when a multithreaded process first begins exe-
cution. The initialization of a multithreaded process begins with the creation of the
primordial thread, t0 (thread zero), which triggers the creation of several threads
required to support threaded processes, such as the SIGWAITING signal handler,
dynamiclwps() . The t0 initialization code calls an sc_init() routine that sets
up the shared memory pages and the upcall door. sc_init() calls
door_create() to establish a door for kernel-to-user upcalls, then calls
sc_setup() to complete the initialization of the scheduler-activations support
structures.

Most of the setup work and support for scheduler activations in the kernel is
done in the lwp_schedctl() system call, a new system call created specifically
for scheduler activations. Note that lwp_schedctl() is not a public interface; the
invocation of lwp_schedctl() by an application program is not supported. The
call itself is not documented in the section 2 manual pages for that reason. When
invoked from sc_setup() , lwp_schedctl() creates the shared memory pages,
which are mapped to the kernel and the user process and locked in memory so
they cannot be paged out.

9.4.2  LWP Pool Activation

LWP pool activation refers to the fast and efficient replenishing of LWPs to a
threaded process that has all LWPs in a blocking or sleeping state, potentially
leaving runnable user threads without an execution resource. This condition is
tested for and handled when the condition variables code is entered to put an
LWP/kthread to sleep. The cv_wait_sig() , cv_timedwait() , and
cv_wait_sig_swap() routines issue a call to schedctl_check() , with the
SC_BLOCKflag set as an argument, to determine if an activation exists for the
LWP/kthread. This is done in conjunction with a subsequent call to
schedctl_block() , which determines if all LWPs in the process are blocked.

schedctl_check() tests the kernel thread’s t_schedctl pointer and the
passed flag, SC_BLOCKin this case. If an activation has been established, the
kthread’s t_schedctl pointer references an sc_data structure, which contains
links to the shared memory page pool and state flags. For a threaded application,
t_schedctl will have been set during the initialization process, and sc_flags
(in sc_data  as referenced by t_schedctl ) will have the SC_BLOCK flag set.
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The schedctl_block() code will determine if this LWP/kthread is the last one
in the process. At the process level, p_sc_unblocked in the proc structure main-
tains a count of unblocked LWPs in the process. That count is decremented since
another LWP is about to block. If p_sc_unblocked drops to zero after being dec-
remented, schedctl_block() looks in the activations door pool for an LWP that
it can hand off to the dispatcher and issues a door_get_activation() call.
door_get_activation() returns a pointer to an LWP/kthread and plugs it into
the t_handoff field of the calling kthread if an LWP is available in the pool. If an
LWP is not available in the pool, schedctl_block() uses the old-fashioned
method and calls sigwaiting_send() to send a SIGWAITING signal, which
results in a new LWP being created through the SIGWAITING signal handler in the
threads library.

If we retrieved an LWP/kthread from the activations pool, the calling kernel
thread’s t_handoff field will be pointing to the LWP/kthread fetched from the
pool. Recall from our discussion of the swtch() code in the dispatcher that an
early test in swtch() is for a non-NULL t_handoff pointer. Thus, when the dis-
patcher is entered from the condition variable code, it will find a valid
LWP/kthread pointer in t_handoff . The presence of a valid pointer causes
swtch() to call a shuttle routine to prepare the LWP/kthread from the pool for
execution and ultimately calls resume() to context-switch the LWP/kthread onto
the processor. The switched-in LWP from the door pool executes a short code seg-
ment that essentially tests for any runnable user threads in the process. If runna-
ble user threads exist, the user threads dispatcher is entered so a user thread can
be scheduled on the new LWP.

To summarize: an activation for blocked LWPs is initialized when a threaded
process begins execution. When an LWP is about to be put to sleep (block), the ker-
nel tests for an activation enabled and an available LWP from a pool created at ini-
tialization time. If an LWP is found from the pool, the dispatcher hands off the
processor to the new LWP, effectively keeping the process running on the proces-
sor.

The preemption control feature of scheduler activations was discussed in the
dispatcher section in this chapter. Scheduler activations provide the infrastruc-
ture to support other very useful facilities in the Solaris kernel, such as adaptive
locks at the user threads level, better priority management and control for user
threads, and affinity scheduling for better hardware cache utilization. These fea-
tures will be added to future versions of Solaris.

Kernel thread execution, context switching and affinity (binding to a specific
processor) is tied very closely with the processor support mechanism implemented
in the operating system. In the next section, we discuss how the Solaris kernel
manages processors and how processor sets, a feature added in Solaris 2.6, are
implemented.
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9.5 Kernel Processor Control and Processor Sets

Every operating system requires intimate knowledge of the hardware processors it
supports and has low-level kernel code to manage things like processor state, trap
and interrupt handling, clock tick processing, thread context switching, memory
management, stack management, etc. The Solaris kernel extends the notion of pro-
cessor control considerably beyond traditional implementations. The current model
in the Solaris kernel was driven by several requirements of two goals:

• Multiprocessor system efficiency. Sun leads the industry in building scal-
able multiprocessor server systems based on the Symmetric Memory Proces-
sor (SMP) architecture. This architecture is defined as some number of
processors that share a single image of the operating system, the system’s
physical address space (physical memory and I/O space), and the kernel’s vir-
tual address space. Building an operating system that manages processor
resources effectively and efficiently is key to system scalability and manage-
ment.

• Resource management and control. The ability to manage the hardware
resources of a system effectively, such that applications or groups of users can
be guaranteed some percentage of available processor resources, has become
a mainstream requirement in all facets of computing. Other control mecha-
nisms such as dynamically taking processors offline without affecting the
entire system, bringing processors online, redirecting interrupts, and even
powering processors down are also features that are much in demand.

The Solaris kernel delivers on these requirements with a kernel implementation
built around per-processor data structures and kernel code functions for processor
management and integration into related areas of the operating system, primarily
the kernel threads scheduler, or dispatcher.

Every processor on a Solaris system has a corresponding data structure, the cpu
structure, which maintains various bits of information, such as the state of the
processor, and links to resources used by the processor, such as its dispatch queues,
an idle thread, and interrupt threads. The cpu structure members can be catego-
rized by function.

• General information — The CPU identification number, a sequential ID
number, and state flags.

• Kernel thread pointers — Pointers to the currently executing kernel
thread, an idle kernel thread, and a pause kernel thread; a pointer to the cur-
rent LWP.
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• CPU structure linked lists — A CPU appears on one or more linked lists
maintained in the kernel; a list of existing (installed and configured) CPUs, a
list of online CPUs, and a list of other CPUs in the same processor set; a
pointer to a cpupart  structure (CPU partition) for processor set support.

• Scheduling variables — The per-processor dispatch queue (queue of runna-
ble kernel threads), scheduling flags to manage thread preemption, and
per-kernel thread scheduling information.

• Interrupt information — The CPU’s interrupt stack, a pointer to a linked
list of interrupt threads, a flag to indicate the CPU in running on the inter-
rupt stack, and interrupt-level information.

• Statistics — Statistical data, mostly in the form of counters, on CPU activ-
ity (used by sar (1M), vmstat (1M), and mpstat (1M)).

• Configuration and control data — Processor information such as the CPU
type, Floating Point Unit (FPU) information, and clock speed; control for
state changes and checkpoint/resume support.

• Architecture-specific data — Processor architecture-specific control and
information, such as fine-grained clock tick data, architecture-specific inter-
rupt data, and processor control block for saving hardware state (general reg-
isters, floating-point registers, etc.).

The structure, defined in /usr/include/sys/cpuvar.h , is illustrated in Figure
9.17.
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 Figure 9.17 CPU Structure and Major Links

Most of the fields in the CPU structure are machine independent and thus apply to
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data that is architecture specific is referenced through the cpu_m field in the struc-
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cific processor control block (PCB). The cpu_stat field is an embedded data
structure that combines most of the kernel-maintained counters defined in
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vmstat (1M) and sar (1M), provide systemwide statistics by summing the per-pro-
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names (e.g., cpu_next_ xxx ), but every forward link also has a corresponding
cpu_prev_ xxx back pointer. The primary linked list is all configured processors,
linked by cpu_next /cpu_prev . All online processors are linked by
cpu_next_onln /cpu_prev_onln . A processor taken offline by the psradm (1M)
command or p_online (2) system call is removed from the online linked list and
taken out of the dispatcher—kernel threads will not be placed on an offline proces-
sor’s dispatch queues. Offline processors can still field interrupts.

9.5.1  Processor Control

The system creates several kernel threads that serve a specific purpose for CPU
control or general operating system activity. The interrupt threads are designed to
facilitate fast switching to and from an interrupt handler by having a thread ready
to execute interrupt handling code. The linked list is created at boot time, one
thread for each interrupt level—10 on the Ultra Enterprise Server systems. (There
are actually 15 interrupt levels, but levels above 10 do not require an interrupt
thread.) The idle thread is executed if there are no runnable threads on any of the
dispatch queues when the scheduler runs. The idle thread essentially loops, call-
ing the dispatcher function to examine the queues, looking for the highest (best)
priority runnable thread. The pause thread exists as part of the processor control
facilities and keeps the CPU in a safe place in the interim between state changes
(e.g., online to offline).

A CPU in Solaris can be in one of several possible states, as defined by the bits
set in the cpu_flags  field.

• CPU_RUNNING. The CPU is running, able to execute kernel threads, handle
interrupts, etc.

• CPU_READY. The CPU will take cross-calls and directed interrupts.
• CPU_QUIESCED. The CPU is not running kernel threads or interrupt threads.
• CPU_EXISTS. All installed CPUs when the system initializes (boots) will min-

imally be in the EXISTS state.
• CPU_ENABLE. The CPU is enabled to take interrupts, but it is not part of the

dispatcher’s pool of online CPUs to schedule kernel threads. With this flag off,
the CPU may still take directed interrupts and cross-calls, but not interrupts
that can be directed to another CPU.

• CPU_OFFLINE. The processor was taken offline by psradm (1M) or
p_online (2) and is no longer scheduling kernel threads. The CPU will still
take interrupts. (That’s the difference between the offline state and quiesced
state—a CPU in the quiesced state will not take interrupts.) A CPU with
bound threads cannot be taken offline.

• CPU_POWEROFF. (Solaris 2.6 and Solaris 7 only) The CPU has been powered
off.

You can examine the CPU structures on a running system by using an available
adb macro, cpu . (adb macros can be found in the /usr/lib/adb directory.) The
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kernel maintains the address of the first CPU structure in the linked list in a ker-
nel variable called cpu_list .

To look at structures for the remaining processors, feed the next value into the
adb cpu  macro.

Note the flags field, which is the cpu_flags member. This example repre-
sents the state after bootstrap of a CPU that has not had its state altered explic-
itly. Following initialization, the set cpu_flags bits are CPU_RUNNING,

# adb -k
physmem 3b5f
cpu_list/K
cpu_list:
cpu_list:       1041ad20
1041ad20$<cpu

cpu0:
cpu0:           id              seqid           flags
                0               0               1b
cpu0+0x10:      thread          idle_thread     pause_thread
            30000ab8fe0      2a10001fd40      2a10000fd40
cpu0+0x28:      lwp             fpowner         part
            30000a70070      0                1041bc88
cpu0+0x48:      next            prev            next_onln
            300003d2010      300003d2010      300003d2010
cpu0+0x60:      prev_onln       next_part       prev_part
            300003d2010      300003d2010      300003d2010
cpu0+0x78:      disp

cpu0+0x78:      lock    npri    queue
                0       170     3000048a000
cpu0+0x88:      limit           actmap          maxrunpri
            3000048aff0      30000a40840      -1
cpu0+0x9a:      max_unb_pri     nrunnable
                -1              0

cpu0+0xa8:      runrun  kprunrun        chosen_level
                0       0               -1
cpu0+0xb0:      dispthread      thread_lock     last_swtch
            30000ab8fe0      0          12e9f54
cpu0+0xc8:      intr_stack      on_intr         intr_thread
            2a10001bf50      0               2a10007dd40
cpu0+0xe0:      intr_actv       base_spl        profile_cyclic_id
                0               0               0
cpu0+0x278:     profile_pc      profile_pil     profile_when
                syscall_trap+0x28               0               0
cpu0+0x290:     profile_ilate   cyc_cpu
                53              300000678c8
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CPU_READY, CPU_EXISTS, and CPU_ENABLE. Below is an example of the use of
psrinfo (1M) and psradm (1M) to display CPU status and take a CPU offline.

Another look at the CPU structures with adb (1), specifically the structure for CPU
ID 2 (the CPU taken offline), shows that the CPU states (cpu_flags ) are
CPU_RUNNING, CPU_READY, CPU_QUIESCED, CPU_EXISTS, and CPU_OFFLINE.
Taking the CPU offline results in the CPU_QUIESCEDand CPU_OFFLINEflags get-
ting set and the CPU_ENABLEflag getting cleared. This example demonstrates that
the CPU state flags may not always appear as expected if examined online or with
a kernel debugger. You might expect that taking the CPU offline would result in
CPU_RUNNINGor CPU_READYto be cleared, but they are not cleared. The macro
the kernel uses to determine if a CPU is active tests for the CPU_OFFLINEstate,
and the dispatcher looks at CPU_QUIESCEDand CPU_OFFLINEbits to determine if
a CPU should participate in running kernel threads.

Solaris 7 added the ability to remove a CPU from the interrupt pool, meaning
that an administrator can issue a psradm (1M) command that tells the kernel not
to send the specified processor interrupts; instead, the kernel should keep the pro-
cessor online so it will continue to schedule kernel threads. This functionality is
mostly useful when used in conjunction with processor binding (binding a process
or kernel thread to processor) for real-time applications that require some predict-
able, bounded dispatch latency for thread scheduling. Using psradm (1M) to dis-
able interrupts on a processor results in the CPU_ENABLEflag being cleared; the
other flags set during initialization remain set. Table 9-5 summarizes the CPU
state flags following some state changes.

Note that there is no difference in the CPU state if the CPU is taken offline
(psradm -f ) or if the CPU is taken offline and interrupts are disabled (psradm
-f , and -i ). Offline implies that interrupts are disabled for a CPU.

Processor control can happen at one of several levels. Under normal circum-
stances, the kernel initializes existing processors at boot time, and those proces-

# psrinfo
0       on-line   since 04/26/00 14:39:27
1       on-line   since 04/26/00 14:39:31
# psradm -f 1
# psrinfo
0       on-line   since 04/26/00 14:39:27
1       off-line  since 04/28/00 21:48:51

Table 9-5 CPU State Flags

State Flags Set
After boot/initialization RUNNING, READY, EXISTS, ENABLE
Interrupts disabled RUNNING, READY, EXISTS
Offline RUNNING, READY, QUIESCED, EXISTS, OFFLINE
Offline and interrupts disabled RUNNING, READY, QUIESCED, EXISTS, OFFLINE
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sors participate in interrupt handling, cross-call activity, and kernel thread
scheduling and execution. Processor state changes, online-to-offline and interrupt
enable/disable, are driven by a command set or can be done programmatically by
system calls. Additionally, processor management, the creation and management
of processor sets, thread-to-processor binding, etc., are also done at either the com-
mand or programming level. The commands and APIs used for processor control
and management are summarized in Table 9-6.

The commands listed in Table 9-6 are built on the system calls created for proces-
sor control and management, listed in the same table. The state changes dis-
cussed in the previous pages are driven by psradm (1M) or the p_online (2)
system call.

9.5.2  Processor Sets

The Solaris kernel enables processor sets to be configured, where some number of
processors (one or more) are grouped into a processor set for resource manage-
ment and application binding. Processes can be bound to a processor set or to a
single processor. Internally, processor sets are referred to as CPU partitions. Some
future release may possibly distinguish between a processor partition in the ker-
nel and a processor set as seen by users of the system. As of right now (up to and
including Solaris 7), processor sets and processor partitions are the same thing.

Table 9-6 Processor Control Interfaces

Command (1M) or
Interface (2)

Description

psrinfo (1M) Displays processor status and information.
processor_info (2) Gets processor type and status.
psradm (1M) Changes processor state (offline/online, dis-

able/enable interrupt processing).
p_online (2) Programmatically changes processor state

(online/offline, disable/enable interrupts).
pbind (1M) Binds (or unbinds) a process to a CPU.
processor_bind (2) Binds (or unbinds) a process to a CPU from

a program.
psrset (1M) Creates, manages processor sets.

Binds/unbinds processes to/from a proces-
sor set.

pset_bind (2) Binds/unbinds a process or LWP to/from a
processor set.

pset_info (2) Gathers information about a processor set.
pset_create (2),
pset_destroy (2),
pset_assign (2)

Creates or destroys a processor set. Assigns
a CPU to a processor set.
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Processor binding can happen in two ways: using the traditional bind com-
mands or interfaces for processors that have not been configured into a processor
set, or using processor sets and the associated bind methods specific to processor
sets.

The original (and still supported) method of binding a process to a CPU was
through the pbind (1M) command and processor_bind (2) system call. Bindings
created with either method result in all the LWPs of the process getting scheduled
only on the CPU that the process is bound to. It is not an exclusive binding; other
LWPs in the system may get scheduled on the CPU. It is also possible that other
CPUs will do some processing on behalf of the bound LWPs. If an LWP issues an
I/O, the I/O may be processed on another CPU, including the interrupt processing
when the I/O is complete. Using the command interface, pbind (1M), we can only
bind at the process level. The kernel supports LWP-level binding, where different
LWPs in the same process could be bound to different CPUs. This binding can be
done programmatically with processor_bind (2), by which you can specify an
LWP ID.

Solaris 2.6 added processor sets, and with processor sets comes another method
of binding processes to CPUs. Recall that a processor set is a user-level abstrac-
tion of a grouping of processors. In the kernel, all processors in the same set are
part of the same CPU partition. Once a processor set is created (psrset -c
cpu_id ), the processors in the set are no longer available for running all kernel
threads systemwide. Rather, they will only run kernel threads (LWPs) that have
been bound to the processor set with psrset (1M) or pset_bind (2). Once a pro-
cess is bound, the binding is exclusive—only threads bound to the processor set are
scheduled and executed on CPUs in the set. CPUs in a processor set are not avail-
able as targets of pbind (1M) requests—you cannot use pbind (1M) (or
processor_bind (2)) to bind processes or LWPs to a CPU that is part of a user
processor set. If a process has been bound to a CPU with pbind (1M), that proces-
sor cannot be placed in a processor set until the binding is undone.

Not every processor on a system can be placed in a processor set. The kernel will
not allow all the processors to be configured into a user processor set; at least one
CPU must remain in the default system partition (created at boot time). Support
for processor binding, either to a single processor or to a processor set, exists at the
kernel thread level (or LWP, as it is referred to in the reference manual pages; in
this context, the kernel thread and LWP can be thought of as the same thing). A
few kernel thread structure fields link to CPU structures if the thread is bound, or
they reference the processor set in the case of a partition binding. These fields are
discussed further in Chapters 3 and 4.

The implementation of processor sets is built on the cpupart data structure
(/usr/include/sys/cpupart.h ) and support code in the kernel. The cpupart
structure has links to processors in the partition, maintains links to other parti-
tions in the system, and maintains some general housekeeping data, such as the
partition ID, the type of partition (public or private), number of online CPUs in the
partition, and a kernel priority dispatch queue.
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Figure 9.18 shows two partitions, glued together by the cpupart structure. The
list of CPUs that are part of the partition are linked by cp_cpulist and from
there are linked through the cpu_next_part/cpu_prev_part links in the cpu
structure (see Figure 9.17 on page 421). All partitions configured in the system are
linked through the cp_next and cp_prev links (doubly linked list), and a pointer
to the base or “parent” partition is maintained in cp_base . The cp_list_head
pointer is set up in the kernel to point to the first cpupart structure in the sys-
tem.

 Figure 9.18 Processor Partition (Processor Set) Structures and Links

We alluded earlier to a default partition, created at system initialization (boot)
time. All installed processors are placed in this default partition during the initial-
ization process, and if no other partitions (processor sets) are explicitly created by
psrset (1M) or pset_create (2), the system simply maintains the internal default
set, which is not made visible to users. psrset (1M) will show all processors on the
system as unassigned: available to be configured into a processor set. The kernel
defines three possible levels for partitions (cp_level ): CP_DEFAULT, CP_SYSTEM,
CP_PRIVATE. The default partition created at boot time is, of course, CP_DEFAULT
and will be the only default partition systemwide (only one such partition is
allowed). Additional partitions created on the system are set to CP_PRIVATE. The
CP_PRIVATE level is not currently used but will likely be implemented in the
future as a means of creating internal (kernel only) partitions.

We show a dispatch queue for each partition. To summarize our earlier discus-
sion of dispatch queues: the Solaris kernel maintains several dispatch queues:
queues of runnable kernel threads waiting for a processor. Every CPU has its own
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set of dispatch queues for runnable threads below real-time priorities. For
real-time threads, a systemwide queue, known as the kernel preempt queue, is
maintained. Threads placed on this queue are at a high enough priority to force a
kernel preemption, hence the name. If processor sets are created, then each proces-
sor set (partition) manages its own kernel preempt queue. This per-partition queue
is part of the cpupart structure, which integrates a disp structure (dispatcher—
the cp_kp_queue member of cpupart ). This is where the queue link is main-
tained, by a disp_q  pointer.

Kernel support functions for CPU control are split between CPU partition man-
agement functions and per-CPU control functions, several of which are executed
during system boot to build and initialize the required kernel data structures, plug
in all the links, and bring all the processors online. Once the system is up and run-
ning, any subsequent state changes to a CPU will likely be the result of a user-ini-
tiated procedure, such as a dynamic reconfiguration operation, thread binding, or
processor set management.



 10
INTERPROCESS
COMMUNICATION
Interprocess communication (IPC) encompasses facilities provided by the operat-
ing system to enable the sharing of data (shared memory segments), the exchange
of information and data (message queues), and synchronization of access to shared
resources (semaphores) between processes and threads on the same system. Con-
trast IPC to networking-based facilities, such as sockets and RPC interfaces, which
enable communication over a network link between distributed systems. Early IPC
facilities originated in AT&T Unix System V, which added support for shared
memory, semaphores, and message queues around 1983. This original set of three
IPC facilities is generally known as System V IPC. Over time, a similar set of IPC
features evolved from the POSIX standards, and we now have POSIX semaphores,
shared memory, and message queues. The System V and POSIX IPCs use differ-
ent APIs and are implemented differently in the kernel, although for applications
they provide similar functionality.

Other facilities for interprocess communication include memory mapped files
(mmap(2)), named pipes (also known as FIFOs), Unix domain sockets, and recently
added Solaris Doors, which provides an RPC-like facility for threads running on
the same system. Each method by which an application can do interprocess com-
munication offers specific features and functionality which may or may not be use-
ful for a given application. It’s up to the application developer to determine what
the requirements are and which facility best meets those requirements.

Our goal here is not to provide a tutorial on programming with these interfaces,
although some mention of the APIs is necessary when we describe a feature or
functional component. Several texts discuss programming and interprocess com-
munication, most notably, UNIX Network Programming—Interprocess Communi-
cation, 2nd edition, Volume II, by W. Richard Stevens.
429
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10.1 Generic System V IPC Support

Several data structures and low-level kernel routines are common to all three Sys-
tem V IPC facilities. In this section, we cover those common areas, and then we get
into the specifics of each IPC implementation. Common interfaces and structures
include:

• xxxid_ds data structures. Each facility has a data structure that contains
various bits of information about the resource. The naming convention used
for the data structure is the same across all three sets of interfaces (see Table
10-1).

• Keys and identifiers. To share IPC resources across processes (which is the
whole point of interprocess communication), a process must be able to
uniquely identify a resource when it issues a get call. The IPC facilities
require a key value in the xxx get (2) call and return an identifier based on
the passed key value.

• ipcget() and ipcaccess() . These common kernel routines are used by
the IPC facilities to get the identifier and to check access permissions.

10.1.1  Module Creation

The System V IPC kernel modules are implemented as dynamically loadable mod-
ules. Each facility has a corresponding loadable module in the /kernel/sys direc-
tory (shmsys , semsys , and msgsys ). In addition, all three methods of IPC require
loading of the /kernel/misc/ipc module, which provides two low-level routines
shared by all three facilities. The ipcaccess() routine is called to verify access
permissions to a particular IPC resource, for example, a shared memory segment,
a semaphore, or a message queue. The ipcget() code fetches a data structure
associated with a particular IPC resource that generated the call, based on a key
value that is passed as an argument in the shmget (2), msgget (2), and semget (2)
system calls.

When an IPC resource is initially created, a positive integer, known as an iden-
tifier, is assigned to identify the IPC object. The identifier is derived from a key
value. The kernel IPC xxx get (2) system call will return the same identifier to pro-
cesses or threads, using the same key value, which is how different processes can
be sure to access the desired message queue, semaphore, or shared memory seg-
ment. An ftok (3C), file-to-key, interface is the most common method of having dif-
ferent processes obtain the correct key before they call one of the IPC xxx get()
routines.

Associated with each IPC resource is an id data structure, which the kernel allo-
cates and initializes the first time an xxx get (2) system call is invoked with the
appropriate flags set. The xxx get (2) system call for each facility returns the iden-
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tifier to the calling application, again based on arguments passed in the call and
permissions. The structures are similar in name and are defined in the header file
for each facility (see Table 10-1).

The number of xxx id_ds structures available in the kernel is static and is deter-
mined by each facility’s xxx mni kernel tunable parameter, that is, msgmni , sem-
mni , and shmmni determine the maximum number of msgid_ds , semid_ds , and
shmid_ds structures available, respectively. Kernel memory for these structures is
allocated during the initialization phase of the IPC facility, based on the structure
size and xx xmni  value.

Most fields in the ID structures are unique for each IPC type, but they all
include as the first structure member a pointer to an ipcperm data structure,
which defines the access permissions for that resource, much as access to files is
defined by permissions maintained in each file’s inode. The ipcperm structure is
defined in /usr/include/sys/ipc.h ; it contains the members listed in Table
10-2.

For each IPC resource, the UID and GID of the owner and creator will be the
same. Ownership could subsequently be changed through a control system call,
but the creator’s IDs never change. The access mode bits are similar to file access
modes, differing in that there is no execute mode for IPC objects; thus, the mode
bits define read/write permissions for the owner, group, and all others. The seq
field, described as the slot usage sequence number, is used by the kernel to estab-
lish the unique identifier of the IPC resource when it is first created.

Table 10-1 IPC ID Structure Names

Facility Type xxx get (2) ID Structure
Name

semaphores semget (2) semid_ds
shared memory shmget (2) shmid_ds
message queues msgget (2) msgid_ds

Table 10-2 ipc_perm Data Structure

Member
Name

Data Type Description

uid uid_t Owner’s user ID
gid gid_t Owner’s group ID
cuid uid_t Creator’s user ID
cgid gid_t Creator’s group ID
mode mode_t Access modes (permission bits)
seq ulong Slot usage sequence number
key key_t IPC key value
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The kernel ipcget() routine is invoked from each of the IPC xxx get (2) sys-
tem calls; its behavior is determined by whether the object already exists and by
flags set by the programmer making the xxx get (2) call. It’s up to the programmer
to pass a key value along as one of the arguments to the xxx get (2) system call.
The key value provides a means by which different processes can access the IPC
object they wish to share; callers using the same key value will have the same IPC
object identifier returned to them (assuming permissions allow access). The follow-
ing pseudocode illustrates how the process works.

Summarizing the preceding pseudocode flow: a new xxxid_ds structure (where
xxx is sem, shm, or msg) is initialized on behalf of the caller if there is a free slot
and if there is no entry with a matching key, and if the caller specified
IPC_CREATEor IPC_EXCL (or both). A pointer to an existing object is returned if
the key does match and if the mode bits grant permission and if it’s not an exclu-
sive object (i.e., it was not created with IPC_EXCL).

The ipcaccess() code is called at various points by the IPC support code in
the kernel to verify access permissions to the IPC resource being requested. The
code is straightforward: it verifies access permissions set for the UID and GID of
the caller against the mode bits in the ipc_perm structure. The initial mode of an
IPC object is determined when the object is first created by an IPC get call, speci-
fied by the flag argument in the call, which represents access mode permission
expressed in numeric form, similar to file access modes, as in:

ipcget(...,args,...)
        if (key == IPC_PRIVATE)
                loop through each xxxid_ds structure
                if (allocated)
                        continue through loop
                if (not allocated)
                        init xxxid_ds structure and return
                reached end of loop and all are allocated, return ENOSPC
        else (key is not IPC_PRIVATE)
        loop through each xxxid_ds structure
        if (allocated)
                if (key passed matches key in ipc_perm structure)
                        if (IPC_EXCL /* exclusive flag */)
                                return error EEXIST
                        if (access not allowed)
                                return error EACCESS

else (it’s allocated, key matches, not exclusive, access allowed)
                else /* it’s allocated but key does not match */
                continue through loop
        else (not allocated)
                set pointer
        if (IPC_CREATE is NOT set)
                return error ENOENT /* there is no corresponding entry */
        if (end of loop, everything is allocated and no key match)
                return error ENOSPC

shmget(key, size, IPC_CREAT | 0644);
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The preceding example shows a shmget (2) system call, with the third argument
setting the CREATEflag and setting the access modes to read/write for the owner
and read-only for group and other. With no access mode bits specified in the get
call, no mode bits is set, disallowing access for everyone accept root. The kernel
returns an EACCESS error if the permission test fails on an xxx get (2) call.

10.1.2  Resource Maps

Two of the three IPC facilities—message queues and semaphores—use a low-level
kernel memory allocation scheme known as resource maps. Resource maps are a
means by which small units of kernel memory can be allocated and freed from a
larger pool of kernel pages that have been preallocated. Message queues and sema-
phores are relatively dynamic in nature since applications tend to move messages
on and off a queue frequently, and messages can vary in size from a few bytes to
several Kbytes (or more). System V IPC supports the notion of semaphore sets,
and the number of semaphores per set can vary during execution. For this reason,
the kernel code is called upon to allocate space for new messages or semaphores
and to free the space when a message is removed or a semaphore deleted. Because
these objects are stored in kernel memory, this approach would result in poten-
tially frequent calls to the kernel memory allocator. It makes more sense to allo-
cate a large chunk up-front and use a lighter-weight interface to manage the
preallocated space. Resource maps fill that function and are used in Solaris to
manage kernel space for storing semaphores and the data portion of messages.

The amount of space allocated for resource maps for the IPC facilities is deter-
mined by kernel tunable parameters, one parameter each for message queues and
semaphores. The semmap parameter (default value of 10) and msgmap parameter
(default value of 100) can be tuned in the /etc/system according to application
requirements. Setting the values larger results in more kernel memory allocated
up-front. Each facility uses its own resource map, meaning that the resource map
space allocated for semaphores is not available for use by message queues, and
vice versa. Shared memory does not use resource maps—shared memory seg-
ments are part of the process’s address space. Only the shdmid_ds structure is in
the kernel, and space for those structures is allocated up-front as specified by the
shmmni  tunable parameter.

10.2 System V Shared Memory

Shared memory provides an extremely efficient means of sharing data between
multiple processes on a Solaris system, since the data need not actually be moved
from one process’s address space to another. As the name implies, shared memory
is exactly that: the sharing of the same physical memory (RAM) pages by multiple
processes, such that each process has mappings to the same physical pages and
can access the memory through pointer dereferencing in code. The use of shared
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memory in an application requires implementation of just a few interfaces bun-
dled into the standard C language library, /usr/lib/libc.so , as listed in Table
10-3. Consult the manual pages for more detailed information. In the following
sections, we examine what these interfaces do from a kernel implementation
standpoint.

The shared memory kernel module is not loaded automatically by Solaris at boot
time; none of the System V IPC facilities are. The kernel will dynamically load a
required module when a call that requires the module is made. Thus, if the shm-
sys and ipc modules are not loaded, then the first time an application makes a
shared memory system call (e.g., shmget (2)), the kernel loads the module and exe-
cutes the system call. The module remains loaded until it is explicitly unloaded by
the modunload (1M) command or until the system reboots. This behavior explains
an FAQ on shared memory: why, when the ipcs (1M) command is executed, it
sometimes comes back with this status:

The facility not in system message means the module is not loaded. You
can tell the operating system to load the module during bootup by using the
forceload  directive in the /etc/system  file.

Table 10-3 Shared Memory APIs

System
Call

Arguments
Passed

Returns Description

shmget (2) key, size, flags Identifier Creates a shared segment if
one with a matching key does
not exist, or locates an existing
segment based on the key.

shmat (2) Identifier,
address, flags

Pointer Attaches shared segment to
processes address space.

shmdt (2) Address 0 or 1 Detaches a shared segment
from a process’s address space.

shmctl (2) Identifier, com-
mand, status
structure

0 or 1 (success
or failure)

Control call—gets/sets permis-
sions, gets stats, destroys iden-
tifier, etc.

se1> ipcs
IPC status from <running system> as of Mon May  1 17:15:56 2000
Message Queue facility not in system.
T         ID      KEY        MODE        OWNER    GROUP
Shared Memory:
m          0   0x50110705 --rw-r--r--     root     root
Semaphores:

forceload: sys/msgsys
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Also, you can use the modload (1M) command, which allows a root user to load any
loadable kernel module from the command line. You can use the modinfo (1M)
command to see which loadable modules are currently loaded in the kernel. Note
that Solaris is smart enough not to allow the unloading (modunload (1M)) of a
loadable module that is in use. Note also that the code is written to be aware of
dependencies, such that loading the shmsys module also causes the ipc module to
be loaded.

The kernel maintains certain resources for the implementation of shared mem-
ory. Specifically, a shared memory identifier, shmid , is initialized and maintained
by the operating system whenever a shmget (2) system call is executed success-
fully. The shmid identifies a shared segment that has two components: the actual
shared RAM pages and a data structure that maintains information about the
shared segment, the shmid_ds  data structure, detailed in Table 10-4.

Table 10-4 shmid_ds Data Structure

Name
Data
Type

Corresponding
ipcs(1M)
Column Description

shm_perm struct see ipc perm
table

Embedded ipc_perm  structure.
Generic structure for IPC facili-
ties that maintains permission
information

shm_segsz unsigned
int

SEGSZ Size in bytes of the shared seg-
ment

shm_amp pointer none Pointer to corresponding anon
map structure

shm_lkcnt unsigned
short

none Lock count—number of locks on
the shared segment

shm_lpid long LPID Last PID; PID of last process to do
a shared memory operation on the
segment

shm_cpid long CPID Creator PID; PID of the process
that created the shared segment

shm_nattch unsigned
long

NATTCH Number of attaches to the shared
segment

shm_cnattch unsigned
long

none Creator attaches? Not currently
used

shm_atime long ATIME Time of last attach
shm_dtime long DTIME Time of last detach
shm_ctime long CTIME Time of last change to shmid_ds

structure
shm_cv cond var none Condition variable. Not used
shm_sptas pointer none Pointer to address space structure
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The system allocates kernel memory for some number of shmid_ds structures at
boot time, as determined from the shared memory tunable parameter shmmni . All
together, only four tunable parameters are associated with shared memory. They
are described in Table 10-5.

When the system first loads the shared memory module, it allocates kernel mem-
ory to support the shmid_ds structures and other required kernel support struc-
tures. Each shmid_ds structure is 112 bytes in size and has a corresponding
kernel mutex lock, which is an additional 8 bytes. Thus, the amount of kernel
memory required by the system to support shared memory can be calculated as
((shmmni * 112) + (shmmni * 8)) . The default value of 100 for shmmni
requires the system to allocate 112.8 Kbytes of kernel memory for shared memory
support. The system makes some attempt to protect itself against allocating too
much kernel memory for shared memory support by checking for the maximum
available kernel memory, dividing that value by 4, and using the resulting value as
a limit for allocating resources for shared memory. Simply put, the system will not
allow more than 25 percent of available kernel memory be allocated.

The preceding description applies to Solaris 2.5, 2.5.1, and 2.6. Prior releases,
up to and including Solaris 2.4, did not impose a 25 percent limit check. Nor did
they require the additional 8 bytes per shmid_ds for a kernel mutex lock, since
shared memory used very coarse grained locking in the earlier releases and only
implemented one kernel mutex in the shared memory code. Beginning in Solaris
2.5, finer-grained locking was implemented, allowing for greater potential parallel-
ism of applications using shared memory.

It should be clear that one should not set shmmni to an arbitrarily large value
simply to ensure sufficient resources. There are limits as to how much kernel
memory the system supports. On sun4m-based platforms, the limits are on the
order of 128 Mbytes for releases prior to Solaris 2.5, and 256 Mbytes for Solaris
2.5, 2.5.1, and 2.6. On sun4d systems (SS1000 and SC2000), the limits are about
576 Mbytes in Solaris 2.5 and later. On UltraSPARC- (sun4u) based systems, the

Table 10-5 Shared Memory Tunable Parameters

Name
Default
Value

Minimu
m Value

Maximum
Value

Data
Type Description

shmmax 1048576 1 4,294,967,295
(4 GB)

unsigned
int

Maximum size in
bytes of a shared
memory segment

shmmin 1 1 4,294,967,295
(4 GB)

unsigned
int

Minimum size for a
shared segment

shmmni 100 1 2147483648
(2 GB)

int Maximum number of
shmid_ds  structures,
systemwide.

shmseg 6 1 32767 (32K) short Max segments per
process
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kernel has its own 4-Gbyte address space, so it is much less constrained. Still, keep
in mind that the kernel is not pageable, and thus whatever kernel memory is
needed remains resident in RAM, reducing available memory for user processes.
Given that Sun ships systems today with very large RAM capacities, this charac-
teristic of the kernel may not be an issue, but it should be considered nonetheless.

Note that the maximum value for shmmni listed in Table 10-5 is 2 Gbytes. This
is a theoretical limit, based on the data type (a signed integer), and should not be
construed as something configurable today. Applying the math from above, you see
that 2 billion shared memory identifiers would require over 200 Gbytes of kernel
memory! Assess to the best of your ability the number of shared memory identifi-
ers required by the application, and set shmmni to that value plus 10 percent or so
for headroom.

The remaining three shared memory tunable parameters are defined quite sim-
ply.

shmmax defines the maximum size a shared segment can be. The size of a
shared memory segment is determined by the second argument to the shmget (2)
system call. When the call is executed, the kernel checks to ensure that the size
argument is not greater than shmmax. If it is, an error is returned. Setting shm-
max to its maximum value does not affect the kernel size—no kernel resources are
allocated on the basis of shmmax, so this variable can be tuned to its maximum
value of 4 Gbytes (0xffffffff) on a 32-bit Solaris system, and larger on a 64-bit
Solaris 7 system. The /etc/system entry examples that follow illustrate two
ways of setting the 4-Gbyte limit for a 32-bit system and setting something larger
on a 64-bit Solaris 7 system, in this case, a 10-Gbyte maximum shared segment.

The shmmin tunable defines the smallest possible size a shared segment can be, as
per the size argument passed in the shmget (2) call. There’s no compelling reason
to set this tunable from the default value of 1.

Lastly, shmseg defines the number of shared segments a process can attach
(map pages) to. Processes can attach to multiple shared memory segments for
application purposes, and this tunable determines how many mapped shared seg-
ments a process can have attached at any one time. Again, the 32-Kbyte limit
(maximum size) in Table 10-5 is based on the data type (short) and does not neces-
sarily reflect a value that will provide application performance that meets busi-
ness requirements if some number of processes attach to 32,000 shared memory
segments. Things like shared segment size, system size (amount of RAM, number
and speed of processors, etc.) all factor in to determining the extent to which you
can push the boundaries of this facility.

set shmsys:shminfo_shmmax=0xffffffff            /* hexadecimal - 4GB limit */
set shmsys:shminfo_shmmax=4294967295            /* decimal - 4GB limit */
set shmsys:shminfo_shmmax=10000000000           /* decimal - 10GB, 64-bit example */
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10.2.1  Shared Memory Kernel Implementation

In this section we look at the flow of kernel code that executes when the shared
memory system calls are called.

Applications first call shmget (2), to get a shared memory identifier. The kernel
uses a key value passed in the call to locate (or create) a shared segment.

shmget() , when entered, calls ipcget() to fetch the shmid_ds data structure.
Remember, all possible shmid_ds structures are allocated up-front when /ker-
nel/sys/shmsys loads, so we need to either find an existing one that matches the
key value or initialize an unallocated one if the flags indicate we should and a
structure is available. The final init phase of ipcget() sets the mode bits, creator
UID, and creator GID. When ipcget() returns to shmget() , the anon page map-
pings are initialized for a new segment or a simple size check is done. (The size

[application code]
shmget(key, size, flags [PRIVATE or CREATE])

[kernel]
shmget()
        ipcget() /* get an identifier - shmid_ds */
        if (new shared segment)
                check size against min and max tunables
                get anon_map and anon array structures
                initialize anon structures
                initialize shmid_ds structure
        else /* existing segment */
                check size against existing segment size
        return shmid (or error) back to application
ipcget()
        if (key == IPC_PRIVATE)
                loop through shmid_ds structures, looking for a free one
                        if (found)
                                goto init
                        else
                                return ENOSPC /* tough cookies */
        else /* key is NOT IPC_PRIVATE */
                loop through shmid_ds structures, for each one
                if (structure is allocated)
                        if (the key matches)
                                if (CREATE or EXCLUSIVE flags set as passed args)

return EEXIST error /* segment with matching key
exists */
                                if (permissions do NOT allow access)
                                        return EACCESS error
                        set status
                        set base address of shmid_ds
                        return 0 /* that’s a good thing */

set base address of shmid_ds /* if we reach this, we have an unallocated shmid_ds
structure */
        if (do not CREATE)
                return ENOENT error /*we’re through them all, and didn’t match keys */
        if (CREATE and no space)
                return ENOSPC error
        do init
        return 0 /* goodness */
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argument is the argument passed in the shmget (2) call, not the size of the exist-
ing segment.)

Once a shmget (2) call returns success to an application, the code has a valid
shared memory identifier. The program must call shmat (2) to create the mappings
(attach) to the shared segment.

Much of the work done in shmat() requires calls into the lower-level address
space support code and related memory management routines. The details on a
process’s address space mappings are covered in Chapter 10. Remember, attach-
ing to a shared memory segment is essentially just another extension to a pro-
cess’s address space mappings.

At this point, applications have a pointer to the shared segment that they use in
their code to read or write data. The shmdt (2) interface allows a process to unmap
the shared pages from its address space (detach itself). Unmapping does not cause
the system to remove the shared segment, even if all attached processes have
detached themselves. A shared segment must be explicitly removed by the shm-
ctl (2) call with the IPC_RMID flag set or from the command line with the
ipcrm (1) command. Obviously, permissions must allow for the removal of the
shared segment.

We should point out that the kernel makes no attempt at coordinating concur-
rent access to shared segments. The software developer must coordinate this
access by using shared memory to prevent multiple processes attached to the same
shared pages from writing to the same locations at the same time. Coordination
can be done in several ways, the most common of which is the use of another IPC
facility, semaphores, or mutex locks.

[application]
shmat(shmid, address, flags)

[kernel]
shmat()
        ipc_access() /* check permissions */
        /* ipc_access() will return EACCESS if permission tests fail */
        /* and cause shmat() to bail out */
        if (kernel has ISM disabled)
                clear SHM_SHARE_MMU flag
        if (ISM and SHM_SHARE_MMU flag)
                calculate number pages
                find a range of pages in the address space and set address
                if (user-supplied address)
                        check alignment and range
                map segment to address
                create shared mapping tables
        if (NOT ISM)
                if (no user-supplied address)
                        find a range of pages in the address space and set address
                else
                        check alignment and range
return pointer to shared segment, or error
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The shmctl (2) interface can also be used to get information about the shared
segment (returns a populated shmid_ds structure), to set permissions, and to lock
the segment in memory (processes attempting to lock shared pages must have an
effective UID of root).

You can use the ipcs (1) command to look at active IPC facilities in the system.
When shared segments are created, the system maintains permission flags simi-
lar to the permission bits used by the file system. They determine who can read
and write the shared segment, as specified by the user ID (UID) and group ID
(GID) of the process attempting the operation. You can see extended information
on the shared segment by using the -a flag with the ipcs (1) command. The infor-
mation is fairly intuitive and is documented in the ipcs (1) manual page. We also
listed in Table 10-4 on page 435 the members of the shmid_ds structures that are
displayed by ipcs (1) output and the corresponding column name. The permis-
sions (mode) and key data for the shared structure are maintained in the
ipc_perm data structure, which is embedded (a member of) the shmid_ds struc-
ture and described in Table 10-2 on page 431.

10.2.2  Intimate Shared Memory (ISM)

Intimate shared memory (ISM) is an optimization introduced first in Solaris 2.2. It
allows for the sharing of the translation tables involved in the virtual-to-physical
address translation for shared memory pages, as opposed to just sharing the actual
physical memory pages. Typically, non-ISM systems maintain a per-process map-
ping for the shared memory pages. With many processes attaching to shared mem-
ory, this scheme creates a lot of redundant mappings to the same physical pages
that the kernel must maintain.

Additionally, all modern processors implement some form of a Translation
Lookaside Buffer (TLB), which is (essentially) a hardware cache of address trans-
lation information. SPARC processors are no exception, and the TLB, just like an
instruction and data cache, has limits as to how many translations it can main-
tain at any one time. As processes are context-switched in and out, we can reduce
the effectiveness of the TLB. If those processes are sharing memory and we can
share the memory mappings also, we can make more effective use of the hardware
TLB.

Figure 10.1 illustrates the difference between ISM and non-ISM shared seg-
ments.



System V Shared Memory 441
 Figure 10.1 Shared Memory: ISM versus Non-ISM

The actual mapping structures differ across processors. UltraSPARC (SPARC V9)
processors implement Translation Tables, consisting of Translation Table Entries
(TTEs). SuperSPARC (SPARC V8) systems implement Page Tables, which contain
Page Table Entries (PTE). They both do essentially the same thing: provide a
means of mapping virtual to physical addresses. However, the two SPARC archi-
tectures differ substantially in MMU (Memory Management Unit) implementa-
tion. (The MMU is the part of the processor chip dedicated to the address
translation process.) SPARC V8 defines the SPARC Reference MMU (SRMMU)
and provides implementation details. SPARC V9 does not define an MMU imple-
mentation, but rather provides some guidelines and boundaries for chip designers
to follow. The actual MMU implementation is left to the chip design folks. Addi-
tionally, a significant amount of kernel code (such as the creation and manage-
ment of the translation tables) is dedicated to the address translation process.
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Let’s consider just one simple example. A database system uses shared memory
for caching various database objects, such as data, stored procedures, indexes, etc.
All commercial database products implement a caching mechanism that uses
shared memory. Assume a large, 2-Gbyte shared segment is configured and there
are 400 database processes, each attaching to the shared segment. Two gigabytes
of RAM equates to 262,144 eight-kilobyte pages. Assuming that the kernel needs
to maintain 8 bytes of information for each page mapping (two 4-byte pointers),
that’s about 2 Mbytes of kernel space needed to hold the translation information
for one process. Without ISM, those mappings are replicated for each process, so
multiply the number times 400, and we now need 800 Mbytes of kernel space just
for those mappings. With ISM, the mappings are shared, so we only need the 2
Mbytes of space, regardless of how many processes attach.

In addition to the translation table sharing, ISM provides another useful fea-
ture: when ISM is used, the shared pages are locked down in memory and will
never be paged out. This feature was added for the RDBMS vendors. As we said
earlier, shared memory is used extensively by commercial RDBMS systems to
cache data (among other things, such as stored procedures). Non-ISM implementa-
tions treat shared memory just like any other chunk of anonymous memory—it
gets backing store allocated from the swap device, and the pages themselves are
fair game to be paged out if memory contention becomes an issue. The effects of
paging out shared memory pages that are part of a database cache would be disas-
trous from a performance standpoint—RAM shortages are never good for perfor-
mance. Since a vast majority of customers that purchase Sun servers use them for
database applications and since database applications make extensive use of
shared memory, addressing this issue with ISM was an easy decision.

Solaris implements memory page locking by setting some bits in the memory
page’s page structure. Every page of memory has a corresponding page structure
that contains information about the memory page. Page sizes vary across different
hardware platforms. UltraSPARC based systems implement an 8-Kbyte memory
page size, which means that 8 Kbytes is the smallest unit of memory that can be
allocated and mapped to a process’s address space.

The page structure contains several fields, among which are two fields called
p_cowcnt and p_lckcnt , that is, page copy-on-write count and page lock count.
Copy-on-write tells the system that this page can be shared as long as it’s being
read, but once a write to the page is executed, the system is to make a copy of the
page and map it to the process that is doing the write. Lock count maintains a
count of how any times page locking was done for this page. Since many processes
can share mappings to the same physical page, the page can be locked from sev-
eral sources. The system maintains a count to ensure that processes that complete
and exit will not result in the unlocking of a page that has mappings from other
processes. The system’s pageout code, which runs if free memory gets low, checks
the status to the pages p_cowcnt and p_lckcnt fields. If either of these fields is
nonzero, the page is considered locked in memory and thus not marked as a candi-
date for freeing. Shared memory pages using the ISM facility do not use the
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copy-on-write lock (that would make for a nonshared page after a write). Pages
locked through ISM implement the p_lckcnt  page structure field.

Even though ISM locks pages in memory so that they’ll never be paged out,
Solaris still treats ISM shared segments the same way it treats non-ISM shared
segments and other anonymous memory pages: it ensures that there is sufficient
backing store in swap before completing the page mapping on behalf of the
requesting process. While this seems superfluous for ISM pages (allocating disk
swap space for pages that can’t be swapped out), it made the implementation
cleaner. Solaris 2.6 changes this somewhat, and in Solaris 2.6 swap is not allo-
cated for ISM pages. The net effect is that allocation of shared segments using ISM
requires sufficient available swap space for the allocation to succeed, at least until
Solaris 2.6. Using ISM requires setting a flag in the shmat (2) system call. Specifi-
cally, the SHM_SHARE_MMUflag must be set in the shmflg argument passed in the
shmat (2) call, to instruct the system to set up the shared segment as intimate
shared memory. Otherwise, the system will create the shared segment as a
non-ISM shared segment.

In Solaris releases up to and including Solaris 7, there is not an easy way to tell
whether or not a shared segment is an ISM shared segment. It can be done but
requires root permission and use of the crash (1M) utility.

In the example below, we start a program called shm1, which creates and
attaches to a 1-Mbyte shared segment, and we use a key value of 10 (the com-
mand-line arguments). The program prints the process virtual address of the
shared segment and touches all the pages in the shared segment, printing a mes-
sage indicating how many bytes have been touched. The test program then just
sits in a loop, doing nothing.

The PID of the test process is 20179. The crash (1M) utility is started, and the p
function dumps the process table (most of the table output is deleted). The process
is located in table slot 73, as verified with the p 73 command. Finally, a full list-
ing of the address space is dumped with the as -f  command.

Looking at the address space listing, matching the address of the shared seg-
ment, ed000000, we can determine which segment driver is used for that address
space segment. In this case, the segment driver is the segspt_shm driver, which is
a driver specifically for ISM shared memory. Any address space segment mapped
that shows this segment driver is an ISM segment. If the mapping represents a
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shared segment that is not an ISM segment, the segment driver will be the stan-
dard segvn_ops  driver.

10.3 System V Semaphores

A semaphore, as defined in the dictionary, is a mechanical signalling device or a
means of doing visual signalling. The analogy typically used is the railroad mecha-
nism of signalling trains, where mechanical arms would swing down to block a
train from a section of track that another train was currently using. When the
track was free, the arm would swing up, and the waiting train could then proceed.

The notion of using semaphores as a means of synchronization in computer soft-
ware was originated by a Dutch mathematician, E. W. Dijkstra, in 1965. Dijkstra’s

# shm1 1048576 10 &
[1]     20179
sunsys>
Attached, shmptr: ed000000
touching pages
bytes touched: 1048576
sunsys> su
# /etc/crash
dumpfile = /dev/mem, namelist = /dev/ksyms, outfile = stdout
> p
PROC TABLE SIZE = 4058
SLOT ST  PID  PPID  PGID   SID   UID PRI   NAME        FLAGS
   0 t     0     0     0     0     0  96 sched          load sys lock
   1 s     1     0     0     0     0  58 init           load
        .
        .
        .
  72 z 19821  5234 19821 19821     0  99 zombie         load
  73 r 20179   533 20179   533 19821   0 shm1           load
  74 s 17199   490 17199   490     0  45 sh             load
  75 z 19809  5234 19809 19809     0  99 zombie         load
  79 s 20180   533 20180   533     0  54 sh             load
> p 73
PROC TABLE SIZE = 4058
SLOT ST  PID  PPID  PGID   SID   UID PRI   NAME        FLAGS
  73 p 20179   533 20179   533 19821   0 shm1           load
> as -f 73

PROC        PAGLCK   CLGAP  VBITS HAT        HRM         RSS
 SEGLST     LOCK        SEGS       SIZE     LREP TAIL     NSEGS
  73        0        0      0x0   0xf59cfb58   0x0
0xf69af3c0  0xefffed58  0xf69775a0  17563648  0     0xf69afb20    11
    BASE       SIZE     AS       NEXT        PREV         OPS        DATA
   0x00010000   2000 0xf591eba0 0xf65d4500 0x00000000  segvn_ops  0xf69b9d68
   0x00021000   1000 0xf591eba0 0xf69aff20 0xf69775a0  segvn_ops  0xf65f1288
   0xed000000 1000000 0xf591eba0 0xf69af3c0 0xf65d4500 segspt_shm  0xf653a480
   0xef700000  93000 0xf591eba0 0xf69afb40 0xf69aff20  segvn_ops  0xf65d1a60
        .
        .
        .
   0xefffe000   2000 0xf591eba0 0x00000000 0xf69aff00  segvn_ops  0xf69a4dd0
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original work defined two semaphore operations, wait and signal (which correlate
nicely to the railroad example). The operations were referred to as P and V opera-
tions. The P operation was the wait, which decremented the value of the sema-
phore if it was greater than zero, and the V operation was the signal, which
incremented the semaphore value. The terms P and V originate from the Dutch
terms for try and increase. P is from Probeer, which means try or attempt, and V is
from Verhoog, which means increase. P(robeer) decreases the semaphore count and
V(erhoog) increases the count. (Thanks to henk-jan_van_scherpenseel@stra-
tus.com for sharing that bit of trivia with us.)

Semaphores provide a method of synchronizing access to a sharable resource by
multiple processes. They can be used as a binary lock for exclusive access or as a
counter; they manage access to a finite number of shared resources, where the
semaphore value is initialized to the number of shared resources. Each time a pro-
cess needs a resource, the semaphore value is decremented. When the process is
done with the resource, the semaphore value is incremented. A zero semaphore
value conveys to the calling process that no resources are currently available, and
the calling process blocks until another process finishes using the resource and
frees it.

The semaphore implementation in Solaris (System V semaphores) allows for
semaphore sets, meaning that a unique semaphore identifier can contain multiple
semaphores. Whether a semaphore indentifier contains one semaphore or a set of
semaphores is determined when the semget (2) system call creates the sema-
phore. The second argument to semget (2) determines the number of semaphores
that will be associated with the semaphore identifier returned by semget (2). The
semaphore system calls allow for some operations on the semaphore set, such that
the programmer can make one semctl (2) or semop(2) system call and touch all
the semaphores in the semaphore set. This approach makes dealing with sema-
phore sets programmatically a little easier.

10.3.1  Semaphore Kernel Resources

The tunable kernel parameters that apply to semaphores are summarized in Table
10-6. We next take a closer look at each one and discuss how kernel resources are
allocated.

Table 10-6 Semaphore Kernel Tunables

Name
Default
Value

Maximum
Value

Data
Type Description

semmap 10 2 billion signed
int

Size of semaphore resource
map

semmni 10 65536 signed
int

Number of semaphore iden-
tifiers

semmns 60 2 billion signed
int

Total semaphores, system-
wide
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• semmap— Determines the maximum number of entries in a semaphore map.
The memory space given to the creation of semaphores is taken from the
semmap, which is initialized with the number of map entries fixed by the
value of semmap. The implementation of allocation maps is generic within
UNIX SVR4 and Solaris, supported with a standard set of kernel routines
(rmalloc() , rmfree() , etc.).
The use of allocation maps by the semaphore subsystem is just one example
of their implementation. They basically prevent the kernel from having to
deal with allocating and deallocating additional kernel memory as sema-
phores are initialized and freed. By initialization and use of allocation maps,
kernel memory is allocated up-front, and map entries are allocated and freed
dynamically from the semmapallocation maps. Given that semmns limits the
total number of semaphores systemwide and that semaphore space is allo-
cated from the resource map, it makes sense to set semmap equal to semmns.

• semmni — Establishes the maximum number of systemwide semaphore sets.
Every semaphore set in the system has a unique identifier and control struc-
ture, the semid_ds data structure. During init, the system allocates kernel
memory for semid_ds control structures as determined from the semmni
tunable. Each control structure is 84 bytes, so as with the shared memory
shmmni  tunable, you should avoid making this value arbitrarily large.

• semmns — Defines the maximum number of semaphores in the system. A
semaphore set can have more than one semaphore associated with it, and
each semaphore has a corresponding sem data structure. Each sem structure
is only 16 bytes, but you still shouldn’t go over the edge with this (do not

semmnu 30 2 billion signed
int

Total undo structures, sys-
temwide

semmsl 25 65536 unsigne
d short

Maximum number sema-
phores per identifier

semopm 10 2 billion signed
int

Maximum operations per
semop(2) call

semume 10 2 billion signed
int

Maximum undo entries per
process

semusz 96 2 billion signed
int

Total bytes required for
undo structures, system-
wide

semvmx 32767 65536 unsigne
d short

Maximum value of a sema-
phore

semaem 16384 32767 signed
short

Maximum adjust on exit
value

Table 10-6 Semaphore Kernel Tunables  (Continued)

Name
Default
Value

Maximum
Value

Data
Type Description
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make it arbitrarily a very large value). Actually, this number should really be
calculated as semmns = semmni × semmsl . Since semmsl defines the maxi-
mum number of semaphores per semaphore set and semmni defines the max-
imum number of semaphore sets, the total number of semaphores
systemwide can never be greater than the product of semmni and semmsl .
semmns and semmap should be the same value.

• semmnu — Defines the systemwide maximum number of semaphore undo
structures. Semaphore undo structures are maintained in the event of termi-
nation of a process that has made some semaphore value adjustments. If the
SEM_UNDObit is true in the semaphore flag value (sem_flg ) when the sema-
phore operation is done (the semop(2) system call), then the kernel undoes
changes made to the semaphore(s) when the process terminates. Seems intui-
tive to make this equal to semmni , which would provide for an undo struc-
ture for every semaphore set. Each semaphore undo structure is 16 bytes.

• semmsl — Maximum number of semaphores per semaphore set. Each sema-
phore set can have one or more semaphores associated with it; this tunable
defines the maximum number per set.

• semopm — Maximum number of semaphore operations that can be per-
formed per semop(2) call. This tunable takes us back to the notion of sema-
phore sets and the ability to do operations on multiple semaphores by means
of the semop(2) system call. The semaphores in the set will all be associated
with the same semaphore ID (semid_ds structure). You should probably set
this value equal to semmsl so you’ll always be able to do an operation on
every semaphore in a semaphore set.
When a semop(2) call is executed, the kernel checks to ensure that the third
argument to semop(2), which is the size of the semaphore set array, is not
larger than the semopm tunable. If it is, an error is returned to the calling
code.

• semume— Determines the maximum allowable per process undo structures,
or, put another way, the maximum number of semaphore undo operations
that can be performed per process. The kernel maintains information on
changes that processes make to semaphores (semaphore value adjustments).
In the event of a process exiting prematurely, the kernel can set the sema-
phore values back to what they were before the process changed them. This is
what undo structures are used for: to undo semaphore alterations in the
event of abnormal process termination.

• semusz — Size in bytes for undo structures. We don’t know why this is even
documented as a tunable. During initialization of the semaphore code, the
kernel sets semusz to (sizeof(undo) + (semume × sizeof(undo)) , so
setting it in /etc/system is pointless. Leave it alone; it should be removed
as a tunable.
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• semvmx — Maximum value of a semaphore. Because of the interaction with
undo structures and semaem (more details below), this tunable should not
exceed a maximum of its default value of 32767 unless you can guarantee
that SEM_UNDOis never being used. The actual value of a semaphore is stored
as an unsigned short (2 bytes) in its semaphore structure, implying that the
maximum semaphore value can be 65535 (64 Kbytes), the maximum value of
an unsigned short data type. The next bullet explains why the limit should
really be 32767.

• semaem— Maximum adjust-on-exit value. This value is stored as an integer
in the seminfo structure that the kernel uses to maintain the tunable val-
ues, but it is implemented as a signed short in the undo structure. It needs to
be signed because semaphore operations can increment or decrement the
value of a semaphore, and thus the system might need to apply a negative or
positive adjustment value to the semaphore to do a successful adjust-on-exit
operation.
The actual value of a semaphore can never be negative. The maximum value
for a signed short, which is 2 bytes (16 bits), is 32767 (32 Kbytes). If semvmx
were set to 65535 and the application actually set semaphore values that
high, the system would not be able to undo the entire range of semaphore
value changes, because semaemcan never be greater than 32767. This is why
semvmx should never be greater than 32767, unless you don’t care about undo
operations.

10.3.2  Kernel Implementation of System V Semaphores

During initialization of the semaphore code, when /kernel/sys/semsys is first
loaded, the value of semmni is checked to ensure it is not greater than the maxi-
mum allowable value of 65536 (64 Kbytes). If it is, it gets set to 65536 and a con-
sole message is printed stating that the value of semmni was too large. Following
that, the tunable parameters, with the exception of semusz , from the /etc/sys-
tem  file are plugged into the internal seminfo  data structure.

Just as with shared memory, the system checks for the maximum amount of
available kernel memory and divides that number by 4, to prevent semaphore
requirements from taking more than 25 percent of available kernel memory.
Actual memory requirements for semaphores are calculated as follows.

The structure sizes are given in the previous section. Pointers and integers are 4
bytes, and a kernel mutex is 8 bytes. The maximum process value is determined

total_kernel_memory_required =
                (semmns * (sem structure size)) +
                (semmni * (semid_ds structure size)) +
                (semmni * (kernel mutex size)) +
                (max_nprocs * (undo structure size)) +
                (semusz * semmnu * (integer size))
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during startup and is based on the amount of RAM in the system. You can deter-
mine the actual value on your system with the sysdef (1M) command.

Doing the actual arithmetic is left as an exercise for the reader. If the required
memory is more than 25 percent of available kernel memory, a message so stating
is displayed on the console.

Assuming everything fits, kernel memory is allocated as follows. Resource map
allocation is done, based on semmap, and a kernel semmappointer is set. Space is
allocated for the following:

• All the sem structures (one for every semaphore); based on semmns

• All the semaphore identifiers (semid_ds ); based on the size of that structure

• All the undo structure pointers; based on the max processes and pointer size

• All the undo structures themselves; based on semmnuand the size of an undo
structure

• All the kernel mutex locks required, one for every unique semaphore identi-
fier; based on semmni  and the size of a kernel mutex

A kernel mutex lock is created for each semaphore set. This practice results in
fairly fine grained parallelism on multiprocessor hardware, since it means that
multiple processes can do operations on different semaphore sets concurrently. For
operations on semaphores in the same set, the kernel needs to ensure atomicity for
the application. Atomicity guarantees that a semaphore operation initiated by a
process will complete without interference from another process, whether the oper-
ation is on a single semaphore or multiple semaphores in the same set.

# sysdef | grep v_proc
1962 maximum number of processes (v.v_proc)
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10.3.3  Semaphore Operations Inside Solaris

The creation of a semaphore set by an application requires a call to semget (2).
Every semaphore set in the system is described by a semds_id data structure,
which contains the following elements.

The system checks to see if a semaphore already exists by looking at the key value
passed to semget (2) and checks permissions by using the ipc support routine,
ipcaccess() . Semaphore permissions differ slightly from permission modes
we’re used to seeing in things like Solaris files. They’re defined as READ and
ALTER, such that processes can either read the current semaphore value or alter it
(increment/decrement). Permissions are established with arguments passed to the
semget (2) call, following the owner, group, and other conventions used for Solaris
file permissions.

Assuming a new semaphore, space is allocated from the resource map pool as
needed for the number of semaphores in the set requested, and the elements in the
semid_ds data structure are initialized, with the sem_base pointer being set to
point to the first semaphore in the set.

Once the semaphore is created, typically the next step is initializing the sema-
phore values. Initialization is done with the semctl (2) call, using either SETVALto
set the value of each semaphore in the set one at a time (or if there is but one
semaphore in the set) or SETALL to set the value of all the semaphores in the set
in one operation. The actual kernel flow is relatively straightforward, with the
expected permission and value checks against the maximum allowable values, and
the setting of the user-defined values if everything checks out.

Actual semaphore use by application code involves the semop(2) system call.
semop(2) takes the semaphore ID (returned by semget (2)), a pointer to a sembuf

/*
 * There is one semaphore id data structure (semid_ds) for each set of
 * semaphores in the system.
 */

struct semid_ds {
        struct ipc_perm sem_perm;       /* operation permission struct */
        struct sem      *sem_base;      /* ptr to first semaphore in set */
        ushort_t        sem_nsems;      /* # of semaphores in set */
        time_t          sem_otime;      /* last semop time */
        long            sem_pad1;       /* reserved for time_t expansion */
        time_t          sem_ctime;      /* last change time */
        long            sem_pad2;       /* time_t expansion */
        long            sem_binary;     /* flag indicating semaphore type */
        long            sem_pad3[3];    /* reserve area */
};

Header File <sys/sem.h>
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structure, and the number of semaphore operations as call arguments. The sem-
buf  structure contains the following elements.

The programmer must create and initialize the sembuf structure, setting the
semaphore number (specifying which semaphore in the set), the operation (more
on that in a minute), and the flag. The value of sem_op determines whether the
semphore operation will alter or read the value of a semaphore. A nonzero sem_op
value either negatively or positively alters the semaphore value. A zero sem_op
value will simply do a read of the current semaphore value.

The semop(2) manual page contains a fairly detailed flow in the DESCRIPTION
section on what the operation will be for a given sem_op value and a given flag
value.

10.4 System V Message Queues

Message queues provide a means for processes to send and receive messages of
various size in an asynchronous fashion on a Solaris system. As with the other IPC
facilities, the initial call when message queues are used is an ipcget call, in this
case, msgget (2). The msgget (2) system call takes a key value and some flags as
arguments and returns an identifier for the message queue. Once the message
queue has been established, it’s simply a matter of sending and receiving mes-
sages. Applications use msgsnd(2) and msgrcv (2) for those purposes. The sender
simply constructs the message, assigns a message type, and calls msgsnd(2). The
system will place the message on the appropriate message queue until a
msgrcv (2) is successfully executed. Sent messages are placed at the back of the
queue, and messages are received from the front of the queue; thus the queue is
implemented as a FIFO (First In, First Out).

The message queue facility implements a message type field, which is user (pro-
grammer) defined. So, programmers have some flexibility, since the kernel has no
embedded or predefined knowledge of different message types. Programmers typi-
cally use the type field for priority messaging or directing a message to a particu-
lar recipient.

Lastly, applications use the msgctl (2) system call to get or set permissions on
the message queue and to remove the message queue from the system when the
application is finished with it. For example, msgct (2) offers a clean way to imple-

struct sembuf {
        ushort_t        sem_num;        /* semaphore # */
        short           sem_op;         /* semaphore operation */
        short           sem_flg;        /* operation flags */
};

Header File <sys/sem.h>
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ment an application shutdown procedure, because the system will not remove an
empty and unused message queue unless it is explicitly instructed to do so or the
system is rebooted.

10.4.1  Kernel Resources for Message Queues

Like the IPC facilities previously discussed, the message queue facility comes in
the form of a dynamically loadable kernel module, /kernel/sys/msgsys , and
depends on the IPC support module, /kernel/misc/ipc , to be loaded in memory.

The number of resources that the kernel allocates for message queues is tun-
able. Values for various message queue tunable parameters can be increased from
their default values so more resources are made available for systems running
applications that make heavy use of message queues. Table 10-7 summarizes the
tunable parameters and lists their default and maximum values.

• msgmap — Number of entries in the message map; essentially the same as
the semmapparameter used for semaphores. Both IPC facilities use resource
allocation maps in the kernel. A kernel resource map is simply an array of
map structures used for the allocation and deallocation of segments of an
address space. They provide a convenient means of managing small seg-
ments of kernel memory where there is frequent allocation and deallocation,
such as the case with message queues (and semaphores). The system grabs
message map entries when it needs space to store new messages to place on a
message queue.

Table 10-7 Message Queue Tunable Parameters

Name Default Max
Data
Type Description

msgmap 100 2 billion signed
int

Number of message map entries

msgmni 50 2 billion signed
int

Maximum number of message
queue identifiers

msgmax 2048 2 billion signed
int

Maximum message size

msgmnb 4096 2 billion signed
int

Maximum number of bytes on a
message queue

msgtql 40 2 billion signed
int

Maximum number of message
headers

msgssz 8 2 billion signed
int

Maximum message segment size

msgseg 1024 32
Kbytes

unsigned
short

Maximum number of message
segments
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• msgmni — Number of message queue identifiers. Like shared memory seg-
ments and semaphores, message queues have an identifier associated with
them, with a corresponding ID data structure, the msqid_ds structure. The
value of msgmni determines the maximum number of message queues the
kernel can maintain. As we’ll see below, the system allocates kernel memory
based on the value of msgmni , so don’t set this value arbitrarily high. With
luck, the system software engineers will have a sense for how many message
queues are needed by the application and can set msgmni appropriately, add-
ing 10 percent or so for headroom.

• msgmax — Maximum size a message can be, in bytes. The kernel does not
allocate resources up-front on the basis of msgmax, but it is something that
the application developer needs to be aware of. The the system will not allow
messages that have a size larger than msgmaxon the message queue and will
return an error to the calling code, stating the message is too large.
Even with a theoretical size limit of 2 Gbytes for the maximum message size,
message queues are probably not the most efficient way to move large blocks
of data between processes. If the data requirements are relatively large, soft-
ware engineers should consider using shared memory instead of message
queues for data sharing among processes. Or, programmers could use one of
the more recent additions to Unix, such as a FIFO (named pipe). By more
recent, we mean recent relative to message queues—FIFOs have actually
been around for quite a while, but not as long as message queues.

• msgmnb — Maximum number of bytes on a message queue. Rephrased, the
sum total of all the bytes of all the messages on the queue cannot exceed
msgmnb. When the message queue is initialized (the first msgget (2) call exe-
cuted with the IPC_CREAT flag set), the kernel sets a member of the
msgid_ds structure, the msg_qbytes field, to the value of msgmnb. This
value makes the information available to programmers, who can use
msgctl (2) to retrieve the msgid_ds data. More importantly, code executed
with an effective UID of root (typically 0), can programmatically increase this
variable, in case the queue needs to hold more message bytes than originally
allocated at boot time.
If an application attempts to put a new message on a message queue that will
result in the total bytes being greater then msgmnb, the msgsnd(2) call either
returns an error or the process blocks, waiting for message to be pulled off the
queue, depending on whether the IPC_WAIT flag is true .

• msgtql — Maximum number of message headers. Each message on a mes-
sage queue requires a message header, which is defined in the kernel by the
msg structure (more on that in the next section). Basically, this tunable
should reflect the maximum number of messages (message queues times mes-
sages per queue) the application will need, plus a little headroom.
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• msgssz — Maximum message segment size. Determines the maximum num-
ber of message segments. msgseg is stored as a signed short data type in the
kernel and thus cannot be greater then 32768 (32 Kbytes) bytes in size. The
kernel creates a pool of memory to hold the message data, and the size of that
pool is the product of msgssz and msgseg parameters. Described more
clearly: the number of units of allocation from the data space is msgseg, and
the size of each allocation unit from the space is msgssz .

• msgseg — As above, the number of units of space that can be allocated from
the memory map segment described previously.

When the /kernel/sys/msgsys module is first loaded, an initialization routine
executes. The routine does much the same sort of work that is done for shared
memory and semaphore initialization. That is, it checks the amount of kernel
memory that will be required for resources, as determined by the tunable parame-
ters. Then, provided the required amount is no greater than 25 percent of avail-
able kernel memory, the system allocates the resources.

The amount of kernel memory required is calculated as follows.

In the next few paragraphs, we give you the sizes of the structures in bytes, and
once again the arithmetic with either the default or custom values is left as an
exercise for the reader. The char data type on SPARC/Solaris systems is 1 byte in
size.

The kernel sets several pointers in the message queue that will be referenced in
the subsequent text when the resources are initialized. An msg pointer is set to
point to the beginning of the pool of memory used to store message data, described
earlier. msgmap points to the beginning of the map structures used for maintain-
ing resource allocation maps. A map structure is 8 bytes in size and contains the
size of the mapped segment and the base address.

kernel_memory_required =
        ((msgseg * msgssz) * sizeof char data type) +
        (msgmap * sizeof map structure) +
        (msgmni * sizeof msqds_id structure) +
        (msgtql * sizeof msg structure) +
        (msgmni * sizeof msglock structure)
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The kernel data structure that describes each message queue is the msqid_ds
structure.

The preceding structure field descriptions are basically self-explanatory. The per-
missions are established by the process that creates the shared segment, and they
can be changed with the msgctl (2) system call. The kernel pointer msgque points
to the beginning of the kernel space allocated to hold all the system msqid_ds
structures. It is simply an array of msqid_ds structures, with msgque pointing to
the first structure in the array; the total number of structures in the array is equal
to the msgmni  tunable. Each structure is 112 bytes in size.

The messages in a message queue are maintained in a linked list, with the root
of the list in the msqid_ds data structure (the msg_first pointer), which points
to the message header for the message. The kernel also maintains a linked list of
message headers, rooted in the kernel pointer.

The kernel message structure (actually, message header structure would be a more
accurate name) is 12 bytes in size, an, as we said, one exists for every message on
every message queue (the msgtql tunable). The last chunk of kernel memory allo-
cated is for the message queue synchronization locks. The method of synchroniza-
tion is a condition variable protected by a mutex (mutual exclusion) lock, defined
in the msglock structure, created for every message queue (one per message
queue identifier).

struct msqid_ds {
        struct ipc_perm msg_perm;       /* operation permission struct */
        struct msg      *msg_first;     /* ptr to first message on q */
        struct msg      *msg_last;      /* ptr to last message on q */
        ulong           msg_cbytes;     /* current # bytes on q */
        ulong           msg_qnum;       /* # of messages on q */
        ulong           msg_qbytes;     /* max # of bytes on q */
        pid_t           msg_lspid;      /* pid of last msgsnd */
        pid_t           msg_lrpid;      /* pid of last msgrcv */
        time_t          msg_stime;      /* last msgsnd time */
        long            msg_pad1;       /* reserved for time_t expansion */
        time_t          msg_rtime;      /* last msgrcv time */
        long            msg_pad2;       /* time_t expansion */
        time_t          msg_ctime;      /* last change time */
        long            msg_pad3;       /* time expansion */
        kcondvar_t      msg_cv;
        kcondvar_t      msg_qnum_cv;
        long            msg_pad4[3];    /* reserve area */
};

Header File <sys/msg.h>

struct msg {
        struct msg      *msg_next;      /* ptr to next message on q */
        long            msg_type;       /* message type */
        ushort_t        msg_ts;         /* message text size */
        short           msg_spot;       /* message text map address */
};

Header File <sys/msg.h>
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Condition variables are a means of allowing a process (thread) to test whether a
particular condition is true under the protection of a mutex lock. The mutex
ensures that the condition can be checked for atomically, and no other thread can
change the condition while the first thread is testing the condition. The thread will
block, holding the mutex until the condition changes state (becomes true ), at
which point the thread can continue execution. A good example is a message on a
queue. If none exists, the thread blocks (sleeps) on the condition variable. When a
message appears on the queue, the system sends a broadcast and the thread is
awakened, ready to pull the message off the queue.

A final note on kernel locking. All versions of the Solaris, up to and including
Solaris 2.5.1, do very coarse grained locking in the kernel message queue module.
Specifically, one kernel mutex is initialized to protect the message queue kernel
code and data. As a result, applications running on multiprocessor platforms using
message queues do not scale well. This situation is changed in Solaris 2.6, which
implements a finer-grained locking mechanism, allowing for greater concurrency.
The improved message queue kernel module has been backported and is available
as a patch for Solaris 2.5 and 2.5.1.

Figure 10.2 illustrates the general layout of things after initialization of the
message queue module is complete, along with the kernel pointers described
above.

 Figure 10.2 System V Message Queue Structures
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10.4.2  Kernel Implementation of Message Queues

We’ll walk through the kernel flow involved in the creation of a message queue and
the sending and receiving of messages, since these represent the vast majority of
message queue activities.

• The creation of a message on behalf of an application calling the msgget (2)
system call starts with a call to the kernel ipcget() routine. An ipc_perm
structure will be available for every message queue identifier (msgmni).

• Once a structure has been allocated, the system initializes the structure
members as specified by the UID and GID of the calling process and the per-
mission mode bits passed by the calling code, then sets the IPC_ALLOC bit to
signify the ipc_perm structure has been allocated. (The ipcget() code is
the same as illustrated previously—it’s the same function!—so we won’t
revisit it here.)
If ipcget() returns successfully, the application code has a valid message
queue identifier, can send and receive messages, and can run message con-
trol (msgctl (2)) operations.

A message send (msgsnd(2)) call requires the application to construct a message,
setting a message type field and creating the body of the message (e.g., a text mes-
sage).

• When the code path for the message send kernel support code is first entered,
the code does some general housekeeping—such as incrementing the proces-
sor statistics to announce a message queue system call is being executed. The
cpu_sysinfo structure maintains a msg counter that reflects the total num-
ber of message queue system calls executed.

• The code verifies the calling process’s access permissions to the message
queue and tests the message size against the msgmax tunable.

• Next, the code copies the message type field from the user address space to a
designated area in the kernel.
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The rest of the message send flow is best represented in pseudocode.

The msgrcv support code is a little less painful, since now we’re looking for a mes-
sage on the queue (as opposed to putting one on the queue). Kernel resources do
not need to be allocated for a msgrcv . The general flow of the kernel code path for
receiving messages involves checking permissions for operation in a loop through
all the messages on the queue.

• If the requested message type matches a message on the queue, the code cop-
ies the message type to the user-supplied location and copies the message
data to the user-supplied location.

• Next, the code updates the msqid_ds structure fields, subtracts the message
size from msg_cbytes , sets PID in msg_lrpid , sets time in msg_rtime ,
frees the message resources, frees the message header (msg structure), and
frees the resource map entry.

• If the code looped through all messages and found no matching type, it
returns a No Message error.

When the sequence is completed, the application code will have the message type
and data in a buffer area supplied in the msgrcv (2) system call.

The only remaining callable routine for applications to use is the msgctl (2) sys-
tem call. The control functions are straightforward; they typically involve either
retrieving or setting values in a message queue’s ipc_perm  structure.

if (message queue no longer exists)
        return EIDRM error
if (current bytes on queue + bytes in new msg > msgmax)
        if (IPC_NOWAIT is set)
                return EAGAIN
        else
                set MSGWAIT flag in msqid_ds.msg_perm.mode
                call cv_wait_sig() /* put the caller to sleep until space is
                                      available on the queue */
/* on wakeup, code will validate msqid, and set EDIRM if itUs
        been removed */
        allocate space for message from resource map (msgmap)
        if (space not available)
                if (IPC_NOWAIT)
                        return EAGAIN error
        else
                call cv_wait_sig() /* sleep waiting for space */
/* once the wakeup is issued, the necessary resources are
        available for putting the message on the queue */
        copy message data from user space to kernel space (map area)
        increment msqid_ds.qnum
        msqid_ds.msg_cbytes += new message size
        msqid_ds.mds_lspid = PID of caller
        msqid_ds.msg_stime = current time

        update message header msg_type, msg_ts (text size) and msg_spot (map location
pointer)
        adjust the queue pointers (msg_first, msg_next, msg_last)
return success to calling program



POSIX IPC 459
• When msgctl (2) is invoked with the IPC_RMID flag, meaning the caller
wishes to remove the message queue from the system, the kernel walks the
linked list of messages on the queue, freeing up the kernel resources associ-
ated with each message.

• The kernel sends a wakeup signal to processes (threads) sleeping on the mes-
sage queue. The processes ultimately end up with an EIDRM error (ID
removed).

• The system simply marks the msqid_ds structure as being available, and
returns.

10.5 POSIX IPC

The evolution of the POSIX standard and associated application programming
interfaces (APIs) resulted in a set of industry-standard interfaces that provide the
same types of facilities as the System V IPC set: shared memory, semaphores, and
message queues. They are quite similar in form and function to their System V
equivalents but very different in implementation.

The POSIX implementation of all three IPC facilities is built on the notion of
POSIX IPC names, which essentially look like file names but need not be actual
files in a file system. This POSIX name convention provides the necessary abstrac-
tion, a file descriptor, to use the Solaris file memory mapping interface, mmap(2), on
which all the POSIX IPC mechanisms are built. This is very different from the
System V IPC functions, where a key value was required to fetch the proper identi-
fier of the desired IPC resource. In System V IPC, a common method used for gen-
erating key values was the ftok (3C) (file-to-key) function, where a key value was
generated based on the path name of a file. POSIX eliminates the use of the key,
and processes acquire the desired resource by using a file-name convention.

No kernel tunable parameters are required (or available) for the POSIX IPC
code. The per-process limits of the number of open files and memory address space
are the only potentially limiting factors in POSIX IPC.

Table 10-8 lists the POSIX APIs for the three IPC facilities.

Table 10-8 POSIX IPC Interfaces

Semaphores
Message
Queues

Shared
Memory

sem_open mq_open shm_open
sem_close mq_close shm_unlink
sem_unlink mq_unlink
sem_init mq_getattr
sem_destroy mq_setattr
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The POSIX interfaces require linking with the libposix4.so shared object
library when building and running code that uses any of the POSIX IPC facilities
on Solaris. Within the POSIX library are several common routines that are called
by the public interfaces to support the POSIX IPC object name convention. These
routines are not public interfaces and must not be called directly by an application
program.

• __pos4obj_open() . Opens/creates a POSIX named object. If the O_CREAT
flag was set in the xxx _open (3R) call, creates the file if it does not exist. If
O_EXCLis set along with O_CREAT, the open will fail if the object name exists.

• __pos4obj_name() . Qualifies the path name of a POSIX object name. The
POSIX standard requires that the name argument to the xx _open (3R) rou-
tines begin with a / (slash) character and that no other slash characters exist
in the path name. This routine ensures that the passed argument follows the
rules and then strips off the slash. It is called by __pos4obj_open() and
returns the path string minus the slash to the open code.

• __open_nc() . Called from __pos4obj_open() , defined as noncancel open.
Essentially, __open_nc() is the POSIX library wrapper around the open (2)
system call, with thread cancellation protection set before open (2) is called
and cleared when open (2) returns.

• __close_nc() . Closes a POSIX named object. Similar to __open_nc()
above, __close_nc() calls the close (2) system call, disabling thread can-
cellation before calling close (2).

• __pos4obj_lock() . Locks a POSIX named object for exclusive access. Uses
the lockf (3C) interface and advisory (versus mandatory) locks.

• __pos4obj_unlock() . Unlocks a POSIX named object. Calls lockf (3C)
with the F_UNLOCK flag and closes the file.

All of the POSIX IPC functions are either directly or indirectly based on memory
mapped files. The message queue and semaphore functions make direct calls to
mmap(2), creating a memory mapped file based on the file descriptor returned from
the xx _open (3R) call. Using POSIX shared memory requires the programmer to
make the mmap(2) call explicitly from the application code.

sem_wait mq_send
sem_trywait mq_receive
sem_post mq_notify
sem_getvalue mq_getvalue

Table 10-8 POSIX IPC Interfaces  (Continued)

Semaphores
Message
Queues

Shared
Memory
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The details of mmap(2) and memory mapped files are covered in subsequent
chapters, but, briefly, the mmap(2) system call maps a file or some other named
object into a process’s address space, as shown in Figure 10.3.

 Figure 10.3 Process Address Space with mmap(2)
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Under the covers, the shm_open (3R) call directly invokes __pos4obj_open() ,
which uses __pos4obj_name() to qualify the name and __open_nc() to open
the named object (file). shm_unlink (3R) also uses __pos4obj_name() and issues
the unlink (2) system call to remove the directory entry. That is, the file (object) is
removed.

10.5.2  POSIX Semaphores

The POSIX specification provides for two types of semaphores that can be used for
the same purposes as System V semaphores, but are implemented differently.
POSIX named semaphores follow the POSIX IPC name convention discussed ear-
lier and are created with the sem_open (3R) call. POSIX also defines unnamed
semaphores, which do not have a name in the file system space and are memory
based. Additionally, a set of semaphore interfaces that are part of the Solaris
threads library provides the same level of functionality as POSIX unnamed sema-
phores but uses a different API. Table 10-9 lists the different semaphore inter-
faces that currently ship with Solaris.

Note the common functions for named and unnamed POSIX semaphores: the
actual semaphore operations—sem_wait (3R), sem_trywait (3R), sem_post (3R)

Table 10-9 Solaris Semaphore APIs

Origin or
Type Interfaces Library

Manual
Section

System V semget() ,
semctl() ,
semop()

libc section (2)

POSIX named sem_open() ,
sem_close() ,
sem_unlink() ,
sem_wait() ,
sem_trywait() ,
sem_post() ,
sem_getvalue()

libposix4 section (3R)

POSIX
unnamed

sem_init() ,
sem_destroy() ,
sem_wait() ,
sem_trywait() ,
sem_post() ,
sem_getvalue()

libposix4 section (3R)

Solaris threads sema_init() ,
sema_destroy() ,
sema_wait() ,
sema_trywait() ,
sema_post()

libthread section (3T)
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and sem_getvalue (3R)—are used for both types of semaphores. The creation and
destruction interfaces are different. The Solaris implementation of the POSIX
sem_init (3R), sem_destroy (3R), sem_wait (3R), sem_trywait (3R), and
sem_post (3R) functions actually invokes the Solaris threads library functions of
the same name through a jump-table mechanism in the Solaris POSIX library. The
jump table is a data structure that contains function pointers to semaphore rou-
tines in the Solaris threads library, libthread.so.1 .

POSIX defines two system-imposed limits specific to POSIX semaphores:
SEM_NSEMS_MAX, the maximum number of semaphores per process; and
SEM_VALUE_MAX, the maximum value of a semaphore. In Solaris 2.6 and Solaris 7,
both of these limits are set to 2147483647 (2 billion). This does not mean that
applications will work well (or at all) opening 2 billion semaphores (the usual cave-
ats apply with respect to limits on resources). The sem_open (3R) code requires an
available file descriptor for a very short period, but the file descriptor is closed once
the semaphore is acquired, so file descriptor limits should not be an issue.

The use of POSIX named semaphores begins with a call to sem_open (3R),
which returns a pointer to an object defined in the /usr/include/semaphore.h
header file, sem_t . The sem_t structure defines what a POSIX semaphore looks
like, and subsequent semaphore operations reference the sem_t object. The fields
in the sem_t structure include a count (sem_count ), a semaphore type
(sem_type ), and magic number (sem_magic ). sem_count reflects the actual
semaphore value. sem_type defines the scope or visibility of the semaphore, either
USYNC_THREAD, which means the semaphore is only visible to other threads in the
same process, or USYNC_PROCESS, which means the semaphore is visible to other
processes running on the same system. sem_magic is simply a value that uniquely
identifies the synchronization object type as a semaphore rather than a condition
variable, mutex lock, or reader/writer lock (see /usr/include/synch.h ).

Semaphores within the same process are maintained by the POSIX library code
on a linked list of semaddr structures. The structure fields and linkage are illus-
trated in Figure 10.4.

 Figure 10.4 POSIX Named Semaphores
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The linked list exists within the process’s address space, not in the kernel. sem-
headp points to the first semaddr structure on the list, and sad_next provides
the pointer for support of a singly linked list. The character array sad_name[]
holds the object name (file name), sad_addr points to the actual semaphore, and
sad_inode contains the inode number of the file that was passed in the
sem_open (3R) call. Here is the sequence of events.

• When entered, sem_open (3R) obtains a file lock on the passed file argument,
using the pos4obj_lock()  internal interface.

• Once the lock is acquired, pos4obj_open() and underlying routines open
the file and return a file descriptor.

• If this is a new semaphore, the file is truncated with ftruncate (3C) to
the size of a sem_t  structure (it does not need to be any larger than
that).

• If it’s not a new semaphore and the process is opening an existing
semaphore, then the linked list is searched, beginning at semheadp ,
until the inode number of the file argument to sem_open (3R) matches
the sad_inode  field of one of the semaddr  structures, which means
the code found the desired semaphore.

Once the semaphore is found, the code returns sad_addr , a pointer to the sema-
phore, to the calling program.

The POSIX semaphore code uses the /tmp file system for the creation and storage
of the files that the code memory maps based on the name argument passed in the
sem_open (3R) call. For each semaphore, a lock file and a data file are created in
/tmp , with the file name prefix of .SEML for the lock file, and .SEMD for the data
file. The full file name is prefix plus the strings passed as an argument to
sem_open (3R), without the leading slash character. For example, if a
sem_open (3R) call was issued with “/sem1” and the first argument, the resulting
file names in /tmp would be .SEMLsem1 and .SEMDsem1. This file name conven-
tion is used in the message queue code as well, as we’ll see shortly.

If a new semaphore is being created, the following events occur.

• Memory for a semaddr structure is malloc ’d, the passed file descriptor is
mmap’d, the semaphore (sem_t ) fields and semaddr fields are initialized, and
the file descriptor is closed.
Part of the initialization process is done with the jump table and a call to
sema_init() . (sema_init() is used for semaphore calls from the Solaris
threads library, libthread , and also used for POSIX unamed semaphores.)
sema_init() is passed a pointer to a sem_t (either from the user code or
when invoked from sem_open (3R), as is the case here), an initial semaphore
value, and a type.

• The fields in sem_t are set according to the passed arguments, and the code
returns. If a type is not specified, the type is set to USYNC_PROCESS.
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The sem_t structure contains two additional fields not shown in the diagram. In
semaphore.h , they are initialized as extra space in the structure (padding). The
space stores a mutex lock and condition variable used by the library code to syn-
chronize access to the semaphore and to manage blocking on a semaphore that’s
not available to a calling thread.

The remaining semaphore operations follow the expected, documented behavior
for using semaphores in code.

• sema_close (3R) frees the allocated space for the semaddr structure and
unmaps the mmap’d file.
Once closed, the semaphore is no longer accessible to the process, but it still
exists in the system—similar to what happens in a file

• close. sem_unlink (3R) removes the semaphore from the system.

10.5.3  POSIX Message Queues

POSIX message queues are constructed on a linked list built by the internal
libposix4 library code. Several data structures are defined in the implementa-
tion, as shown in Figure 10.5. We opted not to show every member of the message
queue structure, in the interests of space and readability.

The essential interfaces for using message queues are mq_open(3R) which
opens, or creates and opens, a queue, making it available to the calling process,
mq_send(3R) and mq_receive (3R), for sending and receiving messages. Other
interfaces (see Table 10-8 on page 459) manage queues and set attributes, but our
discussion focuses on the message queue infrastructure, built on the open, send,
and receive functions.
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A POSIX message queue is described by a message queue header, a data structure
created and initialized when the message queue is first created. The message
queue header contains information on the queue, such as the total size in bytes
(mq_totsize ), maximum size of each message (mq_maxsz), maximum number of
messages allowed on the queue (mq_maxmsq), current number of messages
(mq_current ), current number of threads waiting to receive messages
(mq_waiters ), and the current maximum message priority (mq_curmaxprio ).

Some attributes are tunable with mq_setattr (3R). The library code sets
default values of 128 for the maximum number of messages, 1024 for the maxi-
mum size of a single message, and 32 for maximum number of message priorities.
If necessary, you can increase the message size and number of messages by using
msg_setattr (3R), or you can increase them initially when the queue is created,
by populating an attributes structure and passing it on the mq_open(3R) call.

The message pointers, mq_headpp and mq_tailpp , in the header do not point
directly to the messages on the linked list. That is, they do not contain the address
of the message headers. Since the shared mapping can result in the different pro-
cesses referencing the message queue so each has a different virtual address
within their address space for the mapping, mq_headpp and mq_tailpp are
implemented as offsets into the shared region.

A message descriptor maintains additional information about the queue, such
as the file permission flags (read-only or read/write), and the magic number identi-
fying the type of POSIX named object. A second structure (mq_dn) maintains
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 Figure 10.5 POSIX Message Queue Structures
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per-process flags on the message, allowing different processes to specify either
blocking or nonblocking behavior on the message queue files. This is analogous to
regular file flags, where a file descriptor for an open file is maintained at the pro-
cess level, and different processes can have different flags set on the same file. (For
example, one process could have the file opened for read/write and another process
could have the same file opened read-only.)

With the big picture in place (Figure 10.5), let’s take a look at what happens
when a message queue is created and opened.

• When mq_open() is entered, it creates the lock file and acquires a file lock.
All the message queue files use the /tmp directory and follow a file name con-
vention similar to that described in the semaphore section. That is, file names
begin with a prefix—.MQD (data file), .MQL (lock file), .MQP (permission file),
or .MQN(description file)—and end with the appended file name passed as an
argument to mq_open(3R)  minus the slash character.

• If a new message queue is being created, the maximum message size and
messages per queue sizes are set, either with the default values or from a
passed attributes structure in the mq_open(3R) call.

• The permission file is opened, permissions are verified, and the file is
closed.

• The total amount of space needed for messages, based on the limits
and structure size, is calculated, and the data file is created, opened,
and set to the appropriate size with ftruncate (3C).

• If a new message queue is not being created, then an existing queue is being
opened, in which case the permission test is done and the queue data file is
tested to ensure the queue has been initialized.

The steps described next apply to a new or existing message queue; the latter case
is a queue being opened by another process.

• Space for a message queue descriptor is malloc ’d (mqdes_t ), and the data
file is mmap’d into a shared address space, setting the mqhp pointer (Figure
10.5) as the return address from the mmap(2) call.

• The message queue descriptor file is created, opened, mmap’d (also into a
shared address space), and closed.

• For new message queues, the mq_init() function (not part of the API) is
called to complete the initialization process. Each message queue header has
several semaphores (not shown in Figure 10.5) used to synchronize access to
the messages, the header structure, and other areas of the queue infrastruc-
ture.
mq_init() initializes the semaphores with calls to sem_init() , which is
part of the libposix4.so  library.
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• The queue head (mq_headpp ), tail (mq_tailpp ), and free (mq_freep ) point-
ers are set on the message header structure, and mq_init() returns to
mq_open() , completing the open process.

Once a queue is established, processes insert and remove messages by using
mq_send(3R) and mq_receive (3R).

• mq_send(3R) does some up-front tests on the file type (mqd_magic ) and tests
the mq_notfull  semaphore for space on the queue.

• If the process’s queue flag is set for nonblocking mode,
sem_trywait()  is called and returns to the process if the semaphore
is not available, meaning there’s no space on the queue.

• Otherwise, sem_wait()  is called, causing the process to block until
space is available.

• Once space is available, sem_wait() is called to acquire the mq_exclusive
mutex, which protects the queue during message insertions and removals.

POSIX message queues offer an interesting feature that is not available with Sys-
tem V message queues: automatic notification to a process or thread when a mes-
sage has been added to a queue. An mq_notify (3R) interface can be issued by a
process that needs to be notified of the arrival of a signal. To continue with the
sequence for the next code segment:

• mq_send() checks to determine if a notification has been set up by testing
the mq_sigid structure’s sn_pid field. If it is non-NULL, the process has
requested notification, and a notification signal is sent if no other processes
are already blocked, waiting for a message.

• Finally, the library’s internal mq_putmsg() function is called to locate the
next free message block of the free list (mq_freep ) and to place the message
on the queue.

For receiving messages:

• mq_receive() issues a sem_trywait() call on the mq_notempty sema-
phore.

• If the queue is empty and the descriptor has been set to nonblock,
sem_trywait() returns with an EAGAIN error to the caller.

• Otherwise, the mq_rblocked  semaphore is incremented (sem_post ),
and sem_wait()  is called.

• Once a message shows up on the queue, the mq_exclusive semaphore is
acquired, and the internal mq_getmsg()  function is called.

• The next message is pulled off the head of the queue, and the pointers are
appropriately adjusted.
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Our description omits some subtle details, mostly around the priority mechanism
available for POSIX message queues. A message priority can be specified in the
mq_send(3R) and mq_receive (3R) calls. Messages with better priorities (larger
numeric values) are inserted into the queue before messages of lower priority, so
higher-priority messages are kept at the front of the queue and will be removed
first. The use and behavior of message priorities is well documented in the man-
ual pages, as well as in Steven’s UNIX Network Programming—Interprocess Com-
munication [25].

10.6 Solaris Doors

Doors provide a facility for processes to issue procedure calls to functions in other
processes running on the same system. Using the APIs, a process can become a
door server, exporting a function through a door it creates by using the
door_create (3X) interface. Other processes can then invoke the procedure by
issuing a door_call (3X), specifying the correct door descriptor. Our goal here is
not to provide a programmer’s guide to doors but rather to focus on the kernel
implementation, data structures, and algorithms. Some discussion of the APIs is,
of course, necessary to keep things in context, but we suggest that you refer to the
manual pages and to Steven’s book [25] to understand how to develop applications
with doors.

The door APIs were available in Solaris 2.5.1 but not documented and, at that
point, subject to change. Solaris 2.6 was the first Solaris release that included a
relatively stable set of interfaces (stable in the sense that they were less likely to
change). The Solaris kernel ships with a shared object library, libdoor.so , that
must be linked to applications using the doors APIs. Table 10-10 describes the door
APIs available in Solaris 2.6 and Solaris 7. During the course of our coverage of
doors, we refer to the interfaces as necessary for clarity.

Table 10-10 Solaris Doors Interfaces

Interface Description
door_create (3X) Creates a door. Called from a door server to

associate a procedure within the program with
a door descriptor. The door descriptor, returned
by door_create (3X), is used by client pro-
grams that wish to invoke the procedure.

door_revoke (3X) Revokes client access to the door. Can only be
called by the server.

door_call (3X) Invokes a function exported as a door. Called
from a client process.
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10.6.1  Doors Overview
Figure 10.6 illustrates broadly how doors provide an interprocess communica-

tion mechanism.

 Figure 10.6 Solaris Doors

The file abstraction used by doors is the means by which client kernel threads
retrieve the proper door handle required to issue a door_call (3X). It is similar to
the methodology employed when POSIX IPC facilities are used; a path name in the
file system name space is opened, and the returned file descriptor is passed as an
argument in the door_call (3X) to call into the desired door. An argument struc-
ture, door_arg_t , is declared by the client code and used for passing arguments
to the door server function being called. The address of the door_arg_t structure
is passed as the second argument by the client in door_call (3X).

On the server side, a function defined in the process can be made available to
external client processes by creation of a door (door_create (3X)). The server
must also bind the door to a file in the file system name space. This is done with
fattach (3C), which binds a STREAMS-based or door file descriptor to a file sys-
tem path name. Once the binding has been established, a client can issue an open
to the path name and use the returned file descriptor in door_call (3X).

door_return (3X) Returns from a door function. Typically used
as the last function call in a routine exported
as a door.

door_info (3X) Fetches information about a door.
door_server_create (3X) Specifies a door thread create function.
door_cred (3X) Fetches client credential information.
door_bind (3X)

door_unbind (3X)

Associates the calling thread with a door
thread pool.
Removes current thread from door pool.

Table 10-10 Solaris Doors Interfaces

Interface Description

door_call()
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door_create(function,...,...)
main()main()

client process

door server process
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10.6.2  Doors Implementation

Doors are implemented in the kernel as a pseudofile system, doorfs , which is
loaded from the /kernel/sys directory during boot. Within a process, a door is
referenced through its door descriptor, which is similar in form and function to a
file descriptor, and, in fact, the allocation of a door descriptor in a process uses an
available file descriptor slot.

The major data structures required for doors support are illustrated in Figure
10.7

 Figure 10.7 Solaris Doors Structures
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door descriptor (door_desc ), used for passing door descriptors when a door func-
tion is called.

To continue: A call to door_create (3X) enters the libdoor.so library
door_create()  entry point (as is the case with any library call).

• The kernel door_create() is invoked from the library and performs the fol-
lowing actions:

• Allocates kernel memory for door_node  and initializes several fields
of door_node  and the door vnode  (part of the door_node  structure).

• Links the door_target  field to the process structure of the calling
kernel thread

• Sets door_pc , a function pointer, to the address of the function being
served by the door (the code that will execute when a client calls
door_call (3X))

• Sets door_flags  as directed by the attributes passed by the caller.

• Initializes the vnode  mutex lock (v_lock)  and condition variable
(v_cv ). Initializes several other fields in the vnode  to specify the
vnode  type (VDOOR) and references to the vnode  operations and vir-
tual file system (VFS) switch table entries of the doorfs  file system.

• Adds the door_node to the process’s door list (p_door_list ) and allo-
cates a file descriptor for the door descriptor by means of the kernel
falloc()  function, which allocates a file structure and user file
descriptor.

• The kernel door_create() now completed, the code returns to the lib-
door.so door_create()  code.

• The library code makes sure that the calling process has been linked with the
Solaris threads library, libthread.so and returns an error if the link has
not been made.
A door server requires linking with libthread.so because the door code
uses the threads library interfaces to create and manage a pool of door server
threads.

• The last thing the library-level door_create() code does is call
thr_create (3T) to create a server thread for the door server, as an execu-
tion resource for calls into the function being exported by the door server.

• thr_create (3T) creates a detached, bound thread that executes the library
door_create_func() routine, which disables cancellation of the current
thread (pthread_setcancelstate (3T)) and enters the kernel
door_return()  code.
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door_return (3X) is part of the doors API and is typically called at the end of the
function being exported by the door_create (3X) call.

• door_return (3X) returns processor control to the thread that issued
door_call (3X) and causes the server thread to sleep, waiting for another
invocation of the door function.

• When entered (remember, we’re in the kernel now, not in the doors library),
door_return() allocates a door_data structure for the calling thread and
links it to the kernel thread’s t_door  pointer.
This sequence is done if the current thread’s t_door pointer is NULL, signify-
ing a door_data  structure has not yet been allocated.

The next bit of code in door_return() applies to argument handling, return
data, and other conditions that need to be dealt with when a kernel thread issues
door_call (3X). We’re still in the door create phase, so a bit later we’ll revisit
what happens in door_return()  as a result of door_call (3X).

Continuing with the door create in the door_return()  kernel function:

• The kernel door_release_server() code is called to place the current
thread on the list of threads available to execute on behalf of door calls into
the server.

• The kernel thread is linked to the process’s p_server_thread link, and
cv_broadcast() is done on the door condition variable, door_cv , causing
any threads blocked in door_call (3X) to wake up.
At this point, the door create is essentially completed.

• A call into the shuttle code to place the kernel thread to sleep on a shuttle
synchronization object is made (shuttle_swtch() ); the thread is thus
placed in a sleep state and enters the dispatcher through swtch() .

We now digress slightly to explain shuttle synchronization objects. Typically, exe-
cution control flow is managed by the kernel dispatcher (Chapter 5), using condi-
tion variables and sleep queues. Other synchronization primitives, mutex locks,
and reader/writer locks are managed by turnstiles, an implementation of sleep
queues that provides a priority inheritance mechanism.

Shuttle objects are a relatively new (introduced in Solaris 2.5, when doors first
shipped) synchronization object that essentially allows very fast transfer of con-
trol of a processor from one kernel thread to another without incurring the over-
head of the dispatcher queue searching and normal kernel thread processing. In
the case of a door_call() , control can be transferred directly from the caller (or
client in this case), to a thread in the door server pool, which executes the door
function on behalf of the caller. When the door function has completed, control is
transferred directly back to the client (caller), all using the kernel shuttle inter-
faces to set thread state and to enter the dispatcher at the appropriate places. This
direct transfer of processor control contributes significantly to the IPC perfor-
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mance attainable with doors. Shuttle objects are currently used only by the doors
subsystem in Solaris.

Kernel threads sleeping on shuttle objects have a 0 value in their wait channel
field (t_wchan ) and a value of 1 in t_wchan0 . The thread’s t_sobj_ops (synchro-
nization object operations table) pointer is set to the shuttle object’s operations
structure (shuttle_sops ); the thread’s state is, of course, TS_SLEEP, and the
thread’s T_WAKEABLE flag is set.

Getting back to door creation:

• A default of one server thread is created unless there are concurrent invoca-
tions, in which case a thread will be created for each door call. The API allows
for programs creating their own separate, private pool of door threads that
have different characteristics than the default thread properties.

• The doors library will create a bound, detached thread with the default
thread stack size and signal disposition by default.
This completes the creation of a door server. A server thread in the door pool
is left sleeping on a shuttle object (the call to shuttle_swtch() ), ready to
execute the door function.

Application code that creates a door to a function (becomes a door server) typically
creates a file in the file system to which the door descriptor can be attached, using
the standard open (2) and fattach (3C) APIs, to make the door more easily acces-
sible to other processes.

The fattach (3C) API has traditionally been used for STREAMS code, where it
is desirable to associate a STREAM or STREAMS-based pipe with a file in the file
system name space, for precisely the same reason one would wish to associate a
door descriptor with a file name; that is, to make the descriptor easily accessible to
other processes on the system so application software can take advantage of the
IPC mechanism. The door code can leverage from the fact that the binding of an
object to a file name, when that object does not meet the traditional definition of
what a file is, has already been solved.

fattach (3C) is implemented with a pseudo file system called namefs , the name
file system. namefs allows the mounting of file systems on nondirectory mount
points, as opposed to the traditional mounting of a file system that requires the
selected mount point to be a directory file. Currently, fattach (3C) is the only cli-
ent application of namefs ; it calls the mount (2) system call, passing namefs as the
file system name character string and a pointer to a namefs file descriptor. The
mount (2) system call enters the VFS switch table through the VFS_MOUNTmacro
and enters the namefs  mount code, nm_mount() .

With the door server in place, client processes are free to issue a door_call (3X)
to invoke the exported server function.
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• The kernel door_call() code (nothing happens at the doors library level in
door_call() ) allocates a door_data structure from kernel memory and
links it to the t_door  pointer in the calling kernel thread.

• If a pointer to an argument structure (door_arg ) was passed in the
door_call (3X), the arguments are copied from the passed structure
in user space to the door_arg  structure embedded in door_data.

• If no arguments were passed, the door_arg  fields are zeroed and the
d_noresults  flag in door_data  is set to indicate no results can be
returned.

The door_call (3X) API defines that a NULL argument pointer means no
results can be returned. A lookup is performed on the passed door descriptor
and returns a pointer to the door_node . Typically, file descriptor lookups
return a vnode pointer. In this case, the vnode pointer and the door_node
pointer are one and the same because the vnode is embedded in the
door_node , located at the top of the structure.

• The kernel door_get_server() function retrieves a server kernel thread
from the pool to execute the function.

• The thread is removed from the list of available server threads
(p_server_threads ) and changed from TS_SLEEP to TS_ONPROC
state (this kernel thread was sleeping on a shuttle object, not sitting on
a sleep queue).

• The arguments from the caller are copied to the server thread returned
from door_get_server() . The door_active  counter in the
door_node  is incremented, the calling (client) thread’s d_error  field
(in door_data ) is set to DOOR_WAIT, the door server thread’s
d_caller  field (door_data  structure for the server thread) is set to
the client (caller), and a pointer to the door_node  is set in the server
thread’s door_data d_active  field.

With the necessary data fields set up, control can now be transferred to the
server thread; this transfer is done with a call to shuttle_resume() .

• shuttle_resume() is passed a pointer to the server thread removed from
the door pool.

Just to get back to the forest for a moment (in case you’re lost among the trees),
we’re into shuttle_resume() as a result of a kernel thread issuing
door_call (3X). The door_call() kernel code up to this point essentially allo-
cated or initialized the necessary data structures for the server thread to have the
exported function executed on behalf of the caller. The shuttle_resume() func-
tion is entered from door_call() , so the kernel thread now executing in
shuttle_resume() is the door client. So, what needs to happen is really pretty
simple (relatively speaking)—the server thread, which was passed to
shuttle_resume() as an argument, needs to get control of the processor, and the
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current thread executing the shuttle_resume() code needs to be put to sleep on
a shuttle object, since the current thread and the door client thread are one and
the same. So:

• shuttle_resume() sets up the current thread to sleep on a shuttle object in
the same manner described previously (t_wchan0 set to 1, state set to
TS_SLEEP, etc.); the server thread has its T_WAKEABLEflag, t_wchan0 field,
and t_sobj_ops  field cleared.

• The code tests for any interesting events that may require attention, such as
a hold condition on the thread, and checks for posted signals. If any signals
are posted, setrun()  is called with the current (client) thread.

• Finally, the dispatcher swtch_to() function is called and is passed the
server thread address. swtch_to() updates the per-processor con-
text-switch counter in the cpu_sysinfo structure (pswitch ) and calls
resume() to have the server thread context-switched onto the processor. The
general flow is illustrated in Figure 10.8.

 Figure 10.8 door_call()  Flow with Shuttle Switching

• The server thread executes the function associated with the door_node , as
specified by the first argument passed when the server executed
door_create (3X).

• The last call made by the server function is door_return (3X), which returns
results and control to the calling thread (client) and blocks in the server, wait-
ing for another door_call (3X).
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• The kernel door_return() code copies the return data back to the caller
and places the server thread back in the door server pool. The calling (client)
thread, which we left in a sleep state back in door_call() , is set back to an
T_ONPROCstate, and the shuttle code (shuttle_resume() ) is called to give
the processor back to the caller and have it resume execution.

Some final points to make regarding doors. There’s a fair amount of code in the
kernel doorfs module designed to deal with error conditions and the premature
termination of the calling thread or server thread. In general, if the calling thread
is awakened early, that is, before door_call() has completed, the code figures
out why the wakeup occurred (signal, exit call, etc.) and sends a cancel signal
(SIGCANCEL) to the server thread. If a server thread is interrupted because of a
signal, exit, error condition, etc., the door_call() code bails out. In the client, an
EINTR (interrupted system call) error will be set, signifying that door_call()
terminated prematurely.
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SOLARIS FILES AND
FILE I/O
From its inception, Unix has been built around two fundamental entities: pro-
cesses and files. Everything that is executed on the system is a process, and all pro-
cess I/O is done to a file. We saw in previous chapters how the process model has
evolved and how the kernel thread is the unit of execution in the Solaris kernel.
The implementation of files and file I/O facilities has also seen some changes since
the early versions of UNIX. The notion of a file now includes more abstract types,
and the interfaces available for doing file I/O have expanded.

In this chapter, we look at the implementation of files in Solaris and discuss
some of the abstract file types and the file I/O facilities.

11.1 Files in Solaris

Generically defined, a file is an entity that stores data as an array of bytes, begin-
ning at byte zero and extending to the end of the file. The contents of the file (the
data) can take any number of forms: a simple text file, a binary executable file, a
directory file, etc. Solaris supports many types of files, several of which are defined
at the kernel level, meaning that some component of the kernel has intimate
knowledge of the file’s format by virtue of the file type. An example is a directory
file on a UFS file system—directory files have a specific format that is known to
the UFS kernel routines designed for directory I/O.

The number of file types in the kernel has increased over the last several years
with the addition new kernel abstractions in the form of pseudofiles. Pseudofiles
481
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provide a means by which the kernel can abstract as a file a binary object, like a
data structure in memory. Users and programmers view the object as a file, in that
the traditional file I/O operations are supported on it (for the most part). It’s a
pseudofile because it is not an on-disk file; it’s not a real file in the traditional
sense.

Under the covers, the operations performed on the object are managed by the
file system on which the file resides. A specific file type often belongs to an under-
lying file system that manages the storage and retrieval of the file and defines the
kernel functions for I/O and control operations on the file. ( See Chapter 14, “The
Unix File System”," for details about file systems.) Table 11-1 lists the various
types of files implemented in Solaris.

Table 11-1 Solaris File Types

File Type File
System

Character
Designation

Description

Regular UFS — A traditional on-disk file. Can be a
text file, binary shared object, or
executable file.

Directory UFS d A file that stores the names of other
files and directories. Other file sys-
tems can implement directories
within their own file hierarchy.

Symbolic
Link

UFS l A file that represents a link to
another file, potentially in another
directory or on another file system.

Character
Special

specfs c A device special file for devices
capable of character mode I/O.
Device files represent I/O devices
on the system and provide a means
of indexing into the device driver
and uniquely identifying a specific
device.

Block Spe-
cial

specfs b As above, a device special file for
devices capable of block-mode I/O,
such as disk and tape devices

Named Pipe
(FIFO)

fifofs p A file that provides a bidirectional
communication path between pro-
cesses running on the same system.

Door doorfs D Part of the door interprocess com-
munication facility. Doors provide a
means of doing very fast interpro-
cess procedure calling and message
and data passing.



Files in Solaris 483
The character designation column in Table 11-1 refers to the character produced in
the lefthand column of an ls -l command. When a long file listing is executed, a
single character designates the type of file in the listing.

Within a process, a file is identified by a file descriptor: an integer value
returned to the process by the kernel when a file is opened. An exception is made if
the standard I/O interfaces are used. In that case, the file is represented in the
process as a pointer to a FILE structure, and the file descriptor is embedded in the
FILE structure. The file descriptor references an array of per-process file entry
(uf_entry ) structures, which form the list of open files within the process. These
per-process file entries link to a file structure, which is a kernel structure that
maintains specific status information about the file on behalf of the process that
has the file opened. If a specific file is opened by multiple processes, the kernel
maintains a file structure for each process; that is, the same file may have multi-
ple file structures referencing it. The primary reason for this behavior is to main-
tain a per-process read/write file pointer for the file, since different processes may
be reading different segments of the same file.

The kernel implements a virtual file abstraction in the form of a vnode , where
every opened file in Solaris is represented by a vnode in the kernel. A given file
has but one vnode that represents it in the kernel, regardless of the number of
processes that have the file opened. The vnode implementation is discussed in
detail in “The vnode” on page 543. In this discussion, we allude to the vnode and
other file-specific structures as needed for clarity.

Beyond the vnode virtual file abstraction, a file-type-specific structure describes
the file. The structure is implemented as part of the file system on which the file
resides. For example, files on the default Unix File System (UFS) are described by
an inode that is linked to the v_data  pointer of the vnode .

Figure 11.1 illustrates the relationships of the various file-related components,
providing a path from the file descriptor to the actual file. The figure shows how a
file is viewed at various levels. Within a process, a file is referenced as a file
descriptor. The file descriptor indexes the per-process u_flist array of uf_entry

Socket sockfs s A communication endpoint for net-
work I/O, typically used for TCP or
UDP connections between pro-
cesses on different systems. UNIX
domain sockets are also supported
for interprocess communication
between processes on the same sys-
tem. The “s” character designation
appears only for AF_UNIX sockets.

Table 11-1 Solaris File Types  (Continued)

File Type File
System

Character
Designation

Description
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structures, which link to the kernel file structure. The file is abstracted in the ker-
nel as a virtual file through the vnode , which links to the file-specific structures
(based on the file type) through the v_data  pointer in the vnode .

 Figure 11.1 File-Related Structures
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You can alter the per-process limits either directly from the command line with the
limit (1) or ulimit (1) shell commands or programmatically with setrlimit (2).
The actual number of open files that a process can maintain is driven largely by
the file APIs used. For 32-bit systems, if the stdio (3S) interfaces are used, the
limit is 256 open files. This limit results from the data type used in the FILE struc-
ture for the actual file descriptor. An unsigned 8-bit data type, which has a range
of values of 0–255, is used. Thus, the maximum number of file descriptors is lim-
ited to 256 for 32-bit stdio (3S)-based programs. For 64-bit systems (and 64-bit
processes), the stdio (3S) limit is 64 Kbytes.

The select (3C) interface, which provides a mechanism for file polling, imposes
another API limit. select (3C) limits the number of open files to 1 Kbyte on 32-bit
systems, with the exception of 32-bit Solaris 7. In 32-bit Solaris 7, select (3C) can
poll up to 64-Kbyte file descriptors. If you use file descriptors greater than 1-Kbyte
with select (3C) on 32-bit Solaris 7, then you must declare FD_SETSIZE in the
program code. On 64-bit Solaris 7, a 64-bit process has a default file descriptor set
size (FD_SETSIZE) of 64 Kbytes. Table 11-2 summarizes file descriptor limitations.

Those limitations aside, there remain only the practical limits that govern the
number of files that can be opened on a per-process and systemwide basis. A prac-
tical limit from a per-process perspective really comes down to two things: how the
application software is designed; and what constitutes a manageable number of
file descriptors within a single process, such that the maintenance, performance,
portability, and availability requirements of the software can be met. The file
descriptors and uf_entry structures do not require a significant amount of mem-
ory space, even in large numbers, so per-process address space limitations are typi-
cally not an issue when it comes to the number of open files.

Table 11-2 File Descriptor Limits

Interface (API) Limit Notes
stdio (3S) 256 All 32-bit systems.
stdio (3S) 64K

(65536)
64-bit programs only (Solaris 7 and
later).

select (3C) 1K
(1024)

All 32-bit systems. Default value for
32-bit Solaris 7.

select (3C) 64K
(65536)

Attainable value on 32-bit Solaris 7.
Requires you to add:
#define FD_SETSIZE 65536
to program code before inclusion on addi-
tional system header files.

select (3C) 64K
(65536)

Default for 64-bit Solaris 7 (and beyond).
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11.1.1  Kernel File Structures

The Solaris kernel does not implement a system file table in the traditional sense.
That is, the systemwide list of file structures is not maintained in an array or as a
linked list. A kernel object cache segment is allocated to hold file structures, and
they are simply allocated and linked to the process and vnode as files are created
and opened.

We can see in Figure 11.1 that each process uses file descriptors to reference a
file. The file descriptors ultimately link to the kernel file structure, defined as a
file_t  data type, shown below.

The fields maintained in the file structure are, for the most part, self-explanatory.
The f_tlock kernel mutex lock protects the various structure members. These
include the f_count reference count, which lists how many threads have the file
opened, and the f_flag file flags, described in “File Open Modes and File Descrip-
tor Flags” on page 495.

Solaris allocates file structures for opened files as needed, growing the open file
count dynamically to meet the requirements of the system load. Therefore, the
maximum number of files that can be opened systemwide at any time is limited by
available kernel address space, and nothing more. The actual size to which the
kernel can grow depends on the hardware architecture of the system and the
Solaris version the system is running. The key point is that a fixed kernel limit on
a maximum number of file structures does not exist.

The system initializes space for file structures during startup by calling
file_cache() , a routine in the kernel memory allocator code that creates a ker-
nel object cache. The initial allocation simply sets up the file_cache pointer with
space for one file structure. However, the kernel will have allocated several file
structures by the time the system has completed the boot process and is available
for users, as all of the system processes that get started have some opened files. As
files are opened/created, the system either reuses a freed cache object for the file

typedef struct file {
        kmutex_t        f_tlock;        /* short-term lock */
        ushort_t        f_flag;
        ushort_t        f_pad;          /* Explicit pad to 4-byte boundary */
        struct vnode    *f_vnode;       /* pointer to vnode structure */
        offset_t        f_offset;       /* read/write character pointer */
        struct cred     *f_cred;        /* credentials of user who opened it */
        caddr_t         f_audit_data;   /* file audit data */
        int             f_count;        /* reference count */
} file_t;

Header File <sys/file.h>
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entry or creates a new one if needed. You can use /etc/crash as root to examine
the file structures.

The ADDRESS column is the kernel virtual memory address of the file structure.
RCNT is the reference count field (f_count ). TYPE is the type of file, and ADDR is
the kernel virtual address of the vnode . OFFSET is the current file pointer, and
FLAGS are the flags bits currently set for the file.

You can use sar (1M) for a quick look at how many files are opened systemwide.

This example shows 603 opened files. The format of the sar output is a holdover
from the early days of static tables, which is why it is displayed as 603/603. Origi-
nally, the value on the left represented the current number of occupied table slots,
and the value on the right represented the maximum number of slots. Since file
structure allocation is completely dynamic in nature, both values will always be
the same.

# crash
dumpfile = /dev/mem, namelist = /dev/ksyms, outfile = stdout
> file
ADDRESS     RCNT    TYPE/ADDR            OFFSET   FLAGS
3000009e008   1    FIFO/300009027e0          0   read write
3000009e040   1    UFS /3000117dc68        535   write appen
3000009e078   1    SPEC/300008ed698       3216   write appen
3000009e0b0   1    UFS /300010d8c98          0   write
3000009e0e8   1    UFS /30001047ca0          4   read write
3000009e120   2    DOOR/30000929348          0   read write
3000009e158   1    SPEC/30000fb45d0          0   read
3000009e1c8   1    UFS /300014c6c98        106   read write
3000009e200   1    SPEC/30000c376a0          0   write
3000009e238   2    DOOR/30000929298          0   read write
3000009e270   3    SPEC/300008ecf18          0   read
3000009e2a8   1    UFS /30000f5e0f0          0   read
3000009e2e0   1    SPEC/30000fb46c0          0   read write
3000009e318   1    UFS /300001f9dd0          0   read
3000009e350   1    FIFO/30000902c80          0   read write

# sar -v 3 3

SunOS devhome 5.7 Generic sun4u    08/01/99

11:38:09  proc-sz    ov  inod-sz      ov  file-sz    ov   lock-sz
11:38:12  100/5930    0 37181/37181    0  603/603     0    0/0
11:38:15  100/5930    0 37181/37181    0  603/603     0    0/0
11:38:18  101/5930    0 37181/37181    0  607/607     0    0/0
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For a specific process, you can use the pfiles (1) command to create a list of all
the files opened.

In the preceding example, the pfiles command is executed on PID 585. The PID
and process name are dumped, followed by a listing of the process’s opened files.
For each file, we see a listing of the file descriptor (the number to the left of the
colon), the file type, file mode bits, the device from which the file originated, the
inode number, file UID and GID, and the file size.

11.2 File Application Programming Interfaces (APIs)

Several different APIs perform file I/O in Solaris. These include standard I/O—the
generic C buffered I/O mechanism—and several flavors of low-level operating sys-
tem file I/O.

The traditional C buffered interfaces are known as the Standard I/O functions,
abbreviated as stdio . They are the buffered I/O interfaces that were added to
Unix V6 by Bell Laboratories in 1976; they appear as a standard file I/O mecha-
nism in nearly all C runtime environments. These stdio library interfaces exist
as a layer above the lower-level system calls.

Of the several different types of system I/O, the most basic are the read and
write system calls. The more advanced (and more recent) are POSIX I/O through

$ pfiles 585
585:    /space1/framemaker,v5.5.3/bin/sunxm.s5.sparc/maker -xrm *iconX:0 -xrm
  Current rlimit: 64 file descriptors
   0: S_IFCHR mode:0666 dev:32,24 ino:143523 uid:0 gid:3 rdev:13,2
      O_RDONLY|O_LARGEFILE
   1: S_IFCHR mode:0666 dev:32,24 ino:143523 uid:0 gid:3 rdev:13,2
      O_WRONLY|O_APPEND|O_LARGEFILE
   2: S_IFCHR mode:0666 dev:32,24 ino:143523 uid:0 gid:3 rdev:13,2
      O_WRONLY|O_APPEND|O_LARGEFILE
   3: S_IFIFO mode:0666 dev:176,0 ino:4132162568 uid:0 gid:0 size:0
      O_RDWR|O_NONBLOCK FD_CLOEXEC
   4: S_IFDOOR mode:0444 dev:176,0 ino:4127633624 uid:0 gid:0 size:0
      O_RDONLY|O_LARGEFILE FD_CLOEXEC  door to nscd[202]
   5: S_IFREG mode:0644 dev:32,9 ino:3643 uid:19821 gid:10 size:297984
      O_RDONLY FD_CLOEXEC
   6: S_IFREG mode:0644 dev:32,8 ino:566 uid:19821 gid:10 size:29696
      O_RDWR FD_CLOEXEC
   7: S_IFREG mode:0644 dev:32,8 ino:612 uid:19821 gid:10 size:0
      O_RDWR FD_CLOEXEC
   8: S_IFREG mode:0644 dev:32,8 ino:666 uid:19821 gid:10 size:0
      O_RDWR FD_CLOEXEC
   9: S_IFCHR mode:0000 dev:32,24 ino:360 uid:0 gid:0 rdev:41,104
      O_RDWR FD_CLOEXEC
  10: S_IFREG mode:0644 dev:32,9 ino:38607 uid:19821 gid:10 size:65083
      O_RDONLY
  11: S_IFREG mode:0644 dev:32,8 ino:667 uid:19821 gid:10 size:4096
      O_RDWR
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pread and pwrite system calls and scatter/gather I/O through the readv and
writev system calls. Asynchronous I/O is done through either the aio_read (3R)
and aio_write (3R) interfaces, which are part of the posix4 library, or aio-
read (3) and aiowrite (3), which are part of the libaio library. Both sets of asyn-
chronous I/O interfaces provide similar functionality; they differ in how they are
used in application code.

Figure 11.2 shows the general relationships among the various file-related APIs
and the underlying kernel subsystems.

 Figure 11.2 Kernel File I/O Interface Relationships

11.2.1  Standard I/O (stdio)

The standard I/O functions allow a file to be opened as a “stream” of bytes, known
as a file stream. This approach allows a C program to access the file by reading
and writing characters and arbitrary length strings, while the underlying librar-
ies deal with the system calls necessary to implement the real I/O operations. This
design has the advantage that it is completely portable, even across different oper-
ating systems, and the programmer does not need to consider any underlying
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machine-dependent characteristics, such as alignment with the file system block
size.

For example, a C program can read a file one byte at a time, and rather than
reading from disk in 1-byte I/Os, the standard I/O library will buffer the I/O so
that the file system and I/O subsystem can read in large efficient sizes. Standard
I/O file buffering does come at the cost of additional processing overhead for each
I/O.

The basic handle for a standard I/O file stream is the FILE handle, which is
acquired by a call to fopen . Once a file handle is established, a suite of standard
I/O routines is available to perform stream I/O on the handle.

The traditional Unix definition for a file handle defines the FILE structure in
<stdio.h> , which is also true for Solaris versions up to and including Solaris 2.6.
Beginning with Solaris 7, the FILE structure is defined in stdio_impl.h , a form
of the standard I/O header. There are now different definitions for the FILE struc-
ture for 32- and 64-bit implementations.

The members of the 32-bit FILE  structure are defined as follows:

• _cnt  — Count of the number of characters in the buffer.

• _ptr  — Pointer to the current character position in the buffer.

• _base  — Pointer to the buffer (a char * array).

#ifdef  _LP64

struct __FILE_TAG {
        long    __pad[16];
};

#else

struct __FILE_TAG       /* needs to be binary-compatible with old versions */
{
#ifdef _STDIO_REVERSE
        unsigned char   *_ptr;  /* next character from/to here in buffer */
        ssize_t         _cnt;/* number of available characters in buffer */
#else
        ssize_t         _cnt;/* number of available characters in buffer */
        unsigned char   *_ptr;  /* next character from/to here in buffer */
#endif
        unsigned char   *_base; /* the buffer */
        unsigned char   _flag;  /* the state of the stream */
        unsigned char   _file;  /* UNIX System file descriptor */
        unsigned        __orientation:2; /* the orientation of the stream */
        unsigned        __filler:6;
};

#endif  /*      _LP64   */

Header File <stdio_impl.h>
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• _flag — Flag field that stores status bits about the state of the file. Exam-
ples of flag bits are indications that the file is currently being read or writ-
ten, the file pointer is at EOF (end-of-file), or an I/O error occurred on the file.

• _file — The file descriptor itself is stored as an unsigned char data type in
this member. The file descriptor is, as we said, the data member that limits
the number of open files to 256 for 32-bit programs using stdio (3S).

The 64-bit definition for the FILE structure is similarly defined internally, but it is
publicly defined as an array of long to prevent users of the standard I/O interface
from accessing the internal members, so that binary compatibility can be retained
if the internal members change. The only differences in the 64-bit FILE structure
are 64-bit pointers and the use of an integer for the file descriptor.

The 64-bit Solaris 7 implementation effectively makes the FILE structure
opaque to application code. Programs that made explicit references to the FILE
structure members in code (e.g., to read the _cnt field to determine the number of
bytes in the buffer) can use a portable set of routines created to provide access to
the stdio (3C) FILE structure members. These interfaces are documented in the
__fbufsize (3C) manual page.

Table 11-3 describes the standard I/O functions.

Table 11-3 Standard I/O Functions

Function Definition
clearerr() Resets the error indicator and EOF indicator to 0 on the

named stream.
fclose() Closes a FILE  stream.
feof() Returns a nonzero value when EOF has previously been

detected during reading from the named input stream.
Otherwise, returns 0.

ferror() Returns a nonzero value when an error has previously
occurred during reading from or writing to the named
stream. Otherwise, returns 0.

fflush() Flushes the contents of the file stream to the operating
system for writing asynchronously. Note that the file
stream contents are not immediately flushed to disk.

fgetc() Gets a single character from a file stream.
fgetpos() Gets the position within a file stream.
fgets() Gets a string from a file stream
fileno() Returns the integer file descriptor associated with the

named stream.
flockfile() Locks the file stream, and blocks other file stream opera-

tions until funlockfile  is called.
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For more information on each standard I/O function, see the Solaris stdio (3S)
manual page.

11.2.2  C Runtime File Handles

The standard I/O environment is part of the C runtime environment shipped with
Solaris. By default, each C program that is linked to the default C library
(libc.so ) is started with three open file streams, corresponding to the terminal
input and output. These file streams can be used to write characters and read
characters to and from the controlling terminal for the C program. Table 11-4
describes the file streams.

fopen() Opens the file path name and returns a file stream han-
dle.

fprintf() Prints formatted strings to the file stream.
fputc() Puts a single character onto the file stream.
fputs() Puts a string onto the file stream.
fread() Reads a given number of bytes from a file stream.
freopen() Flushes a file stream, closes the file, and reopens a new

file on the given file stream handle.
fscanf() Interprets bytes specified by the given format on the file

stream.
fseek() Seeks to a given position in the file stream.
fsetpos() Seeks to a position given by fgetpos .
ftrylockfile() Locks the file stream only if it is unlocked; otherwise,

returns 0.
funlockfile() Unlocks the file stream.
fwrite() Writes the given number of bytes onto the stream.
getc() Gets a single character from the stream.
getc_unlocked() Gets a single character from the file stream without lock-

ing the file stream. Use flockfile  to lock the file
stream.

getw() Gets a word from the file steam.
pclose() Closes a pipe on the given file stream.
popen() Forks and executes a new process, and redirects its input

and output to a file stream.
putc() Puts a single character onto the file stream.
rewind() Rewinds the file stream to the beginning.
setbuf() Sets the buffer size used for the stream.
setvbuf() Sets the buffer type and size used for the stream.
ungetc() Returns a character to the file stream.

Table 11-3 Standard I/O Functions  (Continued)

Function Definition
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By default, the standard I/O library functions such as printf and scanf write to
stdout  and read from stdin .

11.2.3  Standard I/O Buffer Sizes

Standard I/O buffers are configured by default when the file is first opened with
fopen (3C). The buffer size is chosen according to the characteristics of the under-
lying file and the following criteria:

• If the file is a terminal, then a buffer of 128 bytes is chosen.

• If the file is a regular file, then the standard I/O library queries the file sys-
tem for the suggested I/O size for this file and sets the standard I/O buffer to
that size.

• If the underlying file system does not indicate a preferred I/O size, then a
1024-byte size is chosen.

11.3 System File I/O

System file I/O involves the use of systems calls and some library routines for
reading and writing files and doing control functions such as file locking or alter-
ing file flags. These I/O interfaces do not abstract the target of the I/O as a file
stream, nor do they provide the extra level of buffering as the standard I/O
(stdio ) interfaces. From a layering perspective, the stdio interfaces sit above the
file I/O system calls. The fopen (3S) library interface ultimately calls the open (2)
system call, fread (3S) calls read (2), fwrite (3S) calls write (2), and so on.

11.3.1  File I/O System Calls

Once a file descriptor is established, a number of system calls can operate on the
open file descriptor. The most basic system calls are the open() , close() ,
read() , and write() calls. These provide the basic mechanics to perform
low-level I/O to a file. For implementation specifics of the file system calls, see “The
vnode” on page 543.

Table 11-4 File Streams

File Stream Description
stdin Terminal input stream.
stdout Terminal output stream.
stderr Terminal error output stream.
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11.3.1.1  The open() and close() System Calls

The open system call does the work of converting a path name into an open file
descriptor. The target file can be opened with a variety of flags, controlling how the
underlying file system will perform I/O for that file descriptor. We discuss the flags
controlling open modes in “File Open Modes and File Descriptor Flags” on page
495.

11.3.1.2  The read() and write() System Calls

The read() and write() system calls allow us to do I/O on a file by reading and
writing data to and from a user process’s address space, as shown below. See
“read() and write() System Calls” on page 560 for details.

How data is read or written is implemented by the underlying file system, whether
it be a regular disk-based file system (such as UFS) or a special file system (such
as specfs for the device of a terminal). Table 11-5 lists all the file I/O system
calls.

ssize_t read(int fildes, void *buf, size_t nbyte);

ssize_t write(int fildes, const void *buf, size_t nbyte);

Header File <unistd.h>

Table 11-5 File I/O System Calls

Function Definition
close() Closes the given file descriptor.
creat() Creates a file of a name given by the supplied path

name.
dup() Duplicates the given file descriptor handle.
fcntl() Performs control functions on a file, such as file lock-

ing.
fstat() Retrieves file attributes for the file corresponding to

the given file descriptor.
lseek() Seeks to a given location within a file. The offset may

be relative to the start, end, or current position within
the file.

lstat() Retrieves file attributes for the symbolic link corre-
sponding to the given path name.

open() Opens a file of a given path name and returns a file
descriptor.

poll() Polls the file descriptor for an event.
pread() Reads a fixed number of bytes from the given file

descriptor, starting at the given offset, into a byte
array.
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11.3.2  File Open Modes and File Descriptor Flags

The Solaris kernel maintains several file flags at different layers in the file code.
Within the file structure, flags can be set when the file is opened (open (2) system
call). Subsequent file operations using the fcntl (2) (file control) system call allow
for setting and clearing file flags after the file has been opened. Some of these flags
get pushed down to the file’s vnode , so that file manipulation at the vnode layer
has the information available without referencing the file structure. Finally, some
flags maintained in the inode are not exported to the process (application) level.

The system begins looking at file flags in the very early stages of opening a file.
When the open system call is entered, the system checks to ensure that either the
read or write flag is set, and the kernel looks at the O_NDELAYand O_NONBLOCK
flags, which the programmer can set (see open (2)). O_NDELAYand O_NONBLOCK
have the same meaning—they specify nonblocking I/O. Two flags exist because of
evolving standards: the O_NDELAYflag emerged as a Unix SVR4 standard, and the
O_NONBLOCKflag comes from the POSIX.1 specification. The Solaris environment
supports both standards for compatibility. New applications should use the
POSIX.1 standard (NONBLOCK), which is what the system chooses if both are set.

To see which flags are set, use the fcntl (2) system call with the F_GETFDflag,
which retrieves the flags from the file descriptor.

pwrite() Writes a fixed number of bytes to the given file descrip-
tor, starting at the given offset from a byte array.

read() Reads a fixed number of bytes from the given file
descriptor into the given byte array

readv() Equivalent to read()  but places the input data into
the buffers specified by the members of the supplied
array of pointers. This is a way of initiating multiple
reads from a single system call.

select() From an array of file descriptors, selects the next file
descriptor that has pending I/O.

stat() Retrieves file attributes for the file corresponding to
the given path name

write() Writes a fixed number of bytes to the given file descrip-
tor from the given byte array.

writev() Equivalent to write()  but writes data from the buff-
ers specified by the members of the supplied array of
pointers. Provides a way of initiating multiple write
operations from a single system call.

Table 11-5 File I/O System Calls  (Continued)

Function Definition
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11.3.2.1  Nonblocking I/O

Nonblocking I/O, as the term implies, instructs the system to prevent a read or
write to the file from blocking if the operation cannot be done right away. The spe-
cific conditions under which the kernel implements this functionality vary, depend-
ing on the file type.

For regular files, nonblocking I/O is possible when used in conjunction with
mandatory file locking. If a read or write is attempted on a regular file and a
record lock exists on the section of the file (the “record”) to be read or written, then
the read or write blocks until the I/O can be completed. However, if the O_NDELAY
or O_NONBLOCKflag is set, then the read or write fails and the kernel sets the
errno (error number) to EAGAIN (a hint to the programmer to try again later).
Blocking simply means that the kernel puts the process or thread to sleep. When
an event occurs that the process or thread is waiting for, in this case, a file lock
being released, the kernel issues a wakeup and places the process on a dispatch
queue so the scheduler can schedule it for execution on a processor.

For other file types, such as sockets, FIFOs, and device-special files, data may
not be available for a read (e.g., read from a named pipe or socket when data has
not been written yet). Without the O_NONBLOCKor O_NDELAYflag set, the read or
write would simply block until data becomes available as a result of a write to a
FIFO or socket.

As documented in the open (2) man page, if both flags are set in the open (2)
call, the O_NONBLOCKflag takes precedence and the O_NDELAYflag is cleared in
the kernel open code. To maintain the blocking (or nonblocking) requirements for
read/write operations to the file, the FNDELAY flag is set in the file structure. The
NONBLOCK/NDELAYflags do not have corresponding flags at the vnode or inode lay-
ers because there is no need for the kernel to push this information down to those
structures.

11.3.2.2  Exclusive open

The O_EXCLflag, exclusive open , can be used in conjunction with the O_CREAT
flag to request that the system return an error if the file already exists. If the file
does not already exist and both flags are set, the file creation and return of a file
descriptor to the calling process are guaranteed to be atomic. Atomic means that
the steps involved are guaranteed to complete entirely or not at all. The system
does not allow an operation to partially complete and have its state altered by
something else. Atomicity enables applications to reliably create lock files, which
are often implemented by applications as a means of persistent synchronization.
For example, some applications create a lock file during startup to ensure another
instance of the application is not running.

The O_CREATflag instructs the system to create the file if it does not already
exist. The following pseudocode demonstrates the results of a file open under dif-
ferent conditions. The information below assumes all other permission conditions
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are such that they would not result in an error, for example, read/write permission
to the working directory is good.

The O_CREATand O_EXCLflags have no meaning beyond the open operation and
are not preserved in any of the underlying file support structures.

File modes are established as a result of the (optional) mode bits that can be
passed in the open system call, along with the process file creation mask. The file
creation mask is set with the umask(1) command or programmatically with the
umask(2) system call. It allows users to define default permissions for files they
create. Once set, the value is stored in the user area of the process structure, in the
variable u_cmask . See the umask(1) manual page for specifics. Briefly, the umask
value represents the file-mode bits the user wants unset when a file is created. Put
another way, the umask value determines which file permission bits will be turned
off by default. The kernel simply uses standard C language bitwise operators to
turn off whatever bits are defined in the u_cmask value for the file’s permission
modes when a file is created. Note that u_cmask applies only to newly created
files.

An open (2) can, of course, be issued on an existing file, in which case the per-
mission checks are done to ensure that the calling process has proper permissions.
If the open (2) has a mode value defined as an optional third argument, the per-
mission bits of an existing file are not changed. Such a change requires use of
chmod(1) or chmod(2).

11.3.2.3  File Append Flag

If the file is opened with the O_APPENDflag set in the open (2) call, the kernel sets
the corresponding FAPPENDflag in the file structure. This flag instructs the sys-
tem to position the file pointer (offset) to the end of the file prior to every write.
This positioning is implemented fairly simply—inside the file-system-specific write

if (file exists)
        if (O_CREAT is clear and O_EXCL is clear)
                return file descriptor (open succeeds)
        if (O_CREAT is clear and O_EXCL is set)
                return file descriptor (open succeeds)
        if (O_CREAT is set and O_EXCL is clear)
                return file descriptor (open succeeds)
        if (O_CREAT is set and O_EXCL is set)
                return "file exists" error (open fails)
if (file does not exist)
        if (O_CREAT is clear and O_EXCL is clear)
                return "no such file" error (open fails)
        if (O_CREAT is clear and O_EXCL is set)
                return "no such file" error (open fails)
        if (O_CREAT is set and O_EXCL is clear)
                create file
                return file descriptor (open succeeds)
        if (O_CREAT is set and O_EXCL is set)
                create file
                return file descriptor (open succeeds)
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code (e.g., ufs_write() for UFS files); the kernel sets the file offset to the file size
value maintained in the file’s inode before doing the write.

11.3.2.4  Data Integrity and Synchronization Flags

Solaris provides file flags that set different levels of data synchronization and file
integrity. Thus, application developers have some flexibility when designing appli-
cations that read and write files, albeit at increasing cost as the level of integrity is
increased.

Three applicable flags can be set in the open system call: O_SYNC, O_RSYNC, and
O_DSYNC. The file structure that is allocated when the file is opened has three cor-
responding flags that will be set in the structure’s f_flag field, based on what is
passed in the open (2) call. Table 11-6 defines the flags. Any of these flags can be
set on an open file by a fcntl (2) system call on the file descriptor with the appro-
priate arguments.

The O_SYNCflag tells the operating system that file data and inode integrity must
be maintained. That is, when the O_SYNCflag is set on a file descriptor and a write
is done to the file, the write system call does not return to the calling process or
thread until the data has been written to the disk and the file inode data has been
updated. Without the O_SYNCflag, the write will return when the data has been
committed to a page into the buffer cache (physical memory), with the inode infor-
mation being cached as well. This is the default behavior, which is essentially
asynchronous in nature. Better overall file I/O throughput is achieved with the
default because nonsynchronous writes take advantage of the caching mecha-
nisms implemented in the Solaris environment. The O_SYNCflag provides optional
functionality for applications that require file integrity (e.g., to commit file data to
nonvolatile storage—either the disk platters or a nonvolatile disk I/O cache) for
every write.

The O_DSYNCflag also provides synchronous write functionality, meaning that
the write system call does not return to the calling process until the write data has
been committed to the disk storage. Unlike O_SYNC, however, O_DSYNCdoes not
require that the file inode data be committed to the disk. The data-only synchroni-
zation implementation comes as part of support for POSIX.4, which is why the
Solaris system defines two levels of integrity—synchronized I/O file integrity and
synchronized I/O data integrity—for file I/O operations. File integrity has to do
with data and inode information; data integrity covers just file data. For each of

Table 11-6 File Data Integrity Flags

Flag in
open (2)

Correcsponding
flag in file
structure

Definition

O_SYNC FSYNC Data and inode integrity when writing
O_DSYNC FDSYNC Data integrity when writing
O_RSYNC FRSYNC Read data synchronization
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the flags available, one or the other level of synchronized I/O integrity is guaran-
teed. See the fcntl (5) manual page for the documented definitions of file and data
integrity.

The O_RSYNCflag provides for read synchronization and is used in conjunction
with the O_SYNCor O_DSYNCflag. With the O_SYNCflag, file integrity (data and
inode) is enforced. With the O_DSYNCflag, data integrity is enforced, meaning that
any pending writes to the file are completed before the read is done. If O_RSYNC
and O_SYNCare both set, then pending write I/Os are completed and the inode
information is updated before the kernel processes the read request. Note that all
read operations are guaranteed not to return stale data. A read issued on a file
without any of the O_SYNCflags set simply implies that a read from a buffer may
be reading data that has not yet been written to the disks. The open (2) and
fcntl (2) manual pages do not state explicitly that O_RSYNCmust be used along
with either O_SYNC or O_DSYNC, though it is somewhat implied.

The various data integrity flags have no corresponding flags at the vnode layer.
The inode maintains flags to indicate synchronous inode operations. These flags
are set in the read/write code path in the kernel file system code (e.g.,
ufs_read() , ufs_write() ), based on the status of the O_SYNCflags in the file
structure for the file. They’re used by the kernel in the lower-level I/O routines.
Solaris also provides two library routines—fdatasync (3R) and fsync (3C)—that
applications can call, for file or data integrity synchronization, before issuing a
read or write. These calls allow for per-file synchronization of data to disk, and
they return only when the write to nonvolatile storage has been completed.

11.3.2.5  Other File Flags

Other flags are maintained in the per-process file descriptor and are not pushed
down to the file structure. The flags that are used at the file descriptor level are
mostly for the operating system to use—they are not user settable.

One such flag is FCLOEXEC: the close-on-exec flag. This flag notifies the operat-
ing system to close the file descriptor in the new process if a process executes an
exec (2) call. Normally, all open files are inherited by child processes, which is not
always the desired behavior. The kernel implements FCLOEXECwith a simple
close_exec() kernel routine called from exec (2). close_exec() walks through
the file descriptor array and closes any file with the FCLOEXECflag set. The
fcntl (2) call sets, clears, and examines the file descriptor’s flag field. Currently,
FCLOEXEC is the only flag that can be set, cleared, or examined.

11.3.2.6  The dup System Call

The dup(2) system call allows us to duplicate a file descriptor, such that two file
descriptors point to the same file structure entry. We indicated earlier that an
open (2) call will fetch a new file descriptor and result in a new file structure get-
ting allocated, even if the process already has the same file opened. dup (2) dupli-
cates a file descriptor and will result in a new uf_entry structure for the file
descriptor. The difference is that the uf_ofile pointer, which points to file struc-
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ture, will point to the same file structure as the dup ’ed file descriptor. A new file
structure is not created, as would be the case with a second open (2) of the same
file.

dup (2) is useful for situations where the programmer wants multiple references
to the same file to share the same view of the current file offset. Since the current
file pointer (byte offset) is maintained in the file structure, dup’d file descriptors
share a common view of the file’s offset.

Consider a test program, ofd (code not shown), that does two opens of the same
file. The second open sets the O_SYNCflag (which we added only to demonstrate
how these file structure flags can be examined). After the two opens, a dup (2) is
executed to duplicate the second file descriptor. Below is some output and an
example of using /usr/proc/bin/pfiles  to look at a process’s open files.

On the first line, we can see that the test program prints the three open file
descriptor values after the open (2) and dup (2) calls have executed. Every process
already has file descriptors 0, 1, and 2 allocated, and as a result, the two open files
and dup ’ed file are file descriptors 3, 4, and 5. The pfiles command dumps some
information on process open files, and we see that fd 4 and fd 5 have the O_SYNC
flag set, which is logical because they’re both referencing the same file structure.

$ ofd &
[1]     24788
fawlty>
fd1: 3, fd2: 4,dfd: 5
$ /usr/proc/bin/pfiles 24788
24788:  ofd
  Current rlimit: 64 file descriptors
   0: S_IFCHR mode:0620 dev:32,0 ino:324208 uid:20821 gid:7 rdev:24,1
      O_RDWR
   1: S_IFCHR mode:0620 dev:32,0 ino:324208 uid:20821 gid:7 rdev:24,1
      O_RDWR
   2: S_IFCHR mode:0620 dev:32,0 ino:324208 uid:20821 gid:7 rdev:24,1
      O_RDWR
   3: S_IFREG mode:0755 dev:32,8 ino:18 uid:20821 gid:30 size:0
      O_RDWR
   4: S_IFREG mode:0755 dev:32,8 ino:18 uid:20821 gid:30 size:0
      O_RDWR|O_SYNC
   5: S_IFREG mode:0755 dev:32,8 ino:18 uid:20821 gid:30 size:0
      O_RDWR|O_SYNC
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Now, we use crash (1M) to illustrate the file structure sharing in our test pro-
gram.

The u utility in crash dumps the uarea of a process. For each open file, crash
provides the address of the corresponding file structure. As you can see, fd 3 and 4
reference different file structures, even though we opened the same file in the
same process. File descriptors 4 and 5 show the same file structure address
(60824870), because 5 is a dup of 4. Finally, the f (file) utility dumps file structure
information. We first dump the file structure for fd 3 (f 60824c58) and then for fd 4
(f 60824870). You can see that the file structure has a reference count of 2, because
two file descriptors are referencing it, and you can also see that the sync flag is set
in the file structure, as set in the original open (2) system call. The TYPE/ADDR col-
umn in the f utility output provides the file type and kernel address of the vnode .
Note that the vnode is the same, as any open file in the system will have one and
only one vnode , despite the number of opens and file structures.

11.3.2.7  The pread and pwrite System Calls

The POSIX standard provides two more interfaces, shown below, for performing
basic read and write I/O. These interfaces are similar to the read() and write()
system calls but allow a file offset to be specified as part of the system call.

# /etc/crash
dumpfile = /dev/mem, namelist = /dev/ksyms, outfile = stdout
> p 59
PROC TABLE SIZE = 1962
SLOT ST  PID  PPID  PGID   SID   UID PRI   NAME        FLAGS
  59 r 24774 24716 24774 24716 20821   0 ofd            load
> u 59
PER PROCESS USER AREA FOR PROCESS 59
PROCESS MISC:
        command: ofd, psargs: ofd
        start: Tue Apr 21 21:55:51 1998
        mem: 43449, type: exec
        vnode of current directory: 60025394
OPEN FILES, POFILE FLAGS, AND THREAD REFCNT:
        [0]: F 0x60b6eca8, 0, 0 [1]: F 0x60b6eca8, 0, 0
        [2]: F 0x60b6eca8, 0, 0 [3]: F 0x60824c58, 0, 0
        [4]: F 0x60824870, 0, 0 [5]: F 0x60824870, 0, 0
> f 60824c58
ADDRESS  RCNT    TYPE/ADDR       OFFSET   FLAGS
60824c58   1    UFS /608ba0e8          0   read write
> f 60824870
ADDRESS  RCNT    TYPE/ADDR       OFFSET   FLAGS
60824870   2    UFS /608ba0e8          0   read write sync

ssize_t pread(int fildes, void  *buf,  size_t  nbyte,  off_t offset);

ssize_t pwrite(int fildes, const void  *buf,  size_t  nbyte, off_t offset);

Header File <unistd.h>
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With pread (2) and pwrite (2), a read or write can be initiated at a specific offset
with only one system call, rather than the traditional method that uses both the
lseek()  and read()  system calls.

11.3.2.8  The readv and writev System Calls

The readv() and writev() system calls, shown below, are similar to the read()
and write() system calls, but allow the transfer to occur to and from a range of
memory addresses, rather than from a single memory buffer. This technique is
often referred to as scatter/gather I/O.

Each I/O request supplies an array of iovec structures and a count of the number
of iovec structures. The total size of the I/O is the sum of the size of all of the
iovec  structures. The iovec  structure is shown below.

Each iovec structure provides the base address of the memory buffer and the
length in bytes of the buffer. As a result, the I/O transfer is read or written to the
process’s memory address space in the specified pattern and to or from the file in a
sequential manner.

11.4 Asynchronous I/O

Asynchronous I/O interfaces have been available in Solaris for some time. A spe-
cific set of interfaces in the Solaris libraries provides a means by which applica-
tions can issue I/O requests and not have to block or cease working until the I/O
has completed. (Don’t confuse that behavior with the behavior of an I/O request if
the file data integrity flags are not set in the file descriptor. See “Data Integrity
and Synchronization Flags” on page 498.)

Two sets of interfaces do asynchronous I/O in Solaris: the aioread (3) and aio-
write (3) routines; and the POSIX-equivalent routines, aio_read (3R) and
aio_write (3R), which are based on the POSIX standards for real-time exten-
sions. Real-time applications must, by definition, deal with an unpredictable flow
of external interrupt conditions that require predictable, bounded response times.

ssize_t readv(int  fildes,  const  struct  iovec  *iov,  int iovcnt);

ssize_t writev(int fildes,  const  struct  iovec  *iov,  int iovcnt);

Header File <unistd.h>

struct  iovec {
        caddr_t iov_base;
        int     iov_len;
};

Header File <unistd.h>
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Hence, they need a complete nonblocking I/O facility is needed. Asynchronous I/O
interfaces meet the requirements of most real-time applications.

The POSIX and Solaris asynchronous I/O interfaces are functionally identical.
The real differences exist in the semantics of using one interface or the other, and
the system libraries that must be linked in. Using the Solaris asynchronous I/O
interfaces requires linking to libaio , whereas using the POSIX asynchronous I/O
interfaces requires linking to libposix4 .

The Solaris interface definitions are shown below.

The routines enable the calling process or thread to continue processing after it
issues a read or write. The thread that issues the asynchronous read or write
receives notification through a signal (SIGIO ) either upon completion of the I/O
operation or upon occurrence of an error condition. The implementation is based
on the calling thread passing a data structure to the asynchronous I/O read or
write call. The call result is set in one of the structure members; the calling pro-
gram must test the result to determine if the I/O was successful or if an error was
encountered. The passed structure provides space for storing the error number in
the event of an error.

11.4.1  File System Asynchronous I/O

Asynchronous I/O is implemented by means of a user-land thread library for regu-
lar file systems and a private kernel interface (kernel asynchronous I/O) for some
raw disk devices. The implementation of the aioread (3) and aiowrite (3) rou-
tines creates a queue of I/O requests and processes them through user-level
threads. When the aioread (3) or aiowrite (3) is entered, the system puts the I/O
in a queue and creates an LWP (a thread) to do the I/O. The LWP returns when the
I/O is complete (or when an error occurs), and the calling process is notified by a
special signal, SIGIO . The programmer must put a signal handler in place to
receive the SIGIO and take appropriate action. Such action must minimally
include checking the return status of the read or write by reading the appropriate
structure members (the structures are different between the libaio and
libposix4  interfaces).

As an alternative to the signal-based SIGIO notification, you can call aio-
wait (3) after issuing an aioread (3) or aiowrite (3). This call causes the calling
thread to block until the pending async I/O has completed. You can set a

int aioread(int fildes, char *bufp, int bufs, off_t  offset, int whence,
            aio_result_t *resultp);

int aiowrite(int fildes, const char *bufp, int  bufs,  off_t offset, int whence,
            aio_result_t *resultp);

Header File <sys/async.h>



504 Solaris Files and File I/O
time-value and pass it as an argument to aiowait (3) so that the system only
waits for a specified amount of time, as shown below.

11.4.2  Kernel Asynchronous I/O

Although the threads library implementation of asynchronous I/O worked well
enough for many applications, it didn’t necessarily provide optimal performance
for applications that made heavy use of the async I/O facilities. Commercial rela-
tional database systems, for example, use the async I/O interfaces extensively.
Overhead associated with the creation, management, and scheduling of user
threads motivated the design of an implementation that required less overhead
and provided better performance and scalability. A review of the existing async I/O
architecture and subsequent engineering effort resulted in an implementation
called kernel asynchronous I/O, or kaio.

Kaio first appeared in Solaris 2.4 (with a handful of required patches) and has
been available, with some restrictions, in every Solaris release since. The restric-
tions have to do with which devices and software include kaio support and which
ones do not. The good news for applications is that the presence or absence of kaio
support for a given combination of storage devices, volume managers, and file sys-
tems is transparent. If kaio support exists, it will be used. If it doesn’t, the origi-
nal library-based async I/O will be used. Applications do not change in order to
take advantage of kaio. The system figures out what is available and enters the
appropriate code path.

What kaio does, as the name implies, is implement async I/O inside the kernel
rather than in user-land with user threads. The I/O queue is created and managed
in the operating system. The basic sequence of events is as follows:

• When an application calls aioread (3) or aiowrite (3), the corresponding
library routine is entered.

• Once entered, the library routine first tries to process the request with kaio.
A kaio initialization routine is executed and creates a “cleanup” thread,
which is intended to ensure that no remaining memory segments have been
allocated but not freed during the async I/O process.

• Once that is complete, kaio is called, at which point a test is made to deter-
mine if kaio is supported for the requested I/O.

Support for kaio requires specific async I/O read and write routines at the
device-driver level. The Solaris kernel provides this support in the SCSI driver for
all currently shipping Sun storage products and the Solstice DiskSuite (SDS)
device drivers. These products include the fiber-based storage products, which
implement the SCSI protocol over the Fibre Channel connect.

aio_result_t *aiowait(const struct timeval *timeout);
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Kaio only works when the target of the async I/O is a character device-special
file. In other words, kaio works only on raw disk device I/O. Additional support has
been added with the host-based volume management software used for creating
RAID volumes on SPARC/Solaris servers: Sun Enterprise Volume Manager, based
on Veritas, and Solstice DiskSuite. RAID devices created with either Veritas or
DiskSuite have raw device entry points through the /dev/vx/rdsk and
/dev/md/rdsk device-special files, and the pseudodrivers implemented for these
volume managers include async I/O routines for kaio support. You can also use the
kaio test described below to establish whether your underlying device supports
kaio.

If kaio support is available, here’s what happens:

• The kernel allocates an aio_req structure from the queue (or creates a new
one in kernel memory with kmem_alloc ) and calls the async I/O routine in
the appropriate device driver.

• Inside the driver, the required kernel data structures are set up to support
the I/O, and an async-I/O-specific physical I/O routine, aphysio , is entered.

• Synchronous raw device I/O uses the kernel physio function, whereby ker-
nel buffers are set up, and the driver strategy routine is called to do the
actual device I/O.

• The physio routine waits for the driver strategy routine to complete through
the buffer I/O biowait()  kernel code.

• The aphysio routine sets up the async I/O support structures and signal
mechanism, then calls the driver strategy routine without waiting for the I/O
to complete.

The presence of an ENOTSUPerror signals that kaio support is unavailable. That is,
when the libaio routine (or libposix4 if the POSIX interfaces are used) makes
a kaio system call, the kaio call returns an ENOTSUPerror if kaio is not sup-
ported. If kaio support isn’t available, the code path taken is very different.

• Basically, the original user-thread async I/O facility puts the I/O in an async
I/O queue and hands off the aioread or aiowrite to a worker thread that
was created when the libaio library was initialized (more on this after the
example below).

• The thread assigned to do the I/O on behalf of the calling process uses the
pread (2) and pwrite (2) system calls to enter the kernel.

Essentially, the user-thread implementation of async I/O makes the I/O
appear asynchronous to the calling process by creating a thread to do the I/O
and allowing the caller to return to do other work without waiting. The imple-
mentation actually uses the traditional synchronous Solaris system calls
(pread (2) and pwrite (2)) to do the I/O.

In either case (kaio or non-kaio), the underlying mechanics of doing the actual
physical I/O are no different than if the I/O was initiated through a simple read (2)
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or write (2) system call. Once the read or write has been completed, the result
(error or success) is set in a data structure that was passed by the code that initi-
ated the I/O, and a signal (SIGIO ) is sent to the calling process to indicate the I/O
has either completed or cannot be completed because of an error condition. It is up
to the programmer to write a signal handler for the SIGIO signal and deal with
the condition as required by the application.

Internal benchmarking and testing at Sun have shown that the implementa-
tion of kaio was truly a worthwhile effort. The reductions in overhead and dedi-
cated device driver-level support yield overall faster and more efficient async I/O
operations. On relatively small, lightly loaded systems, the improvement is less
dramatic, with typical performance improvements on the order of 5 to 6 percent.
As the size of the system (number of processors and amount of RAM) increases and
the number of async I/O requests (load) grows, the kaio approach delivers much
more scalable performance, with improvements measuring up to 30 percent under
some benchmarks. Your mileage will, of course, vary.

Kaio is implemented as a loadable kernel module, /kernel/sys/kaio , and is
loaded the first time an async I/O is called. You can determine if the module is
loaded with modinfo (1M).

If the preceding command returns nothing, it simply means the kaio kernel mod-
ule hasn’t yet been loaded. The system loads it automatically as needed.

There’s a relatively simple test you can run to determine whether or not you
have kaio support available for a given file. It involves compiling and running a

# modinfo | grep kaio
105 608c4000   2efd 178   1  kaio (kernel Async I/O)
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small program that calls aioread (3) and then using truss (1) on the program to
watch the system-call activity. First, here’s the C language source code.

Once you have the test program compiled, use the truss (1) command to do a sys-
tem-call trace of the execution path.

Note that you run this test as root because it’s reading directly from a raw
device-special file. On the command line, the -t flag is specified with truss to
instruct truss  to trace only the kaio  and lwp_create  system calls.

The example used a raw device-special file as the argument to the aio pro-
gram. (You have to specify a full path name for a file when you invoke aio .) The
truss (1) output shows a kaio system call, followed by two lwp_create calls, and
finally two more entries into the kaio routine to do the actual read, followed by

/*
* Quick kaio test. Read 1k bytes from a file using async I/O.
* To compile:
* cc -o aio aio.c -laio
*
* To run:
* aio file_name
*/
#include <sys/stdio.h>
#include <sys/types.h>
#include <sys/fcntl.h>
#include (sys/aio.h>

#define BSIZE 1024

main(int argc, char *argv[])
{
        aio_result_t res;
        char buf[BSIZE];
        int fd;

        if ((fd = open(argv[1], O_RDONLY)) == -1) {
                perror("open");
                exit(-1);
        }
        aioread(fd, buf, BSIZE, 0L, SEEK_SET, &res);
        aiowait(0);
        if (res.aio_return == BSIZE) {
                printf("aio succeeded\n");
                close(fd);
                exit(0);
        }
        perror("aio");
}

# truss -t kaio,lwp_create aio /dev/rdsk/c0t3d0s0
kaio(5, 0xFFFFFFE8, 0xFFFFFFFF, 0xEF68FB50, 0x00000000, 0x00000000, 0x00000000) = 0
lwp_create(0xEFFFEE10, 0, 0xEF68FF44)           = 2
lwp_create(0x00000000, 0, 0x00000000)           = 0
kaio(AIOREAD, 3, 0xEFFFF190, 1024, 0, 0xEFFFF590) = 0
kaio(AIOWAIT, 0x00000000)                       = -268438128
aio succeeded
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the aiowait . The last line is the output from the aio program (aio succeeded). In
this example, kaio is in fact a supported facility for this I/O operation—the kaio
call with the AIOREAD flag did not return an error.

In the example below, kaio is not supported for the I/O.

In this example, we are reading a file in the file system. The trace shows that our
example entered the kernel with a kaio system call, created a couple of LWPs, and
attempted to do the async I/O through the kaio facility. The second kaio call failed
with the ENOTSUP(not supported) error, and the system dropped back to the
library implementation, resulting in the creation of a bunch of threads (LWPs) up
to the completion of the I/O. Note that the last line from the program output, aio
succeeded , indicates that the aioread (3) was indeed successful—we just didn’t
use the kaio facility to do it.

It’s clear that the user-threads implementation results in a lot more thread/LWP
creation and management, which adds overhead and reduces efficiency. So why
does the Solaris environment create 11 LWPs for a single async I/O request? The
answer has to do with the initialization of the async I/O library.

The first time an aioread (3) or aiowrite (3) is called, an async I/O library ini-
tialization routine is called and creates several worker threads to do async I/Os.
The system is simply getting ready to process several async I/Os and thus creates
four reader LWPs and four writer LWPs, along with one thread to do file syncs.
That accounts for the nine successful lwp_create calls you see above. If you were
to add a second aioread (3) or aiowrite (3) to the test program and rerun it with
the truss (1) command, you wouldn’t see all the lwp_create s for the second

# truss -t kaio,lwp_create aio /junkfile
kaio(5, 0xFFFFFFE8, 0xFFFFFFFF, 0xEF68FB50, 0x00000000, 0x00000000, 0x00000000) = 0
lwp_create(0xEFFFEE08, 0, 0xEF68FF44)           = 2
lwp_create(0x00000000, 0, 0x00000000)           = 0
kaio(AIOREAD, 3, 0xEFFFF188, 1024, 0, 0xEFFFF588) Err#48 ENOTSUP
lwp_create(0xEFFFEDA8, 0, 0xEF686F44)           = 3
lwp_create(0x00000000, 0, 0x00000000)           = -278369456
lwp_create(0xEFFFEDA8, 0, 0xEF67DF44)           = 4
lwp_create(0x00000000, 0, 0x00000000)           = -278406320
lwp_create(0xEFFFEDA8, 0, 0xEF674F44)           = 5
lwp_create(0x00000000, 0, 0x00000000)           = -278443184
lwp_create(0xEFFFEDA8, 0, 0xEF66BF44)           = 6
lwp_create(0x00000000, 0, 0x00000000)           = -278480048
lwp_create(0xEFFFEDA8, 0, 0xEF662F44)           = 7
lwp_create(0x00000000, 0, 0x00000000)           = -278516912
lwp_create(0xEFFFEDA8, 0, 0xEF659F44)           = 8
lwp_create(0x00000000, 0, 0x00000000)           = -278553776
lwp_create(0xEFFFEDA8, 0, 0xEF650F44)           = 9
lwp_create(0x00000000, 0, 0x00000000)           = -278590640
lwp_create(0xEFFFEDA8, 0, 0xEF647F44)           = 10
lwp_create(0x00000000, 0, 0x00000000)           = -278627504
lwp_create(0xEFFFEDA8, 0, 0xEF63EF44)           = 11
lwp_create(0x00000000, 0, 0x00000000)           = -278664368
kaio(AIOWAIT, 0x00000000)                       Err#22 EINVAL
kaio(AIOWAIT, 0x00000000)                       Err#22 EINVAL
kaio(AIONOTIFY, 170560)                         = 0
aio succeeded
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async I/O. The library handles subsequent async I/O requests with the worker
threads created during initialization (though it will, of course, create more worker
threads to keep up with the level of incoming async I/O requests).

Although the creation of a pool of worker threads up-front helps provide better
scalability for the user-threads async I/O facility, it still involves more overhead
and a longer code path than does kernel async I/O.

11.5 Memory Mapped File I/O

File I/O discussed so far is done with the read , write , and lseek system calls to
perform I/O on behalf of a process and to copy the data to or from the process’s
address space. The I/O is performed into a kernel buffer and then copied to or from
the process’s address space, as illustrated in Figure 11.3.

 Figure 11.3 File Read with read(2)

The new memory architecture first introduced with SunOS 3.2 allows a new way of
doing file I/O, that is, by mapping a file directly into the process’s address space.
The mmapsystem call allows us to map a range of a file into a process’s address
space; then, the file can be accessed by references to memory locations with C
pointers. This approach allows us to do I/O on the file without the overhead of the
read and write system calls and without the overhead of handling the data twice.
Figure 11.4 illustrates the process.
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 Figure 11.4 Memory Mapped File I/O

The function definition for the mmap(2) system call is shown below.

The mmapsystem call is called with an open file handle, the offset and length of the
file being mapped, the address and length at which the file should be mapped in a
process’s address space, a flag for options, and a protection type indicating what
memory protection should be used for the mapping, as shown below.

void *mmap(void *addr, size_t len, int prot, int flags,  int fildes, off_t off);

Header File <sys/mman.h>

if ((addr = mmap64((caddr_t)0, length, PROT_READ,
    MAP_SHARED, fd, offset)) == NULL) {
        perror("mmap failed");
        exit(1);
}
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The operating system uses the memory map function to map executable files and
shared libraries into a process’s address space. You can list the mappings for a pro-
cess with the pmap(1) command.

The pmap command shows us the size and protections for each segment and, where
possible, the name of the file mapped into the process. In this example, we can see
the binary (/usr/bin/ksh ) and the libraries mapped into the Korn shell.

11.5.1  Mapping Options

Certain flags allow different options to be passed to mmapto control the way a file
is mapped into the process’s address space (see Table 11-7). These are passed in
through the flags  argument.

The MAP_FIXED option requests that the file range be mapped exactly at the
address supplied by addr. If MAP_FIXEDis not set, the system uses addr to derive
an address used to map the file. The address chosen will be an area of the address
space that the system deems suitable for a mapping of len bytes to the file. If
MAP_FIXEDis not set and addr is 0, then the system chooses the address to map
the file range into.

# /usr/proc/bin/pmap 25888

1197:   /bin/ksh
00010000    192K read/exec         /usr/bin/ksh
0004E000      8K read/write/exec   /usr/bin/ksh
00050000     40K read/write/exec     [ heap ]
FF180000    656K read/exec         /usr/lib/libc.so.1
FF232000     32K read/write/exec   /usr/lib/libc.so.1
FF280000    512K read/exec         /usr/lib/libnsl.so.1
FF30E000     40K read/write/exec   /usr/lib/libnsl.so.1
FF318000     32K read/write/exec     [ anon ]
FF330000     16K read/exec         /usr/platform/sun4u/lib/libc_psr.so.1
FF340000     16K read/exec         /usr/lib/libmp.so.2
FF352000      8K read/write/exec   /usr/lib/libmp.so.2
FF370000     32K read/exec         /usr/lib/libsocket.so.1
FF386000     16K read/write/exec   /usr/lib/libsocket.so.1
FF390000      8K read/exec         /usr/lib/libdl.so.1
FF3A0000      8K read/write/exec     [ anon ]
FF3B0000    120K read/exec         /usr/lib/ld.so.1
FF3DC000      8K read/write/exec   /usr/lib/ld.so.1
FFBEC000     16K read/write/exec     [ stack ]
 total     1760K

Table 11-7 Solaris 7 mmap Flags from <sys/mman.h>

Type Description

MAP_FIXED Maps at the address supplied.
MAP_NORESERVE Does not reserve swap space for this mapping.
MAP_SHARED Changes are reflected across all mappings.
MAP_PRIVATE Changes are not reflected; a copy of the page is

made so that the changes are local only.
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If the MAP_NORESERVEoption is specified, no swap space is reserved for a map-
ping. Without this flag, the creation of a writable MAP_PRIVATEmapping reserves
swap space equal to the size of the mapping. When writing into a MAP_NORESERVE
segment, if space is available, the write succeeds and a private copy of the written
page is created; if space is not available, the write fails and a SIGBUS or SIGSEGV
signal is delivered to the writing process.

11.5.1.1  Mapping Files into Two or More Processes

A file can be mapped into more than one process when another process calls mmap
on the same file with an overlapping range. The system does this by mapping the
same pages of memory into each address space. When this mapping occurs, the
memory is shared between the processes, and by default, each process sees all
modifications made by another process. This behavior can be used as an alterna-
tive method of sharing memory to System V shared memory. In fact, the POSIX
interprocess communication facility for shared memory is built on shared memory
mapped files. The options MAP_SHAREDand MAP_PRIVATEcan be passed to mmap
to allow different sharing semantics, rather than the default of sharing everything.

If MAP_SHAREDis specified, write references will change the memory that is
being shared by all processes with mappings to the file range. If MAP_PRIVATEis
specified, the initial write reference creates a private copy of the memory page, and
from this point on, the process will have a private copy of that page of the map-
ping.

11.5.1.2  Permission Options

The memory address range is created in the process’s address space with the per-
missions provided with the prot argument. The permissions control whether a
process can read, write, or execute memory within the memory range of the map-
ping. The protection/permission options are shown in Table 11-8.

If we examine the mappings for ksh from our previous pmap example, we can see
that the first portion of ksh is mapped read-only/execute, and the second half is
mapped read /write /execute .

Table 11-8 Solaris 7 mmap Protection Options from <sys/mman.h>

Type Description
PROT_READ Data can be read.
PROT_WRITE Data can be written.
PROT_EXEC Data can be executed.
PROT_NONE Data cannot be accessed.

00010000    192K read/exec         /usr/bin/ksh
0004E000      8K read/write/exec   /usr/bin/ksh
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If a process were to attempt to write to the memory range between 0x010000 and
0x04e000, a SIGSEGVsignal would be sent to the process to notify it that a seg-
mentation violation had occurred. Incidentally, the first segment is the text por-
tion of the process, which is always read-only, and the second mapping is the data
section for uninitialized variables, both of which are shared among processes. The
second segment is mapped read/write with MAP_PRIVATE; so, if a process updates
an initialized variable (say, i = 1 ), that variable does not change across all ksh pro-
cesses. Rather, a copy-on-write operation creates a local page, which is then used to
hold a page-length mapping for the file at that location, private to the process.

11.5.2  Providing Advice to the Memory System

We can provide advice to the memory system about the pages of memory within
the range of the mapping by using the madvise system call. The madvise system
call allows us to tell the memory system if we need or don’t need a range of mem-
ory or if we are going to access the memory in a sequential or random order. This
information allows the memory system and file systems to proactively read in por-
tions of the file with the range of memory.

The advice is given for a memory range and is specified with the advice argu-
ment. The arguments may be one of MADV_DONTNEED, MADV_WILLNEED
MADV_SEQUENTIAL, or MADV_RANDOM.

11.5.2.1  The MADV_DONTNEED Flag

When we map a file into a process’s address space and read the file by touching
memory locations, we allocate physical memory for that range and fill the memory
with the respective range of the file. Once we are done with that range of the file,
we may never want it again, in which case we can let the operating system know
that this memory range is no longer needed. This notification is especially impor-
tant since the memory is not freed, even when we unmap the memory segment.

int madvise(caddr_t addr, size_t len, int advice);

Header File <sys/mman.h>
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The MADV_DONTNEEDflag allows us to give back memory for a given range. The fol-
lowing example shows how this can be done.

We can execute the preceding program to free the range of a file back to the mem-
ory system. We can observe what happens when we run the program by looking at

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/sysmacros.h>
#include <sys/types.h>
#include <fcntl.h>
#include <sys/mman.h>

void
main(int argc, char ** argv)
{
        int fd;
        caddr_t addr;
        off_t size;
        off_t length;
        off_t offset;
        off_t chunk = 1<<30;

        if (argc != 2) {
                (void) fprintf(stderr, "Usage: mmap_dontneed filename\n");
                exit(1);
        }

        if ((fd = open(argv[1], O_RDONLY)) < 0) {
                perror("Open failed");
                exit(1);
        }

        size = lseek64(fd, (off_t)0, SEEK_END);

        /*
         * mmap a chunksize segment and issue madvise(DONTNEED)
         * against it.
         */
        for (offset = 0; offset < size; offset += chunk) {

                length = MIN(size - offset, chunk);

                if ((addr = mmap64((caddr_t)0, length, PROT_READ,
                    MAP_SHARED, fd, offset)) == NULL) {
                        perror("mmap failed");
                        exit(1);
                }

                (void) madvise(addr, length, MADV_DONTNEED);
                (void) munmap(addr, length);
        }

}
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the amount of free memory on the system with the vmstat command. An example
is shown below.

11.5.2.2  The MADV_WILLNEED Flag

The pages of a file are read, one at a time, the first time we access the location of a
file that is not already in memory. This approach may be suboptimal if we know we
will be reading most or all of a given file range, and we can use the
MADV_WILLNEED flag to read ahead all of a given range, as shown below.

The range requested by MADV_WILLNEEDis read in synchronously, so the mad-
vise system call will wait until the entire range is read in before returning. A sim-
ple test program demonstrates how free memory falls as a file is read in after a
MADV_WILLNEED. The output of the test program is shown below.

11.5.2.3  The MADV_SEQUENTIAL Flag

By default, the memory system reads in a file as it is allocated and then leaves it
in memory. The MADV_SEQUENTIALflag can tell the memory system that a range
is being accessed sequentially and can free memory behind that which is being

# vmstat 3
procs     memory            page            disk          faults      cpu
 r b w   swap  free  re  mf pi po fr de sr f0 s2 s3 s5   in   sy   cs us sy id
 0 0 0 155868  2992   0  92  0  0 12  0  2  0  0  0  1   23  172   96  0  2 98
 0 0 0 155868  3020   0  33  1  0  0  0  0  0  1  0  0   20  187   95  1  2 98
 0 0 0 155868  3012   0  50  2  0  0  0  0  0  1  0  0   22  181   97  0  1 99
 0 0 0 155868  3012   0  50  0  0  0  0  0  0  0  0  0   18  123   92  0  1 99
 0 0 0 155868  3012   0  50  0  0  0  0  0  0  0  0  0   21  126   95  0  1 99
 0 0 0 155804 17244 186 112 78  0 98  0 27  0 13  0  0   86  223  131  0 12 88
 0 0 0 155868 45840   0  50  0  0  0  0  0  0  0  0  0    7  119   50  0  1 99
 0 0 0 155868 45840   0  50  0  0  0  0  0  0  0  0  0   15  130   55  0  1 99
 0 0 0 155868 45840   0  50  0  0  0  0  0  0  0  0  0   14  122   52  0  1 99

if ((addr = mmap64((caddr_t)0, length, PROT_READ,
    MAP_SHARED, fd, offset)) == NULL) {
        perror("mmap failed");
        exit(1);
}

(void) madvise(addr, length, MADV_WILLNEED);
(void) munmap(addr, length);

# ./mmmap_willneed testfile&
# vmstat 3
procs     memory            page            disk          faults      cpu
 r b w   swap free   re  mf pi po fr de sr f0 s2 s3 s5   in   sy   cs us sy id
 0 0 0 155908 45760    0  50  0  0  0  0  0  0  0  0  0    7  121   53  0  1 99
 0 0 0 155864 3100    1  53  0 336 342 0 27 0  0  0 41  205  131   57  0  1 99
 0 0 0 155864 3964    2  54  0  0  0  0  0  0  0  0  0   15  122   53  0  1 99
 0 0 0 155864 3944   1  53  0  0  0  0  0  0  0  0  0    9  131   54  0  1 99
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read. An example of how MADV_SEQUENTIALcan be used on a range is shown
below.

If we run a simple process that reads sequentially through a process, we can see by
looking at the output of the vmstat  command that memory is freed as it is read.

Another benefit of MADV_SEQUENTIALis that files are read in advance, in groups
of 64 kilobytes. You can see this by looking at the I/O sizes with the iostat com-
mand. Our iostat example, below, shows that 98 I/Os per second are being read,
and a total of 6272 kilobytes per second is being read, with an average I/O size of
64 kilobytes.

11.5.2.4  The MADV_RANDOM Flag

By default, read-ahead is implemented on file reads (as described for the
MADV_SEQUENTIALflag). In some cases, we may know that our access pattern will
be completely random. In such cases, read-ahead offers no benefit and may, in fact,
add additional overhead, since I/Os will be done in 64-kilobyte chunks rather than

if ((addr = mmap64((caddr_t)0, length, PROT_READ,
    MAP_SHARED, fd, offset)) == NULL) {
        perror("mmap failed");
        exit(1);
}

(void) madvise(addr, length, MADV_SEQUENTIAL);
(void) munmap(addr, length);

# ./mmmap_seqread testfile&
# vmstat 3
procs     memory            page            disk          faults      cpu
 r b w   swap  free  re  mf pi po fr de sr f0 s2 s3 s5   in   sy   cs us sy id
 0 0 0 155864  3100   1  53  336 0 336 0 0  0  0  0 41  205  131   57  0  1 99
 0 0 0 155864  3100   1  53  339 0 339 0 0  0  0  0 41  205  131   57  0  1 99
 0 0 0 155864  3100   1  53  332 0 332 0 0  0  0  0 41  205  131   57  0  1 99
 0 0 0 155864  3100   1  53  338 0 338 0 0  0  0  0 41  205  131   57  0  1 99

# iostat -x 5

device    r/s  w/s   kr/s   kw/s wait actv  svc_t  %w  %b
fd0       0.0  0.0    0.0    0.0  0.0  0.0    0.0   0   0
sd6       0.0  0.0    0.0    0.0  0.0  0.0    0.0   0   0
ssd11     0.0  0.0    0.0    0.0  0.0  0.0    0.0   0   0
ssd12     0.0  0.0    0.0    0.0  0.0  0.0    0.0   0   0
ssd13     98.0 0.0 6272.0    0.0  0.0  3.7   73.7   0  93
ssd15     0.0  0.0    0.0    0.0  0.0  0.0    0.0   0   0
ssd16     0.0  0.0    0.0    0.0  0.0  0.0    0.0   0   0
ssd17     0.0  0.0    0.0    0.0  0.0  0.0    0.0   0   0
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page-sized chunks (usually 8 kilobytes). We can disable read-ahead by specifying
the MADV_RANDOM flag, as shown in the following example.

A simple test program shows that we are now reading 151 I/Os per second, with an
I/O rate of 1,198 kilobytes per second, an average I/O size of 8 kilobytes, as shown
below.

11.6 64-bit Files in Solaris

For many years Sun shipped systems with a maximum file system and file size of 2
gigabytes. This size was a constraint imposed by the number of bits in the offset
data types in the kernel. The size limitation occurred in three main places: the
disk address type, daddr_t ; the file system interface, off_t data type; and the
uio structure used for device drivers and some file system interfaces. The
pre-Solaris 2.0 types are both 32 bits, as shown below.

if ((addr = mmap64((caddr_t)0, length, PROT_READ,
    MAP_SHARED, fd, offset)) == NULL) {
        perror("mmap failed");
        exit(1);
}

(void) madvise(addr, length, MADV_RANDOM);
(void) munmap(addr, length);

# iostat -x 5

device    r/s  w/s   kr/s   kw/s wait actv  svc_t  %w  %b
fd0       0.0  0.0    0.0    0.0  0.0  0.0    0.0   0   0
sd6       0.0  0.0    0.0    0.0  0.0  0.0    0.0   0   0
ssd11     0.0  0.0    0.0    0.0  0.0  0.0    0.0   0   0
ssd12     0.0  0.0    0.0    0.0  0.0  0.0    0.0   0   0
ssd13    151.0 0.0 1198.0    0.0  0.0 10.2  150.2   0 100
ssd15     0.0  0.0    0.0    0.0  0.0  0.0    0.0   0   0
ssd16     0.0  0.0    0.0    0.0  0.0  0.0    0.0   0   0
ssd17     0.0  0.0    0.0    0.0  0.0  0.0    0.0   0   0

typedef long    daddr_t;
typedef long    off_t;

struct  uio {
        struct  iovec *uio_iov;
        int     uio_iovcnt;
        off_t   uio_offset;
        short   uio_segflg;
        short   uio_fmode;
        int     uio_resid;
};
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The daddr_t and uio_t structures are used by device drivers and by some of the
file system interfaces in the kernel, and the off_t data type is used extensively
throughout the kernel and user-land application programming interfaces.

11.6.1  64-bit Device Support in Solaris 2.0

Solaris 2.0 was implemented with partial 64-bit device support, with the aid of the
64-bit data type, longlong_t . Solaris 2.0 shipped with an additional disk address
type (lldaddr_t ), an additional offset type (lloff_t ), and a 64-bit-capable uio
structure. The expanded disk addresses and uio structure allow device support
beyond 2 Gbytes and allow file systems to span past the 2-Gbyte limit, to a theoret-
ical maximum of 263−1. The UFS file system in Solaris 2.x is expandable to 1 ter-
abyte, which is a UFS-specific limitation.

No user interfaces in Solaris 2.0 accessed large devices, which limited device
access and file sizes to 2 gigabytes.

11.6.2  64-bit File Application Programming Interfaces in
Solaris 2.5.1

With databases growing to over one terabyte in size and single disk devices grow-
ing past 2 gigabytes, application vendors required a mechanism to access data
sizes beyond 2 gigabytes. Full, large-file support was destined to appear in Solaris
2.6, but in Solaris 2.5., two interfaces were added to provide large-device support

typedef long            daddr_t;        /* <disk address> type */
typedef long            off_t;          /* ?<offset> type */

typedef longlong_t      offset_t;
typedef longlong_t      diskaddr_t;

/*
 * Partial support for 64-bit file offset enclosed herein,
 * specifically used to access devices greater than 2 GB.
 * However, support for devices greater than 2 GB requires compiler
 * support for long long.
 * XXX These assume big-endian machines XXX
 */
typedef union lloff {
        offset_t        _f;     /* Full 64-bit offset value */
        struct {
                long _u;        /* upper 32 bits of offset value */
                off_t _l;       /* lower 32 bits of offset value */
        } _p;
} lloff_t;

typedef union lldaddr {
        diskaddr_t      _f;     /* Full 64-bit disk address value */
        struct {
                long _u;        /* upper 32 bits of disk address value */
                daddr_t _l;     /* lower 32 bits of disk address value */
        } _p;
} lldaddr_t;

Header File <sys/types.h>
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for raw devices. While this may not have seemed like a significant addition, many
database vendors use raw devices for storage for database tables. The large-device
interfaces enable database vendors to address more than 2 gigabytes of space on
raw devices.

Since the read and write system calls do not contain disk offset addresses,
large-device interfacing was possible by the mere addition of an interface to seek to
a 64-bit address. The new interface added was llseek , appropriately named as a
long lseek . Note the use of the new offset type, offset_t , rather than the old
off_t .

The new llseek interface allowed a process to seek across a 64-bit file offset in
any device that supports large access. Only raw disk devices permit large access.
Since the llseek interface was added primarily for database vendors, and since
many database vendors take advantage of asynchronous I/O, two new interfaces
were created for asynchronous I/O on large (greater than 2 Gbyte) files.

Note that all of the Solaris 2.5.1 large-device interfaces require application
changes.

11.6.3  Solaris 2.6: The Large-File OS

Solaris 2.6 was the first Solaris release to provide support for files greater than 2
gigabytes. The file systems were enhanced to deal with files crossing the
2-gigabyte boundary, and a 64-bit file API was introduced to allow applications to
access large files.

Since the existing API had been using 32-bit offsets in all of the file seek inter-
faces, the existing APIs could not change without breaking Unix 95, POSIX, and
binary compatibility. For this reason, a transitional large-file interface was pro-
vided in Solaris 2.6.

typedef longlong_t      offset_t;

offset_t llseek(int fdes, offset_t off, int sbase)

Header File <sys/unistd.h>

typedef longlong_t      offset_t;

int aioread64(int fd, caddr_t *buf, int bufsz, offset_t offset,
              int whence, aio_result_t *resultp)

int aiowrite64(int fd, caddr_t *buf, int bufsz, offset_t offset,
              int whence, aio_result_t *resultp)

Header File <sys/asynch.h>
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11.6.3.1  The Large-File Summit

Sun was not the only vendor to have to address the large-file compatibility issues,
and an industry summit was called to specify a common set of large-file applica-
tion interfaces for 32-bit environments. (See the large-file summit documentation
at http://www.sas.com/standard/large.file/ ) The large-file summit speci-
fied a new set of interfaces, similar to the Unix 95/POSIX interfaces, but with an
extension of 64 added to the name of the interface. For example, the 32-bit
lseek() has an equivalent 64-bit interface, lseek64() . In addition to the new
interfaces, all of the existing interfaces are made large-file safe, so that appropri-
ate error conditions are returned if a large file is accessed (or a file grows beyond
the 2-Gbyte limit). Within the context of large-file support, a program is consid-
ered to be in one of two possible states:

• Large-file safe. The program will detect an operation being performed on a
large file and handle the errors without causing data loss or corruption.

• Large-file aware. The program can properly process large files.

The following changes in Solaris 2.6 provide large-file support:

• Appropriate error handling and checking in the 32-bit interfaces for large
files. The open system call will fail to open a large file in a non-large-file
application, and all 32-bit file APIs return E_OVERFLOWwhen they encounter
a regular file whose size is greater than or equal to 2 Gbytes.

• A new set of large-file summit APIs to access large files.

• File systems capable of large files, limited initially to UFS.
• Solaris commands enhanced to be large-file aware and large-file safe.

• An NFS implementation that is large-file compatible and safe.

11.6.3.2  Large-File Compilation Environments

Two compilation environments implement large-file support in Solaris 2.6 and
32-bit Solaris 7:

• The transitional compilation environment. The transitional compilation
environment simply adds the new 64-bit interfaces by using the 64() exten-
sion. You enable it by setting _LARGEFILE64_SOURCEto 1 before including
any system headers.

• The large-file compilation environment. The large-file compilation envi-
ronment uses the same interface names, with large offset types (off_t
becomes a longlong_t ). You enable it by setting _FILE_OFFSET_BITS to 64
before including any system headers.

Converting an application to use large files requires cleaning up code that con-
tains undetected type clashes. Frequently, a fundamental type of similar size has
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been used instead of the variable’s defined type. Also, much code has never been
updated to reflect standards such as POSIX.

Data types that have been extended to include the 64-bit version are listed in
Table 11-9.

You should also inspect code for incorrect casts and assignments and for correct
return types. lint is our friend here. Consider the example in the code segment
below.

In a large-file environment, this code would truncate the returned 64-bit offset to
32 bits, which might lead to data corruption later on. The code should be changed
to:

Any output or in-memory formatting strings used in reference to the large-file siz-
ing entities must be converted. In the current environment, a formatting string for
an offset can look like %ld . In the new environment, it must be converted to %lld
to accommodate values of type long long . Additionally, if any byte count infor-
mation accompanies the format, it, too, must be modified to accommodate larger
potential values.

For example,

Table 11-9 Large File Extended 64-bit Data Types

Type Description
ino_t File serial number
off_t Relative file pointer offsets and file sizes
fpos_t Unique file positions
rlim_t Resource limit values
blkcnt_t Number of disk blocks
fsblkcnt_t File system block counts
fsfilecnt_t File system inode counts

long curpos;
curpos = lseek(fd, 0L, SEEK_CUR);

off_t curpos;
curpos = lseek(fd, (off_t)0, SEEK_CUR);

off_t offset;
printf(" %7ld", offset);
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should be modified to:

If the compilation environment can be set for either small files or large files, it is
safest to place #ifdef  around the format string, such as:

You can find more information on the transitional and large-file interfaces in the
system manual pages, under interface64 (5), lf64 (5), and lfcompile (64).

Note that the transitional interfaces exist for 32-bit Solaris. Beginning with
64-bit Solaris 7, the file interfaces use the 64-bit data types for file offsets.

11.6.4  File System Support for Large Files

Starting with Solaris 2.6, large-file support was added to the UFS, CACHEFS, and
NFSV3 file systems. Each of these file systems can contain files larger than 2
gigabytes and can provide support to seek within the large offsets.

The UFS provides a mount option to control how it handles large files. By
default, it supports large files. Support for large files was also added to swapfs ,
which allows us to add swap devices and swap files of sizes up to 1 terabyte. Note
that the tmpfs in Solaris 2.6 has a maximum file size of 2 gigabytes. The maxi-
mum file size is unlimited with Solaris 7 in 64-bit mode.

off_t offset;
printf(" %7lld", offset);

off_t offset;
#if _FILE_OFFSET_BITS - 0 == 64
printf(" %7lld", offset);
#else
printf(" %7ld", offset);
#endif
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FILE SYSTEM
OVERVIEW
In the last chapter, we explored how an application accesses files and we exam-
ined the different interfaces that are available to access the data stored within a
file. In this chapter, we discuss how the file system provides the facilities that
allow us to do file I/O and how the file system manages files. Different types of file
systems are available within Solaris, and in this chapter we look at those different
types and explain some of the important file system features.

12.1 Why Have a File System?

The file system is an essential component of all Unix environments; it provides the
mechanism for the storage and retrieval of files and a hierarchical directory struc-
ture for naming of multiple files. A single Unix file system can hold thousands of
files, and the task of organizing the storage structures required to store files and
directories is insulated from the application.

A basic Unix file system enables the operating system to do the following:

• Create and delete files
• Open files for reading and writing
• Seek within a file
• Close files
• Create directories to hold groups of files
523



524 File System Overview
• List the contents of a directory
• Remove files from a directory

These functions have grown into what we have become accustomed to today as the
complex file manipulation facilities offered in the modern Unix environment. The
capabilities of the file systems have grown immensely, and the data management
interfaces they provide are much more extensive.

An application uses the file as an abstraction to address a linear range of bytes,
which are to be stored on some form of input/output medium, typically a storage
device such as a SCSI disk. To access a file, the operating system provides file
manipulation interfaces to open, close, read, and write the data within each file. In
addition to read and write, the operating system provides facilities to seek within
each file to allow random access to the data.

The storage devices also provide access to a linear series of data bytes, orga-
nized into groups of bytes known as blocks, for example, a 1-Gbyte disk stores 230

(1,073,741,824) bytes of data that can be accessed in 512-byte blocks. Each block of
data is individually addressable and can be accessed in a random order. By using
the basic file interfaces, an application can access all of the data in a storage device
by seeking to individual locations and retrieving the data. However, without any
organized storage of multiple files, each storage device appears to the application
as a single file. The job of the file system is to provide a layer between the applica-
tion’s notion of files and the storage device, so that multiple files can reside on a
single storage device, with the file system managing the storage of each file. The
file system presents each storage device as a series of directories, each of which
holds several files.

12.2 Support for Multiple File System Types

Solaris provides a flexible framework that allows multiple and different file sys-
tem types within the environment. The most common file system is the Unix file
system (UFS), which is used by default to hold all of the files in the root directory
hierarchy of the Unix file system. UFS is known as an “on disk” or “regular” file
system, which means that it uses a storage device to hold real file data.

In contrast, there are also file systems that look like regular file systems but
represent virtual devices. These are known as pseudo file systems. For example, in
Solaris the list of processes can be mounted as a file system and each process
appears as a file. The Solaris pseudo file systems represent processes, network
sockets, character device drivers, and some other virtual file abstractions. Table
12-1 summarizes the different file systems available in the Solaris environment.
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In addition to the file systems provided with Solaris, a number of third-party file
systems provide an additional set of features to the regular UFS file system, as
listed in Table 12-2.

12.3 Regular (On-Disk) File Systems

Regular file systems are those that allow storage of files and data on some form of
storage media and are the most commonly known type of file system. Regular file
systems implement the basic operating system facilities, which include the follow-
ing:

• Facilities to read and write file data
• Facilities for creating and deleting files themselves
• Facilities for creating and deleting directories to manage files

Table 12-1 File Systems Available in the Solaris File System Framework

File
System

Type Device Description

ufs Regular Disk Unix Fast File system, default in
Solaris

pcfs Regular Disk MS-DOS file system
hsfs Regular Disk High Sierra file system (CD-ROM)
tmpfs Regular Memory Uses memory and swap
nfs Pseudo Network Network file system
cachefs Pseudo File system Uses a local disk as cache for another

NFS file system
autofs Pseudo File system Uses a dynamic layout to mount other

file systems
specfs Pseudo Device drivers File system for the /dev  devices
procfs Pseudo Kernel /proc  file system representing pro-

cesses
sockfs Pseudo Network File system of socket connections
fifofs Pseudo Files FIFO file system

Table 12-2 Third-Party File Systems Available for Solaris

File System Type Device Description
vxfs Regular Disk Veritas file system
qfs Regular Disk QFS file system from LSC Inc.
samfs Regular Disk Veritas file system
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• Implementation of a hierarchical directory structure
• File access control and authentication
• File locking

File systems that are implemented on local storage are known as “on disk” file sys-
tems and use a rigid file system structure on the storage media. In this chapter, we
explore three disk-based file systems for Solaris:

• Solaris UFS — Blocked, allocated, logging file system with extentlike perfor-
mance

• VxFS — Extent-based logging file system from Veritas Corp.
• QFS — Extent-based file system from LSC Corp.

12.3.1  Allocation and Storage Strategy

A file system stores data on the storage device by managing the allocation of each
file’s blocks within the file system. The file system maintains the location of each
block for each file in an on-disk structure. Each file system uses a different method
for allocation and retrieval of file blocks.

There are two common types of file system space allocation strategies: block
allocation and extent allocation. Block-based allocation creates incremental disk
space for a file each time it is extended, whereas extent-based allocation creates a
large series of contiguous blocks each time the file exhausts the space available in
its last extent.

12.3.1.1  Block-Based Allocation

The block-based allocation mechanism is used by the traditional Unix file system,
such as UFS, and provides a flexible and efficient block allocation policy. Disk
blocks are allocated as they are used, which means that a minimal number of file
system blocks are allocated to a file in an attempt to conserve storage space.

When a file is extended, blocks are allocated from a free block map, so that
blocks are sometimes allocated in a random order. This random allocation can
cause excessive disk seeking, and subsequent reads from the file system will result
in the disk mechanism seeking to all of the random block locations that were allo-
cated during the extension of the file. Random block allocation can be avoided by
optimization of the block allocation policy so that it attempts to allocate a sequen-
tial series of blocks.

A smarter block allocation achieves large sequential allocations, resulting in
greatly reduced disk seeking. Continuous file system block allocation will, how-
ever, eventually end up with file blocks fragmented across the file system, and file
system access will eventually revert to a random nature.

The block allocation scheme also stores information about where each new block
is allocated every time the file is extended and whether the file is being extended a
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block at a time. Extra disk I/O is required to read and write the file system block
structure information. File system block structure information is known as meta-
data. File system metadata is always written synchronously to the storage device,
which means operations that change the size of a file need to wait for each meta-
data operation to complete. As a result, metadata operations can significantly slow
overall file system performance.

12.3.1.2  Extent-Based Allocation

Extent-based file systems allocate disk blocks in large groups at a time, thus forc-
ing sequential allocation. As a file is written, a large number of blocks are allo-
cated when the file is first created; then, writes can occur in large groups or
clusters of sequential blocks. File system metadata is written when the file is first
created; subsequent writes within the first allocation extent of blocks do not
require additional metadata writes until the next extent is allocated.

This approach optimizes the disk seek pattern, and the grouping of block writes
into clusters allows the file system to issue larger physical disk writes to the stor-
age device, saving the overhead of many small SCSI transfers. Figure 12.1 com-
pares block-based and extent-based allocation. We can see that the block address
number is required for every logical block in a file on a block-allocated file, result-
ing in a lot of metadata for each file. In the extent-based allocation method, only
the start block number and length are required for each contiguous extent of data
blocks. A file with only a few very large extents requires only a small amount of
metadata.

 Figure 12.1 Block- and Extent-Based Allocation

Extent-based file systems provide good performance for sequential file access
thanks to the sequential allocation policy and block clustering into larger writes.
However, many of the benefits of extent-based file systems may not be realized
when the file system is being used for random I/O.

For example, if we want to read sequentially through an extent-based file, we
only need to read the start block number and the length; then, we can continue to
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read all of the data blocks in that extent, which means there is very little meta-
data read overhead in reading sequentially. In contrast, if we were to read a file in
a random manner, we would need to look up the block address for the block we
want for every data block read, which is similar to what we would have to do with
a block-based file system.

Table 12-3 summarizes the allocation format for third-party file systems.

12.3.1.3  Extentlike Performance from Block Clustering

The sequential access performance of the block-allocated file systems quickly
became a major limiting factor for overall system performance. That was the moti-
vation for several enhancements to block allocation of file systems. In 1991, Kle-
iman and McVoy at Sun showed that when UFS was modified to allocate large
sequential series of disk blocks, and reads and writes were grouped into larger
clusters, UFS performed at rates similar to those of an extent-based file system.
The UFS file system allocator was enhanced so that UFS can allocate up to
16-Mbyte extents at a time when a file is sequentially written. This rate lays the
foundation to perform reads and writes larger than the block size when a file is
accessed sequentially, since the file system blocks are now in adjacent order on the
storage device.

Other enhancements to the UFS write code delay writes long enough so that one
large write can be performed instead of several smaller writes.

Similarly, the UFS read paths were changed so that if sequential access is being
made to a file, a whole group of blocks is read in at a time, effectively reading
ahead into the file being accessed. The read enhancements also enabled UFS to
generate large read requests of the storage device in place of smaller requests,
which eliminated the need to wait for many small individual disk I/Os for each
read.

The size of the groups or “block clusters” read and written is controlled by the
file system maxcontig parameter; it defaults to either 128 Kbytes or 1 Mbyte. We
talk more about cluster sizes in the following chapter.

The initial tests showed an increase in throughput of 100 percent, with a reduc-
tion of CPU overhead of 25 percent. Today, block clustering allows sequential reads
of single files at over 100 MB/s with some configurations. To make best use of the
block clustering and sequential allocation, you should preallocate a file when possi-

Table 12-3 File System Structure and Allocation

File System Allocation
Format

UFS Block
VxFS Extent
QFS Extent
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ble. Doing so provides proper sequential allocation of the disk blocks, so that future
disk I/O can take advantage of the block clustering capability for extended perfor-
mance.

12.3.2  File System Capacity

File system capacity has become more important as a limiting factor in recent
years because of the rapid growth of storage capacity. This growth is the result of
two important factors: disk capacity has grown from average sizes of 50 Mbytes to
over 36 Gbytes per spindle, and the introduction of logical storage (RAID) has
meant that storage device article size is now a function of the number of drives in
the storage device. Storage devices provide virtual disk representation of multiple
disks, and often 10 or more disks will be combined into a single virtual disk, with
sizes now exceeding the 1-Tbyte mark.

Many Unix file systems were designed in the early 80s to use disk sizes on the
order of 50 megabytes, and at the time, sizes of 1 terabyte sounded unrealistic; by
contrast, today’s storage devices are often configured with several terabytes of
capacity.

The mechanism by which devices are addressed in many Unix implementations
is a function of 32-bit addressing, which limits file and file system addresses to 2
gigabytes. As a result, early file systems were limited to a maximum file system
size of 2 gigabytes. When Solaris implemented 64-bit file offset pointers in the disk
device drivers, it enabled a file system to grow beyond the 2-gigabyte limit. The file
system could provide support beyond that limit because Solaris divides the file sys-
tem addresses into 512-byte sectors, which translates into a maximum file and file
system size of 2 31 * 512 = 1 Tbyte.

Solaris 2.6 added support to the operating system to allow logical file sizes up to
263 bytes, which means that a file on UFS may be as large as the file system, 1 ter-
abyte.

The Veritas VxFS and LSC QFS file systems provide support beyond 1 tera-
byte; in fact, file system sizes up to 263 bytes are supported.

Table 12-4 summarizes file system capacities.

Table 12-4 File System Capacities

File System Max Capacity Max File Size
SunOS 4.x UFS 2 GB 2 GB
Solaris UFS 1 TB 1 TB
VxFS 1 TB 1 TB
QFS 1 PB 1 PB
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12.3.3  Variable Block Size Support

The block size used by each file system often differs with the type of file system,
and in many cases each file system can support a range of different block sizes.
The block size of a file system is typically configured by a tunable parameter at the
time the file system is created.

The block size of a file system affects the performance and efficiency of the file
system in different ways. When a file is allocated, the last block in the file is partly
wasted. If the file is small, then the amount of overhead in the file system can be
large in proportion to the amount of disk space used by the files. A small block size
provides efficient space utilization since the space wasted in the last block of each
file is minimal; however, small block sizes increase the amount of information
required to describe the location and allocation of each disk block, which means
that sequential performance of large files can be adversely affected. A large block
size provides greater file system performance at the penalty of efficiency, since
more space is wasted at the end of each file.

Table 12-5 shows the amount of space wasted for 1,000 files of two different
sizes on file systems with various block sizes. The efficiency trade-off is clearly only
applicable for file systems containing many small files. File systems with file sizes
an order of magnitude higher than the block size have no significant space over-
head from the different block sizes, and since disk space is so cheap, the efficiency
overhead is rarely an issue.

Another important factor for block sizes is the data access size. Although the aver-
age file system size has mushroomed over the years, the average size of data that
is accessed is often still very small. For example, an OLTP database with tables
containing customer information such as name, address, zip occupies only a few
hundred bytes, and the read/write operations to the file systems will be very small.
Databases typically access the file systems in 2-, 4-, 8-, or 16-Kbyte sizes. Here, the
smaller block size may well be better suited to the size of the database access size.
A larger block size may provide better sequential performance, but the small and

Table 12-5 Space Efficiency for 1,000 Files with Different File/Block Sizes

Space Used % Waste File Size and File System Block
Size

2 MB 0 2-KB files on 512-byte blocks
2 MB 0 2-KB files on 1024-byte blocks
4 MB 50 2-KB files on 4096-byte blocks
8 MB 75 2-KB files on 8192-byte blocks
1 GB 0 1-MB files on 512-byte blocks
1 GB 0 1-MB files on 1024-byte blocks
1 GB 0 1-MB files on 4096-byte blocks
1 GB 0 1-MB files on 8192-byte blocks
1 GB 6 1-MB files on 64-Kbyte blocks
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random access from a database will not benefit from having to retrieve a larger
block, since they are only using a small portion of the block.

A block size of 4 or 8 Kbytes is often optimal for databases, where the largest
possible block size is optimal for large sequential file access. At this time, the
Solaris UFS only supports a 4- or 8-Kbyte block size. Table 12-6 shows the differ-
ent block sizes supported on different file systems.

The UFS file system provides an additional allocation unit known as a fragment,
which is smaller than the file system block size. A fragment can be allocated in the
last block of a file to provide more space efficiency when many small files are being
stored. The UFS fragment can be configured between 512 bytes and the block size
of the file system; it defaults to 1 Kbyte.

12.3.4  Access Control Lists

The traditional Unix file system provides a simple file access scheme based on
users, groups, and world, where each file is assigned an owner and a Unix group,
and then a bit map of permissions for user, group, and world is assigned, as illus-
trated in Figure 12.2.

 Figure 12.2 Traditional File Access Scheme

This scheme is flexible when file access permissions align with users and groups of
users, but it does not provide any mechanism to assign access to lists of users that
do not coincide with a Unix group. For example, if we want to give read access to
file1 to Mark and Chuck, and then read access to file2 to Chuck and Barb, then we
would need to create two Unix groups, and Chuck would need to switch groups
with the chgrp  command to gain access to either file.

Table 12-6 File System Block Size Support

File System Block Size Support Sub-Block Support
Solaris UFS 4 or 8 Kbytes 512-byte – 8-Kbyte fragments
VxFS 512 bytes to 8 Kbytes N/A
QFS 1 Kbyte to 32 Mbytes N/A

# -rw-rw----   1 rmc      staff       1883 Mar  1 16:43 memtool.c

User can read,
write, or exec-
ute the file.

Any user in the
users group can
read and write
the file.

Users outside the
user group cannot
read the file.

Unix user id

Unix group
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To overcome this drawback, some operating systems use an access control list
(ACL), where lists of users with different permissions can be assigned to a file.
Solaris introduced the notion of access control lists in the B1 secure version,
known as Trusted Solaris, in 1993. Trusted Solaris ACLs were later integrated
with the commercial Solaris version in 1995 with Solaris 2.5.

Solaris ACLs allow the administrator to assign a list of Unix user IDs and
groups to a file by using the setfacl command and to review the ACLs by using
the getfacl  command, as shown below.

For example, we can assign access to a file for a specific user by using the set-
facl command. Note that the Unix permissions on the file now contain a +, signi-
fying that an access control list is assigned to this file.

Multiple users and groups can be assigned to a file, offering a flexible mecha-
nism for assigning access rights. ACLs can be assigned to directories as well. Note
that unlike the case with some other operating systems, access control lists are not
inherited from a parent, so a new directory created under a directory with an ACL
will not have an ACL assigned by default. Table 12-7 lists file system support for
ACLs.

12.3.5  File Systems Logging (Journaling)

Important criteria for commercial systems are reliability and availability, both of
which may be compromised if the file system does not provide the required level of
robustness. We have become familiar with the term journaling to mean just one

# setfacl -m user:jon:rw- memtool.c
# getfacl memtool.c

# file: memtool.c
# owner: rmc
# group: staff
user::r--
user:jon:rw-            #effective:r--
group::r--              #effective:r--
mask:r--
other:r--

# ls -l memtool.c
-r--r--r--+  1 rmc      staff        638 Mar 30 11:32 memtool.c

Table 12-7 File System ACL Support

File System ACL Support?
Solaris 2.0-2.4 UFS No
Solaris 2.5 UFS Yes
VxFS Yes
QFS No
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thing, but, in fact, file system logging can be implemented in several ways. The
three most common forms of journaling are:

• Metadata logging — Logs only file system structure changes
• File and metadata logging — Logs all changes to the file system
• Log-structured file system — The entire file system is implemented as a log

A file system must be able to deliver reliable storage to the hosted applications,
and in the event of a failure, it must also be able to provide rapid recovery to a
known state.

The original implementations of Unix file systems did not meet these criteria.
They left the file system in an unknown state in the event of a system crash or
power outage, and often took a very long time (30+ hours for a 50-Gbyte file sys-
tem) for consistency checking at boot time.

We can dramatically increase the robustness of a file system by using logging to
prevent the file system structure from becoming corrupted during a power outage
or a system failure. The term journaling describes a file system that logs changes
to on-disk data in a separate, sequential, rolling log. The primary reason for using
this procedure is that it maintains an accurate picture of file system state, so that
in the event of a power outage or system crash, the state of the file system is
known. Then, rather than scanning the entire file system with fsck , we can check
the file system log and correct the last few updates as necessary. A logging file sys-
tem can mean the difference between mounting a heavily populated file system in
20 seconds versus 30+ hours without a log.

Logging does not come for free and incurs a significant performance overhead.
Logging does require more slow synchronous writes, and the most popular imple-
mentation of logging (metadata logging) requires at least three writes per file
update, which is significantly more than would be required without logging.

Because of those costs, we should evaluate our requirements. Do we want the
file system to go fast, or do we need maximum reliability? For example, if we are
using a file system for a high-performance HPC task that creates a lot of output
files, we want absolute performance but may not care about file system robustness
if a power outage occurred, and in this case we should choose not to use logging.
On the other hand, if we are building a clustered database system, we absolutely
require file system reliability, and logging is mandatory, even considering the per-
formance overhead.

Table 12-8 shows the types of logging used in different file systems.

Table 12-8 File System Logging Characteristics

File System Logging Characteristics Comments
UFS (2.6 & earlier) No logging without SDS
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12.3.5.1  Metadata Logging

The most common form of file system logging is metadata logging. When a file sys-
tem makes changes to its on-disk structure, it uses several disconnected synchro-
nous writes to make the changes. If an outage occurs halfway through an
operation, the state of the file system is unknown, and the whole file system must
be consistency checked.

For example, if one block is appended to the end of a file, the on-disk map that
tells the file system the location of each block for the file needs to be read, modi-
fied, and rewritten to the disk before the data block is written. When a failure
occurs, the file system must be checked before it is mounted at boot, and the file
system doesn’t know if the block map is correct and also doesn’t know which file
was being modified during the crash. This situation means a full file system scan,
often taking minutes or hours.

A metadata logging file system has a cyclic, append-only log area on the disk
that it can use to record the state of each disk transaction. Before any on-disk
structures are changed, an intent-to-change record is written to the log. The direc-
tory structure is then updated, and when complete, the log entry is marked com-
plete. Since every change to the file system structure is in the log, we can check the
consistency of the file system by looking in the log, and we need not do a full file
system scan. At mount time, if an intent-to-change entry is found but not marked
complete, then the file structure for that block is checked and adjusted where nec-
essary. Figure 12.3 illustrates how metadata logging works.

Solaris 2.4-2.5.1 UFS
with SDS 3.0-4.x

Metadata logging with log-
ging of small sync data

Can have separate LOG
device

Solaris 2.6 with SDS
3.0-4.x

Metadata logging only Can have separate LOG
device

Solaris 7 UFS Metadata logging Log is embedded in file
system

VxFS Data and metadata logging Default is metadata
logging only

VxFS with NFS Acc. Data and metadata logging Log is placed on a sepa-
rate device

QFS Logging not necessary Can do quick mount on
reboot without fsck
after crash

Table 12-8 File System Logging Characteristics  (Continued)

File System Logging Characteristics Comments
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 Figure 12.3 File System Metadata Logging

This method of logging has been implemented successfully on several file systems
and is the basis for the logging UFS file system used in Solaris. It retains the
on-disk file system structure for UFS and can be enabled or disabled at any time
without the need to change on-disk data. The Veritas VxFS file system also uses
metadata logging.

Some file systems have the log embedded in the same partition as the file sys-
tem data, whereas others allow separation of the log from the file system. The
unbundled UFS logging in Solstice DiskSuite allows a separate log and data; the
bundled logging UFS in Solaris 7 does not. Veritas allows the log to be separated
only when the Veritas NFS Accelerator option is purchased to enable this feature.

12.3.5.2  Data and Metadata Logging

Some file systems provide an option to put file data into the log in conjunction with
the metadata. This approach can be particularly useful for small synchronous
writes, which would require two or more writes to different parts of the disk for
every application write (one for the data and one for the log write). By putting the
data into the log, we can avoid the second seek and write. The data is first written
to the log and then replayed into the file system. This technique does two things: it
ensures data integrity up to but not including the last block written, and it can
help performance for small synchronous writes. The Veritas VxFS file system has
an option to log both data and metadata.

1

2

3

Log is updated
to indicate start
of transaction.

File system
is modified.

Log transaction
is marked complete
and deleted.

LOG DATA
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12.3.5.3  Log-Structured File Systems

Traditional file systems are block allocated, and device blocks are allocated from a
map of free blocks. An alternative file system format is a log-structured file sys-
tem that implements the entire file system as a log. The log-structured file system
appends data blocks to the end of the log each time blocks are written to a file,
invalidating earlier-written blocks as it goes. This approach allows every file to be
written to sequentially, regardless of the block order of the writes and thus pro-
vides very fast write performance.

The log-structured file system provides extremely high write performance at the
cost of read performance and increased complexity. Read performance is often
much slower since blocks are allocated in the order they are written, which may
mean that files are fragmented across the disk in an arbitrary order. Complexity
increases because a separate garbage collector or cleaner process is needed to scan
the file system and remove invalidated blocks. Moreover, a and a complex cach-
ing/lookup mechanism is required to enable efficient lookup because blocks are
allocated in a random order, and the location of the blocks for each file must be
maintained.

Log-structured file systems prove to be efficient in metadata-intensive environ-
ments but have yet to be proven more efficient for data-intensive workloads. It is
important to note the difference between log-structured and logging file systems.
Log-structured file systems are also known as “write anywhere file system layout”
(WAFL).

No log-structured file systems are currently available for Solaris.

12.3.6  Expanding and Shrinking File Systems

A common requirement for on-line storage management is the ability to grow and
shrink file systems. Early file systems did not support this requirement, since a
disk was fixed in size. Now that we have virtual disks by means of volume manag-
ers, we can change the size of the underlying device. Without the ability to grow a
file system, we would need to back up the file system, make the file system again
with mkfs /newfs , and then restore all the file system data. A file system that can
grow in size online removes the need for this disruptive process. A Solaris UFS file
system can be extended by the mkfs command with the -M option for a mounted
file system and the -G option for an unmounted file system. We show examples in
the following sections.

In addition to growing a file system, we sometimes need to do the reverse. For
example, if we want to reclaim some space from one device to assign to another, we
would need to shrink the file system first, so that any allocated file blocks are
moved away from the end of the file system that is being shrunk.

Table 12-9 lists the support for expanding and shrinking in different file sys-
tems.
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12.3.7  Direct I/O

To provide near-device performance, many file systems offer the option to bypass
the file system cache through a mechanism known as direct I/O. This option
reduces the overhead of managing cache allocation and completely removes all
interaction between the file system and the memory system. In many cases, the
resulting performance can be many times worse, since there is no cache to buffer
reads and writes, but when caching is done in the application, direct I/O can be a
benefit. Another important use of direct I/O is backups, where we don’t want to
read a file into the cache during a backup.

Applications such as databases do their own caching, and direct I/O offers a
mechanism to avoid the double caching that would occur if applications were to
use a regular file system. Without direct I/O, an application reads a file block into
the Solaris file system cache, and then reads it into the database shared buffer
(e.g., Oracle’s block cache), so the block exists in two places. However, with direct
I/O, the block is read directly into the database cache without passing through the
regular file system cache.

Because direct I/O bypasses the file system cache, it also disables file system
read-ahead. This means that small reads and writes result in many I/O requests to
the storage device that would have otherwise been clustered into larger requests
by the file system; hence, direct I/O should only be used for random I/O or
large-block sequential I/O.

Another side effect of direct I/O is that it does not put a load on the Solaris
memory system and removes the typical paging that can be seen when a regular
file system is used. This effect is a frequent motivator for the use of direct I/O, but
note that the new Priority Paging feature of Solaris provides similar separation
between the file systems and applications. Refer to “Is All That Paging Bad for My
System?” on page 608 for details on how Priority Paging improves file system
behavior.

Direct I/O was initially implemented in the UFS, and VxFS has subsequently
been enhanced to provide a wide range of direct I/O facilities. The UFS direct I/O
facility provides a mechanism to enable direct I/O per file or per file system. The
VxFS file system implements direct I/O automatically for I/O sizes larger than 256
Kbytes by default (this size can be tuned) and also provides a mechanism to create
a raw device that represents direct access to the file. QFS has options similar to
those for UFS to allow direct I/O on a per-file basis.

Table 12-9 File System Grow/Shrink Support

File System Grow Shrink
Basic UFS Yes, with mkfs -M No
VxFS Yes, with fsadm Yes, with fsadm
QFS Yes, with growqfs No
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12.3.7.1  Sparse Files

Some file systems allow the creation of files without allocation of disk blocks. For
example, you can create a 1-Gbyte file by opening a file, seeking to 1 Gbyte, and
then writing a few bytes of data. The file is essentially created with a hole in the
middle, and although the file size is reported as 1 Gbyte, only one disk block would
be used to hold such a file.

Files with allocation holes are known as sparse files. Accesses to locations with
a sparse file that has no blocks allocated simply return a series of zeros, and blocks
are not allocated until that location within the file is written to. Sparse files are
particularly useful when memory mapped files or files for databases are used,
since they remove the need for complex file allocation algorithms within an appli-
cation. For example, a simple database application can store records in a file by
seeking to the required offset and storing the record; then the file will only use as
much space as there are records in the file and will leave holes where there are
empty records.

12.3.7.2  Integrated Volume Management

Volume management allows multiple physical disks to be used as a single volume
to provide larger aggregate volume sizes, better performance, and simpler manage-
ment. Volume managers are typically implemented as a separate layer between
the physical disks and present themselves as a virtual disk device. Databases and
file systems can be mounted on these larger virtual disk devices, and the same
management techniques can be used to manage data within each virtual volume.

Some file systems provide volume management capabilities within the file sys-
tem. The QFS file system from LSC provides integrated volume management and
allows striping and concatenation of files within the file system. The file system is
configured on multiple devices, rather than on the traditional single device. Each
file within the file system can be concatenated or striped with different interlace
sizes, on a file-by-file basis.

12.3.7.3  Summary of File System Features

In this section, we have explored the most common file system features and drawn
some comparisons between some different file systems. Table 12-10 summarizes
the file system features we have covered so far.

Table 12-10 Summary of File System Features

Feature UFS VxFS QFS Notes
Max file size 1TB 263 263 Maximum file size.
Max file sys-
tem size

1TB 263 263 Maximum size of file system.

Logging Yes Yes No Greater data integrity, faster reboot,
faster fsck .
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Separate log Yes,
with
SDS

Yes,
with
NFS
Acc.

No A separate log device can be attached
to the file system to avoid seeking
backward and forward from the log to
the data.

Extent based No Yes Yes Fewer disk seeks due to simpler block
allocation schemes.

Direct I/O Yes,
2.6

Yes Yes Direct I/O options allow bypassing of
the page cache based on mount options
and runtime directives.

Expandable Yes Yes No The file system size can be expanded
online.

Shrinkable No Yes No The file system size can be shrunk
online.

Snapshot, by
locking file
system

Yes Yes No The file system can be locked and fro-
zen for a backup snapshot. Locking
suspends all file system activity dur-
ing the backup.

Online snap-
shot

No Yes No A frozen version of the file system can
be mounted while the main file sys-
tem is online. This version can be used
for online backup.

Quotas Yes Yes No Disk space quotas can be enforced.
ACLs Yes Yes No Enhanced file permissions via Access

Control Lists.
HSM capable No Yes Yes Automatic hierarchical storage man-

agement options available.
Page cache
friendly

Yes No Yes UFS will not cause memory shortage
when used in sequential mode. VxFS
must be used in direct or sequential
advise mode to avoid causing a mem-
ory shortage.

Stripe align-
ment

No Yes Yes Ability to align clustered writes with
storage stripe to allow whole stripe
writes. Provides superior RAID-5 per-
formance.

Integrated Vol-
ume Manager

No No Yes Striping and concatenation across
multiple storage devices possible from
file system.

Table 12-10 Summary of File System Features  (Continued)

Feature UFS VxFS QFS Notes
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 13
FILE SYSTEM
FRAMEWORK
In this chapter, we introduce the kernel file system framework and discuss the
implementation of the kernel file system architecture.

13.1 Solaris File System Framework

Solaris includes a framework, the virtual file system framework, under which mul-
tiple file system types are implemented. Earlier implementations of Unix used a
single file system type for all of the mounted file systems, typically, the UFS file
system from BSD Unix. The virtual file system framework was developed to allow
Sun’s distributed computing file system (NFS) to coexist with the UFS file system
in SunOS 2.0; it became a standard part of System V in SVR4 and Solaris.

Each file system provides file abstractions, arranged in a hierarchical directory
structure. We can categorize Solaris file systems into the following types:

• Storage based — Regular file systems that provide facilities for persistent
storage and management of data. The Solaris UFS and PC/DOS file systems
are examples.

• Network file systems — File systems that provide files which appear as if
they are in a local directory structure, but are stored on a remote network
server; for example, NFS.
541
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• Pseudo file systems — File systems that present various abstractions as
files in a file system. The /proc pseudo file system represents the address
space of a process as a series of files.

13.1.1  Unified File System Interface

The framework provides a single set of well-defined interfaces that are file system
independent; the implementation details of each file system are hidden behind
these interfaces. Two key objects represent these interfaces: the virtual file, or
vnode, and the virtual file system, or vfs objects. The vnode interfaces implement
file-related functions, and the vfs interfaces implement file system management
functions. The vnode and vfs interfaces direct functions to specific file systems,
depending on the type of file system being operated on. Figure 13.1 shows the file
system layers. File-related functions are initiated through a system call or from
another kernel subsystem and are directed to the appropriate file system by the
vnode/vfs  layer.

 Figure 13.1 Solaris File System Framework
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13.1.2  File System Framework Facilities

The vnode/vfs interfaces—the “top end” of the file system module—implement
vnode and vfs objects. The “bottom end” of the file system uses other kernel inter-
faces to access, store, and cache the data they represent. Disk-based file systems
interface to device drivers to provide persistent storage of their data, and they
interface to network file systems access the networking subsystem to transmit and
receive data to remote systems. Pseudo file systems typically access local kernel
functions and structures to gather the information they represent.

• Loadable file system modules — A dynamically loadable module type is
provided for Solaris file systems. File system modules are dynamically loaded
at the time each file system type is first mounted (except for the root file sys-
tem, which is mounted explicitly at boot).

• The vnode/vfs framework — As discussed, a unified interface frame-
work that uses the vnode and vfs interfaces allows file functions and file sys-
tem management functions to be implemented.

• File system caching — File systems that implement caching interface with
the HAT layer of the virtual memory system to map, unmap, and manage the
memory used for caching. File systems use physical memory pages and the
HAT layer of the virtual memory system to cache files. The kernel’s seg_map
driver maps file system cache into the kernel’s address space when accessing
the file system through the read()  and write()  system calls.

• Path-name management — Files are accessed by means of path names,
which are assembled as a series of directory names and file names. The file
system framework provides routines that resolve and manipulate path names
by calling into the file system’s lookup() function to convert paths into
vnode pointers.

• Directory name caching — A central directory name lookup cache (DNLC)
provides a mechanism to cache pathname-to-vnode mappings, so that the
directory components need not be read from disk each time they are needed.

13.2 The vnode

A vnode is a representation of a file in the Solaris kernel. The vnode is said to be
objectlike because it is an encapsulation of a file’s state and the methods that can
be used to perform operations on that file. A vnode represents a file within a file
system; the vnode hides the implementation of the file system it resides in and
exposes file system-independent data and methods for that file to the rest of the
kernel.

A vnode  object contains three important items (see Figure 13.2):
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• File-system-independent data — Information about the vnode , such as
the type of vnode (file, directory, character device, etc.), flags that represent
state, pointers to the file system that contains the vnode , and a reference
count that keeps track of how many subsystems have references to the
vnode .

• Functions to implement file methods — A structure of pointers to
file-system-dependent functions to implement file functions such as open() ,
close() , read() , and write() .

• File-system-specific data — Data that is used internally by each file sys-
tem implementation; typically the in-memory inode that represents the
vnode on the underlying file system. UFS uses an inode, NFS uses an rnode ,
and tmpfs uses a tmpnode .

The kernel uses macros to call vnode functions. In that way, it can perform vnode
operations (e.g., read() , write() , open() , close() ) without knowing what the
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 Figure 13.2 The Vnode Object

vop_open()

struct

vop_read()

vop_write()

vop_close()

vop_ioctl()

vop_create()

vnodeops

• VREG – Regu-
lar File

• VDIR – Directory
• VBLK – Block

Device
• VCHR – Charac-

ter Device

(UFS inode shown
in this example)



The vnode 545
underlying file system containing the vnode is. For example, to read from a file
without knowing that it resides on a UFS file system, the kernel would simply call
the file-system-independent macro for read() , VOP_READ(), which would call the
vop_read() method of the vnode , which in turn calls the UFS function,
ufs_read() . A sample of a vnode  macro from sys/vnode.h  is shown below.

The structure of a vnode in Solaris can be found in sys/vnode.h and is shown
below. It defines the basic interface elements and provides other information con-
tained in the vnode .

13.2.1 vnode Types

Solaris has specific vnode types for files. The v_type field in the vnode structure
indicates the type of vnode , as described in Table 13-1.

#define VOP_READ(vpp, mode, cr) \
            (*(*(vpp))->v_op->vop_read)(vpp, mode, cr)

Header File <sys/vnode.h>

typedef struct vnode {
        kmutex_t        v_lock;                /* protects vnode fields */
        ushort_t        v_flag;                /* vnode flags (see below) */
        uint_t          v_count;               /* reference count */
        struct vfs      *v_vfsmountedhere;     /* ptr to vfs mounted here */
        struct vnodeops *v_op;                 /* vnode operations */
        struct vfs      *v_vfsp;               /* ptr to containing VFS */
        struct stdata   *v_stream;             /* associated stream */
        struct page     *v_pages;              /* vnode pages list */
        enum vtype      v_type;                /* vnode type */
        dev_t           v_rdev;                /* device (VCHR, VBLK) */
        caddr_t         v_data;                /* private data for fs */
        struct filock   *v_filocks;            /* ptr to filock list */
        struct shrlocklist *v_shrlocks;        /* ptr to shrlock list */
        kcondvar_t      v_cv;                  /* synchronize locking */
} vnode_t;

Header File <sys/vnode.h>

Table 13-1 Solaris 7 vnode Types from sys/vnode.h

Type Description
VNON No type
VREG Regular file
VDIR Directory
VBLK Block device
VCHR Character device
VLNK Hard link
VFIFO Named pipe
VDOOR Doors interface
VPROC procfs  node
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13.2.2  Vnode Methods

The vnode interface provides the set of file system object methods, some of which
we saw in Figure 13.1 on page 542. The file systems implement these methods to
perform all file-system-specific file operations. Table 13-2 shows the vnode inter-
face methods in Solaris.

VSOCK sockfs  node (socket)
VBAD Bad vnode

Table 13-2 Solaris 7 Vnode Interface Methods from sys/vnode.h

Method Description
vop_access() Checks access to the supplied vnode .
vop_addmap() Increments the map count.
vop_close() Closes the file given by the supplied vnode . When this is

the last close, some files systems use vop_close()  to
initiate a writeback of outstanding dirty pages by check-
ing the reference count in the vnode .

vop_cmp() Compares two vnode s.
vop_create() Creates the supplied path name.
vop_delmap() Decrements the map count.
vop_dispose() Frees the given page from the vnode .
vop_dump() Dumps data when the kernel is in a frozen state.
vop_dumpctl() Prepares the file system before and after a dump.
vop_frlock() Does file and record locking for the supplied vnode .
vop_fsync() Flushes out any dirty pages for the supplied vnode .
vop_getattr() Gets the attributes for the supplied vnode .
vop_getpage() Gets pages in the range offset and length for the vnode

from the backing store of the file system. Does the real
work of reading a vnode . This method is often called as a
result of read() , which causes a page fault in seg_map,
which calls vop_getpage .

vop_getsecattr() Gets security access control list attributes.
vop_inactive() Frees resources and releases the supplied vnode . The file

system can choose to destroy the vnode  or put it onto an
inactive list, which is managed by the file system imple-
mentation

vop_ioctl() Performs an I/O control on the supplied vnode .
vop_fid() Gets a unique file ID for the supplied vnode . Used for

NFS client consistency.

Table 13-1 Solaris 7 vnode Types from sys/vnode.h  (Continued)

Type Description
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vop_link() Creates a hard link to the supplied vnode .
vop_lookup() Looks up the path name for the supplied vnode . The

vop_lookup()  does file-name translation for the open ,
stat  system calls.

vop_map() Maps a range of pages into an address space by doing the
appropriate checks and calling as_map() .

vop_mkdir() Makes a directory of the given name.
vop_open() Opens a file referenced by the supplied vnode . The

open()  system call has already done a vop_lookup()
on the path name, which returned a vnode  pointer and
then calls to vop_open() . This function typically does
very little, since most of the real work was performed by
vop_lookup() .

vop_pageio() Paged I/O support for file system swap files.
vop_pathconf() Establishes file system parameters with the pathconf

system call.
vop_poll() File system support for the poll()  system call.
vop_putpage() Writes pages in the range offset and length for the vnode

to the backing store of the file system. Does the real work
of reading a vnode .

vop_read() Reads the range supplied for the given vnode .
vop_read()  typically maps the requested range of a file
into kernel memory and then uses vop_getpage()  to do
the real work.

vop_readdir() Reads the contents of a directory.
vop_readlink() Follows the symlink in the supplied vnode .
vop_realvp() Gets the real vnode  from the supplied vnode .
vop_remove() Removes the file for the supplied vnode .
vop_rename() Renames the file to the new name.
vop_rmdir() Removes a directory pointed to by the supplied vnode .
vop_rwlock() Holds the reader/writer lock for the supplied vnode . This

method is called for each vnode , with the rwflag set to 0
inside a read()  system call and the rwflag  set to 1
inside a write()  system call. POSIX semantics require
only one writer inside write()  at a time. Some file sys-
tem implementations have options to ignore the writer
lock inside vop_rwlock() .

vop_rwunlock() Releases the reader/writer lock for the supplied vnode .
vop_seek() Seeks within the supplied vnode .
vop_setattr() Sets the attributes for the supplied vnode .

Table 13-2 Solaris 7 Vnode Interface Methods from sys/vnode.h

Method Description
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13.2.3 vnode Reference Count

A vnode is created by the file system at the time a file is first opened or created
and stays active until the file system decides the vnode is no longer needed. The
vnode framework provides an infrastructure that keeps track of the number of ref-
erences to a vnode . The kernel maintains the reference count by means of the
VN_HOLD() and VN_RELE() macros, which increment and decrement the v_count
field of the vnode . A vnode stays valid while its reference count is greater than
zero, so a subsystem can rely on a vnode ’s contents staying valid by calling
VN_HOLD() before it references a vnode ’s contents. It is important to distinquish a
vnode reference from a lock; a lock ensures exclusive access to the data, and the
reference count ensures persistence of the object.

When a vnode ’s reference count drops to zero, VN_RELE() invokes the
VOP_INACTIVE() method for that file system. Every subsystem that references a
vnode is required to call VN_HOLD() at the start of the reference and to call
VN_RELE() at the end of each reference. Some file systems deconstruct a vnode
when its reference count falls to zero; others hold on to the vnode for a while so
that if it is required again, it is available in its constructed state. The UFS file sys-
tem, for example, holds on to the vnode for a while after the last release so that
the virtual memory system can keep the inode and cache for a file, whereas the
PCFS file system frees the vnode and all of the cache associated with the vnode at
the time VOP_INACTIVE()  is called.

13.2.4  Interfaces for Paging vnode Cache

Solaris unifies file and memory management by using a vnode to represent the
backing store for virtual memory. A page of memory represents a particular vnode
and offset. The file system uses the memory relationship to implement caching for
vnode s within a file system. To cache a vnode , the file system has the memory
system create a page of physical memory that represents the vnode  and offset.

The virtual memory system provides a set of functions for cache management
and I/O for vnodes . These functions allow the file systems to cluster pages for I/O

vop_setfl() Sets file locks on the supplied vnode .
vop_setsecattr() Sets security access control list attributes.
vop_shrlock() ONC shared lock support.
vop_space() Frees space for the supplied vnode .
vop_symlink() Creates a symbolic link between the two path names.
vop_write() Writes the range supplied for the given vnode . The

write  system call typically maps the requested range of
a file into kernel memory and then uses vop_putpage()
to do the real work.

Table 13-2 Solaris 7 Vnode Interface Methods from sys/vnode.h

Method Description
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and handle the setup and checking required for syncing dirty pages with their
backing store. The functions, described in Table 13-3, set up pages so that they can
be passed to device driver block I/O handlers.

Table 13-3 Solaris 7 vnode Paging Functions from vm/pvn.h

Function Description
pvn_getdirty() Queries whether a page is dirty. Returns 1 if the

page should be written back (the iolock is held in
this case), or 0 if the page has been dealt with or
has been unlocked.

pvn_plist_init() Releases the iolock on each page and downgrades
the page lock to shared after new pages have been
created or read.

pvn_read_done() Unlocks the pages after read is complete. The func-
tion is normally called automatically by
pageio_done()  but may need to be called if an
error was encountered during a read.

pvn_read_kluster() Finds the range of contiguous pages within the
supplied address / length that fit within the pro-
vided vnode  offset / length that do not already
exist. Returns a list of newly created, exclusively
locked pages ready for I/O. Checks that clustering
is enabled by calling the segop_kluster()
method for the given segment.
On return from pvn_read_kluster , the caller
typically zeroes any parts of the last page that are
not going to be read from disk, sets up the read
with pageio_setup  for the returned offset and
length, and then initiates the read with
bdev_strategy() . Once the read is complete,
pvn_plist_init( ) can release the I/O lock on
each page that was created.

pvn_write_done() Unlocks the pages after write is complete. For
asynchronous writes, the function is normally
called automatically by pageio_done()  when an
asynchronous write completes. For synchronous
writes, pvn_write_done()  is called after
pageio_done  to unlock written pages. It may also
need to be called if an error was encountered dur-
ing a write.
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13.2.5  Block I/O on vnode Pages

The block I/O subsystem provides support for initiating I/O to and from vnode
pages. Three functions, shown in Table 13-4, initiate I/O between a physical page
and a device.

13.3 The vfs Object

The vfs layer provides an administrative interface into the file system to support
commands like mount and umount in a file-system-independent manner. The

pvn_write_kluster() Finds the contiguous range of dirty pages within
the supplied offset and length. Returns a list of
dirty locked pages ready to be written back.
On return from pvn_write_kluster() , the caller
typically sets up the write with pageio_setup  for
the returned offset and length, then initiates the
write with bdev_strategy() . If the write is syn-
chronous, then the caller should call
pvn_write_done()  to unlock the pages. If the
write is asynchronous, then the io_done  routine
calls pvn_write_done  when the write is complete.

pvn_vplist_dirty() Finds all dirty pages in the page cache that have
an offset greater than the supplied offset and calls
the supplied putapage()  routine.
pvn_vplist_dirty()  is often used to synchro-
nize all dirty pages for a vnode  when
vop_putpage  is called with a zero length.

Table 13-4 Solaris7 Paged I/O Functions from sys/bio.h

Function Description
bdev_strategy() Initiates an I/O on a page, using the block I/O

device.
pageio_done() Waits for the block device I/O to complete.
pageio_setup() Sets up a block buffer for I/O on a page of memory

so that it bypasses the block buffer cache by set-
ting the B_PAGEIOflag and putting the page list on
the b_pages  field.

Table 13-3 Solaris 7 vnode Paging Functions from vm/pvn.h  (Continued)

Function Description
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interface achieves independence by means of a virtual file system (vfs ) object. The
vfs object represents an encapsulation of a file system’s state and a set of meth-
ods for each of the file system administrative interfaces. Each file system type pro-
vides its own implementation of the object. Figure 13.3 illustrates the vfs  object.

Table 13-5 lists all the vfs  interface methods.

Table 13-5 Solaris 7 vfs  Interface Methods from sys/vfs.h

Method Description
vfs_mount() Mounts a file system on the supplied vnode .
vfs_unmount() Unmounts the file system.
vfs_root() Finds the root vnode  for a file system.
vfs_statvfs() Queries statistics on a file system.
vfs_sync() Flushes the file system cache.
vfs_vget() Finds a vnode  that matches a unique file ID.
vfs_mountroot() Mounts the file system on the root directory.
vfs_swapvp() Not used.

vfs_next

struct vfs

vfs_fstype
vfs_op
.
.
v_data

vfs_mountroot()

.

.

 Figure 13.3 The vfs Object
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The vfs interface, with the relevant data structures from sys/vfs.h , is shown
below.

13.3.1  The File System Switch Table

The file system switch table, shown below, is a systemwide table of file system
types. Each file system type that is loaded on the system can be found in the vir-
tual file system switch table. The file system switch table provides an ASCII list of
file system names (e.g., ufs , nfs ), the initialization routines, and vfs object meth-

/
 * Structure per mounted file system. Each mounted file system has
 * an array of operations and an instance record.
 *
 * The file systems are kept on a singly linked list headed by "rootvfs" and
 * terminated by NULL. File system implementations should not access this
 * list; it's intended for use only in the kernel's vfs layer.
 */
typedef struct vfs {
        struct vfs      *vfs_next;              /* next VFS in VFS list */
        struct vfsops   *vfs_op;                /* operations on VFS */
        struct vnode    *vfs_vnodecovered;      /* vnode mounted on */
        uint_t          vfs_flag;               /* flags */
        uint_t          vfs_bsize;              /* native block size */
        int             vfs_fstype;             /* file system type index */
        fsid_t          vfs_fsid;               /* file system id */
        caddr_t         vfs_data;               /* private data */
        dev_t           vfs_dev;                /* device of mounted VFS */
        ulong_t         vfs_bcount;             /* I/O count (accounting) */
        ushort_t        vfs_nsubmounts;         /* immediate sub-mount count */
        struct vfs      *vfs_list;              /* sync list pointer */
        struct vfs      *vfs_hash;              /* hash list pointer */
        ksema_t         vfs_reflock;            /* mount/unmount/sync lock */
}

/*
 * Operations supported on virtual file system.
 */

typedef struct vfsops {
        int     (*vfs_mount)(struct vfs *, struct vnode *, struct mounta *,
                        struct cred *);
        int     (*vfs_unmount)(struct vfs *, struct cred *);
        int     (*vfs_root)(struct vfs *, struct vnode **);
        int     (*vfs_statvfs)(struct vfs *, struct statvfs64 *);
        int     (*vfs_sync)(struct vfs *, short, struct cred *);
        int     (*vfs_vget)(struct vfs *, struct vnode **, struct fid *);
        int     (*vfs_mountroot)(struct vfs *, enum whymountroot);
        int     (*vfs_swapvp)(struct vfs *, struct vnode **, char *);
}

Header File <sys/vfs.h>
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ods for that file system. The vfs_fstype field of the vfs object is an index into
the file system switch table.

File systems install entries into the file system switch table when they are first
loaded, usually during their initialization function. There is only one entry for
each type of file system, regardless of how many mounts exist for that type of file
system. An example of the virtual file system switch table is shown below. Each
slot lists the name of the file system and tells where to find the relative functions
for that file system.

To dump the vfs  switch table, issue the crash  command, as shown below.

The file system framework provides functions for accessing file systems in the file
system switch table. These functions, described in Table 13-6, find file system

/*
 * File system type switch table.
 */
typedef struct vfssw {
        char            *vsw_name;      /* type name string */
        int             (*vsw_init)(struct vfssw *, int);
                                        /* init routine */
        struct vfsops   *vsw_vfsops;    /* file system operations vector */
        int             vsw_flag;       /* flags */
} vfssw_t;

Header File <sys/vfs.h>

struct vfssw vfssw[] = {
        "BADVFS",       NULL,          &vfs_strayops,  0,      /* invalid */
        "specfs",       specinit,      NULL,           0,      /* SPECFS */
        "ufs",          ufsinit,       &ufs_vfsops,    0,      /* UFS */
        "fifofs",       fifoinit,      &fifo_vfsops,   0,      /* FIFOFS */
        "namefs",       namefsinit,    &name_vfsops,   0,      /* NAMEFS */
        "proc",         proc,          &proc_vfsops,   0,      /* PROCFS */
        "s5fs",         s5fsinit,      &s5_vfsops,     0,      /* S5FS */
        "nfs",          nfsinit,       &nfs_vfsops,    0,      /* NFS Ver 2 */
        "hsfs",         hsfsinit,      &hs_vfsops,     0,      /* HSFS */
        "lofs",         lofsinit,      &lo_vfsops,     0,      /* LOFS */
        "tmpfs",        tmpfsinit,     &tmp_vfsops,    0,      /* TMPFS */
        "fd",           fdinit,        &fd_vfsops,     0,      /* FDFS */
        "pcfs",         pcfsinit,      &pc_vfsops,     0,      /* PCFS */
        "swapfs",       swapinit,      &swap_vfsops,   0,      /* SWAPFS */
};

# crash
dumpfile = /dev/mem, namelist = /dev/ksyms, outfile = stdout
> vfssw
FILE SYSTEM SWITCH TABLE SIZE = 29
SLOT   NAME     FLAGS
   1   specfs     0
   2   ufs        0
   3   fifofs     0
   4   namefs     0
   5   proc       0
   6   s5fs       0
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entries, locate and load the file system modules for given types, and allocate new
entries in the file system switch table.

13.3.2  The Mounted vfs List

The system starts with only one vfs object, the root file system, which is identi-
fied by the rootvfs kernel pointer. You can subsequently mount file systems by
looking up the vfsops structure in the switch table and calling the mount opera-
tion for that file system. The mount operation initializes a new vfs object and
links it to the rootvfs object by using the vfs_next structure in the object. Each
time a new file system is mounted, its vfs structure is linked onto the chain. You

Table 13-6 Solaris 7 vfs  Support Functions from <sys/vfs.h>

Method Description
getvfs() Gets a pointer to the vfs  that matches the supplied

fsid . Used by the nfs server.
vfs_getvfssw() Finds a vfssw  entry by file system type name. Tries

to autoload the file system if entry is not found.
allocate_vfssw() Allocates an entry in the file system switch table for

a given file type.
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can obtain a list of mounted file systems by starting at rootvfs and following the
vfs -> vfs_next chain , as shown in Figure 13.4.

The file system framework provides functions, described in Table 13-7, for search-
ing, adding, and removing file systems from the mounted file system list.

Table 13-7 Solaris 7 vfs  Support Functions

Method Description
vfs_add() Called by a file system mount  function to mount over

an existing mount point. For example, the
vfs_mountroot()  method uses this call to mount
and unmount root.

vfs_remove() Removes a vfs  object from the chain. Usually called
only when unmounting a root overlay.

vfs_lock() Locks the entire file system.
vfs_unlock() Unlocks the entire file system.

vfs_next
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.
.
v_data

ufs_mountroot()

.

.

 Figure 13.4 The Mounted vfs  List
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vfs_make_fsid() Called by a file system to generate the file system ID
from the device.

getvfs() Gets a pointer to the vfs  that matches the supplied
fsid . Used only by the nfs server.

vf_to_stf() Maps vfs  flags to statfs  flags.

Table 13-7 Solaris 7 vfs  Support Functions

Method Description



The vfs Object 557
To display the list of file system vfs objects, issue the crash or adb command, as
shown below.

# crash
dumpfile = /dev/mem, namelist = /dev/ksyms, outfile = stdout
> vfs
 FSTYP  BSZ  MAJ/MIN       FSID     VNCOVERED        PDATA  BCOUNT  FLAGS
   ufs 8192  118,104    1d80068             0  30000067888       0   notr
  lofs 8192   65,5      1040005   300032b99f8  300029265e0       0
namefs 1024  179,0      2cc0000   300011ff5a0  300011ff440       0   nolnk
  lofs 8192   65,7      1040007   30002b0fb70  30002932978       0
  lofs 8192   65,5      1040005   30000070958  30002932918       0
   nfs 3276  175,2      2bc0002   30002b0e670  30002ecfe00       0   nosu
  hsfs 2048   91,1     31ba36b3   300013780a0  30001335e20       0   rd
   nfs 8192  175,1      2bc0001   30001378af0  300012e2200       0
namefs 1024  179,0      2cc0000   30001139710  30000dde670       0   nolnk
  lofs 8192   65,57000  104dea8   30000070dd8  300001a8720       0
   ufs 8192   65,57000  104dea8   30000d5fcd8  30000067348       0   notr
 tmpfs 8192    0,1            1   30000960ec0  300001260b0       0   notr
    fd 1024  172,0      2b00000   300009715d0            0       0
  proc  512  168,0      2a00000   30000adb290  300009550c0       0
> q
# adb -k

$<vfslist

                vfs 10458730
root:
root:           next            op              vnodecovered
                300031b2e90     ufs_vfsops      0
root+0x18:      flag            bsize           fstype
                20              8192            2
root+0x24:      fsid            data            dev
                1d8006800000002 30000067888     7600000068
root+0x40:      bcount          nsubmounts      list
                0               19              0
root+0x58:      hash
                0
root+0x60:      reflock

root+0x60:      sleepq          count
                0               1

                vfs 300031b2e90
300031b2e90:    next            op              vnodecovered
                30001260cc8     lo_vfsops       300032b99f8
300031b2ea8:    flag            bsize           fstype
                0               8192            10
300031b2eb4:    fsid            data            dev
                104000500000002 300029265e0     4100000005
300031b2ed0:    bcount          nsubmounts      list
                0               0               138b13500000000
300031b2ee8:    hash
                0
300031b2ef0:    reflock

300031b2ef0:    sleepq          count
                0               1
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13.4 File System I/O

Two distinct methods perform file system I/O:

• read() , write() , and related system calls
• Memory-mapping of a file into the process’s address space

Both methods are implemented the same way: a file is mapped into an address
space and then paged I/O is performed on the pages within the mapped address
space. Although it may be obvious that memory mapping is done when we mem-
ory-map a file into a process’s address space, it is less obvious that the read() and
write() system calls also map a file before reading or writing it. The major differ-
ences between these two methods are where the file is mapped and who does the
mapping; a process calls mmap() to map the file into its address space for memory
mapped I/O, and the kernel maps the file into the kernel’s address space for read
and write. The two methods are contrasted in Figure 13.5.

mmap()

write()

File Segment

Paged VNODE VM Core

(File System Cache and Page Cache)

VNODE Segment
Driver (seg_map) Driver (seg_vn)
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 Figure 13.5 The read()/write()  vs. mmap()  Methods for File I/O
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13.4.1  Memory Mapped I/O

A request to memory-map a file into an address space is handled by the file sys-
tem vnode method vop_map() and the seg_vn memory segment driver (see “The
seg_map Segment” on page 561). A process requests that a file be mapped into its
address space. Once the mapping is established, the address space represented by
the file appears as regular memory and the file system can perform I/O by simply
accessing that memory.

Memory mapping of files hides the real work of reading and writing the file
because the seg_vn memory segment driver quietly works with the file system to
perform the I/Os without the need for process-initiated system calls. I/O is per-
formed, in units of pages, upon reference to the pages mapped into the address
space; reads are initiated by a memory access; writes are initiated as the VM sys-
tem finds dirty pages in the mapped address space.

The system call mmap() calls the file system for the requested file with the
vop_map() vnode method. In turn, the file system calls the address space map
function for the current address space, and the mapping is created. The protection
flags passed into the mmap() system call are reduced to the subset allowed by the
file permissions. If mandatory locking is set for the file, then mmap() returns an
error.

Once the file mapping is created in the process’s address space, file pages are
read when a fault occurs in the address space. A fault occurs the first time a mem-
ory address within the mapped segment is accessed because at this point, no phys-
ical page of memory is at that location. The memory management unit causes a
hardware trap for that memory segment; the memory segment calls its fault func-
tion to handle the I/O for that address. The segvn_fault() routine handles a
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fault for a file mapping in a process address space and then calls the file system to
read in the page for the faulted address, as shown below.

For each page fault, seg_vn reads in an 8-Kbyte page at the fault location. In
addition, seg_vn initiates a read-ahead of the next eight pages at each 64-Kbyte
boundary. Memory mapped read-ahead uses the file system cluster size (used by
the read() and write() system calls) unless the segment is mapped MA_SHARED
or memory advice MADV_RANDOM is set.

Recall that you can provide paging advice to the pages within a memory mapped
segment by using the madvise system call. The madvise system call and (as in
the example) the advise information are used to decide when to free behind as the
file is read.

Modified pages remain unwritten to disk until the fsflush daemon passes over
the page, at which point they will be written out to disk. You can also use the mem-
cntl()  system call to initiate a synchronous or asynchronous write of pages.

13.4.2  read() and write() System Calls

The vop_read() and vop_write() vnode methods implement reading and writ-
ing with the read() and write() system calls. As shown in Figure 13.5 on
page 558, the seg_map segment driver maps a file into the kernel’s address space
during the read() and write() system calls. The seg_vn segment could be used
to map the file into the kernel’s address space; however, the seg_vn driver is a
complex segment driver that deals with all of the process address space require-
ments (such as mapping protections, copy-on-write fault handling, shared mem-

segvn_fault (hat, seg, addr, len, type, rw) {

        for ( page = all pages in region ) {

                advise = lookup_advise (page);  /* Look up madvise settings for page */
                if (advise == MADV_SEQUENTIAL)
                        free_all_pages_up_to (page);

                /* Segvn will read at most 64k ahead */
                if ( len > PVN_GETPAGE_SZ)
                        len = PVN_GETPAGE_SZ;

                vp = segvp (seg);
                vpoff = segoff (seg);

                /* Read 64k at a time if the next page is not in memory,
                 * else just a page
                 */
                if (hat_probe (addr+PAGESIZE)==TRUE)
                        len=PAGESIZE;

                /* Ask the file system for the next 64k of pages if the next*/
                VOP_GETPAGE(vp, vp_off, len,
                        &vpprot, plp, plsz, seg, addr + (vp_off - off), arw, cred)
         }
}
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ory, etc.), so a lighter-weight driver (seg_map) performs the mapping. The read
and write file system calls require only a few basic mapping functions since they
do not map files into a process’s address space. Instead, they copy data to or from
the process during a system call to a portion of the file that is mapped into the ker-
nel’s address space by seg_map. The lighter-weight seg_map driver enhances per-
formance by virtue of a shorter code path and reduced locking complexities.

13.4.3  The seg_map Segment

The seg_map segment maintains mappings of pieces of files into the kernel
address space and is used only by the file systems. Every time a read or write
system call occurs, the seg_map segment driver locates or creates a virtual
address space where the page of the file can be mapped. Then, the system call can
copy the data to or from the user address space.

The seg_map segment provides a full set of segment driver interfaces (see
“Memory Segments” on page 143); however, the file system directly uses a small
subset of these interfaces without going through the generic segment interface.
The subset handles the bulk of the work that is done by the seg_map segment for
file read and write operations. The functions used by the file systems are shown in
Table 13-8.

At any time, the seg_map segment has some portion of the total file system cache
mapped into the kernel address space. The maximum size of the seg_map seg-
ment differs among hardware architectures, is often only a fraction of the total
physical memory size, and contains only a small proportion of the total file system
cache. Note that even though the size of the seg_map segment is fixed, the pages
which it references can be stolen by the page scanner, and as a result, only a por-
tion of the seg_map segment may be resident (especially on machines where the
seg_map  segment is close to the size of physical memory).

A single seg_map segment is created at boot time. The segment is sized accord-
ing to a table of machine types (see Table 13-9) and is capped at the amount of free

Table 13-8 seg_map  Functions Used by the File Systems

Function Name Description
segmap_getmap()
segmap_getmapfault()

Retrieves or creates a mapping for a range of
the file at the given offset and length.

segmap_release() Releases the mapping for a given file at a
given address.

segmap_pagecreate() Creates new page(s) of memory and slots in
the seg_map  segment for a given file. Used
for extending files or writing to holes during a
write.

segmap_pageunlock() Unlocks pages in the segment that was locked
during segmap_pagecreate() .
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memory just after the kernel has booted. For example, if the machine is an Ultra-1
or sun4u architecture, the maximum size of the seg_map is 256 Mbytes. A
64-Mbyte machine booting the Solaris kernel will most likely end up with a
seg_map segment about 50 Mbytes in size, as 50 Mbytes was the free memory
when the system was being booted. A 512-Mbyte sun4u system will have a
seg_map size of 256 Mbytes, since free memory will be much larger than 256
Mbytes while it is booting.

We can take a look at the seg_map segment on a running system by using adb
with the $seg  macro, as shown below.

We can see that on this system, the segkmap segment has been created at boot as
0x7432000 bytes, or 121,839,616 bytes. This system was a 128-Mbyte Ultra-1, and
we can see that free memory was smaller than the 256-Mbyte maximum segment
size for the sun4u architecture. Hence, the segment was created at whatever the
size of free memory was at that point. Once segkmap is created, the segment inter-
faces are called directly from the file system code during the read and write opera-
tions.

The seg_map segment driver divides the segment into block-sized slots that
represent blocks in the files it maps. The seg_map block size for the Solaris kernel
is 8,192 bytes. A 128-Mbyte segkmap segment would, for example, be divided into
128-MB/8-KB slots, or 16,384 slots. The seg_map segment driver maintains a hash
list of its page mappings so that it can easily locate existing blocks. The list is
based on file and offsets. One list entry exists for each slot in the segkmap seg-

Table 13-9 Architecture-Specific Sizes of Solaris 7 seg_map  Segment

Architecture Systems Maximum Size of
seg_map

sun4c SPARC 1, 2 4 Mbytes
sun4m SPARC 5, 10, 20 16 Mbytes
sun4d SPARC 1000,2000 32 Mbytes
sun4u UltraSPARC 256 Mbytes

# adb -k /dev/ksyms /dev/mem
physmem 3b73

segkmap/J
segkmap:
segkmap:        3000022df50

3000022df50$<seg

3000022df50:    base            size            as
                2a750000000     7432000         104236e0
3000022df68:    next            prev            ops
                104234a0        3000022df88     segmap_ops
3000022df80:    data
                300001b1d68
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ment. The structure for each slot in a seg_map segment is defined in the
<vm/segmap.h > header file, shown below.

The smap structures are:

• sm_vp — The file (vnode ) this slot represents (if slot not empty)
• sm_hash , sm_next , sm_prev  — Hash list reference pointers
• sm_off — The file (vnode ) offset for a block-sized chunk in this slot in the

file
• sm_bitmap  — Bitmap to maintain translation locking
• sm_refcnt — The number of references to this mapping caused by concur-

rent reads

The important fields in the smap structure are the file and offset fields, sm_vp and
sm_off . These fields identify which page of a file is represented by each slot in the
segment.

/*
 * Each smap struct represents a MAXBSIZE-sized mapping to the
 * <sm_vp, sm_off> given in the structure. The location of
 * the structure in the array gives the virtual address of the
 * mapping. Structure rearranged for 64-bit sm_off.
 */
struct  smap {
        struct  vnode   *sm_vp;         /* vnode pointer (if mapped) */

        /*
         * These next 3 entries can be coded as
         * ushort_t’s if we are tight on memory.
         */
        struct  smap    *sm_hash;       /* hash pointer */
        struct  smap    *sm_next;       /* next pointer */
        struct  smap    *sm_prev;       /* previous pointer */
        u_offset_t      sm_off;         /* file offset for mapping */

        ushort_t        sm_bitmap;      /* bitmap for locked translations */
        ushort_t        sm_refcnt;      /* reference count for uses */
};

struct  smfree {
        struct  smap    *sm_free;       /* free list array pointer */

 kmutex_t        sm_mtx; /* protects smap data of this color */
        kcondvar_t      sm_free_cv;
        ushort_t        sm_want;        /* someone wants a slot of this color */
};

Header File <vm/seg_map.h>
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We can observe the seg_map slot activity with the kstat statistics that are col-
lected for the seg_map segment driver. These statistics are visible with the net-
stat  command, as shown below.

Table 13-10 describes the segmap statistics.

# netstat -k segmap
segmap:
fault 8366623 faulta 0 getmap 16109564 get_use 11723 get_reclaim 15257790 get_reuse
825178
get_unused 0 get_nofree 0 rel_async 710244 rel_write 749677 rel_free 16370
rel_abort 0 rel_dontneed 709733 release 15343517 pagecreate 1009281

Table 13-10 Statistics from the seg_map  Segment Driver

Field Name Description
fault The number of times segmap_fault  was called, usually

as a result of a read or write system call.
faulta The number of times the segmap_faulta  function was

called. It is called to initiate asynchronous paged I/O on a
file.

getmap The number of times the segmap_getmap  function was
called. It is called by the read and write system calls each
time a read or write call is started. It sets up a slot in the
seg_map  segment for the requested range on the file.

get_use The number of times getmap  found an empty slot in the
segment and used it.

get_reclaim The number of times getmap  found a valid mapping for
the file and offset already in the seg_map  segment.

get_reuse The number of times getmap  deleted the mapping in a
nonempty slot and created a new mapping for the file and
offset requested.

get_unused Not used—always zero.
get_nofree The number of times a request for a slot was made and

none was available on the internal free list of slots. This
number is usually zero because each slot is put on the free
list when release  is called at the end of each I/O. Hence,
ample free slots are usually available.

rel_async The slot was released with a delayed I/O on it.
rel_write The slot was released as a result of a write system call.
rel_free The slot was released, and the VM system was told that

the page may be needed again but to free it and retain its
file/offset information. These pages are placed on the
cache list tail so that they are not the first to be reused.
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Our example segmap statistics show us that 15,257,790 times a slot was reclaimed
out of a total 16,109,564 getmap calls, a 95% slot reuse with the correct file and
offset, or a 95% cache hit ratio for the file system pages in segmap. Note that the
actual page-to-cache hit ratio may be higher because even if we miss in segmap,
we could still have the pages in the page cache and only need to reload the address
translations for the page. A lower segmap hit ratio and high page-to-cache hit
ratio is typical of large memory machines, in which segmap is limited to only 256
megabytes of potential gigabytes of physical memory.

Writing is a similar process. Again, segmap_getmap is called to retrieve or create
a mapping for the file and offset, the I/O is done, and the segmap slot is released.
An additional step is involved if the file is being extended or a new page is being
created within a hole of a file. This additional step calls the segmap_pagecreate
function to create and lock the new pages, then calls segmap_pageunlock() to
unlock the pages that were locked during the page_create .

The segmap cache can grow and shrink as pages are paged in and out and as
pages are stolen by the page scanner, but the maximum size of the segmap cache
is capped at an architecture-specific limit.

13.5 Path-Name Management

All but a few of the vnode methods operate on vnode pointers, rather than on
path names or file descriptors. Before calling file system vnode methods, the
vnode framework first converts path names and file descriptors into vnode refer-
ences. File descriptors may be directly translated into vnode s for the files they ref-
erenced, whereas path names must be converted into vnode s by a lookup of the
path-name components and a reference the underlying file. The file-system-inde-
pendent lookuppn() function converts path names to vnode s. An additional
wrapper, lookupname() , converts path names from user-mode system calls.

rel_abort The slot was released and asked to be removed from the
seg_map  segment as a result of a failed aborted write.

rel_dontneed The slot was released, and the VM system was told to free
the page because it won’t be needed again. These pages
are placed on the cache list head so they will be reused
first.

released The slot was released and the release was not effected by
rel_abort , rel_async , or rel_write .

pagecreate Pages created in the segmap_pagecreate  function.

Table 13-10 Statistics from the seg_map  Segment Driver  (Continued)

Field Name Description
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13.5.1  The lookupname() and lookupppn() Methods

Given a path name, the lookupppn() method attempts to return a pointer to the
vnode the path represents. If the file is already opened, then a new reference to
the file is established, and if not, the file is first opened. The lookuppn() function
decomposes the components of the path name, separating them by “/” and “.”, and
calls the file-system-specific vop_lookup() method for each component of the
path name.

If the path name begins with a “/”, path-name traversal starts at the user’s root
directory. Otherwise, it starts at the vnode pointed to by the user’s current direc-
tory. lookuppn() traverses the path one component at a time, using the
vop_lookup() vnode method. vop_lookup() takes a directory vnode and a
component as arguments and returns a vnode  representing that component.

If a directory vnode has v_vfsmountedhere set, then it is a mount point. If
lookuppn() encounters a mount point while going down the file system tree, then
it follows the vnode ’s v_vfsmountedhere pointer to the mounted file system and
calls the vfs_root() method to obtain the root vnode for the file system.
Path-name traversal then continues from this point.

If lookuppn() encounters a root vnode (VROOTflag in v_flag set) when fol-
lowing “..”, then lookuppn() follows the vfs_vnodecovered pointer in the
vnode’s  associated vfs  to obtain the covered vnode .

If lookuppn() encounters a symbolic link, then it calls the vn_readlink()
vnode method to obtain the symbolic link. If the symbolic link begins with a “/”,
the path name traversal is restarted from the root directory; otherwise, the tra-
versal continues from the last directory. The caller of lookuppn() specifies
whether the last component of the path name is to be followed if it is a symbolic
link.

This procedure continues until the path name is exhausted or an error occurs.
When lookuppn()  completes, it returns a vnode  representing the desired file.

13.5.2  The vop_lookup() Method

The vop_lookup() method searches a directory for a path-name component
matching the supplied path name. The vop_lookup() method accepts a directory
vnode and a string path-name component as an argument and returns a vnode
pointer to the vnode representing the file. If the file cannot be located, then
ENOENTis returned. Many regular file systems will first check the directory name
lookup cache, and if an entry is found there, the entry is returned. If the entry is
not found in the directory name cache, then a real lookup of the file is performed.

13.5.3  The vop_readdir() Method

The vop_readdir() method reads chunks of the directory into a uio structure.
Each chunk can contain as many entries as will fit within the size supplied by the
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uio structure. The uio_resid structure member shows the size of the getdents
request in bytes, which is divided by the size of the directory entry made by the
vop_readdir()  method to calculate how many directory entries to return.

Directories are read from disk with the buffered kernel file functions fbread
and fbwrite . These functions, described in Table 13-11, are provided as part of
the generic file system infrastructure.

Table 13-11 Functions for Cached Access to Files from Within the Kernel

Function Name Description
fbread() Returns a pointer to locked kernel virtual address

for the given <vp , off > for len  bytes. The read
may not cross a boundary of MAXBSIZE (8192)
bytes.

fbzero()  Similar to fbread() , but calls
segmap_pagecreate() , not segmap_fault()
so that SOFTLOCK can create the pages without
using VOP_GETPAGE(). Then, fbzero()  zeroes
up to the length rounded to a page boundary.

fbwrite() Direct write.
fbwritei() Writes directly and invalidates pages.
fbdwrite() Delayed write.
fbrelse() Releases fbp .
fbrelsei() Releases fbp  and invalidate pages.
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13.5.4  Path-Name Traversal Functions

Several path-name manipulation functions assist with decomposition of path
names. The path-name functions use a path-name structure, shown below, to pass
around path-name components.

The path-name functions are shown in Table 13-12.

13.5.5  The Directory Name Lookup Cache (DNLC)

The directory name lookup cache is based on BSD 4.2 code. It was ported to Solaris
2.0 and threaded and has undergone some significant revisions. Most of the
enhancements to the DNLC have been performance and threading, but a few visi-

/*
 * Path-name structure.
 * System calls that operate on path names gather the path name
 * from the system call into this structure and reduce it by
 * peeling off translated components. If a symbolic link is
 * encountered, the new path name to be translated is also
 * assembled in this structure.
 *
 * By convention pn_buf is not changed once it’s been set to point
 * to the underlying storage; routines which manipulate the path name
 * do so by changing pn_path and pn_pathlen. pn_pathlen is redundant
 * since the path name is null-terminated but is provided to make
 * some computations faster.
 */
typedef struct pathname {
        char    *pn_buf;                /* underlying storage */
        char    *pn_path;               /* remaining pathname */
        size_t  pn_pathlen;             /* remaining length */
        size_t  pn_bufsize;             /* total size of pn_buf */
} pathname_t;

Header File <sys/pathname.h>

Table 13-12 Path-Name Traversal Functions from <sys/pathname.h>

Method Description
pn_alloc() Allocates a new path-name buffer.
pn_get() Copies path-name string from user and mounts argu-

ments into a struct path name.
pn_set() Sets a path name to the supplied string.
pn_insert() Combines two path names.
pn_getsymlink() Follows a symbolic link for a path name.
pn_getcomponent() Extracts the next delimited path-name component.
pn_setlast() Appends a component to a path name.
pn_skipslash() Skips over consecutive slashes in the path name.
pn_fixslash() Eliminates any trailing slashes in the path name.
pn_free() Frees a struct  path name.
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ble changes are noteworthy. Table 13-13 summarizes the important changes to the
DNLC.

13.5.5.1  DNLC Operation

Each time we open a file, we call the open() system call with a path name. That
path name must be translated to a vnode by the process of reading the directory
and finding the corresponding name that matches the requested name. No place in
the vnode stores the name of the file; so, to prevent us from having to reread the
directory every time we translate the path name, we cache pathname-to-vnode
mappings in the directory name lookup cache. The cache is managed as an LRU
cache, so that most frequently used directory entries are kept in the cache. The

Table 13-13 Solaris DNLC Changes

Year OS Rev Comment
1984 BSD 4.2 14-character name maximum
1990 SunOS 2.0 31-character name maximum
1994 SunOS 5.4 Performance (new locking/search algorithm)
1998 SunOS 5.7 Variable name length
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early-style DNLC in Solaris uses a fixed name length in the cache entries. Hence,
if a file name is opened with a name larger than can fit, it will not be entered into
the DNLC. The old-style (pre-SunOS 5.4) DNLC is shown in Figure 13.6.

The number of entries in the DNLC is controlled by the ncsize parameter, which
is initialized to 4 * (max_nprocs  + maxusers ) + 320 at system boot.

Most of the DNLC work is done with two functions: dnlc_enter() and
dnlc_lookup() . When a file system wants to look up the name of a file, it first
checks the DNLC with the dnlc_lookup() function, which queries the DNLC for
an entry that matches the specified file name and directory vnode . If no entry is
found, dnlc_lookup fails and the file system reads the directory from disk. When
the file name is found, it is entered into the DNLC with the dnlc_enter() func-
tion. The DNLC stores entries on a hashed list (nc_hash[] ) by file name and
directory vnode pointer. Once the correct nc_hash chain is identified, the chain is
searched linearly until the correct entry is found.

The original BSD DNLC had 8 nc_hash entries, which was increased to 64 in
SunOS 4.x. Solaris 2.0 sized the nc_hash list at boot, attempting to make the
average length of each chain no more than 4 entries. It used the total DNLC size,
ncsize , divided by the average length to establish the number of nc_hash
entries. Solaris 2.3 had the average length of the chain dropped to 2 in an attempt
to increase DNLC performance; however, other problems, related to the LRU list
locking and described below, adversely affected performance.

nc_hash[]

dnlc_enter takes
oldest nc’s from LRUdnlc_lookup

finds nc’s by
hash lookup

new
path name

LRU List

vnode
dir. vnode

char[31]

struct ncache

name

 Figure 13.6 Solaris 2.3 Name Cache
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Each entry in the DNLC is also linked to an LRU list, in order of last use. When
a new entry is added into the DNLC, the algorithm replaces the oldest entry from
the LRU list with the new file name and directory vnode . Each time a lookup is
done, the DNLC also takes the entry from the LRU and places it at the end of the
list so that it won’t be reused immediately. The DNLC uses the LRU list to attempt
to keep most-used references in the cache. Although the DNLC lists had been
made short, the LRU list still caused contention because it required that a single
lock be held around the entire chain.

The old DNLC structure is shown below. Note that the name field is statically
sized at 31 characters.

13.5.5.2  The New Solaris DLNC Algorithm

In Solaris 2.4, replacement of the SVR4 DNLC algorithm yielded a significant
improvement in scalability. The Solaris 2.4 DNLC algorithm removed LRU list
lock contention by eliminating the LRU list completely. In addition, the list now
takes into account the number of references to a vnode and whether the vnode
has any pages in the page cache. This design allows the DNLC to cache the most
relevant vnodes , rather than just the most frequently looked-up vnodes .

The lookup algorithm uses a rotor pointing to a hash chain, which switches
chains for each invocation of dnlc_enter() that needs a new entry. The algo-
rithm starts at the end of the chain and takes the first entry that has a vnode ref-

#define NC_NAMLEN       31      /* maximum name segment length we bother with */

struct ncache {
        struct ncache *hash_next;       /* hash chain, MUST BE FIRST */
        struct ncache *hash_prev;
        struct ncache *lru_next;        /* LRU chain */
        struct ncache *lru_prev;
        struct vnode *vp;               /* vnode the name refers to */
        struct vnode *dp;               /* vnode of parent of name */
        char namlen;                    /* length of name */
        char name[NC_NAMLEN];           /* segment name */
        struct cred *cred;              /* credentials */
        int hash;                       /* hash signature */
};

Header File <sys/dnlc.h>

struct ncache {
        struct ncache *hash_next;       /* hash chain, MUST BE FIRST */
        struct ncache *hash_prev;
        struct ncache *next_free;       /* freelist chain */
        struct vnode *vp;               /* vnode the name refers to */
        struct vnode *dp;               /* vnode of parent of name */
        struct cred *cred;              /* credentials */
        char *name;                     /* segment name */
        int namlen;                     /* length of name */
        int hash;                       /* hash signature */
};

Header File <sys/dnlc.h>
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erence count of 1 or no pages in the page cache. In addition, during lookup, entries
are moved to the front of the chain so that each chain is sorted in LRU order. Fig-
ure 13.7 illustrates the Solaris 2.4 DNLC.

The Solaris 7 DNLC was enhanced to use the kernel memory allocator to allocate a
variable length string for the name; this change removed the 31-character limit. In
the Solaris 7 DNLC structure, shown below, note that the name field has changed
from a static structure to a pointer.

13.5.5.3  DNLC Support Functions

Table 13-14 lists the DNLC support functions.

Table 13-14 Solaris 7 DNLC Functions from sys/dnlc.h

Function Description
dnlc_lookup() Locates an ncache entry that matches the supplied

name and directory vnode  pointer. Returns a pointer
to the vnode  for that entry or returns NULL.

dnlc_update() Enters a new ncache entry into the DNLC for the
given name and directory vnode  pointer. If an entry
already exists for the name and directory pointer but
the vnode  is different, then the entry is overwritten.
Otherwise, the function returns with no action.

nc_hash[]

dnlc_lookup
finds nc’s by
hash lookup

vnode
dir. vnode

char*

struct ncache

name

freelist rotor

DNLC entries are
taken from the
first entry with
a reference count=1,
starting from the end
of the chain

 Figure 13.7 Solaris 2.4 DNLC
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13.5.6  File System Modules

A file system is implemented as an instance of the vfs and vnode objects in a
self-contained, loadable kernel module. The operating system provides the infra-
structure for mounting and interfacing with the file system, and each file system
implementation can abstract the file system object methods in different ways. The
modules are loaded from the file system directory in /kernel/fs during the first
mount operation. File systems provide module initialization functions; a typical
file system initialization section declares a module constructor and destructor, as
described in “Kernel Module Loading and Linking” on page 116.

13.5.7  Mounting and Unmounting

When a file system is first mounted, the file system framework attempts to auto-
load the file system from the /kernel/fs directory. The autoload procedure calls
the initialization routines in the file system; at that point, the file system can reg-
ister itself in the file system switch table. The file system is required to fill in the
vfssw structure during the initialization function. Once this phase is completed,
the file system is available for mount requests and the mount method of the file
system is called.

When the mount method is called for the file system, a vfs object for the
instance of the mounted file system is created; then, the mount method must fill in
the vfs structures. Typically, the root vnode of the file system is either created or
opened at this time. The following example shows a simple file system and its ini-
tialization functions.

dnlc_enter() Enters a new ncache entry into the DNLC for the
given name and directory vnode  pointer. If an entry
already exists for the name and directory pointer, the
function returns with no action.

dnlc_remove() Removes the entry matching the supplied name and
directory vnode  pointer.

dnlc_purge() Called by the vfs  framework when an umountall()
is called.

dnlc_purge_vp() Purges all entries matching the vnode  supplied.

Table 13-14 Solaris 7 DNLC Functions from sys/dnlc.h  (Continued)

Function Description
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extern struct mod_ops mod_fsops;
static struct modlfs modlfs = {
        &mod_fsops,
        "vnode file pseudo file system",
        &vfw
};

static struct modlinkage modlinkage = {
        MODREV_1,
        &modlfs,
        NULL
};

int
_init(void)
{
        int     error;

        mutex_init(&vnfslock, NULL, MUTEX_DEFAULT, NULL);
        rw_init(&vnfsnodes_lock, NULL, RW_DEFAULT, NULL);
        error = mod_install(&modlinkage);
        if (error) {
                mutex_destroy(&vnfslock);
                rw_destroy(&vnfsnodes_lock);
        }
        myfs_init_otherstuff();
        return (error);
}

int
_fini(void)
{
        int     error;

        vnfs_vnlist_destroy();
        error = mod_remove(&modlinkage);
        if (error)
                return (error);
        mutex_destroy(&vnfslock);
        rw_destroy(&vnfsnodes_lock);
        return (0);
}

int
_info(struct modinfo *modinfop)
{
        return (mod_info(&modlinkage, modinfop));
}

static struct vfssw vfw = {
        "myfs",
        myfsinit,
        &myfs_vfsops,
        0
};

static int
myfsinit(struct vfssw *vswp, int fstype)
{
        vswp->vsw_vfsops = &myfs_vfsops;
        myfstype = fstype;
        (void) myfs_init();
        return (0);
}
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13.6 The File System Flush Daemon

The fsflush process writes modified pages to disk at regular intervals. The
fsflush process scans through physical memory looking for dirty pages. When it
finds one, it initiates a write  (or putpage ) operation on that page.

The fsflush process is launched by default every 5 seconds and looks for pages
that have been modified (the modified bit is set in the page structure) more than
30 seconds ago. If a page has been modified, then a page-out is scheduled for that
page, but without the free flag so the page remains in memory. The fsflush dae-
mon flushes both data pages and inodes by default. Table 13-15 describes the
parameters that affect the behavior of fsflush .

Table 13-15 Parameters That Affect fsflush

Parameter Description Min Solaris 2.7
Default

tune_t_fsflushr The number of seconds between
fsflush  scans.

1 5

autoup Pages older than autoup  in sec-
onds are written to disk.

1 30

doiflush By default, fsflush  flushes both
inode and data pages. Set to 0 to
suppress inode updates.

0 1

dopageflush Set to 0 to suppress page flushes. 0 1
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THE UNIX FILE SYSTEM
The Unix File System (UFS) is the general-purpose, disk-based file system that
is shipped with Solaris. It has been the standard disk-based file system since early
versions of SunOS 4.x. Over the life of Solaris, UFS has undergone extensive
changes to keep pace with the required application performance, security, and reli-
ability constraints.

14.1 UFS Development History

The original version of UFS is derived from the Berkeley Fast File System (FFS)
work from BSD Unix, architected by Kirk McKusick and Bill Joy in the late eight-
ies. The Berkeley FFS was the second major file system available for Unix and was
a leap forward from the original System V file system. The System V file system
was lightweight and simple but had significant shortcomings: poor performance,
unreliability, and lack of functionality.

During the development of SunOS 2.0, a file-system-independent interface was
introduced to provide support for concurrent, different file systems within an oper-
ating system instance. This interface, known today as the vnode /vfs interface, is
the mechanism all file systems use to interface with the file-related system calls.
(The vnode /vfs architecture is discussed further in “The vnode” on page 543.) At
that time, UFS was modified so that it could be used within the vnode /vfs frame-
work. Since then, UFS has been the focus of much of the file system development
effort in Solaris.
577
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A second major overhaul for UFS was at the time of SunOS 4.0, when the vir-
tual memory system was redeveloped to use the vnode as the core of virtual mem-
ory operations. The new VM system implemented the concept of virtual file
caching—a departure from the traditional physical file cache (known as the “buffer
cache” in previous versions of Unix. The old buffer cache was layered under the file
systems and cached the physical blocks from the file system to the storage device.
The new model is layered above the file systems and allows the VM system to act
as a cache for files rather than blocks. The VM system caches page-sized pieces of
files, where the file and a particular offset are cached as pages of memory. From
this point forward, the buffer cache was used only for file system metadata, and
the VM system implements file system caching. The new VM system affected the
file systems in many ways and required significant changes to the vnode inter-
face. At that point, UFS was substantially modified to provide support for the new
vnode  and VM interfaces.

The third major change to UFS was in Solaris 2.4 in 1994, which saw the intro-
duction of file system metadata logging to provide better reliability and faster
reboot times after a system crash or outage. The first versions of logging were
introduced in the unbundled Online: Disk Suite 3.0, the precursor to Solstice Disk
Suite (SDS). Solaris 7 saw the integration of logging into the base Solaris UFS.

Table 14-1 summarizes the major UFS development milestones.

Table 14-1 Unix File System Evolution

Year SunOS
Version

Annotations

1984 SunOS 1.0 FFS from 4.2 BSD.
1985 SunOS 2.0 UFS rearchitected to support vnodes/vfs .
1988 SunOS 4.0 UFS integrated with new VM virtual file

cache.
1991 SunOS 4.1 I/O clustering added to allow extentlike perfor-

mance.
1992 SunOS 4.1 1TB file system and ability to grow UFS file

systems with Online: Disk Suite 1.0.
1992 Solaris 2.0 1TB file system support included in base

Solaris.
1994 Solaris 2.4 Metadata logging option with Online:

DiskSuite 3.0.
1995 Solaris 2.6 Large file support allows 1TB files.

Direct I/O uncached access added.
1998 Solaris 7 Metadata logging integrated into base Solaris

UFS.
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14.2 UFS On-Disk Format

The on-disk format of the UFS file system has largely remained unchanged with
the introduction of new features, maintaining forward compatibility across all
releases. This allows Solaris to be upgraded without the need to back up and
restore file systems.

14.2.1  UFS Inodes

Information about which data blocks relate to each file are stored in a special file
index node: the inode. The inode contains all of the information about the file,
except for the file name, which is stored in the directory. Inode information
includes:

• File type (regular, special, fifo, link, etc.)
• Owner of file (uid )

• Group of file (gid )
• File size
• Attributes (read, execute, modify)
• Timestamps (last modified, etc.)
• Number of references to the file (links)

• Arrays of disk block addresses that contain the file’s data

14.2.2  UFS Directories

The file-name information and hierarchy information that constitute the directory
structure of UFS are stored in directories. Each directory stores a list of file names
and the inode number for each file; this information allows the directory structure
to relate file names to real disk files.

The directory itself is stored in a file as a series of chunks, which are groups of
the directory entries. Each directory entry in the chunk contains the following
information (see Figure 14.1):

• Inode number
• Size of the file-name entry
• Length of the directory entry
• File-name string (null terminated)

Earlier file systems like the System V file system had a fixed directory record
length, which meant that a lot of space would be wasted if provision was made for
long file names. In the UFS, each directory entry can be of variable length, thus
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providing a mechanism for long file names without wasting a lot of space. UFS file
names can be up to 255 characters long.

The group of directory chunks that constitute a directory is stored as a special type
of file. The notion of a directory as a type of file allows UFS to implement a hierar-
chical directory structure: directories can contain files which are directories. For
example, the root directory / has a name “/ ” and an inode number, 2, which holds
a chunk of directory entries holding a number of files and directories. One of these
directory entries, named etc , is another directory containing more files and direc-
tories. For traversal up and down the file system, the chdir system call opens the
directory file in question and then sets the current working directory to point to
the new directory file. Figure 14.2 illustrates the directory hierarchy.

2345 file15 1761 5 file216 16

inode

record

number
(4 bytes)

length file-name
string
length
(2 bytes)

file-name
string
(null terminated)

rounded up to
4 bytes
(2 bytes)

 Figure 14.1 UFS Directory Entry Format
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..

/

 Figure 14.2 Unix Directory Hierarchy
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Each directory contains two special files. The file named “.” is a link to the direc-
tory itself; the file named “.. ” is a link to the parent directory. Thus, a change of
directory to ..  leads to the parent directory.

14.2.3  UFS Hard Links

There is one inode for each file on disk; however, with hard links, each file can
have multiple file names. With hard links, file names in multiple directories point
to the same on-disk inode. The inode reference count field reflects the number of
hard links to the inode. Figure 14.3 illustrates inode 1423 describing a file; two
separate directory entries with different names both point to the same inode num-
ber. Note that the reference count, refcnt , has been incremented to 2.

 Figure 14.3 UFS Links

14.2.4  UFS Layout

To avoid excessive seeking between data and inode information, UFS tries to place
inodes in close proximity to the data blocks for each file. The inodes are grouped at
evenly spaced points across the file system in areas known as cylinder groups.
Information about the location of each cylinder group is stored in the superblock,
which is at the start of the file system. The on-disk layout of the UFS file system is
shown in Figure 14.4.
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14.2.4.1  The Boot Block

At the start of the file system is the boot block. This is a spare sector reserved for
the boot program when UFS is used as a root file system. At boot time, the boot
firmware loads the first sector from the boot device and then starts executing code
residing in that block. The firmware boot is file system independent, which means
the boot firmware has no knowledge about the file system. We rely on code in the
file system boot block to do the mount of the root file system. When the system
starts, the UFS boot block is loaded and executed, which, in turn, mounts the UFS
root file system. The boot program then passes control to a larger kernel loader, in
/platform/sun4[mud]/ufsboot , to load the Unix kernel.

The boot program is loaded onto the first sector of the file system at install time
with the installboot (1M) command. The 512-byte install boot image resides in
/usr/platform/sun4[mud]/lib/fs/ufs/bootblk in the platform-dependent
directories.

Superblock

Cylinder Group

Boot Block

Data Block

Data Block

Data Block

Data Block

Superblock

Cylinder Group

Data Block

Data Block

Data Block

Data Block

Inodes contains block
disk address pointers

Disk addresses are
31-bit units of file
system fragments. The
address is limited to
2^31 x 1K for the default

 Figure 14.4 UFS Layout

file system configuration,
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size of 2 TB.
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14.2.4.2  The Superblock

Immediately after the boot block is the superblock. The superblock contains the
information about the geometry and layout of the file system and is critical to the
file system state. As a safety precaution, the superblock is replicated across the file
system with each cylinder group so that the file system is not crippled if the super-
block becomes corrupted. The superblock contains a variety of information, includ-
ing the location of each cylinder group and a summary list of available free blocks.
The major information in the superblock that identifies the file system geometry is
shown below.

• fs_sblkno — Address of superblock in file system; defaults to block number
16

• fs_cblkno  — Offset of the first cylinder block in the file system
• fs_iblkno  — Offset of the first inode blocks in the file system
• fs_dblkno  — Offset of the first data blocks after the first cylinder group
• fs_cgoffset — Cylinder group offset in the cylinder
• fs_time  — Last time written
• fs_size  — Number of blocks in the file system
• fs_dsize  — Number of data blocks the in file system
• fs_ncg  — Number of cylinder groups
• fs_bsize  —Size of basic blocks in the file system
• fs_fsize  — Size of fragmented blocks in the file system
• fs_frag  — Number of fragments in a block in the file system
• fs_magic — A magic number to validate the superblock; the number is Bill

Joy’s birthday.

The file system configuration parameters also reside in the super block. The file
system parameters include some of the following, which are configured at the time
the file system is constructed. You can tune the parameters later with the tunefs
command.

• fs_minfree  — Minimum percentage of free blocks
• fs_rotdelay — Number of milliseconds of rotational delay between sequen-

tial blocks. The rotational delay was used to implement block interleaving
when the operating system could not keep up with reading contiguous blocks.
Since this is no longer an issue, fs_rotdelay  defaults to zero.

• fs_rps  — Disk revolutions per second
• fs_maxcontig — Maximum number of contiguous blocks, used to control

the number of read-ahead blocks.
• fs_maxbpg  — Maximum number of data blocks per cylinder group
• fs_optim  —Optimization preference, space, or time
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14.2.5  Disk Block Location

The disk blocks for a file are represented by disk address pointers in the inode for
the file. Each inode has space for 12 disk block addresses, which, when used on
their own, limit the maximum size of a file to 12 * 8K = 96K. To allow for larger
files, indirect blocks provide more space for disk address blocks. With one level of
indirection, one of the disk addresses points to a file system block containing fur-
ther disk addresses, greatly increasing the number of data blocks per file. A sec-
ond level of indirection can also be used, allowing even more data blocks. The inode
contains a slot for triple indirect pointers, although triple indirection is currently
not implemented within UFS. Figure 14.5 illustrates the inode format.

UFS allocates space, known as fragments, in file system blocks and subblocks.
Assuming 8-Kbyte file system blocks:
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• The first 12 direct blocks allow 12 blocks, or 98,304 bytes
• The first level of indirection allows a full file system block of disk addresses,

which means that an 8-Kbyte block can hold 2,048 32-bit disk addresses; 12 +
2048 blocks, or (12 + 2048) × 8 = 1,687,520 bytes.

• The second level of indirection (double indirect) allows 12 + 2048 + (2048 ×
2048) × 8KB = 34,376,613,888 bytes.

There is, however, a limit to the maximum offset in each disk address, which is
expressed as a number of file system fragments; using the default fragments size
of 1 Kbyte, the maximum offset for each block is 2^31 × 1KB = 2 terabytes.

14.2.6  UFS Block Allocation

UFS uses block sizes of 4 and 8 Kbytes, which provides significantly higher perfor-
mance than the 512-byte blocks used in the System V file system. The downside of
larger blocks was that when partially allocated blocks occurred, several kilobytes
of disk space for each partly filled file system block were wasted. To overcome this
disadvantage, UFS uses the notion of file system fragments. Fragments allow a
single block to be broken up into 2, 4, or 8 fragments when necessary.

UFS block allocation tries to prevent excessive disk seeking by attempting to
co-locate inodes within a directory and by attempting to co-locate a file’s inode and
its data blocks. Where possible, all of the inodes in a directory are allocated in the
same cylinder group. This scheme helps reduce disk seeking when directories are
traversed; for example, executing a simple ls -l of a directory will access all of
the inodes in that directory. If all the inodes reside in the same cylinder group,
most of the data will be cached after the first few files are accessed. A directory
will be placed in a cylinder group different from that of its parent.

Blocks are allocated to a file sequentially, starting with the first 96 Kbytes (the
first 12 direct blocks), skipping to the next cylinder group and allocating blocks up
to the limit set by the file system parameter maxbpg, maximum-blocks-per-cylin-
der-group. After that, blocks are allocated from the next available cylinder group.

By default, on a file system greater than 1 Gbyte, the algorithm allocates 96
Kbytes in the first cylinder group, 16 Mbytes in the next available cylinder group,
16 Mbytes from the next, and so on. The maximum cylinder group size is 54
Mbytes, and the allocation algorithm only allows one-third of that space to be allo-
cated to each section of a single file when it is extended. The maxbpg parameter is
set to 2,048 8-Kbyte blocks by default at the time the file system is created; it is
also tunable but can only be tuned downward, since the maximum cylinder group
size is 16-Mybte allocation per cylinder group.

Selection of a new cylinder group for the next segment of a file is governed by a
rotor and free-space algorithm. A per-file-system allocation rotor points to one of
the cylinder groups; each time new disk space is allocated, it starts with the cylin-
der group pointed to by the rotor. If the cylinder group has less than average free
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space, then it is skipped and the next cylinder group is tried. This algorithm
makes the file system attempt to balance the allocation across the cylinder groups.

14.2.7  UFS Allocation and Parameters

Figure 0.1 shows the default allocation that is used if a file is created on a large
UFS. The first 96 Kbytes of file 1 are allocated from the first cylinder group. Then,
allocation skips to the second cylinder group and another 16 Mbytes of file 1 are
allocated, and so on. When another file is created, we can see that it consumes the
holes in the allocated blocks alongside file 1. There is room for a third file to do the
same.
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 Figure 0.1 Default File Allocation in 16-Mbyte Groups
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The actual on-disk layout will not be quite as simple as the example shown but
does reflect the allocation policies discussed. We can use an add-on tool, filestat ,
to view the on-disk layout of a file, as shown below.

The filestat output shows that the first segment of the file occupies 192
(512-byte) blocks, followed by the next 16 Mbytes, which start in a different cylin-
der group. This particular file system was not empty when the file was created,
which is why the next cylinder group chosen is a long way from the first.

We can observe the file system parameters of an existing file system with the
fstyp command. The fstyp command simply dumps the superblock information
for the file, revealing all of the cylinder group and allocation information. The fol-
lowing example shows the output for a 4-Gbyte file system with default parame-
ters. We can see that the file system has 8,247,421 blocks and has 167 cylinder

# /usr/local/bin/filestat testfile
Inodes per cyl group:   128
Inodes per block:       64
Cylinder Group no:      0
Cylinder Group blk:     64
File System Block Size: 8192
Block Size:             512
Number of 512b Blocks:  262288

Start Block    End Block    Length (512 byte Blocks)
-----------    -----------  ------------------------
        144 -> 335          192
        400 -> 33167        32768
     110800 -> 143567       32768
     221264 -> 221343       80
     221216 -> 221263       48
     221456 -> 254095       32640
     331856 -> 331999       144
     331808 -> 331855       48
     332112 -> 364687       32576
     442448 -> 442655       208
     442400 -> 442447       48
     442768 -> 475279       32512
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groups spaced evenly at 6,272 (51-Mbyte) intervals. The maximum blocks to allo-
cate for each group is set to the default of 2,048 8-Kbyte, 16 Mbytes.

# fstyp -v /dev/vx/dsk/homevol |more
ufs
magic   11954   format  dynamic time    Sat Mar  6 18:19:59 1999
sblkno  16      cblkno  24      iblkno  32      dblkno  800
sbsize  2048    cgsize  8192    cgoffset 32     cgmask  0xffffffe0
ncg     167      size    8378368 blocks  8247421
bsize   8192     shift   13      mask    0xffffe000
fsize   1024    shift   10      mask    0xfffffc00
frag    8       shift   3       fsbtodb 1
minfree 1% maxbpg  2048     optim   time
maxcontig 32     rotdelay 0ms    rps     120
csaddr  800     cssize  3072    shift   9       mask    0xfffffe00
ntrak   32      nsect   64      spc     2048    ncyl    8182
cpg     49 bpg     6272     fpg     50176   ipg     6144
nindir  2048    inopb   64      nspf    2
nbfree  176719  ndir    10241   nifree  956753  nffree  21495
cgrotor 152     fmod    0       ronly   0       logbno  0
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The UFS-specific version of the fstyp command dumps the superblock of a UFS
file system, as shown below.

# fstyp -v /dev/vx/dsk/homevol |more
ufs
magic   11954   format  dynamic time    Sat Mar  6 18:19:59 1999
sblkno  16      cblkno  24      iblkno  32      dblkno  800
sbsize  2048    cgsize  8192    cgoffset 32     cgmask  0xffffffe0
ncg     167      size    8378368 blocks  8247421
bsize   8192     shift   13      mask    0xffffe000
fsize   1024    shift   10      mask    0xfffffc00
frag    8       shift   3       fsbtodb 1
minfree 1% maxbpg  2048     optim   time
maxcontig 32     rotdelay 0ms    rps     120
csaddr  800     cssize  3072    shift   9       mask    0xfffffe00
ntrak   32      nsect   64      spc     2048    ncyl    8182
cpg     49 bpg     6272     fpg     50176   ipg     6144
nindir  2048    inopb   64      nspf    2
nbfree  176719  ndir    10241   nifree  956753  nffree  21495
cgrotor 152     fmod    0       ronly   0       logbno  0
fs_reclaim is not set
file system state is valid, fsclean is 0
blocks available in each rotational position
cylinder number 0:
   position 0:      0    4    8   12   16   20   24   28   32   36   40   44
                   48   52   56   60   64   68   72   76   80   84   88   92
                   96  100  104  108  112  116  120  124
   position 2:      1    5    9   13   17   21   25   29   33   37   41   45
                   49   53   57   61   65   69   73   77   81   85   89   93
                   97  101  105  109  113  117  121  125
   position 4:      2    6   10   14   18   22   26   30   34   38   42   46
                   50   54   58   62   66   70   74   78   82   86   90   94
                   98  102  106  110  114  118  122  126
   position 6:      3    7   11   15   19   23   27   31   35   39   43   47
                   51   55   59   63   67   71   75   79   83   87   91   95
                   99  103  107  111  115  119  123  127
cs[].cs_(nbfree,ndir,nifree,nffree):
        (23,26,5708,102) (142,26,5724,244) (87,20,5725,132) (390,69,5737,80)
        (72,87,5815,148) (3,87,5761,110) (267,87,5784,4) (0,66,5434,4)
        (217,46,5606,94) (537,87,5789,70) (0,87,5901,68) (0,87,5752,20)

.

.
cylinders in last group 48
blocks in last group 6144

cg 0:
magic   90255   tell    6000    time    Sat Feb 27 22:53:11 1999
cgx     0       ncyl    49      niblk   6144    ndblk   50176
nbfree  23      ndir    26      nifree  5708    nffree  102
rotor   1224    irotor  144     frotor  1224
frsum   7       7       3       1       1       0       9
sum of frsum: 102
iused:  0-143, 145-436
free:   1224-1295, 1304-1311, 1328-1343, 4054-4055, 4126-4127, 4446-4447, 4455,
4637-4638,



590 The Unix File System
14.3 UFS Implementation

UFS is implemented as a loadable file system module containing instances of the
vfs and vnode objects. The UFS vnode interfaces implement file operations, and
the UFS vfs  interfaces implement file system administration.

The UFS file system implementation can be divided into five major components:

• An instance of the vfs object and methods for mounting and unmounting a
file system and gathering file system statistics

• An implementation of the vnode  methods for file operations
• A directory implementation that uses the standard directory name lookup

cache
• A block map algorithm to map files to disk blocks on the storage device
• An inode cache to keep vnodes  in memory after they are no longer referenced

Figure 14.6 shows the relationship between the components of the UFS file sys-
tem. UFS implements the vnode interface for file access and the vfs interface for
file system management. UFS interfaces with device drivers for persistent stor-
age, the block buffer cache to store and retrieve metadata, the directory name
lookup cache for caching path names, and the virtual memory system for caching
of file data.

In the following paragraphs, we discuss the implementation of each of the
blocks within the UFS file system.
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14.3.1  Mapping of Files to Disk Blocks

At the heart of a disk-based file system are the block map algorithms, which imple-
ment the on-disk file system format. These algorithms map UFS file and offsets
pairs into disk addresses on the underlying storage. For UFS, two main func-
tions—bmap_read() and bmap_write() —implement the on-disk format. These
functions are called to do the following:

• bmap_read() queries the file system as to which physical disk sector a file
block resides on; that is, requests a lookup of the direct/indirect blocks that
contain the disk address(es) of the required blocks.

• bmap_write() allocates new disk blocks when extending or allocating blocks
for a file.

The bmap_read() function is used for both reading and writing to locate disk
blocks; it accepts an inode and offset as input arguments, and a pointer to a disk
address and length as output arguments.

The bmap_read() function is used for both file reads and writes. In both cases,
the file system uses the bmap_read() algorithm to locate the physical blocks for
the file being read or written. The bmap_read() function searches though the
direct, indirect, and double indirect blocks of the inode to locate the disk address of
the disk blocks that map to the supplied offset. The function also searches forward
from the offset, looking for disk blocks that continue to map contiguous portions of
the inode, and returns the length of the contiguous segment in the length pointer
argument. The length and the file system block clustering parameters are used
within the file system as bounds for clustering contiguous blocks to provide better
performance by reading larger parts of a file from disk at a time.

The bmap_write() function allocates file space in the file system when a file is
extended or a file with holes has blocks written for the first time. bmap_write()
searches though the block free lists, using the rotor algorithm (discussed in “UFS
Block Allocation” on page 585), and updates the local, direct, and indirect blocks in
the inode for the file being extended.

14.3.1.1  Reading and Writing UFS Blocks

A file system read calls bmap_read() to find the location of the underlying physi-
cal blocks for the file being read. UFS then calls the device driver’s strategy rou-

int
bmap_read(struct inode *ip, u_offset_t off, daddr_t *dap, int *lenp)

Header File <fs/ufs_inode.h>

int
bmap_write(struct inode *ip, u_offset_t off, int size,
           int alloc_only, struct cred *cr);

Header File <fs/ufs_inode.h>
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tine for the device containing the file system to initiate the read operation by
calling bdev_strategy() .

A file system write operation that extends a file first calls bmap_write() to allo-
cate the new blocks and then calls bmap_read() to obtain the block location for
the write. UFS then calls the device driver’s strategy routine, by means of
bdev_strategy() , to initiate the file write.

14.3.1.2  Buffering Block Metadata

The block map functions access metadata (local/direct and double indirect blocks)
on the device media through the buffer cache, using the bread() and bwrite()
buffered block I/O kernel functions. The block I/O functions read and write device
blocks in 512-byte chunks, and they cache physical disk blocks in the block buffer
cache (note: this cache is different from the page cache, used for file data). The
UFS file system requires 1 Mbyte of metadata for every 2 Gbytes of file space. This
relationship can be used as a rule to calculate the size of the block buffer cache, set
by the bufhwm  kernel parameter.

14.3.2  Methods to Read and Write UFS Files

Files can be read or written in two ways: by the read() or write() system calls,
or by mapped file I/O. The read() and write() system calls call the file system’s
vop_read() and vop_write() method. These methods map files into the ker-
nel’s address space and then use the file system’s vop_getpage() and
vop_putpage()  methods to transfer data to and from the physical media.

14.3.2.1  ufs_read()

An example of the steps taken by a UFS read system call is shown in Figure 14.7.
A read system call invokes the file-system-dependent read function, which turns
the read request into a series of vop_getpage() calls by mapping the file into the
kernel’s address space with the segmap driver, as described in “File System I/O” on
page 558.

The vop_read method calls into the seg_map segment to create a virtual address
in the kernel address space for the file and offset requested with the
segmap_getmap() function. The seg_map driver determines whether it already
has a slot for the page of the file at the given offset by looking into its hashed list of
mapping slots. Once a slot is located or created, an address for the page is created,
and a page fault for the page that is mapping the file is initiated to read in page at
the virtual address of the seg_map slot. The page fault is initiated while we are
still in the segmap_getmap() routine, by a call to segmap_fault() , which in
turn calls back into the file system with vop_getpage() , which calls
ufs_getpage() .

The ufs_getpage() routine handles the task of bringing the requested range
of the file (vnode , offset, and length) from disk into the virtual address and length
passed into the ufs_getpage() function. The ufs_getpage() function locates
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read(myfile, 16384)
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 Figure 14.7 ufs_read()
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the file’s blocks (through the block map functions discussed in “Mapping of Files to
Disk Blocks” on page 592) and reads them by calling the underlying device’s strat-
egy routine.

Once the page is read by the file system, the requested range is copied back to
the user by the uio_move() function. Then, the file system releases the slot asso-
ciated with that block of the file with the segmap_release() function. At this
point, the slot is not removed from the segment because we may need the same file
and offset later (effectively caching the virtual address mapping); instead, it is
added onto a seg_map  free list so it can be reclaimed or reused later.

14.3.2.2  ufs_write()

Writing to the file system is performed in a similar manner, although it is more
complex because of some of the file system write performance enhancements, such
as delayed writes and write clustering. Writing to the file system follows the steps
shown in Figure 14.8.

The write system call calls the file-system-independent write, which in our
example calls ufs_write() . UFS breaks the write into 8-Kbyte chunks and then
processes each chunk. For each 8-Kbyte chunk, the following steps are performed.

• UFS asks the segmap driver for an 8-Kbyte mapping of the file in the ker-
nel’s virtual address space. The page for the file and offset is mapped here so
that the data can be copied in and then written out with paged I/O.

• The segmap segment looks in its cache of mappings. If a mapping exists, it is
returned. If there is no mapping for this file and offset, then a new one is cre-
ated by replacement of one of the existing mappings.

• If the write is to a whole file system block, then a new zeroed page is created
with segmap_pagecreate() . In the case of a partial block write, the block
must first be read in so the partial block contents can be replaced.

• The new page is returned, locked, to UFS. The buffer that is passed into the
write system call is copied from user address space into kernel address space.

• The ufs_write throttle first checks to see if too many bytes are outstanding
for this file as a result of previous delayed writes. If more than the kernel
parameter ufs_HW bytes are outstanding, the write is put to sleep until the
amount of outstanding bytes drops below the kernel parameter ufs_LW .

• The file system calls the seg_map driver to map in the portion of the file we
are going to write. The data is copied from the process’s user address space
into the kernel address space allocated by seg_map, then seg_map is called
to release the address space containing the dirty pages to be written. This is
when the real work of write starts, because seg_map calls ufs_putpage()
when it realizes there are dirty pages in the address space it is releasing.
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write(myfile, 16384)

16K of heap space
in process

User Process Address Space Kernel Address Space

write() ufs_write()

1. UFS write maps the file
into kernel address space
via seg_map.

16K of file in
kernel address
space

3. UFS copies the 16K of
file data from the user
address space to kernel
address space.

4.UFS then releases the
16K of kernel address space
onto the seg_map free
list. At this point, seg_map
calls ufs_putpage to write
the data out.

5a. ufs_putpage puts the
page into a cluster. If the
cluster is full (cluster size
is determined by maxcontig),
then ufs_putpage pushes the cluster;
otherwise, it leaves the page
there for a delayed write.

5b. ufs_putpage writes
the page to disk (waits

Async
Write

Sync
Write

6. segmap_release
returns control to
the caller.

for I/O to complete).

2.UFS write throttle: If there
are more than ufs_HW bytes
outstanding, then the write
is throttled.

 Figure 14.8 ufs_write()
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14.3.3 In-Core UFS Inodes

Each file system has two forms of an inode: the in-core (in-memory) inode and the
on-disk inode. The on-disk inode resides on the physical medium and represents
the on-disk format and layout of the file; the in-core inode contains resides in mem-
ory and contains the file-system-dependent information, kernel locks, and state.

The vnode is typically contained in an in-core inode, so that when an inode is
created, a vnode is automatically created. In that way, simple macros can convert
from a file-system-dependent inode to a file-system-independent vnode . The
in-core UFS inode contains an embedded vnode , as shown in Figure 14.9.

Embedding the vnode in the inode also allows file systems to easily convert
between inode and vnode references. File systems use macros to convert a vnode
reference to an inode reference, and vice versa. UFS uses the macro VTOI to con-

.

.

i_chain[2]

struct inode

i_ic

 Figure 14.9 The UFS inode

v_flags
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i_vnode
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vert a vnode pointer to an inode pointer, and the macro ITOV to convert an inode
pointer to a vnode  pointer.

14.3.3.1  Freeing inodes—the Inode Idle List

When the last reference to a vnode is released, the vop_inactive() routine for
the file system is called. (See vnode reference counts in “vnode Reference Count”
on page 548.) UFS uses vop_inactive() to free the inode when it is no longer
required. UFS implements an idle list because if we were to destroy each vnode
when the last reference to a vnode is relinquished, we would throw away all the
data relating to that vnode , including all of the file pages cached in the page
cache. This practice could mean that if a file is closed and then reopened, none of
the file data that was cached would be available after the second open and would
need to be reread from disk.

14.3.3.2  Caching Inodes—the Inode Idle List

Each time the last reference to a file is made, the vop_inactive() method for the
file system is called to handle the last reference to the vnode . UFS implements an
idle queue to cache recently closed inodes in their constructed state, to keep their
in-kernel state and file system cache pages intact.

For idling inodes, UFS implements a thread that maintains a list of idle inodes
on a queue. The ufs_inactive() routine puts UFS inodes into the idle queue.
The ufs_inactive() routine is passed a vnode , and the UFS uses the VTOI
macro to convert an inode reference, which is then placed onto the idle queue. The
inodes on the idle queue retain all of their state, keeping any pages in the page
cache in memory. The inodes stay on the idle queue until the idle queue reaches a
high watermark, at which point the UFS idle thread is awakened to free half of the
inode idle queue. Figure 14.10 illustrates the process.

/*
 * Convert between inode pointers and vnode pointers
 */
#define         VTOI(VP)        ((struct inode *)(VP)->v_data)
#define         ITOV(IP)        ((struct vnode *)&(IP)->i_vnode)

Header File <fs/ufs_inode.h>
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 Figure 14.10 UFS Idle Queue

The ufs_inactive() routine attempts to free inodes with no pages in the page
cache in preference to inodes that still have pages in the page cache. The goal—to
keep as many file pages in the page cache as possible—is realized by the following
procedure: inodes that have pages associated with them are placed at the tail of
the idle queue, and inodes with no pages are placed at the head of the inode queue.
When inodes are removed from the idle queue, they are removed from the tail of
the queue, that is, the inodes without pages are taken first.

The UFS idle thread is awakened when the size of the idle queue exceeds
one-fourth of the system-tunable parameter ufs_ninode . When the thread wakes
up, it attempts to remove half the inodes from the idle queue, to discard all of the
pages associated with the inode, and to free the kernel memory used to store the
in-memory inode. Inodes that are removed from the idle queue update kernel sta-

# sar -g 3 3333

SunOS devhome 5.7 Generic sun4u    08/01/99

09:42:52  pgout/s ppgout/s pgfree/s pgscan/s %ufs_ipf
09:42:55     0.00     0.00    30.90     0.00     0.00
09:42:58     0.00     0.00    34.55     0.00     0.00
09:43:01     0.00     0.00    45.15     0.00     0.00
09:43:04     0.00     0.00    64.00     0.00     0.00
09:43:07     0.00     0.00    69.44     0.00     0.00
09:43:10     0.00     0.00    84.95     0.00     1.21
09:43:13     0.00     0.00    86.67     0.00     0.00
09:43:16     0.00     0.00    35.88     0.00     0.00
09:43:19     0.00     0.00    71.33     0.00     0.00

ufs_inactive()

inodes with pages
inodes without pages

UFS idle queue (tail)

(head)

free inode resources

queue size target is
ufs_ninode / 4

UFS idle thread wakes up when
queue size is ufs_ninode / 4 and
frees 1/2 of queue
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tistics in the virtual memory system; you can obtain the statistics with sar . The
statistics show how many inodes that have pages associated with them in the page
cache were freed. Note that the %ufs_ipf column in the sar output for this exam-
ple shows that almost no inodes that are freed had associated pages.

14.3.4  UFS Directories and Path Names

The file system directory and path-name code are responsible for managing the
on-disk directory format and translating file-name lookups into vnode references.
Four vnode methods implement directory and path-name services:
vop_lookup() , vop_readdir() , vop_mkdir() , and vop_rmdir() .

Path names are converted to vnode references by the file-system-independent
lookuppn() function. The lookuppn() function calls into the file system’s
vop_lookup() method. Directories are traversed by means of the
vop_readdir() method; they are created and deleted with the vop_mkdir() and
vop_rmdir()  methods.

14.3.4.1  ufs_lookup()

The ufs_lookup() function traverses the directory to find a file matching the
supplied path name and returns a reference to a vnode for the file. For example,
the open system call for a UFS file translates the path name of the file into a
vnode by calling lookuppn() , which calls ufs_lookup() for each component of
the path name. Opening /etc/passwd causes vop_lookup() to be called for the
root directory / , the etc  subdirectory, and the password file passwd .

The ufs_lookup() implementation first searches the directory name lookup
cache (DNLC), using dnlc_lookup() , to check if an entry exists in the DNLC. If
not, the directory is read in and searched for the path name. Once located, the
path name is entered into the DNLC with dnlc_enter() , and an open vnode is
returned to the caller.

14.3.4.2  ufs_readdir()

The ufs_readdir() method reads chunks of UFS directories from disk and
returns them to the caller. The ufs_readdir() method is typically called as a
result of the readdir() system call. The raw UFS directory data is cached in the
file system cache (compared with the DNLC, which caches the inode and path
name information for individual files).
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SOLARIS FILE SYSTEM
CACHE
One of the most important features of a file system is its ability to cache file
data, but, ironically, the file system cache is not implemented in the file system. In
Solaris, the file system cache is implemented in the virtual memory system. In this
section, we explain how Solaris file caching works, and we explore the interactions
between the file system cache and the virtual memory system.

15.1 Introduction to File Caching

Traditional Unix implements file system caching in the I/O subsystem by keeping
copies of recently read or written blocks in a block cache. This block cache sits just
above the disks, and it caches data corresponding to physical disk sectors.

Figure 15.1 shows an example in which a process reads a piece of a file. The pro-
cess reads a segment of a file by issuing a read system call into the operating sys-
tem. The file system must then look up the corresponding disk block for the file by
looking up the block number in the direct/indirect blocks for that file, after which
the files system requests that block from the I/O system. The I/O system retrieves
the block from disk the first time; then, the file systems satisfies subsequent reads
by reading the disk block from the block buffer cache. Note that even though the
disk block is cached in memory—because this is a physical block cache—we have
to invoke the file system and look up the physical block number for every cached
read.
601



602 Solaris File System Cache
Typically, the old buffer cache is sized statically by a kernel configuration parame-
ter. Changing the size of the buffer cache requires a kernel rebuild and a reboot.

15.1.1  Solaris Page Cache

Solaris has a new method, the page cache, of caching file system data. The page
cache was developed at Sun as part of the virtual memory rewrite in SunOS 4 in
1985 and is used by System V Release 4 Unix. Page cache derivatives are now also
used in Linux and Windows NT. The page cache has two major differences from
the old caching method. First, it’s dynamically sized and can use all memory that
is not being used by applications. Second, it caches file blocks rather than disk
blocks. The key difference is that the page cache is a virtual file cache rather than
a physical block cache. A virtual file cache allows the operating system to retrieve
file data by simply looking up the file reference and seek offset. The old way, the
operating system invoked the file system, which looked up the physical disk block
number corresponding to the file and retrieved that block from the physical block
cache. The virtual file cache is far more efficient.

File System

Read (file, offset)

Disk

Logical

Process

Physical Read (device, sector #)

Block Buffer Cache

Disk Block (device, sector #)

User Process

Kernel

 Figure 15.1 The Old-Style Buffer Cache
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Figure 15.2 shows the new page cache. When a Solaris process reads a file the
first time, file data is read from disk through the file system into memory in
page-sized chunks and returned to the user. The next time the same segment of
file data is read, it can be retrieved directly from the page cache without a logi-
cal-to-physical lookup through the file system. The old buffer cache is still used in
Solaris, but only for internal file system data (which is just the metadata items)
that is only known by physical block numbers—direct/indirect blocks and inodes.
All file data is cached through the page cache.

 Figure 15.2 The Solaris Page Cache

The diagram in Figure 15.2 is somewhat simplified because the file system is still
involved in the page cache lookup, but the amount of work that the file system
needs to do is dramatically reduced. The page cache is implemented in the virtual
memory system; in fact, the virtual memory system is architected around the page
cache principle. Each page of the physical memory is identified the same way: by
file and offset. Pages associated with files point to regular files, whereas pages of
memory associated with process private-memory space point to the swap device.
We don’t go into too much detail about the Solaris virtual memory system in this
section; you can find a more detailed description of the Solaris memory system in
Chapter 5. The important thing to remember is that file cache is just like process
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memory, and as we will see, file caching shares the same paging dynamics as the
rest of the memory system.

15.1.2  Block Buffer Cache

The old buffer cache is used in Solaris for caching of inodes and file metadata and
is now also dynamically sized. In old versions of Unix, the buffer cache was fixed in
size by the nbuf kernel parameter, which specified the number of 512-byte buff-
ers. We now allow the buffer cache to grow by nbuf , as needed, until it reaches a
ceiling specified by the bufhwm kernel parameter. By default, the buffer cache is
allowed to grow until it uses 2 percent of physical memory. We can look at the
upper limit for the buffer cache by using the sysdef  command.

Now that we only keep inode and metadata in the buffer cache, we don’t need a
very large buffer. In fact, we only need 300 bytes per inode and about 1 megabyte
per 2 gigabytes of files that we expect to be accessed concurrently (note that this
rule of thumb is for UFS file systems).

For example, if we have a database system with 100 files totaling 100 gigabytes
of storage space and we estimate that we will access only 50 gigabytes of those
files at the same time, then at most we would need 100 × 300 bytes = 30 kilobytes
for the inodes, and about 50 / 2 * 1 megabyte = 25 megabytes for the metadata
(direct and indirect blocks). On a system with 5 gigabytes of physical memory, the
defaults for bufhwm would provide us with a bufhwm of 102 megabytes, which is
more than sufficient for the buffer cache. If we are really memory misers, we could
limit bufhwm to 30 megabytes (specified in kilobytes) by setting the bufhwm
parameter in the /etc/system file. To set bufhwm smaller for this example, we
would put the following line into the /etc/system file.

You can monitor the buffer cache hit statistics by using sar -b . The statistics for
the buffer cache show the number of logical reads and writes into the buffer cache,

# sysdef
*
* Tunable Parameters
*
 7757824        maximum memory allowed in buffer cache (bufhwm)
    5930        maximum number of processes (v.v_proc)
      99        maximum global priority in sys class (MAXCLSYSPRI)
    5925        maximum processes per user id (v.v_maxup)
      30        auto update time limit in seconds (NAUTOUP)
      25        page stealing low water mark (GPGSLO)
       5        fsflush run rate (FSFLUSHR)
      25        minimum resident memory for avoiding deadlock (MINARMEM)
      25        minimum swapable memory for avoiding deadlock (MINASMEM)

*
* Limit size of bufhwm
*
set bufhwm=30000
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the number of physical reads and writes out of the buffer cache, and the read/write
hit ratios.

On this system we can see that the buffer cache is caching 100 percent of the reads
and that the number of writes is small. This measurement was taken on a
machine with 100 gigabytes of files that are being read in a random pattern. You
should aim for a read cache hit ratio of 100 percent on systems with only a few, but
very large, files (e.g., database systems) and a hit ratio of 90 percent or better for
systems with many files.

15.2 Page Cache and Virtual Memory System

The virtual memory system is implemented around the page cache, and the file
system makes use of this facility to cache files. This means that to understand file
system caching behavior, we need to look at how the virtual memory system imple-
ments the page cache.

The virtual memory system divides physical memory into chunks known as
pages; on UltraSPARC systems, a page is 8 kilobytes. To read data from a file into
memory, the virtual memory system reads in one page at a time, or “pages in” a
file. The page-in operation is initiated in the virtual memory system, which
requests that file’s file system to page in a page from storage to memory. Every
time we read in data from disk to memory, we cause paging to occur. We see the

# sar -b 3 333
SunOS zangief 5.7 Generic sun4u    06/27/99

22:01:51 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s
22:01:54       0    7118     100       0       0     100       0       0
22:01:57       0    7863     100       0       0     100       0       0
22:02:00       0    7931     100       0       0     100       0       0
22:02:03       0    7736     100       0       0     100       0       0
22:02:06       0    7643     100       0       0     100       0       0
22:02:09       0    7165     100       0       0     100       0       0
22:02:12       0    6306     100       8      25      68       0       0
22:02:15       0    8152     100       0       0     100       0       0
22:02:18       0    7893     100       0       0     100       0       0
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tally when we look at the virtual memory statistics. For example, reading a file
will be reflected in vmstat  as page-ins.

In our example, we can see that by starting a program that does random reads of a
file, we cause a number of page-ins to occur, as indicated by the numbers in the pi
column of vmstat . Note that the free memory column in vmstat has dropped to a
low value; in fact, the amount of free memory is almost zero. This situation occurs
because the file system consumes a page of physical memory every time it pages in
a page-sized chunk of a file. Have you ever noticed that when you boot your
machine there is a lot of free memory, and as the machine is used, memory contin-
ues to fall to zero, then just hangs there? Here is why: the file system is using all
available memory to cache the reads and writes to each file—and it’s completely
normal.

Memory is put back on the free list by the page scanner, which looks for mem-
ory pages that have not been used recently. The page scanner runs when memory
falls to a system parameter known as lotsfree . In this example, we can see from
the scan rate (sr) column that the page scanner is scanning about 50 pages per sec-
ond to replace the memory used by the file system.

There is no parameter equivalent to bufhwm for the page cache. The page cache
simply grows to consume all available memory, which includes all process memory
that has not been used recently by applications. The rate at which the system
pages and the rate at which the page scanner runs are proportional to the rate at
which the file system is reading or writing pages to disk. On large systems, you
should expect to see large paging values—it’s completely normal.

Consider a system that is reading 10 megabytes per second through the file sys-
tem; this translates to 1,280 page-ins per second and means that the page scanner
must scan enough memory to be able to free 1,280 pages per second. The page
scanner must actually scan faster than 1,280 pages per second, since not all mem-
ory the page scanner comes across will be eligible for freeing (the page scanner
only frees memory that hasn’t been used recently). If the page scanner finds only
one out of three pages eligible for freeing, then it would need to run at 3,840 pages
per second. Don’t worry about high scan rates; if you are using the file system
heavily, then they are normal. There are many myths about high scan rates mean-

# ./rreadtest testfile&

# vmstat
  procs     memory            page            disk          faults      cpu
 r b w  swap  free  re  mf  pi  po fr de sr s0 -- -- --   in   sy   cs us sy id
 0 0 0 50436  2064   5   0  81   0  0  0  0 15  0  0  0  168  361   69  1 25 74
 0 0 0 50508  1336  14   0 222   0  0  0  0 35  0  0  0  210  902  130  2 51 47
 0 0 0 50508   648  10   0 177   0  0  0  0 27  0  0  0  168  850  121  1 60 39
 0 0 0 50508   584  29  57  88 109  0  0  6 14  0  0  0  108 5284  120  7 72 20
 0 0 0 50508   484   0  50 249  96  0  0 18 33  0  0  0  199  542  124  0 50 50
 0 0 0 50508   492   0  41 260  70  0  0 56 34  0  0  0  209  649  128  1 49 50
 0 0 0 50508   472   0  58 253 116  0  0 45 33  0  0  0  198  566  122  1 46 53
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ing you have a shortage of memory; perhaps this explanation reassures you that
high scan rates can be normal in many circumstances.

Having all of free memory used for a cache makes it harder to observe how
much memory is really free and also makes it hard to see how much memory is
being used as a file system cache. The MemTool package (see “File System Cach-
ing Memory” on page 236) can display the amount of memory that is being used as
a file system cache.

15.2.1  File System Paging Optimizations

Some file systems try to reduce the amount of memory pressure by doing two
things: invoking free-behind with sequential access and freeing pages when free
memory falls to lotsfree . Free-behind is invoked on UFS when a file is accessed
sequentially so that the cache is not polluted when we do a sequential scan
through a large file. This means that when we create or sequentially read a file, we
don’t see high scan rates.

Also, some checks in some file systems limit the file system’s use of the page
cache when memory falls to lotsfree . An additional parameter,
pages_before_pager , used by the UFS, reflects the amount of memory above the
point where the page scanner starts; by default pages_before_pager is 200
pages. This means that when memory falls to 1.6 megabytes (on UltraSPARC)
above lotsfree , the file system throttles back the use of the page cache. To be
specific, when memory falls to lotsfree + pages_before_pager , the following
happens:

• Solaris file systems free all pages after they are written
• UFS and NFS enable free-behind on sequential access
• NFS disables read-ahead
• NFS writes synchronously, rather than asynchronously
• VxFS enables free-behind (some versions only)

# prtmem

Total memory:             242 Megabytes
Kernel Memory:             35 Megabytes
Application memory:       139 Megabytes
Executable  memory:        50 Megabytes
Buffercache memory:         7 Megabytes
Free memory:
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15.3 Is All That Paging Bad for My System?

Although we stated earlier that it may be normal to have high paging and scan
rates, it is likely that the page scanner will be putting too much pressure on your
application’s private process memory. If we scan at a rate of several hundred pages
or more per second, then the amount of time that the page scanner takes to check
whether a page has been accessed falls to a few seconds. This means that any
pages that have not been used in the last few seconds will be taken by the page
scanner when you are using the file system. This behavior can negatively affect
application performance and is the reason why priority paging was introduced.

If your system seems slow while file system I/O is going on, it’s because your
applications are being paged in and out as a direct result of the file system activity.

For example, consider an OLTP application that makes heavy use of the file sys-
tem. The database is generating file system I/O, making the page scanner actively
steal pages from the system. The user of the OLTP application has paused for 15
seconds to read the contents of a screen from the last transaction. During this
time, the page scanner has found that those pages associated with the user appli-
cation have not been referenced and makes them available for stealing. The pages
are stolen, and when the user types the next keystroke, the user is forced to wait
until the application is paged back in—usually several seconds. Our user is forced
to wait for an application to page in from the swap device, even though the applica-
tion is running on a system with sufficient memory to keep all of the application in
physical memory!

The priority paging algorithm effectively places a boundary around the file
cache so that file system I/O does not cause unnecessary paging of applications.
The algorithm prioritizes the different types of pages in the page cache, in order of
importance:

• Highest — Pages associated with executables and shared libraries, including
application process memory (anonymous memory)

• Lowest — Regular file cache pages

When the dynamic page cache grows to the point where free memory falls to
almost zero, the page scanner wakes up and begins scanning, but as long as the
system has sufficient memory, the scanner only steals pages associated with regu-
lar files. The file system effectively pages against itself rather than against every-
thing else on the system.

Should there be a real memory shortage where there is insufficient memory for
the applications and kernel, the scanner is again allowed to steal pages from the
applications. By default, priority paging is disabled. It is likely to be enabled by
default in a Solaris release subsequent to Solaris 7. To use priority paging, you will
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need either Solaris 7, Solaris 2.6 with kernel patch 105181-13, or Solaris 2.5.1 with
103640-25 or higher. To enable priority paging, set the following in /etc/system :

To enable priority paging on a live 32-bit system, set the following with adb :

To enable priority paging on a live 64-bit system, set the following with adb :

Setting priority_paging=1 in /etc/system causes a new memory tunable,
cachefree , to be set to twice the old paging high watermark, lotsfree , as the
system boots. cachefree  scales with minfree , desfree , and lotsfree .

Priority paging distinguishes between executable files and regular files by
recording whether they are being mapped into an address space with execute per-
missions. That is, if regular files have the execute bit set when the memory map
system call maps them into an address space, then those files are treated as exe-
cutables. Be careful to ensure that data files that are being memory mapped do not
have the execute bit set.

Under Solaris 7, an extended set of paging counters allows us to see what type
of paging is occurring. We can now see the difference between paging caused by an
application memory shortage and paging through the file system. The paging

*
* Enable Priority Paging
*
set priority_paging=1

# adb -kw /dev/ksyms /dev/mem

lotsfree/D
lotsfree: 730 <- value of lotsfree is printed

cachefree/W 0t1460 <- insert 2 x value of lotsfree preceded with 0t (decimal)
dyncachefree/W 0t1460 <- insert 2 x value of lotsfree preceded with 0t (decimal)

cachefree/D
cachefree: 1460
dyncachfree/D
dyncachefree: 1460

# adb -kw /dev/ksyms /dev/mem

lotsfree/E
lotsfree: 730 <- value of lotsfree is printed

cachefree/Z 0t1460 <- insert 2 x value of lotsfree preceded with 0t (decimal)
dyncachefree/Z 0t1460 <- insert 2x value of lotsfree preceded with 0t (decimal)
cachfree/E
cachefree: 1460
dyncachfree/E
dyncachefree: 1460
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counters are visible under Solaris 7 with the memstat command. The output from
the memstat command is similar to that of vmstat , but with extra fields to differ-
entiate paging types. In addition to the regular paging counters (sr, po, pi, fr), the
memstat command shows the three types of paging: executable, application, and
file. The memstat  fields are shown in Table 15-1.

If we use the memstat command, we can now see that as we randomly read our
test file, the scanner is scanning several hundred pages per second through mem-
ory and causing executable pages to be freed and application (anonymous) pages to
be paged out to the swap device as they are stolen. On a system with plenty of
memory, this is not the desired mode of operation! Enabling priority paging will
stop this excessive swapping when there is sufficient memory.

Table 15-1 Paging Counters from the memstat  Command

Column Description
pi Total page-ins per second
po Total page-outs per second
fr Total page-frees per second
sr Page scan rate in pages per second
epi Executable page-ins per second
epf Executable pages freed per second
api Application (anonymous) page-ins per second

from the swap device
apo Application (anonymous) page-outs per second to

the swap device
apf Application pages freed per second
fpi File page-ins per second
fpo File page-outs per second
fpf File page-frees per second

# ./readtest testfile&

# memstat 3
memory  ---------- paging ------ -executable- - anonymous -  -- filesys - --- cpu ---
free re mf   pi   po   fr de  sr epi epo  epf api  apo  apf  fpi fpo  fpf us sy wt id
2080 1   0  749  512  821  0 264   0   0  269   0  512  549  749   0    2  1  7 92  0
1912 0   0  762  384  709  0 237   0   0  290   0  384  418  762   0    0  1  4 94  0
1768 0   0  738  426  610  0 1235  0   0  133   0  426  434  738   0   42  4 14 82  0
1920 0   2  781  469  821  0 479   0   0  218   0  469  525  781   0   77 24 54 22  0
2048 0   0  754  514  786  0 195   0   0  152   0  512  597  754   2   37  1  8 91  0
2024 0   0  741  600  850  0 228   0   0  101   0  597  693  741   2   56  1  8 91  0
2064 0   1  757  426  589  0 143   0   0   72   8  426  498  749   0   18  1  7 92  0
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With priority paging enabled, we can see the different behavior of the virtual
memory system.

With the same test program, random reads on the file system again cause the sys-
tem to page, and the scanner is actively involved in managing the pages, but now
the scanner is freeing only file pages. The zeros in the executable and anonymous
memory columns clearly show that the scanner is choosing file pages first. The
activity shown in the fpi and fpf columns means that file pages are being read in
and an equal number are freed by the page scanner to make room for more reads.

15.4 Paging Parameters That Affect File System Performance

When priority paging is enabled, you will notice that the file system scan rate is
higher. Because the page scanner must skip over process private memory and exe-
cutables, it needs to scan more pages before it finds file pages that it can steal.
High scan rates are always found on systems that make heavy use of the file sys-
tem and so should not be used as a factor for determining memory shortage. If you
have Solaris 7, then the memstat command will reveal if you are paging to the
swap device; such paging suggests that you are short of memory.

If you have high file system activity, then you will find that the scanner parame-
ters are insufficient and will limit file system performance. To compensate, you
must set the scanner parameters fastscan and maxpgio to allow the scanner to
scan at a high enough rate to keep up with the file system.

By default, the scanner is limited by the fastscan parameter, which reflects
the number of pages per second that the scanner can scan. It defaults to scan
one-fourth of memory every second and is limited to 64 megabytes per second. The
scanner runs at half of fastscan when memory is at lotsfree , which limits it to
32 megabytes per second. If only one in three physical memory pages is a file page,
then the scanner will only be able to put 32 / 3 = 11 megabytes per second of mem-
ory on the free list, limiting file system throughput. So, to allow the page scanner

# ./readtest testfile&

# memstat 3
memory  ---------- paging ----------- - executable -  - anonymous -  -- filesys -- --- cpu ---
  free  re  mf   pi   po   fr  de  sr  epi  epo  epf  api  apo  apf  fpi  fpo  fpf us sy wt id
  3616   6   0  760    0  752   0 673    0    0    0    0    0    0  760    0  752  2  3 95  0
  3328   2 198  816    0  925   0 1265   0    0    0    0    0    0  816    0  925  2 10 88  0
  3656   4 195  765    0  792   0 263    0    0    0    2    0    0  762    0  792  7 11 83  0
  3712   4   0  757    0  792   0 186    0    0    0    0    0    0  757    0  792  1  9 91  0
  3704   3   0  770    0  789   0 203    0    0    0    0    0    0  770    0  789  0  5 95  0
  3704   4   0  757    0  805   0 205    0    0    0    0    0    0  757    0  805  2  6 92  0
  3704   4   0  778    0  805   0 266    0    0    0    0    0    0  778    0  805  1  6 93  0
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to scan fast enough, increase fastscan to, say, one-fourth of memory, with an
upper limit of 1 gigabyte per second. That upper limit translates to 131072 for the
fastscan  parameter.

The maxpgio parameter is the maximum number of pages the page scanner can
push. maxpgio can also limit the number of file system pages that are pushed,
thus limiting the write performance of the file system. If your system has suffi-
cient memory, then we recommend setting maxpgio to something large, say, 1024.
On the E10000 systems, this is the default for maxpgio . For example, on a
4-gigabyte machine, one-fourth of memory is 1 gigabyte, so we would set
fastscan to 131072. Our parameters, set in /etc/system , for this machine are
shown below.

In summary, we have seen the a strong relationship between the VM system and
file system behavior. The parameters that control the paging system have the most
influence on file system performance, since they govern the way pages are made
available to the file system. Figure 15.3 depicts the paging parameters that affect
file systems and the memory parameters that control paging as the amount of free
memory falls to the point where it hits these parameters.

*
* Parameters to allow better file system throughput
*
set fastscan=131072
set handspreadpages=131072
set maxpgio=1024
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 Figure 15.3 VM Parameters That Affect File Systems
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15.5 Bypassing the Page Cache with Direct I/O

In some cases we may want to do completely unbuffered I/O to a file. A direct I/O
facility in most file systems allows a direct file read or write to completely bypass
the file system page cache.

15.5.1  UFS Direct I/O

Support for direct I/O was added to UFS starting with Solaris 2.6. Direct I/O
allows reads and writes to files in a regular file system to bypass the page cache
and access the file at near raw disk performance. Direct I/O can be advantageous
when you are accessing a file in a manner where caching is of no benefit. For exam-
ple, if you are copying a very large file from one disk to another, then it is likely
that the file will not fit in memory and you will just cause the system to page
heavily. By using direct I/O, you can copy the file through the file system without
reading through the page cache and eliminate the memory pressure caused by the
file system and the additional CPU cost of the layers of cache.

Direct I/O also eliminates the double copy that is performed when the read and
write system calls are used. When we read a file through normal buffered I/O, the
file system (1) uses a DMA transfer from the disk controller into the kernel’s
address space and (2) copies the data into the buffer supplied by the user in the
read system call. Direct I/O eliminates the second step by arranging for the DMA
transfer to occur directly into the user’s address space.

Direct I/O will only bypass the buffer cache if all of the following are true:

• The file is not memory mapped.
• The file is not on a logging file system.

• The file does not have holes.
• The read/write is sector aligned (512 byte).
You enable direct I/O by mounting an entire file system with the force-

directio mount  option, as shown below.

You can also enable direct I/O with the directio system call, on a per-file basis.
Note that the change is file based, and every reader and writer of the file will be
forced to use directio  once it’s enabled.

# mount -o forcedirectio /dev/dsk/c0t0d0s6 /u1

int directio(int fildes, DIRECTIO_ON | DIRECTIO_OFF);

Header File <sys/fcntl.h>
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Direct I/O can provide extremely fast transfers when moving data with big block
sizes (>64 kilobytes), but it can be a significant performance limitation for smaller
sizes. If an application reads and writes in small sizes, then its performance may
suffer since there is no read-ahead or write clustering and no caching.

Databases are a good candidate for direct I/O since they cache their own blocks
in a shared global buffer and can arrange to do their own clustering of reads and
writes into larger operations.

A set of direct I/O statistics is provided with the ufs implementation by means
of the kstat interface. The structure exported by ufs_directio_kstats is
shown below. Note that this structure may change, and performance tools should
not rely on the format of the direct I/O statistics.

You can inspect the direct I/O statistics with an engineering utility from our web-
site at http://www.solarisinternals.com.

15.5.2  Direct I/O with Veritas VxFS

VxFS also provides a direct I/O implementation, which by default switches on
whenever the read or write size is 256 kilobytes or greater. This VxFS feature is
known as discovered direct I/O.

15.6 Directory Name Cache

The directory name cache caches path names for vnodes , so that when we open a
file that has been opened recently, we don’t need to rescan the directory to find the
file name again. Each time we find the path name for a vnode , we store it in the
directory name cache. (See “The Directory Name Lookup Cache (DNLC)” on

struct ufs_directio_kstats {
        uint_t  logical_reads;  /* Number of fs read operations */
        uint_t  phys_reads;     /* Number of physical reads */
        uint_t  hole_reads;     /* Number of reads from holes */
        uint_t  nread;          /* Physical bytes read */
        uint_t  logical_writes; /* Number of fs write operations */
        uint_t  phys_writes;    /* Number of physical writes */
        uint_t  nwritten;       /* Physical bytes written */
        uint_t  nflushes;       /* Number of times cache was cleared */
} ufs_directio_kstats;

# directiostat 3
  lreads lwrites  preads pwrites     Krd     Kwr holdrds  nflush
       0       0       0       0       0       0       0       0
       0       0       0       0       0       0       0       0
       0       0       0       0       0       0       0       0
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page 568 for further information on the DNLC operation.) The number of entries
in the DNLC is set by the system-tunable parameter, ncsize , which is set at boot
time by the calculations shown in Table 15-2. The ncsize parameter is calculated
in proportion to the maxusers parameter, which is equal to the number of mega-
bytes of memory installed in the system, capped by a maximum of 1024. The max-
users  parameter can also be overridden in /etc/system  to a maximum of 2048.

The size of the DNLC rarely needs to be adjusted because the size scales with the
amount of memory installed in the system. Earlier Solaris versions had a default
maximum of 17498 (34906 with maxusers set to 2048), and later Solaris versions
have a maximum of 69992 (139624 with maxusers  set to 2048).

Use adb  to determine the size of the DNLC.

The hit rate of the directory name cache shows the number of times a name was
looked up and found in the name cache. A high hit rate (>90%) shows that the
DNLC is working well. A low hit rate does not necessarily mean that the DNLC is
undersized; it simply means that we are not always finding the names we want in
the name cache. This situation can occur if we are creating a large number of files.

Table 15-2 DNLC Default Sizes

Solaris Version Default ncsize Calculation
Solaris 2.4, 2.5, 2.5.1 ncsize  = (17 * maxusers ) + 90
Solaris 2.6, 2.7 ncsize  = (68 * maxusers ) + 360

# adb -k
physmem b919
ncsize/D
ncsize:
ncsize:         25520
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The reason is that a create operation checks to see if a file exists before it creates
the file, causing a large number of cache misses.

15.7 Inode Caches

Disk-based file systems attempt to keep a number of inodes in memory, even if the
file for that inode is not open or referenced. This is done for two reasons: to mini-
mize disk inode reads by caching the inode in memory and to keep the inode’s
vnode in memory so that file pages remain in the page cache. The number of
inodes that the system will attempt to keep in memory is indirectly controlled by a
system parameter: ufs_ninode .

15.7.1  UFS Inode Cache Size

The UFS uses the ufs_ninode parameter to size the file system tables for the
expected number of inodes. To understand how the ufs_ninode parameter affects
the number of inodes in memory, we need to look at how the UFS maintains
inodes. Inodes are created when a file is first referenced. They remain in memory
much longer than when the file is last referenced because inodes can be in one of

# vmstat -s
        0 swap ins
        0 swap outs
        0 pages swapped in
        0 pages swapped out
   405332 total address trans. faults taken
  1015894 page ins
      353 page outs
  4156331 pages paged in
     1579 pages paged out
  3600535 total reclaims
  3600510 reclaims from free list
        0 micro (hat) faults
   405332 minor (as) faults
   645073 major faults
    85298 copy-on-write faults
   117161 zero fill page faults
        0 pages examined by the clock daemon
        0 revolutions of the clock hand
  4492478 pages freed by the clock daemon
     3205 forks
       88 vforks
     3203 execs
 33830316 cpu context switches
 58808541 device interrupts
   928719 traps
214191600 system calls
 14408382 total name lookups (cache hits 90%)
   263756 user   cpu
   462843 system cpu
 14728521 idle   cpu
  2335699 wait   cpu
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two states: either the inode is referenced, or the inode is no longer referenced but
is on an idle queue. Inodes are eventually destroyed when they are pushed off the
end of the inode idle queue. Refer to “Freeing inodes—the Inode Idle List” on
page 598 for a description of how ufs  inodes are maintained on the idle queue.

The number of inodes in memory is dynamic. Inodes will continue to be allo-
cated as new files are referenced. There is no upper bound to the number of inodes
open at a time; if one million inodes are opened concurrently, then a little over one
million inodes will be in memory at that point. A file is referenced when its refer-
ence count is nonzero, which means either the file is open for a process or another
subsystem such as the directory name lookup cache is referring to the file.

When inodes are no longer referenced (the file is closed and no other subsystem
is referring to the file), the inode is placed on the idle queue and eventually freed.
The size of the idle queue is controlled by the ufs_ninode parameter and is lim-
ited to one-fourth of ufs_ninode . The maximum number of inodes in memory at a
given point is the number of active referenced inodes plus the size of the idle queue
(typically, one-fourth of ufs_ninode ). Figure 15.4 illustrates the inode cache.

We can use the sar command and inode kernel memory statistics to determine the
number of inodes currently in memory. sar shows us the number of inodes cur-
rently in memory and the maximum reached. We can find similar information by

Open Files

Files in the Name Cache (DNLC) Inodes in the idle queue

inodes

(number <= ncsize) (number <= ufs_ninode/4)

 Figure 15.4 In-Memory Inodes (Referred to as the “Inode Cache”)
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looking at the buf_inuse and buf_total parameters in the inode kernel mem-
ory statistics.

The inode memory statistics show us how many inodes are allocated by the
buf_inuse field. We can also see from the ufs inode memory statistics that the
size of each inode is 440 bytes. We can use this value to calculate the amount of
kernel memory required for desired number of inodes when setting ufs_ninode
and the directory name cache size.

The ufs_ninode parameter controls the size of the hash table that is used to
look up inodes and indirectly sizes the inode idle queue (ufs_ninode / 4). The
inode hash table is ideally sized to match the total number of inodes expected to be
in memory—a number that is influenced by the size of the directory name cache.
By default, ufs_ninode is set to the size of the directory name cache, which pro-
vides approximately the correct size for the inode hash table. In an ideal world, we
could set ufs_ninode to four-thirds the size of the DNLC, to take into account the
size of the idle queue, but practice has shown this unnecessary.

We typically set ufs_ninode indirectly by setting the directory name cache size
(ncsize ) to the expected number of files accessed concurrently, but it is possible to
set ufs_ninode  separately in /etc/system .

# sar -v 3 3

SunOS devhome 5.7 Generic sun4u    08/01/99

11:38:09  proc-sz    ov inod-sz     ov  file-sz    ov   lock-sz
11:38:12  100/5930    0 37181/37181     0  603/603     0    0/0
11:38:15  100/5930    0 37181/37181     0  603/603     0    0/0
11:38:18  101/5930    0 37181/37181     0  607/607     0    0/0

# netstat -k ufs_inode_cache
ufs_inode_cache:
buf_size 440 align 8 chunk_size 440  slab_size 8192 alloc 1221573 alloc_fail 0
free 1188468 depot_alloc 19957 depot_free 21230 depot_contention 18 global_alloc 48330
global_free 7823 buf_constructed 3325 buf_avail 3678 buf_inuse 37182
buf_total 40860  buf_max 40860 slab_create 2270 slab_destroy 0 memory_class 0
hash_size 0 hash_lookup_depth 0 hash_rescale 0 full_magazines 219
empty_magazines 332 magazine_size 15 alloc_from_cpu0 579706 free_to_cpu0 588106
buf_avail_cpu0 15 alloc_from_cpu1 573580 free_to_cpu1 571309 buf_avail_cpu1 25

* Set number of inodes stored in UFS inode cache
*
set ufs_ninode = new_value
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15.7.2  VxFS Inode Cache

The Veritas file system uses a similar parameter, vxfs_ninode , to control the size
of the inode cache. It also attempts to keep one-fourth of the vxfs_ninode param-
eter number of inodes on the inode idle queue.

* Set number of inodes stored in VxFS inode cache
*
set vxfs:vxfs_ninode = new_value



 A
KERNEL TUNABLES,
SWITCHES, AND LIMITS
In this appendix, we provide several tables showing the various kernel settable
parameters. The variables listed here do not represent every kernel variable that
can be altered. Almost any kernel variable that is visible to the kernel linker can
be altered with an entry in the /etc/system file or with a debugger like adb (1).
Certainly, it was never intended that each and every kernel variable, along with its
meaning and possible values, be documented as user settable. Most have never
been intended for public use, but rather exist for debugging or experimentation.
Here we list what we consider the mainstream variables—those that have always
been intended to be user settable—and several that are not as well known but that
have proved to be useful for some installations.

A.1 Setting Kernel Parameters

You establish settable kernel tunable parameters by adding an entry to the
/etc/system  file, in the form of:

set parameter = value

or

set kernel_module:parameter = value

The second example applies to those kernel variables that are part of a loadable
kernel module, where the module name is separated by a colon from the variable
621
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name in the entry. The values in the /etc/system file are read at boot time, so
any changes made to this file require a reboot to take effect.

These settable kernel variables are traditionally referred to as kernel tunable
parameters. The settable kernel variables can be more accurately categorized into
one of three groups:

• Switches — Refers to a kernel parameter that simply turns on or off a par-
ticular behavior or functional component, which, of course, affects system
behavior and performance. An example of a switch is the priority_paging
parameter, which is either on (value of 1) or off (value of 0).

• Limits — Refers to kernel variables that impose hard limits on a particular
resource. The System V IPC tunables fall into the limit category. Several oth-
ers do as well.

• Tunables — Refers to kernel variables that will alter performance or behav-
ior. Think of these as a tuning knob that has a range of values (0 to N, where
N represents that maximum allowable value).

Kernel parameters can be further divided into those parameters that are set on
typical installations and impose minimal risk, and those that are less well known
and not well understood. Changing the value of any kernel parameter imposes
some level of risk. However, many of the kernel limit parameters, such as those set
for System V IPC resources, are set on many installations and are generally well
understood. Others can alter system behavior and performance, and sometimes it
is not easy (or even possible) to predict which direction performance will move in
(better or worse) as a result of changing a particular value.

In the tables that follow, we list the various kernel settable parameters, indicat-
ing their category (switch, limit, tunable) and whether or not we believe that the
parameter is something that may impact system behavior in an unpredictable way,
where such a warning is applicable. We also provide a reference to the page num-
ber in the book where more information about the kernel variable can be found.

As a practice, you should never change a kernel settable parameter in a
production system without first trying the value in a lab environment and
then testing extensively.

A.2 System V IPC - Shared Memory Parameters

Table A-1 describes shared memory parameters. For more information, refer to
“System V Shared Memory” on page 433.
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Table A-2 lists System V IPC semaphores. For more information, refer to “System
V Semaphores” on page 444.

Table A-3 describes message queues. For more information, refer to “System V
Message Queues” on page 451.

Table A-1 System V IPC - Shared Memory

Parameter Default Category Description / Notes
shmmax 1048576 Limit System V IPC shared memory. Maximum

shared memory segment size, in bytes.
shmmin 1 Limit System V IPC shared memory. Minimum

shared memory segment size, in bytes.
shmmni 100 Limit System V IPC shared memory. Maximum

number of shared memory segments, sys-
temwide.

shmseg 6 Limit System V IPC shared memory. Maximum
number of shared segments, per process.

segspt_minfree 5% of available
memory

Limit Number of pages of physical memory not
available for allocation as ISM shared seg-
ments. Default value translates to allowing
up to 95% of available memory get allocated
to ISM shared segments.

Table A-2 System V IPC - Semaphores

Parameter Default Category Description / Notes
semmap 10 Limit Size of the semaphore map.
semmni 10 Limit Maximum number of semaphore identifiers,

systemwide.
semmns 60 Limit Maximum number of semaphores, system-

wide. Should be the product of semmni  and
semmsl .

semmnu 30 Limit Maximum number of semaphore undo struc-
tures, systemwide.

semmsl 25 Limit Maximum number of semaphores per sema-
phore ID.

semopm 10 Limit Maximum number of semaphore operations
per semop()  call.

semume 10 Limit Maximum per-process undo structures.
semvmx 32767 Limit Maximum value of a semaphore.
semaem 16384 Limit Maximum adjust-on-exit value.
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A.3 Virtual Memory Parameters

Table A-4 lists parameters that relate to the virtual memory system and paging
activity. Such activity is closely tied to file system I/O because of the buffer cach-
ing done by file systems such as UFS and VxFS.

You can read more about the memory paging parameters in “Summary of Page
Scanner Parameters” on page 186, “Solaris File System Cache” on page 601, “Page
Cache and Virtual Memory System” on page 605, and “In summary, we have seen
the a strong relationship between the VM system and file system behavior. The
parameters that control the paging system have the most influence on file system
performance, since they govern the way pages are made available to the file sys-
tem. Figure 15.3 depicts the paging parameters that affect file systems and the
memory parameters that control paging as the amount of free memory falls to the
point where it hits these parameters.” on page 612.

Table A-3 System V IPC - Message Queues

Parameter Default Category Description/Notes
msgmap 100 Limit Maximum size of resource map for messages.
msgmax 2048 Limit Maximum size, in bytes, of a message.
msgmnb 4096 Limit Maximum number of bytes on a message

queue.
msgmni 50 Limit Maximum number message queue identifi-

ers, systemwide.
msgssz 8 Limit Message segment size.
msgtql 40 Limit Maximum number of message headers, sys-

temwide.
msgseg 1024 Limit Maximum number of message segments.

Table A-4 Virtual Memory

Parameter Default Category Description/Notes
fastscan 1/4th of physi-

cal memory, or
64 MB, which-
ever is larger.

Tunable The maximum number of pages per second
the page scanner will scan.

slowscan 100 Tunable Initial page scan rate, in pages per second.
lotsfree 1/64th of physi-

cal memory, or
512 KB, which-
ever is larger.

Tunable Desired size of the memory free list (number
of free pages). When the free list drops below
lotsfree , the page scanner runs.
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desfree lotsfree  / 2. Tunable Free memory desperation threshold. When
freemem  drops below desfree , the page
scan rate increases and the system will alter
its default behavior for specific events. des-
free  must be less than lotsfree .

minfree desfree  / 2. Tunable Minimum acceptable amount of free mem-
ory. minfree  must be less than desfree .

throttlefree minfree Tunable Memory threshold at which the kernel will
block memory allocation requests. Must be
less than minfree .

pageout_reserve throttle-
free  / 2

Tunable Memory pages reserved for pageout and
memory scheduler threads. When freemem
drops below pageout_reserve , memory
allocations are denied for anything other
than pageout and sched.

priority_paging 0 Switch Enables priority paging when set to 1. Prior-
ity paging relieves memory pressure on exe-
cutable pages due to cached file system
activity. Priority paging is available for
Solaris 2.6 with kernel jumbo patch
105181-10 or greater. It is in Solaris 7.

cachefree * Tunable The memory page threshold that triggers the
priority paging behavior, where file system
cache pages are marked for pageout only as
long as freemem  is below cachefree  but
above lotsfree . cachefree  must be
greater than lotsfree .

* If priority_paging  is 0, then cache-
free  = lotsfree .  If priority_paging  is
1 (enabled), then cachefree  = (lotsfree  *
2)

pages_pp_maximum * Limit Number of pages the system requires remain
unlocked.

* 200, or tune_t_minarmem , or 10% of
available memory, whichever is greater.

tune_t_minarmem 25 Limit Minimum number of memory pages reserved
for the kernel. A safeguard to ensure that a
minimum amount of nonswappable memory
is available to the kernel.

min_percent_cpu 4 Tunable Minimum percentage of CPU time pageout
can consume.

Table A-4 Virtual Memory

Parameter Default Category Description/Notes
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A.4 File System Parameters

The file system and page flushing parameters in Table A-5 provide for tuning file
system performance and manage the flushing of dirty pages from memory to disk.

You can read more about the fsflush and associated parameters in “Bypassing
the Page Cache with Direct I/O” on page 614. “Directory Name Cache” on page 615
and “Inode Caches” on page 617 have more information on the file system parame-
ters directory and inode caches.

handspreadpages fastscan Tunable Number of pages between the first and sec-
ond hand of the page scanner.

pages_before_pager 200 Tunable Used in conjunction with lotsfree  to estab-
lish the point at which the kernel will free
file system pages after an I/O. If available
memory is less than lotsfree  +
pages_before_pager , then the kernel will
free pages after an I/O (rather than keep
them in the page cache for reuse).

maxpgio 40 Tunable Maximum number of pageout operations per
second the kernel will schedule. Set to 100
times the number of disks with swap files or
swap partitions.

Table A-5 File System and Page Flushing Parameters

Parameter Default Category Description/Notes
tune_t_flushr 5 Tunable fsflush  interval; the fsflush daemon runs

every tune_t_flushr  seconds.
autoup 30 Tunable Age in seconds of dirty pages. Used in con-

junction with tune_t_fsflushr ; modified
pages that are older than autoup  are writ-
ten to disk.

dopageflush 1 Switch When set, enables dirty page flushing by
fsflush . Can be set to zero to disable page
flushing.

doiflush 1 Switch Flag to control flushing of inode cache dur-
ing fsflush  syncs. Set to 0 to disable inode
cache flushing.

Table A-4 Virtual Memory

Parameter Default Category Description/Notes
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ncsize * Limit Size of the directory name lookup cache
(DNLC); a kernel cache that caches path
names for vnodes for UFS and NFS files.

* ncsize defaults to (17 * maxusers ) + 90 on
2.5.1, and (68 * maxusers ) + 360 on Solaris
2.6 and 7.

bufhwm 2% of physical
memory

Limit Maximum amount of memory (in Kbytes)
allocated to the I/O buffer cache, which
caches file system inodes, superblocks, indi-
rect blocks, and directories.

ndquot ((maxusers *
40) / 4) +
max_nprocs

Limit Number of UFS quota structures to allocate.
Applies only if quotas are enabled for UFS.

maxphys 126976 (sun4m
and sun4d),
131072 (sun4u),
57344 (x86)

Limit Maximum physical I/O size, in bytes. For
some devices, the maximum physical I/O size
is set dynamically when the driver loads.

ufs_ninode ncsize Limit Number of inodes to cache in memory.
ufs:ufs_WRITES 1 Switch Enables UFS per-file write throttle. See

below.
ufs:ufs_LW 256 Kbytes Tunable UFS write throttle low watermark. See

below.
ufs:ufs_HW 384 Kbytes Tunable UFS write throttle high watermark. If the

number of outstanding bytes to be written to
a file exceeds ufs_HW, then writes are
deferred until ufs_LW  or less is pending.

nrnode ncsize Limit Maximum number of rnodes allocated.
rnodes apply to NFS files, and are the NFS
equivalent of a UFS inode.

tmpfs_maxkmem Set dynami-
cally when
tmpfs is first
used.

Limit Maximum amount of kernel memory for
tmpfs data structures. The value is set the
first time tmpfs is used, to a range some-
where between the memory page size of the
platform, to 25% of the amount of available
kernel memory.

tmpfs_minfree 256 pages Limit Minimum amount of swap space tmpfs will
leave for non-tmpfs use (i.e., the rest of the
system).

Table A-5 File System and Page Flushing Parameters

Parameter Default Category Description/Notes
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Table A-6 lists parameters related to swapfs —the pseudofile that is a key com-
ponent in the management of kernel anonymous memory pages. These parame-
ters are generally not changed from their defaults.

A.5 Miscelaneous Parameters

Table A-7 lists miscellaneous kernel parameters. You can read more about many of
the tunable parameters in “Kernel Bootstrap and Initialization” on page 107.

Table A-6 Swapfs Parameters

Parameter Default Category Description/Notes
swapfs_reserve 4 MB or 1/16th

of memory,
whichever is
smaller

Limit The amount of swap reserved for system pro-
cesses. Those processes owned by root (UID
0).

swapfs_minfree 2 MB or 1/8 of
physical mem-
ory, whichever
is larger.

Limit Amount of memory the kernel keeps avail-
able for the rest of the systems (all pro-
cesses).

Table A-7 Miscellaneous Parameters

Parameter Default Category Description/Notes
maxusers MB of RAM Limit Generic tunable for sizing various kernel

resources.
ngroups_max 16 Limit Maximum number of supplementary groups

a user can belong to.
npty 48 Limit Number of pseudodevices, /dev/pts

slave devices, and /dev/pty  controller
devices.

pt_cnt 48 Limit Number of pseudodevices, /dev/pts  slave
devices, and /dev/ptm  master devices.

rstchown 1 Switch Enables POSIX_CHOWN_RESTRICTED behav-
ior. Only a root process can change file own-
ership. A process must be a current member
of the group to which it wishes to change a
files group, unless it is root.

rlim_fd_cur 64 Limit Maximum per-process open files.
rlim_fd_max 1024 Limit Per process open files hard limit.

rlim_fd_cur  can never be larger than
rlim_fd_max .
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physmem number of
pages of RAM

Limit Can be set to reduce the effective amount of
usable physical memory. Values are in pages.

kobj_map_space_len 1 MB Limit Amount of kernel memory allocated to store
symbol table information. In Solaris 2.6, it
defines to total space for the kernel symbol
table. In Solaris 7, space is dynamically allo-
cated as needed, in units of
kobj_map_space_len .

kmem_flags 0 Switch Solaris 2.6 and later. Enable some level of
debug of kernel memory allocation. Values:
0x1 – AUDIT: maintain an activity audit log.
0x2 – TEST: Allocator tests memory prior to
allocation.
0x3 – REDZONE: Allocator adds extra mem-
ory to the end of an allocated buffer, and
tests to determine if the extra memory was
written into when the buffer is freed.
0x4 – CONTENTS: Logs up to 256 bytes of
buffer contents when buffer is freed.
Requires AUDIT also be set.

kmem_debug_enable 0 Switch Kernel memory allocator debug flag. Allows
kma debug information for any or all kmem
caches. Value of −1 in all caches. Solaris 2.6
and 7 only. Removed in Solaris 7, 3/99.

moddebug 0 Switch Turn on kernel module debugging messages.
The many possible values for moddebug can
be found in /usr/include/sys/modctl.h .
Some useful values are:
0x80000000 – print loading/unloading mes-
sages.
0x40000000 – print detailed error messages.

timer_max 32 Limit Number of POSIX timers (timer_create (2)
system call) available.

consistent_
coloring

0 Switch sun4u (UltraSPARC) only. Establishes the
page placement policy for physical pages and
L2 cache blocks. Possible values are:
0 – page coloring
1 – virtual address = physical address
2 – bin-hopping

Table A-7 Miscellaneous Parameters

Parameter Default Category Description/Notes
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A.6 Process and Dispatcher (Scheduler) Parameters

The parameters listed in Table A-8 relate to the process and scheduler subsystem
in Solaris. For more information, refer to “The Kernel Process Table” on page 290".

A.7  STREAMS Parameters

Table A-9 lists tunable parameters available for the kernel STREAMS subsystem.
STREAMS are not covered in this version of the book.

Table A-8 Process and Dispatcher (Scheduler) Parameters

Parameter Default Category Description/Notes
reserved_procs 5 Limit The number of process table slots reserved

for system processes.
maxpid 30,000 Limit Maximum value for a PID, and the maxi-

mum number of processes that can exist on
the system at any one time.

max_nprocs (10 + 16 * max-
users )

Limit Maximum number of process that can exist
on the system. Will be set to maxpid  if it is
set to a value greater than maxpid .

maxuprc max_nprocs −
reserved_pro
cs

Limit Maximum number of processes a non-root
user can create.

noexec_user_stack 0 Switch If set to 1, stack pages are mapped noexec ,
providing protection against buffer overflow
attacks. 64-bit Solaris 7 maps stack pages
no-exec by default.

rechoose_interval 3 Tunable Clock tick count for thread-to-processor
affinity scheduling. The dispatcher attempts
to place a thread on the same processor it
last ran on, for optimal hardware cache hits.
After rechoose_interval  ticks, the next
available processor is chosen.

hires_tick 0 Tunable Default of 0 has the system generate 100
clock interrupts per second (10 ms interval).
Setting this value to 1 results in a 1 ms
interval (1000 clock interrupts per second).
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Table A-9 STREAMS Parameters

Parameter Default Category Description/Notes
nstrpush 9 Limit Number of modules that can be pushed onto

a STREAM.
strmsgsz 65536 Limit Maximum size (in bytes) of a STREAMS

data message.
strctlsz 1024 Limit Maximum size (in bytes) of a STREAMS con-

trol message.
sadcnt 16 Limit Number of STREAMS administrative driver

(sad ) devices.
nautopush 32 Limit Number of sad  autopush structures.



632 Kernel Tunables, Switches, and Limits



 B
KERNEL VIRTUAL
ADDRESS MAPS
In this appendix, we illustrate the allocation- and location-specific information for
the segments that constitute the Solaris 7 kernel address space.

The kernel address space is represented by the address space pointed to by the
system object, kas . The segment drivers manage the manipulation of the seg-
ments within the kernel address space. Figure B.1 illustrates the architecture.

 Figure B.1 Kernel Address Space and Segments

struct seg

struct seg

struct segHardware
Translation Information

kas struct as

a_size

a_nsegs

a_segs

a_flags

a_hat

a_tail
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You can look at the kernel address space with the as adb macro, using the kernel
address space pointer. The as macro will show the kernel address space and the
pointer to the list of kernel segments.

You can then use the seglist adb macro to print a list of the kernel’s memory
segments.

# adb -k
physmem b91a
kas$<as

10423320:       contents (mutex)
10423320:       owner/waiters
                0
10423328:       flags   vbits   cv
                0       0       0
10423330:       hat             hrm             seglast
                300000ebf88     0               300002a9f88
10423350:       lock (rwlock)
10423350:       wwwh
                0
10423368:       segs            size            tail

10434678         2052c0000       104230e0
10423380:       nsegs           lrep    hilevel
                6               0       0
10423386:       unused  updatedir       objectdir
                0       01              0
10423390:       sizedir         wpage           nwpage
                0               0               0
10423340:       userlimit
                0

10434678$<seglist

ktextseg:
ktextseg:       base            size            as
                10000000        4a0000          10423320
ktextseg+0x18:  next            prev            ops
                1041fd60        0               segkmem_ops
ktextseg+0x30:  data
                0

kvalloc:
kvalloc:        base            size            as
                104a0000        e20000          10423320
kvalloc+0x18:   next            prev            ops
                104233a0        10434678        segkmem_ops
kvalloc+0x30:   data
                0

kvseg32:
kvseg32:        base            size            as
                78000000        4000000         10423320
kvseg32+0x18:   next            prev            ops
                300002a9f88     1041fd60        segkmem_ops
kvseg32+0x30:   data
                0
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The next figures illustrate Solaris 7 address space, as follows:

• Figure B.2  Solaris 7 sun4u 64-Bit Kernel Address Space
• Figure B.3  Solaris 7 sun4u 32-Bit Kernel Address Space
• Figure B.4  Solaris 7 sun4d 32-Bit Kernel Address Space
• Figure B.5  Solaris 7 sun4m 32-Bit Kernel Address Space
• Figure B.6  Solaris 7 x86 32-Bit Kernel Address Space
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 Figure B.6 Solaris 7
x86 32-Bit Kernel
Address Space

By default, the x86 kernel is
loaded at 0XE0000000. To load
the kernel at an alternate ad-
dress, set the kernelbase

parameter in the open boot em-
ulator.

Setting kernelbase lower re-
duces the size of the usable
process address space but in-
creases the amount of kernel
virtual memory available. This
may be necessary on systems
with large physical memories.



 C
A SAMPLE PROCFS
UTILITY
$ msacct ls -lR
.:
total 3012
drwxrwxrwx   9 jmauro   tech        2560 Oct 22 13:02 2.X
[a LOT of output snipped]
....
-rwxrwxrwx   1 jmauro   staff       5166 Feb 12 18:11 msacct.c
-r--r--r--   1 jmauro   staff       4401 Feb  6 22:02 ptime.c

*** Usage Counters ***
        Minor Faults:.................0
        Major Faults:.................0
        Swaps:........................0
        Input Blocks:.................0
        Output Blocks:................0
        STREAMS Messages Sent:........0
        STREAMS Messages Received:....0
        Signals:......................0
        Voluntary Context Switches:...1684
        Involuntary Context Switches:.25
        System Calls:.................3693
        Read/Write Characters:........53305
*** State Times ***
        Total Elapsed Time:...........11.065
        Total User Time:..............0.403
        Total System Time:............0.429
        Other System Trap Time:.......0.000
        Text Page Fault Sleep Time....0.000
        Data Page Fault Sleep Time....0.000
        Kernel Page Fault Sleep Time..0.000
        User Lock Wait Sleep Time.....0.000
        All Other Sleep Time..........10.201
        Time Waiting for a CPU........0.038
        Stopped Time..................0.000
641
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/*
 * Turn on microstate accounting, and print all field resource
 * usage and microstat accounting fields when process terminates.
 *
 * Borrowed largely from ptime.c
 * (Thanks Roger Faulkner and Mike Shapiro)
 *
 * Usage: msacct command
 *
 */

#include <sys/types.h>
#include <sys/time.h>
#include <procfs.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <errno.h>
#include <math.h>
#include <wait.h>
#include <signal.h>

static        int        look(pid_t);
static        void        hr_min_sec(char *, long);
static        void        prtime(char *, timestruc_t *);
static        int        perr(const char *);

static void tsadd(timestruc_t *result, timestruc_t *a, timestruc_t *b);
static void tssub(timestruc_t *result, timestruc_t *a, timestruc_t *b);

static        char        *command;
static        char        procname[64];

main(int argc, char **argv)
{
        int ctlfd;
        long ctl[2];
        pid_t pid;
        struct siginfo info;
        int status;

        if ((command = strrchr(argv[0], ’/’)) != NULL)
                command++;
        else
                command = argv[0];

        if (argc <= 1) {
                (void) fprintf(stderr,
                        "usage:%s command [ args ... ]\n", command);
                (void) fprintf(stderr,
                        "  (time a command using microstate accounting)\n");
                return (1);
        }

        switch (pid = fork()) {
        case -1:
                (void) fprintf(stderr, "%s: cannot fork\n", command);
                return (2);
        case 0:
                /* newly created child process */
                /* open the /proc ctl file and turn on microstate accounting */
                (void) sprintf(procname, "/proc/%d/ctl", (int)getpid());
                ctlfd = open(procname, O_WRONLY);
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                ctl[0] = PCSET;
                ctl[1] = PR_MSACCT;
                (void) write(ctlfd, ctl, 2*sizeof (long));
                (void) close(ctlfd);
                (void) execvp(argv[1], &argv[1]);
                (void) fprintf(stderr, "%s: exec failed\n", command);
                if (errno == ENOENT)
                        _exit(127);
                else
                        _exit(126);
        }

        (void) sprintf("%d", procname, (int)pid);        /* for perr() */
        (void) signal(SIGINT, SIG_IGN);
        (void) signal(SIGQUIT, SIG_IGN);
        (void) waitid(P_PID, pid, &info, WEXITED | WNOWAIT);

        (void) look(pid);

        (void) waitpid(pid, &status, 0);

        if (WIFEXITED(status))
                return (WEXITSTATUS(status));
        else
                return ((status & ~WCOREFLG) | 0200);
}

static int
look(pid_t pid)
{
        char pathname[100];
        int rval = 0;
        int fd;
        prusage_t prusage;
        timestruc_t real, user, sys;
        prusage_t *pup = &prusage;

        (void) sprintf(pathname, "/proc/%d/usage", (int)pid);
        if ((fd = open(pathname, O_RDONLY)) < 0)
                return (perr("open usage"));

        if (read(fd, &prusage, sizeof (prusage)) != sizeof (prusage))
                rval = perr("read usage");
        else {
                real = pup->pr_term;
                tssub(&real, &real, &pup->pr_create);
                user = pup->pr_utime;
                sys = pup->pr_stime;
                tsadd(&sys, &sys, &pup->pr_ttime);
                (void) fprintf(stderr, "\n");
                printf("*** Usage Counters *** \n");
                printf("Minor Faults:.................%ld\n", pup->pr_minf);
                printf("Major Faults:.................%ld\n", pup->pr_majf);
                printf("Swaps:........................%ld\n", pup->pr_nswap);
                printf("Input Blocks:.................%ld\n", pup->pr_inblk);
                printf("Output Blocks:................%ld\n", pup->pr_oublk);
                printf("STREAMS Messages Sent:........%ld\n", pup->pr_msnd);
                printf("STREAMS Messages Received:....%ld\n", pup->pr_mrcv);
                printf("Signals:......................%ld\n", pup->pr_sigs);
                printf("Voluntary Context Switches:...%ld\n", pup->pr_vctx);
                printf("Involuntary Context Switches:.%ld\n", pup->pr_ictx);
                printf("System Calls:.................%ld\n", pup->pr_sysc);
                printf("Read/Write Characters:........%ld\n", pup->pr_ioch);
                printf("*** State Times *** \n");
                prtime("Total Elapsed Time:...........", &real);
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                prtime("Total User Time:..............", &user);
                prtime("Total System Time:............", &sys);
                prtime("Other System Trap Time:.......", &pup->pr_ttime);
                prtime("Text Page Fault Sleep Time....", &pup->pr_tftime);
                prtime("Data Page Fault Sleep Time....", &pup->pr_dftime);
                prtime("Kernel Page Fault Sleep Time..", &pup->pr_kftime);
                prtime("User Lock Wait Sleep Time.....", &pup->pr_ltime);
                prtime("All Other Sleep Time..........", &pup->pr_slptime);
                prtime("Time Waiting for a CPU........", &pup->pr_wtime);
                prtime("Stopped Time..................", &pup->pr_stoptime);
        }

        (void) close(fd);
        return (rval);
}

static void
hr_min_sec(char *buf, long sec)
{
        if (sec >= 3600)
                (void) sprintf(buf, "%ld:%.2ld:%.2ld",
                        sec / 3600, (sec % 3600) / 60, sec % 60);
        else if (sec >= 60)
                (void) sprintf(buf, "%ld:%.2ld",
                        sec / 60, sec % 60);
        else {
                (void) sprintf(buf, "%ld", sec);
        }
}

static void
prtime(char *name, timestruc_t *ts)
{
        char buf[32];

        hr_min_sec(buf, ts->tv_sec);
        (void) fprintf(stderr, "%s%s.%.3u\n",
                name, buf, (u_int)ts->tv_nsec/1000000);
}

static int
perr(const char *s)
{
        if (s)
                (void) fprintf(stderr, "%s: ", procname);
        else
                s = procname;
        perror(s);
        return (1);
}

static void
tsadd(timestruc_t *result, timestruc_t *a, timestruc_t *b)
{
        result->tv_sec = a->tv_sec + b->tv_sec;
        if ((result->tv_nsec = a->tv_nsec + b->tv_nsec) >= 1000000000) {
                result->tv_nsec -= 1000000000;
                result->tv_sec += 1;
        }
}

static void
tssub(timestruc_t *result, timestruc_t *a, timestruc_t *b)
{
        result->tv_sec = a->tv_sec - b->tv_sec;
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        if ((result->tv_nsec = a->tv_nsec - b->tv_nsec) < 0) {
                result->tv_nsec += 1000000000;
                result->tv_sec -= 1;
        }
}
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